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Abstract

In this thesis we study four problems with potential biological and industrial

applications which rely on fluid mixing and transport.

The problem of simultaneous ultrafiltration, diffusion and osmosis across a mem-
brane separating two fluids is studied, numerically and asymptotically, as a model
for an artificial kidney dialyser. Couplings between the different transport mecha-
nisms prove significant in determining overall transport rates. Our model appears
to be the first to treat the three transport mechanisms in a spatially structured
framework, and shows that previous, spatially averaged models can overestimate
transport rates. Our results can be used to optimise dialyser geometry and to

profile dialysis sessions.

The remainder of this thesis concerns some fundamentals of fluid mixing and
mixer design. Techniques for assessing the quality of fluid mixing are reviewed,
and applied to a two-dimensional laminar chaotic flow. We find no outright op-
timum mixing method across the range of measures, suggesting that ‘sieving’ a
collection of mixing methods according to increasingly complicated mixing mea-

sures may fail to identify a global optimum.

‘“Topological chaos’ appears to allow good mixing stretch rate to be built-in to
batch mixer design, avoiding the need to tune the mixer parameters, provided
a correct flow topology is created. We show that the theoretical stretch rate
predictions are achieved quite tightly, in practice in a significant fraction of the

flow domain; we investigate the practicalities of topologically chaotic mixers.

Finally, we discuss whether topological chaos may also apply to three-dimensional
static mixer design, in a braided pipe mixer, in which pipe flow is mixed around
carefully designed twisted inner pipes. We expect such a device to mix well if
the inner pipes have appropriate topology. However, we demonstrate how three-

dimensional flow features can undermine mixing performance.



Chapter 1

Introduction

Fluid mixing and transport are important in many biological and industrial sce-
narios. Biological examples include artificial lung ventilation of premature in-
fants [117] and artificial kidney dialysis for kidney failure victims [135]. The
Chemical Engineering industry alone, where mixing is used to blend products or
facilitate chemical reactions, is worth at least £42 billion in sales to the United

Kingdom economy each year [39].

The widespread occurrence and applicability of mixing and transport is the mo-
tivation for this thesis, in which we study aspects of fluid mixing and transport
with potential biological and industrial applications. On the biological side, a
particular problem of interest is the mixing and transport of blood solutes in kid-
ney dialysis machines [36]. With a view to industrial applications, we begin by
examining some fundamentals of fluid mixing, such as how to optimise a mixing
protocol against a variety of mixing measures [66], before investigating how to
apply the relatively new concept of topological chaos to the design of chaotic,

laminar-flow mixers [20].

1.1 Artificial kidney dialysis

The primary role of the kidneys is to regulate the water and solute content of

blood. Kidneys are also responsible for removing wastes from the body. Knep-



per and Rector [77] give a detailed physiological explanation of kidney function.
Silverthorn [135] has also written a description of the kidney, with beautiful illus-
trations, from the whole kidney anatomy down to the microscopic filtering units
called nephrons where regulation takes place. A primitive mathematical model

of nephron function was formulated by Hoppensteadt and Peskin [63].

When a person suffers total kidney failure, either acutely (e.g. food poisoning)
or chronically (e.g. diabetes), artificial dialysis is needed to perform the kidney
function. Most commonly, dialysis involves connecting a patient’s blood supply
to an external machine, where it is regulated and cleaned, and then passed back
into the body. The patient would typically endure three or four hospital visits
per week, connected to the machine for up to four hours each session. There are
alternative methods of dialysis, such as peritoneal dialysis, where a patient’s peri-
toneal cavity membrane is used as a dialyser. While it can be used continuously,
peritoneal dialysis is less efficient than a kidney dialysis machine. A description

of the various forms of kidney dialysis is given by Daugirdas, Blake and Ing [36].

In Chapter 2 we study the dialyser, the key component of an artificial kidney
dialysis machine, which allows removal of solutes and water from a patient’s blood
by exchange across a semi-permeable membrane separating the blood from an
artificial dialysate fluid contained within the machine (see Figure 1.1). We model
the dialysis process by studying transport of fluid and solute across a membrane
separating two fluid channels. Whilst the mixing involved is very simple, there
is a non-trivial feedback between motions of fluid and solute when the effects of
ultrafiltration (a pressure-gradient driven fluid flux), osmosis (a solute-gradient

driven fluid flux) and solute diffusion are considered together.

Whilst ultrafiltration, diffusion and osmosis have been studied before in various
contexts [1, 5, 6, 31, 32, 51, 78, 79, 80, 81, 82, 109, 110, 114, 115, 116, 118, 136,
138, 144, 150, 152], our model appears to be the first to allow an investigation
of the combined effects of ultrafiltration, osmosis and diffusion upon solute and
water fluxes, and in particular the extent to which these differ from a straight-
forward superposition of individual effects. We also investigate whether there
is an optimum channel geometry in which solute and water transport rates are

maximised, and whether flow inlet conditions may be tuned to select indepen-



Figure 1.1: An artificial kidney fibre bundle, containing thousands of hollow
membrane fibres. Blood is passed along these fibres, whilst another fluid, the
dialysate, is passed outside the fibres. Solutes and water are transported across

millions of microscopic pores in the fibre walls.



dently solute and water fluxes. Our expressions for water and solute fluxes can be
used as a basis for creating optimal profiling schemes for artificial kidney dialysis

machines with regard to treatment time and patient comfort.

1.2 Mixing measures for Stokes flow

Mixing performance is important in many situations. For example, in an indus-
trial chemical reaction, the details of the method by which ingredients are blended
can greatly influence both the amount and quality of the product [30], and it is
the role of the engineer to optimise the mixer design. A flow regime commonly
exploited in the polymer manufacturing industry [46, 154], and studied in this
thesis, is slow viscous flow [2], or Stokes flow, in which stretching and folding of
fluid creates chaotic particle paths. (Slow flow is employed so as not to damage

the delicate polymer molecules.)

Optimising the settings for a mixer, for a given purpose, is an extremely dif-
ficult problem because chaotic flow simulations (see Figure 1.2) are computa-
tionally expensive and therefore exhaustive parameter-space searches are usually
intractable. Furthermore, there are many techniques for quantifying different
aspects of mixing, requiring varying amounts of computational effort, and these
have been used in a variety of applications [25, 107, 111]. A heuristic method
called numerical sieving [66] is a technique that attempts to circumvent this dif-
ficulty. The method is employed to find a global optimum design according to a
chosen mixing measure when an exhaustive search exclusively using this measure
is infeasible. Instead, a large initial set of candidate designs is sieved according
to other, computationally cheaper measures, leaving a subset of candidates from
which to select an optimum design according to the measure of interest. Sieving
relies on understanding the relationship between different mixing measures, but
this relationship has been the subject of very little research. We shall see that a
lack of correlation between different measures can undermine the effectiveness of

sieving in determining optimum mixer design.

In Chapter 3 we review a selection of mixing measures which commonly appear in



Figure 1.2: Photograph of striations created by stirring dye into golden syrup
using a planetary mixer. The chaotic nature of the stretching and folding within
the flow means that the striations very rapidly form an intricate structure, making

computational simulation of the flow very difficult.



Figure 1.3: A typical industrial planetary mixer. Fluid in a vat is mixed by one

or more bladed impellers that rotate as they are moved around.

the literature, including abstract dynamical systems techniques, statistical mea-
sures and measures with an immediate physical interpretation. We investigate the
extent to which these measures correlate for the batch stirring device (BSD,) [47],
a two-dimensional chaotic, laminar, Stokes flow mixer [9], which is a simple model
of a planetary mixer [27] (see Figure 1.3). The BSD; consists of a circular cylin-
drical vat of fluid, in which stirring is achieved by moving a single rod of circular
cross-section through the fluid to generate a two-dimensional flow (the subscript
on ‘BSD;’ indicates that a single rod is used). The BSD; is significant in pro-
viding one of the first flow fields for which the velocity field in a time-dependent
geometry may be determined exactly. As far as we are aware, this is the first
systematic investigation into the correlations between a wide range of different

mixing measures.

Each path taken by the stirring rod defines a stirring protocol. We compare

mixing measures for a large number of different BSD, stirring protocols. Due to



the large number of protocols considered, we concentrate on measures that can
be evaluated in an automated fashion without human intervention. The extent
to which measures are correlated allows us to answer questions about how to
optimise a protocol according to a given measure, or a given group of measures.
Strong correlations would lend support to the concept of sieving, which relies on
computationally cheap mixing measures being used as proxies for more expensive
measures. By contrast, weak correlations would suggest that sieving should be

applied with caution, if indeed at all.

1.3 Topological chaos in two dimensions

One weakness of the procedure described in Chapter 3 for mixer optimisation
is that mixing performance can depend sensitively on the tuning of geometrical
parameters (e.g. the size of a stirring impeller), and on the fluid rheology. The
variety of mixing measures in use also means that best performance is not well
defined. However, very recently, an elegant idea has emerged which potentially
allows one particular mixing measure, material stretch rate, to be robustly built-in
to a mixer. The concept is that of Topological Chaos, as described in a remarkable

theoretical and experimental paper by Boyland, Aref and Stremler [20].

Topologically chaotic flows are a subset of chaotic flows in which the flow topology
alone is responsible for achieving a guaranteed minimum material stretch rate, in
some part of the domain, regardless of the geometrical parameters or exact fluid

properties (viscosity, compressibility, rheology, etc).

One requirement for topologically chaotic flow is that a mixing device must con-
tain at least three moving parts [20]. Surprisingly, therefore, very few industrial
batch mixing devices are equipped to exploit topological chaos. Those that are
appear to employ it almost accidentally, as they are not marketed as possessing
any special topological flow properties. A very well known industrial device that
does use topological chaos effectively is the antiquated four-pronged taffy pulling

machine, shown in action in Figure 1.4.

Almost all mixing devices which have so far been modelled mathematically, in-



Figure 1.4: A taffy pulling machine, consisting of two motorised arms, each with
two protruding taffy covered rods. The arms rotate so that the prong trajectories

intersect causing rapid stretching of the taffy, and folding of air into the mixture.



cluding the BSD; studied in Chapter 3, are therefore incapable of producing topo-
logical chaos. However, such flows are readily generated in a generalised model of
the batch stirring device, which is the subject of Chapter 4. We study the BSD,,,,
in which a circular cylindrical vat of fluid is stirred by m independently-moving

stirring rods.

In order to perform meaningful simulations in the chaotic flow, accurate expres-
sions for the velocity field are needed because numerical errors grow exponentially
in time. Although we cannot determine an exact solution for the BSD,, veloc-
ity field, we are able to develop a computationally cheap, spectrally accurate
(essentially exact), analytical expression for the streamfunction, which allows

high-precision simulations of tracer advection experiments.

Following a summary of the work of Boyland et al. [20], we address the question
of whether their topological ideas may be useful in practice for guiding mixer de-
sign, paying particular attention to whether the predicted material stretch rates
are achieved in a physically useful area of the mixing domain, an important
question which is not answered by topological chaos theory. Our modelling as-
sumptions are validated by comparing numerical dye-advection simulations with
simple experiments in a BSD,,, with either three or four stirring rods. Our dis-
cussion addresses the issues of the energy input required for mixing and some

practicalities of manufacturing a topologically chaotic mixer.

1.4 Topological chaos in three dimensions

Although batch mixers are used in industry, continuous-throughput mixing in
three dimensions is more widely used, and is the type of flow found in biologi-
cal systems (e.g. the lungs). The addition of an extra spatial dimension to the
flow means that static mixing is possible, i.e. no time dependence is required
in the velocity field in order to achieve chaotic particle advection [72]. Time-
dependence can be, and commonly is, employed [85, 94|, but many successful
patented static mixer designs exist (e.g. by Kenics, Mixtec, TAH Industries and

Sulzer—-Chemtech). These static mixers generally consist of a circular cylindrical



Figure 1.5: Two static mixing devices. Shown at top is a Sulzer Chemtech mixer,
with its square cross-section insert. At bottom is a twisted insert from a miniature
Kenics static mixer, that causes stretching and folding of the fluid as it is pumped

along the pipe.

pipe containing a judiciously designed insert that causes fluid in the cylinder to
be ‘cut and folded’ in the cross-section as it is pumped axially, as illustrated in

Figure 1.5.

In Chapter 5 we study a static mixer called the braided pipe mixer (BPM) inspired
by the two-dimensional, topologically chaotic mixers of Chapter 4 and originally
suggested by Boyland et al. [20]. The BPM consists of a circular cylindrical pipe
containing smaller twisted pipes that cause the fluid to mix as it is driven along
by an imposed pressure gradient. This may be thought of as a model for dialysate
flow in a dialysis fibre bundle containing wavy or twisted fibres (see Figure 1.1
and Chapter 2), as a catheterised artery [3, 35, 68|, or as a prototype industrial

mixing device.

In such static mixers the axial coordinate occupies the role played by time in the
two-dimensional batch mixer (BSD,,). The correspondence is not exact, however,

because different fluid particles travel at different axial speeds, and some even

10



come to rest on the internal pipes. One important question that we are able to
address, through direct comparison with the work in Chapter 4, is whether the
topological ideas for two-dimensional flows may be applied to improve mixing
in steady three-dimensional flows. Specifically, we examine the extent to which
the stretch rate results generalise, enabling practical static mixer design to be

influenced by topological considerations.

1.5 Layout of thesis

A more thorough review of the literature pertaining to the problems described
above may be found in the relevant chapters, which are arranged as follows. In
Chapter 2 we present our work on mixing and transport mechanisms in artificial
kidney dialysis machines. In Chapter 3 [49] we discuss a selection of the wide
variety of mixing measures in the literature and investigate the extent to which
correlations between them can affect the optimisation technique of numerical
sieving. Our analysis of the two-dimensional topologically chaotic batch stirring
device is presented in Chapter 4 [50]. The three-dimensional braided pipe mixer
is studied in Chapter 5 [48]. Detailed discussion of each topic is presented at
the conclusion of each chapter, and our final concluding remarks are given in

Chapter 6.
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Chapter 2

Ultrafiltration, diffusion and

osmosis in a channel dialyser

2.1 Introduction

Healthy humans have two kidneys, which form part of the urinary system, and
whose primary function is to regulate the water content of, and the concentra-
tions of solutes in, the blood. Blood is supplied to the kidneys from the aorta,
along the renal artery, where it is then cleaned and passed back into the circula-
tion along the renal vein and into the inferior vena cava. Typically blood enters
the kidneys at a rate of 125 ml/min; there it traverses a branching structure of
tubules ending at around one million microscopic filtering units, called nephrons.
A schematic of a nephron is shown in Figure 2.1. At the beginning of each
nephron is a Bowman’s capsule which separates red blood cells and large pro-
teins from a filtrate containing small molecular solutes (e.g. sodium, potassium
and calcium) and waste. Solute and water content in this filtrate are regulated
during passage along the proximal tubule and the loop of Henle, and in the distal
tubule. An ingenious counter-current flow system operates, so that even though
water cannot actively be pumped by the nephron its motion can accurately be
controlled by solute transport and osmosis. Much of the water and solute is re-
absorbed in peritubular capillaries, where it remains in circulation. The waste

that is removed from the filtrate (urine) passes into a collecting duct. From here

12
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Figure 2.1: Schematic of a nephron in a human kidney. Each kidney contains

around one million of these microscopic filtering units.

it is directed along two ureters to the bladder, where it is expelled from the body.
Detailed physiological descriptions of kidney function have been given by Knep-
per and Rector [77] and Silverthorn [135]. A simple one-dimensional model of
sodium ion regulation in the nephron has been presented by Hoppensteadt and
Peskin [63], accounting for blood plasma dynamics and active (pumping) and

passive (osmotic) motion of sodium.

Healthy human kidneys are tremendously efficient, and it is possible to live per-
fectly normally with just half of one kidney functioning. Unfortunately, a minority
of people suffer serious kidney failure, either acutely (e.g. E-coli food poisoning or
trauma) or chronically (e.g. diabetes or high blood-pressure) and they are reliant

on a machine to perform their kidney function [36, 135].

Modern artificial kidneys, or dialysers, function along the same principles as,
but in a much simpler way than, human nephrons. The vital component of
a dialyser is an array of blood-carrying tubes (or channels) surrounded by a
bath containing another fluid (dialysate); blood and dialysate are separated by
a thin semi-permeable membrane. (Of course, kidney machines consist of much
more than this, but the remainder of a typical machine is essentially controls,

pumps and measuring equipment.) Microscopic pores in the membrane allow

13



water and solutes to be exchanged between the blood and dialysate. Three key
transport mechanisms occur across the membrane: ultrafiltration (UF), solute
diffusion (DF) and osmosis (OS). Ultrafiltration is the passage of water through
the pores driven by a fluid pressure difference across the membrane. Solutes,
such as sodium, calcium, potassium, waste products and foreign substances, can
be removed from the blood by diffusion through the pores in the membrane.
Osmosis describes the tendency of water to migrate through the membrane, up
concentration gradients of solute, in order to equilibrate solute concentrations.

(These three processes are all important in human kidney function.)

Patients requiring artificial dialysis may have to attend hospital up to four times
per week, spending up to four hours connected to a kidney machine per session.
(There are other, less common, alternative forms of dialysis, such as peritoneal
dialysis, in which a patient’s peritoneal cavity membrane is used a dialyser. This
is less efficient than haemodialysis, but it can be performed continuously. This
and other continuous dialysis methods are described in [36].) It would be of
great benefit to the patient and the hospital staff if dialysis session times could
be reduced. However, speeding up dialysis sessions is not a trivial task, since
patients can experience serious trauma, if their solute and water levels are altered
too abruptly. State-of-the-art kidney machines are capable of profiling dialysis
sessions to bring blood solute concentrations to a specified level during a session,
but these profiling methods are still relatively crude and it is not well understood if

the goals are being achieved in the shortest time with minimal patient discomfort.

There is a wealth of literature treating transfers of solute and fluid between two
flows across a dividing membrane. Transport of solute by DF alone is well docu-
mented, and there exist many explicit exact expressions for the flux of solute by
diffusion between two fluid flows [31, 32, 51, 78, 79, 80, 81, 82, 109, 110, 136, 138,
144, 150] (some of these articles are written in terms of mathematically equivalent
heat-exchange problems, of interest in engineering applications). Simultaneous
UF and DF have been studied [1, 152]. Osmotic transport effects are usually
neglected in medically-oriented papers, since in artificial kidneys ultrafiltrative
and diffusive fluxes are believed to be dominant. However, osmosis provides a

further transport mechanism, which can, in principle, be of use in controlling

14



and profiling a dialysis session. Furthermore, it yields an interesting mathemat-
ical problem due to the non-linear coupling between the motions of solute and
water, and has received much attention [5, 6, 114, 115, 116, 118] in this and
other contexts. Osmosis is vital to real kidney function: since nephrons cannot
actively move water, they instead rely on transporting solutes and the passive
motion of water by osmosis. In previous studies of osmosis, authors have mainly
devoted their attention to flow in wide channels, in which concentrations remain
constant in the bulk flow, but where concentration boundary layers form near the
membrane. However, in the context of artificial dialysis it is more appropriate
to consider narrow channels, where solute concentrations vary across the whole

width of the channel.

In addition to analyses of the dialyser-type problems described above there also
exist simple studies of patient—dialyser interaction. Baigent et al. [15, 16] have
investigated session profiling using a three-compartment model which looks at
exchanges between a patient’s body, that patient’s blood and the dialysate fluid
in the kidney machine. However, these spatially-averaged models do not account
for the important interplay between DF, UF and OS at the dialyser membrane,
nor for the concentration polarisation [38] that occurs there; these are analysed
below. To make real improvements in profiled dialysis it will be necessary to
understand spatial and temporal distributions of solutes in both the patient and
the dialysis machine, but here we examine only the latter. Although specific
recommendations for profiled dialysis are beyond the scope of this chapter, we
hope that our work will eventually become part of a patient—dialyser profiling
scheme. Our main aim is accurately to predict dialyser performance based on
fixed design properties and variable in-vivo input conditions so that in future work
the inverse problem of specifying inputs in order to achieve prescribed patient—

dialyser interactions can be studied.

The outline of the rest of this chapter is as follows: in Section 2.2 we develop
a simple dialyser model which allows us to study the non-trivial effect of in-
teractions between UF, DF and OS on global solute and water transport rates.
The model is nondimensionalised and simplified in Section 2.3 using parameter

estimates from a typical clinical dialyser. We present a selection of numerical

15



Y
+ channel (blood)

P - Semipermeable membranes
- channel (dialysate)

y=-h ------------- -

Figure 2.2: Geometry of the parallel-channel dialyser.

simulations of solute transport and fluid flow in Section 2.4 to guide our analyt-
ical progress. The construction of asymptotic solutions based on the long, thin
nature of the artificial kidney fibres is then discussed in Section 2.5. Initially
results for separate ultrafiltration, diffusion and osmosis are compared with nu-
merical simulations; we then turn to the more physiologically interesting effects
of coupling these processes together. Analytical solutions are presented where
possible; otherwise the asymptotic problem is solved numerically. In Section 2.6
we calculate the solute and water fluxes from the completed asymptotic solution.
Then in Section 2.7 we investigate the change in these fluxes with varying mem-
brane permeabilities, input conditions, and dialyser geometry. Our conclusions

are given in Section 2.8.

2.2 Dimensional model

In this section we develop a simple channel model for water and solute trans-
port between a patient’s blood and the dialysate in an artificial kidney dialysis

machine.

Solute and water exchange in a modern dialyser occur across a very large mem-

brane surface area (of the order 1m? [36]) between thousands of narrow cylindrical

16



blood-carrying fibres and a surrounding bath of dialysate fluid. For simplicity,
however, we choose to work in a rectangular channel geometry, whereby blood
and dialysate are transported along straight parallel two-dimensional channels,
separated by plane permeable membranes. This set-up mimics an older parallel-
plate dialyser design [36], although our model should still capture the essential
features of transport in a cylindrical geometry. Our model geometry is depicted
in Figure 2.2. Two rectangular channels of finite length [ are shown. Blood
and dialysate occupy the top (+) and bottom (—) channels, respectively, and
the fluids are separated by a permeable membrane which runs along the z-axis.
The + and — channels have heights A" and h~, respectively and are assumed to
form part of a periodic array,! whereby the boundary y = h™ is identified with
y = —h™. Throughout this chapter, superscripts of + and — denote physical

quantities associated with the corresponding channel.

We specify that blood flows from left to right in the + channel, but dialysate
flow in the — channel might be prescribed in either direction (so-called ‘counter-
flow’ is illustrated in Figure 2.2). For our present model we assume that a single
solute (e.g. albumin, calcium, creatinine, glucose, phosphate, potassium, sodium
or urea) is dissolved in the two fluids (henceforth called solvents) although the
model can readily be extended to the case of multiple solutes. Typically the

solute is more concentrated in the blood than in the dialysate.

While the transient dynamics of the system [79, 82] may be relevant to a more
dynamic profiling methodology than is currently used, in the following analysis
only steady-state solutions are considered. We justify this approximation on
the basis of parameter estimates which indicate that, under typical conditions,
concentrations in a dialyser reach their steady state within a minute. (Of course
this is only a quasi-steady state since the concentrations of solutes in a patient’s

blood will change gradually over the four-hour period of dialysis.)

LAs an alternative to considering this periodic array of channels, the channel walls y = ht
and y = —h~ can be considered to be impermeable to both solutes and to solvent, so that we
are considering just a single membrane (i.e. a parallel-plate dialyser). We do not present the
corresponding analysis for this case, but note that only trivial alterations to the wall boundary

conditions are required and that the changes to subsequent results are readily found.
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A further significant approximation we make, since we are concerned primarily
with transport mechanisms, is to treat both the blood and dialysate as Newtonian
fluids. In a clinical setting this is not the case, since blood contains red blood
cells, which are approximately 10um in diameter; this is comparable with the
100pm diameter of tubes typically used in a modern dialyser. In principle the

model could be adapted to accommodate a more realistic blood rheology.

The analysis that follows is potentially applicable to flow in kidneys too, even
though the loops of Henle, where exchange takes place (see Figure 2.1), are an
order of magnitude thinner than in artificial kidneys (around 10pm [146]). This
is because in the Bowman’s capsule large cells (e.g. red blood cells) and molecules
are filtered out and hence do not form part of the filtrate that passes into the

loop of Henle.

We denote the fluid velocity components in the x and y directions by u and v,
respectively, the fluid pressure by p and the concentration of solute by ¢. Then
the solvent motion in each channel is governed by the steady-state Navier—Stokes

and continuity equations

Uy + VU, = —% + V(Ugy + Uyy), (2.1)
uvy + Vv, = —% + V(Vgg + Uyy), (2.2)
Uz +vy, = 0, (2.3)

where v is the kinematic viscosity of the solvent and p is solvent density (both
assumed to be independent of solute concentration) and the solute concentration

satisfies the advection—diffusion equation
ucy + vey = D(cgy + Cyy), (2.4)

where D is the solute diffusivity. In practice the density, viscosity and diffusivities
would differ between blood and dialysate, but for simplicity in this initial model

the two solvents are taken to have identical physical properties.

By assuming a periodic array of blood and dialysate channels, we specify the

symmetry conditions
S=vt= 0 aty=1nt, (2.5)

18



cf =0 aty=ih?, (2.6)
u, =v- = 0 aty=-1ih", (2.7)
¢, =0 aty=—ih". (2.8)
Since we model our solvents as viscous fluids we apply the no-slip conditions

v =u"=0 aty=0. (2.9)

At the channel inlets and outlets we prescribe a fully developed Poiseuille flow,

with a uniform concentration of solute. Hence in the + channel we set the con-
ditions

ct =, ut— —6wiy(y—ht)/AT, vt 50 as oz — —o0,(2.10)

et =50, uf—0, vF—=0 as z— +oo,(2.11)

where w7 is the total volume flow rate in the + channel.

Note that for the dialysate (the — channel) the prescription of corresponding
boundary conditions depends on whether there is co-flow or counter-flow. In the

former case, the boundary conditions are
¢ =g, u ——bwiyly+h )b, v >0 as  z— —o0,(2.12)
¢, >0, uy, -0, v~ —=0 as x — +00;(2.13)

in the latter,

3

¢ —=cg, u — —b6wgyly+h7)/hT, vT =0 as zx— +oo,(2.14)

c;g =+0, uy =0, vV—=0 as x — —oo.(2.15)

Here w; and wj are the total volume flow rates of dialysate for co-flow and
counter-flow, respectively. In what follows we shall frequently consider co- and

.- . ( _ ,
counter-flow cases together, writing such expressions as ‘c™ — ¢, /R A8 T — FOO,

with the obvious interpretation.

Most importantly we specify that the flux of solute jsue and flux of solvent

Jsolvent @cross the membrane are given by

Jsote = v ¢ —=Dcy =v7c” = Dc,

= —kg(ct —¢c7) ony=0, (2.16)
Jsolvent = VT ="

= —kuy@"—p7) +kos(c" —¢c7) ony=0, (2.17)
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where the coefficients kq4¢, kyr and ko5, respectively, describe the permeability of
the membrane to diffusion of solutes with low molecular weights, and to pressure-
driven and osmosis-driven solvent fluxes. We assume the membrane is permeable

only in the interval 0 < z < [.

Since the solvent boundary condition (2.17) involves a pressure driven flux, in
addition to conditions (2.5)—(2.17) we must also specify the pressure p at a single
point in both of the channels (at the channel inlets, say). Then equations (2.1)-
(2.4) together with the boundary conditions (2.5)—(2.17) form a closed system.

We now estimate the parameters of relevance to the model. Ultrafiltrative removal
rates of water from blood vary between dialyser models, but a typical figure for

3

overall transfer is around 10™''m3s™! per Pascal pressure difference [36]. Parallel-

plate dialysers typically have a total permeable-membrane area of around 1m?
[36], giving an estimated ultrafiltrative permeability of ky = 107!''ms™!Pa .
To estimate kg we begin by noting that the effectiveness of clinical dialysers at
removing blood solutes is usually specified in terms of ‘clearance’. A typical clear-
ance value for small-molecule solutes in a parallel plate dialyser is 250 mlmin~"
for a blood flow rate of 300 mlmin~" [36], meaning that 250/300 of the total solute
is removed. The permeability kq¢ is the solute mass flux per unit membrane area
per unit concentration difference. Using the blood inlet concentration as a rep-
resentative concentration difference, the permeability kq¢ can be expressed as the
inlet flow rate multiplied by the clearance divided by the membrane area. A typi-
cal total blood flow rate through a dialysis machine is of the order 3 x 10~ m3s~!
(while dialysate flow rate is typically twice as great at 6 x 107m3s™!). Thus
we estimate that kg = 3 x 107% x 250/300/1 = 2.5 x 10 ®ms™!. In an artifi-
cial kidney the movement of water by osmosis is usually neglected compared to
the active movement by ultrafiltration. Hence it is difficult to estimate k.5 from
any clinical dialyser data, so in our numerical simulations we choose values for
kos that are large enough to demonstrate the qualitative effects of osmosis. Real
kidneys, however, are unable actively to transport water, and rely on controlled

passive motion by osmosis; thus in modelling a real kidney we would use larger

values for k., than would be applicable to an artificial kidney.

In addition to dialyser permeability constants we will need to know the dialyser
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geometry and fluid property parameters. In a typical parallel-plate dialyser [ ~
20x1072m and AT, A~ ~ 100 x 10 %m [131]. When the blood flow is distributed
amongst the (~ 10*) tubules in a hollow-fibre dialyser the corresponding flow

-1

rate is of the order 4 x 10~ m3s~! per tubule, corresponding to a typical blood

velocity £ = 0.05ms™!.

Though the fluid properties of blood and dialysate differ, for simplicity we use
v =1x10"%m?s™" (viscosity of water [2]), p = 1000kgm™ (density of water)
and D = 1.5 x 107°m?s~! (diffusivity of salt in water [57]) in both channels,

noting that in reality blood is more dense and viscous than water.

2.3 Nondimensional model

In order to determine which terms are dominant, and hence to guide construction

of asymptotic solutions, we first nondimensionalise (2.1)—(2.4).

Before rescaling, it is convenient to define the dimensionless parameters

(5=?, H=Z—;, Rez%, Pe:%, € = 0Pe. (2.18)
In (2.18) the aspect ratio of the upper channel is given by ¢, H is the ratio of the
two channel heights, and Re and Pe are the flow Reynolds and Péclet numbers,
respectively. Data presented in Section 2.2 can be used to determine all the scaling
parameters. We estimate that H ~ 1, Re ~ 1, Pe ~ 10% and § ~ 10~*, which
gives € ~ 107", The lower-case dimensional variables in equations (2.1)—(2.4) are

now scaled according to

+ + + 5T
T Y + u + v + h 5p C
- Y== U=—, V¥=— = C=-, (219
l? h_|_7 é—? 56’ pl/§ Y c? ( )

where upper-case letters represent dimensionless variables. The typical stream-

X =

wise velocity & was given in Section 2.2, and we are free to choose (, which rep-

resents a typical solute concentration. With these changes of variable, equations

(2.1)—(2.4) become

Re§(UUx +VUy) = —Px+6*Uxx + Uyy, (2.20)
Re(53(UVX + VVY) = —PY + 54VXX + 52Vyy, (221)
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Ux+Vy = 0, (2.22)
E(UCX + VCY) = 520XX + ny. (223)

We neglect terms in equations (2.20)—(2.23) containing positive powers of the

small parameter . The system then reduces to the classical lubrication equa-

tions [2]
PX = Uyy, (224)
P, = 0, (2.25)
Ux+Vy = 0, (2.26)
Cyy = C(UCX + VCY), (2.27)

which in the next section will be solved asymptotically using € as a small param-

eter.

For completeness we also present here the rescaled boundary conditions (2.5)—
(2.17). Note that, because of neglected terms, the system (2.24)-(2.27) is of

lower order than (2.20)-(2.23) and therefore we impose fewer conditions.

The symmetry conditions

Uf=Vt= 0 atY =4, (2.28)
Cy=0 atY=4g (2.29)
Uy =V~ =0 atY=-1H, (2.30)
Cy=0 atY=-1lH, (2.31)
may be maintained, along with the no-slip condition
Ur=U"=0 atY =0. (2.32)

However, it will be seen in Section 2.5 that we are no longer able to specify the

velocity profile at entry, but only the overall flow rates

Wt = W/ at X =0, (2.33)
W~ = Wppat X =0/1 (2.34)

at the channel inlets, which are given by
1 0
WH(X) = / Utdy, W-(X) = / U-dy. (2.35)
0 —H
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(Recall that in (2.34) the case W~ = W, at X = 0 applies for co-flow, while
W~ = Wg at X = 1 for counter-flow.) There is a corresponding restriction
on our specification of the solute concentration at the channel inlets. This is
discussed later, in Section 2.5.1. The important membrane boundary conditions

(2.16) and (2.17) transform to give
Jsote = VICT —C¥le=V"C™ —Cy/e
= —Kg(Ct"—=C7) onY =0, (2.36)
Jsolvent = VI=V"
= —Ky(P*—P )+ K4 C*—C™) onY =0, (2.37)

where the dimensionless membrane permeability coefficients are

v 1 <
ht62 £6 £6

Using the clinical parameter estimates given earlier, and the dimensional perme-

Kuf = kuf; de = kdf; Kos = kos- (238)

ability estimates from Section 2.2, we find that the dimensionless ultrafiltrative
and diffusive permeabilities are given by Ky ~ 0.01 and Ky ~ 0.5, respectively.
In the absence of a reliable estimate for kg, we will later choose values of K to

illustrate the effects of osmosis.

In the remainder of this chapter we study solutions to the system (2.24)(2.27).
To avoid repetition we now state the ‘standard’ parameter values that we use in

the majority of the chapter:
Wi=1, Cf=2 Pf=0 H=1,
W, =2 C; =1, P, =0 co-flow,
L L L (2.39)

Wy = -2, r=1 P = counter-flow.

Here C} and Cr g are the inlet solute concentrations in the + and — channels,
respectively. The fluid pressures at the inlets to the + and — channels are P;"

and P /R respectively.

2.4 Numerical solutions

In general, the full system (2.1)-(2.17) cannot be solved analytically. However,

we can compute numerical solutions to examine the key features of the model in
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Figure 2.3: Numerical solute concentration and velocity field plots with ultrafil-

tration only (Ky = 0.01, Kgr = 0, K

= 0) across the membrane. Equations

(2.40)—(2.42) were solved using the standard counter-flow parameter set (2.39)

and 6 = 1, Re = 0 and Pe = 10. The solute concentration is shown in the sur-

face plot. The upper and lower surfaces represent the blood (+) and dialysate

(-) channels, respectively. The corresponding fluid velocity field is shown in the

arrow plot. The membrane separating the two channels is permeable only in the

interval 0 < X < 1.
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Figure 2.4: Numerical solute concentration and velocity field plots with diffusion

only (Ky =0, Kg¢ = 1, Kos = 0) across the membrane. Equations (2.40)—(2.42)

were solved with the counter-flow parameters (2.39) and 6 = 1, Re = 0 and

Pe = 10. The membrane separating the two channels is permeable only in the

interval 0 < X < 1.
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Figure 2.5: Numerical solute concentration and velocity field plots with osmosis
only (Ky = 0, Kgt = 0, Kos = 1) across the membrane. Equations (2.40)-
(2.42) were solved with the parameters (2.39) and 6 = 1, Re = 0 and Pe = 10.

The membrane separating the two channels is permeable only in the interval

0<X <1
order to guide our analysis of the reduced system in Section 2.3.

Using a successive-over-relaxation finite-difference scheme, we solve numerically

the full streamfunction-vorticity formulation of equations (2.20)-(2.23), namely

VUxx +Uyy = —Q, (2.40)
529)()( + ny = 5Re(\Ifng - \Ifoy), (241)
§°Cxx +Cyy = €(¥yCx — ¥xCy), (2.42)

where U = 0¥/0Y and V = —0¥/0X. (The pressure has been eliminated
from the system by taking the curl of the Navier-Stokes equations (2.20) and
(2.21).) Our numerical method is adapted from [119] to cope with the additional

advection—diffusion equation (2.42).

[llustrative counter-flow velocity profiles and corresponding solute concentration
profiles are shown in Figures 2.3, 2.4 and 2.5. These plots show the individual
effects of ultrafiltration (K, = 0.01), solute diffusion (K4 = 1) and osmosis
(Ko = 1), respectively, using the standard parameters in (2.39) with § = 1,
Re = 0 and Pe = 10. Note that the physically unrealistic values of the parameters
used for these plots are chosen in order to emphasise the qualitative features in

the figures; in Section 2.5 and beyond, we compute solutions based on the physical
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parameters given in Section 2.3.

These figures demonstrate the variation of solute concentration across the width
of the channels. Concentration polarisation [38] can be seen, meaning that solute
concentration at the membrane is different to the mean concentration in the
transverse direction. This variation is ignored in existing one-dimensional cross-
sectionally averaged (well-mixed) dialysis models [74]. We show below that when
spatial variation in the y-direction is neglected the cross-membrane solute and
solvent fluxes can be significantly under- or overestimated (see Figures 2.12, 2.13

and 2.14 later).

2.5 Asymptotic solutions

To explore the combined effects of transport by UF, DF and OS, as illustrated in
the previous section, we now outline the construction of two-dimensional asymp-
totic solutions, which exploit the long thin nature of the tubes that are used in

dialysis machines.

2.5.1 General analysis

In this section we begin by constructing a general solution for the asymptotic
flow rate and concentration profile from (2.24)—(2.27) assuming e (proportional
to the channel aspect ratio) to be a small parameter. (Note that we will use
¢ = 0.3 in all of the plots which follow.?) The general form of the solution can
be found without making reference to the transport mechanisms that act at the
membrane. In subsequent sections, specific solutions are then constructed for

particular membrane properties.

2When computing numerical solutions to the full equations (2.40)—(2.42) to compare with the
asymptotic solutions, numerical problems associated with the small value § ~ 10~ can arise.
To obtain the value of € = 0.3 used for the asymptotic solution plots, we use the parameters
6 = 0.1, Re = 0 and Pe = 3 for our corresponding numerical simulations. These parameters
do not create any numerical problems, and still maintain a negligible value for 67 for j > 2, an

assumption made in Section 2.3 in deriving the reduced asymptotic model.
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Equation (2.25) tells us that the pressures P in both channels are independent
of Y, so that (2.24) and then (2.26) can be fully integrated to give

Ut = LP{UY)=—6WTU(Y), (2.43)
U~ = LH*PiU(-Y/H)=—-6W U(-Y/H)/H, (2.44)
VFE o= WV(Y), (2.45)
V™ = —lWgV(-Y/H), (2.46)
where
UY) = Yy -1, (2.47)
V) = 4Y? —6Y? + 1, (2.48)

after applying boundary conditions (2.28), (2.30) and (2.32).

It remains now to solve (2.27) for the concentration profile. To make progress,

we seek solutions for C* and W= in terms of the regular asymptotic expansions

CEHX,Y) = CE(X,Y)+eCEX,Y)+E0EX,Y) +---,  (2.49)
WE(X) = WFH(X)+eWE(X) + EWsH(X) +-- -, (2.50)

(recall that € < 1). The expansion (2.50) for W can now be inserted into (2.43)—
(2.46), and these in turn, together with (2.49), substituted into (2.27). In this
way, we obtain a set of equations for Cif (1=0,1,2,...) by equating terms of the

same powers in €. At order €’ we obtain

Ct =Cy . =0, (2.51)

Oyy Oyy

which implies (after applying (2.29) and (2.31)) that the solute concentrations
C¥ = CF(X) are uniform across both channels. The physical interpretation is
that diffusion across the channel is much more rapid than diffusion along the
channel because of the small channel aspect ratio d, so the concentration profile

is, at leading order only, homogeneous across the channel.

Now considering terms at order €' we obtain

Cf, = —6WyCLuUy), (2.52)
Cr, = —6W;CyU(-Y/H)/H, (2.53)
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with the solution, after applying boundary conditions (2.29) and (2.31),

Cl = —3WiCC(Y)+ FH(X), (2.54)
Cy = —iW,Cy HC(-Y/H)+ F~(X). (2.55)

where
CY)=Y"-2Y3+YV. (2.56)

The functions of integration, F'*(X) and F~(X) are determined later when we

consider the properties of the membrane that separates the two channels.

By considering terms at order €2 in (2.27) we obtain a further pair of second-
order equations for Ciy. These equations are readily solved, subject to (2.29) and

(2.31), to give

2
Cy = ki(X)Y3+. ... +kf(X)Y? + ki (X)+ {s=WTCy
+ 150 Wo Coy — s(Wo' Fit + Wi G )Y, (2.57)
Cy = kg(X)Y 4. 4 ky (X)Y2+ky (X)—{ALHW *C,,

1280 Ox x

+ 15 HWy W, Cy. — (W Fx + Wy Gy, )Y, (2.58)

where the k" are complicated functions of X, not presented here. It will be seen
below that only the coefficients of Y in Cy are important in determining the

functions F*.

In principle we can continue constructing higher-order terms in (2.49) by balanc-
ing terms at higher powers of € in (2.27), however the algebra quickly becomes
tedious so it is omitted here. Also we note that it may be inconsistent to con-
struct higher-order corrections in €, since we have already neglected Reynolds
number (Re) and aspect ratio (9) effects in obtaining (2.24)—(2.27). Hence from

here onward we specify quantities up to first order in € only.

Thus far we have made no reference to the solute and solvent flux boundary
conditions (2.36) and (2.37). It is these conditions that we now use in order
to determine the remaining unknown functions W;5(X), Wi (X), C¥(X) and

F*(X); this will complete our solution up to terms in €.

In the analysis that follows we shall consider various asymptotic limits for the

three transport mechanisms and so it proves convenient to write the three mem-
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brane permeability constants as

Kuf = KufO + 6I{ufla (259)
de = deo + Gdel, (260)
KOS = KOSO -+ CKosl. (261)

We substitute the expansions (2.49), (2.50) and (2.59)—(2.61) into equations (2.36)
and (2.37). In addition we differentiate equation (2.37) with respect to X in order
to eliminate P in favour of W¥ by using (2.43) and (2.44). By collecting together

terms at order ¢ and €' we obtain the eight equations

Wi, = 24Kuo(Wy — Wy /H?) + 2K0(Cy,. — Cy), (2.62)
Wo.o = Wi, (2.63)
(WG )x = —2Kan(Cf - Cy), (2.64)
Wy Cy)x = 2Kan(Cy —Cy), (2.65)
Wit = 24Kuo(Wi" — Wi /H?) + 24K (W™ — Wy /H?)
+ 2Kos0(F5 — Fix) + 2Kos1 (Cyf, — Gy ) (2.66)
W, = -Wi.,, (2.67)
(FWehx = EHW7Cf,)x — (Wi C)x
— 2K (Ft — F7) — 2K 401 (Cf — CF), (2.68)
(FWy)x = HWy Co)x — (Wi Cy)x
+ 2Ka(Ft — F ) + 2Kdﬂ(c Cy) (2.69)

for the eight unknown functions W&, Wi, Ci and F*. Note the perfect deriva-
tives in (2.62)—(2.69); these indicate which quantities are conserved in the absence

of any fluxes through the membrane (i.e. when K,s = K4 = Kos = 0).

Because we introduced an extra derivative in equations (2.62), (2.63), (2.66)
and (2.67) by eliminating the pressure P*, we require four further conditions to
determine the model fully. By substituting (2.45) and (2.46) for V* into (2.37)
we find these to be

WO—; = +2K050(08— — C ) — 2Kuf0(P — P ) _WO_X’ (270)
W1+X = +2Ku0(Fy — Fy) +2Kos1 (Cy — Cy ) — 2Kuni (P — Py)

— 2Ky (P — P7) = =W,

x°

(2.71)
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These may be considered as additional boundary conditions, fixing the cross-
membrane pressure difference, to be applied at either end of the channel, as

appropriate to the co- or counter-flow problems.
The flow rates W and W at the inlets are given by

Wi =W, Wi=0 at X =0, (2.72)
Wo =Wip Wy =0 at X =0/1, (2.73)

and the leading-order inlet concentrations are chosen to be

Cy=Cf at X =0, (2.74)
Co =Cpn at X =0/1. (2.75)

Finally, boundary conditions on F* and F~ are derived by specifying that the
solute inlet fluxes to the + and — channels are exactly W C7 and Wy zCp p.
respectively. To see how this is achieved, consider the solute flux that enters the
+ channel at X = 0; by integrating the expansion for UTC™ across the channel

inlet we find this to be

140

1
/0 UTCHAY = Wi Ci + e(Wi F¥ + Wi Cf — LW CE) + O(e).  (2.76)

We have already imposed that W;" = 0 at X = 0 and so, in order that the order-e

contribution to the flux is zero, we choose

Fr=1ILwiCy  at X =0. (2.77)

140

By performing a similar calculation in the — channel we find that

F~=1LHW; Cy,. at X =0/1, (2.78)

140

where, as usual, we apply the condition at X = 0 for co-flow and at X = 1 for

counter-flow.

The asymptotic problems at order €’ and €' are now fully specified. It remains
to construct solutions for Wi, Wit, C5 and F'* from the eight equations (2.62)-

(2.69) subject to (2.70)-(2.75), (2.77) and (2.78).

In general it is not possible to find an exact solution to equations (2.62)—(2.69).

It is, however, possible to solve them in certain special cases, and these are
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discussed in the next three sections. Numerical solutions to (2.62)—(2.69), on
the other hand, can be computed for any combination of membrane permeability
constants (see Section 2.5.5); they complement the exact asymptotic solutions
to (2.62)-(2.69) where these are available, and allow us to extend our results to

cases where exact solutions are unobtainable.

2.5.2 Ultrafiltration-dominated flow

Consider the case of strong ultrafiltration, so that Kygp > 0, Ky = Kgr = Kos =
0. In this case the solution to (2.62) and (2.63) is

Wit = +a;cosh(A\X) + agsinh(\X) + (51X + B2)/(1 + H?), (2.79)
Wy, = —agcosh(AX) — agsinh(A\X) + (81X + 52)H3/(1 + H3), (2.80)

where A2 = 24K,4(1 + 1/H3) and a4, as, $; and 3, are constants, determined
by the boundary conditions (2.70), (2.72) and (2.73). For co-flow the constants

are readily found to be

o = (HW§ —W,,)/(1+ H?), (2.81)
ar = —2Kuo(PyS — Py, )/, (2.82)
pr = 0, (2.83)
By = Wo +W,,. (2.84)

When applying the counter-flow boundary conditions (2.70) it is necessary to
integrate W~ along the channel in order to relate the inlet pressures, which are
specified at opposite ends. By considering (2.44) we see that Py = —12W~/H?3,
and by integrating this equation over the length of the — channel it follows that

1
P, — Py, = 12 /0 Wy dX/H?

12 [ a . ay  (B1/2+ Bo)H?
= T {—)\—u sinh A, + (1 — cosh )\u))\—u + e (2.85)

This expression can be used to write Fy, in terms of P and allow the boundary
conditions (2.70) to be applied at the left-hand end of the channels, X = 0, as
with co-flow. The constants oy, oy, 81 and [, are then readily determined, but

are not, presented here as their algebraic expressions are too cumbersome.
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Figure 2.6: Flow rate and concentration plots with only ultrafiltrative flux of
solvent (Ky = 0.02, K4 = 0, K,s = 0) through the membrane. The left-hand
pair of plots correspond to co-flow; the right-hand pair to counter-flow. The
dotted lines show the solution obtained by assuming K. = eKys is small, the
dashed lines show the asymptotic solution with K, = Ky = O(1), and the solid

lines show the corresponding full numerical solution.

The order-¢' flow rates Wit satisfy (2.66) and (2.67), which are of the same form
as for the order-e® flow rates W;*; thus Wi are given by expressions of the form
(2.79) and (2.80), although the constants of integration corresponding to oy, as,
f1 and f, are different, and are determined by the boundary conditions (2.71),
(2.72) and (2.73).

This completes the solution for the flow rates. Now we can return to find the
concentration profile. The functions Ci° and F'* are easily determined: since no
solute can pass through the membrane, the solute conservation equations (2.64),
(2.65), (2.68) and (2.69) can be integrated trivially (subject to (2.74), (2.75),
(2.77) and (2.78)) to give

Cy = wicH/wy, (2.86)
Co = WL_/RCL_/R/Wo_a (2.87)
Ft = XWics —wiesd/wy, (2.88)
F~ = LHWyCy, — Wi Cy /Wy (2.89)

Ilustrative plots of the flow rate and concentration functions, W* and C* are
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given in Figure 2.6 for both co- and counter-flow. It can be seen that for co-flow
the flow rates are monotonic functions of X and hence the solvent flux is always
negative (directed towards the — channel); by contrast, in a counter-flow regime
the flow rates are not monotonic, implying that the direction of the solvent flux

can change along the length of the membrane.

These solutions are physically meaningful only if neither of the flow rates W=+
changes sign along the length of the membrane, otherwise there would be a stag-
nation region in one channel where W* = 0, and an undesirable backflow, with
fluid entering one of the channels from both ends. Our mathematical solution also
breaks down in this case, accumulation of solute leading to an infeasible infinite
steady-state concentration in the stagnation region. In terms of the total solvent
flux Qsolvent across the membrane Y = 0 (which is derived later in Section 2.6),
the maximum flux sensibly permitted is |Qsolvens| = %WEL (the factor of one half

is due to the equal flux across the membranes at Y =0 and at ¥ = 1).

2.5.3 Diffusion-dominated flow

In this case we assume that the ultrafiltrative and osmotic permeabilities of the

membrane are small so that Ky = K0 = 0.

At leading-order, (2.62) and (2.63) tell us that W and W~ are constants equal to
their inlet values, given by (2.72) and (2.73), respectively. This is consistent with
there being zero solvent flux at leading order across the membrane if ultrafiltration
and osmosis effects are weak. Substituting these values into equations (2.64) and
(2.65) generates two coupled linear ordinary differential equations for Cif. For
the co-flow problem with boundary conditions (2.74) and (2.75) the corresponding
solution is

W/ CH+WrCp £ WF(CF — CF) exp(—MaX)
Wi+ W, ’

Ci = (2.90)

where \g = 2K400(W; + W) /(W W). For counter-flow the solution is
Wi CpL + W Ch + Wg (Cf = Cg) exp (Aa (1 = X))

cr = 2.91
N W/SCF +YWrCqr =W (CF = Cr) exp A (1 = X))
C, = W LA We , (2.92)
L TTWpgr
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where Ay = 2Kqa50(W, +Wp5) /(WS W) and v = exp(\g). Using these solutions

for W and C§ we continue to solve equations (2.66) and (2.67) subject to (2.71)~

(2.73). In the case of co-flow the solution is

Wi+ WiWy (L 1/H) - Wi [H |,
Wi +w,

2P} - PX )
Kot WiW[
Koo Wi+ W,
while for counter-flow the expressions are

WiWg  Kost

(Cf = Cp) (exp(=AaX) — 1), (2.93)

Wi = Ci — Cp)y(1 — exp(— Mg X
1 WE— +’YW§ de()( L R)’Y( eXp( d ))
+ Kun {—2(Pf — Pg)X +12W;f X* — 12W X (X — 2)/H*}(2.94)
WiW;, K,
W = LR oL — On)(—1+ exp(—Aa (X — 1
- ufl(X - 1)
{=2(Pf = Pp) + 12W (X + 1) — 12Wg (X — 1)/H*}. (2.95)

Finally, we determine F* by substituting for Wi, C{ and W in equations
(2.68) and (2.69). These equations are easily solved exactly using the techniques
described above, but the solutions are algebraically cumbersome and so are not

presented here.

Illustrative flow rate and concentration functions, W* and C*, are plotted in
Figure 2.7 for both co- and counter-flow. The O(e) correction terms to C* indi-
cate that the concentration is depleted below (raised above) its ‘inlet’ value in the
+ (—) channel, a result which is consistent with the full numerical simulations
in Figure 2.4. We note also that more solute is removed from the + channel us-
ing counter-flow than using co-flow conditions [74]. By employing a counter-flow
regime, a much shorter membrane is needed to achieve a given solute flux, than

with co-flow.

2.5.4 Osmotically-driven flow

Osmotic flux through the permeable membrane is not usually considered to be im-

portant in a clinical setting, where ultrafiltration and diffusion are the dominant
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Figure 2.7: Concentration plots with only diffusive solute flux (K =0, Kqr = 1,
K, = 0) through the membrane. The left-hand and right-hand pair of plots
correspond to co-flow and counter-flow, respectively. The dotted lines show the
(linear) solution obtained by assuming Kgr = €Ky is small, the dashed lines
show the asymptotic solution with K4 = Kap = O(1), and the solid lines show

the corresponding full numerical solution.

effects [36]. However, osmotic flux may be exploited, for the purpose of dialysis
session profiling, by adding large-molecular-weight solutes to the dialysate, to in-
crease its osmotic potential in order to remove more water from the blood. The
osmosis problem is the most interesting from a mathematical point of view as it
involves a non-linear coupling between solvent and solute motion at the mem-
brane. Furthermore, the type of analysis presented here can be applied to real
kidneys, which rely on osmosis for water movement, since water cannot actively

be pumped around inside the nephrons [135].

In the case of strong osmosis, where K,y > 0 in equations (2.62)-(2.69) but
Ky = Ko = Ky = 0, we can solve only part of the problem analytically.
Equations (2.62), (2.64) and (2.65) for Wy and C§ can be solved to give these

quantities parametrically in terms of W, as

_wict = W.,rCL/r

== 2 Wo =Wp—W; 2.96
WO_|_ ) WT—W(;F’ 0 T 0> ( )

where W is the total flow rate in both channels. (For co-flow Wy = W, + W,

but for counter-flow Wy remains to be determined.)
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This leaves the first-order non-linear differential equation

Wi Cp (Wr — Wy') = Wy pCr g We'

Wyt = 2K
o " (Wr — Weh )Wy

(2.97)

to determine W, which can readily be solved by separation of variables to give

the implicit solution

405Ko0X = (201 + ag(Wy — 2Wr))Wot — aa(20n + ao(W — 2Wr) )W,
o — a2W0+>

2.98
o1 — QQWE— ( )

+ 20&1 ((1’1 - WTO!Q) IOg (

where oy = W, C;Wr and ap = W CF + W pCp p.

The boundary condition Wyt = W; at X = 0 has been imposed in deriving
(2.98). By solving (2.98) numerically, the solution W;"(X) may be continued
smoothly from X = 0 to X = 1. This continuation procedure requires special
care in its numerical implementation since, for a given value of X, (2.98) may
have multiple roots for W;'; it is, however, a straightforward matter to determine

the physically meaningful root that yields a smooth function Wy (X).

Since it is not possible to write Wi and C§i explicitly, it is not possible to
find explicit analytical expressions for the higher-order corrections Wit and F*.
However, the remaining ordinary differential equations (2.66)—(2.69) may be in-
tegrated numerically. (For counter-flow we obtain a two-point boundary value

problem, and it is necessary to use a technique such as shooting.)

Flow rate and concentration functions, W* and C*, are plotted in Figure 2.8
for both co- and counter-flow. Note that in this co-flow regime with purely os-
motic flux at the membrane, both the flow rates W= and the concentrations C*
have nearly equilibrated at X = 1 (and would more nearly do so if the mem-
brane were extended); when other transport mechanisms across the membrane

are incorporated, as we consider later, this is no longer true.

2.5.5 (General membrane properties

The three transport mechanisms UF, DF and OS can be combined in the math-

ematical model in many different ways, with either strong or weak contributions
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Figure 2.8: Flow rate and concentration plots with only osmotic solvent flux
(Kut =0, K4t = 0, Ko = 1) through the membrane. The left-hand pair of plots
correspond to co-flow; the right-hand pair to counter-flow. The dotted lines show
the (linear) solution obtained by assuming Kos = €K, is small, the dashed lines
show the asymptotic solution with Ko = Koo = O(1), and the solid lines show

the corresponding full numerical solution.

2.51 2r

L.5f

0.5 : . 1

Figure 2.9: Flow rate and concentration plots with ultrafiltrative and diffusive
fluxes occurring together (K = 0.02, K4¢ = 1, K,s = 0) for co-flow. Dashed and
solid lines correspond to the O(1)-permeability asymptotic solution, and the full

numerical solution, respectively.
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Figure 2.10: Flow rate and concentration plots with ultrafiltrative and osmotic
fluxes occurring together (Ky = 0.02, K4t = 0, K5 = 1) for co-flow. Dashed and
solid lines correspond to the O(1)-permeability asymptotic solution, and the full

numerical solution, respectively.
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Figure 2.11: Flow rate and concentration plots with diffusive and osmotic trans-
port occurring together (Ky = 0, K4 = 1, Kos = 1) for co-flow. Dashed and
solid lines correspond to the O(1)-permeability asymptotic solution, and the full

numerical solution, respectively.
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from each transport type (though not all these regimes may arise in biological
contexts). As can be seen from Figures 2.6-2.8, the linear solutions found by
assuming small, O(¢) permeabilities do not correctly capture the form of the true
solutions, whereas the more involved asymptotic analyses with O(1) permeabili-
ties agree better. This is also apparent in Figures 2.9, 2.10 and 2.11 which show

co-flow solutions with combinations of UF, DF and OS.

In Figure 2.9 with UF and DF fluxes it can be seen that for small X, near the
channel inlet, the solution is diffusion dominated (cf. Figure 2.7); then for larger
X ultrafiltration has a greater influence on the ultimate solute concentrations at

the exit from the channels (cf. Figure 2.6).

Ultrafiltrative and osmotic fluxes compete with each other in Figure 2.10; here
the flow rates in the + and — channels tend to distinct values at the channel
exits. This is in contrast to the situation with OS only (in Figure 2.8) where the

flow rates equilibrate.

In Figure 2.11 the flow rates and concentrations are shown for diffusive and os-
motic transport through the membrane. Here the two transport mechanisms
compete, with solute and solvent driven in opposite directions across the mem-
brane. The concentrations equilibrate relatively quickly, and this attenuates the
osmotic flux, so that the flow rates are bounded away from each other as X be-
comes larger (again in contrast to Figure 2.8, where the flow rates come closer to

convergence).

Later, in Section 2.7.1, we discuss the effect of coupling together UF, DF and OS
on overall solute and solvent removal rates. In the next section we describe how

these fluxes are calculated from the asymptotic solutions described above.
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2.6 Calculation of flux

2.6.1 General considerations

The total fluxes Qsolute and Qsolvent Of solute and solvent through the membrane

are of physiological interest, and are defined by

1
Qsolute = /OJsolute dX; (299)

1
Qsolvent = /) Jsolvent dX. (2.100)

Although we already have expressions for Jyoiute and Jsolvent, defined in (2.36) and
(2.37), we can avoid explicit evaluation of the integrals in (2.99) and (2.100) by

noting the following conservation arguments.

We begin by considering the flux of solvent. According to (2.26), the velocity

field (U, V) is divergence free and so we can use the divergence theorem to write
f (U, V)-ndS =0, (2.101)
a9

where 0f) is the perimeter of the + channel, and n is the unit outward normal
vector to the 4+ channel. By expanding this integral and using the symmetry
V*ly=1 = =V |y, it is easily shown that

X=1

Qsolvens = 5 [W7] (2.102)

X=0"
We can perform a similar procedure with the advection—diffusion equation (2.27)
to obtain an expression for Qgomte- By integrating (2.27) over the area of the
+ channel, using the continuity equation (2.26), and the symmetries V' |y_; =

—V*|y—o and C"|y—; = C"|y—y, it can be shown that

X=1

Qsolute = %/01 [U+C+] dY. (2103)

X=0

This provides a particularly convenient expression for Qsute, Since we have al-

ready derived an expression, (2.76), for this integral.
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2.6.2 Special case calculations of the flux

If the membrane permeability properties admit explicit solutions for the functions
Wi, C5, Witand F* then we can substitute these into (2.102) and (2.103) to
obtain explicit expressions for the total solute and solvent fluxes, as we now

describe.

In Section 2.5.3 we calculated the solution with strong diffusion and weak ul-
trafiltration and osmosis; substitution of the co- and counter-flow solutions in
(2.102) and (2.103) yields general flux expressions, but these are too cumbersome
to present here. In the case of strong diffusion only, there is a flux of solute (but

Qsolvent = 0), given for co-flow by

Q = lWer—M (exp(—Aq) — 1)
solute PRAS A W[_,F + WE d
+ XK (14 H)(Cf — Cp) exp(—Xa), (2.104)
and for counter-flow by
1 wiwy b e
Qsolute = §W(1 —(Cf = Cg) + O(e), (2.105)

where we recall from Section 2.5.3 that A\ = 2Ka(W/ + W)/ (Wi W;), Mg =
2Kapo(W; + Wg)/(WiW5) and v = exp(Aa). The O(e) correction term in
(2.105) is algebraically cumbersome and not presented here. Variation of Qgolyte
(and the other fluxes calculated below) with the various model parameters is

discussed in Section 2.7.

For strong ultrafiltration only, the solute flux is zero and the solvent flux is given

by

1
Qsolvent = 3 (al (cosh A, — 1) 4+ agsinh A, + ] le3> , (2.106)

with aq, ag, 51 and A, as defined in Section 2.5.2.

In the case of weak permeabilities only (Kyp = Kato = Koso = 0), the solute and

solvent fluxes are given by

Qsolute = —eKgp (CZ - C[_,); (2107)
Qsolvent =  €Kup {6(W[_f— - WE/H?’) - (P[_J— - Pg)}
+eKos1 (CF — Cf) (2.108)
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for co-flow and by

Qsolute - _Cdel (CZ— - C}_z): (2109)
Quotvent = €luny {6(W] + Wy /H?) — (P — Pp)}
+ eKos1 (CF — C) (2.110)

for counter-flow. Thus for a combination of weak transport mechanisms the solute
and solvent fluxes are a linear superposition of the appropriate individual fluxes,

so that the processes do not interact at this order.

For strong diffusion coupled with weak osmosis, the solute flux can be calculated
explicitly but is too complicated to state here. The solvent flux for co-flow is

1 Kost Wiwg
2 Kago Wi+ W,

(CFH=Cr) (1 —exp(—\4)) , (2.111)

Qsolvent =

while for counter-flow the flux is

| Ko WiWg
Qsolvent = —35¢ ¥ -
deo WL + ’}’WR

(Cf —Cr)1 =7). (2.112)

Expressions for the solute flux when weak ultrafiltration is coupled to strong
diffusion can be calculated but they are also too unwieldy to present here. The
solute motion in this case has no influence on the solvent flux, so that it is still

given by (2.108) and (2.110).

While other combinations of weak and strong transport mechanisms can, in prin-
ciple, be studied, it is not always possible to construct explicit expressions for the
corresponding fluxes; in such cases fluxes can be estimated by substituting nu-

merical calculations of W&, Cif, Wi and F* into equations (2.102) and (2.103).

2.6.3 Large-permeability flux limits

In this section we derive explicit expressions for the limiting values of the total
solute and solvent fluxes when the membrane is highly permeable (through one

of the three mechanisms UF, DF and OS).

As the ultrafiltrative membrane permeability increases, the physical limit to the

flux of solvent is the flow rate of fluid into the channel that is being drained. As
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we have discussed in Section 2.5.2 our model assumptions break down before this

extreme is reached.

With only diffusive and osmotic fluxes, expressions for the large-permeability
solute and solvent fluxes can be found without solving the full problem. Consider
the boundary condition (2.36) in the limit K4 — 0o0. In a physically well behaved
system, where the solute flux remains finite, it must be the case that C* and
C~ are (approximately) equal immediately either side of the membrane. Using
this fact in combination with simple solute conservation arguments and the inlet
conditions, it is straightforward to show that the large-permeability solute flux

for co-flow is

lim Quue = LW L= Cr (2.113)
K00 solute 2 L L WE— + WE 3 .
and for counter-flow is
lim Qgolute = —%Wf (Ct = Cg). (2.114)

Kaf—00

These expressions agree with the diffusive solute fluxes (2.104) and (2.105) when
the limit K4 — oo is taken. If we now take the inlet solute concentrations in
the lower channel (C, and C;) to be the same in the two cases, then the ratio
of the counter-flow limit (2.114) to the co-flow limit (2.113) is 1 + W, /W[ > 1,
demonstrating that the maximum flux achievable is always greater in a counter-

flow system [74].

Applying similar considerations to (2.37), we find that in the limit K, — oo the

osmotic solvent fluxes are

ct—cC;
. _ vyt — L L
i Gsorvens = 3 W W, W/ Ccr+w,C; (2.115)
and
lim  Qsovens = Wi (CF/Cr — 1), (2.116)

Kos—00
for co- and counter-flow, respectively. Again, taking the same inlet concentrations
in the two cases, we find that the ratio of these quantities is 1+W; Cf /(W Cy) >

1 so the maximum flux achievable is always greater in a counter-flow system [74].
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2.7 Effects of changing various parameters

In this section we investigate the physiologically important effects on the total
solute and solvent fluxes (Qsolute and Qsolvent) Of varying the model parameters.
We begin by examining the effects of changing the three membrane permeabilities
(Kut, Kar and K); later we discuss effects of changes in dialyser geometry and

the fluid inlet conditions.

2.7.1 Effects of changes in permeability

We have calculated the relationships between solute and solvent flux and the ul-
trafiltrative, diffusive and osmotic membrane permeabilities in Section 2.6. These

variations are plotted in Figures 2.12, 2.13 and 2.14.

Figure 2.12 shows that the ultrafiltrative flux does not depend on whether there is
a co- or counter-flow regime in the small- K¢ limit; however, as the ultrafiltration
permeability is increased, the counter-flow flux becomes significantly larger than
that for co-flow. In Figures 2.13 and 2.14 we see that in the small-permeability
limits the diffusive and osmotic fluxes also do not depend on whether there is a
co- or counter-flow regime; again for larger permeabilities the counter-flow fluxes
are significantly larger than for co-flow. It is worth noting that the leading-order
asymptotic flux predictions, corresponding to a well-mixed analysis [74], always
overestimate the diffusive and osmotic fluxes, while the corrected O(€®) + O(e')

fluxes presented here agree significantly better with the numerical predictions.

Of much greater physiological interest is the variation of solute and solvent fluxes
when a combination of ultrafiltration, diffusion and osmosis occur together. Using
numerical solutions to the asymptotic problem, we have plotted in Figures 2.15,
2.16 and 2.17 the flux variation with combined UF/DF, UF/OS and DF/OS using

our standard co-flow® parameter values.

3We use co-flow for these simulations, rather than the more common physiological counter-
flow, because solving the ordinary differential equations (2.62)—(2.69) numerically for general
counter-flow problems would require shooting with several parameters. Although this can in

principle be done, it is a rather more sophisticated numerical approach which would not allow
such a comprehensive exploration of parameter space, given available computational resources.
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Figure 2.12: Variation of the solvent flux Qgoveny With the ultrafiltrative mem-
brane permeability K. Results for both co- and counter-flow are labelled. The
dash—dotted line shows the flux according to the small-K ;s analysis (for both
co-flow and counter-flow). The dashed line shows the flux according to the full
asymptotic analysis. Numerical calculations are represented by the solid line.
Note that there is a physical limit to this flux of —%WEL = —0.5, whereby the +

channel is emptied of solvent.
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Figure 2.13: Variation of the solute flux Qsonte With the diffusive membrane
permeability Kg4¢. Results for both co- and counter-flow are labelled. The dotted
lines show the leading-order asymptotic contribution to the flux. The dashed
lines show the asymptotic flux, with the O(e) correction included. Numerical
calculations are depicted by the solid lines. The dash—dotted lines show the flux
in the small- K4 and also the co-flow large- Ky limit. (The large-Kg4¢ counter-flow

limit of Qsolute — —0.5 is not shown.)
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Figure 2.14: Variation of the solvent flux Qsolvent With the osmotic membrane
permeability K. Results for both co- and counter-flow are labelled. The dotted
lines denote the leading-order asymptotic contribution to the flux. Dashed lines
show the asymptotic flux, with the O(e) correction included. Numerical calcu-
lations are shown by the solid lines. The dash-dotted lines show the flux in the
small-K s and the co-flow large-K s limit. (The counter-flow large-K,s limit of

Qsolvent — 0.5 is not shown.)
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Figure 2.15: Plot showing the variation of solute flux Qgoute With Ky and K¢
(with Ko = 0). All other parameters are fixed to their default co-flow values.
(Note that the solvent flux is independent of K4, and so is not shown.) Contours

of constant flux are shown beneath the surface.

Figure 2.15 shows that an ultrafiltrative solvent flux enhances the diffusive solute
flux by concentrating (diluting) the solute in the + (—) channel. The large-Ky¢
limit of Qgorute i considerably enhanced over that given by (2.104) with diffusive
flux alone. Since the solvent flux is unaffected by the motion of the solute, it is

not plotted here.

In contrast, Figure 2.16 shows that there is a competition when UF and OS occur
together, giving an overall reduction in solvent flux. Depending on the relative
sizes of K s and K, the net solvent flux can be positive or negative. In a clinical
setting it is normal for ultrafiltrative effects to dominate, resulting in a negative
flux that removes fluid from the + (blood) channel. A similar competition is
evident in Figure 2.17 between diffusive solute flux and osmotic solvent flux: here
an increase in K reduces the jump in solute concentration across the membrane
and so leads to a reduced solute flux; an increase in K4 has a similar effect on

solute concentration and so correspondingly reduces the osmotic flux.
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Figure 2.16: Plot showing the variation of solvent flux Qsoyent With Ky and Kog
(with Kgr = 0). All other parameters are fixed to their default co-flow values.
(Note that the solute flux is always zero in this regime, and so is not plotted

here.) Contours of constant flux are shown beneath the surface.

2.7.2 Effects of changes in geometry

The geometry of our simple dialyser is characterised in our dimensionless model
with just the single parameter H (the ratio of the heights of the — and + chan-
nels). For a more realistic model, based on cylindrical tubes, rather than channels,

H would characterise the packing arrangement of the blood and dialysate tubes.

We have calculated the variation of solute and solvent flux with H. In doing so,
the maximum inlet flow speed is held fixed in the — channel by choosing W /i to
be proportional to H; all other parameters are fixed at their default values. Plots
for ultrafiltrative, diffusive and osmotically-permeable membranes are shown in

Figures 2.18, 2.19 and 2.20, respectively.

For the ultrafiltration membrane results, plotted in Figure 2.18, as the — chan-
nel becomes narrower (i.e. H is decreased), any influx of solvent causes a large
increase in the channel flow speed, resulting in a more rapid pressure drop down
the channel, consistent with an increased flux. This feedback increases as H
decreases until a threshold value is reached at which the physical flux limit
Qsolvent = —%WE’ = —0.5 is met, and the + channel is completely drained. By

contrast, as H is increased, the co-flow and counter-flow problems give rise to the

49



JUIA[OS

Figure 2.17: Plots showing the variation of solute flux Qgoute and solvent flux

0). All other parameters are fixed to their

Ko (with Ky

Qsolvent with de and

Contours of constant flux are shown beneath the surfaces.

default co-flow values.
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Figure 2.18: Variation of ultrafiltrative solvent flux Qsovent With the channel
height ratio H, according to the O(1) 4+ O(¢) asymptotic solution. Counter-flow

is shown to yield a larger flux for all values of H.

same limiting value for the solvent flux. The reason for this is clear if we recall
that it is the maximum inlet flow speed that is held fixed in the lower channel
as H is varied; thus when H is large, the flow velocity near the membrane in the
— channel is small and both co-flow and counter-flow problems approach that in

which the lower channel is replaced by a large, stationary bath of fluid.

Figure 2.19 shows the variation in Qe With H when the diffusive flux (only)
is acting. This plot has several features of note. First, as indicated above, the
distinction between co-flow and counter-flow problems is lost in the limit as H —
oo. Second, for large H, as H is decreased, the solute flux |Qsolute| increases. The
reason for this trend is that, while the limit H — oo corresponds to stationary
fluid in the — channel, reducing H increases the flow speed near the membrane,
removing excess solute, thereby improving solute flux. Third, for small H, as
H is decreased, |Qsomute| decreases, simply due to the correspondingly decreasing
volume of fluid in the — channel available to remove the solute. By considering
the second and third of these points together, we see that there is an optimum
channel depth ratio, at which |Qgolute| is maximised. This optimum value of H can
be found by solving dQsoute/dH = 0 from (2.104) and (2.105) and remembering
that WE/ r o< H.
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Figure 2.19: Variation of diffusive solute flux Qsoute With the channel height ratio
H, according to the O(1) + O(e) asymptotic solution.
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Figure 2.20: Variation of osmotic solvent flux Qgovent With the channel height

ratio H, calculated using the O(1) + O(e) asymptotic solution.
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Similar behaviour is displayed in Figure 2.20 with only osmotic flux through the
membrane. The solvent flux is always larger for counter-flow than for co-flow, for
a given value of H. The small-H decay of the solvent flux is readily understood,
as follows. For small H, when the — channel contains little fluid, the effect of a
given solvent flux upon the solute concentration there is more pronounced than
when H is larger. The solute concentration in the — channel therefore quickly
rises to that in the + channel, causing further solvent flux to cease. In the limit
as H — 0 this effect is amplified so that the osmotic solvent flux decays to zero.
An argument similar to that given above for diffusive flux explains why, at large
H, the flux increases as H decreases, and hence why there is an optimum value

of H at which the osmotic flux is maximised.

2.7.3 Effects of changes in inlet conditions

When there is competition between UF, DF and OS, the behaviours of both the
solute and solvent fluxes are nontrivial. It is of clinical interest to determine
whether, for fixed values of the membrane permeability constants, it is possible
to achieve specific values for the two fluxes simply by adjusting the flow inlet
conditions. In a clinical setting the solute composition of the blood is fixed, and
it is not wise to alter the flow rate of blood from the patient, since this can cause
additional discomfort (although the blood flow rate may vary between patients).
However, the flow rate W, and solute concentration C} of the dialysate may be
varied, in vivo, by controlling the dialysate pump speed and the dilution ratio of

the pure water added to the dialysate concentrate, respectively.

Using a co-flow regime, and three different sets of membrane permeability con-
stants, we have plotted in Figures 2.21, 2.22 and 2.23 the variation of solute and

solvent fluxes with the inlet parameters W, and C, .

Figure 2.21 shows the variation of solute flux for a membrane allowing ultrafil-
trative and diffusive fluxes only. (The solvent flux is not plotted since it does not
vary with C;.) It can be seen that if the solvent flow rate is low and the solute
concentration high in the — channel then the solute flux is positive (into the +

channel), while faster flow and lower solute concentration result in solute being
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Figure 2.21: Plot showing the variation of Qgoute With the — channel inlet con-
ditions W, and C, when ultrafiltration and diffusion occur (Ky = 0.05 and
K4 = 1) but osmosis is neglected (Kos = 0). All other parameters are fixed
to their default co-flow values in (2.39). Contours of constant flux are shown

beneath the surface.

removed from the + channel.

Figure 2.22 shows the corresponding solvent flux for a membrane allowing ultra-
filtration and osmosis only. In this case the solute flux is zero. The total solvent
flux Qsorvent can be either positive or negative depending on the — channel inlet

conditions.

When the permeable membrane allows simultaneous diffusive and osmotic fluxes
only, as shown in Figure 2.23, both Qsoute and Qsolvent €xhibit variation with W,
and C . These fluxes are in fact proportional to one another (as is evident from
the boundary conditions (2.36) and (2.37)) so that the contours shown in Figure
2.23 are the same shape for both the solute and solvent fluxes. The fluxes change
sign as the inlet conditions are varied. With C; < Cj, diffusive solute flux is
negative and osmotic solvent flux is positive, whilst the situation is reversed when
C; > Cf. The magnitudes of these fluxes can be increased by increasing the

flow rate W .

The next stage in investigating selection of solute and solvent fluxes is to consider
dialysers where UF, DF and OS occur simultaneously. Understanding the extra

interactions in these cases may allow a wide range of desired solute and solvent
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Figure 2.22: Plot showing the variation of solvent flux Qsovent With W, and C,
when ultrafiltration and osmosis occur (Ky = 0.05 and K,s = 1) but solute
diffusion is neglected (K4 = 0). All other parameters are fixed to their default

co-flow values in (2.39). Contours of constant flux are shown beneath the surface.

fluxes to be achieved. A systematic inversion of membrane-parameter—flux in-
formation would then reveal the necessary values of the dialyser properties and
inlet parameters needed to attain any given pair of solute and solvent fluxes for a
clinical dialysis session. However, the many parameters involved in such a study

prohibit a thorough discussion here.

2.8 Conclusions

Kidneys remove excess (or waste) solutes and water from the blood. Artificial
dialysis machines perform this function for humans with kidney failure or loss.
Patient dialysis sessions can be profiled, in the grossest sense, by choosing the
correct dialyser fibre-bundle for a patient’s needs. Extreme cases are the removal
of water only (an ultrafiltrative dialyser) or removal of blood solutes only (a
diffusive dialyser), though it would be normal to require a combination of both.
Further, more sophisticated, control is achieved by using a computer to monitor
patient solute and fluid levels, and adjusting the composition and flow rate of the

dialysate fluid to ‘optimise’ removal rates.

These methods of profiling clinical dialysis sessions are widely used, based on
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Figure 2.23: Plots showing the variation of Qgoute and Qsorvent With W, and Cp
when solute diffusion (K4 = 1) and osmotic solvent flux (Kys = 1) occur but
ultrafiltration is neglected (K, = 0). All other parameters are fixed to their
default co-flow values in (2.39). Contours of constant flux are shown beneath the

surfaces. Note the different orientations of the axes in the two plots, to improve

visualisation of the surface plots.
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empirical data, but they are not fully understood. Improvements in dialyser
design and performance can conceivably be made if we improve our understanding
of the links between machine set-up and usage on the one hand and the removal
rate of substances from the patient on the other. While we have not attempted to
model interactions with the patient’s body, the model developed in this chapter
permits an understanding of the interactions that occur in a dialysis machine

itself.

Using realistic values for the properties of a dialyser fibre-bundle, we were able
to identify two small model parameters, one geometrical (related to the aspect
ratio of the fibres) and the other related to the ratio of advective and cross-fibre
diffusive fluxes of solute. A corresponding asymptotic solution for the model was
constructed in Section 2.5 and used in Section 2.6 to calculate the physiologically
important overall solute and solvent transfer rates between the channels carrying

blood and dialysate.

Plots of flux versus membrane permeability in Section 2.7.1 show that spatially-
averaged (well-mixed) one-dimensional analyses consistently overestimate the re-
moval rate of solute and solvent for the cases of diffusion and osmosis, whereas
the asymptotic theory developed here gives improved estimates of these fluxes
(though the size of the discrepancy depends on the model parameters and may
be quite small for clinical values). In addition we have confirmed that counter-
flow regimes allow greater fluxes for a given geometry, even when transport types

are combined.

Of particular interest is the effect of combining pairs of membrane properties, so
that transport can occur by a combination of ultrafiltration, diffusion and osmosis.
Non-trivial interactions have been shown to occur and competition between the
processes can either attenuate or enhance solute and solvent fluxes compared with
values when the processes occur independently. Such behaviour is not evident in

existing lumped-parameter, spatially-averaged models [15, 16].

Our investigation into the variation of flux with dialyser geometry (Section 2.7.2)
showed that the relative widths of the channels in a parallel-plate dialyser influ-

ence the rates of solute and fluid transport between a patient’s blood and the
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dialysate fluid. Just as we predict an optimum ratio of channel widths (when
considering diffusive and osmotic fluxes), we anticipate that there will exist some
corresponding optimum packing arrangement for the fibres in a clinical dialyser

(see Figure 1.1). Further studies of this nature could aid dialyser design.

Finally in Section 2.7.3 we investigated the dependence of fluxes on parameters
that would be variable in a clinical situation. We found that independent variation
of solute and solvent flux is possible by varying the permeability properties of the
membrane. Future studies along similar lines could act as the basis for solving
the inverse problem of selecting dialyser parameters to achieve desired solute and
solvent removal rates. (Obviously, the inverse problem would be a significant
challenge for a general membrane where ultrafiltration, diffusion and osmosis are

all present.)

There are many ways in which our model can be generalised to accommodate
additional features of kidney dialysis. For example, a multiple-species model could
account for interactions between different blood solutes (e.g. albumin, calcium,
creatinine, glucose, phosphate, potassium, sodium and urea). A complicated
coupling between the solute motions would result from the osmotic flux of water
taking place in response to the total osmotic potential, combined with different
diffusive permeabilities of the membrane to individual solutes [36]. Our model
could also be adapted to account for non-Newtonian flow of blood in small scale

structures, and the different rheology of dialysate and blood [55].

Other techniques can be used to provide additional flexibility in solving the profil-
ing problem. One such method is to inject supplementary solutes of large molec-
ular weight into the dialysate to increase its osmotic potential, thus enhancing
the osmotic flux of water from blood into the dialysate. If the solute molecular
size is sufficiently large, it is prevented from escaping through the microscopic
membrane pores into the blood. A generalised multiple-solute-species analysis
of the kind presented here would allow this to be studied. Ultimately, such an
analysis could then be coupled with a patient-dialyser model, providing a safe,
accurate and flexible way of controlling dialysers, improving dialysis speed whilst

maximising patient comfort.
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Chapter 3

Mixing measures for a
two-dimensional chaotic Stokes

flow

3.1 Introduction

Achieving effective fluid mixing is important in many areas, both in industry (e.g.
food production [120] or controllable manufacture of polymer blends and com-
posites [154]) and in biological scenarios (e.g. ventilation [21, 117], digestion [90],
drug manufacture [133] and dentistry [33]). In this chapter we investigate a range
of common measures used to assess the quality of fluid mixing. In doing so it is
useful to be aware of a formal distinction between the processes of stirring and
mixing: the latter refers to homogenising a scalar concentration through diffu-
sion, whilst stirring refers to the process of advecting a fluid in order to increase
the scalar concentration gradient, thereby enhancing the rate of homogenisation
by mixing [42]. In the remaining chapters of this thesis we are mainly interested
in the advective stirring process, however, to avoid monotonous prose, we refer

to this process as ‘stirring’ or ‘mixing’ interchangeably.

On an industrial scale, the stirring necessary to achieve good mixing can be enor-

mously expensive, and this justifies the many recent mathematical, numerical
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and experimental investigations into the quantification and optimisation of the
stirring/mixing process (see, e.g. [113, 153]). Of course, there are many prac-
tical and economic constraints that may be placed on the mixer (e.g. speed of
operation, expense and energy usage), and many different criteria by which the
resulting mixtures may be judged (e.g. uniformity of mixing, and yield of a chem-

ical reaction), depending on the application.

Laminar mixing is desirable in many applications, such as polymer production
and dentistry, where turbulent mixing is either infeasible due to the high viscosity
of the working fluid, or damaging to the fluids being mixed. Further, it is now
well established that even simple mixing devices, capable of generating Stokes
flows (slow flows) with chaotic Lagrangian particle paths, can mix viscous fluids
effectively [9, 10]. Stokes flow mixing is also common in many biological scenar-
ios, such as the small scale lung airways [59], or blood flow in capillaries. We
concentrate on mixing in the Stokes flow regime in the remainder of this thesis

(we also consider inviscid flow in Chapter 4).

Throughout this chapter we consider an idealised two-dimensional mixer [47], in
which flow is chaotic, but laminar; the device approximates the mixing of a tank
of fluid with a long stick of circular cross-section. This serves as an idealisation
of many industrial planetary mixing devices, in which a vat of fluid is stirred by
a gyrating impeller (see Figure 1.3). Later, in Chapter 4, we study a generalised

device with m > 1 stirring sticks.

We examine, in detail, the effectiveness of a large number of ‘stirring protocols’,
which correspond to varying both the path of the stick through the tank and
the stick diameter, and do so according to a number of different measures. The
central question that we aim to answer is whether one protocol or a small subset
of protocols can be identified as somehow mixing ‘best’ across a range of mixing
measures. In order to make our task feasible, we have required that all mixing

measures be readily implementable in automatic fashion in a computer code.

We are concerned here with computational mixing measures rather than formal,
mathematical ones (see, e.g. [34]). A variety of such tools exist for systematically

measuring mixing quality, almost all of which are based on the Lagrangian ap-

60



proach of tracking passive, non-diffusive, inertia-free tracer particles in the flow.

The prediction of mixing quality directly from the Eulerian velocity field, and
the relationship between Eulerian and Lagrangian measures has been discussed
by Yannacopoulos et al. [151] and King et al. [75]. In two model three-dimensional
flows, these papers show a proportionality between an effective axial diffusion co-
efficient (calculable by Lagrangian particle tracking) and two functions of the
Eulerian velocity field related to flow symmetries. Whether the results may be
applied more generally to other flows, with different symmetries, has yet to be
demonstrated. It is an important question, since it often easier to compute quan-
tities directly from the Eulerian velocity field than to perform expensive particle

advection simulations.

Broadly speaking, mixing measures may be classified as dynamical-systems, sta-
tistical or physical measures; while such a classification is useful for some pur-
poses, it is of course rather arbitrary. The first class of measures that we study
relies on the observation that, since the mixing device operates in time-periodic
fashion, it is convenient to work with the mapping that takes tracer particles
to their new locations after one period of operation of the mixing device. The
dynamical-systems techniques that we use describe certain features of this map-
ping, and include: iterated mappings [11, 62, 65, 72]; periodic-point, manifold
and symmetry analysis [52, 53, 56, 72, 83, 88, 95|, and Liapunov-exponent cal-
culation [64, 65, 106]. The second set of measures that we use are concerned
with the end-product of a sequence of mappings, rather than with individual
mappings themselves. These statistical techniques include: Kolmogorov [89] and
mixing-variance [60, 62, 126] tests of the uniformity of the mixing; diffusive return
percentage tests [12], indicating the degree to which the mixing can be undone,
and intermaterial area density [58, 106, 103, 101], related to the production of
thin striations. The third, and final, class of measures that we consider are more
physically-based, and include: the energy input required to achieve a given state
of mixing [83, 111, 122], the growth rate of an interface across which mixing can

take place [93], and the residence time of tracer in the mixer [72].

We have not attempted to incorporate every mixing measure in the literature into

the present study. Other common mixing measures that are not included in our
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simulations include the persistence of strain [40], related to material stretching,
and the scale of segregation [84], related to the sizes of structures of the mixture.
Some other significant measures also lie beyond the scope of the present work,
for example, the yield of a chemical reaction taking place in the flow, which for
a multi-stage reaction is known to be significantly affected by the details of the

mixing [28, 30, 96, 104, 105, 113, 130].

In previous evaluations of the mixing effectiveness of Stokes flow devices, a com-
mon approach has been to apply a single measure to a given set of stirring proto-
cols, in order to find the optimum protocol. A more refined strategy is to apply a
‘sieve’ [66], whereby a succession of ever more sophisticated (and computationally
expensive) measures are used, at each stage refining the choice of protocol, until
an optimum protocol or set of protocols is established. There is no suggestion
in [66] that any such optimum protocol need exist; nevertheless, the approach
requires that different mixing measures broadly agree on their ranking of mixing
quality. This latter issue, while crucial to the ‘sieve’ approach, seems to have re-
ceived little direct attention in the literature; it is, however, a significant concern
here. We investigate the extent to which different mixing measures agree, and in
particular whether such agreements can lead to a saving in computational time,
with a cheap measure serving as a substitute for a more expensive one. We also
highlight the discrepancies that may exist between mixing measures, since these
indicate the difficulties inherent in simultaneous optimisation of different mixing

properties, and hence in the implementation of ‘sieving’.

Since this is, to our knowledge, the first systematic study of the correlations
between a range of different mixing measures, we focus on a flow where the exact
velocity field is known. This provides some significant computational advantages
over a flow for which the velocity field itself must be computed at each time step,
in terms of both accuracy and CPU time. It also allows us to evaluate thoroughly

a large number of stirring protocols.

The mixer used here is the batch stirring device (BSD;) [47], whose velocity field

is expressible in closed form involving finitely many terms.! The BSD; is nearly

'In [47] the BSD; is called the ‘translating, rotating mixer (TRM)’. We adopt the name

BSD; in this thesis for consistency with Chapter 4, where we consider a generalised BSD,,,
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Dynamical-systems measures Iterated mapping IM

Liapunov exponent LE

Statistical measures Diffusive deviation DD
Intermaterial density ID

Kolmogorov statistic KS

Lamellar widths LW
Mixing variance MV
Physical measures Energy usage EU
Interface stretch IS
Residence time RT

Table 3.1: The mixing measures used in this chapter, with the abbreviations used

in discussions.

unique among Stokes flow mixing devices in having the desirable feature of a
geometry that changes with time. There are two notable exceptions to the rule of
fixed geometry. One is the baffled cavity mixer [67] in which flow in a rectangular
cavity is driven by sliding motion of one of the walls, while the geometry of the
flow domain changes due to time-varying intrusion of baffles. A second variable-
geometry device is the cavity transfer mixer [149], comprising two cavities, where
flow is driven by sliding motion of one wall, but a time variation in geometry is

introduced by relative sliding of the two cavities.

The BSD; is introduced in Section 3.2, and a set of candidate stirring protocols
is constructed by independently varying three of the mixer parameters. There
follows in Section 3.3 a description of each of the mixing measures that we use.
However, it should be emphasised that this chapter is not intended as a review of
mixing measures, and so these descriptions are necessarily selective; we present
sufficient detail to justify the measures and to explain how they are computed in
our particular example. Of course, we recognise that the various measures each
involve some arbitrariness in their implementation. In order to provide a reference
point for later discussion and to preclude confusion due to the abundance of

different measures, we summarise the measures used in Table 3.1. Calculations of

studied by Boyland, Aref and Stremler [20].
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Figure 3.1: The batch stirring device (BSD;) [47]. The coordinate system is

chosen such that the origin (z,y) = (0, 0) lies on the outer cylinder axis.

the various mixing measures are described in Section 3.4. Finally, in Section 3.5,
we draw some, necessarily tentative, conclusions for ‘optimal’ selection of the

stirring protocol.

3.2 Stirring protocols for the BSD,

The batch stirring device (BSD;) is shown in Figure 3.1. This two-dimensional
mixer consists of two parallel circular cylinders, one inside the other. The annular
region between the two cylinders is filled with a viscous fluid, and mixing is
achieved by translating the inner cylinder through the fluid domain, so mimicking
the intuitive method of stirring a tank of fluid using a stick (the outer cylinder is
the ‘tank’; the inner cylinder a ‘stick’). Although in principle more complex flow
regimes can be generated by additionally allowing the inner and outer cylinders
to rotate about their respective axes [47], this additional feature is not considered

here, in the interests of limiting the number of parameters to be investigated.

The BSD; is a generalisation of the well-studied eccentric annular mixer (EAM),
in which the inner cylinder does not translate, but fluid motion is driven only
by rotation of the inner and/or outer cylinders about their respective axes [11,
12, 111, 145]. The exact velocity field for the BSD; in the Stokes flow regime
has been presented by Finn and Cox [47]; it is readily implemented for numerical

simulations, and receives no further discussion here. The availability of an exact
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expression for the velocity field significantly improves our ability accurately to
simulate the mixing, at modest computational expense. The more difficult prob-
lem that arises when the velocity field is not known a priori does not lend itself
to such a detailed study as presented here, with current computing capabilities.
A further benefit arising from our knowledge of the exact velocity field is that
the power input required to drive the BSD; can also be determined exactly [47];
such information is clearly of great importance in an industrial setting, where it

provides a constraint on the mixing, and it receives detailed discussion later.

3.2.1 The 252 stirring protocols

A stirring protocol is represented by the closed curve (X (t),Y(t)) along which
the axis of the inner cylinder moves, the motion repeating with period 7. The

protocols that we consider correspond to cycloids of the form

(X,Y) = (ry cos(2mt") + (0.8 — r1) cos(2wnt'), r1 sin(27t') + (0.8 — 1) sin(27nt'))a,

(3.1)
where t' = t/T, a is the radius of the outer cylinder, and the parameters r; and
n can be varied to generate different paths for the inner cylinder. In addition, we
consider three different values for the radius ratio ai,/a, where a;, is the radius
of the inner cylinder:

aim/a:  0.05,0.10,0.15. (3.2)

Figure 3.2 shows the 84 inner-cylinder paths considered in this chapter. They

were obtained by choosing r; and n from the following lists:
ri: o 0.1,0.2,0.3,0.4,0.5,0.6,0.7, (3.3)
n: —7,-6,-5,-4,-3,-2,2,3,4,5,6,7. (3.4)
We note here the significance of the parameter n, in that each cycloid has |n —1|-

th order rotational symmetry. By taking all possible combinations from (3.2),

(3.3) and (3.4), we thus generate 252 distinct protocols.

For brevity we use the notation P (3, j, k) to index the protocols, where i =1,2,3
correspond, respectively, to the values of a;,/a given in (3.2), j = 1,...,7 cor-

respond, respectively, to the values of r; given in (3.3) and £ = 1,...,12 corre-
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spond, respectively, to the values of n given in (3.4). For example, the protocol

with ai, = 0.15a, 11 = 0.2 and n =4 is P(3,2,9).

3.3 Mixing measures

In this section we examine some standard mixing measures and describe the
ten quantities that will be used to evaluate the mixing achieved by the proto-
cols introduced in Section 3.2. With two exceptions, the measures are based on

tracking the paths of passive, non-diffusive, inertia-less particles, whose positions

(x(t),y(t)) satisfy
& =u(z,y,t), v=v(z,y,t), (3.5)

where (u,v) is the fluid velocity. (In the two remaining cases, the particles also
diffuse, so that their advection according to (3.5) is supplemented by a random
component of motion, described below in Section 3.3.4.) Depending on the mix-
ing measure, the particles may initially be placed on a regular grid or form the
interface to a blob: the four initial conditions that we use are a coarse grid, a fine
grid, the interface to a rectangular blob and a linear (and hence infinitely thin)
‘blob’ (see Figure 3.3). The coarse grid is a regular 10 x 10 array of particles,
occupying the right rectangle whose lower-left hand corner is at (—0.7a, —0.7a)
and whose upper-right hand corner is at (0.6a,0.7a), where the xy-origin is on
the axis of the outer cylinder; the fine grid is a regular 100 x 100 array of parti-
cles, occupying the same region. As we explain below, the grid that is adopted
depends largely on the computational demands of the particular mixing measure.
The rectangular blob interface is defined by placing 100 equally spaced particles
along each side of the rectangle used for the coarse and fine grids. Finally, an
infinitely thin linear ‘blob’ is defined by placing 10000 equally spaced particles
along the right-hand edge of the same rectangle. The sizes and initial locations
of the grids and blobs have been chosen so that they are always caught in the
path of the inner cylinder.

We now describe each of the mixing measures in turn.
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Figure 3.2: Motion of the inner cylinder axis for the stirring protocols P(x, j, k).
The values of j and k are shown for each protocol. (The value of i is irrelevant
for this diagram since it reflects the radius of the inner cylinder, not shown here,

and does not influence its path.)
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Figure 3.3: The reference initial conditions used to compute the various mixing
measures. The three concentric circles indicate the three inner cylinder radii used
in this investigation. From left to right are shown the 10 x 10 coarse grid, the

100 x 100 fine grid, the rectangular blob and the linear ‘blob’.

3.3.1 Dynamical-systems measures

It is convenient, when evaluating the various stirring protocols, to consider instead
of the flow (3.5) the period-one mapping M(P) : (x¢, yo) — (z1,%1), which maps
the position (xg, o) of a particle at time ¢t = 0 to its position (x1,y;) one period
later, at time ¢ = T. Although the velocity field is known exactly, this mapping
requires numerical computation, and is not available in closed form. In view
of the periodic nature of the BSD; motion, M(P) also maps the position of a
particle at ¢ = mT to its position at t = (m+1)T, for any integer m. The iterated
mapping and Liapunov exponent measures that we describe below are defined in

terms of M(P).

Iterated mapping measure of chaoticity (IM)

The simplest and most common dynamical systems tool for evaluating mixing
quality is the iterated mapping plot, or Poincaré section [11, 62, 65, 72]. This is
constructed by taking a small number of tracer particles (here the coarse grid,
containing 100 particles) and plotting their positions under repeated application
of the mapping M, up to M™, for some large integer m (here 1023). Regions
of poor mixing are revealed as islands of integrable quasi-periodic motion, which
surround the elliptic periodic points of M [111]. Stretching of fluid elements is

slow (algebraic in time) in these islands, and no fluid exchange can take place
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across island boundaries, in the absence of diffusion. By contrast, effective mixing
takes place in the chaotic sea, with exponential-in-time separation of initially
neighbouring particles. Boundaries between islands and chaotic sea may have
an intricate fractal structure, containing infinitely many smaller islands on all
spatial scales. This structural complexity gives rise to computational difficulties
in distinguishing between genuinely chaotic and merely quasi-periodic particle
paths involving long periods. However, at least informally, iterated mappings
provide a good visual identification of the degree to which the stirring domain is

chaotic.

To systematise the evaluation of the degree of chaoticity in the iterated map-
ping, we proceed as follows. For a given protocol P we track the motion of
the coarse grid of particles, recording the particle positions under the appli-
cation of M™ for m = 0,...,1023 (where m = 0 corresponds to the initial
locations of the particles). This procedure generates 100 times-series of the
form {(zo,0), (z1,¥1),-- -, (1023, Y1023) }, Wwhose periodicity, quasi-periodicity or
chaoticity can be determined by taking the discrete Fourier transform (DFT) of
the time series of the x- and y-components (see Figure 3.4). If the DFT appears
noisy (i.e. if the peak amplitude in the DFT is comparable in size to the mean
amplitude) then we declare the corresponding particle path to be chaotic. If, on
the other hand, an amplitude peak exists in the DF'T that is significantly greater
than the mean (we use a factor of 20 as our threshold ratio) then the correspond-
ing particle path is declared quasi-periodic (exceptionally it may be periodic).
Of course, points may be mis-diagnosed by this procedure; in particular, quasi-
periodic paths involving very long periods may be mistakenly declared chaotic,

but for practical purposes we do not concern ourselves with such fine distinctions.

For a given protocol, we define the iterated mapping mixing measure IM to be
the proportion of particles on the coarse grid that give rise to chaotic trajectories,
as determined above. This measure provides an estimate of the percentage area
of the BSD; domain that experiences chaotic advection; high values correspond

to good mixing.
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Figure 3.4: Detecting periodicity using a DFT. In the upper sequence of plots,
a quasiperiodic trajectory gives rise to a DFT with well defined, sharp peaks.
In the lower sequence, by contrast, an apparently chaotic trajectory yields a full

spectrum in the DFT.
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Liapunov exponent (LE)

In the chaotic sea, neighbouring particles separate exponentially in time, and a
corresponding stretching-rate exponent, or Liapunov exponent, can be defined as
follows. We first imagine placing an infinitesimal material line element de at a
point x, extending from x to & + dx; then the Liapunov exponent \ at x is

1 n d o n
A= lim limsup —; log M (= + dz) — M (w)|
NS00 gl 50 N dz|

(3.6)

Roughly speaking, an infinitesimal material line element of initial length [y in a
chaotic region will have length [, ~ lyexp(AnT) at a time nT later. If the flow
domain is globally chaotic then ergodicity implies that A is independent of the
starting position & so that a single Liapunov exponent can be used to characterise
the protocol. However, in general, we expect a spatial distribution of values of

the Liapunov exponent [124].

For the purpose of evaluating our stirring protocols, we compute the finite-time
Liapunov exponent, obtained from (3.6) by replacing oo with a moderate number
N of mappings (here N ~ 50), and using a small, but finite, line element (here
|de| ~ 107 5a), rather than an infinitesimal one (although in principle the evolu-
tion of the latter could be determined by considering the gradient flow [111]). We
compute the exponent at all points on the coarse grid and take the mean exponent,
to be our mixing measure LE; high values of LE correspond to good mixing. Of
course, material lines lying within a periodic island experience sub-exponential
stretching, and have correspondingly small finite-time Liapunov exponents; this
tends to punish those stirring protocols that give rise to large areas of (poorly
mixed) islands. Finally, we note that there are other, more sophisticated, related
mixing measures, e.g. based on the distribution of stretching values, or on Ottino’s
mixing efficiency [111], which compares local elemental stretching rates against a

theoretical upper bound for stretching, but these are not considered here.

3.3.2 Statistical measures

In contrast to the dynamical systems tools described in Section 3.3.1, statistical

mixing measures are based on the final outcome of the mixing rather than on the
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details of the evolution of tracer particles in the flow.

Mixing variance (MV)

A simple and intuitive statistical mixing measure is the mixing variance. To
motivate this measure, we note that perfect mixing would distribute material
uniformly over the entire fluid domain, so that in any partition of the domain
into regions of equal area, each region would contain an identical amount of
material, and thus the variance of the tracer distribution would be precisely zero.
Any other distribution of the same material would lead to a non-zero variance,
and so the variance of the tracer distribution gives an indication of the mixing

quality.

Specifically, we define the mixing variance as follows. For a given protocol P we
take the linear blob as an initial condition and evolve it for ten periods of the
stirring protocol, i.e. we apply the mapping M. Using the rectangular blob to
provide the corner points, we then construct a 9x9 array of equal-sized rectangles,
and compute the number of particles ultimately found in each of these rectangles.
The sample variance of these numbers is calculated, giving the mixing variance

measure MV; low values of MV are indicative of good mixing.

Kolmogorov statistic (KS)

The Kolmogorov test is an alternative measure of the difference between an actual
distribution of stirred tracer particles and a desired (usually uniform) distribu-
tion, as, for example, applied by Ling [89] to viscous flow in a rectangular domain
stirred by periodic sliding of two of the domain walls. Ling considered rectangles
of different sizes, with one corner fixed at some given point in the fluid domain,
and recorded the number of particles found in each rectangle. The maximum
deviation in this number from that expected under ideal, uniform mixing pro-
vided the mixing measure. (Under ideal, uniform mixing, any rectangle should

ultimately contain an amount of mixed material in proportion to its area.)

A similar Kolmogorov statistic may be defined for the BSD;. As with the MV
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measure introduced above, we take as initial tracer locations the linear blob
shown in Figure 3.3, and apply M!°. We then consider a large number (say,
100) of concentric circles, centred at the BSD; origin. For perfectly uniform
mixing, a circle of radius 7 should contain Nyuitorm = 72 Niota1/a® particles, where
Niotar = 10000 is the total number of particles used for the simulation. (We ignore
the presence of the inner cylinder for the sake of a simpler calculation because its
area is small compared to that of the ‘test’ circle and so has little effect on KS.)
If the actual number of particles found in a given circle is N,.ua then the scaled

deviation from uniformity is

|N uniform — N, actual |

3.7
N, total ( )

The maximum value of this quantity over the set of circles is recorded, and
provides the Kolmogorov statistic KS. As for the MV measure, small values of

KS correspond to more uniform (i.e. better) mixing.

Intermaterial interface density (ID)

When an interface between two chemical species evolves in the chaotic region
of the BSD; flow, it grows exponentially in length and rapidly becomes highly
contorted, by the well known stretching and folding mechanisms of chaotic flows.
Thin striations (or stripes) of the chemicals are formed. The way in which a
stretched interface is distributed in space is highly non-uniform [101], and the
density with which the interface occupies the flow domain varies over many orders
of magnitude. Correspondingly, it has been observed [58, 83, 101] that the distri-
bution of striation widths varies over a similarly wide range. This correspondence
is natural since the stretching of the interface in one direction is accompanied by a
compression of the striations in another, due to incompressibility of the fluid. (In
practice, the production of striations leads, through diffusion, to effective inter-
mingling of the species involved, and hence to good mixing, although, of course,
tracer particles do not diffuse in these simulations.) Therefore the uniformity
with which a material interface is distributed throughout the mixer provides a
measure of mixing quality. In keeping with previous nomenclature [101], we call

this measure the ‘intermaterial interface density’.
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We define the ID measure as follows. For each protocol, we evolve the linear
blob shown in Figure 3.3 for two periods. We take the same 9x9 array of rect-
angles as for the MV measure, and compute the length of interface contained
within each rectangle after the mixing has taken place. Since chaotic advection
causes exponential stretching of the interface, we must be careful to ensure that
the interface is at all times adequately resolved. This requires particular care,
even during just two periods of the flow. To do so, we use the dynamic par-
ticle insertion algorithm of Krasnopolskaya et al. [83] accurately to resolve the
interface into a smooth curve as it is stretched. Our method of computing the
length of interface contained within a given rectangle is then as follows: since
the interface is well resolved and the dimensions of each rectangle greatly exceed
the resolution threshold of the interface, we merely count the number of particles
used to represent the interface fragment within each rectangle, after application
of the particle insertion algorithm. This gives a reasonably accurate and easy-to-
compute approximation to the length of interface contained within the rectangle.
The intermaterial interface density ID is then the variance of the distribution of
lengths, scaled by the squared mean length of interface in each rectangle. Thus
the measure ID is concerned with the uniformity of interface distribution, rather

than with its absolute length (for that, see the interface stretch measure below).

3.3.3 Physical measures

We now describe some mixing measures which may be categorised as physically
based. Indeed, the first of these measures is not concerned with the results of
the mixing process, only with the energy input to the device. The remaining two
measures described in this section are, however, more directly concerned with

mixing quality.

Energy usage (EU)

A crucial consideration in large-scale industrial mixers is the energy expended to
achieve a certain degree of mixing. Many authors [83, 111] have examined the

energetic requirements of laminar mixing devices, sometimes using crude substi-
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tutes for energy, such as the distance moved by the boundaries that drive the
motion. For the BSD;, however, as for some other Stokes flow mixing devices, an
exact expression is available for the power input required to drive the device [47],

and so we can compute its energy requirements directly.

If we wish to minimise the energy requirements of the mixer then we need to
examine how best to vary the speed of the inner cylinder as it traces out its
prescribed path P in a given time 7. The total energy required to drive the

mixer can be written as
T
£ = pd®T? / P(s, %) dt, (3.8)
0

where p is the kinematic viscosity of the fluid and P is a dimensionless function
related to the power input [47]. Here s(¢) denotes arc length along the path
(z,y) = (X (t),Y(t)) indicated in (3.1). We wish to choose s(t) to minimise the

energy integral (3.8), subject to the constraints
s(0) =0, s(T)=A, (3.9)

where A is the inner-cylinder path length

Azﬁds.

Since the integrand in (3.8) is autonomous, it follows that £ is minimised when
the Beltrami identity

. .OP(s,3)
P _ g\
(5,8) = $=%;

is satisfied for some constant k. For Stokes flow, the power function can be

=—K (3.10)

written in the form P(s,$) = P(s)$%, where P(s) is a known function [47], and
thus (3.10) reduces to
P(s)§* = k, (3.11)

so that the motion must be carried out in such a way as to maintain a constant
power input to the device. In order to satisfy the constraints in (3.9), £ must

take the value

= ([ PeT) = ([ P

2
)
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and hence the speed of the inner cylinder for minimum-energy motion is

é:/oAmds

P(s)T

Finally, from (3.8) the minimum energy usage measure EU is given by
EU = min £ = pa’kT71. (3.12)

While EU is not itself directly a measure of the mixing quality, it is useful to
correlate the energy input with genuine mixing measures, to provide an informal

measure of mixing efficiency.

Interface stretch (IS)

An obvious physical manifestation of effective mixing is a rapid growth in the
length of a finite material interface placed in the flow. The interface stretch
exponent A, also known as topological entropy, quantifies the exponential rate
of growth of such an interface as it is stretched by the flow [83, 93]: a finite
interface of initial length ly has length [, ~ lyexp(AnT) at time nT', for large
nT'. This quantity is related conceptually to the Liapunov exponent A, although
the latter provides a measure of the local stretch, whereas the interface stretch
exponent gives a global stretching measure [4, 7]. By its nature, the interface
stretch exponent gives greater weight to regions of high stretch than does the
Liapunov exponent (because regions of locally high stretch preferentially generate
new interface precisely in regions of high stretch), and so Aiz > A [7]. We define
the interface stretch measure IS to be the final perimeter of the linear blob after
two periods of the flow. As in our calculation of ID, we are careful to maintain

adequate resolution of the growing interface.

Lamellar width variance (LW)

In many applications, mixing is accompanied by chemical reaction between the
various species. At present, even on a powerful workstation it remains a significant

computational challenge to resolve simultaneous chemical reaction, advection and
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diffusion in a two-dimensional chaotic flow. However, such simulations may be
necessary in order accurately to predict the yield of a multi-stage reaction, since
it is known that fine details of the reactant distribution can have a surprisingly
great influence on the final yield [30, 102, 153]. While an accurate simulation of
advection—diffusion-reaction in the BSD; is beyond the scope of this study, we
recognise that the statistics of the length scales that develop will influence the
progress and the yield of any multi-stage reaction that takes place in the flow, and
that the details may be highly specific to individual reaction schemes. Thus we
introduce a mixing measure based on the distribution of lamellar widths, defined
as follows. We imagine the linear blob to be the interface between two chemical
reactants. This interface is tracked for two periods of the mixer, interpolating
where necessary as with IS and ID [83]. In the course of the mixing, a large num-
ber of highly contorted striations are generated, and we measure their widths by
calculating the intersection points of the interface with the y-axis. The distance
between successive intersections gives an estimate of the lamellar widths gener-
ated by the flow. Our numerical code uses cubic interpolation [29] to generate
accurate values for the intersection points between the interface and the y-axis.
Once the lamellar widths have been found, we compute the variance of their dis-
tribution, scaled by the square of the mean lamellar width, to give the mixing
measure LW. (Whether one considers good mixing to correspond to high or low
values of LW may depend on the details of the chemical reactions imagined to

take place in the flow.)

Note that we use a straight line segment as the initial interface, whereas a closed
curve should be used to compute genuine lamellar widths. However, we find that
this consideration makes little difference to the LW measure, scaled as indicated
here; furthermore, any influence of the nature of the initial interface is mitigated

by our later presentation of the results as rankings of the various measures.

3.3.4 Effects of diffusion

Thus far we have used the term ‘mixing’ to describe what is essentially a process

of pure stirring (i.e. mechanical stretching of an interface in a laminar flow), but
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it is worthwhile, from the point of view of practical application, to consider the
combined effects of stirring and particle diffusion. Accordingly, our final two

mixing measures, described below, concern diffusive tracer particles.

Residence time (RT)

In a chemically reactive system, the reaction may take place not only in the bulk
of the flow, but also through boundary effects. One source of these, appropriate
in some applications, is diffusion through the boundary (e.g. in models for kidney
dialysis, as in Chapter 2 or heat exchangers). A second source is a chemical reac-
tion, often catalysed, at the boundary that removes chemicals from the system.
In either case, the action of mixing is crucial in continually introducing new fluid
to the neighbourhood of the boundary, and thereby significantly enhancing these
removal effects. We therefore introduce a mixing measure related to the residence
time; the more effective the mixing, the shorter will be the average residence time
of a tracer particle. Of course, this measure should not be confused with the more
common usage of the term ‘residence time’ to indicate the duration of a particle’s

sojourn in a continuous-throughput mixer [87].

For this mixing measure, we suppose that the tracer particles, in addition to
being advected by the flow, also diffuse, with diffusivity D, and consider diffusion
through either wall to be the sole mechanism of removal (i.e. there is no chemical
reaction there). Then the advection equations (3.5) are replaced by the stochastic

differential equations
dz = u(z,y,t) dt + dN,, dy =v(z,y,t)dt + dN,, (3.13)

where dNV, and dN, are independent, identically distributed, Gaussian random

variables with mean zero and variance 2D dt.

To model diffusion of tracer particles through the BSD; walls, we solve (3.13), at
each time step removing from the numerical simulations any particle that happens
to have diffused through a wall. We then adopt a straightforward definition of the
residence time mixing measure RT by recording the fraction of particles remaining
in the BSD; at the end of a given time (here two periods of the flow). We use

the fine grid of points as the initial condition and, in order to obtain results that
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significantly distinguish between the various protocols, we somewhat arbitrarily

take the diffusivity to be D = 10 3a?T 1.

Of course, this is a rather crude measure, and other, more sophisticated, versions
of the residence time measure can easily be conceived. For instance, in practice,
the residence time of a diffusive particle initially placed at some given spatial
location will depend on the precise details of the random component of its path,
so it may be of interest to consider the distribution of residence times for a set
of particles initially placed at the same point in the flow domain. Similarly,
the mean residence time of diffusive particles will have some spatial distribution,
which could readily be computed. It may also be of interest to examine whether
there are regions of the boundary from which particles are preferentially removed

from the flow domain.

Diffusive deviation (DD)

Our final mixing measure serves to quantify the extent to which the mechanical
action of stirring enhances the intermingling of species brought about by diffusion.
To motivate the measure we begin by noting that in the absence of diffusion the
motion of tracer particles in Stokes flow is time-reversible: if the mixer is first
run forwards and then the boundary motion is reversed, any tracer particle will
return precisely to its initial location. However, when D # 0 this return is not
exact, and the particle will ultimately lie some distance from its initial location.
Furthermore, in a chaotic flow, this deviation can be significantly greater than
that predicted by simple diffusion alone, because the sensitivity of the chaotic

flow to initial conditions enhances the diffusion [13, 24].

To compute the diffusive deviation mixing measure, we allow each particle in
the fine grid of points to evolve according to (3.13), with D = 107%¢?T~}, for
two periods of the flow forwards in time, followed by two periods backwards in
time. The particles diffuse during both forwards and backwards motions of the
boundaries. We then calculate the mean distance of each particle from its initial
position, giving the mean diffusive deviation mixing measure DD. (The value

of D used here is smaller than for the RT measure purely for computational
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convenience — we find that for this reduced value of the diffusivity we need to
take no special precautions to prevent particles erroneously escaping from the

mixer.)

A related ‘return percentage’ measure was studied by Aref and Jones [12] for flow
in the eccentric annular mixer (a special case of the BSD; where the cylindrical
walls are rotated but there is no translation of the inner stirrer). They took an
initially circular blob of particles, evolved it for a given number of periods of their
flow, then reversed the motion. In the absence of diffusion, all particles returned
to their initial locations inside the blob. However, with non-zero diffusion, the
return percentage was diminished, and significantly so in chaotic flow, even for
small values of the diffusion coefficient. The tremendous enhancement to the
diffusion was due to the exponential growth of the blob boundary during the
flow, and consequently greatly enhanced diffusive particle escape from the blob.
Although we have taken only a single value of D, the likely trends with varying
D might reasonably be inferred from the work of Aref and Jones [12].

3.4 Results

In the previous section we defined ten mixing measures that can be evaluated
numerically without any user intervention (see Table 3.1 for an aide-memoire of
the various measures). We have computed each of these mixing measures for the
252 protocols described in Section 3.2. Clearly, there is a degree of arbitrariness
in some of the measures, largely due to a particular choice of parameters (such
as the number of periods of the flow over which to calculate the measure, initial
conditions, or the particle diffusivity, where this is non-zero). Furthermore, for
certain of the measures we have chosen a crude, but simple, version to calculate,
despite the availability of more sophisticated versions. While the details of our
results may change if the measures are defined slightly differently, we expect our

broad conclusions to be qualitatively unaffected.

Before describing our results, we make some preliminary comments concerning

correlations between the mixing measures, and about energy usage. We then
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move on to describe general trends in our results, before highlighting observations

regarding specific protocols and measures.

3.4.1 Correlations between mixing measures

In an attempt to find optimal protocols, it is useful to understand the extent to
which the various mixing measures are pairwise correlated. Since the measures
have very different distributions (some, like RT, vary only slightly across the range
of protocols, while others, like IS, vary by many orders of magnitude, for instance),
we evaluate their degree of correlation using a distribution-free test based on the
respective rankings of the 252 protocols. We use the straightforward Spearman
rank correlation coefficient [108], as follows. To calculate the rank correlation
coefficient between two mixing measures, we first independently rank the set of
252 protocols according to each of the two measures. Thus the i-th protocol is
assigned integers m; and n; that are its respective rankings according to the two
measures (the worst protocol having rank 1, the best protocol rank 252, in this
case). Exceptionally, protocols may have precisely the same value of the mixing
measure, in which case they are ranked equally. Using the two sets of rankings,
we calculate the Spearman rank correlation coefficient
_ X(mi—m)(n; —7)
JE(m; —m)? S (n; — )2

where m = Y. m;/252 = 253/2 and 7 = Y. n,;/252 = 253/2. By construction,

(3.14)

—1 < C < 1. Large values of |C| indicate that the two measures in question are
well correlated, while small values of |C| indicate that the measures concerned do

not agree on their assessment of ‘good’ and ‘bad’ protocols.

The occurrence of a strong correlation between a pair of measures is of particular
interest when the measures concerned have different computational requirements
(e.g. correlations between IS and EU, which are expensive and cheap to compute,
respectively). If a good correlation exists, we might attempt to use the computa-
tionally cheaper measure as a substitute for the more expensive measure, thereby

saving computational effort when evaluating a given set of protocols.

Equally, it is instructive to be aware of the existence of poor correlation between
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two measures. This indicates that the distributions are not simply related and
therefore it may be possible to find a protocol which has desired values for both
measures (e.g. a low energy usage but a high Liapunov exponent). A consequence
concerns the idea of using a ‘sieve’ [66] systematically to eliminate poor protocols,
through the application of a succession of mixing measures, each more sophisti-
cated and computationally intensive than the last. If two mixing measures used
at different stages in the sieving process are poorly correlated, this may lead to
the premature elimination of a protocol that would in fact score well with the
later measures, simply because it did not also score well with some prior, less
sophisticated measure, uncorrelated with the measure of true interest. A fur-
ther shortcoming of the sieving approach is that it may eliminate protocols that

perform well overall, if they do so only in some average sense.

We note that although the use of a rank correlation allows us to compare measures
with very different (or unknown) distributions, it necessarily leads to results that
depend on the set of protocols chosen for study. Our expectation is that the set
of protocols is sufficiently large (252) and the protocols sufficiently varied that

our broad conclusions hold, not withstanding this caveat.

3.4.2 Energy usage

In order to appreciate the role of energy in our considerations, we note that for
a given BSD; protocol, operating in the Stokes flow regime, and mixing non-
diffusive particles, the outcome depends only upon the path taken by the inner
cylinder, and not upon the speed of operation of the device. However, the power
input to the BSD; scales with the square of the speed of the inner cylinder, and
hence the energy requirement for execution of a given protocol scales in proportion
to this speed (since the period of operation varies in inverse proportion to the
speed). In other words, the overall energy requirement varies in inverse proportion
to the period of time over which the mixing takes place. A further consequence
of operation in the Stokes flow regime is that if we fix an identical period 7" for all
stirring protocols then those with greatest inner-cylinder path length A will tend
to require the greatest energy input £ per period, simply because they have the
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Figure 3.5: Logarithmic plot of mixing measure EU, from (3.12), against inner-
cylinder path length A for each of the 252 stirring protocols. Trend lines with

slope 2 are also shown.

greatest average speed of the inner cylinder. In fact, with 7" fixed in this way, the
energy required per period is roughly proportional to A%2. However, as Figure 3.5
demonstrates, there is some spread about this broad trend. Figure 3.5 also shows
that in general the energy requirements of the protocols P(3, *, *) exceed those of
the protocols P(2, *, *), which in turn exceed those of P(1,x*,*). The reason for
this ordering is straightforward: the protocols fix the path of the inner cylinder
axis, and the two cylinders approach one another more closely when the inner
cylinder radius is greater, thereby incurring greater penalties in terms of viscous

drag.

3.4.3 General trends

Our results, described in detail below, lead us to the conclusion that it is not
possible to choose a single ‘best’ protocol from the 252 protocols examined, since
the various measures do not agree in their relative rankings of these protocols.
Although there is a strong correlation between some pairs of measures, other
pairs are only weakly correlated. However, it is possible to make some general
comments, as follow below. In this subsection we shall discount EU (which does

not genuinely measure the quality of mixing, although it is important in any
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discussions of mixing efficiency) and LW (which is only poorly correlated with all
other measures; it is also unclear whether large or small values of this quantity
are desirable until an application is specified). We therefore discuss here only the

remaining eight mixing measures.

Rather arbitrarily we have chosen to focus on the twenty best protocols for each
mixing measure. For DD, ID and RT, at least eighteen of the top twenty protocols
have 2 < j <4 and 1 < k < 3. A similar, but slightly less marked, preference
for protocols in this region of parameter space is exhibited by KS, LE and MV.
With IM there is a greater spread among top-twenty protocols, although all have
2 < j < 6. These results indicate a strong preference for what might be termed
‘flowery’ protocols. A simple explanation for this is that the flowery protocols
tend to have the longest path length A and therefore they do more stirring during
one complete cycle of the protocol than do other protocols. However, upon further
reflection, we see the true story is rather more subtle and that in fact the strong
preference for protocols with & < 4 is intriguing because (see Figure 3.2) to the
eye these protocols look similar to those with £ > 10, whereas the latter protocols
do not perform as well as the former (e.g. P(x, 3,12) seem as convoluted as, say,
P(x,3,2), but are not ranked as highly). In contrast, the top twenty for the final
mixing measure, IS, stand alone in including a few protocols from the top half of

Figure 3.2.

Some resolution to this puzzle can be obtained by considering Figure 3.6, which
shows a qualitative picture in the form of iterated mapping plots for protocols
of the form P(1,*,*) (i.e. those with cylinder radius ratio ai,/a = 0.05). From
this figure it is clear that the ‘best’ protocols, with 2 < 7 < 4 and 1 < k < 3,
have much smaller periodic islands (and therefore exhibit better mixing) than
corresponding protocols with £ > 10. Since all measures (except IS) involve
some averaging over the fluid domain, the islands exact a penalty on the k£ > 10
protocols, which is why they do not appear in the top-twenty lists. The iterated
mapping plots also indicate why IS does not discriminate against the k£ > 10
protocols: the initial line whose stretch is calculated lies entirely in the chaotic
region, and so the existence of significant regular regions does not materially

affect this mixing measure.
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Figure 3.6: Iterated mapping plots for protocols P(1,*,*). This figure may be
compared directly with Figure 3.2.
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Figure 3.7: Plots of the ten mixing measures for each of the protocols P(2,

86



Liapunov exponent Lamellar widths

3.4.4 Detailed results

Figure 3.7 shows in detail data for the individual mixing measures, for the pro-
tocols P(2,*,*). As might be expected from Figure 3.6, many mixing measures
show wide variation between the various protocols. For some measures, such as
IS, there is a clear clustering of good protocols, while for others, such as MV, the

good protocols are more isolated and scattered.

Plots of the pairwise joint distributions of the ranked mixing measures are shown
in Figure 3.8; the corresponding rank correlation coefficients can be found in
Table 3.2. To understand Figure 3.8, consider as an example the plot in column
DD and row EU. This plot contains 252 data points, with coordinates (m;, n;),
fori =1,...,252. The m; and n; are the rankings of the i-th protocol according
to the mixing measures DD and EU, respectively. The remaining plots in the
figure are defined similarly. More detailed versions of these plots are shown in
Figures 3.9, 3.10 and 3.11, which, in addition, illustrate the stirring protocols

that correspond to the various data points in Figure 3.8.
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Figure 3.8: Plots of the joint distributions of the ranked mixing measures.
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DD

EU

ID IM
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KS LE LW MV

RT

DD
EU
ID
IM
IS
KS
LE
LW
MV
RT

1.00
0.64
-0.78
0.79
0.68
-0.67
0.77
-0.18
-0.80
-0.80

0.64
1.00
-0.31
0.37
0.81
-0.25
0.24
-0.44
-0.27
-0.70

-0.78
-0.31
1.00
-0.74
-0.37
0.72
-0.75
0.15
0.84
0.52

0.79
0.37
-0.74
1.00
0.40
-0.83
0.95
-0.12
-0.90
-0.57

0.68
0.81
-0.37
0.40
1.00
-0.26
0.32
-0.23
-0.36
-0.85

-0.67
-0.25
0.72
-0.83
-0.26
1.00
-0.84
0.06
0.87
0.42

0.77
0.24
-0.75
0.95
0.32
-0.84
1.00
-0.05
-0.93
-0.52

-0.18
-0.44
0.15
-0.12
-0.23
0.06
-0.05
1.00
0.04
0.27

-0.80
-0.27
0.84
-0.90
-0.36
0.87
-0.93
0.04
1.00
0.56

-0.80
-0.70
0.52
-0.57
-0.85
0.42
-0.52
0.27
0.56
1.00

Table 3.2: Correlation coefficient C' between pairs of mixing measures.
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some of the protocols that correspond to various data points.
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In the present study, the strongest correlations (|C| > 0.9), evident in Figure 3.8
and Table 3.2, are found between iterated mapping chaoticity, Liapunov expo-
nent and mixing variance mixing measures. Correlation plots illustrating the
protocols responsible for some of the data points are shown in Figure 3.9. MV
is significantly simpler to compute than IM or LE, in terms of storage and time,
respectively. Thus, for the protocols investigated here, one might reasonably sub-
stitute MV for either IM or LE, depending on one’s computational constraints.
These strong correlations accord with intuition, since each measure heavily pe-
nalises those protocols with large regular regions. We emphasise our earlier point
that superficially similar protocols, e.g. P(2,1,7) and P(3,2,7), may lie near

opposite ends of the spectrum of mixing quality (see Figure 3.9).

The next strongest correlations (0.8 < |C| < 0.9) exist between (MV,KS),
(LE,KS), (MV,DD), (IS,EU), (RT,DD), (RT,IS), (MV,ID) and (KS,IM). When
we consider these pairings (see Figure 3.10), we note that there is generally a
clustering of ‘like’ protocols (e.g. those we have described above as ‘flowery’).
However, in some cases there is a sensitive dependence of results on the ex-
act protocol. For example, in the (IS,EU) plot, long flowery protocols, such as
P(1,6,12), P(1,4,3) and P(1,6,11) clearly perform well. Clustering of like pro-
tocols is also evident in the (RT,IS) plot, where simple protocols like P(3,7,1)
perform poorly while broader, flowery protocols such as P(2,2,3) perform bet-
ter. In the (RT,LW) plot similar clustering is evident. In the (KS,IM) plot the
simple protocols exhibit a greater range of mixing quality, and greater sensitivity
to protocol details is apparent. For example, the similar protocols P(3,2,7) and

P(3,1,7) achieve good and poor mixing, respectively.

In a previous paper [47] we observed from a sample of three protocols the counter-
intuitive result that patterns producing highly chaotic iterated mappings tended
to generate relatively poor interface stretch (and vice versa). However, the cor-
responding joint distribution plot of the iterated mapping and interface stretch
measures for the larger sample of 252 protocols shown in Figure 3.11 suggests
this is not always the case. It can be seen that, while simpler patterns generally
produce a poor interface stretch, the degree of chaoticity of the iterated mapping

can depend sensitively upon the pattern shape. A simple thought experiment
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shows why we should not expect interface stretching necessarily to provide much
information about uniformity of mixing. Consider the BSD; in the limit as the
scaled inner cylinder radius a;,/a becomes small (imagine using a wire rather than
a stick to stir a tin of paint): although the inner cylinder may still be dragged
repeatedly through a material line and thereby stretch it considerably, the thin
cylinder transports little of the bulk of the fluid. Thus we should expect a rela-
tively poor correlation between IS and other measures of mixing uniformity such

as IM, MV and KS.

As well as showing sensitive dependence upon protocol parameters, some pairs
of measures demonstrate a poor correlation (|C| < 0.4) — see Figure 3.11 for
examples. Notably, the energy input, EU, does not correlate well with ID, IM,
KS, LE or MV. This indicates that some low energy protocols may perform
well according to these mixing measures. For example, both the P(1,2,6) and
P(1,5,5) protocols have a desirable low mixing variance and also require relatively
little energy input. Desirable low energy protocols for IM, KS and LE could be
P(1,3,6), P(1,4,6) and P(1,5,5), respectively.

The relatively poor correlation between interface stretch and Liapunov exponent
(C = 0.32) may seem counter-intuitive. However, this is an artifact of the crude
manner in which we compute the average Liapunov exponent: we do not distin-
guish between points in the chaotic region (with positive Liapunov exponent) and
points in a regular region (for which the finite-time Liapunov exponent is small).
This technique tends to depress the computed average Liapunov exponent for
flows with a significant area occupied by regular regions, whereas the interface
chosen for the stretch calculation lies (by design) largely in the chaotic region,
regardless of the particular protocol. In a more sophisticated implementation of
our code, it would, of course, be possible to average over only points designated as
lying in the chaotic region (using techniques from the iterated mapping chaoticity

measure to identify such points).
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3.5 Conclusions

We have described above the numerical evaluation of a range of mixing measures
for a large number of stirring protocols in the batch stirring device. Before at-
tempting to extrapolate from these results to the problem of protocol selection,

we make some general comments.

First, we note that the preference for protocols with 2 < j <4 and 1 <k <3
suggests a certain robustness to the exact details of the protocol. This robustness
is of particular practical importance because in deriving the velocity field for our
simulations we have made the Stokes flow approximation, effectively setting the
Reynolds number Re of the flow to be zero. Of course, in any real experiment
performed at small, but finite, Reynolds number, corrections to this velocity
field of O(Re) will be required. The robustness of the mixing quality measures to
protocol choice does not necessarily imply a similar insensitivity to finite-Reynolds
number effects. To investigate this we have performed experimental dye advection
in the BSD; at various Re between 1072 and 10' [27]. We find that as the
Reynolds number increases, regular islands in the flow (where mixing is noticeably
poor) shrink, leading to uniform mixing over a greater fraction of the domain,
as shown in Figure 3.12. That is, the iterated mapping chaoticity measure IM
increases with increasing Reynolds number for the protocol considered. Hobbs
and Muzzio [62] have studied Reynolds number effects numerically in the Kenics
static mixer (see Figure 1.5), finding that for Re < 10 and Re > 1000 their flow
is globally chaotic, but for Re ~ 100 significant regular islands of poor mixing

appear.

The measures adopted in this chapter were selected because they allow for au-
tomated computation. There is inevitably some arbitrariness in our sample of
initial tracer particle locations. However, we should bear in mind that many other
measures are inherently analytical, requiring significant human intervention. For
example, a major class of measures ignored here concerns the location of peri-
odic points and an understanding of the structure of their associated invariant
manifolds [111]. Although periodic points can be found systematically, the requi-

site numerical algorithms [37] are computationally intensive, and extremely good
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Figure 3.12: From left to right: iterated mapping plot, showing islands in numer-

ical simulation of Stokes flow; large time dye-advection experiments in glycerol,

with Re = 0.1,1, 3, 10.

initial guesses for their locations are sometimes required. Elliptic fixed points,
which are found at the centre of periodic islands, are comparatively easy to discern
(provided the island is visible to the eye). Hyperbolic points, on the other hand,
reside in the chaotic sea and are more difficult to identify. Furthermore, although
protocol symmetries can be exploited to find periodic points [52, 53, 56, 88, 95],
this process often requires significant human intuition, and even then is not guar-
anteed to locate all such points; it is thus difficult to program robustly. It would,
nevertheless, be instructive to investigate the extent to which the automated com-
putational mixing measures contemplated here agree with human analyses and

intuitions about real-life stirring devices.

Another important computational practicality is the extent to which the mixing
measures considered here could feasibly be evaluated when the velocity field is
not known. We have already undertaken a significant computational endeavour
in evaluating such a large number of protocols; the additional time required to
compute the velocity field for each protocol in a mixer with no expression for the

velocity could render similar investigations intractable.

Finally, we note that, from the point of view of protocol selection, it would also
be useful to study the inverse problem to that studied here, i.e. rather than to
determine which of a given set of stirring protocols performs best, according to
a given mixing measures, to design a protocol to maximise a target mixing mea-
sure, subject to constraints on others (such as energy usage). Although such
an undertaking is beyond our present scope, optimisation studies have been at-

tempted on other mixers, such as lid-driven cavity flows [84, 143], the cavity
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transfer mixer [148] and a twin screw extruder [84] by approximating the stirring

dynamics sufficiently to make computations practicable.

3.5.1 Implications for protocol selection

We now summarise some of our results as they influence the selection of ‘optimal’

stirring protocols.

First we emphasise that the best protocols cannot be selected ‘by eye’: only
detailed calculation seems able to distinguish the mixing capabilities of P(2,3,1)
(a good protocol) from those of P(2, 3,12) (a poor one), or P(2,6,2) (a reasonable
protocol) from P(2,6,12) (a bad one).

We have also found that a useful rule of thumb for eliminating some of the poorest
protocols is that for good mixing the inner cylinder should move through a large
region of the flow domain (e.g. P(2,3,1)), rather than on a more limited, nearly
circular path (e.g. P(2,7,7)). This rule alone though is not sufficiently sophis-
ticated to facilitate selection of the best protocols: for example, presumably it
would not discriminate between the relative strengths of P(2,4, 1) and P(2, 4, 12).
Exploration of the entire domain by the mixer impeller is often exclaimed as proof
of perfect mixing in brochures for industrial batch mixers. However, there are
exceptions to the rule, as for instance with P(2,6,1) (which mixes well despite
the path of the inner cylinder, which explores relatively little of the flow domain)
and P(2,5,11) (which mixes poorly despite the more extensive path of the inner
cylinder).

Another design rule of thumb might be simply to choose a protocol with as great
a path length A as possible, on the basis that the more you stir the better the
mixing. To a certain extent this is the case, the rank correlation coefficients of A
with DD, IS and RT being 0.64, 0.89 and —0.83, respectively. (The correlation
between path length and EU is of course the highest: C' = 0.94.) However,
the rank correlation coefficients of A with the remaining six mixing measures
are all less than 0.4 in magnitude. We therefore conclude that the variations

in mixing effectiveness between various protocols are not simply a matter of
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some protocols having longer paths than others; there is much to be gained from
judiciously selecting the manner in which the inner cylinder moves, as well as

merely maximising the length of its path.
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Chapter 4

Topological chaos in
two-dimensional inviscid and

viscous mixers

4.1 Introduction

In the previous chapter we have seen that optimising a mixer against a given
mixing quality measure represents a significant challenge. This is mainly due to
the sensitivity of chaotic flows to parameter changes and also due to computa-
tional limitations preventing exhaustive parameter-space searches. It is desirable,
therefore, to find a method of designing a mixer that has a certain degree of mix-
ing quality built-in, which is robust with respect to changes in fluid properties,

and also allows additional tuning of various mixer parameters.

A significant recent theoretical advance, which allows good mixing to be built in,
concerns the concept of ‘topological chaos’ [18, 19, 20, 92, 123]: without reference
to any computation or exact flow details, Boyland et al. [20] have demonstrated,
in an unusual blend of ad-hoc experimentation and abstract mathematics, that
flows with the topology of certain braids (e.g. like plaited hair) are guaranteed to
provide effective mixing. By topological chaos, we mean a complexity that cannot

be removed by continuous deformation of the fluid region unless that deformation
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involves appropriate changes to the topology of the region. According to the
theory described by Boyland et al. [20], a quantitative material stretch rate can
be predicted, depending only on the topology of the flow. Remarkably, the theory
requires only fluid continuity, and is independent of the geometrical parameters

or exact fluid properties (viscosity, compressibility, rheology, etc).

However, a key feature that is not predicted by the theoretical considerations of
Boyland et al. [20] is the area of the domain in which the stretch rate is attained.
Here we provide numerical and experimental results that support the observations
of Boyland et al., that the chaotic region is commensurate with the region of fluid

through which the stirring elements move during the operation of their device.

In this chapter we study the BSD,,, a generalisation of the batch stirring device
described in Chapter 3, in which an arbitrary number m of cylindrical rods of
circular cross-section move independently to stir a fluid. In order to generate
topological chaos in such a device, it is necessary to have three or more stirring
rods [20]. As we have seen for the BSD; in the previous chapter, the generation
of chaotic flow with fewer stirring rods is perfectly possible, but quality mixing
relies on a careful tuning of the system parameters, and is not guaranteed by
the considerations of topological chaos theory. In this sense, the known velocity
fields for Stokes flow with two or fewer stirring elements are inadequate; such
flows include, in addition to the BSDy, the double journal bearing flow [66, 93],
the rotated arc mixer [127], and the partitioned pipe mixer [85, 94] used to model

the Kenics static mixer (Figure 1.5).

We construct the velocity field for two-dimensional flow in the BSD,,, for either
an inviscid fluid or Stokes flow in a viscous fluid; in each case, we consider first
the simpler model of an unbounded flow and then the more analytically sophis-
ticated, but physically more realistic, model of bounded flow inside a cylindrical
tank. When there is only a single stirring element, it is possible to construct
the exact velocity field for Stokes flow in closed form [47, 145], using finitely
many terms, by means of image systems of singularities [14, 132]; however, we
have found that attempts to derive the corresponding velocity field with mul-
tiple stirring elements lead to insurmountable analytical difficulties associated

with a fractal set of singularities. The alternative series solution adopted here
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is based on an approach due to Price, Mullin and Kobine [121] and Prof. L. N.
Trefethen (personal communication). We construct series whose terms individ-
ually satisfy the governing equations exactly, and which, provided the series are
carefully chosen, satisfy the boundary conditions with spectral accuracy when
truncated for numerical purposes. This technique is fast and easy to implement
numerically and allows accurate simulations to be performed in a time-dependent
flow. Vikhansky [142] has computed some corresponding flows with three stir-
ring rods using the ‘immersed boundary method’: these illustrate the chaotic
motion of fluid particles in the BSD3, but a corresponding level of accuracy is
difficult to achieve in his simulations, or indeed any which use a finite-element or

finite-difference approach.

We test the topological chaos stretch predictions given by Boyland et al. [20]
by numerically calculating stretch rates for both inviscid and viscous models of
their mixing device (the BSD3 with three stirring rods), and comparing them
with the theoretical stretch rates. We also validate our numerical dye-advection
simulations by comparing them with corresponding experiments performed in a

simple rig.

The structure of the chapter is as follows. In Section 4.2 we describe the BSD,,,
and present a fast algorithm for accurately finding the corresponding velocity
field. In Section 4.3 we summarise key results from topological stretch rate the-
ory, and in Section 4.4 we present numerical stirring simulations which allow
comparison with the abstract theory of Boyland et al. [20]. In Section 4.5 we
compare experiments and numerics to validate our results. We then discuss prac-
tical issues that need to be considered when constructing topological mixers.

Discussion and conclusions are given in Sections 4.6 and 4.7.

4.2 Mathematical models for the BSD,,

We begin this section by describing the BSD,,, [20]. Then we present a fast, ac-
curate method for constructing the velocity field in this device. Four increasingly

sophisticated models, involving inviscid or viscous fluid, in either an infinite or
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Figure 4.1: Geometry of the BSD,,. Here z and y are Cartesian coordinates.
Two-dimensional flow is driven by m circular cylinders, each respectively centred
at z = p; (where z = z + iy), with radius a;, translating with velocity (U;,V;)
and (for the viscous model only) rotating about its axis with angular velocity €2;.
The unit normal of the j-th cylinder is m;. The fluid may be either inviscid or
viscous, and may be either infinite in extent or bounded by a circular cylinder

centred at z = 0 with radius a.

a finite flow domain, are discussed in turn. We start with the simplest case of
unbounded, inviscid flow to illustrate the technique, and progress to the most an-
alytically sophisticated bounded, viscous model, upon which we shall concentrate

attention later.

The BSD,,, geometry is shown in Figure 4.1. Flow is two-dimensional, in the
zy-plane. For both the inviscid and viscous models, it proves convenient to work
with complex coordinates z = x +iy and zZ = z — iy, where x and y are Cartesian
coordinates as indicated in Figure 4.1. We assume that there are m infinitely
long circular cylinders placed in the fluid, with their axes at locations z = p;(t)
and with radii a; (j = 1,...,m). Each cylinder may move independently with
a prescribed velocity U; + iV; = dp;/dt and, in the case of the viscous model
only, may rotate about its axis with angular velocity €2;(¢). Although in practice
the fluid domain is finite, we shall initially model the m cylinders as lying in an
infinite fluid; by the method of images, we then refine the model so that the flow

domain is finite, the cylinders being enclosed in the circular domain |z| < a.

In order to simulate mixing in the BSD,,, numerically, we shall need to track with
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high accuracy the motion of inertialess tracer particles as they are advected with
the fluid. It is therefore advantageous to have available an exact expression for
the fluid velocity field, which allows evaluation of the velocity at an arbitrary
point in the flow domain (rather than, say, a finite-difference approximation,
where some interpolation is in general required). Unfortunately, for m > 1, such
an exact expression is not available in closed form, so instead we calculate a se-
ries solution involving terms that individually satisfy the appropriate governing
equation exactly. The series coefficients are then determined by computing the
least-squared-error in the boundary conditions, subject to certain constraints,
detailed later. The component solutions are carefully chosen to give overall spec-
tral accuracy with only a small number of terms (Prof. L. N. Trefethen, personal
communication). The least-squares optimisation is carried out in Matlab, which
provides a convenient environment in which to implement our algorithm, since it
handles complex arithmetic and provides the fast and robust 1sqnonlin function

in the Optimisation Toolbox.

Mixing is achieved in the BSD,, by moving the m cylinders and, hence, varying
the geometry of the flow domain, in a time-periodic fashion. In order to avoid
repeated recalculation of the same velocity fields, it is efficient first to compute the
velocity field at a large number of time steps, and then to store the results of these
calculations for ultimate use in simulations of tracer advection. In this respect
it is significant that our method of solution is not only faster and more accurate
than alternative finite-element or finite-difference techniques, but it requires less
storage, since we need only the series coefficients, rather than the velocity field

at a full set of grid points.

4.2.1 Inviscid, irrotational model

Our first, and simplest, model for the BSD,, is of incompressible, inviscid, ir-
rotational flow. Here it is most convenient to work with the complex potential
w = ¢+i. The functions ¢ and v are the velocity potential and streamfunction,
respectively, and are each harmonic functions [2]. This is guaranteed if w = f(2)

for any analytic function f, the corresponding fluid velocity field (u,v) being

102



obtained from

—iv=—. 4.1
u—iv= (4.1)

Unbounded flow

For the unbounded, inviscid model, the boundary conditions on the cylinders are
(w,v) -n; =(U;,V;)-m; on |z—pjl=a; (j=1,...,m), (4.2)
where n; is the unit normal vector of the j-th cylinder (see Figure 4.1).

Following [121], we look for a complex potential in the form
m n
w=3 {bj,l log(z —pj) + D_ bik(z — Pj)l_k} : (4.3)
j=1 k=2
where b, are mn unknown constants, corresponding to the sum of a logarithm
and a Laurent series centred on the axis of each of the cylinders. (The exact
solution is obtained in the limit n — oco.) The velocity field resulting from this
ansatz, according to (4.1), is readily verified to satisfy
m n
u—iv=3 {bj,l(z =)+ Dbk —k)(z —Pj)_k} : (4.4)
j=1 k=2
As this expression stands, the fluid velocity decays to zero at infinity. Since
there can be no net source of fluid inside any internal cylinder, each b;; must
be pure imaginary. Furthermore, by the Kelvin circulation theorem [2], each b,,
must remain constant during the operation of the device; we choose b;; = 0,
which corresponds to starting the system from rest, although clearly other fixed

circulations could be imposed.

The remaining m(n—1) coefficients in (4.3) may then be found by minimising the
squared error in the boundary conditions (4.2) on the cylinders [17]; the accuracy
of the method is illustrated in Table 4.1 below. A sample of streamline plots for
this model of the BSD,,, is shown in Figure 4.2.

Bounded flow

In this section we construct a bounded, inviscid model for the BSD,,,. In addition

to the boundary conditions specified by (4.2), we also impose the no-penetration
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condition that

(u,v) - m=0 on |z|=a, (4.5)

where n is the unit normal of the bounding cylinder.

We can automatically satisfy this extra boundary condition by using the Milne-
Thomson circle theorem [2, 99], which states that if the complex potential w =

f(z) has singularities that lie in |z| < a, then the complex potential

w = f(z) + fa?/Z) (4.6)

has the same set of singularities inside |z| < a (except possibly for an additional
singularity at the origin z = 0) and also satisfies the boundary condition Imw = 0
on |z| = a, equivalent to (4.5). In most cases any extraneous singularities at the

origin can be removed by repeated applications of the circle theorem [47].

Taking f(z) to be the complex potential (4.3) for the unbounded problem, we
apply (4.6) to generate the new potential

Z { i1 log(z — pj) + Zn: bjk(z —Pj)l_k}

k=2

) n a2 ) 1-k
+Z{ i1 (log(z — ¢;) +log(—pj/a)) + 3_ b (;—pj) (4.7)
k=2
which automatically satisfies the boundary condition (4.5), where

4G = —"-
J pj
As explained for the unbounded case, each b;; must be purely imaginary and

must remain constant during the operation of the device.

The velocity field corresponding to (4.7) can then be found using (4.1), and

satisfies
u—lv = i{ (z=p)™" +I§2bj,k(1 —k)(z —pj)_k}
£ fte-ar s S0 (2) -0t

As in Section 4.2.1, the coefficients b (k > 1) are found by minimising the

squared error in the boundary conditions (4.2); see Table 4.1. By construction,
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the condition (4.5) on the outer cylinder is satisfied automatically. A sample of

streamline plots for this model is shown in Figure 4.2.

Although we shall not implement such a scheme here, we note that use of the
Milne-Thomson circle theorem may be avoided by adopting instead of (4.7) an
alternative series expansion, which considers the outer boundary cylinder on the
same footing as the internal cylinders. The solution is then posed as the sum of
m + 1 series, respectively centred on the axes of all m + 1 cylinders (m internal
and one external). The boundary condition (4.5) is then subject to squared-error
minimisation, rather than being forced exactly by the structure of the solution.
This technique is, however, rather more algebraically involved than that described
above, principally because of the more pronounced role of the singularity at the

origin, and of the special care required to remove it.

4.2.2 Viscous model

Having begun with the more straightforward, though less physical, inviscid model,
we now turn to our model for the BSD,, involving an incompressible, Newtonian
viscous fluid. We consider Stokes flow, at vanishing Reynolds number, which is
specified in terms of the streamfunction v (z, z), which satisfies the biharmonic

equation V% = 0 [86]. The general solution to this equation is [99]

Y =7Zf(2)+g(z) + cc., (4.9)

for any analytic functions f and g, where c.c. means the complex conjugate of

the preceding terms. The resulting velocity field may be obtained from

u+iv = —212—? (4.10)

Unbounded flow

For the viscous model in an unbounded fluid domain, our task is to find functions

f and ¢ consistent with the no-slip boundary conditions
u+iv=U; +iV; +iQ(z —p;) on |z—pjl=a; (j=1,...,m). (4.11)
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Note that, in addition to the translational velocities of the stirring rods, their
rotational velocities €2; now also influence the flow field. Although rotation of
a rod about its axis does not influence the topology of the flow, it does pro-
vide an additional degree of freedom for tuning parameters to optimise mixing

performance.

Motivated by the exact solution for the BSD; with a single moving cylinder in a
bounded domain [47] (as we have employed in Chapter 3), we construct a trial
streamfunction with a rotlet and Stokeslet singularity at the centre of each of
the m cylinders. By analogy with our results from the previous section, we also
include in our expressions for f and g series in (z — p;) for j =1,...,m, and, in
addition, a term representing a constant translational velocity, ¢, at infinity (to

be determined as part of the solution). We are thus led to the expression

Iy

b= 22 {%bj,l log |z — pjl + > bjk(z — Pj)l_k}

J=1 k=2
+ Z {%Cj,l log |z — pj| + Z cip(z — pj)l_k} + %iCZ +cec (4.12)
Jj=1 k=2
Using (4.10), we deduce that the velocity field associated with the streamfunction
(4.12) is given by

. L 9 z = z
u+iv = —2i) < 1bj; |loglz — pjl o | T hias

—a .m {%cj’lg : - i Cik(l—k)(2 —;ﬁj)‘k} +¢ (413)

J k=2

For general choices of the constants b;, the velocity field diverges at infinity. We

force the limit v + iv — ( at infinity by applying the condition
> b1 =0. (4.14)
7j=1

(In general one cannot find a solution of the form (4.12) for which ¢ = 0 [69, 70,
147].) The squared error in the boundary conditions (4.11) is then minimised to

determine the various coefficients in (4.12); see Table 4.1 and Figure 4.2.
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Bounded flow

We now consider our final model, of bounded, viscous flow in the BSD,,,. Here,
in addition to the boundary conditions (4.11) specified on the m inner cylinders,
we also require

u+iv=0 on [z|]=a, (4.15)

so that there is no slip on the outer cylinder.

Our approach towards accommodating the external boundary is similar to that
used in Section 4.2.1 for inviscid flow. We can satisfy the boundary condition
(4.15) automatically by applying the circle theorem for the biharmonic equa-
tion [14, 47, 54, 97, 132] to the series (4.12). This theorem states that if the

streamfunction ¢ = zZf(z) + g(z) + c.c. has singularities in |z| < a, then the

streamfunction
Y = Zf(2) +g(2) — 2f(a?]Z) — g(a?[Z) + (a® — |2[*) { F/(a?/Z) + 2~ ' ¢ (a2/2) }
+ c.c. (4.16)

has the same set of singularitiesin |z| < a (except perhaps for a further singularity
at z = 0) and, in addition, satisfies (4.15). The undesirable, unphysical singularity
induced at the origin by direct implementation of (4.16) can, in most cases,
be removed by further applications of the circle theorem [47, 54]. Following
the procedure given by [47], we calculate from (4.16) that the modified trial
streamfunction is

.- 1 gilz—pf
Y = {b',1 l—zlog J
jgl 714 pilz —q;>  4lp;|*z — ¢;?

|‘2 2

(7r2(z +p3) — 0 (Zw))]

+ijk[ 2z =)' "+ (0 + (k= 1)2)7 = a®k) (=p;) *2" (2 — )~ k]}

+Z{Cy,1 l_lo ;117 = |2+(\Z|2—a2)(|z\2—lqg'|2)]

p;l|Z — g;1? 4a%|z — g;|?

+ 1‘; cin [(z = 1) ™ + (0 + (k= 1)2)2 — ak)(—p;) 2 (2 - (Ij)_’“]}

+ c.c. (4.17)

In order successfully to remove the singularity at the origin, we must impose the

constraint

Im » ¢, =0; (4.18)
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that is, the sum of the rotlet strengths must be real.

It may be shown, after a great deal of tedious algebra, that (4.17) generates
through (4.10) a velocity field u + iv given by
m
: : gz — pjI°
u+iv = =21 { bllgi
jZl e pilz — ¢;|?
1p. [i+ AN N a:(_z—{)j)z g ]
i =4 Z=p piZ-)? Z-4

_ 22 2 2z —p; 2
_|_lb. _ Gi— 73 _
ot lpj(z —q) zZ-p; T(E-§)? Z-4

i l]k z—p)"
ik —1)z ((—Pj)_kzk(z —g) "= (2 pﬂ')_k)

1-k

Q“ O“\?S‘

+
+ bk (=p)) Tz~ @)
(H§+wm+wk—na@—wk+nwﬁl}

_ay {Cj,l (a® — |2[*) (a° — |p;*(20” — p;2) (a® — pjz + |2]*))

2a2(a® — p;z)(z — p;)(a® — p;2)?

j=1

+Zhw-4%(>wawAW% g
—@Ak—n«z—@r“—e@r%%z—%r%ﬂ}.MJ%

As in the previous three models, the coefficients (here b;; and c;;) may be de-
termined by minimising the squared error in the boundary conditions (4.11) on

the inner cylinders, subject to (4.18); see Table 4.1 and Figure 4.2.

Although we shall not implement this feature here, we note that a rotation of the
outer cylinder about its axis with angular velocity {2, can readily be modelled by
adding a rotation term i€,,2 to the right-hand side of (4.19) before minimising

the squared error in the boundary conditions on the internal cylinders.

4.2.3 Features of the four models

Typical streamline plots for the BSD,, with two, three, four and five stirring
rods are shown together in Figure 4.2, according to the four models presented

above (inviscid or viscous, unbounded or bounded). It is not our intention here
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Figure 4.2: Tllustrative plots showing instantaneous streamlines for the four

BSD,, models. From top to bottom, the rows correspond to unbounded inviscid,
bounded inviscid, unbounded viscous and bounded viscous flow. Each column
corresponds to identical cylinder positions and velocities (with directions indi-
cated by arrows), allowing the four flow regimes to be compared. In each case, all
cylinders have zero angular velocity about their respective axes. For the inviscid

plots, zero circulation is imposed around each cylinder.
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Figure 4.3: Grey-scale plots of the fluid speed, for the bounded inviscid (left)
and viscous (right) models of the BSD;s. Stationary fluid is depicted in white,
the most rapidly moving fluid in black, with an intermediate linear grey-scale.
The fluid motion is more localised to the vicinity of the moving cylinders in the

inviscid case than in the viscous regime.

to undertake a discussion of the possible flow topologies (see [121] for such a

discussion with m = 2); however we make some general comments.

First we comment on the significant qualitative differences between the flows
in the unbounded inviscid and viscous regimes (the square plots in Figure 4.2),
associated with the different far-field behaviour of the velocity fields. In the
inviscid case the velocity field decays quickly to zero, whereas in the viscous case

the velocity field tends more slowly to a non-zero value.

In the bounded models, the question of the behaviour at infinity does not arise,
yet the inviscid and viscous flows (the circular plots in Figure 4.2) remain quite
distinct. Figure 4.3 shows a plot of the fluid speed for the two bounded five-
cylinder flows in Figure 4.2. We note that in the inviscid case the fluid motion is
more localised, because the fluid slips around the moving cylinders; by contrast,
in the viscous scenario the fluid motion is more uniform, with the fluid speed be-
ing of the same order over much of the domain. One consequence of this difference
is that material stretching in the inviscid BSD,, is also more localised than in the
viscous BSD,,,; consequently, it is more problematic to perform accurate numer-
ical simulation of the advection of a fluid interface, for example, in the inviscid

case. A second significant difference between the inviscid and viscous flows is the
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nature of the stagnation points. In an inviscid flow, stationary points are always
hyperbolic, because the streamfunction satisfies Laplace’s equation (VZ) = 0),
and so cannot have internal extrema, whereas the viscous streamfunction satisfies
the biharmonic equation (V*y = 0), which allows both elliptic and hyperbolic

stationary points.

It seems clear from Figure 4.2 (and similar results that we have computed for
other cylinder configurations, not presented here) that if the internal cylinders
execute a given motion to stir the fluid then at any instant the streamlines will
be quite different according to the inviscid and viscous models. This makes the
results of [20], that a material stretch rate can be found, independent of the flow

field, all the more remarkable.

4.2.4 Accuracy of the flow field

In Table 4.1 we illustrate the error in the computed velocity field due to trunca-
tion of the series (4.4), (4.8), (4.13) and (4.19) after n terms. Since the governing
equations are, by construction, satisfied exactly, we record in the table the max-
imum error in the boundary conditions: (4.2) and (4.5) for inviscid flow, and
(4.11) and (4.15) for viscous flow. We find that in all four cases the error de-
creases rapidly with n, with approximately one extra digit of precision gained
for each extra term. We find that the largest error in the velocity field over the
entire domain (compared with an ‘exact’ solution obtained using the ‘effectively
infinite’ value n = 15) is always located on an internal cylinder boundary. In
Figure 4.4 we plot the magnitude of the coefficients b;) and c;, from (4.19),
against the index k for a typical BSD; solution with n = 10 (the coefficients
are scaled by the cylinder velocity V). The exponential decay of the coefficients
with k is indicative of spectral accuracy. For the purpose of numerical stirring
simulations, we find that taking n = 10 terms reduces the error in the velocity
field below that introduced by time discretisation (described later). The limit of
machine precision in Matlab (16 decimal places) is typically reached with around
n &~ 15 terms. By comparison, Vikhanksy [142] reports errors of O(107%) for

his finite-difference immersed-boundary simulations, although his method allows
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Figure 4.4: Exponential decay of the coefficients b;; and c¢;; with k. For def-
initeness, the values plotted correspond to the BSD3 simulations described in
Section 4.4 at the instant when the cylinders lie along a diameter, though the

decay illustrated is typical for all times.

extension to finite Reynolds number, which ours does not.

It is clear from the table that, in our implementation, the time taken to compute
the coeflicients in the various series solutions increases rapidly with the number
of terms taken. This is because for most of our computations, purely for analyt-
ical convenience, we used Matlab’s nonlinear least-squares optimisation function
1sqgnonlin, whereas it is perfectly feasible to cast the problem in a more efficient
manner using linear optimisation. Indeed, we have used the latter formulation to

check our results from the former in some cases.

4.2.5 Energetics

An important consideration when designing a mixing device is the energy input
that will be required to operate it. In this section we calculate the energy input
required to operate the viscous BSD,,. (For our inviscid model, there is no drag

on the cylinders, and consequently the energy input is zero.)
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model n 3 5 7 9

time 1.2 4.0 8.5 17
unbounded, inviscid error 4 x10-% 2 x10~% 1 x10-° 4 x10-7
time 1.9 8.9 22 48
bounded, inviscid error 4 x10~2 2 x10~* 9 x10-% 4 x10-7
time 4.4 18 49 110
unbounded, viscous error 3 x10-2 6 x10~% 2 x10~5 5 %107
time 11 33 84 170

bounded, viscous 41072 1 x10-% 2 x10-5 9 x10~7

Table 4.1: Computation time (in seconds) and maximum error in boundary con-
ditions, for the four BSD,, models on a 1.5GHz Pentium 4 computer. Using the
m = 5 cylinder configuration from Figure 4.2, we compute the maximum error
in the boundary conditions (4.2) and (4.5), or (4.11) and (4.15), scaled by the

maximum cylinder speed, when truncating the appropriate series to n terms.

The complex-variable formulation used in Section 4.2 affords us a convenient
method for calculating the instantaneous power input to the BSD,,, using the
calculus of residues. As detailed by Finn and Cox [47], who have studied the
single-cylinder BSD; (see Chapter 3), for a streamfunction in the form (4.9), the
force F = F* + iF¥ and moment M (about the origin z = 0) on any closed

contour C in the flow domain are [99]

F=dp|-f(z)+2f(2) + g’(Z)]c , M =dplm [22f(2) + 29'(2) — g(Z)]c :
(4.20)
where [h], represents the change in the function & upon one anticlockwise tour

of C, and p is the dynamic viscosity of the fluid.

By taking the contour C to be the boundary of the j-th cylinder, and noting that
only the logarithmic terms in the streamfunction (4.17) make nonzero contribu-
tions to the expressions in (4.20), we calculate that the force F; exerted by the
j-th cylinder on the fluid is

Fj =4mpuib;, (4.21)

and the moment M; about the axis of the j-th cylinder exerted by that cylinder

113



on the fluid is
M; = —drpc;y — Im(F;p;)). (4.22)

By considering the overall equilibrium of the BSD,,,, or by using the outer bound-
ary as the contour C, we find that the corresponding force F,,; and moment M,
about the origin exerted by the outer cylinder on the fluid are
m m
Fout = —47mij2_:1 b1, Mou = 47w; Cj1- (4.23)

The total power input P to the BSD,, is then

P = MouShous + 3 (FFU; + FYV; + M;;) . (4.24)

=1

4.3 Theoretical background of topological chaos

In this section we begin by reviewing some basics of braid notation, which pro-
vides a framework for subsequent analysis of stretch rates for flows in the BSD,,
with various topologies. We examine a number of different ways of moving the
internal cylinders (these are termed the ‘stirring protocols’) and evaluate their
effectiveness according to the interface stretch exponent (IS) measure defined in
the previous chapter. We also consider the physically important issue of energy

usage (EU) by the various protocols.

As we have discussed in the Chapter 3, the aim in previous studies of chaotic
advection has often been to maximise measures such as material stretch rate by
appropriate tuning of the system parameters. However, the theoretical results of
Boyland et al. [20] allow calculation of a material stretch rate in a BSD,, flow
generated by the motion of m > 3 cylinders (with particular emphasis on the
case m = 3), without explicit reference to the underlying equations governing the
fluid motion. While some tuning of the parameters may lead to improvements
beyond this predicted stretching a certain minimal stretch rate is guaranteed. It
should be emphasised that, at present, the great generality of the theory comes
at a cost: the size of the region in which good mixing is achieved is unknown,
and typically depends on the governing fluid equations; according to the theory,

it may even have zero measure. It is our goal, therefore, to investigate the quality
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of mixing due to various stirring protocols, according to the four models outlined

above, with particular emphasis on the size of the chaotic regions.

4.3.1 Braid notation

We assume that the stirring motion is periodic in time, with period 7". At the start
of any period, at t = pT’, and at the end, at t = (p+1)T, the axes of the m internal
cylinders lie on the diameter y = 0 of the outer cylinder. During the course of
the stirring, pairs of adjacent cylinders are interchanged. Boyland et al. [20] have
described how such motion of m cylinders, when considered appropriately, has
the topology of a physical braid on m strings, which in turn corresponds to a
mathematical braid [140]. To see how the mathematical theory of braids may
be applied to the mixing problem, we begin by assigning to each interchange a
braid letter o; or o ! as shown in Figure 4.5. The subscript j indicates which
two (adjacent) cylinders are interchanged, from j = 1, which represents the left-
most pair, to 7 = m — 1, which represents the right-most pair. A superscript of

—1 indicates that the cylinders orbit one another in an anticlockwise sense; no

superscript indicates a clockwise orbit.

The sequence of interchanges during one complete period is the stirring protocol,
and can be characterised by a braid word, which is a string of braid letters. In-
terchanges are made corresponding to each braid letter in sequence, reading from
right to left. For example, the braid word 010, ' means that we first interchange
the second and third cylinders in an anticlockwise sense, then interchange the
first and second cylinders in a clockwise sense. A braid word may also be repre-
sented schematically by a braid diagram, as shown in Figure 4.5. Here each line
represents one of the m internal cylinders and time progresses from the bottom
to the top of the diagram; each crossing of the lines represents an interchange of

neighbouring cylinders.

Once we have selected the stirring protocol, and, in particular, the exact paths
that the cylinders take during their interchanges, we are in a position to simu-
late the corresponding fluid mixing, by tracking the advection of passive tracer

particles in the flow. Since the stirring protocol is repeated periodically, we find
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Figure 4.5: Braid diagrams illustrating the exchange in position of two adjacent
cylinders. Neighbouring cylinders may interchange positions in either a clockwise
or anticlockwise sense, characterised by braid letters o; or o; ', respectively. In
the braid diagram corresponding to a clockwise exchange o;, the 7 4+ 1-th strand
crosses over the i-th strand, whereas for the braid letter o; ', the i + 1-th strand

crosses beneath the i-th strand.

it efficient to store the series coefficients for the velocity field at a large num-
ber of time steps during the period 7', so that they can be computed just once,
prior to the simulation of the particle advection. Other simplifications in the
model allow us to reduce the computational and storage requirements further: if
the cylinders are equal in radius and are placed symmetrically either side of the
origin z = 0, and if ‘reasonable’ interchanges are used, then reflectional and time-
reversal symmetries may be invoked, so that with m cylinders, only [(m — 1)]
‘half-interchanges’ need be calculated (where [£]| means the least integer not less

than &).

4.3.2 Prediction of stretch rate

Using Thurston—Nielson theory, Boyland et al. [20] have shown that the action of
each braid letter in a stirring protocol is intimately linked with a matrix derived
from its braid (Burau) matrix. In particular, for m = 3, a certain stretch rate
given by the stirring action of a particular braid letter is predicted by the spectral
radius (magnitude of the largest eigenvalue) of its associated matrix. Boyland et
al. [20] explain how the braid matrix is constructed from its corresponding braid

letter. When m = 3, the matrices corresponding to the braid letters oy, o7 ", 09,
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o, ' are, respectively,

S1 = ) s = ) Sg = ) S9 =

The matrix corresponding to the action of a braid word may be found be taking
the matrix product of the component braid matrices in the same order as the
braid letters appear in the word. For example, the protocol 10105 05" has the

braid matrix

AR IS N I Q' 1 0 1 0 5 —2
815189 S = = 3
2 0 1 0 1 “1 1] =11 92 1

(4.26)

which has spectral radius Atheory = 3+ 21/2. If the BSDj is operated according to
this protocol, there is at least one material line whose length [(¢) grows at least
as rapidly as

1(t)/1(0) ~ NIT (4.27)

theory?

where T is the period. According to the theory, only the flow topology matters,
and this is completely characterised by the braid word. The nature of the flow,
for example, whether it is inviscid or viscous, incompressible or compressible,
Newtonian or non-Newtonian, does not matter: while the stretch rate Aineory 1S
the same in each case, the size and location of the appropriate region in which

the stretch rate is achieved depends on the details of the flow.

Using the models from Section 4.2, we are able to test the predictions of Boyland
et al. [20] in numerical simulations of both inviscid and viscous models for the
BSDj. For the case m = 3, we have chosen five different test protocols, labelled
A-E, as shown in Figure 4.6. These all have braid words containing four letters,
but different theoretical stretching rates, as given in Table 4.2. Protocol A is spe-
cial because its braid is topologically equivalent to the ‘identity’ braid, for which
the crossings can be untied [20]. In Figure 4.7 we illustrate that three iterations
of protocol A mimics the action of rotating the tank of fluid by two complete
revolutions; correspondingly the third power of the braid matrix for protocol A
is the identity matrix. Although we expect protocol A might stir effectively in

practice, particularly if its physical parameters are chosen appropriately, its braid
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Figure 4.6: Braid diagrams and braid words for the five test protocols. Protocol A
is ‘finite-order’ and does not have the correct topology to ensure effective stirring.
Protocols B-E are ‘pseudo-Anosov’ and each have a (distinct) stretch rate; these
protocols illustrate all possible theoretical stretch-rates corresponding to braid

words of four letters.

Protocol Braid word Atheory  Anumerical

A 01010102 — 2.2
0105 07 oy % (3 + \/5) ~ 2.6 2.8
01010102_1 % (5 + \/2_1) ~ 4.8 5.0
010102_102_1 34+2v2~5.8 5.8
o105 o105 " % (7 + 3\/5) ~ 6.9 7.1

B U Q W

Table 4.2: Table of stretch rates for the five test protocols A-E. Indicated are the
theoretical values Aiheory, together with numerical results based on our bounded,

viscous model for the BSDs.

matrix has complex eigenvalues, and so the topological theory does not guaran-
tee exponential stretching of a material interface. Protocols B-E do, however,
have nontrivial topology; in fact, these protocols correspond to the four possible

distinct material stretch rates that can be generated by four-letter braid words.

4.4 Numerical simulations of dye advection

We have carried out numerical simulations of passive dye advection for the five
test protocols A-E. Initially the axes of the cylinders are equi-spaced along the

line y = 0; the cylinders are taken to be of equal radius, symmetrically placed
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Figure 4.7: Diagrams showing how three applications of protocol A are topolog-

ST ST I T I
0000

?J\

ically equivalent to two complete rotations of the tank. On the left is shown the
braid diagram for three iterations of protocol A. In the neighbouring diagram,
we have identified two instances of 010907, corresponding to reversing the order
of the stirring rods — a move performed by rotating the tank clockwise by 180°.
The topological action of the rotations and the single braid letter o; between
them can be accomplished, without any tank rotations, by the braid letter o,, as
shown in the third diagram. What is left can now be identified as topologically

equivalent to two further clockwise 180° rotations, shown on the right.
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Figure 4.8: The BSD,, geometry at the start of a period, illustrated for m = 4.
The inner cylinders all have radius ai,, and are equally spaced along the line
y = 0, configured symmetrically. The distance between neighbouring cylinder
axes is 2r. When two adjacent cylinders are interchanged, they are moved along
circular arcs of radius r centred on the midpoint between the two cylinders, either

clockwise or anticlockwise.

about the origin, with the axes of neighbouring cylinders separated by a distance
2r, as shown in Figure 4.8. We have chosen to investigate the parameter regime
ain/a = 0.1 (where a;, is the radius of each cylinder) and r/a = 0.25. A streak of
dye is initially placed along the perimeter of a rectangle joining the four points

with coordinates (+1a,+1a), and is then advected by the fluid.

Although the details of the cylinder motion during the interchanges between
neighbours are unimportant for the theoretical prediction of the stretch rate, in
order to perform our stirring simulations we need to specify the exact cylinder
motions. When two adjacent cylinders are interchanged, we move them along
circular arcs of radius r centred on the midpoint between their axes, so that the
two cylinders remain at all times on opposite ends of a diameter. During this

procedure, the cylinders themselves do not rotate about their axes.

Results for the bounded inviscid and viscous models of the BSD3; are shown in
Figures 4.9 and 4.10, respectively. One difference that is immediately apparent

between the two sets of results is that the inviscid flow generates structures that
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Figure 4.9: Numerical dye-advection simulations of the five test protocols A-E in
the inviscid model for the BSD3. The protocols are labelled by row. The columns
show the dye location after (from left to right) 1, 2 and 3 periods of the flow.
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Figure 4.10: Numerical dye-advection simulations of the five test protocols A—
E in the viscous model for the BSD3;. The protocols are labelled by row. The
columns show the dye location after (from left to right) 1, 2 and 3 periods of the

flow.
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Figure 4.11: Dye-streak length [(¢) for the five test protocols A-E in the bounded

viscous, model for the BSDs.

are less smooth than in the viscous case. This feature is a consequence of the
greater localisation of the inviscid flow, as described in Section 4.2.3. In each
case, the region of good mixing is commensurate with the region through which

the inner cylinders are moved (cf. [20]).

Another observation we make for the viscous case (Figure 4.10) is that after three
periods under the actions of protocols C-E the dye has generally moved into the
lower half of the domain. This is because the component braid letters o; and o5 *
which comprise these three braid words cause fluid in the centre of the mixer to
move downwards, and fluid on the left and right of the domain to move upwards.
After many more periods, the dye in the lower half of the domain would precess

around the edge of the mixer thus occupying both the upper and lower halves.

The time-variation in the length of the dye-streak is plotted in Figure 4.11, ac-
cording to the bounded, viscous model for the BSD3. From these results we have
computed the corresponding stretch rate for each protocol, our results being
shown in Table 4.2. There is close agreement between these and the theoretical
stretch rates. In tracking the dye-streak, we have used the dynamic particle in-
sertion algorithm of [83] to ensure that the exponentially growing curve remains
well resolved. Of course, it should be noted that the initial dye-streak does not

seem to lie entirely in the chaotic region. Therefore some section of it is likely
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to stretch at a rate less than Aiheory. However, the influence of any such section
on the numerical estimate of the stretch rate diminishes with time (since it oc-
cupies an increasingly small fraction of the total length of the dye-streak). Thus
our results confirm the predictions of Boyland et al. [20], and indicate that the

predicted stretch rates seem quite tight, at least for these protocols.

Corresponding calculations of the stretch rate for the inviscid model are not pre-
sented, because we have found it difficult to compute with accuracy the interface
length in this case, due to the highly localised stretching. However, although we
have less confidence in the inviscid results, they do yield stretch rates that are

also consistent with those given in Table 4.2.

4.4.1 Effect of stirrer radius

We recall that one feature of the topological theory is that exact details of the
mixer geometry have no influence on the predicted stretch rates. To illustrate
this we plot in Figures 4.12 and 4.13 the results corresponding to the viscous
BSDj; simulations in Figures 4.10 and 4.11, respectively, but performed using
the much smaller inner cylinder radii, with a;,/a = 0.01. We find that the
stretch rates associated with Figure 4.13 are still in accordance with those in
Table 4.2; however, by inspecting Figure 4.12, we see that the region of high
stretch is more localised around paths along which the cylinders are moved than
with the larger cylinders in Figure 4.10. Hence although the predicted stretch
rates are maintained we find that mixing quality according to other measures
(e.g. iterated mapping chaoticity) would be reduced. The dependence of stretch
rate upon stirrer thickness is discussed further in Chapter 5, where we explore

topological chaos in three dimensions.

4.4.2 Comparison with experiments of Boyland et al.

Finally, we present in Figure 4.14 numerical simulations of the bounded, viscous
model corresponding to the experiments reported by Boyland et al. [20]. These

results may be compared with their Figure 2, which shows the result of stirring
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Figure 4.12: Numerical dye-advection simulations of the five test protocols A—
E in the viscous model for the BSD3 as in Figure 4.10, but with smaller inner
cylinders of radii a;,/a = 0.01. The protocols are labelled by row. The columns

show the dye location after (from left to right) 1, 2 and 3 periods of the flow.
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Figure 4.13: Dye-streak length [(¢) for the five test protocols A-E in the bounded
viscous, model for the BSDj3, as in Figure 4.11, but with smaller inner cylinders

of radii a;,/a = 0.01.

by motions (o102)? and (o, '03)? in our notation (respectively, f? and g¢” in their
notation), for p = 0,1,2,3,4,5,6,9. The agreement is excellent; our plots show
qualitatively the same features as the experimental pictures presented in [20]
(the differences presumably being due to slight mis-matches between the cylinder
radii and the initial placement of the dyed fluid). The bounded, viscous model
thus seems to provide an excellent numerical test-bed in which to investigate

topologically chaotic flows further.

4.5 Experimental results

Further validation of our bounded, viscous model (discussed in Section 4.2) may
be obtained by comparing numerical simulations with our own experimental dye-

advection results, for the case m = 4.

We have built a simple experimental BSD, rig. The outer cylinder has radius
a = 7.4cm and the inner cylinders have radius a;, = 0.7cm; the separation
between the centres of the inner cylinders is 2r = 3.3cm. These cylinders are

interchanged manually, by means of a braiding fork, which may be lowered into
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Figure 4.14: Numerical dye-advection simulations in the viscous model for the

BSD3 under motions corresponding to (0105)? (left) and (07 '09)P (right). Here
ain/a = 0.043 and r/a = 0.17, roughly in accordance with the experimental
conditions of Boyland et al. [20]. Configuration at (a) p =0; (b) p=1; (¢) p = 2;
(d) p=3;(e) p=4; (f) p=5; (g) p=6, and (h) p=9.
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braiding fork
plastic outer container
copper inner cylinder
golden syrup

Figure 4.15: Schematic of our experimental apparatus, illustrating how adjacent
cylinders are interchanged by inserting and rotating a braiding fork, which causes
the cylinders to move along circular arcs centred on the mid-point between the

cylinders.

any two adjacent cylinders and then rotated (see Figure 4.15). We note that,
since the braiding fork does not apply a moment to the cylinders as it moves
them, they rotate through some small amount about their own axes during an
interchange; we neglect this (small) effect in our numerical simulations, as it is

beyond our control in such a crude experiment.

As our working fluid we use golden syrup, which has a kinematic viscosity at
room temperature of approximately v = 1200cm?s™! [2]. For each interchange,
we rotate the braiding fork slowly, completing a half-circle in a time of around
Tiwap = 10s. Using 7 as a characteristic length, and 7/Tsyap as a characteristic
velocity, this gives a flow Reynolds number of the order r2/vTyy,, ~ 107 < 1,

so we are indeed in the Stokes flow regime.

Figure 4.16 shows a comparison between numerical and experimental dye advec-
tion simulations using three different protocols. Although the experiments are
admittedly crude, particularly in the initial placement of the dye, the intricacies
of the striation patterns are reproduced remarkably well. In each case, the region
of good mixing is again roughly the same size as that through which the inner

cylinders are moved, consistent with the observations of [20].
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Figure 4.16: Left: braid diagrams for three protocols with m = 4 cylinders. Right:
corresponding numerical simulations (top row) and experiments (bottom). The
first column of results gives the initial location of the dye-streak. The next two
columns show the position of the dye-streak after one and two periods of the flow,

respectively.
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Figure 4.17: A BSDj; protocol created by inserting two stationary cylinders into
the BSD; [47].

4.5.1 Practicalities of mixer construction

Having described some simple small-scale experiments, we now discuss some of
the practicalities of building a mechanical BSD,,. In designing such a device,
one would need to decide between a gearing system or some kind of robotics
for moving the cylinders. While the latter would certainly be more flexible, and
allow the protocol to be changed easily, it is feasible, and simpler, to achieve
effective stirring topologies using systems of gearing. For instance, in the three-
cylinder BSD;3 discussed in Section 4.3.2, only one cylinder need be moved to
create a non-trivial flow topology — the two remaining cylinders can be held
stationary, provided that the moving cylinder loops around them appropriately.
This significantly simplifies construction of the device, but it is not clear for
general values of m whether the flow topology with the greatest Aipeory can always
be achieved with m — 1 stationary cylinders and one cylinder moving by means

of simple gearing.

In Figure 4.17 we show a cycloidal path for one of the cylinders (radius a;, = 0.1a),
of the form

p1/a = —0.1+ 0.2exp(27it/T) + 0.5 exp(4rit/T) (4.28)

(recall that z = p; (¢) is the location of the axis of the cylinder at time ¢), which can
be generated using a simple gearing arrangement [47]. These parameters mimic
the P(2,2,7) protocol from Chapter 3 shown in Figure 3.2. Corresponding simu-
lations of mixing in this BSD; are given below. By placing two further stationary

cylinders (each of radius a;, = 0.05a) with axes fixed at p, = —0.2a and p; = 0.4a,
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Figure 4.18: Stretch-rate comparison between the BSD; and the BSD3. On the
left are numerical dye-advection plots for the BSD; (top row) and BSD; (bottom
row) after 0, 1 and 2 periods. Apart from the presence of two additional stationary
cylinders in the BSDj3, the two stirring motions are otherwise identical. On the

right are plotted the corresponding dye-streak lengths () (cf. Figure 4.11).

we obtain a BSD3 flow with the topology of the braid o, 'o; oy toy toy oyt (see
Figure 4.17). According to the theory outlined in Section 4.3.2, this protocol
generates a stretch rate of Aheory = 3+ 2v/2 ~ 5.8, whereas in the absence of the
two stationary cylinders, the theory offers no corresponding value for the BSD;.
One might therefore expect material stretch rates to be significantly greater in
the BSD3 than in the BSD;: Figure 4.18 shows a stretch-rate comparison between
the BSD; and BSDj3 protocols. We find that Aggp, slightly exceeds Aggp, but, by
calculating the energy input, we find, not surprisingly, that it is more expensive
to operate the mixer with the additional cylinders in place (approximately 400%
more energy is required for the BSD; than the BSD;). The quantitative details
of the improvement in stretch rate and the excess energy consumption depend
sensitively on the size and location of the additional cylinders. However com-
puting the most energy efficient mixer configurations (especially when involving
more stationary cylinders) is a difficult problem that is beyond the scope of the

present study.
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4.6 Discussion

We have confirmed through numerical simulations that the theory of braids ap-
pears to provide a fairly tight prediction for the stretch rate in various BSDj3
protocols, according to both inviscid and viscous models for the flow field. As
Boyland et al. [20] point out, the theory does not predict the size of the region
in which good stretching is achieved: from our numerical simulations and exper-
iments, we confirm their observation that this region seems commensurate with

that through which the cylinders are moved during their interchanges.

Of course, as we have discussed in Chapter 3, the stretch rate of a finite ma-
terial line element is not the only measure of mixing quality, and so one might
reasonably ask whether the results described above provide any insight into the

effectiveness of the various protocols according to other mixing measures.

We recall that in Chapter 3 we found a strong correlation between material stretch
rate and energy usage (|C| = 0.85) for the BSD;. However, it is unlikely that
such a strong correlation would be observed for the BSD3, with three stirring
rods, because, by the symmetry of the motions described in Section 4.3.2, we
find that the same energy is required to execute any of the braid letters o, oy,
09, 05 ', and hence to execute any of the protocols A-E. Despite this equality of
energy usage, these protocols exhibit very different stretch rates — the correlation

between interface stretch and energy usage is broken by the flow topology.

Hence, if an empirical correlation exists between material stretch rate \;; and
other mixing measures, it necessarily depends on flow topology. The problem
of finding such a relationship is important since the (apparently quite tight) es-
timates on the stretch rate are independent of the exact fluid properties and
flow field and so a strong link to another mixing measure would allow similarly
tight predictions for that measure too, based purely on topological considerations.
Unfortunately the additional computational resources required for numerical sim-
ulations of the BSD,, prohibit as thorough an investigation as was undertaken

with the BSD; in Chapter 3 and this must be left for a future project.

We now make some further considerations regarding the energetics of the BSD,,.
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Figure 4.19: Power input calculated from (4.24) for the cylinder exchanges o,
and oy in the four-cylinder BSD, (here the time T is that required to perform a
single exchange). A greater power input is required for o; than for oy, since in

the former case the relevant cylinders are closer to the outer boundary.

Although we have focused on computing the energy input required only for the
protocols investigated in this chapter, three broader issues now arise, which would
influence a more ambitious project in which one were to attempt to find some

optimal stirring protocol (using least energy, say).

First, we note that once we have selected a protocol with a given topology and
have to engineer a given material stretch rate, it remains to choose such param-
eters as a;, and r, for example. A simple thought experiment shows that these
can significantly affect the energy requirements of the BSD,,, for if the internal
cylinders lie close together then the power input is large (and is infinite when
two moving cylinders touch) and the region of good mixing is presumably corre-
spondingly small. Alternatively, when the internal cylinders lie far apart, their
proximity to the outer boundary becomes significant, and once again the power
input becomes large (infinite if any moving internal cylinder touches the outer
boundary). We anticipate that for a given set of internal cylinders there exists

some optimum way to execute a given braid motion, for minimum energy input.

Secondly we note that for the BSD,, with m > 3, cylinder exchanges taking place

closer to the outer boundary (e.g. o1 or 0, 1) require more energy than those
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further away, so that the choice of braid word itself can influence the energy usage.
As an example, we demonstrate in Figure 4.19 the different power requirements

during the execution of the braid letters o; and o with m = 4 cylinders.

The third consideration, alluded to in Section 4.2.2, is that in addition to trans-
lating each of the internal cylinders, we may also choose to rotate them about
their axes (or, indeed, the external cylinder about its axis), in an attempt to

reduce the power input during the cylinder exchanges.

Finally, we note that the series solution approach implemented here is readily
adapted for stirring elements whose cross-section is not circular. Spectral accu-
racy in the series for the velocity field can be maintained by applying an appro-
priate local conformal mapping from each non-circular cross-section to a circle

(Prof. L. N. Trefethen, personal communication).

To be precise, if w;(z) maps the boundary of the stirring element j to the unit

circle |w| = 1, then the streamfunction (4.17) is recast into the form
v = ZZ{ bj1log |w;(z \+Zb, k(w;(z }
+2 {%Cj,l log |w;(2)] + Z Cj,k(wj(z))lk}
j k=2

7j=1
+ image system + c.c., (4.29)
where ‘image system’ represents the images of the singularities inside the circle
|z| = a according to the biharmonic circle theorem [14, 47, 54, 97, 132]. The
expression (4.29) is of the form (4.9), so this expression satisfies the governing

biharmonic equation exactly.

We have in this manner carried out preliminary simulations for stirring elements
of both smooth (elliptical) and non-smooth (flat, plate-like) cross-section (cf.
[128, 129] for the former). A streamline plot with two moving plates and one
stationary plate is shown in Figure 4.20. The mappings used in this case are

Joukowski transformations [2] of the form

=(+4/C2—1, ¢(=eYz-p)/I, (4.30)

which take plates of length 2/, centred at z = p, and inclined at an angle 6 to the
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Figure 4.20: Streamline pattern for two moving plates and one stationary plate.

circle |{w| = 1. Special care must be taken to ensure that appropriate branch cuts

are used when transforming between the z and w domains.

In principle, more complicated maps could be used, such as Schwarz-Christoffel
transformations, which would allow stirring elements with an arbitrary polygonal

cross-section [41].

4.7 Conclusions

We have examined the generation of ‘topological chaos’ in a batch stirring device
(BSD,,,) [20], through numerics and experiment. The device consists of a number
of stirring rods whose positions are successively interchanged in a ‘plaiting’ mo-
tion, the topology of which is alone sufficient to determine a material stretch rate
that can be achieved in a corresponding two-dimensional chaotic fluid flow. This
bound is independent of the fluid properties, and of the exact cylinder motions

used to achieve the interchanges.

In any practical implementation of the BSD,,,, however, the theory does not indi-
cate the actual stretch rate that can be achieved, nor does it indicate the extent

of the flow domain in which the greatest stretching takes place. To address such
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issues, we have proposed four models for the fluid velocity field in the BSD,,, with
particular emphasis on the most sophisticated, in which the BSD,, is described
by Stokes flow in a finite domain. Through a complex series for the instantaneous
streamfunction, we have been able numerically to simulate stirring protocols with
various topologies. Our algorithm is simpler, faster, more accurate, and requires
less storage than an alternative finite-element or finite-difference approach [142].
Furthermore, it allows accurate evaluation of the velocity field at any point in the
domain, without the necessity of interpolation between values known at relatively
few grid points. We have applied our algorithm to perform dye-advection and
stretch-rate calculations, and our results agree well with the theoretical predic-
tions given by Boyland et al. [20], in particular, concerning the size of the chaotic
region. A validation of our numerical code against experiments performed in a
simple, inexpensive rig showed excellent agreement with the bounded, viscous
model. Although our experiments involved a crude manual interchange of the
stirring rods, we have discussed how one might construct an automated BSD,,.
Many effective stirring protocols can be realised with a single stirring rod that
loops around other rods, which are fixed, and this kind of motion can be achieved

using only simple gearing.

As yet, there is no corresponding theory to predict a priori how a given protocol
will score against a mixing measure other than its rate of material line stretch.
We have already discussed in Chapter 3 the important question of whether, in
general, there is a quantifiable link between stretch rates and other measures. It
is not clear whether topological chaos could play a key role in establishing this
link; however, the ability of braid theory to bound stretch rates allows us to some
extent to circumvent expensive computer simulations; this is an important step,
and these theoretical results may well provide the foundation on which a future

study involving a wider range of other mixing measures can be based.
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Chapter 5

Topological chaos in

three-dimensional mixers

5.1 Introduction

We have seen in Chapter 4 that topological chaos (TC) theory may be used to
predict fluid stretch rates [18, 20, 123, 142] in two-dimensional batch mixers.
Although a practical disadvantage of the TC theory is that it gives no indication
of the area in which high stretch rate is achieved, we have seen that the regions
of effective mixing are commensurate with the region through which the stirring
elements move [20]. Furthermore, even thin stirring elements appear to mix
effectively, provided they move with the topology of a nontrivial mathematical

braid.

In this chapter we broaden our exploration of mixer design to three-dimensional
mixers. Chaotic advection is readily achieved in three-dimensional mixing devices
and can lead to effective stirring [9, 10, 11, 111, 112] provided flow parameters
are tuned carefully. Indeed, in three dimensions no time-dependence of the Eule-
rian velocity field is required in order to create chaotic particle trajectories [72],
and so we examine in this chapter three-dimensional static mixers, which contain
no moving parts. Generally, a static mixer consists of a pipe containing a spe-

cially designed insert that causes transverse mixing of the passing fluid flow, as
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direction of flow

Figure 5.1: Geometry of the Braided Pipe Mixer.

illustrated in Figure 1.5. This mixing occurs at a cost, however, since a greater

pressure gradient is required to drive the flow than when the insert is absent.

We investigate the possibility, suggested by Boyland, Aref and Stremler [20] and
Mackay [92], of applying topological chaos to the design of a three-dimensional
static mixer. Specifically, we consider a ‘braided pipe mixer’ (BPM) in which fluid
is driven by a pressure gradient down a circular cylindrical pipe that contains
several intertwining, solid pipes. As fluid flows past the internal pipes, it is
forced to mix in the cross-section (see Figure 5.1). An analogy between the
BPM and the two-dimensional BSD,, may be made, whereby the axial coordinate
in the BPM plays the role that time occupies in the BSD,,. One might then
expect that mixing in the BPM could be improved if the internal pipes form
an appropriate mathematical braid. The correspondence between the BPM and
BSD,, is not exact however, since particles in the BPM travel at different axial
speeds depending on their proximity to walls; some particles can even come to
rest on the braided internal pipes. Since the notion of applying TC insight to
static mixer design is based on analogy rather than a sound theoretical basis,
a thorough investigation is needed into whether TC can be exploited for static
mixer design, or whether additional flow features not found in two-dimensional

devices can undermine mixing quality in three dimensions.
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Preliminary flow simulations have been performed by Vikhansky [141] in a ‘topo-
logically chaotic’ static mixer consisting of a rectangular outer pipe, containing
three braided pipes of circular cross-section. The flow field solution was computed
numerically using an ‘immersed’ or ‘virtual’ boundary method in which no-slip
conditions are not applied exactly on the circular boundaries, but by interpola-
tion at the nearest neighbouring grid points. Vikhansky [141] reports that the
mixer outperforms many leading commercial static mixers according to stretch
rate and energy consumption measures, but suffers from the appearance of sig-
nificant regular islands of poor mixing in a Poincaré section taken across the
rectangular cross-section. The numerical method used also allowed the inclusion
of inertial effects, up to a Reynolds number of 14, with second-order spatial accu-
racy; however, it is important to note that such a scheme is not ideal for studying
the intricacies of chaotic advection, where exponential temporal growth of errors

demands a more accurate description of the flow field.

Other analytical studies have been made of three-dimensional mixing in the Stokes
flow regime, such as in the Eccentric Helical Annular Mixer [125], Kenics Static
Mixer [60, 61, 62] (see Figure 1.5), Partitioned Pipe Mixer [85, 88, 94, 100],
Rotated Arc Mixer [127], flow through twisted pipes [71, 72, 73, 130] and others |8,
56, 84]. However, none of the mixers in these papers is sufficiently flexible to allow

an investigation of different flow ‘topologies’.

We are therefore motivated in this chapter to develop an accurate representation
of the velocity field in the BPM, in order to pursue the analogy with TC in three
dimensions. We use our model to address two central questions: (i) whether the
mixing is improved when the internal pipes form a nontrivial mathematical braid,
and (ii) whether good mixing can be achieved when the internal pipes are very
thin, just as effective mixing could be achieved in the BSD,, with thin stirring

rods.

The chapter layout is as follows. In Section 5.2 we describe the Braided Pipe
Mixer (BPM) and an algorithm for constructing the velocity field with spectral
accuracy. Example computations are shown, and features of the solution are
described. In Section 5.3 we extend the braid notation used in Chapter 4 to

three dimensions, and describe how various BPM braids are constructed. These
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are then evaluated by performing numerical dye advection simulations. In Sec-
tion 5.4 we discuss features of the flow in the BPM, including the applicability of
topological chaos, and the effects of stretching the internal pipes. Our conclusions

are given in Section 5.5.

5.2 Mathematical model for the BPM

In this section we construct the velocity field for the Braided Pipe Mixer (BPM),
shown in Figure 5.1. We work with the Cartesian coordinate system (z,y, (), as
shown, with x and y as cross-sectional coordinates and ( in the axial direction.
It is also convenient to introduce the complex variables z = x +iy and Z = x —iy.
The mixer has no moving parts, and consists of a circular cylinder of radius a

whose axis is aligned in the ¢ direction and whose surface is defined by
I=|zP-d®*=0. (5.1)

Contained inside the mixer are m twisted inner pipes of circular cross-section

(not necessarily of fixed radius) defined by

L,

where p;(¢) determines how the j-th pipe twists down the device, and a;(¢)
determines its radius in any given ( cross-section; Figure 5.1 thus illustrates the
case m = 2. (In practice one would need a means of fixing these inner pipes to
the outer wall, such as wire stays, but we neglect these here.) Our attention in
this chapter is focused on inner pipes that are periodic with wavelength L in the
axial direction (. The mixer walls are referred to frequently in what follows, so
for brevity we simply refer to them as I' and I'; for the outer and inner pipes,

respectively.

Incompressible viscous fluid occupies the domain between I' and the I'; and flows
steadily along the pipe at vanishing Reynolds number (Stokes flow). Mixing is
achieved by forcing the fluid along the pipe, making it wind around the inner

pipes as it progresses.
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In a viscous flow regime the velocity field w satisfies the Stokes equation and the
continuity equation

where u, p and p are the fluid velocity, pressure and dynamic viscosity, respec-

tively. The no-slip condition u = 0 applies on I' and the I';.

We prescribe the volume flow rate

Q= //A wdA, (5.4)

where w(z, y, () is the axial component of the fluid velocity and A(() is the cross-
sectional area of fluid, that is, the area enclosed between I' and the I';. Of course
the flow rate () must be the same across every cross-section A since the fluid
is incompressible, and this condition is later used to determine the downstream
pressure gradient, which varies along the length of the device. Alternatively,
instead of specifying the flow rate, we could, equivalently, fix the pressure drop

down the pipe, and compute from it the corresponding flow rate Q.

In a BPM having inner pipes with axial period L, the parameter ¢ = a/L is
an indication of how twisted the pipes are. The velocity field for any e can be
calculated numerically [141]. To make analytical progress we focus on the regime
€ < 1 which corresponds to inner pipes with a long wavelength. We assume flow

is driven by a pressure field in the form

p~ p(PC) +en(z,y,0)), (5.5)

where the constraint that 7w should have zero average over any cross-section of

constant ¢ ensures that P(() is specified uniquely.

Here the flow is predominantly in the axial direction, enabling us to expand the
velocity field as

u ~ (eu, ev, w + ew), (5.6)

and make the axial rescaling Z = €, so that the system (5.3) can be written

Viu+ Euzy; = m, (5.7)

Viv+ vy = Ty, (5.8)

Viw + eVED + Ewgy + Edyy = Emy— P (5.9)
Uy + vy +wz +ewy = 0, (5.10)
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where V? = 0%/02%+0%/0y?. In (5.9), the pressure gradient function P is defined

as
dpP

— 3

Accompanying these equations are the no-slip conditions u = v =w = w = 0 on

P(Z) = (5.11)

I and I';. At leading order, with € < 1, the governing equations reduce to give

Viu = m,, (5.12)
Viv = m, (5.13)
Viw = -P, (5.14)
Uy + vy +wz = 0, (5.15)

together with constraint (5.4) of fixed volume flux.

In the next two sections we describe the steps taken to construct a spectrally

accurate solution to equations (5.12)—(5.15).

5.2.1 Axial velocity field

We begin our solution by determining the leading-order axial velocity component
w. Equation (5.14) may solved independently of u and v, and at each ¢ gives
the flow corresponding to a straight annular pipe with the local cross-section.
The case of a single inner cylinder m = 1 has been studied before [3, 35|, and
an exact solution for steady viscous flow down a straight annular pipe has been
derived [43, 91, 137]. For m > 1 no corresponding analytical solution is known,
and we turn to the complex series approach employed for the two-dimensional

batch stirring device discussed in Chapter 4.

The local pressure gradient term P is a parameter in the Poisson equation (5.14).

Hence the solution at a given value of Z may be written in the form
w=P(2){1(a® — 22) + b}, (5.16)
where w satisfies Laplace’s equation

V2 = ;= 0 (5.17)
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and the boundary conditions

W = L(2z—-a®) on Ty, (5.18)

Ny

S
I
o

on TI. (5.19)

Note that since the boundaries I'; vary with Z then w depends non-trivially on
Z.

In its canonical form, (5.17) may be integrated easily. The most general real

solution which satisfies (5.19) is [2, 98, 99]
W= f(z) — f(a®/Z) + c.c. (5.20)

for any analytic function f(z), where c.c. means the complex conjugate of all the

preceding terms. By choosing f to be

m n

flz) = 21 {ozj,l (log(z —pj) — %logz) + kzzaj’k(z _ pj)l—k} . (5.21)

j= —

that is, a logarithm plus n-term Laurent series centred at each p;, as in Chapter 4,
we generate a solution (5.20) that is single-valued and free of singularities in the
domain provided that the «;; are real. Spectral accuracy is achieved using this
form of solution, whereby the coefficients o decay according to |a; x| ~ C* for
some C' < 1. The accuracy of the method allows for meaningful simulations of
chaotic particle advection (see Section 5.3.2). The logarithmic singularity in f(z)

at the origin does not give rise to any corresponding singularity in @ when f(z)

is substituted into (5.20).

The mn constants o are determined numerically by minimising the squared-
error in the remaining boundary conditions (5.18) as discussed in the previous
chapter [121]. The rapid convergence of the series in (5.21) means that the method
is fast and requires storage only of the coefficients o, and not of a grid of
velocities as in a finite-element or finite-difference scheme. After the «;; are

determined, we then compute P by imposing (5.4), as we now describe.

In substituting (5.16) into the flow rate expression (5.4), we find that evaluating
the resulting integral is very involved, but can be done exactly. The key step is

to transform the surface integral to a contour integral using the Milne-Thomson

//AwdA=%i?iA (/wdz) dz. (5.22)
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Figure 5.2: The contour 0A used in the Milne-Thomson area theorem [99] to

evaluate the axial flow rate.

The path 0A traverses I' in an anti-clockwise direction and each of the I'; in
a clockwise sense, as illustrated in Figure 5.2. It is convenient to evaluate the
contributions from each «; term by term, and to consider each circle separately.
When integrating the term corresponding to «;y, the cases k = 1, £ = 2 and
k > 2 must be treated separately, and the integrals around the outer, j-th and

non-j-th circular boundaries require slightly different approaches.

To demonstrate how the calculation is performed, consider the volume flux Q*
generated by the a;; term from (5.16) through the outer pipe I'. According to
(5.22) this is

. 1, i
Q*/P = 510%175/[log\z—pj|2—log\z—qj|2—log |pj/a\2] dzdz

= %i% 75 [(z = ;) log(z — ;) + zlog(z — ;)
— (2 — ¢;) log(z — ¢;) — zlog(z — ;)

+ (pj — ¢;) — zlog|pj/al* + h(Z)] dz, (5.23)
where ¢; = a*/p;. In performing the inner integral, with respect to z, we have
introduced h(Z), an arbitrary function of integration. We choose h(Z) to make

the resulting integrand for the outer contour integral single valued, noting that,

by Cauchy’s theorem, the exact choice of A does not influence the calculated flow
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rate, provided it does not introduce a singularity inside A. Then we have

QP = Giag § (=) (og= - py) +log(z — )
~ (=~ 47) (log(z ~ ) +log(z ~ )

+ (p; — a5) — zlog|p;/af*| dz. (5.24)

To make further progress we express the logarithm terms in (5.24) as Taylor

expansions, giving

Q1P = o (o~ ps) Gog(e) = pyfz = - +108(2) ~ psf2 =)

+ (p; — ¢;) — zlog |p;/a’]| dz. (5.25)

Note that care must be taken to write down the correct (convergent) form of
Taylor expansion; on the contour I' we have [p;/z| < 1 and |z/¢;| < 1, since
the singularities p; and g¢; lie inside and outside T', respectively. On the outer
i9

boundary I' we have z = ae'?, z = ae " and dz = —iae " df, and so we can

rewrite (5.25) as
x 1 e —i .
Q*/P = 5 j’l/o [(aea —p;) (loga2 —pje/a—p;eJa—-- )
— (ae” — gj) (log ;% — ae®® /q; — ae™ /g; —-- )
+ (pj — ¢;) — ae” log|p;/al*|ae* df
= ajum |a’log (a*/|p;q;*) + piI” — 0®] = azum(lp;* — @), (5.26)

which completes the calculation. (Note that the terms represented by dots in

(5.25) and (5.26) do not contribute to the final result.)

The flow rate contributions from all the other terms in (5.16) may be treated in
a similar way. When all the individual terms are collected together, we find the

exact expression for the flow rate is

- a? (loga§ — log|p; — Qj|2 —log |pj|2 +loga® — 1)
m
- Z a (log ips — p;|* — log |ps — g;
s=1,5#]

| 2

— log |p;|* + log a2)
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Figure 5.3: Illustrative grey-scale plots of the axial velocity component w in a
cylinder containing between two and five inner pipes. Flow speed is shown by

grey-level, with darker tones indicating greater flow speed.

+ ajom [ — pj + pia; (a® — |p;[*) 7
m
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=15

where c.c. means the complex conjugate of all the preceding terms. Since @ is
specified, and all the other quantities are known, this enables us to determine P.
Four sample solutions for w are shown in Figure 5.3. This figure illustrates that
axial flow speed is small in the proximity of all the boundary walls. The retarding
effect and the reduction in cross-sectional area caused by the presence of inner
pipes means that a larger pressure gradient is required to drive a specified flow
rate than that which would be needed in a Poiseuille flow through a pipe of radius
a containing no inner pipes. A discussion of how the pressure gradient P depends

on the locations p; and radii a; of the inner pipes is given in Section 5.2.3.

5.2.2 Transverse velocity field

Having found the axial velocity component w we now compute the transverse
velocity components u and v. The remaining equations (5.12), (5.13) and (5.15)

may be written as
Vi(u,v) = Vi, (5.28)
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Uy +Vy, = —wz. (5.29)

We look for a solution u = ¢, + 1y, v = ¢, — 1, in terms of a potential ¢ and

streamfunction 1, so that the velocity field is given by
u+iv =2 (¢; —itY;), (5.30)
and equations (5.28) and (5.29) become [2]
Vi = —wy, (5.31)
Viy = 0, (5.32)
subject to the no-slip condition
¢; =i; on T andTj. (5.33)

Since we have already computed w, the right-hand side of the Poisson equation
(5.31) could be calculated numerically by finite-differencing w at neighbouring
values of Z; however we can deduce wz more accurately as follows. We first

differentiate (5.14) with respect to Z, leaving us to solve
Vf’wz = —Pz, (534)

where P can be computed by making just a single finite-difference approxi-
mation. To find boundary conditions on wz, consider two neighbouring points
(z,y,7) and (x + dz,y + dy, Z + 6Z) on a given boundary (say I', although the
argument also applies for the I';). Since
I(z+dz,y+ 0y, Z+6Z) = T(x,y,Z)+ 0zly+ oyl'y + 62Tz + - --(5.35)
w(x+ox,y+0y, Z+6Z) = w(z,y,Z)+ dxw, + oywy + 0Zwz + - - (5.36)

and since both ' (by definition) and w (by no-slip) vanish on the boundary, it

follows that to leading order in small quantities,
dzly + 0yl + 02T 7 = dzw, + dyw, + 6 Zwz = 0. (5.37)

By considering, in turn, displacements with dx = 0 or 0y = 0 it becomes apparent
that I'ywz —I'zw, = T'ywz —T' zw, = 0 and by taking linear combinations of these
results we can finally arrive at the conditions
Wz = wZPjZ/sz on Pj, (538)
wz = 0 on TI. (5.39)
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The right-hand side of the boundary condition (5.38) is known, since from (5.16)
and (5.20) we have

w,/P = —iz+ f(2) + a2 f'(a?/2), (5.40)

where the derivative of f is easily calculated from (5.21), and also

Z—Dj Az
T, F-z: —Djy, p27 > —2—= 5.41
JZ/ J j Z—p, Z—p ( )

Again, we seek solutions to (5.34) in the form

wyz = PZ{ (a® — 22) + g(2) — (a2/2)} + c.c. (5.42)
9(2) = i {5]',1 (log(z — p;) — logz) + ki?ﬁj,k(z - Pj)l_k} (5.43)

with the constraint that the 5, must be real, and determine the mn coefficients
Bjx numerically by our least-squares algorithm. With the solution for w; de-
termined we could go on to find ¢ by integrating (5.31). However, since we are
interested only in the velocity field contribution from ¢, given by (5.30), we need
only integrate (5.31) once with respect to z to determine ¢ rather than ¢ itself.
We find that

20; = —1 /wz dz + x(2), (5.44)

where x(Z) is an arbitrary function. We must choose x so that the velocity field

resulting from ¢ is single-valued and after careful integration deduce
20:/P; = —ia®—322)z2— 12> Bju(z—py)' 7"
m n a2 1-k
+32) {ﬂj,l log(—pj/a) + Y Bjx (; - pj) }
j:
~ 43581 - oglz i - 1)
n 2—k
zZ—p;
+ Bjgloglz —pi|* + > ﬁj,k%
= (2—k)

41 Z{@ﬂz—%m%k—%F—D+d%FwMD

Z <Z_Qj+(k_1)leog|z_Qj|2

s (k;l )q;(z%gjgl—’)} (5.45)

=2

r—‘l\?
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Figure 5.4: Example cross-sectional velocity fields (u,v) with between two and
five inner pipes. In the flow domain, velocities are shown as arrows, with the
length of the arrow indicating the speed. The arrows drawn inside the circles
indicate dp;/dZ, i.e. they show how the axis of each inner pipe varies as Z is

increased.

where again ¢; = a®/p;. Now we must construct ¢ to complete the description of

the velocity field. The general solution to (5.32) is [99]
Y = Zk(2) + A(z) + c.c., (5.46)
giving rise to the velocity field contribution, through (5.30), of
—itp; = —2i (k(2) + 2K (2) + N (2)) - (5.47)

A series solution for v is adopted, as discussed in the previous chapter, with x

and A taking the form [26, 76]

k= Z 70,kzk—1 + Z {’Yg,l log(z —p;) + Z Vik(z = P]) } ; (5.48)
k=1

j= k=2

—

A= D b+ Y {7] 121log(z — pj) + 9,1 log(z — pj)

J:

[y

n

-+ Z 5]"]9(2 — pj)l_k}, (549)

k=2
which correspond to a rotlet, Stokeslet and Laurent series at the centre of each
I'; and also a Taylor series at the centre of I' (the origin). The series in x and
A enable us to satisfy (5.33) with spectral accuracy. The coefficients ; and 4,
(with j = 0,1,...,m) are chosen to minimise the squared error in (5.33) on both

I' and the T';. Sample cross-sectional velocity fields are shown in Figure 5.4.
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Figure 5.5: Plot of pressure gradient P against centre p; of the single inner pipe
in a BPM with m = 1. The corresponding value of a;/a is indicated beside each
curve. The right-hand end point of each curve corresponds to p; = a — a;, where
the inner pipe is touching the outer cylinder. The limiting value Pa*/Q = 8/m

for Poiseuille flow without an inner pipe is shown as a dashed line [91, 137].

5.2.3 Features of the solution

Having completed the description of the BPM velocity field we now describe
some of the flow features. Figures 5.3 and 5.4 show example velocity fields at

cross-sections of four mixers with between two and five inner pipes.

Figure 5.3 shows that the axial velocity is retarded in the proximity of the outer
boundary I' or any inner pipe I';. The pressure gradient P required to produce
a given flow rate () depends not only on the cross-sectional area of the flow, but

also on the locations p; and radii a; of the pipes.

For example, with m = 1 inner pipe, Shivakumar and Ji [134] have calculated
how @) varies for a specified pressure gradient P (see also [91, 137]). As a check
on our numerical implementation of the algorithm described in Section 5.2 we
have successfully recalculated their results. In Figure 5.5 we plot the pressure
gradient P required to produce a flow rate ) as a function of position p; and
radius a; of the inner pipe. Our results confirm the findings of Shivakumar and

Ji, that the pressure gradient P is greatest when the inner and outer pipes are

150



concentric.! The minimum of P occurs when [p;| = a — a; so that the inner and

outer pipes are touching.

With m > 1 inner pipes it becomes more difficult to determine which arrangement
of pipes will minimise the pressure gradient P required to obtain a given flow rate
@, since the parameter space is many-dimensional. For example, with m = 2,
there are already five parameters governing the cross-sectional geometry, namely
Ip1|/a, |p2|/a, a1/a and as/a and arg (pe/p1). We make the general observation
that if the inner pipes are placed in proximity, close to the outer boundary,
then their overall retarding effect on the axial flow is reduced, meaning that the
pressure gradient P in the axial direction is reduced. Further remarks on pressure

variation are made in Section 5.3.

Flow in the cross-section occurs only when the inner pipes are twisted so that
dp;/dZ # 0 for some j. Figure 5.4 shows that fluid moves in the cross-section
to avoid encountering the pipes further downstream, giving flow patterns that
loosely mimic those seen in the two-dimensional batch stirring device from Chap-
ter 4. In three dimensions, however, the cross-sectional flow is described by (5.30)
in terms of both a streamfunction v and velocity potential ¢, whereas the BSD,,
flow is described in terms of a streamfunction only. The velocity field contribution
from the potential ¢ has a non-zero divergence given by (5.31) which allows cross-
sectional flow behaviour not seen in the two-dimensional BSD,,,. Specifically, local
source- or sink-like behaviour is possible, so that instead of fluid ‘following’ the
twisting motion of the inner pipes, it is preferential for fluid to ‘escape’ in the

axial direction, with an accompanying change in axial flow speed.

5.2.4 Accuracy of the flow field

In this section we expand on our claim above that the form of solution used allows

the velocity to be determined accurately while requiring only a modest number

INote that the form of solution discussed in Section 5.2 cannot be applied numerically if
any pipe is perfectly concentric with the outer pipe, so that p; = 0 for some j. This is because
as the singularity location p; — 0 the corresponding image singularities present in (5.20) and
(5.45) diverge to infinity. However, this singularity is removable, and may be avoided in our

numerical implementation by placing the relevant pipe a small distance from the origin.
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Figure 5.6: Exponential decay of the coefficients ok, Bk, vjx and 6;, with k.
For definiteness, the values plotted correspond to the Z = 0 cross-section of the
o1 braid letter described in Section 5.3.1, though the decay illustrated is typical

for all cross-sections.

of terms to be kept in each series. In Figure 5.6 we plot the magnitude of the
coefficients «, 3, v and ¢, from (5.21), (5.43), (5.48) and (5.49), respectively,
against the index k for a typical BPM with m = 3 pipes. The coefficients decay
exponentially, indicating spectral accuracy. The times taken to determine «, §,
v and ¢ using the least-squares algorithm for various n are given in Table 5.1.
Typically, the maximum error in the boundary conditions u = 0 can be reduced

to 107%Q/a® with as few as n = 10 terms per series.

5.3 Investigating topological chaos

In this section we describe numerical dye advection simulations to examine the
effect of changing the topology of the inner pipes in the braided pipe mixer.
Boyland et al. [20] have conjectured that non-trivially braided inner pipes will mix
fluid more effectively than other pipe arrangements (at least according to a stretch

rate measure) and so we test this conjecture here. We then test, given a particular
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n 3 ) 7 9 11

time 0.12 0.38 0.92 1.9 3.4
Yoemor 1x10°% 2x10° 6x107 9x10°° 1x10°°
time 0.69 3.3 9.9 23 47
U, v

error 7x1072 2x107% 2x10™* 2x107° 1x10°°

Table 5.1: Computation time (in seconds) and error in boundary conditions for
the m = 3 inner pipe configuration in Figures 5.3 and 5.4. We compute the
maximum error in the no-slip conditions for u, v and w in expressions (5.16) and
(5.30) when truncating their series solutions to n terms. The errors are scaled
by the typical fluid velocity @/a?. All calculations were performed on a 1.5GHz

Pentium 4 computer.

braid topology, whether the quality of mixing is significantly influenced by varying
other geometrical parameters. Recall that in the two-dimensional batch stirring
device in Chapter 4, where the flow was topologically chaotic, we found that even
with stirring rods of very small radius we could achieve effective mixing over a
useful area of the domain. We address in this section the corresponding question
of whether a BPM containing narrow pipes (therefore offering very little flow

resistance beyond pure Poiseuille flow) can be a practically useful mixing device.

5.3.1 Braid construction

A simple way to create different braid topologies is to construct a BPM from a
sequence of component units, each of which transposes two adjacent inner pipes.
At the start and end of each unit the cross-section has the same geometry, with the
pipe centres lying along a diameter; between these cross-sections two pipes twist
around each other. In this way, each unit therefore corresponds to a braid letter
o, as described in Chapter 4. The mixer is then characterised by its particular

sequence of component units corresponding to a braid word.

For simplicity, and to allow comparison with the results in Chapter 4, we study
a BPM with m = 3 inner pipes. We also consider axially periodic mixers where

a sequence of units corresponding to four braid letters is repeated indefinitely.
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Braid letter pi/a pa/a p3/a

o1 _% _ ieiﬂZ/a _% + ieiﬂZ/a %
0,1—1 _i _ %efiﬂ'Z/a _i + %efiﬂ'Z/a %
09 _% i _ %eiﬂZ/a i + ieiﬂZ/a
02—1 _% i _ ie‘”Z/“ i"‘ ie‘”Z/“

Table 5.2: Inner pipe shapes for a BPM component unit 0 < Z < a with m = 3,

for each of the four different component braid letters oy, oy ', 0o and o5 *.

WA a

ot

Figure 5.7: Illustrations of the four BPM component units oy, o7 ', 02 and o ',
showing the twisting of the inner pipes. The outer pipe surrounding all the inner

pipes is not shown.

With m = 3 there are four possible crossings of adjacent pipes (two pairs of
pipes, which may each be twisted ‘anticlockwise’ or ‘clockwise’). Clearly there is
a great deal of freedom in specifying the shape of the pipes. For simplicity we
design each unit so that the axes of the two crossing pipes follow helices whilst
third pipe is straight, with a constant cross-section. Expressions that we adopt

for the p; for the four possible braid letters oy, o, ' 0y and o0,"

are given in
Table 5.2 generating the pipe shapes shown in Figure 5.7. Each of these units
has length a (in terms of Z), so a four-letter braid word gives rise to a BPM with

axial period 4a.

Although our formulation in principle allows us to consider pipes with varying
radii a,;(Z) this has no influence on flow topology, so for simplicity we will take

each a; = 0.1a to be constant.

Asin Chapter 4, braid words should be read from right to left so that, for example,

the word o709 means that the component oy runs from Z/a =0 to Z/a =1 and
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Figure 5.8: Plot of pressure gradient P against Z for each component unit de-
scribed in Table 5.2. By symmetry, the pressure gradient function is the same for
each braid letter. The cross-sectional location of the inner pipes is illustrated for

ZJa=0,0.25, 0.5, 0.75, 1.

it is followed by oy from Z/a = 1 to Z/a = 2. The sequence is then repeated,
or, equivalently, fluid leaving the mixer at Z/a = 2 is reinjected in the same

cross-sectional location at Z/a = 0.

To determine the flow completely we need to specify the flow rate (). However,
since () has no influence beyond scaling all velocity components and the pressure

gradient, we arbitrarily choose a unit flow rate for numerical simulations.

We note immediately, by symmetry, that the pressure gradient P(Z) and, con-
sequently, the total pressure drops across each braid component are exactly the
same. This feature allows us to compare fairly the mixing performance of different
braid topologies based on equal energy inputs and similar geometrical parame-
ters. In his complementary study, Vikhansky [141] has shown that stretching
in his braided pipe mixer is greater than in other commercially available mixers
(based on equal driving pressure gradients), but has not performed a comparison

of different braid topologies.

In Figure 5.8 we plot the variation of pressure gradient P with Z along a compo-
nent unit, noting that P(Z) is the same for all four braid letters. The plot reveals

a maximum pressure gradient half-way along the pipe. Roughly speaking, this is
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Figure 5.9: Braid diagrams and braid words for six arrangements of the BPM
component units. The identity braid I corresponds to flow down a device of

constant annular cross-section. The braids A-F correspond to those in Chapter 4.

where the inner-pipe locations are most widely spread over the domain, causing
impedance to the flow over the greatest area. The minimum pressure gradient is
found at the ends of the component, where the pipe centres are aligned along a
diameter. In this configuration, regions above and below the pipes allow the bulk

of fluid to flow relatively unhindered.

5.3.2 Effects of braid topology

We describe here numerical flow simulations performed to compare the effective-
ness of braided pipe mixers using different braid words. In addition to the five
braid words A—FE considered in Chapter 4, we include, for reference, the identity
braid I which is a device of constant annular cross-section with the p; taking the
constant values p;/a = —%, pa/a =0, ps/a = % The braid diagrams for the six
braid words are shown in Figure 5.9. We recall that the braids I and A have the

same trivial topology, as we have discussed in Chapter 4.

An initial qualitative assessment of mixing performance for each braid word can be
made by inspecting results of passive dye advection, where the position (x,y, Z) of
a particle of dye satisfies the ordinary differential equation (z, 7, Z) = e(u, v, w).
As an initial condition we use the line of dye shown in Figure 5.10, which is repre-
sented numerically as a large number of particles. A plot showing the location of
the dye after time ¢ = 10a®/Q/¢ is shown in Figure 5.11 for the six different braid

words I and A—FE. This particular instant illustrates the dye after a noticeable
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Figure 5.10: Plot of the initial line of dye used for simulations in this chapter.
The line lies in the plane Z = 0 between the points (z,y) = (—0.96,0.25) and
(z,y) = (0.96,0.25).

amount of mixing, but before the dye has become well-mixed.

We see immediately that the braids A-FE all exhibit a qualitatively good mixing
performance. It is difficult to distinguish by eye between the effects of the braid
topologies B—FE. This is in contrast to the corresponding two-dimensional BSD3
dye advection plots in Figure 4.10 (Chapter 4) where there is a visible difference

between stirring qualities. The dye in braid [ is unmixed.

To probe mixing performance further, we compute some quantitative measures.
As a comparison with the two dimensional batch stirrer from Chapter 4 we can
compute the material stretch rates for each braid word. (Note, however, that
we now have stretching in the axial direction, as well as in the cross-section.)
In Figure 5.12 we show the variation of the stretched length [(¢)/1(0) of the line
of dye with time. As in Chapter 4, we use the particle insertion algorithm of

Krasnopolskaya et al. [83] to ensure that the stretched line remains well resolved.

Figure 5.12 shows that the identity braid I produces an algebraic stretch rate (in
fact a linear one), whilst braids A-F provide exponential growth, as we would
expect for a chaotic flow. Unlike in the two-dimensional BSD3 from Chapter 4,
however, it is difficult to differentiate between the stretch rates; if the line lengths
grow according to 1(¢)/1(0) ~ CX!9/* then we find that \ ~ 1.22 for each braid
A-FE, although the constant C' is different for each of these braids. To explain

why there is no clear distinction between the stretch rates we must consider more
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Figure 5.11: Plots of dye-streak locations after time t = 10a®/Q/¢ for the six braid
words I, A—E. The outer cylinder is omitted from each plot for clarity. The axial
locations Z of each particle are plotted modulo 4a, so material leaving the end
of the mixing unit is reinjected at the beginning, with the same cross-sectional

coordinates.
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Figure 5.12: Plot of stretched line length I(¢)/1(0) with time ¢ for the six braids
I and A-F.

carefully how topological chaos is applied to flow in three dimensions; we discuss

this in Section 5.4.1.

In a continuous-throughput mixer it is instructive to study the rate of axial trans-
port along the pipe. It is straightforward to compute statistics for the axial
distribution of material in the pipe, and these figures may be used to assess mix-
ing quality. In Figure 5.13 we plot the axial coordinate Z, of the nth particle
(1 < n <10000) at time ¢t = 30a®/Q/¢, using the initial condition in Figure 5.10.
This time was selected because the mean axial particle displacement is around
Z/a = 10.5, or just under three complete braided pipe units. This corresponds to
our plots given in Chapter 4 with mixing in the BSD,,, for up to three complete
braids. At time ¢t = 30a®/Q/e, the dye particles furthest along the pipe have
progressed approximately as far as Z/a = 16, corresponding to the length of four

complete braided pipe units.

The plots in Figure 5.13 demonstrate that the exact distribution of Z, depends
on which braid is used. However, the braid topology has only a small influence on
the mean axial displacements, given in Table 5.3, in each case around Z/a = 10.
The sharp spikes in Figure 5.13 correspond to where dye particles have been

significantly retarded by close encounters with the inner pipe walls, and where
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Figure 5.13: Axial distribution of dye for each of the six test braids. In each plot,

the abscissa shows the particle number n (1 < n < 10000) and the ordinate axis

records the corresponding Z-coordinate (i.e. the distance the dye has progressed

in the axial direction) at time ¢ = 30a®/Q/e. The dashed line shows the mean

displacement in the axial direction at that time.

160



Braid mean(Z)/a var(Z)/a®> mean(|6Z])/a Spikes

I 10.4 14.6 0.00 0
A 10.7 14.0 0.08 33
B 9.3 11.2 0.11 23
C 10.8 11.8 0.09 37
D 11.2 13.4 0.10 48
E 10.6 11.7 0.14 70

Table 5.3: Axial distribution statistics for the six braids I,A-F.

dye has been stretched around a pipe.

Stretching of dye around the pipes is a possible mechanism that leads to good
mixing and so we are interested in determining the number of such encounters.
Where the spikes are found, there is a corresponding large difference between the
final axial location of neighbouring particles from the initial line (Figure 5.10), and
so it is worthwhile to study 672, = |Z,11 — Z,| (1 < n <9999). The distributions
of 67, for the six test braids are plotted in Figure 5.14. The numbers of ‘large’
spikes (which, rather arbitrarily, we will define here as those for which 67/a > 2)
in each plot gives an indication of mixing quality, and are recorded in Table 5.3.
According to this crude ‘mixing measure’ the protocols are ordered (worst to
best) as I, A, C, D, B, E. This is almost the same as the ordering according to
line-stretch in Figure 5.12, except that C' and D are swapped.

There are, of course, many other mixing measures that we could compute for the
BPM flow. For example, most of the measures described in Chapter 3 for the
two-dimensional BSD,,, could be used, provided appropriate modifications were
made to account for the extra spatial dimension (e.g. iterated mappings could be

replaced by Poincaré sections at fixed axial locations).

There are also further common measures that apply specifically to continuous-
throughput mixers. Associated with the axial distribution plots in Figures 5.13
and 5.14, one common quantitative diagnostic of static mixers is the axial dis-
persion rate [71, 72, 73], which is the growth rate of the variance of the axial

coordinates Z, of the dye particles. The variance of the axial distribution of
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Figure 5.14: Distribution of |§Z] for each of the six test braids. In each plot,
the abscissa shows the particle number n (1 < n < 9999) and the ordinate axis

records the value of |Z,,1 — Z,|/a at time t = 30a/Q/e.

perfect tracer in a regular laminar flow grows quadratically in time ¢ [139]. With
chaotic mixing in the cross-section, an averaging of the axial velocity for the differ-
ent fluid particles occurs, and thus reduces the axial dispersion rate. With chaotic
advection the variance growth is proportional # with 1 < v < 2 [71, 72, 73]. For
example, in the twisted pipe flow studied by Jones [71], it is found that v = 1.8.
In the BPM, we find that the variance of Z,, is similar for each of the braids A-F
(see Table 5.3), and grows with v & 2, even though advection is chaotic. A pos-
sible explanation for this is that the inner pipe walls retard a significant number
of particles, while others progress unhindered. This effect counters the averaging
effect of the cross-sectional mixing and thus the exponent of axial dispersion is

not significantly reduced below that in a regular flow.

Another continuous-throughput diagnostic of interest, related to axial dispersion,
is the exit age distribution, or residence time distribution (RTD), which is the
distribution of times taken for dye particles to pass a given axial location [22,
23, 87] (which could be the end of the mixer, for example). The integral with
respect to time of the RTD gives the fraction of fluid that has passed a given axial
location at a given time. In Figure 5.15 we plot, for braids I, A-E and the initial
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Figure 5.15: Residence time plots for the six braids I and A-F.

condition shown in Figure 5.10, the fraction of dye that has passed the axial
location Z/a = 5 as a function of time. It can be seen that until approximately
t = 10a®/Q/¢, no dye passes Z/a = 5 for any of the mixers, then the bulk of the
dye particles flow past before t = 20a®/Q/e. There is then a late tail for each
curve representing the particles that flow more slowly in the axial direction due
to their proximity to the pipe walls. As one might expect, since the mean and
variance of the axial distributions of Z for the protocols I, A—E are similar (see

Table 5.3), the curves in Figure 5.15 are also similar.

According to the diagnostics we have calculated in this section, there is not as
clear a difference between the mixing quality of the different braids as we found
in Chapter 4 for the corresponding braids in the two-dimensional batch stirring
device. If it is possible to enhance static mixer performance by creating topologi-
cally nontrivial braids, as suggested by Boyland et al. [20] and Mackay [92], then
we must consider more carefully the influence of the twisted internal pipes on the

flow. We discuss topological chaos in three dimensions further in Section 5.4.1.
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Figure 5.16: Simulations in BPM braid F with different radii of inner pipe. The
plots on the left correspond to a;/a = 0.1, and the right-hand plots to a;/a = 0.01.
The distributions of Z, (top row) and 07, (bottom row) are plotted for the initial
condition in Figure 5.10 at time ¢ = 30a®/Q/e. The dashed lines in the top plots

show the corresponding results for braid I, for comparison.

5.3.3 Effects of pipe thickness

In Chapter 4, in the two-dimensional BSD3, we examined the effect on the mate-
rial stretch rate of the size of the inner stirring rods. We found that the stretch
rates predicted by the topological theory are still achieved and that mixing still
occurs over a wide area even using narrow stirring rods. In this section we study
the effect of varying the radii of the inner pipes in the BPM. These radii have no
influence on the topology of the braids, and so Boyland et al. [20] have speculated
that as the pipe radii become small, effectively becoming wires, mixing quality

might be preserved.

In Figure 5.16 we show axial distribution plots to examine the effect of shrinking
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the radii a; in the BPM braid E (see Section 5.3.2) from a;/a = 0.1 to a;/a = 0.01.
It can be seen that as the inner pipes become thinner the distribution of the axial
coordinates Z,, for braids F tends toward that of braid I. To be precise, the
mean M of the absolute difference |ZF — Z!|/a is M = 3.1 when a;/a = 0.1
but reduces to M = 1.6 when a;/a = 0.01. In the distributions of 6Z (defined
above), the number of large spikes (those for which 6Z/a > 2) is also much lower,
decreasing from 70 to 21 (some of the lines in Figure 5.16 actually conceal several
spikes). This decrease occurs because the inner pipes have less of an influence
on the velocity field, and consequently there is much slower transverse mixing
and it takes much longer for new fluid particles to encounter the pipe walls. The
largest spikes that remain for a;/a = 0.01 correspond to the dye particles that
are already ‘lined up’ with the pipes.

The suggestion by Boyland et al. [20] that shrinking the inner pipes should pre-
serve mixing quality because it preserves flow topology appears not to apply in
three dimensions as it did for the stirring rod size in the two dimensional BSD,,

(see Chapter 4).

5.4 Discussion

Having numerically simulated the braided pipe mixer for various regimes of
twisted inner pipe, we now discuss some general features of the BPM flow that
have implications on mixing quality. We suggest in Section 5.4.1 why topological
chaos does not appear to have a pronounced effect on stretching, as it did in the
two-dimensional BSD,,,. In Section 5.4.2 we discuss the features and limitations
of our BPM model, in particular with regard to the assumption that the inner

pipe twistedness parameter € is small.

5.4.1 Topological chaos in three dimensions

The dye advection simulations we have seen in Section 5.3 show that there is
little to distinguish between the mixing quality of different braid topologies. This

is in contrast with the BSDj results from Chapter 4 where the mixing stretch
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rates for braids A-FE were distinct and in tight accordance with the theoretical
predictions given by Boyland et al. [20]. That there is no clear ordering of the
stretch rates for the different three-dimensional braids is perhaps unsurprising,
since in a continuous-throughput mixer, particles travel at different axial speeds,
and thus spend different amounts of time in each component unit: there is no
clearly defined ‘stirring period’, in terms of which the stretch rate constant A in
the BSD,,, was defined in Chapter 4.

If there is topological chaos present in the BPM, then we must reformulate the
dynamics as a two-dimensional system in order to be able to apply the topological
theory. The key to doing so is the analogy between time ¢ for the BSD,,, and
axial coordinate Z for the BPM: if the BPM dynamics are rewritten in terms of
the independent variable Z then we can study motion in the zy-plane using Z

effectively as ‘time’. To this end, the passive dye-advection equations (,9, Z) =

(u,v,w) may be rewritten as

(j—;’ j_% - (% %) ' (5.50)

We identify (u/w,v/w) as a ‘pseudo-velocity field’. An example plot of this
pseudo-velocity field is given in Figure 5.17 for the cross-section of the braid
letter oy at Z/a = 0.4. Note that even though u,v,w — 0 as the inner pipes
are approached, the ratios u/w and v/w give a finite pseudo-velocity on the pipe
boundaries. By inspecting Figure 5.17 carefully it can be seen that the pseudo-
velocity field resembles a hybrid of the inviscid and viscous regimes for the BSD,,
(see Figures 4.2 and 4.3). Close to the inner pipes there is fluid slip, as in the
inviscid BSD,,,. However, the flow is not localised around the pipes, as with

inviscid flow, and resembles more closely the viscous BSD,,.

Using Z as a ‘time’ coordinate, the inner pipes now appear to ‘move’ in exactly the
same way as in the BSD,,;; therefore we are guaranteed that the flow according to
(5.50) is topologically chaotic. Why, then, is this topological chaos not manifest
in the stretch rate measures in Section 5.37 To answer this question, we consider
performing advection simulations according to (5.50): the greatest contribution
to material stretching occurs for the fluid that becomes wrapped around the
‘moving’ inner pipes. Although this stretching occurs rapidly in ‘time’ Z, it is

precisely the fluid near the inner pipes that moves slowly down the BPM in real
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Figure 5.17: Plot of the pseudo-velocity field (u/w,v/w). On the left is shown a
vector plot of (u/w,v/w) at the cross-section Z/a = 0.4 in for the braid letter o;.
On the right is a grey-scale plot showing the magnitude of the pseudo-velocity
field, with darker tones indicating faster flow. In the vicinity of the ‘moving’
cylinders the flow resembles the inviscid flow patterns of the BSD3 in Chapter 4
(i.e. there is slip).

time ¢, and consequently this extreme stretching is not observed on a practical
time scale. Since the topological theory could be applied to predict material
stretch rates in the ‘time’ variable Z, using the pseudo-velocity, it would be a
worthwhile future study to determine whether the topological chaos stretch-rate
theory could then be modified in order to predict temporal material stretch rates

for BPM flows.

5.4.2 Effects of pipe twistedness

So far in this chapter we have studied braided pipe mixers containing internal
pipes that bend with a slow axial variation (¢ < 1). In this section we consider
the possibility of increasing mixing quality and reducing the length of the BPM
by coiling the inner pipes more tightly, so that ¢ = O(1). This regime is not
accessible to our present analysis because our derivation of the BPM velocity
field in Section 5.2 assumed ¢ < 1, so that flow was predominantly axial, with

small transverse velocity components.
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Figure 5.18: Stretching of a BPM component unit.

A simple thought experiment shows that the twistedness parameter ¢ must have
a nontrivial influence on mixing quality. Consider the effect of squashing the
braided inserts axially (see Figure 5.18), without altering their topology. As the
inserts are coiled more tightly, fluid encountering the pipes traverses them like a
bluff body, rather than as a guide to generate mixing in the cross-section. For
example, in the BPM shown in Figure 5.18, as ‘¢ — oo’, the inner pipes come to
resemble two straight pipes with an annular ring placed at a given Z cross-section
— the cross-sectional mixing is lost all together. In contrast, in two dimensions,
the analogue to twistedness is the speed with which the stirrers are moved, and

this has no effect on the mixing quality (in a Stokes flow regime).

With our model as currently developed, we cannot even capture the effects de-
scribed in the above thought experiment by ignoring our assumption and using
an artificially large value of € (as we did in presenting the foregoing numerical
results): the mixing performance depends only on the braid, not on the param-
eter €. To see why this is so, consider two sections of a BPM (perhaps one of
the ‘component units’ discussed in Section 5.3.1), one a non-uniformly stretched
version of the other. As illustrated in Figure 5.18, we refer to the two component
units with hatted and non-hatted variables. The stretching of one component
with respect to the other is then characterised by the relations Z = A(Z) and
T';(Z) = T';(Z). The lengths of the sections are the same so that A(0) = 0 and

A(a) = a and we also insist that A(Z) is strictly increasing (so A'(Z) > 0 for all
2)
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The axial velocities in the two component units satisfy

w(z,y, Z) = (2,7, 2) (5.51)
(where 2 = z and § = y), since w is determined by the location at Z of the
boundaries and by the value of the flow rate ). It follows from the chain rule

that

0 1 0w
oA (5.52)
0Z Nopz
and hence, by continuity, that
1. . 4 1 ... .4
u(z,y,Z) = Nu(x,y, Z), wv(x,y,Z)= Nv(x,y, 7). (5.53)
If particles are advected along the two components according to
d d dz
d—f =u(x,y,Z), d_g =v(z,y, Z), pTa w(z,y, Z), (5.54)
di o dy . dZ .
d—‘g = a(2,9, 2), d—@tf =0(&.9,2), r =w(@5,2), (5.55)

and we have the initial condition (z(0),%(0), Z(0)) = (£(0), §(0), Z(0)) for a given

particle, then

o(t) =2(), y(t)=90), Z(t)=2() (5.56)
provided we define £ so that
a1
TG (5.57)

and t = 0 when ¢ = 0. Thus, according to our € < 1 model, particle trajectories
are simply stretched in the same way as the component unit. In particular, the
mapping of particle positions in the cross-section from one end of the component
unit to the other is unchanged. The times of passage T for a particle across the
components may differ according to how the components are stretched, however.
This can be seen by considering

adZ . edZ
T=/ 4z T:/ , (5.58)
0 w 0

w

then according to (5.51) we have
- al /1
T—T:/ —(——1>dZ. 5.59
0o w \A/ ( )
In general this quantity will be non-zero when Z # Z.
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Since particles trajectories stretch in the same way as the component units as € is
increased, the cross-sectional velocity components (according to our model) be-
come comparible in magnitude to the axial velocity component. The assumption
that flow is predominantly in the axial direction is violated as € becomes large.
When € = O(1), equation (5.51) is no longer valid, because w depends not only
on the locations of the pipes in the cross-section, but also on their axial variation.
We might begin to capture such effects of increasing € by including O(€?) correc-
tions to w in (5.6), which would depend implicitly on the axial derivatives of the
pj. It would then be found that particles follow different trajectories according
to exactly how a component is stretched, and it would be possible to study the

effect on mixing quality of using more compressed BPM component units.

5.5 Conclusions

Our aim in this chapter was to determine whether the ideas of topological chaos
discussed in Chapter 4 could be applied to three-dimensional static mixers, such
as the BPM. Although there is no formal topological chaos theory for flows in
three dimensions, it was suggested [20, 92|, based on an analogy with the two-
dimensional batch stirring device studied in Chapter 4, that a static mixer con-
taining a braided inner shape would mix well, provided the braid had an appro-

priate topology.

To investigate topological chaos we have developed an accurate series solution
for the flow in the braided pipe mixer (BPM), a continuous-throughput device
containing a number of twisted pipes that may be made into various types of
braid. The mixing performances of different braids were evaluated by performing
numerical dye advection simulations. We found that there was no clear influence
of the braid topology on the mixing performance. This was in contrast to the
results of Chapter 4, where calculated material stretch rates were in agreement

with theoretical topological chaos predictions.

By considering a reformulation of dye particle advection using the axial coordinate

Z as the independent variable we concluded that topological chaos is present in
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the BPM, but that the regions where high material stretch rate occurs correspond
precisely to where the flow is very slow — in the vicinity of the inner pipes. Hence
over a practical time scale the effects of topological chaos are not evident, and so
topological chaos may be of limited use in aiding continuous-throughput mixer
design. In three dimensions the most intuitive way to obtain effective mixing
seems to involve ‘cutting and folding’ of the fluid, such as in the Kenics static
mixer (Figure 1.5). Of course questions of energy efficiency still remain, since
devices like the Kenics mixer require a greater driving pressure gradient than for

flow down a simple circular cylindrical pipe [91, 137].

It is worth noting that our analysis for the BPM may easily be extended to ac-
commodate twisted pipes of non-circular cross-section by making local conformal
transformations that map non-circular boundaries into circles [41, 44], as we have
outlined in Chapter 4 for the batch stirring device. For example, flat ribbons may
provide effective stirring whilst providing a lower flow resistance, as in the Kenics
static mixer (see Figure 1.5). Although altering the stirrer cross-sections would
not change the braid topologies in the current study, they offer a great deal of
flexibility for tuning the BPM to increase mixing quality, and warrant future in-
vestigation. A future investigation should also be made into the flow solution for
the BPM when the axial variation of the inner pipes is not slow. Tighter coiling
of the inner pipes would enable the BPM to be shortened and may also enhance

mixing.
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Chapter 6

Conclusions

In this thesis we have studied various problems of fluid mixing and transport with
applicability in biological and industrial settings. Specifically we have: developed
a spatially-structured model for transport in an artificial kidney dialyser (Chap-
ter 2); explored a range of fluid mixing measures and the empirical relationships
between them for two-dimensional, laminar, chaotic flows (Chapter 3) [49]; exam-
ined the concept of topological chaos in two spatial dimensions and investigated
whether it may be practical in batch mixer design (Chapter 4) [50]; and developed
a model static mixer to investigate whether topological ideas may be extended to

three-dimensional static mixer design (Chapter 5) [48].

6.1 Artificial kidney dialysis

In Chapter 2 we began by examining the problem of solute and water transport in
an artificial kidney dialyser. By formulating a simple parallel-channel model of an
artificial kidney we were able to predict the physiologically important effects on
the solute and water removal rates of the membrane permeability properties, the
solute and fluid input conditions and the dialyser geometry. We believe our model
is the first to allow investigation of the simultaneous impact of ultrafiltration,

osmosis and diffusion upon solute and water fluxes in a clinical dialyser regime.

The profiles of fluid velocity and solute concentration depend primarily on the
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flow Reynolds number (Re), Péclet number (Pe) and the aspect ratio () of
the fluid channels. Parameter estimates based on measurements from a modern
dialysis machine indicate that the system operates in a regime for which Re ~ 1,
Pe ~ 10% and 6§ ~ 10~*. Steady-state asymptotic solutions for the fluid velocity
and solute concentration were constructed as expansions in the small parameter
€ = 6Pe ~ 107!, An excellent agreement was shown between this analysis and
direct numerical solutions of the governing fluid flow and advection-diffusion

equations.

We found that spatially averaged models (such as in [15, 16]) significantly over-
estimate diffusive and osmotic fluxes; these estimates were improved upon in our
spatially-structured asymptotic model. Our model also shows how competition
between the transport processes of ultrafiltration, diffusion and osmosis can ei-
ther attenuate or enhance solute and water fluxes, compared with their values
when these transport processes occur independently. Such behaviour is not ev-
ident in existing lumped-parameter, spatially-averaged models [15, 16]. For the
cases of diffusion and osmosis, we find that there is an optimum ratio between
blood and dialysate channel widths at which solute and solvent transport rates
are maximised. We also found that by varying the channel inlet conditions it is
possible, to an extent, to select independently the solute and water fluxes, and

thereby perform a wide range of dialysis session profiles.

Although the mixing in our model dialyser is very simple, the mixing problem is
non-trivial because of the interaction between the motions of the water (driven
by ultrafiltration and osmosis) and solute (by diffusion and advection). In a more
realistic model we would replace the parallel channels carrying blood and dialysate
with a set of parallel pipes. Of course, as a careful examination of Figure 1.1
indicates, the hollow fibres in a clinical dialyser are not exactly parallel, but
gently twist, mimicking the BPM geometry studied in Chapter 5. In view of this,
chaotic advection may have a small influence on the cross-membrane transport

rates.

Our model may also be applied directly to a human kidney nephron by consider-
ing a twisted pipe geometry and incorporating active transport of solutes by cells

in the membrane walls. As we have discussed at the end of Chapter 2, our study
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could also be generalised to investigate, in real or artificial kidneys, the combined
effects of the multiple chemical species in blood, such as albumin, calcium, cre-
atinine, glucose, phosphate, potassium, sodium and urea. This problem would
be more analytically involved, due to different membrane permeabilities for each
solute (caused by the different molecular sizes), and would also be complicated
by the interplay between solvent and solute motions that arises because it is the

total osmotic permeability of the solutes that drives the fluid motion.

Ultimately, the relationships between solute and water transport rates, flow rates,
geometries and permeabilities could be employed in a dialyser control system,
enabling the accurate regulation of a kidney dialysis session, where patient solute
and water levels are brought to desired levels over a specified period, whilst

causing minimum trauma.

6.2 Mixing measures for Stokes flow

A great deal of analytical, numerical and experimental research is directed to-
wards improving mixer design, since, at an industrial level, mixing can be ex-
tremely costly and so there are tremendous economic benefits to be realised if
significant improvements can be made. The fundamental basis of every mixer
design process is to produce a mixer which maximises a given mixing measure.
Though the measure used will naturally depend on the application (e.g. the yield
of a chemical reaction [28, 30, 96, 104, 105, 113, 130]), an important question
arises: how are the various mixing measures related, and to what extent can one
measure be substituted for another when analysing a mixer? We have addressed
this question in Chapter 3 as it has, to date, received very little attention in the

literature.

In that chapter we studied the effectiveness of a large number of stirring pro-
tocols in a batch stirring device, the BSD; [20, 47] (see Figure 3.1), a model
two-dimensional, laminar flow device which mimics the action of many of the
planetary mixers used in industry (see Figure 1.3). The BSD; was assessed ac-

cording to a variety of measures commonly found in the literature. Our focus was
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whether the method of sieving, whereby candidate protocols are successively elim-
inated according to increasingly discerning mixing measures, could be effective
in practice at determining globally optimal mixer designs. We also studied the
extent to which different mixing measures were correlated, to determine whether
computationally expensive measures could be replaced by cheaper ones, thereby

accelerating the selection of good mixer designs.

It was found that, while no single protocol simultaneously optimised all measures,
a small subset of the protocols performed well against most measures. However, it
was difficult to elicit any general rule for selecting effective protocols: for example,
superficially similar protocols were found to exhibit considerably different mixing
capabilities. Also, some mixing protocols performed very poorly against some
measures, but well against others. Our results indicate that the selection of effec-
tive protocols by sieving may therefore be ineffective in practice. The correlation
coefficients between the ten measures studied were tabulated. Some pairs of mea-
sures were very poorly correlated; for example the correlation coefficient between
lamellar width variance and Liapunov exponent was |C| = 0.05. This suggests
that there is no simple relationship between the two measures, and therefore it
might be possible to find a protocol that has a desirable value for both measures
(e.g. low lamellar width variance and high Liapunov exponent). Other pairs of
measures were well correlated. The correlation coefficients of mixing variance
against Liapunov exponent or iterated mapping chaoticity were |C| = 0.93 and
|C'| = 0.90, respectively. It was noted that mixing variance was significantly sim-
pler to compute, and so could serve as a useful substitute for Liapunov exponent

or iterated mapping calculations.

It would be worthwhile to extend the investigation begun in Chapter 3 to three-
dimensional mixing flows, either in a batch mixer or in a continuous-throughput
device, such as the BPM from Chapter 5. Some of the mixing measures we
have discussed may be applied directly to either case (for example, Liapunov
exponent and energy usage measures — although in the continuous-flow case the
appropriate measure would be the pressure drop); others can be extended by
making straightforward changes to reflect the greater geometrical complexity of

three spatial dimensions (for example, intermaterial density and interface stretch
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measures apply to surfaces rather than curves). There is a somewhat subtle
difference between a time-periodically operated two-dimensional mixer, such as
the BSD,, from Chapters 3 and 4, and a continuous-flow device, such as the
BPM from Chapter 5, in which the fluid becomes mixed as it passes down a pipe
containing some spatial structure of axial wavelength L. In three dimensions, the
analogue of the period-one map M, used in Chapter 3, is the map taking particle
positions in the cross-section at ( = 0 to their corresponding cross-sectional

locations at ( = L.

Finally, the study in Chapter 3 was made possible because an exact expression was
available for the velocity field, making accurate and fast advection simulations
possible for a large number of stirring protocols; a future study should be focused
on the problem of evaluating mixing devices where no exact solution is known
for the velocity field, either by simplifying stirring dynamics without influencing
the calculated values of the mixing measures, or by developing mixing measures
that can be calculated without the need for computationally intensive Lagrangian
particle tracking (e.g. measures that may be computed directly from the Eulerian

velocity field [75, 151]).

6.3 Topological chaos in two dimensions

Mixer optimisation is usually achieved by parameter tuning. Multi-dimensional
parameter spaces for mixer operation and a sensitive dependence on flow prop-
erties can make optimisation extremely difficult, as we have seen in Chapter 3.
However, as we have studied in Chapter 4, the concept of Topological Chaos de-
scribed by Boyland, Aref and Stremler [20] offers a way of enhancing mixer design
in a robust way: a theoretical material stretch rate prediction may be made in
a mixer, provided the flow has appropriate topological properties, irrespective of
any details of the flow, such as compressibility or viscosity. However, this theo-
retical approach, while widely applicable, cannot predict the size of the region in

which this stretch rate is achieved.

In Chapter 4 we studied the BSD,,,, a generalisation of the BSD; from Chapter 3,
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containing m > 3 stirring rods, and capable of generating topologically chaotic
flow. We have provided numerical and experimental evidence to support the
observation of Boyland et al. that the region of high stretch is comparable with
that through which the stirring elements move during operation of the device.
The key to our precise numerical simulations of dye advection was developing
a fast, spectrally accurate series solution for computing the velocity field. Our
technique was validated by comparing numerical simulations with experiments

performed in a simple, inexpensive rig.

Calculated material stretch rates were found to be in close agreement with the
corresponding theoretical predictions, irrespective of whether we modelled the
fluid as inviscid or viscous, even though there are significant differences between
the flow fields generated in the two cases. The theoretical stretch rates were
achieved in the BSD,, even as the radii of the stirring rods were reduced, although

the stretching became more localised around the trajectories of the rods.

At the end of Chapter 4 we discussed how to construct practical topologically
chaotic mixers, and outlined how energy efficiency considerations could be ad-
dressed using the results of our analysis. It was shown how effective flow topolo-
gies could be created in batch mixers using simple gearing, by the strategic in-
sertion of fixed rods into a flow with an otherwise trivial topology. However, it
was found that the insertion of additional stirring rods may lead to a significant
increase in energy input to the mixer, depending on the exact details of the ge-
ometry, so in some instances a non-topologically chaotic mixer may be deemed
more economical. A more detailed investigation would be worthwhile to deter-
mine whether the flow topology with the greatest stretch rate can be achieved by

the insertion of stationary stirring rods without a large increase in energy cost.

Another possible avenue for further investigation is the use of random stirring
protocols [53]; since the stretch rate in a topologically chaotic mixer may be
derived from a braid matrix, it may be possible to examine the effect of random
stirring protocols in the BSD,, using the theory of random matrix products [45].
A practical implementation of random mixing protocols could be achieved by
inserting and removing extra stationary stirring rods, in a similar way to the

baffled cavity mixer [67].

177



The effect of stirrer shape on mixing quality is also a subject that deserves further
investigation, because stirrers of circular cross-section are rather artificial and a
‘paddle’ cross-section might seem more natural. We have demonstrated at the end
of Chapter 4 that other stirrers may be considered by using appropriate conformal
transformations in the series solution for the velocity field (a flow with moving
paddles is shown in Figure 4.20). Although the change in stirrer cross-section has
no influence on the flow topology, it may have an impact on energy usage, or be
used to enhance stretching rate above that predicted by the topological theory,

allowing a more economical, or a higher performance mixer, respectively.

The numerical method used to compute the BSD,,, flow also should receive further
exploration, as it could be generalised for other non-fluid dynamical problems
involving Laplace’s equation or the biharmonic equation. Our method requires
comparatively little computation and storage, and it may be possible to develop
it so that it can be applied to more general problems as easily as finite-difference

or finite-element methods, but with much greater accuracy.

6.4 Topological chaos in three dimensions

While batch-stirring flows (often modelled as two-dimensional) are commonly
used in industry, for example in food production and brewing, they are rarely
found in biological scenarios. Furthermore, many industrial applications, such as
polymer blending or crude oil processing, demand continuous-throughput mixing

in three-dimensional flows.

In Chapter 5 we investigated the braided pipe mixer (BPM) in which fluid flow-
ing along a cylindrical pipe is stirred as it passes around smaller inner pipes
judiciously twisted inside the mixer. It was recently suggested that the obstacles
in the pipe could be braided in the ways described in Chapter 4 to generate effec-
tive chaotic mixing in three dimensions [20, 92]. Furthermore, it was conjectured
that these pipes could be reduced in thickness and still generate good mixing.

We addressed these hypotheses in Chapter 5.

We found that it was difficult to distinguish between the overall mixing perfor-
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mance of different braids according to material stretch rate and measures based
on the axial distribution of tracer. The results were in contrast to those of Chap-
ter 4, where braid performances were clearly ordered, and in agreement with the
two-dimensional topological theory. Although one might intuitively expect static
mixer design could be improved using topological considerations, there is no for-
mal topological chaos theory for three-dimensional flows. By considering particle
advection in an artificial two-dimensional flow using the axial coordinate Z at
‘time’, we saw that topological chaos was present in the BPM; however, in this
system, the regions of high material stretch rate corresponded exactly with those
regions where particle advection down the device was very slow using the real
time £. On a practical time scale the fast stretching is not seen, and therefore the

topological chaos is of no significant benefit to the mixer design.

Our other important finding concerns the influence of geometrical parameters on
the mixing quality. In the two-dimensional BSD3 we found that effective mixing
could be achieved even with narrow stirring rods. However, in the static mixer
we find that decreasing the radii of the inner pipes reduces the mixing quality
greatly, although it does lead to an energy saving due to the lower pressure

gradient required to drive the flow.

Although topological considerations do not appear to offer significant help in
enhancing the BPM, we have seen, nevertheless, that braided internal pipes do
offer qualitatively good mixing (see Figure 5.11) and so it would be worth in-
vestigating how the pipe geometries could be altered to optimise the BPM. A
future investigation should be made into the effects on mixing of increasing the
twistedness € of the internal pipes. By increasing €, a more vigorous transverse
flow could be created, and separation of fluid around the pipes could be made

more pronounced, leading to more rapid mixing.

The role of flow separation around obstacles has been studied by Mizuno and
Funakoshi [100] in the partitioned pipe mixer, where fluid flows around either
side of baffles. A ‘separation manifold’ may be defined as the surface found by
advecting backwards in time a streak of dye placed infinitesimally close to the
ends of the baffles. Any fluid straddling such a manifold eventually becomes

stretched around both sides of the corresponding baffle, and is subsequently well
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mixed. Separation manifolds may also be studied for the BPM, to locate regions
of effective mixing. The shape of these manifolds will depend quite sensitively
on the exact geometry, not just the topology of the inner pipes. To compute
the separation manifolds in the BPM it would be necessary to study the pseudo-
velocity field in Section 5.4.1 more closely, to determine where separation occurs

on the internal pipes.

In addition to simulating chaotic advection in the BPM, we could attempt to
include additional processes. For instance, we could include multiple chemical
species, in order to model industrial chemical reaction processes (e.g. polymeri-
sation). We could also model biological processes, such as transport in a dialysis
fibre bundle, relating back to Chapter 2, or describe blood flow in a catheterised
artery [3, 35, 68]. As with the two-dimensional BSD,,, it would be relevant to
applications to determine the effects of changing the inner pipe cross-section in
the BPM by using conformal mapping techniques. For instance, flat ribbon-like
inserts could be investigated (using the Joukowski transformation given in Chap-

ter 4) similar to those used in the Kenics static mixer (Figure 1.5).
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