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ABSTRACT 
 
Little effort has been made to apply the Critical State Soil Mechanics concept to the 

prediction of pavement response. The aim of this research is to apply soil mechanics 

principles, particularly the kinematic hardening concept, to the prediction of the 

response of lightly trafficked pavements to repeated loading. For this purpose, the 

finite element critical state program CRISP is used. 

 

A comparison is made between the predictions given by the three-surface kinematic 

hardening (3-SKH) model and a layered elastic analysis BISAR for the resilient 

deformation produced by repeated loading of a thinly surfaced pavement, and the 

models are found to be in good agreement. The ability of the 3-SKH model to 

predict soil behaviour under cyclic loading, and under one-dimensional loading, 

unloading and reloading is also evaluated. A comparison between model predictions 

and experimental data obtained by other researchers shows that the 3-SKH model 

over-predicts the value of K0,nc and hence shear strain during monotonic loading. 

This problem is magnified when the model is applied to cyclic loading behaviour 

where large numbers of cycles are involved. The model also predicts an 

accumulation of negative shear strain with increasing number of cycles under some 

stress conditions. This will lead to unrealistic predictions of rutting in pavements. 

However, the model is suitable for obtaining resilient parameters for input to a 

layered elastic analysis program. 

 

A new model, which is a modified version of the 3-SKH model, is therefore 

proposed by modifying the flow rule and the hardening moduli. This model can 

correctly predict the value of K0,nc and reduce the amount of shear strain predicted. 

The model also eliminates the problem of accumulation of negative shear strain with 

increasing number of cycles. The new model introduces two additional parameters, 

one of which can be determined by one-dimensional normal compression test, and 

the other by fitting a set of cyclic loading data. The new model is used to design the 

required thickness of granular material using the permissible resilient subgrade strain 

and permanent rut depth criteria during construction. It is found that the new model 

predicts a realistic granular layer thickness required to prevent excessive rutting, thus 

showing much promise for use in design of thinly surfaced pavements.   
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1 INTRODUCTION 
 

 

1.1 BACKGROUND 
 

Most of the research and developmental work on pavements in the U.K. over recent 

years has focused on the needs of the motorway and trunk road systems, which 

constitute only a small proportion of the national highway system in the U.K. The 

design standards and material specifications developed by the Highways Agency for 

heavily-trafficked roads have, generally, also been adopted by the local authorities 

responsible for the lightly trafficked system. This has resulted in inappropriate and 

uneconomical standards for this sector, for which maintenance funds have always 

been restricted. Therefore, the need for the development of more appropriate 

evaluation, designs and material standards for lightly trafficked roads is clear and 

essential. 

 

Pavement soil mechanics and traditional soil mechanics have developed as two 

separate disciplines.  As a result, current pavement design methods are mainly based 

on empirical results, whereas constitutive modelling in traditional soil mechanics is 

based on fundamental elasticity and plasticity theory. As yet, there is no known 

single model in pavement engineering that can predict both the resilient (quasi-

elastic) response of a pavement over one application of wheel load, and the 

accumulation of permanent deformation over many cycles. The aim of this project is 

to apply the principles of soil mechanics, in particular the kinematic hardening 

concept, to modelling the behaviour of lightly trafficked (or low volume) roads 

under repeated loading. Since lightly trafficked roads require relatively thin layers of 

bituminous material when compared with motorways, the granular material and soil 

subgrade are subjected to larger stresses, so their mechanical properties need to be 

taken carefully into account when predicting performance, conducting structural 

evaluation, and in the design of new pavements or rehabilitation of existing ones. 

The design concepts needed for heavily trafficked roads have not accommodated the 

understanding of soils that has resulted from research over the past 20 years. At 

present, a pavement foundation is designed according to the Design Manual for 

 1  



Roads and Bridges: Volume 7 (Highways Agency, 1994) which is based on the 

California Bearing Ratio concept developed by the California Division of Highways 

in 1938 (Porter, 1938). This method helps to determine the thickness of the capping 

and sub-base required to protect the subgrade from excessive stress during 

construction that might lead to excessive rutting, and is largely based on experience 

from the performance of existing roads and full-scale pavement experiments 

performed by the Transport and Road Research Laboratory. Such empirical data can 

only be applied for instances where the materials used and loading conditions are 

similar to those used for the studies, but provide no confidence when other materials 

are used or under different loading conditions. 

 

The application of fundamental soil mechanics principles to pavement design is 

needed and is particularly important if economies are to be introduced for lightly 

trafficked road design and maintenance. In the 36th Rankine Lecture to the British 

Geotechnical Society, Brown (1996) emphasized the need for theoretical models for 

pavement foundations, highlighting the complexity of pavement problems and the 

fact that the current practice of pavement engineering is lagging behind knowledge 

that has been accumulated through research. 

 

With the advent of increasingly more powerful computer technology, pavement 

design procedures based on linear elastic analysis have become popular, the most 

common method being the Shell pavement design method (Shell International 

Petroleum Company, 1978). This requires the provision of a constant elastic 

modulus and a Poisson’s ratio for each pavement layer including granular material 

and clay. Linear elastic analysis can be used with reasonable confidence for 

pavements with thick bituminous or concrete layers due to the relatively low stresses 

induced in the pavement foundations. However, for unsurfaced or thinly surfaced 

pavements where stresses are higher in the foundation layers, the non-linear and 

inelastic properties become crucial and elastic theory will not be able to give correct 

predictions for these types of pavements. Pavement failure occurs by gradual 

deterioration of the pavement and not by sudden collapse, as permanent deformation 

accumulates gradually with traffic loading, leading to progressive failure of the 

pavement. In an elastic analysis, no permanent deformation is predicted and hence 

no failure occurs. Nevertheless, most design methods are based on the assumption 
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that failure can occur under cyclic loading and use the vertical strain at the top of the 

subgrade as the design parameter. This vertical strain is calculated from a multi-

layered elastic analysis, which requires the input of material stiffnesses. Hence, most 

of the constitutive models for pavement foundations were developed for better 

prediction of elastic or resilient strains. Permanent deformation models were also 

developed by curve-fitting a set of cyclic triaxial data and relating permanent strains 

to the number of cycles of load but fewer permanent deformation models were 

developed in the past compared to those for resilient deformation, due to the time 

needed to perform a test with a large number of cycles. These models are described 

in detail later in the dissertation. Finite element analysis has been found to be the 

most suitable method to analyse pavement response (Pappin, 1979), and several 

finite element programs have been developed especially for pavement analysis over 

the past few decades such as SENOL (Brown and Pappin, 1981) and FENLAP 

(Almeida, 1993). CRISP (CRItical State Program) (Britto & Gunn, 1987), a finite 

element program for modelling soil, is used in this research.  

 

In order to predict the response of a soil, a suitable constitutive model has to be 

chosen. The three-surface kinematic hardening model (3-SKH) developed by 

Stallebrass (1990) was chosen for this research to predict the response of pavement 

subgrades. This model can account for the effect of recent stress history, which is 

important in pavements because stress history influences subgrade stiffness and 

therefore deformation. A series of triaxial tests were performed to determine the 

necessary parameters for input into the 3-SKH model in CRISP. The model was 

validated by performing cyclic triaxial tests on Speswhite kaolin and comparing the 

results with those predicted by the 3-SKH model. The model was then used to 

predict the behaviour of a real pavement geometry under repeated wheel loading. 

 

The main aims of the research reported in this thesis are as follows: 

 

(1) To evaluate the 3-SKH model in the prediction of the repeated loading 

behaviour of clay.  

(2) To study the behaviour of pavement subgrades under repeated loading using 

kinematic hardening. 
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(3) To modify the 3-SKH model to better predict the behaviour of soil under 

repeated loading. 

(4) To apply the new constitutive model to the prediction of resilient and 

permanent deformation of pavement subgrades under repeated loading using 

the finite element method. 

 

 

1.2 RESEARCH METHODOLOGY 
 

To achieve the objectives outlined in the previous section, the constitutive models 

used in the prediction of cyclic behaviour of soil were reviewed. A suitable model 

was then chosen and the model’s ability to predict the cyclic loading behaviour of 

soil was investigated by comparing the model predictions with existing test data. In 

this way, the advantages and disadvantages of the model could be determined and 

necessary modifications to the model could be established in order to improve 

prediction. The model was then modified and the necessary model parameters were 

determined. Triaxial tests were then conducted to validate the prediction of the 

model. Finally, the model was used to make predictions of the response of a full-

scale pavement under repeated loading. 

 

 

1.3 STRUCTURE OF THESIS 
 

This thesis is divided into seven chapters. A brief outline of this dissertation is given 

below. 

 

Following the current introductory chapter, Chapter 2 presents a literature review, 

consisting of three parts: soil mechanics, pavement engineering and numerical 

modelling. Part one briefly describes theories of elasticity and plasticity, followed by 

the critical state concept. The Cam clay and Modified Cam clay models and their 

deficiencies are also studied. Various cyclic loading models for soil, based on 

fundamental plasticity theory are discussed, and the behaviour of soil under one-

dimensional loading, unloading and reloading are also investigated. The one-
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dimensional loading and unloading of soil are important since most soils have a one-

dimensional history. Part two of the second Chapter examines the failure 

mechanisms in flexible pavements and the various models developed for pavement 

foundations, followed by a description of current UK pavement foundation design 

methods. The basic finite element method is described in part three followed by a 

brief description of the finite element program – CRISP. The preliminary study of 

the ‘Bubble’ model (Al-Tabbaa, 1987) and the 3-SKH model (Stallebrass, 1990) is 

presented in Chapter 3. This chapter examines the ability of these models to predict 

soil behaviour under cyclic loading, and under one-dimensional normal compression, 

unloading and reloading. A comparison is also made of the predictions made by the 

3-SKH model and a layered elastic analysis program BISAR of the resilient response 

of a pavement.   

 

A new non-associated three-surface kinematic hardening model is proposed and 

evaluated in Chapter 4. Chapter 5 consists of a description of the triaxial apparatus 

and test procedure used during the test programme, together with a presentation of 

the experimental results. The required model parameters are determined in this 

chapter and a parametric study to determine an optimum choice of parameters is 

performed. The model predictions for drained cyclic triaxial tests are then compared 

to the experimental results. Chapter 6 presents the analysis of a full-scale pavement 

problem using the new model. Two loading conditions are investigated: that due to 

the construction stage and that resulting from traffic once the pavement is complete 

and open to traffic.  The new model is used to design the required thickness of 

granular material to prevent excessive rutting, using the permissible resilient 

subgrade strain and rut depth criteria during construction. The effect of the asphalt 

thickness and the granular layer thickness is also studied.  Finally, Chapter 7 presents 

the conclusions of this research and gives suggestions for future work. 
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2 LITERATURE REVIEW 
 

 

2.1 INTRODUCTION 
 

This literature review comprises of three parts: (1) Soil Mechanics, (2) Pavement 

Engineering and (3) Numerical modelling. In Part one, basic elasticity and plasticity 

theory are briefly described followed by the concept of Critical State Soil Mechanics 

(CSSM). After the description of the Cam clay and the Modified Cam clay models, 

their shortcomings are briefly discussed. Various cyclic loading models based on the 

CSSM concept are reviewed, and the different existing empirical relationships 

between earth pressure coefficient at rest, K0, and OCR during one-dimensional 

loading, unloading and reloading are briefly described since these relate to the plastic 

strains which occur during one-dimensional deformation, and are used later to 

improve an existing model. In Part two, the failure mechanisms of flexible 

pavements, and different models used in the prediction of resilient and permanent 

deformations of pavement foundations are briefly reviewed. Finally, the current UK 

flexible pavement design standards are presented. In Part three, basic finite element 

concepts are briefly described followed by a brief description of the finite element 

program CRISP. 

 

 

2.2 SOIL MECHANICS 
 

2.2.1 Elasticity 

 

Soil is, unlike other materials such as metals, complex due to its multi-phase nature. 

Since elastic response is often easier to describe and comprehend than plastic 

response, the behaviour of soil is often idealised, for simplicity, as an elastic 

material, whether linear or non-linear. Hence, the stresses are uniquely determined 

by strains: that is, there is a one-to-one relationship between stress and strain. 
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The basic elastic model governing soil behaviour before yielding is given by 

Hooke’s laws of elasticity. In elasticity theory, two parameters, Young’s modulus E' 

and Poisson’s ratio µ', are needed to describe the response of an isotropic 

homogeneous soil specimen to a general change of effective stress. The stress-strain 

relationships for isotropic, homogeneous, linear elastic materials are as follows: 

 

          (1 ' 2 ' '
'a aE

)rδε δσ µ δσ= ⋅ −                                            (2.1) 

 

   ( )1 ' ' 1 ' '
'r aE

δε µ δσ µ δσ= ⋅ − + − r                  (2.2) 

 

where δεa is the axial strain increment, δεr is the radial strain increment, δσ'a is the 

effective axial stress increment and δσ'r is the effective radial stress increment. 

Equations (2.1) and (2.2) assume axisymmetry. 

 

For soil, it is preferable to use the two more fundamental parameters: shear modulus 

G' and bulk modulus K' to describe elastic behaviour, so that the effects of changing 

size and changing shape can be uncoupled. The value of shear modulus is not 

affected by drainage conditions, as the water within the soil skeleton has zero shear 

stiffness, so that 

 

'GGu =                (2.3) 

 

where Gu is undrained shear modulus and G' is effective shear modulus. The 

relationship between effective bulk modulus and shear modulus K' and G' and 

effective Young’s modulus E' and Poisson’s ratio µ' are as follows:  

     

 ( )'213
''
µ−

=
EK     (2.4) 

    

( )'12
''
µ+

=
EG       (2.5) 
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From equations 2.1 and 2.2, the elastic response can then be written using bulk 

modulus and shear modulus as: 
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
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where:   

 

( )' 2 '
'

3
ap

σ σ+
= r

'r

     (2.7) 

 

'aq σ σ= −      (2.8) 

 

      ' 2 'p a rδε δε δε= +                     (2.9) 

 

(2 ' '
3q a )rδε δε δε= −     (2.10) 

 

p' is the mean effective stress, q is the deviator stress, δεp is the volumetric strain 

increment and δεq is the deviator strain increment, and the superscript e denotes 

elastic component. 

 

 

2.2.2 Plasticity 

 

Soil rarely behaves entirely elastically, and can only be described by elasticity theory 

within a certain region of stress space. Beyond this region of stress space, plastic 

deformation occurs. Hence, an understanding of plasticity theory is essential. It is 

thought that soil only behaves elastically for shear strains approximately less than 

10-5 (Clayton et al., 1995). 

 

The plastic behaviour of an ideal elastic-plastic material is specified by a yield 

surface, a flow rule, and a hardening law. The yield surface separates states of stress 
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which cause only elastic strain from states of stress which cause both plastic and 

elastic strains. Strain increments are plotted on the same axes as associated stresses, 

and the normal to the plastic potential gives the plastic strain increment vector and 

the flow rule relates the direction of the plastic strain increment vector to the stress 

state. When the flow rule is associated the plastic strain increment vector is normal 

to the yield surface. If the plastic strain increment vector is not normal to the yield 

surface, then the flow is said to be non-associated. However, for any flow rule, a 

plastic potential can be drawn through a point in stress space. The plastic potential is 

drawn so as to be perpendicular to the plastic strain increment vector, as shown in 

Figure 2.1. Thus for associated flow, the yield surface and plastic potential coincide.   

 

 
Figure 2.1. Plastic potentials and plastic increment strain vectors (Wood, 1990). 

 

The hardening law relates the magnitude of a plastic strain increment to the 

magnitude of an increment of stress, as the state of stress causes plastic deformation 

and the material strain hardens. If the shape of the yield surface is assumed to be 

constant, and its size is assumed to be a function of plastic volumetric strain only (as 

is usually the case), then the model is said to be a ‘volumetric hardening’ model. 

 

 

2.2.3 Critical State 

 

The critical state concept is based on the consideration that, when a soil sample is 

sheared, it will eventually reach an ultimate or critical state at which plastic shearing 
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can continue indefinitely without changes in volume or effective stresses. This 

condition can be expressed by: 

 

0'
=

∂
∂

=
∂
∂

=
∂
∂

qqq

vqp
εεε

           (2.11) 

 

where v is the specific volume. 

 

When the critical state is reached, critical states for a given soil form a unique line in 

q − p' − v space referred to as the critical state line (CSL), which has the following 

equations in q − p' − v space: 

 

'pq Μ=                   (2.12) 

 

     'ln pv λ−Γ=                (2.13) 

 

where Γ, and λ are soil constants. For sands, the CSL may be curved in v – p' space, 

so that equation 2.13 would not apply. 

 

For isotropic stress conditions (i.e. q = 0), the plastic compression of a normally 

consolidated soil can be represented in v – p' space by a unique line called the 

isotropic normal compression line (NCL), which can be expressed as: 

 

        N ln 'v pλ= −            (2.14) 

 

where N is the specific volume when p' = 1kPa or 1MPa, depending on the chosen 

units. If the soil is unloaded and reloaded, the path in v − ln p' is quasi-elastic (i.e. 

hysteretic), as shown in Figure 2.2a. However, the behaviour is often idealised as 

perfectly elastic, as shown in Figure 2.2b, so that the equation of a typical unload-

reload line is: 

 

'ln pvv κκ −=             (2.15) 
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where vκ and κ are soil constants. For this reason, unload-reload lines are known as 

‘κ-lines’, as used in critical state soil models such as Cam clay. Models which do not 

assume perfectly elastic unload-reload behaviour are discussed later. 

 

 
(a) 
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Figure 2.2. (a) True unload-reload beh

behaviour of speswhite kaolin in 
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aviour and (b) idealised unload-reload 

v − ln p' space (Al-Tabbaa, 1987). 
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2.2.4 Cam clay 

 

In this section, an elastic-plastic model, Cam clay, developed by Roscoe, Schofield 

and Thurairajah (1963) at the University of Cambridge is briefly described. This 

model is the basis for several more advanced models. In recent times, this classical 

critical state model has been modified in various ways by many researchers to model 

different soil types and loading conditions in an attempt to achieve a better 

understanding of soil behaviour and therefore a better prediction of soil response. 

 

The Cam clay model is based on the concept of the critical state which says that soil, 

when sheared, will eventually come into a critical state at which unlimited shear 

strains take place without further change in effective stresses or volume. 

 

The Cam clay yield surface is derived from the work equation as follows: 

 

' Mp p
p qp q p ' p

qδε δε δε+ =     (2.16) 

 

Since the direction of the strain increment vector, δεp
p/δεq

p, is assumed to be normal 

to the yield locus (i.e. the yield locus and plastic potential coincide): 

 

q
p

p
q

p
p

δ
δ

δε
δε '

−=           (2.17) 

 

The corresponding plastic potential and yield surface in the q − p' space are given by 

combining equations 2.16 and 2.17 and integrating, as: 

 

'ln
' '

cpq M
p p

η= =         (2.18) 

 

where p'c is the isotropic pre-consolidation pressure, which is the value of p' when η 

= 0. The curve is plotted in Fig. 2.3. 
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Figure 2.3. Cam clay yield surface. 

 

In Cam clay, it is assumed that the plastic flow obeys the principle of normality or 

has an associated flow rule: that is, the plastic potential and the yield surface 

coincide. This is convenient when implementing the model in finite element 

calculations because the constitutive matrix, [Dep], is symmetric if the plastic 

potential, g, is equal to the yield surface, f.   

 

The yield surface is assumed to expand at a constant shape, and the size of the yield 

surface is assumed to be related to changes in volume only, according to the 

equation: 

  

'
'

p c
p

c

p
v p

δλ κδε −
=     (2.19) 

 

This is known as volumetric hardening. 

 

 

2.2.5 Modified Cam clay 

 

Modified Cam clay was developed by Roscoe and Burland (1968) as a modification 

of the original Cam clay model developed by Roscoe, Schofield and Thurairajah 

(1963).  This model successfully reproduces the major deformation characteristics of 

soft clay, and is more widely used for numerical predictions than the original Cam 
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clay model.  It has been used successfully in several applications, as summarised by 

Wroth and Houlsby (1985). 

 

One of the main improvements of the Modified Cam clay model from the Cam clay 

model is the prediction of the coefficient of earth pressure at rest, Ko,nc, for one-

dimensional normal compression. For one-dimensional normal compression, original 

Cam clay predicts a value of zero for ηo,nc so original Cam clay cannot distinguish 

between isotropic and one-dimensional normal compression. Furthermore, the 

discontinuity of the original Cam clay yield surface at q = 0 causes difficulties, as the 

associated flow rule will predict an infinite number of possible strain increment 

vectors for isotropic compression, and this causes difficulties in finite element 

formulations. Modified Cam clay model overcomes these problems by adopting an 

elliptical-shaped yield surface, as shown in Figure 2.4, and which has the following 

expression, 

 

( )2 2M ' ' 'cq p p p= − 2      (2.20) 

 

or  

     
2

2

' M
' Mc

p
p 2η

=
+

     (2.21) 

 

p'

q
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p' c
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Figure 2.4 Modified Cam clay yield surface. 

 

 14  



When the stress states are within the current yield surface, the elastic properties of 

Modified Cam clay are the same as those in the Cam clay model as described in 

section 2.2.4. 

 

Since it is assumed that the soil obeys the normality condition, the plastic potential, 

g, is the same as the yield surface, f: 

 

( )2 2M ' ' 'cg f q p p p= = − − =   0         (2.22) 

 

where g and f are the plastic potential and yield surface functions respectively. 

 

The flow rule for Modified Cam clay is then calculated by application of the 

normality condition: 

  
2 2M
2

p
p
p

q

δε η
δε η

−
=         (2.23) 

 

The yield surface is assumed to expand at a constant shape, and the size is controlled 

by the isotropic pre-consolidation pressure, p'c. The hardening relationship for 

Modified Cam clay is: 

 

( )
'
'

c

cp
p p

p
v

δκλδε −
=                  (2.24) 

 

The elastic and plastic stress-strain responses can be written in matrix form as: 
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2.2.6 Shortcomings of Cam clay and Modified Cam clay 

 

Cam clay and Modified Cam clay are known to be able to predict the behaviour of 

normally and lightly overconsolidated clays reasonably well, but there are several 

shortcomings in the Cam clay models, which are discussed briefly in this section. 

 

1. The Cam clay model cannot distinguish between isotropic and one-

dimensional compression. For one-dimensional compression, it can be shown that, 

empirically (see Section 4.3.7), 

 

0, 0.6Mncη ≈      (2.27) 

 

and  

 

( )d 3 1.2
d 2

p
p
p

q

ε λ κ
ε λ

−
= ≈    (2.28) 

 

if elastic shear strains are neglected, and assuming ( )
λ

κλ −  ≈ 0.8, which is typical 

(Bolton, 1991a).  However, the Cam clay stress-dilatancy equation gives: 

 

d
M

d

p
p
p

q

ε
η

ε
= −          (2.29) 

 

Thus the only way equation 2.28 can be satisfied by Cam clay for one-dimensional 

compression is if η = 0. This is because plasticity theory says that where there is a 

corner on a yield locus, the plastic strain increment vector can lie in any direction 

within the fan bounded by the two normals at that corner — see Figure 2.5.  
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Figure 2.5. Plastic strain increment vector at the corner. 

 

For modified Cam clay, the stress-dilatancy equation is: 

 
2 2d M

d 2

p
p
p

q

ε η
ε η

−
=     (2.30) 

 

From equation 2.30 with dεp
p/dεq

p = 1.2, η0,nc ≈ 0.4 assuming M ≈ 1, which is better 

than the result predicted by Cam clay. But the predicted η0,nc is still too low, which 

implies that at most stress ratios, the predicted plastic shear strain is too high.  

 

2. The Cam clay model was developed based on the assumption that soils are 

isotropic. It is well known that natural soils are anisotropic due to the mode of 

deposition. Many soils have been deposited over areas of large lateral extent, and the 

deformations they have experienced during and after deposition have been 

essentially one-dimensional. 

 

The deviation of the predictions from experimental measurements on natural clays is 

due to the position rather than the shape of the yield loci (Wroth and Houlsby, 1985). 

Wroth and Houlsby (1985) summarised the tests carried out by Graham et al. (1983) 

on specimens of undisturbed Winnipeg clay. Yield points of the specimen were 

identified and plotted in Figure 2.6. 
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Figure 2.6. Yield surface observed in triaxial tests on undisturbed Winnipeg clay 

(Graham et al., 1983).  

 

Figure 2.6 clearly indicates that its shape is approximately elliptical, but instead of 

being symmetrical about the p'-axis, the major axis of the yield locus seems to 

coincide approximately with the K0-line. This is why Cam clay models were often 

validated using reconstituted isotropic clays. These models are attractive because of 

their simplicity, where only two independent parameters, bulk and shear modulus, 

are required to describe the elastic behaviour. On the other hand, 21 elastic constants 

are required to completely describe the anisotropic elastic behaviour. However, for a 

soil which is cross-anisotropic (i.e. has the same properties in horizontal directions 

but different properties in the vertical direction) only five parameters are required to 

describe its behaviour. Kinematic hardening models are capable of predicting much 

of the anisotropic behaviour of soil using an isotropic state boundary surface. 

 

3. Cam clay and Modified Cam clay overestimate the failure stresses on the ‘dry 

side’ of critical i.e. states to the left of the CSL in q – p' and v – p'. These models 

predict a peak strength in undrained, heavily overconsolidated clay which is not 

usually observed in experiments. This is due to the yield surfaces adopted in these 

models. Figure 2.7 shows the prediction by Modified Cam clay of the stress-strain 

response for an undrained test on heavily overconsolidated clay, together with an 

experimental result (Bishop and Henkel, 1957). 
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Figure 2.7. (a) Undrained stress path for heavily overconsolidated soil predicted by 

Modified Cam clay, (b) predicted stress – strain response, and (c) experimental 

result (Bishop and Henkel, 1957). 

his deficiency can be overcome by using the Hvorslev surface in this region. Figure 

.8 shows the Hvorslev surface plotted in q/p'e : p'/p'e space where p'e is the 

quivalent stress on the normal consolidation line associated with each value of 

pecific volume. However, this will cause significant numerical difficulties due to 

he fact that there are two separate yield surfaces.  Alternatively, kinematic 

ardening models can automatically generate a Hvorslev-type surface for peak 

trengths – see Al-Tabbaa (1987). 
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Figure 2.8. The Hvorslev surface. 

 

4. Another main problem with modified Cam clay is its poor prediction of shear 

strains within the yield surface (Wroth and Houlsby, 1985), which is caused by non-

linear behaviour or by using elastic model. Figure 2.9 shows the variation of 

Young’s modulus with strain. It is thought that soil only behaves elastically for ε < 

εo ≈ 10-5 (Clayton et al., 1995). 

 
Figure 2.9. Secant Young’s modulus against strain (Atkinson, 2000). 

 

Yielding of soil is usually a much more gradual process compared with that of metal. 

Hence, the change of stiffness is much more gradual than that for annealed copper 

for example, and the stress-strain response on unloading and reloading is hysteretic. 

This implies that there is no one-to-one stress-strain relationship in the supposedly 

elastic region.   

 

Various approaches have been suggested to account for the non-linearity and the 

gradual change in stiffness within the yield surface. These include the bounding 
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surface plasticity models in which the stiffness is dependent on the distance between 

the yield surface and the current effective stress state (Dafalias and Herrmann, 1982), 

and the inclusion of smaller inner or true kinematic yield surfaces inside the state 

boundary surface, to produce what are known as kinematic hardening models (e.g. 

Al-Tabbaa, 1987). 

 

5. Cam clay and Modified Cam clay models cannot successfully model the 

behaviour of sand. The main problems lie in the fact that sand does not obey 

normality well, and experimental data shows that the critical state point does not lie 

at the top of the yield locus but lies to the left of the apex. This implies that 

undrained tests on normally consolidated sands can exhibit a peak value of q before 

the critical state is approached — see Figure 2.10, which cannot be predicted by 

these models. 
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   (a)        (b) 

 
(c) 

Figure 2.10.  (a) Modified Cam clay undrained stress path, (b) Modified Cam clay 

predicted stress-strain response and (c) experimental undrained test results for very 

loose sand (Sasitharan, 1994). 
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6. The modelling of soils under cyclic loading is another deficiency in these 

elasto-plastic models. The essential features of the Cam clay model are that, on 

primary loading, large plastic strains occur, but on subsequent unload-reload cycles 

within the yield surface, only purely elastic strains are produced.  This is not suitable 

for modelling the behaviour of soil under cyclic loading as, in reality, unload-reload 

cycles result in the gradual accumulation of permanent strain and/or pore pressure, 

and hysteretic behaviour occurs. The response of soil to undrained cyclic loading, 

according to the Cam clay model, is shown in Figure 2.11 (Wood, 1990), whereas 

the typical response of soil observed in cyclic loading is shown in Figure 2.12 

(Wood, 1990). 

 

Various models, such as the Bounding Surface model developed by Dafalias and 

Herrmann (1982) and the ‘Bubble’ model by Al-Tabbaa (1987), can produce some 

of the essential features of soil under cyclic loading. 

 

7. Cam clay and Modified Cam clay do not take into account the effect of 

time on soil deformation i.e. soil deforms at constant effective stress (known as 

creep). 

 

 
Figure 2.11. Modified Cam clay predictions of undrained cyclic loading: (a) 

effective stress path, (b) stress-strain response and (c) pore pressure-strain response 

(Wood, 1990). 
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Figure 2.12. Typical response of soil under cyclic loading: (a) effective stress path, 

(b) stress-strain response and (c) pore pressure-strain response (Wood, 1990).  

 

 

2.2.7 Advanced Models 

 

Various more advanced models which are based on the Cam clay and the Modified 

Cam clay models have been proposed in the past to make better predictions of soil 

behaviour. These models are briefly described in this section. 

 

The yield surfaces and plastic potentials of real soils appear to exhibit a variety of 

shapes and it is therefore desirable to adopt an expression which has flexibility. 

Lagioia et al. (1996) developed mathematical expressions for the plastic potential 

and yield surface, which not only eliminate the limitations of the original Cam clay 

model, but also produce a wide range of shapes. Some of the shapes currently found 

to exist empirically in the literature can be reproduced by means of an appropriate 

choice of parameters. The stress-dilatancy relation proposed by Lagioia et al. (1996) 

is: 
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where c1 and c2 are material constants. 

 

A family of yield surfaces was also developed by Yu (1998), which is suitable for 

both clay and sand. This model, Clay And Sand Model (CASM), requires two 

additional parameters to describe the yield surface. One of these parameters is used 

to specify the shape of the yield surface and the other is to control the position of the 

critical state on the yield surface (i.e. to control the separation of the isotropic normal 

and critical state lines in e-log p' space). One of the main features of this model is 

that the critical state in this model does not necessarily occur at the maximum 

deviatoric stress on the yield surface as opposed to the Original and Modified Cam 

clay models (see Section 2.2.6). This is observed experimentally for sands (e.g. 

Coop, 1990). However, the use of Rowe’s stress-dilatancy relationship as the flow 

rule leads to non-associated flow at low stress ratios which is not observed 

experimentally (McDowell, 2002). 

 

A family of yield loci was derived by McDowell (2000) based on the new work 

equation proposed by McDowell and Bolton (1998). The new work equation is given 

as: 

 

fracfricpq WWpq δδδεδε +=+ '    (2.32) 

 

The left hand side is the plastic work done by the boundary stresses, which is 

assumed to be dissipated in friction caused by particle arrangement and in the 

fracture of particles. The first and second terms on the right are the energy dissipated 

in friction and in fracture respectively. If the ratio of the work dissipated in fracture 

to the work dissipated in friction is assumed to be a simple function of stress ratio, 

McDowell (2000) showed that a simple stress-dilatancy relation could be developed 

with the equation: 
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where η = q/p', M is the critical state dissipation constant, and a is constant. 

 

This stress-dilatancy rule generates a yield surface whose equation is: 
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'

a
cpq p a

p

+  
= Μ +  

  
     (2.34) 

 

where p'c is the isotropic pre-consolidation pressure. 

 

By changing the parameter a, different shapes of yield loci can be obtained, 

consistent with those commonly encountered for isotropically consolidated clays and 

sands. 

 

 

2.2.8 Cyclic Loading Models 

 

Various models have been developed for cyclic loading. Iwan (1967) and Mróz 

(1967) independently formulated the first kinematic hardening model for metals 

which was later applied to soils by Prévost (1977, 1978). Mróz et al. (1979) 

described a two-surface kinematic hardening model which has a kinematic yield 

surface inside the consolidation surface. If the current stress state reaches the yield 

surface, plastic deformations occur and the yield surface translates. Hashiguchi 

(1985) described a model which is similar to the model described by Mróz et al. 

(1979) and introduced an extra surface in order to obtain a smooth stress-strain curve 

beyond yield. Hashiguchi (1993) also describes in detail how the kinematic 

hardening concept may be applied to generate multi-surface and infinite surface 

models. 

 

Dafalias and Herrman (1982) the bounding surface model, which can produce an 

accumulation of permanent strain with increasing number of cycles. This model is 
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based on the concept of Critical State Soil Mechanics. The yield surface of a 

conventional elastic-plastic model is now termed the bounding surface; it is no 

longer the boundary between elastic and plastic deformations. In this model, the 

sudden change of stiffness associated with the passage of the stress state through a 

yield surface is eliminated by making the stiffness fall steadily from the high 

(elastic) value at a point in the interior of the bounding surface to the low (plastic) 

value when stress state reaches the bounding surface. For a stress state A, an image 

point on the bounding surface B is defined by a radial mapping rule from a 

projection origin O (Figure 2.13). The stiffness is made to be a function of the 

distance between the stress state and the image stress. The salient feature of the 

bounding surface model is the occurrence of plastic deformation for stress states 

inside the bounding surface, and the possibility of having a very flexible variation of 

the plastic modulus with changing stress states. 

 

 

 
σ 
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Figure 2.13. Schematic diagram showing the 
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one additional parameter is needed which can be determined by performing cyclic 

triaxial tests under undrained conditions. 

 

Pender (1982) proposed a cyclic loading model based on the Critical State Soil 

Mechanics framework. The initial version of the model predicted a rapid 

accumulation of strains with increasing number of cycles. This is contrary to  

observed behaviour where a state of equilibrium will be reached if the stress level is 

less than a critical stress level (Sangrey et al., 1969; Brown, Lashine and Hyde, 

1975). To remedy this defect Pender (1982) modified the hardening function of the 

model by introducing a cyclic hardening index that depends on the number of cycles. 

This allows the stiffness to increase with number of cycles, so that the material gets 

progressively stiffer. However this does not solve the dilemma of how to model 

monotonic behaviour following a history of cyclic loading. 

 

Ghaboussi et al. (1982) proposed a cyclic model for sand using isotropic and 

kinematic hardening for the yield surface. A hardening modulus is assumed and 

volumetric strain is computed based on a semi-empirical relationship and the plastic 

deviatoric strain is computed from a non-associated flow rule. The model 

underestimates the amount of accumulated irreversible shear strain whereas the 

predicted volumetric strain is reasonably accurate. 

 

Nova (1982) described a model, which is suitable for both granular material and 

clay. The model uses two different flow rules for high stress ratio and low stress ratio 

such that non-associated flow is observed at high stress ratios whereas associated 

flow is observed at low stress ratios. A smooth transition is ensured between these 

flow rules. To model cyclic loading, Nova (1982) suggested that during unloading 

the bulk and shear compliance varied and at the start of reloading the bulk and shear 

compliance were restored to the initial values. 

 

Al-Tabbaa (1987) developed a two-surface kinematic hardening model, known as 

the ‘Bubble’ model, based on the Modified Cam clay model, which enables more 

accurate predictions of the stress-strain behaviour of kaolin in overconsolidated 

states. This two-surface bubble model is similar to the models described by Mróz et 

al. (1979) and Hashiguchi (1985). A small inner true yield surface, which bounds a 
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small truly elastic region, was introduced − see Figure 2.14. This inner yield surface 

stores some information concerning past stress changes, and a function is used to 

produce a steadily decreasing stiffness as the outer yield surface, now termed 

‘bounding surface’, is approached. Only two additional parameters are introduced. 

Later, Stallebrass (1990) extended the ‘Bubble’ model by introducing an extra 

kinematic surface to account for the effect of recent stress history. This model is 

discussed extensively in Chapter 3. 

 

Ramsamooj and Alwash (1990) and Ramsamooj and Piper (1992) developed a multi-

surface elasto-plastic model which was applied to the prediction of rutting in 

pavements. This model adopts different hardening rules for drained and undrained 

loading; for drained loading only volumetric hardening is applied, and for undrained 

loading, both volumetric and kinematic hardening rules are applied.  

 

p'

q

CSL

p' c

Yield surface

Bounding Surface

p' o

q α

p' α  
Figure 2.14. Diagram showing the yield and bounding surfaces and the symbols 

used for their centres (Al-Tabbaa, 1987). 

 

More recently, Li and Meissner (2002) proposed a two-surface plasticity model 

based on a new type of kinematic hardening rule, which can model the cyclic 

undrained behaviour of clay. The model is based on the concept of ‘memory centre’. 

The ‘memory centre’ is defined as the point where the stress path changes its 

direction and is directed into the interior of a loading surface. When the ‘memory 

centre’ gets its new position, a new bounding surface and loading surface passing 

through the ‘memory centre’ are formed. A total of 11 parameters are required to 

define the model. 
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2.2.9 Earth Pressure Coefficient at Rest 

 

One-dimensional Loading 

 

The prediction of the in-situ stress state in soil is of major importance in geotechnical 

problems. Vertical stresses can be determined easily, but the determination of 

horizontal stresses are more difficult. Many soils have a one-dimensional stress 

history and in the analysis of any pavement subgrade, it will be necessary to consider 

the stress history. This section therefore reviews literature on the one-dimensional 

history of soils.  

 

The ratio of the horizontal to vertical effective stresses in soil is called the coefficient 

of earth pressure at rest, K0: 

 

'
'
h

0
v

K σ
σ

=      (2.35) 

 

The value of K0 during one-dimensional normal compression, K0,nc, is known 

empirically to be constant for a given soil. Numerous relationships between K0,nc and 

angle of shearing resistance, φ', have been proposed over the past based on 

experimental data. The most widely used is that proposed by Jâky (1944): 
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2 1 sin1 sin '
3 1 sin0 ncK '

'
φφ
φ

 − = +   +  


    (2.36) 

 

This equation is approximated to: 

 

, 1 sin '0 ncK φ= −     (2.37) 

 

For clays, it is found that the value of φ' in equation 2.37 is the critical state angle of 

friction, φ'crit. For sand, the value of φ' in equation 2.37 is less certain. According to 

Wood (1990), for sand the value of K0,nc will depend on the initial structure of the 

sand, and is therefore likely to depend on the maximum angle of shearing resistance 
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(Wood, 1990). However, for a sand which has yielded and is deforming plastically 

under one-dimensional normal compression (i.e. the state lies on the state boundary 

surface), it would be expected that the initial structure will have been eliminated, so 

that the value of φ' in equation 2.37 will be φ'crit as for clay.  

 

Brooker and Ireland (1965) proposed a modified form of Jâky’s equation for 

cohesive soil: 

 

0.95 sin '0 ncK φ= −,     (2.38) 

 

Bolton (1991b) suggested a relationship for sand: 
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Simpson (1992) proposed a relationship for K0,nc based on the ‘BRICK’ model: 

 

,
2 sin '
2 sin '0 ncK φ

φ
−

=
+

    (2.40) 

 

One-dimensional Unloading 

 

The effective horizontal stresses reduce more slowly than vertical effective stresses 

during one-dimensional unloading. Therefore the K0 value for overconsolidated clay 

increases with overconsolidation ratio (OCR). Wroth (1975) derived an expression 

for K0 on unloading for lightly overconsolidated soil based on the assumption that on 

unloading the soil is linear elastic. 

 

(,
'OCR OCR 1

1 '0 0 ncK K )µ
µ

= ⋅ − −
−

   (2.41) 

 

This relationship is only suitable for soil with OCR of not more than four where the 

unloading line in q − p' space is approximately linear. Numerous researchers have 
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proposed empirical relationships for K0 on unloading which can fit experimental data 

well. A simple expression was given by Schmidt (1966) for clays for K0 on 

unloading as a function of K0,nc and OCR: 

 

[ ], OCR0 u 0 ncK K α= ,     (2.42) 

 

where: 

 

α = sin 1.2φ'crit    (2.43) 

 

Meyerhof (1976) suggested that α = 0.5 is suitable for most soils for most practical 

purposes. Based on the study of experimental data on 170 different soils, Mayne & 

Kulhawy (1982) suggested that: 

 

α = sin φ'crit     (2.44) 

 

Al-Tabbaa (1987) performed oedometer tests on Speswhite kaolin and found that α 

= 0.464, which agrees well with equation 2.43 with φ'crit = 23°. 

 

Pruska (1973) proposed an expression for the variation of K0 with OCR: 
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   (2.45) 

 

where Ka is the Rankine active earth pressure coefficient: 

 

1 sin '
1 sin 'aK φ

φ
−

=
+

    (2.46) 

 

One-dimensional Reloading 

 

Very little data has been published for one-dimensional reloading. Based on the data 

available, Mayne & Kulhawy (1982) proposed a relationship for K0 during reloading, 
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K0,r which will reduce to equation 2.37 for normally consolidated soils, i.e. OCRmax = 

OCR = 1, where OCR is the overconsolidation ratio. Equation 2.47 suggests that K0,r 

would not join the virgin curve at OCR = 1: 

 

, 1 sin '
max max

OCR 3 OCR1 sin ' 1
OCR 4 OCR0 rK φφ −

   
= − + −     




   (2.47) 

 

Schmidt (1983) suggested that for reloading, K0,r would return to K0,nc at OCR = 1 

and proposed an expression for K0,r: 

 

( )( ), max
max

1 sin ' OCR OCR OCR 1 OCR
OCR 10 rK α

max
φ−

= − + −
−

  (2.48) 

 

These equations suggest that K0,r varies linearly with OCR. Al-Tabbaa (1987) found 

that Schmidt’s equation 2.48 fitted her data exactly with α = 0.464 for Speswhite 

kaolin. 

 

Since the stresses which occur during one-dimensional history will be related to the 

strains via a flow rule, the above data can be used to test the validity of any new 

model which may be developed for clays. This is discussed in Chapters 3 and 4. 

 

 

2.3 PAVEMENT ENGINEERING 
 

2.3.1 Pavement Types and Failure Modes 

 

The purpose of a pavement is to support the loads induced by traffic and to distribute 

these loads safely to the foundation.  There are several different types of pavement 

but this project is concerned specifically with lightly trafficked (or low volume) 

flexible pavements, and hence other types of pavement are not in the scope of this 

research. Behrens (1999) defines low volume roads as those in a rural environment 

that enable automobile operation and account for less than 500 vehicles per day.  

Since lightly trafficked roads require relatively thin layers of bituminous material 
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compared with motorways, the pavement foundation properties assume greater 

significance since they are more highly stressed.  The main objective of this research 

is the application of the principles of soil mechanics to the pavement foundation.   

 

Figure 2.15 shows a typical cross-section of a flexible pavement. This pavement 

comprises a number of bituminous layers placed over road base (unbound or bound 

material) over crushed stone or a similar unbound sub-base material placed on the 

natural subgrade. This pavement is referred to as ‘flexible’ because the bituminous 

materials are capable of flexing slightly under traffic loading. For thinly surfaced 

pavements, the road base is often unbound material and not formally part of the 

foundation. However, for the purposes of this work it can be regarded as part of the 

foundation. 

 

The pavement foundation is defined as the granular layer or layers placed over the 

subgrade and the subgrade itself — see Figure 2.15. The reason for considering all 

the unbound granular material is that the principles of soil mechanics apply to the 

sub-base, capping and subgrade. These principles have not been effectively applied 

in pavement engineering. Capping is a relatively cheap material placed between the 

subgrade and the sub-base to protect weak subgrades. 

 

 Moving wheel load
 

Subgrade (Clay) 

Surfacing (bituminous material)

Sub-base (granular material) 

Road base 

 

 

 

 

 

 
Foundation 

Figure 2.15. Cross-section of pavement. 

 

In order to design a flexible pavement, the failure mechanisms must be adequately 

understood. Pavements do not fail suddenly but gradually deteriorate with time to a 

terminal level, which may be defined as failure. When a vehicle trafficks a road, it 

induces a stress pulse in the subgrade and granular layer. Figure 2.16 shows the 
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stresses in a pavement under a wheel load (Lekarp et al., 2000). This stress pulse 

causes strain and this strain can be divided into two parts: recoverable and permanent 

strain — see Figure 2.17.  

 

 
Figure 2.16. Stress pulse induced by a wheel load in a pavement foundation (Lekarp 

et al., 2000). 
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Figure 2.17. Diagram showing recoverable and permanen

resilient modulus. 

 

The two main structural failure mechanisms for flexible 

deformation (rutting) and fatigue cracking. These two fa

Figure 2.18.  Rutting is the result of an accumulation of i

various pavement layers. In the U.K., a pavement is a

‘critical’ conditions when the rut depth reaches 10mm and
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occurred when 20mm rut depth is reached. For a lightly trafficked pavement, 

subgrade and granular layer contribute most to rutting of a pavement. Fatigue 

cracking has been defined as the phenomenon of fracture under repeated or 

fluctuating stress having a maximum value generally less than the tensile strength of 

the material (Ashby and Jones, 1980). In the U.K., a pavement is usually assumed to 

have reached ‘critical’ conditions at the onset of fatigue cracking in the wheel path. 

Failure conditions have been reached when there is evidence of extensive cracking in 

the wheel path. 

 

 
Figure 2.18. Diagrams  showing the two types of failure mechanisms in pavements. 

 

 

2.3.2 Resilient Deformation Models 

 

The concept of resilient behaviour of pavements was introduced by Hveem & 

Carmany (1948) and Hveem (1955). In the 1950s, Seed et al. (1955) at the 

University of California at Berkeley followed the lead established by Hveem, who 

had developed the repeated load test. They introduced the term ‘modulus of 

resilience’, which they later changed to ‘resilient modulus’ (Seed et al., 1962) — see 

Figure 2.17. The definition of resilient modulus is the ratio of the repeated deviator 

stress to the recoverable (resilient) axial strain in the triaxial test (Seed et al., 1962).  

This concept has gained recognition by the pavement community as a good property 

to describe the resilient behaviour of granular materials and subgrade soils. 
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The resilient response of the soil plays an important role in pavement design, as this 

is the factor, which determines the thickness and stiffness of higher layers so that 

adequate load spreading takes place. During pavement construction, if the resilient 

deformations are too high, the paving plant will not be able to satisfactorily compact 

the bituminous layers of the pavement. The resilient response of unbound aggregates 

has been found to be influenced by many factors. An extensive literature review on 

the effect of different factors affecting the resilient response of unbound aggregates 

was performed by Lekarp et al. (2000), who describe the available modelling 

techniques. The factors affecting the resilient behaviour of unbound aggregates are 

stress level, density, grading, fines content, maximum grain size, moisture content, 

stress history, number of load cycles, aggregate type and particle shape, load 

duration and sequence. Among these, Lekarp et al. (2000) found that the effect of 

stress level on the resilient behaviour is the most significant factor. Resilient 

modulus increases greatly with confining pressure, and decreases with increasing 

deviator stress q.  

 

The model most widely used for resilient deformations of unbound granular 

materials is the so-called K-θ model, which expresses the resilient modulus, Mr as a 

function of the sum of principal total stresses, θ:  

 
2

1
k

r kM θ=                                                      (2.49) 

 

where k1 and k2 are the constants and θ = 3pmax and pmax is the maximum mean stress 

during the load cycle. This model was developed by Hicks et al. (1971) based on 

repeated load conventional triaxial tests (constant radial stress σr) performed on two 

types of aggregate, namely crushed gravel and crushed rock.  

 

Later Boyce (1980) developed a non-linear purely elastic model, G-K model based 

on the theorem of reciprocity (the proof of which was given by Boyce (1980)): 
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In this model Boyce expressed the bulk modulus K and shear modulus G as a 

function of mean normal stress p to a power less than one: 

 

   ( )1
1

tK K p −=      (2.51) 

 
( )1

1
tG G p −=      (2.52) 

 

where K1, G1 and t are material constants. This model is similar to the K-θ model 

described above. 

 

Since equations 2.51 and 2.52 do not satisfy the reciprocity theorem (equation 2.50), 

Boyce suggested a more complicated approach which satisfies this. The resilient 

volumetric strain, εpr and the resilient shear strain εqr proposed by Boyce have the 

following expressions: 
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where  

 

 ( ) 1 11 / 6t K Gω = −                                (2.55) 

 

This G-K model contains only three parameters, K1, G1, and t, to describe the 

resilient deformation of the material. The constant K1 is the bulk modulus when the 

mean normal stress is 1kPa and the deviatoric stress is zero, and G1 is the shear 

modulus when the mean normal stress is 1kPa. The parameter t is a measure of stress 

dependency, and varies between 0 and 1. For t = 1, a linear elastic relationship is 

obtained. This model was later modified by others such as Sweere (1990) to improve 

predictive capability. 
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In order to incorporate the resilient modulus, Mr, into the pavement design methods, 

some empirical correlations based on California Bearing Ratio (CBR) are widely 

used, such as: 

 

CBRM r 10=  [MPa]    (2.56) 

 

proposed by Heukelom & Klomp (1962), and: 

 

        [MPa]    (2.57) 64.06.17 CBRM r =

 

proposed by Powell et al. (1984). CBR is the average ratio, expressed as a 

percentage, of the loads required to penetrate a given material and a standard 

material by 2.5mm and 5mm. The CBR test is briefly described in Section 2.3.5. 

 

Brown et al. (1987) demonstrated that the resilient modulus is stress dependent and 

non-linear and checked the validity of equations 2.56 and 2.57; the results are shown 

in Figure 2.19. It was found that the resilient modulus is not a simple function of 

CBR; it depends on stress level and material type. 

 
Figure 2.19. Relationships between resilient modulus and CBR (Brown et al., 1987). 
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2.3.3 Permanent Deformation Models 

 

Fewer permanent deformation models have been proposed compared to those for 

resilient deformation because permanent deformation tests are time consuming and 

destructive. Models for permanent deformation are based on repeated load triaxial 

tests with a large number of cycles and the permanent strain is related to the number 

of load applications. Barksdale (1972) performed a series of repeated load triaxial 

tests with 105 cycles on different granular materials, and found that the accumulation 

of permanent axial strain was proportional to the logarithm of number of load cycles. 

Barksdale (1972) suggested the following expression: 

 

1 2 logap a a Nε = +                                     (2.58) 

 

where εap = permanent axial strain, N = number of load cycles and, a1 and a2 are 

constants for a given stress level. 

 

Later, Sweere (1990) showed that, after applying 106 cycles, a log-log approach is 

more appropriate for large numbers of cycles: 

 

1 2log logap a a Nε = +     (2.59) 

 

Other approaches relate the permanent strain to the length of the stress path and 

stress ratio such as Pappin (1979) and Lekarp et al. (1998). 

 

A full range of repeated load triaxial tests was carried out by Pappin (1979) on a 

well-graded crushed limestone with a maximum particle size of 38mm, which is 

commonly used in pavements in the U.K. The objective of these tests was to 

investigate the permanent strain behaviour and to formulate a predictive model. In 

each test an attempt was made to apply at least 100,000 cycles of load at a frequency 

of 1Hz. From these results Pappin derived an expression for permanent shear strain: 
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where εqp is permanent shear strain in %, b is the shape factor, which is calculated 

for different numbers of cycles, and L is the stress path length in kPa. 

 

Lekarp et al. (1998) used the repeated load triaxial equipment and hollow cylinder 

apparatus at Nottingham to test five different granular materials, which are 

commonly used as sub-base materials in pavement structures. The objective was to 

study the development of permanent strain with increasing number of load cycles 

and as a function of stress level. A relationship that takes account of stress path 

length and stress level was proposed by Lekarp et al. (1998) for permanent axial 

strain: 
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where εa,p(Nref) is the accumulated permanent axial strain at a given number of 

cycles, L is the length of the stress path in kPa, a1 and a2 are regression parameters 

and pr is a reference stress, taken to be 1kPa. Lekarp et al. (1998) found that the 

growth of permanent strain would eventually reach an equilibrium condition, at 

which the rate of growth of permanent strain was zero, if the stress ratio was low. 

However, at high stress ratios the accumulation of permanent strain was more 

progressive, indicating that a threshold stress ratio must exist above which 

accumulation of permanent strain will cause progressive failure. This threshold stress 

ratio is called the shakedown limit. 

 

 

2.3.4 Stress History of a Pavement 

 

The response of an element of soil to applied load depends crucially on its stress 

history and current stress state. The soil beneath a pavement may be in its natural 

undisturbed state or be remoulded depending on whether the section of pavement is 

in a ‘cut’ or ‘fill’ area (Brown, 1996), and these two situations have to be treated 

separately. Brown (1996) illustrated the typical stress history for an element in a 

‘cut’ condition and in a ‘fill’ condition. For the cut or undisturbed condition, the 
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typical stress history is shown in Figure 2.20 (Brown, 1996). The stress path from 

point O to point C and to point A in Figure 2.20 represents the natural stress history 

of soil due to one-dimensional compression and subsequent unloading due to 

erosion. This historical sequence generates an overconsolidated soil. Subsequent 

pavement construction operations will bring the soil to the final state P. The 

construction operation of a pavement involves three processes, which will influence 

the stress state of soil. These are: 

 

1. Removal of overburden during earthworks construction 

2. Lowering of the water table 

3. Addition of overburden due to the pavement construction. 

 

Figure 2.21 (Brown, 1996) shows the effects of construction operations on stress 

conditions in a ‘cut’ condition.  The path AB is due to the removal of overburden, 

and as time passes, pore pressure will reach equilibrium as the effective stress moves 

from B to P'. The path P'D results from lowering the water table.  Construction of the 

pavement will take place before point D is reached and therefore the increase of 

overburden due to construction will cause the effective stress to move from E to F. 

After the dissipation of pore pressure, the effective stress will move towards 

equilibrium at P. In reality, the actual stress path is likely to be represented by the 

curve BGEP due to the time needed for the dissipation of pore pressure. 

 

For soil which is cut, transported and compacted as fill in an embankment, the 

effective stress regime is rather different and less well understood. Brown (1996) 

suggested a possible stress regime for construction in the ‘fill’ condition, shown in 

Figure 2.22. The soil is first brought to failure in an undrained condition due to the 

scraper operation – represented by AB in Figure 2.22. The stress state will then move 

to Q or Q', depending on the environment and weather conditions. The effective 

stress state will move to Q if conditions are dry and the soil is placed above the water 

table at which suctions will be high and tend to increase the effective stress. If 

conditions are wet, the soil will move to a lower effective stress state such as Q'. The 

stress state at Q' will move to Q after equilibrium conditions have been reached. The 

net effect on soil due to the 'fill' condition is then a reduced overconsolidation ratio 

after excavation, transportation and compaction as fill. 
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Figure 2.20. Typical stress history in a ‘cut’ condition (Brown, 1996). 

 

 
Figure 2.21. Effect of construction operations (Brown, 1996). 

 

 
Figure 2.22. Stress history in a ‘fill’ condition (Brown, 1996). 
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2.3.5 Current UK Flexible Pavement Design Methods 

 

The current UK practice of flexible pavement design is based on the Design Manual 

of Roads and Bridges (DMRB), Volume 7 (Highways Agency, 1994). This method 

was established by considering the performance of a number of experimental roads 

and is essentially empirical. The subgrade of a pavement is characterised by the 

California Bearing Ratio (CBR) concept developed in the US by the California 

Division of Highways in 1938. The CBR test involves the insertion of a plunger into 

the soil sample which is constrained within a small mould; the test procedure can be 

found in BS1377:1990 Part 4 (British Standards Institution, 1990). The load and the 

penetration are recorded while the plunger penetrates the sample. The loads at a 

penetration of 2.5mm and 5mm are compared with the result for a standard sample 

and the ratio expressed as a percentage is the CBR of the soil. The CBR of a 

pavement subgrade determines the thickness of the sub-base required using the 

empirical charts in DMRB Volume 7. This empirical design method provides no 

confidence when different types of material are used. 

 

Some other design methods based on linear elastic theory were also proposed; the 

Shell design method (Shell, 1978) is the most common procedure using this theory. 

In this method, the pavement structure is represented by a three-layer system 

comprising an asphalt layer over a granular sub-base over the subgrade. This system 

is analysed using a multi-layered elastic theory with a program such as BISAR. The 

design criteria are to limit the maximum tensile strain at the bottom of the asphalt 

layer so that fatigue cracking of the asphalt layer will not occur, whilst the rutting of 

a pavement is related to the maximum compressive strain at the top of the subgrade. 

The non-linear properties of soil are not taken into account by this method. Brown 

and Dawson (1992) proposed a design method for asphalt pavements, which allows 

for the non-linear resilient behaviour of soils by using an equivalent resilient 

modulus. The design process is divided into two stages. The first involves the 

determination of the thickness of granular material required to protect the subgrade 

from being excessively stressed during the construction stage, and the second stage 

involves the design of the thickness of the asphaltic material required to prevent 

rutting and fatigue cracking when the pavement is opened to traffic. The thickness of 
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the granular material is chosen such that the deviatoric stress at the top of the 

subgrade does not exceed a certain value. 

 

Brown and Brunton (1986) proposed a simplified approach to the design of flexible 

pavements, which assumes a standard 200mm layer of granular material with a 

resilient modulus of 100MPa. The subgrade is characterised by a single resilient 

modulus of value between 20 and 100MPa, which in the absence of better 

information, can be estimated from some empirical relationships between resilient 

modulus and CBR as described in Section 2.3.2. The design process involves the 

determination of an appropriate thickness of asphalt layer to ensure that the resilient 

tensile strain at the bottom of the asphalt layer and the resilient compressive strain at 

the top of the subgrade are below their maximum allowable values. 

 

All of these design methods are either empirical or based on linear elastic theory, 

with little or no input from conventional Critical State Soil Mechanics. 

 

 

2.4 NUMERICAL MODELLING 
 

2.4.1 Introduction 

 

The theory of elasticity has been extensively applied to the analysis of layered 

pavement systems. Various computer programs have been developed to analyse 

pavements.  The most widely used layered elastic program in pavement engineering 

is BISAR, developed by Shell (Shell International Petroleum Company, 1978). 

Pavement layers are assumed to be linear elastic. A constant value of Young’s 

modulus E' and Poisson’s ratio µ', is assigned to each layer. The use of constant 

values for E' and µ' is a simplification, made to allow the use of a relatively simple 

computer program based on linear elastic theory. Linear elastic analysis can be used 

with reasonable confidence for pavements where the main structural element is 

formed by the asphalt layer (thick asphalt). However, for thinly surfaced (low 

volume) or unsurfaced pavements the simplification to a linear elastic system is no 

longer justified due to the fact that pavement foundations have markedly non-linear 
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and inelastic stress-strain relationships. This non-linearity and inelasticity must be 

properly taken into account in theoretical analysis. To accommodate this non-

linearity, the granular layer and soil can be subdivided into sub-layers. Stress-

dependency of the stiffness can then be taken into account by assigning a higher 

stiffness to the deeper sub-layers. The problem of obtaining a correct stiffness for 

each sub-layer remains. To accommodate the accumulation of permanent 

deformation, however, any kind of layered elastic approach is useless. It has to be 

used in conjunction with other empirical relationships which relate the permanent 

deformation to stresses computed from layered elastic analysis, and the number of 

load applications (Barksdale, 1972). 

 

Most of the pavement analysis accommodating non-linear behaviour, has used the 

finite element approach.  Several finite element packages specially developed for the 

pavement problem such as SENOL (Brown and Pappin, 1981) and FENLAP 

(Almeida, 1993) have been developed at the University of Nottingham. These 

programs use empirical stress-strain relationships to model the material behaviour. 

 

 

2.4.2 Basic Finite Element Concepts 

 

The basic steps involved in the formulation and application of the finite element 

method are: 

 

• Step 1: Element Discretization 

This step involves subdividing the structure into a number of small regions, termed 

finite elements.  These elements have nodes or nodal points, which are the 

intersections of the sides of the elements. 

 

• Step 2: Select Approximate Models or Functions 

In this step, the primary unknown quantity must be selected such as displacement or 

stress.  This variable is expressed in terms of nodal values by mathematical functions 

such as polynomials. 

 

 45  



• Step 3: Define Stress-strain Relationships 

A constitutive relationship which describes the stress-strain behaviour is defined: 

 

{ } [ ]{ }εσ ∆=∆ D              (2.62) 

 

where [D] is the constitutive matrix relating the change in stress to the change in 

strain. 

 

• Step 4: Derive Element Equations 

Energy methods and residual methods are the two methods commonly used in the 

derivation of element equations (Desai, 1979). The element equations are 

commonly expressed as: 

 

[ ]{ } { }EEE RdK ∆=∆     (2.63) 

 

where [KE] is the element stiffness matrix, {∆dE}, is the vector of increment 

element nodal displacements and {∆RE} is the vector of element incremental 

nodal forces. 

 

• Step 5: Assemble element equations to obtain global equations and introduce 

boundary conditions. 

In this step, element equations are combined to form global equations for the 

entire structure, which define approximately the behaviour of the structure as a 

whole. The global equations are expressed as: 

 

[ ]{ } { }GGG RdK ∆=∆     (2.64) 

 

where [KG] is the global stiffness matrix, {∆dG}, is the vector of all incremental 

nodal displacements and {∆RG} is the vector of all incremental nodal forces. 

Boundary conditions are the physical constraints or supports that exist so that the 

structure can stand in space uniquely.  These conditions are known values. 
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• Step 6: Solve for the Primary Unknowns 

Equation 2.64 is a set of simultaneous equations.  In this step, these simultaneous 

equations are solved to obtain {∆dG} using Gaussian elimination or iterative 

methods. 

 

• Step 7: Solve for Derived or Secondary Quantities 

Once the primary quantities are obtained, secondary quantities such as stresses 

and strains can be evaluated. 

 

If the material is linear elastic, the constitutive matrix [D] is constant. However, the 

behaviour of soil is highly non-linear, and if the soil is assumed to be non-linear 

elastic or elasto-plastic the constitutive matrix [D] is no longer constant but varies 

with stress or strain: it changes during a finite element analysis. The finite element 

method can be adapted to deal with non-linear constitutive relationships by applying 

the boundary conditions incrementally. This causes the governing finite element 

equations to be reduced to incremental form: 

 

[ ] { } { }i
G

i
nG

i
G RdK ∆=∆    (2.65) 

 

where [KG]i is the incremental global system stiffness matrix, {∆d}i
nG  is the vector 

of incremental nodal displacements, {∆RG}i is the vector of incremental nodal forces 

and i is the increment number. Due to the non-linear constitutive relationships, the 

incremental global stiffness matrix [KG]i varies during an increment, and hence the 

solution of equation 2.64 is not straightforward. There are three different methods 

used to solve these equations: (1) Tangent stiffness method (2) Visco-plastic method 

and (3) Modified Newton-Raphson (MNR) method. In principle, if the number of 

increments applied is sufficiently large, all methods should give similar results. 

However, an increase in the number of increments will increase the computational 

time. Hence the method used in non-linear finite element analysis plays an important 

role, as it can influence the amount of computational effort required to obtain the 

results and the accuracy of the results (Potts & Zdravković, 1999). 
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The tangent stiffness method is the simplest and most widely used method in 

engineering practice. This is the method used in the finite element program CRISP 

(Britto and Gunn, 1987). In this method, the total applied load is divided into a small 

number of increments and each increment is applied individually. During each 

increment, the stiffness properties appropriate for the current stress levels are used in 

the calculations. Provided the increments are small, the material behaviour may be 

assumed to be linear during the load increment. If only a few increments are used, 

this method produces a solution which tends to drift away from the exact solution – 

see Figure 2.23. 

 

 
Figure 2.23. Tangent stiffness method (Potts & Zdravković, 1999). 

 

 

2.4.3 Critical State Program (CRISP) 

 

CRISP (Critical State Program) was developed by research workers in Cambridge 

University (Britto and Gunn, 1987). This is a finite element program which is able to 

perform drained, undrained and time dependent analysis of static problems under 

monotonic loading or unloading conditions. It is not suitable for cyclic loading in its 

currently commercially available form. Plane strain, axisymmetric and three-

dimensional analysis can be carried out. Various constitutive models, from linear 

elastic models to advanced critical state models, are available in CRISP. However, 

the constitutive models currently available in CRISP are not suitable for analysing 
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partially saturated soils. Different types of finite element are available such as linear 

strain triangle and cubic strain triangle. 

 

 

Modifications made to CRISP  

 

In order to simulate the pavement subgrade under cyclic loading, thousands of cycles 

have to be applied. Without modification to the program, it is very tedious and time 

consuming to generate large numbers of cycles. A computer program, which is able 

to generate large numbers of cycles automatically, was written by the CRISP 

Technical Support for the purpose of this project. This greatly reduces the amount of 

time required to generate a large number of load cycles. This program was also 

modified by CRISP Technical Support so that a large number of cycles of multiple 

stress blocks can be applied automatically. This is important, because it makes it 

possible to calculate the stress distribution at the top of the subgrade clay in a three-

layer pavement due to an applied wheel load. This stress distribution can be 

approximated by rectangular stress blocks applied repeatedly to the surface of the 

clay subgrade. This was found to be particularly helpful, because if a three-layer 

pavement is analysed directly in CRISP, and the nodes at the interfaces between 

layers are common to each of the two layers at an interface, then each time the 

pavement is unloaded, the upper elastic layers pull the subgrade soil into tension. 

Thus, the use of stress blocks applied to the clay directly eliminates this problem, 

with the assumption that the granular and bituminous layers will settle to follow the 

surface of the clay in the long term.   

 

 

2.5 SUMMARY 
 

The most commonly used type of analysis in pavement engineering makes use of 

multi-layered linear elastic theory. This requires the provision of a constant elastic 

modulus and a Poisson’s ratio for each pavement layer including granular material 

and clay. In conditions where the asphalt layer is relatively thick and hence the 

pavement foundation is relatively insignificant due to the low stresses induced in this 
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layer, such analysis can give reasonable results. However, when the stresses in the 

foundation layers are high such as in unsurfaced and thinly surfaced pavements, the 

non-linear and inelastic properties become crucial and elastic theory will not be able 

to predict correctly the behaviour of these types of pavements. It is clear that the 

problem of analysis of pavements including soil is one that is still not completely 

solved. This is particularly true for unsurfaced and thinly surfaced conditions, where 

the rutting behaviour of the pavement under repeated loading will be largely 

determined by the subgrade properties.  

 

The majority of models developed specifically for pavement problems are 

empirically based, and therefore provide no confidence when extrapolating to 

different materials or different loading conditions. For the past decades, various 

cyclic models for soil have been developed based on the CSSM concept, which have 

been shown to be able to predict some of the essential features of soil under cyclic 

loading. However, little effort has been put into applying these models to the 

prediction of pavement response. The design methods developed for motorways are 

generally adopted by the local authorities that are responsible for lightly trafficked 

roads, which leads to uneconomical design standards. It is clear that there is an 

urgent need to apply to pavement engineering the knowledge of soil mechanics that 

has been accumulated through research, if economical design methods are to be 

established, especially for thinly surfaced pavements where the behaviour of the 

foundation plays a very important role. 
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3 PRELIMINARY STUDY – EVALUATION OF THE 

TWO AND THREE-SURFACE KINEMATIC 

HARDENING MODELS 
 

 

3.1 INTRODUCTION 
 

In the previous chapter, various models used in pavement engineering and soil 

mechanics were briefly described. The existing models which can predict the 

essential features of soil behaviour under cyclic loading are those based on the 

kinematic hardening concept. In this chapter the formulation of the 3-SKH model is 

briefly described, and the predictions of the two-surface model and the 3-SKH model 

of the coefficient of earth pressure at rest and of soil behaviour under cyclic loading 

in triaxial tests are evaluated. The main objective of this chapter is to establish 

whether a kinematic hardening model is capable of predicting the response of a 

typical three-layer pavement under cyclic loading. The suitability of both the two-

surface and the 3-SKH models for modelling the subgrade clay will be examined. In 

this way, the advantages and disadvantages of the models can be determined and 

necessary modifications to the models can be established in order to improve 

predictive capability.  

 

 

3.2 MODEL DESCRIPTION 
 

The detailed derivation of the two-surface model (or the ‘Bubble’ model) and the 3-

SKH model are given in Al-Tabbaa (1987) and Stallebrass (1990) respectively. 

These models are an extension of the Modified Cam clay model, but these models 

are slightly different from the Modified Cam clay model in that the normal 

compression lines and the swelling lines are assumed to be linear in ln v − ln p' space 

with slopes λ* and κ* respectively (Butterfield, 1979), whereas in Modified Cam clay 

these lines were assumed to be linear in v − ln p' space. In this section only the 

formulation of the 3-SKH model is described as this is very similar to the 
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formulation of the two-surface model, which is a special case of the 3-SKH model. 

The 3-SKH model is defined in triaxial stress space as shown in Figure 3.1. The 

model consists of two kinematic surfaces, namely the history surface and yield 

surface, lying within the Modified Cam clay state boundary surface, which will be 

called the bounding surface. All surfaces have the same shape and expand and 

contract according to a fixed ratio. These surfaces are defined by the following 

equations: 

 

 Bounding surface: 

( )
2

2 2
2' ' '

Mo o
qp p p− + =               (3.1) 

 

 History surface: 
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 Yield surface: 
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The quantities p'a and qa represent the stress state at the centre of the history surface, 

and p'b and qb represent the stress state at the centre of the yield surface. The 

parameter T is the ratio between the size of the history surface and that of the 

bounding surface; S is the ratio between the size of the yield surface and that of the 

history surface. The parameter Μ is the critical state friction constant: i.e. the slope 

of the critical state line in q−p' space. The consistency condition, which ensures that 

the stress state always lies on or within the yield surface, is obtained by 

differentiating the equation of the yield surface, equation 3.3: 
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The consistency equation for the history surface is: 
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Figure 3.1. Diagram showing the 3-SKH model in triaxial stress space (Stallebrass, 

1990). 

 

When the stress state of the soil lies within the yield surface, the deformations of the 

soil are governed by isotropic elasticity: 
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      (3.6) 

 

where G'e is the elastic shear modulus: i.e. the shear modulus at very small strains 

and κ* is the initial slope of the isotropic swelling line in ln v − ln p' space. The value 

of G'e can be assumed to vary with p' and overconsolidation ratio, Ro according to 
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the relationship proposed by Viggiani and Atkinson (1995) (Stallebrass and Taylor, 

1997): 

 

( )' ' ' n m
e rG A p p R= o      (3.7) 

 

where p'r is a reference pressure equal to 1kPa, Ro is the overconsolidation ratio 

(equal to  p'c/p'), and m and n are material constants. 

 

 

3.2.1 Translation Rule 

 

The translation laws used to control the movement of the kinematic surfaces have the 

same form as those used in the two-surface model developed by Mróz et al. (1979) 

and Al-Tabbaa (1987). These translation laws follow a rule which states that the 

centre of a surface should always move along a vector joining the current stress state 

to its conjugate point on the next surface, as shown in Figure 3.2. The conjugate 

point is defined as the point on the surface with the same outwards normal. When all 

the surfaces are in contact, this model reduces to Modified Cam clay. 

 

The conjugate point corresponding to the current stress state can be calculated using 

the following equation: 
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     (3.8) 

 

where 'p  and q  are the conjugate stresses on the bounding surface.  

 

The translation rules ensure that when the surfaces meet, they align gradually along 

the stress path direction and do not intersect. The translation rule for each kinematic 

surface consists of two components – the movement caused by the contraction and 

expansion of the surface, and the movement of the surface when it is dragged by the 
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current stress state. The size of the surface is related to the change in the plastic 

volumetric strain by the following relationship: 
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For the second part of the translation rule, the history surface is assumed to translate 

along the vector β that connects the stress state on the history surface to the 

conjugate stress on the bounding surface as shown in Figure 3.2. The translation rule 

that controls the movement of the history surface is:  

 

β
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     (3.11) 

 

where W is the scalar quantity to be obtained by substitution of the translation rule 

into the consistency equation of the history surface, equation 3.5.  

 

From the geometry of the surfaces, the following expression for the vector β can be 

obtained when the stress state lies on the history surface: 
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The full expression for the translation of the history surface can be obtained by the 

addition of the translation rule that controls the change in the size of the history 

surface (equation 3.10) and the movement of the history surface (equation 3.11): 
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By substituting equation 3.13 into the consistency equation of the history surface 

(equation 3.5), the scalar quantity W can be obtained: 
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When the history surface is in contact with the bounding surface and the loading path 

is such that the surfaces are expanding: 

 

( )' ' ' 'o aT p p p p− = −  and Tq aqq −=    (3.15) 

 

Differentiating equation 3.15 gives the translation rule for the history surface when 

the history surface is in contact with the bounding surface, and when the loading 

path is such that the surface is expanding: 
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Translation rules for yield surface: 

 

The translation rule that controls the change in size of the yield surface is: 
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The translation of the yield surface is assumed to be along the vector γ which joins 

the stress state on the yield surface to the conjugate stress on the history surface as 

shown in Figure 3.2: 
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The full expression for the translation of the yield surface, which is similar to the 

translation rule for the history surface, is: 
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By substituting the above equation into the consistency equation of the yield surface 

(equation 3.4), the scalar quantity Z can be obtained: 
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The translation rule for the yield surface when it is in contact with the history surface 

and when the loading path is such that the surface is expanding is: 
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3.2.2 Hardening Modulus 

 

Plastic deformations are assumed to obey the associated flow rule so that the vector 

of plastic strain increments is always normal to the current yield surface. The flow 

rule adopted by the 3-SKH model is the same as that for Modified Cam clay, so that 

on the bounding surface: 
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In general, on the yield surface, the constitutive relationship for plastic strain 

increments is: 
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where: 
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and λ* and κ* are the slopes of the isotropic normal compression line, and the initial 

slope of an unloading curve, in ln v − ln p' space respectively.  Following Al-Tabbaa 

(1987), ho cannot be used on its own because equation 3.23 will predict infinite 

strains at a number of singularity points. These occur when the stress state hits the 

top or bottom apex and the points where the dot product of the vector that joins the 

origin to the current stress state and the vector normal to the yield surface at that 

stress point is zero, as shown in Figure 3.3. Between the singularity points, there are 

unstable regions, where the hardening modulus ho is less than zero and the direction 

of the plastic shear strain increment is opposite to the direction of the increment of 

shear stress. 

 

Therefore ho is replaced by: 

 

21 HHhh o ++=         (3.25) 

 

where H1 and H2 are functions of the position of the history surface and the yield 

surface respectively: 
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Equation 3.23 can be rewritten as: 
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Figure 3.3. Schematic diagram showing the singularity points whic

surface into two unstable regions (Al-Tabbaa, 1987

 

The quantity b1 is the scalar product of the outward normal at B (

on the history surface) and the vector β, as shown in Figure 3.2, d

of the history surface, and similarly, b2 is the scalar product of the o

A (current stress state) and the vector γ divided by the size of the yi
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where the subscripts hs and ys denote history surface and yield surface respectively 

for the yield functions, and 'p  and q  are conjugate stresses at history surface (see 

Figure 3.2). 

 

The vector β is the vector of movement of the history surface parallel to BC and has 

magnitude BC, and vector γ is the vector of movement of yield surface parallel to 

AB and has magnitude AB. The parameter ψ is a constant, which determines the rate 

at which stiffness deteriorates with strain. The functions b1 and b2 are normalised by 

their respective maximum possible values, b1max and b2max respectively, and these can 

be obtained from the geometry of the surfaces as shown in Figure 3.4. The functions 

b1, b2 can be obtained from equations 3.29 − 3.33:  
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and their maximum values are: 

 

( )1max 2 ' 1ob p T= −     (3.36) 

 

( )2max 2 ' 1ob Tp S= −     (3.37) 
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Figure 3.4. Position of the surfaces when b1 and b2 are maximum. 

 

When the history and yield surfaces are in contact, i.e.b2 = 0, the model reduces to 

the two-surface model developed by Al-Tabbaa (1987). The S2 term in equation 3.26 

is needed to ensure that Al-Tabbaa’s model is reproduced when the history and yield 

surfaces are in contact and p'-p'b is replaced by S(p'-p'a) in equation 3.28. The 

parameter T is introduced into equation 3.27 to reduce the value of H2 in order to 

predict realistic strains when the stress state is inside the history surface. 
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3.2.3 Determination of Model Parameters 

 

For the Modified Cam clay model, five parameters are required to define the model: 

 

ecs − The voids ratio on the critical state line when p' = 1kPa. 

Μ − The slope of the critical state line in the q −  p' space. 

-λ* − The slope of the normal compression line in ln v −  ln p' space. 

-κ* − The initial slope of the swelling line defined in ln v −  ln p' space. 

Ge − The elastic shear modulus. 

 

For the 3-SKH model, three additional parameters are required: 

 

T − The ratio of the size of the history surface to that of the bounding surface. 

S − The ratio of the size of the yield surface to that of the history surface. 

ψ − The exponent in the hardening function. 

 

Instead of ecs, any point on the isotropic normal compression line or the critical state 

line can be used to locate the model in ln v − ln p' space. 

 

Stallebrass (1997) described a method to determine all the model parameters using 

simple triaxial tests. All the model parameters, except parameter ψ, can be 

determined directly. The extra parameters T and S can be determined by isotropic 

swelling and recompression tests. Atkinson et al. (1990) defined recent stress history 

by a sudden change in the direction of the stress path or an extended period of rest, 

and used an angle ϕ to characterize the recent stress history of soil. The angle ϕ is 

the angle of rotation required to follow the new stress path, and is measured positive 

clockwise (see Figure 3.5), so in Figure 3.5, the angle ϕ would be negative. Figure 

3.6 shows isotropic stress paths for two different stress histories, ϕ = 0o (O-B-A) and 

ϕ = 180o (O-B-A-B-A). The parameters T and S can be obtained by plotting a graph 

of K' against ∆p' graph as shown in Figure 3.7. The bulk modulus, K' is the tangent 

stiffness obtained from the graph of p' against εp. The initial stiffness of soil 

subjected to isotropic swelling (ϕ = 180o) is used to estimate κ* by plotting K'/p' 
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against p'/p'm, where p'm is the maximum mean effective pressure to which the soil 

has been loaded and κ* = p'/K'. The parameter S is obtained by observing the stress 

change for which the strains become inelastic, and T is obtained by estimating the 

change in stress at which the two curves in Figure 3.7 converge. 

 

The parameter ψ is the only parameter, which cannot be measured directly, and is 

obtained by parametric studies. A value of ψ is chosen such that the experimental 

results are best fitted. 

 

B

Stress paths followed: O–B–A and O–B–A–B–A  
Stress-strain response measured twice along B–A 

 p' 

 

q  

 

 

 

 

 

 

Figure 3.5. Definition of recent stress history (after Atkinson et al., 1990). 
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Figure 3.6. Stress paths required to determine parame

Taylor, 1997). 
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Figure 3.7. Stiffness plots from which T and S can be determined (Stallebrass and 

Taylor, 1997). 

 

 

3.3 ONE-DIMENSIONAL LOADING, UNLOADING AND 

RELOADING 
 

Since the 3-SKH model adopts the Modified Cam clay stress-dilatancy rule, the 3-

SKH model will over-estimate the value of K0 during normal compression and hence 

shear strain (this is shown in the next section). In this section the ability of the 3-

SKH model to predict the earth pressure coefficient was investigated. The results 

were obtained using the CRISP finite element program with four cubic strain 

triangular elements and the parameters used in the simulation are those for kaolin 

from Stallebrass (1997) given in Table 3.1. 

 

M λ* κ* ecs T S ψ G [kN/m2] 

0.89 0.073 0.005 1.994 0.25 0.08 2.5 1964(p'/p'r)0.65(p'c/p')0.2

 

Table 3.1. Model parameters for kaolin (Stallebrass and Taylor, 1997). 

 

Figures 3.8 and 3.9 shows the prediction of the ‘Bubble’ model and the 3-SKH 

model for K0,nc and K0 during unloading versus OCR compared to the empirical 

relationship proposed by Schmidt (1966). The 3-SKH model and the ‘Bubble’ model 

B-A for O-B-A-B-A

∆p' = 2TSp'o – end of elastic strains 

∆p' = 2Tp'o 

B-A for O-B-A 

K'
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predict a K0,nc value of 0.78 while the experimental value obtained by Al-Tabbaa is 

0.69. These models will predict the same value of K0 during normal compression 

because all the surfaces are in contact for normally consolidated states and therefore 

both models reduce to the Modified Cam clay model. The experimental value 

obtained by Al-Tabbaa is higher than that predicted by the empirical relationship 

proposed by Jâky (1944) in equation 2.37 with φ' = 23° for kaolin, which gives K0,nc 

= 0.61. For K0 during unloading, Al-Tabbaa found that Schmidt’s (1966) equation 

2.42, with α = 0.464, fitted her data well. It can be seen from Figure 3.8 that the two-

surface model predicts a correct trend for K0 during unloading, K0,u but the value is 

over-predicted significantly. The 3-SKH model gives a better prediction on 

unloading, but the value of K0,u is still over predicted (see Figure 3.9). If one-

dimensional unloading is started from the correct in-situ stress state i.e. a correct 

K0,nc, the 3-SKH model will give better results. The prediction of K0 during 

unloading with a correct K0,nc is shown in Figure 3.10. This shows that a better 

prediction of K0 during unloading can be obtained if the analysis starts from the 

correct K0,nc. 
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Figure 3.8. Comparison between the two-surface model prediction of K0 and the 

empirical relation by Schmidt (1966). 
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Figure 3.9. Comparison between the 3-SKH model prediction on K0 and the 

empirical relation by Schmidt (1966).  

 

Figure 3.10 also presents the predicted variation of K0 with OCR during reloading 

for the 3-SKH model, compared with Schmidt’s (1983) empirical relation in 

equation 2.48 with α = 0.464. The prediction of K0 on reloading is slightly 

overestimated by the 3-SKH model. Al-Tabbaa (1987) found that the variation of K0 

with OCR on reloading could be approximated by a linear relationship. Figure 3.11 

shows the variation of K0 with OCR on reloading predicted by the 3-SKH model for 

different maximum values of OCR. The model predicts that the slope of the 

reloading line increases as the maximum OCR decreases indicating that the variation 

of K0 with OCR on reloading is dependent on the maximum OCR. 
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Figure 3.10. Comparison between the 3-SKH model prediction of K0 using the 

correct K0,nc with the empirical relationship proposed by Schmidt (1983) during one-

dimensional unloading and reloading. 
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Figure 3.11. The 3-SKH model prediction of K0 on reloading for different maximum 

values of OCR. 

 

 

3.4 CYCLIC LOADING 
 

The 3-SKH model has been shown to be able to predict the essential features of soil 

behaviour under monotonic loading (Stallebrass and Taylor, 1997).  A preliminary 

evaluation of the model’s ability to predict soil behaviour under cyclic loading was 

performed using the finite element program CRISP (Britto and Gunn, 1987). In this 

section, the ability of the 3-SKH model to predict soil behaviour under repeated 

loading is investigated for different stress histories. 

 

In order to simulate the pavement subgrade under cyclic loading, thousands of cycles 

have to be applied. CRISP, as purchased, was not suitable for analysing cyclic 

loading with a large number of cycles because every applied load has to be generated 

manually. Without modification to the program, it is very tedious and time 

consuming to generate large numbers of cycles.  A computer program, which is able 

to generate large numbers of cycles automatically by modifying the input file, was 

written by the CRISP Technical Support for the purpose of this project. This greatly 

reduces the amount of time required to generate a large number of load cycles.  

 

 

 68  



3.4.1 Model Predictions for Repeated Loading 

 

The model predictions for drained cyclic loading behaviour are investigated in this 

section. Some existing drained cyclic loading test data on kaolin performed by Al-

Tabbaa (1987) was used to compare with the 3-SKH predictions for these tests. 

Figure 3.12a shows the data for a drained cyclic test on normally consolidated 

kaolin; the soil was consolidated isotropically to p' = 300kPa and then loaded 

cyclically between stress ratios η of 0 and 0.34 at constant cell pressure.  

 

 
(a) 

εq [%] 

q/p'

 

q/p'

εp [%] 

(b) 

Figure 3.12. Drained cyclic triaxial test on normally consolidated kaolin (Al-

Tabbaa, 1987) (a) q/p' versus εq and (b) q/p' versus εp. 
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Figures 3.13 and 3.14 show the predictions by Al-Tabbaa’s model and the 

predictions by the 3-SKH model respectively. Both the models predict the right trend 

for shear strain and volumetric strain; however, the shear strain was greatly over 

predicted after four cycles. The shear strain predicted by the 3-SKH model is worse 

than that of Al-Tabbaa’s model because of the smaller elastic region and different 

values of ψ used by Al-Tabbaa (1987) and Stallebrass (1990). The experimental 

result shows that the shear strain stabilized but both of these models cannot predict 

this. The volumetric strain predicted by the models is, however, reasonable. It should 

be noted that the parameters used in Figure 3.13 are those quoted by Al-Tabbaa 

(1987) for kaolin, whilst those used in Figure 3.14 are those quoted by Stallebrass 

(1990). 
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(b) 

Figure 3.13. Two-surface model predictions for the test in Figure 3.12 (Al-Tabbaa, 

1987), (a) q/p' versus εq and (b) q/p' versus εp. 
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(b) 

Figure 3.14. The 3-SKH model predictions for the test in Figure 3.12, (a) q/p' versus 

εq and (b) q/p' versus εp. 

  

Figure 3.15 shows another drained cyclic test result from Al-Tabbaa (1987) on 

overconsolidated kaolin. The soil was unloaded isotropically to p' = 100kPa from p'c 

= 300kPa and cyclically loaded between values of η = 0 and η = 0.78 (Al-Tabbaa, 

1987). The predictions by Al-Tabbaa’s model and the 3-SKH model are shown in 

Figures 3.16 and 3.17 respectively. Both Al-Tabbaa’s model and the 3-SKH model 

over-predict the shear strain, but the prediction by the 3-SKH model is worse than 

that predicted by the two-surface model. This is because of the inclusion of a smaller 

yield surface, which causes the size of the bounding surface, p'c to decrease 

significantly during isotropic unloading, and also because of the different values of ψ 

used by Stallebrass (1990) and Al-Tabbaa (1987).  A value of ψ of 2.5 was found 
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from parametric studies to be suitable for reconstituted kaolin by Stallebrass (1990), 

whilst a ψ value of 1.5 was chosen by Al-Tabbaa (1987) to best fit data using her 

two-surface model. It should be noted that this curve-fitting parameter might need to 

be adjusted to better model the behaviour of soil under cyclic loading, especially if 

any further amendments to the model are made. 

 

 

q/p'

εq [%] 

(a) 

 

q/p'

εp [%] 

(b) 

Figure 3.15. Drained cyclic test result on over consolidated kaolin (Al-Tabbaa, 

1987), (a) q/p' versus εq and (b) q/p' versus εp. 
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(b) 

Figure 3.16. Two-surface  model predictions for the test in Figure 3.15 (Al-Tabbaa, 

1987), (a) q/p' versus εq and (b) q/p' versus εp. 

 

Figure 3.18 shows the result of a drained cyclic load test at constant mean effective 

stress on kaolin, the details of which can be found in Stallebrass (1990), together 

with the prediction of the 3-SKH model. It can be seen that, again, the model over-

predicts the shear strain produced on primary loading and reloading but the model 

appears to predict well the change in shear strain caused by unloading. 
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(b) 

Figure 3.17. The 3-SKH model prediction for the test in Figure 3.15, (a) q/p' versus 

εq and (b) q/p' versus εp. 

 

From the above comparisons of two-surface and 3-SKH model predictions of 

drained cyclic soil behaviour, it can be seen that both models over-predict shear 

strain. This problem is magnified when attempting to model cyclic loading 

behaviour over many cycles, where too much shear strain will accumulate. This will, 

of course, apply to the modelling of pavement subgrades: A typical three-layer 

pavement problem was analysed and too much permanent deformation was predicted 

using the 3-SKH model. The results of this analysis are presented in Section 3.5. 
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Figure 3.18. Constant p' test and prediction by the 3-SKH model (Stallebrass, 1990). 

 

 

3.4.2 Accumulation of Negative Shear Strain 

 

The 3-SKH model (in addition to the two-surface model) suffers a major drawback. 

It was found that the model would predict an accumulation of negative shear strain, 

which is not observed experimentally, under some stress conditions. To investigate 

this phenomenon, conventional drained cyclic triaxial simulations were performed 

on isotropically normally consolidated soil with a pre-consolidation pressure p'c = 

500kPa. A deviatoric stress q of 0−50kPa was applied for five cycles. Figure 3.19 

shows the predicted result of deviatoric stress versus shear strain. It can be seen that 

the shear strain decrement during the unloading part of the cycle is greater than the 

increment during the loading part of the cycle, due to the sudden decrease of the 

stiffness on unloading, and for subsequent cycles the shear strain becomes more 

negative. The rate of increase of negative shear strain is most serious during first 

unloading. 

 

The reason for the accumulation of negative shear strain is that the shear strain 

developed during unloading is larger than that developed during loading. This occurs 

when the stress state hits the bottom of the yield surface shown in Figure 3.20. 
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Figure 3.19. Stress-strain curve showing the accumulation of negative shear strain 

predicted by the 3-SKH model. 
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Figure 3.20. Positions of the yield surface during cyclic loading. 

 

Figure 3.21 shows the plastic strain increment vector on the yield surface on loading 

and unloading when the stress pulse is cycling between two points, where the plastic 

increment strain ratio, δεp
p/δεq

p is very large on loading compared to that on 

unloading. Since the model is a volumetric hardening model, volumetric strains tend 

to stabilise as p'o stabilises, so the increase in shear strain is ultimately the same for 

each cycle. Hence the large value of δεq
p/δεp

p on unloading means that the shear 

strain on unloading is greater than the shear strain on loading. The negative shear 

strain problem is the most significant during first unloading in this case. On first 

loading, because the applied stress ratio is small, the value of q-qb (the vertical 

distance of the stress state to the centre of the yield surface in q – p' space) is much 
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smaller than that on the subsequent unloading. Figure 3.20 shows the positions of the 

yield surface at the end of first loading and unloading. From this figure it can be seen 

that the stress state hits the yield surface at a point which would give a large negative 

value of q-qb compared to that at the end of first loading. This will tend to generate 

large negative shear strain. The H1 and H2 terms would help to prevent this problem, 

but for small stress levels these two terms are not large enough to compensate the 

loss of stiffness when the stress state hits the yield surface on unloading. The 

variation of plastic hardening modulus during loading and unloading is shown in 

Figure 3.22. During loading, both H1 and H2 are zero because all the surfaces are in 

contact. During unloading, ho decreases due to the smaller value of p'-p'b and large 

negative value of q-qb on unloading (see equation 3.24). The hardening modulus H1 

is increasing because of the increase of p'o, and during unloading the stress state 

never reaches the history surface, so b1 is increasing due to the increase of p'o. 

During unloading, H2 is increasing at the beginning and decreasing after a certain 

value. This is because of the decrease of b2 and the increase of p'o during unloading. 

The increase in p'o is insufficient to overcome the decrease in b2, hence H2 increases 

and then decreases. For larger applied cyclic deviatoric stresses, the H1 and H2 terms 

are large enough to prevent the negative shear strain problem because the distance of 

the current stress point to its conjugate stress points at the bounding surface and 

history surface, b1 and b2 respectively, are larger and the size of the bounding 

surface, p'o also increases. It should be noted that the increase in p'o will also 

increase the values of b1max and b2max. However, the rate of increase in b1 and b2 is 

larger than the rate of increase in b1max and b2max, so there is an overall increase in the 

ratios of b1 and b2 to their maximum values. 

 

  

Figure 3.21. Schematic d

 

Yield
surface
 

 

 

 

 

 

iagram showing the yield surface and the plastic strain 

increment vectors. 
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Figure 3.22. Plastic hardening modulus during loading and unloading. 

 

The effect of the model parameters and stress level on the accumulation of negative 

shear strain was investigated by conducting a series of conventional drained cyclic 

triaxial simulations on normally consolidated soil. The graphs of shear strain versus 

number of cycles, N, are plotted in Figure 3.23-28. These graphs show the effects of 

stress level and model parameters, S, T, ψ, κ*, λ* on the accumulation of negative 

shear strain. 

 

Figures 3.23 (a) and (b) shows the effect of the applied stress level on the generation 

of negative shear strain during unloading. There appears to be a stress level where 

the shear strain generated during loading is equal to that generated during unloading, 

and hence at this stress level, there is no accumulation of shear strain. Generally the 

negative shear strain problem vanishes when larger stresses are applied. 

 

Figures 3.24−3.28 show the effect of varying model parameters. In general, for each 

simulation, the values of the parameters are those in Table 3.1, except for the 

parameter being varied. In Figure 3.27, S is allowed to vary so that TS is constant 

(i.e. constant size of elastic region relative to the bounding surface). It can be seen 

that the generation of negative shear strain is relatively insensitive to the parameters 

κ* and λ*. Changing the parameters T, S or ψ will have a more influential role on the 

shear strain. 

 

 78  



0

50

100

150

200

250

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

ε q [%]

q
 [k

Pa
]

 
(a) 

 

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40 50 6
Number of cycles, N

εq
[%

]

150kPa

100kPa

70kPa

50kPa

20kPa

0

 
(b)  

Figure 3.23. Effect of stress level on the generation of negative shear strain, (a) 

stress-strain response and (b) shear strain as a function of number of cycles. 
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Figure 3.24. Shear strain versus number of cycles for different κ*. 
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Figure 3.25. Shear strain versus number of cycles for different λ*. 
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Figure 3.26. Shear strain versus number of cycles for different sizes of yield surface 

(for constant T = 0.25). 
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Figure 3.27. Shear strain versus number of cycles for different sizes of history 

surface (TS = 0.02). 
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Figure 3.28. Shear strain versus number of cycles for different values ψ. 

 

 

3.5 THREE-LAYER PAVEMENT: RESILIENT AND 

PERMANENT DEFORMATIONS 
 

In this section the application of the 3-SKH model to the prediction of pavement 

deformation is presented. It will be shown that the 3-SKH model is capable of 

predicting both the resilient and permanent deformation of a pavement.  

 

 

3.5.1 Resilient Deformation: BISAR vs CRISP 

 

The theory of elasticity has been extensively applied to the analysis of layered 

pavement systems. Various computer programs have been developed to analyse 

pavements. The most widely used layered elastic program in pavement engineering 

is BISAR, developed by Shell (Shell International Petroleum Company, 1978) – see 

Section 2.4. Pavement layers are assumed to be linear elastic. A constant value of 

Young’s modulus E' and Poisson’s ratio µ', are assigned to each layer. The design 

criteria are to limit the maximum resilient tensile strain at the bottom of the asphalt 

layer and the maximum resillient compressive strain at the top of the subgrade. The 

stiffness of the subgrade is estimated from a purely empirical relationship based on 

CBR value of the subgrade. Brown et al. (1987), however, demonstrated that the 

stiffness is not a simple function of CBR.  
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An attempt was made to compare the results of the 3-SKH model in CRISP with 

results from the layered elastic program, BISAR, which required calculating typical 

vertical stress changes in the pavement using CRISP, and applying many cycles of 

these stress changes to triaxial samples of 3-SKH clay in order to obtain an 

equivalent stiffness for input to the elastic model. 

 

A typical three-layer pavement was analysed using CRISP. The three-layer 

pavement consisted of 50mm of bituminous material over 200 − 600mm of granular 

material (sub-base) and 10m of clay (subgrade). The pavement was assumed to be 

constructed in a ‘cut’ condition with typical stress history as shown in Figure 3.29. 

The model subgrade was initially one-dimensionally swelled (due to erosion) from a 

normally consolidated state with a value of K0,nc of 0.69, and re-compressed to model 

re-deposition and construction of a pavement. This is a typical stress history for a 

pavement. The swelling and recompression stress paths were applied by removing 

and applying an overburden stress on the surface of the subgrade under drained 

conditions. The maximum effective vertical pressure, σ'v, was assumed to be 500kPa 

and the change in effective vertical stress due to erosion and re-deposition, ∆σ've and 

∆σ'vr are -450kPa and 70kPa respectively. No attempt was made to simulate a 

particular stress history for an existing real pavement. 

 

 

 

 

 

 

 

 

 

p '

q

Figure 3.29. Typical stress history of a three-layer pavement. 

 

Six-node linear strain triangular elements were used in the pavement analysis. For 

the vertical boundary, radial displacements were restrained and vertical 

displacements were allowed. For the horizontal boundary, both radial and vertical 
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displacements were restrained. The vertical boundaries were 5m from the axis of 

symmetry and the depth of the mesh was 10m. It was shown by Almeida (1993) that 

if the horizontal boundary is positioned at a distance away from the centreline of the 

load of 20 times the radius of the load and the vertical boundary is positioned at a 

distance away from the load of 50 times the radius of the load, then the boundary 

conditions will not significantly affect the results. The effect of boundary on the 

results for the pavement analyses performed in this research was found to be 

insignificant. 

 

The 3-SKH model was used to model the subgrade layer, and isotropic homogenous 

linear elastic behaviour was assumed for the bituminous and granular layers. The 

bituminous layer was assumed to have a Young’s modulus E' = 5,000MPa, Poisson’s 

ratio µ' = 0.35 and for the granular material values of E' = 100MPa, µ' = 0.3 were 

assumed. These are the typical values used in pavement analysis (Brown & Pappin, 

1981). The parameters used for the 3-SKH model are shown in Table 3.1.  

 

A typical wheel load of 42.4kN and radius of 0.15m, giving an applied surcharge of 

600kPa, was applied at the top of the bituminous layer. In the pavement analysis, it 

is difficult to know whether a drained or undrained analysis is appropriate. If the 

subgrade is fully saturated, then the application of a single wheel load would cause 

undrained deformation followed by consolidation. The passage of many wheel loads 

makes this process even more complicated. It was considered to be currently too 

time-consuming to perform a fully coupled consolidation analysis using CRISP with 

the 3-SKH model. Furthermore, most subgrades are likely to be partially saturated, 

in which case the behaviour may be more drained than undrained. In any case, it was 

considered that the fully drained analysis was more relevant to the long term 

behaviour of a pavement than an undrained analysis, and hence only drained 

analyses of the pavement problem have been examined.  

 

The vertical effective stress changes during the first cycle at different depths in the 

subgrade were computed. The increase in effective vertical stress due to the first 

application of wheel load was then applied as a deviatoric stress increment to a 

triaxial sample in CRISP with a similar initial stress history for 50 cycles. Changes 
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in horizontal stress were not applied to the triaxial sample. The resilient bulk 

modulus K', and shear modulus G', for the 50th cycle were then computed for 

unloading. The parameters, E' and µ', needed in BISAR were then calculated. To 

accommodate the variation of stiffness with depth, the subgrade was sub-divided into 

three layers of thickness 0.26m, 0.9m and 8.84m, and the Young’s modulus was 

calculated at the centre of each layer. Figure 3.30 shows the three-layer pavement 

and the locations where the Young’s modulus were computed. The Young’s moduli 

obtained for each sub-layer of subgrade with different thicknesses of granular 

material are shown in Table 3.2. It can be seen that the estimated Young’s modulus 

for the clay increases with increasing granular layer thickness. This illustrates that 

the model is able to estimate the stiffness of the subgrade, which is stress-dependent. 

The stiffness at the top layer varies quite markedly with thickness of granular 

material compared to the lower layers as the vertical stresses in these two lower 

layers are very small and the soil at these depths is almost elastic except for the case 

where the granular material is 200mm thick, where the stiffness of the middle layer 

is about 20% lower. 

 

Stallebrass (1990) found from her experimental data that the Poisson’s ratio obtained 

using equation 2.4 and 2.5 is either extremely small or negative. However, this may 

be improved by adjusting the model parameter κ* in the 3-SKH model. The 

parameter κ* was determined from the initial stiffness of soil subjected to isotropic 

swelling with the stress path rotation of 180°. The initial stiffness is not very reliable 

because measuring stiffness at very small strains is difficult. Therefore the parameter 

κ* can be adjusted, since it cannot easily be determined accurately by experiment. 

However, by adjusting the parameter κ*, the Poisson’s ratio obtained was still either 

extremely small or negative. A ‘resilient Poisson’s ratio’ could be derived from 

resilient values of shear and bulk modulus after 50 cycles. However, the value of 

Poisson’s ratio found in this way was found to be unrealistic. This is because it 

cannot be expected that the resilient values of G', K', E' and µ' will be consistent with 

isotropic elasticity, when the material is not elastic. Therefore, for the elastic analysis 

performed in this study, the Poisson’s ratio of the subgrade was taken to be 0.3. This 

is consistent with the value found by Al-Tabbaa (1987) to best fit her two-surface 

model with a much larger elastic region. The stress distribution at the top of the 
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subgrade clay (i.e. at the top integration points) in a three-layer pavement due to an 

applied wheel load was computed, and is shown in Figure 3.31. This stress 

distribution was then applied to the surface of the clay subgrade for 51 cycles as 

shown in Figure 3.32. The stress change due to the applied wheel load is compared 

with the stress change due to the equivalent stress blocks in Figure 3.31.  
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Figure 3.31. Stress distribution near the surface of the subgrade when a typical 

wheel load is applied at the surface of the bituminous layer. 

 

 
Figure 3.32. Equivalent stress blocks applied at the surface of the subgrade. 

 

The quasi-elastic settlement caused by imposing the load on the 51st cycle was 

compared with the surface settlement calculated by BISAR using the elastic 

parameters determined from CRISP using the 3-SKH model. Figure 3.33 shows the 

typical surface profile for the 200mm granular material pavement with 50mm of 

asphalt material on top predicted by the 3-SKH model at 50th unloading followed by 

loading and unloading. It can be seen from this figure that the model is able to 

predict both the resilient (quasi-elastic) response over one application of wheel load, 

and accumulation of permanent deformation over many cycles. Figure 3.34 presents 

the quasi-elastic settlement predicted by the 3-SKH model at the 51st loading and the 

settlement predicted by BISAR (elastic analysis). The results show that the 3-SKH 

model predictions deformation on loading are slightly larger than the results of the 

BISAR elastic analysis; however they are in good agreement. The plastic strain 

predicted by the 3-SKH model is responsible for the larger quasi-elastic settlement 
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for the 51st loading predicted by CRISP compared to that predicted by the elastic 

analysis. Because of this, it can be seen from Figure 3.34 that the difference between 

the 3-SKH prediction and the prediction from the elastic analysis is becoming 

smaller as the thickness increased. The resilient deformation (i.e. recovered on 

unloading, 51st unloading) predicted by the 3-SKH is also shown in Figures 3.33 and 

3.34. As can be seen from Figure 3.34, the predicted resilient deformation is closer to 

that predicted by the elastic analysis. This is because the stiffness calculated for 

BISAR was the resilient modulus (i.e. on unloading). From the results shown, it can 

be concluded that the 3-SKH model may be used to estimate the stiffness of the 

subgrade for input to a layered elastic program such as BISAR instead of estimating 

the stiffness from CBR values based on the empirical relationships.  
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Figure 3.33. Surface profile predicted by the 3-SKH model showing the permanent 

and resilient response of a pavement with 200mm granular material. 
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Figure 3.34. Comparison between the 3-SKH model prediction and BISAR for quasi-

elastic settlement. 
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3.5.2 Permanent Deformation 

 
One of the failure mechanisms in pavements is rutting, caused by the permanent 

deformation of the pavement layers. For lightly-trafficked pavements, the 

bituminous layer is relatively thin. Hence, the permanent deformation in the 

subgrade is assumed to contribute most to the formation of rut, as the vertical 

stresses in the subgrade layer are higher. The granular material and asphalt are 

assumed to settle with the subgrade in the long term. Some additional permanent 

deformation may also occur in the granular material, but the approximation has been 

made here that this does not occur. Brown (1996) reported that for thinly surfaced 

pavements, permanent deformations are likely to occur in the granular layer and 

subgrade. He also reported the pavement experiments by Little (1993), where up to a 

third of the surface rut was contributed by the granular layer, but there were cases 

where the subgrade was entirely responsible for the deformation.  

 

The major advantage of the kinematic hardening models is the ability to predict the 

accumulation of strains under cyclic loading. In this section, the model predictions of 

a typical three-layer pavement problem are presented. The three-layer pavement 

consists of 100mm of bituminous material over a layer of granular material (sub-

base) and clay (subgrade). The bituminous and granular layers were modelled as 

isotropic linear elastic, and the subgrade was modelled using the 3-SKH model. The 

parameters used for the 3-SKH model are given in Table 3.1. A typical constant 

wheel pressure of 600kPa was applied at the top of the bituminous layer and the 

problem is axi-symmetric. This analysis presents a fundamental modeling problem: 

if the material above the subgrade is assumed to be elastic, and the nodes are 

common at each material interface, the elastic layers will pull the subgrade into 

tension each time the pavement is unloaded. This can be overcome by calculating the 

stress distribution applied at the top of the subgrade during the first application of 

load, and then applying cycles of this stress distribution at the top of the clay alone 

for many cycles and calculating the permanent deformation. It must then be assumed 

that the granular and asphalt layers will follow the surface of the clay in the long 

term. Since it is the long-term behaviour that is of interest, the clay has been 

assumed to be fully drained.  
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The calculated stresses were used to apply equivalent stress blocks at the surface of 

the subgrade as shown in Figure 3.32, to approximate the stress distribution at the 

surface of the subgrade due to the application of wheel load.  Figure 3.31 shows the 

stress distribution due to the first application of load at the integration points nearest 

to the top of the subgrade. This will mean that the stresses at the integration points 

due to the applied stress blocks at the top of the clay alone will be slightly less than 

those due to the first application of load as shown in Figure 3.31. In reality, the 

bituminous and granular layers will not pull the soil into tension, and hence the 

permanent settlement predicted by applying several rectangular stress blocks to the 

surface of clay ought to give a more realistic result. 

 

Figures 3.35, 3.36 and 3.37 show the predicted permanent settlement, rate of 

settlement, and surface profile of the pavement subgrade respectively for different 

thicknesses of granular layer as a function of number of cycles. As expected, a 

thicker layer of granular material gives less settlement and a smaller rate of 

settlement. The rut depth predicted by the model is considered to be too large (60mm 

after 1,000 cycles for a 150mm granular layer). This is because the model over-

predicts shear strain significantly, as has already been shown in Section 3.4.1.  
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Figure 3.35. Model predictions for a one-layer pavement with equivalent stress 

distribution applied at the surface of the subgrade, showing the effect of granular 

layer thickness on the predicted permanent settlement as a function of number of 

cycles. 
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Figure 3.36. Model predictions for a one-layer pavement with equivalent stress 

distribution applied at the surface of the subgrade, showing the effect of granular 

layer thickness on the rate of settlement with number of cycles. 
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Figure 3.37. Model predictions for a one-layer pavement with equivalent stress 

distribution applied at the surface of the subgrade, showing the effect of granular 

layer thickness on the predicted surface profile for 150mm of granular material. 

 

The two-surface model developed by Al-Tabbaa has also been used to model the 

same pavement problem. This model does not predict any accumulation of 

permanent settlement after the first loading due to the fact that the elastic region is 

too large and the stress in the subgrade is well inside the yield surface. 
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3.6 SUMMARY 
 

The formulation of the 3-SKH model has been briefly described. The ability of the 

two-surface model and the 3-SKH model to predict the behaviour of soil under one-

dimensional loading, unloading and reloading, and the behaviour of soil under 

drained cyclic loading has been described. It was found that these models could 

reproduce some of the essential features of soil behaviour under cyclic loading. 

However, by comparison with existing test data, these two models over-predict shear 

strain as well as the value of K0 for normally consolidated soil. The 3-SKH model 

also suffers from a problem of generating negative shear strain under some stress 

conditions, which is due to the small stiffness during unloading which causes the 

shear strain decrement during unloading to be greater than the increment during 

loading. This negative shear strain problem only occurs under cycles of low stress 

where the stiffness during unloading is too small. Because the model over-predicts 

shear strain, this problem is magnified when the model is applied to cyclic loading 

behaviour where large numbers of cycles are involved. This will predict unrealistic 

deformation when analysing a pavement problem where large numbers of cycles are 

applied.  

 

Pavement foundations are best described within the framework of critical state soil 

mechanics (Brown, 1996). The 3-SKH model has been applied in a pavement 

analysis to predict the resilient and permanent response of a pavement. The resilient 

response on unloading predicted by the 3-SKH model agrees well with the results 

from a multi-layered elastic analysis. However, the rut depth predicted by the 3-SKH 

model is too large. The two-surface model is not suitable for the prediction of the 

permanent response of a pavement as the elastic region for this model is too large 

and no accumulation of permanent strain is predicted by this model. Consequently, 

an alternative model is required which will reduce the amount of predicted shear 

strain. This is the subject of the next chapter. 
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4 FORMULATION OF A SIMPLE NON-ASSOCIATED 

THREE-SURFACE KINEMATIC HARDENING 

MODEL 
 

 

4.1 INTRODUCTION 
 

It has been shown in the previous chapter, that the 3-SKH model over-predicted the 

value of Ko for normally consolidated soil, and the model also over-estimated shear 

strain. This problem becomes significant when the model is used to model behaviour 

of clay subjected to cyclic loading, where too much shear strain accumulates over 

many cycles. Modification of the flow rule may give a better prediction of K0 for 

normally consolidated soil and the shear strain induced by cyclic loading, and this 

will also affect the problem of generation of negative shear strain. The negative shear 

strain problem may be eliminated by modifying the hardening modulus. 

  

This chapter describes the mathematical formulation of the new non-associated 

three-surface kinematic hardening model. The new model has been derived by 

modifying the flow rule of the 3-SKH model to allow more flexibility of the shape of 

the plastic potential. The critical state dissipation constant M was also made to be a 

function of Lode angle in stress space. The translation rules of the 3-SKH model 

have been retained. An extra parameter is required in the model to control the shape 

of the plastic potential, and by choosing an appropriate value for the new parameter, 

the amount of the shear strain predicted can be controlled. However, the problem of 

generation of negative shear strain still remains under certain stress conditions, and 

this causes the rut depth to decrease after a number of cycles when analysing the 

repeated loading of a pavement. The hardening modulus of the model was therefore 

modified in order to solve this problem and a new parameter was introduced; various 

expressions of the hardening modulus have been adopted and are presented in this 

chapter. 
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4.2 NON-SYMMETRICAL FLOW RULE 
 
To improve the amount of shear strain predicted by the 3-SKH model, an attempt 

was made to change the flow rule. The flow rule proposed by McDowell (2000), 

described in Section 2.2.7 was adopted. This flow rule states that for points on the 

bounding surface, the ratio of the plastic strain increments is:  
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and the plastic potential on the bounding surface is: 
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where a is a constant controlling the shape of the potential, and p'p is the hardening 

parameter for the potential. 

 

From the flow rule the plastic potential for the yield surface was derived by 

translation of the origin in equation 4.2, giving the equation of the plastic potential in 

triaxial stress space: 
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     (4.3) 

 

The hardening parameter p'p can be obtained by substituting the current values of p' 

and q into equation 4.3 and solving for p'p.  

 

The hardening rule, which links δp'o with the plastic volumetric strain, is the same as 

that used by Modified Cam clay: 
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Since we know that the plastic strain increment vector is always normal to the plastic 

potential: 
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where χ is a scalar multiplier. 

 

The plastic strain increment on the yield surface can be found by combining the 

translation rule, consistency equation, hardening rule, and equation 4.5. The general 

expression for the plastic strain increment in triaxial stress space is: 
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Substituting the derivatives of the yield surface and plastic potential for the model 

into equation 4.6 gives: 
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and: 

 

( )
2 '

1 ln
' ' '

p

b o

TSp
B a

p p TSp
 

= +  − + 
    (4.9) 

 

However, it was found to be very difficult to implement this flow rule into the 3-

SKH model: the hardening modulus terms H1 and H2 in equations 3.26 and 3.27, 
need to be modified because the hardening modulus ho is different from that in the 3-

SKH model. In addition, there are six singularity points at which unlimited strains 

will be predicted. Two of these are the same as the two-surface model and the 3-

SKH model; that is when the dot product of the vector joining the origin to the 

current stress state and the vector normal to the yield surface at that stress point is 

equal to zero − see Section 3.2.2. Two other singularity points are when B = 1, this 

happens when p'-p'b = 0: i.e. at the top and bottom apexes. At these singularity 

points, infinite plastic strain is predicted. Another singularity point is when p'-p'b = -

TSp'o at which ho = 0. This occurs when the stress point is at the left apex of the yield 

surface. However, the terms H1 and H2 may resolve this problem. The sixth 

singularity point occurs during isotropic normal compression. At this point, B = 0 

and the plastic strain increment is undefined. Due to the complexity of this flow rule, 

it was abandoned and another simpler flow rule, which is symmetrical about the 

centreline of the yield surface and which will not introduce any extra singularity 

points, was proposed. 

 

 

4.3 THE NON-ASSOCIATED THREE-SURFACE KINEMATIC 

HARDENING MODEL 
 

In this section the derivation of the new non-associated model is described. The 

methods used to derive this model are largely similar to those used by Al-Tabbaa 

(1987) and Stallebrass (1990) to derive the two and three-surface models 

respectively, which are extensions of the Modified Cam clay model.  
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4.3.1 Model Description 

 

This model has been derived within the framework of Critical State Soil Mechanics 

and it is an extension to the 3-SKH model developed by Stallebrass (1990). It has a 

Modified Cam clay yield surface in triaxial stress space as shown in Figure 3.1. 

 

The outermost surface is now not a true yield surface, which encloses the truly 

elastic region, following the terminology used by Al-Tabbaa (1987) and Stallebrass 

(1990), this surface is called the ‘bounding surface’, with the inner two kinematic 

surfaces being the ‘history surface’ and ‘yield surface’ as described in Chapter 3. 

These two kinematic surfaces have the same shape as the bounding surface but are 

smaller in size, with this size expanding and contracting at a fixed ratio. The 

equations for the bounding, history and yield surface in the triaxial stress space are 

still as given in equations 3.1 - 3.3. 

 

 

4.3.2 Stress-dilatancy Rule 

 

The 3-SKH model is assumed to obey the normality rule i.e. the plastic potential is 

identical to the yield surface. Since the bounding surface is of the Modified Cam 

clay type, this will lead to an over prediction of shear strain and K0,nc. The plastic 

strain increment ratio on the bounding surface is: 
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=     (4.10) 

 

In order to reduce the amount of shear strain predicted by the 3-SKH model, a new, 

simple and more flexible expression for the flow rule was proposed: 
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which requires the specification of one additional new parameter k. This flow rule 

was also proposed by Ohmaki (1982) to predict correctly the value of  K0,nc and used 

by Alonso et al. (1990) to model the behaviour of partially saturated clays. 

 

This flow rule is associated at critical states and also for isotropic conditions, but 

non-associated between these points, where the plastic strain increment ratio at a 

given stress ratio depends on the value of k. This was implemented into the 3-SKH 

model to improve its prediction of K0,nc and hence shear strain. To illustrate the effect 

of using different values of k on the plastic strain increment vector, Figure 4.1 shows 

the directions of the plastic strain increment vectors for k = 0.5 and 1.0. The slope of 

the plastic strain increment vector has been reduced compared to that when the 

normality condition is applied (i.e. k = 2). This will reduce the plastic shear strain 

predicted by the model by a factor of 2/k. By choosing an appropriate value of k, the 

value of the coefficient of earth pressure at rest during one-dimensional compression 

Ko,nc can be predicted more accurately than the 3-SKH model. The predicted results 

for the value of the coefficient of earth pressure at rest during one-dimensional 

loading, unloading and reloading are presented in section 4.3.7. 

 

The plastic potential, g, can be obtained by integration of equation 4.11: 
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except for k = 1 when 

 

( ) 0'/'2ln2'M =−= pppqg p                 (4.13) 

 

where p'p is the hardening parameter for the plastic potential. 
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(b) 

Figure 4.1. Comparison between associated and non-associated flow plastic strain 

increment vectors (a) k = 1, and (b) k = 0.5. 

 

The shape of the plastic potential can be varied by using different values of k. The 

effect of parameter k on the shape of the plastic potential is shown in Figure 4.2. 

 

By translation of the origin in equation 4.9, the plastic potential for the yield surface 

is therefore: 
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except for k = 1, when 
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Figure 4.2. Plastic potentials for various values of k. 

 

 

4.3.3 Hardening Rule 

 

The way the hardening modulus is derived is the same as that used for the 3-SKH 

model; it is derived from the special case when all the surfaces are in contact, and is 

then generalised. However, there is a slight modification to the hardening moduli H1 

and H2 of the new model. The hardening rule, which links δp'o with the plastic 

volumetric strain, is the same as that used by Modified Cam clay − see equation 4.4. 

 

Substituting the derivatives of the yield surface and plastic potential for the model 

into equation 4.6 results in the following expression for the plastic strain increment 

on the yield surface: 
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where the hardening modulus ho is: 
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Note that the hardening modulus ho is reduced to that of the 3-SKH model when k = 

2, and that only shear strains are affected for given values of p', q, δp', δq', p'b and qb 

(i.e. for a given stress path). 

 

This hardening modulus, ho, will predict infinite plastic strains at four singularity 

points, which are the same as those in the 3-SKH model. Hence the hardening 

moduli, H1 and H2, can be used without major modification. Detailed description of 

the singularity points can be found in Al-Tabbaa (1987) and has been briefly 

described in Chapter 3. Because of this instability region, described in Section 3.2.2, 

Stallebrass (1990) defined the hardening modulus h as a function h = ho + H1 +H2. 

Hashiguchi (1985) expressed the hardening modulus as a function of the degree of 

approach of the surfaces such that the hardening modulus is zero when the surfaces 

are in touch. Following this, Stallebrass (1990) expressed H1 as a function of b1, the 

degree of approach of the history surface to the bounding surface and H2 as a 

function of b2, the degree of approach of the yield surface to the history surface. The 

H1 and H2 terms for the new model are slightly different from those used by the 3-

SKH model; a factor of 2/k has been applied to these terms: 

 

 3 21
1 * *

1max

1 2 'o
bH

k b

ψ

λ κ
 

=  −  
p S    (4.18) 

 

 32
2 * *

2max

1 2 'o
T bH

k b

ψ

λ κ
 ⋅

=  −  
p     (4.19) 

 

the terms in these equations were explained in Section 3.2.2. 

 

By using these expressions for H1 and H2, ho, H1 and H2 are all scaled by 2/k so that 

the value of parameter k will affect only the plastic shear strain and not the plastic 

volumetric strain for given values of p', q, δp', δq', p'b and qb, so that the plastic 
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volumetric strain predicted by the new model will be the same as that predicted by 

the 3-SKH model. This is considered acceptable because Al-Tabbaa (1987) showed 

that volumetric strains were predicted well for kaolin by her two-surface model. 

 

Thus, the constitutive relationship for the plastic strain increments is: 
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where: 
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The expressions for H1 and H2 are certainly not unique and can be modified to 

improve predictions. It will be shown that these expressions are not suitable for 

analysing a pavement problem where the stresses in the pavement foundation are 

relatively small. In Section 4.3.8, different expressions of the hardening modulus are 

proposed in order to improve the model predictions under cyclic loading. 

 

 

4.3.4 Yield Surface and Plastic Potential in Deviatoric Plane 

 

For the ‘Bubble’ model and the 3-SKH model, the critical state dissipation constant 

M is assumed to be constant. However, it is well known that the Mohr-Coulomb 

criterion is more appropriate to failure conditions in soils (Potts and Zdravković, 

1999), so that the critical state constant M is a function of Lode angle in stress space. 

In the new model, the critical state dissipation constant M has been made to be a 

function of Lode angle, θ according to the expression proposed by Sheng et al. 

(2000): 
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where Mc is the value of M in triaxial compression with θ = -30°, and Me is the value 

of M in triaxial extension θ = 30°. The parameter φ' is the friction angle of the soil at 

a critical state, assumed to be independent of Lode angle. Figure 4.3 shows the 

failure surface in the deviatoric plane, having a similar shape to that proposed by 

Matsuoka and Nakai (1974). This surface coincides with the Mohr-Coulomb 

hexagon at all vertices in the deviatoric plane, and the failure surface remains convex 

if α ≥ 0.6 (i.e. φ' ≤ 48.59° or Mc ≤ 2) which is common for most clays (Sheng et al., 

2000).  

σ ' 1

θ  = -30o

θ  = 30o

σ ' 2

σ ' 3

 

Original 3-SKH 
New model (M 
varies according 
to Sheng et al. 

(2000)) 

Mohr-Coulomb 

Figure 4.3. Failure surface in deviatoric plane given by equation 4.22. 
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In the new model, the shape of the yield surface, history surface, bounding surface 

and potential have all been assumed to have a shape in the deviatoric plane given by 

equation 4.22, and the Lode angle is calculated for the current point in stress space 

using a floating origin at the centre of the yield surface. For simplicity, the rate of 

change of the value M with respect to Lode angle, ∂M/∂θ, is assumed to be 

negligible. This implies that the yield surface and the plastic potential in the 

deviatoric plane remain circular in shape with the radius changing according to 

equation 4.22. This assumption will make the mathematical formulation much 

simpler and is justified in the next section by a typical boundary value problem using 

the model described by Yu and Khong (2002). The effect of ∂M/∂θ will be important 

for the potential under plane strain conditions (Potts and Zdravković, 1999). 

 

 

4.3.5 Justification of ∂M/∂θ = 0 

 

In order to justify the assumption that the rate of change of M with respect to Lode 

angle is negligible, finite element analyses on footing problems using the model 

developed by Yu (1998) have been performed. This model was fully implemented in 

CRISP by Yu and Khong (2002), which also used the relationship between M and 

Lode angle (equation 4.22) proposed by Sheng et al. (2000). Three versions of this 

model have been implemented in CRISP: (1) M varies according to equation 4.22 

with ∂M/∂θ = 0 for both the yield surface and the plastic potential in the deviatoric 

plane: i.e. circular shape, (2) M varies according to equation 4.22 for both the yield 

surface and plastic potential, and ∂M/∂θ is allowed to vary according to equation 

4.22 for both the yield surface and plastic potential (i.e. both the yield surface and 

plastic potential are of the Sheng et al. (2000) shape in Figure 4.3), and (3) M varies 

according to equation 4.22 for both the yield surface and the plastic potential, but 

∂M/∂θ is zero for the plastic potential only (i.e. circular potential and Sheng et al. 

(2000) type yield surface). 

 

A rigid circular footing and a strip footing were analysed using these models to 

investigate the effect of the shape of the yield surface and plastic potential in the 
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deviatoric plane. The finite element mesh used to analyse the footing problems is 

shown in Figure 4.4. Cubic strain triangle elements were used in the analyses. 

 

 
Figure 4.4 . Finite element mesh for footing problem. 

 

The model parameters chosen are relevant to London clay (Yu and Khong, 2002). 

The first problem was a rigid circular footing under undrained loading conditions 

and the second problem was a rigid strip footing under the same loading conditions. 

Figures 4.5 and 4.6 show the plot of applied pressure against displacement for the 

circular footing and strip footing respectively. The first and second letters in the 

figure denote the shape of the yield surface and plastic potential in the deviatoric 

plane respectively, where ‘s’ denotes Sheng et al. (2000) type surface and ‘c’ a 

circular shape. For a circular footing (axi-symmetry), the shapes of the yield surface 

and plastic potential in the deviatoric plane were found to be insignificant. However, 

the shape of the plastic potential in the deviatoric plane was found to be more 

significant for the plane strain problem. However, the shape of the yield surface in 

the deviatoric plane had no effect on the plane strain problem. These findings agree 

with the findings of Potts and Gens (1984) who showed that, in plane strain 

problems, the shape of the plastic potential in the deviatoric plane has a dominating 

influence on the predicted behaviour especially for drained conditions. According to 

Potts and Gens (1984), the plastic potential should predict the correct Lode angle at 

failure, θf, and the predicted value of θf affects the predictive capability for plane 

strain deformation. As for the effect of the yield surface, Potts and Gens (1984) also 

noticed that in their plane strain problem, this has little influence on the predictions, 

so long as the correct value of φ' at failure was produced. Hence, for simplicity, the 
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new model proposed in this research assumed that both the shape of the plastic 

potential and yield surface in the deviatoric plane were circular (i.e. ∂M/∂θ = 0), with 

the value of M varying with Lode angle according to equation 4.22. Further work is 

needed to justify this assumption for the new model. 
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Figure 4.5. Results predicted by CASM (Yu, 1998; Yu & Khong, 2002) showing the 

effect of the shape of yield surface and plastic potential in the deviatoric plane for a 

circular footing (axi-symmetric problem). 
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Figure 4.6. Results predicted by CASM (Yu, 1998; Yu & Khong, 2002) showing the 

effect of the shape of yield surface and plastic potential in the deviatoric plane for a 

strip footing (plane strain problem). 
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4.3.6 Generalisation of Model, Finite Element Implementation and 

Validation of the New Model in CRISP 

 

To perform non-linear finite element analysis using elasto-plastic models, it is 

necessary to compute the elastic-plastic matrix, [Dep] relating an increment of strain 

to an increment of stress: 

 

{ } [ ]{ }εσ ∆=∆ epD     (4.25) 

 

There is a standard method to obtain the expression for the elastic-plastic matrix, 

[Dep], which can be found in standard finite element textbooks such as Potts & 

Zdravković (1999): 
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where [De] is the elastic matrix and H is the hardening/softening modulus. For the 

three-surface model: 

 

1oH h H H2= + +     (4.27) 

 

where ho is given by: 
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In order to implement the model into a finite element code, the model has to be 

formulated in general stress space. The equations of the yield surface and plastic 

potential are written in general stress space by substituting q with deviatoric stress 

tensor, the equations of the yield surface, f and plastic potential, g become: 
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where sij is the deviatoric stress tensor. The relationship between q and sij is: 
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where: 
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The symmetric tensor sij is expressed in matrix and vector forms as follows: 
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The terms ∂f/∂σ' and ∂g/∂σ' needed for the formation of the elasto-plastic matrix in 

equation 4.26 can be obtained from the following equations: 

 

'
' ' ' '

ij

ij ij ij ij ij

sf f p f f
p s '

θ
σ σ σ θ σ

∂∂ ∂ ∂ ∂ ∂ ∂Μ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂Μ ∂ ∂
  (4.34a) 

 

'
' ' ' '

ij

ij ij ij ij ij

sg g p g g
p s '

θ
σ σ σ θ σ

∂∂ ∂ ∂ ∂ ∂ ∂Μ ∂
= + +
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  (4.34b) 

 

Assuming the rate of change of M with respect to θ is negligible (i.e. circular shape 

in deviatoric plane), equations 4.34a and 4.34b become: 
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All the terms required for the elasto-plastic matrix can be found in the appendix. 

 

From the definition of the Lode angle, equation 4.24, it should be noted that there is 

a discontinuity of Lode angle from σ'v> σ'h to σ'h > σ'v i.e. from compression to 

extension (i.e. at an isotropic stress state), the Lode angle is undefined. However, this 

should not create any difficulties in the implementation of the new model into a 

finite element code, because at this point, the flow rule is not affected by the Lode 

angle and hence any value of Lode angle can be assumed at this point. At isotropic 

stress states, only volumetric strains occur (the plastic strain increment ratio 

dεp
p/dεq

p, is equal to infinity), so any value of the Lode angle can be assumed at this 

point. 

 

The original 3-SKH model was implemented in CRISP and the new model was 

implemented by amending the source code for the original 3-SKH model. The new 

flow rule with constant M was first implemented followed by the implementation of 

M as a function of Lode angle. After the implementation, the program was tested by 

the following methods to ensure that the implementation was correct: 

 

1. Constant M 

 

• For the new model with constant M, it was ensured that the results predicted 

were the same as the original model for k = 2.  

 

• For other values of k, it was ensured that the shear strain predicted by the new 

model was approximately k/2 times the shear strain predicted by the original 
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model (the relationship is approximate because the factor 2/k applies to 

plastic strains only).  

 

• The volumetric strain predicted by the new model should be exactly the same 

as that predicted by the original model for any value of k for a given stress 

path. 

 

2. Varying M 

 

• After the new model with varying M was implemented, a triaxial extension 

simulation was performed to ensure that the soil reached a critical state at a 

stress ratio equal to Me. This critical state stress ratio could be calculated 

from Mc using equation 4.23.  

 

• In addition, an undrained triaxial simulation was performed with all the 

surfaces initially centralised. The model should predict a straight line for the 

undrained stress path in the q − p' space.  

 

The model predicted the correct response for all these loading paths. 

 

4.3.7 Evaluation of the New Model 

 

It has been shown in Chapter 3 that the 3-SKH model is able to capture most of the 

essential features of cyclic loading of soil behaviour. However, this model over 

predicts K0,nc and shear strain on loading. Figure 3.18 shows that the 3-SKH model 

greatly over-predicts shear strain for a shear test at constant p', and it has also been 

shown that in Figure 3.9 the earth pressure coefficient at rest during normal 

compression and unloading is over-estimated. By changing the flow rule of the 3-

SKH model, the predicted shear strain can be scaled down and hence the earth 

pressure coefficient at rest can be correctly predicted – at least for normally 

consolidated conditions. It was considered that if the value of k could be found such 

that the model correctly predicted K0,nc, then this would result in better predictions of 

shear strain for a given cyclic stress path. According to McDowell and Hau (2003) 
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the value of k required to correctly predict K0,nc may be estimated from equation 

4.11, neglecting elastic strains, so that for one-dimensional conditions: 

 
2 2

1

1

d d M1.5
d 2d 3

p

q k
ε ε η
ε ε η

−
= = =    (4.36) 

 

where the critical state parameter M in triaxial compression is related to the critical 

state angle of friction φ', according to the equation: 

 

6sin 'M
3 sin '

φ
φ

=
−

     (4.37) 

 

The effect of k on values of K0 during normal compression for different values of φ' 

is also shown in Figure 4.7.  
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Figure 4.7. Effect of parameter k on the prediction of K0 at normally consolidated 

state. 

 

For kaolin, Al-Tabbaa (1987) obtained a value of K0,nc = 0.69 (η0,nc = 0.39) and M = 

0.89. Substituting these values into equation 4.36 gives k = 1.1. For soils that satisfy 

the Jâky (1944) equation 2.37, the stress ratio η0,nc during one-dimensional 

compression is given approximately by the equation: 

 

0, 0.6Mncη ≈      (4.38) 
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Equation 4.38 can be verified by substituting different values of φ' into equations 

2.37 and 4.37. Substituting equation 4.38 into equation 4.11 for one-dimensional; 

conditions with dεp
p/ dεq

p = 1.5 (i.e. neglecting elastic strains) gives: 

 

0.7Mk ≈      (4.39) 

 

for such soils. 

 

Figure 4.8 shows the prediction of K0,nc of the new model with k = 0.7M for different 

angles of friction compared with the values predicted by the 3-SKH model and 

various relationships proposed by other researchers (Jâky, 1944; Brooker & Ireland, 

1965; Bolton, 1991b; Simpson, 1992) which have been described in Section 2.2.9. 

The result shows that the new model has greatly improved the prediction of K0,nc 

compared to the original model which over-estimates K0,nc.  
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Figure 4.8. Comparison of the values of K0,nc predicted by the new model and by 

other models. 

 

Figure 4.9 shows the prediction of the K0 for kaolin during loading, unloading and 

reloading by the new model with a constant value of M, and with M varying 

according to equation 4.22, using a value of k = 1.1. This value of k would give K0,nc 

= 0.684 (η0,nc = 0.40) which agrees well with the value of K0,nc = 0.69 obtained by 

Al-Tabbaa (1987). According to equation 4.11 with η0,nc = 0.40, the value for 

dεp
p/dεq

p is 1.44. This illustrates that the elastic strains can be neglected in the 

 111  



determination of the value of k. It can be seen that the prediction of the value of K0 

during normal compression is better than the original 3-SKH model. Figure 4.9, 

curve A, shows the values of K0 predicted by equation 2.48. The values predicted by 

the new model with constant M are given by curve B. It can be seen that the 

prediction of K0 on unloading is worse than that given by the 3-SKH model (curve 

C). It was considered that this was because the stress ratio at failure, M, had been 

assumed to be independent of the Lode angle in stress space. The effect of allowing 

M to be a function of Lode angle, on the predicted value of K0 for primary 

unloading, is given in Figure 4.9, curve D. It can be seen that the prediction is much 

better than that given by using a constant value of M (curve B), and is better than the 

3-SKH model (curve C). If required, k could be permitted to be different under 

compression and extension conditions. This is equivalent to applying a different flow 

rule in compression and extension. A suitable formulation in generalised stress 

space, following equations 4.22 – 4.24, would be: 

 

( ) ( )

1
44

c 4 4

2
1 1 sin 3

k k αθ
α α θ

 
=
 + + − 




   (4.40) 

 

e

c

k
k

α =     (4.41) 

 

where ke relates to triaxial extension (θ = +30°) and kc to compressive (θ = -30°) 

conditions. The value of α could be determined by trial error. A constant value of k 

may be insufficient to fit both the values of K0,nc and K0 on unloading. Equations 

4.40 and 4.41 are useful for this purpose.  

 

For reloading, curve A in Figure 4.9 shows the empirical relation proposed by 

Schmidt (1983) given by equation 2.48 with OCRmax = 10. The prediction of the 3-

SKH model is also shown (curve C), together with the new model using k = 1.1 

(curve D). It appears that the 3-SKH model is better than the new model, but this is 

mainly because of the higher value of of K0,nc. The prediction of K0 on reloading 

cannot be expected to be correct, as the model exhibits strong ratcheting under 
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drained cyclic loading: this is a function of the H1 and H2 terms in the hardening 

modulus. 
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Figure 4.9. Comparison between model predictions of K0 and empirical result. 

 

It was considered that if the value of k could be found such that the model correctly 

predicted K0,nc, then this would result in a better prediction of shear strain. Figure 

4.10 shows the predictions of the original model and the new model (with M given 

by equation 4.22) for the constant p' drained cyclic loading test performed by 

(Stallebrass, 1990) – see Figure 3.18. It can be seen that the shear strain predicted 

has been greatly improved by the new model. However, the shear strain on reloading 

is still over-predicted. As pointed out by Stallebrass (1990), this is because the 

stiffness drops rapidly when the stress state reaches the history surface, and a more 

appropriate expression for H1 may improve this. In addition, the ratcheting 

phenomenon is still exhibited by the new model as seen in Figure 4.10, but the 

increase in shear strain caused by the unload – reload cycle is reduced by about 40%. 
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Figure 4.10. Comparison between model predictions and experimental data from 

Stallebrass (1990). 

 

Now, the pavement problem presented in Chapter 3 is analysed using the new model 

with k = 1.1. The rest of the parameters are the same as those used in Chapter 3. The 

finite element mesh used for the pavement analysis is shown in Figure 4.11. Figures 

4.12 and 4.13 show the model prediction of the permanent settlement at the 

centreline of the surface of the subgrade in a one-layer pavement with an equivalent 

stress distribution (to that caused at the surface of the subgrade by a wheel load in a 

three-layer pavement) applied at the surface of the subgrade and the surface profile 

of the subgrade. The model predicts an initially increasing settlement followed by a 

decreasing settlement. The shear strain of the element located at the top of the 

subgrade and near the centreline, is plotted against number of cycles, and the results 

are presented in Figure 4.14. The results show that the shear strain increment 

becomes negative as the number of cycle increases. This is due to the negative shear 

strain problem described in Section 3.4.2. The negative shear strain problem that 

already existed in the 3-SKH model becomes significant when the new proposed 

flow rule is used because the shear strain on loading is reduced by a factor of 2/k and 

by adopting a value M, which is a function of Lode angle, the shear strain on 

unloading does not change much. This causes the negative shear strain problem 

under some stress conditions.  
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Figure 4.11. Finite element mesh of the one-layer pavement. 
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Figure 4.12. Predicted permanent settlement versus number of cycles. 
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Figure 4.13. Surface profile predicted by the new model. 
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Figure 4.14. Accumulation of negative shear strain with number of cycles in 

pavement element. 

 

 

4.3.8 Modification of the Hardening Modulus 

 

It has been shown in the previous section that the problem of accumulation of 

negative shear strain occurs in the pavement analysis. This is due to the fact that the 

shear strain decrement on unloading is greater than the increment during loading 

under some stress conditions. As already discussed in Section 3.4.2, the negative 

shear strain problem can be eliminated by modifying the hardening modulus such 

that the stiffness on unloading is greater. In this section, the hardening modulus is 

modified slightly in order to give a realistic prediction for the analysis of a 

pavement. 

 

Several modifications to the hardening moduli H1 and H2 were made in order to try 

to eliminate the negative shear strain problem, such as using different values of ψ in 

these terms (i.e. ψ1 in H1 term and ψ2 in H2 term), using 2p'o instead of p'o as the 

scaling parameter in these terms, introducing the term p'c/p' into these terms, and 

using different values of k in extension and compression according to equation 4.40. 

None of these modifications eliminate the accumulation of negative shear strain 

problem in the pavement analysis. Therefore a better modification is proposed 

below. 
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For the two-surface model, Al-Tabbaa (1987) assumed that the hardening modulus, h is 

expressed in the following form: 

 

oh Fh H= +      (4.42) 

 

where F and H are scalar quantities which may be functions of stress state. For both 

the two-surface model and the 3-SKH model the function F = 1. The negative shear 

strain problem is due to the low stiffness on unloading; therefore the simplest way to 

solve this problem is to increase the stiffness on unloading. The hardening modulus, 

h, is expressed in the following form: 

 

( )1 2oh F h H H= + +     (4.43) 

 

( )

1
44

4 4

2
1 1 sin 3

F α
α α θ

 
=
 + + − 




   (4.44) 

 

eFα =      (4.45) 

 

where Fe is the value of F in triaxial extension (θ = +30°). With this additional 

function, F, the modulus on unloading can be adjusted whereas the modulus on 

loading will remain unchanged. 

 

A pavement problem was analysed using the new model with the value of k varying 

according to equation 4.40, and using the function F according to equation 4.44. 

Figure 4.15 shows the shear strain of the element located at the top of the subgrade 

near the centreline (see Figure 4.15) as a function of number of cycles predicted by 

these two models. Note that the equivalent stress blocks at the top of the subgrade 

had to be calculated for each model. It can be seen that the negative shear strain 

problem still exists when k is made to be a function of Lode angle according to 

equation 4.40, with kc = 1.1 and ke = 0.5.  Comparing Figure 4.14 with Figure 4.15, 

the negative shear strain problem was slightly improved by using equation 4.40. 

However, a more realistic prediction was obtained by using the function F for the 
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hardening modulus in equation 4.44. Therefore, it was considered that the 

introduction of the function F in the hardening modulus was more appropriate. 
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Figure 4.15. Predicted shear strain as a function of number of cycles.  

 

 

4.3.9 Determination of Parameters 

 

Ten parameters are now required to fully describe the new model: 

 

ecs – The voids ratio at p' = 1kPa on the critical state line. 

M – The slope of the critical state line in q − p' space. 

-λ* – The slope of the isotropic normal compression line and critical state line in ln v 

− ln p' space. 

-κ* – The initial slope of the swelling lines in ln v − ln p' space. 

Ge – The elastic shear modulus. 

T – The ratio of the size of the history surface to that of the bounding surface. 

S – The ratio of the size of the yield surface to that of the history surface. 

ψ – The exponent in the hardening moduli H1 and H2. 

k – The parameter which controls the shape of the plastic potential. 

Fe – The value of the multiplier in the hardening modulus in triaxial extension. 

 

If the shear modulus is assumed to be dependent on the mean normal effective stress 

p' and Ro according to equation 3.7, three extra parameters, A, n and m are needed. 
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However,  these can be determined approximately if the plasticity index of the soil is 

known (Viggiani and Atkinson, 1995). 

 

The determination of the parameters for the 3-SKH model was described in Chapter 

3. The additional parameter k for the new model is chosen such that the value of K0 

during normally compression is correctly predicted. This can be determined by 

neglecting elastic strains in the stress-dilatancy rule for one-dimensional conditions 

as discussed in Section 4.3.7. For soils that satisfy the Jâky (1944) equation 2.37, the 

parameter k can be determined from equation 4.39. 

 

This serves as a guide to choosing the value of the new parameter k, and if equation 

4.39 is being used, this means that only one extra parameter, Fe, is needed for the 

new model. 

 

The parameter Fe is determined by trial and error. It is shown in Chapter 5 that the 

parameter Fe is suitable for modelling cyclic loading data, and in Chapter 6, it is 

shown that the introduction of the parameter Fe leads to more realistic modelling of 

pavement response. 

 

 

4.4 SUMMARY 
 

A new flow rule has been proposed in this chapter. With one additional parameter, k, 

a family of plastic potentials can be obtained. The formulation of a three-surface 

kinematic hardening model based on this flow rule has been presented. This new 

non-associated three-surface kinematic hardening model is an extension of the 3-

SKH model (Stallebrass, 1990), which itself is an extension of the ‘Bubble’ model 

(Al-Tabbaa, 1987). By choosing a suitable value of k, more realistic predictions of 

shear strain and K0,nc can be obtained. These are over-predicted by the 3-SKH model 

(Stallebrass, 1990). The simple non-associated flow rule is able to scale down the 

plastic shear strain by a factor of k/2, and still gives associated flow under isotropic 

conditions and at a critical state. The value of K0 on unloading can also be correctly 

predicted if the value of the critical state parameter M is made to be a function of 
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Lode angle. If required, the value of parameter k could be permitted to be different 

under compression and extension conditions. The value of the parameter k required 

to correctly predict the value of K0 during normal compression may be determined 

by trial and error, or it can be obtained by ignoring elastic strains in the stress-

dilatancy rule for one-dimensional normal compression. The new model was 

implemented into a finite element code and triaxial simulations were performed and 

it was shown that the prediction of shear strain and K0 during normal compression 

and unloading were improved, although there is still some error on reloading: this is 

a function of H1 and H2 and is due to the strong ratcheting phenomenon exhibited by 

the model. The prediction of the value of K0 on reloading by the 3-SKH model is 

better than the new model, but this is mainly because of the higher value of K0,nc. As 

for the 3-SKH model, the new model also suffers from the problem of accumulation 

of negative shear strain under some stress conditions where the hardening modulus 

on unloading is not large enough. However, this can be eliminated by modifying the 

hardening modulus, h. The hardening modulus was modified such that it would 

become larger on unloading by introducing a scaling factor Fe. This is examined in 

detail in Chapter 5. 
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5 EXPERIMENTAL VALIDATION OF THE NON-

ASSOCIATED THREE-SURFACE KINEMATIC 

HARDENING MODEL 
 

 

5.1 INTRODUCTION 
 

A new non-associated three-surface kinematic hardening model was proposed in the 

previous chapter. In this chapter, the model parameters for kaolin clay are 

determined by triaxial testing using the methods proposed by Stallebrass (1997) – 

see Section 3.2.3. Drained cyclic loading tests were performed to validate the model 

and to determine the parameters ψ, and Fe, that best fit the data. Due to time 

constraints caused by the difficulties in the commissioning of the equipment, only 

two drained cyclic loading tests were performed. Each test took approximately five 

weeks to complete. 

 

 

5.2 TRIAXIAL TEST 
 

This section briefly describes the triaxial apparatus used, the sample preparation, and 

the procedure followed in performing the tests. The GDS advanced triaxial testing 

system was used in this research. A detailed description of the triaxial apparatus can 

be found in Menzies (1988) and the GDS Laboratory manual (GDS Instruments Ltd, 

2002). All of the tests reported here were performed on samples of Speswhite kaolin 

prepared by mixing Speswhite kaolin powder with distilled water at a water content 

of 130% and then consolidating in an oedometer. The test results are reported and 

discussed in this chapter. 
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5.2.1 Description of the Triaxial Apparatus 

 

The GDS triaxial testing system was used for this research to carry out the necessary 

triaxial testing. A brief description of this system is given in this section. 

 

The system consists of a triaxial cell, two standard and one advanced computer 

controlled pressure sources, an eight-channel data acquisition pad, a computer and a 

multiplexer which allows up to four devices to be connected to a communication 

port on the computer. The system layout is shown in Figure 5.1. 

 

 
Figure 5.1. Schematic diagram showing the layout of the triaxial system (GDS 

Instruments Ltd, 2002). 

 

Triaxial cell 

The triaxial cell is a Bishop and Wesley (1975) cell which has a maximum safe 

working pressure of 1700kPa. Both 38mm and 50mm diameter specimens can be 

tested using this cell. Axial force is exerted on the test specimen by a piston fixed to 

the base pedestal. This piston moves vertically upwards and downwards actuated 

hydraulically from the lower chamber in the base of the cell, which contains water. 

Known displacements may be applied by pumping a known volume of water from a 

GDS pressure controller into the lower chamber. GDS standard pressure/volume 

controllers are used to control both the lower chamber pressure and the cell pressure. 

A 2kN internal submersible load cell which has an accuracy of 2N, one external 
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axial displacement transducer with a range of 40mm and an accuracy of 0.1mm, and 

one 2000kPa range pore pressure transducer with an accuracy of 2kPa are used. The 

back pressure is applied to the top of the sample by a GDS advanced 

pressure/volume controller and the volume change of the sample is also measured by 

this controller. The pore pressure is measured at the base of the sample. The 

measurement of local strain is discussed later. 

 

 

Pressure/volume controller 

The triaxial system consists of three 2MPa pressure/volume controllers: two standard 

pressure/volume controllers to control the cell pressure and lower chamber pressure 

and one advanced pressure/volume controller for the back pressure source. The 

volumetric capacity of these controllers is 2×10-4m3. The resolution of the pressure 

control is 2kPa and the resolution of pressure measurement is 1kPa.  

 

Hall effect transducers 

If current is flowing through a semiconductor plate that is placed in a magnetic field 

where flux lines are directed perpendicular to both the material and the current flow, 

voltage is produced across the plate in a direction normal to the current flow. This is 

known as the Hall effect. The application of Hall effect transducers to measure local 

axial and radial deformation in the triaxial test has been successfully performed at 

the University of Surrey (Clayton et al., 1989). The radial strain-measuring device 

consists of a calliper, which is mounted on the test specimen by pins or bonded to the 

membrane by adhesive. The Hall effect transducer is positioned across the opening 

at the calliper where it measures the opening and closing of the jaws. Figure 5.2 

shows the radial strain-measuring device mounted on the test specimen. For axial 

strain measurement, the device consists of a spring-mounted pendulum that holds a 

magnet assembly, which is suspended from a mounting block. This mounting block 

is fixed to the test specimen by pins or bonded to the membrane by adhesive. The 

lower part of the transducer, which is mounted on the specimen by pins or adhesive, 

consists of a metallic container holding the linear output Hall effect semiconductor. 

The range of the Hall effect transducer is ±3mm with an accuracy of 0.05mm; at this 
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range the output of the transducer is almost linear. The Hall effect transducers were 

used in all the triaxial tests performed. 

 

 

Radial calliper Hall effect transducer 

Local axial 
measurement Soil sample 

Figure 5.2. Picture showing the on-sample instrumentation. 

 

 

5.2.2 Soil Used in the Experimental Test 

 

The soil used in this research is Speswhite kaolin provided in dry powder form. The 

soil sample was prepared by mixing the kaolin powder with distilled water of twice 

the liquid limit and consolidating in an oedometer. Index tests were performed to 

determine the liquid limit and plastic limit. The liquid limit and plastic limit were 

found to be 63% and 31% respectively. Other researchers have obtained similar 

value for Speswhite kaolin. The liquid limit and plastic limit obtained by Atkinson 

(1987) were 65% and 35% respectively, by Al-Tabbaa (1987) 69% and 38% 

respectively, and by Martin & Houlsby (2000) 65% and 34% respectively. 

 

 

5.2.3 Sample Preparation 

 

A 100mm diameter oedometer was used to prepare samples for triaxial testing. 

Figure 5.3a shows the base, top cap and porous stones for the oedometer. Sufficient 

amount of dry Speswhite kaolin powder was mixed with distilled water at a moisture 
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content of 130% (twice the liquid limit) to form the slurry. The slurry was then 

poured into the oedometer with care to ensure that no air was trapped. Filter paper 

was soaked in water and placed on the top and bottom porous stones so that clay 

would not clog them. Drainage was allowed at the top and bottom. The vertical 

pressure was applied using a pressure regulator which had been calibrated against a 

load cell. A photograph of the oedometer in use is shown in Figure 5.3b. The kaolin 

slurry was one-dimensionally consolidated to a vertical pressure of 200kPa. This 

pressure was applied in increments of 10, 20, 50, 100, and 200kPa. Each increment 

of pressure was held for a period of at least 48 hours to allow the excess pore 

pressure to dissipate. The sample was then unloaded to 100kPa and the sample was 

left under this pressure until extrusion. This would leave the sample in an 

approximately isotropic state of p' ≈ 100kPa (Al-Tabbaa, 1987) which could then be 

easily recreated in the triaxial cell. The whole process took approximately three 

weeks. During extrusion, a thin wire was run along the circumference of the sample 

to reduce the friction between the soil specimen and the oedometer when it was 

being pushed out. The sample was then trimmed to the required size using a wire 

saw and a trimming apparatus. During the process of extrusion and trimming, great 

care was taken in order to keep the sample disturbance to a minimum. Initial 

dimensions, weight and moisture content of the specimen were measured before 

setting up the specimen in the triaxial apparatus. 

 

 
(a) (b) 

Figure 5.3.  (a) Oedometer, porous stones, top and base caps, and (b) sample under 

one-dimensional consolidation. 
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5.2.4 Specimen Set Up and Test Procedure 

 

After the sample was trimmed to the required dimensions, in this case a diameter of 

38mm and height 76mm, the specimen was ready to be set up in the triaxial 

apparatus. Before the specimen was set up in the triaxial apparatus, the pore pressure 

line was de-aired by flushing it with water and the reading of the pore pressure was 

set to zero. A porous stone which had been soaked overnight was slid over a layer of 

water on the base pedestal without trapping any air. Filter paper and the specimen 

were then placed on the porous stone. The second filter paper and porous stone were 

then placed on top of the specimen. After that, three filter strips of ¾ of the length of 

the sample were placed on the side of the specimen for side drainage. For the 

extension test, fishnet spiral filter strips were used in order to minimise the stiffness 

of the filter paper. After that, a rubber membrane was put onto the sample using a 

membrane stretcher. A vacuum was applied to the membrane stretcher to help put 

the membrane on. A de-aired top cap was then placed on top of the sample. Two O-

rings were used for each end to seal the membrane to the base pedestal and the top 

cap. The Hall effect transducers were installed at this stage. For triaxial extension, a 

vylastic sleeve and an extension top cap were used. The vylastic sleeve was smeared 

with a layer of silicone grease to prevent leakage. The triaxial cell was then 

assembled, and the load cell reading set to zero. The cell was filled with water with 

the air bleed open. When the water level reached the mid height of the sample, the 

cell and lower chamber pressure readings were set to zero. The load cell was lowered 

slowly until it just made contact with the top cap. When the extension top cap was 

used, a very small vacuum was applied to ensure contact between the top cap and the 

extension cap. When the cell was completely filled with water the air outlet valve 

was closed and the specimen was ready for testing. Initially, a cell pressure of 50kPa 

was applied with the drainage valve closed. This was to measure the initial effective 

stress of the sample. The pressure was held for a period of time until pore pressure 

stabilized, and the effective stress was noted. After that, the drainage valve was 

opened and back pressure saturation was performed by applying back pressure and 

cell pressure simultaneously and incrementally to keep the effective stress 

unchanged. The back pressure used was about 430kPa for all the tests and the B-
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value obtained was about 0.97 for both the tests. These procedures were the same for 

both the tests performed for this research. 

 

The testing rates used in the tests were δσ'a = δσ'r = 5kPa/hr for isotropic tests, δσr' 

= 3kPa/hr for a one-dimensional compression test, and an axial strain rate of 0.1%/hr 

was used for drained shearing test. Similar testing rates were used by a number of 

researchers performing triaxial tests on kaolin (Al-Tabbaa, 1989; Atkinson, 1987; 

Stallebrass, 1990). These testing rates were checked to see that excess pore pressures 

were negligible, using the method proposed by Menzies (1988). In this method, the 

pore pressure difference between the top and bottom ends of the test specimen i.e. 

the excess pore pressure is restricted to a fixed value. According to Menzies (1988), 

an excess pore pressure of 5% of the total axial stress may be permissible. Figure 5.4 

shows a schematic diagram of the triaxial test system applying a constant back 

pressure ub to the top end, and measuring the pore pressure u at the base of the 

specimen. Drainage is allowed only at the top of the specimen. During all the tests, 

the excess pore pressure measured using this method was about 5kPa. 

 

ub (back pressure)

 
ub 

 

 

top 
cap
 

test 
specimen

u 

base 
pedastal 

δu 
u (pore pressure) 

 

Figure 5.4. Schematic diagram showing the excess pore water pressure measured 

during a drained test (Menzies, 1988). 
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5.2.5 Analysis of Data 

 

The test results were interpreted in terms of the deviatoric stress q = (σ'a − σ'r) and 

the effective mean normal stress p' =(σ'a+2σ'r)/3, where σ'a and σ'r are the axial and 

radial effective stresses respectively. The corresponding strains were shear strain εq = 

2(εa−εr)/3 and volumetric strain εp = εa + 2εr, where εa and εr are the axial and radial 

strains respectively. Following Stallebrass (1990), all the strains used were true 

strains calculated from the engineering strains as these strains eliminate errors when 

strains become large and are more appropriate for comparison with incremental 

constitutive soil models. The axial strain is defined as: 

 

(d ln 1ol

a l

l
l

)oε ε= = − −∫     (5.1) 

 

where compressive strain is positive, lo is the initial height l is the current height, and 

εo is the engineering strain: 

 

o
o

l
l
δε =      (5.2) 

 
 
5.3 DETERMINATION OF MODEL PARAMETERS 
 

In this section, the results which were used for determination of parameters are 

presented. There are ten parameters required to define the new model; five of which 

are Modified Cam clay parameters, plus the parameters to define the size of the 

kinematic surfaces, T and S, the parameter ψ, and the new parameters k, and Fe. The 

method described by Stallebrass (1997) was used to obtain the required parameters 

and this has been described briefly in Section 3.2.3. For this purpose, the bulk 

stiffness K' = δp'/δεp was calculated by fitting a straight line to data points on the 

graph of p' versus εp over a stress change of approximately 15kPa (Stallebrass, 

1990). The new parameter k was obtained from a one-dimensional normal 

compression test and the parameters ψ and Fe were determined by fitting the cyclic 

loading test results. 
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5.3.1 Model Parameters 

 

(i) Modified Cam clay model parameters 

 

Figures 5.5 and 5.6 shows the isotropic normal compression and swelling lines in v – 

ln p' space and ln v – ln p' space respectively for a test performed on a specimen of 

Speswhite kaolin. The slopes of the normal compression line in v – ln p' space and ln 

v – ln p' space are denoted by -λ and -λ* respectively. The values for λ and λ* were 

found to be 0.19 and 0.073 respectively, and the isotropic line is fixed at the point p' 

= 400kPa and v = 2.071.  

 

Following Stallebrass (1990), by plotting K'/p' against p'/p'm (p'm is the maximum 

mean effective pressure to which the soil has been loaded) for isotropic swelling 

from a normally consolidated state, the value of κ* can be estimated as the initial 

value of p'/K'. The value of κ* is not very reliable because measuring stiffness at 

very small strains is difficult. Figure 5.7 shows the result for K'/p' versus p'/p'm. The 

parameter κ* was determined from the initial part of the curve with p'/p'm = 1, and 

was found to be 0.003. For a linear isotropic normal compression line in v – ln p' 

space, the value of v at 1kPa, denoted by N, would be 3.209. This gives the critical 

state void ratio ecs, at p' = 1kPa a value of ecs = 2.056 (ecs can be calculated from 

ln(1+ecs)= ln N – (λ*–κ*) ln 2). 
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Figure 5.5. Isotropic normal compression line and swelling line in v – ln p' space. 
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Figure 5.6. Isotropic normal compression line and swelling line in ln v – ln p' space. 
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Figure 5.7. Result showing K'/p' versus p'/p'm during isotropic unloading. 

 

The critical state dissipation constant, M, was obtained from a strain-controlled 

drained shearing test at 0.1%/hr with constant cell pressure. A critical state is said to 

have been reached when the soil undergoes large deviatoric strains at constant stress 

ratio, and at constant volume. The results for stress ratio versus shear strain, and 

volumetric strain versus shear strain are presented in Figures 5.8 and 5.9 

respectively. A clearly defined critical state has been reached at a stress ratio M = 

0.86 after a deviatoric strain εq ≈ 18%. This value of M corresponds to a friction 

angle φ' = 22°.  
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The elastic shear modulus was estimated from the relationship proposed by Viggiani 

and Atkinson (1995) – see Equation 3.7. The coefficients A, m, and n can be 

obtained from Figure 5.10 produced by Viggiani and Atkinson (1995) if the 

plasticity index is known. These charts were derived from test data for different soil 

types with different plasticity indices. The coefficients A, m, and n obtained by 

Viggiani and Atkinson (1995) for Speswhite kaolin clay were 1964, 0.2, and 0.65. 

However, the plasticity index of their soil was 24%, which is smaller than the value 

obtained in this present study (PI = 32%). From Figure 5.10, for soil with PI = 32% 

the coefficients A, m, and n are approximately 1,000, 0.8, and 0.24 respectively. 

Figure 5.11 shows the effect of these parameters on the prediction of permanent 

settlement in a pavement problem. The resilient deformations predicted using the 

coefficients obtained by Viaggiani & Atkinson (1995) and from Figure 5.10 with PI 

= 32% were 0.26mm and 0.25mm respectively. In addition, the results in Figure 5.11 

show that the values of these parameters have no significant influence on the 

predicted permanent deformations. Hence, the coefficients used by Stallebrass 

(1997) will be used since they have been well established by bender element tests.  
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Figure 5.8. Deviatoric stress-strain curve for a conventional drained triaxial test. 
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Figure 5.9. Volumetric strain during conventional drained shearing. 

 

 

 

 
Figure 5.10. Variation of coefficients for Ge with plasticity index (Viggiani and 

Atkinson, 1995). 
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Figure 5.11. Effect of parameters A, m, and n on the predicted permanent settlement 

of a three-layer pavement. 

 

 

(ii) T and S 

 

The parameters T and S that determine the size of the history and the yield surfaces 

were determined by isotropic unloading and reloading as described by Stallebrass 

(1997), see Section 3.2.3. The stress path followed in this test is shown in Figure 3.6 

with p' = p'm = 510kPa (point O), followed by swelling back to p' = 250kPa (point 

B). Figures 5.12 presents the results of the bulk stiffness versus change in stress for 

stress paths with angles of stress rotation, ϕ = 0° and ϕ = 180°. To determine the 

parameter T, the stress change, ∆p' = 2Tp'o at which the two stiffness curves meet, is 

obtained from Figure 5.12. From the data presented in this figure, there is not a well-

defined point where the two stiffness curves meet. Inspection of Figure 5.12 shows 

that the stiffness curves merge at approximately ∆p' = 140kPa, which gives T a value 

of approximately 0.27. The very small strain stiffness, which is needed to determine 

the size of the elastic region, cannot easily be measured using a triaxial apparatus, as 

the very small strain stiffness usually occurs at strain levels below 0.001% 

(Atkinson, 2000). The stiffness at this strain level is usually measured using bender 

elements or a resonant column; unfortunately these devices were not available for 

this research. So based on this study and that of Stallebrass (1990), values of T = 

0.25 and S = 0.08 might be appropriate. It will be shown that these values are 

appropriate for modelling behaviour under cyclic loading. 
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Figure 5.12. Curves showing the variation in bulk stiffness with ∆p' for stress 

rotations ϕ = 0° and ϕ = 180°. 

 

(iii) k 

 

The new parameter, k, which determines the shape of the plastic potential and hence 

the value of K0,nc, can be obtained from a one-dimensional normal compression test. 

Figure 5.13 shows the results of K0,nc versus εa during a one-dimensional loading 

test. The value of K0,nc  reached a constant value of 0.72 (η0,nc = 0.344) at axial strain 

of approximately 14%. Al-Tabbaa (1987) obtained a K0,nc  value of 0.69 for her test 

on kaolin. By neglecting elastic strains, the parameter k can be estimated, given the 

friction angle φ' and the value of K0,nc. The value of k corresponding to φ' = 22° (M = 

0.86) and K0,nc = 0.72 (η0,nc = 0.344) is 1.2, according to equation 4.38 (i.e. ignoring 

elastic strains) or Figure 4.7.  
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Figure 5.13. Experimental data showing K0 values versus axial strain, εa. 

 134  



All the model parameters can be determined directly, except ψ and Fe which can 

only be determined by trial and error (i.e. parametric studies). However, the values 

of T, S, and κ*, cannot be measured very accurately, as discussed. Consequently, 

parametric studies have been performed using cyclic loading data to determine the 

parameters ψ, and Fe, and better estimates of the parameters T, S, and κ*, suitable for 

modelling cyclic loading. This is described in the next section. 

 

 

5.3.2 Parametric Study 

 

The purpose of this study was to determine the parameters ψ and Fe that best fit 

experimental data and to make better estimates of the parameters T, S, and κ* for the 

purpose of modelling behaviour under cyclic loading. The effect of the parameters ψ 

and Fe will first be investigated (these can only be determined by trial and error): 

before continuing to investigate the effects of other parameters, sensible values of 

these parameters are required. This is followed by an investigation of the influence 

of parameters T, S, and κ*. The rest of the parameters were unchanged during these 

simulations. The values were M = 0.86, λ* = 0.073, k = 1.2, and Ge varied according 

to equation 3.7 with A = 1964, m = 0.2, and n = 0.65. 

 

For this parametric study, the stress-strain behaviour of a conventional drained cyclic 

test on Speswhite kaolin was simulated and compared with the experimental data. 

The recent stress histories of the sample were simulated in the finite element 

modelling. The drained cyclic test was performed using the same sample that had 

been used for the determination of the model parameters T and S. After the isotropic 

stress reversal (ϕ = 180°) for the determination of the stiffness curve, the sample was 

isotropically compressed to p' = 545kPa and a cyclic stress ratio was applied at a 

constant cell pressure between η = 0 and η = 0.2. Figure 5.14 presents the stress-

strain curves for the test. 
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(b) 

Figure 5.14. Experimental data from drained cyclic triaxial test on Speswhite kaolin 

(a) q/p' versus εq, and (b) q/p' versus εp. 

 

(i) ψ  

 

For these simulations, the parameters were set to κ* = 0.003, Fe = 1, T = 0.25, S = 

0.08. The value of ψ was varied from 1.0 to 2.5. The model predictions are shown in 

Figure 5.15. The rate of decay of stiffness is influenced by parameter ψ; increasing 

the value of ψ would increase the rate of decay of stiffness and hence give larger 

plastic strains. The experimental data shows that volumetric strain increases on 

unloading, and this feature is captured by the model. Larger volumetric strains are 

predicted with increasing values of ψ. 
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(b) 

Figure 5.15. Effect of ψ on the stress-strain behaviour (a) q/p' versus εq, and (b) q/p' 

versus εp. 

 

(ii) Fe 

 

By comparing the results presented in Figures 5.14 and 5.15, the value ψ =1.5 was 

chosen to investigate the effect of the parameter Fe (ψ = 2 could have been chosen, 

but this gives too much shear strain on first loading). The rest of the parameters are 

the same as in the above parametric study of parameter ψ. The parameter Fe was 

varied from 1 to 4 and the effect of this parameter on the stress-strain curves is 

illustrated in Figure 5.16. As can be seen from this figure, the volumetric strain is 

 137  



relatively insensitive to the variation of the parameter Fe. Increasing the value of Fe 

increases the stiffness on unloading and hence smaller strains are recovered on 

unloading. The predicted total shear strains are larger with a larger value of Fe. 
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(b) 

Figure 5.16. Effect of Fe on the stress-strain behaviour (a) q/p' versus εq, and (b) q/p' 

versus εp. 

 

(iii) κ* 

 

The influence of κ* on the stress-strain curves is shown in Figure 5.17. The value of 

κ* was varied from 0.003 to 0.007 and by comparing Figures 5.14 and 5.16, the 

value Fe = 3 was chosen in this parametric study. Increasing the value of κ* leads to 
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the accumulation of smaller plastic strains. A value of κ* = 0.003 was found to fit the 

data quite well. 
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(b) 

Figure 5.17. Effect of κ* on the stress-strain behaviour (a) q/p' versus εq, and (b) q/p' 

versus εp. 

 

(iv) TS 

 

This section investigates the effect of the size of the elastic region on the stress-strain 

behaviour. The size of the elastic region was varied from TS = 0.01 to TS = 0.03 with 

the size of the history surface (i.e. T) unchanged. The parameters were set to κ* = 

0.003, Fe = 3, ψ = 1.5, and T = 0.25. The results are shown in Figure 5.18. It can be 
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seen from the results that the larger the elastic region the greater the total plastic 

strain predicted. Stallebrass (1990) found that in her parametric study, the rate of 

decay of stiffness would be faster for a larger elastic region.  
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(b) 

Figure 5.18. Effect of TS on the stress-strain behaviour. 

 

(v) T 

 

The effect of parameter T was investigated by keeping the size of the elastic region 

constant, TS = 0.02, and T was varied between 0.2 and 0.3. The results are shown in 

Figure 5.19. It can be seen from the figure that initially, when the stress state is 

inside the history surface, the predicted strain decrement on unloading is larger for a 
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smaller history surface as stiffness decays more quickly. The total strain accumulated 

increases with decreasing size of the history surface. 
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(b) 

Figure 5.19. Effect of T on the stress-strain behaviour (a) q/p' versus εq, and (b) q/p' 

versus εp. 

 

For the range of values used in this parametric study for parameters κ*, T, and S, it 

was found that κ* and the size of the yield surface (for a given T) have relatively 

little influence on the stress-strain behaviour. For a given size of the yield surface TS, 

the size of the history surface T has a much greater effect, and the parameter ψ also 

has a considerable effect on the stress-strain behaviour. Generally the model is able 

to fit the experimental data well, but the model slightly over-predicts volumetric 
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strain. The model can reproduce some of the features of soil under repeated loading 

as observed in the experiments, such as the increase in volumetric strain during 

unloading, and the gradual decrease of the strain increments with increasing number 

of cycles. 

 

From the comparison between the experimental data and the model predictions 

shown in Figures 5.14 – 5.19, the model parameters that best represent Speswhite 

kaolin were obtained. These were: M = 0.86, λ* = 0.073, κ* = 0.003, ecs = 2.056, A = 

1964, m = 0.2, n = 0.65, T = 0.25, S = 0.08, k = 1.2, ψ = 1.5, and Fe = 3. These 

parameters are used in all subsequent analyses presented in Chapters 5 and 6. The 

comparison between the model predictions using these parameters and the 

experimental data are presented in Figure 5.20. 
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(b) 

Figure 5.20. Comparison of model predictions and experimental data (a) q/p' versus 

εq, and (b) q/p' versus εp. 
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5.4 REPEATED LOADING RESULTS AND MODEL 

PREDICTIONS 
 

A cyclic triaxial test was performed on a sample with a one-dimensional history, 

similar to that experienced by pavement subgrades in a ‘cut’ condition (Brown, 

1996). The sample was initially one-dimensionally compressed to σ'v,max = 460kPa 

then unloaded to σ'v = 40kPa and recompressed to σ'v = 117kPa. It was then 

cyclically loaded between stress ratios of η = 0.24 and η = 0.61. The stress path for 

the one-dimensional loading, unloading and reloading is shown in Figure 5.21, and 

the variation of the values of K0 with OCR is shown in Figure 5.22. In Figure 5.23, 

Al-Tabbaa (1987) compared the variation of the values of K0 with OCR as obtained 

by various researchers, and her data for kaolin showed that the values of K0 vary 

drastically. The K0 values measured in this research are slightly lower than those 

shown in Figure 5.23. 
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Figure 5.21. Stress path for one-dimensional loading, unloading and reloading. 
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Figure 5.22. Variation of K0 with OCR. 
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Figure 5.23. Comparisons of K0 measured by various researchers (Al-Tabbaa, 1987) 

 

Various relations for the variation of K0 with OCR have already been described in 

Section 2.2.9. Figure 5.24 shows the comparison of the values of K0 predicted by 

these relations and the measured values. It was found that the data are best fitted by 

the expression proposed by Prǔska (1973) with a value of φ' = 22°; the other 

relations over-predicted the measured values of K0 considerably.  
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Figure 5.24. Variation of K0 with OCR on unloading predicted by various 

researchers compared with measured values. 
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The new model prediction of the variation the values of K0 with OCR on unloading 

and reloading, is shown in Figure 5.25. Using a value of k = 1.2, the model predicts a 

value of K0,nc of 0.714 (η0,nc = 0.353) compared to 0.72 measured from the triaxial 

test and dεp
p/dεq

p = 1.45. It can be seen that the model over-predicts K0 on both 

unloading and reloading. This is because of the value of Fe and ψ chosen, which 

make the stiffness on unloading higher, giving a higher value of K0. However, it 

should be noted that the values of K0 measured are relatively lower compared to the 

values of K0 obtained by other researchers. For pavement problems, it is more 

important to be able to predict the behaviour of a clay subgrade under cyclic loading 

than to predict the correct value of K0; therefore the model parameters have been 

determined by fitting a set of cyclic loading data. If K0 is of interest, alternative 

model parameters can be chosen.  
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Figure 5.25. Comparison of model prediction and experimental data. 

 

Figures 5.26 and 5.27 show the cyclic test results and model predictions respectively. 

It should be noted that for the triaxial simulation, the stress history is approximately 

the same as that for the sample in the triaxial test, so that the yield surface and 

history surface start off at the correct positions before cyclic loading. The predicted 

shear strain after ten cycles is close to the measured value. However the model 

predicts a strong ratcheting behaviour which is not observed experimentally. This 

ratcheting problem will cause the rut depth to be over-estimated under large numbers 

of cycles in a pavement analysis; this is shown later in Chapter 6. The shear strain 

increments measured in the apparatus are decreasing with increasing number of 
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cycles whilst the shear strain increment after the first cycle predicted by the model 

remains constant. It can be seen that from Figure 5.26, the volumetric strain was 

compressive for the first cycle and became dilative. The model predicted the same 

trend of behaviour but the actual predicted values of volumetric strain were more 

dilative. 
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Figure 5.26. Cyclic triaxial test results (a) q/p' versus εq and (b) q/p' versus εp. 
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Figure 5.27. Model predictions (a) q/p' versus εq and (b) q/p' versus εp. 

 

 

5.5 SUMMARY 
 

Triaxial tests have been performed to determine the model parameters and provide 

data for validation of the model to predict the behaviour of soil under cyclic loading. 

Cyclic triaxial tests have been conducted on soil elements with a stress history 

similar to that experienced by the subgrade in a typical pavement. A parametric 

study was performed to determine the best set of parameters for kaolin, suitable for 

modelling cyclic loading of an isotropically normally consolidated soil. It was found 
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that the values of K0 were over-predicted by the model; however, if the values of K0 

are of interest a different set of parameters can be established. 

 

The new model was used to predict the behaviour under cyclic loading for a sample 

with a one-dimensional stress history, similar to the stress history experienced by 

pavement subgrades in a ‘cut’ condition. It can be seen that the real clay stress-strain 

behaviour tends to stabilise after a few cycles giving a closed hysteresis loop. 

However, in the model, shear strain continues to accumulate with increasing 

numbers of cycles. The strong ratcheting feature of the model may over-predict the 

shear strain after a large number of cycles. Therefore the rut depth of a completed 

pavement may be overestimated by the model for a large number of cycles. The 

strong ratcheting feature of the model is a function of the hardening modulus and is 

also present because the new model is a volumetric hardening model. This means 

that the volumetric strain will stabilise if p'o stabilises, and the shear strain increment 

will be ultimately the same for each cycle. Furthermore, the assumptions of constant 

T and S in the model are unnecessary. The size of the elastic region could be made to 

be a function of number of cycles so that the soil will behave elastically after a large 

number of cycles. However, this will require further modification if the soil is then 

subjected to a different stress path. 

 

Cyclic loading soil behaviour is very different from that of monotonic loading. The 

aim of this chapter has been to try to develop a model with parameters suitable for 

cyclic loading. Although the ratcheting problem still exists, it is hoped that the new 

model, with values of parameters as presented in this chapter, will be able to 

eliminate the problems of negative shear strain and decreasing rut depth with 

increasing number of cycles, experienced in Chapter 4. This is examined in the next 

chapter. It must be emphasised, however, that the model may still not be suitable for 

very large numbers of cycles because of the ratcheting phenomenon: this may 

require a completely new formulation of the model. In addition, it must be 

recognised that for monotonic tests, alternative parameters will need to be 

established. 
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6 FULL-SCALE PAVEMENT ANALYSIS 
 

 

6.1 INTRODUCTION 
 

All the required parameters for the new model on Speswhite kaolin have been 

determined in the previous chapter. In this chapter, the model is applied to the 

repeated loading of a thinly surfaced pavement to determine the resilient and 

permanent strains response of a pavement.  

 

Multi-layered elastic analysis is commonly used in pavement engineering. This 

analysis requires the determination of the stiffness of each layer. In conventional 

pavement engineering the stiffness of the subgrade is normally estimated from an 

empirical relationship: usually one which relates the stiffness to CBR. However, it is 

widely known that the stiffness is not a simple function of CBR. Stiffness is a 

function of stress level and stress history. One of the design criteria in thinly-

surfaced pavements is to limit the resilient vertical compressive strain at the surface 

of the subgrade during the construction stage. The new model and the original 3-

SKH model are used to estimate the stiffness of the subgrade for input to a multi-

layered elastic analysis, and the required thickness of granular layer is then 

determined which gives an acceptable vertical strain at the top of the subgrade 

during the construction stage. The required thickness of granular material predicted 

by each model is then examined to see whether the values are realistic. 

 

Another criterion used to design a pavement during the construction stage is to limit 

the rut depth of the unsurfaced pavement to a maximum of 40mm after a maximum 

of 1,000 passes of construction traffic, depending on the length of road under 

construction. In this chapter, the rut depth of a two-layer pavement (granular material 

and subgrade) is analysed for both the 3-SKH model and the new model and the 

required thickness of granular material is determined. 

 

Following these studies, the effect of the granular layer thickness on the formation of 

the rut depth is investigated. The assumptions made in the pavement analyses are: 
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1. Permanent deformation in thinly-surfaced pavements is mainly due to the 

deformation of the subgrade. 

 

2. In the long-term, the asphalt and granular layers will deform follow the 

settlement trough of the subgrade. 

 

3. In the long-term, the drained condition is appropriate. At the surface of the 

subgrade where a permeable granular material is placed on top, the drainage 

path is very small such that the subgrade condition under traffic loading may 

be assumed to be a drained condition. 

 

 

6.2 PAVEMENT FOUNDATION DESIGN 
 

In the U.K., the design of a pavement occurs in two stages. The first stage involves 

the design of the pavement foundation which includes the determination of an 

appropriate thickness of granular material to be placed above the subgrade. This is 

the most critical design case as the partially completed pavement has to be able to 

carry heavy vehicles for as many as 1,000 wheel passes depending on the length of 

road under construction (Hardman et al. 1976). There are two design criteria during 

this stage (Dawson & Gomes Correia, 1996): 

 

1. The resilient deformation should be limited to ensure that the asphalt layer 

can be adequately compacted. Excess resilient deformation results from 

inadequate stiffness of the pavement foundation. 

 

2. No excessive surface rutting should develop for a given traffic level. The 

permissible rut depth is commonly set at 40mm if the sub-base is compacted 

efficiently (Powell et al., 1984). 

 

 

The second design stage is for the completed pavement subjected to a larger number 

of load passes. The design requirements are prevention of fatigue cracking and 
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rutting. The latter is a key requirement for design, particularly for unsurfaced and 

thinly surfaced pavements where the stress levels are usually higher than in thicker 

pavements (Brown, 1996; Dawson, 1997). 

 

 

6.2.1 Resilient Deformation During Construction Stage 

 

As already described above, a pavement foundation is required to resist excessive 

resilient deformation to ensure satisfactory compaction of the asphalt layer. The 

resilient strain is normally calculated from a multi-layered analysis, such as BISAR, 

provided that the stiffness and Poisson’s ratio of each layer are known. Due to the 

non-linearity and inelasticity of pavement foundation materials, it is difficult to 

estimate the stiffness of the pavement foundation. It has been shown in Chapter 3 

that the 3-SKH model can be used to estimate the stiffness of the subgrade which is 

required for the input to an elastic analysis program such as BISAR. In this section, 

the resilient modulus of the subgrade is estimated from a finite element analysis of a 

two-layer pavement (i.e. during the construction stage) with the new model and the 

original 3-SKH model for input into the multi-layered elastic analysis program 

BISAR, to determine the required thickness of the granular layer. In the current 

analytical pavement foundation design method, the required granular layer thickness 

is determined such that the maximum compressive strain in the subgrade is within a 

certain limit depending on the cumulative traffic (Powell et al., 1984), and/or so that 

excessive rutting does not develop during the construction process. The resilient 

modulus, Mr, which is required for input to a linear-elastic calculation is normally 

estimated from empirical relationships such as equations 2.56 and 2.57, and the latter 

is currently being adopted in the Design Manual for Roads and Bridges: Volume 7 

(Highway Agency, 1994) for the design of pavement foundations. However, Brown 

et al. (1987) showed that for three materials, the relationship between resilient 

modulus and CBR was not consistent with either equation 2.56 or 2.57 – see Figure 

2.19. Hence, alternative methods of estimating stiffness are clearly required. Figure 

6.1 shows the permissible compressive strain versus number of cycles during the 

construction stage derived from the performance of experimental roads (Powell et 

al., 1984). 
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Figure 6.1. Permissible compressive strain at subgrade (Powell et al., 1984) 

 

The method used to estimate the stiffness of the subgrade is exactly the same as that 

used in Section 3.5.1. Figure 6.2 shows the two-layer pavement and the locations 

where the stiffness have been estimated. A pressure of 500kPa with radius of 0.2m, 

equivalent to a 62kN wheel load (due to construction traffic), was applied to the 

surface of the granular material (following Cheung, 1994). The granular layer was 

assumed to be isotropic and linear-elastic, and the subgrade was first modelled with 

the new model proposed in Chapter 4. Values of E' = 100MPa and µ' = 0.3 were 

assumed for the granular material. The same stress history of the subgrade as 

described in Section 3.5.1 was modelled. The change in effective vertical stress at 

different depths due to the applied pressure was computed and this increase in 

effective vertical stress due to the first application of wheel load was then applied as 

a stress increment, to a triaxial sample at constant cell pressure in CRISP with a 

similar initial stress history, for 50 cycles. The resilient (i.e. unloading) Young’s 

modulus E' for the 50th cycle were then computed for the input to the elastic analysis. 

This was repeated for different granular layer thicknesses. The vertical strain at the 

top of the subgrade was then calculated using BISAR. The Poisson’s ratio used was 

0.3 as in Chapter 3. The stiffnesses estimated by the new model, for each sub-layer 

for different thicknesses of granular layer, are summarized in Table 6.1. The 

predicted stiffness for each layer is seen to increase with depth, and with thickness of 

granular layer indicating the ability of the model to take into account of the effect of 

stress level on stiffness. The stiffness of the lowest layer remained constant, since the 

stress change is very small at this depth. The estimated stiffness is slightly on the 

high side due to the introduction of the Fe term in the hardening modulus. For a CBR 
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of 10% (i.e. stiff subgrade) the expected value of modulus would be roughly 

100MPa and the predicted stiffnesses are at least of the same order as those quoted 

by Dawson & Plaistow (1993) for stiff to firm subgrade. Therefore, the stiffnesses 

predicted by the new model are not unrealistic. 
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level as 0.0026. Hence the results presented in Figure 6.3 predict that a granular 

layer 280mm thick is required to protect the subgrade. 

 

Granular layer 

thickness, lg (mm) 
150 200 300 350 400 500 600 

E1 (MPa) 51 54 110 111 118 120 122 

E2 (MPa) 117 124 125 125 126 126 126 

E3 (MPa) 157 157 157 157 157 157 157 

 

Table 6.1. Stiffness of subgrade predicted by the new model. 
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Figure 6.3. Computed vertical strain at subgrade using elastic analysis versus 

granular layer thickness. 

 

Exactly the same analyses were repeated using the 3-SKH model with model 

parameters shown in Table 3.1 to predict the stiffness of the subgrade. The predicted 

stiffnesses are summarized in Table 6.2. As can be seen from the results, the 

stiffnesses predicted by the 3-SKH model are much lower than those predicted by 

the new model. Figure 6.4 presents the vertical strain at the top of the subgrade 

computed using these stiffnesses, compared with the results derived from the new 

model shown in Figure 6.3. The thickness of granular material required to give an 

acceptable vertical strain predicted by the 3-SKH model is higher (≈ 450mm) than 

that predicted by the new model. According to the design chart proposed by Powell 

et al. (1984), even for a soft subgrade of CBR = 2 %, the required granular layer 
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thickness is only 400mm (see equation 6.1 in the next section). Therefore it is 

considered that the new model will give a more realistic thickness of granular layer 

even though the stiffness of the subgrade may be an overestimate. 

 

Granular layer 

thickness, lg (mm) 
150 200 300 350 400 500 600 

E1 (MPa) 15 16 19 25 34 45 52 

E2 (MPa) 58 62 66 68 69 72 83 

E3 (MPa) 126 126 126 126 126 126 126 

 

Table 6.2. Stiffness of subgrade predicted by the 3-SKH model. 
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Figure 6.4. Computed vertical strain at subgrade using elastic analysis versus 

granular layer thickness. 

 

 

6.2.2 Rut Depth of Unpaved Roads Under Construction Traffic 

 

The design of the pavement foundation during the construction stage when the 

granular layer has been placed and is carrying construction traffic is the most critical 

design case for the foundation. The essential requirement for the pavement during 

the construction stage is not to develop excessive rutting. Therefore, it is essential to 

determine the amount of granular material required in order to protect the subgrade 

from rutting under construction traffic. The maximum rut depth that can be tolerated 
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is commonly set at 40mm (Powell et al., 1984). The number of load applications 

during the construction stage can be estimated from the length of road under 

construction (Hardman et al., 1976). For a 1km road, the expected construction 

traffic is 1,000 passes. Based on extensive pilot-scale trials in the U.K., Powell et al. 

(1984) proposed an empirical relationship for the determination of the amount of 

granular material required to limit the rut depth to 40mm for a given traffic level and 

subgrade CBR: 

 

( )0.63CBR
log 0.24

190
glN = −     (6.1) 

 

where N is the number of load passes during the construction stage, and lg is the 

thickness of granular material in mm. 

 

In this section, a two-layer pavement is analysed using CRISP to determine the 

thickness of granular material required to provide an acceptable rut depth. The 

granular material was modelled as an isotropic linear elastic material with E' = 

100MPa and µ' = 0.3 and the subgrade was modelled with the new model under 

drained conditions. The applied pressure at the surface of the granular material was 

500kPa with a radius of 0.2m. The stress distribution at the surface of the subgrade 

due to the first load application at the surface of the granular layer was first 

computed and the equivalent stress blocks were then applied to the surface of the 

subgrade (one-layer pavement) for 1,000 cycles. The reason for this has already been 

explained in Section 3.5.2. The finite element mesh of the one-layer pavement is 

shown in Figure 4.11. Figure 6.5 shows the predicted rut depth after 1,000 cycles for 

different granular layer thicknesses. It was found that a granular layer of thickness 

350mm would satisfy the required rut depth criterion set by Powell et al. (1984). 
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Figure 6.5. Predicted rut depth after 1,000 cycles of load application versus 

granular layer thickness. 

 

An attempt was made to analyse these two-layer pavement problems with the 3-SKH 

model but the negative shear strain problem as already described in Section 3.4.2 

made the results unrealistic. 

 

From the above results in Figures 6.3 and 6.5, the new model predicts that a granular 

layer of 350mm is required to satisfy the resilient deformation and rut depth criteria 

specified by Powell et al. (1984) during the construction stage for a construction road 

length of 1km. This lends credibility to the kinematic hardening method and its 

applicability to pavement problems. 

 

 

6.3 THREE-LAYER PAVEMENT ANALYSIS – EFFECT OF 

GRANULAR LAYER THICKNESS AND ASPHALT LAYER 

THICKNESS 
 

Having determined the minimum amount of granular material required to protect the 

subgrade during the construction stage, the effect of the granular layer thickness and 

the asphalt layer thickness on the development of permanent settlement in a 

completed pavement (three-layer pavement), is investigated. 
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A three-layer pavement with 50mm of asphalt on top of a layer of granular material 

was analysed. The top two layers were modelled as isotropic linear elastic materials 

with Young’s moduli and Poisson’s ratios specified in Section 3.5.2 The stress 

history of the subgrade was modelled as in a ‘cut’ condition as discussed in Section 

3.5.2. A wheel load of 600kPa and radius 0.15m was applied at the surface of the 

asphalt layer and the stress distribution due to this wheel load was calculated at the 

integration points near the top of the subgrade. This stress distribution was applied at 

the surface of the subgrade by equivalent stress blocks for 1,000 cycles and the 

permanent settlement at the surface of the subgrade plotted against the number of 

cycles in Figure 6.6 for different granular layer thicknesses. As can be seen from 

Figure 6.6, a thicker granular layer helps to reduce the permanent settlement. An 

increase of 100mm of granular material would reduce the permanent settlement by 

approximately 40% after 1,000 cycles. 

 

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200

Number of cycles, N

Pe
rm

an
en

t s
et

tle
m

en
t [

m
m

]

350mm

400mm

500mm

600mm

 
Figure 6.6. Predicted settlement of a three-layer pavement for different granular 

layer thicknesses. 

 

Figure 6.7 shows effect of granular layer thickness on the predicted rate of settlement 

for a three-layer pavement. As the granular layer thickness increases, the rate of 

settlement reduces. 
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Figure 6.7. Predicted rate of settlement of a three-layer pavement for different 

granular layer thicknesses. 

 

The effect of the asphalt thickness on permanent settlement was investigated by 

varying the asphalt thickness from 30mm to 100mm and a fixed amount of granular 

material of 350mm. Figure 6.8 shows the effect of asphalt thickness on the 

development of permanent settlement. Increasing the thickness of the asphalt layer 

has a similar effect as increasing the amount of granular material used. An increase 

in asphalt thickness of 50mm, which has a stiffness of 5GPa, has approximately the 

same effect as an increase of 150mm of granular material, which has a stiffness of 

100MPa, in terms of reducing the settlement after 1,000 cycles. 
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Figure 6.8. Predicted settlement of a three-layer pavement for different asphalt 

thicknesses. 
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The predicted rate of settlement versus number of cycles for different asphalt 

thicknesses is shown in Figure 6.9. An increase of asphalt thickness reduces the rate 

of settlement. This has a similar effect to increasing the granular layer thickness. 
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Figure 6.9. Predicted rate of settlement of a three-layer pavement for different 

asphalt thicknesses. 

 

A three-layer pavement problem with 100mm of asphalt on top of 350mm of 

granular material was analysed for 10,000 cycles. The permanent settlement versus 

number of cycles is presented in Figure 6.10. A 33mm rut after 10,000 cycles was 

predicted by the model, about 30% of which had developed during the first 1,000 

cycles. Figure 6.11 shows the predicted rate of settlement versus number of cycles. It 

can be seen that the rate is decreasing with increasing number of cycles. The 

predicted rut depth after 10,000 is still considered to be too large, due to the strong 

ratcheting feature of the model. However, the approach shows much promise in 

modelling the behaviour of pavements subjected to repeated loading: the model is 

clearly capable of applying many cycles of load and the rate of deformation 

decreases with increasing number of cycles. The rut depths predicted by the new 

model after 10,000 cycles are not unrealistic. 
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Figure 6.10. Predicted settlement of a three-layer pavement as a function of the 

number of cycles N. 
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Figure 6.11. Predicted rate of permanent settlement of a three-layer pavement as a 

function of the number of cycles N. 

 

 

6.4 SUMMARY 
 

The new model has been applied to the prediction of the resilient and permanent 

response of a pavement problem. A partially completed pavement (during the 

construction stage) and a completed pavement have been analysed. The required 

granular layer thickness in order to protect the subgrade has been determined by 

satisfying the permissible resilient subgrade strain and pavement rut depth criteria. 

The required amount of granular material predicted by the new model is more 
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realistic, compared to the 3-SKH model. In addition, the granular layer thickness 

predicted by the new model is considered to be conservative and hence the new 

model may serve as a design guide for pavement foundations. 

 

The effect of granular layer thickness and asphalt thickness on the development of 

the permanent settlement have been investigated using the new model. Increasing the 

granular layer thickness has a similar effect as increasing the asphalt thickness. An 

increase in the thickness of asphalt of 50mm has roughly the same effect as an 

increase of 150mm of granular material in terms of reducing the settlement after 

1,000 cycles. A three-layer pavement subjected to a large number of cycles (10,000 

cycles) was also analysed. The permanent settlement predicted by the new model is 

still considered to be too large, and is due to the ratcheting feature of the model. A 

more appropriate hardening modulus is needed in order to predict realistic 

settlements after a large number of cycles. However, the new model shows much 

promise in being able to capture many essential features of pavements subjected to 

repeated loading. 
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7 CONCLUSIONS AND SUGGESTIONS FOR FUTURE 

RESEARCH 
 

 

7.1  SUMMARY AND CONCLUSIONS 
 

The design of lightly trafficked roads has adopted design standards developed 

specifically for the design of heavily trafficked roads. This has resulted in 

inappropriate and uneconomical design specifications for this sector. The application 

of fundamental soil mechanics principles to the design of pavement foundations is 

needed and is particularly important if economies are to be introduced for lightly 

trafficked road design and maintenance. 

 

In the literature review, it has been shown that the current approaches of pavement 

analysis are based largely on empirical relations, whereas, various cyclic loading 

models for soil have been developed based on the Critical State Soil Mechanics 

concept. Little effort has previously been made to apply these models to the 

prediction of pavement response. 

 

The main aims of the research reported in this thesis were as follows: 

 

1. To evaluate the 3-SKH model in the prediction of the behaviour of clay under 

repeated loading. 

2. To study the behaviour of pavement subgrades under repeated loading using 

the kinematic hardening model. 

3. To modify the 3-SKH model to better predict the behaviour of soil under 

repeated loading. 

4. To apply the new constitutive model to the prediction of resilient and 

permanent deformation of pavement subgrades under repeated loading using 

the finite element method. 

 

The ability of the 3-SKH model to predict the behaviour of soil subjected to cyclic 

loading, has been studied. Comparison between the predictions of the model and 
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experimental results obtained by other researchers, has shown that the model is 

capable of predicting most of the aspects of soil behaviour under cyclic loading, such 

as accumulation of permanent strains and hysteresis. A procedure used to provide an 

estimate of the subgrade stiffness has been proposed using the 3-SKH model, and 

comparison of the resilient deformation predicted by a layered-elastic analysis using 

the estimated stiffness and the resilient deformation predicted by the 3-SKH model, 

shows good agreement. This implies that the proposed method can be used to 

estimate subgrade stiffness using the 3-SKH model for the input into a linear elastic 

analysis program such as BISAR. However, the 3-SKH model has some deficiencies 

in that it over-predicts shear strain, and predicts an accumulation of negative shear 

strain with increasing number of cycles under some stress conditions. This will give 

unrealistic predictions when applied to pavement analysis. A new model, which is a 

modified version of the 3-SKH model, has therefore been proposed. 

 

A new non-associated three-surface kinematic hardening model, which requires two 

extra parameters, has been developed by: 

 

1. Modifying the flow rule 

2. Making the critical state constant, M, a function of Lode angle in stress 

space  

3. Modifying the hardening modulus 

 

The new model has been implemented into the finite element code CRISP. 

 

Triaxial tests have been performed to determine the model parameters and to provide 

data for validation of the model. The parameters were determined by fitting cyclic 

loading data. The model predicts well the triaxial cyclic loading results but it shows 

a strong ratcheting feature. It was found that the new model correctly predicted the 

value of K0 for normally consolidated clay, but the prediction of the value of K0 on 

unloading and reloading was too high. It was considered that if the values of K0 are 

of interest, the model parameters can be determined by fitting a set of one-

dimensional loading, unloading and reloading data. In pavement analysis the value 

of K0 is relatively less important than the behaviour of the subgrade under cyclic 
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loading. Therefore, the parameters determined from cyclic loading data were used to 

analyse a pavement problem. 

 

The new model was applied to the prediction of both the resilient and permanent 

response of a pavement. Two loading conditions were considered: that due to the 

construction traffic (two-layer pavement) and that resulting from traffic once the 

pavement is complete and open to traffic (three-layer pavement). The stiffness of a 

pavement subgrade during the construction stage was estimated using the new model 

for input into the multi-layered elastic analysis program (BISAR). The resilient 

vertical strain at the top of the subgrade was then computed and related to the 

maximum allowable strain proposed by Powell et al. (1984) to determine the 

required granular layer thickness. A realistic thickness (280mm) was obtained using 

the new model, whereas the thickness obtained using the 3-SKH model was too high 

(450mm). The rut depth criterion suggested by Powell et al. (1984) was also used to 

determine the required granular layer thickness. The rut depth of a partially 

completed pavement during the construction stage was predicted by the new model 

as a function of granular layer thickness, and the required granular layer thickness to 

give a permissible rut depth of 40mm after 1,000 cycles, was determined. A realistic 

value of 350mm was obtained using the new model. An attempt was made to predict 

the rut depth for the two-layer pavement using the 3-SKH model prediction, but the 

3-SKH model predicted an accumulation of negative shear strain for this stress 

condition, so it was inappropriate. The effect of the thickness of asphalt and granular 

material on the development of the rut depth was also studied using the new model. 

It was found that an increase in asphalt thickness of 50mm has approximately the 

same effect as an increase of 150mm of granular material in terms of reducing the 

settlement after 1,000 cycles. A three-layer pavement subjected to 10,000 cycles was 

analysed using the new model. The results showed that the rut depth is still 

increasing after 10,000 cycles; this is due to the strong ratcheting feature of the 

model. However, the rate of increase of rut depth decreases with increasing number 

of cycles, and the model shows much promise in being able to model the behaviour 

of pavements subjected to many cycles of load. 

 

The new model is therefore able to predict realistic deformation in a pavement 

analysis, which the 3-SKH model is incapable of predicting. The proposed model 
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may therefore be considered to be an improvement on the 3-SKH model, in terms of 

the prediction of pavement response to repeated loading. 

 

To summarise, the conclusions that can be drawn from this research are: 

 

� Critical State Soil Mechanics has not been applied in the past to the 

prediction of pavement response. 

 

� Current approaches to pavement foundations design are mainly based on 

empirical models. 

 

� It is necessary to apply the Critical Soil Mechanics concept to the design of 

pavement foundations, especially thinly surfaced pavement foundations 

where stresses are higher in the foundation layers and the non-linear and 

inelastic properties of these layers become crucial. 

 

� A more theoretically based constitutive model for pavement subgrades is 

needed if more appropriate designs for thinly surfaced pavements are 

required. 

 

� It was found that the 3-SKH model is suitable for predicting the soil 

behaviour under cyclic loading. However, this model over-predicts the value 

of K0,nc and shear strain on loading. In addition, the model also predicts an 

accumulation of negative shear strain with increasing number of cycles under 

some stress conditions. 

 

� Due to the over-prediction of shear strain by the 3-SKH model, the predicted 

rut depth of a pavement is too large. 

 

� The 3-SKH model can be used to estimate the stiffness of the subgrade for 

use in a layered elastic analysis. 

 

� A new non-associated three-surface kinematic hardening model, which 

requires two extra parameters, has been developed by modifying the flow 
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rule, making the critical state constant, M, a function of Lode angle in stress 

space, and modifying the hardening modulus. The new model has been 

implemented into a finite element code − CRISP. 

 

� The new non-associated 3-SKH model is able to predict the value of K0,nc 

correctly and is able to reduce the amount of shear strain predicted. 

 

� Parameters for the new model have been determined by fitting cyclic loading 

data. 

 

� The new model over-predicts the values of K0 on unloading and reloading if 

these parameters are used. 

 

� The new model exhibits a strong ratcheting feature (as does the original 3-

SKH model). 

 

� Despite the strong ratcheting feature of the model, the new model gives 

realistic predictions of pavement response. 

 

� Based on the maximum allowable strain criterion at the top of the subgrade 

during the construction stage, the new model predicts that a thickness of 

280mm of granular material is required. This is realistic. However, the 3-

SKH model gives a thickness of 450mm, which is unrealistically high. 

 

� Based on the maximum permissible rut depth criterion during the 

construction stage, the new model predicts that a thickness of 350mm of 

granular material is required. The original 3-SKH model could not be used as 

it gave a rut depth which decreased with increasing numbers of cycles. 

 

� From the study of the effect of granular layer thickness on the development 

of rut depth, it was found that an increase in the thickness of granular of 

100mm material would reduce the rut depth by approximately 40% after 

1,000 cycles. 
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� It was found that an increase in the asphalt thickness of 50mm, which has a 

stiffness of 5GPa has, approximately the same effect as an increase in the 

thickness of granular material of 150mm, which has a stiffness of 100MPa. 

 

� Although only pavements with one-dimensional stress history have been 

considered, based on these analyses, the new model is considered to be an 

improvement on the 3-SKH model in terms of the prediction of pavement 

response under repeated loading. 

 

 

7.2 RECOMMENDATIONS FOR FUTURE WORK 
 

One of the assumptions of the model is the fixed ratio of the size of the yield surface 

to that of the history surface i.e. constant T and S. This is certainly not necessary; in 

order to improve the model prediction, the parameters T or S, or both, can be made to 

be functions of shear strain or number of cycles. This may eliminate the problem of 

the constant increment of shear strain predicted by the model as opposed to that 

observed experimentally in Chapter 5. However, some thought must be given to how 

T and S would then be modified if the stress path changes after a large number of 

cycles. 

 

For the pavement analysis performed in this research, the additional permanent 

deformation in the granular layer was neglected; Brown (1996) discussed pavement 

experiments conducted by Little (1993) in which there were cases where all the 

permanent deformation developed in the subgrade. However, in other cases there 

was also evidence that the granular layer contributed to the surface rut. Therefore the 

pavement model could be modified further to allow the granular material to exhibit 

plasticity. A kinematic hardening model based on the model presented here may be a 

useful starting point. 

 

The rate of change of M with Lode angle θ has been assumed to be unimportant: i.e. 

∂M/∂θ = 0. This requires further investigation for problems involving cyclic loading. 
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However, it is anticipated that it will only be important for the plastic potential under 

plane strain conditions. 

 

The model has so far been validated with experimental data on kaolin. More 

laboratory tests on a variety of soils are required in order to provide further data for 

validation of the model. 

 

Before the new model can be incorporated into any pavement foundation design 

guide, extensive full-scale pavement tests have to be performed to validate the model 

predictions. In addition, the model exhibits too much ratcheting, so the predicted rut 

depth after a large number of cycles is too large. Further modification of the 

hardening modulus will be required to eliminate this problem. This will require an 

extensive review of bounding surface plasticity and kinematic hardening, in order to 

attempt to formulate a suitable model. 
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APPENDIX 
 

 

Derivations of the terms required to form the elasto-plastic matrix, [Dep] for the new 

model. 
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All the terms required for the elasto-plastic matrix have been specified. 
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