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Abstract 
 

Land use activities such as agriculture and forestry have a significant impact on greenhouse gas 

emissions, but these impacts are often underestimated. This is because agriculture and forestry sectors 

cover a large land area, making on-ground surveys difficult to scale, expensive, and time-consuming. 

While there have been localized examinations of urban and industrial domains, it remains unclear how 

agriculture and forestry sectors would fare in a global examination using modern tools such as 

hyperspectral cameras. 

Hyperspectral cameras can substantially bridge the gap between uncertainties in observations and 

offer little room for disparities in measured readings between countries, resulting in an unbiased 

survey. However, there are spatial (resolution) and temporal (date availability for long dates) gaps in 

hyperspectral satellite data. These gaps can be filled using machine learning algorithms. 

The algorithm utilised paired data from the Sentinel 2 (RGB) images and the corresponding nitrous 

oxide reading from the Sentinel 5P satellite to obtain seasonal reading levels in 24 different locations 

spanning 8 different soil varieties. The data was analysed to obtain valuable insights on the variances 

between readings for a range of time between September 2018 to August 2022 (4 years). This data 

can be used to develop more effective policies to reduce emissions and mitigate climate change. 

A Spatio Temporal Neural network was created that can ingress an RGB image and its associated date 

and obtain the associated nitrous oxide reading accurate within 12% (Mean Absolute Percentage Error) 

of the actual value. This model can be utilized as a prototype to fill in gaps in existing hyperspectral 

images with reasonable compromise in accuracy.  
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Chapter 01: Introduction 
 

Preamble 
 

”Man did not weave the web of life, he is merely a strand in it. Whatever he does to the web, he 

does to himself” 

- Excerpts from a letter written by the Seattle Chief (accurately known as Seathl) to the President of 

Washington, 1855. 

Humans have been existing on this planet for a small proportion of its existence. While we humans 

have a great flair for curiosity and unmatched problem-solving skills, we also possess a great capacity 

for ruin and destruction. During the past two centuries our efforts to achieve supremacy over each 

other politically, economically or militarily have set the wheels in motion towards a future that 

humankind would find neither pleasant nor conducive to conduct our life in the only home that we 

currently know of, Earth.  

The excerpt above was part of a letter written by the Seattle Chief leader to the President of 

Washington, Pierce, in 1855. It was in response to Pierce’s offer to buy the lands in Seattle. The Seattle 

Chief passionately describes the symbiotic relationship humans have had and should continue to have 

with nature. 

 

1.1  Greenhouse Gases 
 

In the sight of discussing about greenhouse gases, it is apt to have an explanation about atmospheres. 

The atmosphere can be defined as a gravitationally confined pool of elements that are volatile enough 

to exist in its gaseous state, above a celestial object at local temperatures (Pepin, 2006). Most celestial 

objects have atmospheres. As previously believed it is not just planetary bodies and stars (Pepin, 2006) 

that contain an atmosphere. Modern astronomy divulges that even extreme objects in the universe 

such as neutron stars (Ho and Heinke, 2009) and black holes (Jacobson and Nguyen, 2021) contain an 

atmosphere. Earth too contains an atmosphere that comprises of mainly Nitrogen (N₂), and Oxygen 

(O₂). Both of which compose nearly 99% of the Earth atmosphere.  

Earth’s atmosphere also consists of certain gases (less in proportions than N₂ and O₂), some of which 

can be considered greenhouse gases. Instances of such gases are carbon dioxide (CO₂), methane (CH₄), 

nitrogen dioxide (NO₂), ozone and sulphur dioxide (SO₂). These gases are both naturally occurring and 

can be emitted due to anthropogenic (synthetic) activities. Apart from these, there are Fluorinated 

gases such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6) and 

nitrogen trifluoride (NF3) which are emitted almost entirely due to anthropogenic activities such as air 

conditioning and refrigerating (Sovacool et al., 2021). Nitrogen and Oxygen, the most abundant gases 

in the atmosphere, are in fact small contributing factors to the greenhouse effect. N₂ and O₂ are 

however more potent as greenhouse gases in dry atmospheric conditions such as over the Antarctic 

continent, realistically though in non-ideal situations we can assume that N₂ and O₂ have only a fraction 

of the potency as other greenhouse gases. (Höpfner et al., 2012). For practical purposes, the most 

concerning gases are methane and nitrous oxide. It is estimated that they have nearly 25 times and 
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300 times the potency (as greenhouse gases) greater than carbon dioxide over 100 years (“AR4 Climate 

Change 2007,” 2022). 

A closely related artefact is Atmospheric Aerosols. Atmospheric Aerosols are fine particulate matter in 

the atmosphere emitted due to anthropogenic activities. Such gases and aerosols, if emitted in 

increasing proportions contribute disproportionately (to their compositions in the atmosphere) to the 

greenhouse effect and henceforth global warming (Sovacool et al., 2021) (Charlson et al., 1992) 

(Ramanathan et al., 2001). 

 

1.2  Global warming and its adverse anthropocentric effects 
 

Global warming is a causal event that arises due to greenhouse gas emissions. This is possible due to 

the greenhouse effect. The greenhouse effect is the phenomenon that recirculates longwave radiation 

within the atmosphere. The greenhouse effect as opposed to popular belief is a natural effect that 

helps to foster life. If the greenhouse effect were not to naturally occur, life on Earth would be difficult 

to imagine. (Mitchell, 1989). Global warming which arises due to the exacerbated effects of the 

greenhouse effect (due to increased emissions by anthropogenic activities) causes a plethora of 

adverse effects that leave, and will continue to leave, humanity reeling in its aftermath.  

Global warming has positive correlations with several clinical impediments. Cancer has some of the 

highest fatality rates in most developed countries. Overall cancer is the cause for 26 % of the deaths 

globally. Cancer is particularly lethal in low-income countries, causing more than 50% of the deaths in 

such countries (Dagenais et al., 2020). A recent study shows that climate change, exacerbates the 

effects and symptoms of cancer, increases the likelihood of developing cancer and even disrupts the 

treatments to cancer patients. Further, the authors of the study point out various health benefits that 

would manifest as a result of mitigation of climate change (Nogueira et al., 2020). 

Cardiovascular diseases are another impediment exacerbated by climate change, they manifest a 

variety of symptoms that affect people of all ages, genders, and occupations. According to a study 

done in America from 1999 to 2018, it has been estimated that one person dies of a cardiovascular 

disease, every 36 seconds (“Underlying Cause of Death, 1999-2020 Request,” 2022). Furthermore, it 

has been estimated that 1of 4 deaths in the US is cardiovascular disease related (“Heart Disease and 

Stroke Statistics—2021 Update | Circulation,” 2022). Studies have been conducted globally on the 

influence of climate change and rising air temperatures on people's health, particularly those with 

heart disease. Some of these researches found a direct and positive correlation of rising air 

temperature on cardiovascular health issues (Tsaloglidou et al., 2018), while others found this effect 

to be minor (Kakaei et al., 2021). Studies conducted in the middle east among blue-collar workers 

depict that high temperatures are in fact a strong contributing factor inducing cardiac arrests (Pradhan 

et al., 2019).  

Data from the National Health Interview Survey (NHIS) conducted by the National Center for Health 

Statistics (NCHS) depicts that in 2019 more than 19% of US citizens consulted mental health 

professionals for treatments. 15% had taken prescribed medication for mental health anomalies. A 

comprehensive report by the United States Climate and Health Alliance on the psychological impacts 

of climate change outlines several psychological pressure-points due to climate change and an increase 

in natural disasters. Among them are trauma, shock, stress, anxiety, depression, grief, severe reactions 

(such as PTSD), and strains on social relationships. These pressure points further devolve into 

substance abuse, chronic depression, mental health emergencies, helplessness, resignation, loss of 



9 
 

personal identity and so on. Such individual traits often manifest as negative elements communally, 

leading to a lack of social cohesion, violence, and aggression (“Beyond Storms & Droughts,” 2022). 

Other studies have noted proportional increments in domestic violence and assaults with increasing 

temperatures (Raj, 2022), and serious mental impairments that may even lead to a suicide epidemic 

(Berry et al., 2010). 

To make matters bleak, the above was just an anthropocentric recollection of adverse effects. There 

are further meteorological effects such as the El Nino, La Nina, urban smog pollution (Xie et al., 2019); 

further ecological effects such as destruction of biota, marine pollution, such are the chain effects of 

climate change. In an almost clairvoyant fashion, the words of the Seattle Chief can be reiterated. Man 

is merely a strand in the web of life, indeed whatever he does to the web, he does to himself. 

 

1.3  Sources and sinks of greenhouse gas emissions 
 

Several anthropogenic activities contribute to greenhouse gas emissions. The Fifth Assessment Report 

(AR5) submitted by the Intergovernmental Panel on Climate Change (IPCC) in 2014, broadly categorises 

the sources of greenhouse gas emissions into classes such as Energy Systems, Transport, Buildings, 

Industry, Agriculture, Forestry and Other Land Use (AFOLU) and Human Settlements, Infrastructure, 

and Spatial Planning. Globally, the most concerning classes are Energy systems (electricity and heat 

production) (25%), transport (14%), buildings (6.4%) and agriculture, forestry and other land use 

(24%). (“AR5 Climate Change 2014,” 2022) 

An important concept, when discussing the sources of greenhouse gas are, sinks of greenhouse gases. 

Sinks are opposite to sources. Sources emit gases, while sinks absorb the greenhouse gases. Better 

management of resources with sound principles can even change the sources into sinks, for instance 

in the United States, since 1990, the agriculture sector has been acting as a sink rather than a source 

(Domke et al., 2020). 

 

1.4  Research Problem 
 

This research work aims to undertake an examination of literature on historical time-lapse of the most 

concerning greenhouse gas, nitrous oxide (“AR4 Climate Change 2007,” 2022, p. 4) in the agricultural 

and forestry sectors. After which, a comparative analysis of a variety of soil varieties and agricultural 

practices would be considered and compared. An analysis of seasonal variations in emissions based 

on localized agricultural and forestry practices would be conducted. A comparison between the 

emission rates before COVID-19 lockdowns and during COVID-19 lockdowns would also be carried out. 

Work demonstrated by (Goldberg et al., 2020) showed significant differences in emissions in big cities. 

We would however be investigating the emissions in agriculture and forestry industries. The particular 

emphasis on agriculture and forestry is due to the following reasons:  

1) impacts of land use (agriculture, forestry) are in fact underestimated (Mahowald et al., 2017)  

2) agriculture and forestry sectors cover a large land area which makes any on ground surveys 

difficult to scale; on-ground surveys are also additionally expensive and time consuming; while 

there have been localized examinations of urban and industrial domains (Zheng et al., 2019) it 

remains unclear how agriculture and forestry sectors would fare in an examination using 
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modern tools (such as hyperspectral cameras) specialized to detect greenhouse gases in the 

atmosphere (Rolnick et al., 2019) in a global level 

3) Remote sensing hyperspectral cameras substantially bridge the gap between uncertainties in 

observations and offer little room for disparities in measured readings between countries, 

resulting in an unbiased survey (Weiss et al., 2020). The “weekend effect” (Beirle et al., 2003) 

of trace gases in the domain of agriculture and forestry will also have to be investigated it 

remains unclear how the emissions reading would fare on a weekly basis.  

The main purpose of this examination is to determine high priority locations (in assorted soil varieties) 

both spatially and temporally in agriculture and forestry domains that emit greenhouse gases using 

hyperspectral cameras. Our contribution consists of the following: (1) a dataset, on emissions of 

assorted soil varieties to conduct further research on remotely sensed images – and (2) an analysis of 

the dataset to determine GHG emissions on the domains of agriculture and forestry to quantify the 

observed data. As there has been increasing literature on utilizing deep learning algorithms for earth 

observation and remote sensing (Cheng et al., 2020), there is strong indication that the above dataset 

would be useful for researchers to conduct further study in the future (Persello et al., 2021). 

Reduction of nitrous oxide emissions is a key element in mitigating the effects of global warming. Over 

70% of nitrous oxide emissions come from agriculture and forestry (Ritchie et al., 2020). Insights from 

this examination would be a paramount benefit for many stakeholders and be an effort to minimize 

effects of climate change. 

This examination also fills an important gap (Oertel et al., 2016) of determining emission rates on 

various soil varieties using a standardised tool and puts forward a methodical examination of nitrous 

oxide emissions from agriculture and forestry as an industry through the lens of an edaphic acumen. 

 

1.5  Research Gap 
 

Based on the above problem statement, the research gap can be elicited as follows. There is spatial 

(resolution) and temporal (date availability for long dates) gaps in hyperspectral satellite data, and such 

gaps can be filled using machine learning algorithms (Rolnick et al., 2022). We choose the domains of 

agriculture and forestry due to the 3 reasons mentioned in the problem statement. 

Rather than stochastically determining locations to download images (to fill the gaps using machine 

learning algorithms) we decided to conduct an edaphic (pertaining to soil) examination and diversify 

our data collection methodology to cover several soil varieties. In addition to collecting data, this would 

also enable us to examine and set a cursory baseline for emission of various soil varieties due to various 

assorted agriculture and forestry practices. Such an examination additionally fills a gap of determining 

emission rates on various soil varieties using a standardised tool (Oertel et al., 2016). 

 

1.6  European Space Agency (ESA) Copernicus Sentinel 2 and 5P 
 

Several satellites have been launched to observe the Earth. Such satellites are called Earth observation 

satellites. Two main satellite families that observe the Earth using hyperspectral cameras are the 

LandSat 8 (“Landsat 8 | Landsat Science,” 2021) and 9 (“Landsat 9 Spectral Specifications | Landsat 

Science,” 2021), and Sentinel 2 and 5P. Sentinel 5P is the first Copernicus mission to be solely 
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dedicated to monitoring atmospheric composition of greenhouse gases. The Tropospheric Monitoring 

(TROPOMI) instrument onboard can estimate geolocated columns of various greenhouse gases 

including methane and nitrous oxide (“Products and Algorithms - Sentinel-5P Technical Guide - Sentinel 

Online - Sentinel Online,” 2022). This makes this ideal for monitoring and tracking such greenhouse 

gases. The only drawback of using the Sentinel-5P data would be the comparably small magnitude of 

data available. The satellite was launched in October 2017 and has open data available to use from 

10th July 2018. 

 

1.7  Research Goal 
 

This study's major goal is to use remote sensing to first identify and understand soil level variations in 

agriculture and forestry in the available timeframes of data (2018–2022). This would then be utilized 

in the next phase of the research, which utilizes the data to predict nitrous oxide emissions for a given 

high-res image thereby providing a viability assessment for filling the gaps in hyperspectral data. The 

exact goals and research objectives that go along with them are as follows: 

Objective 1: To identify the differences in emissions rate of nitrous oxide in various soil levels from the 

Sentinel 5P data. 

a.    What are the differences in emissions of nitrous oxide in various soil levels? 

b.    How would they fare across 4 years of data? 

 

Objective 2: To use the soil level data (along with the dates) with their corresponding images from the 

Sentinel-2 data to build and test a deep learning model. 

a. Will deep learning model will be able to discern variances in the images to be able to 

predict the nitrous oxide emission rates for the area in the image? 

 

b. How will they evaluate on intrinsic evaluation metrics? 

 

1.8  Contributions  
 

The first in-depth examination of monitoring nitrous oxide emissions and utilising machine learning 

and high-resolution satellite data to estimate the gas was made possible by this self-proposed study. 

In conclusion, the project's contributions included the following: 

• An in-depth analysis of Nitrous oxide emissions data in and around agricultural and forestry 

areas (24 locations were surveyed) and the dataset for the analysis obtained. These locations 

spanned across the globe in an unbiased distribution of locations between the global north 

and the global south. A through data analysis will be conducted from the year 2018 to 2022 

on various soil varieties. 

 

• Utilizing the nitrous oxide emission dataset in conjunction with high-resolution satellite image 

data to obtain a fairly accurate machine learning model that is able to fill spatio-temporal gaps 
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at a workable accuracy or obtain the viability of utilizing a machine learning algorithm to test 

whether the aforementioned research gap mentioned (Rolnick et al., 2022) is viable in 

practise.  

 

1.9  Project Scope 
 

The project scope of this research would encompass the following aspects: 

1. Data Collection: Acquire hyperspectral satellite imagery covering agricultural and forestry 

regions across a range of geographical locations and time periods. 

2. Data Preprocessing: Process and prepare the hyperspectral imagery to ensure its quality and 

suitability for analysis. 

3. Data Analysis: Analyse the collected data, see potential trends, based on seasons and soil 

varieties. 

4. Machine Learning Model Development: Develop and train machine learning models capable 

of estimating greenhouse gas emissions from hyperspectral imagery. This involves developing 

neural networks. 

5. Model Validation: Evaluate the performance of the developed machine learning models using 

ground-truth data or other reliable sources. This will assess the accuracy and reliability of the 

models in predicting greenhouse gas emissions. 

Things which are out of scope for this project would be: 

1. Spatial and Temporal Gap Filling: Utilize the trained machine learning models to fill in the 

spatial and temporal gaps present in hyperspectral satellite data. This will provide a more 

comprehensive and continuous representation of greenhouse gas emissions. This requires 

specialised access to data and high computing resources.  

2. Policy Recommendations: Based on the findings, develop recommendations for policymakers 

on how to effectively reduce greenhouse gas emissions from agriculture and forestry sectors. 

 

1.10  Thesis Structure 
 

This thesis aims to investigate the evolution of air quality measurements using Sentinel 5P satellite 

data. Chapter 1 provides a general overview of the study, including the motivation, research questions, 

significance, and organization. Chapter 2 reviews previous research on the topic, discussing different 

Sentinel 5P data products, processing methods, and key findings. Chapter 3 describes the data 

collection and analysis process, examining trends in air quality from 2018 to 2022, analysing factors 

affecting air quality changes, and discussing implications for air quality management. Chapter 4 

focuses on machine learning, describing the model architecture and evaluation, including the model 

type, training methods, and test set evaluation. Finally, Chapter 5 summarizes the key findings and 

provides recommendations for future research.  
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Chapter 02: Literature Review 
2.1 Overview 
 

In Chapter 2, we look into the body of prior research on measurements of air quality made using 

information from the Sentinel 5P satellite. We will also look at some remote sensing studies. This 

chapter outlines the prevalent studies, methodology, and important discoveries in this area and serves 

as a crucial starting point for understanding the context in which our research is placed. 

 

2.2 Remote sensing 
 

Remote sensing is the capacity to record measurements of an unknown parameter from a distance. 

Described below is how remote sensing is relevant to our research and the types of cameras utilized. 

 

2.2.1 Remote Sensing Primer 
 

The capacity to discover details about a substance from a distance is known as remote sensing. This is 

accomplished by measuring the amount of light reflected from the planet using distant sensors, most 

frequently land observation satellites or aircraft. More specifically, distant satellite sensors assess the 

reflectance of electromagnetic (EM) radiation for a given place on earth, in addition to just detecting 

light. 

We can roughly categorise remote sensing cameras into 2. 1) Optical cameras and 2) Synthetic 

Aperture cameras. Optical cameras read a specific portion of the electromagnetic spectrum for a given 

time and space. They are passive sensors. In other words, they gauge the environment's or the target's 

natural radiation or emission. Synthetic Aperture sensors sends radiofrequency (RF) radiation pulses 

in the direction of a target region. The Earth's surface is in contact with these radar frequencies. 

Depending on whether the characteristics are connected to land, water, or human activity, some of 

the signals are reflected to the instrument in patterns that convey extensive information about size, 

direction, composition, condition, and texture of the features encountered. In other words, active 

sensors produce energy and then analyse the signal that is reflected or dispersed. 

Optical sensors are non-invasive means of measuring and Synthetics Aperture sensors are invasive 

means of measuring a parameter of a target. 

 

2.2.2 Hyperspectral Remote Sensing 
 

A sophisticated method called hyperspectral remote sensing employs specialised sensors to collect a 

wide variety of contiguous spectral bands from the electromagnetic spectrum. With the use of this 

cutting-edge technology, materials may be precisely identified based on their distinctive spectral 

characteristics. Hyperspectral remote sensing has a wide range of uses in forestry and agriculture, 

improving practises and resource management. This includes its function in crop classification, early 

pest and disease detection, crop water stress identification, accurate mapping of soil nutrient content, 
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and the facilitation of well-informed crop management decisions, such as optimising irrigation, 

fertilisation, and pesticide application. 

Hyperspectral remote sensing has proved essential in the forestry industry for activities like full forest 

inventories, which require mapping different tree species, calculating biomass, and keeping track of 

the condition of the entire forest. It is also an essential tool for tracking trends in deforestation, seeing 

wildfires early on, identifying invasive species that harm ecosystems, and reliably differentiating 

between various tree species in forests. 

Hyperspectral remote sensing is a key instrument for gathering crucial data on agriculture and forestry 

resources because of its adaptability and efficiency. Its increased use propels developments in both 

disciplines and aids in the development of more effective and sustainable resource management 

techniques. 

 

2.3 Significance of measuring Nitrous oxides in agriculture 
 

Monitoring nitrous oxide (NO2) emissions in agriculture and forestry holds significant environmental 

importance due to the potent greenhouse gas properties of NO2, which has a global warming potential 

(GWP) approximately 300 times that of carbon dioxide (CO2) over a 100-year timeframe. Agriculture 

stands as the largest anthropogenic contributor to NO2 emissions, accounting for around 4.1 

teragrams of nitrogen per year, or roughly 60% of all anthropogenic NO2 emissions. Given the 

substantial impact of NO2 on climate change, effective monitoring and mitigation strategies are 

imperative (Audet et al., 2020). 

One crucial facet of monitoring NO2 emissions lies in its potential to identify regions where emissions 

are notably high, thereby allowing for the precise targeting of mitigation efforts. By pinpointing these 

areas, strategies can be tailored to reduce emissions through improved fertilizer management, 

reduced tillage practices, and the implementation of cover crops. This proactive approach is vital for 

curbing the environmental impact of NO2 and mitigating its contribution to climate change. 

Furthermore, as described in Section 1.6 (Research Gap) there is an existing need for soil level analysis 

of data as well. Furthermore, the monitoring of NO2 emissions serves as an essential tool for assessing 

the effectiveness of mitigation measures over time. By tracking changes in emissions following the 

implementation of specific strategies, researchers and policymakers can gauge the success of these 

initiatives and make necessary adjustments to optimize their impact. 

 

2.4 Convolutional Neural Networks (CNNs) in Remote Sensing 
 

Convolutional Neural Networks (CNNs) are a powerful subset of deep learning models that are 

frequently used in tasks involving image processing and categorization. These networks are modelled 

after the complex operations of the human visual brain, which enables them to autonomously 

recognise and extract relevant characteristics from images, according to the task at hand. 

Convolutional layers, which serve as the foundation of CNN performance, are located at their core. 

These layers are critical in extracting characteristics from photos. A convolutional layer is made up of 

a series of filters, which are effectively tiny matrices that are applied progressively to the input picture. 
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These filters move through the picture like sliding windows. This operation produces a feature map, 

which is an image representation that emphasises the characteristics judged relevant by the filter. 

Furthermore, pooling layers are incorporated into the CNN architecture to minimise the size of the 

feature maps. This deliberate reduction serves several reasons, including reducing network computing 

complexity and preventing overfitting. Among the numerous pooling approaches, max pooling is the 

most prevalent. It works by choosing the largest value from the feature map's defined subregions and 

progressively compressing its size. 

The fully connected layer in a CNN is like the layers in classic neural networks. This layer acts as a link 

between the convolutional layers' retrieved features and the network's output layer. The output layer's 

final task is to classify the input image into one of the specified classes. 

 

2.5 Previous Work 
 

Several attempts have been made to use machine learning to find deforestation in low- or medium-

resolution satellite data in recent years. These studies have fundamentally altered how we identify 

significant alterations in forests, such as the detection of widespread deforestation in the Amazon 

Rainforest or the quantitative measurement of primary forest loss. Despite this, there is little research 

on machine learning with high-resolution satellite imagery and its associated date to predict it’s 

associated greenhouse gas emission rate. Additionally, as far as we can tell from our study, no work 

has been done expressly for the task of predicting the emission value of a gas using an associated 

satellite image and the image date. In this section, we go over the earlier research that was done in 

agricultural emissions. Our goal is to assess the benefits and drawbacks of earlier studies to guide the 

methods and data that will be used later in this report.  
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2.5.1 Literature Review of selected agricultural emissions papers 
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The table summarises many research studies on greenhouse gas emissions, with an emphasis on 

carbon dioxide (CO2) and methane (CH4), as well as the influence of land use changes and agricultural 

practises. Each research study provides distinct insights into the dynamics of greenhouse gas emissions 

and their interactions with diverse environmental conditions. 

One of the research projects that stands out looks at the temporal and regional variability of CO2 flux 

and XCO2 concentrations. It was carried out in Brazil in 2022 (Rossi et al., 2022). While XCO2 is found 

to have a negative association with rainfall, CO2 flow is found to have a positive correlation. In addition, 

the study points out that areas that were once forested now support higher CO2 emissions. The effects 

of climate change are, however, tempered in areas with continuous forest cover since these areas 

serve as carbon sinks. The three-year duration of this study demonstrates how long-term it is. 

A study conducted in Jiangsu, China (“Estimation of methane emissions based on crop yield and 

remote sensing data in a paddy field - Shi - 2020 - Greenhouse Gases: Science and Technology - Wiley 

Online Library,” n.d.) in 2020 found that CH4 emissions from paddy fields are positively correlated 

with rice yield and biomass. This suggests that biomass plays a role in CH4 generation. The study also 

found that remote sensing can be used to estimate CH4 emissions from paddy fields, and that this 

method could be used to quantify regional greenhouse gas emissions. The study spanned one year. 

A study conducted in New Zealand (Ausseil et al., 2011) in 2011 also explored the feasibility of 

estimating greenhouse gas emissions from satellites. The study found that it is possible to estimate 

emissions from satellites, but more research is needed to improve the accuracy of these estimates. 

The study spanned two years. 

China's Sanjiang Plain research study (Zhang et al., 2011) from 2011 models methane emissions from 

rice fields. The findings raise concerns about the changes in CH4 emissions and show that this region 

is responsible for sizable emissions. There is no time frame for the investigation. 

The 2009 Chinese study (Qiu et al., 2009) assesses the effects of carbon sequestration on the net 

emissions of greenhouse gases from agricultural soils. It emphasises the intricate connection between 

carbon sequestration rates, NO2 emissions, and CH4 emissions while concentrating on distinct 

agroecosystems. According to the research, various management strategies may boost carbon 

sequestration rates but may also raise N2O or CH4 emissions. The study advises reducing the use of 

synthetic fertiliser as a potential fix. There is no mention of the study's duration. 

In 2012, a research (Adami et al., 2012) in Brazil evaluated how the increase of the sugarcane crop 

affected land use. It highlights how crucial these adjustments are for reducing greenhouse gas 

emissions and bringing about local climate cooling. The South-Central region of Brazil, a significant 

sugarcane growing zone, is the subject of the study. The study's duration is not made clear. 

In a different East Asian study from 2012, (Guo et al., 2013) researchers look at the connections 

between land cover and greenhouse gas concentrations using remote sensing data. Scrublands and 

grasslands are classified as CH4 sinks, whereas forests and agricultural lands are CH4 sources. 

Finally, a 2007 report (Johnson et al., 2007) examines ways that agriculture might reduce greenhouse 

gas emissions. To lower methane (CH4) and nitrous oxide (N2O) emissions from agriculture, it 

recommends conservation practises, effective nitrogen management, changes in animal nutrition, and 

manure management. There is no information about the study's duration. 

Other than the above recent studies from France and Turkey focused extensively on nitrous oxide 

emissions via the Sentinel 5P satellite imagery. The Turkish studies depicted a significant correlation 

between urban population density and triphosphoric column density of NO₂ values (Kaplan et al., 
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2019). The French study (Omrani et al., 2020) concluded with a seasonal variation of NO₂ values. 

During the winter and fall seasons (ie: cold seasons) a greater density of pollutants was observed. 

In conclusion, the table displays a variety of research from different geographical areas, each of which 

offers insightful information about the dynamics of greenhouse gas emissions and their implications 

for mitigating climate change. The influence of land use changes, the contribution of biomass to CH4 

emissions, and the possibility of remote sensing for emissions assessment are only a few of the issues 

covered in these works. These studies range in length, with some lasting several years to identify long-

term trends and relationships. 
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2.5.2 Literature Review of hyperspectral remote sensing papers 
 

Table 2 - related papers to hyperspectral image processing 
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Hyperspectral Super-Resolution with Spectral Unmixing Constraints and A New Super Resolution 

Framework Based on Multi-Task Learning for Remote Sensing Images both propose new methods for 

super-resolving hyperspectral images. However, the first method uses spectral unmixing constraints, 

while the second method uses multi-task learning. Both methods are shown to outperform other 

super-resolution methods on their respective datasets. 

Detection of Methane Plumes Using Airborne Midwave Infrared (3–5 µm) Hyperspectral Data and New 

Divergence Method to Quantify Methane Emissions Using Observations of Sentinel-5P TROPOMI both 

focus on the detection and quantification of methane emissions using hyperspectral data. However, 

the first study uses airborne data, while the second study uses satellite data. Both studies show that 

hyperspectral data can be used to detect and quantify methane emissions, but the second study shows 

that satellite data is more effective than airborne data for this purpose. 

N/ASIPSA-Net: Shift-Invariant Pan Sharpening with Moving Object Alignment for Satellite Imagery and 

Weakly-supervised Semantic Segmentation in Cityscape via Hyperspectral Image both propose new 

methods for processing hyperspectral data for specific applications. The first method proposes a new 

pan sharpening method for satellite imagery that can handle moving objects. The second method 

proposes a new method for weakly-supervised semantic segmentation of cityscapes. Both methods 

are shown to achieve good results on their respective datasets. 

First data set of H2O/HDO columns from the Tropospheric Monitoring Instrument (TROPOMI) and 

Variability of nitrogen oxide emission fluxes and lifetimes estimated from Sentinel-5P TROPOMI 

observations both present new findings from the Sentinel-5P TROPOMI instrument. The first study 

presents the first data set of H2O/HDO columns from TROPOMI. The second study presents a study on 

the variability of nitrogen oxide emission fluxes and lifetimes estimated from TROPOMI observations. 

Both studies provide new insights into the capabilities of the TROPOMI instrument and the potential 

of hyperspectral data for remote sensing applications. 
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2.5.3 Literature Review of deep learning and remote sensed papers 
 

Table 3 - assorted related work in deep learning and remote sensing 
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Satellite observations of atmospheric methane and their value for quantifying methane emissions 

(2016) 

The most recent methods for measuring methane emissions using satellite data are reviewed in this 

publication. It addresses the benefits and drawbacks of various satellite platforms and data products 

and emphasises the need for additional study to create more precise and dependable methane 

quantification techniques. 

The added value of satellite observations of methane for understanding the contemporary methane 

budget (2021) 

The utility of satellite data in comparison to data gathered by ground-based monitoring stations is 

evaluated in this research. It demonstrates that satellite data can offer ground-based data more 

thorough spatial coverage and higher temporal precision, which is crucial for comprehending the 

global methane budget. 

Satellite-derived methane hotspot emission estimates using a fast data-driven method (2016) 

The innovative data-driven approach for calculating methane hotspot emission estimates using 

satellite data is presented in this research. The approach is based on a linear regression model that 

was trained using data on known-source methane emissions. The technique has been demonstrated 

to be precise and effective, and it has the potential to be used to track methane emissions from a 

number of industries, including landfills, agriculture, and oil and gas extraction. 

Automated Identification of Oil Field Features using CNNs (2020) 

In this study, convolutional neural networks (CNNs) are used to introduce a novel technique for 

recognising characteristics in oil fields. A deep learning model called a CNN is ideally suited for image 

identification applications. It is demonstrated that the suggested strategy is effective and precise at 

locating oil field objects in Landsat pictures. 

Spatio-temporal data on the air pollutant nitrogen dioxide derived from Sentinel satellite for France 

(2020) 

The Sentinel-5P satellite obtained a brand-new spatio-temporal dataset of nitrogen dioxide (NO2) for 

France, which is presented in this study. The regional and temporal distribution of NO2 in France is 

examined using the dataset. According to the findings, urban regions and the winter have the highest 
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NO2 concentrations. The authors also list the key influences on NO2 column concentration as 

nighttime light intensity, the ratio of secondary and tertiary industries, and vehicle ownership. 

Spatial Variation of NO2 and Its Impact Factors in China: An Application of Sentinel-5P Products (2019) 

In this study, the regional and temporal distribution of NO2 in China is examined using Sentinel-5P 

data. The findings demonstrate that the tropospheric NO2 column concentration fluctuates monthly 

and clearly exhibits the seasonal pattern of "high in winter and low in summer," with the spatial 

distribution following a "high in East and low in west" trend. The authors also list the key influences on 

NO2 column concentration as nighttime light intensity, the ratio of secondary and tertiary industries, 

and vehicle ownership. 

Ground-based validation of the Copernicus Sentinel-5p TROPOMI NO2 measurements with the NDACC 

ZSL-DOAS, MAX-DOAS and Pandonia global networks (2021) 

In this study, ground-based NO2 readings from the NDACC ZSL-DOAS, MAX-DOAS, and Pandonia 

worldwide networks are compared to Sentinel-5P measurements. The findings demonstrate some 

bias, especially at high NO2 concentrations, but overall Sentinel-5P NO2 values are compatible with 

ground-based data. 

Rotation Equivariant Deforestation Segmentation and Driver Classification (2021) 

In this paper, a new rotation equivariant neural network for driver classification and deforestation 

segmentation using satellite pictures is proposed. One kind of neural network that can learn from 

rotated data is a rotation equivariant neural network. The suggested method is demonstrated to be 

very precise and recall-efficient at segmenting deforestation areas and categorising the drivers of 

deforestation. 

FIgLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time Wildland Fire Smoke Detection 

(2021) 

For the purpose of detecting smoke from wildfires in real time, this research suggests a new dataset 

and deep learning model. Over 100,000 photos of smoke from wildland fires and other objects have 

been labelled in the dataset, which goes by the name FIgLib. SmokeyNet, a deep learning model that 

is trained on FIgLib, has a high level of real-time accuracy while detecting smoke from wildland fires. 

GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield 

Prediction (2021) 

In order to use geospatial and temporal data for agricultural production prediction, a novel GNN-RNN 

technique is proposed in this study. A class of neural network known as a GNN-RNN is capable of 

learning from both sequential and graph-structured material. The suggested method has the potential 

to be used to direct agricultural decision-making because it has been demonstrated to be accurate and 

effective at predicting crop yields. 

 

2.6 Chapter Summary 
 

This chapter provides a thorough overview of current developments in hyperspectral remote sensing 

and remote sensing, which forms the basis for our own study. We learn more about the many 

approaches, datasets, and assessment criteria employed in the field by reading these papers. 
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Furthermore, it provides the appropriate data sources locations that have not had any surveys and the 

time periods in such locations with minimal survey and sets the groundwork for our own contributions 

to this developing topic in the next chapters. 

All the papers listed above use satellite data to study various environmental problems. However, they 

use different satellite platforms and data products, and they focus on different applications. None focus 

on any singular objectives we outlined as the research goals above or work on the research objectives 

we have outlined.  
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Chapter 03: Data Collection Methodology and Analysis 
 

3.1 Overview 
 

The important elements of the data collection process are covered in depth in Chapter 3 of our study 

project. In this chapter, we explain the techniques, resources, and equipment we used to gather the 

crucial data for our study. This chapter's importance rests in demonstrating the transparency and 

comprehension of the basis for our research. 

To provide a complete overview of the background work needed for our investigation, Chapter 3 is 

essential. It provides readers with reassurance regarding the care and rigour used in gathering the data 

necessary for our investigation. The approaches and factors discussed in this chapter provide as a 

springboard for the chapters that follow, where we analyse, model, and derive insights from the data. 

 

3.2 Data Sources 
 

Images from the Sentinel 2 and the Sentinel 5P satellites were used for our research. The RGB 

composite image from the Sentinel 2 were used as inputs images and the mean value of that NO2 gas 

in that particular image area (obtained from the Sentinel 5P) was used as regression targets in the 

model. (Explained subsequently). The images were obtained from 24 diverse soil conditions, spanning 

a period of 4 years (September 2018 to September 2022) 

 

3.3 Description of the data collection tools 
 

Agricultural soils are a strong contributing factor in GHG emissions. They produce nitrous oxide when 

nitric fertilizers are applied. The United States Department of Agriculture (USDA) classified soil types 

around the world in an extensive survey (given below). The soils are classified (“Keys to Soil Taxonomy 

| NRCS Soils,” n.d.) into 12 distinct categories. In addition to the 12 mentioned there are 3 more classes 

(shifting sand, ice glacier, and rocky land) depicted in a Global Soil Region map below (“Global Soil 

Regions Map | NRCS Soils,” n.d.).  The codes for the data extraction tool from the Sentinel 5P provided 

in Data Extraction Tool.5P in the Code and Data section) 

The codes above are designed for processing and analyzing satellite data from the Sentinel-5P mission. 

Below is a summary of its functionality. 

• Library Installation and Imports: The code begins by installing the geemap library and 

importing necessary modules such as tifffile, matplotlib, numpy, geemap, math, ee, and os. 

These libraries are used for image processing, mathematical calculations, and interacting with 

the Google Earth Engine API. 

• Helper Functions: It defines helper functions for formatting dates, mosaicking daily images, 

and calculating bounding boxes based on latitude and longitude. 
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• Main Analysis Function: A primary function get_gas_value_for_location is detailed, which 

retrieves greenhouse gas readings for a specified location within a given time frame. It utilizes 

parameters like latitude, longitude, start and end dates, dataset, gas band, and others to 

perform the analysis. 

• Visuals: The code includes commented-out sections for visualizing data using tifffile and 

matplotlib, as well as for measuring execution time of code blocks. 

• Date Configuration: It automates the creation of a date range for analysis and prepares a list 

of formatted dates. 

• Location Data and File Handling: The notebook contains lists of geographical locations with 

associated soil types, commands for downloading and unpacking datasets, and integration 

with Sentinel-2 data. 

• Data Processing Loop: A loop processes the data for each location over the specified date 

range, capturing greenhouse gas values and handling exceptions. 

• Data Integration and Output: The code integrates data from Sentinel-2, mounts Google Drive 

for storage, and writes the processed data to a CSV file. It also includes code for zipping and 

downloading the dataset. 

The codes for the data extraction tool from the Sentinel 2 provided in Data Extraction Tool.2 in the 

Code and Data section) 

The codes above are designed for processing and analyzing satellite data from the Sentinel-2 mission. 

Below is a summary of its functionality. 

• Geospatial Library Utilization: The code employs the geemap Python library, which is a popular 

tool for geospatial data analysis, particularly with the Google Earth Engine. 

• Authentication and Initialization: It includes a procedure for authenticating and initializing the 

Earth Engine API, which is essential for accessing and processing the vast satellite imagery data 

available on the platform. 

• Mathematical Functions for Geodesy: The notebook defines mathematical functions to 

convert degrees to radians and vice versa, and to calculate the Earth’s radius at a given latitude 

based on the WGS-84 ellipsoid model. 

• Image Processing Workflow: The core functionality of the code involves defining a bounding 

box for a region of interest, masking clouds from satellite images, calculating the percentage 

of black pixels (potentially indicating missing data), and retrieving images for specific locations 

and time frames. 

 

Figure 1 - Data flow diagram 
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Figure 2- Global Soil Region USDA 

Our analysis entails an agricultural and forestry vantage point. We selected a minimum of 3 locations 

from each soil order. Since agricultural lands and forestry consists of large land areas, we would get an 

average of at readings from a swath of land area surrounding a given point.  

The equations to calculate the square shaped surface area bounding box coordinates of readings to be 

considered at a chosen point is described and depicted below. First and foremost, for a given latitude 

and longitude, the degree coordinates would have to be converted to radians.  

The following equation describes the above process. This conversion ensures that we work with 

angular measurements in radians, which are commonly used in trigonometric calculations. 

(latitude or longitude)in radians =  
(latitude or longitude) in degrees

180
× 𝜋 

 

Contrary to popular belief the Earth is not a perfect sphere. WGS-84 (World Geodetic System of 1984) 

considers the Earth as a spheroid or an ellipsoid of revolution. Spheroids are ellipsoids of which 2 of 3 

semi-axes are equal. As such WGS-84 defines the 2 semi diameters (and by extension radius) of the 

Earth as follows; the equatorial radius and the polar radius. They are given the following values. 

equatorial radius of Earth(WSG84A) = 6378137.0𝑚 

polar radius of Earth(WSG84B) = 6356752.3142𝑚 

 

The equations to find the radius and the parallel radius at a given latitude is given below. 

A = WSG84 A2 × cos(latitude in radians) 
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B = WSG84 B2  × sin(latitude in radians) 

C =  WSG84 A × cos(latitude in radians) 

D = WSG84 B × sin(latitudeinradians) 

radius at a given latitude =  √
(𝐴2 + 𝐵2)

(𝐶2 + 𝐷2)
 

parallel radius at a given latitude = radius at a given latitude × cos(latitude in radians) 

 

The coordinates of bounding square of a given point can be calculated as below. Half-length of a side 

of the square is denoted by H. 

latitude 𝑚𝑖𝑛 =  latitude in radians −
H

radius at a given latitude
  

latitude 𝑚𝑎𝑥 =  latitude in radias +
H

radius at a given latitude
  

longitude 𝑚𝑖𝑛 =  longitude in radians −
H

parallel radius at a given latitude
  

longitude 𝑚𝑎𝑥 =  longitude in radians +
H

parallel radius at a given latitude
 

 

All these bounding square coordinates are to be converted to degrees with the following equation. 

(latitude or longitude) in degree =
(latitude or longitude) in radians

π 
× 180 

 

With the above coordinates we can create a bounding box for a given latitude and longitude, of length 

(2H) from the centroid to the sides. We take the mean values of all the readings within in the bounding 

box to determine a net average value per day. In our experiments we use a bounding box that is a 

square of side 10 km. This would be able to estimate the average emissions within the area enclosed 

by the bounding box. 

 

3.4 Singular results obtained from the tools 
 

An example of the results obtainable from the above software tools to monitor Nitrogen Dioxide are 

depicted below in the examples. 

• For a localized region of agricultural land and forests (and basically covers majority of the 

countries in the world) 

• Global coverage 
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3.4.1 Global Coverage 
 

Often it is crucial to have a holistic view before conducting further scrutiny. For such purposes, we have 

a tool to view the average value of emissions all over the coverage of the Sentinel 5P satellite. Figure 

2 shows the average values of NO2 obtained for a period between 7th June 2020 and 30th June 2020.  

It is observed that Japan, China, South Korea, India, Iran, Lebanon, Egypt, Russia, Germany, Italy and 

the USA are significant emitters of NO2 gas during the time frame. This enables us to atomize parts of 

areas relevant to forestry and agriculture better. 

Below is an example of the results obtained. This heatmap uses a color scale that transitions from 

'black' to 'blue', then 'purple', 'cyan', 'green', 'yellow', and finally 'red'. The lowest values (0.0) in the 

heatmap will be represented by 'black', while the highest values (0.0002) will be represented by 'red', 

with intermediate values being represented by the other colors in the palette above. 

 

Figure 3- Global average emissions of NO2 between 7th June 2020 to 30th June 2020 

 

3.4.2 Localized Coverage 
 

Let’s consider one region for example. The North Island of New Zealand houses nearly 65% of the New 

Zealand population. The particular area that was surveyed is projected to increase it’s agricultural 

productivity by nearly 100% in 2040s (“Integrated National Policy Approaches to Climate-Smart 

Agriculture. Insights from Brazil, Ethiopia, and New Zealand,” 2014). This area is also home to the 

Whirinaki Forest Park and the Te Urewera homeland of the Tuhoe Maori people. The soil variety in 

this region is of Andisol type. The specific longitude and latitude we surveyed was [-

38.44145537791065, 176.80194705056425] respectively. The time frame of survey is between 

September 2018 to August 2019  

The tool has a feature to annotate the specific area being surveyed as displayed below in Figure 3. The 

line plot of this region is also obtainable as shown in Figure 4. 
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Figure 4- Annotated Area of survey 

 

Figure 5- Daily emission value for a year in the above area 

 

3.5 Description of the locations surveyed 
 

This dataset comprises historical data collected from a total of 24 distinct geographical locations, 

representing a diverse array of eight different soil orders. It is important to note that the data collection 

process was conducted impartially, encompassing regions spanning from the global northern 

hemisphere to the global southern hemisphere. The data acquisition itself was facilitated through the 

utilization of the Google Earth Engine, a sophisticated geospatial analysis platform. The temporal scope 

of this data compilation spans from September 2018 to September 2022. The locations of survey is 

displayed below. 
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Figure 6- Locations of the data collection sites 

 

Table 4- Soil order and crops grown in the surveyed areas 

Serial 

No. Location Latitude Longitude Soil Order Crops or Forests 

1 Karachay-Cherkessia, 

Russia 44.02549592 41.27779137 Mollisol Wheat, corn, sunflowers 

2 Melitopol, Ukraine 47.04296361 35.75185611 Mollisol Wheat, corn, sunflowers 

3 Iowa, America 41.90193949 -92.75029809 Mollisol Corn, soybeans, hay 

4 Tver, Russia 44.02549592 41.27779137 Alfisol Wheat, rye, potatoes 

5 Odisha, India 21.4111331 82.71054963 Alfisol Rice, jute, wheat 

6 

North Gonja, Ghana 9.388339935 -1.526934298 Alfisol 

Cocoa, plantains, 

cassava 

7 North Island, 

NewZealand -38.44145538 176.8019471 Andisol 

Beech forests, podocarp 

forests 

8 Jalisco, Mexico 19.79403165 -103.1927506 Andisol Corn, beans, coffee 

9 Santa Barbara, Chile -37.68590304 -71.41446515 Andisol Vineyards, olive groves 

10 

Madama, Niger 22.01110157 13.46676007 Entisol 

Millet, sorghum, 

peanuts 

11 Shubaytah, 

SaudiArabia 22.61869806 53.24287929 Entisol Date palms, wheat 



32 
 

12 Gibson Desert North, 

Australia -22.54613578 127.6495604 Entisol Shrubs, grasses 

13 Primorsky Krai, Russia 44.57940166 135.6788987 Inceptisol Soybeans, corn, wheat 

14 Muzaffarpur, 

Bangladesh 24.60487059 90.89032422 Inceptisol Rice, wheat, jute 

15 Quebec, Canada 57.27976996 -65.46318238 Inceptisol Forests, crops 

16 Jutai, Brazil -4.549269446 -68.29210095 Oxisol Soybeans, corn, coffee 

17 

Bambesa, Congo 3.016830986 26.05157797 Oxisol 

Coffee, cassava, 

bananas 

18 Moramanga, 

Madagascar -19.13854286 48.51022224 Oxisol Shrubs, grasses 

19 Georgia, America 34.24755459 -83.11264726 Ultisol Corn, soybeans, hay 

20 Perak, Malaysia 5.30571406 100.8891812 Ultisol Rubber, oil palm 

21 Oudomxay, Laos 20.17307836 101.761504 Ultisol Rice, corn, coffee 

22 Madhya Pradesh, 

India 23.36609533 76.86099548 Vertisol 

Millet, sorghum, 

peanuts 

23 Aboro, Ethiopia 8.082542473 33.49662823 Vertisol Enset, coffee 

24 Houston, Texas 28.9770527 -95.74814063 Vertisol Corn, sugarcane 

 

Table 4 offers a summary of the geographic coordinates, soil order, and types of crops or forests that 

can be found in many regions across the world. To ensure a diverse dataset for study, these places 

were chosen to reflect agricultural lands in various geographic areas and climatic conditions. Data on 

changes and trends in crop agriculture and forest cover were gathered from September 2018 to 

September 2022. 

The Mollisol soil order, which is prominently displayed in the table, is represented by regions like Iowa 

in the United States and Karachay-Cherkessia in Russia. Wheat, corn, and sunflowers are the main 

crops in these areas. These agricultural staples are essential to local economies and the production of 

food on a worldwide scale. 

The chart also features the Alfisol soil order, which is found in places like Tver, Russia, and Odisha, 

India. Farmers grow crops like rice, jute, wheat, and potatoes in these regions. certain crops are 

necessary for the food security and economic viability of certain areas. 

Moving on to Andisol, the table emphasises places like Jalisco, Mexico, and North Island, New Zealand. 

Here, varied landscapes, such as vineyards and olive orchards in Mexico and beech and podocarp 

forests in New Zealand, demonstrate how adaptable andisols are for maintaining different kinds of 

vegetation. 
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Primorsky Krai in Russia, characterized by Inceptisol soil, predominantly features soybeans, corn, and 

wheat cultivation. This region, situated at approximately 44.58° latitude and 135.68° longitude, 

showcases the versatility of Inceptisols in supporting various agricultural activities. 

Moving to Muzaffarpur, Bangladesh, with its Inceptisol soil, rice, wheat, and jute are the primary crops 

cultivated. This area, located at approximately 24.60° latitude and 90.89° longitude, is known for its 

significant contribution to rice production in the country. 

Quebec, Canada, falls within the Inceptisol category, and it exhibits a blend of forests and croplands. 

Positioned around 57.28° latitude and -65.46° longitude, Quebec's landscape highlights the 

coexistence of natural woodlands and agricultural practices. Jutai, Brazil, is situated in an Oxisol region, 

where soybeans, corn, and coffee are the primary crops. The coordinates at approximately -4.55° 

latitude and -68.29° longitude place this area within the Amazon rainforest, where agricultural 

activities are interspersed with dense vegetation.Bambesa in the Congo, also with Oxisol soil, relies on 

coffee, cassava, and bananas for its agricultural output. Located at around 3.02° latitude and 26.05° 

longitude, this region plays a vital role in the production of coffee beans in Central Africa. 

Moramanga, Madagascar, characterized by Oxisol soil, features shrubs and grasses within its 

landscape. Positioned at approximately -19.14° latitude and 48.51° longitude, this region's terrain is 

marked by its natural vegetation and grassy expanses. Georgia in the United States, with its Ultisol soil, 

engages in corn, soybean, and hay cultivation. Located at around 34.25° latitude and -83.11° longitude, 

this American state is renowned for its agricultural activities. 

Perak, Malaysia, also categorized under Ultisol soil, specializes in rubber and oil palm cultivation. 

Positioned at approximately 5.31° latitude and 100.89° longitude, Perak contributes significantly to 

Malaysia's rubber and palm oil industries. 

Oudomxay, Laos, situated in the Ultisol soil category, focuses on rice, corn, and coffee production. 

Located at approximately 20.17° latitude and 101.76° longitude, this region in Southeast Asia plays a 

vital role in the country's crop cultivation. 

Madhya Pradesh, India, marked by Vertisol soil, showcases a landscape where millet, sorghum, and 

peanuts are the primary crops. Positioned at around 23.37° latitude and 76.86° longitude, this Indian 

state demonstrates the suitability of Vertisols for diverse crop cultivation. 

Aboro, Ethiopia, situated in an area characterized by Vertisol soil, is known for the cultivation of enset 

and coffee. Positioned at approximately 8.08° latitude and 33.50° longitude, this region showcases the 

significance of Vertisols in supporting the growth of enset, a drought-tolerant crop, and coffee, one of 

Ethiopia's major agricultural exports. The ability of Vertisols to retain moisture and nutrients 

contributes to the successful cultivation of these crops in this East African region. 

Houston, Texas, falls within the Vertisol soil category, where corn and sugarcane are the primary crops 

grown. With coordinates at around 28.98° latitude and -95.75° longitude, Houston exemplifies the 

agricultural diversity of Vertisols in the United States. Corn and sugarcane are essential components of 

the region's agricultural landscape, with corn serving as a staple crop and sugarcane supporting various 

industries, including sugar production and biofuel development. 
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3.6 Description of the collected data 
 

The initial phase of data retrieval involved obtaining data from the Sentinel-2 satellite, a satellite 

renowned for its capability to perform multispectral Earth observations. However, a key consideration 

in this process was the discrepancy in the orbital periods of the Sentinel-2 and Sentinel-5P satellites. 

Consequently, an approach was adopted, wherein data points were exclusively selected for analysis 

during time intervals when both satellites orbited over the same geographic locations. This stringent 

selection criterion was implemented to ensure the alignment of data acquired from both satellite 

sources, thereby enhancing the dataset's accuracy and reliability. 

Subsequently, employing the analytical tools previously developed and demonstrated, the dataset 

underwent an averaging process. Specifically, the gas concentration values, expressed in terms of 

molar concentration per square meter (mol/m²), were averaged for each respective region using data 

acquired from the Sentinel-5P satellite. The region around each latitude and longitude is a square of 

10km each. This gives it an effective surface area of 100 𝑘𝑚2. This data processing step aimed to derive 

a representative and consolidated value that encapsulated the gas concentrations within the specified 

regions. 

The following depiction demonstrates one example of the collected data and the relationship between 

the data. The images are 3 channel images and of size 200 x 200. 

 

Table 5- Example of one unit of data 

Image Soil Order Date of 
image 

Average NO 
emission in  
nano moles 

per sq m 

 

Molllisol (2019,3,1) 81.1224 
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Table 6 - Dataset number of images per soild order 

Soil Type No of Images 

Vertisol 496 

Mollisol 416 

Ultisol 268 

Andisol 500 

Alfisol 383 

Oxisol 185 

Entisol 896 

Inceptisol 362 

 

This is an unbalanced dataset on a soil order level. However since the task is regression the unbalanced 

nature of the dataset in the soil order level would not impact the prediction capabilities of the task. 

The dataset was split into 80% and 20% of training and testing data respectively. 

 

3.7 Results based on soil types 
 

Nitrous oxide (NO2) emissions from various soil orders have been thoroughly examined, and the 

results have provided important new insights into the global environmental dynamics of many 

different nations. This study explores the emissions data of eight different soil orders over the course 

of the last four years, from September 2018 to September 2022. These orders are Entisol, Inceptisol, 

Mollisol, Alfisol, Ultisol, Oxisol, Andisol, and Vertisol. The rigorously recorded and studied annual data 

provides significant insight into the dynamics of NO2 emissions within these soils, illuminating the 

environmental difficulties these areas face. This introduction lays the groundwork for a thorough 

examination of the conclusions and ramifications of this multi-year investigation. 

3.7.1 2018-2019 
 

 

Figure 7- Soil level emissions between 2018-2019 
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Table 7- Statistics of NO2 emission for the year 2018-2019 

Soil 

order Mean Median 
Std 

Deviation Min 
25th 

percentile 
50th 

percentile 
75th 

percentile Max Range 

Entisol 0.000053 0.000053 0.000003 0.000049 0.00005 0.000053 0.000055 0.000057 0.000008 

Inceptisol 0.000062 0.000065 0.000013 0.000042 0.000052 0.000065 0.000071 0.000081 0.000038 

Mollisol 0.000075 0.000077 0.000007 0.000064 0.000071 0.000077 0.000081 0.000085 0.000021 

Alfisol 0.000069 0.000067 0.000006 0.000061 0.000064 0.000067 0.000074 0.000079 0.000019 

Ultisol 0.000068 0.000065 0.000014 0.000055 0.00006 0.000065 0.000071 0.000108 0.000053 

Oxisol 0.000043 0.000041 0.000005 0.000036 0.000039 0.000041 0.000047 0.000053 0.000017 

Andisol 0.000052 0.000054 0.000004 0.000045 0.000049 0.000054 0.000055 0.000057 0.000013 

Vertisol 0.000067 0.000069 0.000006 0.000058 0.000062 0.000069 0.000069 0.000076 0.000018 

 

In the year 2018-2019, as depicted in (Table 7- Statistics of NO2 emission for the year 2018-2019) the 

NO2 emissions within different soil orders displayed various trends. Entisols remained stable, with 

consistent NO2 levels throughout the year. Mollisols showed a slight increase in NO2 emissions, 

suggesting a gradual environmental change affecting these soils. Inceptisols followed a pattern of 

declining NO2 emissions towards the end of the year, followed by a subsequent increase, ultimately 

returning to levels similar to the previous year. Alfisols exhibited a modest decrease in NO2 emissions, 

indicating a possible reduction in NO2 sources or improved environmental conditions. Ultisols, in 

contrast, experienced a rapid increase in NO2 emissions at the beginning of the year, only to return to 

levels comparable to the previous year. Oxisols showed a decrease in NO2 emissions compared to the 

previous year, suggesting a potential positive environmental development. Andisols displayed a slight 

decrease in NO2 emissions, indicating some improvement in air quality within these soils. Vertisols 

exhibited a moderate decrease in NO2 emissions, potentially reflecting environmental changes 

influencing this soil type during the specified period. 

The analysis of NO2 emissions from different soil orders over the year’s period from September 2018 

to September 2019 indicates important trends. Mollisols consistently showed the greatest mean 

emissions among the examined soil orders at 0.000075, while Oxisols consistently showed the lowest 

mean emissions at 0.000043. The results show that, on average, with some slight fluctuations, NO2 

emissions were steady during this time. The emissions of Entisols, Inceptisols, Alfisols, Andisols, and 

Vertisols all fell within a small range, whereas Ultisols showed more noticeable variability, peaking at 

0.000108. This data indicates that soil types have a substantial impact on NO2 emissions, with Mollisols 

consistently making the largest contribution of the emissions throughout this year.  
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3.7.2 2019-2020 
 

 

Figure 8- Soil level emissions between 2019-2020 

Table 8- Statistics of NO2 emission for the year 2019-2020 

Soil 

order Mean Median 

Std 

Deviation Min 

25th 

percentile 

50th 

percentile 

75th 

percentile Max Range 

Entisol 0.000051 0.000051 0.000002 0.000046 0.00005 0.000051 0.000053 0.000054 0.000008 

Inceptisol 0.000058 0.000059 0.000012 0.00004 0.000047 0.000059 0.000066 0.000077 0.000037 

Mollisol 0.000067 0.00007 0.000009 0.000051 0.000062 0.00007 0.000074 0.000079 0.000027 

Alfisol 0.000063 0.000063 0.000005 0.000054 0.00006 0.000063 0.000065 0.000075 0.00002 

Ultisol 0.00006 0.000055 0.000015 0.000049 0.000051 0.000055 0.000058 0.000097 0.000048 

Oxisol 0.000041 0.00004 0.000004 0.000036 0.000038 0.00004 0.000042 0.00005 0.000014 

Andisol 0.000051 0.000053 0.000005 0.000043 0.000047 0.000053 0.000055 0.000056 0.000013 

Vertisol 0.000058 0.000057 0.000003 0.000055 0.000056 0.000057 0.000059 0.000064 0.000009 

 

In the year 2019-2020, as depicted in the (Table 8- Statistics of NO2 emission for the year 2019-2020) 

the NO2 emissions within different soil orders showed distinct patterns. Entisols remained relatively 

stable in terms of NO2 emissions, indicating consistent levels over this period. Mollisols, on the other 

hand, experienced a notable increase in NO2 emissions, suggesting a potential environmental shift in 

these soils. Inceptisols exhibited a fluctuating pattern, with a decrease towards the end of the year 

followed by a slight increase in NO2 emissions. Alfisols continued their modest upward trend in NO2 

emissions. Ultisols displayed a slight increase as well, indicating a gradual rise in NO2 levels. Oxisols, in 

contrast, saw a decrease in NO2 emissions compared to the previous year. Andisols remained stable, 

with no significant changes. Vertisols, similar to Mollisols, exhibited a further increase in NO2 

emissions, suggesting dynamic environmental factors influencing these soil types during this 



38 
 

timeframe. Notably we can notice a greater than 10% drop in emissions during this period. This likely 

correlates with the COVID-19 lockdown which resulted in an economic slowdown. 

The analysis of NO2 emissions from various soil orders for the period of September 2019 to September 

2020 reveals some interesting patterns. Mollisols consistently showed the greatest mean emissions 

among the soil orders under study, at 0.000067, while Oxisols consistently showed the lowest mean 

emissions, at 0.000041. Notably, NO2 emissions showed a general upward trend throughout all soil 

categories, with certain months indicating significant increases, especially in Ultisols and Mollisols. The 

widest range of emissions was shown by ultisols, which peaked in March 2020 at 0.000097. 

3.7.3 2020-2021 
 

 

Figure 9- Soil level emissions between 2020-2021 

Table 9- Statistics of NO2 emission for the year 2020-2021 

Soil 

order Mean Median 

Std 

Deviation Min 

25th 

percentile 

50th 

percentile 

75th 

percentile Max Range 

Entisol 0.000053 0.000053 0.000004 0.000047 0.00005 0.000053 0.000056 0.000058 0.00001 

Inceptisol 0.000064 0.000066 0.000012 0.000048 0.00005 0.000066 0.000075 0.000081 0.000033 

Mollisol 0.00007 0.00007 0.000008 0.000057 0.000064 0.00007 0.000079 0.000082 0.000024 

Alfisol 0.00007 0.000068 0.000008 0.000059 0.000064 0.000068 0.000073 0.000086 0.000027 

Ultisol 0.000063 0.000058 0.000015 0.000052 0.000053 0.000058 0.000062 0.000101 0.00005 

Oxisol 0.000043 0.000042 0.000005 0.000037 0.000039 0.000042 0.000047 0.000053 0.000016 

Andisol 0.000054 0.000056 0.000004 0.000047 0.00005 0.000056 0.000057 0.000059 0.000013 

Vertisol 0.000065 0.000065 0.000004 0.000059 0.000062 0.000065 0.000067 0.000071 0.000012 

 

In the year 2020-2021, as depicted in the (Table 9- Statistics of NO2 emission for the year 2020-2021) 

the NO2 emissions within different soil orders exhibited diverse patterns. Entisols remained stable, 
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showing consistent NO2 levels throughout the year. Mollisols displayed an increase in NO2 emissions, 

suggesting a potential environmental shift affecting these soils. Inceptisols followed a pattern of 

declining NO2 emissions towards the end of the year, followed by a subsequent increase, ultimately 

returning to levels similar to the previous year. Alfisols exhibited a modest decrease in NO2 emissions, 

indicating a possible reduction in NO2 sources or improved environmental conditions. Ultisols, in 

contrast, experienced a rapid increase in NO2 emissions at the beginning of the year, with an overall 

increase compared to the previous year, potentially indicating changing environmental factors. Oxisols 

showed a decrease in NO2 emissions initially, returning to levels similar to the previous year, 

suggesting some degree of stabilization. Andisols displayed a slight decrease in NO2 emissions, 

followed by a return to the previous year's levels, indicating stability in air quality within these soils. 

Vertisols exhibited a moderate increase in NO2 emissions, reflecting potential environmental changes 

influencing this soil type during the specified time period. 

Analyzing NO2 emissions from various soil types between September 2020 and September 2021 

reveals interesting details. The highest mean emissions were continuously found in mollisols, at 

0.000070, indicating a considerable contribution to NO2 emissions. Oxisols, on the other hand, 

consistently showed the lowest mean emissions at 0.000043. The data indicates an overall increased 

trend in NO2 emissions for all soil types, with some months, especially in March 2021, displaying 

notable jumps, especially in Mollisols and Ultisols. The largest range of emissions, with a maximum of 

0.000101, was shown by ultisols. 
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3.7.4 2021-2022 
 

 

Figure 10- Soil level emissions between 2021-2022 

Table 10- Statistics of NO2 emission for the year 2021-2022 

Soil 

order Mean Median 
Std 

Deviation Min 
25th 

percentile 
50th 

percentile 
75th 

percentile Max Range 

Entisol 0.000052 0.00005 0.000004 0.000047 0.000048 0.00005 0.000056 0.000058 0.000012 

Inceptisol 0.000063 0.000064 0.000013 0.000043 0.000054 0.000064 0.000071 0.000084 0.000041 

Mollisol 0.000073 0.000074 0.000005 0.000065 0.000069 0.000074 0.000077 0.000079 0.000014 

Alfisol 0.000068 0.000067 0.000005 0.000061 0.000063 0.000067 0.000071 0.000078 0.000017 

Ultisol 0.00006 0.000059 0.000005 0.000057 0.000058 0.000059 0.000049 0.000055 0.000015 

Oxisol 0.000046 0.000044 0.000005 0.000041 0.000042 0.000044 0.000049 0.000055 0.000015 

Andisol 0.000052 0.000054 0.000004 0.000045 0.00005 0.000054 0.000055 0.000058 0.000014 

Vertisol 0.000064 0.000062 0.000007 0.00006 0.000061 0.000062 0.000063 0.000083 0.000024 

 

In the year 2021-2022, as depicted in (Table 10- Statistics of NO2 emission for the year 2021-2022), 

the NO2 emissions within different soil orders displayed distinctive trends. Entisols showed a slight 

decrease in NO2 emissions. Mollisols, on the other hand, exhibited an increase in NO2 emissions, 

indicating a potential shift in environmental conditions affecting these soil types. Inceptisols followed 

a pattern of declining NO2 emissions towards the end of the year, followed by a rapid increase slightly 

above the previous year's levels, suggesting some fluctuations in air quality. Alfisols remained stable, 

with consistent NO2 levels. Ultisols showed an increase at the beginning of the year, leveling off to the 

previous year's levels, indicating fluctuations in NO2 emissions. Oxisols displayed a decrease in NO2 

emissions initially, returning to levels similar to the previous year, suggesting some degree of 

stabilization. Andisols, however, showed a significant drop in NO2 emissions compared to the previous 

year, indicating potential improvements in air quality within these soils. Vertisols exhibited a rapid 
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increase in NO2 emissions at the beginning of the year, followed by a return to the previous year's 

levels, suggesting dynamic environmental changes influencing this soil type during the specified time 

period. 

Analyzing NO2 emissions from different soil orders from September 2021 to September 2022 reveals 

interesting trends. The fact that mollisols continuously had the greatest mean emissions, at 0.000073, 

shows how much they contribute to NO2 emissions. Oxisols, on the other hand, consistently had the 

lowest mean emissions, at 0.000046. According to the data, NO2 emissions in all soil categories follow 

a predictable seasonal pattern with wintertime peaks (December and January) and summers lows (July 

and August). Emissions considerably rose, especially in March 2022, primarily as a result of Mollisols 

and Vertisol. The widest range of emissions was seen in ultisols, which had a maximum emission of 

0.000084. 

 

 

3.7.5 2018-2022 
 

 

Figure 11- Soil level emissions between 2018-2022 

Table 11- Statistics of NO2 emission for the year 2018-2022 

Soil 

order Mean Median 
Std 

Deviation Min 
25th 

percentile 
50th 

percentile 
75th 

percentile Max Range 

Entisol 0.000013 0.000013 8.40E-07 0.000012 0.000012 0.000013 0.000014 0.000015 0.000003 

Inceptisol 0.000015 0.000015 3.10E-06 0.00001 0.000013 0.000015 0.000018 0.000021 0.000011 

Mollisol 0.000018 0.000018 1.97E-06 0.000013 0.000016 0.000018 0.000019 0.000021 0.000008 

Alfisol 0.000017 0.000017 1.65E-06 0.000014 0.000016 0.000017 0.000018 0.000022 0.000008 

Ultisol 0.000016 0.000015 3.22E-06 0.000012 0.000014 0.000015 0.000016 0.000027 0.000015 
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Oxisol 0.000011 0.00001 1.29E-06 0.000009 0.00001 0.00001 0.000012 0.000014 0.000005 

Andisol 0.000013 0.000014 1.07E-06 0.000011 0.000012 0.000014 0.000014 0.000015 0.000004 

Vertisol 0.000016 0.000016 1.46E-06 0.000014 0.000015 0.000016 0.000017 0.000021 0.000007 

 

 

Over the course of the four-year period from 2018 to 2022, (as depicted in Table 11- Statistics of NO2 

emission for the year 2018-2022) the NO2 emissions within different soil orders exhibited a range of 

patterns and trends. In 2018-2019, Entisols remained stable, while Mollisols showed a slight increase. 

Inceptisols followed a fluctuating pattern, and Alfisols exhibited a modest decrease. Ultisols 

experienced a rapid increase at the beginning of the year, and Oxisols showed a decrease. Andisols 

displayed a slight decrease, and Vertisols exhibited a moderate decrease. 

Moving to 2019-2020, Entisols remained stable, but Mollisols exhibited a notable increase, while 

Inceptisols followed a fluctuating pattern. Alfisols continued their modest upward trend, and Ultisols 

displayed a slight increase. Oxisols saw a decrease, Andisols remained stable, and Vertisols exhibited 

a further increase. 

In 2020-2021, Entisols stayed stable, Mollisols displayed an increase, Inceptisols followed a fluctuating 

pattern, and Alfisols exhibited a modest decrease. Ultisols had a rapid increase at the beginning of the 

year, while Oxisols showed a decrease initially. Andisols displayed a slight decrease, and Vertisols 

exhibited a moderate increase. Finally, in 2021-2022, Entisols showed a slight decrease, Mollisols 

exhibited an increase, Inceptisols followed a fluctuating pattern, and Alfisols remained stable. Ultisols 

had an increase at the beginning of the year, while Oxisols showed a decrease initially. Andisols had a 

significant drop, and Vertisols exhibited a rapid increase. 

 

3.8 Results based on a year-level 
 

This introduction lays the groundwork for the year-level analysis we undertook with the data. We 

analysed the variations on a year level.  
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Figure 12 - Year level analysis 

Since our data ranges from September 2018 to August 2022, we annotated a year to the period 

between September and August. 

Cumulatively we can see mollisols and alfisols (ie the best and second best soil for agriculture and 

forestry) emit the highest. An interesting observation on the orange bars (denoting the COVID 

lockdown year) has a noticeable dip in all the soil orders.  

 

3.9 Results based on equatorial distance 
 

This analysis is based on the surveyed locations and its proximity to the equator. This serves the 

purpose of discerning the differences between emissions of the same soil variety in different 

geographical locations. To discern the equatorial locations and non-equatorial locations we selected 

locations with latitude in the range of -15.5 and 23.5 as equatorial locations and the locations outside 

the range as non-equatorial locations. Mollisols and Inceptisols where not surveyed at an equatorial 

location as most mollisol soils are prevalent in the non-equatorial latitudes. 
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Figure 13 - Oxisol equatorial analysis 

Oxisols exhibit a periodic pattern. They peak during the Septembers in the higher latitudes and crest 

during the March-April window. They don’t exhibit periodic peaking patterns near the equator. They 

don’t exhibit any significant reduction in emissions separately (ie- equator and non-equator) though 

cumulatively they exhibit some significance as explained in the Section 3.7. 

Ultisols below (Figure 13) exhibit some periodic pattern over the 4 years. They peak around the 

February and March in equatorial countries and crest around December. Non equatorial countries 

exhibit some degree of periodic pattern where they crest around September, but not significant peaks 

are observed. Both country types don’t exhibit any significant changes due to the COVID-19 lockdown. 

Equatorial region tend to show significantly less emissions than non- equatorial regions. 
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Figure 14 - Ultisol equatorial analysis 

 

Figure 15 - Alfisol equatorial analysis 

Alfisols (Figure 14), Entisols (Figure 15) and Andisols (Figure 16) in non-equatorial regions show a 

periodic pattern, peaking in March-April window and cresting in November and vice versa. 
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Figure 16 - Entisol equatorial analysis 

 

Figure 17 - Andisol equatorial analysis 
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Figure 18 - Vertisol geographical analysis 

Vertisols show significantly higher readings for the non-equatorial regions as compared to equatorial 

ones. 

3.10 Chapter Summary 
 

The data on nitrous oxide (NO2) emissions from different soil orders during a four-year period from 

September 2018 to September 2022 indicates significant trends and oscillations. Mollisols stood out 

for constantly having the greatest average emissions, demonstrating their major contribution to NO2 

emissions over the course of this time. Conversely, the mean emissions of oxisols were consistently 

the lowest. The data also shows a cyclical seasonal trend, with wintertime emissions being higher and 

summertime emissions being lower. The largest range of emissions was shown by ultisols, which 

peaked in April 2022. Overall, these results highlight the significance of seasonal variations and soil 

types in NO2 emissions, emphasising the need for targeted mitigation strategies and sustainable soil 

management practises, especially in soil orders like Mollisols, Alfisols and Ultisols, which demonstrated 

both high mean emissions and significant variability. 

In summary, different soil types exhibit various emission patterns, with some showing periodic peaks 

in emissions during specific months. The impact of the COVID-19 lockdown on emissions is not 

significant in most soil types, and in the locations the data was collected, the equatorial regions 

generally exhibited lower emissions compared to non-equatorial regions. 

Across these years, it's apparent that different soil orders responded differently to NO2 emissions, with 

some showing stability, others fluctuating, and some indicating potential environmental shifts.  

Data Availability: (Data link in Data.1 in the Code and Data section) 
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Chapter 04: Machine Learning Model and Results 
 

4.1 Chapter Overview 
 

The focal point of our study, analysis, and prediction efforts is Chapter 4. It demonstrates the specifics 

of the computational methods utilised to get important conclusions from the methodically acquired 

data. Readers will have a thorough understanding of the models, their functionality, and the insights 

they offer by the end of this chapter, laying the groundwork for the conclusions and suggestions 

covered in the following chapter. It further discusses the results of the machine learning models and 

the evaluation metrics. The associated codes and data are provided in the links in the “Code and Data” 

section. 

 

4.2 Data Preprocessing 
 

The preprocessing steps for the inputs with their respective shapes are crucial for preparing the data 

for analysis or machine learning tasks. Let's break down the preprocessing steps for each of these 

tensors: 

1. Images (images.shape: (3506, 200, 200, 3)): 

• Resizing: The images have been resized to a shape of (200, 200, 3). The original images 

came in different dimensions and resizing them to a consistent shape is essential for 

compatibility and efficient processing. The (200, 200) dimensions represent the width 

and height of the images, and the '3' indicates that these are color images with three 

color channels (typically Red, Green, and Blue). 

• Data Type Conversion: The image data are also converted to a specific data type, such 

as float32, depending on the requirements of the PyTorch framework. 

2. NO2 Readings (no2_reading.shape: (3506, 1)): 

• Feature Selection: In this case, only a single feature, NO2 readings, is retained for 

analysis or modeling. The shape (3506, 1) indicates that there are 3506 data samples, 

each with one NO2 reading. 

• Scale: The mol/m.sq is converted to nano mol/m.sq for better convergence as 

extremely small numbers take time for the back prop. 

3. Dates Readings (dates_reading.shape: (3506, 3)): 

• Feature Engineering: The dates_readings tensor has a shape of (3506, 3), it contains 

three date-related features. Date-related features could include year, month, and day, 

for example. These features are extracted from the original date/time information for 

each data sample. 
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4.3 Model Architecture 
 

We conducted our experiments the dataset, comparing the performance of two different models. The 

first model was custom-built from the ground up, with its architecture designed from scratch. The 

second model, on the other hand, was based on ResNet, a well-known convolutional neural network 

architecture used in transfer learning. A diagrammatic description of the two models are provided 

below in Figure 19 - Model architecture diagram. 

 

Figure 19 - Model architecture diagram 
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4.3.1 Custom Model 
 

This model combines two branches: one for processing satellite image data and another for processing 

date-related features. 

Model Architecture: 

1. Image Branch: 

• The image branch is designed to process image data. 

• image conv1 is the first convolutional layer with 3 input channels (assuming RGB 

images) and 16 output channels. It uses a 3x3 kernel for feature extraction. 

• image relu1 is the ReLU activation function applied after the first convolution. 

• image conv2 is the second convolutional layer, which takes the output of the first 

convolutional layer and further extracts features. It has 16 input channels and 32 

output channels with 3x3 kernels. 

• image relu2 is the ReLU activation following the second convolution. 

• image fc is a fully connected (linear) layer that takes the flattened output from the 

convolutional layers and maps it to a 64-dimensional feature space. 

• Image relu3 is another ReLU activation function applied to the output of the fully 

connected layer. 

2. Date Branch: 

• The date branch is responsible for processing date-related features. 

• date fc is a fully connected layer that takes 3 date-related features (e.g., year, month, 

day) and maps them to a 16-dimensional feature space. 

• date relu is the ReLU activation applied after the date feature layer. 

3. Combined Layers: 

• fc combined1 is a fully connected layer that takes the concatenated output from both 

the image and date branches. It combines the information from the image and date 

features and maps it to a 32-dimensional feature space. 

• fc combined2 is the final fully connected layer that maps the 32-dimensional feature 

vector to a single output, which is the regression output. 

• fc relu is a ReLU activation applied after the combined layers. 

 

In the forward method, the model performs the following steps. The image data is passed through the 

image branch, going through convolutional and fully connected layers, and then ReLU activations. The 

date-related features are processed through the date branch, which consists of a single fully connected 

layer and a ReLU activation. The outputs of the image and date branches are concatenated along the 

feature dimension (dimension 1). The concatenated features are passed through the combined fully 



51 
 

connected layers. The final output is obtained, which represents the NO emissions in (nano mol per sq 

m) regression prediction. 

This model is designed for regression tasks where the goal is to predict nitrous emissions based on 

input satellite image data and image date. It combines information from both branches to make 

predictions. Given in the Appendix A is the computation graph. (Code in Code.1 in the Code and Data 

section) 

 

4.3.2 ResNet Model 
 

This model leverages transfer learning by using a pre-trained ResNet-18 (He et al., 2015) architecture 

to extract features from input images. It combines these image features with date information and 

uses fully connected layers to make a regression prediction. The choice of using transfer learning can 

be beneficial when dealing with image data, as it allows the model to leverage the knowledge learned 

from a large dataset (ImageNet) and adapt it to the specific regression task at hand. Given in the 

Appendix B is the computation graph. (Code in Code.2 in the Code and Data section) 

Table 12 - model details 

Parameter/Hyperparameter Model 1 (Custom CNN) 
Model 2 (Transfer Learning with 

ResNet) 

Image Branch 

Input Channels 3 (assuming RGB images) 3 (assuming RGB images) 

Kernel Size (Conv Layers 1 & 2) 3x3 
Defined by pre-trained ResNet 

model 

Number of Filters (Conv Layer 1) 16 
Defined by pre-trained ResNet 

model 

Number of Filters (Conv Layer 2) 32 
Defined by pre-trained ResNet 

model 

Activation Function (Conv 
Layers) ReLU 

Defined by pre-trained ResNet 
model 

Fully Connected Layer Size 
32 * 196 * 196 (calculated based on 

input size) 
Defined by pre-trained ResNet 

model  

Activation Function (FC Layer) ReLU 
Defined by pre-trained ResNet 

model  

Date Branch 

Input Features 3 3  

Hidden Layer Size 16 16 

Activation Function (FC Layer) ReLU ReLU 

Combined Layers 

Input Features (Combined) 64 (image) + 16 (date) 64 (image) + 16 (date) 

Hidden Layer 1 Size 32 32 

Hidden Layer 2 Size (Output) 1 1 

Activation Function (FC Layers) ReLU ReLU 
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Learning Rate 0.0001 0.0001 

Batch Size 16 16 

Optimizer RMSprop RMSprop 

Epochs 200 200 

 

4.4 Model Training  
 

This model appears to be a custom neural network architecture designed for regression tasks. It's 

important to note that the model is explicitly moved to the computing device (either CPU or GPU) 

specified earlier. This step ensures that all subsequent computations involving the model will be 

performed on the chosen hardware. For these experiments all the codes were run on Google Colab 

instances. Most of the training and prototyping was completed using the free T4 GPU instance. 

However, the final training was done on a Colab Pro with A100 GPU. 

Two loss functions are defined for training: Mean Squared Error (MSE) and L1 Loss. These loss functions 

are fundamental in training regression models, as they quantify the difference between predicted 

outputs and actual target readings. MSE emphasizes larger errors by taking squared differences, while 

L1 loss treats all errors uniformly by considering absolute differences. 

The optimizer is RMSprop optimizer, which is set up to manage the model's parameter updates during 

training. It employs a small learning rate of 0.0001, which controls the step size in the optimization 

process. The training loop iterates for a predefined number of epochs (200 epochs in this instance). 

Within each epoch, the code processes the training data in batches) 

 

 

4.5 Loss functions  
 

For the model where we have two inputs, satellite images (x1) and image date (x2), and one output, 

y, we defined a custom loss function. We define the loss function mathematically as follows: 

Let 𝑦pred be the predicted output the model, which is a function of the x1 and x2  

i.e. 𝑦pred = 𝑓(𝑥1, 𝑥2) 

Where: 

• N is the total number of training samples. 

• 𝑦pred,i is the predicted output for the i-th sample 

• 𝑦true,i is the predicted output for the i-th sample 

The loss function can be defined as the error between the predicted and true outputs. A common 

choice is to use Mean Squared Error (MSE), which is the squared difference between 𝑦𝑡𝑟𝑢𝑒 and 𝑦pred 

averaged over the dataset. 
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Loss (MSE) =
1

𝑁
∑(𝑦true,𝑖 − 𝑦pred,𝑖)

2
𝑁

𝑖=1

 

Mean Absolute Error loss function measures the average of the absolute differences between the 

predicted and true values. 

Loss (MAE) or L1 =
1

𝑁
∑|𝑦true,𝑖 − 𝑦pred,𝑖|

𝑁

𝑖=1

 

We use a combined loss that balances the contributions of both MSE and L1 losses for both outputs. 

Here, α and β are hyperparameters that control the weight of each loss term in the combined loss.  

 

Combined Loss = α ⋅ MSE Loss(𝑌true, 𝑌pred) + β ⋅ L1 Loss(𝑌true, 𝑌pred) 

 

We gave both α and β the value of 1 to provide equal weighting in terms of loss back propagation. 

 

4.6 Evaluation of results 
 

Regression model evaluation metrics provide insight into how effectively a regression model predicts 

continuous values (numeric values) in comparison to the actual target values. Some standard metrics 

for regression model evaluation are:  

1. Mean Squared Error (MSE): MSE calculates the average squared deviations between 

anticipated and observed values. It is determined as follows: 

MSE =
1

𝑛
∑ (𝑦true

(𝑖)
− 𝑦pred

(𝑖)
)

2
𝑛

𝑖=1

 

2. Mean Absolute Error (MAE): The average absolute difference (MAE) between the predicted 

and actual values is measured. It is determined as follows: 

MAE =
1

𝑛
∑ |𝑦true

(𝑖)
− 𝑦pred

(𝑖)
|

𝑛

𝑖=1

 

3. R-squared (R²): R-squared measures the percentage of the target variable's variance that the 

model accounts for. A better fit is indicated by higher values, which range from 0 to 1. It is 

determined as follows: 

𝑅2 = 1 −
∑ (𝑦true

(𝑖)
− 𝑦pred

(𝑖)
)

2
𝑛
𝑖=1

∑ (𝑦true
(𝑖)

− 𝑦true̅̅ ̅̅ ̅̅ )
2

𝑛
𝑖=1

 

4. Mean Absolute Percentage Error (MAPE): The average percentage difference between 

expected and actual values is measured by MAPE. It is determined as: 

MAPE =
1

𝑛
∑ (

|𝑦true
(𝑖)

− 𝑦pred
(𝑖)

|

|𝑦true
(𝑖)

|
)

𝑛

𝑖=1

× 100% 
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Table 13- results 

Metric Custom Model ResNet Model 

Training Test Training Test 

Loss 2.6245 20.8887 8.3281      12.0502 

MSE Loss 2.3645 20.2746 8.0767      11.5781 

MAE Loss 0.2599 0.6141 0.2514      0.4721 

R² Score 0.9439 0.1499 0.8089      0.5151 

MAPE 0.0724 0.1596 0.0644      0.1197 

 

The regression model's evaluation provides important information about how well it performs on both 

the training and test datasets. These measurements give a thorough knowledge of how accurately the 

model represents the fundamental patterns and connections in the data. 

 

4.6.1 Loss 
 

Loss represents the error or discrepancy between the model's predictions and the actual target values. 

In the "Custom Model," the training loss is 2.6245, which means that, on average, the model's 

predictions during training are close to the actual values. In the test phase, the loss increases to 

20.8887, indicating that the model's performance is less accurate on unseen data. 

For the "ResNet Model," the training loss is 8.3281, while the test loss is 12.0502. These numbers 

suggest that the ResNet Model has a slightly higher loss during training but performs better on the test 

data. It can be observed in Figure 18 that the Resnet converges faster than the Custom CNN. 

 

Figure 20 - Loss curves of the two models 
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4.6.2 MSE Loss (Mean Squared Error): 
 

MSE loss measures the average of the squared differences between the predicted and actual values. 

It provides a measure of how far the predictions are from the actual values. 

In the "Custom Model," both the training and test MSE losses are higher compared to the "ResNet 

Model." This implies that the "ResNet Model" has lower squared errors, indicating better performance 

in terms of minimizing prediction errors. 

 

4.6.3 MAE Loss (Mean Absolute Error): 
 

MAE loss measures the average of the absolute differences between the predicted and actual values. 

It provides a robust measure of the average prediction error. 

The "Custom Model" has higher MAE losses for both training and test data compared to the "ResNet 

Model." This indicates that the "ResNet Model" has smaller absolute prediction errors. 

 

4.6.4 R Squared Score (Coefficient of Determination): 
 

The R² score measures the proportion of the variance in the dependent variable (target) that is 

predictable from the independent variables (model predictions). 

In the "Custom Model," the training R² score is 0.9439, suggesting that 94.39% of the variance in the 

target variable can be explained by the model. However, in the test phase, the R² score drops to 0.1499, 

indicating that only 14.99% of the variance is explained by the model on unseen data. 

For the "ResNet Model," the R² score during training is 0.8089, and it remains relatively high in the test 

phase at 0.5151. This suggests that the "ResNet Model" performs better in explaining the variance in 

the target variable in both training and testing. 

 

4.6.5 MAPE (Mean Absolute Percentage Error): 
 

MAPE measures the average percentage difference between the predicted and actual values. It 

provides insight into the relative prediction error. 

The "Custom Model" has a MAPE of 0.0724 for training and 0.1596 for the test. In contrast, the "ResNet 

Model" has a lower MAPE in both training (0.0644) and test (0.1197), indicating that it produces 

predictions that are closer to the actual values in terms of percentage error. 
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4.7 Chapter Summary 
 

In summary, the model performs well on the training dataset, exhibiting low loss values, a high R2 

score, and a low MAPE. The "ResNet Model" generally performs better than the "Custom Model" 

across these metrics. It achieves lower loss values, better R² scores, and smaller absolute and 

percentage prediction errors, suggesting its superior performance in the regression task. Given the low 

MAPE of 11% on the test set, the model can perform with a good margin error on the task of filling 

spatio-temporal gaps in NO2 gas emission estimation for various soil varieties in diverse conditions.  
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Chapter 05: Conclusions 
 

The two primary research objectives of this project was to investigate to what extent could we be able  

to identify the differences in emissions rate of nitrous oxides in various soil orders from the Sentinel 

5P data, and to what extent could we use the soil level data (along with the dates) with their 

corresponding images from the Sentinel-2 data to build and test a deep learning model that is capable 

of predicting emissions rates. The first research objective was answered in detail in the Chapter 3 of 

the thesis. The second research objective was answered in detail in the Chapter 4 of this thesis. 

To achieve this, we developed a data extraction tool using the Google Earth Engine API’s to download 

data locally. Then we determined locations for the survey. We utilized the nitrous oxide readings data 

into various statistical techniques and analysis, visualized the dataset to gain additional insights. We 

then utilized the RGB images and created a pipeline for data ingress and egress for deep learning tasks.  

Predicting the presence of nitrous gas in plain view RGB images using satellite imagery is difficult 

because the images do not have enough variation to estimate the amount of gas in a particular image. 

However, we managed to get predictions within accurate to within 12% of the actual value (as tested 

on our test dataset). This shows that the model captures nuances in pictures that is not visible to 

humans.  

 

5.1 Implications 
 

The first assessment of the utilisation of satellite imaging and image date for the purpose of 

recognising nitrous oxide gas has been aided by this research on a soil level. The findings show the 

viability of predicting the presence of nitrous gases, a task that was previously not possible with 

satellite imagery but could have significant effects if improved to address some of the practical 

difficulties of using remote sensing data to monitor air quality projects. This project's first objective 

was to determine whether and how fluctuations in nitrous oxide gas emissions on a soil level would 

be possible. The study's finding that soil type plays a significant effect in emissions was significant. 

This dissertation's secondary goal was to assess whether high-resolution satellite imagery and the 

image's related date were appropriate for calculating emissions via a deep learning neural network. 

We found out that our model’s predictions were within 12% of the actual value. This would help in a 

variety of ways such as building predictive models and ecosystems. 

The prevalence of these 2 research artifacts would help with planning, monitoring, and managing 

agricultural resources as well as educating decision-makers on crucial environmental issues including 

programmes to mitigate climate change will benefit from the knowledge from this study. 

 

5.2 Future Work and Limitations 
 

There are numerous potential directions for further work addressing some limitations in our research. 

First and foremost, improving data diversity and quality should be the next goal. The dataset's capacity 

for generalisation can be increased by adding more high-quality samples. Additionally, if there are data 
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imbalances, determining their causes and putting data balancing procedures into practise may improve 

performance. In this case we don’t have data imbalances (for the context that is regression), but it is 

possible that in future when authors collect data it is likely that the collected data may contain 

imbalances during the collection process. 

Second, significant consideration must be given to model complexity and hyperparameter adjustment. 

It is important to assess the model's architecture and complexity to make sure it is appropriate for the 

task at hand. To avoid overfitting, advanced regularisation techniques can be used, and 

hyperparameters should be consistently adjusted to improve model performance.  

Third, using transfer learning is a worthwhile direction to pursue. For the objective, pre-trained models 

or characteristics from models trained on larger and more varied datasets can be adjusted and fine-

tuned. This could speed up model training and possibly produce better outcomes. There are numerous 

potential directions for further work.  

Finally, the satellite photos are resized to 200 x 200 pixels, but the images themselves are gaining 

access to higher-compute power resources might greatly improve the model's ability to grasp 

subtleties and features in the data. The limits of the current model can be solved, and its performance 

on the test dataset can be enhanced, by pursuing these new lines of inquiry. 
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Code and Data 
 

Code1: 

AgNES-Network/SentinelRegression_CNN.ipynb at main · Ayoob7/AgNES-Network (github.com) 

Code2:  

AgNES-Network/SentinelRegression_ResNet.ipynb at main · Ayoob7/AgNES-Network (github.com) 

Data1: 

https://drive.google.com/drive/folders/1cd9Y3c4Y8Quto0_efS_M88iKgy6FoSdE?usp=sharing 

Data Extraction Tool.5P: 

AgNES-Network/Sentinel5P_DataExtraction.ipynb at main · Ayoob7/AgNES-Network (github.com) 

Data Extraction Tool.2: 

AgNES-Network/Sentinel2_DataExtraction.ipynb at main · Ayoob7/AgNES-Network (github.com) 

 

 

 

 

  

https://github.com/Ayoob7/AgNES-Network/blob/main/SentinelRegression_CNN.ipynb
https://github.com/Ayoob7/AgNES-Network/blob/main/SentinelRegression_ResNet.ipynb
https://drive.google.com/drive/folders/1cd9Y3c4Y8Quto0_efS_M88iKgy6FoSdE?usp=sharing
https://github.com/Ayoob7/AgNES-Network/blob/main/Sentinel5P_DataExtraction.ipynb
https://github.com/Ayoob7/AgNES-Network/blob/main/Sentinel2_DataExtraction.ipynb
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Appendix 

 

Figure 21 - Appendix A 
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Figure 22 - Appendix B 
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