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Abstract

Quantum Field Theory in Curved Spacetime (QFTCS) is an approximation to
the union of General Relativity (GR) and Quantum Field Theory (QFT). Born
out of Parker’s investigations into cosmological particle creation, QFTCS has
since flourished into a productive field in its own right, giving rise to predic-
tions such as black-hole evaporation and the Unruh effect, which states that a
uniformly linearly accelerated observer will react to the Minkowski vacuum
as if it were a thermal state in temperature T = ℏa/(2πckB). Later, in 1981,
Unruh demonstrated that acoustic perturbations in a fluid may equivalently be
described as a scalar field propagating on a curved spacetime, whose geometry
is characterised by the background fluid flow. Furthermore, Unruh found that
“the same arguments which lead to black-hole evaporation also predict a ther-
mal spectrum of sound waves should be given out from the sonic horizon in
transsonic fluid flow.” With this discovery, analogue gravity was born. Over the
past forty years, several analogue-gravity and early-Universe simulators have
been devised, using physical systems such as ultracold atoms, optical devices,
and fluid interfaces. Motivated by the inherent temperature and finite size of
the spacetimes provided by these analogue systems, this Thesis extends the the-
oretical modelling of an accelerated observer to include the effect of thermality
and spatial confinement.

Particle detectors in non-inertial motion will register particles in the Minkowski
vacuum. A non-inertial trajectory of theoretical and experimental interest is
uniform circular motion, in which motion a detector will remain within a finite-
size laboratory for an arbitrarily long interaction time. We replace the Minkowski
vacuum by a thermal state, breaking the Lorentz invariance of the system and
introducing a Doppler effect in the response of the detector. We identify a
measure to isolate the acceleration-dependent, rather than velocity-dependent,
contribution to the response of a detector. We then apply this modelling to the
analogue spacetime provided by thin films of superfluid helium-4 and propose
an experiment to extract the observer dependence in the response of a detector
probing a quantum field prepared in a thermal state.

We consider the robustness of the duality between an accelerated observer in
the Minkowski vacuum and a static observer in a thermal bath by introducing
circular motion; we compare the experience of a detector undergoing uniform cir-
cular motion through a thermal bath with that of a detector undergoing uniform
circular motion whilst linearly accelerating orthogonal to the plane of rotation,
known as hypertor motion. Linear acceleration, hypertor motion, and circular
motion are all examples of “stationary trajectories”, for which motions there exist
Unruh-like phenomena. We provide a geometric and algebraic classification of
the stationary trajectories in (n+ 1)-dimensional Minkowski spacetime.

We investigate how the presence of a cylindrical boundary affects the response
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of a detector undergoing uniform circular motion both through the Minkowski
vacuum and through a thermal bath. Our modelling includes the effects of
spatial confinement, thermality, a modified dispersion relation, and a finite-
time interaction between the quantum field and the detector. We consider the
asymptotic behaviour of the response of the detector in the limit of a large
boundary. We examine to what extent the spacetimes of constant positive and
negative curvature, de Sitter (dS) and anti-de Sitter (AdS) spacetimes, may be
considered curved-spacetime analogues of thermality and spatial confinement in
the limit of a small cosmological constant and compare with the corresponding
results in Minkowski spacetime.

We present two results concerning Bessel functions, which we have not found in
the existing literature.
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Preface

IN principio erat universitas iuxta Minkowski. Universitas erat inanis et vacua.
Omnes spectatores sine acceleratione erant concordes. Tum venit Rindler. Dixitque

Rindler fiat acceleratio et facta est acceleratio. Tamen universitas iuxta Rindler erat
quoque inanis et vacua. Tum venit Unruh. Rogavitque Unruh spectatores Rindlerosos
quomodo videtur universitatem Minkowskiosam? Dixeruntque calida est. Viditque
Unruh effectum et quod esset bonum.

IN the beginning, there was the Universe according to Minkowski. The Uni-
verse was void and empty. All inertial observers were in agreement. Then

came Rindler. And Rindler said “let there be acceleration”. And acceleration was
made. However, the Universe according to Rindler was also void and empty.
Then came Unruh. And Unruh asked the Rindler observers “how does the
Minkowski Universe appear?” And they said “it is hot.” And Unruh saw this
effect and saw that it was good.
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Chapter 1

Introduction

“By his theory of relativity Albert
Einstein has provoked a revolution of
thought in physical science.
... Physical space and time are found
to be closely bound up with [the]
motion of the observer; and only an
amorphous combination of the two is
left inherent in the external world.”

Arthur Eddington

Space Time and Gravitation (1920)

TWO of the greatest triumphs of mathematical physics of the twentieth cen-
tury are General Relativity (GR) and Quantum Field Theory (QFT), together

illuminating the four fundamental forces of Nature. Whilst gravity is the domain
of GR, the unified electromagnetic, strong, and weak interactions are governed
by the framework of QFT. From the general relativistic explanation of the pre-
cession of the perihelion of Mercury [6] and the observation of the deflection of
light by the Sun [7], to the prediction [8–10] and subsequent detection [11] of the
Higgs boson, GR and QFT have stood resolute in the face of many tests.

The union of the four fundamental forces though a quantum theory of gravity
is, however, the subject of ongoing research. This notwithstanding, significant
progress has been made in the theory of Quantum Field Theory in Curved Space-
times (QFTCS), in which one promotes the Minkowski metric in QFT to a general
Lorentzian metric with either a minimally or non-minimally coupled quantum
field [12–14]. Minimal coupling is simply the promotion of the Minkowski
metric to a general Lorentzian metric, whereas non-minimal coupling is the
subsequent inclusion of an additional term in the action, coupling the quantum
field to the Ricci scalar curvature of the underlying spacetime.

1
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The nascence of QFTCS began in 1968 with the discovery of cosmological
particle production by Parker [15–17]. As recalled by Parker [18], “to investigate
the creation of particles by the metric of an expanding universe in general rela-
tivity, it was first necessary to extend the quantum field theory of elementary
particles from the well-established flat Minkowski spacetime of special relativity
to the context of a classical general relativistic expanding universe with a general
expansion scale-factor.” In his calculations, Parker considered a Friedmann –
Lemaître – Robertson – Walker (FLRW) Universe with a scale factor a(t). As-
suming that the scale factor was constant at early times a(t) = a1 and constant
at late times a(t) = a2 with a1 ̸= a2, Parker modelled a smoothly expanding
Minkowski spacetime. Since it was known, “from the experimentally established
interpretation of quantum field theory in flat spacetime, how to identify the
particles that were created and annihilated during any period when a(t) was
constant, [Parker] could unambiguously interpret the effect of the expansion of
the Universe on the particle number,” [18] finding that the particle content of the
Universe at early times did not agree with the particle content of the Universe at
late times: cosmological expansion produces particles.

The framework of QFTCS was extended by Hawking in 1975 to generally
curved spacetimes, rather than just those that are flat at early and late times,
leading to the discovery that not only expanding Universes, but black holes
too, create particles [19]. By considering the Schwarzschild solution [20] with
mass M , Hawking showed that “quantum mechanical effects cause black holes
to create and emit particles as if they were hot bodies with temperature T =

ℏc3/(8πGMkB)”, a temperature which has come to be known as the Hawking
temperature.

A year later in 1976, in studying black hole evaporation, Unruh considered
a uniformly linearly accelerated observer in Minkowski spacetime [21]. From
two perspectives, Unruh demonstrated that an accelerated observer with proper
acceleration a would experience the Minkowski vacuum as if it were a thermal
state in temperature T = ℏa/(2πckB), a temperature which has come to be
known as the Unruh temperature. This effect is known as the Unruh effect and
highlights the observer-dependence of the perception of particles within QFT.
First, Unruh demonstrated that the Minkowski vacuum may be written as a
thermal state in the Unruh temperature from the perspective of a uniformly
accelerated observer. Second, Unruh considered a two-level system interacting
with a quantum field, modelling a simple detector, where the two states represent
the detector’s ground and excited states. The detector model quantifies the
excitations and de-excitations in the quantum field and, as such, may also be
used as a thermometer. Unruh demonstrated that the ratio of excitation and de-
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excitation probabilities of the detector fit a Boltzmann distribution in the Unruh
temperature: an accelerated detector reacts to a quantum field in the Minkowski
vacuum as if it were a thermal bath in the Unruh temperature. Later refined by
DeWitt [22], this detector model has come to be known as the Unruh-DeWitt
(UDW) detector model.

The UDW detector model has become an indispensable theoretical tool for
exploring quantum fields, with applications such as: probing Hawking radia-
tion [21, 23] and the Unruh effect [21, 24–30]; probing quantum fields outside of
black holes [23, 31–36]; probing entanglement in quantum field theory [37–42];
accessing the correlation function of quantum fields [43, 44]; and the implemen-
tation of numerous quantum information protocols [45–49].

A further year later in 1977, Gibbons and Hawking discovered a third thermal
effect in QFTCS. In their studies of cosmological particle production in the de
Sitter (dS) Universe, Gibbons and Hawking found it to be thermal with tem-
perature T = ℏ

√
Λ/(2

√
3πkB), where Λ > 0 is the cosmological constant [50].

The Hawking, Unruh, and Gibbons-Hawking temperatures may all be written
in the form T = ℏκ/(2πkB) for some κ. Further linking the Hawking, Unruh,
and Gibbons-Hawking effects is the presence of a horizon: an event horizon,
an acceleration horizon, and a cosmological horizon respectively. In their work,
Gibbons and Hawking found the more general result that a temperature may be
associated to each spacetime with a Killing horizon. Indeed, this temperature is
given by T = ℏκ/(2πkB), where κ is the surface gravity of the horizon.

Whilst the early studies in QFTCS were purely theoretical, in 1981 the disci-
pline of analogue gravity emerged and with it opened new avenues for empirical
verification. In the seminal work “Experimental Black Hole Evaporation?” [51],
Unruh considered the Euler equation [52] and demonstrated that acoustic per-
turbations in an inviscid fluid may be interpreted as a massless scalar field
propagating on a curved spacetime background, whose metric is determined by
the background velocity field of the fluid flow, and in which metric the speed
of light is replaced by the speed of sound in the fluid. The guiding principle
of this equivalence is that “the same equations have the same solutions” [53].
Unruh found that “the same arguments which lead to black hole evaporation
also predict that a thermal spectrum of sound waves should be given out from
the sonic horizon in transsonic fluid flow.”

A hydrodynamical black hole in 1+1 dimensions may be visualised as a stream
ending in a tall waterfall; light rays and the speed of light may be replaced by
ripples on the surface of the water and the speed of surface wave propagation
respectively. Far away from the waterfall, ripples on the surface of the water
may travel both upstream and downstream. However, as one approaches the
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waterfall, the flow speed of the water increases. Eventually, there will be a point
at which the speed of surface wave propagation is equal to the flow speed of
the water, representing the analogue event horizon. Any ripples on the surface
beyond this point are carried downstream and may not escape upstream.

The theory of hydrodynamical black holes was further developed in 2002 by
Schützhold and Unruh [54], in which work rotating black hole analogues and re-
lated phenomena such as superradiance were investigated. Furthermore, Visser
and Weinfurtner [55] demonstrated in 2004 that the geometry of the equatorial
slice of the Kerr spacetime may be reproduced by a rotational draining vortex
flow. Subsequent to this major work, the field of analogue gravity soon devel-
oped further in several directions. Studies by Novello et al. [56] and Volovik [57]
considered analogue simulators for gravity and cosmology in condensed-matter
systems such as Bose-Einstein condensates (BECs) and superfluid helium, both
experimentally realisable inviscid fluids.

After an era of predictions of phenomena in analogue systems came the era of
empirical verification. The first analogue horizons were observed in 2008, both
using pulsed light in an optical fibre [58] and in open-channel water flow [59].
Later in 2011, Weinfurtner et al. [60] made an observation of the stimulated
Hawking spectrum and in the following years, several further black hole phe-
nomena were observed in (2 + 1)-dimensional hydrodynamical systems, such
as: superradiance around an analogue rotating black hole [61]; the relaxation of
an analogue black hole through the emission of quasinormal modes [62]; and
the observation of bound states in a giant superfluid helium vortex flow [63].

The experimental verification of phenomena predicted in QFT has not been
the domain solely of analogue gravity. In 1983, Bell and Leinaas [64] proposed
the spin of an electron in a magnetic field as a possible candidate for a detector of
the Unruh effect. However, the use of electron spin as a detector of the perceived
thermal bath requires a long period of acceleration to produce an effect and
so Bell and Leinaas proposed using a circular orbit, rather than a uniformly
linearly accelerated trajectory. Furthermore, Bell and Leinaas suggested that
the residual polarisation of electrons in an electron storage ring is therefore
a measure of the temperature of the thermal bath perceived by the electrons.
Jackson [65], however, raised doubts about the use of thermality to explain the
residual polarisation of the electrons in such storage rings.

Motivated by Jackson’s response, Unruh [66] investigated the experience of an
accelerated electron in circular motion. Unruh found that a detector in uniform
circular motion will react to the Minkowski vacuum through excitations and
de-excitations, but with an effective temperature that depends on the energy
gap between the two levels of the detector. In the case of an accelerated electron,
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however, the circular orbit is not strictly uniform due to oscillations of the
electron perpendicular to the plane of circular motion. Unruh found that the
electron will indeed respond to this approximately thermal bath, however, due to
complications in the theoretical understanding of rotating electrons interacting
with an electromagnetic field [67], finding a direct connection between the
observation of the residual polarisation of electrons in an electron storage ring
and the circular motion Unruh effect remains elusive [68].

Whilst the residual polarisation of electrons remains inconclusive as an obser-
vation of the Unruh effect, the studies of Bell, Leinaas, and Unruh predict the
existence of other related effects such as the circular motion Unruh effect. Circu-
lar motion holds a key advantage over linear acceleration in an experimental
realisation of the effect: the experiment can remain within a finite-size laboratory
for an arbitrarily long interaction time. As such, the circular motion Unruh
effect remains a strong candidate for the observation of observer-dependence
of the perception of particles in QFT. In the following Chapters, we study the
circular motion Unruh effect, modelling several experimentally relevant features,
bridging the gap between theory and experiment, and laying the foundations
for an experimental realisation of the effect.

1.1 Outline

The Chapters of this Thesis are organised as follows.
In Chapter 2, we present the theoretical and mathematical foundations that

will be present throughout this work. We begin by presenting three derivations
of the Unruh effect, each highlighting a unique aspect of the effect. We consider
the effect geometrically and quantum field theoretically and finally in the UDW
detector formulation. The central object of the detector formalism is the detector
transition probability, a measure of detector excitation and de-excitation. We
then introduce explicitly the analogue spacetime provided by inviscid hydrody-
namical systems. We reproduce some key results from the analysis of the circular
motion Unruh effect in 2 + 1 and 3 + 1 dimensions in [69] in both a genuinely
relativistic spacetime and analogue spacetime formulation. Finally, we introduce
a generalisation of the UDW detector, the continuous quasiparticle detector
model [70], in which the two-level UDW detector is replaced by a continuous
probing field.

Motivated by the inherent temperature in any experimental realisation of the
circular motion Unruh effect, we replace in Chapter 3 the initial vacuum state of
the quantum field by a thermal state. A key observation is that the inclusion of
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a thermal bath breaks the Lorentz invariance of the system. In particular, not
all inertial observers will agree on the particle content of the spacetime; there
will be velocity-dependent phenomena in the response of a detector. As such,
we develop measures to isolate the acceleration-dependence and demonstrate
that, independent of the ambient temperature, acceleration-dependence may
be identified in some range of the parameter space in the response of a UDW
detector, even when the ambient temperature is so high that the detector’s
response is dominated by the ambient thermal bath.

In Chapter 4, we develop an experimental proposal for the realisation of
acceleration-dependent response in thin-film superfluid helium-4. We introduce
superfluid phenomenology and demonstrate that, within experimentally viable
regimes, thin films of superfluid helium may be considered as analogue space-
times. Samples of superfluid helium exist at very low but nonzero temperatures.
As such, we apply the thermal field theory developed in Chapter 3 to incor-
porate the sample temperature into our model. Furthermore, we demonstrate
that a laser may act as a local detector of fluctuations on the surface of thin-film
superfluid helium. Then, through an experimentally accessible measure, we
demonstrate that observer-dependence persists in a system with a significant am-
bient temperature and, furthermore, that the background temperature enhances
the signature of this effect.

In Chapter 5, we probe the robustness of the Unruh effect. At its heart, the
Unruh effect is the duality between the experience of an accelerated observer
through the Minkowski vacuum and a static observer in a thermal bath. We
compare the experience of an observer undergoing uniform circular motion
through a thermal bath in 3 + 1 Minkowski spacetime with that of an observer
undergoing uniform circular motion and linear acceleration orthogonal to the
plane of rotation. We compare the two motions in a range of asymptotic regimes
and find that the addition of circular motion in general breaks the duality; any
circular perturbation would enable a particle detector to distinguish between a
genuine thermal bath and the thermal bath provided by linear acceleration.

In Chapter 6, we discuss stationary trajectories, a class of trajectory for which
the two-point function is time-translation invariant. It was shown in [71, 72] that
Unruh-like phenomena exist for all six stationary trajectories in 3+ 1 Minkowski
spacetime. Furthermore, all trajectories considered in the preceding Chapters
are stationary. In this Chapter, we provide an algebraic and geometric classifi-
cation of the stationary trajectories in n + 1 Minkowski spacetime. Finally, by
considering dS spacetime as embedded in Minkowski spacetime of one higher
spatial dimension, we provide a classification of the stationary trajectories in the
static patch of dS spacetime.
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Motivated by the finite size of the analogue spacetimes provided by condensed
matter systems such as thin-film superfluid helium, we consider in Chapter 7
a detector undergoing uniform circular motion in analogue 2 + 1 Minkowski
spacetime with a cylindrical boundary. We consider a quantum field in its
vacuum state and also when the field is prepared in a thermal state. Allowing
for full generality, we also include a finite-time interaction and allow for a field
with a modified (nonlinear) dispersion. After specialising to a Klein-Gordon (KG)
field and an infinite interaction time, we consider the asymptotic behaviour of
the response of the UDW detector in the limit of a large cylindrical boundary and
find the leading and subleading terms. At subleading order, we find resonance
peaks when the detector’s energy gap is equal to the angular frequency of
the circular trajectory — resonant detectors are more sensitive to a cylindrical
boundary.

Finally, having analysed the effect of an ambient temperature in Chapter 3
and a cylindrical boundary in Chapter 7, we investigate in Chapter 8 to what
extent dS and Anti-de Sitter (AdS), the spacetimes of constant positive and
negative curvature respectively, may be considered curved-spacetime analogues
of thermality and finite size. Positive curvature provides a notion of an ambient
temperature, via the Euclidean vacuum, whereas negative curvature provides a
notion of spatial confinement. dS and AdS spacetimes are solutions to Einstein’s
field equations with a positive and negative cosmological constant respectively,
which tend to Minkowski spacetime in the limit of a vanishing cosmological
constant. In terms of thermality and spatial confinement, a small cosmological
constant corresponds to the limit of a low ambient temperature and a large
boundary.

We consider a UDW detector undergoing uniform circular motion in the
static patch of dS and in AdS and find the leading and subleading contributions
to the response of the detector. We find that dS does indeed act as a curved-
spacetime analogue of Minkowski spacetime with a low ambient temperature.
However, we find that AdS serves as a curved-spacetime analogue of Minkowski
spacetime with a large cylindrical boundary only when the field is prepared
in the global static vacuum. When the field is prepared in a thermal state, we
find a resonance peak in the detector’s response with no corresponding term in
the corresponding Minkowski spacetime calculation in Chapter 7; we find that
thermal states in AdS exhibit richer features than their Minkowski spacetime
counterparts.
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1.2 Mathematical conventions

We use metric signature (−,+, . . . ,+). Except in Chapter 4, we use units in
which c = ℏ = kB = 1, where c represents the speed of light in a relativistic
spacetime setting and the speed of sound in an analogue spacetime setting. Sans
serif letters (x) denote spacetime points and boldface Italic letters (k) denote
spatial vectors. Quantum operators are denoted by a circumflex, â. In asymptotic
formulae, f(x) = O(g(x)) denotes that f(x)/g(x) remains bounded in the limit
considered, f(x) = o(g(x)) denotes that f(x)/g(x) tends to zero in the limit
considered, and f(x) ∼ g(x) denotes that f(x)/g(x) tends to unity in the limit
considered.

1.3 Statement of originality

This Thesis is a result of my own work, done in collaboration with members of
the research group and other academic partners, in and out of the University of
Nottingham. Below, I disclaim the related publications and contributions to the
work in each chapter.

• Chapter 2 is a review of well-established work.

• Chapter 3 is based on [1]. I played a significant role in all aspects of this
project.

• Chapter 4 is based on [2]. This work is the result of an extended collabora-
tion. I led the project and actively contributed to the development of the
theoretical framework and mapping between the QFT and hydrodynami-
cal descriptions, and the interpretation of the results. The Figures in this
Chapter were produced by Vitor S Barroso.

• Chapter 5 is based on [3]. I played a significant role in all aspects of this
project.

• Chapter 6 is based on [4]. I completed this project in its entirety.

• Chapter 7 is based on [5]. I played a significant role in all aspects of this
project.

• Chapter 8 is based on a publication in progress [73]. I play a significant
role in all aspects of this project.



Chapter 2

Unruh effect: Uniform linear
acceleration and circular motion

“A particle is what a particle detector
detects.”

William G Unruh

2.1 Unruh effect: Uniform linear acceleration

THE Fulling-Davies-Unruh effect [21, 74, 75] is the remarkable prediction
of Quantum Field Theory (QFT) that a uniformly accelerating observer

in Minkowski spacetime reacts to a quantum field in its Minkowski vacuum
through excitations and de-excitations with the characteristics of a thermal state
at the Unruh temperature,

TU =
ℏa

2πckB
. (2.1)

Fulling (1972 [74]) demonstrated first the inequivalence of the particle content
of vacua in static spacetimes, summarised as “the particles or quanta of the
Rindler-Fock (rus. Фок) representation cannot be identified with the physical
particles described by the usual quantum theory of the free field.” Davies
(1975 [75]) then showed that a fixed inertial mirror in an accelerating coordinate
system would emit thermal radiation with temperature (2.1), interpreting that
“the concept of a particle is ill-defined and observer-dependent”. Finally, Unruh
(1976 [21]) provided an explanation for Davies’ conclusion [27], expressing
the Minkowski vacuum in terms of a Gibbs state from the perspective of a
uniformly accelerated observer, and introduced the particle detector, now known
as the Unruh-DeWitt (UDW) detector.

In this Section, we demonstrate different perspectives of the Unruh effect.
First we outline the geometric origin of the Unruh effect and its relation to

9
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phenomena such as the Hawking effect [19]. We then demonstrate its grounding
with QFT. Finally, we introduce the UDW particle detector model and show
how the Unruh effect arises from the excitations and de-excitations of a particle
detector.

Except in (2.1), we will use units in which ℏ = c = G = kB = 1.

2.1.1 Geometric perspective

We consider first the geometric interpretation of the Unruh effect before explor-
ing its foundation within QFT. As a toy model, we consider (1 + 1)-dimensional
Minkowski spacetime in inertial coordinates (t, x) with the metric

ds2 = −dt2 + dx2 . (2.2)

Everything that follows generalises easily to the case of arbitrary dimension. We
consider an observer on a trajectory x(τ) parametrised by its proper time τ ,

t(τ) =
1

A
sinh(Aτ) , x(τ) =

1

A
cosh(Aτ) . (2.3)

This is the trajectory of a uniformly accelerated observer with proper acceleration
A. One may, however, use coordinates (η, ξ) adapted to this trajectory,

t =
1

a
eaξ sinh(aη) , x =

1

a
eaξ cosh(aη) , (2.4)

where η, ξ ∈ R.
The coordinates (η, ξ) only cover the region x > |t| in Minkowski spacetime, a

region known as the right Rindler wedge, depicted as region I in Figure 2.1. In
these coordinates, trajectories of constant ξ are trajectories of constant proper
acceleration. In particular, an observer with constant proper acceleration a = A

moves along the path η = τ , ξ = 0. The pullback of the metric (2.2) to the right
Rindler wedge (2.4) is

ds2 = e2aξ
(
−dη2 + dξ2

)
. (2.5)

From the metric (2.5), one identifies ∂η as a Killing vector. Let f be a smooth
map (coordinate transformation) from the right Rindler wedge in coordinates
(η, ξ) to Minkowski spacetime in coordinates (t, x). Then, the pushforward of
the Killing vector ∂η to Minkowski spacetime through the function f is

f∗(∂η) = a(x∂t + t∂x) =: Ξµ∂µ . (2.6)

This is the Killing vector in Minkowski spacetime associated with boosts parallel
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t

x

ξ

η

IIV

II

III

Figure 2.1: Spacetime diagram of Minkowski spacetime. Regions I and IV represent the
right and left Rindler wedges respectively, in which the coordinates (η, ξ) (2.4) may be
used, pointing in opposite directions in each wedge. Dashed lines represent the Killing
horizons x = ±|t|.

to the x-axis. The magnitude of this Killing vector is a2(−x2 + t2): this is timelike
for x > |t| and x < −|t|; spacelike for −|t| < x < |t|; and null for x = ±|t|.

We have already identified the region x > |t| with the right Rindler wedge.
We now identify the region x < −|t| as the left Rindler wedge (region IV in Fig-
ure 2.1) with coordinates

t = −1

a
eaξ sinh(aη) , x = −1

a
eaξ cosh(aη) . (2.7)

The null hypersurfaces x = ±|t|, on which the Killing vector Ξµ (2.6) is null,
are Killing horizons [13], known in this context as “acceleration” or “Rindler”
horizons, and together they form a bifurcate Killing horizon. Associated with
any Killing horizon Σ is its surface gravity κ, which is defined as [13, 76]

Ξν∇νΞ
µ|Σ = κ Ξµ|Σ , (2.8)

and given explicitly by

κ2 = −1

2
(∇µΞν)(∇µΞν)|Σ . (2.9)

We may further associate a temperature, the Hawking temperature, to a space-
time with a bifurcate Killing horizon [50, 77, 78], proportional to the surface
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gravity of the horizon. This temperature is given by [13]

T =
κ

2π
. (2.10)

We find this relation now in the case of static, spherically symmetric spacetimes.

Example 2.1. We consider an (n+ 1)-dimensional, static, spherically symmetric
spacetime described by the metric

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2 , (2.11)

where dΩ2 is the metric on the (n − 1)-sphere. We assume that there exists rh
such that f(rh) = 0 and f ′(rh) ̸= 0.

We first show that r = rh is a bifurcate Killing horizon. The normal to the
hypersurface Σ defined by r = rh is given by nµ = ∂µ(r − rh), which has magni-
tude nµ nµ|Σ = f(rh) = 0; hence, Σ is a null hypersurface. Furthermore, Ξ = ∂t

is a Killing vector of the metric (2.11) with norm ΞµΞµ = −f(r) that vanishes on
Σ; hence, Σ is a Killing horizon. Finally, by employing Kruskal–Szekeres-like
coordinates, one finds that there exist both a past and a future horizon, which
comprise the bifurcate Killing horizon.

By direct calculation using (2.9), we find the surface gravity

κ2 = −1

2

[
grrg

tt(Γrtt)
2 + gttg

rr
(
Γtrt
)2]∣∣∣

Σ
=

1

4
(f ′(rh))

2
. (2.12)

We next show that one may associate the temperature T = κ/(2π) with the
horizon. Near the horizon, it is convenient to introduce a new radial coordinate
ρ measuring the proper distance from the Killing horizon. For spacetimes with
r > rh, such as Schwarzschild and Reissner-Nordström, we write

ρ(r) =

ˆ r

rh

dr′
1√
f(r′)

. (2.13a)

Whereas for spacetimes with r < rh, such as the static patch of de Sitter (dS), we
write

ρ(r) =

ˆ rh

r

dr′
1√
f(r′)

. (2.13b)

Close to the horizon, we have f(r) = |r − rh||f ′(rh)|+O((r − rh)
2), allowing

us to evaluate the integral (2.13). To leading order, we find the relation

ρ2(r) =
2

κ
|r − rh| , (2.14)
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where we have identified κ = 1
2
|f ′(rh)|.

We write the (t, r) part of the metric (2.11) as

ds2 = ΞµΞµdt
2 + dρ2 , (2.15)

where we have used ΞµΞµ = gtt and the relation dρ2 = dr2/f(r). Near to the
horizon, we have

ΞµΞµ = −f(r) = −|r − rh||f ′(rh)|+O((r − rh)
2) = −κ2ρ2 +O(ρ4) , (2.16)

where, in the final equality, we have used (2.14). The metric then reads

ds2 = −κ2ρ2dt2 + dρ2 . (2.17)

We perform a Wick rotation t = −iτ , leading to

ds2 = dρ2 + ρ2d(κτ)2 . (2.18)

This is simply the flat metric in polar coordinates. To avoid a conical singularity
at ρ = 0, we require κτ to be an angle with period 2π; hence, τ is periodic with
period 2π/κ. In the Euclidean formalism, the periodicity β of imaginary time is
related to the inverse temperature β = 1/T [79–81] and we find T = κ/(2π). ■

Returning to the metric (2.5), the surface gravity of the acceleration horizon is
simply κ = a, leading to the well-known Unruh temperature [21],

TU =
a

2π
. (2.19)

We may connect this result with Example 2.1. In this example, we found that,
close to the horizon, the metric describing a static, spherically symmetric space-
time may be written as

ds2 = −κ2ρ2dt2 + dρ2 . (2.20)

In addition to the coordinates (2.4), we may also cover the right Rindler wedge
with the coordinates (t, x) = (R sinh(aT ), R cosh(aT )). Identifying κ = a, the
pullback of the Minkowski metric (2.2) to the right Rindler wedge reads

ds2 = −κ2R2dT 2 + dR2 . (2.21)

Comparing (2.20) and (2.21), we see that near to the horizon, the geometry of a
static, spherically symmetric spacetime is that of the right Rindler wedge.

With the geometric foundations set, we will move to the QFT interpretation
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of this effect in Section 2.1.2. In this Section, we saw that the geometry of
a static, spherically symmetric spacetime near to a Killing horizon may be
described by the geometry of Rindler spacetime. As such, this connects the
Unruh effect with other known phenomena; the event horizon around a black
hole is another such Killing horizon. For a Schwarzschild black hole with mass
M , the surface gravity is κ = 1/(4M), leading to the Hawking temperature TH =

1/(8πM) [19, 50, 77, 82, 83]. A second example is found in dS spacetime [84]
with positive cosmological constant Λ. Restricting to the static patch of dS,
one finds the presence of a cosmological horizon with associated temperature

T =
√

Λ
3
/(2π) [50].

2.1.2 Quantum field theoretic perspective

In this Section, we give a more standard treatment of the Unruh effect, expressed
in terms of expectation values. Results in this Section will be stated without
proof. For a detailed account of this calculation, see [27]. In particular, we
consider a massless scalar field in (1 + 1)-dimensional Minkowski spacetime.
This is an infrared-divergent theory [12]; however, one need not deal with this
divergence for the purpose of explicating the Unruh effect [27].

We consider a massless scalar field Φ̂(t, x) in (1 + 1) dimensions, satisfying
the Klein-Gordon (KG) equation,(

− ∂2

∂t2
+

∂2

∂x2

)
Φ̂(t, x) = 0 . (2.22)

This field can be expanded in terms of plane waves. However, it is convenient
to introduce null coordinates U = t− x, V = t+ x and expand the field Φ̂ as

Φ̂(t, x) = Φ̂−(U) + Φ̂+(V ) , (2.23a)

Φ̂±(W ) =

ˆ ∞

0

dk b̂±kfk(W ) + Hc , (2.23b)

fk(W ) =
1√
4πk

e−ikW , (2.23c)

where the annihilation and creation operators satisfy [b̂±k, b̂
†
±k′ ] = δ(k − k′), δ(k)

is the Dirac delta, and Hc stands for Hermitian conjugate. The left-moving Φ̂+

and right-moving Φ̂− sectors of the field are independent and hence one may
consider, without loss of generality, only the left-moving section Φ̂+(V ). The
(global) Minkowski vacuum |0M⟩ is defined by b̂+k |0M⟩ = 0 for all k.

One may solve the KG equation in the right Rindler wedge, shown in Fig-
ure 2.1. Again, the solutions can be separated into left and right-moving modes
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with respect to u = η − ξ and v = η + ξ. For V > 0,

Φ̂+(V ) =

ˆ ∞

0

dω âR+ωgω(v) + Hc , (2.24a)

gω(v) =
1√
4πω

e−iωv , (2.24b)

where the annihilation and creation operators satisfy [âR+ω, â
R†
+ω′ ] = δ(ω − ω′).

The field Φ̂+(V ) can also be expressed in the left Rindler wedge. Using Rindler
coordinates defined by (2.7), one defines ṽ = η̃ − ξ̃ such that

Φ̂+(V ) =

ˆ ∞

0

dω âL+ωgω(ṽ) + Hc , (2.25)

where the annihilation and creation operators satisfy [âL+ω, â
L†
+ω′ ] = δ(ω − ω′).

The vacuum state in the left and right Rindler wedges |0R⟩ is then defined by
âR+ω |0R⟩ = âL+ω |0R⟩ = 0.

One may find a Bogoliubov (rus. Боголюбов) transformation to express the
Minkowski annihilation and creation operators in terms of those in the left and
right Rindler wedges. In particular, one has(

âR+ω − e−πω/aâL†+ω

)
|0M⟩ = 0 , (2.26a)(

âL+ω − e−πω/aâR†
+ω

)
|0M⟩ = 0 . (2.26b)

These two relations uniquely define the Minkowski vacuum |0M⟩. Importantly,
the Minkowski vacuum is defined in terms of the annihilation and creation
operators in both the right and left Rindler wedges. The correlation between the
right and left Rindler wedges in the global Minkowski vacuum state plays an
important role in the Unruh effect [27].

For simplicity, we use box quantisation in which the Rindler energy levels ω are
discrete, thereby writing ωi in place of ω and letting [âR+ωi

, âR†
+ωj

] = [âL+ωi
, âL†+ωj

] =

δij , where δij is the Kronecker delta. The discrete version of (2.26) then allows
one to calculate

⟨0M|âR†
+ωi

âR+ωi
|0M⟩ = ⟨0M|âL†+ωi

âL+ωi
|0M⟩ =

1

e2πωi/a − 1
. (2.27)

That is to say the expectation value of the number of Rindler particles with
respect to the Minkowski vacuum follows a Bose-Einstein distribution at tem-
perature TU , the Unruh temperature (2.19). This result follows equally without
discretisation, in which case one expresses the Rindler annihilation and creation
operators using the wave-packet formalism [27]. Furthermore, using this result,
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one may show that if one probes only the right Rindler wedge, the Minkowski
vacuum is described by a density matrix for a system of free bosons at tempera-
ture TU (2.1). One may perform the calculation for the right-moving modes in
a similar fashion, arriving at the same result. Further, this calculation can be
generalised easily to higher dimensions [27].

This perspective of the Unruh effect highlights the importance of both the left
and right Rindler wedges. In Section 2.1.3, we will consider the response of a
detector undergoing uniform linear acceleration and introduce the “response
function”, an object which will be the main focus of this thesis.

We now end this subsection with the following remark: the Unruh temper-
ature is the same for every field and every coupling, which follows from the
Kubo-Martin-Schwinger property of the Minkowski vacuum when written in
terms of excitations on the Rindler vacuum, or, at a general level, from the be-
haviour of the Minkowski vacuum correlation functions under boosts, a property
known as the Bisognano-Wichmann theorem [85, 86].

2.1.3 Unruh-DeWitt detector model

In this Section, we review the UDW detector model [21, 22]; a two-level system —
a qubit — undergoing a smooth timelike trajectory x(τ) in Minkowski spacetime,
parametrised by its proper time τ . We present the theory in arbitrary dimensions
and give examples in (3+1)-dimensional Minkowski spacetime, paralleling [12].

In d spacetime dimensions, the Minkowski metric in inertial coordinates
(t, x1, x2, . . . , xd−1) reads

ds2 = −dt2 + (dx1)2 + (dx2)2 + · · ·+ (dxd−1)2 . (2.28)

We consider a real, massless scalar field Φ̂ satisfying the KG equation,

ηµν∂µ∂νΦ̂ =

(
− ∂2

∂t2
+ δij∂i∂j

)
Φ̂ = 0 , (2.29)

where ηµν = diag(−1, 1, . . . , 1) and i, j = 1, . . . , d−1. The field may be expanded
in terms of Minkowski plane-wave modes

Φ̂(x) =

ˆ
Rd−1

dd−1k ϕk(x)âk +Hc , (2.30a)

ϕk(x) =
1

(2π)(d−1)/2

eik·x√
2|k|

, (2.30b)

where k = (|k|,k), x = (t,x), and k · x = ηµνk
µxν . The field modes ϕk(x) are
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normalised with respect to the KG norm

(ϕk, ϕk′) = −i

ˆ
Rd−1

dd−1x (ϕk∂tϕ
∗
k′ − ϕ∗

k′∂tϕk) , (2.31a)

(ϕk, ϕk′) = −(ϕ∗
k, ϕ

∗
k′) = δ(d−1)(k − k′) , (2.31b)

(ϕk, ϕ
∗
k′) = 0 . (2.31c)

The annihilation âk and creation â†k operators satisfy [âk, â
†
k′ ] = δ(d−1)(k − k′).

The Poincaré-invariant Minkowski vacuum |0M⟩ is defined by âk |0M⟩ = 0 for all
k.

We assume the field (2.30) is initially prepared in a state |Ψ⟩ with standard
Fock space HΦ, in which the positive frequencies are defined with respect to the
timelike Killing vector ∂t of metric (2.28). In this work, we will consider only the
cases when the field (2.30) is initially prepared in its vacuum |Ψ⟩ = |0M⟩ or in a
thermal state |β⟩ in inverse temperature β = 1/T .

The Hilbert space of the detector HD ≃ C2 is spanned by the orthonormal
basis{|0D⟩ , |1D⟩}. The internal dynamics of the detector are described by the
Hamiltonian ĤD with respect to τ , whose action on HD is ĤD |0D⟩ = 0 and
ĤD |1D⟩ = E |1D⟩. The constant E ∈ R is the detector’s energy gap. For E > 0,
|0D⟩ is the ground state and |1D⟩ is the excited state. For E < 0, the roles are
reversed. The total Hilbert space of the system is HD ⊗HΦ.

The detector-field interaction is described by the Hamiltonian

Ĥint = λχ(τ)µ̂(τ)⊗ Φ̂(x(τ)) , (2.32)

where λ is a coupling constant, χ ∈ C(R) is the real-valued switching function
determining the temporal profile of the interaction. We will be interested in the
long-interaction limit χ→ 1. µ̂ is the time-evolved monopole moment operator
in the interaction picture µ̂(τ) = eiĤDτ µ̂(0)e−iĤDτ , where µ̂(0) = σ̂+ + σ̂− and σ̂±

are the raising and lowering operators in HD,

σ̂+ |0D⟩ = |1D⟩ , σ̂− |0D⟩ = 0 , (2.33a)

σ̂+ |1D⟩ = 0 , σ̂− |1D⟩ = |0D⟩ . (2.33b)

The time-evolved raising and lowering operators read σ̂±(τ) = e±iEτ σ̂±, such
that µ̂(τ) = eiEτ σ̂+ + e−iEτ σ̂−.

We take the initial state of the joint system to be |0D⟩ ⊗ |Ψ⟩ = |0D,Ψ⟩ and con-
sider the case in which the detector transitions to |1D⟩ whilst the field transitions
to an excited state |Υ⟩. We assume the coupling constant λ is small such that
first-order perturbation theory is a valid approximation. The joint-state of the
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detector-field system evolves according to the time-evolution operator

Û = T exp

(
−i

ˆ ∞

−∞
dτ Ĥint(τ)

)
, (2.34a)

where T exp is the time-ordered exponential, which may be expanded as a Dyson
series, leading to

Û = 1̂− i

ˆ ∞

−∞
dτĤint(τ) +O(λ2) . (2.34b)

Then, the amplitude A|Υ⟩ for the joint system to transition from its initial state
|0D,Ψ⟩ to final state |1D,Υ⟩ is given by

A|Υ⟩ = −i

ˆ ∞

−∞
dτ ⟨1D,Υ|Ĥint|0DΨ⟩ ,

= −iλ ⟨1D|µ̂(0)|0D⟩
ˆ ∞

−∞
dτ χ(τ)eiEτ ⟨Υ|Φ̂(x(τ))|Ψ⟩ . (2.35)

Example 2.2 (Inertial detector). Let us consider the transition amplitude A|1k⟩ (2.35)
of a detector undergoing inertial motion in the long-interaction-time limit χ→ 1.

We assume the field is initially prepared in the Minkowski vacuum |Ψ⟩ =
|0M⟩, in which case to first order in perturbation theory, the field can only
transition to the state |1k⟩. We use the field expansion (2.30), noting that
⟨Υ|Φ̂(x(τ))|0M⟩ = ⟨1k|Φ̂(x(τ))|0M⟩ = ϕ∗

k(x(τ)) such that

A|1k⟩ = −i
λ ⟨1D|µ̂(0)|0D⟩
(2π)

3
2

√
2|k|

ˆ
R
dτ ei(Eτ−k·x) . (2.36a)

Specialising to the inertial trajectory x = x0+vt = x0+vγτ , where x0 and v are
real constants and γ is the Lorentz gamma factor defined by dt = γdτ , we have

A|1k⟩ = −ie−ix0·kλ ⟨1D|µ̂(0)|0D⟩
(2π)

3
2

√
2|k|

ˆ
R
dτ eiEτei(|k|−v·k)γτ , (2.36b)

= −ie−ix0·kλ ⟨1D|µ̂(0)|0D⟩√
4π|k|

δ(E + (|k| − v · k)γ) . (2.36c)

In a relativistic spacetime setting, we have |v| < 1; therefore, |k| − v · k > 0.
For a detector transitioning to an excited state (E > 0), the argument of the delta
is strictly positive in which case A|1k⟩ vanishes — a direct consequence of the
Poincaré invariance of the Minkowski vacuum. As such, an inertial detector
probing the Minkowski vacuum does not get excited. An inertial detector may,
however, de-excite: if the detector begins in an excited state and de-excites to its
ground state (E < 0), the transition amplitude is nonzero.

By contrast, if this calculation were performed again but in a dielectric
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medium, in which the trajectory is parametrised by the coordinate time t, then
the speed of light c0 would be replaced by the effective speed of light in the
medium ceff , in which case it is possible to have “superluminal” observers
with 1 < |v|

ceff
< c0

ceff
. For such observers, the transition amplitude to an excited

state (E > 0) (2.36) would not vanish for all k, an effect known as Cherenkov
(rus. Черенков) radiation [87, 88]. ■

For more complicated trajectories than the inertial motion considered in Ex-
ample 2.2, a quantity of interest is the transition probability P(E), found by
summing over (the complete basis of) final states,

P(E) =
∑
|Υ⟩

|A|Υ⟩|2 , (2.37a)

= λ2| ⟨1D|µ̂(0)|0D⟩ |2
ˆ
R2

dτdτ ′ χ(τ)χ(τ ′)e−iE(τ−τ ′) ⟨Ψ|Φ̂(x(τ))Φ̂(x(τ ′))|Ψ⟩ .

(2.37b)

The quantity ⟨Ψ|Φ̂(x)Φ̂(x′)|Ψ⟩ is the two-point function or Wightman function.
We assume this to be a distribution with a controlled singularity structure, which
includes the Hadamard property in the coincidence limit x → x′ [89, 90]. When
the field is initially prepared in either its vacuum state or in a thermal state in
inverse temperature β, we denote the pullback of the field’s Wightman function
to the trajectory x(τ) by

W(τ, τ ′) = ⟨0M|Φ̂(x(τ))Φ̂(x(τ ′))|0M⟩ , (2.38a)

Wβ(τ, τ
′) = ⟨β|Φ̂(x(τ))Φ̂(x(τ ′))|β⟩ . (2.38b)

By abuse of terminology, we will refer to (2.38) as the Wightman function. The
strength of the coincidence-limit singularity of the Wightman function W de-
pends on the spacetime dimension [69]. We assume that χ has sufficiently strong
early and late-time falloff so that the integral in (2.37b) converges.

In Minkowski spacetime (2.28), the Wightman functions W and Wβ are given
by [26, 69]

W(x, x′) =
Γ(d

2
− 1)

4πd/2[(x− x′)2 − (t− t′ − iε)2](d−2/2)
, (2.39a)

Wβ(x, x
′) =

ˆ
Rd−1

dd−1k[(1 + n(β|k|))ϕk(x)ϕ
∗
k(x

′) + n(β|k|)ϕ∗
k(x)ϕk(x

′)] ,

(2.39b)

= W(x, x′) +

ˆ
Rd−1

dd−1k n(β|k|)(ϕk(x)ϕ
∗
k(x

′) + ϕ∗
k(x)ϕk(x

′)) , (2.39c)
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where
n(x) =

1

ex − 1
, (2.40)

is the Bose thermal factor. The distributional limit ε→ 0+ in (2.39) is understood.
The thermal Wightman function (2.39c) splits into a vacuum contribution and
a thermal contribution, in which only the vacuum Wightman function W has
a distributional behaviour. For odd d, the denominator in (2.39) is positive for
spacelike separations and the iε specifies the branch in its continuation through
to timelike separations.

The constant prefactor in front of the integral in the transition probabil-
ity (2.37b) is determined by the internal degrees of freedom of the detector
and the coupling strength, whereas the interaction information is entirely deter-
mined by the integral. As such, we introduce the switching-dependent response
function

Fχ(E) =

ˆ
R2

dτdτ ′ χ(τ)χ(τ ′)e−iE(τ−τ ′)W(τ, τ ′) . (2.41)

Throughout this work, we will specialise to the class of stationary trajectories
x(τ), members of which include inertial motion, uniform linear acceleration, and
circular motion [4, 71, 91]. In situations in which the state |Ψ⟩ and trajectory x(τ)

are stationary, the pullback of the Wightman function W depends on its two
arguments only through their difference,

W(τ, τ ′) = W(τ − τ ′, 0) . (2.42)

The Wightman function with respect to the Minkowski vacuum |0M⟩ (2.39a)
simplifies to

W(τ, 0) =
1

4π2

1

(∆x(τ − iε))2
, (2.43)

where (∆x(τ))2 = (x(τ) − x(0))2 and the square is a Minkowski square, x2 =

ηµνx
µxν .

We further specialise to the case of long interaction time χ→ 1; however, the
switching-dependent response function Fχ (2.41) and hence transition proba-
bility diverges. Instead, by first dividing by the total interaction time and then
letting the interaction time tend to infinity, we find that the transition probability
per unit time is proportional to the stationary response function [13],

F(E) =

ˆ
R
dτ e−iEτW(τ, 0) . (2.44)

The subtleties in the infinite duration limit are discussed in [90]; in particular,
the limit assumes the coupling to tend to zero sufficiently fast for the first order
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perturbative treatment to remain valid in the limit.

Example 2.3 (Inertial detector in a thermal bath). We consider as an example
an inertial detector in a (3 + 1)-dimensional thermal bath at temperature T in
Minkowski spacetime probing a real, massless, KG field Φ̂. The field decomposi-
tion (2.30) in 3 + 1 dimensions is given by

Φ̂(x) =

ˆ
R3

d3k ϕk(x)âk +Hc , (2.45a)

ϕk(x) =
1

(2π)
3
2

eik·x√
2|k|

, (2.45b)

where ηµν = diag(−1, 1, 1, 1). In even spacetime dimensions, one can re-express
the thermal Wightman function Wβ (2.39c) by method of an image sum [23] or
by direct calculation of the integral (2.39b). In 3 + 1 dimensions, one finds

Wβ(x, x
′) =

1

4π2

πT sinh(2πT |∆x|)
|∆x|(cosh(2πT |∆x|)− cosh(2πT∆t))

, (2.46)

where |∆x| = |x− x′| and ∆t = t− t′ − iε.
The thermal bath is stationary with respect to the Killing vector ∂t of (2.28)

and isotropic in the spatial coordinates, so the Wightman function is again
stationary in the sense of (2.42). However, a thermal bath has a preferred rest
frame because of the role of ∂t in the construction of the state |β⟩. Therefore,
Wβ (2.39c) is not Lorentz invariant [1] and observers with a non-zero constant
velocity will experience a Doppler shift.

We specialise to a static observer at the origin, x(τ) = (τ, 0, 0, 0), on which
trajectory the thermal Wightman function (2.46) reads [3, 26]

Wβ(τ, 0) = − 1

4β2 sinh2
(
π
β
(τ − iε)

) . (2.47)

The (stationary) response function is then

F(E, β) =

ˆ
R
dτ e−iEτWβ(τ, 0) , (2.48a)

=
E

2π

1

eEβ − 1
. (2.48b)

We see that, in the absence of the Doppler effect (v = 0), the static observer
experiences a thermal bath at temperature β−1. ■

We consider now a detector undergoing a uniform linear acceleration trajec-
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tory in 3 + 1 Minkowski spacetime

(t, x, y, z) =

(
1

a
sinh(aτ),

1

a
cosh(aτ), 0, 0

)
. (2.49)

The pullback of the Wightman function (2.43) to the trajectory (2.49) reads

W(τ, 0) = − 1

4π2

1
4
a2
sinh2(a

2
(τ − iε))

. (2.50)

The response function F (2.44) for an accelerated detector can be expressed
explicitly in terms of elementary functions,

F(E) = − 1

4π2

ˆ
R
dτ e−iEτ 1

4
a2
sinh2(a

2
(τ − iε))

, (2.51a)

=
E

2π

1

e2πE/a − 1
. (2.51b)

Comparing this result with Example 2.3, one sees that the response of a detector
undergoing linearly accelerated motion and a static detector in a 3 + 1 thermal
bath is identical under the identification β = 2π/a.

To interpret this result, we recall that in a local system in equilibrium with
a thermal bath, the excitation and de-excitation probabilities satisfy Einstein’s
detailed balance condition [92, 93],

P↓(∆)

P↑(∆)
= e∆/T , (2.52)

where P↑(∆) is the excitation probability, P↓(∆) is the de-excitation probability,
∆ > 0 is the energy difference between the two states under consideration, and
T is the temperature of the thermal bath. Solving (2.52) for T gives

T =
∆

ln

(
P↓(∆)

P↑(∆)

) , (2.53)

giving an operational way to determine the bath’s temperature in terms of the
probabilities P↑(∆) and P↓(∆) that are observable in the local system. Note that
while both P↑(∆) and P↓(∆) depend on the energy gap ∆, the temperature T
in (2.52) and (2.53) does not: the temperature T sets the ratio of the excitation and
de-exitation probabilities for all energy gaps. This is the characteristic feature of
a local system in equilibrium with a thermal bath.

Using the language of response functions, the detailed balance tempera-
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ture (2.53) then reads

T =
E

ln

(F(−E)
F(E)

) . (2.54)

For the response functions (2.48) and (2.51), we find the corresponding detailed
balance temperatures (2.54)

T =

 1
β

static detector in thermal bath ,
a
2π

linearly accelerated detector .
(2.55)

A static detector therefore behaves as a perfect thermometer for the thermal bath,
whereas the linearly accelerated detector responds as if it were in a thermal bath
at a temperature proportional to its acceleration — the Unruh effect.

The reason behind this phenomenon is that the Minkowski vacuum is a
genuine thermal state in the Fock space adapted to the boost Killing vector
whose one orbit the linearly accelerated observer follows [21], and the detector
consequently responds to this thermality by excitations and de-excitations that
obey detailed balance.

By contrast, the Minkowski vacuum does not have a similar description as
a genuine thermal state in a Fock space adapted to non-linear accelerations.
Indeed, the excitation and de-excitation probabilities are affected by the acceler-
ation, the ratio of these probabilities, however, depends on the energy gap ∆ in
a way that does not follow the detailed balance exponential law (2.52) in terms
of a single parameter T . These motions, therefore, do not have a conventional
notation of temperature and the physical phenomenon behind the acceleration
effect may be described as a combination of synchrotron radiation as well as
the conventional Unruh effect, as reviewed in [67]. In particular, the quantity T
given by (2.53) depends on the gap ∆.

The probabilities P↑(∆) and P↓(∆) are still, however, observable quantities
in the local quantum system, affected by the acceleration, even when the accel-
eration is not linear. For a given value of ∆, the excitation and de-excitation
probabilities in the local system are related as if the system were in equilibrium
with a thermal bath in the temperature given by (2.53). The ∆-dependent quan-
tity given by (2.53) thus provides a useful quantifier of the system’s response to
the acceleration at energy gap ∆, and hence an operational notion of an effective
temperature at a given energy scale. We call this quantity the detailed balance
temperature.

This concludes our final perspective on the uniform linear acceleration Un-
ruh effect, all of which highlight the uniqueness of linear acceleration in their
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construction, either through the presence of an acceleration horizon, the be-
haviour of Minkowski vacuum correlation functions under boosts according to
the Bisognano-Wichmann theorem, or the description of the Minkowski vacuum
as a thermal state in the Fock space adapted to the boost Killing vector x∂t + t∂x.

The UDW detector model will serve as the main tool throughout this work
and the response function and detailed balance temperature will act as useful
quantifiers of the response of the local quantum system at a given energy scale.
In this way, the UDW model allows for the study of both the Unruh effect, as
well as Unruh-like phenomena [71, 72, 94, 95], such as an observer in uniform
circular motion [26, 91, 96–98]. Experimental interest in the circular motion
Unruh effect has a long standing [64, 66, 99–101], in which a new avenue is
opened by recent proposals [2, 70, 102, 103] to utilise the analogue spacetime
that occurs in nonrelativistic laboratory systems [57, 104]. In Section 2.2, we will
introduce nonrelativistic analogue spacetimes and the circular motion Unruh
effect.

2.2 Unruh effect: Circular motion

“Noli turbare circulos meos!”
(Do not disturb my circles!)

Last words of Archimedes

We introduce the analogue spacetime setting, the effective description of
perturbations around a background flow within a hydrodynamical system as
a scalar field propagating in a curved spacetime. We focus on the circular
motion Unruh effect in 2 + 1 and 3 + 1 spacetime dimensions and continue with
the UDW model, using the response function of the detector to quantify the
experience of the detector. Finally, we consider the continuous-detector model
as a generalisation of the two-state UDW detector model.

2.2.1 Analogue spacetimes

The concept of an analogue spacetime originates in Unruh’s seminal work
“Experimental Black-Hole Evaporation?” [51] and has since flourished into the
discipline of analogue gravity. In this Section, we introduce the mathematical
analogy between fluid perturbations on a background flow and scalar fields on
a curved spacetime.
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We begin with the equations of motion for an inviscid, irrotational fluid [52],

∇× v = 0 , (2.56a)

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p− ρ∇V , (2.56b)

∂ρ

∂t
+∇ · (ρv) = 0 , (2.56c)

where v is the velocity field of the fluid, ρ is the fluid density, p(ρ) is the fluid
pressure, and V is an external force potential. The first equation ensures the
fluid is irrotational, the second is the Euler equation, the equation of motion
for an inviscid fluid, and the third equation is the continuity equation. For a
fluid whose density is steady (∂tρ = 0) and uniform (∇ρ = 0), the continuity
equation (2.56c) reduces to the familiar incompressibility condition ∇ · v = 0.

We introduce the velocity potential ψ such that v = ∇ψ and define new
variables ξ and g,

ξ = ln ρ , g(ξ) =

ˆ eξ

dρ′
1

ρ′
dp(ρ′)

dρ′
. (2.57)

The velocity potential guarantees that the fluid is irrotational (2.56a). The equa-
tions (2.56b) and (2.56c) in these new variables now read

∂ψ

∂t
+

1

2
|v|2 + g(ξ) + V = 0 , (2.58a)

∂ξ

∂t
+ v · ∇ξ +∇ · v = 0 . (2.58b)

We next linearise the fluid equations (2.58) about some background velocity
field v0 = ∇ψ0 by perturbing ξ and ψ,

ξ = ξ0 + ξ̃ , ψ = ψ0 + ψ̃ . (2.59)

Combining the resulting two linearised equations into a single equation for the
velocity potential perturbation ψ̃, we find

1

ρ0

[
∂

∂t

ρ0
g′(ξ0)

∂ψ̃

∂t
+
∂

∂t

ρ0v0

g′(ξ0)
· ∇ψ̃ +∇ ·

(
ρ0v

g′(ξ0)

∂ψ̃

∂t

)

−∇ ·
(
ρ0∇ψ̃

)
+∇ ·

(
v

ρ0
g′(ξ0)

v · ∇ψ̃
)]

= 0 . (2.60)
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Recast into a more familiar form, this equation reads

0 =
1√−g∂µ

(√−ggµν∂ν
)
ψ̃ , (2.61a)

ds2 = gµνdx
µdxν ,

= −(c2s − v0 · v0)dt
2 − 2dt(v0 · dx) + dx · dx , (2.61b)

where c2s =
dp
dρ
|ρ=ρ0 is the (local) speed of sound. Equation 2.61 describes a KG

field ψ̃ propagating on a nonrelativistic curved spacetime background, deter-
mined by the background velocity field v0. An important class is ρ0 = const and
v0 = 0, describing an analogue Minkowski spacetime with a constant speed of
sound.

In a nonrelativistic analogue spacetime setting, it is appropriate to parametrise
an observer’s trajectory by the ‘lab time’ t, with respect to which any frequencies
will be measured. The energy gap of the detector is also adapted to the analogue
spacetime system and is defined with respect to the Minkowski time and denoted
by E. The lab frame energy gap E is related to the energy gap of a relativistic
detector by E = E/γ. The response function adapted to the lab frame reads

F(E) =

ˆ
R
dt e−iEtW(t− iε, 0) , (2.62)

and is related to the relativistic spacetime setting by multiplication by 1/γ (cf.
dt = γdτ ).

By utilising an analogue Minkowski spacetime, one may repeat the calcula-
tions of Section 2.1.3 and arrive at the analogue Unruh temperature,

TU =
ℏa

2πcskB
. (2.63)

The key difference between (2.19) and (2.63) is the replacement of the speed
of light c by the speed of sound cs. In a Bose-Einstein condensate (BEC), the
speed of sound can be 12 orders of magnitude lower than the speed of light [70]:
an analogue-spacetime implementation brings the Unruh effect much closer to
experimental realisation.

The work in [21] initiated the field of analogue gravity and has since been ex-
tended to describe gravity wave perturbations on a range of curved spacetimes,
from black hole backgrounds [54] through to cosmological spacetimes [105]. This
framework now resonates with several areas throughout physics [104, 106], with
experimental and theoretical efforts in classical fluids [61, 107], ultracold atoms
systems [70, 108], superfluids [2, 63], and optical systems [109, 110]. In Sec-
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tion 2.2.2, we will explore a particular example, the circular motion Unruh
effect.

2.2.2 Circular motion Unruh effect

We consider a UDW detector as modelled in Section 2.1.3 undergoing uniform
circular motion in Minkowski spacetime. Its worldline is

x(τ) = (γτ,R cos(γΩτ), R sin(γΩτ), . . . ) , (2.64)

where the dots are not present in 2 + 1 dimensions and denote zeros in higher
dimensions. The parameters R, Ω > 0 satisfy RΩ < 1, ensuring the trajectory is
timelike. The Lorentz factor is given by γ = (1− v2)−1/2. R is the orbital radius,
Ω is the angular velocity with respect to Minkowski time t, Ω = dθ/dt, we denote
the orbital speed by v = RΩ, and the acceleration by a = v2γ2/R.

In an analogue spacetime, circular motion enjoys two main advantages over
linear acceleration. First, the trajectory can remain within a finite-size laboratory
for an arbitrarily long interaction time. Second, the Lorentz factor γ remains
constant in time. On an experimental level, this allows for the inclusion of
the gamma factor by appropriately scaling the energies during the theoretical
analysis of an experiment. On a theoretical level, one can readily transition
results between a genuinely relativistic spacetime and an analogue spacetime
setting by a rescaling of the energy gap E.

There are two fundamental differences between the Unruh effect presented
in Section 2.1 and the circular motion Unruh effect. First geometrically (cf. Sec-
tion 2.1.1), no horizons form in uniform circular motion. Second, the Minkowski
vacuum does not have a description as a thermal state in a Fock space adapted to
the circular motion Killing vector (cf. Section 2.1.2). Therefore, we now analyse
the circular motion Unruh effect in a relativistic spacetime, first in 3 + 1 and
then in 2 + 1 dimensions using the UDW detector model (cf. Section 2.1.3), as
analysed in [69], with previous earlier analyses given in [23, 66, 72].

(3 + 1)-dimensional Minkowski spacetime
In (3 + 1)-dimensional Minkowski spacetime, the Wightman function (2.39a)

reads
W(τ, 0) =

1

4π2

1

(∆x(τ − iε))2
. (2.65)

We can isolate the distributional contribution of the Wightman function at τ = 0

to the response function (2.44) by adding and subtracting the singular behaviour
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at τ = 0,

F(E) = − 1

4π2

ˆ
R
dτ e−iEτ 1

(τ − iε)2
+

1

4π2

ˆ
R
dτ e−iEτ

(
1

τ 2
+

1

(∆x(τ))2

)
. (2.66a)

We note that the second integral is free from iε regularisation and the decom-
position (2.66) is independent of the trajectory x(τ) due to the short-distance
Hadamard property of the Wightman function. We evaluate the first integral by
means of a contour integral in the complex plane,

F(E) = − E

2π
Θ(−E) + 1

4π2

ˆ
R
dτ e−iEτ

(
1

τ 2
+

1

(∆x(τ))2

)
, (2.66b)

where Θ is the Heaviside step function [111]. The first term is the response
function of a detector undergoing inertial motion in 3 + 1 Minkowski spacetime,

F0(E) = − E

2π
Θ(−E) . (2.67)

As in Example 2.2, the inertial detector (2.67) only responds via de-excitations
and has a detailed balance temperature T = 0.

Specialising to the circular trajectory (2.64), we have

(∆x(z))2 = −4
R2

v2
(
z2 − v2 sin2(z)

)
, (2.68)

where z = γvτ/(2R). The response function (2.66) is given by

F(E) = − E

2π
Θ(−E) + v

4π2γR

ˆ ∞

0

dz cos

(
2ER

γv
z

)(
γ2

z2
− 1

z2 − v2 sin2 z

)
.

(2.69)
This expression is useful for numerical implementation and for some limits such
as the small energy gap limit; however, it can also be useful to write the integral
as a contour integral in the complex plane,

F(E) = − E

2π
Θ(−E)− v

8π2γR

ˆ
C

dz
exp
(
i2|E|R
γv

z
)

z2 − v2 sin2 z
, (2.70)

where the contour C lies along the real axis from −∞ to +∞, passes the pole
at z = 0 in the upper half-plane, and is closed in the upper half-plane. The
distributional contribution at z = 0 is already contained in the inertial term and
should therefore be left outside the contour. The residue theorem then allows
one to rewrite the integral as a sum over the (infinitely many) residues.

Two limits of interest are the large and small energy gap limits. Considering
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first the large-gap limit |E| → ∞, one sees from (2.70) that the leading-order
behaviour is determined by the zero of

z2 − v2 sin2 z = 0 , (2.71)

with the smallest positive imaginary part. This zero is purely imaginary and is
denoted in [69] by α0, defined implicitly by

v =
α0

sinhα0

. (2.72)

This leads to the detailed balance temperature (2.54)

Tcirc =
γv

2α0R
. (2.73)

We consider now the small-gap limit E → 0. In Appendix A, we detail
a dominated convergence argument to calculate the leading and subleading
contributions to the integral (2.69) as E → 0,

F(E) =
vγ

4π2R

ˆ ∞

0

dz

(
1

z2
− 1

γ2(z2 − v2 sin2 z)

)
− 1

4π

(
1− 1

γ2
sgn(E)

)
E +O(E2) , (2.74)

where sgn(E) = E/|E| is the signum function. An application of the detailed
balance formula (2.54) leads to

Tcirc =
vγ

2πR

ˆ ∞

0

dz

(
1

z2
− 1

γ2(z2 − v2 sin2 z)

)
+O(E2) . (2.75)

(2 + 1)-dimensional Minkowski spacetime
The Wightman function (2.39a) in (2 + 1)-dimensional Minkowski spacetime

is given by

W(τ, 0) =
1

4π

1√
(∆x(τ − iε))2

. (2.76)

The square root in the denominator is positive imaginary for τ > 0 and negative
imaginary for τ < 0. The associated response function (2.44) admits a simple
decomposition in two ways, both of which ways isolate the distributional be-
haviour at τ = 0. In the first, we separate the odd and even contributions to the
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response function,

F(E) =
1

4
− 1

2π

ˆ ∞

0

dτ
sin(Eτ)√
−(∆x(τ))2

. (2.77)

In the second, we add and subtract the singular behaviour under the integral as
in (2.66),

F(E) =
1

2
Θ(−E) + 1

2π

ˆ ∞

0

dτ sin(Eτ)

(
1

τ
− 1√

−(∆x(τ))2

)
. (2.78)

In this decomposition, the first term is the detector response for an inertial
detector in (2 + 1)-dimensional Minkowski spacetime,

F0(E) =
1

2
Θ(−E) . (2.79)

As in 3 + 1 dimensions, these two decompositions are independent of the tra-
jectory chosen, following from the short-distance Hadamard property of the
Wightman function.

The response function in the two decompositions (2.77) and (2.78) is given by

F(E) =
1

4
− 1

2πγ

ˆ ∞

0

dz
sin
(

2ER
γv
z
)

√
z2 − v2 sin2 z

, (2.80a)

=
1

2
Θ(−E) + 1

2πγ

ˆ ∞

0

dz sin

(
2ER

γv
z

)(
γ

z
− 1√

z2 − v2 sin2 z

)
. (2.80b)

We rewrite the integral in (2.80b) as a contour integral in the complex plane,

F(E) =
1

2
Θ(−E) + i sgn(E)

4πγ

ˆ
C

dz
exp
(
i2|E|R
γv

z
)

√
z2 − v2 sin2 z

, (2.81)

where the contour C lies along the real axis from −∞ to +∞ and passes the
branch point at z = 0 in the upper half-plane. By deforming the contour C in
the upper half-plane around each of the branch points, one can re-express the
integral as an infinite sum, the details of which are given in [69].

The dominant contribution in the large gap limit is again given by the zero
of (2.71) with smallest positive imaginary part. It follows that the detailed
balance temperature is the same as in 3 + 1 dimensions (2.73).

In the small energy gap regime, it is shown in [69] that the detailed balance
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Figure 2.2: (Relativistic spacetime for v = 0.8) Ratio of circular motion and linear
acceleration detailed balance temperatures Trat := Tcirc/Tlin as a function of the reduced
energy gap Ered := E/a with all other parameters fixed. The red curve shows Trat

in 2 + 1 dimensions. The blue curve shows Trat in 3 + 1 dimensions. The dashed
black curve shows the asymptotic large energy gap temperature (2.73) Trat → 1.99
in both 2 + 1 and 3 + 1 dimensions, evaluated from (2.73). In 2 + 1 dimensions, the
effective temperature vanishes as Ered → 0 as seen in the analytic formula (2.82). In
3 + 1 dimensions, Trat → 0.78 as Ered → 0, evaluated from (2.75).

temperature is given by

Tcirc =
|E|

ln
(
γ+1
γ−1

) + o(E) , (2.82)

which vanishes as E → 0, in contrast to the corresponding limit in 3 + 1 dimen-
sions (2.75).

Numerical results: 3 + 1 and 2 + 1

In the previous Section, only the asymptotically large and small energy gaps
were amenable to analytic techniques. We now interpolate numerically between
these regions and compare the circular motion Unruh effect in both a relativistic
and analogue spacetime setting. We recall that the time dilation Lorentz factor
γ = (1− v2)−1/2 is constant along the circular trajectory, hence we can map the
relativistic spacetime results into an analogue spacetime setting by the following
identifications: E = E/γ and a = a/γ2 are the energy gap and acceleration
measured with respect to Minkowski time t and T = T/γ is the temperature
measured with respect to E.
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Figure 2.3: (Analogue spacetime for v = 0.8) Ratio of circular motion and linear accel-
eration detailed balance temperatures T rat := T circ/T lin as a function of the reduced
energy gap Ered := E/a with all other parameters fixed. The red curve shows T rat in
2 + 1 dimensions. The blue curve shows T rat in 3 + 1 dimensions. The dashed black
curve shows the asymptotic large energy gap temperature (2.73) T rat → 1.99 in both
2 + 1 and 3 + 1 dimensions, evaluated from (2.73).

In the relativistic spacetime setting, we plot the ratio Tcirc/Tlin as a function of
the dimensionless variable E/a, whereas in the analogue spacetime setting, we
plot T circ/T lin as a function of the dimensionless variable E/a.

In Figure 2.2, we compare the effective temperature experienced by a UDW
undergoing uniform circular motion in 3+1 and 2+1 dimensions with respect to
the Unruh temperature in a relativistic spacetime setting. We interpolate between
the large and small gap limits in Figure 2.2. The effective temperature in 2 + 1

and 3 + 1 dimensions is bounded from above (in the chosen parameters) by
2Tlin. As seen in the formula (2.75), the effective temperature in 3+1 dimensions
remains of order unity with respect to the Unruh temperature throughout the
parameter space. In 2 + 1 dimensions, however, this is only true for |E/a| ≳ 0.5

as T 2+1
circ tends linearly to zero as |E/a| → 0. The plot shows incipient growth

of Tcirc towards the large energy gap limit (2.73). In general, for away from
the small-gap limit, the detailed balance temperature in both 3 + 1 and 2 + 1

dimensions behaves similarly and is of order unity with respect to the linear
uniform acceleration Unruh temperature Tlin.

In Figure 2.3, we compare the effective temperature experienced by a UDW
undergoing uniform circular motion in 3+1 and 2+1 dimensions with respect to
the Unruh temperature in an analogue spacetime setting. The plot is qualitatively
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similar to the relativistic spacetime as the quantity Tcirc/Tlin is invariant under
T → T/γ. However, the data is now plotted as a function of E/a = γE/a.

The UDW model underpins the circular motion Unruh effect and any obser-
vation thereof requires a realisation of a UDW detector. However, in [70], it
was shown that the characteristics of a UDW detector can be obtained by using
a continuous field — rather than a two-level system — such as a laser field.
In Section 2.2.3, we will review the continuous quasiparticle detector.

2.2.3 Continuous quasiparticle detectors

We consider the field theory as described in [70] comprising of a (2+1)-dimensional
KG field Φ(t,x), where x = (x, y), and a (1 + 1)-dimensional probing KG field
ψ(t, z). In an analogue system such as a BEC, the field Φ represents density
perturbations [70], whereas in thin-film superfluid helium, the field Φ represents
height fluctuations [2].

The field Φ is confined to the x plane, whereas the probing field ψ can move
on an interaction trajectory X(t) parameterised by its coordinate time t. The two
fields have a pointlike interaction such that, before quantisation, the field theory
is described by the Lagrangian

L = −1

2

ˆ
d2x ∂µΦ∂

µΦ− 1

2

ˆ
dz ∂µψ∂

µψ

− λ

ˆ
d2xdz ∂t(ψ(t, z))Φ(t,x)δ(z)δ

(2)(x−X(t)) , (2.83)

where λ is a small coupling constant and the delta functions restrict the in-
teraction to (x, z) = (X(t), 0). Upon quantisation, the effective interaction
Hamiltonian is

Ĥint = λ∂tψ̂(t, 0)⊗ Φ̂(t,X(t)) . (2.84)

We assume the field Φ̂ and ψ̂ admit a decomposition into plane waves. At the
point of interaction, the fields Φ̂ and ψ̂ are then decomposed as

Φ̂(t,X(t)) =

ˆ
R2

d2k
1

2π
√
2ω

e−iωt+k·X(t)âk +Hc , (2.85a)

ψ̂(t, 0) =

ˆ
R
dℓ

1√
4πω̃

e−iω̃tb̂ℓ +Hc , (2.85b)

where ω = |k|, ω̃ = |ℓ|, âk and â†k are the annihilation and creation operators for
quasiparticles in the analogue system, and b̂ℓ and b̂†ℓ are the annihilation and
creation operators for the probing field.

We assume the field Φ̂ is prepared in a vacuum state |0Φ⟩ and the field ψ̂
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is prepared in an initial state |0ψ⟩. To first order in perturbation theory, the
fields Φ̂ and ψ̂ can transition only to their first excited states |1k⟩ = â†k |0Φ⟩ and
|1ℓ⟩ = b̂†ℓ |0ψ⟩.

In an analogue system, the time-evolution operator (2.34) is given in terms of
the coordinate time t,

Û = 1̂− i

ˆ ∞

−∞
dt Ĥint(t) +O(λ2) , (2.86)

where λ is the small coupling constant in the interaction. The transition ampli-
tude for the joint state to transition from |0Φ, 0ψ⟩ to |1k, 1ℓ⟩ is given by

A|1k⟩ = −i

ˆ
dt ⟨1k, 1ℓ|Ĥint|0Φ, 0ψ⟩ , (2.87)

where Ĥint is the interaction Hamiltonian (2.84), leading to

A|1k⟩ = λ

√
ω̃

4π

ˆ
dte−iω̃t ⟨1k|Φ̂(t,X(t))|0Φ⟩ . (2.88)

On an inertial trajectory X(t) = x0 + v0t, where x0 and v0 are constants, the
transition amplitude A|1k⟩ is

A|1k⟩ =
λ

2

√
ω̃

2πω
eik·x0δ(ω̃ + ω − k · v0) . (2.89)

Note the transition amplitude vanishes for ω̃ > 0, akin to the two-level UDW
detector in Example 2.2.

By considering |A|1k⟩|2 and summing over the complete set of final states |1k⟩,
we find the transition probability,

P(ω̃) =
λ2ω̃

4π

ˆ
dtdt′ e−iω̃(t′−t)W(t′, t) , (2.90)

where W(t′, t) = ⟨0Φ|Φ̂(t′,X(t′))Φ̂(t,X(t))|0Φ⟩ is the pullback of the Wightman
function to the trajectory X(t). For a stationary Wightman function in the sense
of (2.42), we divide by the total interaction time to find the response function

F(ω̃) =

ˆ
R
dt e−iω̃tW(t, 0) . (2.91)

When the field Φ̂ is initially prepared in a thermal state in inverse temperature β,
we find also

F(ω̃, β) =

ˆ
R
dt e−iω̃tWβ(t, 0) . (2.92)
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In summary, the continuous quasiparticle detector model parallels the two-
state UDW model of Section 2.1.3 in two fundamental ways. First, an inertial
detector does not register any particles. Second, both model lead to the descrip-
tion of detector excitation and de-excitation in terms of the Fourier transform of
the Wightman function, the response functions (2.44) and (2.91). As such, all cal-
culations in Section 2.1.3 could be repeated with the continuous detector model
and lead to the same results. In Chapter 4, we will see an example of the con-
tinuous detector model in which a laser field acts as a continuous quasiparticle
detector of fluctuations in the height of thin-film superfluid helium.

2.3 Summary

In this Chapter, we have reviewed the (linearly accelerated) Unruh effect from
three separate perspectives. First, in Section 2.1.1 we considered the geometric
origins of the Unruh effect in which the presence of acceleration horizons play a
key role in deriving the Unruh temperature. Then in Section 2.1.2, we consid-
ered the expected particle content for an inertial observer and an accelerated
observer in Minkowski spacetime, finding that the expected particle number
for an accelerated observer in the Minkowski vacuum is described by a thermal
spectrum. The origins of the Unruh effect within QFT highlight the importance
of both the left and right Rindler wedges. After, we considered the UDW de-
tector model, in which the experience of a two-state detector is encoded in the
response function F . When the detector is linearly accelerated, the response
function obeys Einstein’s detailed balance condition describing an exact thermal
state in the Unruh temperature. However, this model allows for the extension
of the Unruh effect to other motions such as circular motion. No horizons form
when an observer undergoes uniform circular motion in Minkowski spacetime
and the Minkowski vacuum does not have a description as a genuine thermal
state in a Fock space adapted to uniform circular motion. However, one can fit
an effective, energy-gap-dependent temperature to satisfy Einstein’s detailed
balance condition. In this sense, one can consider other Unruh-like phenomena
by investigating the excitation and de-excitation rates of the detector.

In Section 2.2.1, we reviewed Unruh’s seminal work “Experimental Black-Hole
Evaporation?” [51], finding that perturbations around a background flow in a
fluid admit a description in terms of a scalar field propagating on a curved
spacetime background, giving rise to the discipline of analogue gravity. In Sec-
tion 2.2.2, we considered a UDW detector undergoing uniform circular motion.
We saw that for small energy gaps, the experience of the detector depends on the
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spatial dimensions: in 2 + 1 dimensions, the detailed balance temperature tends
to zero, whereas in 3 + 1 dimensions, the detailed balance temperature tends
to a nonzero constant. For large energy gaps, however, the detailed balance
temperature tends to a constant, describing an approximately thermal state.
Finally, in Section 2.2.3, we considered an interacting field theory between a
(2 + 1)-dimensional KG field and a (1 + 1)-dimensional KG field, in which the
latter acted as a probe field for the former. The (1 + 1)-dimensional field lay
perpendicular to the (2 + 1)-dimensional field and was permitted to move along
an interaction trajectory. For inertial motion, the probability of excitation was
zero, as in the case of a UDW undergoing inertial motion. However, for gen-
eral stationary motions, the excitation probability led to the response function
of Section 2.1.3.

In the succeeding Chapters, we will develop further the ideas considered
within this Chapter and the response function F will serve as the main tool to
investigate detector response.



Chapter 3

Circular motion analogue Unruh
effect in a 2 + 1 thermal bath:
Robbing from the rich and giving to
the poor

“Poor men’s goodes hee spared,
aboundantly releeving them with that,
which by thefte he gote from Abbeyes
and the houses of riche Carles.”

John Stow

The Annales of England (1592) [112]

THE analogue spacetimes offered by condensed-matter systems have inherent
ambient temperatures that may not be neglected; hence, we build upon the

discussion in Section 2.2.2 of a detector undergoing uniform circular motion
probing a scalar field and replace the Minkowski vacuum by an ambient thermal
bath. However, the presence of a thermal bath breaks the Lorentz invariance of
the system, introducing a Doppler shift in the response of the detector. As such,
it is not a priori clear what are the respective velocity-dependent and acceleration-
dependent contributions to the detector response. We compare the response
of a detector in circular motion with that of an inertial detector at a constant
velocity matching the orbital speed of the detector in circular motion to isolate
acceleration effects. The contents of this Chapter were extracted from, or based
on, the journal article “Circular motion analogue Unruh effect in a 2 + 1 thermal
bath: Robbing from the rich and giving to the poor” [1] in collaboration with
Jorma Louko.

37
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3.1 Spacetime, field, and detector preliminaries

We work in (2 + 1)-dimensional analogue Minkowski spacetime in inertial
coordinates (t, x, y) with the metric ds2 = −dt2 + dx2 + dy2. We consider a
quantised, real scalar field Φ̂, with a dispersion relation that is isotropic in (x, y)

and subject to the mild monotonicity conditions specified in Section 3.1.1, but
otherwise arbitrary; in particular, we do not assume the dispersion relation to be
Lorentz invariant.

We assume that the field has been initially prepared in a thermal state in
inverse temperature β > 0, where the notion of thermality is with respect to the
time evolution generated by ∂t.

We first assume that the thermal state has a Wightman two-point function
(2.39), denoted by

W̃β(x
′, x′′) = ⟨Φ̂(x′)Φ̂(x′′)⟩β , (3.1)

possibly modulo infrared subtleties that we shall describe shortly. Because of the
role in ∂t in the construction of the thermal state, W̃β is not Lorentz invariant. In
particular, it is not invariant under Lorentz boosts, not even when the dispersion
relation is Lorentz invariant. A thermal bath has a distinguished rest frame.

We probe the field by a pointlike detector in uniform circular motion, on the
worldline (2.64) in 2 + 1 dimensions in the lab frame,

x(t) =
(
t, R cos(Ωt), R sin(Ωt)

)
. (3.2)

The orbital speed is v = RΩ. We assume that the worldline is timelike, v < 1.
As in Section 2.1.3, the detector’s Hilbert space is HD ≃ C2 and is spanned by

the orthonormal basis
{
|0⟩ , |1⟩

}
. In the analogue spacetime setting, the detector

energy gap is given by E, defined with respect to lab time t.
In the interaction picture, we take the interaction Hamiltonian to be

Ĥint = λχ(t)µ̂(t)⊗ d

dt
Φ̂
(
x(t)
)
, (3.3)

where µ̂ is the detector’s monopole moment operator, χ is a real-valued switch-
ing function that specifies how the interaction is turned on and off, and λ is a
real-valued coupling constant. As we shall see later, the derivative coupling
renders the detector’s Wightman function well defined and divergence free.

Working to first order in perturbation theory in λ as in Section 2.2.3, one
may calculate the probability P(E) for the detector to transition from |0⟩ to |1⟩,
regardless of the final state of the field [12, 21].

As the thermal state is stationary with respect to the Killing vector ∂t and



Chapter 3. Spacetime, field, and detector preliminaries 39

isotropic in (x, y), the Wightman function is stationary in the sense of (2.42). By
dividing the transition probability P(E) by the total interaction time and letting
the duration tend to infinity, one recovers the stationary response function,

F(E, β) =

ˆ
R
dt e−iEtWβ(t, 0) , (3.4a)

Wβ(t
′, t′′) =

〈
d

dt′
Φ̂
(
x(t′)

) d

dt′′
Φ̂
(
x(t′′)

)〉
β

. (3.4b)

Had we not included the time derivative in Ĥint (3.3), i.e. had we replaced
the interaction Hamiltonian by (2.32), then Wβ would have been replaced by
the pullback of the Wightman function W̃β (3.1) to the trajectory (3.2) given
by W̃β(t

′, t′′) = ⟨Φ̂(x(t′))Φ̂(x(t′′))⟩β. For a massless Klein-Gordon (KG) field,
however, W̃β is infrared divergent [26]. The derivative-coupled detector model
is often employed to sidestep a similar infrared divergence that occurs for a
massless field in 1 + 1 spacetime dimensions already in zero temperature [31–
33, 113–115].

3.1.1 Response function mode sum

By assumption, the field’s dispersion relation is spatially isotropic. As such, the
field mode frequency with respect to ∂t can be written as ω(|k|), where ω(K)

is a function of a non-negative argument and ω is positive everywhere except
possibly at K = 0. We write ω′(K) = dω(K)/dK and assume that ω′(K) > 0 for
K > 0. If ω(0) = 0, we assume that ω′(0) > 0.

In the analogue spacetime setting, there are two dispersion relations of par-
ticular interest satisfying these assumptions, the Bogoliubov (rus. Боголюбов)
dispersion relation for quasiparticle excitations in a Bose-Einstein condensate
(BEC) [116] and the dispersion relation for waves on the free surface of a liq-
uid [52, 105]. Both dispersion relations satisfy ω(0) = 0. The second assumption
is then interpreted as ω(K) being linear around zero. Introducing for a moment
dimensionful units, we have ω(K) = csK, where cs is the speed of sound in
these systems.

We show in Appendix B that the response function (3.4) has the mode sum
expression

F(E, β) =
E

2

2

( ∑
m>(E+ω(0))/Ω

K+
m

ω′(K+
m)ω(K

+
m)

(
1 + n

(
βω(K+

m)
))
J2
m(RK

+
m)

+
∑

m>(−E+ω(0))/Ω

K−
m

ω′(K−
m)ω(K

−
m)

n
(
βω(K−

m)
)
J2
m(RK

−
m)

)
, (3.5)
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where n is the Bose thermal factor (2.40), Jm are the Bessel functions of the first
kind [111], and K±

m is defined for m > (±E + ω(0))/Ω, as the unique solution to

ω(K)−mΩ± E = 0 . (3.6)

The uniqueness of K±
m follows from the positivity of ω′(K), and the notation

suppresses the E-dependence of K±
m.

If ω(0) = 0, the factors n
(
βω(K±

m)
)
/ω(K±

m) have singularities, but, by the
assumption ω′(0) > 0, these singularities are more than outweighed by the
factors K±

mJ
2
m(RK

±
m) for m ̸= 0, whereas the m = 0 term is not singular because

E ̸= 0 by assumption; F(E, β) is hence continuous in E, but it is not smooth. We
shall comment on this in more explicitly with the massless KG field below.

3.1.2 Massless Klein-Gordon field

We now specialise to the massless KG field, for which ω(K) = K, ω′(K) = 1 and
K±
m = mΩ∓ E. The response function (3.5) then simplifies to

F(E, β) = F∞(E) + ∆Fβ(E) , (3.7a)

F∞(E) =
E

2

2

∑
m>E/Ω

J2
m

(
(mΩ− E)R

)
, (3.7b)

∆Fβ(E) =
E

2

2

 ∑
m>|E|/Ω

n
(
(mΩ− |E|)β

)
J2
m

(
(mΩ− |E|)R

)

+
∑

m>−|E|/Ω

n
(
(mΩ + |E|)β

)
J2
m

(
(mΩ + |E|)R

) , (3.7c)

where F∞ is the vacuum contribution, independent of β, while ∆Fβ is the addi-
tional contribution due to the ambient temperature. The notation F∞ indicates
the contribution remaining in the limit as β → ∞ (equivalently T → 0). We note
that ∆Fβ(E) is even in E, and we have written (3.7c) in a way that makes this
manifest. Note also that both F∞ and ∆Fβ are manifestly positive.

Recall that by assumption E ̸= 0 and 0 < v < 1, where v = RΩ. It follows
from the uniform asymptotic expansion 10.20.4 in [111] that the sums in (3.7b)
and (3.7c) converge, and F(E, β) is hence well defined. F(E, β) is however
not smooth in E at integer values of E/Ω, where new terms enter the sums: at
|E|/Ω = n ∈ {1, 2, . . .}, ∆Fβ(E) has a discontinuity in its (2n − 1)th derivative
and F∞(E) has a discontinuity in its (2n)th derivative.
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F∞ has the integral representation

F∞(E) = E
2

(
γ

4
− 1

2π

ˆ ∞

0

dz
sin
(
2(E/Ω)z

)√
z2 − v2 sin2z

)
, (3.8)

where γ = (1− v2)
−1/2, which follows by translating (2.80a) to our analogue

spacetime conventions and to our derivative-coupled interaction. This represen-
tation will be useful for discussing some of the limits in Section 3.2.

3.1.3 Cooling inequality

In an analogue spacetime setting, we consider the detailed balance tempera-
ture (2.54) as a function of the lab-frame energy gap E, defined with respect to
the lab time t. To distinguish the detailed balance temperature from the ambient
temperature, we write

TDB(E) =
E

ln
(

F(−E,β)
F(E,β)

) . (3.9)

We shall find in Section 3.2.1 and Section 3.3 that there are regimes where
the circular motion detailed balance temperature TDB is lower than the ambient
temperature β−1. Here we make preliminary observations as to where such
parameter regimes might be found.

The definition of the detailed balance temperature TDB (3.9) may be rear-
ranged as

F(E, β)eE/TDB = F(−E, β) . (3.10)

Whilst (3.10) holds for either sign of E, let us assume here E > 0, for simplicity
of the notation. As F is by construction positive, (3.10) then shows that the
condition for TDB to be lower than β−1 is

F(E, β)eβE < F(−E, β) . (3.11)

Using (3.7), and the evenness of ∆Fβ(E), this becomes

F∞(E)eβE +∆Fβ(E)(e
βE − 1) < F∞(−E) . (3.12)

In the low temperature limit, β → ∞, with the other parameters fixed, the
leftmost term in (3.12) shows that (3.12) cannot hold.

In the high temperature limit, β → 0+, with the other parameters fixed, we
shall see in Section 3.2.1 that the left-hand side of (3.12) has a finite limit, and
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the possibility of satisfying (3.12) arises. We shall return to this analytically in
Section 3.2.1 and numerically in Section 3.3.

3.1.4 Inertial motion response function

In this Section, we consider the response function of a detector undergoing
inertial motion but with a nonvanishing (constant) velocity with respect to the
heat bath. We shall use this in the later sections to distinguish the acceleration
contribution from the velocity contribution in the circular motion response.

Time evolution for an inertial observer with nonvanishing velocity is gen-
erated by the Killing vector ∂t, the same timelike Killing vector used in the
construction of a thermal state. As such, this is a stationary situation. By con-
trast, the time evolution for a uniformly accelerating observer, say, parallel to the
x-axis is generated by the Lorentz boost x∂t + t∂x. The notions of time evolution
between the accelerated observer and the thermal bath therefore disagree and
the Wightman function is no long stationary, as pointed out in [24].

Specialising to the massless KG field, the inertial motion response function
may be obtained from (3.4) with (B.1) and (B.2) in a straightforward way, using
identities 6.671.1 and 6.671.2 in [117]. The outcome is

FLin(E, β) =
E

2

2

γΘ(−E) + 1

π

ˆ |E|
1−v

|E|
1+v

dx

(eβx − 1)

√
(vx)2 −

(
x− |E|

)2
 , (3.13)

where v is the detector’s velocity in the rest frame of the thermal bath, satisfying
0 < v < 1, and γ = (1 − v2)−1/2 is the Lorentz factor. The subscript “Lin”
stands for “linear”, emphasising that the inertial motion may be viewed as the
R → ∞ limit of the circular motion (3.2) with fixed orbital speed v = RΩ; as a
consistency check, we have verified that (3.13) may be obtained from (3.7) in
this limit, viewing the sum as the Riemann sum of an integral and using the
asymptotic expansions of the Bessel functions [111]. The integrand in (3.13) is
singular at the upper and lower limits, but these singularities are integrable and
the integral is well defined.

Alternatively, one may re-express FLin(E, β) as

FLin(E, β) =
E

2
γ

2

(
Θ(−E) + 1

π

ˆ π
2

−π
2

dθ

eβ|E|γ2(1+v sin θ) − 1

)
, (3.14)

obtained from (3.13) by the substitution x = γ2|E|(1 + v sin θ). (3.14) is more
convenient for extracting some asymptotic limits and for numerical evaluation,
as the integrand is nonsingular over the whole integration range.
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3.2 Asymptotic regimes

In this Section, we examine the behaviour of the response function (3.7) and
corresponding detailed balance temperature (3.9) in the asymptotic regimes
of high and low ambient temperature, small energy gap, small orbital radius
with fixed speed, and near-sonic speed. We also give the corresponding results
for inertial motion, including in this case the regime of large energy gap. We
demonstrate that for both circular motion and inertial motion there are regimes in
which the detailed balance temperature is lower than the ambient temperature.

3.2.1 High ambient temperature

Consider the high ambient temperature limit, β → 0+, with Ω, R and E fixed.
By 24.2.1 in [111], the Bose factor n(x) (2.40) has the small argument Laurent

expansion

n(x) =
∞∑
k=0

Bk

k!
xk−1 =

1

x
− 1

2
+

x

12
+ · · · , (3.15)

which is convergent for 0 < x < 2π and where Bk are the Bernoulli numbers.
The Bessel functions in (3.7c) exhibit exponential decay for large m, by 10.20.4
in [111]. It follows, by a dominated convergence argument, that the asymptotic
expansion of ∆Fβ(E, β) at β → 0+ may be found from (3.7c) by using (3.15)
under the sum over m and exchanging the order of the sums. As the Bernoulli
numbers Bk vanish for odd k > 1, the expansion proceeds in powers βp with
p = −1, 0, 1, 3, 5, . . .. To leading order we have

∆Fβ(E) =
E

2

2β

( ∑
m>|E|/Ω

J2
m

(
(mΩ− |E|)R

)
mΩ− |E|

+
∑

m>−|E|/Ω

J2
m

(
(mΩ + |E|)R

)
mΩ + |E|

)
+O(1) . (3.16)

For the detailed balance temperature, we combined (3.7), (3.9), and (3.16) to give

TDB =
1

β
Q(v, |E|/Ω) +O(1) , (3.17)



Chapter 3. Asymptotic regimes 44

where

Q(v, k) =

∑
m>−k

J2
m

(
(m+ k)v

)
m+ k

+
∑
m>k

J2
m

(
(m− k)v

)
m− k∑

m>−k
J2
m

(
(m+ k)v

)
−
∑
m>k

J2
m

(
(m− k)v

) , (3.18)

k is assumed positive, and we recall that 0 < v < 1.
The function Q(v, k) (3.18) is well defined: the sums over m converge by the

exponential falloff of the Bessel functions as seen from 10.20.4 in [111], and the
denominator is positive, which one may see in the following way. We first write
the denominator as

2

π

ˆ ∞

0

dz
sin(2kz)√
z2 − v2 sin2z

, (3.19)

using (3.7b) and (3.8). Then, one may see that (3.19) is positive by breaking the
integral into a sum of integrals over the intervals πp

2k
< z < π(p+1)

2k
, p = 0, 1, 2, . . .

and then combining each even p interval with the next odd p interval. The
combined integrand in each term is then positive because the denominator
in (3.19) is a strictly increasing function of z, and finally one observes that
these rearrangements are justified by the convergence of (3.19) as an improper
Riemann integral.

In the limit v → 0+ with fixed k, Q(v, k) has the asymptotic behaviour

Q(v, k) =


1

k
− 1

2
v2 +O(v4) for 0 < k < 1 ,

1

kγ

(
1 +O(v4)

)
for 1 ≤ k ,

(3.20)

which can be verified by expanding the sums in (3.18) in v term by term. Inter-
changing the sum and the expansion is justified by the falloff 10.20.4 in [111]
allows one to differentiate the sums with respect to v term by term for 0 < v < 1.
It follows that for fixed k ≥ 1, Q(v, k) < 1 for sufficiently small v.

In the limit v → 1 with fixed k, Q(v, k) tends to zero and decays proportionally
to 1/ ln γ. To see this, we note that the numerator in (3.18) remains bounded
as v → 1, by 10.20.4 in [111], whereas the denominator diverges, with the
leading term 4

√
3

π
k ln γ, as is seen using the integral representation (3.19) and the

asymptotic expansion in Appendix E of [69].
Given these observations about Q(v, k), we see that for sufficiently high ambi-

ent temperatures (so that (3.17) is a good approximation of the detailed balance
temperature), TDB (3.17) is lower than the ambient temperature for any fixed |E|
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and sufficiently large v, and also for any fixed |E| ≥ Ω and sufficiently small v.
We shall return to Q(v, k) numerically in Section 3.3.

While the sums arising from ∆Fβ do not appear to be expressible in terms of
elementary functions, ∆Fβ(E) admits an elementary analytic bound at the par-
ticular value E = ±Ω, at the boundary between the two asymptotic behaviours
shown in (3.20): from (3.7c) we have

∆Fβ(±Ω) <
Ω2

2
n(vβ/R)

∞∑
m=1

(
J2
m+1(mv) + J2

m−1(mv)
)

=
Ω2

2

n(vβ/R)√
1− v2

, (3.21)

and the bound is sharper at lower values of β. The inequality in (3.21) follows
by renaming the summation index and replacing the Bose factor (2.40) by its
value at the lowest summand. The equality follows from the identity

∞∑
m=1

(
J2
m−1(mv) + J2

m+1(mv)
)
=

1√
1− v2

, (3.22)

which we verify in Appendix C. We have not found this identity in the existing
literature.

3.2.2 Low ambient temperature

We consider now the low ambient temperature limit, β → ∞, with Ω, R and E

fixed.
The Bose factor n(x) (2.40) has the following large-argument expansion

n(x) =
∞∑
k=1

e−kx , (3.23)

which is convergent for x > 0. By the exponential decay of the Bessel functions
in (3.7c), it follows by a dominated convergence argument that the asymptotic
expansion of ∆Fβ(E, β) as β → ∞ may be found from (3.7c) by using (3.23) and
rearranging the sums. We find

∆Fβ(E) =
E

2

2

(
e−β(m

+Ω−|E|) J2
m+

(
(m+Ω− |E|)R

)
+ e−β(m

−Ω+|E|) J2
m−

(
(m−Ω + |E|)R

))
+O

(
e−2βmin(m+Ω−|E|,m−Ω+|E|)

)
, (3.24)
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where

m± = 1 +
⌊
±|E|/Ω

⌋
, (3.25)

⌊ · ⌋ is the floor function, and the notation suppresses the E-dependence of m±.
Note that since

0 < m±Ω∓ |E| ≤ Ω , (3.26)

(3.24) shows that ∆Fβ(E) has an exponential decay in β. Note that whilst the
coefficients m±Ω∓ |E| in the exponent are by construction positive, they are not
continuous in E and the parameters of the motion, and they may take arbitrarily
small positive values.

The dependence of the exponents in (3.24) on E determines the dominant
term in the exponential decay. There are three qualitatively different cases:

1. For 0 <
∣∣|E| − nΩ

∣∣ < 1
2
Ω, n ∈ {0, 1, 2, . . .}:

∆Fβ(E) = 1
2
E

2
e−β||E|−nΩ| J2

n

(
(|E| − nΩ)R

)
+

O
(
e−βmin(2||E|−nΩ|,Ω−||E|−nΩ|)) . (3.27)

2. For |E| = (n+ 1
2
)Ω, n ∈ {0, 1, 2, . . .}:

∆Fβ

(
(n+ 1

2
)Ω
)
= 1

2
(n+ 1

2
)
2
Ω2 e−βΩ/2

(
J2
n+1(ΩR/2) + J2

n(ΩR/2)
)

+O
(
e−βΩ

)
. (3.28)

3. For |E| = nΩ, n ∈ {1, 2, 3, . . .}:

∆Fβ(nΩ) = 1
2
n2Ω2 e−βΩ

(
J2
n+1(ΩR) + J2

n−1(ΩR)
)
+ O

(
e−2βΩ

)
. (3.29)

The detailed balance temperature differs from the zero ambient temperature
value by a correction that is exponentially decaying in β, with the same leading
exponent as in (3.27)–(3.29).

3.2.3 Small energy gap

We consider now the limit E → 0, with fixed Ω, R and β.
Without loss of generality, we can assume |E| < Ω. Then, in ∆Fβ(E, β) (3.7c),

we have
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∆Fβ(E) =
E

2

2

{
n(|E|β)J2

0 (|E|R)

+
∞∑
m=1

[
n
(
(mΩ− |E|)β

)
J2
m

(
(mΩ− |E|)R

)
+

n
(
(mΩ + |E|)β

)
J2
m

(
(mΩ + |E|)R

)]}

=
|E|
2β

+

(
−1

4
+

∞∑
m=1

n(mΩβ)J2
m(mΩR)

)
|E|2

+

(
β

24
− R2

4β

)
|E|3+O

(
|E|4

)
, (3.30)

where we have used the expansion (3.15) and we have expanded in |E| under
the sum, justified by the falloff seen from 10.20.4 in [111]. We note that the
assumption |E| < Ω allowed us to simply the lower limits of the summations
in (3.7c).

Considering now the vacuum contribution F∞(E), we have

F∞(E) =
E

2
γ

4
− E

2
sgn(E)

4
+
E

3

πΩ

ˆ ∞

0

dz

(
1− z√

z2 − v2 sin2z

)
+O

(
E

4)
,

(3.31)

obtained by applying to (3.8) the method of Appendix B of [69] and proceeding
to one order higher to verify that the error term is as shown in (3.31).

We therefore calculate the asymptotic behaviour of the detailed balance tem-
perature (3.9), by combining (3.7), (3.30), and (3.31) to give

TDB =
1

β
+

[
γ − 1

2
+ 2

∞∑
m=1

n(mΩβ)J2
m(mΩR)

+
4

πΩβ

ˆ ∞

0

dz

(
1− z√

z2 − v2 sin2z

)]
|E|+O

(
|E|2

)
. (3.32)

We see that in the limit E → 0, the detector acts as a thermometer, probing the
ambient temperature 1/β.

3.2.4 Large energy gap

We consider now the limit E → ±∞, with fixed Ω, R and β.
We can adapt the analysis of the vacuum contribution to the response function

F∞(E) given in [69] to our derivative coupled, analogue spacetime conventions



Chapter 3. Asymptotic regimes 48

using the integral representation (3.8). This shows that F∞(E) consists of the
inertial motion contribution and a piece that is exponentially suppressed in |E|.

Estimating ∆Fβ(E) (3.7c) at |E| → ∞, however, would require new techniques
and we do not pursue this estimate here.

3.2.5 Small radius with fixed speed

We consider the limit R → 0 with fixed v, β and E. In ∆Fβ(E, β) (3.7c), writing
Ω = v/R gives, for R < v/|E|,

∆Fβ(E) =
E

2

2

{
n(|E|β)J2

0 (|E|R)

+
∞∑
m=1

[
n(mv/R− |E|β)J2

m(mv − |E|R) + n(mv/R + |E|β)J2
m(mv + |E|R)

]}

=
E

2
n(|E|β)
2

+O
(
R2
)
. (3.33)

For F∞(E), we have

F∞(E) =
E

2
γ

4
− E

2
sgn(E)

4
+
E

3
R

πv

ˆ ∞

0

dz

(
1− z√

z2 − v2 sin2z

)
+O

(
R2
)
,

(3.34)

obtained from (3.8) by writing Ω = v/R and proceeding as with (3.31).
Combining (3.7), (3.33) and (3.34), we find the leading asymptotic behaviour

of the detailed balance temperature (3.9),

TDB =
|E|

ln

(
γ + 1 + 2n(|E|β)
γ − 1 + 2n(|E|β)

) +O(R) . (3.35)

We remark that despite the acceleration a = v2/R diverging as R → 0, both
the response function F and the detailed balance temperature TDB remain finite.

3.2.6 Large radius with fixed speed

Consider the limit R → ∞ with fixed v, β and E. This is the limit of inertial
motion with speed v, as discussed in Section 3.1.4. The leading term in F is
FLin (3.13). We have not pursued the subleading corrections.
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3.2.7 Machian limit

In this analogue spacetime setting, we consider now the Machian, or near-sonic
limit v → 1, equivalently R → 1/Ω with fixed Ω, β, and E.

In ∆Fβ(E, β) (3.7c), the Bose thermal factors n exhibit an exponential large m
falloff, while the falloff of the Bessel function factors is exponential for 0 < v < 1

and m−2/3 for v = 1, as seen from 10.20.4 in [111]. It follows that ∆Fβ(E, β) has
a finite limit as v → 1,

∆Fβ(E, β) =
E

2

2

 ∑
m>|E|/Ω

n
(
β(mΩ− |E|)

)
J2
m(m− |E|/Ω)

+
∑

m>−|E|/Ω

n
(
β(mΩ + |E|)

)
J2
m(m+ |E|/Ω)

+ o(1) .

(3.36)

Again, using the integral representation (3.8) and the formulas in Appendix E
of [69] adapted to our derivative coupled, analogue spacetime conventions, we
find

F∞(E) = E
2

[
γ

4
+

√
3E

πΩ
ln

(√
3 eγE−1|E|
γΩ

)
− 1

2π
h(2E/Ω)

]
+ o(1) , (3.37)

where γE is the Euler-Mascheroni constant and

h(x) =

ˆ ∞

0

dz
sin(xz)

z

(
1√

1− (sin2z)/z2
−

√
3

z

)
. (3.38)

The detailed balance temperature (3.9), is given by collecting (3.7), (3.36),
and (3.37) to give

TDB =
πΩ

8
√
3

(
γ

ln γ

){
1 +

1

ln γ

[
ln

(√
3 eγE−1|E|

Ω

)
− Ω

2
√
3 |E|

h(2|E|/Ω)
]

+ o

(
1

ln γ

)}
. (3.39)

All terms shown arise from F∞: the contribution due to the ambient temperature
only appears at lower orders and is redshifted away.
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3.2.8 Inertial motion

In this Section, we record the corresponding asymptotic results for inertial
motion.

For large/small β and large/small |E|, we use (3.14) and note that the expan-
sions depend on β and |E| only through the combination β|E|. At high ambient
temperature and/or small gap, β|E| → 0, we find

FLin(E, β) =
E

2

2

(
1

β|E| + γΘ(−E) + γ3β|E|
12

+O
(
β2E

2))
, (3.40a)

T Lin
DB =

1

γβ

[
1 +

(γ − 1)γ2β2E
2

12
+O

(
β4E

4)]
, (3.40b)

using (3.15). In the low ambient temperature and/or large gap limit, β|E| → ∞,
we find

FLin(E, β) =
E

2

2

γΘ(−E) + e−β|E|/(1+v)√
2πvβ|E|

+O
(
(β|E|)−3/2

e−β|E|/(1+v)
) ,

(3.41a)

T Lin
DB =

(1 + v)

β

[
1 +

(1 + v) ln(β|E|)
2β|E| +O

(
1

β|E|

)]
, (3.41b)

using (3.23) and the properties 10.32.1 and 10.40.1 from [111] of the modified
Bessel function I0.

Considering the Machian limit, v → 1, we start from (3.13), change variables
by ω = |E| (1 + z2) /(1 + v), use a dominated convergence argument to take the
v → 1 limit under the integral, and use 25.12.11 in [111]. We find

FLin(E, β) =
E

2

2

γΘ(−E) + 1√
2πβ|E|

Li 1
2

(
e−

1
2
β|E|) + o(1)

 , (3.42a)

T Lin
DB =

|E|
ln γ

1 + 1

ln γ
ln

Li 1
2

(
e−

1
2
β|E|)√

2πβ|E|

 + o

(
1

ln γ

) , (3.42b)

where Li is the polylogarithm [111].
In the limit β|E| → ∞, corresponding to either the low ambient temperature

and/or the large energy gap regime, we find that the detailed balance tempera-
ture TDB is always higher than the ambient temperature, see (3.41b). By contrast,
the detailed balance temperature TDB is always lower than the ambient temper-
ature in the in limit β|E| → 0, corresponding to the high ambient temperature
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Figure 3.1: Inertial motion detailed balance temperature TLin
DB , plotted from (3.9)

and (3.14). The graph shows βTLin
DB as a function of v and β|E|, which contains all

the independent information. The horizontal (blue) curve is at βTLin
DB = 1, at the bound-

ary between a heating effect and a cooling effect. The large β|E| heating effect (3.41b),
the small β|E| cooling effect (3.40b) and the large v cooling effect (3.42b) are evident
in the plot; note in particular the abrupt 1/ ln γ cooling effect (3.42b) as v → 1. The
interpolation between the large β|E| heating effect and the large v cooling effect is
showing in the region where both of these these quantities are large, with the horizontal
(blue) curve βTLin

DB = 1 receding into the distance.

and/or the small energy gap regime by (3.40b), and similarly in the Machian
limit, by (3.42b).

3.3 Numerical results

In this Section, we plot the detailed balance temperature for a detector in uniform
circular motion and in inertial motion, interpolating between the asymptotic
regimes considered in Section 3.2.

3.3.1 Detailed balance temperature in inertial motion

We consider first inertial motion. We plot the dimensionless quantity βT Lin
DB ,

which encompasses all the independent information about T Lin
DB , as a function

of the dimensionless variables v and β|E| using (3.9) and (3.14). We plot this
in Figure 3.1. The plot displays the interpolation between the large β|E| heat-
ing effect (3.41b), the small β|E| cooling effect (3.40b) and the large v cooling
effect (3.42b).
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Figure 3.2: Plots of the function Q(v, k) (3.18), determining the high ambient temper-
ature asymptotic behaviour of TDB by (3.17). (a) Plotting parameters: 0.45 ≤ k ≤ 7
and 0 < v ≤ 0.9. Horizontal (blue) curve is at Q(v, k) = 1, at the boundary between a
heating effect and a cooling effect at high ambient temperature. (b) Plotting parameters:
5 ≤ k ≤ 7 and 0.9 ≤ v ≤ 0.97. Incipient evidence of the 1/ ln γ falloff at v → 1; closer
to v = 1 the numerics becomes slow because of the sums in the denominator in (3.18).
If the pattern shown in the plots continues beyond the plotted range, there is a high
ambient temperature cooling effect for all |E|/Ω ≥ 1, regardless of v.

3.3.2 Detailed balance temperature in circular motion

We consider now circular motion. As a preliminary, we recall from (3.17) that
asymptotic behaviour of TDB in the limit of a high ambient temperature is deter-
mined by the function Q(v, k) (3.18), with k = |E|/Ω. We found in Section 3.2.1
that in this limit, there is a cooling effect for any fixed |E|/Ω and sufficiently
large v, and also for any fixed |E|/Ω ≥ 1 and sufficiently small v. The plot of
Q(v, k) in Figure 3.2 confirms numerically these findings, and indicates that
there is a cooling effect when |E|/Ω ≥ 1 for any v.

Returning to finite ambient temperature, we address the interpolation be-
tween the asymptotic regimes analysed in Section 3.2. In Figure 3.3(a), we plot
the detailed balance temperature as a function of the ambient temperature and
the energy gap, for fixed v = 0.6 and a fixed orbital radius, and in Figure 3.3(b)
the difference between the detailed balance temperature and the ambient tem-
perature. The orbital radius R enters the plots only in that it sets the scales of
the axes, and the range of the variables is chosen to cover the main transitional
region of interest and to indicate the onset of asymptotics.

As one would expect, Figure 3.3(a) shows that the contribution from the ambi-
ent temperature dominates when the ambient temperature is high, consistent
with the analytic estimates of Section 3.2. The key information in Figure 3.3 is the
interpolation between the heating and cooling effects due to motion: while we
know from Section 3.2 and Figure 3.2 that a high ambient temperature cooling
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Figure 3.3: (a) Circular motion detailed balance temperature as a function of the ambient
temperature and the energy gap, at fixed v = 0.6. The orbital radius R enters only
in that it sets the scale of the axes: the vertical axis is TDBR, the ambient temperature
horizontal axis is TR where T = 1/β, and the energy gap horizontal axis is |E|R. The
white curve marks the discontinuity in the first derivative at |E|R = v, coming from the
discontinuity in the first derivative of F(E, β) (3.7) at |E| = Ω = v/R.
(b) As in (a), but showing the difference of the detailed balance temperature and the
ambient temperature: the vertical axis is TDR, where TD = TDB − T . Note that the
horizontal TR axes in (a) and (b) increase in opposite directions, for the benefit of
the visual perspective. The horizontal (blue) curve is at TDR = 0, at the boundary
between a heating effect and a cooling effect, and the white curve at |E|R = v is at the
discontinuity in the first derivative, as in (a). A cooling effect near |E|R = v sets in at
moderate ambient temperature, from where it extends to high ambient temperature for
|E|R ≥ v.

occurs for |E| ≥ Ω, Figure 3.3 shows that this cooling effect occurs already for
moderate values of the ambient temperature when |E| ≲ Ω.

3.4 Acceleration versus speed in circular motion

By the introduction of a thermal bath, we also broke the Lorentz invariance
of the system. In particular, this introduced a Doppler shift. We can see the
effect of this in the detailed balance temperature for an inertial detector, plotted
in Figure 3.1. We see that only a detector at rest (v = 0) will act as a perfect
thermometer, measuring the ambient temperature for all energy gaps E. When
the velocity is nonzero, the detector experiences both a heating and cooling
effect depending on the energy gap. As such, the response of the detector due
to its acceleration versus response due to the Doppler effect in Figure 3.3 is
unclear. In this Section, we ask how much of the circular motion effect in the
detector’s response can be attributed to the detector’s speed and how much to
the acceleration.
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3.4.1 Acceleration quantifiers

A primary quantity indicating the significance of acceleration is the difference in
the transition rates between the circular motion and inertial motion at the same
speed. We quantify this difference by the ratio

Nv(Eβ,R/β) =
F(E, β)−FLin(E, β)

FLin(E, β)
. (3.43)

The notation suppresses that, on the right-hand side, the velocity v in FLin is
taken to be equal to RΩ in F . The notation on the left-hand side makes explicit
that the ratio Nv depends on the parameters only through the dimensionless
triple (v, Eβ,R/β), as seen from (3.7) and (3.14). Nv is interpreted as the relative
excess transition rate due to the acceleration at a given speed. This excess,
however, may a priori be positive or negative. When the response due to the
Doppler shift dominates, we have F → FLin. Therefore, the contribution due to
acceleration is insignificant if and only if |Nv| ≪ 1.

Throughout the analysis in Section 3.2, we investigated the asymptotic be-
haviour of both the response function and also the detailed balance temperature
as quantifiers of detector response. As such, a second quantity indicating the
significance of acceleration is the ratio of the circular motion detailed balance
temperature and the inertial motion detailed balance temperature, TDB/T

Lin
DB , at

the same speed. Just like the difference in response (3.43), the ratio of detailed
balance temperatures depends on the parameters through the dimensionless
triple (v, Eβ,R/β). The main question we will be addressing is where in param-
eter space is TDB/T

Lin
DB approximately unity, and where is it significantly different

from unity?

3.4.2 Asymptotic regimes

Using the results of Section 3.2, we consider now four asymptotic regimes.
First, in the limit R → ∞ with fixed v, β and E, the circular motion trajectory

becomes inertial, and the effects due to acceleration become insignificant by
construction, as discussed in Section 3.2.6. Trivially, we have Nv → 0 and
TDB/T

Lin
DB → 1.

Second, we consider the limiting behaviour as E → 0 with v, R and β fixed.
From Section 3.2.3 and Section 3.2.8, we obtain

Nv(Eβ,R/β) = β|E|
(
(γ − 1)Θ(E) + 2

∞∑
m=1

n(mvβ/R)J2
m(mv)

)
+O

(
E

2)
,

(3.44a)
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TDB

T Lin
DB

= γ +O(E) . (3.44b)

The contribution due to acceleration in the response function F hence tends
to zero linearly in E, but with different coefficients for excitations and de-
excitations. The acceleration effect in the detailed balance temperature, however,
remains nontrivial in this limit, increasing the temperature from T Lin

DB by the
factor γ (as γ > 1).

Third, we consider the limit R → 0 with fixed v, E and β. From Section 3.2.5
and Section 3.2.8, we see that both Nv and TDB/T

Lin
DB remain finite as R → 0,

despite the diverging acceleration. The limits depend on the remaining variables
only through the dimensionless pair (v, Eβ), but in a complicated way:

lim
R→0

Nv(Eβ,R/β) =

(
γ − sgn(E) + 2n(|E|β)

)(
4/E

2)FLin(E, β)
− 1 ,

=



(γ − 1)Eβ +O
(
(Eβ)

2)
for Eβ → 0+ ,

−γ
3 − 1

12
(Eβ)

2
+O

(
(Eβ)

3)
for Eβ → 0− ,

γ − 1

2

√
2πvEβ eEβ/(1+v)

(
1 +O

(
1

Eβ

))
for Eβ → ∞ ,

−1

2

(
1− 1

γ

)
+O

e−|E|β/(1+v)√
|E|β

 for Eβ → −∞ ,

(3.45a)

lim
R→0

TDB

T Lin
DB

=

ln

(FLin(−|E|, β)
FLin(|E|, β)

)
ln

(
γ + 1 + 2n(|E|β)
γ − 1 + 2n(|E|β)

) ,

=


γ +O(|E|β) for |E|β → 0 ,

|E|β
(1 + v) ln

(
γ+1
γ−1

) +O
(
ln(|E|β)

)
for |E|β → ∞ ,

(3.45b)

where we have used the large and small |E|β results from Section 3.2.8. The limit
of Nv as R → 0 hence takes a wide range of values, from much less than unity
to much larger than unity, depending on Eβ. The limit of TDB/T

Lin
DB as R → 0 is,

by contrast, larger than unity for both small and large |E|β. In particular, for
large |E|β, the ratio is much larger than unity and for small |E|β, the ratio agrees
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Figure 3.4: Relative excess transition rate Nv (3.43) due to acceleration as a function
of the circular trajectory radius R and the excitation energy E, at fixed v = 0.6. The
ambient temperature T = 1/β enters only in that it sets the scale of the horizontal axes.
(a) Excitations, E > 0. (b) De-excitations, E < 0. White curve at ER = v, demarcating
the discontinuity of the first derivative, as in Figure 3.3. At |E|R ≫ v we have |Nv| ≪ 1,
but Nv starts to show nontrivial behaviour near |E|R ≈ v. The behaviour for |E|R ≪ v
is consistent with the asymptotic estimates (3.44a) and (3.45a). In particular, as E/T → 0,
Nv decays to zero linearly, by (3.44a).

with (3.44b).
Finally, we consider the near-sonic or Machian limit, v → 1, with fixed R, |E|

and β. From Section 3.2.7 and Section 3.2.8, we find

Nv(Eβ,R/β) =



√
2πEβ

2 Li 1
2

(
e−

1
2
Eβ
)γ + o(γ) for E > 0 ,

−1

2
+O

(
ln γ

γ

)
for E < 0 ,

(3.46a)

TDB

T Lin
DB

=
πγ

8
√
3 |E|R

[
1 +O

(
1

ln γ

)]
, (3.46b)

which shows a significant acceleration effect in TDB/T
Lin
DB , and in the excess

excitation rate, but only a moderate suppression of the de-excitation rate.

3.4.3 Numerical results

We interpolate between the asymptotic regimes we have just analysed. We
present numerical results for v = 0.6, plotting Nv and TDB/T

Lin
DB as functions of

the independent dimensionless variables Eβ and R/β.
In Figure 3.4, we plot the excess transition rate Nv, both for excitation E > 0

and for de-excitations E < 0. In both cases, the plot indicates that |Nv| ≪ 1

for |E|R ≫ v and hence a response dominated by its contribution due to the
Doppler effect. However, near |E|R ≈ v, significant deviations appear and there
are regions of positive Nv and regions of negative Nv.
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Figure 3.5: Ratio of the circular motion detailed balance temperature TDB and the inertial
motion detailed balance temperature TLin

DB , as a function of the circular trajectory radius
R and the excitation energy |E|, at fixed v = 0.6. The ambient temperature T = 1/β
again enters only in the scales of the horizontal axes. White curve at |E|R = v, at the
discontinuity of the first derivative. TDB/T

Lin
DB is close to unity for |E|R ≫ v, but starts to

deviate significantly from unity near |E|R ≈ v. Green curve at TDB/T
Lin
DB = 1. Behaviour

in region |E|R ≪ v is consistent with the asymptotic estimates (3.44b) and (3.45b); in
particular, at E/T → 0, TDB/T

Lin
DB → γ = 5/4, by (3.44b).

It is important to remark that, since the axes are scaled by the ambient tem-
perature T , the behaviour near |E|R ≈ v is independent of T , even when the
temperature is so high that the thermality dominates the overall magnitude of
the detector’s response. In the region |E|R ≪ v, the behaviour in the plots is
consistent with the asymptotic formulae given above.

In Figure 3.5, we plot the ratio of detailed balance temperatures TDB/T
Lin
DB ,

with the same parameter range as in Figure 3.4. For |E|R ≫ v, the ratio TDB/T
Lin
DB

is close to unity, as one would anticipate from Figure 3.4, but it starts to deviate
significantly from unity near |E|R ≈ v, where in some regions TDB/T

Lin
DB ≫ 1 but

in some regions TDB/T
Lin
DB < 1. The behaviour at |E|R ≪ v is consistent with the

asymptotic formulae given above.

3.5 Summary

In this Chapter, we provided the framework for describing a Unruh-DeWitt
(UDW) detector probing a scalar field initially prepared in a thermal state. We
allowed for the field to have a modified dispersion relation (see (3.5)), which
in a fundamental relativistic spacetime setting allows for dispersion relations
that might arise from Planck-scale physics [118] and within an analogue system
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allows one to probe dispersive effects beyond the phononic regime.
Quantifying the detector response by the detector response function F and

detailed balance temperature TDB, we found the behaviour of F and TDB in
various asymptotic regimes and interpolated numerically between them. We
found regimes in which the detailed balance temperature is lower than the
ambient temperature, indicating a cooling effect. By comparing the response
and detailed balance temperature of a detector undergoing circular motion
with those of a detector undergoing inertial motion, whose velocity matched
the orbital velocity of the detector in circular motion, we isolated the effect of
acceleration. The combination of numerical and analytic evidence indicated
that the contribution in detector response due to acceleration is negligible for
|E|R ≫ v, but nontrivial behaviour due to the acceleration occurs at |E|R ≲ v.

While the interplay between the various regimes is subtle, one general feature
is that a cooling effect is more likely to occur when the ambient temperature is
high, which becomes clear in light of the cooling inequality, (3.11) and (3.12).

We found that acceleration effects dominate over velocity effects at energy
gaps smaller than the orbital angular velocity, even when the ambient temper-
ature is so high that the overall magnitude of the detector’s transition rate is
dominated by the ambient temperature.

In the next Chapter, we apply this modelling to an analogue system with
an inherent sample temperature, thin-film superfluid helium-4. We close this
Chapter with a summary of its findings — an ambient temperature equips the
circular motion Unruh effect with the characteristic of Robin Hood [119]: Where
there is little, the Unruh effect gives; and where there is plenty, the Unruh effect takes.



Chapter 4

Interlude — Third sound detectors in
accelerated motion

“As had been foreseen when the
experiments were planned, their
execution bordered on the impossible.”

Heike K Onnes

Nobel Lecture (1913)

IN Chapter 2, we introduced analogue spacetimes and the continuous quasi-
particle detector model; in Chapter 3, we investigated ambient temperature

effects in analogue (2 + 1)-dimensional Minkowski spacetime. We now consider
a physical example of an analogue system in which the ambient temperature
should be taken into account, thin-film superfluid helium-4. In this Chapter,
we demonstrate that a laser sampling fluctuations in the height of a sample of
thin-film superfluid helium-4 acts as a continuous quasiparticle detector and
present a proposal to explore acceleration dependence in the response of the
detector. The contents of this Chapter were extracted from, or based on, the
journal article “Third sound detectors in accelerated motion” [2] in collaboration
with Vitor S Barroso, Steffen Biermann, August Geelmuyden, Cisco Gooding,
Grégoire Ithier, Xavier Rojas, Jorma Louko, and Silke Weinfurtner.

4.1 Superfluid helium-4

Superfluidity was first understood by Kapitsa (rus. Капица, rom. Capit, a) in
1938, who remarked that, below 2.17 K, liquid helium exhibited an abnormally
low viscosity [120]. At this temperature, known as the λ-point, liquid helium
undergoes a second-order phase transition, becoming helium-II, or superfluid

59
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Figure 4.1: Normal component density ρn and superfluid component density ρs as ratios
of the total density ρ = ρs + ρn, plotted as functions of sample temperature T . λ-point
phase transition temperature denoted by Tλ = 2.17 K. Created with experimental data
reported in [122].

helium. Landau (rus. Ландау) [121] described superfluid helium below the
λ-point as a mixture of a normal component and a superfluid component, a model
now known as Landau’s two-fluid model.

In the two-fluid model, the normal component is characterised by its velocity
field vn, pressure pn, density ρn, and kinematic viscosity νn, whereas the su-
perfluid component is described by only its velocity field vs, pressure ps, and
density ρs — the superfluid component has zero viscosity. The mass flux density
is given by j = ρnvn + ρsvs. In addition, the velocity field of the superfluid
component is irrotational ∇× vs = 0 and may be written in terms of a velocity
potential, vs = ∇ϕs. We note that the superfluid component is thus an inviscid,
irrotational fluid, as described in Section 2.2.1.

The total density of the fluid is given by ρ = ρn + ρs and varies little with
the temperature below the λ-point; however, the individual components ρn and
ρs vary greatly, as may be seen in Figure 4.1. At temperatures below 1 K, the
superfluid component density comprises more than 99% of the total density,
ρs/ρ > 0.99 [122, 123], with this ratio quickly tending to unity as the temperature
decreases.
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4.1.1 First and second sounds

Within the two-fluid model, the normal and superfluid components move inde-
pendently. First, the two components can move in phase, vn ≈ vs [124]; the fluid
in a given volume element oscillates as a whole, with the normal and superfluid
components moving together. Linearising the equations of motion describing
the two components, one finds oscillations in the pressure — sound waves —
propagating at the speed

c1 =

√
∂p

∂ρ
, (4.1)

referred to as the first sound.
On the other hand, one may consider when the two fluid components move

with opposite phase, vn ≈ − ρs
ρn
vs, in which case the total mass flux density van-

ishes j ≈ 0. The normal and superfluid components move in opposition, such
that the centre of mass in any given volume element remains at rest. In this case,
the counterflowing normal and superfluid components enable the propagation
of temperature oscillations. These oscillations in temperature propagate with a
speed

c2 =

√
ρs
ρn

Ts2

cP
, (4.2)

where cP is the specific heat capacity of helium-4, T is the temperature of the
sample, and s is the entropy of the helium. In the two-fluid model, the entropy
is carried entirely by the normal component; that is to say, sn = s and ss = 0.
The speed c2 is referred to as the speed of second sound.

The second sound is a purely superfluid phenomenon: as the temperature
of the sample approaches the λ-point, the density of the superfluid component
tends to zero, ρs → 0 as T → 2.17 K, in which case, the second sound vanishes.

4.1.2 Third and fourth sounds

In addition to the first and second sounds, Atkins [125, 126] showed that there
exists also the third sound and the fourth sound. Both the third and fourth sounds
occur when the viscous normal component of the velocity field vanishes, vn = 0.
In this case, the normal component of the fluid is viscously clamped to the
substrate on which the sample lies, while the superfluid component is free to
move [126, 127].

The fourth sound, present only in narrow channels, arises from oscillations in
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the superfluid pressure and is given by

c4 =

√
ρs
ρ
c1 , (4.3)

where c1 is the first sound (4.1). Again, as this vanishes for T > 2.17 K, this
phenomenon is only found in the superfluid phase.

The third sound, present only in thin films of superfluid helium, describes
the speed at which surface waves propagate on the free surface of superfluid
helium thin films, given by

c3 =

√
ρs
ρ
geffh0 , (4.4)

where h0 is the depth of the thin film and geff is the effective gravity experienced
by the helium sample. Again, the ratio ρs/ρ informs us that this is a purely
superfluid phenomenon.

We simplify the expression (4.4). First, we recall that at temperatures below
1 K, we have ρs/ρ > 0.99 with the ratio quickly tending to unity, leading to

c3 =
√
geffh0 , (4.5)

which is identically the propagation speed of waves in shallow water.
Second, the effect of gravity in thin films is negligible compared to the van

der Waals contribution and the effective gravity is [128, 129]

geff = g0 + 3
αvdW

h40
≈ 3

αvdW

h40
, (4.6)

where g0 is the acceleration due to gravity and αvdW is the van der Waals interac-
tion coefficient.

We can therefore write the surface-wave propagation speed as

c3 =

√
3
αvdW

h30
. (4.7)

We remark that at temperatures above 1 K, the formula for the third sound
speed (4.4) no longer applies and the temperature of the sample should be taken
into consideration. This is explored in detail in [125].
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4.2 Third sound on thin-film superfluid helium-4

In this Section, we demonstrate how waves propagating on the surface of thin
films of superfluid helium-4 act as an analogue scalar field. We work under
several assumptions. First, we assume a saturated thin film of helium-4, with
equilibrium height h0 > 10 nm, at which thickness third sound waves may
form [125, 126] and the superfluid may be considered incompressible [130]. We
assume a sample temperature below 500 mK, below which the normal compo-
nent [122, 131] and evaporation and recondensation of the superfluid [125] are
negligible. This assumption further implies that the saturated helium vapour
pressure is approximately zero and the pressure gradient arising from the inter-
action between the thin film and helium vapour is negligible [132]. We work
within the isothermal limit, in which we assume there is no heat transfer in
the system from wave propagation and hence we will ignore temperature gra-
dients. In the thin-film regime, the normal component does not contribute to
the dynamics, as vn = 0; hence, we work only with the superfluid component
and drop the subscript s, writing simply v and ρ. Finally, we work within the
long-wavelength limit, assuming that the wavelength of any excitations on the
superfluid interface satisfies |k|h0 ≪ 1.

4.2.1 Thin-film superfluid helium-4

We consider a thin film of superfluid helium confined in inertial coordinates
(t,x, z) between a hard surface at z = 0 and its free surface at z = h(t,x). We
assume a steady and uniform density ρ and align the z axis such that the effective
gravity is given by g = −∇(geffz).

The substrate is considered hard, such that no fluid may flow through it. This
is encompassed by the no-penetration boundary condition at z = 0,

v · ẑ|z=0 = 0 , (4.8)

where ẑ is the unit vector parallel to the z-axis.
To construct the free surface, we impose that the fluid does not flow through

the surface at z = h,
D

Dt
(z − h)

∣∣∣∣
z=h

= 0 , (4.9a)

where we define the material derivative,

Df

Dt
:=

∂f

∂t
+ v · ∇f , (4.9b)
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for some function f . The boundary condition described by (4.9) is called the
kinematic condition. Explicitly, the kinematic condition (4.9) is given by

vz|z=h =
∂h

∂t
+v|z=h · ∇h , (4.10)

where vz := v · ẑ.
We recall that the superfluid component of the velocity field is irrotational

and may be written as the gradient of a velocity potential. As in [105], the
dynamics of the superfluid can be linearised at the superfluid free surface for
small perturbations both in the height h(t,x) = h0 + δh(t,x) and in the velocity
v = ∇φ, where h0 is the equilibrium height of the thin film and we have assumed
zero background flow such that ∇φ(t,x, z) is the perturbation to the (vanishing)
background v0 = 0.

The conservation of mass within the film-vapour system and equations of
motion for the superfluid helium flow can be linearised for small perturbations
in the film height [125, 126, 132],

ρ
∂δh

∂t
+ ρh0∇ ·v|z=h0 + Jvap

m = 0 , (4.11a)

∂v

∂t

∣∣∣∣
z=h0

+ geff∇δh− σ

ρ
∇
(
∇2δh

)
+

1

ρ
∇p− s∇T = 0 , (4.11b)

where Jvap
m = dm

dt
is the change in mass due to evaporation and recondensation,

σ is the surface tension of liquid helium, s is the entropy of the fluid, and geff is
the effective gravity, given for thin films by (4.6).

4.2.2 Surface wave dynamics on thin-film helium-4

In this Section, we demonstrate that the system of equations (4.11) reduces to a
wave equation for the perturbations in the height δh. We began Section 4.2 with
several assumptions, under which we have Jvap

m ≈ 0, ∇p ≈ 0, and ∇T ≈ 0. We
also note that the equations (4.11) are written in terms of the velocity field at the
free surface v|z=h0 , hence, we define ϕ(t,x) := φ(t,x, h0) such that v|z=h0 = ∇ϕ.
Then, the equations (4.11) then reduce to

∂δh

∂t
= −h0∇2ϕ , (4.12a)

∂ϕ

∂t
= −geffδh+

σ

ρ
∇2δh , (4.12b)

where (4.12b) may be recognised as the linearised, time-dependent Bernoulli
equation for the system.
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We also linearise the kinematic condition (4.10), yielding

∂δh

∂t
=

∂φ

∂z

∣∣∣∣
z=h0

, (4.13)

where we have used v = ∇φ. In the long-wavelength regime, Equation 4.12a
and the kinematic condition (4.13) are equivalent. We can see this as follows. It is
shown in [105] that the velocity potential φ admits a decomposition into spatial
eigenfunctions φ =

∑
k χk(x) cosh(|k|z) such that χk satisfies the Helmholtz

equation (∇2 + |k|2)χk = 0. By the long-wavelength assumption |k|h0 ≪ 1, we
have cosh(|k|h0) ≈ 1 and sinh(|k|h0) ≈ |k|h0. It then follows that

∂φ

∂z

∣∣∣∣
z=h0

= −h0∇2ϕ . (4.14)

Comparing the right-hand sides of (4.12a) and (4.13), we see that (4.14) confirms
their consistency.

We may rewrite the coupled system of equations as two independent equa-
tions for the motion of δh and ϕ separately. We find both δh and ϕ obey the same
wave equation,

1

h0geff

∂2δh

∂t2
= ∇2δh− σ

geffρ
∇2(∇2δh) , (4.15a)

1

h0geff

∂2ϕ

∂t2
= ∇2ϕ− σ

geffρ
∇2(∇2ϕ) . (4.15b)

The dispersion relation associated with (4.15a) is given by

ω2 = c23|k|2
(
1 +

σ

geffρ
|k|2
)
, (4.16)

where we have identified the third sound speed c3 (4.7).
For thin films, in which the effective gravity dominates over capillary (sur-

face tension) effects, we have σ|k|2 ≪ geffρ, leading the linear, non-dispersive
dispersion relation

ω = c3|k| , (4.17)

corresponding to the Klein-Gordon (KG) equation,

1

c23

∂2δh

∂t2
= ∇2δh . (4.18)

We bring this Section to a close by matching the velocity potential ϕ, the
analogue field, with a quantum field Φ.
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The Lagrangian for the field ϕ is the KG Lagrangian

L =
1

2
ρh0

[(
1

c3

∂ϕ

∂t

)2

− |∇ϕ|2
]
. (4.19)

The conjugate momentum π to the field ϕ is

π =
∂L

∂(∂tϕ)
=

ρh0
c23

∂ϕ

∂t
= −ρδh , (4.20)

where we have used that (4.12b) reduces to ∂tϕ = −geffδh under the current
long-wavelength approximation and c23 = h0geff .

By contrast, the Lagrangian for a quantum scalar field in an analogue space-
time setting is given by

L =
1

2
ℏ2
[(

1

ceff

∂Φ

∂t

)2

− |∇Φ|2
]
, (4.21)

where ceff is the speed of sound in the analogue system.
Comparing the two Lagrangians (4.19) and (4.21), we can connect the hydro-

dynamical field ϕ of this Chapter, with the analogue quantum field Φ found
in Chapter 2 and Chapter 3,

ϕ(t,x) =

√
ℏ2geff
ρc23

Φ(t,x) , (4.22)

where we have identified ceff = c3.
In an analogue spacetime, such as thin-film superfluid helium in a laboratory,

one may directly measure the system. Methods such as multiplex digital holog-
raphy [133] allow for the temporal and spatial resolution of the fluid surface. In
the long-wavelength approximation, we see (4.12b) reduces to δh = −geff∂tϕ. As
such, a time and space-resolved measurement of δh allows one to find ϕ.

4.2.3 Effective field theory description

In the long-wavelength regime, in which capillary effects may be neglected, we
may equivalently describe the system (4.12) as an effective field theory with
Hamiltonian density

H =
1

2
ρ
[
h0(∇ϕ)2 + geff(δh)

2
]
, (4.23)
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where the first and second terms correspond to the kinetic and potential energy
densities at the surface respectively.

Varying the Hamiltonian (4.23) with respect to the fields (−ρδh) and ϕ, Hamil-
ton’s equations of motion give

ρ
∂δh

∂t
=

δH
δϕ

, ⇐⇒ ρ
∂δh

∂t
= −ρh0∇2ϕ , (4.24a)

∂ϕ

∂t
= −1

ρ

δH
δ(δh)

, ⇐⇒ ∂ϕ

∂t
= −geffδh , (4.24b)

which one may recognise as the equations of motion (4.12) in the long-wavelength
limit.

Within the current assumptions, the height fluctuations δh behave as quan-
tised quasiparticles (phonons), which have been well characterised [134, 135]
and experimentally exploited [136]. Before finding the canonical commutation
relations, we find first the leading order relation between density perturbations
and height perturbations in a fluid.

We consider a fluid of constant density ρ confined between z = 0 and z = h0.
By conservation of mass, we have

ˆ h0

0

dz ρ =
M

A
, (4.25)

where M/A is a constant with units of mass per unit area. In the present case of
a fluid with constant density, the integral may be evaluated as M/A = ρh0.

If we perturb the height of the fluid, the conservation of mass requires that
the density must react. In particular, we have

M

A
=

ˆ h0+δh

0

dz (ρ+ δρ) = ρh0 + ρδh0 +

ˆ h0

0

dz δρ+O(δhδρ) . (4.26)

Identifying M/A = ρh0, Equation 4.26 to leading order informs

ρδh = −
ˆ h0

0

dz δρ . (4.27)

Upon quantisation, we find the canonical commutation relations between ϕ̂
and δĥ. We begin with Landau’s two-fluid model [121], in which paper Landau
writes the canonical commutation relation

[ρ̂(t, r1), φ̂(t, r2)] = iℏδ(3)(r1 − r2) . (4.28)

We evaluate r2 at z = h0 and integrate the left-hand side of commutation
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relation (4.28) over the bulk of the helium sample with respect to r1,

ˆ h0

0

dz [ρ+ δρ̂(t,x1, z), φ̂(t,x2, h0)] =

ˆ h0

0

dz
[
δρ̂(t,x1, z), ϕ̂(t,x2)

]
,

= −
[
ρδĥ(t,x1), ϕ̂(t,x2)

]
, (4.29)

where we have writtenφ|z=h0 = ϕ and, in the second equality, we used the rela-
tion (4.27). Integrating the right-hand side of (4.28) and combining with (4.29),
we arrive at the commutation relation between height perturbations and the
velocity potential, [

ϕ̂(t,x1), ρδĥ(t,x2)
]

= −iℏδ(2)(x1 − x2) . (4.30)

Writing π̂(t,x2) = −ρδĥ(t,x2), we see that this is equivalent to the canonical
commutation relation [ϕ̂(t,x1), π̂(t,x2)] = iℏδ(2)(x1 − x2).

4.3 Lasers as local detectors of interface fluctuations

In Section 2.2.3, we saw how a (1+1)-dimensional scalar field ψ̂ interacting with
a (2 + 1)-dimensional scalar field ϕ̂ acts as a continuous quasiparticle detector of
excitations in the field ϕ̂. In this Section, we demonstrate that a laser field acts as
a local detector of third sound excitations in thin-film superfluid helium-4.

4.3.1 Free laser field

The electromagnetic Lagrangian is given by

Lem = − 1

µ0

F µνFµν , (4.31)

where µ0 is the vacuum permeability, Fµν = ∂µAν − ∂νAµ is the Faraday tensor,
and Aµ = (At,A) is the electromagnetic four-potential. Working in the Coulomb
gauge (At = 0 and ∇ · A = 0) with a fixed polarisation (A = A(t, z)ê with
ẑ · ê = 0), the electromagnetic Lagrangian (4.31) becomes

Lem =
1

2µ0

[(
1

c

∂A(t, z)

∂t

)2

−
(
∂A(t, z)

∂z

)2
]
, (4.32)

where c is the speed of light.
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We assume a perturbed Ansatz for the laser field,

A(t, z) = A0 cos(ωLt− kLz + ψ(t, z)) , (4.33)

where ωL is the optical frequency of the laser, kL is the wavenumber, A0 is the
amplitude, and ψ(t, z) is a perturbation in the laser phase, which will act as the
effective (1 + 1)-dimensional probing field.

The amplitude can be considered constant, even during the interaction with
the superfluid helium described in Section 4.3.2, under the assumption that
perturbations on the interface of the superfluid helium have small gradients
∇δh such that the beam is not deflected as it passes through the sample [137].

We substitute the Ansatz (4.33) into the free electromagnetic Lagrangian
Lem (4.31). We simplify this by averaging over fast oscillations as ωL is large,
yielding [70]

Lem =
A2

0

4µ0

[(
1

c

∂ψ(t, z)

∂t

)2

−
(
∂ψ(t, z)

∂z

)2
]
, (4.34a)

Sem =

ˆ
dtdxdz Lem . (4.34b)

4.3.2 Light-matter interaction

We consider now the light-matter interaction between the laser and the sample
of thin-film superfluid helium. Physically, we transmit a focused laser beam on
a trajectory through the sample, which lies on a transparent substrate.

The interaction between light and matter is described by [138]

Lint =
1

2
P ·E =

(
ε− ε0

2

)
|E|2 , (4.35)

where P is the polarisation in a medium, ε0 is the vacuum permittivity, and ε is
the permittivity of the medium.

Superfluid helium may be considered optomechanically as a dilute gas [137,
138] such that we have ε ≈ ε0 + ρNα, where ρN = ρ

m4
is the number density of

helium-4, m4 is the mass of helium-4, and α is the polarisability. As such, we
rewrite the interaction Lagrangian as

Lint =
αρN
2

(
∂A(t, z)

∂t

)2

. (4.36)

Using the Ansatz (4.33) and fast-oscillation averaging, the interaction Lagrangian
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is written as

Lint = L(1)
int + L(2)

int , (4.37a)

L(1)
int =

1

2
αρNA

2
0ωL

∂ψ(t, z)

∂t
, (4.37b)

L(2)
int =

1

4
αρNA

2
0

(
∂ψ(t, z)

∂t

)2

, (4.37c)

where we have dropped the constant term 1
4
αρNA

2
0ω

2
L which does not contribute

to the equations of motion.
The quadratic term L(2)

int in (4.37) may be combined with the free electromag-
netic Lagrangian Lem (4.31) to describe an effective speed of light in the medium,

Lem + L(2)
int =

A2
0

4µ0

[
1

c2

(
1 +

αρN
ε0

)(
∂ψ(t, z)

∂t

)2

−
(
∂ψ(t, z)

∂z

)2
]
,

=
A2

0

4µ0

[(
1

ceff

∂ψ(t, z)

∂t

)2

−
(
∂ψ(t, z)

∂z

)2
]
, (4.38)

where we have used c2 = (µ0ε0)
−1 and introduced the speed of light in the

medium c2eff := c2(1 + αρN/ε0)
−1, which defines the index of refraction

n =
c

ceff
=

√
1 +

αρN
ε0

. (4.39)

We can see now that the interaction between the laser and the superfluid
helium must arise from L(1)

int in (4.37). The associated action is

Sint =

ˆ
dtdx

ˆ h(t,x)

0

dz L(1)
int =

1

2
αρNA

2
0ωL

ˆ
dtdx

ˆ h(t,x)

0

dz
∂ψ(t, z)

∂t
. (4.40)

We appeal to the Leibniz integral rule to evaluate the integral over z,

ˆ h(t,x)

0

dz
∂ψ(t, z)

∂t
=

d

dt

ˆ h(t,x)

0

dz ψ(t, z)− ψ(t, h(t,x))
∂h(t,x)

∂t
. (4.41)

We substitute (4.41) into the action (4.40) and note that the total derivative in
time will vanish as a boundary term, resulting in

Sint = −1

2
αρNA

2
0ωL

ˆ
dtdx

∂h(t,x)

∂t
ψ(t, h(t,x)) ,

= −1

2
αρNA

2
0ωL

ˆ
dtdxdz

∂h(t,x)

∂t
ψ(t, z)δ(z − h(t,x)) . (4.42)

We consider perturbations in the height of the form h(t,x) = h0 + δh(t,x), for
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which the action (4.42) reduces to

Sint = −1

2
αρNA

2
0ωL

ˆ
dtdxdz

∂δh(t,x)

∂t
ψ(t, z)δ(z − h0) . (4.43)

Furthermore, the interaction spot is localised to a trajectory x = X(t). We
account for this by including a delta function in the action (4.42), resulting in

Sint = −1

2
αρNA

2
0ωL

ˆ
dtdxdz

∂δh(t,x)

∂t
ψ(t, z)δ(z − h0)δ

(2)(x−X(t)) . (4.44)

We vary the total action Sem + Sint ((4.34) and (4.44)) with respect to the laser
phase ψ to find the equation of motion

− 1

c2eff

∂2ψ(t, z)

∂t2
+
∂2ψ(t, z)

∂z2
= αρNωLµ0

∂δh(t,X(t))

∂t
δ(z − h0) . (4.45)

We denote the homogeneous solution of (4.45) by ψ0(t, z), whereas the inhomo-
geneous part can be solved using the causal Green’s function for the operator
−c−2

eff ∂
2
t + ∂2z on an infinite domain, which is G(t, z) = ceff

2
Θ(t − |z|/ceff), where

Θ(x) is the Heaviside function. This results in the solution

ψ(t, z) = ψ0(t, z)−
(n2 − 1)kL

2n
δh(τ,X(τ)) , (4.46)

where kL = ωL/c and τ = t−|z−h0|/ceff , and we have written αρNµ0 = (n2−1)/c2

using (4.39). The fluctuations in the laser phase (4.46) attributable to height
fluctuations read

ψδh(t, z) :=
1

2n
(n2 − 1)kLδh(τ,X(τ)) . (4.47)

In Section 4.2, we saw that height fluctuations δh in superfluid helium-4 act as
an effective (2 + 1)-dimensional scalar field. In Section 4.3.1, we introduced the
dynamics of a free laser. In this Section, we considered the interaction between
a laser and thin-film superfluid helium-4. We see now in (4.46) that the (1 + 1)-
dimensional probing field ψ samples fluctuations in the sample height δh along
the interaction trajectory X .

In light of Section 2.2.3, we rewrite the interaction action (4.43), using integra-
tion by parts, as

Sint =
1

2
αρNA

2
0ωL

ˆ
dtdxdz δh(t,x)

∂ψ(t, z)

∂t
δ(z − h0) . (4.48)

Upon quantisation, we read from (4.48) the effective interaction Hamiltonian
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between the laser field ψ and the height fluctuations δh on the trajectory X(t),

Ĥint = −1

2
αρNA

2
0ωLδĥ(t,X(t))⊗ ∂ψ̂(t, h0)

∂t
. (4.49)

By comparison with the continuous quasiparticle detector interaction Hamilto-
nian (2.84) in Section 2.2.3, one sees that the interaction Hamiltonian (4.49) also
describes a field ψ̂ acting as a continuous Unruh-DeWitt (UDW) detector for
excitations in the height field δĥ. Furthermore, this establishes the theoretical
foundation for realising a UDW detector in a laboratory.

4.3.3 Analogue response function

In (4.22), we found a map between hydrodynamical and quantum fields. Fur-
thermore, the Hamiltonian (4.49) demonstrates that a laser acts as a continuous
quasiparticle detector of height fluctuations in thin-film superfluid helium-4.
We now combine these observations with the thermal field theory modelling
of Chapter 3 to encompass the non-negligible sample temperature of superfluid
helium-4. We take the interaction trajectory to be uniform circular motion,

X(t) = (R cos(Ωt), R sin(Ωt)) , (4.50)

where R is the orbital radius and Ω = dθ
dt

is the angular speed. We use the
notation δĥ(t) := δĥ(t,X(t)) for height fluctuations, ϕ̂(t) := ϕ̂(t,X(t)) for the
velocity potential, and Φ̂(t) := Φ̂(t,X(t)) for the scalar quantum field.

We consider the interaction between surface modes on superfluid helium-4
and the laser as described by the interaction Hamiltonian (4.49). The sample
temperature provides a notion of thermality such that we assume that the height
fluctuations δĥ to be in a thermal state in inverse temperature β and that the
phase field ψ̂ is in a coherent phase state [137].

Working to first order in perturbation theory as in Section 2.2.3 using the
interaction Hamiltonian (4.49), one arrives at the response function

Fδh(ω, β) =

ˆ
ds e−iωs ⟨δĥ(s)δĥ(0)⟩β , (4.51a)

=
1

g2eff

ˆ
ds e−iωs ⟨ d

ds′
ϕ̂(s′)

∣∣∣
s′=s

d
ds′′
ϕ̂(s′′)

∣∣∣
s′′=0

⟩
β
, (4.51b)

=
ℏ2

ρgeffc23

ˆ
ds e−iωs ⟨ d

ds′
Φ̂(s′)

∣∣∣
s′=s

d
ds′′

Φ̂(s′′)
∣∣∣
s′′=0

⟩
β
, (4.51c)

=
ℏ2

ρgeffc23
F(ω, β) , (4.51d)



Chapter 4. Experimental proposal 73

where we have used (4.24b) and (4.22) in the second and third equalities respec-
tively and, in the fourth equality, we have identified the derivative-coupled
response function F (3.4) for a detector probing a quantum scalar field prepared
in a thermal state in inverse temperature β.

The interaction trajectory, uniform circular motion, is described by two free
parameters, usually the orbital radius R and the angular speed Ω; however,
using v = ΩR and a = v2R−1, one can equally parameterise the orbit using the
velocity v and acceleration a. Using (3.7), the response function F reads

F(ω, β) =
ω2

2ℏc23

∑
m>ωv/a

J2
|m|

(
mv

c3
− ωv2

ac3

)

+
ω2

2ℏc23

∑
m>ωv/a

1

eℏ(ma/v+ω)/(kBT ) − 1
J2
|m|

(
mv

c3
− ωv2

ac3

)

+
ω2

2ℏc23

∑
m>−ωv/a

1

eℏ(ma/v−ω)/(kBT ) − 1
J2
|m|

(
mv

c3
+
ωv2

ac3

)
. (4.52)

As discussed in Section 3.4, the circular motion response function (4.52) en-
codes two distinct motion effects. The first is due to the detector’s acceleration
and the second is a Doppler effect, due to the detector’s speed v with respect to
the thermal bath. We again compare the response function F with the response
of a detector undergoing linear motion with the same speed v, in which case
only a Doppler effect is present. Restoring dimensionful units to (3.14), we have

FLin(ω, β) =
1

2

ω2

ℏc23
γsΘ

(
− ω

c3

)
+

ω2γs
2πℏc23

ˆ π/2

−π/2

dθ

e
γ2s (1+

v
c3

sin θ)ℏ|ω|/(kBT ) − 1
, (4.53)

where γs = (1− v2/c23)
−1/2 is the Lorentz gamma factor.

In the classical limit, γ2sℏ|ω| ≪ kBT , the linear motion response function (4.53)
reduces to (3.40a),

FLin(ω, β) =
1

2

ω2

ℏc23
γsΘ

(
− ω

c3

)
+

|ω|kBT
2ℏ2c23

, (4.54)

For excitations (ω > 0), only the second term in (4.54) remains, which de-
scribes the expectation value of a fluctuating hydrodynamic interface in terms
of fluctuation-dissipation relation at temperature T in the long wavelength
limit [137, 139, 140]. This term is linear in the energy gap |ω| and independent of
the linear velocity v.
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Figure 4.2: A beam splitter (BS) separates the input laser into two arms, namely a
target and a reference. The target beam is focused on the sample plane to a spot, with
width much smaller than the long-wavelength surface perturbations. A deflector-lens
configuration moves the target beam on a circular trajectory through the superfluid
helium sample with optical axis perpendicular to the fluid surface. After the sample,
a lens-collector combination, followed by a series of mirrors, brings the beam back to
a static path and lead it to a second beam splitter (BS), where the target and reference
arms are combined. The resulting beams are detected at two photodiodes (PD1) and
(PD2).

4.4 Experimental proposal

We consider now an experimental proposal for probing observer-dependence
in detector response. A schematic of the experimental setup is presented in Fig-
ure 4.2. The helium sample in the schematic must be prepared within a cryostat
capable of reaching temperatures below 1 K and, with the cryostat, a substrate
is coated with a thin film of superfluid helium-4. We consider a typical satu-
rated film thickness of h0 = 100 nm, which is currently within experimental
reach [135, 141]. A deflector-lens configuration moves the target beam on a
circular trajectory. As such, the cryostat must have optical access, such that the
laser beam may pass through the thin film of superfluid helium.

We present in Table 4.1 typical physical parameters of superfluid helium
at temperature T = 500 mK, below which temperature the parameters vary
little [122]. The third sound sound (4.5) is then given by c3 ≈ 8.8× 10−2 m s−1.
To maintain the analogy with a scalar quantum field with linear dispersion
relation, we operate within the long-wavelength, non dispersive regime ω ≪
c3
√
ρgeff/σ ≈ (2π)2.4 kHz using Table 4.1.
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In this Section, we consider a detector in the near-sonic limit with speed
v = 0.95c3, with rotational frequencies of the order of hundreds of Hertz. To
achieve this, we consider a range of trajectory radii R = 20 − 100 µm. We
assume that the profile of the laser can be focused to a spot of radius 10 µm. We
assume a laser power P = 0.5 mW, low enough to prevent the evaporation of
the superfluid helium-4, with a wavelength in the near-infrared λL = 700 nm.
We operate with typical probing frequencies 100 Hz − 1 kHz and a sample
temperature between 1 µK− 1 K. With these operating conditions, we satisfy
our modelling assumptions in Section 4.2.

4.4.1 Isolation of observer-dependence

After interacting with the superfluid helium-4, the laser beam is reflected by a
series of mirrors and passes through a beam splitter, in which the laser beam
is combined with a reference laser beam. Finally, the two beams are detected
by two photodiodes by a suitable detection scheme, such as phase-referenced
homodyne photodetection described in [137, 142]. From such a process, the
autocorrelation, or the two-point, function of the phase field ψ can be extracted
⟨ψ(t), ψ(0)⟩. Even if all measurement noise is suppressed, there is still noise
in the laser phase from quantum fluctuations, known as shot-noise [142]. As
such, taking the Fourier transform of the autocorrelation function, we find the
response function, which may be identified with the Power Spectral Density
(PSD),

Sψ(ω) =

ˆ
ds e−iωs ⟨ψ̂δh(t, h0)ψ̂δh(0, h0)⟩+ σ2

sn , (4.55)

where ψ̂δh is the fluctuation in the laser phase attributable to fluctuations in the
height, given by (4.47), and σ2

sn = ℏωL/P is the contribution due to shot-noise.
Combining (4.47), (4.51), and (4.55), we relate the PSD Sψ (4.55) to the response

function F (3.7),

Sψ(ω) = κF(ω, β) + σ2
sn , (4.56a)

κ =
(n2 − 1)2ℏ2k2L
4n2ρgeffc23

. (4.56b)

For the parameters stated, we have κ ≈ 6.3 × 10−64kg m2 s2. We can see that
the signal in the laser encodes the same information as the response function
of a UDW detector probing a scalar field prepared in a thermal state in 2 + 1

Minkowski spacetime and will hence also exhibit trajectory-dependence, in
particular acceleration-dependence.

As discussed in Section 3.4, we may isolate and identify acceleration-dependence
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Table 4.1: Experimental parameters for helium-4. The van der Waals constant is given
for a quartz substrate [141]; for other materials, αvdW would be of the same order of
magnitude.

Parameter Value
Film height, h0 100 nm
Mass density, ρ 145 kg m−3

Surface tension, σ 37.9× 10−5 J m−2

Van der Waals const., αvdW 2.6× 10−24 m5s−2

Index of refraction, n 1.025
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Figure 4.3: (a) Ratio of circular motion response function (4.52) to linear motion response
function (4.54). (b) Ratio of response to shot-noise for both circular motion and linear
motion. Inset shows ratio for low frequencies, at which frequencies the two responses
disagree. Vertical dashed line at the angular frequency Ω/(2π). All plots are at tempera-
ture T = 10mK with orbital radius R = 60 µm.

in the detector response by taking the difference between the circular motion and
linear motion response functions. As such, we define the difference spectrum
Sδ(ω),

Sδ(ω) = Sψ(ω)−
(
κFLin(ω, β) + σ2

sn

)
. (4.57)

In Figure 4.3, we compare the circular motion and linear motion response
functions over our frequency range and well within the non-dispersive regime.
Both the circular motion and the inertial motion are taken at the same speed
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v = 0.95c3. For the temperature and range of frequencies considered, the linear
approximation of the linear motion response function (4.54) is well motivated.

In line with the observations made in Section 3.4, the ratio F/FLin demon-
strates that velocity-dependent response dominates for high frequencies; whereas
for lower frequencies, a response due to acceleration can be identified. Further-
more, a measurement of the response function F at high frequencies determines
FLin over our full frequency range, by the linearity of (4.54). As such, the
quantity FLin in (4.57) is operationally measurable from the circular motion re-
sponse (4.52) alone. The kink visible in the ratio F/FLin when probing at the
angular frequency and originates from a discontinuity in the first derivative of
the response function; the same kink may be found in Figure 3.3.

To determine the feasibility of the difference spectrum (4.57), we use the Signal-
to-Noise (SNR) [70]

SNR =

√
NB
2

Sδ(ω)

σ2
sn

√
1 + 2Sδ(ω)

σ2
sn

+ 2
S2
δ (ω)

σ4
sn

, (4.58)

where N is the number of realisations and B is the resolution bandwidth in units
of the measurement bandwidth. Only when the SNR is larger than unity can the
acceleration-dependent signal Sδ be observed over the shot-noise σ2

sn.
We use the quantifier (4.58) to numerically explore a range of experimental

parameters. We first consider in Figure 4.4i when the helium sample is fixed
at T = 10 mK and the orbital radius is varied. With the speed v kept fixed
throughout and a = v2R−1, it follows that varying the orbital radius is equiva-
lent to varying the acceleration. We see that the SNR is larger for smaller orbital
radii — for larger accelerations — which encapsulates the essence of the Un-
ruh effect. Next, in Figure 4.4ii, we fix the orbital radius R = 60 µm and vary
the sample temperature. We saw in Figure 3.4 that an acceleration-dependent
signature is present independent of the ambient temperature. A remarkable
feature of the SNR plotted in Figure 4.4ii is that the acceleration-dependent re-
sponse increases as the sample temperature increases: acceleration-dependence
is enhanced by the presence of a background temperature.

4.5 Discussion

In this Chapter, we presented a proposal for observing acceleration-dependence
in the response of a continuous quasiparticle detector in a realisable analogue
spacetime. In our experimental setup, a laser acts as a local detector of perturba-
tions on the surface of superfluid helium-4. We demonstrated that these surface
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Figure 4.4: (i) SNR (4.58) for N = 105 realisations with a bandwidth of B = 1. Superfluid
temperature T = 10mK, orbital speed v = 0.95c3, orbital radius R as shown; the laser
trajectory angular frequency and acceleration are determined in terms of these quantities
by Ω = v/R and a = v2/R. The horizontal axis is the frequency. Panel (a) Heatmap
of computed SNR for orbital radii 20µm ≤ R ≤ 100µm. The horizontal colourbar
indicates the magnitude of the SNR. Dashed black curve is the orbital angular frequency
Ω. Purple, blue and dark red dotted lines are lines of constant radii, whose SNRs are
displayed in panel (b). Panel (b) Profile of computed SNR for constant radial slices in
panel (a). Vertical black dashed lines represent orbital angular frequencies for R = 40µm
(far right), 60µm, and 80µm (far left). (ii) SNR (4.58) for N = 105 realisations with a
bandwidth of B = 1. Orbital radius R = 60µm, speed v = 0.95c3, frequency on the
horizontal axis as in Figure 4.4i. Dashed vertical black line shows the orbital angular
frequency Ω. Panel (a) Heatmap of computed SNR for superfluid at temperatures
1µK ≤ T ≤ 1K. Purple, blue and dark red dotted lines are lines of constant superfluid
temperature, whose SNRs are displayed in panel (b). Panel (b) Profile of computed SNR
for constant temperature slices in panel (a).

perturbations admit a description as an effective field theory and found that
the fluctuations in the phase of a laser due to its interaction with superfluid
helium-4 encode information about the interaction trajectory. We provided a
map between hydrodynamical and quantum scalar fields, enabling us to employ
the theoretical framework developed in Chapter 3 to include the helium sample
temperature in our modelling.

By comparing the response of a detector undergoing uniform circular motion
and a detector in inertial motion, we developed a suitable SNR measure de-
rived from the principle of extracting and isolating only acceleration-dependent
effects within the detector response. We numerically evaluated this measure
for a range of temperatures and orbital radii. We found two circumstances in
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which the acceleration-dependent signal increased. First, when the orbital radius
decreased with the speed fixed. In uniform circular motion at fixed speed, the
acceleration and the orbital radius are inversely proportional. As such, decreas-
ing the orbital radius increases the acceleration of the detector and an increase
in the acceleration-dependent signal is consistent with this observation. Sec-
ond, the SNR increased with an increase of the sample temperature. We have
confirmed that trajectory-dependence still persists in a system with a signifi-
cant ambient temperature and, furthermore, that the background temperature
enhances the signature of this effect. Finally, we reiterate that the parameter
regimes are all within experimental reach.

In the next Chapter, we test the robustness of Unruh-like phenomena by
comparing a detector undergoing uniform circular motion in a thermal bath
with a detector undergoing uniform circular motion whilst being accelerated in
a direction orthogonal to the plane of rotation.
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Chapter 5

Ambient temperature versus ambient
acceleration in the circular motion
Unruh effect

“A circle may be small, yet it may be
as mathematically beautiful and
perfect as a large one.”

Isaac D’Israeli

Miscellanies (1796)

THE thermal aspect of the linearly accelerated Unruh effect predicts that an
observer in (3 + 1)-dimensional Minkowski spacetime is unable to distin-

guish between being linearly accelerated with proper acceleration a through
the Minkowski vacuum from being static in a thermal bath at temperature
T = a/(2π). We concern ourselves in this Chapter with the robustness of this
effect and address the following question:

Does an observer in circular motion through a thermal bath of temperature TU respond
in the same way as an observer undergoing uniform acceleration as well as circular

motion in the plane orthogonal to its acceleration?

The contents of this Chapter were extracted from, or based on, the journal
article “Ambient temperature versus ambient acceleration in the circular motion
Unruh effect” [3] in collaboration with Leo Parry, T Rick Perche, and Jorma
Louko.

81
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5.1 Spacetime, field, and detector preliminaries

We work in (3 + 1)-dimensional Minkowski spacetime in inertial coordinates
(t, x, y, z) with the metric ds2 = −dt2 +dx2 +dy2 +dz2. We consider a quantised,
real scalar field Φ̂ with linear dispersion relation, decomposed as in (2.30).

In this Chapter, we will address two scenarios, when the field is prepared in
the Minkowski vacuum |0M⟩ and when the field is prepared in a thermal state
|β⟩ in inverse temperature β, where the notion of thermality is with respect to
the time evolution generated by ∂t.

When the field Φ̂ is in the Minkowski vacuum, we will use the Unruh-DeWitt
(UDW) detector formalism established in Chapter 2. In particular, we will couple
the detector to the field using the interaction Hamiltonian (2.32). We will work
in the long-interaction limit, except in interpreting the small-energy-gap limit
in Section 5.2.2. As such, we will principally work with the stationary response
function F (2.44).

When the field Φ̂ is prepared in a thermal state, we will also use a linearly
coupled detector, described by interaction Hamiltonian (2.32). This is in contrast
to the thermal-field-theory formalism used in Chapter 3, in which case we used
a derivative-coupled interaction Hamiltonian (3.3) to sidestep the otherwise
infrared-divergent thermal Wightman function Wβ. In 3 + 1 dimensions, the
thermal Wightman function (2.39) is well defined. As in Chapter 3, when Φ is
prepared in a thermal state defined with respect to the time evolution generated
by ∂t, we consider only stationary trajectories whose time evolution is also
generated by ∂t. As such, this will also be a stationary situation and we work
with the stationary response function F (2.44).

We work in a genuinely relativistic setting — rather than an analogue space-
time — with trajectories parametrised with respect to proper time τ . The detector
energy gap is denoted by E. Finally, in Chapter 2, we adopted the notation
W(τ, 0) := W(x(τ), x(0)). Throughout this Chapter, we condense this notation
further, writing W(τ) := W(τ, 0).

5.1.1 Finite-time interaction

Anticipating considering a finite-time interaction later in Section 5.2, we outline
some preliminaries. We consider the detector interaction Hamiltonian (2.32), for
which the transition probability P (2.37b) reads

P(E) = λ2
ˆ
R2

dτdτ ′ χ(τ)χ(τ ′)e−iE(τ−τ ′)W(τ, τ ′) , (5.1)
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where λ and χ are the coupling constant and switching function in the interaction
Hamiltonian (2.32).

Example 5.1 (Gaussian Switching). As an example, we consider a massless scalar
field in 3 + 1 Minkowski spacetime prepared in the Minkowski vacuum and a
detector undergoing inertial motion. The Wightman function is given by

W(τ, 0) = − 1

4π2

1

(τ − iε)2
. (5.2)

We assume the temporal profile of the interaction takes the form of a Gaussian,

χG(τ) = e−πτ
2/(2T 2) , (5.3)

where T is the characteristic length scale of the interaction. We remark that this
switching function does not have compact support and the detector probes the
field for an arbitrarily long time. However, the exponential suppression mimics
that of a finite time interaction and the Gaussian switching often leads to integral
expressions, which may be evaluated in terms of known functions.

Combining the Wightman function for the inertial detector (5.2) and Gaussian
switching (5.3) with the transition probability (5.1) leads to [42]

PG(E) =
λ2

4π

(
e−E

2T 2/π − ET erfc

(
ET√
π

))
, (5.4)

where erfc denotes the complementary error function [111]. ■

This example illustrates that the transition probability P diverges in the long-
interaction-time limit. In particular, it is clear from (5.4) that P diverges linearly
with the interaction time T as T → ∞. This motivates the definition of the
response function, or transition rate,

F(E) = lim
T→∞

1

λ2
P(E)

T
. (5.5)

In the case of Gaussian switching (5.4), we have

F(E) = lim
T→∞

1

λ2
PG(E)

T
= − E

2π
Θ(−E) , (5.6)

which one may recognise as the response function for a detector undergoing iner-
tial motion in 3+1 dimensions (2.67). This result follows from lima→∞ erfc(ax) =

2Θ(−x).
However, there is nothing fundamental about choosing Gaussian switching to

obtain the response function, and any other switching function with a suitable
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time parameter T may have been chosen. For a further discussion of this,
see Appendix D. In particular, we demonstrate three equivalent definitions of
the response function encountered in the literature (see, for example, [3, 5, 23,
71, 72, 143–146]),

F(E) = lim
T→∞

1

λ2
P(E)

T
=

1

λ2
lim
T→∞

dP(E)

dT
=

ˆ
R
dτ e−iEτW(τ) . (5.7)

5.2 Hypertor motion

In this Section, we consider when the field is prepared in the Minkowski vacuum
and the detector is undergoing a stationary motion known as “hypertor”, or
“loxodromic”, motion [4, 71, 72, 91]. This motion consists of uniform circular
motion in a plane and uniform linear acceleration parallel to the axis of rotation
— helical motion.

Without loss of generality, we choose the frame in which the detector is linearly
accelerating parallel to the z-axis and undergoing circular motion in the x-y axis
in inertial coordinates. The detector’s trajectory is then parameterised by its
proper time τ as

x(τ) =

(
1

a
sinh(aγτ), R cos(Ωγτ), R sin(Ωγτ),

1

a
cosh(aγτ)

)
, (5.8)

γ =
1√

1−R2Ω2
, (5.9)

where a > 0 is the proper acceleration of the centre of the circular motion, and
R > 0 and Ω > 0 are the radius and angular velocity of the circular motion, as
measured in the frame of the uniformly accelerated centre. We assume RΩ < 1

to ensure that the trajectory is timelike.
The trajectory (5.8) is the composition of uniform linear acceleration and

uniform motion. In particular, it is the integral curve of the sum of a boost
Killing vector and a (linearly independent) rotational Killing vector, resulting in
a stationary trajectory. We will discuss the classification of timelike stationary
trajectories using Killing vectors in Chapter 6.

The pullback of the Wightman function to the trajectory (5.8) is given by

WH(τ) = − 1

4π2

1
4
a2
sinh2(γa

2
(τ − iε))− 4R2 sin2(γΩ

2
(τ − iε))

, (5.10)

where we use the subscript H to clarify the hypertor motion. The detector’s
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response function is then given by

FH(E) =

ˆ
R
dτ e−iEτWH(τ) ,

= − 1

4π2

ˆ
R
dτ e−iEτ 1

4
a2
sinh2(γa

2
(τ − iε))− 4R2 sin2(γΩ

2
(τ − iε))

. (5.11)

The integral (5.11) may not be evaluated in terms of known functions. In the
following Sections, we analyse the asymptotic behaviour in various limiting
regimes.

5.2.1 Small-gap limit

The first asymptotic behaviour we consider is the limit of a small energy gap,
E → 0, with all other parameters fixed. We find a power series in E to all orders.

We begin by isolating the distributional behaviour of the Wightman func-
tion (5.10) as in [69],

WH(τ) ∼ − 1

4π2(τ − iε)2
. (5.12)

Adding and subtracting the short-distance Hadamard contribution (5.12) under
the integral in (5.11), we find

FH(E) = − 1

4π2

ˆ
R
dτ cos(Eτ)

(
1

4
a2
sinh2(γaτ

2
)− 4R2 sin2(γΩτ

2
)
− 1

τ 2

)
︸ ︷︷ ︸

(a)

− 1

4π2

ˆ
R
dτ e−iEτ 1

(τ − iε)2︸ ︷︷ ︸
(b)

. (5.13)

We make four observations. The grouping of the addition and subtraction under
the integral in (5.13) separates the integral into a regular contribution (a) and a
distributional contribution (b). The small-τ behaviour in (a) is divergence free
and the limit ε→ 0+ has been taken. The integral (a) is even in τ and we replace
exp(iEτ) by cos(Eτ). The integral (b) encodes the distributional behaviour of
the Wightman function through its −iε.

We can recognise integral (b) as the first integral in (2.66), which we identify
as the inertial response function in 3 + 1 Minkowski spacetime [69]. Using
the notation of (2.67), we denote this by F0(E) and re-express the response
function (5.13) as

FH(E) = F0(E) + F corr
H (E) , (5.14a)
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F corr
H (E) = − 1

4π2

ˆ
R
dτ cos(Eτ)

(
1

4
a2
sinh2(γaτ

2
)− 4R2 sin2(γΩτ

2
)
− 1

τ 2

)
.

(5.14b)

We now find a power series of the response function in powers of E. A
dominated convergence theorem argument allows us to take the limit E → 0

under the integral to give the leading-order contribution,

Γ0 := lim
E→0

F corr
H (E) = − 1

4π2

ˆ
R
dτ

(
1

4
a2
sinh2(γaτ

2
)− 4R2 sin2(γΩτ

2
)
− 1

τ 2

)
.

(5.15)
We add and subtract Γ0 to F corr

H (E) (5.14b) and factor out τ−2 yields

FH(E) = Γ0 −
1

4π2

ˆ
R
dτ

(
cos(Eτ)− 1

τ 2

)(
τ 2

4
a2
sinh2(γaτ

2
)− 4R2 sin2(γΩτ

2
)
− 1

)
.

(5.16)
Expanding the second pair of brackets in (5.16), we identify two well-defined
integrals, the second of which may be evaluated after a change of variables and
integration by parts, leading to a sinc integral

1

4π2

ˆ
R
dτ

cos(Eτ)− 1

τ 2
= − |E|

4π2

ˆ
R
dσ

sin(2σ)

σ
= −|E|

4π
. (5.17)

Adding together (5.17) and F0 (2.67) leads to −E/4π, so that the full transition
rate can now be cast as

F corr
H (E) = Γ0 −

E

4π
− 1

4π2

ˆ
R
dτ

cos(Eτ)− 1
4
a2
sinh2(γaτ

2
)− 4R2 sin2(γΩτ

2
)
. (5.18)

The remaining integral in (5.18) exhibits exponential decay due to the hyperbolic
sine function in the denominator. We Maclaurin expand the cosine and by
Fubini’s theorem we interchange the sum and the integral, obtaining

ˆ
R
dτ

cos(Eτ)− 1
4
a2
sinh2(γaτ

2
)− 4R2 sin2(γΩτ

2
)

=
∞∑
n=1

(−1)nE2n

(2n)!

ˆ
R
dτ

τ 2n

4
a2
sinh2(γaτ

2
)− 4R2 sin2(γΩτ

2
)
. (5.19)

We define the following countable family of integrals with dimensions of E1−2n:

Γn := − 1

4π2

ˆ
R
dτ

τ 2n

4
a2
sinh2(γaτ

2
)− 4R2 sin2(γΩτ

2
)
, (5.20)
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which gives us a series expansion for FH(E),

FH(E) = Γ0 −
E

4π
+

∞∑
n=1

(−1)n

(2n)!
ΓnE

2n , (5.21)

convergent for |E| < γa. We may see the convergence of the series as follows.
By the change of variables τ = z/(γa), we write Γn (5.20) as

Γn = − a2

8π

1

(γa)2n+1
Kn , (5.22a)

Kn =

ˆ ∞

0

dz
z2n

sinh2
(
z
2

)
− a2R2 sin2

(
Ω
2a
z
) . (5.22b)

We note that the integral Kn and its integrand are positive. We bound the
integrand as

z2n

sinh2
(
z
2

)
− a2R2 sin2

(
Ω
2a
z
) ≤ z2n

sinh2
(
z
2

)
−R2Ω2

(
z
2

)2 ≤ z2n

(1−R2Ω2) sinh2
(
z
2

) ,
(5.23)

where we have used the inequalities sin(z) ≤ z and z ≤ sinh(z) for z ≥ 0. This
leads to the bound

0 < Kn ≤ γ2
ˆ ∞

0

dz
z2n

sinh2
(
z
2

) , (5.24)

where we have identified γ2 = (1 − R2Ω2)−1. This integral may be evaluated
using [117, (3.527.1)], leading to

0 < Kn ≤ 4γ2(2n)!ζ(2n) , (5.25)

where ζ is the Riemann zeta function [111]. We note ζ(2n) ≤ ζ(2) = 1
6
π2 for

n ≥ 1. Combining these observations, we may bound the summand in (5.21) as∣∣∣∣(−1)n

(2n)!
ΓnE

2n

∣∣∣∣ ≤ 1

12
aγπ

(
E

γa

)2n

. (5.26)

By comparison with the geometric series, we see that the series in (5.21) is indeed
convergent for |E| < γa.

We compute the effective temperature (2.54) in this limit as

TH = 2πΓ0 +

(
2πΓ1 −

1

24πΓ0

)
E2 +O(|E|4) . (5.27)

We now interpret this result in terms of the long-interaction-time limit.
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5.2.2 Interpretation: small energy gap versus long interaction

time

We may also write (5.21) by means of a generating function, which is related
to the case of a detector undergoing hypertor motion with Gaussian switching
(see Example 5.1). The transition probability (2.37b) in this case reads

PH(E) = λ2T

ˆ
R
dτ e−πτ

2/(4T 2)e−iEτWH(τ) ,

= −λ
2T

4π2

ˆ
R
dτ e−πτ

2/(4T 2)e−iEτ 1
4
a2
sinh2(γa

2
(τ − iε))− 4R2 sin2(γΩ

2
(τ − iε))

.

(5.28)

By adding and subtracting the vacuum transition rate multiplied by λ2T , we
can separate the distributional and regular behaviours of the integral in (5.28),

PH(E) = −λ
2T

4π2

ˆ
R
dτ cos(Eτ)

(
e−πτ

2/(4T 2)

4
a2
sinh2(γaτ

2
)− 4R2 sin2(γΩτ

2
)
− 1

τ 2

)

− λ2T

ˆ
R
dτ

e−iEτ

4π2(τ − iε)2
,

= −λ
2T

4π2

ˆ
R
dτ cos(Eτ)

(
e−πτ

2/(4T 2)

4
a2
sinh2(γaτ

2
)− 4R2 sin2(γΩτ

2
)
− 1

τ 2

)

− λ2ET

2π
Θ(−E) , (5.29)

where the first integral is regular and the second integral has been evaluated
using the residue theorem.

We define g := π/(4T 2) and the time-dependent transition rate FH(E; g),

FH(E; g) :=
PH(E)

λ2T
, (5.30a)

= − 1

4π2

ˆ
R
dτ cos(Eτ)

(
e−gτ

2

4
a2
sinh2(γaτ

2
)− 4R2 sin2(γΩτ

2
)
− 1

τ 2

)
− E

2π
Θ(−E). (5.30b)

Differentiating FH with respect to g, we find

dnFH

dgn

∣∣∣∣
g=0,E=0

=
1

4π2

ˆ
R
dτ

(−1)nτ 2n

4
a2
sinh2(γaτ

2
)− 4R2 sin2(γΩτ

2
)

= (−1)nΓn , (5.31)

for n ≥ 1.
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We remark that evaluation at g = 0 corresponds to the limit T → ∞. Therefore,
we may use the finite-time transition rate in the limit of long interactions to write
FH(E) in terms of derivatives of FH(E; g) with respect to g as

FH(E) ∼ FH(0; 0)−
E

4π
+

∞∑
n=1

E2n

(2n)!
F

(n)
H (0; 0) , (5.32)

where F (n)
H (0; 0) := dnFH(0;g)

dgn
|g=0.

The expression (5.32) above is again the Taylor series (5.21), however the
coefficients — which are unique whenever the Taylor series exists — are exactly
given in terms of the transition probability for a detector in hypertor motion with
Gaussian switching. In particular, these coefficients are given by derivatives
with respect to the inverse of the interaction time, whose evaluation at g = 0

links the behaviours of long interaction times with that of small energy gaps,
g → 0+ ⇐⇒ T → ∞.

5.2.3 Small-radius limit

The next asymptotic regime we consider is the limit of small orbital radii R,
keeping all other parameters fixed. Geometrically, this corresponds to a small
circular deviation from uniformly accelerated motion. As expected, we recover
the Unruh effect to leading order with lower-order corrections due to circular
motion.

To study the behaviour of FH(E) (5.11), it will be practical to work with the
following dimensionless quantities

ρ := aR , α := a/Ω , z := Ωγτ/2 , ϖ :=
2E

γΩ
, (5.33)

so that small-radius limit is the limit of small ρ. In dimensionless variables, the
timelike condition RΩ < 1 corresponds to ρ < α.

In the variables (5.33), we then define

wH(z) :=WH(2z/γΩ) ,

=
α2Ω2

16π2(ρ2 sin2(z − iε)− sinh2(α(z − iε)))
. (5.34)

In the dimensionless variables (5.33), the response function reads

FH(E) =
2

γΩ

ˆ
R
dz e−iϖzwH(z) (5.35)
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=
α2Ω

8π2γ

ˆ
R
dz e−iϖz 1

ρ2 sin2(z − iε)− sinh2(α(z − iε))
.

As before, we isolate the distributional behaviour of FH(E), splitting it into its
inertial and correction contributions. The inertial term is again given by (2.67).
The correction term is given by

F corr
H (E) = − γΩ

4π2

ˆ ∞

0

dz cos(ϖz)

(
α2 − ρ2

sinh2(αz)− ρ2 sin2(z)
− 1

z2

)
. (5.36)

We consider now the leading-order behaviour in the small-radius limit, ρ→
0. A dominated convergence argument allows us to take the limit under the
integral, leaving the leading-order contribution

lim
ρ→0

F corr
H (E) = − γΩ

4π2

ˆ ∞

0

dz cos(ϖz)

(
α2

sinh2(αz)
− 1

z2

)
. (5.37)

We consider now the subleading contributions, which may be written as

F corr
H (E)− lim

ρ→0
F corr

H (E) =

− ρ2
γΩ

4π2

ˆ ∞

0

dz cos(ϖz)

(
α2 sin2(z)

sinh2(αz)
− 1
)

sinh2(αz)︸ ︷︷ ︸
(a)

1

1− ρ2 sin2(z)

sinh2(αz)︸ ︷︷ ︸
(b)

. (5.38)

Function (a) is a regular, integrable function of z, independent of ρ. Function (b)
can be expanded to the first n terms as a geometric series with a remainder term.
The remainder term is given by

ρ2
ˆ ∞

0

dz cos(ϖz)

(
α2 sin2(z)

sinh2(αz)
− 1
)

sinh2(αz)

(
ρ2

sin2(z)

sinh2(αz)

)n+1
1

1− ρ2 sin2(z)

sinh2(αz)

. (5.39)

We can bound (1−ρ2 sin2(z)/ sinh2(αz))−1 above by (1−ρ2/α2)−1. The remaining
integral in this bound then converges due to the exponential suppression at
infinity and regularity at zero. Hence, the remainder term is order ρ2n+4.

We are interested in the small-ρ limit. In particular, we can assume ρ < 1 and
the remainder, therefore, tends to zero as n → ∞. This justifies the following
expansion in small ρ under the integral,

F corr
H (E) = − γΩ

4π2

ˆ ∞

0

dz cos(ϖz)

(
α2

sinh2(αz)
− 1

z2

)
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+
γΩρ2

4π2

ˆ ∞

0

dz cos(ϖz)

(
1

sinh2(αz)
− α2 sin2(z)

sinh4(αz)

)
+O(ρ4). (5.40)

Both integrals in (5.40) may be evaluated in terms of elementary functions.
Evaluating the integrals in (5.40) and using dimensionful parameters, we find
the leading and subleading contributions to F ,

FH(E) =
E

2π

1

e2πE/a − 1
+

aR2

24πγ

([
γ2a2 + (E − γΩ)2

]
g

(
2(E − γΩ)

γa

)

−2
[
3γ2Ω2 + γa2 + E2

]
g

(
E

γa

)
+
[
γ2a2 + (E + γΩ)2

]
g

(
2(E + γΩ)

γa

))
+O(R4) ,

(5.41)

where g(u) = u coth(πu).
We identify the leading-order term in (5.41) as (2.51), the characteristic thermal

response of the Unruh effect. The subleading term is more complicated; however,
as g(u) is even, we can identify the subleading term as an even function of E.

5.2.4 Large-gap limit

Our final asymptotic regime is the limit of a large detector gap, E → ∞ with
all other parameters fixed. Throughout this Section, we continue to use the
dimensionless parameters (5.33).

The response function splits into a distributional (inertial) contribution given
by (2.67) and a correction term given by (5.36), reading

F corr
H (E) =

Ωγ

8π2

ˆ
R
dz cos(ϖz)

(
1

z2
+

α2 − ρ2

ρ2 sin2(z)− sinh2(αz)

)
. (5.42)

By the evenness of the integrand in (5.42), we replace cos(ϖz) by exp(i|ϖ|z)
in (5.42). We then deform the integration contour from the real axis to a contour
C that passes the pole at z = 0 in the upper half-plane, on a semicircle so small
that the contour deformation crosses no singularities. As z = 0 is outside of the
contour C, the residue theorem informs us that the integral

´
C exp(i|ϖ|z)z−2 dz

vanishes, leaving us with

F corr
H (E) =

Ωγ

8π2

ˆ
C
dz ei|ϖ|z α2 − ρ2

ρ2 sin2(z)− sinh2(αz)
. (5.43)

As in [23], a contour integration argument then says that the leading contribution
to (5.43) at large |ϖ| comes from the pole in the upper half-plane that is closest
to the real axis. We identify now this pole.
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We consider the zeroes of the function

f(z) = ρ2 sin2(z)− sinh2(αz) , (5.44)

the denominator of the integrand in (5.43). We are interested in the root of f(z)
with the smallest positive imaginary part. We consider now two propositions to
characterise this root.

Proposition 5.1. Let α > 0 and ρ > 0. There exists a positive, nonzero solution
z0 ∈ (0, π

α
) to

ρ sinh(z)− sin(αz) = 0 , (5.45)

for α > ρ.

Proof. See Appendix E, Section E.1.

Proposition 5.2. Let α > ρ > 0. The root z0 of f(z) = ρ2 sin2(z)− sinh2(αz) with the
smallest, positive imaginary part is given by z0 = iµ, where µ is the smallest, nonzero
solution of

sin(αµ) = ρ sinh(µ) . (5.46)

Proof. See Appendix E, Section E.2.

We recall that the timelike condition RΩ < 1 implies 0 < ρ < α. Then,
by Proposition 5.1 and Proposition 5.2, the pole z0 in the upper half-plane closest
to the real axis is given by z0 = iµ, where µ is the smallest, positive solution of

ρ sinh(µ)− sin(αµ) = 0 . (5.47)

Having identified the pole of the integrand in (5.43) with the smallest positive
imaginary part, an application of the residue theorem then gives the leading
contribution to F corr(E) (5.43) in the large energy gap limit,

F corr
H (E) ∼ αa

4πγ

e−µ|ϖ|

ρ2 sinh(2µ)− α sin(2αµ)
, as |ϖ| → ∞. (5.48)

A final quantity of interest is the effective temperature (2.54). Recalling
from (5.33) that |ϖ| = 2

Ωγ
|E|, we obtain

TH =
γΩ

2µ
+ o(1) , as |E| → ∞. (5.49)

In the following Section, we perform a complementary analysis of circular
motion in a 3 + 1 thermal bath and in a subsequent Section, compare the results
of Section 5.2 and Section 5.3.
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5.3 Circular motion in a thermal bath

In this Section, we summarise our results for an analysis complementary to that
of Section 5.2. We consider a massless, real, scalar field in 3 + 1 Minkowski
spacetime in a thermal bath. We probe the field with a UDW detector, coupled
with interaction Hamiltonian (2.32). We assume the circular motion to have
no drift in the rest frame of the thermal bath, that is to say time evolution is
generated by ∂t both in the thermal bath and the circular motion trajectory. In
this case, the system is time-translation invariant along the circular trajectory
and the whole system is stationary [1]. We analyse the same limits as in the
hypertor motion, except for the small-radius limit, whose analysis we defer
until Section 5.4.

In inertial coordinates, we consider circular motion in the x-y plane, parametrised
by proper time τ as

x(τ) = (γτ,R cos(Ωγτ), R sin(Ωγτ), 0) , (5.50)

where γ is given by (5.9), R represents the trajectory radius as observed by an
inertial observer in the centre of the circular trajectory, and Ω is the angular
velocity measured by the same observer.

We consider a particle detector undergoing circular motion (5.50) in Minkowski
spacetime, probing a quantum scalar field initially prepared in a thermal state
in temperature T . We define the parameter a := 2πT , such that the pullback of
the Wightman function to the circular trajectory and the associated response
function are given by (see (2.46) or [23])

WTB(τ) = − 1

4π2

a sinh(2aR sin(γΩ
2
τ))

4R sin(γΩ
2
τ)
{
cosh(aγ(τ − iε))− cosh(2aR sin(γΩ

2
(τ − iε)))

} ,
(5.51)

FTB(E) =

ˆ
R
dτ e−iEτWTB(τ) , (5.52)

where the subscript TB indicates that we are considering a Thermal Bath.
To avoid any ambiguity, we define

sinh
(
2aR sin

(
γΩ
2
τ
))

sin
(
γΩ
2
τ
) ∣∣∣∣∣

τ=0

:= lim
τ→0

sinh
(
2aR sin

(
γΩ
2
τ
))

sin
(
γΩ
2
τ
) , (5.53)

rendering the Wightman function (5.51) well-defined.
The parameter a is in principle a rescaling of the ambient temperature T ;

however, this is chosen to agree with the temperature experienced by an observer
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undergoing uniform linear acceleration with proper acceleration a.
In particular, in the absence of circular motion, we have

lim
R→0

WTB(τ) = − 1

4π2

1
4
a2
sinh2(a

2
(τ − iε))

, (5.54)

which one may recognise as the pullback of the Wightman function in 3 + 1

dimensions to a uniformly accelerated trajectory in the Minkowski vacuum (2.50)
or equivalently the pullback of the Wightman function to a static trajectory in
3 + 1 dimensions in a thermal bath (2.47).

The integral in the response function (5.52) may not be evaluated in terms of
known functions, as in the case of hypertor motion analysed in Section 5.2. As
such, we study (5.52) in asymptotic regimes. The techniques used in this Section
are either similar to those used in Section 5.2, or have already been reported in
the literature [23, 69]. As such, we omit some details of the calculations. Finally,
we recall that we postpone the limit of a small orbital radius to Section 5.4.

5.3.1 Small-gap limit

Thermal states are Hadamard and as such the Wightman function (5.51) has the
short-distance behaviour given by

WTB(τ) ∼ − 1

4π2(τ − iε)2
, as τ → 0 . (5.55)

As in Section 5.2.1, we isolate the distributional contribution arising from (5.55)
and obtain a small-E expansion of the response function. We note that, the term
cosh(aγ(τ − iε)) in the denominator in (5.51) forces exponential convergence of
the integral coefficients in the obtained expansion.

We find

FTB(E) ∼ Γ̃0 −
E

4π
+

∞∑
n=1

(−1)n

(2n)!
Γ̃nE

2n , (5.56)

where Γ̃0 and Γ̃n are analogous to hypertor small energy gap expansion coeffi-
cients Γ0 (5.15) and Γn (5.20),

Γ̃0 = − 1

4π2

ˆ
R
dτ

(
a sinh(2aR sin(Ωγτ/2))

4R sin(γΩτ/2){cosh(aγτ)− cosh(2aR sin(γΩτ/2))} − 1

τ 2

)
,

(5.57)

Γ̃n = − 1

4π2

ˆ
R
dτ τ 2n

(
a sinh(2aR sin(Ωγτ/2))

4R sin(γΩτ/2){cosh(aγτ)− cosh(2aR sin(γΩτ/2))}

)
.

(5.58)
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From this, we can immediately write down the small-gap expansion for the
effective temperature (2.54) for circular motion in a thermal bath,

TTB = 2πΓ̃0 +

(
2πΓ̃1 −

1

24πΓ̃0

)
E2 +O(|E|4) . (5.59)

5.3.2 Large-gap limit

We consider next the asymptotic regime of a large energy gap, E → ∞ with
all other parameters fixed. This has already been analysed in [23]; hence, we
report the relevant findings briefly for later comparison. We work with the
dimensionless parameters defined in (5.33).

We first define

wTB(z) := WTB(2z/γΩ) ,

=
α2Ω2 cosec(z) sinh(2ρ sin z)

16π2ρ(cosh(2ρ sin z)− cosh(2αz))
. (5.60)

We split the response function (5.52) into an inertial contribution given by (2.67)
and a correction term given by

F corr
TB (E) =

γΩ

8π2

ˆ
R
dz cos(ϖz)

(
1

z2
+

(α2 − ρ2) cosec(z) sinh(2ρ sin z)

ρ(cosh(2ρ sin z)− cosh(2αz))

)
. (5.61)

We consider now the limit |E| → ∞, corresponding to ϖ → ∞ in dimension-
less variables, with all other parameters fixed. As detailed in [23], we extend the
integral in (5.61) into the complex plane. Then, the leading contribution to the
response function is given by the nonzero pole with the smallest positive imagi-
nary part. However, the singularity structure of the Wightman function (5.60) is
more complicated than in the hypertor motion. One finds a critical temperature
Tcrit, characterising a change in the position of this pole. We define the critical
parameter acrit = 2πTcrit, where acrit is the solution to the transcendental equation

RΩ =
2Racrit

π
arcsinh

(
π

2Racrit

)
. (5.62)

The pole with the smallest positive imaginary part is given by z = iµ− for
a > acrit and by z = iµ+ for a < acrit. It has been shown in [23] that µ± are the
solutions to the following transcendental equations

µ+

RΩ
= sinhµ+ ,

1

2RT
=

µ−
RΩ

+ sinhµ− . (5.63)

Returning to dimensionful parameters, the leading-order contribution to the
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response function correction (5.61) in the limit of large energy gaps is given by

F corr
TB (E) ∼ 1

8πRγ

e−2|ϖ|µ±/(γΩ)

sinhµ±(RΩcoshµ± ∓ 1)
, as |E| → ∞ , (5.64)

where the choice of ± sign is determined by whether a > acrit (− sign) or a < acrit

(+ sign).
The resulting effective temperature (2.54) experienced by the detector is then

given by

TTB =
γΩ

2µ±
+ o(1) , as |E| → ∞ . (5.65)

5.4 Thermal bath versus uniform acceleration

In this Section, we compare the results of Section 5.2 and Section 5.3, contrasting
the two motions in limiting regimes and provide numerical plots to cover a wider
range of the parameter space. As in Section 5.3, we assume that the temperature
of the thermal bath is given by T = a/(2π), where a is the proper acceleration at
the centre of the hypertor trajectory (5.8). Hence, a = 0 corresponds to circular
motion in the x-y plane through the Minkowski vacuum in both scenarios.

5.4.1 Small-gap limit

We begin our comparison with the regime of small energy gaps, as analysed
in Section 5.2.1 and Section 5.3.1. As the integral expressions for the response
functions in the two cases were amenable to the same techniques, we were able
to find series the expansions (5.21) and (5.56). As such, the small-energy-gap
behaviour of the transition rate is determined by the behaviour of the integrals
Γ0 (5.15) and Γ̃0 (5.57). These coefficients also determine the leading-order
behaviour of the effective temperatures of the detectors (5.27) and (5.59) in this
regime. Therefore, we now direct our attention towards comparing Γ0 and Γ̃0.

We investigate these differences numerically. In Figure 5.1i, we use the orbital
radius as a characteristic length scale and plot RΓ0 and RΓ̃0 as functions of the
dimensionless variables Ra and RΩ. For trajectories with low circular motion
speeds RΩ ≪ 1, the two coefficients match. This is expected on geometric
grounds as, in this limit, the trajectories approach either a uniformly linearly
accelerated detector or a static detector in a thermal bath, the known duality
due to the Unruh effect. Furthermore, the two coefficients also match in the
limit of small accelerations/low initial thermal state temperatures. This is also
expected as both motions reduce to uniform circular motion interacting with the
Minkowski vacuum in 3+1 Minkowski spacetime. We find that the leading-order
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(i) (ii)

Figure 5.1: Comparison of the leading-order coefficients in the expansion of F(E) for
detectors undergoing hypertor motion (Γ0) and circular motion in a thermal bath of
temperature a/2π (Γ̃0), where a is the uniform acceleration parameter of the hypertor.
(i) RΓ0 and RΓ̃0 as a function of Ra and RΩ with plotting range 0 ≤ RΩ ≤ 0.91 and
0 ≤ Ra ≤ 10. (ii) The normalised relative difference between Γ0 and Γ̃0 as a function
of Ra and RΩ with plotting range 0 ≤ RΩ ≤ 0.86 and 0 ≤ Ra ≤ 10. The white region
represents when the normalised relative difference is greater than one.

contribution to FH(E) (TH) is always larger than the leading-order contribution
to FTB(E) (TTB) and the discrepancy between the two cases grows as RΩ → 1.

Overall, one sees that particle detectors with small energy gaps would be able
to distinguish between circular motion interacting with a field initially prepared
in a thermal state at temperature a/2π and a hypertor trajectory interacting with
the Minkowski vacuum. The detectors may distinguish the two cases more
clearly when the angular velocity Ω is large compared to 1/R. In Figure 5.1ii, we
plot the normalised relative difference between Γ0 and Γ̃0. This highlights the
regions of parameter space where the two coefficients, and hence two motions,
are most dissimilar. For small accelerations/low initial state temperatures, there
is a region where the two coefficients differ by less than 10%. Furthermore, for
low speeds RΩ ≲ 0.1, one may notice how similar the two motions are. As the
ratio (Γ0 − Γ̃0)/Γ̃0 is always positive, we find that the leading-order coefficient
to the response function of a detector undergoing hypertor motion probing the
Minkowski vacuum is larger than that of a detector undergoing circular motion
probing a scalar field initially in a thermal state.

5.4.2 Small-radius limit

We now compare the experience of the detector undergoing hypertor motion
and circular motion in a thermal bath in the limit of small orbital radii.
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As established in Section 5.2 and Section 5.3, the Wightman function in both
cases exhibits the same Hadamard short-distance distributional behaviour. As
such, the difference in the two Wightman functions is itself a regular function.
This is similar to the state-subtraction method when one renormalises, say, a
stress-energy tensor in semiclassical gravity. Therefore, we use this to compare
the transition rates of the two motions.

We write the difference in transition rates as

∆F(E) := FH(E)−FTB(E) ,

=

ˆ
R
dτ e−iEτ (WH(τ)−WTB(τ)) . (5.66)

Should we be able to find a limiting form of ∆F (5.66), we would then be able to
find a limiting form of FTB(E) = FH(E)−∆F(E) in the limit of small R, using
the results of (5.41).

We use the dimensionless variables defined in (5.33) to write the difference in
the transition rates as

∆F(E) =
γΩ

8π2

ˆ ∞

0

dz cos(ϖz)

(
α2 − ρ2

ρ2 sin2(z)− sinh2(αz)

− (α2 − ρ2) cosec(z) sinh(2ρ sin z)

ρ(cosh(2ρ sin z)− cosh(2αz))

)
. (5.67)

The two terms in the integrand in (5.67) have each a single singularity on the
real line at z = 0, whose behaviours are given by (5.12) and (5.55), which cancel
each other out, ensuring the integrand is regular in a neighbourhood around
z = 0. Furthermore, each term exhibits exponential decay for large z due to the
terms sinh2(αz) and cosh(2αz), which is strong enough to bound the remainder
term from Taylor’s theorem as in Section 5.2.3. Hence, we perform a small-ρ
expansion within the integral. Indeed, we find

α2 − ρ2

ρ2 sin2(z)− sinh2(αz)
− (α2 − ρ2) cosec(z) sinh(2ρ sin z)

ρ(cosh(2ρ sin z)− cosh(2αz))

=
2α2ρ2

3

sin2(αz)

sinh2(z)
+O(ρ4) , (5.68)

where the left-hand side is the integrand in (5.67).
Using the expansion (5.68) within the integral (5.67), the leading-order be-
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haviour of ∆F(E) is given by

∆F(E) =
γΩα2ρ2

12π

ˆ ∞

0

cos(ϖz)
sin2(z)

sinh2(αz)
+O(ρ4) , (5.69)

which may be evaluated in terms of elementary functions. In dimensionful
variables, the leading-order small-R asymptotic behaviour of ∆F(E) (5.66) is
given by

∆F(E) =
a3R2

48π

(
g

(
E + Ω

a

)
+ g

(
E − Ω

a

)
− 2g

(
E

a

))
+O(R4) , (5.70)

where g(u) = u coth(πu). One may show that g(u + v) + g(u − v) − 2g(u) ≥ 0

with equality if and only if v = 0; hence, as the difference in response functions
between hypertor motion and circular motion through a thermal bath is positive,
it follows that the transition rate for the hypertor motion is larger than that for
circular motion in a thermal bath. As expected, the order unity terms cancel each
other out and are therefore given by the leading term in (5.41), which recovers
the Unruh effect.

We plot in Figure 5.2 the (dimensionless) leading-order coefficient of the
difference in response function (5.70). We see that a detector is only able to
distinguish between hypertor motion and circular motion through a thermal
bath if |E| ≲ Ω; whereas, for |E| ≳ Ω, the difference ∆F(E) (5.70) quickly decays.
We recall that we found in Chapter 3 a similar behaviour, in which a detector
may not distinguish between circular motion in a 2 + 1 thermal bath and inertial
motion when probing with an energy gap larger than the its rotational frequency,
|E| ≳ Ω.

We may use the difference in transition rates (5.66) to compute the leading-
order behaviour of the difference in effective temperatures (2.54) in the small-
radius limit. We note the following. Given the results of Section 5.2.3, we know
that both response functions may be written as a small perturbation about the
response function for a uniformly linearly accelerated observer,

F(E) = Fa(E) +R2δF(E) , (5.71)

where Fa(E) is the response function for a uniformly linearly accelerated detec-
tor given by (2.51) and δF(E) is order unity as R → 0. Furthermore, δF(E) is an
even function of E, which follows from the evenness of g(u) in (5.70) and (5.41).

The effective temperature (2.54) for a response function of the form (5.71) may
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Figure 5.2: Leading-order correction coefficient to the transition rate difference in (5.70).
i) Density plot of the leading-order coefficient with plotting ranges −10 ≤ E/a ≤ 10,
−10 ≤ Ω/a ≤ 10. ii) Horizontal slices from a) for fixed angular velocities with plotting
range −5 ≤ E/a ≤ 5.

be expanded as a series in R as

T (E) = TU +R2δF(E)

(
1

Fa(E)
− 1

Fa(−E)

)
TU

ln
(

Fa(−E)
Fa(E)

) +O(R3) , (5.72)

where TU = a/2π is the Unruh temperature. For excitations E > 0, the correction
to the Unruh temperature is positive, since Fa(−E) ≥ F(E) for E > 0.

As the factor multiplying δF(E) in (5.72) is the same for both hypertor motion
and circular motion through a thermal bath, we may appeal to the difference in
response functions ∆F (5.70) by considering the difference in effective tempera-
tures, ∆T = TH − TTB,

∆T = R2∆F(E)

(
1

Fa(E)
− 1

Fa(−E)

)
TU

ln
(

Fa(−E)
Fa(E)

) +O(R3) . (5.73)

We remark that the expression for ∆T (5.73) does not depend on the sign of E.
The difference in effective temperatures experienced by both detectors in the

small-radius limit is proportional to both the Unruh temperature TU and to
the difference in transition rates of the detectors. Since ∆F(E) is a positive
function, the hypertor transition rate is always larger than the circular motion
transition rate. We may, therefore, conclude that the temperature experienced
by a detector undergoing hypertor motion will always be larger than that of a
detector undergoing circular motion through a thermal bath for small orbital
radii.
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5.4.3 Large-gap limit

We now compare the two motions in the asymptotic regime of large detector en-
ergy gaps. In this Section, we consider the large-gap expansions of Section 5.2.4
and Section 5.3.2 and ask how the leading-order terms in these expansions com-
pare in two further regimes. We show that the resulting detector responses are
indistinguishable to leading order in the limits of small Ra and small v := RΩ.

The large-gap asymptotic behaviours of the transition rates for both the hy-
pertor motion and circular motion in a thermal bath depend on the roots of
transcendental equations. For completeness, we reproduce these equations in
full.

In hypertor motion, we need to find the smallest, positive root of

sin

(
Ra

v
µ

)
= Ra sinh(µ) . (5.74)

In circular motion through a thermal bath, depending on whether T > Tcrit or
T < Tcrit, we need to find the smallest, positive root of

v = 2RTµ− + 2RTv sinh(µ−) , T > Tcrit , (5.75a)

µ+ = v sinh(µ+) , T < Tcrit , (5.75b)

where Tcrit is the solution of

1

4RTcrit
= sinh

(
v

4RTcrit

)
. (5.76)

We consider the limits of small acceleration/low ambient temperature and small
velocity. In the former, one expects the two motions to tend to circular motion in
3 + 1 Minkowski spacetime through the Minkowski vacuum. Geometrically, in
the case of small velocities, hypertor motion tends to an accelerated trajectory
and circular motion tends to a static trajectory. As such, the duality between an
accelerated trajectory and a static trajectory in a thermal bath — the Unruh effect
— appears.

5.4.3.1 Small acceleration parameter

We consider first the limit of a small acceleration, a→ 0 with all other parameters
of motion fixed.

We consider first the hypertor motion transcendental equation (5.74). Rewrit-
ing (5.74) as

sin(Rav−1µ)

Rav−1µ
=

sinh(µ)

v−1µ
, (5.77)
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it is clear that in the limit a→ 0, (5.77) tends to

µ = v sinh(µ) . (5.78)

For timelike trajectories with 0 < v < 1, Equation 5.78 has three solutions: one
on the positive real line, zero, and a further solution on the negative real line —
for more details, see Proposition 5.3 and its proof in Section E.3. We are only
interested in the positive solution. Furthermore, (5.78) is identical to the circular
motion transcendental equation for T < Tcrit (5.75b). Therefore, µ → µ+ as
a→ 0.

To further compare the two scenarios, we rewrite the hypertor correction to
inertial motion (5.48) using the double-angle formulae for sin and sinh as

F corr
H (E) ∼ a2

4πγΩ

e
−2

|E|µ
γΩ

ρ2 sinh(2µ)− α sin(2αµ)
,

=
a2

8πγΩ

e
−2

|E|µ
γΩ

ρ2 sinh(µ) cosh(µ)− α sin(αµ) cos(αµ)
. (5.79)

The positive solution to (5.74) is bounded in the limit a→ 0, such that aµ→ 0 in
this limit. We can therefore use the small-angle approximation α sin(αµ) cos(αµ) ≈
α2µ, which in combination with the defining equation (5.78) lead to α sin(αµ) cos(αµ) ≈
α2RΩ sinh(µ). This remark along with the definition α = a/Ω allow us to write
the response rate (5.79) as

F corr
H (E) ∼ 1

8πγR

e
−2

|E|µ
γΩ

sinhµ(RΩcoshµ− 1)
. (5.80)

This is the response rate for a detector in circular motion in a 3 + 1 thermal
bath given by (5.64) with the identification µ+ 7→ µ. In addition, the effective
temperatures of the two motions agree to leading order since µ → µ+ as a →
0. Therefore, in the limit of small accelerations/low ambient temperatures,
we reconcile the experience of a UDW detector undergoing hypertor motion
probing a quantum scalar field in the Minkowski vacuum with that of a detector
undergoing uniform circular motion probing a quantum scalar field in a thermal
state in temperature T = a/(2π) < Tcrit.

5.4.3.2 Small circular velocity

We consider now the limit of small circular velocities v = RΩ → 0 with all other
parameters fixed.
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We consider first the circular motion through a thermal bath. We begin first
with two propositions.

Proposition 5.3. Let 0 < v < 1 and fv(z) = sinh(vz)− z. The equation

fv(z) = 0 , (5.81)

has three roots, z = ±z0 and 0, where z0 > 0. Further, z0 → ∞ as v → 0.

Proof. See Appendix E, Section E.3.

Proposition 5.4. Let 0 < v < 1 and fv(z) = sinh(vz)−z. The leading-order behaviour
of the positive root z0 of the equation

fv(z) = 0 , (5.82)

is given by

z0 ∼ −1

v
W−1

(
−v
2

)
, (5.83)

as v → 0, where W−1 is the lower branch of the Lambert W function.

Proof. See Appendix E, Section E.4.

We can find an estimate for the critical temperature (5.76) by noting that
it is of the form z = sinh(z), where z = (4RTcrit)

−1, and we may appeal to
Proposition 5.3 and Proposition 5.4. In the limit of small velocities v → 0, we
have the estimate

Tcrit ∼ − v

4RW−1

(
−v

2

) . (5.84)

By either (5.84) or Proposition 5.3, we have Tcrit → 0 as v → 0. As such, for any
fixed ambient temperature T as v → 0, we have T > Tcrit and only the behaviour
of µ− in (5.75a) need be considered.

Considering (5.75a), we see that as v → 0, the left-hand side tends to zero.
As such, the right-hand side must be small. However, the right-hand side
is positive for µ−. As such µ− must be small. We make the Ansatz µ− =

a1v + a2v
2 + a3v

3 +O(v4). Under this Ansatz, we find the solution

µ− =
1

2RT
(v − v2 + v3) +O(v4) . (5.85)

For completeness, we comment on the behaviour of µ+, the positive solution
to (5.75b), in the limit v → 0. Dividing by v, this equation may be written as
y = sinh(vy), where y = µ+/v. As such, we may appeal to Proposition 5.3
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and Proposition 5.4, leading to y ∼ −v−1W−1(−v
2
). In terms of µ+, we have

µ+ ∼ −W−1

(
−v
2

)
. (5.86)

We consider now the large-gap detailed balance effective temperature (5.65)
for a detector in circular motion through a thermal bath and recall that, de-
pending on the magnitude of the ambient temperature T with respect to a
critical temperature Tcrit, we have that the detailed balance temperature TTB is
proportional to either µ−1

− (T > Tcrit) or µ−1
+ (T < Tcrit).

As µ+ → ∞ (5.86), we have TTB → 0 for T < Tcrit. However, using (5.85), for
T > Tcrit, we find

TTB =
γΩRT

v(1− v + v2)
+O(v3) ,

= T

(
1 + v +

1

2
v2
)
+O(v3) , (5.87)

the detector acts as a thermometer for the thermal bath.
We consider now the same limit to find an expansion for the first positive root

of (5.74). For small v, we anticipate µ to be small; however, due to the oscillatory
nature of the left-hand side of (5.74), we also anticipate Rav−1µ to be close to π.
As such, we write z = π −Rav−1µ and (5.74) reduces to

sin(z) = Ra sinh
( v

Ra
(π − z)

)
, (5.88)

where z is considered small. We consider an Ansatz of the form z = a1v + a2v
2 +

O(v3). Expanding (5.88) in small arguments, we find z = π(v− v2)+O(v3), such
that

µ =
vπ

Ra
(1− v + v2) +O(v4) . (5.89)

Combining this with the large-gap detailed balance effective temperature (5.49),
one finds

TH =
γΩRa

2πv(1− v + v2)
+O(v3) ,

=
a

2π

(
1 + v +

1

2
v2
)
+O(v3) . (5.90)

We identify the leading-order contribution as the Unruh temperature TU .
We unify the effective temperatures (5.87) and (5.90) through the Unruh tem-

perature TU : a detector with a large energy gap undergoing circular motion with
a small circular velocity v through a thermal bath of temperature T = a/(2π) per-
ceives an effective temperature equal to that of a detector undergoing hypertor
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(i) (ii)

Figure 5.3: Effective temperature experienced by a detector undergoing i) hypertor
motion and ii) circular motion in a 3 + 1 thermal bath in the large-gap limit as functions
of dimensionless variables Ra and RΩ. i) Effective temperature experienced by a
detector in hypertor motion interacting with the Minkowski vacuum. The plotting
range is 0 ≤ Ra ≤ 4.8, 0 ≤ RΩ ≤ 0.91. ii) Effective temperature experienced by a
detector in circular motion interacting with a scalar field initially prepared in a thermal
state. The plotting range is 0 ≤ Ra ≤ 4.8, 0 ≤ RΩ ≤ 0.91. A red line is shown at
parameter values satisfying T = Tcrit where Tcrit = acrit/2π.

motion with a proper acceleration at the centre of a and a small circular velocity
v. Remarkably, the two agree to the first three orders.

5.4.3.3 Numerical results

In Figure 5.3, we plot the effective temperatures experienced by detectors under-
going the two motions analysed in Section 5.2, Section 5.3, and Section 5.4. The
effective temperatures are plotted as functions of the dimensionless variables
Ra and RΩ. In Figure 5.3i, we plot the effective temperature experienced by
a detector undergoing hypertor motion. In Figure 5.3ii, we plot the effective
temperature experienced by a detector undergoing circular motion in a 3 + 1

thermal bath at temperature T = a/(2π), where a is the proper acceleration
of an observer at the centre of the hypertor motion. A red line in Figure 5.3ii
corresponds to the critical temperature (5.76), across which the leading-order
behaviour of the effective temperature changes in the large-gap limit.

5.5 Discussion

In this Chapter, motivated by the duality between the experience of an observer
in uniform linear acceleration with proper acceleration a and an observer at rest
in a thermal bath at temperature T = a/(2π) in (3 + 1)-dimensional Minkowski
spacetime, we analysed how far this duality holds when both observers also
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undergo uniform circular motion. This is described by two scenarios, first the
combination of linear acceleration and circular motion in the plane orthogonal
to the acceleration — a stationary motion known as hypertor motion — and
second, circular motion through a thermal bath. To compare the two cases, we
considered the same orbital radiusR and angular speed Ω for both. Furthermore,
we fixed the temperature of the thermal bath at T = a/(2π), where a is the proper
acceleration of an observer at the centre of the hypertor motion. As such, in the
limit of vanishing circular velocities, one recovers the Unruh effect.

We compared the two scenarios in three analytically accessible asymptotic
regimes: small energy gaps, small orbital radii, and large energy gaps. In general,
we found that the addition of circular motion breaks this duality over much of
the parameter space.

We were able to reconcile the two motions when the parameters of the circular
motion were small, or if the acceleration parameter a was small, as expected
on geometric grounds. By contrast, over much of the parameter space, the two
situations exhibit stark differences. In the regimes of small energy gaps and
small orbital radii, we found that the effective temperature experienced by an
observer undergoing hypertor motion is always higher than that experienced by
an observer undergoing circular motion in a 3 + 1 thermal bath at temperature
T = a/2π.

In the limit of small orbital radii, we found the detector transition rate and
effective temperature to leading order and a subleading correction at order R2.
We found that the orbital frequency of the circular motion Ω plays a key role
in the ability of an observer to distinguish between the two motions in this
regime. In particular, for |E| ≲ Ω, a detector may distinguish between the two
scenarios. However, for |E| > Ω, the subleading corrections at order R2 quickly
become indistinguishable. This is reminiscent of the comparison of circular
motion and inertial motion through a 2 + 1 thermal bath in Chapter 3, in which,
for R|E| > RΩ = v, a detector may not distinguish between the two motions.

An interesting result was that in the limit of large energy gaps, if one further
considers the limit of small velocities, the effective temperatures experienced by
an observer in each motion agree to the first three orders.

In summary, while a particle detector interacting with a massless scalar field
in 3+1 Minkowski spacetime would be unable to distinguish between a thermal
bath at temperature T = a/2π and uniform linear acceleration with proper
acceleration a, we found that the addition of circular motion breaks this duality.
Any circular motion perturbation around these two motions enables a particle
detector to distinguish between a thermal bath and a temperature provided by
linear acceleration across most of the parameter space.
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All motions considered until now, inertial motion, linear acceleration, circular
motion, and hypertor motion, are all stationary trajectories in Minkowski space-
time. All stationary trajectories in 3 + 1 Minkowski spacetime were found and
classified by Letaw in 1980 [71]. In Chapter 6, we extend this and classify the
stationary trajectories in Minkowski spacetimes of all dimensions.
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Chapter 6

Interlude — Stationary trajectories in
Minkowski spacetimes

“L’algèbre n’est qu’une géométrie
écrite; la géométrie n’est qu’une
algèbre figurée.”
(Algebra is but written geometry;
geometry is but figured algebra.)

Sophie Germain

AT the heart of the Unruh effect, as introduced in Chapter 2, lie two trajec-
tories, inertial motion and uniform linear acceleration. We studied two

further trajectories, uniform circular motion and hypertor motion, in Chapter 3
and Chapter 5. All four trajectories have the property that the Wightman func-
tion with respect to a stationary state, pulled back to one of these trajectories,
is a function of the difference in proper time along that trajectory only. As an
equation, this is concisely and concretely given by (2.42).

These four trajectories are, furthermore, the integral curves of timelike Killing
vectors and the solutions with constant curvature of the Lorentz-signature Frenet-
Serret equations due to Letaw [71]. In 3 + 1 dimensions, there are two further
trajectories with these properties, the catenary and the semicubical parabola.
Together, these six trajectories constitute the family of stationary trajectories in
3 + 1 Minkowski spacetime. In this Chapter, we extend this classification to
Minkowski spacetimes of arbitrary dimension. In line with the deep connection
between algebra and geometry outlined in the quotation by Sophie Germain in
this chapter’s epigraph, we perform this classification both algebraically and
geometrically. Algebraically, we classify the conjugacy classes of the Poincaré
group, the isometry group of Minkowski spacetime, in terms of its Lie algebra

109
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of Killing vectors and specialise to the timelike Killing vectors, which gives rise
to a classification of stationary trajectories. Geometrically, we extend the Frenet-
Serret formalism in 3 + 1 Minkowski spacetime to n+ 1 Minkowski spacetime.
We find a formula for the number of classes of timelike trajectories in n + 1

Minkowski spacetime, as well as find an ordinary differential equation satisfied
by the generalised four-velocity of the stationary trajectories.

Except Section 6.4, the contents of this Chapter were extracted from, or based
on, the journal article “Stationary trajectories in Minkowski spacetimes” [4].

6.1 Curves of constant curvature

The classification of stationary trajectories in 3 + 1 Minkowski spacetime origi-
nates in the work of Letaw [71], who in 1981 found that the stationary trajectories
could either be defined as the timelike solutions to the Frenet-Serret equations
with constant (in proper time) curvature invariants or equivalently as the orbits
of timelike Killing vectors. However, the study of curves defined in terms of their
curvature invariants first began with the work of Frenet [147] and Serret [148]
in three-dimensional, flat, Euclidean-signature space with the standard metric.
Frenet and Serret found a coupled set of differential equations for the tangent
vector, normal vector, and binormal vector, which together form an orthonormal
basis in R3. These differential equations are known as the Frenet-Serret equations
and were later generalised by Jordan [149] to flat, Euclidean spaces of arbitrary
dimension.

Our interest in stationary worldlines in Minkowski spacetime follows from the
property that the Wightman function with respect to a stationary state, pulled
back to a stationary trajectory, is a function of only the difference in proper time
along that trajectory. This property has been further employed in formulating
quantum energy inequalities [150–152].

We now briefly introduce the Frenet-Serret equations in three dimensions.

6.1.1 Frenet-Serret equations

In three-dimensional Euclidean space R3 with the standard metric ds2 = dx2 +

dy2 + dz2, any differentiable curve α may be parametrised by its arc length s.
With this parametrisation, the curve α(s) has a unit tangent vector,

||α′(s)|| = 1 , (6.1)
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where a prime denotes differentiation with respect to the arc length s and || · ||
is the standard norm in R3. In spaces with Lorentzian signature, there are two
natural analogous choices. First, spacelike curves xµ may be parametrised by
their proper length ℓ, in which case uµ := dxµ

dℓ
has norm uµuµ = 1. Second,

timelike curves xµ may be parametrised by their proper time τ , in which case
uµ := dxµ

dτ
has norm uµuµ = −1. In what follows, we assume that the curve α is

non-degenerate, α′′(s) ̸= 0 [153].
There are three vector quantities of interest that may be constructed from α,

the tangent vector T , the (unit) normal vector N , and the binormal vector B,

T (s) :=
dα(s)

ds
, (6.2a)

N (s) :=
1∣∣∣∣d2α(s)
ds2

∣∣∣∣ d2α(s)

ds2
, (6.2b)

B(s) := T (s)×N (s) . (6.2c)

We remark that by the assumption of non-degeneracy, α′′(s) ̸= 0 and so the unit
normal is well defined.

We show now that the tangent, normal, and binormal vectors (6.2) form an
orthonormal set. By (6.1), we have ||T (s)||2 = T (s) · T (s) = 1. Differentiating
this relation with respect to s and using the commutativity of the dot product,
we have T ′(s) · T (s) = 0. By (6.2), we see N (s) ∝ T ′(s). Therefore, the tangent
and normal vectors are orthogonal, T (s) ·N (s) = 0. Hence, by definition of the
binormal vector (6.2), the three vectors are mutually orthogonal. By (6.1), we
have ||T (s)|| = 1 and by definition ||N (s)|| = 1. As T and N are orthogonal
unit vectors, it follows that ||B(s)|| = 1. Therefore, the three vectors (6.2) are
orthonormal and form a basis in R3.

We now define the curvature of the curve κ(s) to be the function of propor-
tionality between the normal vector and the derivative of the tangent vector,

dT (s)

ds
= κ(s)N (s) , (6.3a)

κ(s) :=

∣∣∣∣∣∣∣∣d2α(s)

ds2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣dT (s)

ds

∣∣∣∣∣∣∣∣ . (6.3b)

We consider now the definition of the binormal (6.2). Differentiating with re-
spect to s, we have B′(s) = T (s)×N ′(s), since T ′(s)×N (s) = 0 by (6.3). Further-
more, it follows that B′(s) · T (s) = B′(s) ·B(s) = 0. Therefore, the vector B′(s)

must be proportional to the normal vector N (s) since the set {T (s),N (s),B(s)}
forms an orthonormal basis. We call this function of proportionality the torsion
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of the curve τ(s) ,
dB(s)

ds
= −τ(s)N (s) , (6.4)

where the minus sign is by convention. We make now a few remarks. In the
case τ(s) = 0, we see the binormal vector is constant and the curve α(s) must
lie in the plane spanned by T (s) and N (s), known as the osculating plane. As
such, we may interpret the torsion of a curve τ(s) as a measure of the failure of a
curve to be planar.

Finally, we note that since the tangent, normal, and binormal vectors form an
orthonormal basis, we have the following cyclic relations B(s) = T (s)×N (s),
T (s) = N (s) × B(s), and N (s) = B(s) × T (s). Differentiation of the final
relation with respect to s, we have

dN (s)

ds
=

dB(s)

ds
× T (s) +B(s)× dT (s)

ds
, (6.5)

using (6.3) and (6.4) along with the cyclic relations, we have

dN (s)

ds
= −κ(s)T (s) + τ(s)B(s) . (6.6)

Together, (6.3), (6.4), and (6.6) are known as the Frenet-Serret equations,

dT (s)

ds
= κ(s)N (s) , (6.7a)

dN (s)

ds
= − κ(s)T (s) + τ(s)B(s) , (6.7b)

dB(s)

ds
= − τ(s)N (s) , (6.7c)

which are often written in matrix formT ′

N ′

B′

 =

 0 κ 0

−κ 0 τ

0 −τ 0


T

N

B

 , (6.8)

where we have omitted the dependence on the arc length s.
A special class of solutions are the curves of constant curvature and torsion,

which we demonstrate now through the following example.

Example 6.1 (Constant curvature invariants). We consider now the Frenet-Serret
equations (6.7) in the special case when κ and τ are constant. In this case, we may
combine the Frenet-Serret equations into a single equation for the tangent T ,

T ′′′(s) = −(κ2 + τ 2)T ′(s) . (6.9)
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The Ansatz T (s) = Aeims leads to the characteristic equation

m3 = (κ2 + τ 2)m, (6.10)

with solutions m = 0,±
√
κ2 + τ 2. As such, we have

T (s) = A cos(
√
κ2 + τ 2 s) +B sin(

√
κ2 + τ 2 s) +C , (6.11)

where A, B, and C are constant vectors. We choose initial conditions such that
T (0) = x̂, N (0) = ŷ, and B(0) = ẑ, which leads to

A =
κ2

κ2 + τ 2
x̂− κτ

κ2 + τ 2
ẑ , B =

κ√
κ2 + τ 2

ŷ , C =
τ 2

κ2 + τ 2
x̂+

τκ

κ2 + τ 2
ẑ ,

(6.12)

where x̂, ŷ, and ẑ form the standard basis in R3.
Applying an orthogonal transformation to the solution (6.11) and (6.12), we

may consider the tangent vector in a different frame, which is equivalent to
having chosen a different initial condition. We consider an orthogonal transfor-
mation of the form

T (s) =


Ax

α
0 Cx

β

0 By

α
0

Az

α
0 Cz

β


α cos(

√
κ2 + τ 2 s)

α sin(
√
κ2 + τ 2 s)

β

 , (6.13)

where α and β are real coefficients such that the matrix is an element of the
orthogonal group O(3) and we clarify the notation Ax := A · x̂, with the other
matrix coefficients analogously defined. We denote by M the matrix in (6.13).

Imposing that M be orthogonal, M ∈ O(3), we find

α =
κ√

κ2 + τ 2
, β =

τ√
κ2 + τ 2

. (6.14)

As M ∈ O(3), we have M−1 = MT ∈ O(3). From this, we can write the
tangent vector T in the new frame as

MTT (s) =
1√

κ2 + τ 2

κ cos(
√
κ2 + τ 2 s)

κ sin(
√
κ2 + τ 2 s)

τ

 . (6.15)

Finally, we recall the definition of the tangent vector (6.2). We may therefore



Chapter 6. Killing vectors in Minkowski spacetimes 114

integrate (6.15) to find the constant curvature curve

α̃(s) =
1

κ2 + τ 2

 κ sin(
√
κ2 + τ 2 s)

−κ cos(
√
κ2 + τ 2 s) + κ

τ
√
κ2 + τ 2 s

 , (6.16)

where the notation α̃ :=MTα emphasises that we are in a rotated frame and we
have chosen the initial condition α̃(0) = 0. In this rotated frame, it is clear that
the curve has the geometry of a helix. ■

We bring this Section to a close by considering the degenerate curve, α′′(s) = 0.
Such a curve has vanishing curvature κ(s) = 0 and upon integration, one sees
α(s) = T0s+α0, describing a planar curve. Hence, as torsion τ(s) is the measure
of the failure of a curve to be planar, the curve must also have zero torsion.
This property extends to the generalisation of the Frenet-Serret equations due
to Jordan [149], in which one has generalised curvatures χi with 1 ≤ i ≤ n and
χi = 0 implies χj = 0 for all j ∈ N such that i < j ≤ n. In R3, we simply have
χ1 = κ, χ2 = τ and χ1 = 0 implies χ2 = 0. In the following Sections, we will
provide the framework for the Lorentzian-signature Frenet-Serret equations in
n+ 1 dimensions.

6.2 Killing vectors in Minkowski spacetimes

Having introduced the Frenet-Serret equations in flat, Euclidean space in Sec-
tion 6.1, we consider now their Lorentz-signature counterparts algebraically. The
stationary trajectories are the timelike solutions to the (Lorentz-signature) Frenet-
Serret equations with curvature invariants constant in proper time. Letaw [71]
further demonstrated that the stationary trajectories of 3 + 1 Minkowski space-
time may also be defined as the orbits of timelike Killing vectors. Due to the
freedom in the choice of frame, each solution to the Frenet-Serret equations
is determined only up to a Poincaré transformation of the worldline, leading
to equivalence classes of trajectories. A trajectory generated by some Killing
vector ξ is determined only up to conjugation of the generator of that Killing
vector. In this Section, we determine the conjugacy classes of the Poincaré group,
the isometry group of Minkowski spacetime, and then restrict our attention to
the classes whose associated Killing vector is timelike, thereby classifying the
stationary trajectories of (n+ 1)-dimensional Minkowski spacetime for n ≥ 1.
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6.2.1 Isometries of Minkowski spacetime

The isometry group of Minkowski spacetime Rn,1 is the Poincaré group. We
consider only the connected component of the Poincaré group, the restricted
Poincaré group ISO+(n, 1), consisting of the connected component of the Lorentz
group plus translations.

A general element of ISO+(n, 1) is a pair g = (Λ, a), where Λ is an element
of the restricted Lorentz group SO+(n, 1) and a ∈ Rn,1. The restricted Lorentz
group is the subgroup of Lorentz transformations preserving orientation and
time orientation. The Poincaré group acts on Rn,1 as follows. Let g = (Λ, a) ∈
ISO+(n, 1) and x ∈ Rn,1, then in components we have g xµ = Λµνx

ν + aµ. The
Poincaré group is equipped with the group multiplication law g̃ · g = (Λ̃, ã) ·
(Λ, a) = (Λ̃Λ, Λ̃a+ ã) and inverse elements are given by g−1 = (Λ−1,−Λ−1a).

The restricted Lorentz group is a subgroup of the restricted Poincaré group
with elements (Λ, 0). Pure spacetime translations h = (1, a) form a normal
subgroup of the Poincaré group, which may be verified by explicitly comput-
ing g · h · g−1. As such, this decomposes ISO+(n, 1) as a semidirect product,
ISO+(n, 1) = Rn,1 ⋊ SO+(n, 1). This structure as a semidirect product of Lie
groups is inherited at the level of Lie algebras, iso(n, 1) = Rn,1 ⋊ so(n, 1).

Given a Lie group G and associated Lie algebra g, G acts naturally on g by
conjugation, G × g → g, (g,X) 7→ gXg−1. We use a matrix group notation,
anticipating its use in Section 6.2.3. We define a conjugacy class in the Lie
algebra in the following sense Y ∼ X ⇐⇒ ∃g ∈ G such that Y = gXg−1.

When considering the Poincaré group acting on Minkowski spacetime, the
generators of the Lie algebra iso(n, 1) are the Killing vector fields. A Killing
vector field is the velocity vector field of a one-parameter isometry group at the
identity. It is natural then to consider representations of these generators. The
infinitesimal Poincaré transformation of a scalar field ϕ(x) leads to

ϕ(x) → ϕ(x)−
(
aµ∂µ +

1
2
ωµν(xν∂µ − xµ∂ν)

)
ϕ(x) , (6.17)

where aµ and ωµν are constant and ωµν is antisymmetric. This is the standard
vector field representation and may be written as

ϕ(x) →
(
1− aµPµ − 1

2
ωµνMµν

)
ϕ(x) , (6.18)

where Pµ = ∂µ is the generator of spacetime translations and Mµν = (xν∂µ−xµ∂ν)

is the generator of spacetime rotations.
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Alternatively, Killing vectors ξ = ξµ∂µ of a spacetime M are defined by,

∇µξν +∇νξµ = 0 . (6.19)

Combining (6.19) with the Ricci identity, one may show the following identity
holds [154]

∇µ∇νξσ = Rρ
µνσξρ . (6.20)

In the case of Minkowski spacetime Rn,1 in Minkowski coordinates, equa-
tions (6.19) and (6.20) reduce to the following,

∂µξν + ∂νξµ = 0 , (6.21a)

∂µ∂νξσ = 0 . (6.21b)

One may integrate (6.21b) and combine it with (6.21a) to write

ξµ = cµ + ωµνxν , (6.22)

where cµ is a constant and ωµν is antisymmetric, ωµν = −ωνµ, leading to ξ =

cµ∂µ +
1
2
ωµν(xν∂µ − xµ∂ν).

With foresight, we define the following notation with i < j:

T0 = ∂t , (6.23a)

Si = ∂i , (6.23b)

NT0i = ∂t − ∂i , (6.23c)

B0i = t∂i + xi∂t , (6.23d)

Rij = xj∂i − xi∂j , (6.23e)

NR0ij = B0i − Rij ,

= (t− xj)∂i + xi(∂t + ∂j) , (6.23f)

where Rij is the Killing vector associated with a rotation in the xi–xj plane, NR0ij

is the Killing vector associated with a null rotation consisting of a boost along
the xi–axis and a rotation in the xi–xj plane, B0i is the Killing vector associated
with a boost along the xi–axis, T0 is the Killing vector associated with a timelike
translation, Si is the Killing vector associated with a spacelike translation parallel
to the xi–axis, and NT0i is the Killing vector associated with a null translation
with spatial translation parallel to the xi–axis.

Throughout this Chapter, we adopt the notation ⊕ to represent linear com-
binations of (6.23) with scalars suppressed. Explicitly, ξ = T0 ⊕ R12 represents
ξ = a∂t + b(x2∂1 − x1∂2) with a, b both nonzero.
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6.2.2 Conjugacy classes of the restricted Lorentz group

We recall that ISO+(n, 1) is a semidirect product of the restricted Lorentz group
SO+(n, 1) and the group of spacetime translations Rn,1. Owing to this decom-
position, one may systematically approach determining the conjugacy classes
of the Poincaré group by first classifying with the restricted Lorentz group and
then considering the spacetime translations.

6.2.2.1 Conjugacy classes of the Möbius group

To classify the conjugacy classes of SO+(n, 1), we first consider the restricted
Lorentz group in 3 + 1 dimensions, SO+(3, 1), which is isomorphic to the projec-
tive special linear group in 2 dimensions with complex coefficients, PSL(2,C) =
SL(2,C)/{1,−1}, known as the Möbius group [155]. To see this, one notes that
there is a homomorphism between R3,1 and anti-hermitian matrices by the map

xµ → i
(
x01+ x · σ

)
, (6.24)

where σ = (σx, σy, σz) are the Pauli matrices. The determinant of the result-
ing matrix is the Minkowski squared distance from the origin, xµxµ. The spe-
cial linear group SL(2,C) acts naturally on the set of anti-hermitian matri-
ces by conjugation, which preserves the determinant and hence preserves
the Minkowski squared distance. This implies a (surjective) homomorphism
SL(2,C) → SO+(3, 1). The kernel of this map is {1,−1}. Therefore, by the first
isomorphism theorem, PSL(2,C) = SL(2,C)/{1,−1} ∼= SO+(3, 1).

The Möbius group is well studied with well-known conjugacy classes [156].
There are five conjugacy classes: identity, elliptic, parabolic, hyperbolic and
loxodromic. In the context of the restricted Lorentz group, these correspond to
the identity, spatial rotations, null rotations, boosts, and boosts combined with
rotations. Without loss of generality, the elliptic conjugacy class is generated by
R12, the parabolic conjugacy class by NR012, the hyperbolic conjugacy class by
B01, and the loxodromic conjugacy class by B01

⊕
R23.

6.2.2.2 Conjugacy classes of the restricted Lorentz group

We are now in a position to classify the conjugacy classes of SO+(n, 1). First, we
note the conjugacy classes of SO+(n, 1) for n < 3: SO+(1, 1) contains only the
identity and hyperbolic classes, whereas SO+(2, 1) contains the identity, elliptic,
parabolic, and hyperbolic conjugacy classes. Both follow from reducing the
available dimensions in the SO+(3, 1) case.

For n > 3, it has been demonstrated that elements of SO+(n, 1) are conjugate
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to one of three canonical forms depending on the eigenvalues of the element [157,
158]. In particular, any element of SO+(n, 1) can be reduced to the form ξ0⊕η⊕1,
where ξ0 ∈ SO+(3, 1) or SO+(2, 1), η ∈ SO(m), 1 is the (n−m− 3) or (n−m− 2)-
dimensional identity matrix respectively, and ⊕ is the direct sum of matrices.
Furthermore, elements of SO(m) can be reduced to a canonical form [158]: for m
even, η = ⊕m/2

i=1 ηi and for m odd, η = ⊕⌊m/2⌋
i=1 ηi ⊕ 1, where ηi ∈ SO(2).

6.2.2.3 Summary

We write down the non-identity conjugation classes for n ≥ 3 (cf. classification
of the orthochronous components of O(n, 1) [159, 160]),

ξkE =

R12 k = 1 ,

R12

⊕k
i=2 R2i−1 2i k ≥ 2 ,

(6.25a)

ξkP =

NR012 k = 1 ,

NR012

⊕k
i=2R2i−1 2i k ≥ 2 ,

(6.25b)

ξlL =

B01 l = 1 ,

B01

⊕l
i=2 R2i−2 2i−1 l ≥ 2 ,

(6.25c)

for 1 ≤ k ≤ ⌊n
2
⌋, 1 ≤ l ≤ ⌈n

2
⌉, where n + 1 is the spacetime dimension and ⌊·⌋

and ⌈·⌉ are the floor and ceiling functions respectively. We will refer to ξkE as
the elliptic conjugacy class, ξkP as the parabolic conjugacy class, and ξlL as the
loxodromic conjugacy class. It is important to note that the boosts and rotations
appearing in (6.25) are considered to have non-zero rotation angles, that is to
say the scalar coefficients are non-zero. The set of non-identity conjugacy classes
of SO+(n, 1) are then given by {ξkE, ξkP, ξlL : 1 ≤ k ≤ ⌊n

2
⌋, 1 ≤ l ≤ ⌈n

2
⌉} for n ≥ 2.

We remark that, using the terminology of the conjugacy classes of the Möbius
group, ξ1L is the hyperbolic conjugacy class. We denote the identity conjugacy
class by 1.

As a consistency check, we consider n = 3, consisting of the Killing vector
{1, ξ1E, ξ1P, ξ1L, ξ2L}, which we may recognise as the identity, elliptic, parabolic,
hyperbolic, and loxodromic conjugacy classes that we reported earlier.

6.2.3 Conjugacy classes of the restricted Poincaré group

We now extend the classification to the restricted Poincaré group. We represent
elements of ISO+(n, 1) as

g =

(
Λ a

0⊺ 1

)
, (6.26)
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where Λ ∈ SO+(n, 1), 1 ∈ R, and a, 0 ∈ Rn,1 and are viewed as column vectors .
In terms of matrices, ISO+(n, 1) acts on Rn,1 by

g · x =

(
Λ a

0⊺ 1

)(
x

1

)
=

(
Λx+ a

1

)
. (6.27)

We return to the generators of the Poincaré Lie algebra (6.18), one may perform
an infinitesimal transformation directly on the coordinates xα to find a matrix
representation. The Lorentz generators (Mµν)

A
B and translation generators

(Pµ)
A
B are given by

(Mµν)
A
B = δAµ ηνB − δAν ηµB , (6.28a)

(Pµ)
A
B = δAµ δ

n+1
B , (6.28b)

where A, B = 0, 1, . . . , n+ 1. In this notation, the spacetime rotation generators
are given in matrix form by Rij =Mij , B0i =M0i, NR0ij =M0i −Mij .

We consider a linear combination of Killing vectors. This will have a matrix
(Lorentz group) component N and a vector (translation) component K. Under
conjugation by g = (Λ, a), we have

g ·
(
N K

0⊺ 0

)
· g−1 =

(
ΛNΛ−1 −ΛNΛ−1a+ ΛK

0⊺ 0

)
. (6.29)

We are now in a position to find the conjugacy classes. We consider first the
purely timelike and purely spacelike translations before considering a combina-
tion of timelike and spacelike translations.

6.2.3.1 Temporal translation

We consider first the timelike translations T0 = P0. One may add a timelike trans-
lation to the identity conjugacy class, resulting in the class of inertial trajectories
T0.

Adding a timelike translation to the loxodromic conjugacy class (6.25c) results
in

T0 ⊕ ξlL = α∂t + (t∂1 + x1∂t) +
l∑

i=2

bi(x
2i−1∂2i−2 − x2i−2∂2i−1) . (6.30)

This linear combination has the matrix part

Nµ
ν = ( δµ0 η1ν − δµ1 η0ν) +

l∑
i=2

bi(δ
µ
2i−2η2i−1 ν − δµ2i−1η2i−2 ν) , (6.31)
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and a vector part Kµ = αδµ0 . The matrix part of the loxodromic conjugacy class
ξlL is also given by (6.30) and has no vector contribution. Comparing with the
general form of conjugation given by (6.29), we may force (−ΛNΛ−1a + ΛK),
the vector part of T0 ⊕ ξlL, to vanish by choosing aµ = αηµβ(Λ−1)1β. Therefore,
with this choice of a,

g ·
(
T0

⊕
ξlL

)
· g−1 = (Λ, a) · (N,K) · (Λ, a)−1 ,

= (ΛNΛ−1, 0) ,

= (Λ, 0) · (N, 0) · (Λ, 0)−1 ,

∼ ξlL . (6.32)

As such, there exists an element g = (Λ, a) with a as above, such that T0⊕ξlL ∼ ξlL.
We consider now the elliptic ξkE (6.25a) and parabolic ξkP (6.25b) generators.

Neither of these can be timelike anywhere. However, both T0 ⊕ ξkE and T0 ⊕
ξkP can be timelike somewhere. Since conjugation does not change the time-
like/null/spacelike nature of a Killing vector, we conclude that T0⊕ξkE(P) ̸∼ ξkE(P).

6.2.3.2 Spatial translation

We consider now the spacelike translations Sm = Pm with 1 ≤ m ≤ n fixed. A
spacelike translation added to the identity conjugacy class results in a spatial
curve. Consider now the loxodromic conjugacy class, Sm ⊕ ξlL. This can be
written in terms of Killing vectors as

Sm ⊕ ξlL = α∂m + (x1∂t + t∂t) +
l∑

i=2

bi(x
2i−1∂2i−2 − x2i−2∂2i−1) . (6.33)

The vector part of the conjugation (Λ, a) · (Sm ⊕ ξlL) · (Λ, a)−1 reads

0 = −Λµ0(Λ
−1)1βa

β − Λµ1(Λ
−1)0βa

β + αΛµm

+
l∑

i=2

bi

(
Λµ2i−2(Λ

−1)2i−1
β − Λµ2i−1(Λ

−1)2i−2
β

)
aβ . (6.34)

In the case m = 1, this translation is parallel to the boost. By choosing aβ =

αηβρ(Λ−1)0ρ, one may force the vector contribution (6.34) vanish. We recall that
1 ≤ l ≤ ⌈n

2
⌉. In the case 1 < m ≤ 2l− 1, this translation is parallel to an axis of ro-

tation and can be conjugated away. For m even, aβ = −α/(b(m+2)/2)η
βρ(Λ−1)m+1

ρ

and for m odd, aβ = α/(b(m+1)/2)η
βρ(Λ−1)m−1

ρ will make (6.34) vanish. However,
for 2l − 1 < m ≤ n with l < ⌈n

2
⌉, one is unable to conjugate away Sm. If l = ⌈n

2
⌉,
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then the result depends on the parity of n. If n is odd, then all available spa-
tial dimensions are filled by the boost along x1 and rotations in the remaining
(n− 1)/2 independent planes. By contrast, if n is even, there is then one free axis,
parallel to which one may perform a spatial translation.

To summarise, Sm ⊕ ξlL ∼ ξlL for 1 ≤ m ≤ 2l − 1 and 1 ≤ l < ⌈n
2
⌉. Whereas, for

2l − 1 < m ≤ n and 1 ≤ l ≤ ⌈n
2
⌉, Sm ⊕ ξlL forms a new conjugacy class.

The analyses for Sm⊕ξkE and Sm⊕ξkP are characteristically and computationally
similar to the loxodromic case. We summarise the results now. For 1 ≤ m ≤ 2k

and 1 ≤ k ≤ ⌊n
2
⌋, one may choose a translation a suitably to conjugate away the

translation Sm. However, for 2k < m ≤ n with 1 ≤ k ≤ ⌊n
2
⌋, there is a free axis,

parallel to which one may perform a spatial translation, producing two more
sets of conjugacy classes, Sm ⊕ ξkE(P) for 2k < m ≤ n.

We remark that in all cases where one may add a spatial translation, it is
parallel to an axis, along which and parallel to which there are no other motions.
As such, if one were to add multiple spatial translations, each along axes inde-
pendent of the other motions, one could choose a Λ to align all translations along
one axis. This is possible since, in each conjugacy class, Λ was hitherto arbitrary.
Hence, we need only consider one spatial translation.

6.2.3.3 Temporal and spatial translation

We consider now the case of spatial and temporal translations, T0 ⊕ ξ
⊕

i Si. If
the translations T0 or Si are parallel to a plane of boost or plane of rotation, they
can be conjugated away as seen in Sections 6.2.3.1 and 6.2.3.2. We first consider
the loxodromic conjugacy class ξ = ξlL (6.25c). The timelike translation T0 can
be conjugated away so we have ξlL

⊕
i Si. Any Si parallel to the rotations or

the boost can be conjugated away. This will either conjugate away all Si or we
are left with ξlL

⊕
i≥2l Si. Finally, one can perform rotations in the hyperplanes

containing the Si to align them along one axis, leaving ξlL ⊕ S2l.
We consider now the parabolic and elliptic conjugacy classes (6.25a) and (6.25b).

Once again, we can conjugate away any translations parallel to a plane of rota-
tion and then rotate in the planes containing the remaining spatial translations,
leaving T0 ⊕ ξkE(P) ⊕ S2k+1. In this case, we consider the relative magnitudes of
the translations T0 and S2k+1. Let T0 ⊕ S2k+1 = α∂t − β∂2k+1, then: if |α| > |β|,
this is conjugate to T0; if |α| < |β|, this is conjugate to S2k+1; and if |α| = |β|, this
is a null translation NT0,2k+1.

Finally, we consider the identity conjugacy class 1. We can perform temporal
and spatial translations T0⊕1

⊕
i Si. Depending on whether T0

⊕
i Si is timelike,

spacelike, or null, this is conjugate to T0, S1, or NT01.
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6.2.3.4 Summary of conjugacy classes

Just as we listed the conjugacy classes of SO+(n, 1) for small n, we note that the
conjugacy classes of ISO+(0, 1) consist of {1, T0}, and the conjugacy classes of
ISO+(1, 1) are {1, T0, B01, S1, NT01}. We can now list the conjugacy classes of
the Poincaré group, ISO+(n, 1). We first have the conjugacy classes of SO+(n, 1),

{1, ξkE, ξkP, ξlL : 1 ≤ k ≤ ⌊n
2
⌋, 1 ≤ l ≤ ⌈n

2
⌉} . (6.35)

In addition, we have those with a time translation,

{T0, T0 ⊕ ξkE, T0 ⊕ ξkP : 1 ≤ k ≤ ⌊n
2
⌋} . (6.36)

We also have those with a spatial translation, which we may align along the
xn–axis without loss of generality,

{Sn , ξkE ⊕ Sn, ξ
k
P ⊕ Sn, ξ

l
L ⊕ Sn : 1 ≤ k ≤ ⌊n

2
⌋, 1 ≤ l ≤ ⌈n

2
⌉} , (6.37)

with the following caveats: ξkE(P) ⊕ Sn ∼ ξkE(P) if n is even and k = ⌊n
2
⌋; and

ξkL ⊕ Sn ∼ ξkL if n is odd and l = ⌈n
2
⌉. Finally, we have the conjugacy classes with

a null translation, which again may be confined to the x0–xn plane without loss
of generality,

{NT0n, NT0n ⊕ ξkE, NT0n ⊕ ξkP : 1 ≤ k ≤ ⌊n
2
⌋} , (6.38)

with the caveat that NT0n ⊕ ξkE(P) ∼ T0 ⊕ ξkE(P) if n is even and k = ⌊n
2
⌋.

6.2.4 Stationary trajectories in Minkowski spacetimes

The conjugacy classes of ISO+(n, 1) which correspond to a stationary trajectory
in Rn,1 are those whose associated Killing vector is timelike somewhere. For
n ≥ 3, we list them:

ξ0 ≡ T0 inertial motions, (6.39a)

ξlLM ≡ ξlL loxodromic motions 1 ≤ l ≤ ⌈n
2
⌉, (6.39b)

ξldL ≡ ξlL ⊕ Sn drifted loxodromic motions

{
1 ≤ l ≤ ⌈n

2
⌉ n even,

1 ≤ l < ⌈n
2
⌉ n odd,

(6.39c)

ξkSP ≡ T0 ⊕ ξkP semicubical parabolic motions, (6.39d)

ξkCM ≡ T0 ⊕ ξkE circular motions, (6.39e)
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for 1 ≤ k ≤ ⌊n
2
⌋. The names of the conjugacy classes originate from the classi-

fication due to Letaw [71, 91]. We remark two special cases: ξ1LM is accelerated
(Rindler) motion parallel to the x1–axis and ξ1dL is drifted Rindler motion [72].
The semicubical parabolic motions have the spatial projection of a semicubical
parabola in the x1–x2 plane with circular motions in the remaining independent
planes. The circular motions exhibit circular motion in each independent plane.

Let TKV(n) denote the set of conjugacy classes of timelike Killing vectors of
Rn,1,

TKV(n) = {ξ0, ξlLM, ξldL, ξkSP, ξkCM : 1 ≤ l ≤ ⌈n
2
⌉, 1 ≤ k ≤ ⌊n

2
⌋} , (6.40)

then the number of classes of timelike trajectories is given by

#TKV(n) = 1 + 3
⌊n
2

⌋
+
⌈n
2

⌉
. (6.41)

Considering now the case n = 4,

TKV(4) = {ξ0, ξ1LM, ξ2LM, ξ1dL, ξ2dL, ξ1SP, ξ2SP , ξ1CM , ξ
2
CM} , (6.42)

with #TKV(4) = 9. We will exhibit and classify these trajectories explicitly in
the following Section.

6.3 Vielbein formulation

We move now to the geometric side of the stationary trajectories, from which
point of view, the stationary trajectories are defined as the timelike solutions to
the Frenet-Serret equations with proper-time-independent curvature invariants.
In this Section, we extend the vierbein (tetrad) formalism of Letaw [71] to a
vielbein formulation, applicable to Minkowski spacetime of dimension n + 1

with n ≥ 1. We also present explicitly the stationary trajectories in R4,1.

6.3.1 Frenet-Serret equations in Minkowski spacetimes

We begin by constructing an orthonormal vielbein V µ
a (τ) for a worldline xµ(τ)

parametrised by proper time τ in n + 1 Minkowski spacetime. These are con-
structed out of derivatives of the worldline with respect to proper time. We as-
sume that the first n+1 derivatives are linearly independent and none of the first
n−1 derivatives are vanishing or null i.e. xµ(k)(τ) x(k)µ (τ) ̸= 0 for k = 1, . . . , n−1.
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Orthonormality is imposed by the relation

Vaµ(τ)V
µ
b (τ) = ηab . (6.43)

The first component of the vielbein is simply the four-velocity, V µ
0 (τ) = ẋµ(τ).

We remark that since the first component of the vielbein V µ
0 (τ) is timelike, all

other components must necessarily be spacelike. One may construct a family of
orthogonal vielbeins Ṽ µ

a (τ) by the Gram-Schmidt process such that

Ṽ µ
k (τ) = x(k+1)µ(τ)−

k∑
j=1

x(k+1)ρ(τ)x
(j)
ρ (τ)

x(j)σ(τ)x
(j)
σ (τ)

x(j)µ(τ) . (6.44)

The orthonormal vielbeins V µ
a (τ) are then constructed by the normalisation of

Ṽ µ
a (τ). The final vielbein is given by

V µ
n (τ) =

1√
n!
ερ0ρ1...ρn−1µV0ρ0(τ)V1ρ1(τ) . . . Vn−1 ρn−1(τ) . (6.45)

Differentiation of the orthonormality condition (6.43) yields

V̇aµ(τ)V
µ
b (τ) + Vaµ(τ)V̇

µ
b (τ) = 0. (6.46)

Since the vielbeins form a basis, one may write the proper time derivatives in
the basis of vielbeins,

V̇ µ
a (τ) = Ka

b(τ)V µ
b (τ) . (6.47)

Combining equations (6.46) and (6.47) informs us that the matrix Kab is an-
tisymmetric. Furthermore, since each V µ

b is constructed out of the first b + 1

derivatives of the worldline, whereas V̇ µ
a is constructed out of the first a + 2

derivatives, we have that Ka
b vanishes for b > a+ 1. This tells us that the only

non-vanishing components are those immediately above and below the diagonal
and one may write this matrix as

Kab(τ) = χa(τ)δa,b−1 − χb(τ)δb,a−1 , (6.48)

where δab is the Kronecker delta. We remark that (6.47) and (6.48) form the higher-
dimensional, Lorentz-signature equivalent of the Frenet-Serret equations (6.8).

We consider only case when V µ
0 is future direct and when χa are constant in

proper time; as such, we suppress the dependence on τ in our notation. These
χa are then referred to as the curvature invariants.

The explicit form of the matrix of curvature invariants (6.48) enables us to
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rewrite the Frenet-Serret equations as

V µ
1 =

1

χ0

V̇ µ
0 , (6.49a)

V µ
2 =

1

χ0χ1

(
V̈ µ
0 − χ2

0V
µ
0

)
, (6.49b)

V µ
a =

1

χa−1

(
V̇ µ
a−1 + χa−2V

µ
a−2

)
, a = 3, . . . , n , (6.49c)

V̇ µ
n = −χn−1V

µ
n−1 . (6.49d)

Note that setting any χa = 0 renders the Frenet-Serret equations ill defined. We
discuss this further in Appendix G. The Frenet-Serret equations (6.49) enable one
to write each component of the vielbein in terms of derivatives of V µ

0 . One sees
that these differential equations can be written down explicitly in the general
case,

V µ
a =

1∏a−1
i=0 χi

⌊a2⌋∑
q=0

ba2q
da−2q

dτa−2q
V µ
0 , a = 3, . . . , n , (6.50)

where the coefficients ba2q are defined as follows,

ba0 = 1 , (6.51a)

ba2 =
a−2∑
i,j=0

ηijχiχj , (6.51b)

ba2q =
a−2∑

p1=2q−2

χ2
p1

p1−2∑
p2=2q−4

χ2
p2
· · ·

pq−1−2∑
i,j=0

ηijχiχj , (6.51c)

where the dots in (6.51c) represent successive insertions of terms of the form∑pk−1−2
pk=2q−2k χ

2
pk

. For example,

ba8 =
a−2∑
p1=6

χ2
p1

p1−2∑
p2=4

χ2
p2

p2−2∑
p3=2

χ2
p3

p3−2∑
i,j=0

ηijχiχj . (6.52)

One may prove (6.50) using strong induction and the relation

bm2q + χ2
m−1b

m−1
2(q−1) = bm+1

2q , (6.53)

which may be derived by expanding (6.51).
In Appendix F, we simplify the Frenet-Serret equations and find the ordinary

differential equation satisfied by V µ
0 . The generalised Frenet-Serret equations in
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n+ 1 Minkowski spacetime are therefore given by

V µ
1 =

1

χ0

V̇ µ
0 , (6.54a)

V µ
2 =

1

χ0χ1

(
V̈ µ
0 − χ2

0V
µ
0

)
, (6.54b)

V µ
a =

1

χa−1

(
V̇ µ
a−1 + χa−2V

µ
a−2

)
, a = 3, . . . , n , (6.54c)

V µ
n+1 = 0 , (6.54d)

with V µ
a given by (6.50) for a = 3, . . . , n+ 1. Equation 6.54d then constitutes an

ordinary differential equation for V µ
0 , just as we found an ordinary differential

equation for the tangent vector T in Example 6.1. Solving this for V µ
0 , one may

then the other components of the vielbein (6.54).
Using terminology from differential equations, the characteristic equation

of (6.54d) is then ⌊
n+1
2

⌋∑
q=0

bn+1
2q mn+1−2q = 0 , (6.55)

which has definite parity. The coefficients of the general solution can then be
fixed by an initial condition, for which we may adopt

V µ
a (τ)|τ=0 = δµa . (6.56)

One may remark that under a Poincaré transformation of the worldline

xµ → x′µ = Λµνx
ν + cν , (6.57)

the vielbeins transform as

V µ
a → V ′µ

a = ΛµνV
ν
a . (6.58)

The transformed vielbeins V ′µ
a also form an orthonormal basis, obeying the

orthonormality condition (6.43) V ′
aµV

′µ
b = ηab. The choice of the direction of the

tangent vector at τ = 0 (6.56) determines which orthonormal basis one uses. This
is the geometric counterpart of Killing vectors belonging to the same conjugacy
class in Section 6.2.4.

A priori, one is able to express solutions to (6.55) in terms of radicals only for
n ≤ 8 [161]. We demonstrate this extended formalism in the following Section
to explicitly calculate and classify the stationary trajectories in 4 + 1 Minkowski
spacetime.
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6.3.2 Example: 4 + 1 Minkowski spacetime

In this Section, we use the formalism of Section 6.3.1 to present the stationary
trajectories in 4 + 1 Minkowski spacetime. We demonstrate the equivalence
between solutions to the Frenet-Serret equations with constant curvature invari-
ants and the integral curves of timelike Killing vectors in 4 + 1 dimensions. We
classify the resulting trajectories into nine equivalence classes.

The characteristic equation (6.55) in 4 + 1 dimensions reads

0 = m(m4 − 2am2 − b) , (6.59)

where 2a = −b52 and b = −b54, each given by (6.51c). This has the solutions
m = 0 and m2 = a ±

√
a2 + b, which we write as m2 =

√
a2 + b + a or m2 =

−(
√
a2 + b − a). Hence, m = 0, ±R+, ±iR−, where R2

± =
√
a2 + b ± a. The

general solution for V µ
0 is then

V µ
0 = Aµ+Bµ cosh(R+τ)+Cµ sinh(R+τ)+Dµ cos(R−τ)+Eµ sin(R−τ) . (6.60)

Using the initial conditions (6.56), the coefficients are found to be

Aµ =

(
1− χ2

0

b
(χ3

2 + χ2
3), 0,−

χ0χ1χ
2
3

b
, 0,−χ0χ1χ2χ3

b

)
, (6.61a)

Bµ =
1

R2

(
χ2
0

R2
+

(χ2
0 − χ2

1 +R2
−), 0,

χ0χ1

R2
+

(χ2
0 − χ2

1 − χ2
2 +R2

−), 0,
χ0χ1χ2χ3

R2
+

)
,

(6.61b)

Cµ =
1

R2

(
0,
χ0

R+

(χ2
0 − χ2

1 +R2
−), 0,

χ0χ1χ2

R+

, 0

)
, (6.61c)

Dµ =
1

R2

(
χ2
0

R2
−
(χ2

0 − χ2
1 −R2

+), 0,
χ0χ1

R2
−

(χ2
0 − χ2

1 − χ2
2 −R2

+), 0,
χ0χ1χ2χ3

R2
−

)
,

(6.61d)

Eµ =
1

R2

(
0,− χ0

R−
(χ2

0 − χ2
1 −R2

+), 0,−
χ0χ1χ2

R−
, 0

)
, (6.61e)

where R2 = R2
+ +R2

−.
We explicitly calculate the stationary trajectories in 4+1 Minkowski spacetime

in Appendix G. We report the results case-by-case. For m ≤ n, the stationary
trajectories of Rm,1 are embedded in Rn,1. Hence to find all stationary trajectories
in Rn,1, one solves the Frenet-Serret equations (6.54) for each m = 0, 1, . . . , n.

The stationary trajectories of 4+1 Minkowski spacetime are as follows: Case 0:
the class of inertial trajectories (G.2). Case I: the class of Rindler trajectories (G.3).
Case IIa: the class of drifted Rindler motions (G.4). Case IIb: the class of motions
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with semicubical parabolic spatial projection (G.5). Case IIc: the class of circular
motions (G.6). Case III: the class of loxodromic motions (G.9). Case IVa: the
class of drifted loxodromic motions in the x1–x2 plane with circular motion
in the x3–x4 plane (G.14). Case IVb: the class of motions with semicubical
parabolic spatial projection in the x1–x2 plane with circular motion in the x3–x4

plane (G.16). Case IVc: the class of circular motions in the x1–x2 plane with
circular motion in the x3–x4 plane (G.18).

As expected from the previous calculation of #TKV(4) (6.42), there are nine
classes of stationary trajectory. In agreement with [71, 91], we recover the six
classes of stationary trajectory in 3 + 1 Minkowski spacetime.

Since stationary trajectories of Minkowski spacetime are both timelike solu-
tions to the Frenet-Serret equations and the integral curves of timelike Killing
vectors, we finish this Section by unifying the two frameworks and present the
stationary trajectories with their respective timelike Killing vector according to
the classification (6.39),

Case 0: Inertial (G.2) ξ0 = T0 , (6.62a)

Case I: Rindler (G.3) ξ1RM = B01 , (6.62b)

Case IIa: Drifted Rindler (G.4) ξ1dR = B01 ⊕ S2 , (6.62c)

Case IIb: Semicubical parabolic (G.5) ξ1SP = T0 ⊕ NR012 , (6.62d)

Case IIc: Circular (G.6) ξ1CM = T0 ⊕ R12 , (6.62e)

Case III: Loxodromic (G.9) ξ2RM = B01 ⊕ R23 , (6.62f)

Case IVa: Drifted loxodromic with circular (G.14) ξ2dR = B01 ⊕ S2 ⊕ R34 ,

(6.62g)

Case IVb: Semicubical parabolic with circular (G.16) ξ2SP = T0 ⊕ NR012 ⊕ R34 ,

(6.62h)

Case IVc: Double circular motion (G.18) ξ2CM = T0 ⊕ R12 ⊕ R34 . (6.62i)

6.4 Stationary trajectories in de Sitter spacetimes

In this Section, we give an application of the formalism developed in this Chapter
to a curved spacetime. In particular, the maximally symmetric spacetime of con-
stant positive curvature, de Sitter (dS) spacetime. We may view n-dimensional
dS as embedded in n+1 Minkowski spacetime [84] with the embedding equation

ηABX
AXB = α2 , (6.63)



Chapter 6. Stationary trajectories in de Sitter spacetimes 129

where XA = (X0, X1, . . . , Xn) are coordinates in Rn,1, ηAB = diag(−1, 1, . . . , 1) is
the Minkowski metric in n+ 1 dimensions, and α > 0 is the de Sitter radius of
curvature.

The isometry group of dS is then inherited from its embedding space Rn,1, sub-
ject to leaving the embedding equation (6.63) invariant. By definition, the action
of the indefinite orthogonal group O(n, 1) on XA ∈ Rn,1 leaves the quadratic
form ηABX

AXB invariant. We restrict our attention to the transformations that
are continuously connected to the identity and preserve time and space orienta-
tion, the restricted Lorentz group SO+(n, 1), which is indeed a subgroup of the
isometry group of Rn,1. Given the classification of the restricted Lorentz group
in Section 6.2.2, we see that only the loxodromic Killing vectors ξlL (6.25c) give
rise to timelike Killing vectors.

We remark that dS is not a globally static spacetime. Later, in Chapter 8, we
will consider the static patch of dS, described by the coordinates

X0 =
√
α2 − r2 sinh(t/α) , (6.64a)

X1 =
√
α2 − r2 cosh(t/α) , (6.64b)

X i = rxi , (6.64c)

where 2 ≤ i ≤ n and xi are the embedding coordinates of the (n−2)-dimensional
unit sphere Sn−2 in Rn−1. The metric of the static patch is

ds2 = −
(
1− r2

α2

)
dt2 +

dr2

1− r2

α2

+ r2dΩ2
n−2 , (6.65)

where dΩ2
n−2 is the metric on Sn−2. We note the presence of a cosmological

horizon at r = α.

Example 6.2 (2 + 1 static patch). We consider the case n = 3, describing (2 + 1)-
dimensional dS. The geometry of the static patch is described by the metric

ds2 = −
(
1− r2

α2

)
dt2 +

dr2

1− r2

α2

+ r2dθ2 , (6.66)

where dS has been embedded in R3,1 via

X0 =
√
α2 − r2 sinh(t/α) , (6.67a)

X1 =
√
α2 − r2 cosh(t/α) , (6.67b)

X2 = r cos(θ) , (6.67c)

X3 = r sin(θ) . (6.67d)
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The two conjugacy classes of timelike Killing vectors of SO+(3, 1) inherited
from R3,1 are ξ1L and ξ2L. Let f : dS ↪−→ R3,1 be the inclusion map given by the
embedding (6.67). Then, by direct calculation, the pullback of these two timelike
Killing vectors to the static patch is given by

f ∗(ξ1L) = ∂t , (6.68a)

f ∗(ξ2L) = ∂t ⊕ ∂θ . (6.68b)

We see that B01 in Rn,1 generates inertial motion ∂t in the static patch. Further-
more, the hypertor motion of Chapter 5 generated by ξ2L corresponds to circular
motion in the static patch. ■

We can now classify the stationary trajectories in the static patch. In Exam-
ple 6.2, we saw that a boost in Minkowski spacetime corresponds to inertial
motion in the static patch generated by ∂t and that the Killing vector correspond-
ing to a rotation in the x1–x2 plane again corresponds to a rotation. In general,
due to the spherical symmetry of the static patch in (6.64) and (6.65), the family
of loxodromic Killing vectors ξlL, when pulled back to the static patch, corre-
spond to a linear combination of inertial motion generated by ∂t and circular
motions in the independent planes of rotation.

The family of elliptic Killing vectors ξkE again correspond to rotations in in-
dependent planes. As such, it would be tempting to write that the isometry
group SO+(n, 1) reduces to R× SO(n− 1) in the static patch. However, the null
rotations do not admit a simple interpretation and may not be characterised as
elements of R× SO(n− 1).

Notwithstanding the null rotations, for the purposes of classifying stationary
trajectories as the orbits of timelike Killing vectors, it is sufficient to work with
the isometry group R×SO(n−1). We remark that this is also the isometry group
of n-dimensional Schwarzschild spacetime. It then follows that the stationary
trajectories in the static patch of dS are

∂t inertial motions, (6.69a)

∂t +
l∑

i=1

ai∂θ2i−1
circular motions 1 ≤ l ≤ ⌊n−1

2
⌋ , (6.69b)

where ai ∈ R and each ∂θi corresponds to a rotation in an independent plane.
We remark that in the context of the Myers-Perry black hole solution [162–164],
a generalisation of the Kerr metric to higher dimensions, the Killing vectors ∂θi
correspond to the independent rotations of the black hole.

We bring this Section to a close by remarking that further techniques would
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be required to extend this classification to the maximally symmetric spacetime
of constant negative curvature, Anti-de Sitter (AdS) spacetime, since, owing to
its negative curvature, n-dimensional AdS must be embedded in Rn−1,2; hence,
its isometry group inherited from Rn−1,2 is SO+(n − 1, 2). A classification of
the conjugacy classes of the split signature restricted special orthogonal group
SO+(n− 1, 2) is therefore needed. To this end, classifications of the conjugacy
classes have been given for SO+(2, 2) and SO+(3, 2) in [165] and [166], respec-
tively.

6.5 Summary

In this Chapter, we introduced the Frenet-Serret equations, as studied by Frenet
[147] and Serret [148], which provide a framework for describing curves in
three dimensions in terms of their curvature and torsion. The Frenet-Serret
equations were later generalised to n dimensions by Jordan [149], in which work
the concepts of curvature and torsion are replaced by generalised curvatures. A
particular class of curves for which the Frenet-Serret equations may be solved
are the curves of constant generalised curvature. We solved the Frenet-Serret
equations explicitly in three spatial dimensions, finding the curve of constant
nonzero curvature and torsion, the helix.

Later, the Frenet-Serret equations were generalised from curves in flat Eu-
clidean space R3 to curves in Minkowski spacetime R3,1 by Letaw [71], allowing
for the computation and classification of stationary trajectories in R3,1. In this
work, Letaw further found that these trajectories correspond also to the integral
curves of timelike Killing vectors.

Building on these works, we extended the classification of stationary curves
in (3 + 1)-dimensional Minkowski spacetime to (n+ 1)-dimensional Minkowski
spacetime. Due to the insight of Letaw, we classified the stationary trajectories
both algebraically and geometrically. Algebraically, we classified the conjugacy
classes of the isometry group of Rn,1 and identified the timelike Killing vectors
within this classification. Geometrically, we derived the Frenet-Serret equations
in n+ 1 Minkowski spacetime, employing a basis of vielbeins, and we found an
ordinary differential equation satisfied by the generalised four-velocity of the
stationary trajectory. To demonstrate the equivalence of these two classifications,
we considered a concrete example in 4 + 1 Minkowski spacetime. In the general
setting, we found five types of trajectories: the inertial motions, the loxodromic
motions, the drifted loxodromic motions, the semicubical parabolic motions,
and the circular motions, with each type consisting of conjugacy classes with
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qualitatively similar motions.
Finally, we brought the Chapter to a close through a new application of the

framework, classifying the stationary trajectories of the static patch of dS space-
time. This application is possible as one may embed dS in Minkowski spacetime
of one higher spatial dimension. Therefore, dS inherits the isometry group of the
embedding space, subject to leaving the embedding equation invariant, and is as
such a subgroup of the isometry group of Minkowski spacetime. We found that
the loxodromic Killing vectors in Minkowski spacetime are the only timelike
Killing vectors that leave the embedding equation invariant. In preparation
for Chapter 8, we considered a specific coordinate chart, the static patch. We
found that the pullback to the static patch of the loxodromic Killing vectors in
the embedding space leads to circular motions.

In the next Chapter, we consider circular motion in Minkowski spacetime with
a cylindrical boundary to see the effect of finite size in the response of a detector.
However, in Chapter 8, we will return to the spacetimes of constant curvature
and combine the insights of finite size and an ambient temperature to consider
circular motion in both dS and AdS.



Chapter 7

Circular motion in Minkowski
spacetime: thermality versus finite
size

“Discworld is real. It’s the way worlds
should work.”

Terry Pratchet

The Science of Discworld III:
Darwin’s Watch

THE Unruh effect, both linear and circular, as introduced in Chapter 2 rests
on several assumptions, which may not be reproducible in an experimental

realisation of the effect. We mention now four assumptions. First, the choice
of dispersion relation; in the analogue spacetimes provided by condensed-
matter systems such as the surface of superfluid helium or in a Bose-Einstein
condensate (BEC), the dispersion relation is approximately linear only for small
momenta. Second, the choice of field modes. In the discussion of the Unruh
effect in Chapter 2, we considered a field in (spatially infinite) Minkowski
spacetime; however, any experimental realisation will take place in a spatially
finite laboratory. Third, the choice of initial state. Fourth, the choice of interaction
time. In Chapter 2, we worked in the long-interaction-time regime; however,
any experiment must run for a finite time.

In Chapter 3, we relaxed two of these assumptions; we found the response
function of a detector probing a scalar field with a modified dispersion relation
prepared in a thermal, rather than vacuum, state in (3.5).

Motivated by the inherent finite size of any experiment, such as the superfluid
helium sample volume in Chapter 4 , the focus of this Chapter is the effect of a
cylindrical boundary on the experience of an Unruh-DeWitt (UDW) detector. We
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consider both when the field is prepared in its vacuum state and when the field
is prepared in a thermal state at a fixed temperature. We allow for a modified
dispersion relation and briefly discuss the inclusion of a finite-time interaction,
touching upon all four of the above assumptions. The contents of this Chapter
are based on an article in preparation in collaboration with Jorma Louko [73].

7.1 Spacetime, field, and detector preliminaries

As in Chapter 3, we work in (2+1)-dimensional analogue Minkowski spacetime
in inertial coordinates (t, x, y) with the metric

ds2 = −dt2 + dx2 + dy2 . (7.1)

We consider a quantised, real scalar field Φ̂ with a dispersion relation that
is isotropic in (x, y) and subject to mild monotonicity conditions, which we
will specify in Section 7.1.1. We do not assume the dispersion relation to be
Lorentz invariant. We denote by HΦ the standard Fock space in which positive
frequencies are defined with respect to the timelike Killing vector ∂t.

To model a cylindrical cavity, we assume the field obeys Dirichlet bound-
ary conditions [167] at some fixed radius r = a > 0, Φ̂(x)|r=a = 0. In polar
coordinates (t, r, θ), where (x, y) = (r cos θ, r sin θ), we decompose the field as

Φ̂(x) =
∑
m∈Z

∑
n∈N

ϕmn(x)âmn +Hc , (7.2a)

ϕmn(x) =
1√

2πa2ωmn |J|m|+1(q|m|n)|
J|m|

(r
a
q|m|n

)
e−iωmnt+imθ , (7.2b)

where ωmn is the (modified) dispersion relation and q|m|n is the nth zero of the
Bessel function of the first kind J|m|.

We probe the field by a pointlike detector undergoing uniform circular motion
parametrised by Minkowski time t, described by the worldline

x(t) = (t, R cos(Ωt), R sin(Ωt)) , (7.3)

where 0 < R < a and Ω > 0 are the orbital radius and angular frequency
respectively. The orbital speed is v = RΩ and we assume the trajectory is
timelike v < 1.
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7.1.1 Response function mode sum

We consider two cases. We address first when the field is prepared in the
Minkowski vacuum |0M⟩. We probe the field by a UDW, as detector described
in Chapter 3 by the interaction Hamiltonian (2.32). We recall that we are working
in an analogue spacetime setting and we denote the detector energy gap by E.
As the inertial response function in 2 + 1 dimensions (2.79) is discontinuous at
E = 0, we assume E ̸= 0.

In the Minkowski vacuum, the response function F of a detector probing
a scalar field with Dirichlet boundary conditions (7.2) is may be calculated
using (7.2) as

F(E, a) =
1

a2

∑
m∈Z

∑
n∈N

J2
|m|
(
R
a
q|m|n

)
ωmnJ2

|m|+1(q|m|n)
δ
(
ωmn −mΩ + E

)
. (7.4)

In the case of a massless Klein-Gordon (KG) field, we have ωmn = q|m|n/a and
we may find a condition on the boundary a such that the detector may register
excitations E > 0. The response function (7.4) is nonzero when the argument
of the delta function vanishes. We have ωmn = q|m|n/a > 0 and by assumption,
Ω > 0. As such, the argument of the delta function in (7.4) may only vanish for
m > 0. The Bessel function zeros q|m|n obey the inequality m < q|m|n [111]. As
such, we have

0 < E = mΩ− q|m|n
a

<
m

a
(aΩ− 1) . (7.5)

We therefore require aΩ > 1, corresponding physically to a point on the bound-
ary r = a co-rotating faster than the speed of light. For de-excitations E < 0, we
find no such restrictions.

We address second when the field has been prepared in a thermal state |β⟩ in
inverse temperature β > 0, where the notion of thermality is with respect to the
time evolution generated by ∂t.

In Chapter 3, we introduced the derivative-coupled interaction Hamilto-
nian (3.3) to sidestep the otherwise infrared-divergent thermal Wightman func-
tion. In a finite-size system with Dirichlet boundary conditions, ωmn > 0 is
discrete and we do not formally require a derivative coupling between the field
and the detector; however, in the large-boundary limit a → ∞, we expect to
recover the Minkowski spacetime thermal response function (3.5), which does
require a derivative-coupled interaction. For a well-defined continuum limit
a→ ∞, we use the derivative-coupled interaction Hamiltonian (3.3) and impose
the mild monotonicity conditions of Section 3.1.1 on the dispersion relation ω in
the large-boundary limit. In particular, we assume that ω is spatially isotropic
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such that ω = ω(|k|), where ω(K) is a function of a non-negative argument and
ω is positive everywhere except possibly at K = 0. We write ω′(K) = dω(K)/dK

and assume that ω′(K) > 0 for K > 0. If ω(0) = 0, we assume that ω′(0) > 0.
With these restrictions on the dispersion relation made, the response function

of a detector probing a scalar field with Dirichlet boundary conditions (7.2)
prepared in a thermal state is given by

F(E, β, a) = F∞(E, a) + ∆Fβ(E, a) , (7.6a)

F∞(E, a) =
E

2

a2

∑
m∈Z

∑
n∈N

J2
|m|
(
R
a
q|m|n

)
ωmnJ2

|m|+1(q|m|n)
δ
(
ωmn −mΩ + E

)
, (7.6b)

∆Fβ(E, a) =
E

2

a2

∑
m∈Z

∑
n∈N

n(βωmn)
J2
|m|
(
R
a
q|m|n

)
ωmnJ2

|m|+1(q|m|n)

(
δ
(
ωmn −mΩ + |E|

)
+ δ
(
ωmn −mΩ− |E|

) )
,

(7.6c)

where F∞ is the vacuum contribution, independent of β, while ∆Fβ is the
additional contribution due to the ambient temperature and n(x) is the Bose
thermal factor (2.40). The notation F∞ indicates the contribution remaining in
the limit β → ∞. We also note that ∆Fβ is even in E and we have written (7.6)
in a way that makes this manifest.

We remark that F∞ is related to the vacuum response function (7.4) by

F∞(E, a) = E
2F(E, a) . (7.7)

As the thermal response function (7.6) is well defined both for a linear-coupled
and derivative-coupled detector model, the relation (7.7) follows by integration
by parts within the transition probability [168].

7.1.2 Finite interaction time

In Appendix D and in [3, 90], it was shown that the detector transition rate may
be written as

P(E) =
λ2

2π

ˆ
R
dω Ŵ(ω)|χ̂(E − ω)|2 , (7.8)

where λ is the coupling constant and Ŵ and χ̂ are the Fourier transforms of the
Wightman function and switching functions respectively. The Fourier transform
of the Wightman function, however, is the stationary response function. The
response function in the long-time limit may be recovered by considering a
switching function such that |χ̂(ω)|2 = δ(ω) is the Dirac delta.
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As such, we may take the stationary response function (7.6) and find the
finite-time response function, Fχ(E) := P(E)/λ2,

Fχ(E, a, β) =
1

2πa2

∑
m∈Z

∑
n∈N

J2
|m|
(
R
a
q|m|n

)
ωmnJ2

|m|+1(q|m|n)
|χ̂(E + ωmn −mΩ)|2

+
1

2πa2

∑
m∈Z

∑
n∈N

n(βωmn)
J2
|m|
(
R
a
q|m|n

)
ωmnJ2

|m|+1(q|m|n)
|χ̂(E + ωmn −mΩ)|2

+
1

2πa2

∑
m∈Z

∑
n∈N

n(βωmn)
J2
|m|
(
R
a
q|m|n

)
ωmnJ2

|m|+1(q|m|n)
|χ̂(E − ωmn +mΩ)|2 .

(7.9)

The finite-time response function (7.9) incorporates several experimentally rele-
vant features including finite-size and finite-interaction-time effects. In particu-
lar, (7.9) is the response of a detector in (2+1)-dimensional analogue Minkowski
spacetime with a cylindrical boundary, undergoing uniform circular motion,
probing a scalar field with dispersion relation ωmn, with Dirichlet boundary
conditions at r = a, initially prepared in a thermal state in inverse temperature
β, with an interaction time described by switching function χ.

In the following Sections, we will specialise to a UDW detector probing a
massless field with KG dispersion relation for an infinite amount of time. In
particular, we will consider the large-boundary limit a→ ∞.

7.2 Large-boundary limit: Vacuum contribution

In this Section, we find the leading and subleading contributions to the vacuum
response function F (7.4) in the large-boundary limit a → ∞ with all other
parameters fixed. We specialise to a KG field, such that the response function is
given by

F(E, a) =
1

a

∑
m∈Z

∑
n∈N

J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
δ(ωmn −mΩ + E) , (7.10)

where ωmn = q|m|n/a.
Given the distributional nature of the response function (7.10), we introduce

the integrated response

G(a) =

ˆ
R
dE σ(E)F(E, a) , (7.11)

where σ ∈ C∞
0 (R) is a real-valued function of compact support such that 0 /∈
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supp{σ} and either supp{σ} ⊂ R>0 or supp{σ} ⊂ R<0.
For the response function (7.10), the integrated response reads

G(a) =
1

a

∑
m∈Z

∑
n∈N

J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(mΩ− ωmn) . (7.12)

In Appendix H, we show that

G(a) =

ˆ
R
dE σ(E)

(
1

2

∑
m>E/Ω

J2
|m|(mv − ER)

− R2

4a3

( ∞∑
n=1

[
π3

2
(n+ 1

4
)2 − 3π

16
− q21n
q1nJ2

2 (q1n)

]
+
π(5π2 − 18)

128

)
δ(|E|−Ω)+o(a−3)

)
,

(7.13)

where δ(|E| − Ω) = δ(E − Ω) + δ(E + Ω).
By comparison with (7.11), we read off the response function as

F(E, a) =
1

2

∑
m>E/Ω

J2
|m|(mv − ER)

− R2

4a3

( ∞∑
n=1

[
π3

2
(n+ 1

4
)2 − 3π

16
− q21n
q1nJ2

2 (q1n)

]
+
π(5π2 − 18)

128

)
δ(|E|−Ω)+o(a−3) ,

(7.14)

where the o-notation is used in a distributional sense.
The leading-order contribution to (7.14) is the mode-sum representation of

the response of a detector undergoing uniform circular motion in (unbounded)
Minkowski spacetime [169]. The subleading term, at order a−3, contributes only
for detectors whose angular frequency is equal to their energy gap. We remark
that numerical evidence suggests that the overall coefficient is negative, as one
might expect on physical grounds; a boundary reduces the density of states.

As a mathematical side outcome of this asymptotic analysis, we find an asymp-
totic expansion of the normalisation factor in (7.12) in terms of the McMahon
expansion for large zeros of the Bessel function, q|m|n as n→ ∞ [111], which we
have not encountered in the existing literature,

1

q|m|nJ2
|m|+1(q|m|n)

∼ π

2
X ′

|m|(πα|m|n) , (7.15)

as n→ ∞, where α|m|n := n+ 1
2
|m|− 1

4
and X|m| is given by (H.7). The McMahon

expansion reads q|m|n ∼ X|m|(πα|m|n). The proof of this asymptotic behaviour
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was provided by Gergő Nemes (Tokyo Metropolitan University) [170] and is
given in Appendix H.

7.2.1 Static observers

In the static observer limit, Ω → 0 with R fixed, we note that the subleading term
in (7.14) is proportional to δ(E). We do not consider detectors with an energy
gap of zero, hence this correction term vanishes in the limit Ω → 0.

The behaviour of the leading-order term depends on the sign of the energy
gap. For E > 0, the summation in the leading contribution vanishes. For E < 0,
the summation becomes

lim
Ω→0

1

2

∑
m>E/Ω

J2
|m|(mv − ER) =

1

2

∑
m∈Z

J2
|m|(ER) =

1

2
, (7.16)

where we have used Neumann’s addition formula [111],
∑

m∈Z J
2
|m|(x) = 1. This

may be summarised as

lim
Ω→0

F(E, a) =
1

2
Θ(−E) + o(a−3) , (7.17)

which we recognise as the response function for a detector undergoing inertial
motion in unbounded Minkowski spacetime (2.79).

7.3 Large-boundary limit: Thermal contribution

In this Section, we find the leading and subleading contributions to the thermal
response function F(E, a, β) in the large-boundary limit a → ∞ with all other
parameters fixed. We specialise to a KG field, such that the response function is
given by

F(E, β, a) = F∞(E, a) + ∆Fβ(E, a) , (7.18a)

F∞(E, a) =
E

2

a

∑
m∈Z

∑
n∈N

J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
δ
(
ωmn −mΩ + E

)
, (7.18b)

∆Fβ(E, a) =
E

2

a

∑
m∈Z

∑
n∈N

n(βωmn)
J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)

(
δ
(
ωmn −mΩ + |E|

)
+ δ
(
ωmn −mΩ− |E|

) )
,

(7.18c)

where ωmn = q|m|n/a and n is the Bose thermal factor (2.40).
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To address F∞, we recall the relation F∞(E, a) = E
2F(E, a) (7.7). As such,

the asymptotic behaviour of F∞ is given by (7.14) multiplied by E
2
.

We address now the thermal contribution to the response function ∆Fβ . Given
the distributional nature of ∆Fβ , we introduce the integrated response function
contribution due to finite temperature

∆Gβ(a) =

ˆ
R
dE E

−2
σ(E)∆Fβ(E) , (7.19)

where σ ∈ C∞
0 (R) is a real-valued function of compact support such that 0 /∈

supp{σ} and either supp{σ} ⊂ R>0 or supp{σ} ⊂ R<0.
For the thermal contribution to the response function ∆Fβ (7.18c), the inte-

grated response due to finite temperature reads

∆Gβ(a) =
1

a

∑
m∈Z

∑
n∈Z

n(βωmn)
J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)

(
σ(mΩ− ωmn)

+ σ(−(mΩ− ωmn))
)
. (7.20)

In Appendix I, we show that

∆Gβ(a) =
ˆ
R
dE E

−2
σ(E)

(
E

2

2

∑
m>|E|/Ω

n(βω+)J
2
|m|(ω+R) +

E
2

2

∑
m>−|E|/Ω

n(βω−)J
2
|m|(ω−R)

− R2E
2

2βa2

[ ∞∑
n=1

(
π2

2
(n+ 1

4
)− q1n

q1nJ2
2 (q1n)

)
+

(23π2 − 36)

192

]
δ(|E| − Ω) + o(a−2)

)
,

(7.21)

where ω± = mΩ ∓ |E| and δ(|E| − Ω) = δ(E − Ω) = δ(E + Ω). By comparison
with (7.19), we read off the thermal contribution to the response function ∆Fβ as

∆Fβ(E, a) =
E

2

2

∑
m>|E|/Ω

n(βω+)J
2
|m|(ω+R) +

E
2

2

∑
m>−|E|/Ω

n(βω−)J
2
|m|(ω−R)

− R2E
2

2βa2

[ ∞∑
n=1

(
π2

2
(n+ 1

4
)− q1n

q1nJ2
2 (q1n)

)
+

(23π2 − 36)

192

]
δ(|E| − Ω) + o(a−2) .

(7.22)

The leading-order contribution to (7.22) is the mode-sum representation of the
thermal contribution to the response function of a detector undergoing uniform
circular motion in (unbounded) Minkowski spacetime [1]. The subleading term,
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at order a−2, contributes only for detectors whose angular frequency is equal to
their energy gap. As for the vacuum contribution, numerical evidence suggests
that the overall coefficient is negative, as expected. We remark that the presence
of an ambient temperature means that a detector is more sensitive to a boundary.

7.3.1 Static observers

In the static observer limit, Ω → 0 with R fixed, (7.22) reduces to

lim
Ω→0

∆Fβ(E, a) =
1

2
n(β|E|)E2∑

m∈Z
J2
|m|(|E|R) , (7.23a)

=
1

2
E

2
n(β|E|) , (7.23b)

using Neumann’s addition formula [111].
The static observer in a thermal bath therefore registers the response function

given by (7.17) and (7.23b),

Fstatic(E, a, β) =
E

2

2
Θ(−E) + E

2

2
n(β|E|) . (7.24)

We recall that the overall factor of E
2

arises from the derivative coupling, ensur-
ing that (7.24) remains finite in the limit E → 0. We may calculated the detailed
balance temperature (3.9) experienced by the static detector,

TDB =
1

β
. (7.25)

As expected, static observers in a thermal bath register a response function with
the characteristics of a thermometer [26].

7.4 Summary

In this Chapter, motivated by the experimental modelling of Chapter 4, we
addressed the effect of thermality and finite size on the experience of a UDW
detector. Initially allowing for full generality, we included a modified dispersion
relation, an initial thermal state, boundary conditions, and a finite-time interac-
tion, resulting in the response function (7.9). We then specialised to a KG field
probed by a detector for an infinite amount of time.

In the large-boundary limit a → ∞, we found the leading and subleading
contributions to the response function both when the field was prepared in its
vacuum state and when the field was prepared in a thermal state in a fixed



Chapter 7. Summary 142

temperature. In both cases, we recovered at leading order the response function
for a detector in unbounded Minkowski spacetime. At subleading order, we
found resonance peaks in the detector’s response, more significant when the
field has an ambient temperature. The overall sign of the resonance peaks is
negative, representing the reduction in the density of states in the system due to
the presence of a boundary. These peaks are only present for detectors whose
angular frequency matches their energy gap.

In Chapter 3 and Chapter 5, we found that a detector with E > Ω is unable to
distinguish between linear motion through a thermal bath and circular motion
through a thermal bath at the same speed. In this Chapter, we see that the
interplay between the angular frequency Ω and detector energy gap E again
plays a role — resonant detectors with E = Ω are more sensitive to a cylindrical
boundary. Furthermore, resonant detectors probing a field in a thermal state are
yet more responsive to a cylindrical boundary.

In this Chapter, we did not discuss the detailed balance temperature as a mea-
sure of detector response; the definition of the effective, detailed balance tem-
perature (3.9) involves the natural logarithm of the ratio of response functions.
The response functions (7.10) and (7.18) and their asymptotic expansions (7.14)
and (7.22) contain contributions from Dirac deltas and hence their natural log-
arithms are not well defined. We may observe from (7.9) that the Dirac deltas
arise from the long-interaction-time limit. As such, a detector interacting for a
strictly finite amount of time will register a well-defined effective temperature.
We leave the analysis of finite-time effects to future work.

In the next Chapter, we consider the spacetimes of constant positive and
negative curvature, de Sitter (dS) and Anti-de Sitter (AdS), in which a posi-
tive curvature provides a notion of an ambient temperature, via the Euclidean
vacuum, whereas negative curvature provides a notion of spatial confinement.
Using the results of this Chapter and Chapter 3, we analyse how closely dS
and AdS may be considered curved-spacetime analogues of finite temperature
and finite size.



Chapter 8

Interlude — Circular motion in
(anti-)de Sitter spacetime: thermality
versus finite size

“The field equations, in their most
general form, contain a term
multiplied by a constant, which is
denoted by the Greek letter Λ...
sometimes called the “cosmical
constant.” This is a name without any
meaning.”

Willem de Sitter

Kosmos (1932)

MINKOWSKI spacetime is the spacetime of constant vanishing curvature; it
is an exact vacuum solution of Einstein’s field equations with vanishing

cosmological constant Λ. If one allows the inclusion of a nonzero cosmological
constant, one may find two further exact vacuum solutions of constant positive
curvature and constant negative curvature, de Sitter (dS) and Anti-de Sitter
(AdS), respectively [171–173]. These solutions may be viewed as one-parameter
extensions of Minkowski spacetime, as both spacetimes reduce to Minkowski
spacetime in the limit of vanishing cosmological constant.

In our presentation of the Unruh effect in Chapter 2, there were two key
ingredients: that the underlying spacetime be Minkowski and that the trajectory
be linearly accelerated. Throughout this Thesis, we explored other Unruh-like
phenomena [71, 72, 91], such as circular motion and hypertor motion, giving a
classification of all such uniformly accelerated trajectories in Chapter 6. Now,
instead of changing the trajectory, one may consider changing the underlying
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spacetime; the two natural candidates are dS and AdS.
The dS and AdS spacetimes of n+ 1 dimensions may be embedded in Rn+1,1

and Rn,2 respectively. In 1997, Deser and Levin [174, 175] demonstrated that the
Unruh effect in the embedding spacetime descends into the embedded space-
times. In AdS, however, there is a critical acceleration [144], below which a
detector may not excite and no thermality may be registered. This approach,
investigating a spacetime through its embedding space, has become known as
the Global Embedding Minkowski Spacetime (GEMS) approach. Finally, in the
domain of the AdS/CFT correspondence, there is an exact solution to the geom-
etry describing a string accelerating through AdS [176], in which geometry, due
to the acceleration, a horizon forms, splitting the string into two causally discon-
nected pieces; hence, a Gibbons-Hawking temperature [50] may be associated
with the horizon, the Unruh temperature.

In this Chapter, we investigate the circular motion Unruh effect in a genuinely
relativistic but curved-spacetime setting, in 2 + 1 dS and 2 + 1 AdS spacetimes,
where positive curvature provides a notion of an ambient temperature, via the
Euclidean vacuum, whereas negative curvature provides a notion of spatial con-
finement. For AdS, the role of a boundary is played by the asymptotically AdS
infinity, where a boundary condition is needed to make the quantum dynamics
unitary [177], as information may reach spatial infinity in finite coordinate time.
For the static patch of dS, to which we refer as Rindler-de Sitter (RdS) space-
time, the restriction of the Euclidean vacuum is a thermal state [178–180] in a
temperature proportional to the square root of the cosmological constant.

In the limit of a small cosmological constant, the ambient temperature of RdS
tends to zero and the time for information to reach spatial infinity in AdS tends
to infinite. By comparison with the results of Chapter 3 and Chapter 7, we
investigate how closely RdS and AdS may be considered as curved-spacetime
analogues of a low ambient temperature and a large cylindrical boundary. The
contents of this Chapter were extracted from, or based on, the preprint “Cir-
cular motion in (anti-)de Sitter spacetime: thermality versus finite size” [5] in
collaboration with Jorma Louko.

8.1 Anti-de Sitter spacetime

In this Section, we consider the spacetime of constant negative curvature, AdS
spacetime [84]. AdS is not globally hyperbolic owing to its timelike boundary at
spatial infinity, through which information can propagate [177]. However, by
imposing boundary conditions at spatial infinity, one can employ a consistent
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quantisation scheme for a quantum field [177, 181–187]. We adopt the Dirichlet
boundary condition at spatial infinity and consider the response of the detector
in the small cosmological constant limit, with the field in its global vacuum.
Thermal states will be considered in Section 8.2.

8.1.1 Spacetime, field, and detector preliminaries

Anti-de Sitter spacetime in 2 + 1 dimensions can be embedded in R2,2 with the
embedding equation

η2,2ABX
AXB = −α2 , (8.1)

where α > 0 is the radius of curvature [84], XA = (T 0, T 1, X1, X2) are the
coordinates on R2,2, and η2,2AB = diag(−1,−1, 1, 1). The cosmological constant Λ
is related to α by Λ = −1/α2. The Ricci scalar of AdS3 is R = −6/α2. We have
adopted the notation ηp,q to emphasise the signature of the embedding space.

In this Chapter, we work in the Universal Covering Space of Anti-de Sitter
(CAdS), which contains no closed timelike curves. Points on CAdS are denoted
by x. We use the global coordinates (t, r, θ) in which the metric on AdS3 is given
by

ds2 = −
(
1 +

r2

α2

)
dt2 +

dr2

1 + r2

α2

+ r2dθ2 , (8.2)

where −∞ < t < ∞, 0 ≤ r < ∞, and 0 ≤ θ < 2π, with the usual coordinate
singularity at r = 0 and θ periodicially identified with period 2π. The embedding
in the embedding space R2,2 is given by

T 0 =
√
r2 + α2 cos(t/α) , (8.3a)

T 1 =
√
r2 + α2 sin(t/α) , (8.3b)

X1 = r cos θ , (8.3c)

X2 = r sin θ . (8.3d)

The small cosmological constant limit Λ → 0− is given by the limit α → ∞,
which recovers Minkowski spacetime R2,1, as can be seen by the form of the
metric (8.2).

We consider a quantised, real, massless, conformally coupled scalar field Φ̂

and we probe the field with a pointlike detector in uniform circular motion,

(t, r, θ) = (γτ,R,Ωγτ) , (8.4)

where τ is proper time, R > 0 is the radius, Ω = dθ
dt
> 0 is the angular velocity,
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and
γ =

1√
1−R2Ω2 + R2

α2

, (8.5)

to which we refer as the Lorentz factor for circular motion in AdS. We assume
that the worldline is timelike, RΩ <

√
1 +R2/α2.

In the large-boundary limit, we have limα→∞ γ = 1√
1−R2Ω2 = Γ, where Γ is the

Lorentz factor associated with circular motion in Minkowski spacetime R2,1.
The detector-field interaction is described by the interaction Hamiltonian

(2.32). The detector energy gap is denoted E ∈ R \ {0} and the Hamiltonian of
the detector HD generates dynamics with respect to the proper time τ .

In this Section, we will consider first a finite-time interaction, working with
the response function

F(E) =

ˆ
dτ ′dτ ′′χ(τ ′)χ(τ ′′)e−iE(τ ′−τ ′′)W(τ ′, τ ′′) , (8.6)

where W(τ ′, τ ′′) is the pullback of the Wightman function W(x′, x′′) = ⟨Φ̂(x′)Φ̂(x′′)⟩
to the circular trajectory.

We prepare the field Φ in the global vacuum state, defined with respect to
the global timelike Killing vector ∂t in coordinates (8.2). Then, the Wightman
function for a scalar field in AdS3 is given by [34, 188]

W(x′, x′′) =
1

4π

(
1√

σ(x′, x′′)
+

ζ√
σ(x′, x′′) + 4α2

)
, (8.7a)

σ(x′, x′′) = η2,2AB

(
X ′A −X ′′A

)(
X ′B −X ′′B

)
, (8.7b)

where ζ ∈ {−1, 0, 1} corresponding to Dirichlet, transparent, or Neumann
boundary conditions at spatial infinity and σ is the geodesic squared distance in
the embedding space.

We will only consider Dirichlet boundary conditions, ζ = −1. We adopt
the notation W(τ ′, τ ′′) = W(x(τ ′), x(τ ′′)) and σ(τ ′, τ ′′) = σ(x(τ ′), x(τ ′′)) for the
pullback of the Wightman function (8.7a) and geodesic squared distance (8.7b)
to a trajectory x(τ) parametrised by its proper time. Along a stationary trajec-
tory [4, 71, 91], such as uniform circular motion, the Wightman function (8.7a) is
stationary in the sense of (2.42). The Wightman function should be understood
in the distributional sense as limε→0+ W(τ ′−τ ′′− iε, 0). Then, in (8.7a), the branch
of the square root is taken such that the limit ε→ 0+ of the square root is positive
when σ(x′, x′′) > 0 [34].

The geodesic squared distance in global coordinates along the circular trajec-
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r = 0 r = ∞

Figure 8.1: Conformal diagram of CAdS.

tory is given by

σ(s, 0) = −4α2 sin2
(γs
2α

)
− 2R2

(
cos(Ωγs)− cos

(γs
α

))
. (8.8)

The Wightman function associated with (8.8) has a pole at s = 0 and two infinite
families of branch points. In the large-boundary limit, these branch points lie
around s = 2α

γ
πn and s = 2α

γ
(2k+1)

2
π with n, k ∈ Z. As such, the singularity

structure of the Wightman function in CAdS3 is fundamentally different from
the Wightman function of the Minkowski vacuum in R2,1, which has a single
pole at s = 0.

8.1.2 Finite-time interaction

To sidestep the technical challenge of handling the branch points directly, we
use a switching function χ of compact support. For α sufficiently large, the
only singularity in the domain of the integral is the pole at s = 0. Keeping
the support of the switching function fixed, we perform a large-α expansion
under the integral by a dominated-convergence argument. After this, we take
the long-interaction-time limit.

Using the time-translation of the Wightman function (8.7a) along the circular
trajectory, we rewrite the response function (8.6) as

F(E) =

ˆ
dsX(s)e−iEsW(s, 0) , (8.9)

where X is the self-convolution of χ,

X(s) =

ˆ
dτ ′ χ(τ ′ + 1

2
s)χ(τ ′ − 1

2
s) . (8.10)

We assume χ to be smooth and of compact support. X is then also smooth and of
compact support. In the long-interaction-time limit, one usually lets χ→ 1 and
divides by the total interaction time because the response function (8.6) diverges
linearly with the interaction time. In terms of X (8.10), this process amounts to
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the limit X → 1.
In F(E) (8.9), we first handle the singular behaviour at s = 0 coming from

the term 1/(4π
√
σ(s, 0) ) in (8.7a), understood again in the distributional sense

limε→0+ 1/(4π
√
σ(s− iε, 0) ), where the square root in the denominator is posi-

tive imaginary for s > 0 and negative imaginary for s < 0.
Around s = 0, we have the expansion

W(s− iε, 0) ∼ 1

4πi(s− iε)
. (8.11)

As in Chapter 5, we may isolate the singular contribution to the Wightman
function by adding and subtracting (8.11) under the integral [3, 69],

F(E) =

ˆ
dsX(s)e−iEs

(
W(s− iε, 0)− 1

4πi(s− iε)
+

1

4πi(s− iε)

)
. (8.12)

In the first two terms in (8.12), the singularities at s = 0 cancel, and the ε→ 0+

limit may be taken under the integral. We may hence split the integral as

F(E) = F0(E) + Fcorr(E) , (8.13a)

F0(E) =

ˆ
ds

X(s)e−iEs

4πi(s− iε)
, (8.13b)

Fcorr(E) =

ˆ
dsX(s)e−iEs

(
W(s, 0)− 1

4πis

)
. (8.13c)

To address (8.13b), we appeal to the Sokhotski-Plemelj (pol. Sochocki, rus. Со-
хоцкий) theorem [189],

lim
ε→0+

ˆ b

a

dx
f(x)

x− iε
= iπf(0) + P

ˆ b

a

dx
f(x)

x
, (8.14)

where P indicates the Cauchy principal value. An application of (8.14) to (8.13b)
leads to

F0(E) =
1

4
X(0)− 1

2π

ˆ ∞

0

ds
X(s) sin(Es)

s
, (8.15a)

where we have used that X(s) is even.
Owing to the compact support ofX , we may express the integrand of Fcorr (8.13c)

as an asymptotic power series in α, where, for sufficiently large α, the singulari-
ties of the Wightman function are outside of the support of X and the error term
is uniform in s.

Using the Wightman function (8.7a) with Dirichlet boundary conditions ζ =
−1, Fcorr (8.13c) may be written as
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Fcorr(E) =
1

4πi

ˆ
dsX(s)e−iEs

(
1√

−σ(s, 0)
− 1

s

)
− 1

8πα

ˆ
ds

X(s)e−iEs√
1 + σ(s,0)

4α2

.

(8.16)

We recall that
√

−σ(s, 0) is positive for s > 0 and negative for s < 0, the
integrand in the first term in (8.16) is nonsingular at s = 0, σ(s, 0) (8.8) for fixed
s ̸= 0 has a large-α expansion in integer powers of α−2, and X has compact
support. It then follows that the large-α expansion of (8.16) proceeds in integer
powers of α−1. The even powers will come from the first term and the odd
powers will come from the second term. Note that the first term is independent
of the boundary condition at infinity in (8.7a) and so contains only curvature
corrections, whereas the second term is responsible for both boundary effects
and curvature corrections.

8.1.3 Large-α limit

In this Section, we calculate the first four terms in the large-α expansion of the
response function (8.13). We interpret each term in the long-interaction-time
limit and compare these terms with the large-boundary limit in 2+ 1 Minkowski
spacetime with a cylindrical boundary [73] of Chapter 7.

We begin with the terms of order unity. The first is given by F0 (8.15) and the
second is found by a large-α expansion under the first integral in (8.16),

F (0)
corr(E) = lim

α→∞
Fcorr(E) , (8.17a)

=
1

2π

ˆ ∞

0

dsX(s)
sin(Es)

s

1− 1√
Γ2 − 4R2 sin2

(
ΓΩ
2
s
)
/s2

 , (8.17b)

where Γ := (1−R2Ω2)−1/2 is the Lorentz factor associated with circular motion
in Minkowski spacetime. We are able to take the limit under the integral by the
dominated convergence theorem owing to the compact support of X . Since the
integrand of (8.17b) is even, we have combined the s < 0 and s > 0 contributions
to write the integral over s > 0.

We find the order-α−1 contribution by a large-α expansion under the second
integral in (8.16), leading to

F (1)
corr = − 1

8πα

ˆ
dsX(s)e−iEs . (8.18)

The order-α−2 contribution comes from the large-α under the first integral
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in (8.16)

F (2)
corr(E) = − 1

8πiα2

ˆ
dsX(s)e−iEs

(
− 1

12
Γ4s+R4ΩΓ3 sin(ΩΓs)−ΩΓs

s2

)
(
Γ2 − 4R2 sin2

(
ΓΩ
2
s
)
/s2
)3/2 . (8.19)

The integrand is nonsingular at s = 0.
The order-α−3 contribution arises from the large-α expansion under the second

integral in (8.16),

F (3)
corr(E) = − 1

64πα3

ˆ
dsX(s)e−iEs

(
Γ2s2 − 4R2 sin2

(
ΓΩ
2
s
))
. (8.20)

8.1.3.1 Long-interaction-time limit

We consider now the long-interaction-time limit X(s) → 1 of the terms in the
asymptotic expansion. The leading-order contributions are the limiting forms
of (8.15) and (8.17b),

F0(E) =
1

2
Θ(−E) , (8.21a)

F (0)
corr(E) =

1

2π

ˆ ∞

0

ds
sin(Es)

s

1− 1√
Γ2 − 4R2 sin2

(
ΓΩ
2
s
)
/s2

 . (8.21b)

The first term (8.21a) is the response of an inertial detector in 2 + 1 Minkowski
spacetime (2.79), whereas both terms combined are the response function of
a detector in uniform circular motion in 2 + 1 Minkowski spacetime, given
by (2.80b).

The order-α−1 term (8.18) in the long-interaction-time limit is

F (1)
corr(E) = − 1

4α
δ(E) , (8.22)

which vanishes as E ̸= 0 by assumption.
The order-α−2 term (8.19) is

F (2)
corr(E) = − 1

4πα2

ˆ ∞

0

ds sin(Es)

(
− 1

12
Γ4s+R4ΩΓ3 sin(ΩΓs)−ΩΓs

s2

)
(
Γ2 − 4R2 sin2

(
ΓΩ
2
s
)
/s2
)3/2 . (8.23)

We shall return to the interpretation of this term at the end of this Section.
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The order-α−3 term (8.20) can be expressed as

F (3)
corr(E) =

1

64πα3

(
2R2 + Γ2 ∂2

∂E2

) ˆ
dsX(s)e−iEs

− R2

64πα3

ˆ
dsX(s)

(
e−i(E−ΓΩ)s + e−i(E+ΓΩ)s

)
. (8.24)

In the long-interaction-time limit, (8.24) has the distributional limit

F (3)
corr(E) =

1

32α3

(
2R2 + Γ2 ∂2

∂E2

)
δ(E)− R2

32α3
(δ(E − ΓΩ) + δ(E + ΓΩ)) .

(8.25)
The first term in (8.25) vanishes since E ̸= 0 by assumption, resulting in

F (3)
corr(E) = − R2

32α3
(δ(E − ΓΩ) + δ(E + ΓΩ)) . (8.26)

The deltas in (8.20) are resonance peaks at the detector’s angular frequency.
Recall that we introduced the AdS length scale α as a model of the finite-

size cylindrical boundary in Minkowski spacetime investigated in Chapter 7.
We may now compare our expansion (8.21)- (8.26) to that found in Section 7.2.
Our order-α0 contribution (8.21) is equal to the Minkowski spacetime response
function (2.80b). Our next contribution (8.23) is order α−2 and the response in
Minkowski spacetime with cylindrical boundary has no corresponding term.
This term must hence be interpreted as a curvature correction. Indeed, the Ricci
scalar of CAdS3 is proportional to α−2. Our next contribution (8.26) is order α−3,
coming from the boundary contribution to the Wightman function (8.7a), and
we find that this term does agree, in its falloff and its resonance structure, with
the corresponding term in Minkowski spacetime with a cylindrical boundary,
given by (7.14).

8.1.4 Static observers

In this Section, we consider the term-wise behaviour of the response function for
a static observer, obtained by setting Ω = 0. The proper acceleration of a static
observer is given by

A =
1

α

(
R
α

)√
1 +
(
R
α

)2 , (8.27)

which is bounded above by α−1 and reduces to 0 for the geodesic observer at
R = 0. The limit limΩ→0F(E) is well defined both at the level of the full response
function and also at the level of the asymptotic expansion in α (8.17b)-(8.20);
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hence, we simply evaluate the terms in this expansion at Ω = 0, obtaining

F0(E)|Ω=0 = F0(E) , (8.28a)

F (0)
corr(E)

∣∣
Ω=0

= 0 , (8.28b)

F (1)
corr(E)

∣∣
Ω=0

= − 1

8πα

ˆ
dsX(s) cos(Es) , (8.28c)

F (2)
corr(E)

∣∣
Ω=0

= − 1

96πα2

ˆ
ds sX(s) sin(Es) , (8.28d)

F (3)
corr(E)

∣∣
Ω=0

= − 1

64πα3

ˆ
ds s2X(s) cos(Es) , (8.28e)

where we have used the evenness of X(s). None of the above terms depend
on R; however, it can be shown that the order-α−4 contribution F (4)

corr(E), not
displayed here, does.

In the long-interaction-time limit, X(s) → 1, Eqs. (8.28) reduce to

F0(E)|Ω=0 = F0(E) , (8.29a)

F (0)
corr(E)

∣∣
Ω=0

= 0 , (8.29b)

F (1)
corr(E)

∣∣
Ω=0

= − 1

4α
δ(E) , (8.29c)

F (2)
corr(E)

∣∣
Ω=0

=
1

24α2

∂

∂E
δ(E) , (8.29d)

F (3)
corr(E)

∣∣
Ω=0

=
1

16α3

∂2

∂E2
δ(E) , (8.29e)

obtained by writing the powers of s under the integral in (8.28) as derivatives
with respect to E outside the integral. Since we have assumed E ̸= 0, the
correction terms (8.29c)-(8.29e) vanish. Proceeding to higher orders in α, all
correction terms in this limit are derivatives of δ(E) and vanish. This is consistent
with the expectation from the GEMS paradigm [174, 175] that a detector on the
static worldline, with acceleration less than α−1, should not see thermality, and
with the static detector analysis in [144].

8.2 Thermal states in CAdS

In this Section, we generalise the AdS analysis of Section 8.1 from the global
vacuum to a thermal state in inverse temperature β. We first consider thermal
states in a general static spacetime and then specialise to CAdS. We calculate the
leading corrections to the response function in the large-α limit.
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8.2.1 Thermal states in static spacetimes

We consider a quantised, conformally coupled, massless, real, scalar field Φ̂

prepared in a thermal state in an (n+ 1)-dimensional static spacetime (M, gµν).
Such a spacetime admits a coordinate system in which the metric is given by

ds2 = −g00(x)dt2 + hij(x)dx
idxj . (8.30)

The conformally coupled, massless, Klein-Gordon (KG) equation is given by

0 = (2− ξR) Φ̂(x) , (8.31a)

=

(
g00(x)∂0∂0 +

1√
−g(x)

∂i
√

−g(x)hij(x)∂j − ξ(n)R
)
Φ̂(x) , (8.31b)

where g(x) = det(gµν), R is the Ricci scalar curvature, and ξ(n) = (n− 1)/(4n)

is the conformal coupling. If we consider the mode decomposition

Φ̂(x) =
∑
k

ϕk(x)âk +Hc , (8.32)

then the field modes ϕk are also solutions to (8.31b). We will specify the momenta
k in more detail later. Due to the separation of time and space in (8.31b), the
equation admits a separable solution. The positive-frequency field modes with
respect to the Killing vector ∂t are of the form

ϕk(x) =
1√
2ωk

fk(x)e
−iωkt . (8.33)

In static spacetimes, in coordinates adapted to the staticity (8.30), the KG norm
is given by

(ϕ1, ϕ2)= i

ˆ
Σ

dnx
√

−g(x)g00(x)(ϕ1∂0ϕ
∗
2 − ϕ∗

2∂0ϕ1) , (8.34)

where Σ is any Cauchy surface. We assume that {ϕk} forms a complete set,
which we normalise with respect to the KG norm (8.34),

(ϕk(x), ϕk′(x)) = δkk′ = −(ϕ∗
k(x), ϕ

∗
k′(x)) , (8.35)

(ϕk(x), ϕ
∗
k′(x)) = 0 . (8.36)
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As a consequence of this normalisation (8.35), the completeness relation of the
spatial modes fk is

−
ˆ

dnx
√

−g(x)g00(x)fk(x)f ∗
k′(x) = δkk′ . (8.37)

By restricting to a static spacetime, the field Hamiltonian Ĥ is time indepen-
dent and, for field modes (8.30), Ĥ is given by [190–193]

Ĥ =
1

2

∑
k

ωk

(
âkâ

†
k + â†kâk

)
. (8.38)

Due to the time independence of the Hamiltonian (8.38), conventional con-
cepts about thermal averaging are still valid in this spacetime [190]. The thermal
expectation value of an operator Â at inverse temperature β = 1/T is given by
the statistical average over a canonical ensemble,

⟨Â⟩β =
Tr
(
e−βĤÂ

)
Tr
(
e−βĤ

) , (8.39)

and the local temperature observed by a static observer on a (static) curved
spacetime is given by Tolman’s law [194–196],

Tobs(x) =
T√

−g00(x)
. (8.40)

In AdS in the coordinates (8.3), we have −g00(x) = 1 at the origin, giving a
distinguished reference point. In the RdS spacetime of Section 8.3, we will use
the coordinates (8.56), in which the origin is similarly distinguished. In writing
exp(−βĤ) in (8.39), we consider β as measured by a static observer at the origin.

The operator in whose thermal expectation value we are interested is Φ̂(x)Φ̂(x′).
This operator-valued distribution is well defined and requires no renormalisa-
tion. It follows from (8.39) that the thermal expectation value is given by

⟨Φ̂(x)Φ̂(x′)⟩β =
∑
k

(1 + n(βωk))ϕk(x)ϕ
∗
k(x

′) + n(βωk)ϕ
∗
k(x)ϕk(x

′) , (8.41)

where n(x) is the Bose thermal factor (2.40). The distributional character of
⟨Φ̂(x)Φ̂(x′)⟩β can be encoded by the insertion of suitable iε convergence factors
in (8.41). We note that this is the same expression (2.39b) as in our earlier
discussion of thermal states in Minkowski spacetime in Chapter 2.
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8.2.2 Field and detector preliminaries

Specialising now to CAdS, we consider a quantised, conformally coupled, mass-
less scalar field Φ̂,

Φ̂(t, r, θ) =
∑
k

ϕk(t, r, θ)âk +Hc , (8.42)

where the annihilation âk and creation â†k operators obey the commutation
relation [âk, â

†
k′ ] = δk,k′ . The Hilbert space is a Fock space with a Fock vacuum

|0⟩ satisfying âk |0⟩ for all k.
We prepare the field in a thermal state in inverse temperature β. In place

of the interaction Hamiltonian (2.32), we use a derivative-coupled interaction
Hamiltonian [1, 73],

ĤI = λχ(τ)µ̂(τ)⊗ d

dτ
Φ̂(x(τ)) . (8.43)

Note that the derivative is with respect to proper time τ , rather than Minkowski
time t as in (3.3). The derivative in (8.43) cures the infrared divergence that
occurs in the finite temperature Wightman function in 2 + 1 dimensions in the
α → ∞ limit [1, 73].

Working again to first order in perturbation theory in λ, the thermal response
function is given by

F(E, β) =

ˆ
dτ ′dτ ′′ χ(τ ′)χ(τ ′′)e−iE(τ ′−τ ′′)Wβ(τ

′, τ ′′) , (8.44)

where Wβ(τ
′, τ ′′) = ⟨ d

dτ ′
Φ̂(x(τ ′)) d

dτ ′′
Φ̂(x(τ ′′))⟩

β
is the thermal Wightman function.

We can calculate the thermal Wightman function in the same way as the
vacuum Wightman function construction in [188] by utilising that CAdS is
conformal to half of Einstein Static Universe (ESU) [177]. Then, the field modes
in CAdS, normalised with respect to the KG norm (8.34), are given by

ϕlm(t, r, θ) =
1(

1 + r2

α2

)1/4
√

1

4πα

(l −m)!

(l +m)!
Pml

 1√
1 + r2

α2

 eimθ−iωlt , (8.45)

where l ∈ N0 = {0, 1, 2, . . . }, |m| ≤ l, ωl = 1
α
(l + 1

2
), and Pml is the associated

Legendre function of degree l and orderm, with argument taking values between
−1 and +1, also known as Ferrers’ functions or associated Legendre functions
on the cut [111]. Appropriate boundary conditions are required to ensure the
well-posedness of the Cauchy problem [177, 181]. We adopt Dirichlet boundary
conditions. As in [188], we do this by subtracting the antipodal Wightman
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function in ESU from the Wightman function; we may cover ESU by coordinates
(σ, ρ, θ), where −∞ < σ < ∞, 0 ≤ ρ < π, and 0 ≤ θ < 2π, then the Wightman
function antipodal to W(x, x′) is W(xA, x

′), where x = (σ, ρ, θ) and xA = (σ, π −
ρ, θ). After pulling back to the circular trajectory (8.4), the thermal, derivative-
coupled, Wightman function also enjoys the time-translation symmetry of the
linearly coupled Wightman function (8.7a).

The thermal Wightman function (8.41) and response function split into vac-
uum and thermal contributions respectively,

Wβ(s, 0) = W∞(s, 0) + ∆Wβ(s, 0) , (8.46a)

F(E, β) = F∞(E) + ∆Fβ(E) . (8.46b)

The vacuum contribution F∞ is equal to E2 times the result from Section 8.1.3.
We now focus on the contribution due to the ambient temperature, ∆Fβ .

In the long-interaction-time limit, X → 1, ∆Fβ is given by

∆Fβ(E) =

ˆ
ds e−iEs∆Wβ(s, 0) , (8.47)

where

∆Wβ(s, 0) =
γ2

4πα

1√
1 + R2

α2

∞∑
l=0

l∑
m=−l

(ωl −mΩ)2
(l + |m|)!
(l − |m|)!(1− (−1)l)n(βωl)

×

P−|m|
l

 1√
1 + R2

α2

2

2 cos((ωl −mΩ)γs) . (8.48)

γ is given by (8.5), the factor (ωl − mΩ)2 comes from the derivative coupling,
the ratio of factorials is due to Rodrigues’ formula for the associated Legendre
polynomials [111], the factor (1 − (−1)l) comes from the Dirichlet boundary
conditions, and n is the Bose thermal factor. Due to the Dirichlet boundary
conditions, only odd l contribute to ∆Wβ and we change summation variable to
l = 2k+1, k ∈ N0. Finally, we introduce the Heaviside theta [111] Θ(l+ 1

2
−|m|) =

Θ(αωl − |m|) to extend the summation in m to the integers Z and exchange the
summation order.

∆Wβ(s, 0) =
γ2

2πα

1√
1 + R2

α2

∞∑
m=−∞

∞∑
k=0

(ωk −mΩ)2Θ(αωk − |m|)(2k + 1 + |m|)!
(2k + 1− |m|)!
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× n(βωk)

P−|m|
2k+1

 1√
1 + R2

α2

2

2 cos((ωk −mΩ)γs) , (8.49)

where now ωk =
1
α
(2k + 3

2
). The thermal contribution to the response function is

then

∆Fβ(E) =
1

α

E2√
1 + R2

α2

∞∑
m=−∞

∞∑
k=0

Θ(αωk − |m|)n(βωk)
(2k + 1 + |m|)!
(2k + 1− |m|)!

×

P−|m|
2k+1

 1√
1 + R2

α2

2(
δ(E − γ(ωk −mΩ)) + δ(E + γ(ωk −mΩ))

)
. (8.50)

The Dirac deltas in (8.50) show that ∆Fβ(E) is a distribution in E.

8.2.3 Large-α limit

In this Section, we consider the large-α asymptotic behaviour of the contribution
to the response function due to the ambient temperature ∆Fβ (8.50).

Both in Minkowski spacetime with a boundary and CAdS, the thermal con-
tribution to the response function ∆Fβ ((7.18c) and (8.50)) is distributional in
nature. We consider again the integrated response contribution due to finite
temperature,

∆Gβ(α) =

ˆ
R
dE E−2σ(E)∆Fβ(E) , (8.51)

where σ ∈ C∞
0 (R) is a real-valued function of compact support such that 0 /∈

supp{σ} and either supp{σ} ⊂ R>0 or supp{σ} ⊂ R<0. In Appendix J, we show
that

∆Gβ(α) =

ˆ
R
dE σ(E)

[
1

2Γ

∑
m>

|E|
ΓΩ

n(βω+)J
2
|m|(ω+R) +

1

2Γ

∑
m>− |E|

ΓΩ

n(βω−)J
2
|m|(ω−R)

− R2

16βα2
ln
(α
R

)
δ(|E| − ΓΩ) +O(α−2)

]
, (8.52)

where ω± = mΩ ∓ |E|/Γ. By comparison with (8.51), we read off the thermal
contribution to the response function ∆Fβ as

∆Fβ(E) =
E2

2Γ

∑
m>

|E|
ΓΩ

n(βω+)J
2
|m|(ω+R) +

E2

2Γ

∑
m>− |E|

ΓΩ

n(βω+)J
2
|m|(ω+R)

− R2E2

16βα2
ln
(α
R

)
δ(|E| − ΩΓ) +O(α−2) , (8.53)
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where the O-notation is used in a distributional sense.
We may compare this result to the corresponding expansion in Minkowski

spacetime with a cylindrical boundary in Section 7.3. Up to conversion between
an analogue spacetime setting and a genuinely relativistic setting, we see the
leading order terms in (7.22) and (8.53) agree. However, the leading correction
to (8.53) is order α−2 lnα and the subleading corrections are order α−2. There is
no counterpart to this term in the expansion (7.22).

8.2.4 Static observers

In the static observer limit, Ω → 0, (8.53) reduces to

lim
Ω→0

∆Fβ(E) =
1

2
n(β|E|)E2

∑
m∈Z

J|m|(ER/Γ) ,

=
1

2
E2n(β|E|) , (8.54a)

using Neumann’s addition formula [111],
∑

m∈Z J
2
|m|(x) = 1. As with the analysis

of a static observer in Minkowski spacetime, a static detector in CAdS acts as a
thermometer (see (7.24)).

8.3 de Sitter spacetime

In this Section, we consider the spacetime of constant positive curvature, dS
spacetime. Specifically, we consider the static patch of dS, to which we refer
as RdS spacetime, a static, globally hyperbolic spacetime of physical and cosmo-
logical interest [197]. The name RdS is due to the fact that the restriction of the de
Sitter vacuum, the Euclidean (or Bunch-Davies [179] or Chernikov-Tagirov [178]
(rus. Черников-Тагиров)) vacuum, to the static patch is thermal [50, 180] in
temperature 1/(2πα), where α is the dS radius — akin to the restriction of the
Minkowski vacuum to the Rindler patch [21, 74, 75]. We first consider a field
prepared in a thermal state with arbitrary temperature and then specialise to the
Euclidean vacuum.

8.3.1 Spacetime, field, and detector preliminaries

We consider (2 + 1)-dimensional dS spacetime as embedded in 3 + 1 Minkowski
spacetime R3,1 with the embedding equation

η3,1ABX
AXB = α2 , (8.55)
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where XA = (X0, X1, X2, X3) are the coordinates on R3,1, η3,1 = diag(−1, 1, 1, 1)

and α > 0 is the de Sitter radius. The cosmological constant Λ is related to α by
Λ = 1/α2. The Ricci scalar of dS3 is R = 6/α2.

We use coordinates (t, r, θ) in which the metric on RdS is given by

ds2 = −
(
1− r2

α2

)
dt2 +

dr2

1− r2

α2

+ r2dθ2 , (8.56)

where −∞ < t < ∞, 0 ≤ r < α, and 0 ≤ θ < 2π, with the usual coordinate
singularity at r = 0 and θ periodically identified with period 2π. Note the
presence of a cosmological horizon at r = α. The embedding in the embedding
space R3,1 is given by

X0 =
√
α2 − r2 sinh(t/α) , (8.57a)

X1 =
√
α2 − r2 cosh(t/α) , (8.57b)

X2 = r cos θ , (8.57c)

X3 = r sin θ . (8.57d)

The small cosmological constant limit Λ → 0+ is α → ∞, which recovers
Minkowski spacetime R2,1. This can be seen immediately from the form of
the metric (8.56).

We consider a quantised, conformally coupled, massless, real scalar field Φ.
The field obeys the KG equation (8.31b) and we look for separable solutions of
the form ϕωm = gωm(r)e

imθ−iωt with ω > 0 and m ∈ Z. The radial factor obeys
then the equation

0 =

(
ω2

1− r2

α2

− m2

r2
− 3

4α2

)
gωm(r) +

1

r

∂

∂r

(
r

(
1− r2

α2

)
∂

∂r
gωm(r)

)
. (8.58)

The positive-frequency modes with respect to ∂t that are regular at r = 0 are
then given by

ϕωm(t, r, θ) = Aωm

( r
α

)|m|
(
1− r2

α2

)− 1
2
iαω

eimθ−iωt

× 2F1

(
1
2

(
|m|+ 1

2
− iαω

)
, 1
2

(
|m|+ 3

2
− iαω

)
; |m|+ 1; r

2

α2

)
, (8.59a)

Aωm =

√
sinh(παω)

2
√
2π3/2(|m|)!

Γ
(
1
2

(
|m|+ 1

2
+ iαω

))
Γ
(
1
2

(
|m|+ 3

2
+ iαω

))
,

where ω > 0, m ∈ Z, and 2F1 is the hypergeometric function [111]. The field
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modes (8.59) are normalised with respect to the Klein-Gordon norm (8.34) with a
Kronecker delta in m and Dirac delta in ω. The normalisation factor can be read
off by considering the asymptotic form near r = α [198] and using [111, (5.4.3)].
For comparison, the field modes for a scalar field in 1 + 1 RdS and 3 + 1 RdS are
given in [197] and [198] respectively.

We expand the field in the field modes (8.59) as

Φ̂(t, r, θ) =

ˆ
dω
∑
m∈Z

ϕωm(t, r, θ)âωm +Hc , (8.60)

where the annihilation âωm and creation â†ωm operators obey the commutation
relation [âωm, â

†
ω′m′ ] = δ(ω − ω′)δm,m′ . The Hilbert space is a Fock space with a

Fock vacuum |0⟩ satisfying âωm |0⟩ for all ω and m. We shall consider the Fock
vacuum, a thermal state in a general inverse temperature β, defined as in (8.41),
and the Euclidean vacuum, in which β = 2πα.

We probe the field with a pointlike detector in uniform circular motion,

(t, r, θ) = (γτ,R,Ωγτ) , (8.61a)

γ =
1√

1−R2Ω2 − R2

α2

, (8.61b)

where τ is proper time, R > 0 is the value of the radial coordinate, and Ω =
dθ
dt
> 0 is the angular velocity with respect to time t in (8.56). We assume that

the worldline is timelike, RΩ <
√

1−R2/α2. In the large-α limit, we have
limα→∞ γ = (1− R2Ω2)−1/2 =: Γ, where Γ is the Lorentz factor associated with
circular motion in Minkowski spacetime R2,1. We couple the detector to the field
Φ with the derivative-coupled interaction Hamiltonian (8.43), as described in
Section 8.2.2, in the long-interaction-time limit χ→ 1.

In the thermal state in inverse temperature β, the Wightman function in
the derivative-coupled detector response in RdS, pulled back to the circular
trajectory (8.61), is given by

Wβ(s, 0) =
∑
m∈Z

ˆ ∞

0

dω |Aωm|2γ2(ω −mΩ)2
(
R

α

)2|m|

×
(
(1 + n(βω))ei(mΩ−ω)γs + n(βω)e−i(mΩ−ω)γs)

×
∣∣∣2F1

(
1
2

{
|m|+ 1

2
− iαω

}
, 1
2

{
|m|+ 3

2
− iαω

}
; |m|+ 1; R

2

α2

)∣∣∣2 , (8.62)

where n(x) is the Bose thermal factor (2.40).
The response function (8.44) (in the long-time limit) is calculated from (8.62)
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by first integrating over s and then integrating over ω, leading to

F(E, β) = F∞(E) + ∆Fβ(E) , (8.63a)

F∞(E) =
2πE2

γ

∑
m>E/(γΩ)

(
R

α

)2|m|
|Aϖmm|2

×
∣∣∣2F1

(
1
2

{
|m|+ 1

2
− iαϖm

}
, 1
2

{
|m|+ 3

2
− iαϖm

}
; |m|+ 1; R

2

α2

)∣∣∣2 ,
(8.63b)

∆Fβ(E) =
2πE2

γ

∑
m>|E|/(γΩ)

n(βω+
m)

(
R

α

)2|m|
|Aω+

mm
|2

×
∣∣∣2F1

(
1
2

{
|m|+ 1

2
− iαω+

m

}
, 1
2

{
|m|+ 3

2
− iαω+

m

}
; |m|+ 1; R

2

α2

)∣∣∣2
+
2πE2

γ

∑
m>−|E|/(γΩ)

n(βω−
m)

(
R

α

)2|m|
|Aω−

mm
|2

×
∣∣∣2F1

(
1
2

{
|m|+ 1

2
− iαω−

m

}
, 1
2

{
|m|+ 3

2
− iαω−

m

}
; |m|+ 1; R

2

α2

)∣∣∣2 ,
(8.63c)

where ϖm = mΩ − E/γ and ω±
m = mΩ ∓ |E|/γ. The response function (8.63)

naturally decomposes into a contribution from the static vacuum F∞ and a
contribution due to the ambient temperature ∆Fβ . It is clear that ∆Fβ is an even
function of the energy gap E.

8.3.2 Large-α limit

In this Section, we consider the large-α limit of the detector response (8.63) when
the field is prepared in the Euclidean vacuum. When restricted to the static
patch, this is a thermal state in inverse temperature β = 2πα, in which case the
Wightman function is dS invariant [197, 199].

8.3.2.1 Thermal contribution

We first consider the thermal contribution ∆Fβ to the response function (8.63).
By a simple bounding argument, we demonstrate that ∆Fβ is exponentially
suppressed compared to the static vacuum contribution F∞.

Let m± = 1 + ⌊±|E|/(γΩ)⌋, the first value of m in each summand in (8.63c),
where the notation suppresses the E-dependence of m±. It follows that

0 < ω±
m± = m±Ω∓ |E|/γ ≤ Ω . (8.64)
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As n(x) is decreasing in x, we have n(βω±
m) ≤ n(βω±

m±). Each of the two sums
in ∆Fβ (8.63c) can hence be bounded above by a replacing n(βω±

m) by n(βω±
m±),

giving the bound

∆Fβ(E) ≤ n(βω+
m+)F∞(|E|) + n(βω−

m−)F∞(−|E|) , (8.65)

where we have used (8.63b).
As β = 2πα, the thermal factors n(βω±

m±) ∼ exp(−2παω±
m±) in (8.65) are

exponentially suppressed for large α, as follows from (8.64). The static vacuum
factors F∞ in (8.65) have the large-α limit given by

lim
α→∞

F∞(E) =
E2

2Γ

∑
m>E/(ΩΓ)

J2
|m|(mv − ER/Γ) , (8.66)

which is the response function for a detector undergoing uniform circular motion
in 2+1 Minkowski spacetime [169]. We see that ∆Fβ is exponentially suppressed
in the large-α limit, thus any corrections that are polynomial in inverse powers of
α must be interpreted as curvature corrections. We recall from Chapter 3 that the
thermal corrections in Minkowski spacetime are also exponentially suppressed
in the large-β (low temperature) limit. We note, however, that the coefficient of
α in the exponent is not continuous in E and the parameters of the motion, and
this coefficient can take arbitrarily small positive values.

8.3.2.2 Full Euclidean vacuum

We now consider the full response in the Euclidean vacuum. The Wightman
function is expressible in terms of the hypergeometric function, derivable by
exploiting the symmetries of de Sitter spacetime [199, 200]. In our case of a
conformally coupled, massless scalar field, the Wightman function is

WEuc(x, x
′) =

1

4π

1√
σ(x, x′)

, (8.67a)

σ(x, x′) = η3,1AB

(
XA −X ′A

)(
XB −X ′B

)
, (8.67b)

where σ is the geodesic squared distance in the embedding space and we mo-
mentarily suppress the distributional character.

Pulled back to the circular trajectory (8.61), the Wightman function WEuc is
again time-translation invariant. The geodesic squared distance is given by

σ(s, 0) = −4
(
α2 −R2

)
sinh2

(γs
2α

)
+ 4R2 sin2

(
Ωγs

2

)
, (8.68)
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and the pullback of WEuc to the circular trajectory is

WEuc(s, 0) =
1

4π

1√
σ(s− iε, 0)

, (8.69)

where the distributional character has been restored and encoded as the limit
ε → 0+. As in the Minkowski vacuum, the square root in the denominator is
positive imaginary for positive s and negative imaginary for negative s [69, 201].

The only distributional contribution to the response function FEuc is at s = 0.
Isolating this, we find [69, 201]

FEuc(E) =
E2

4π

ˆ
R
ds

e−iEs√
σ(s− iε, 0)

=
E2

4
− E2

2π

ˆ ∞

0

ds
sin(Es)√
−σ(s, 0)

. (8.70)

We note that this splits the odd and even contributions to the response function
as in (2.77).

It is convenient to parametrise the circular trajectory in terms of R and V ,
where

V :=
RΩ√
1− R2

α2

. (8.71)

Geometrically, V is the velocity of the detector as seen by a static observer at
r = R. Changing the integration variable to z = γs(2α)−1, FEuc (8.70) reads

FEuc(E) =
E2

4
− E2

2πΓV

ˆ ∞

0

dz
sin
(

2ER
ΓV V

z
)

z

1√
sinh2(ηz)/(ηz)2 − V 2 sin2(z)/z2

,

(8.72)
where we have written ΓV := (1−V 2)−1/2 and η := (Ωα)−1 = V −1(α2/R2−1)−1/2.

We show in Appendix K that the asymptotic behaviour of (8.72) as η → 0 with
E, R, and V fixed, is given by

FEuc(E) =
E2

4
− E2

2πΓV

ˆ ∞

0

dz
sin
(

2ER
ΓV V

z
)

z

1√
1− V 2 sin(z)2/z2

+
E2

12πΓV
η2
ˆ ∞

0

dz z sin
(

2ER
ΓV V

z
)( 1

(1− V 2 sin2(z)/z2)3/2
− 1

)
+ o(η2) , (8.73)

where η2 = V −2(α2/R2 − 1)−1 = R2(V α)−2 + o(α−2) in terms of the de Sitter
radius of curvature as α → ∞.

The leading term in (8.73) is the response of a detector undergoing uniform
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circular motion in (2+1)-dimensional Minkowski spacetime with orbital speed V
and angular velocity V/R [69]. The next-to-leading term in (8.73) is proportional
to α−2. As this term is larger than the exponentially small thermal corrections
found in Section 8.3.2.1, we may interpret this term as a curvature correction.

8.4 Discussion

Motivated by the experimentally relevant notions of an ambient temperature
and spatial confinement, we investigated a detector undergoing uniform circular
motion in RdS and CAdS spacetimes, the spacetimes of constant positive and
negative curvature respectively. The introduction of the cosmological constant
|Λ| = α−2 allows one to interpret RdS and CAdS as one-parameter extensions of
Minkowski spacetime, which is recovered in the limit of a small cosmological
constant. In this limit, the ambient temperature in RdS tends to zero and the
time for information to reach spatial infinity in CAdS tends to infinity. In this
Chapter, we hence investigated how closely these spacetimes may be considered
as curved-spacetime analogues of a low ambient temperature or large cylindrical
boundary in 2 + 1 Minkowski spacetime.

In RdS, splitting the response function into its contributions from the static
vacuum and thermal corrections, we found that the thermal corrections are expo-
nentially suppressed in the limit of a small cosmological constant. This parallels
a low ambient temperature in Minkowski spacetime, analysed in Section 3.2.2,
in which spacetime the thermal corrections are also exponentially suppressed.
We may therefore conclude that any corrections that are polynomial in inverse
powers of α must be attributable to curvature corrections. We then consid-
ered the Wightman function of the full Euclidean vacuum, finding the leading
and subleading contributions. To leading order, we recovered the response
function of a detector probing a scalar field in the Minkowski vacuum in 2 + 1

Minkowski spacetime. The subleading correction was found to be proportional
to α−2 and we interpreted this as a curvature correction. This interpretation is
further strengthened by the recollection that the Ricci scalar curvature of RdS3 is
proportional to α−2.

In Chapter 6, we classified the stationary trajectories of RdS, finding two
classes, the inertial motions and the circular motions. This classification de-
scended from the embedding space. In this Chapter, we focused on circular
motion in 2 + 1 dimensions. We may take a GEMS approach and consider the
motion in the embedding space R3,1. The Killing vector generating the circu-
lar motion pushed forward into the embedding space generates the hypertor
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motion analysed in Chapter 5.
In CAdS, we considered both when the field was prepared in the global

vacuum and when the field was prepared in a thermal state in an arbitrary fixed
temperature. In the global vacuum, we found the first four terms in the series
expansion of the response function and only three of these were nonzero in the
long-interaction-time limit. To leading order, we recovered the response function
of a detector probing a scalar field in the Minkowski vacuum in 2+1 Minkowski
spacetime. The first nonzero subleading correction was proportional to α−2

and hence proportional to the Ricci scalar curvature, which we interpreted as a
curvature correction as in RdS. At order α−3, we found that the detector reacts
to the boundary with resonance peaks closely matching those of a detector in
Minkowski spacetime with a cylindrical boundary in Chapter 7.

When the field was prepared in a thermal state, we found the first two terms
in the series expansion of the response function. To leading order, we recovered
the response function of a detector probing a scalar field in a thermal state in
2 + 1 Minkowski spacetime. However, we found an additional resonance peak
at order α−2 ln(α) with no corresponding term in the response of a detector
in Minkowski spacetime with a cylindrical boundary probing a scalar field
prepared in a thermal state. We may conclude, therefore, that CAdS is a curved-
spacetime analogue of Minkowski spacetime with a cylindrical boundary only
when the field is prepared in its global vacuum. We leave the explanation and
analysis of this additional resonance peak to further study.
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Chapter 9

Conclusions

IN this Thesis, we have analysed and extended the framework of the circular
motion Unruh effect both in spacetime and in the laboratory, bridging the

gap between theory and experiment. Beginning with the circular motion Unruh
effect in Minkowski spacetime, we considered the assumptions which are not
reproducible in an analogue spacetime implementation of the effect, principally
the assumptions of an initial vacuum state and a spatially infinite spacetime.
We found that when an initial vacuum state is replaced by a thermal state,
acceleration dependence is still present and identifiable in the system. We
applied the formalism of thermal field theory to thin films of superfluid helium,
leading to a concrete and feasible experimental proposal of the circular motion
Unruh effect.

In Chapter 2, we presented three derivations of the Unruh effect, each of which
highlighting a different perspective. First, geometrically: the Unruh effect may
be understood through the formation of Rindler horizons due to an accelerating
observer, to which a temperature may be associated, the Unruh temperature.
Second, quantum field theoretically: the Minkowski vacuum is a thermal state
in the Fock space adapted to the boost Killing vector. Finally, the Unruh-DeWitt
(UDW) detector model: the response of a detector undergoing uniform linear
acceleration is equivalent to the response of a static detector in a thermal bath at
a temperature proportional to the detector’s proper acceleration.

Central to the UDW approach is the response function, a measure of detec-
tor excitation and de-excitation. A detector probing the Minkowski vacuum
undergoing non-inertial motion, such as uniform circular motion, will excite.
However, the spectrum of the excitations is only thermal when the detector
undergoes uniform linear acceleration, highlighting the uniqueness of linear
acceleration amongst the stationary trajectories.

We then introduced the analogue spacetime provided by hydrodynamical sys-
tems, where small perturbations in a fluid may be viewed as waves propagating
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through an effective spacetime, in which the speed of light is replaced by the
speed of sound. The UDW model may be adapted to an analogue spacetime
setting, in which trajectories are parametrised by coordinate (rather than proper)
time and the detector energy gap is measured with respect to the coordinate
time. We reproduced some key results from the analysis of the circular mo-
tion Unruh effect in 2 + 1 and 3 + 1 dimensions in [69]. Finally, we introduced
the continuous quasiparticle detector model [70], in which the two-level UDW
detector is replaced by a continuous probing field, such as a continuous laser
beam, recovering the response function and thus demonstrating the equivalence
between the UDW detector and a continuous quasiparticle detector.

Motivated by the inherent nonzero temperature of any experimental realisa-
tion of the circular motion Unruh effect, we considered in Chapter 3 a UDW
detector probing a field prepared in a thermal state at a fixed temperature. An
ambient temperature breaks Lorentz invariance and a detector will respond both
to its speed and acceleration. Uniform circular motion may be characterised
by two parameters, such as the orbital velocity v and acceleration a. Fixing
the orbital velocity, we may consider the limit of vanishing acceleration and
the resulting trajectory is inertial motion with velocity v. Therefore, to isolate
acceleration-dependence, one may compare the response of a detector undergo-
ing uniform circular motion with the response of a detector undergoing inertial
motion. When the field is prepared in the Minkowski vacuum, the latter is
equivalent to a detector at rest due to the Lorentz-invariance of the Minkowski
vacuum. However, when the field is prepared in a thermal state, broken Lorentz
invariance requires one to compare uniform circular motion with inertial motion
at the same speed v. Using this observation, we found a quantifier for measuring
acceleration-dependence in the response of a detector.

The key discovery of Chapter 3 is that, independent of the ambient tempera-
ture, acceleration-dependence may be identified in some range of the parameter
space in the response of a UDW detector, even when the ambient temperature is
so high that the detector’s response function is dominated by thermal effects. We
found that the angular frequency of the detector plays a role in identifying this
parameter space. The response of detectors with energy gaps much larger than
their orbit’s angular frequency is dominated by velocity contributions. Across
the parameter space, we found that the effective temperature perceived by the
detector may be higher or lower than the ambient temperature. We summarise
the findings of this Chapter — an ambient temperature equips the circular mo-
tion Unruh effect with the characteristic of Robin Hood [119]: Where there is little,
the Unruh effect gives; and where there is plenty, the Unruh effect takes.

In Chapter 4, we developed an experimental proposal for the observation of
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acceleration-dependent response in thin-film superfluid helium-4. Superfluid
helium exists at very low but nonzero temperatures and thin films of superfluid
helium exhibit a phenomenon known as third sound, the propagation of surface
waves on the free surface of superfluid helium, akin to shallow-water surface
waves in a classical fluid. Within experimentally implementable assumptions,
small perturbations in the height of the superfluid sample may be modelled as
a scalar field as per the analogue spacetime formalism in Chapter 2. Using the
thermal field theory in Chapter 3, we incorporated the sample temperature in
our modelling and demonstrated that a laser beam may act as a local continuous
detector of interface fluctuations. Through an experimentally accessible mea-
sure, we have confirmed that trajectory-dependence still persists in a system
with a significant ambient temperature and, furthermore, that the background
temperature enhances the signature of this effect. These results represent the
first step towards the realisation of a UDW in a laboratory.

The Unruh effect is fundamentally a duality between an accelerated observer
and an observer at rest in a thermal bath. Motivated by the robustness of
this equivalence, we considered in Chapter 5 how far this duality holds with
the addition of circular motion. Specifically, we compared the experience of a
detector undergoing uniform circular motion through a thermal bath in 3 + 1

Minkowski spacetime with the experience of a detector undergoing uniform
circular motion whilst uniformly accelerating orthogonal to the plane of rotation,
a stationary motion known as hypertor motion. We compared the two motions
in a range of asymptotic regimes, finding that the addition of circular motion
in general breaks the duality. As in 2 + 1 dimensions, we found that again the
angular frequency plays a role in distinguishing the two motions; in the regime
of small orbital radii, detectors with energy gaps much larger than the angular
frequency of their orbit are unable to distinguish between the two motions. In
summary, while a particle detector interacting with a massless scalar field in 3+1

Minkowski spacetime would be unable to distinguish between a thermal bath at
temperature T = a/2π and uniform linear acceleration with proper acceleration
a, we found that the addition of circular motion breaks this duality. Any circular
motion perturbation around these two motions would enable a particle detector
to distinguish between a thermal bath and a temperature provided by linear
acceleration across most of the parameter space.

In Chapter 2, Chapter 3, Chapter 4, and Chapter 5, we saw examples of
stationary trajectories: inertial motion, linear acceleration, circular motion, and
hypertor motion. In 3 + 1 dimensions, it was shown in [71] that there are
six such motions. The remaining two are linear acceleration with a constant
drift velocity and a cusped motion with the spatial projection of a semicubical
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parabola. One may then ask how many stationary trajectories there are in n+ 1

Minkowski spacetime. In Chapter 6, we classified the stationary trajectories
both algebraically, in terms of the conjugacy classes of the Poincaré group, and
geometrically, in terms of the solutions to the Frenet-Serret equations, giving an
explicit example of the classification in 4 + 1 Minkowski spacetime, in which
dimensions there exist nine stationary trajectories. As a further example of this
classification, we classified the stationary trajectories in the static patch of de
Sitter (dS) spacetime.

Motivated by the finite size of the analogue spacetimes provided by condensed
matter systems such as thin-film superfluid helium discussed in Chapter 4, we
considered in Chapter 7 a detector undergoing uniform circular motion in ana-
logue 2 + 1 Minkowski spacetime with a cylindrical boundary, probing a scalar
field prepared in either the Minkowski vacuum or a thermal state in a fixed tem-
perature. We also modelled the effect of a finite-time interaction and considered
a field with a modified dispersion relation but we leave the study of this general
response function to further study, with parameters such as temporal interaction
profile informed by experimental implementations of the circular motion Unruh
effect. Specialising to a Klein-Gordon (KG) field and an infinite interaction time,
we considered the asymptotic behaviour of the response function in the limit of a
large cylindrical boundary, both when the field was prepared in the Minkowski
vacuum and when the field was prepared in a thermal state. We found the
leading and subleading corrections to the response function. At leading order,
we recovered the corresponding (unbounded) Minkowski spacetime results. At
subleading order, we found in both cases resonance peaks between the detector’s
energy gap and angular frequency, indicating that resonant detectors are more
sensitive to a cylindrical boundary.

Having analysed an ambient temperature in Chapter 3 and a cylindrical
boundary in Chapter 7, we investigated in Chapter 8 to what extent dS and Anti-
de Sitter (AdS), the spacetimes of constant positive and negative curvature
respectively, may be considered curved-spacetime analogues of thermality and
finite size. Positive curvature provides a notion of an ambient temperature, via
the Euclidean vacuum, whereas negative curvature provides a notion of spatial
confinement.

First, we considered a UDW detector undergoing uniform circular motion in
the static patch of dS, to which we refer as Rindler-de Sitter (RdS). In the limit
of a small cosmological constant, we found that the thermal contributions to
the detector response function are exponentially suppressed as in Minkowski
spacetime in Chapter 3. We then found the leading and subleading contributions
to the response function. At leading order, we recovered the response of a
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detector probing the Minkowski vacuum in 2 + 1 Minkowski spacetime. At
subleading order, we found a curvature correction, proportional to the Ricci
scalar curvature of dS3.

Next, we considered a UDW detector undergoing uniform circular motion
in the Universal Covering Space of Anti-de Sitter (CAdS). We considered both
when the field was prepared in the static vacuum and when the field was
prepared in a thermal state at a fixed temperature. In the limit of a small
cosmological constant in the static vacuum, we found the first three terms
in the asymptotic expansion of the response function in the long-interaction-
time limit. At leading order, we recovered the response of a detector probing
the Minkowski vacuum in 2 + 1 Minkowski spacetime. At subleading order,
we found a curvature correction, proportional to the Ricci scalar curvature of
AdS3. At the next order, we found that the detector reacts to the boundary with
resonance peaks closely matching those of a detector in Minkowski spacetime
with a cylindrical boundary in Chapter 7, again highlighting the significance of
the angular frequency in the detector’s response.

When the field was prepared in a thermal state, we found the first two terms
in the asymptotic expansion of the response function. At leading order, we
recovered the response of a detector in a 2 + 1 thermal bath in Minkowski
spacetime. However, at subleading order, we found an additional resonance
peak with no corresponding term in the response of a detector in Minkowski
spacetime with a cylindrical boundary probing a scalar field prepared in a
thermal state. We may conclude, therefore, that CAdS is a curved-spacetime
analogue of Minkowski spacetime with a cylindrical boundary only when the
field is prepared in its global vacuum and that thermal states in CAdS show
richer features than their Minkowski spacetime counterparts.

We found throughout this Thesis that the angular frequency of the circular
motion plays a special role in the response of the detector. In a thermal bath
in unbounded Minkowski spacetime, the angular frequency acts as an energy-
gap threshold, above which a detector’s response is dominated by velocity
contributions. By contrast, in spacetimes with spatial confinement, resonant
detectors — those whose energy gap matches their angular frequency — are
more sensitive to the boundary.

As a mathematical side outcome, we found in Chapter 3 and Chapter 7 two
results concerning Bessel functions, which we have not encountered in the
existing literature. In the former Chapter, we evaluated in closed form an infinite
series involving squared Bessel functions. In the latter Chapter, we found an
asymptotic expansion of the Bessel function normalisation factor in a finite
domain in terms of the McMahon expansion, a classical expansion in the theory
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of Bessel functions. The Bessel functions, their zeros, and the asymptotics thereof
have been central to this work. As we bring this Thesis to a close, we recall from
the preface of the second edition of Watson’s A Treatise on the Theory of Bessel
Functions [202], “to incorporate in this work the discoveries of the last twenty
years would necessitate the rewriting of at least Chapters XII — XIX; my interest
in Bessel functions, however, has waned since 1922, and I am consequently not
prepared to undertake such a task to the detriment of my other activities.”

As we investigate the most extreme corners of the Universe, the time between
theoretical prediction and experimental verification ever increases. Forty-eight
years passed between the prediction of the Higgs particle and its discovery.
At the time of writing this Thesis, forty-eight years have also passed since the
prediction of the Unruh effect. In this work, we have seen that the Unruh effect,
both linear and circular, has many faces, and new avenues are emerging through
analogue spacetimes. We have extended the existing theory and pushed it closer
to a realistic experimental environment by including the effects of thermality
and spatial confinement. This Thesis, therefore, paves the way towards the
experimental confirmation of acceleration-dependence and offers a concrete
system in which to test this phenomenon, bringing even the remote predictions
of Quantum Field Theory (QFT) within our grasp.



Appendix A

Dominated convergence theorem

In this Appendix, we provide a typical dominated convergence theorem argu-
ment to find the small-gap limit of the response function (2.69).

A.1 Lebesgue’s dominated convergence theorem

Lebesgue’s dominated convergence theorem provides a sufficient condition
under which a limit and an integral may be interchanged [203].

Theorem A.1 (Dominated convergence theorem). Let (fn)n∈N be a sequence of
continuous functions and limn→∞ fn(x) = f(x) for each x. Assume there exists some g
such that

´
R dx g(x) < ∞ (g is integrable) and |fn(x)| ≤ g(x) for all n (g dominates

fn). Then, fn and f are integrable and

lim
n→∞

ˆ
R
dx fn(x) =

ˆ
R
dx lim

n→∞
fn(x) =

ˆ
R
dx f(x) . (A.1)

We are often interested in the limit of a continuous parameter limβ→b f(x, β),
rather than the limit of a discrete parameter n ∈ N, as in Theorem A.1. We
may reconcile the two as follows. We recall that limy→b h(y) = L if and only
if limn→∞ h(bn) = L for any sequence (bn)n∈N with bn ̸= b and limn→∞ bn = b.
We may therefore write limβ→b f(x, β) = limn→∞ fn(x), where fn(x) := f(x, βn)
and (βn)n∈N is any sequence such that (βn)n∈N ̸= b and limn→∞ βn = b. As
such, we may appeal to Theorem A.1 for limits of both continuous and discrete
parameters.

We note that in the context of measure theory, one may state a stronger
version of Theorem A.1, in which the sequence of functions (fn)n∈N need only
be measurable rather than continuous.

A.2 Small-gap limit

We consider now the small-gap limit E → 0 of the response function (2.69),

F(E) = − E

2π
Θ(−E) + v

4π2γR

ˆ ∞

0

dz cos

(
2ER

γv
z

)(
γ2

z2
− 1

z2 − v2 sin2 z

)
.

(A.2)
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We note that the integral is even in E and we define

I(E) =

ˆ ∞

0

dz cos

(
2|E|R
γv

z

)(
γ2

z2
− 1

z2 − v2 sin2 z

)
. (A.3)

The integrand f(z, E) may be written as

f(z, E) := cos

(
2|E|R
γv

z

)
g(z) , (A.4)

g(z) =
γ2

z2
− 1

z2 − v2 sin2 z
. (A.5)

An elementary proof by contradiction shows g(z) > 0 for z ≥ 0. Hence, g(z)
dominates f(z, E), |f(z, E)| ≤ g(z) and we may take the limit E → 0 under the
integral to recover the leading-order behaviour of (A.3),

lim
E→0

I(E) =

ˆ ∞

0

dz

(
γ2

z2
− 1

z2 − v2 sin2 z

)
=: Γ0 . (A.6)

We re-express I(E) (A.3) by adding and subtracting Γ0,

I(E) = Γ0 +

ˆ ∞

0

dz

(
cos

(
2|E|R
γv

z

)
− 1

)(
γ2

z2
− 1

z2 − v2 sin2 z

)
. (A.7)

Expanding the second bracket under the integral, we note the standard integral
ˆ ∞

0

dz
cos(az)− 1

(az)2
= − π

2|a| , (A.8)

As such, we have

I(E) = Γ0 −
πγR

v
|E| −

ˆ ∞

0

dz
cos
(

2|E|R
γv

z
)
− 1

z2
1

1− v2 sin2(z)/z2
. (A.9)

We consider the integral

J(b) =

ˆ ∞

0

dz
cos(bz)− 1

(bz)2
1

1− v2 sin2(z)/z2
, (A.10)

in the limit b→ 0+. The factor (cos(bz)− 1)/(bz)2 is bounded in absolute value
by 1. However, the factor 1/(1 − v2 sin2(z)/z2) is not integrable since 1/(1 −
v2 sin2(z)/z2) ∼ 1 as z → ∞. Adding and subtracting this large-z behaviour, we
have

J(b) =

ˆ ∞

0

dz
cos(bz)− 1

(bz)2

(
1

1− v2 sin2(z)/z2
− 1

)
+

ˆ ∞

0

dz
cos(bz)− 1

(bz)2
. (A.11)

As the factor (cos(bz)− 1)/(bz)2 is bounded in absolute value, we may appeal to
the dominated convergence theorem to take the b→ 0+ limit and evaluate the
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second integral using (A.8),

J(b) = − π

2|b| +O(1) , (A.12)

as b→ 0+. Returning to I(E), we have

I(E) = Γ0 −
πγR

v
|E| −

(
2|E|R
γv

)2 ˆ ∞

0

dz
cos
(

2|E|R
γv

z
)
− 1(

2|E|R
γv

z
)2 1

1− v2 sin2(z)/z2
.

(A.13)
We may identify the integral in (A.13) as J(b) (A.10) with b = 2|E|R/(γv). Ap-
pealing to (A.12) and combining the two terms at order |E|, we have

I(E) = Γ0 − πRγv|E|+O(E2) , (A.14)

as E → 0. The response function may therefore be written as

F(E) =
v

4π2γR

ˆ ∞

0

dz

(
γ2

z2
− 1

z2 − v2 sin2(z)

)
− 1

4π

(
1− 1

γ2
sgn(E)

)
E+O(E2) ,

(A.15)
as E → 0, where sgn(E) = E/|E| is the signum function.
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Appendix B

2 + 1 thermal response function mode
sum

In this Appendix, we find the mode sum expression (3.5) for the response
function. The notation and the assumptions are as in Section 3.1.1.

The positive Minkowski frequency mode functions of the massless KG field
are

uk(x) =
1

2π
√
2ω

e−iωt+ik·x , (B.1)

where k is the spatial momentum and the dispersion relation specifies ω as a
function of |k|. The normalisation is (uk, uk′) = δk,k′ , where (·, ·) is the Klein-
Gordon inner product and δ is the Dirac delta. It follows as in [26] that the
derivative correlation function Wβ (3.4) has the mode sum expression

Wβ(t, t
′) =

ˆ
d2k

[(
1 + n(βω)

) d
dt
uk
(
x(t)
) d

dt′
u∗k
(
x(t′)

)
+ n(βω)

d

dt
u∗k
(
x(t)
) d

dt′
uk
(
x(t′)

)]
, (B.2)

where x(t) is the circular motion worldline (3.2) and n is the Bose factor (2.40).
We substitute in (B.2) the mode functions (B.1) and the trajectory (3.2), perform

the differentiations, and change the integration variables from (kx, ky) to (k, l)
by the time-dependent rotation in the k plane,

(k, l) =
(
ky cos

(
Ω(t+t′)

2

)
− kx sin

(
Ω(t+t′)

2

)
, ky sin

(
Ω(t+t′)

2

)
+ kx cos

(
Ω(t+t′)

2

))
,

(B.3)
obtaining

Wβ(t, t
′) =

1

8π2

ˆ
dk dl

ω

[(
ω − ΩRk cos(Ωs/2)

)2 − Ω2R2l2 sin2(Ωs/2)
]

×
[(
1 + n(βω)

)
e−iωs+2iRk sin(Ωs/2) + n(βω)eiωs−2iRk sin(Ωs/2)

]
, (B.4)

where s = t − t′ and ω is now a function of |k| =
√
k2 + l2. An equivalent
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expression is

Wβ(t, t
′) =

1

8π2

ˆ
dk dl

ω

{(
1 + n(βω)

)
×
[(
ω − ΩRk cos(Ωs/2)

)2
+ 1

2
iΩ2Rk sin(Ωs/2)

]
e−iωs+2iRk sin(Ωs/2)

+ n(βω)
[(
ω − ΩRk cos(Ωs/2)

)2 − 1
2
iΩ2Rk sin(Ωs/2)

]
eiωs−2iRk sin(Ωs/2)

}
, (B.5)

as can be seen by considering the difference of (B.4) and (B.5) and noting that
the integral over the angle in the (k, l) plane produces a sum of J0, J ′

0 and J ′′
0 that

vanishes after an application of Bessel’s differential equation [111]. Note that
the integrals in (B.4) and (B.5) are free of infrared divergences when ω(0) = 0,
which follows from the assumption ω′(0) > 0.

We now appeal to the following identity, also known as the Jacobi-Anger
expansion

e±2iRk sin(Ωs/2) =
∑
n∈Z

e±inΩs/2Jn(2Rk) , (B.6)

which follows from 10.12.1 in [111]. We then regroup the sum so that all the
s-dependence is in factors of the form e∓iωs±inΩs/2, multiplied by Bessel functions
of order n, n ± 1 and n ± 2. We then convert the integral over k and l to polar
coordinates by (k, l) = (K sin θ,K cos θ), so that dk dl = KdK dθ. The odd n
terms are odd in θ and vanish on integration over θ. We relabel the even n terms
by n = 2m with m ∈ Z, substitute in (3.4), and perform the integral over t in
terms of delta-functions, which collapse the integral over K, with the outcome

F(E, β) =
1

4π

ˆ 2π

0

dθ

{ ∑
m>(E+ω(0))/Ω

K+
m

ω′(K+
m)ω(K

+
m)

(
1 + n

(
βω(K+)

))
×
[((

ω(K+
m)
)2
+1

2
Ω2R2(K+

m)
2 sin2θ

)
J2m(2RK

+
m sin θ)

− ΩRK+
m

(
ω(K+

m) +
1
4
Ω
)
sin θJ2m+1(2RK

+
m sin θ)

− ΩRK+
m

(
ω(K+

m)− 1
4
Ω
)
sin θJ2m−1(2RK

+
m sin θ)

+ 1
4
Ω2R2(K+

m)
2 sin2θ

(
J2m+2(2RK

+
m sin θ) + J2m−2(2RK

+
m sin θ)

)]
+

∑
m>(−E+ω(0))/Ω

K−
m

ω′(K−
m)ω(K

−
m)

n
(
βω(K−)

)
×
[((

ω(K−
m)
)2
+1

2
Ω2R2(K−

m)
2 sin2θ

)
J2m(2RK

−
m sin θ)

− ΩRK−
m

(
ω(K−

m) +
1
4
Ω
)
sin θJ2m+1(2RK

−
m sin θ)

− ΩRK−
m

(
ω(K−

m)− 1
4
Ω
)
sin θJ2m−1(2RK

−
m sin θ)

+ 1
4
Ω2R2(K−

m)
2 sin2θ

(
J2m+2(2RK

−
m sin θ) + J2m−2(2RK

−
m sin θ)

)]}
,

(B.7)
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where K±
m are as defined in Section 3.1.1, and the notation suppresses their

E-dependence.
The integrals in (B.7) can be evaluated using the identities

ˆ 2π

0

J2m(2a sin θ) dθ = 2πJ2
m(a) , (B.8a)

ˆ 2π

0

sin θJ2m±1(2a sin θ) dθ = 2πJm±1(a)Jm(a) , (B.8b)
ˆ 2π

0

sin2θJ2m(2a sin θ) dθ = π
(
J2
m(a) + Jm−1(a)Jm+1(a)

)
, (B.8c)

where m ∈ Z; these identities follow from 6.681.1 in [117] by setting respectively
µ = 0, µ = 1

2
and µ = 1. Further use of the Bessel function identities 10.6.1 and

10.6.2 in [111] then gives formula (3.5) in the main text.
We end this Appendix with two comments on the role of the time derivatives

in (3.5).
First, in the case of a massive field ω(0) > 0, the response function (3.5) can

be obtained in a more direct way: the property ω(0) > 0 implies that the non-
derivative correlation function W̃β (3.1) is well defined and hence Wβ(t

′, t′′) =

∂t′∂t′′W̃β

(
x(t′), x(t′′)

)
. Using the time translation invariance of Wβ and W̃β, we

then have

F(E, β) = E
2
ˆ ∞

−∞
dt e−iEt W̃β

(
x(t), x(0)

)
, (B.9)

where the E
2

factor comes from integration by parts. The right-hand side of
(B.9) is recognised as E

2
times the response function of a detector without a

derivative in the coupling as seen in Section 2.1.3. We can now apply the methods
of this Appendix directly to the right-hand side of (B.9), arriving at (3.5) through
significantly fewer steps: the overall E

2
factor in (3.5) is exactly the overall E

2

factor in (B.9).
Second, when ω(0) = 0, the non-derivative Wightman function W̃β is infrared

divergent and so (B.9) is not well defined. If we, however, ignore this infrared
divergence in the mode sum expression for W̃β , and informally apply the integral
interchange manipulations of this Appendix to (B.9), we find once again (3.5):
the informal integral interchanges can be interpreted as a regularisation of the
infrared divergence in the transition rate. This regularisation of the transition
rate can be applied even when the detector’s coupling does not involve a time
derivative [204].
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Appendix C

Bessel function identity

In this Appendix we verify the identity

∞∑
m=1

(
J2
m−1(mv) + J2

m+1(mv)
)
=

1√
1− v2

, (C.1)

where 0 ≤ v < 1.

Proof. The case v = 0 is trivial as the only nonvanishing term on the left-hand
side is J2

0 (0) = 1. We henceforth assume 0 < v < 1.
Using the integral representation [111, (10.9.26)],

J2
n(z) =

2

π

ˆ π
2

0

J2n(2z cos θ) dθ , (C.2)

we have
∞∑
m=1

(
J2
m−1(mv) + J2

m+1(mv)
)
=

2

π

∞∑
m=1

ˆ π
2

0

dθ

(
J2m−2(2mv cos θ)

+ J2m+2(2mv cos θ)

)
=

2

π

ˆ π
2

0

dθ
∞∑
m=1

(
J2m−2(2mv cos θ)

+ J2m+2(2mv cos θ)

)
,

(C.3)

where the interchange of the sum and the integral is justified because the sum-
mands fall off exponentially in m, uniformly in θ, as seen from [111, (10.20.4)],
recalling that 0 ≤ v cos θ ≤ v < 1.

For 0 ≤ θ < π/2, we use Bessel function identities to rewrite the summands in
(C.3) as

J2m−2(2mv cos θ) + J2m+2(2mv cos θ) = J2m(2mv cos θ)

(
4

v2 cos2 θ
− 2

)
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− 4

v cos θ

J ′
2m(2mv cos θ)

2m
, (C.4)

and we then evaluate the sum over m by the identities

∞∑
m=1

J2m(2mt) =
t2

2(1− t2)
, (C.5a)

∞∑
m=1

J ′
2m(2mt)

2m
=

1

2

( ∞∑
k=1

J ′
k(kt)

k
−
∑
k=1

J ′
k(kt)

k
(−1)k−1

)

=
1

2

[
1

2
+
t

4
−
(
1

2
− t

4

)]
=

t

4
, (C.5b)

valid for 0 ≤ t < 1, using [117, (8.517.3, 8.518.1, 8.518.2)]. Hence

∞∑
m=1

(
J2
m−1(mv) + J2

m+1(mv)
)
=

2

π

ˆ π
2

0

dθ

[(
4

v2 cos2 θ
− 2

)
v2 cos2 θ

2(1− v2 cos2 θ)

− 4

v cos θ

v cos θ

4

]
=

2

π

ˆ π
2

0

dθ

1− v2 cos2 θ

=
1√

1− v2
, (C.6)

where the last integral is elementary.



Appendix D

Transition rates and probabilities

In this Appendix, we discuss the relationship between the response function
(transition rate) and the transition probability of a UDW detector interacting
with a scalar field. We use the UDW detector model from Section 2.1.3 and Sec-
tion 5.1.1. In particular, we demonstrate three equivalent definitions of the
response function found in the literature (see, for example, [3, 5, 23, 71, 72, 143–
146]),

F1(E) =

ˆ
R
dτ e−iEτW(τ) , F2(E) = lim

T→∞

1

λ2
P(E)

T
, F3(E) =

1

λ2
lim
T→∞

dP(E)

dT
,

(D.1)
where W(τ) := ⟨Φ̂(x(τ)), Φ̂(x(0))⟩ is the pullback of the Wightman function to a
stationary trajectory (2.39), P(E) is the transition probability (2.37b), and T is a
parameter controlling the total interaction time.

We work with the interaction Hamiltonian (2.32) with switching function χ(τ),
which we assume may be written as

χ(τ) = β(τ/T ) , (D.2)

where β(u) is a real function determining the temporal profile of field-detector
interaction. We, furthermore, assume that β(0) = 1 so that in the limit of
long interaction times T → ∞, we recover the infinite-time switching function
χ(τ) = 1.

We focus our attention to the case of a detector coupled to a quantum scalar
field in an arbitrary, static spacetime. The key assumption for the following
results is that the state of the field is stationary with respect to time translations
along the detector trajectory, so that the Wightman function is also stationary
in the sense of (2.42). We further assume that the Wightman function decays at
infinity sufficiently quickly such that its Fourier transform is once differentiable.
Under these assumptions, the transition probability is given by

P(E) = λ2
ˆ
R2

dτdτ ′ χ(τ)χ(τ ′)e−iE(τ−τ ′)W(τ − τ ′) . (D.3)

The pullback of the Wightman function may be expressed in terms of its Fourier
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transform as

W(τ − τ ′) =
1

2π

ˆ
R
dω eiω(τ−τ

′)Ŵ(ω) . (D.4)

We note that due to the singular behaviour of the Wightman function at τ = 0,
the Fourier transform should be understood in a distributional sense. We rewrite
the transition probability (D.3) as

P(E) =
λ2

2π

ˆ
R
dω Ŵ(ω)

(ˆ
R
dτ e−i(E−ω)τχ(τ)

)(ˆ
R
dτ ′ ei(E−ω)τ ′χ(τ ′)

)
, (D.5)

=
λ2

2π

ˆ
R
dω Ŵ(ω)|χ̂(E − ω)|2 , (D.6)

where χ̂(ω) is the Fourier transform of χ(τ), which may also be rewritten as

χ̂(ω) =

ˆ
R
dτ e−iωτχ(τ) = T

ˆ
R
du e−iωTuβ(u) = T β̂(ωT ) . (D.7)

We perform the change of integration variable v = (E − ω)T in (D.6) and
employ (D.7), such that

P(E) =
λ2

2π
T

ˆ
R
dv Ŵ(E − v/T )|β̂(v)|2. (D.8)

We consider the definition F2(E) in (D.1). We have

F(E) = lim
T→∞

P(E)

λ2T
= Ŵ(E)× 1

2π

ˆ
R
dv|β̂(v)|2 . (D.9)

On the other hand, a second common notion of transition rate is given by
F3(E) in (D.1), where a derivative is taken with respect to the time parameter T .
We compute this directly using (D.8), giving

dP(E)

dT
=

λ2

2π

ˆ
R
dv Ŵ(E−v/T )|β̂(v)|2+ 1

T

λ2

2π

ˆ
R
dv Ŵ ′(E−v/T )|β̂(v)|2 . (D.10)

Under the assumption that the derivative of Ŵ(ω) is sufficiently regular, as is
the case for the Wightman functions considered in this thesis, we take the limit
T → ∞ to recover

F3(E) =
1

λ2
lim
T→∞

dP(E)

dT
= Ŵ(E)× 1

2π

ˆ
R
dv |β̂(v)|2. (D.11)

Comparing (D.9) and (D.11), we see the equivalence of F2(E) and F3(E)
in (D.1).

Finally, an alternative way of writing F1 is

F1(E) = Ŵ(E) . (D.12)
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By normalising the switching function such that
ˆ
R
dv |β̂(v)|2 = 2π , (D.13)

we see that all three definitions (D.9), (D.11), and (D.12), of the transition rate
agree.

We finally remark that this motivates the choice of Gaussian switching function
in Example 5.1, which satisfies both the normalisation condition (D.13) and
limT→∞ χ(τ ;T ) = 1.
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Appendix E

Propositions and proofs

In this Appendix, we provide proofs of statements made within the main body
of the thesis.

E.1 Proof of Proposition 5.1

Proposition. Let α > 0 and ρ > 0. There exists a positive, nonzero solution z0 ∈ (0, π
α
)

to
ρ sinh(z)− sin(αz) = 0 , (E.1)

for α > ρ.

Proof. Let f(z) = ρ sinh(z) and g(z) = sin(αz). We note that f(z) is an un-
bounded, strictly increasing function. We remark f(0) = g(0) = 0 and f ′(0) = ρ
and g′(0) = α. As such, if ρ ≥ α > 0, then f ′(z) > g′(z) for all z > 0; therefore,
f(z) and g(z) never intersect.

However, for 0 < ρ < α, we have g′(z) > f ′(z) for all z > 0 that satisfy
ρ cosh(z) < α cos(αz). For all such z, we also have g(z) > f(z).

The first positive root of g(z) is at z = π
α

. As f(z) is a strictly increasing
function, we have f(π

α
) > g(π

α
).

As such, the function f(z)−g(z) = ρ sinh(z)−sin(αz) undergoes a sign change
on the interval (0, π

α
). Hence, by the intermediate value theorem, it follows that

there is a root z0 on the interval (0, π
α
).

E.2 Proof of Proposition 5.2

Proposition. Let α > ρ > 0. The root z0 of f(z) = ρ2 sin2(z) − sinh2(αz) with the
smallest, positive imaginary part is given by z0 = iµ, where µ is the smallest, nonzero
solution of

sin(αµ) = ρ sinh(µ) . (E.2)

Proof. We consider the complex function f(z) = ρ2 sin2(z)− sinh2(αz), which we
write as

f(z) = f+(z)f−(z) , (E.3a)
f±(z) = ρ sin(z)± sinh(αz) , (E.3b)
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where α > ρ > 0. We investigate first the real roots of f±, x ∈ R. Each f±(x) has
a simple zero at x = 0 and no other real zeros. We can see this by observing
f±(0) = 0 and f ′

±(x) = α
(
ρ
α
cos(x)± cosh(αx)

)
. We note that | cosh(αx)| > 1 and,

since α > ρ, we have | ρ
α
cos(x)| < 1. Therefore, f+(x) is a strictly increasing

function and f−(x) is a strictly decreasing function. Hence, the only real zero of
f is a double zero at x = 0.

We consider now the complex roots of the equations f±(z) = 0 of the form
z0 = x+ iY , where Y > 0. We express the equations f±(z) = 0 in terms of their
real and imaginary parts

Re{f±(x+ iY )} = ρ sin(x) cosh(Y )± sinh(αx) cos(αY ) = 0 , (E.4a)
Im{f±(x+ iY )} = ρ cos(x) sinh(Y )± cosh(αx) sin(αY ) = 0 . (E.4b)

We consider first the roots of the equation f−(z) = 0. These are the solutions
to the system of equations

ρ sin(x) cosh(Y )− sinh(αx) cos(αY ) = 0 , (E.5a)
ρ cos(x) sinh(Y )− cosh(αx) sin(αY ) = 0 . (E.5b)

To begin, we consider the first imaginary root of f−(z) with positive imaginary
part, z0 = iµ with µ > 0. The equation for the real part of f− (E.5a) is trivially
satisfied. The equation for the imaginary part of the root is given by

ρ sinh(µ) = sin(αµ) . (E.6)

By Proposition 5.1, there exists a positive solution to this equation. We therefore
define µ to be the smallest, positive solution to (E.6).

As z0 = iµ is the smallest, imaginary root of f−(z) with positive imaginary
part, we inspect whether there exist roots of f−(z) with nonzero real part, roots
of the form z0 = x+ iY with x ̸= 0 and 0 < Y ≤ µ.

First, we consider whether there exist roots z0 of f−(z) with positive imaginary
part less than µ, z0 = x+iY with x ̸= 0 and 0 < Y < µ. On the domain x ∈ (0, µ),
the functions sin(αx) and ρ sinh(x) are positive. As 0 < ρ < α, we also have

ρ sinh(x) < sin(αx) . (E.7)

Using the inequality (E.7) on (E.5b), we have

cosh(αx) sin(αY ) = ρ cos(x) sinh(Y ) < cos(x) sin(αY ) , (E.8)

which does not hold for x ̸= 0. By assumption x ̸= 0 and so there does not exist
a root of the equation f−(z) = 0 with a positive imaginary part smaller than µ.

Next, we address whether there exist roots with nonzero real part and positive
imaginary part equal to µ, z0 = x + iµ with x ̸= 0. Setting Y = µ in (E.5b), we
have

ρ cos(x) sinh(µ) = cosh(αx) sin(αµ) . (E.9)

Using (E.6), (E.9) reduces to cos(x) = cosh(αx) which has no solutions for x ̸= 0.
Therefore, the root of f−(z) with smallest, positive imaginary part is given by

z0 = iµ, where µ is the smallest, positive solution to (E.6).
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Before we address the roots of f+(z), we make three observations.

1. The solution µ to (E.6) lies within the range 0 < µ < π
α

.

2. The function sin(αY )/ sinh(Y ) is a decreasing function on 0 < αY < π.

3. If 0 < Y < µ, then sin(αY )
sinh(Y )

> sin(αµ)
sinh(µ)

= ρ.

Observation 1 follows from Proposition 5.1.
To prove Observation 2, we note that sin(αY ) is a decreasing function π

2
≤

αY < π, whereas sinh(Y ) is an increasing function on this domain. As such, their
ratio is a decreasing function on this domain. Now we consider 0 < αY < π

2
.

The derivative of the function may be written as

d

dY

sin(αY )

sinh(Y )
=

α cos(αY ) cosh(Y )

sinh2(Y )

(
tanh(Y )− 1

α
tan(αY )

)
︸ ︷︷ ︸

(a)

, (E.10)

where we note the coefficient is positive for 0 < αY < π
2
. However, the function

(a) is negative,

tanh(Y )− 1

α
tan(αY )

(1)
< Y − 1

α
tan(αY )

(2)
< 0 , (E.11)

where in inequality (1) we have used that Y > tanh(Y ) for all Y > 0 and in
inequality (2) we have used tan(Y ) > Y for 0 < Y < π

2
. Hence, we have proven

Observation 2.
To prove Observation 3, we consider the definition of µ (E.6), expressing this

as
ρ =

sin(αµ)

sinh(µ)
. (E.12)

By Observation 2, the right-hand side is a decreasing function. As such, any
Y < µ must increase the right-hand side of (E.12). It then follows that Y < µ is
equivalent to

sin(αY )

sinh(Y )
>

sin(αµ)

sinh(µ)
= ρ . (E.13)

With these observations made, we now address whether there exists a root of
f+(z) of the form z0 = x+ iY with 0 < Y < µ. In the case x = 0, we require Y to
satisfy

ρ sinh(Y ) = − sin(αY ) . (E.14)

As Y > 0, the left-hand side of (E.14) is positive, where we have used Obser-
vation 1 above. However, the right-hand side is first positive for Y > π

α
> µ.

Therefore, any root of f+(z) with an imaginary part smaller than µ must have a
nonzero real part.

We consider now roots of the form z = x+ iY with x ̸= 0 and 0 < Y < µ. Such
a root is the solution of the system of equations

ρ sin(x) cosh(Y ) + sinh(αx) cos(αY ) = 0 , (E.15a)
ρ cos(x) sinh(Y ) + cosh(αx) sin(αY ) = 0 . (E.15b)
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We note that the system of equations (E.15) is invariant under x 7→ −x. As such,
we need only consider x > 0.

Equation (E.15b) may be rewritten as

sin(αY )

sinh(Y )
= −ρ cos(x)

cosh(αx)
. (E.16)

As ρ > 0, we have −ρ cos(x) < ρ and as x ̸= 0, we have cosh(αx) > 1. As such,
we may bound (E.16) by

sin(αY )

sinh(Y )
= −ρ cos(x)

cosh(αx)
< ρ . (E.17)

However, by Observation 3, this implies that Y > µ. As such, there exist no
pairs (x, Y ) with 0 < Y < µ such that z0 = x+ iY is a root of of f(z).

E.3 Proof of Proposition 5.3

Proposition. Let 0 < v < 1 and fv(z) = sinh(vz)− z. The equation

fv(z) = 0 , (E.18)

has three roots z = ±z0 and 0, z0 > 0. Further, z0 → ∞ as v → 0.

Proof. By direct substitution, we have fv(0) = 0.
By the parity of sinh(vz) and z, we have fv(−z) = −fv(z). As such, fv(z) =

0 ⇐⇒ fv(−z) = 0. Hence, a positive root at z = z0 implies the existence of a
second root at z = −z0. Therefore, without loss of generality, we consider only
positive values of z.

We note that
f ′
v(z) = v cosh(vz)− 1 . (E.19)

It is clear that fv(z) has a turning point at z = v−1 arccosh(v−1) > 0. As cosh is an
unbounded, strictly increasing function, we see that f ′

v is an unbounded, strictly
increasing function.

We recall that fv(0) = 0. As f ′
v(0) = −(1 − v) < 0, where we have used

0 < v < 1, it follows that fv(z) < 0 for z ∈ (0, v−1 arccosh(v−1)].
For z > v−1 arccosh(v−1), f ′

v(z) > 0 and increases without bound. Therefore,
for z > v−1 arccosh(v−1), fv(z) is an unbounded, strictly increasing function.
Therefore, as fv(v−1 arccosh(v−1)) < 0, it follows that there exists a point z =
z0 > v−1 arccosh(v−1) such that fv(z0) = 0. Because f ′

v is a strictly increasing
function, there exists only one such point.

We have therefore proven that the only roots to the equation (E.18) are given
by z = ±z0 and 0.

Finally, we note that as v → 0, v−1 → ∞ and, for large arguments, we have
arccosh(z) ∼ ln(2z) [111]. Hence, as v → 0, we have

v−1 arccosh(v−1) ∼ v−1 ln(2v−1) → ∞ . (E.20)

Therefore, as z0 > v−1 arccosh(v−1), we have z0 → ∞ as v → 0.
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E.4 Proof of Proposition 5.4

Proposition. Let 0 < v < 1 and fv(z) = sinh(vz)− z. The leading-order behaviour of
the positive root z0 of the equation

fv(z) = 0 , (E.21)

is given by

z0 ∼ −1

v
W−1

(
−v
2

)
, (E.22)

as v → 0, where W−1 is the lower branch of the Lambert W function.

Proof. By Proposition 5.3, there exists a unique positive root z0 of the equation
fv(z) = 0. Furthermore, z0 is bounded below by v−1 arccosh(v−1) ∼ v−1 ln(2v−1)
as v → 0, which further implies that vz0 → ∞ as v → 0. As such, the leading-
order behaviour of the positive root z0 is governed by

z0 =
1

2
evz0 , (E.23)

which we may be rewritten as

yey = −v
2
, (E.24)

where y = −vz0.
The equation (E.24) may be solved in terms of the Lambert W function for

v/2 < e−1 [111], which we may assume without loss of generality as (E.24) holds
only as v → 0.

Using y = −vz, the leading-order solution to (E.24) is given by

vz0 ∼ −Wk

(
−v
2

)
, (E.25)

where k = 0, −1 determines the branch of the Lambert W function.
For small arguments, the two branches behave characteristically differently.

On the principal branch, we have −W0(−v/2) → 0+ as v → 0, whereas on the
lower branch, −W−1(−v/2) → ∞ as v → 0. Recalling the observation vz → ∞
as v → 0, we must take the solution on the lower branch W−1. Therefore, the
leading-order behaviour of z0 is given by

z0 ∼ −1

v
W−1

(
−v
2

)
, (E.26)

as v → 0.
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Appendix F

Generalised Frenet-Serret equations

In this Appendix, we simplify the generalised Frenet-Serret equations (6.49). We
begin with the equations (6.49d) and the general ordinary differential equation
defining V µ

a in terms of V µ
0 (6.50). We insert (6.50) into (6.49d), resulting in an

ordinary differential equation for V µ
0 ,

0 =
1∏n−1

i=0 χi

⌊n2 ⌋∑
q=0

bn2q
dn+1−2q

dτn+1−2q
V µ
0 +

⌊
n−1
2

⌋∑
q=0

χ2
n−1b

n−1
2q

dn−1−2q

dτn−1−2q
V µ
0

 . (F.1)

This can brought into a more familiar form,

0 =
1∏n−1

i=0 χi

⌊n2 ⌋∑
q=0

bn2q
dn+1−2q

dτn+1−2q
V µ
0 +

⌊
n−1
2

⌋∑
q=0

χ2
n−1b

n−1
2q

dn−1−2q

dτn−1−2q
V µ
0

 ,

(a)
=

1∏n−1
i=0 χi

⌊n2 ⌋∑
q=0

bn2q
dn+1−2q

dτn+1−2q
V µ
0 +

⌊
n+1
2

⌋∑
q=1

χ2
n−1b

n−1
2(q−1)

dn+1−2q

dτn+1−2q
V µ
0

 ,

(b)
=

1∏n−1
i=0 χi

 dn+1

dτn+1
V µ
0 +

⌊
n+1
2

⌋∑
q=1

[
bn2q + χ2

n−1b
n−1
2(q−1)

] dn+1−2q

dτn+1−2q
V µ
0

 ,

(c)
=

χn∏n
i=0 χi

⌊
n+1
2

⌋∑
q=0

bn+1
2q

dn+1−2q

dτn+1−2q
V µ
0 ,

(d)
= χnV

µ
n+1 . (F.2)

In equality (a), we changed summation variable q 7→ q + 1 in the second summa-
tion. In equality (b), we isolated the q = 0 term and used that for odd integers
⌊n
2
⌋ = ⌊n+1

2
⌋. For odd integers, consider the effect of replacing ⌊n

2
⌋ by ⌊n+1

2
⌋. Let

n = 2m− 1, an odd integer. Then ⌊n+1
2
⌋ = m. Hence, the coefficient of this term

would be b2m−1
2m . Calculating this using (6.51c), one finds that the first summation

is over
∑2m−3

2m−2, which identically vanishes. Hence, one may replace ⌊n
2
⌋ by ⌊n+1

2
⌋
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in the first sum. In equality (c), we used the relation bm2q+χ2
m−1b

m−1
2(q−1) = bm+1

2q and
then combined the two terms under one summation and finally multiplied by
χn/χn. In equality (d), we recognised that the resulting summation was (6.50) in
the case a = n+ 1.

Therefore, one may find the ordinary differential equation for V µ
0 (and hence

the four-velocity) by forcing V µ
n+1 to vanish. This fully determines the Frenet-

Serret equations.



Appendix G

Stationary trajectories in 4 + 1
Minkowski spacetime

In this Appendix, we present the stationary trajectories in 4+1 Minkowski space-
time. One first solves the ordinary differential equation for V µ

0 , then calculates
the constants of integration using (6.56) and finally brings the motion into a
more familiar form by a suitable Lorentz transformation.

If one sets χa = 0, then the Frenet-Serret equations (6.54) are no longer well
defined. The geometric effect of setting χa = 0 is to confine the motion to Ra+1,1.
Note, however, that the stationary trajectories of Rm,1 are also present in Rn,1

for m ≤ n. Therefore, to calculate the stationary trajectories present in Rn,1, one
solves the Frenet-Serret equations (6.54) for each m ≤ n. The trajectories are then
written via the inclusion map,

Rm,1 ↪→ Rn,1 , (G.1a)
(x0, . . . , xm) 7→ (x0, . . . , xm, 0, . . . , 0) , (G.1b)

where (0, . . . , 0) represents (n−m)–many zeros (in the case m = n, then there
are no zeros present).

We present the stationary trajectory in cases. Case m gives the solution(s) to
the Frenet-Serret equations (6.54) in Rm,1.

Case 0 — The class of inertial trajectories,

V µ
0 = ẋµ = (1, 0, 0, 0, 0) . (G.2)

Case I — χ0 > 0. Rindler motion,

V µ
0 = (cosh(χ0τ), sinh(χ0τ), 0, 0, 0) . (G.3)

Case II — The solutions to the Frenet-Serret equations in 2 + 1 have two
free parameters, the curvature invariants χ0 and χ1. The classification of the
stationary trajectory depends on their relation.
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Case IIa — χ0 > |χ1| > 0. After a suitable Lorentz transformation, this is
drifted Rindler motion [72],

V µ
0 =

1√
χ2
0 − χ2

1

(
χ0 cosh(

√
χ2
0 − χ2

1 τ), χ0 sinh(
√
χ2
0 − χ2

1 τ), χ1, 0, 0

)
. (G.4)

Case IIb — |χ0| = |χ1| ≠ 0,

V µ
0 =

(
1 + 1

2
χ2
0τ

2, χ0τ,
1
2
χ2
0τ

2, 0, 0
)
, (G.5)

whose spatial profile is that of the semicubical parabola y2 = 2
9
χ0x

3.

Case IIc — χ1 > |χ0| > 0. After a suitable Lorentz transformation, this is
circular motion in the x1–x2 plane.

V µ
0 =

1√
χ2
1 − χ2

0

(
χ1,−χ0 sin(

√
χ2
1 − χ2

0 τ), χ0 cos(
√
χ2
1 − χ2

0 τ), 0, 0

)
. (G.6)

In the following cases, we give the Lorentz transformation explicitly owing to
their more involved calculations.

Case III — The general solution to (6.54d) is

V µ
0 = Bµ cosh(R+τ) + Cµ sinh(R+τ) +Dµ cos(R−τ) + Eµ sin(R−τ) , (G.7a)

Bµ =
1

R2

(
R2

− + χ2
0, 0, χ0χ1, 0, 0

)
, (G.7b)

Cµ =
1

R2

(
0,
χ0

R+

(χ2
0 − χ2

1 +R2
−), 0,

χ0χ1χ2

R+

, 0

)
, (G.7c)

Dµ =
1

R2

(
R2

+ − χ2
0, 0,−χ0χ1, 0, 0

)
, (G.7d)

Eµ =
1

R2

(
0,− χ0

R−
(χ2

0 − χ2
1 −R2

+), 0,−
χ0χ1χ2

R−
, 0

)
. (G.7e)

This is loxodromic motion, which may more clearly be seen by the following
Lorentz transformation,

Λµν =


α 0 β 0 0
0 γ 0 δ 0
0 C 0 D 0
A 0 B 0 0
0 0 0 0 1

 , (G.8a)

α =
∆

R
, β =

∆(R2
+ − χ2

0)

χ0χ1R
, γ =

∆R+

χ0R
, δ = −∆R+(χ

2
0 − χ2

1 −R2
+)

χ0χ1χ2R
,

A =
χ0χ1

∆R
, B = −∆

R
, C = −χ1R−

∆R
, D =

R−(χ2
0 − χ2

1 +R2
−)

χ2∆R
, ∆2 = R2

− + χ2
0 ,

(G.8b)
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ΛµνV
ν
0 =

1

R

(
∆cosh(R+τ),∆sinh(R+τ),−

χ0χ1

∆
sin(R−τ),

χ0χ1

∆
cos(R−τ), 0

)
.

(G.9)

Case IV — The classification of the solutions to the Frenet-Serret equations
in 4 + 1 Minkowski spacetime depends on the relationship between the four
curvature invariants. In particular, on the sign of b (6.59).

Case IVa — b = χ2
2χ

2
0 + χ2

3(χ
2
0 − χ2

1) > 0. The four-velocity is given by

V µ
0 = Aµ+Bµ cosh(R+τ)+C

µ sinh(R+τ)+D
µ cos(R−τ)+E

µ sin(R−τ) , (G.10)

where

Aµ =

(
1− χ2

0

b
(χ3

2 + χ2
3), 0,−

χ0χ1χ
2
3

b
, 0,−χ0χ1χ2χ3

b

)
, (G.11a)

Bµ =
1

R2

(
χ2
0

R2
+

(χ2
0 − χ2

1 +R2
−), 0,

χ0χ1

R2
+

(χ2
0 − χ2

1 − χ2
2 +R2

−), 0,
χ0χ1χ2χ3

R2
+

)
,

(G.11b)

Cµ =
1

R2

(
0,
χ0

R+

(χ2
0 − χ2

1 +R2
−), 0,

χ0χ1χ2

R+

, 0

)
, (G.11c)

Dµ =
1

R2

(
χ2
0

R2
−
(χ2

0 − χ2
1 −R2

+), 0,
χ0χ1

R2
−

(χ2
0 − χ2

1 − χ2
2 −R2

+), 0,
χ0χ1χ2χ3

R2
−

)
,

(G.11d)

Eµ =
1

R2

(
0,− χ0

R−
(χ2

0 − χ2
1 −R2

+), 0,−
χ0χ1χ2

R−
, 0

)
. (G.11e)

Given the classifications in Section 6.2.4, one may hope to identify this motion as
a boost, combined with a drift and circular motion. We make an ansatz of the de-
sired form of the four-velocity and find the appropriate Lorentz transformation,

V µ
0 = ΛµνṼ

ν
0 =



B0

α
0 A0

β
0 D0

γ

0 C1

α
0 −E1

γ
0

B2

α
0 A2

β
0 D2

γ

0 C3

α
0 −E3

γ
0

B4

α
0 A4

β
0 D4

γ




α cosh(R+τ)
α sinh(R+τ)

β
−γ sin(R−τ)
γ cos(R−τ)

 . (G.12)

By imposing that Λ is a Lorentz transformation, one may identify the coefficients
α, β, and γ as

α =
√

−BµBµ =
√
CµCµ , (G.13a)

β =
√
AµAµ , (G.13b)

γ =
√
DµDµ =

√
EµEµ . (G.13c)

Intermediate steps include the verification that AµDµ = CµEµ = AµBµ =
BµDµ = 0. This brings the four-velocity into the more recognisable form
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V µ
0 =

(√
−BµBµ cosh(R+τ),

√
−BµBµ sinh(R+τ),√

AµAµ,−
√
DµDµ sin(R−τ),

√
DµDµ cos(R−τ)

)
, (G.14)

corresponding to a boost along the x1–axis, a drift in the x2–axis and circular
motion in the x3–x4 plane.

Case IVb — b = 0 ⇐⇒ χ2
0 =

χ1χ3

χ2
2+χ

2
3
. In this case, one finds 2a = χ2

0 −χ2
1 −χ2

2 −
χ2
3 = − (χ2

2+χ
2
3)

2+χ2
1χ

2
2

χ2
2+χ

2
3

< 0, leading to R2
+ = 0 and R2

− = −2a > 0. The four-velocity
reads

V µ
0 = Ãµ + 1

2
B̃µτ 2 + C̃µτ + D̃µ cos(R−τ) + Ẽµ sin(R−τ) , (G.15a)

Ãµ =

(
1− χ2

0

R4
−
(χ2

0 − χ2
1), 0,−

χ0χ1

R4
−

(χ2
0 − χ2

1 − χ2
2), 0,−

χ0χ1χ2χ3

R4
−

)
, (G.15b)

B̃µ =

(
χ2
0

R2
−
(χ2

0 − χ2
1 +R2

−), 0,
χ0χ1

R2
−

(χ2
0 − χ2

1 − χ2
2 +R2

−), 0,
χ0χ1χ2χ3

R2
−

)
,

(G.15c)

C̃µ =

(
0,
χ0

R2
−
(χ2

0 − χ2
1 +R2

−), 0,
χ0χ1χ2

R2
−

, 0

)
, (G.15d)

D̃µ =

(
χ2
0

R4
−
(χ2

0 − χ2
1), 0,

χ0χ1

R4
−

(χ2
0 − χ2

1 − χ2
2), 0,

χ0χ1χ2χ3

R4
−

)
, (G.15e)

Ẽµ =

(
0,− χ0

R3
−
(χ2

0 − χ2
1), 0,−

χ0χ1χ2

R3
−

, 0

)
. (G.15f)

We proceed as in (G.12) to find

V µ
0 =

√−ÃµÃµ −
1

2

ÃµB̃µ√
−ÃµÃµ

τ 2,

√
C̃µC̃µτ,−

1

2

ÃµB̃µ√
−ÃµÃµ

τ 2,

−
√
D̃µD̃µ sin(R−τ),

√
D̃µD̃µ cos(R−τ)

)
, (G.16)

whose spatial profile is the semicubical parabola y2 = 2
9

(ÃµB̃µ)2

(−ÃνÃν)(C̃ρC̃ρ)3
x3 in the

x–y plane, combined with circular motion in the x3–x4 plane. We use (x, y) in
place of (x1, x2) for clarity.

Case IVc — b = χ2
2χ

2
0 + χ2

3(χ
2
0 − χ2

1) < 0. In this case, we have both a < 0 and
b < 0. Hence, R2

+ =
√
a2 + b + a < 0, yet R2

− =
√
a2 + b− a > 0. We then write

a = −α, b = −β such that R2
+ = −(α−

√
α2 − β) = −ρ2−. The four-velocity reads

V µ
0 = Aµ +Bµ cos(ρ−τ) + Cµ sin(ρ−τ) +Dµ cos(R−τ) + Eµ sin(R−τ) , (G.17a)

Aµ =

(
1− χ2

0

b
(χ3

2 + χ2
3), 0,−

χ0χ1χ
2
3

b
, 0,−χ0χ1χ2χ3

b

)
, (G.17b)
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Bµ =
1

R2

(
−χ2

0

ρ2−
(χ2

0 − χ2
1 +R2

−), 0,−
χ0χ1

ρ2−
(χ2

0 − χ2
1 − χ2

2 +R2
−), 0,−

χ0χ1χ2χ3

ρ2−

)
,

(G.17c)

Cµ =
1

R2

(
0,
χ0

ρ−
(χ2

0 − χ2
1 +R2

−), 0,
χ0χ1χ2

ρ−
, 0

)
, (G.17d)

Dµ =
1

R2

(
χ2
0

R2
−
(χ2

0 − χ2
1 + ρ2−), 0,

χ0χ1

R2
−

(χ2
0 − χ2

1 − χ2
2 + ρ2−), 0,

χ0χ1χ2χ3

R2
−

)
,

(G.17e)

Eµ =
1

R2

(
0,− χ0

R−
(χ2

0 − χ2
1 + ρ2−), 0,−

χ0χ1χ2

R−
, 0

)
, (G.17f)

where R2 = R2
− − ρ2−. Proceeding once more as in (G.12), one may rewrite this

four-velocity as

V µ
0 =

(√
−AµAµ,−

√
BµBµ sin(ρ−τ),

√
BµBµ cos(ρ−τ),

−
√
DµDµ sin(R−τ),

√
DµDµ cos(R−τ)

)
, (G.18)

identifying the trajectory as independent circular motions in the x1–x2 and x3–x4

planes.
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Appendix H

Large-a asymptotics in Minkowski
spacetime: Vacuum contribution

In this Appendix, we demonstrate the asymptotic behaviour of the integrated
response (7.12) in the large-a regime, leading to the results of Section 7.2.

H.1 Decomposition of integrated response

The integrated response function reads

G(a) =
1

a

∑
m∈Z

∑
n∈N

J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(mΩ− ωmn) , (H.1)

where ωmn = q|m|n/a.
We recall that σ ∈ C∞

0 . Let σI := inf supp{σ} and σS := sup supp{σ}. We
assume that the support of σ is chosen such that either supp{σ} ⊂ R>0 with
0 < σI < Ω < σS or supp{σ} ⊂ R<0 with σI < −Ω < σS < 0. In particular,
0 /∈ supp{σ}. This restriction is imposed as the inertial contribution to the
response function in unbounded 2 + 1 Minkowski spacetime is discontinuous at
E = 0 (2.79).

The non-zero contributions to the integrated response function (H.1) satisfy

σI < mΩ− q|m|n
a

< σS , (H.2)

which may be rewritten as

a(mΩ− σS) < q|m|n < a(mΩ− σI) . (H.3)

Depending on the value of m, the condition (H.3) falls into three different cases.
For sufficiently large a, with the other parameters fixed, these cases are as
follows.

- For m ≤ σI
Ω

, no n satisfy (H.3).

- For σI
Ω
< m ≤ σS

Ω
, n satisfies 1 ≤ n ≤ Nmax. We denote the set of these m by

C1.
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- For σS
Ω
< m, n satisfies Nmin ≤ n ≤ Nmax. We denote the set of these m by

C2.

We note that Nmin, Nmax depend on m and are respectively the least and greatest
values of n satisfying (H.3) and we remark that C1 is a finite set containing ±1.

With this notation, we may split G as

G(a) = G1(a) + G2(a) , (H.4a)

G1(a) =
1

a

∑
m∈C1

Nmax∑
n=1

J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(mΩ− ωmn) , (H.4b)

G2(a) =
1

a

∑
m∈C2

Nmax∑
n=Nmin

J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(mΩ− ωmn) . (H.4c)

H.2 G1(a)

We consider first G1 (H.4b). To further decompose the sum over n, we fix a
constant p ∈ (0, 1

3
) and set N := ⌊

(
a
R

)p⌋, where ⌊·⌋ is the floor function. For
sufficiently large a, we then have N < Nmax, and we may write

G1(a) = G1
<(a) + G1

>(a) (H.5a)

G1
<(a) =

1

a

∑
m∈C1

N−1∑
n=1

J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(mΩ− ωmn) , (H.5b)

G1
>(a) =

1

a

∑
m∈C1

Nmax∑
n=N

J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(mΩ− ωmn) . (H.5c)

To address G1
< (H.5b), we recall that C1 has finitely many elements. As such,

q|m|n may be approximated by the McMahon expansion [111] for fixed m and
large n, which we write in two ways

q|m|n ∼ πα|m|n + f|m|(πα|m|n) , (H.6a)
q|m|n ∼ X|m|(πα|m|n) , (H.6b)

where

α|m|n := n+
1

2
|m| − 1

4
, (H.7a)

f|m|(z) :=
∞∑
k=1

ck(|m|)
z2k−1

= −4|m|2 − 1

8z
+ . . . , (H.7b)

X|m|(z) := z + f|m|(z) , (H.7c)

where the coefficients ck(|m|) are polynomials in |m|2 of degree k and a recur-
rence relation for their calculation is given in [205].

As m is bounded and n < N , the McMahon expansion (H.6) informs us that
q|m|n ∼ πn + O(1), which is at most q|m|N = O(ap). As such for n < N , we
have ωmn = q|m|n/a = o(1) as a → ∞. Then, elementary estimates, using the
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Maclaurin expansion [111]

J2
|m|(z) ∼ 1

4
z2δ|m|1 +O(z4) , (H.8)

as z → 0 for m ̸= 0 and 0 < p < 1
3
, show

G1
<(a) =

R2

4a

∑
m∈C1

N−1∑
n=1

1

q1nJ2
2 (q1n)

δ1|m|

((q1n
a

)2
σ(mΩ)−

(q1n
a

)3
σ′(mΩ)

)
+ o(a−3) , (H.9)

where σ′(mΩ) = d
dz
σ(z)|z=mΩ.

To address G1
> (H.5c), we note that n may be considered large throughout the

range of summation and m is bounded. We may therefore employ the McMahon
expansion (H.6). In addition, we found the following asymptotic behaviour of
the denominator in (H.4b), related to the McMahon expansion, which we have
not encountered in the existing literature,

1

q|m|nJ2
|m|+1(q|m|n)

∼ π

2
X ′

|m|(πα|m|n) . (H.10)

X|m| and α|m|n are given in (H.7). The following proof was provided by Gergő
Nemes (Tokyo Metropolitan University) [170].

Proof. Let ρ|m|(t) be a zero of the functionC|m|(z) := J|m|(z) cos(πt)+Y|m|(z) sin(πt),
where Y|m| are the Bessel functions of the second kind [111]. Then, q|m|n = ρ|m|(n).

Using the recurrence relation [111, (10.6.2)], we have J ′
|m|(q|m|n) = −J|m|+1(q|m|n).

As such, we may write

q|m|nJ
2
|m|+1(q|m|n) =

[
ρ|m|(t)

(
J ′
|m|(ρ|m|(t))

)2]∣∣∣
t=n

. (H.11)

By [111, (10.21.10)], we have

J|m|(ρ|m|(t)) =

[
1

2
ρ|m|(t)

dρ|m|(t)

dt

]− 1
2

. (H.12)

Combining (H.11) and (H.12), we find

1

q|m|nJ2
|m|+1(q|m|n)

=
1

ρ|m|(t)
(
J ′
|m|
(
ρ|m|(t)

))2
∣∣∣∣∣∣∣
t=n

=
1

2

dρ|m|(t)

dt

∣∣∣∣
t=n

. (H.13)

Recalling the McMahon expansion for large n, we have ρ|m|(t) ∼ X|m|(πα|m|t),
where α|m|t := t+ 1

2
|m| − 1

4
. Combining this with (H.13), we arrive at the desired

result
1

q|m|nJ2
|m|+1(q|m|n)

∼ π

2
X ′

|m|(πα|m|n) . (H.14)
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Using the McMahon expansion (H.6) and asymptotic behaviour (H.10), we
may write G1

>(a) as

G1
>(a) =

π

2a

∑
m∈C1

Nmax∑
n=N

J2
|m|
(
R
a
X|m|(πα|m|n)

)
X ′

|m|(πα|m|n)σ
(
mΩ− 1

a
X|m|(πα|m|n)

)
.

(H.15)
The summand in (H.15) vanishes for n > Nmax by definition. As such, we may

extend the range of summation to infinity and we appeal to the Euler-Maclaurin
formula [206],

q∑
n=p

g(n) =

ˆ q

p

dx g(x) +
1

2
(g(p) + g(q)) +

l∑
i=2

bi
i!

(
g(i−1)(q)− g(i−1)(p)

)
+

ˆ q

p

dx
B̃l(1− x)

l!
g(l)x , (H.16)

where l is any positive integer and B̃j and bj are the periodic Bernoulli polyno-
mials and Bernoulli numbers respectively [111].

Employing the Euler-Maclaurin formula (H.16) with l = 3, we have

G1
>(a) = I1 + I2 + I3 + I4 , (H.17a)

I1 =
π

2a

∑
m∈C1

ˆ ∞

N

dx J2
|m|
(
R
a
X|m|(πα|m|x)

)
X ′

|m|(πα|m|x)

× σ
(
mΩ− 1

a
X|m|(πα|m|x)

)
, (H.17b)

I2 =
π

2a

∑
m∈C1

J2
|m|
(
R
a
X|m|(πα|m|N)

)
X ′

|m|(πα|m|N)σ
(
mΩ− 1

a
X|m|(πα|m|N)

)
,

(H.17c)

I3 = − π

24a

∑
m∈C1

d

dx

(
J2
|m|
(
R
a
X|m|(πα|m|x)

)
X ′

|m|(πα|m|x)

×σ
(
mΩ− 1

a
X|m|(πα|m|x)

))∣∣∣∣
x=N

,

(H.17d)

I4 =
π

12a

ˆ ∞

N

dx B̃3(1− x)
d3

dx3

(
J2
|m|
(
R
a
X|m|(πα|m|x)

)
X ′

|m|(πα|m|x)

× σ
(
mΩ− 1

a
X|m|(πα|m|x)

))
. (H.17e)

Elementary estimates, using (H.7) and 0 < p < 1
3
, give

I1 = I0 +∆I1 , (H.18a)

I0 =
∑
m∈C1

ˆ ∞

0

dz
1

2
J2
|m|(Rz)σ(mΩ− z) , (H.18b)

∆I1 = − R2

24a3

∑
m∈C1

(
π3
(
N + 1

4

)3 − 9
8
π
(
N + 1

4

))
σ(mΩ)δ|m|1



Chapter H. G1(a) 205

+
R2

32a4

∑
m∈C1

π4N4σ′(mΩ)δ|m|1 + o(a−3) , (H.18c)

I2 =
R2

16a3

∑
m∈C1

(
π3
(
N + 1

4

)2 − 3
8
π
)
σ(mΩ)δ|m|1 + o(a−3) , (H.18d)

I3 = − R2

48a3

∑
m∈C1

π3
(
N + 1

4

)
σ(mΩ)δ|m|1 + o(a−3) . (H.18e)

We note that in addressing I1 (H.17b), we used the change of variables z =
1
a
X|m|(πα|m|x).
We address next I4 (H.17e). We recall from (H.7) that X|m|(πα|m|x) = πα|m|n +

f|m|(πα|m|x) and that for x > N , |f|m|(πα|m|x)| ≪ 1. Then, elementary estimates
and the change of variable s = πα|m|x give

I4 ∼ 1

12

(π
a

)3 ∑
m∈C1

ˆ ∞

0

ds B̃3(
a
π
s− α|m|0)

d3

ds3
(
J2
|m|(Rs)σ(mΩ− s)

)
. (H.19)

As d3

ds3
J2
|m|(Rs)σ(mΩ− s) is a bounded function of compact support, a generali-

sation of the Riemann-Lebesgue lemma [207, (Theorem 4)] gives
ˆ ∞

0

ds B̃3(
a
π
s− α|m|0)

d3

ds3
(
J2
|m|(Rs)σ(mΩ− s)

)
= o(1) =⇒ I4 = o(a−3) ,

(H.20)
as a→ ∞.

Collecting the results of (H.18) and (H.20), we find

G1
>(a) =

∑
m∈C1

ˆ ∞

0

dz
1

2
J2
|m|(Rz)σ(mΩ− z) +

R2

32a4

∑
m∈C1

π4N4σ′(mΩ)δ|m|1

− R2

4a3

∑
m∈C1

(
N−1∑
n=1

[
π3

2

(
n+ 1

4

)2 − 3π

16

]
+
π(5π2 − 18)

128

)
σ(mΩ)δ|m|1 + o(a−3) ,

(H.21)

where we have rewritten terms involving powers of N as a sum over n.
Combining G1

< (H.9) and G1
> (H.21), we have

G1(a) =
∑
m∈C1

ˆ ∞

0

dz
1

2
J2
|m|(Rz)σ(mΩ− z)

− R2

4a4

∑
m∈C1

(
N−1∑
n=1

q31n
q1nJ2

2 (q1n)
− π4

8
N4

)
σ′(mΩ)δ|m|1

− R2

4a3

∑
m∈C1

(
N−1∑
n=1

[
π3

2

(
n+ 1

4

)2 − 3π

16
− q21n
q1nJ2

2 (q1n)

]
+
π(5π2 − 18)

128

)
σ(mΩ)δ|m|1

+ o(a−3) . (H.22)

The expansion (H.22), however, depends on the auxiliary function N .
To address the N -dependence of (H.22), we first fix a constant q ∈ (0, 1

4
) and
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set Ñ := ⌊
(
a
R

)q⌋ and we write

1

a4

N−1∑
n=1

q31n
q1nJ2

2 (q1n)
=

1

a4

Ñ−1∑
n=1

q31n
q1nJ2

2 (q1n)
+

π

2a4

N−1∑
n=Ñ

X3
|m|(πα|m|n)X

′
|m|(πα|m|n) ,

(H.23)

Then, elementary estimates using (H.6) give

1

a4

N−1∑
n=1

q31n
q1nJ2

2 (q1n)
=

π4

8a4
N4 + o

(
a−3
)
. (H.24)

Substituting this result into (H.22), the coefficient of σ′(mΩ) vanishes.
We write the coefficient of σ(mΩ) in (H.22) as

N−1∑
n=1

[
π3

2

(
n+ 1

4

)2 − 3π

16
− q21n
q1nJ2

2 (q1n)

]
=

∞∑
n=1

[
π3

2

(
n+ 1

4

)2 − 3π

16
− q21n
q1nJ2

2 (q1n)

]
−

∞∑
n=N

[
π3

2

(
n+ 1

4

)2 − 3π

16
− q21n
q1nJ2

2 (q1n)

]
.

(H.25)

The McMahon expansion (H.6) and (H.10) show that

q21n
q1nJ2

2 (q1n)
=

π3

2

(
n+ 1

4

)2 − 3π

16
+O(n−2) , (H.26)

as n→ ∞. As such, we see that the second term in (H.25) is O(N−1).
The leading and subleading contributions to G1 (H.4b) are given by

G1(a) =
∑
m∈C1

ˆ ∞

0

dz
1

2
J2
|m|(Rz)σ(mΩ− z)

− R2

4a3

∑
m∈C1

( ∞∑
n=1

[
π3

2

(
n+ 1

4

)2 − 3π

16
− q21n
q1nJ2

2 (q1n)

]
+
π(5π2 − 18)

128

)
σ(mΩ)δ|m|1

+ o(a−3) . (H.27)

Note that whilst G1
< (H.9) and G1

> (H.21) individually depend on the auxiliary
function N , the N -dependence has cancelled out in G1 (H.27).

H.3 G2(a)

We consider next G2 (H.4c). To decompose the sum over m, we fix a constant
q ∈ (0, 1) and set M := ⌊

(
a
R

)q⌋. We write

G2(a) = G2
<(a) + G2

>(a) , (H.28a)
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G2
<(a) =

1

a

∑
m∈C2,

m≤M−1

Nmax∑
n=Nmin

J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(mΩ− ωmn) , (H.28b)

G2
>(a) =

1

a

∞∑
m=M

Nmax∑
n=Nmin

J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(mΩ− ωmn) . (H.28c)

To address G2
> (H.28b), we make four observations.

- First, we employ the uniform asymptotic expansion of q|m|n as n → ∞,
q|m|n ∼ mz(ζ) [111, (10.21.41)], where z(ζ) is the inverse of

2

3
(−ζ) 3

2 =
√
z2 − 1− arcsec(z) , (H.29)

ζ = anm
−2/3, and an is the nth zero of the Airy function. We note an < 0.

- Second, we recall that m > M = O(aq). Observing the inequality (H.3), we
see that mz(ζ) = O(am). As such, z must be large, for which values the
right-hand side of (H.29) reduces to z; hence z ∼ 2

3
(−ζ)−3/2. In turn, this

implies ζ = anm
−2/3 → −∞.

- Third, for large values of n, we have the asymptotic expansion (−an)3/2 ∼
3
2
πn and we arrive at z ∼ π n

m
and q|m|n ∼ πn. Combining this with the

inequality (H.3), we find Nmin, Nmax = O(ma).

- Finally, we observe that the inequality (H.3) implies

mΩR− σSR <
R

a
q|m|n < mΩR− σIR . (H.30)

For large m, we see R
a
q|m|n ∼ mΩR.

Having made these observations, we may address G2
> (H.28b). We recall

from (H.13) that
1

q|m|nJ2
|m|+1(q|m|n)

=
1

2

dρ|m|(t)

dt

∣∣∣∣
t=n

. (H.31)

In our third observation, we found q|m|n ∼ πn and so ρ|m|(t) ∼ πt and we see
that denominator may be approximated by π

2
.

Then, we have

G2
>(a) ∼ π

2a

∞∑
m=M

Nmax∑
n=Nmin

J2
|m|

(
R

a
q|m|n

)
σ(mΩ− ωmn) . (H.32)

By our fourth observation, we see that the argument of the Bessel function is
asymptotically equal to mΩR,

G2
>(a) ∼ π

2a

∞∑
m=M

Nmax∑
n=Nmin

J2
|m|(mv)σ(mΩ− ωmn) , (H.33)
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where v := ΩR < 1 is the (fixed) speed of the timelike circular trajectory. As
m > M is large, we may employ the uniform asymptotic expansion of the Bessel
function [111, (10.20.4)],

J2
|m|(mv) ∼ 1

2π
√
1− v2

e−2mξ(v)

m
, (H.34)

as m→ ∞, where ξ(v) := ln(1 +
√
1− v2)− ln(v)−

√
1− v2 > 0.

As σ is a smooth function of compact support, it may be bounded above by
some constant A. Then, we have

G2
>(a) <

A

4a
√
1− v2

∞∑
m=M

Nmax∑
n=Nmin

e−2mξ(v)

m
(H.35)

Performing the summation over n yields a factor of Nmax −Nmin + 1. By obser-
vation three, this is of the order ma and (Nmax − Nmin + 1)/(am) may then be
bounded above by a constant B,

G2
>(a) <

AB

4
√
1− v2

∞∑
m=M

e−2mξ(v) . (H.36)

Summing over m, we find

G2
>(a) <

AB

4
√
1− v2

∞∑
m=M

e−2mξ(v) =
AB

4
√
1− v2

e−2Mξ(v)

1− e−2ξ(v)
= O

(
e−2Mξ(v)

)
.

(H.37)
In particular, G2

>(a) = o(a3) for all q ∈ (0, 1).
To address G2

< (H.28b), we note that n is large relative to m and we use the
McMahon expansion (H.6) and the asymptotic behaviour (H.10). By the support
of σ, we may extend the range of summation to Nmin − 1 ≤ n ≤ Nmax + 1. Then,
the Euler-Maclaurin formula (H.16) gives

G2
<(a) = J1 + J2 , (H.38a)

J1 =
π

a

∑
m∈C2,

m≤M−1

ˆ Nmax+1

Nmin−1

dx
1

2
J2
|m|
(
R
a
X|m|(πα|m|x)

)
X ′

|m|(πα|m|x)

× σ
(
mΩ− 1

a
X|m|(πα|m|x)

)
, (H.38b)

J2 =
π

2a(l!)

∑
m∈C2,

m≤M−1

ˆ Nmax+1

Nmin−1

dx B̃l(1− x)
dl

dxl
1

2
J2
|m|
(
R
a
X|m|(πα|m|x)

)
×X ′

|m|(πα|m|x)σ
(
mΩ− 1

a
X|m|(πα|m|x)

)
, (H.38c)

where we note that the other terms in (H.16) vanish as they are evaluated outside
the support of the summand.

To address J2 (H.38c), we recall X|m|(πα|m|x) = πα|m|x + f|m|(πα|m|x) (H.7).
For x ∈ (Nmin − 1, Nmax + 1), we have |f|m|(πα|m|x)| ≪ 1. To leading order, we
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consider X|m|(πα|m|x) ∼ πα|m|x. We perform the change of variables s = π
a
α|m|x,

J2 ∼ 1

2(l!)

(π
a

)l ∑
m∈C2,

m≤M−1

ˆ π
a
αmNmax−1

π
a
αmNmin−1

ds B̃l

(
a
π
s− α|m|0

) dl

dsl
1

2
J2
|m|(Rs)σ(mΩ− s) .

(H.39)
We recall from earlier observations that n = O(ma) for large m. As such, the

upper and lower limits of integration are order m. Elementary estimates then
give J2 = O(a2q−l). By employing the Euler-Maclaurin formula (H.16) with
l ≥ 5, we find J2 = o(a−3).

To address J1 (H.38b), we extend the range of integration to the positive real
line by the support of σ and perform the change of variables z = 1

a
X|m|(πα|m|x).

Elementary estimates then give

J1 =
∑
m∈C2,

m≤M−1

ˆ ∞

0

dz
1

2
J2
|m|(Rz)σ(mΩ− z) . (H.40)

By the estimation of G2
>, we see that the summation of the integral over m ≥M

is exponentially small. We therefore extend the range of summation over m to
the full set C2,

J1 =
∑
m∈C2

ˆ ∞

0

dz
1

2
J2
|m|(Rz)σ(mΩ− z) + o(a−3). (H.41)

The asymptotic expansion of G2 (H.4c) is given by

G2(a) =
∑
m∈C2

ˆ ∞

0

dz
1

2
J2
|m|(Rz)σ(mΩ− z) + o(a−3). (H.42)

H.4 Combining G1 and G2

The full expression for the leading and next-to-leading terms for G(a) is now
obtained by combining G1 (H.27) and G2 (H.42), with the result

G(a) =
∑
m∈Z

ˆ ∞

0

dz
1

2
J2
|m|(Rz)σ(mΩ− z)

− R2

4a3

∑
m∈C1

( ∞∑
n=1

[
π3

2

(
n+ 1

4

)2 − 3π

16
− q21n
q1nJ2

2 (q1n)

]
+
π(5π2 − 18)

128

)
σ(mΩ)δ|m|1

+ o(a−3) . (H.43)

To extract the response function from (H.43), rewrite the limits of the integral
and the summation, perform a change of variables, and take the subleading term
under the integral. This gives
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G(a) =

ˆ
R
dE σ(E)

(
1

2

∑
m>E/Ω

J2
|m|(mv − ER)

− R2

4a3

( ∞∑
n=1

[
π3

2
(n+ 1

4
)2 − 3π

16
− q21n
q1nJ2

2 (q1n)

]
+
π(5π2 − 18)

128

)
δ(|E|−Ω)+o(a−3)

)
,

(H.44)

where δ(|E| − Ω) = δ(E − Ω) + δ(E + Ω).



Appendix I

Large-a asymptotics in Minkowski
spacetime: Thermal contribution

In this Appendix, we demonstrate the asymptotic behaviour of the integrated
response contribution due to finite temperature ∆Gβ (7.19).

I.1 Decomposition of integrated response due to fi-
nite temperature

The integrated response contribution due to finite temperature ∆Gβ (7.20) reads

∆Gβ(a) = G+(a) + G−(a) , (I.1a)

G+(a) =
1

a

∑
m∈Z

∑
n∈Z

n(βωmn)
J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(mΩ− ωmn) , (I.1b)

G−(a) =
1

a

∑
m∈Z

∑
n∈Z

n(βωmn)
J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(−(mΩ− ωmn)) , (I.1c)

where ωmn = q|m|n/a.
We recall that σ ∈ C∞

0 . Let σI := inf supp{σ} and σS := sup supp{σ}. We
assume that the support of σ is chosen such that either supp{σ} ⊂ R>0 with
0 < σI < Ω < σS or supp{σ} ⊂ R<0 with σI < −Ω < σS < 0. Since ∆Fβ is even
in E, we shall for now assume that supp{σ} ⊂ R>0 and relax this assumption
in (I.23).

We recall that supp{σ} ⊂ [σI , σS]. For fixed m in (I.1b) and (I.1c), the values of
n in the sums over n are hence restricted by

a(mΩ− σS) < q|m|n < a(mΩ− σI) in G+ , (I.2a)
a(mΩ + σI) < q|m|n < a(mΩ + σS) in G− . (I.2b)

Depending on the value of m, the conditions (I.2) fall into three different
cases. For sufficiently large a, with the other parameters fixed, these cases are as
follows.

In G+:

- For m ≤ σI
Ω

, no n satisfy (H.3).

211



Chapter I. G1± 212

- For σI
Ω
< m ≤ σS

Ω
, n satisfies 1 ≤ n ≤ N+

max. We denote the set of these m by
C1+.

- For σS
Ω
< m, n satisfies N+

min ≤ n ≤ N+
max. We denote the set of these m by

C2+.

In G−:

- For m ≤ −σS
Ω

, no n satisfy (H.3).

- For −σS
Ω
< m ≤ −σI

Ω
, n satisfies 1 ≤ n ≤ N−

max. We denote the set of these
m by C1−.

- For −σI
Ω
< m, n satisfies N−

min ≤ n ≤ N−
max. We denote the set of these m by

C2−.

We note that the sets C1± are finite and ±1 ∈ C1±. Note also that the notation
suppresses the dependence of N±

max and N±
min on a and m.

With this notation, we may split G± as

G±(a) = G1±(a) + G2±(a) , (I.3a)

G1±(a) =
1

a

∑
m∈C1±

N±
max∑
n=1

n(βωmn)
J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(±(mΩ− ωmn)) , (I.3b)

G2±(a) =
1

a

∑
m∈C2±

N±
max∑

n=N±
min

n(βωmn)
J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(±(mΩ− ωmn)) . (I.3c)

I.2 G1±

We consider first G1± (I.3b). To further decompose the sum over n, we fix a
constant p ∈ (0, 1

3
) and set N := ⌊

(
a
R

)p⌋, where ⌊·⌋ is the floor function. For
sufficiently large a, we then have N < N±

max, and we may write

G1±(a) = G1±
< (a) + G1±

> (a) , (I.4a)

G1±
< (a) =

1

a

∑
m∈C1±

N−1∑
n=1

n(βωmn)
J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(±(mΩ− ωmn)) , (I.4b)

G1±
> (a) =

1

a

∑
m∈C1±

N±
max∑

n=N

n(βωmn)
J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(±(mΩ− ωmn)) . (I.4c)

To address G1±
< (I.4b), we recall that there are only finitely many elements of

C1± and for n < N , we have q|m|n/a = o(1) as a → ∞. Elementary estimates,
using (H.8) and 0 < p < 1

3
, give

G1±
< (a) =

R2

4βa2
σ(Ω)

N−1∑
n=1

q1n
q1nJ2

2 (q1n)
. (I.5)
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To address G1± (I.4c), we note that n may be considered large throughout the
range of summation and m is bounded. We may therefore employ the McMahon
expansion (H.6) and asymptotic behaviour (H.10), leading to

G1±
> (a) =

π

2a

∑
m∈C1±

N±
max∑

n=N

n
(
β
a
X|m|(πα|m|n)

)
J2
|m|
(
R
a
X|m|(πα|m|n)

)
×X ′

|m|(πα|m|x)σ
(
±
(
mΩ− 1

a
X|m|(πα|m|n)

))
. (I.6)

The summand in (I.6) vanishes for n > N±
max. As such, we may extend the range

of summation to infinity and appeal to the Euler-Maclaurin formula (H.16) with
l = 3,

G1±
> (a) = I1 + I2 + I3 + I4 , (I.7a)

I1 =
π

2a

∑
m∈C1±

ˆ ∞

N

dxn
(
β
a
X|m|(πα|m|x)

)
J2
|m|
(
R
a
X|m|(πα|m|x)

)
×X ′

|m|(πα|m|x)σ
(
±
(
mΩ− 1

a
X|m|(πα|m|x)

))
, (I.7b)

I2 =
π

4a

∑
m∈C1±

n
(
β
a
X|m|(πα|m|N)

)
J2
|m|
(
R
a
X|m|(πα|m|N)

)
×X ′

|m|(πα|m|N)σ
(
±
(
mΩ− 1

a
X|m|(πα|m|N)

))
, (I.7c)

I3 = − π

24a

∑
m∈C1±

d

dx

[
n
(
β
a
X|m|(πα|m|x)

)
J2
|m|
(
R
a
X|m|(πα|m|x)

)
×X ′

|m|(πα|m|x)σ
(
±
(
mΩ− 1

a
X|m|(πα|m|x)

)) ]∣∣∣∣
x=N

,

(I.7d)

I4 =
π

12a

∑
m∈C1±

ˆ ∞

N

dx B̃3(1− x)
d3

dx3

[
n
(
β
a
X|m|(πα|m|x)

)
× J2

|m|
(
R
a
X|m|(πα|m|x)

)
X ′

|m|(πα|m|x)σ
(
±
(
mΩ− 1

a
X|m|(πα|m|x)

)) ]
. (I.7e)

Elementary estimates, using (H.7) and 0 < p < 1
3
, give

I1 = I0 +∆I1 , (I.8a)

I0 =
∑
m∈C1±

ˆ ∞

0

dz
1

2
n(βz)J2

|m|(Rz)σ(±(mΩ− z)) , (I.8b)

∆I1 = − R2

16βa2
σ(Ω)

(
π2(N + 1

4
)2 − 3

4

)
+ o(a−2) , (I.8c)

I2 =
π2R2

16βa2
σ(Ω)(N + 1

4
) + o(a−2) , (I.8d)

I3 = − π2R2

96βa2
σ(Ω) + o(a−2) , (I.8e)

I4 = o(a−2) . (I.8f)
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Adding G1±
< (I.5) and G1±

> (I.8), we find

G1±(a) =
∑
m∈C1±

ˆ ∞

0

dz
1

2
n(βz)J2

|m|(Rz)σ(±(mΩ− z))

− R2

4βa2
σ(Ω)

[
N−1∑
n=1

(
π2

2
(n+ 1

4
)− q1n

q1nJ2
2 (q1n)

)
+

(23π2 − 36)

192

]
+ o(a−2) . (I.9)

We address the N -dependence of (I.9),

N−1∑
n=1

(
π2

2
(n+ 1

4
)− q1n

q1nJ2
2 (q1n)

)
=

∞∑
n=1

(
π2

2
(n+ 1

4
)− q1n

q1nJ2
2 (q1n)

)
−

∞∑
n=N

(
π2

2
(n+ 1

4
)− q1n

q1nJ2
2 (q1n)

)
. (I.10)

The McMahon expansion (H.6) and (H.10) show that

q1n
q1nJ2

2 (q1n)
∼ π2

2
(n+ 1

4
) +O(n−2) . (I.11)

As such, we see that the second term in (I.10) is O(N−1).
The leading and subleading terms in G1± (I.3b) are hence given by

G1±(a) =
∑
m∈C1±

ˆ ∞

0

dz
1

2
n(βz)J2

|m|(Rz)σ(±(mΩ− z))

− R2

4βa2
σ(Ω)

[ ∞∑
n=1

(
π2

2
(n+ 1

4
)− q1n

q1nJ2
2 (q1n)

)
+

(23π2 − 36)

192

]
+ o(a−2) . (I.12)

I.3 G2±

We consider next G2± (I.3c). To decompose the sum over m, we fix a constant
q ∈ (0, 1) and set M := ⌊

(
a
R

)q⌋. We write

G2±(a) = G2±
< (a) + G2±

> (a) , (I.13a)

G2±
< (a) =

1

a

∑
m∈C2±,
m≤M−1

N±
max∑

n=N±
min

J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(±(mΩ− ωmn)) , (I.13b)

G2±
< (a) =

1

a

∞∑
m=M

N±
max∑

n=N±
min

J2
|m|
(
R
a
q|m|n

)
q|m|nJ2

|m|+1(q|m|n)
σ(±(mΩ− ωmn)) . (I.13c)

To address G2±
> (I.13c), we appeal again to the observations of Section H.3.
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Elementary estimates, using (H.33), show

|G2±
> (a)| < A

4
√
1− v2

e−(βΩπ+2ξ(v))M

1− e−(βΩπ+2ξ(v))M
= O

(
e−(βΩπ+2ξ(v))⌊(a/R)q⌋) , (I.14)

where A is a positive constant and ξ(v) is defined below (H.33). In particular,
G2±
> (a) = o(a−2) .
To address G2±

< (I.13b), we note that n is large relative to m and use the McMa-
hon expansion (H.6) and the asymptotic expansion (H.10). By the support of σ,
we may extend the range of summation to N±

min − 1 ≤ n ≤ N±
max + 1. Then, the

Euler-Maclaurin formula (H.16) gives

G2±
< (a) = J1 + J2 , (I.15a)

J1 =
π

a

∑
m∈C2±,
m≤M−1

ˆ N±
max+1

N±
min−1

dx
1

2
n
(
β
a
X|m|(πα|m|x)

)
J2
|m|
(
R
a
X|m|(πα|m|x)

)
×X ′

|m|(πα|m|x)σ
(
±
(
mΩ− 1

a
X|m|(πα|m|x)

))
, (I.15b)

J2 =
π

12a

∑
m∈C2±,
m≤M−1

ˆ N±
max+1

N±
min−1

dx B̃3(1− x)
d3

dx3

[
n
(
β
a
X|m|(πα|m|x)

)

× J2
|m|
(
R
a
X|m|(πα|m|x)

)
X ′

|m|(πα|m|x)σ
(
±
(
mΩ− 1

a
X|m|(πα|m|x)

)) ]
.

(I.15c)

To address J2 (I.15c), we recall X|m|(πα|m|x) = πα|m|x + f|m|(πα|m|x). For x ∈
(N±

min − 1, N±
max + 1), we have |f|m|(πα|m|x)| ≪ 1. To leading order, we have

X|m|(πα|m|x) ∼ πα|m|x. We perform the change of variables s = π
a
α|m|x,

J2 ∼ 1

24

(π
a

)3 ∑
m∈C2±,
m≤M−1

ˆ π
a
α|m|N±

max+1

π
a
α|m|N±

min−1

ds B̃3(
a
π
s− α|m|0)

d3

ds3

[
n(βs)J2

|m|(Rs)

× σ(±(mΩ− s))

]
. (I.16)

The observations of Section H.3 inform us that the upper and lower limits of
integration are order m. Elementary estimates then give

|J2| < A
1

a3
M = O(aq−3) = o(a−2) , (I.17)

where A is a positive constant and we have used 0 < q < 1.
To address J1 (I.15b), we extend the range of integration to the positive real

line by the support of σ and perform the change of variables z = 1
a
X|m|(πα|m|x).

Elementary estimates then give

J1 =
∑
m∈C2±,
m≤M−1

ˆ ∞

0

dz
1

2
n(βz)J2

|m|(Rz)σ(±(mΩ− z)) . (I.18)
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By the estimation of G2±
> , we see that the summation of the integral over m ≥M

is exponentially small. We therefore extend the range of summation over m to
the full set C2±,

J1 =
∑
m∈C2±

ˆ ∞

0

dz
1

2
n(βz)J2

|m|(Rz)σ(±(mΩ− z)) . (I.19)

The expansion of G2± (I.3c) is given by

G2±(a) =
∑
m∈C2±

ˆ ∞

0

dz
1

2
n(βz)J2

|m|(Rz)σ(±(mΩ− z)) . (I.20)

I.4 Combining G1± and G2±

The full expression for the leading and next-to-leading terms for ∆Gβ(a) is now
obtained by combining G1± (I.12) and G2± (I.20), with the result

∆Gβ(a) =
∑
m∈Z

1

2

ˆ ∞

0

dz n(βz)J2
|m|(Rz)[σ(mΩ− z) + σ(−(mΩ− z))]

− R2

2βa2
σ(Ω)

[ ∞∑
n=1

(
π2

2
(n+ 1

4
)− q1n

q1nJ2
2 (q1n)

)
+

(23π2 − 36)

192

]
+ o(a−2) . (I.21)

To extract the thermal contribution to the response function from (I.21), we
rewrite the limits of the integral and the summation, perform a change of vari-
ables, and take the subleading term under the integral. This gives

∆Gβ(a) =ˆ
R
dE E

−2
σ(E)

(
E

2

2

∑
m>E/Ω

n(βϖ+)J
2
|m|(ϖ+R) +

E
2

2

∑
m>−E/Ω

n(βϖ−)J
2
|m|(ϖ−R)

− R2E
2

2βa2

[ ∞∑
n=1

(
π2

2
(n+ 1

4
)− q1n

q1nJ2
2 (q1n)

)
+

(23π2 − 36)

192

]
δ(E − Ω) + o(a−2)

)
,

(I.22)

where ϖ± = mΩ∓ E.
Finally, we recall that the result (I.22) was obtained under the assumption

supp{σ} ⊂ R>0. When this assumption is relaxed to allow supp{σ} ⊂ R \
{0}, (I.22) is replaced by

∆Gβ(a) =ˆ
R
dE E

−2
σ(E)

(
E

2

2

∑
m>|E|/Ω

n(βω+)J
2
|m|(ω+R) +

E
2

2

∑
m>−|E|/Ω

n(βω−)J
2
|m|(ω−R)
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− R2E
2

2βa2

[ ∞∑
n=1

(
π2

2
(n+ 1

4
)− q1n

q1nJ2
2 (q1n)

)
+

(23π2 − 36)

192

]
δ(|E| − Ω) + o(a−2)

)
,

(I.23)

where ω± = mΩ∓ |E| and δ(|E| − Ω) = δ(E − Ω) = δ(E + Ω).
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Appendix J

Large-α asymptotics in CAdS

In this Appendix, we demonstrate the asymptotic behaviour of the integrated
response contribution due to finite temperature ∆Gβ (8.51) in the large-α regime
leading to the results of 8.2.3. We note that the calculations in this Appendix
parallel those in Appendix H and Appendix I.

J.1 Decomposition of integrated response due to fi-
nite temperature

The integrated response contribution due to finite temperature G (8.51) with
∆Fβ (8.50) reads

∆Gβ(α) =
1

α

1√
1 + R2

α2

∞∑
m=−∞

∞∑
k=0

Θ(αωk − |m|)n(βωk)
(2k + 1 + |m|)!
(2k + 1− |m|)!

×

P−|m|
2k+1

 1√
1 + R2

α2

2

[σ(γ(ωk −mΩ)) + σ(−γ(ωk −mΩ))] , (J.1)

where ωk = (2k + 3/2)/α.
We recall that σ ∈ C∞

0 . Let σI = inf supp{σ} and σS = sup supp{σ}. We
assume that the support of σ is chosen such that either supp{σ} ⊂ R>0 with
0 < σI < ΩΓ < σS or supp{σ} ⊂ R<0 with σI < −ΩΓ < σS < 0. Since
∆Fβ is even in E, we shall for now assume that supp{σ} ⊂ R>0 and relax this
assumption in (J.22).

We rewrite the integrated response contribution due to finite temperature to
separate the two σ in (J.1),

∆Gβ(α) = G+(α) + G−(α) , (J.2a)

G+(α) =
1

α

1√
1 + R2

α2

∞∑
m=−∞

∞∑
k=0

Θ(αωk − |m|)n(βωk)
(2k + 1 + |m|)!
(2k + 1− |m|)!

219
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×

P−|m|
2k+1

 1√
1 + R2

α2

2

σ(γ(ωk −mΩ)) ,

(J.2b)

G−(α) =
1

α

1√
1 + R2

α2

∞∑
m=−∞

∞∑
k=0

Θ(αωk − |m|)n(βωk)
(2k + 1 + |m|)!
(2k + 1− |m|)!

×

P−|m|
2k+1

 1√
1 + R2

α2

2

σ(−γ(ωk −mΩ)) .

(J.2c)

We recall that supp{σ} ⊂ [σI , σS]. For fixed m in (J.2b) and (J.2c), the values of
k in the sums over k are hence restricted by

α

2

(
σI
γ

+mΩ

)
− 3

4
< k <

α

2

(
σS
γ

+mΩ

)
− 3

4
, in G+ , (J.3a)

α

2

(
−σS
γ

+mΩ

)
− 3

4
< k <

α

2

(
−σI
γ

+mΩ

)
− 3

4
, in G− . (J.3b)

Depending on the value of m, the conditions (J.3) fall into three different cases.
For sufficiently large α, with the other parameters fixed, these cases are as
follows.

In G+:

- For m ≤ − σS
γΩ

, no k satisfy (J.3a).

- For − σS
γΩ

< m ≤ − σI
γΩ

, k satisfies 0 ≤ k ≤ K+
max := α

2
(σS
γ
+ mΩ) − 3

4
. We

denote the set of these m by C1+.

- For − σI
γΩ

< m, k satisfies K+
min ≤ k ≤ K+

max, where K+
min := α

2
(σI
γ
+mΩ)− 3

4
.

We denote the set of these m by C2+.

In G−:

- For m ≤ σI
γΩ

, no k satisfy (J.3b).

- For σI
γΩ

< m ≤ σS
γΩ

, k satisfies 0 ≤ k ≤ K−
max :=

α
2
(−σI

γ
+mΩ)− 3

4
. We denote

the set of these m by C1−.

- For σS
γΩ

< m, k satisfies K−
min ≤ k ≤ K−

max, where K−
min := α

2
(−σS

γ
+mΩ)− 3

4
.

We denote the set of these m by C2−.

We note that the sets C1± are finite and ±1 ∈ C1∓. Note also that the notation
suppresses the dependence of K±

max and K±
min on α and m.

With this notation, we may split G± as

G±(α) = G1±(α) + G2±(α) , (J.4a)

G1±(α) =
1

α

1√
1 + R2

α2

∑
m∈C1±

K±
max∑
k=0

Θ(αωk − |m|)n(βωk)
(2k + 1 + |m|)!
(2k + 1− |m|)!
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×

P−|m|
2k+1

 1√
1 + R2

α2

2

σ(±γ(ωk −mΩ)) ,

(J.4b)

G2±(α) =
1

α

1√
1 + R2

α2

∑
m∈C2±

K±
max∑

k=K±
min

Θ(αωk − |m|)n(βωk)
(2k + 1 + |m|)!
(2k + 1− |m|)!

×

P−|m|
2k+1

 1√
1 + R2

α2

2

σ(±γ(ωk −mΩ)) .

(J.4c)

J.2 G1±

We consider first G1± (J.4b). To further decompose the sum over k, we fix a
constant p ∈ (0, 1

3
) and set K :=

⌊(
α
R

)p⌋, where ⌊·⌋ is the floor function [111]. For
sufficiently large α, we then have K < K±

max, and we may write

G1±(α) = G1±
< (α) + G1±

> (α) , (J.5a)

G1±
< (α) =

1

α

1√
1 + R2

α2

∑
m∈C1±

K−1∑
k=0

Θ(αωk − |m|)n(βωk)
(2k + 1 + |m|)!
(2k + 1− |m|)!

×

P−|m|
2k+1

 1√
1 + R2

α2

2

σ(±γ(ωk −mΩ)) ,

(J.5b)

G1±
> (α) =

1

α

1√
1 + R2

α2

∑
m∈C1±

K±
max∑

k=K

Θ(αωk − |m|)n(βωk)
(2k + 1 + |m|)!
(2k + 1− |m|)!

×

P−|m|
2k+1

 1√
1 + R2

α2

2

σ(±γ(ωk −mΩ)) .

(J.5c)

To address G1±
< (J.5b), we observe that the hypergeometric representation of

the associated Legendre function [111, (14.3.1)] gives

P
−|m|
l (1− δ) =

1

Γ(1 + |m|)

(
δ

2

)|m|/2(
1 +O(δl2)

)
(J.6)

as δ → 0+, with m fixed and l bounded relative to δ so that δl2 → 0. In (J.5b),
δ = 1

2
(R/α)2 (1 +O(R2/α2)) and l = 2k + 1, so that δl2 = O(k2/α2), and m takes

values in the finite set C1± that is independent of α and contains ∓1. Elementary
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estimates, using 0 < p < 1
3

and the Laurent expansion

n(x) =
1

x
− 1

2
+O(x) , (J.7)

show that the contributions from the terms with |m| > 1 are o(α−2), and combin-
ing this with similar estimates for the m = −1 term in G1+

< and the m = 1 term
in G1−

< gives

G1±
< (α) =

R2

4α2β

K−1∑
k=0

(2k + 1)(2k + 2)

(2k + 3
2
)

σ(ΩΓ) + o(α−2)

=
R2

4α2β
σ(ΩΓ)

(
K2 +

1

2
K − 1

8
ψ(0)

(
K +

3

4

)
− 1

6
+

1

8
ψ(0)

(
7

4

))
+ o(α−2)

=
R2

4α2β
σ(ΩΓ)

(
K2 +

1

2
K − 1

8
ln

(
K +

3

4

)
− 1

6
+

1

8
ψ(0)

(
7

4

))
+ o(α−2) ,

(J.8)

where in the first equality we have evaluated the sum over k in terms of the
digamma function ψ(0) and in the second equality used the asymptotic formula
ψ(0)(z) = ln(z) +O(1/z) as z → ∞ [111].

To address G1±
> (J.5c), we observe that Stirling’s approximation [111] gives

(2k + 1 + |m|)!
(2k + 1− |m|)! =

(
2k +

3

2

)2|m|
(
1− |m|(4|m|2 − 1)

12
(
2k + 3

2

)2 +O(k−4)

)
, (J.9)

as k → ∞, with m fixed.
The asymptotic behaviour of the associated Legendre function P

−|m|
l (cosφ)

uniformly in m in the double limit l → ∞ and φ → 0 is given by [208] [117,
(8.722)]. Application of this to the associated Legendre function in G1±

> (J.5c)
gives

P
−|m|
2k+1

 1√
1 + R2

α2

 =

(
2k +

3

2

)−|m|(
1− R2

8α2

)−|m|

×
(
J|m|(ωkR) +

R2

4α2

(
J|m|+1(ωkR)

2ωkR
− J|m|+2(ωkR) +

ωkR

6
J|m|+3(ωkR)

))
+O(α−4) . (J.10)

Elementary estimates, using 0 < p < 1
3
, the expansions (J.9) and (J.10), and the

Euler-Maclaurin formula (H.16), give

G1±
> (α) =

∑
m∈C1±

1

2

ˆ ∞

0

dω n(βω)J2
|m|(ωR)σ(±Γ(ω −mΩ))

−R
2σ(ΩΓ)

4βα2

(
K2 +

1

2
K +

103

12
− 1

8
ln(2)

)
+

R2

32βα2
ln(K + 3

4
)σ(ΩΓ)

− R2

32βα2
ln
(α
R

)
σ(ΩΓ)
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∓R
2Γ3

4α2

∑
m∈C1±

ˆ ∞

0

dω
d

dω

[
n(βω)(ω −mΩ)J2

|m|(ωR)
]
σ(±Γ(ω −mΩ))

− 1

24α2

∑
m∈C1±\{∓1}

|m|(4|m|2 − 1)

ˆ ∞

0

dω
n(βω)

ω2
J2
|m|(ωR)σ(±Γ(ω −mΩ))

− 1

8α2

ˆ ∞

0

dω

{
n(βω)

ω2
J2
1 (ωR)σ(±Γ(ω ± Ω))− R2

4β

1

ω
σ(ΩΓ)Θ

(
1

R
− ω

)}
+
R2

4α2

∑
m∈C1±

ˆ ∞

0

dω n(βω)J|m|(ωR)

{( |m|
2

− 1

)
J|m|(ωR)

+
1

2ωR
J|m|+1(ωR)− J|m|+2(ωR) +

ωR

6
J|m|+3(ωR)

}
σ(±Γ(ω −mΩ))

+o(α−2) . (J.11)

Adding G1±
< (J.8) and G1±

> (J.11), we find

G1±(α) =
∑
m∈C1±

1

2

ˆ ∞

0

dω n(βω)J2
|m|(ωR)σ(±Γ(ω −mΩ))

− R2

32βα2
ln
(α
R

)
σ(ΩΓ)− R2σ(ΩΓ)

4βα2

(
35

4
− 1

8
ln(2)− 1

8
ψ(0)

(
7

4

))
∓R

2Γ3

4α2

∑
m∈C1±

ˆ ∞

0

dω
d

dω

[
n(βω)(ω −mΩ)J2

|m|(ωR)
]
σ(±Γ(ω −mΩ))

− 1

24α2

∑
m∈C1±\{∓1}

|m|(4|m|2 − 1)

ˆ ∞

0

dω
n(βω)

ω2
J2
|m|(ωR)σ(±Γ(ω −mΩ))

− 1

8α2

ˆ ∞

0

dω

{
n(βω)

ω2
J2
1 (ωR)σ(±Γ(ω ± Ω))− R2

4β

1

ω
σ(ΩΓ)Θ

(
1

R
− ω

)}
+
R2

4α2

∑
m∈C1±

ˆ ∞

0

dω n(βω)J|m|(ωR)

{( |m|
2

− 1

)
J|m|(ωR)

+
1

2ωR
J|m|+1(ωR)− J|m|+2(ωR) +

ωR

6
J|m|+3(ωR)

}
σ(±Γ(ω −mΩ))

+o(α−2) . (J.12)

Note that whilst G1±
< (J.8) and G1±

> (J.11) individually depend on the auxiliary
function K, the K-dependence has cancelled out in G1± (J.12).

The leading and subleading terms in (J.12) are given by

G1±(α) =
∑
m∈C1±

1

2

ˆ ∞

0

dω n(βω)J2
|m|(ωR)σ(±Γ(ω −mΩ))

− R2

32βα2
ln
(α
R

)
σ(ΩΓ) +O(α−2) . (J.13)
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J.3 G2±

We consider next G2± (J.4). To decompose the sum over m, we fix a constant
q ∈ (0, 1

2
) and set M :=

⌊(
α
R

)q⌋. For sufficiently large α, the argument of the
Heaviside theta is always positive and we may write

G2±(α) = G2±
< (α) + G2±

> (α) , (J.14a)

G2±
< (α) =

1

α

1√
1 + R2

α2

∑
m∈C2±,
m≤M−1

K±
max∑

k=K±
min

n(βωk)
(2k + 1 + |m|)!
(2k + 1− |m|)!

×

P−|m|
2k+1

 1√
1 + R2

α2

2

σ(±γ(ωk −mΩ)) ,

(J.14b)

G2±
> (α) =

1

α

1√
1 + R2

α2

∞∑
m=M

K±
max∑

k=K±
min

n(βωk)
(2k + 1 + |m|)!
(2k + 1− |m|)!

×

P−|m|
2k+1

 1√
1 + R2

α2

2

σ(±γ(ωk −mΩ)) .

(J.14c)

To address G2±
> (J.14c), we observe that the connection formula for the associ-

ated Legendre function [111, (14.9.13)] gives

(2k + 1 + |m|)!
(2k + 1− |m|)!

P−|m|
2k+1

 1√
1 + R2

α2

2

=
(2k + 1− |m|)!
(2k + 1 + |m|)!

P+|m|
2k+1

 1√
1 + R2

α2

2

.

(J.15)
Application of the connection formula (J.15) and upper bound [209, (6)] gives

(2k + 1− |m|)!
(2k + 1 + |m|)!

P+|m|
2k+1

 1√
1 + R2

α2

2

<
Γ2
(
1
4

)
e1/2

π2
. (J.16)

Elementary estimates, using (J.16), show

∣∣G2±
> (α)

∣∣ < A

2β

e−βΩM

1− e−βΩ
= O(e−βΩ⌊(α/R)q⌋) , (J.17)

where A is a positive constant. In particular, G2±
> (α) = o(α−2).

To address G2±
< (J.14b), we will make use of Stirling’s approximation (J.9);

however, we are unable to assume m is fixed and must include m in the error
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bound,

(2k + 1 + |m|)!
(2k + 1− |m|)! =

(
2k +

3

2

)2|m|
(
1− |m|(4|m|2 − 1)

12
(
2k + 3

2

)2 + o(k−2)

)
, (J.18)

as k → ∞ with m bounded relative to k such that m3k−1 → 0.
We use the compact support of σ to extend the limits of summation over k

in (J.14b) to 0 ≤ k < ∞. Elementary estimates, using 0 < q < 1
2

to guarantee
that m3k−1 → 0 as k → ∞, asymptotic formulae (J.18) and (J.10) and the Euler-
Maclaurin formula (H.16), give

G2±
< (α) =

∑
m∈C2±

1

2

ˆ ∞

0

dω n(βω)J2
|m|(ωR)σ(±Γ(ω −mΩ)) +O(α−2) , (J.19)

where we have extended the summation over m to m ∈ C2± by using that in
each term the integrand is exponentially suppressed such that the total sum of
the added terms is exponentially suppressed for m > M .

J.4 Combining G1± and G2±

The full expression for the leading and next-to-leading terms for G(α) is now
obtained by combining G1± (J.13) and G2±(J.19), with the result

∆Gβ(α) =
∞∑

m=−∞

1

2

ˆ ∞

0

dω n(βω)J2
|m|(ωR)[σ(Γ(ω −mΩ)) + σ(−Γ(ω −mΩ))]

− R2

16βα2
ln
(α
R

)
σ(ΩΓ) +O(α−2) . (J.20)

To extract the response function from (J.20), we rewrite the limits of the integral
and the summation, perform a change of variables, and take the subleading term
under the integral. This gives

∆Gβ(α) =

ˆ
R
dE E−2σ(E)

(
E2

2Γ

∑
m>E/(ΓΩ)

n(βϖ+)J
2
|m|(ϖ+R)

+
E2

2Γ

∑
m>−E/(ΓΩ)

n(βϖ+)J
2
|m|(ϖ+R)−

R2E2

16βα2
ln
(α
R

)
δ(E − ΩΓ)

)
+O(α−2) ,

(J.21)

where ϖ± = mΩ∓ E/Γ.
We recall that the result (J.21) was obtained under the assumption supp{σ} ⊂

R>0. When this assumption is relaxed to allow supp{σ} ⊂ R \ {0}, (J.21) is
replaced by

∆Gβ(α) =

ˆ
R
dE E−2σ(E)

(
E2

2Γ

∑
m>|E|/(ΓΩ)

n(βω+)J
2
|m|(ω+R)
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+
E2

2Γ

∑
m>−|E|/(ΓΩ)

n(βω+)J
2
|m|(ω+R)−

R2E2

16βα2
ln
(α
R

)
δ(|E| − ΩΓ)

)
+O(α−2) ,

(J.22)

where ω± = mΩ∓ |E|/Γ.



Appendix K

Euclidean vacuum response at small
cosmological constant

In this Appendix, we verify the small-cosmological constant asymptotic form (8.73)
of the detector response in the Euclidean vacuum in RdS.

Let a ∈ R \ {0}, 0 < V < 1, and η > 0. We define

I(η) :=

ˆ ∞

0

dz
sin(az)

z

g(ηz)√
1− w2(z)g2(ηz)

, (K.1)

where

g(z) :=
z

sinh(z)
, (K.2a)

w(z) := V sinc(z) , (K.2b)

and the notation suppresses the dependence of I(η) on a and V . I(η) is the
integral that appears in (8.72) with a = 2ER(ΓV V )−1. We shall find first two
terms in the asymptotic expansion of I(η) as η → 0 with a and V fixed.

For the rest of this Appendix, we assume a > 0. The outcome (K.11) holds
also for a < 0 by parity.

To find the leading term, we split the integral (K.1) as

I(η) =

ˆ ∞

0

dz
sin(az)

z
g(ηz) +

ˆ ∞

0

dz
sin(az)

z

[
1√

1− w2(z)g2(ηz)
− 1

]
g(ηz) .

(K.3)
Using [117, (3.981.1)], the first integral in (K.3) evaluates to π

2
tanh(aπ

2η
), which

tends to π/2 with corrections of order O(e−aπ/η) as η → 0. In the second integral
in (K.3), a dominated convergence argument allows us to take the limit under
the integral. Combining, we find

lim
η→0

I(η) =

ˆ ∞

0

dz
sin(az)

z

1√
1− w2(z)

, (K.4)

where we have used the integral
´∞
0

dz sin(az)/z = π/2.
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To find the next-to-leading term, we split the integral (K.1) as

I(η) = I0 + I1 + I2 + I3 , (K.5a)

I0 :=

ˆ ∞

0

dz
sin(az)

z
g(ηz)

[
1√

1− w2(z)
− 1− 1

2
w2(z)

]
, (K.5b)

I1 :=

ˆ ∞

0

dz
sin(az)

z
g(ηz)

×
[

1√
1− w2(z)g2(ηz)

− 1√
1− w2(z)

− 1

2
w2
(
g2(ηz)− 1

) ]
, (K.5c)

I2 :=

ˆ ∞

0

dz
sin(az)

z
g(ηz) , (K.5d)

I3 =
1

2

ˆ ∞

0

dz
sin(az)

z
w2(z)g3(ηz) . (K.5e)

We consider first the integral I0 in (K.5). We introduce the function h(x) =
(g(x) − 1)/x2, which is bounded and tends to −1

6
as x → 0. Writing g(ηz) =

1 + η2z2h(ηz) and splitting the integral gives

I0 =

ˆ ∞

0

dz
sin(az)

z

[
1√

1− w2(z)
− 1− 1

2
w2(z)

]

+ η2
ˆ ∞

0

dz sin(az)zh(ηz)

[
1√

1− w2(z)
− 1− 1

2
w2(z)

]

=

ˆ ∞

0

dz
sin(az)

z

[
1√

1− w2(z)
− 1− 1

2
w2(z)

]

− 1

6
η2
ˆ ∞

0

dz sin(az)z

[
1√

1− w2(z)
− 1− 1

2
w2(z)

]
+ o(η2) , (K.6)

where the second equality holds by a dominated convergence argument.
We consider next the integral I1 in (K.5). I1 can be rearranged as

I1 = η2
ˆ ∞

0

dz sin(az)w2(z)g(ηz)(g(ηz) + 1)h(ηz)

×

 1√
1− w2(z)

√
1− w2(z)g2(ηz)

(√
1− w2(z) +

√
1− w2(z)g2(ηz)

) − 1

2


= − 1

6
η2
ˆ ∞

0

dz sin(az)zw2(z)

[
1

(1− w2(z))3/2
− 1

]
+ o(η2) , (K.7)

where we again used g(ηz) = 1 + η2z2h(ηz), and in the second equality we have
taken the limit under the integral by a dominated convergence argument.

We consider next the integral I2 in (K.5). Using [117, (3.981.1)], the integral I2
evaluates as

I2 =
π

2
tanh

(
aπ

2η

)
=

π

2
+O(e−aπ/η) . (K.8)
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We consider next the integral I3 in (K.5). We extend the integral over the
full real line by parity, perform a change of variables z = u/η, and deform the
contour to u = iπ

2
+ r with r ∈ R, leading to

I3 =
1

16
V 2η2

ˆ ∞

−∞
dr

1

cosh3r

[
sinh

(
π(a+ 2)

2η

)
cos

(
a+ 2

η
r

)
+ sinh

(
π(a− 2)

2η

)
cos

(
a− 2

η
r

)
− 2 sinh

(
aπ

2η

)
cos

(
a

η
r

)]
=

π

32
V 2

[(
(a+ 2)2 + η2

)
tanh

(
π(a+ 2)

2η

)
+
(
(a− 2)2 + η2

)
tanh

(
π(a− 2)

2η

)
− 2(a2 + η2) tanh

(
aπ

2η

)]
=

π

16
V 2
[
4−
(
(a− 2)2 + η2

)
Θ(2− a)

]
+ o(η2) , (K.9)

where Θ is the Heaviside theta function with the convention Θ(0) = 1/2. In the
second equality, we have used [117, (3.985.1)] and [111, (5.4.4)] to evaluate the
integrals. In the third equality, we have performed the elementary expansion as
η → 0.

Combining (K.6)-(K.9), we have

I(η) =

ˆ ∞

0

dz
sin(az)

z

1√
1− w2(z)

+η2

(
−1

6

ˆ ∞

0

dz z sin(az)

[
1

(1− w2(z))3/2
− 1− 3

2
w2(z)

]
− π

16
V 2Θ(2− a)

)
+o(η2) . (K.10)

The integral 1
4

´∞
0

dz z sin(az)w2(z) in the coefficient of η2 may be evaluated by
an elementary contour integral and is found to exactly cancel the term involving
Θ(2− a). Therefore, we have

I(η) =

ˆ ∞

0

dz
sin(az)

z

1√
1− w2(z)

− 1

6
η2
ˆ ∞

0

dz z sin(az)

[
1

(1− w2(z))3/2
− 1

]
+ o(η2) . (K.11)
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