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Abstract

Land use activities such as agriculture and forestry have a significant impact on greenhouse gas
emissions, but these impacts are often underestimated. This is because agriculture and forestry sectors
cover a large land area, making on-ground surveys difficult to scale, expensive, and time-consuming.
While there have been localized examinations of urban and industrial domains, it remains unclear how
agriculture and forestry sectors would fare in a global examination using modern tools such as
hyperspectral cameras.

Hyperspectral cameras can substantially bridge the gap between uncertainties in observations and
offer little room for disparities in measured readings between countries, resulting in an unbiased
survey. However, there are spatial (resolution) and temporal (date availability for long dates) gaps in
hyperspectral satellite data. These gaps can be filled using machine learning algorithms.

The algorithm utilised paired data from the Sentinel 2 (RGB) images and the corresponding nitrous
oxide reading from the Sentinel 5P satellite to obtain seasonal reading levels in 24 different locations
spanning 8 different soil varieties. The data was analysed to obtain valuable insights on the variances
between readings for a range of time between September 2018 to August 2022 (4 years). This data
can be used to develop more effective policies to reduce emissions and mitigate climate change.

A Spatio Temporal Neural network was created that can ingress an RGB image and its associated date
and obtain the associated nitrous oxide reading accurate within 12% (Mean Absolute Percentage Error)
of the actual value. This model can be utilized as a prototype to fill in gaps in existing hyperspectral
images with reasonable compromise in accuracy.
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Chapter 01: Introduction

Preamble

”Man did not weave the web of life, he is merely a strand in it. Whatever he does to the web, he
does to himself”

- Excerpts from a letter written by the Seattle Chief (accurately known as Seathl) to the President of
Washington, 1855.

Humans have been existing on this planet for a small proportion of its existence. While we humans
have a great flair for curiosity and unmatched problem-solving skills, we also possess a great capacity
for ruin and destruction. During the past two centuries our efforts to achieve supremacy over each
other politically, economically or militarily have set the wheels in motion towards a future that
humankind would find neither pleasant nor conducive to conduct our life in the only home that we
currently know of, Earth.

The excerpt above was part of a letter written by the Seattle Chief leader to the President of
Washington, Pierce, in 1855. It was in response to Pierce’s offer to buy the lands in Seattle. The Seattle
Chief passionately describes the symbiotic relationship humans have had and should continue to have
with nature.

1.1 Greenhouse Gases

In the sight of discussing about greenhouse gases, it is apt to have an explanation about atmospheres.
The atmosphere can be defined as a gravitationally confined pool of elements that are volatile enough
to exist in its gaseous state, above a celestial object at local temperatures (Pepin, 2006). Most celestial
objects have atmospheres. As previously believed it is not just planetary bodies and stars (Pepin, 2006)
that contain an atmosphere. Modern astronomy divulges that even extreme objects in the universe
such as neutron stars (Ho and Heinke, 2009) and black holes (Jacobson and Nguyen, 2021) contain an
atmosphere. Earth too contains an atmosphere that comprises of mainly Nitrogen (N;), and Oxygen
(02). Both of which compose nearly 99% of the Earth atmosphere.

Earth’s atmosphere also consists of certain gases (less in proportions than N, and O,), some of which
can be considered greenhouse gases. Instances of such gases are carbon dioxide (CO,), methane (CH4),
nitrogen dioxide (NO,), ozone and sulphur dioxide (SO,). These gases are both naturally occurring and
can be emitted due to anthropogenic (synthetic) activities. Apart from these, there are Fluorinated
gases such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6) and
nitrogen trifluoride (NF3) which are emitted almost entirely due to anthropogenic activities such as air
conditioning and refrigerating (Sovacool et al., 2021). Nitrogen and Oxygen, the most abundant gases
in the atmosphere, are in fact small contributing factors to the greenhouse effect. N, and O, are
however more potent as greenhouse gases in dry atmospheric conditions such as over the Antarctic
continent, realistically though in non-ideal situations we can assume that N, and O, have only a fraction
of the potency as other greenhouse gases. (Hopfner et al., 2012). For practical purposes, the most
concerning gases are methane and nitrous oxide. It is estimated that they have nearly 25 times and



300 times the potency (as greenhouse gases) greater than carbon dioxide over 100 years (“AR4 Climate
Change 2007,” 2022).

A closely related artefact is Atmospheric Aerosols. Atmospheric Aerosols are fine particulate matter in
the atmosphere emitted due to anthropogenic activities. Such gases and aerosols, if emitted in
increasing proportions contribute disproportionately (to their compositions in the atmosphere) to the
greenhouse effect and henceforth global warming (Sovacool et al.,, 2021) (Charlson et al., 1992)
(Ramanathan et al., 2001).

1.2 Global warming and its adverse anthropocentric effects

Global warming is a causal event that arises due to greenhouse gas emissions. This is possible due to
the greenhouse effect. The greenhouse effect is the phenomenon that recirculates longwave radiation
within the atmosphere. The greenhouse effect as opposed to popular belief is a natural effect that
helps to foster life. If the greenhouse effect were not to naturally occur, life on Earth would be difficult
to imagine. (Mitchell, 1989). Global warming which arises due to the exacerbated effects of the
greenhouse effect (due to increased emissions by anthropogenic activities) causes a plethora of
adverse effects that leave, and will continue to leave, humanity reeling in its aftermath.

Global warming has positive correlations with several clinical impediments. Cancer has some of the
highest fatality rates in most developed countries. Overall cancer is the cause for 26 % of the deaths
globally. Cancer is particularly lethal in low-income countries, causing more than 50% of the deaths in
such countries (Dagenais et al., 2020). A recent study shows that climate change, exacerbates the
effects and symptoms of cancer, increases the likelihood of developing cancer and even disrupts the
treatments to cancer patients. Further, the authors of the study point out various health benefits that
would manifest as a result of mitigation of climate change (Nogueira et al., 2020).

Cardiovascular diseases are another impediment exacerbated by climate change, they manifest a
variety of symptoms that affect people of all ages, genders, and occupations. According to a study
done in America from 1999 to 2018, it has been estimated that one person dies of a cardiovascular
disease, every 36 seconds (“Underlying Cause of Death, 1999-2020 Request,” 2022). Furthermore, it
has been estimated that 1of 4 deaths in the US is cardiovascular disease related (“Heart Disease and
Stroke Statistics—2021 Update | Circulation,” 2022). Studies have been conducted globally on the
influence of climate change and rising air temperatures on people's health, particularly those with
heart disease. Some of these researches found a direct and positive correlation of rising air
temperature on cardiovascular health issues (Tsaloglidou et al., 2018), while others found this effect
to be minor (Kakaei et al., 2021). Studies conducted in the middle east among blue-collar workers
depict that high temperatures are in fact a strong contributing factor inducing cardiac arrests (Pradhan
et al., 2019).

Data from the National Health Interview Survey (NHIS) conducted by the National Center for Health
Statistics (NCHS) depicts that in 2019 more than 19% of US citizens consulted mental health
professionals for treatments. 15% had taken prescribed medication for mental health anomalies. A
comprehensive report by the United States Climate and Health Alliance on the psychological impacts
of climate change outlines several psychological pressure-points due to climate change and an increase
in natural disasters. Among them are trauma, shock, stress, anxiety, depression, grief, severe reactions
(such as PTSD), and strains on social relationships. These pressure points further devolve into
substance abuse, chronic depression, mental health emergencies, helplessness, resignation, loss of
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personal identity and so on. Such individual traits often manifest as negative elements communally,
leading to a lack of social cohesion, violence, and aggression (“Beyond Storms & Droughts,” 2022).
Other studies have noted proportional increments in domestic violence and assaults with increasing
temperatures (Raj, 2022), and serious mental impairments that may even lead to a suicide epidemic
(Berry et al., 2010).

To make matters bleak, the above was just an anthropocentric recollection of adverse effects. There
are further meteorological effects such as the El Nino, La Nina, urban smog pollution (Xie et al., 2019);
further ecological effects such as destruction of biota, marine pollution, such are the chain effects of
climate change. In an almost clairvoyant fashion, the words of the Seattle Chief can be reiterated. Man
is merely a strand in the web of life, indeed whatever he does to the web, he does to himself.

1.3 Sources and sinks of greenhouse gas emissions

Several anthropogenic activities contribute to greenhouse gas emissions. The Fifth Assessment Report
(AR5) submitted by the Intergovernmental Panel on Climate Change (IPCC) in 2014, broadly categorises
the sources of greenhouse gas emissions into classes such as Energy Systems, Transport, Buildings,
Industry, Agriculture, Forestry and Other Land Use (AFOLU) and Human Settlements, Infrastructure,
and Spatial Planning. Globally, the most concerning classes are Energy systems (electricity and heat
production) (25%), transport (14%), buildings (6.4%) and agriculture, forestry and other land use
(24%). (“AR5 Climate Change 2014,” 2022)

An important concept, when discussing the sources of greenhouse gas are, sinks of greenhouse gases.
Sinks are opposite to sources. Sources emit gases, while sinks absorb the greenhouse gases. Better
management of resources with sound principles can even change the sources into sinks, for instance
in the United States, since 1990, the agriculture sector has been acting as a sink rather than a source
(Domke et al., 2020).

1.4 Research Problem

This research work aims to undertake an examination of literature on historical time-lapse of the most
concerning greenhouse gas, nitrous oxide (“AR4 Climate Change 2007,” 2022, p. 4) in the agricultural
and forestry sectors. After which, a comparative analysis of a variety of soil varieties and agricultural
practices would be considered and compared. An analysis of seasonal variations in emissions based
on localized agricultural and forestry practices would be conducted. A comparison between the
emission rates before COVID-19 lockdowns and during COVID-19 lockdowns would also be carried out.
Work demonstrated by (Goldberg et al., 2020) showed significant differences in emissions in big cities.
We would however be investigating the emissions in agriculture and forestry industries. The particular
emphasis on agriculture and forestry is due to the following reasons:

1) impacts of land use (agriculture, forestry) are in fact underestimated (Mahowald et al., 2017)
2) agriculture and forestry sectors cover a large land area which makes any on ground surveys
difficult to scale; on-ground surveys are also additionally expensive and time consuming; while
there have been localized examinations of urban and industrial domains (Zheng et al., 2019) it
remains unclear how agriculture and forestry sectors would fare in an examination using



modern tools (such as hyperspectral cameras) specialized to detect greenhouse gases in the
atmosphere (Rolnick et al., 2019) in a global level

3) Remote sensing hyperspectral cameras substantially bridge the gap between uncertainties in
observations and offer little room for disparities in measured readings between countries,
resulting in an unbiased survey (Weiss et al., 2020). The “weekend effect” (Beirle et al., 2003)
of trace gases in the domain of agriculture and forestry will also have to be investigated it
remains unclear how the emissions reading would fare on a weekly basis.

The main purpose of this examination is to determine high priority locations (in assorted soil varieties)
both spatially and temporally in agriculture and forestry domains that emit greenhouse gases using
hyperspectral cameras. Our contribution consists of the following: (1) a dataset, on emissions of
assorted soil varieties to conduct further research on remotely sensed images — and (2) an analysis of
the dataset to determine GHG emissions on the domains of agriculture and forestry to quantify the
observed data. As there has been increasing literature on utilizing deep learning algorithms for earth
observation and remote sensing (Cheng et al., 2020), there is strong indication that the above dataset
would be useful for researchers to conduct further study in the future (Persello et al., 2021).

Reduction of nitrous oxide emissions is a key element in mitigating the effects of global warming. Over
70% of nitrous oxide emissions come from agriculture and forestry (Ritchie et al., 2020). Insights from
this examination would be a paramount benefit for many stakeholders and be an effort to minimize
effects of climate change.

This examination also fills an important gap (Oertel et al., 2016) of determining emission rates on
various soil varieties using a standardised tool and puts forward a methodical examination of nitrous
oxide emissions from agriculture and forestry as an industry through the lens of an edaphic acumen.

1.5 Research Gap

Based on the above problem statement, the research gap can be elicited as follows. There is spatial
(resolution) and temporal (date availability for long dates) gaps in hyperspectral satellite data, and such
gaps can be filled using machine learning algorithms (Rolnick et al., 2022). We choose the domains of
agriculture and forestry due to the 3 reasons mentioned in the problem statement.

Rather than stochastically determining locations to download images (to fill the gaps using machine
learning algorithms) we decided to conduct an edaphic (pertaining to soil) examination and diversify
our data collection methodology to cover several soil varieties. In addition to collecting data, this would
also enable us to examine and set a cursory baseline for emission of various soil varieties due to various
assorted agriculture and forestry practices. Such an examination additionally fills a gap of determining
emission rates on various soil varieties using a standardised tool (Oertel et al., 2016).

1.6 European Space Agency (ESA) Copernicus Sentinel 2 and 5P

Several satellites have been launched to observe the Earth. Such satellites are called Earth observation
satellites. Two main satellite families that observe the Earth using hyperspectral cameras are the
LandSat 8 (“Landsat 8 | Landsat Science,” 2021) and 9 (“Landsat 9 Spectral Specifications | Landsat
Science,” 2021), and Sentinel 2 and 5P. Sentinel 5P is the first Copernicus mission to be solely
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dedicated to monitoring atmospheric composition of greenhouse gases. The Tropospheric Monitoring
(TROPOMI) instrument onboard can estimate geolocated columns of various greenhouse gases
including methane and nitrous oxide (“Products and Algorithms - Sentinel-5P Technical Guide - Sentinel
Online - Sentinel Online,” 2022). This makes this ideal for monitoring and tracking such greenhouse
gases. The only drawback of using the Sentinel-5P data would be the comparably small magnitude of
data available. The satellite was launched in October 2017 and has open data available to use from
10th July 2018.

1.7 Research Goal

This study's major goal is to use remote sensing to first identify and understand soil level variations in
agriculture and forestry in the available timeframes of data (2018—-2022). This would then be utilized
in the next phase of the research, which utilizes the data to predict nitrous oxide emissions for a given
high-res image thereby providing a viability assessment for filling the gaps in hyperspectral data. The
exact goals and research objectives that go along with them are as follows:

Objective 1: To identify the differences in emissions rate of nitrous oxide in various soil levels from the
Sentinel 5P data.

a. What are the differences in emissions of nitrous oxide in various soil levels?

b. How would they fare across 4 years of data?

Objective 2: To use the soil level data (along with the dates) with their corresponding images from the
Sentinel-2 data to build and test a deep learning model.

a. Will deep learning model will be able to discern variances in the images to be able to
predict the nitrous oxide emission rates for the area in the image?

b. How will they evaluate on intrinsic evaluation metrics?

1.8 Contributions

The first in-depth examination of monitoring nitrous oxide emissions and utilising machine learning
and high-resolution satellite data to estimate the gas was made possible by this self-proposed study.
In conclusion, the project's contributions included the following:

e An in-depth analysis of Nitrous oxide emissions data in and around agricultural and forestry
areas (24 locations were surveyed) and the dataset for the analysis obtained. These locations
spanned across the globe in an unbiased distribution of locations between the global north
and the global south. A through data analysis will be conducted from the year 2018 to 2022
on various soil varieties.

e Utilizing the nitrous oxide emission dataset in conjunction with high-resolution satellite image
data to obtain a fairly accurate machine learning model that is able to fill spatio-temporal gaps
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at a workable accuracy or obtain the viability of utilizing a machine learning algorithm to test
whether the aforementioned research gap mentioned (Rolnick et al., 2022) is viable in
practise.

1.9 Project Scope

The project scope of this research would encompass the following aspects:

1.

Data Collection: Acquire hyperspectral satellite imagery covering agricultural and forestry
regions across a range of geographical locations and time periods.

Data Preprocessing: Process and prepare the hyperspectral imagery to ensure its quality and
suitability for analysis.

Data Analysis: Analyse the collected data, see potential trends, based on seasons and soil
varieties.

Machine Learning Model Development: Develop and train machine learning models capable
of estimating greenhouse gas emissions from hyperspectral imagery. This involves developing
neural networks.

Model Validation: Evaluate the performance of the developed machine learning models using
ground-truth data or other reliable sources. This will assess the accuracy and reliability of the
models in predicting greenhouse gas emissions.

Things which are out of scope for this project would be:

1.

Spatial and Temporal Gap Filling: Utilize the trained machine learning models to fill in the
spatial and temporal gaps present in hyperspectral satellite data. This will provide a more
comprehensive and continuous representation of greenhouse gas emissions. This requires
specialised access to data and high computing resources.

Policy Recommendations: Based on the findings, develop recommendations for policymakers
on how to effectively reduce greenhouse gas emissions from agriculture and forestry sectors.

1.10 Thesis Structure

This thesis aims to investigate the evolution of air quality measurements using Sentinel 5P satellite
data. Chapter 1 provides a general overview of the study, including the motivation, research questions,
significance, and organization. Chapter 2 reviews previous research on the topic, discussing different
Sentinel 5P data products, processing methods, and key findings. Chapter 3 describes the data
collection and analysis process, examining trends in air quality from 2018 to 2022, analysing factors
affecting air quality changes, and discussing implications for air quality management. Chapter 4
focuses on machine learning, describing the model architecture and evaluation, including the model
type, training methods, and test set evaluation. Finally, Chapter 5 summarizes the key findings and
provides recommendations for future research.
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Chapter 02: Literature Review
2.1 Overview

In Chapter 2, we look into the body of prior research on measurements of air quality made using
information from the Sentinel 5P satellite. We will also look at some remote sensing studies. This
chapter outlines the prevalent studies, methodology, and important discoveries in this area and serves
as a crucial starting point for understanding the context in which our research is placed.

2.2 Remote sensing

Remote sensing is the capacity to record measurements of an unknown parameter from a distance.
Described below is how remote sensing is relevant to our research and the types of cameras utilized.

2.2.1 Remote Sensing Primer

The capacity to discover details about a substance from a distance is known as remote sensing. This is
accomplished by measuring the amount of light reflected from the planet using distant sensors, most
frequently land observation satellites or aircraft. More specifically, distant satellite sensors assess the
reflectance of electromagnetic (EM) radiation for a given place on earth, in addition to just detecting
light.

We can roughly categorise remote sensing cameras into 2. 1) Optical cameras and 2) Synthetic
Aperture cameras. Optical cameras read a specific portion of the electromagnetic spectrum for a given
time and space. They are passive sensors. In other words, they gauge the environment's or the target's
natural radiation or emission. Synthetic Aperture sensors sends radiofrequency (RF) radiation pulses
in the direction of a target region. The Earth's surface is in contact with these radar frequencies.
Depending on whether the characteristics are connected to land, water, or human activity, some of
the signals are reflected to the instrument in patterns that convey extensive information about size,
direction, composition, condition, and texture of the features encountered. In other words, active
sensors produce energy and then analyse the signal that is reflected or dispersed.

Optical sensors are non-invasive means of measuring and Synthetics Aperture sensors are invasive
means of measuring a parameter of a target.

2.2.2 Hyperspectral Remote Sensing

A sophisticated method called hyperspectral remote sensing employs specialised sensors to collect a
wide variety of contiguous spectral bands from the electromagnetic spectrum. With the use of this
cutting-edge technology, materials may be precisely identified based on their distinctive spectral
characteristics. Hyperspectral remote sensing has a wide range of uses in forestry and agriculture,
improving practises and resource management. This includes its function in crop classification, early
pest and disease detection, crop water stress identification, accurate mapping of soil nutrient content,
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and the facilitation of well-informed crop management decisions, such as optimising irrigation,
fertilisation, and pesticide application.

Hyperspectral remote sensing has proved essential in the forestry industry for activities like full forest
inventories, which require mapping different tree species, calculating biomass, and keeping track of
the condition of the entire forest. It is also an essential tool for tracking trends in deforestation, seeing
wildfires early on, identifying invasive species that harm ecosystems, and reliably differentiating
between various tree species in forests.

Hyperspectral remote sensing is a key instrument for gathering crucial data on agriculture and forestry
resources because of its adaptability and efficiency. Its increased use propels developments in both
disciplines and aids in the development of more effective and sustainable resource management
techniques.

2.3 Significance of measuring Nitrous oxides in agriculture

Monitoring nitrous oxide (NO2) emissions in agriculture and forestry holds significant environmental
importance due to the potent greenhouse gas properties of NO2, which has a global warming potential
(GWP) approximately 300 times that of carbon dioxide (CO2) over a 100-year timeframe. Agriculture
stands as the largest anthropogenic contributor to NO2 emissions, accounting for around 4.1
teragrams of nitrogen per year, or roughly 60% of all anthropogenic NO2 emissions. Given the
substantial impact of NO2 on climate change, effective monitoring and mitigation strategies are
imperative (Audet et al., 2020).

One crucial facet of monitoring NO2 emissions lies in its potential to identify regions where emissions
are notably high, thereby allowing for the precise targeting of mitigation efforts. By pinpointing these
areas, strategies can be tailored to reduce emissions through improved fertilizer management,
reduced tillage practices, and the implementation of cover crops. This proactive approach is vital for
curbing the environmental impact of NO2 and mitigating its contribution to climate change.

Furthermore, as described in Section 1.6 (Research Gap) there is an existing need for soil level analysis
of data as well. Furthermore, the monitoring of NO2 emissions serves as an essential tool for assessing
the effectiveness of mitigation measures over time. By tracking changes in emissions following the
implementation of specific strategies, researchers and policymakers can gauge the success of these
initiatives and make necessary adjustments to optimize their impact.

2.4 Convolutional Neural Networks (CNNs) in Remote Sensing

Convolutional Neural Networks (CNNs) are a powerful subset of deep learning models that are
frequently used in tasks involving image processing and categorization. These networks are modelled
after the complex operations of the human visual brain, which enables them to autonomously
recognise and extract relevant characteristics from images, according to the task at hand.

Convolutional layers, which serve as the foundation of CNN performance, are located at their core.
These layers are critical in extracting characteristics from photos. A convolutional layer is made up of
a series of filters, which are effectively tiny matrices that are applied progressively to the input picture.
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These filters move through the picture like sliding windows. This operation produces a feature map,
which is an image representation that emphasises the characteristics judged relevant by the filter.

Furthermore, pooling layers are incorporated into the CNN architecture to minimise the size of the
feature maps. This deliberate reduction serves several reasons, including reducing network computing
complexity and preventing overfitting. Among the numerous pooling approaches, max pooling is the
most prevalent. It works by choosing the largest value from the feature map's defined subregions and
progressively compressing its size.

The fully connected layer in a CNN is like the layers in classic neural networks. This layer acts as a link
between the convolutional layers' retrieved features and the network's output layer. The output layer's
final task is to classify the input image into one of the specified classes.

2.5 Previous Work

Several attempts have been made to use machine learning to find deforestation in low- or medium-
resolution satellite data in recent years. These studies have fundamentally altered how we identify
significant alterations in forests, such as the detection of widespread deforestation in the Amazon
Rainforest or the quantitative measurement of primary forest loss. Despite this, there is little research
on machine learning with high-resolution satellite imagery and its associated date to predict it’s
associated greenhouse gas emission rate. Additionally, as far as we can tell from our study, no work
has been done expressly for the task of predicting the emission value of a gas using an associated
satellite image and the image date. In this section, we go over the earlier research that was done in
agricultural emissions. Our goal is to assess the benefits and drawbacks of earlier studies to guide the
methods and data that will be used later in this report.
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The table summarises many research studies on greenhouse gas emissions, with an emphasis on
carbon dioxide (CO2) and methane (CH4), as well as the influence of land use changes and agricultural
practises. Each research study provides distinct insights into the dynamics of greenhouse gas emissions
and their interactions with diverse environmental conditions.

One of the research projects that stands out looks at the temporal and regional variability of CO2 flux
and XCO2 concentrations. It was carried out in Brazil in 2022 (Rossi et al., 2022). While XCO2 is found
to have a negative association with rainfall, CO2 flow is found to have a positive correlation. In addition,
the study points out that areas that were once forested now support higher CO2 emissions. The effects
of climate change are, however, tempered in areas with continuous forest cover since these areas
serve as carbon sinks. The three-year duration of this study demonstrates how long-term it is.

A study conducted in Jiangsu, China (“Estimation of methane emissions based on crop yield and
remote sensing data in a paddy field - Shi - 2020 - Greenhouse Gases: Science and Technology - Wiley
Online Library,” n.d.) in 2020 found that CH4 emissions from paddy fields are positively correlated
with rice yield and biomass. This suggests that biomass plays a role in CH4 generation. The study also
found that remote sensing can be used to estimate CH4 emissions from paddy fields, and that this
method could be used to quantify regional greenhouse gas emissions. The study spanned one year.

A study conducted in New Zealand (Ausseil et al., 2011) in 2011 also explored the feasibility of
estimating greenhouse gas emissions from satellites. The study found that it is possible to estimate
emissions from satellites, but more research is needed to improve the accuracy of these estimates.
The study spanned two years.

China's Sanjiang Plain research study (Zhang et al., 2011) from 2011 models methane emissions from
rice fields. The findings raise concerns about the changes in CH4 emissions and show that this region
is responsible for sizable emissions. There is no time frame for the investigation.

The 2009 Chinese study (Qiu et al., 2009) assesses the effects of carbon sequestration on the net
emissions of greenhouse gases from agricultural soils. It emphasises the intricate connection between
carbon sequestration rates, NO2 emissions, and CH4 emissions while concentrating on distinct
agroecosystems. According to the research, various management strategies may boost carbon
sequestration rates but may also raise N20 or CH4 emissions. The study advises reducing the use of
synthetic fertiliser as a potential fix. There is no mention of the study's duration.

In 2012, a research (Adami et al., 2012) in Brazil evaluated how the increase of the sugarcane crop
affected land use. It highlights how crucial these adjustments are for reducing greenhouse gas
emissions and bringing about local climate cooling. The South-Central region of Brazil, a significant
sugarcane growing zone, is the subject of the study. The study's duration is not made clear.

In a different East Asian study from 2012, (Guo et al., 2013) researchers look at the connections
between land cover and greenhouse gas concentrations using remote sensing data. Scrublands and
grasslands are classified as CH4 sinks, whereas forests and agricultural lands are CH4 sources.

Finally, a 2007 report (Johnson et al., 2007) examines ways that agriculture might reduce greenhouse
gas emissions. To lower methane (CH4) and nitrous oxide (N20) emissions from agriculture, it
recommends conservation practises, effective nitrogen management, changes in animal nutrition, and
manure management. There is no information about the study's duration.

Other than the above recent studies from France and Turkey focused extensively on nitrous oxide
emissions via the Sentinel 5P satellite imagery. The Turkish studies depicted a significant correlation
between urban population density and triphosphoric column density of NO, values (Kaplan et al.,
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2019). The French study (Omrani et al., 2020) concluded with a seasonal variation of NO, values.
During the winter and fall seasons (ie: cold seasons) a greater density of pollutants was observed.

In conclusion, the table displays a variety of research from different geographical areas, each of which
offers insightful information about the dynamics of greenhouse gas emissions and their implications
for mitigating climate change. The influence of land use changes, the contribution of biomass to CH4
emissions, and the possibility of remote sensing for emissions assessment are only a few of the issues
covered in these works. These studies range in length, with some lasting several years to identify long-
term trends and relationships.
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2.5.2 Literature Review of hyperspectral remote sensing papers

Table 2 - related papers to hyperspectral image processing
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Hyperspectral Super-Resolution with Spectral Unmixing Constraints and A New Super Resolution
Framework Based on Multi-Task Learning for Remote Sensing Images both propose new methods for
super-resolving hyperspectral images. However, the first method uses spectral unmixing constraints,
while the second method uses multi-task learning. Both methods are shown to outperform other
super-resolution methods on their respective datasets.

Detection of Methane Plumes Using Airborne Midwave Infrared (3—5 um) Hyperspectral Data and New
Divergence Method to Quantify Methane Emissions Using Observations of Sentinel-5P TROPOM I both
focus on the detection and quantification of methane emissions using hyperspectral data. However,
the first study uses airborne data, while the second study uses satellite data. Both studies show that
hyperspectral data can be used to detect and quantify methane emissions, but the second study shows
that satellite data is more effective than airborne data for this purpose.

N/ASIPSA-Net: Shift-Invariant Pan Sharpening with Moving Object Alignment for Satellite Imagery and
Weakly-supervised Semantic Segmentation in Cityscape via Hyperspectral Image both propose new
methods for processing hyperspectral data for specific applications. The first method proposes a new
pan sharpening method for satellite imagery that can handle moving objects. The second method
proposes a new method for weakly-supervised semantic segmentation of cityscapes. Both methods
are shown to achieve good results on their respective datasets.

First data set of H20/HDO columns from the Tropospheric Monitoring Instrument (TROPOMI) and
Variability of nitrogen oxide emission fluxes and lifetimes estimated from Sentinel-5P TROPOMI
observations both present new findings from the Sentinel-5P TROPOMI instrument. The first study
presents the first data set of H20/HDO columns from TROPOMI. The second study presents a study on
the variability of nitrogen oxide emission fluxes and lifetimes estimated from TROPOMI observations.
Both studies provide new insights into the capabilities of the TROPOMI instrument and the potential
of hyperspectral data for remote sensing applications.
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Satellite observations of atmospheric methane and their value for quantifying methane emissions
(2016)

The most recent methods for measuring methane emissions using satellite data are reviewed in this
publication. It addresses the benefits and drawbacks of various satellite platforms and data products
and emphasises the need for additional study to create more precise and dependable methane
guantification techniques.

The added value of satellite observations of methane for understanding the contemporary methane
budget (2021)

The utility of satellite data in comparison to data gathered by ground-based monitoring stations is
evaluated in this research. It demonstrates that satellite data can offer ground-based data more
thorough spatial coverage and higher temporal precision, which is crucial for comprehending the
global methane budget.

Satellite-derived methane hotspot emission estimates using a fast data-driven method (2016)

The innovative data-driven approach for calculating methane hotspot emission estimates using
satellite data is presented in this research. The approach is based on a linear regression model that
was trained using data on known-source methane emissions. The technique has been demonstrated
to be precise and effective, and it has the potential to be used to track methane emissions from a
number of industries, including landfills, agriculture, and oil and gas extraction.

Automated ldentification of Qil Field Features using CNNs (2020)

In this study, convolutional neural networks (CNNs) are used to introduce a novel technique for
recognising characteristics in oil fields. A deep learning model called a CNN is ideally suited for image
identification applications. It is demonstrated that the suggested strategy is effective and precise at
locating oil field objects in Landsat pictures.

Spatio-temporal data on the air pollutant nitrogen dioxide derived from Sentinel satellite for France
(2020)

The Sentinel-5P satellite obtained a brand-new spatio-temporal dataset of nitrogen dioxide (NO2) for
France, which is presented in this study. The regional and temporal distribution of NO2 in France is
examined using the dataset. According to the findings, urban regions and the winter have the highest
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NO2 concentrations. The authors also list the key influences on NO2 column concentration as
nighttime light intensity, the ratio of secondary and tertiary industries, and vehicle ownership.

Spatial Variation of NO2 and Its Impact Factors in China: An Application of Sentinel-5P Products (2019)

In this study, the regional and temporal distribution of NO2 in China is examined using Sentinel-5P
data. The findings demonstrate that the tropospheric NO2 column concentration fluctuates monthly
and clearly exhibits the seasonal pattern of "high in winter and low in summer," with the spatial
distribution following a "high in East and low in west" trend. The authors also list the key influences on
NO2 column concentration as nighttime light intensity, the ratio of secondary and tertiary industries,
and vehicle ownership.

Ground-based validation of the Copernicus Sentinel-5p TROPOMI NO2 measurements with the NDACC
ZSL-DOAS, MAX-DOAS and Pandonia global networks (2021)

In this study, ground-based NO2 readings from the NDACC ZSL-DOAS, MAX-DOAS, and Pandonia
worldwide networks are compared to Sentinel-5P measurements. The findings demonstrate some
bias, especially at high NO2 concentrations, but overall Sentinel-5P NO2 values are compatible with
ground-based data.

Rotation Equivariant Deforestation Segmentation and Driver Classification (2021)

In this paper, a new rotation equivariant neural network for driver classification and deforestation
segmentation using satellite pictures is proposed. One kind of neural network that can learn from
rotated data is a rotation equivariant neural network. The suggested method is demonstrated to be
very precise and recall-efficient at segmenting deforestation areas and categorising the drivers of
deforestation.

FigLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time Wildland Fire Smoke Detection
(2021)

For the purpose of detecting smoke from wildfires in real time, this research suggests a new dataset
and deep learning model. Over 100,000 photos of smoke from wildland fires and other objects have
been labelled in the dataset, which goes by the name FlgLib. SmokeyNet, a deep learning model that
is trained on FlgLib, has a high level of real-time accuracy while detecting smoke from wildland fires.

GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield
Prediction (2021)

In order to use geospatial and temporal data for agricultural production prediction, a novel GNN-RNN
technique is proposed in this study. A class of neural network known as a GNN-RNN is capable of
learning from both sequential and graph-structured material. The suggested method has the potential
to be used to direct agricultural decision-making because it has been demonstrated to be accurate and
effective at predicting crop yields.

2.6 Chapter Summary

This chapter provides a thorough overview of current developments in hyperspectral remote sensing
and remote sensing, which forms the basis for our own study. We learn more about the many
approaches, datasets, and assessment criteria employed in the field by reading these papers.
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Furthermore, it provides the appropriate data sources locations that have not had any surveys and the
time periods in such locations with minimal survey and sets the groundwork for our own contributions
to this developing topic in the next chapters.

All the papers listed above use satellite data to study various environmental problems. However, they
use different satellite platforms and data products, and they focus on different applications. None focus
on any singular objectives we outlined as the research goals above or work on the research objectives
we have outlined.

24



Chapter 03: Data Collection Methodology and Analysis

3.1 Overview

The important elements of the data collection process are covered in depth in Chapter 3 of our study
project. In this chapter, we explain the techniques, resources, and equipment we used to gather the
crucial data for our study. This chapter's importance rests in demonstrating the transparency and
comprehension of the basis for our research.

To provide a complete overview of the background work needed for our investigation, Chapter 3 is
essential. It provides readers with reassurance regarding the care and rigour used in gathering the data
necessary for our investigation. The approaches and factors discussed in this chapter provide as a
springboard for the chapters that follow, where we analyse, model, and derive insights from the data.

3.2 Data Sources

Images from the Sentinel 2 and the Sentinel 5P satellites were used for our research. The RGB
composite image from the Sentinel 2 were used as inputs images and the mean value of that NO, gas
in that particular image area (obtained from the Sentinel 5P) was used as regression targets in the
model. (Explained subsequently). The images were obtained from 24 diverse soil conditions, spanning
a period of 4 years (September 2018 to September 2022)

3.3 Description of the data collection tools

Agricultural soils are a strong contributing factor in GHG emissions. They produce nitrous oxide when
nitric fertilizers are applied. The United States Department of Agriculture (USDA) classified soil types
around the world in an extensive survey (given below). The soils are classified (“Keys to Soil Taxonomy
| NRCS Soils,” n.d.) into 12 distinct categories. In addition to the 12 mentioned there are 3 more classes
(shifting sand, ice glacier, and rocky land) depicted in a Global Soil Region map below (“Global Soil
Regions Map | NRCS Soils,” n.d.). The codes for the data extraction tool from the Sentinel 5P provided
in Data Extraction Tool.5P in the Code and Data section)

The codes above are designed for processing and analyzing satellite data from the Sentinel-5P mission.
Below is a summary of its functionality.

e Library Installation and Imports: The code begins by installing the geemap library and
importing necessary modules such as tifffile, matplotlib, numpy, geemap, math, ee, and os.
These libraries are used for image processing, mathematical calculations, and interacting with
the Google Earth Engine API.

e Helper Functions: It defines helper functions for formatting dates, mosaicking daily images,
and calculating bounding boxes based on latitude and longitude.
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Main Analysis Function: A primary function get _gas value_for_location is detailed, which
retrieves greenhouse gas readings for a specified location within a given time frame. It utilizes
parameters like latitude, longitude, start and end dates, dataset, gas band, and others to
perform the analysis.

Visuals: The code includes commented-out sections for visualizing data using tifffile and
matplotlib, as well as for measuring execution time of code blocks.

Date Configuration: It automates the creation of a date range for analysis and prepares a list
of formatted dates.

Location Data and File Handling: The notebook contains lists of geographical locations with
associated soil types, commands for downloading and unpacking datasets, and integration
with Sentinel-2 data.

Data Processing Loop: A loop processes the data for each location over the specified date
range, capturing greenhouse gas values and handling exceptions.

Data Integration and Output: The code integrates data from Sentinel-2, mounts Google Drive
for storage, and writes the processed data to a CSV file. It also includes code for zipping and
downloading the dataset.

The codes for the data extraction tool from the Sentinel 2 provided in Data Extraction Tool.2 in the
Code and Data section)

The codes above are designed for processing and analyzing satellite data from the Sentinel-2 mission.
Below is a summary of its functionality.

Geospatial Library Utilization: The code employs the geemap Python library, which is a popular
tool for geospatial data analysis, particularly with the Google Earth Engine.

Authentication and Initialization: It includes a procedure for authenticating and initializing the
Earth Engine API, which is essential for accessing and processing the vast satellite imagery data
available on the platform.

Mathematical Functions for Geodesy: The notebook defines mathematical functions to
convert degrees to radians and vice versa, and to calculate the Earth’s radius at a given latitude
based on the WGS-84 ellipsoid model.

Image Processing Workflow: The core functionality of the code involves defining a bounding
box for a region of interest, masking clouds from satellite images, calculating the percentage
of black pixels (potentially indicating missing data), and retrieving images for specific locations
and time frames.

Sentinel 2image

(538 : — 011223
&

Sentinel 5P image Mean value of the gas heat map

Google Earth Engine

Figure 1 - Data flow diagram
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Our analysis entails an agricultural and forestry vantage point. We selected a minimum of 3 locations
from each soil order. Since agricultural lands and forestry consists of large land areas, we would get an
average of at readings from a swath of land area surrounding a given point.

The equations to calculate the square shaped surface area bounding box coordinates of readings to be
considered at a chosen point is described and depicted below. First and foremost, for a given latitude
and longitude, the degree coordinates would have to be converted to radians.

The following equation describes the above process. This conversion ensures that we work with
angular measurements in radians, which are commonly used in trigonometric calculations.

(latitude or longitude) in degrees y
/s

(latitude or longitude)in radians = 180

Contrary to popular belief the Earth is not a perfect sphere. WGS-84 (World Geodetic System of 1984)
considers the Earth as a spheroid or an ellipsoid of revolution. Spheroids are ellipsoids of which 2 of 3
semi-axes are equal. As such WGS-84 defines the 2 semi diameters (and by extension radius) of the
Earth as follows; the equatorial radius and the polar radius. They are given the following values.

equatorial radius of Earth(WSG84A) = 6378137.0m
polar radius of Earth(WSG84B) = 6356752.3142m

The equations to find the radius and the parallel radius at a given latitude is given below.

A = WSG84 A? x cos(latitude in radians)
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B = WSG84 B? x sin(latitude in radians)
C = WSG84 A X cos(latitude in radians)
D = WSG84 B X sin(latitudeinradians)

(A% + B?)

radius at a given latitude = €2 +D09)

parallel radius at a given latitude = radius at a given latitude X cos(latitude in radians)

The coordinates of bounding square of a given point can be calculated as below. Half-length of a side
of the square is denoted by H.

H
latitude min = latitude in radians — — _ ,
radius at a given latitude
. : : : H
latitude max = latitude in radias + - - -
radius at a given latitude
longitude mi longitude in radi i
ongitude min = longitude in radians —
g & parallel radius at a given latitude
H

longitude max = longitude in radians +
& & parallel radius at a given latitude

All these bounding square coordinates are to be converted to degrees with the following equation.

_ _ _ _ (latitude or longitude) in radians
(latitude or longitude) in degree = - %X 180

With the above coordinates we can create a bounding box for a given latitude and longitude, of length
(2H) from the centroid to the sides. We take the mean values of all the readings within in the bounding
box to determine a net average value per day. In our experiments we use a bounding box that is a
square of side 10 km. This would be able to estimate the average emissions within the area enclosed
by the bounding box.

3.4 Singular results obtained from the tools

An example of the results obtainable from the above software tools to monitor Nitrogen Dioxide are
depicted below in the examples.

e For alocalized region of agricultural land and forests (and basically covers majority of the
countries in the world)
e Global coverage
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3.4.1 Global Coverage

Often it is crucial to have a holistic view before conducting further scrutiny. For such purposes, we have
a tool to view the average value of emissions all over the coverage of the Sentinel 5P satellite. Figure
2 shows the average values of NO, obtained for a period between 7" June 2020 and 30™ June 2020.

It is observed that Japan, China, South Korea, India, Iran, Lebanon, Egypt, Russia, Germany, Italy and
the USA are significant emitters of NO, gas during the time frame. This enables us to atomize parts of
areas relevant to forestry and agriculture better.

Below is an example of the results obtained. This heatmap uses a color scale that transitions from
'black’ to 'blue’, then 'purple’, ‘cyan’, 'green’, 'yellow', and finally 'red'. The lowest values (0.0) in the
heatmap will be represented by 'black’, while the highest values (0.0002) will be represented by 'red’,
with intermediate values being represented by the other colors in the palette above.

Figure 3- Global average emissions of NO2 between 7th June 2020 to 30t June 2020

3.4.2 Localized Coverage

Let’s consider one region for example. The North Island of New Zealand houses nearly 65% of the New
Zealand population. The particular area that was surveyed is projected to increase it’s agricultural
productivity by nearly 100% in 2040s (“Integrated National Policy Approaches to Climate-Smart
Agriculture. Insights from Brazil, Ethiopia, and New Zealand,” 2014). This area is also home to the
Whirinaki Forest Park and the Te Urewera homeland of the Tuhoe Maori people. The soil variety in
this region is of Andisol type. The specific longitude and latitude we surveyed was [-
38.44145537791065, 176.80194705056425] respectively. The time frame of survey is between
September 2018 to August 2019

The tool has a feature to annotate the specific area being surveyed as displayed below in Figure 3. The
line plot of this region is also obtainable as shown in Figure 4.
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Figure 4- Annotated Area of survey
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Figure 5- Daily emission value for a year in the above area

3.5 Description of the locations surveyed

This dataset comprises historical data collected from a total of 24 distinct geographical locations,
representing a diverse array of eight different soil orders. It is important to note that the data collection
process was conducted impartially, encompassing regions spanning from the global northern
hemisphere to the global southern hemisphere. The data acquisition itself was facilitated through the
utilization of the Google Earth Engine, a sophisticated geospatial analysis platform. The temporal scope
of this data compilation spans from September 2018 to September 2022. The locations of survey is
displayed below.
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Table 4- Soil order and crops grown in the surveyed areas

)
Q
Q
¢
¥
Q
Serial
No. Location

1 Karachay-Cherkessia,
Russia

2 Melitopol, Ukraine

3 lowa, America
4 Tver, Russia
5 Odisha, India
6

North Gonja, Ghana

7 North Island,
NewZealand
8 Jalisco, Mexico

9 Santa Barbara, Chile

10
Madama, Niger

11 Shubaytah,
SaudiArabia

Figure 6- Locations of the data collection sites

Latitude

44.02549592

47.04296361

41.90193949

44.02549592

214111331

9.388339935

-38.44145538

19.79403165

-37.68590304

22.01110157

22.61869806

Longitude

41.27779137
35.75185611
-92.75029809
41.27779137

82.71054963

-1.526934298

176.8019471
-103.1927506

-71.41446515

13.46676007

53.24287929
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Soil Order

Mollisol

Mollisol

Mollisol

Alfisol

Alfisol

Alfisol

Andisol

Andisol

Andisol

Entisol

Entisol

Crops or Forests

Wheat, corn, sunflowers
Wheat, corn, sunflowers
Corn, soybeans, hay
Wheat, rye, potatoes
Rice, jute, wheat

Cocoa, plantains,
cassava

Beech forests, podocarp
forests

Corn, beans, coffee
Vineyards, olive groves

Millet, sorghum,
peanuts

Date palms, wheat



12 | Gibson Desert North,
Australia -22.54613578 127.6495604 Entisol Shrubs, grasses
13 Primorsky Krai, Russia 44.57940166 @ 135.6788987 Inceptisol = Soybeans, corn, wheat
14 Muzaffarpur,
Bangladesh 24.60487059 = 90.89032422 | Inceptisol Rice, wheat, jute
15 Quebec, Canada 57.27976996  -65.46318238 Inceptisol Forests, crops
16 Jutai, Brazil -4.549269446 @ -68.29210095 Oxisol Soybeans, corn, coffee
17 Coffee, cassava,
Bambesa, Congo 3.016830986  26.05157797 Oxisol bananas
18 Moramanga,
Madagascar -19.13854286 @ 48.51022224 Oxisol Shrubs, grasses
19 Georgia, America 34.24755459 @ -83.11264726 Ultisol Corn, soybeans, hay
20 Perak, Malaysia 5.30571406 100.8891812 Ultisol Rubber, oil palm
21 Oudomxay, Laos 20.17307836 101.761504 Ultisol Rice, corn, coffee
22 Madhya Pradesh, Millet, sorghum,
India 23.36609533 = 76.86099548 Vertisol peanuts
23 Aboro, Ethiopia 8.082542473  33.49662823 Vertisol Enset, coffee
24 Houston, Texas 28.9770527 -95.74814063 Vertisol Corn, sugarcane

Table 4 offers a summary of the geographic coordinates, soil order, and types of crops or forests that
can be found in many regions across the world. To ensure a diverse dataset for study, these places
were chosen to reflect agricultural lands in various geographic areas and climatic conditions. Data on
changes and trends in crop agriculture and forest cover were gathered from September 2018 to
September 2022.

The Mollisol soil order, which is prominently displayed in the table, is represented by regions like lowa
in the United States and Karachay-Cherkessia in Russia. Wheat, corn, and sunflowers are the main
crops in these areas. These agricultural staples are essential to local economies and the production of
food on a worldwide scale.

The chart also features the Alfisol soil order, which is found in places like Tver, Russia, and Odisha,
India. Farmers grow crops like rice, jute, wheat, and potatoes in these regions. certain crops are
necessary for the food security and economic viability of certain areas.

Moving on to Andisol, the table emphasises places like Jalisco, Mexico, and North Island, New Zealand.
Here, varied landscapes, such as vineyards and olive orchards in Mexico and beech and podocarp
forests in New Zealand, demonstrate how adaptable andisols are for maintaining different kinds of
vegetation.
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Primorsky Krai in Russia, characterized by Inceptisol soil, predominantly features soybeans, corn, and
wheat cultivation. This region, situated at approximately 44.58° latitude and 135.68° longitude,
showcases the versatility of Inceptisols in supporting various agricultural activities.

Moving to Muzaffarpur, Bangladesh, with its Inceptisol soil, rice, wheat, and jute are the primary crops
cultivated. This area, located at approximately 24.60° latitude and 90.89° longitude, is known for its
significant contribution to rice production in the country.

Quebec, Canada, falls within the Inceptisol category, and it exhibits a blend of forests and croplands.
Positioned around 57.28° latitude and -65.46° longitude, Quebec's landscape highlights the
coexistence of natural woodlands and agricultural practices. Jutai, Brazil, is situated in an Oxisol region,
where soybeans, corn, and coffee are the primary crops. The coordinates at approximately -4.55°
latitude and -68.29° longitude place this area within the Amazon rainforest, where agricultural
activities are interspersed with dense vegetation.Bambesa in the Congo, also with Oxisol soil, relies on
coffee, cassava, and bananas for its agricultural output. Located at around 3.02° latitude and 26.05°
longitude, this region plays a vital role in the production of coffee beans in Central Africa.

Moramanga, Madagascar, characterized by Oxisol soil, features shrubs and grasses within its
landscape. Positioned at approximately -19.14° latitude and 48.51° longitude, this region's terrain is
marked by its natural vegetation and grassy expanses. Georgia in the United States, with its Ultisol soil,
engages in corn, soybean, and hay cultivation. Located at around 34.25° latitude and -83.11° longitude,
this American state is renowned for its agricultural activities.

Perak, Malaysia, also categorized under Ultisol soil, specializes in rubber and oil palm cultivation.
Positioned at approximately 5.31° latitude and 100.89° longitude, Perak contributes significantly to
Malaysia's rubber and palm oil industries.

Oudomxay, Laos, situated in the Ultisol soil category, focuses on rice, corn, and coffee production.
Located at approximately 20.17° latitude and 101.76° longitude, this region in Southeast Asia plays a
vital role in the country's crop cultivation.

Madhya Pradesh, India, marked by Vertisol soil, showcases a landscape where millet, sorghum, and
peanuts are the primary crops. Positioned at around 23.37° latitude and 76.86° longitude, this Indian
state demonstrates the suitability of Vertisols for diverse crop cultivation.

Aboro, Ethiopia, situated in an area characterized by Vertisol soil, is known for the cultivation of enset
and coffee. Positioned at approximately 8.08° latitude and 33.50° longitude, this region showcases the
significance of Vertisols in supporting the growth of enset, a drought-tolerant crop, and coffee, one of
Ethiopia's major agricultural exports. The ability of Vertisols to retain moisture and nutrients
contributes to the successful cultivation of these crops in this East African region.

Houston, Texas, falls within the Vertisol soil category, where corn and sugarcane are the primary crops
grown. With coordinates at around 28.98° latitude and -95.75° longitude, Houston exemplifies the
agricultural diversity of Vertisols in the United States. Corn and sugarcane are essential components of
the region's agricultural landscape, with corn serving as a staple crop and sugarcane supporting various
industries, including sugar production and biofuel development.
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3.6 Description of the collected data

The initial phase of data retrieval involved obtaining data from the Sentinel-2 satellite, a satellite
renowned for its capability to perform multispectral Earth observations. However, a key consideration
in this process was the discrepancy in the orbital periods of the Sentinel-2 and Sentinel-5P satellites.
Consequently, an approach was adopted, wherein data points were exclusively selected for analysis
during time intervals when both satellites orbited over the same geographic locations. This stringent
selection criterion was implemented to ensure the alignment of data acquired from both satellite
sources, thereby enhancing the dataset's accuracy and reliability.

Subsequently, employing the analytical tools previously developed and demonstrated, the dataset
underwent an averaging process. Specifically, the gas concentration values, expressed in terms of
molar concentration per square meter (mol/m?2), were averaged for each respective region using data
acquired from the Sentinel-5P satellite. The region around each latitude and longitude is a square of
10km each. This gives it an effective surface area of 100 km?. This data processing step aimed to derive
a representative and consolidated value that encapsulated the gas concentrations within the specified
regions.

The following depiction demonstrates one example of the collected data and the relationship between
the data. The images are 3 channel images and of size 200 x 200.

Table 5- Example of one unit of data

Image Soil Order Date of Average NO
image emission in
nano moles
per sq m
Image Molllisol (2019,3,1) 81.1224
0
25
50
75
100
125
150
175

0 50 100 150
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Table 6 - Dataset number of images per soild order

Soil Type |No of Images
Vertisol 496
Mollisol 416
Ultisol 268
Andisol 500
Alfisol 383
Oxisol 185
Entisol 896
Inceptisol 362

This is an unbalanced dataset on a soil order level. However since the task is regression the unbalanced
nature of the dataset in the soil order level would not impact the prediction capabilities of the task.
The dataset was split into 80% and 20% of training and testing data respectively.

3.7 Results based on soil types

Nitrous oxide (NO2) emissions from various soil orders have been thoroughly examined, and the
results have provided important new insights into the global environmental dynamics of many
different nations. This study explores the emissions data of eight different soil orders over the course
of the last four years, from September 2018 to September 2022. These orders are Entisol, Inceptisol,
Mollisol, Alfisol, Ultisol, Oxisol, Andisol, and Vertisol. The rigorously recorded and studied annual data
provides significant insight into the dynamics of NO2 emissions within these soils, illuminating the
environmental difficulties these areas face. This introduction lays the groundwork for a thorough
examination of the conclusions and ramifications of this multi-year investigation.

3.7.1 2018-2019
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Figure 7- Soil level emissions between 2018-2019
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Table 7- Statistics of NO2 emission for the year 2018-2019

Soil Std 25th 50th 75th
order Mean Median Deviation Min percentile percentile percentiie Max Range

Entisol 0.000053 0.000053 0.000003 0.000049 0.00005 0.000053 0.000055 0.000057 0.000008
Inceptisol 10.000062 0.000065 0.000013 0.000042 0.000052 0.000065 0.000071 0.000081 0.000038
Mollisol 0.000075 0.000077 0.000007 0.000064 0.000071 0.000077 0.000081 0.000085 0.000021

Alfisol 0.000069 0.000067 0.000006 0.000061 0.000064 0.000067 0.000074 0.000079 0.000019
Ultisol 0.000068 0.000065 0.000014 0.000055 0.00006 0.000065 0.000071 0.000108 0.000053
Oxisol 0.000043 0.000041 0.000005 0.000036 0.000039 0.000041 0.000047 0.000053 0.000017
Andisol  0.000052 0.000054 0.000004 0.000045 0.000049 0.000054 0.000055 0.000057 0.000013

Vertisol ~ 0.000067 0.000069 0.000006 0.000058 0.000062 0.000069 0.000069 0.000076 0.000018

In the year 2018-2019, as depicted in (Table 7- Statistics of NO2 emission for the year 2018-2019) the
NO2 emissions within different soil orders displayed various trends. Entisols remained stable, with
consistent NO2 levels throughout the year. Mollisols showed a slight increase in NO2 emissions,
suggesting a gradual environmental change affecting these soils. Inceptisols followed a pattern of
declining NO2 emissions towards the end of the year, followed by a subsequent increase, ultimately
returning to levels similar to the previous year. Alfisols exhibited a modest decrease in NO2 emissions,
indicating a possible reduction in NO2 sources or improved environmental conditions. Ultisols, in
contrast, experienced a rapid increase in NO2 emissions at the beginning of the year, only to return to
levels comparable to the previous year. Oxisols showed a decrease in NO2 emissions compared to the
previous year, suggesting a potential positive environmental development. Andisols displayed a slight
decrease in NO2 emissions, indicating some improvement in air quality within these soils. Vertisols
exhibited a moderate decrease in NO2 emissions, potentially reflecting environmental changes
influencing this soil type during the specified period.

The analysis of NO2 emissions from different soil orders over the year’s period from September 2018
to September 2019 indicates important trends. Mollisols consistently showed the greatest mean
emissions among the examined soil orders at 0.000075, while Oxisols consistently showed the lowest
mean emissions at 0.000043. The results show that, on average, with some slight fluctuations, NO2
emissions were steady during this time. The emissions of Entisols, Inceptisols, Alfisols, Andisols, and
Vertisols all fell within a small range, whereas Ultisols showed more noticeable variability, peaking at
0.000108. This data indicates that soil types have a substantial impact on NO2 emissions, with Mollisols
consistently making the largest contribution of the emissions throughout this year.
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3.7.2 2019-2020

le-5

— Entisol
— Inceptisol
91 — Molliso

— Alfisol
—— Ultisol
—— Oxisol
Andisol
Vertisol

NO2 mol/m~2

2019 09 201910 201911 2019 12

Figure 8- Soil level emissions between 2019-2020
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Table 8- Statistics of NO2 emission for the year 2019-2020

Soil Std
order Mean Median Deviation

Entisol 0.000051 0.000051 0.000002

Inceptisol 10.000058 0.000059 0.000012

Mollisol 0.000067 0.00007 0.000009

Alfisol 0.000063 0.000063 0.000005

Ultisol 0.00006 0.000055 0.000015

Oxisol 0.000041 0.00004 0.000004

Andisol  0.000051 0.000053 0.000005

Vertisol  0.000058 0.000057 0.000003

25th

Min percentile percentile percentile

0.000046 0.00005

0.00004 0.000047

0.000051 0.000062

0.000054 0.00006

0.000049 0.000051

0.000036 0.000038

0.000043 0.000047

0.000055 0.000056

50th

0.000051
0.000059
0.00007

0.000063
0.000055
0.00004

0.000053

0.000057

75th

0.000053
0.000066
0.000074
0.000065
0.000058
0.000042
0.000055

0.000059

2020_06

2020_07

Max
0.000054
0.000077
0.000079
0.000075
0.000097
0.00005
0.000056

0.000064

2020_08

Range
0.000008
0.000037
0.000027
0.00002
0.000048
0.000014
0.000013

0.000009

In the year 2019-2020, as depicted in the (Table 8- Statistics of NO2 emission for the year 2019-2020)
the NO2 emissions within different soil orders showed distinct patterns. Entisols remained relatively
stable in terms of NO2 emissions, indicating consistent levels over this period. Mollisols, on the other
hand, experienced a notable increase in NO2 emissions, suggesting a potential environmental shift in
these soils. Inceptisols exhibited a fluctuating pattern, with a decrease towards the end of the year
followed by a slight increase in NO2 emissions. Alfisols continued their modest upward trend in NO2
emissions. Ultisols displayed a slight increase as well, indicating a gradual rise in NO2 levels. Oxisols, in
contrast, saw a decrease in NO2 emissions compared to the previous year. Andisols remained stable,
with no significant changes. Vertisols, similar to Mollisols, exhibited a further increase in NO2
emissions, suggesting dynamic environmental factors influencing these soil types during this
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timeframe. Notably we can notice a greater than 10% drop in emissions during this period. This likely
correlates with the COVID-19 lockdown which resulted in an economic slowdown.

The analysis of NO2 emissions from various soil orders for the period of September 2019 to September
2020 reveals some interesting patterns. Mollisols consistently showed the greatest mean emissions
among the soil orders under study, at 0.000067, while Oxisols consistently showed the lowest mean
emissions, at 0.000041. Notably, NO2 emissions showed a general upward trend throughout all soil
categories, with certain months indicating significant increases, especially in Ultisols and Mollisols. The
widest range of emissions was shown by ultisols, which peaked in March 2020 at 0.000097.

3.7.3 2020-2021
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Figure 9- Soil level emissions between 2020-2021

Table 9- Statistics of NO2 emission for the year 2020-2021

Std 25 50t 75t
Mean Median Deviation Min  percentile percentile percentile Max Range

0.000053 0.000053 0.000004 0.000047 0.00005 0.000053 0.000056 0.000058 0.00001
0.000064 0.000066 0.000012 0.000048 0.00005 0.000066 0.000075 0.000081 0.000033
0.00007 0.00007 0.000008 0.000057 0.000064 0.00007 0.000079 0.000082 0.000024

0.00007 0.000068 0.000008 0.000059 0.000064 0.000068 0.000073 0.000086 0.000027

0.000063 0.000058 0.000015 0.000052 0.000053 0.000058 0.000062 0.000101 0.00005

0.000043 0.000042 0.000005 0.000037 0.000039 0.000042 0.000047 0.000053 0.000016

0.000054 0.000056 0.000004 0.000047 0.00005 0.000056 0.000057 0.000059 0.000013

0.000065 0.000065 0.000004 0.000059 0.000062 0.000065 0.000067 0.000071 0.000012

In the year 2020-2021, as depicted in the (Table 9- Statistics of NO2 emission for the year 2020-2021)
the NO2 emissions within different soil orders exhibited diverse patterns. Entisols remained stable,
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showing consistent NO2 levels throughout the year. Mollisols displayed an increase in NO2 emissions,
suggesting a potential environmental shift affecting these soils. Inceptisols followed a pattern of
declining NO2 emissions towards the end of the year, followed by a subsequent increase, ultimately
returning to levels similar to the previous year. Alfisols exhibited a modest decrease in NO2 emissions,
indicating a possible reduction in NO2 sources or improved environmental conditions. Ultisols, in
contrast, experienced a rapid increase in NO2 emissions at the beginning of the year, with an overall
increase compared to the previous year, potentially indicating changing environmental factors. Oxisols
showed a decrease in NO2 emissions initially, returning to levels similar to the previous year,
suggesting some degree of stabilization. Andisols displayed a slight decrease in NO2 emissions,
followed by a return to the previous year's levels, indicating stability in air quality within these soils.
Vertisols exhibited a moderate increase in NO2 emissions, reflecting potential environmental changes
influencing this soil type during the specified time period.

Analyzing NO2 emissions from various soil types between September 2020 and September 2021
reveals interesting details. The highest mean emissions were continuously found in mollisols, at
0.000070, indicating a considerable contribution to NO2 emissions. Oxisols, on the other hand,
consistently showed the lowest mean emissions at 0.000043. The data indicates an overall increased
trend in NO2 emissions for all soil types, with some months, especially in March 2021, displaying
notable jumps, especially in Mollisols and Ultisols. The largest range of emissions, with a maximum of
0.000101, was shown by ultisols.

39



3.7.4 2021-2022
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Figure 10- Soil level emissions between 2021-2022
Table 10- Statistics of NO2 emission for the year 2021-2022
Soil Std 25th 50th 75th
order Mean Median Deviation Min percentile percentile percentile Max Range
Entisol 0.000052 0.00005 0.000004 0.000047 0.000048 0.00005 0.000056 0.000058 0.000012
Inceptisol 0.000063 0.000064 0.000013 0.000043 0.000054 0.000064 0.000071 0.000084 0.000041
Mollisol  0.000073 0.000074 0.000005 0.000065 0.000069 0.000074 0.000077 0.000079 0.000014
Alfisol 0.000068 0.000067 0.000005 0.000061 0.000063 0.000067 0.000071 0.000078/0.000017
Ultisol 0.00006 0.000059 0.000005 0.000057 0.000058 0.000059 0.000049 0.000055 0.000015
Oxisol 0.000046 0.000044 0.000005 0.0000410.000042 0.000044 0.000049 0.000055/0.000015
Andisol  0.000052 0.000054 0.000004 0.000045 0.00005 0.000054 0.000055 0.000058 0.000014
Vertisol 0.000064 0.000062 0.000007 0.00006 ' 0.000061 0.000062 0.000063 0.000083/0.000024

In the year 2021-2022, as depicted in (Table 10- Statistics of NO2 emission for the year 2021-2022),
the NO2 emissions within different soil orders displayed distinctive trends. Entisols showed a slight
decrease in NO2 emissions. Mollisols, on the other hand, exhibited an increase in NO2 emissions,
indicating a potential shift in environmental conditions affecting these soil types. Inceptisols followed

a pattern of declining NO2 emissions towards the end of the year, followed by a rapid increase slightly
above the previous year's levels, suggesting some fluctuations in air quality. Alfisols remained stable,

with consistent NO2 levels. Ultisols showed an increase at the beginning of the year, leveling off to the
previous year's levels, indicating fluctuations in NO2 emissions. Oxisols displayed a decrease in NO2
emissions initially, returning to levels similar to the previous year, suggesting some degree of

stabilization. Andisols, however, showed a significant drop in NO2 emissions compared to the previous
year, indicating potential improvements in air quality within these soils. Vertisols exhibited a rapid
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increase in NO2 emissions at the beginning of the year, followed by a return to the previous year's
levels, suggesting dynamic environmental changes influencing this soil type during the specified time

period.

Analyzing NO2 emissions from different soil orders from September 2021 to September 2022 reveals
interesting trends. The fact that mollisols continuously had the greatest mean emissions, at 0.000073,
shows how much they contribute to NO2 emissions. Oxisols, on the other hand, consistently had the
lowest mean emissions, at 0.000046. According to the data, NO2 emissions in all soil categories follow
a predictable seasonal pattern with wintertime peaks (December and January) and summers lows (July
and August). Emissions considerably rose, especially in March 2022, primarily as a result of Mollisols
and Vertisol. The widest range of emissions was seen in ultisols, which had a maximum emission of

0.000084.

3.7.5 2018-2022
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Figure 11- Soil level emissions between 2018-2022
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Table 11- Statistics of NO2 emission for the year 2018-2022

75th
percentile percentile percentile

0.000014

0.000018

0.000019

0.000018

0.000016

2022 01 4
2022_02

2022_04

2022_05

2022_03 4
2022_06
2022_07 4
2022_08

Max Range
0.000015 0.000003
0.000021 0.000011
0.000021 0.000008
0.000022 0.000008

0.000027 0.000015



Oxisol 0.000011 0.00001 1.29E-06 0.000009 0.00001 0.00001 0.000012 0.000014 0.000005
Andisol 0.000013 0.000014 1.07E-06 0.000011 0.000012 0.000014 0.000014 0.000015 0.000004

Vertisol  0.000016 0.000016 1.46E-06 0.000014 0.000015 0.000016 0.000017 0.000021 0.000007

Over the course of the four-year period from 2018 to 2022, (as depicted in Table 11- Statistics of NO2
emission for the year 2018-2022) the NO2 emissions within different soil orders exhibited a range of
patterns and trends. In 2018-2019, Entisols remained stable, while Mollisols showed a slight increase.
Inceptisols followed a fluctuating pattern, and Alfisols exhibited a modest decrease. Ultisols
experienced a rapid increase at the beginning of the year, and Oxisols showed a decrease. Andisols
displayed a slight decrease, and Vertisols exhibited a moderate decrease.

Moving to 2019-2020, Entisols remained stable, but Mollisols exhibited a notable increase, while
Inceptisols followed a fluctuating pattern. Alfisols continued their modest upward trend, and Ultisols
displayed a slight increase. Oxisols saw a decrease, Andisols remained stable, and Vertisols exhibited
a further increase.

In 2020-2021, Entisols stayed stable, Mollisols displayed an increase, Inceptisols followed a fluctuating
pattern, and Alfisols exhibited a modest decrease. Ultisols had a rapid increase at the beginning of the
year, while Oxisols showed a decrease initially. Andisols displayed a slight decrease, and Vertisols
exhibited a moderate increase. Finally, in 2021-2022, Entisols showed a slight decrease, Mollisols
exhibited an increase, Inceptisols followed a fluctuating pattern, and Alfisols remained stable. Ultisols
had an increase at the beginning of the year, while Oxisols showed a decrease initially. Andisols had a
significant drop, and Vertisols exhibited a rapid increase.

3.8 Results based on a year-level

This introduction lays the groundwork for the year-level analysis we undertook with the data. We
analysed the variations on a year level.
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1le—5 Yearly Comparison Histogram for Year Ranges
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Figure 12 - Year level analysis

Since our data ranges from September 2018 to August 2022, we annotated a year to the period
between September and August.

Cumulatively we can see mollisols and alfisols (ie the best and second best soil for agriculture and
forestry) emit the highest. An interesting observation on the orange bars (denoting the COVID
lockdown year) has a noticeable dip in all the soil orders.

3.9 Results based on equatorial distance

This analysis is based on the surveyed locations and its proximity to the equator. This serves the
purpose of discerning the differences between emissions of the same soil variety in different
geographical locations. To discern the equatorial locations and non-equatorial locations we selected
locations with latitude in the range of -15.5 and 23.5 as equatorial locations and the locations outside
the range as non-equatorial locations. Mollisols and Inceptisols where not surveyed at an equatorial
location as most mollisol soils are prevalent in the non-equatorial latitudes.
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o Soil Data for Oxisol by Country Type
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Figure 13 - Oxisol equatorial analysis

Oxisols exhibit a periodic pattern. They peak during the Septembers in the higher latitudes and crest
during the March-April window. They don’t exhibit periodic peaking patterns near the equator. They
don’t exhibit any significant reduction in emissions separately (ie- equator and non-equator) though
cumulatively they exhibit some significance as explained in the Section 3.7.

Ultisols below (Figure 13) exhibit some periodic pattern over the 4 years. They peak around the
February and March in equatorial countries and crest around December. Non equatorial countries
exhibit some degree of periodic pattern where they crest around September, but not significant peaks
are observed. Both country types don’t exhibit any significant changes due to the COVID-19 lockdown.
Equatorial region tend to show significantly less emissions than non- equatorial regions.
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le—5 Soil Data for Ultisol by Country Type
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Figure 14 - Ultisol equatorial analysis

o Soil Data for Alfisol by Country Type
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Figure 15 - Alfisol equatorial analysis

Alfisols (Figure 14), Entisols (Figure 15) and Andisols (Figure 16) in non-equatorial regions show a
periodic pattern, peaking in March-April window and cresting in November and vice versa.
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le—5 Soil Data for Entisol by Country Type
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Figure 16 - Entisol equatorial analysis

le—5 Soil Data for Andisol by Country Type
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Figure 17 - Andisol equatorial analysis
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P Soil Data for Vertisol by Country Type
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Figure 18 - Vertisol geographical analysis

Vertisols show significantly higher readings for the non-equatorial regions as compared to equatorial
ones.

3.10 Chapter Summary

The data on nitrous oxide (NO2) emissions from different soil orders during a four-year period from
September 2018 to September 2022 indicates significant trends and oscillations. Mollisols stood out
for constantly having the greatest average emissions, demonstrating their major contribution to NO2
emissions over the course of this time. Conversely, the mean emissions of oxisols were consistently
the lowest. The data also shows a cyclical seasonal trend, with wintertime emissions being higher and
summertime emissions being lower. The largest range of emissions was shown by ultisols, which
peaked in April 2022. Overall, these results highlight the significance of seasonal variations and soil
types in NO2 emissions, emphasising the need for targeted mitigation strategies and sustainable soil
management practises, especially in soil orders like Mollisols, Alfisols and Ultisols, which demonstrated
both high mean emissions and significant variability.

In summary, different soil types exhibit various emission patterns, with some showing periodic peaks
in emissions during specific months. The impact of the COVID-19 lockdown on emissions is not
significant in most soil types, and in the locations the data was collected, the equatorial regions
generally exhibited lower emissions compared to non-equatorial regions.

Across these years, it's apparent that different soil orders responded differently to NO2 emissions, with
some showing stability, others fluctuating, and some indicating potential environmental shifts.

Data Availability: (Data link in Data.1 in the Code and Data section)
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Chapter 04: Machine Learning Model and Results

4.1 Chapter Overview

The focal point of our study, analysis, and prediction efforts is Chapter 4. It demonstrates the specifics
of the computational methods utilised to get important conclusions from the methodically acquired
data. Readers will have a thorough understanding of the models, their functionality, and the insights
they offer by the end of this chapter, laying the groundwork for the conclusions and suggestions
covered in the following chapter. It further discusses the results of the machine learning models and
the evaluation metrics. The associated codes and data are provided in the links in the “Code and Data”
section.

4.2 Data Preprocessing

The preprocessing steps for the inputs with their respective shapes are crucial for preparing the data
for analysis or machine learning tasks. Let's break down the preprocessing steps for each of these
tensors:

1. Images (images.shape: (3506, 200, 200, 3)):

e Resizing: The images have been resized to a shape of (200, 200, 3). The original images
came in different dimensions and resizing them to a consistent shape is essential for
compatibility and efficient processing. The (200, 200) dimensions represent the width
and height of the images, and the '3' indicates that these are color images with three
color channels (typically Red, Green, and Blue).

o Data Type Conversion: The image data are also converted to a specific data type, such
as float32, depending on the requirements of the PyTorch framework.

2. NO2 Readings (no2_reading.shape: (3506, 1)):

e Feature Selection: In this case, only a single feature, NO2 readings, is retained for
analysis or modeling. The shape (3506, 1) indicates that there are 3506 data samples,
each with one NO2 reading.

e Scale: The mol/m.sq is converted to nano mol/m.sq for better convergence as
extremely small numbers take time for the back prop.

3. Dates Readings (dates_reading.shape: (3506, 3)):

e Feature Engineering: The dates_readings tensor has a shape of (3506, 3), it contains
three date-related features. Date-related features could include year, month, and day,
for example. These features are extracted from the original date/time information for
each data sample.
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4.3 Model Architecture

We conducted our experiments the dataset, comparing the performance of two different models. The
first model was custom-built from the ground up, with its architecture designed from scratch. The
second model, on the other hand, was based on ResNet, a well-known convolutional neural network
architecture used in transfer learning. A diagrammatic description of the two models are provided

below in Figure 19 - Model architecture diagram.
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Figure 19 - Model architecture diagram
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4.3.1 Custom Model

This model combines two branches: one for processing satellite image data and another for processing
date-related features.

Model Architecture:

1. Image Branch:

The image branch is designed to process image data.

image convl is the first convolutional layer with 3 input channels (assuming RGB
images) and 16 output channels. It uses a 3x3 kernel for feature extraction.

image relul is the ReLU activation function applied after the first convolution.

image conv2 is the second convolutional layer, which takes the output of the first
convolutional layer and further extracts features. It has 16 input channels and 32
output channels with 3x3 kernels.

image relu2 is the RelLU activation following the second convolution.

image fc is a fully connected (linear) layer that takes the flattened output from the
convolutional layers and maps it to a 64-dimensional feature space.

Image relu3 is another RelLU activation function applied to the output of the fully
connected layer.

2. Date Branch:

The date branch is responsible for processing date-related features.

date fc is a fully connected layer that takes 3 date-related features (e.g., year, month,
day) and maps them to a 16-dimensional feature space.

date relu is the ReLU activation applied after the date feature layer.

3. Combined Layers:

fc combined1 is a fully connected layer that takes the concatenated output from both
the image and date branches. It combines the information from the image and date
features and maps it to a 32-dimensional feature space.

fc combined2 is the final fully connected layer that maps the 32-dimensional feature
vector to a single output, which is the regression output.

fc relu is a ReLU activation applied after the combined layers.

In the forward method, the model performs the following steps. The image data is passed through the

image branch, going through convolutional and fully connected layers, and then ReLU activations. The
date-related features are processed through the date branch, which consists of a single fully connected
layer and a RelU activation. The outputs of the image and date branches are concatenated along the

feature dimension (dimension 1). The concatenated features are passed through the combined fully
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connected layers. The final output is obtained, which represents the NO emissions in (nano mol per sq
m) regression prediction.

This model is designed for regression tasks where the goal is to predict nitrous emissions based on
input satellite image data and image date. It combines information from both branches to make
predictions. Given in the Appendix A is the computation graph. (Code in Code.1 in the Code and Data
section)

4.3.2 ResNet Model

This model leverages transfer learning by using a pre-trained ResNet-18 (He et al., 2015) architecture
to extract features from input images. It combines these image features with date information and
uses fully connected layers to make a regression prediction. The choice of using transfer learning can
be beneficial when dealing with image data, as it allows the model to leverage the knowledge learned
from a large dataset (ImageNet) and adapt it to the specific regression task at hand. Given in the

Appendix B is the computation graph. (Code in Code.2 in the Code and Data section)

Table 12 - model details

Parameter/Hyperparameter

Model 1 (Custom CNN)

Model 2 (Transfer Learning with
ResNet)

Image Branch

Input Channels

3 (assuming RGB images)

3 (assuming RGB images)

Defined by pre-trained ResNet

Kernel Size (Conv Layers 1 & 2) 3x3 model
Defined by pre-trained ResNet

Number of Filters (Conv Layer 1) 16 model
Defined by pre-trained ResNet

Number of Filters (Conv Layer 2) 32 model
Activation Function (Conv Defined by pre-trained ResNet

Layers) RelLU model

32 * 196 * 196 (calculated based on

Defined by pre-trained ResNet

Fully Connected Layer Size input size) model
Defined by pre-trained ResNet
Activation Function (FC Layer) RelLU model
Date Branch
Input Features 3 3
Hidden Layer Size 16 16
Activation Function (FC Layer) RelLU RelLU

Combined Layers

Input Features (Combined)

64 (image) + 16 (date)

64 (image) + 16 (date)

Hidden Layer 1 Size 32 32
Hidden Layer 2 Size (Output) 1 1
Activation Function (FC Layers) RelLU RelLU
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Learning Rate 0.0001 0.0001
Batch Size 16 16
Optimizer RMSprop RMSprop

Epochs 200 200

4.4 Model Training

This model appears to be a custom neural network architecture designed for regression tasks. It's
important to note that the model is explicitly moved to the computing device (either CPU or GPU)
specified earlier. This step ensures that all subsequent computations involving the model will be
performed on the chosen hardware. For these experiments all the codes were run on Google Colab
instances. Most of the training and prototyping was completed using the free T4 GPU instance.
However, the final training was done on a Colab Pro with A100 GPU.

Two loss functions are defined for training: Mean Squared Error (MSE) and L1 Loss. These loss functions
are fundamental in training regression models, as they quantify the difference between predicted
outputs and actual target readings. MSE emphasizes larger errors by taking squared differences, while
L1 loss treats all errors uniformly by considering absolute differences.

The optimizer is RMSprop optimizer, which is set up to manage the model's parameter updates during
training. It employs a small learning rate of 0.0001, which controls the step size in the optimization
process. The training loop iterates for a predefined number of epochs (200 epochs in this instance).
Within each epoch, the code processes the training data in batches)

4.5 Loss functions

For the model where we have two inputs, satellite images (x1) and image date (x2), and one output,
y, we defined a custom loss function. We define the loss function mathematically as follows:

Let Ypreq be the predicted output the model, which is a function of the x1 and x2
i.e. YVpred = f(xl'xz)
Where:

o Nis the total number of training samples.
®  Ypredi iS the predicted output for the i-th sample
®  Vyuei is the predicted output for the i-th sample

The loss function can be defined as the error between the predicted and true outputs. A common
choice is to use Mean Squared Error (MSE), which is the squared difference between y¢ye and Ypreq
averaged over the dataset.
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1 = 2
Loss (MSE) = NZ(ytrue,i - Ypred.i)

i=1

Mean Absolute Error loss function measures the average of the absolute differences between the
predicted and true values.

N
1
Loss (MAE) or L1 = NZb/true,i - J/pred.i|

=1

We use a combined loss that balances the contributions of both MSE and L1 losses for both outputs.
Here, a and B are hyperparameters that control the weight of each loss term in the combined loss.

Combined Loss = a - MSE Loss(Ytrue, Ypred) +p-L1 Loss(the, Ypred)

We gave both a and B the value of 1 to provide equal weighting in terms of loss back propagation.

4.6 Evaluation of results

Regression model evaluation metrics provide insight into how effectively a regression model predicts
continuous values (numeric values) in comparison to the actual target values. Some standard metrics
for regression model evaluation are:

1. Mean Squared Error (MSE): MSE calculates the average squared deviations between
anticipated and observed values. It is determined as follows:

n

1 . N
— @ @
MSE = 52 (ytrue - ypred)
i=1
2. Mean Absolute Error (MAE): The average absolute difference (MAE) between the predicted

and actual values is measured. It is determined as follows:
n

1
MAE = —2
n r}
i=1
3. R-squared (R?): R-squared measures the percentage of the target variable's variance that the
model accounts for. A better fit is indicated by higher values, which range from 0 to 1. It is
determined as follows:

® ®
ytrlue - ypied

. N2
@ @
?=1 (ytrue - ypred)
) 2
@ _—
?21 (ytrue - ytrue)
4. Mean Absolute Percentage Error (MAPE): The average percentage difference between
expected and actual values is measured by MAPE. It is determined as:

RZ

® @®
ytrlue — ) pied
®

y true

n

1
MAPE = —Z
n

i=1

X 100%
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Table 13- results

Metric Custom Model ResNet Model
Training Test Training Test
Loss 2.6245 20.8887 8.3281 12.0502
MSE Loss 2.3645 20.2746 8.0767 11.5781
MAE Loss 0.2599 0.6141 0.2514 0.4721
R2 Score 0.9439 0.1499 0.8089 0.5151
MAPE 0.0724 0.1596 0.0644 0.1197

The regression model's evaluation provides important information about how well it performs on both
the training and test datasets. These measurements give a thorough knowledge of how accurately the
model represents the fundamental patterns and connections in the data.

4.6.1 Loss

Loss represents the error or discrepancy between the model's predictions and the actual target values.

In the "Custom Model," the training loss is 2.6245, which means that, on average, the model's
predictions during training are close to the actual values. In the test phase, the loss increases to
20.8887, indicating that the model's performance is less accurate on unseen data.

For the "ResNet Model," the training loss is 8.3281, while the test loss is 12.0502. These numbers
suggest that the ResNet Model has a slightly higher loss during training but performs better on the test
data. It can be observed in Figure 18 that the Resnet converges faster than the Custom CNN.

Loss Curves of Tivo Neural Networks
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Figure 20 - Loss curves of the two models
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4.6.2 MSE Loss (Mean Squared Error):

MSE loss measures the average of the squared differences between the predicted and actual values.
It provides a measure of how far the predictions are from the actual values.

In the "Custom Model," both the training and test MSE losses are higher compared to the "ResNet
Model." This implies that the "ResNet Model" has lower squared errors, indicating better performance
in terms of minimizing prediction errors.

4.6.3 MAE Loss (Mean Absolute Error):

MAE loss measures the average of the absolute differences between the predicted and actual values.
It provides a robust measure of the average prediction error.

The "Custom Model" has higher MAE losses for both training and test data compared to the "ResNet
Model." This indicates that the "ResNet Model" has smaller absolute prediction errors.

4.6.4 R Squared Score (Coefficient of Determination):

The R? score measures the proportion of the variance in the dependent variable (target) that is
predictable from the independent variables (model predictions).

In the "Custom Model," the training R? score is 0.9439, suggesting that 94.39% of the variance in the
target variable can be explained by the model. However, in the test phase, the R? score drops to 0.1499,
indicating that only 14.99% of the variance is explained by the model on unseen data.

For the "ResNet Model," the R? score during training is 0.8089, and it remains relatively high in the test
phase at 0.5151. This suggests that the "ResNet Model" performs better in explaining the variance in
the target variable in both training and testing.

4.6.5 MAPE (Mean Absolute Percentage Error):

MAPE measures the average percentage difference between the predicted and actual values. It
provides insight into the relative prediction error.

The "Custom Model" has a MAPE of 0.0724 for training and 0.1596 for the test. In contrast, the "ResNet
Model" has a lower MAPE in both training (0.0644) and test (0.1197), indicating that it produces
predictions that are closer to the actual values in terms of percentage error.
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4.7 Chapter Summary

In summary, the model performs well on the training dataset, exhibiting low loss values, a high R2
score, and a low MAPE. The "ResNet Model" generally performs better than the "Custom Model"
across these metrics. It achieves lower loss values, better R? scores, and smaller absolute and
percentage prediction errors, suggesting its superior performance in the regression task. Given the low
MAPE of 11% on the test set, the model can perform with a good margin error on the task of filling
spatio-temporal gaps in NO2 gas emission estimation for various soil varieties in diverse conditions.
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Chapter 05: Conclusions

The two primary research objectives of this project was to investigate to what extent could we be able
to identify the differences in emissions rate of nitrous oxides in various soil orders from the Sentinel
5P data, and to what extent could we use the soil level data (along with the dates) with their
corresponding images from the Sentinel-2 data to build and test a deep learning model that is capable
of predicting emissions rates. The first research objective was answered in detail in the Chapter 3 of
the thesis. The second research objective was answered in detail in the Chapter 4 of this thesis.

To achieve this, we developed a data extraction tool using the Google Earth Engine API’s to download
data locally. Then we determined locations for the survey. We utilized the nitrous oxide readings data
into various statistical techniques and analysis, visualized the dataset to gain additional insights. We
then utilized the RGB images and created a pipeline for data ingress and egress for deep learning tasks.

Predicting the presence of nitrous gas in plain view RGB images using satellite imagery is difficult
because the images do not have enough variation to estimate the amount of gas in a particular image.
However, we managed to get predictions within accurate to within 12% of the actual value (as tested
on our test dataset). This shows that the model captures nuances in pictures that is not visible to
humans.

5.1 Implications

The first assessment of the utilisation of satellite imaging and image date for the purpose of
recognising nitrous oxide gas has been aided by this research on a soil level. The findings show the
viability of predicting the presence of nitrous gases, a task that was previously not possible with
satellite imagery but could have significant effects if improved to address some of the practical
difficulties of using remote sensing data to monitor air quality projects. This project's first objective
was to determine whether and how fluctuations in nitrous oxide gas emissions on a soil level would
be possible. The study's finding that soil type plays a significant effect in emissions was significant.

This dissertation's secondary goal was to assess whether high-resolution satellite imagery and the
image's related date were appropriate for calculating emissions via a deep learning neural network.
We found out that our model’s predictions were within 12% of the actual value. This would help in a
variety of ways such as building predictive models and ecosystems.

The prevalence of these 2 research artifacts would help with planning, monitoring, and managing
agricultural resources as well as educating decision-makers on crucial environmental issues including
programmes to mitigate climate change will benefit from the knowledge from this study.

5.2 Future Work and Limitations

There are numerous potential directions for further work addressing some limitations in our research.

First and foremost, improving data diversity and quality should be the next goal. The dataset's capacity
for generalisation can be increased by adding more high-quality samples. Additionally, if there are data
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imbalances, determining their causes and putting data balancing procedures into practise may improve
performance. In this case we don’t have data imbalances (for the context that is regression), but it is
possible that in future when authors collect data it is likely that the collected data may contain
imbalances during the collection process.

Second, significant consideration must be given to model complexity and hyperparameter adjustment.
It is important to assess the model's architecture and complexity to make sure it is appropriate for the
task at hand. To avoid overfitting, advanced regularisation techniques can be used, and
hyperparameters should be consistently adjusted to improve model performance.

Third, using transfer learning is a worthwhile direction to pursue. For the objective, pre-trained models
or characteristics from models trained on larger and more varied datasets can be adjusted and fine-
tuned. This could speed up model training and possibly produce better outcomes. There are numerous
potential directions for further work.

Finally, the satellite photos are resized to 200 x 200 pixels, but the images themselves are gaining
access to higher-compute power resources might greatly improve the model's ability to grasp
subtleties and features in the data. The limits of the current model can be solved, and its performance
on the test dataset can be enhanced, by pursuing these new lines of inquiry.
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Code and Data

Codel:

AgNES-Network/SentinelRegression CNN.ipynb at main - Ayoob7/AgNES-Network (github.com)

Code2:

AgNES-Network/SentinelRegression ResNet.ipynb at main - Ayoob7/AgNES-Network (github.com)

Datal:

https://drive.google.com/drive/folders/1cd9Y3c4Y8Quto0 efS M88iKgy6FoSdE?usp=sharing

Data Extraction Tool.5P:

AgNES-Network/SentinelSP DataExtraction.ipynb at main - Ayoob7/AgNES-Network (github.com)

Data Extraction Tool.2:

AgNES-Network/Sentinel2 DataExtraction.ipynb at main - Ayoob7/AgNES-Network (github.com)
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https://github.com/Ayoob7/AgNES-Network/blob/main/SentinelRegression_CNN.ipynb
https://github.com/Ayoob7/AgNES-Network/blob/main/SentinelRegression_ResNet.ipynb
https://drive.google.com/drive/folders/1cd9Y3c4Y8Quto0_efS_M88iKgy6FoSdE?usp=sharing
https://github.com/Ayoob7/AgNES-Network/blob/main/Sentinel5P_DataExtraction.ipynb
https://github.com/Ayoob7/AgNES-Network/blob/main/Sentinel2_DataExtraction.ipynb
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