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Abstract

Learning from structured data, including sequences and graphs, is a signif-

icant and central challenge in machine learning that has far-reaching appli-

cations across numerous disciplines, including chemistry and biochemistry.

Kernel methods are undoubtedly an essential tool in this challenge. Their

use of a similarity function, known as a kernel function, facilitates learning

complex relationships from data of arbitrary structure. However, many ex-

pressive notions of similarity are not valid kernel functions, meaning they are

not applicable to standard kernel methods. Kreı̆n space methods are a poten-

tial solution to this problem, as they generalise kernel methods to a much

larger class of similarity functions. In this thesis, we explore the application

of Kreı̆n space methods to structured data. Focusing on problems in chem-

istry and biochemistry, in which structured data and domain-specific simi-

larity measures are commonplace, we investigate to what extent Kreı̆n space

methods can be utilised to develop supervised learning models for struc-

tured data. In particular, we develop models to identify translation initiation

sites in nucleic acid sequences, predict the yield of a carbon-nitrogen cross

coupling reaction and identify peptides exhibiting antimicrobial properties.

We find that the resulting performance of the models is highly dependent on

the choice of similarity function and that Kreı̆n space methods outperform

standard kernel methods in some, but not all, of the domains considered.
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Chapter 1

Introduction

Advancements in modern technology have facilitated the production and

collection of vast amounts of data from various sources. With the ever-increasing

production rate, automating the extraction of knowledge contained within

data has become progressively more important. Machine learning is the

field of study concerned with precisely this idea: the automated extraction

of knowledge from data.

Computational algorithms lie at the core of machine learning. Many of

these algorithms assume that data can be represented in Euclidean space

(Shalev-Shwartz and Ben-David, 2014). Namely, each instance can be rep-

resented as a vector in n-dimensional space. Data not meeting this assump-

tion are known as structured data, and are ubiquitous in many fields. Exam-

ples include images and videos in computer vision, graph-structured data in

chemoinformatics and sequence data in bioinformatics and finance (Passerini,

2013). The inherent structure embedded in these data types contains a wealth

of information that can significantly benefit machine learning algorithms.

However, exploiting this information is a non-trivial task.
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Kernel methods are a class of machine learning algorithms that, among

other things, present a principled set of techniques for extracting and ex-

ploiting structure in data. They work through a pairwise similarity func-

tion known as the kernel function. This function embeds the data into a high-

dimensional Euclidean space in which a machine learning algorithm can op-

erate (Schölkopf and Smola, 2002). This embedding, however, is performed

implicitly. Pairwise evaluation of the kernel function is all that is required.

Hence, if one can define and evaluate a kernel function for a given data type,

one can perform machine learning directly on that data type.

Numerous expressive notions of similarity exist for structured data, in-

cluding, for example, the graph-edit distance for graphs, sequence alignment

scores for sequence data and dynamic time warping for time series (Gao et

al., 2010; Smith and Waterman, 1981; Müller, 2007). Nevertheless, many of

these do not satisfy the requirements of a kernel function and, therefore, can-

not be incorporated into kernel methods. Henceforth, we refer to similarity

functions of this kind as indefinite kernels. Recent advancements, however,

have generalised several kernel methods to work with a larger class of sim-

ilarity functions. These methods, known as Kreı̆n space methods, operate

similarly to kernel methods but with less stringent requirements on which

similarity functions are applicable.

The present thesis aims to investigate the efficacy of Kreı̆n space meth-

ods applied to structured data. We place particular emphasis on problems

from chemoinformatics and bioinformatics, in which structured data often
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provides a natural description of observed phenomena. In the following sec-

tion, we introduce the subject of the present thesis. Subsequently, we provide

an outlook on the thesis content, summarising the results and achievements.

1.1 Objectives

Learning from structured data is an essential concept in machine learning

that has far-reaching applications in many scientific domains. Algorithms

to perform this task must fully exploit the information contained within the

structure in order to learn meaningful relationships. Through their use of

an indefinite kernel function, Kreı̆n space methods are well-equipped to per-

form this task. The fields of bioinformatics and chemoinformatics can signif-

icantly benefit from the successful application of these methods since struc-

tured data often provides a natural description of observed phenomena. Fur-

thermore, expressive, domain-specific similarity measures in these fields can

easily be incorporated into Kreı̆n space methods. Hence, the objective of the

present thesis is to understand the efficacy and applicability of Kreı̆n space meth-

ods applied to non-trivial learning problems originating from bioinformatics and

chemoinformatics. To do so, we focus on the tasks of:

(i) Identification of translation initiation sites (TIS) in sequences of Ara-

bidopsis Thaliana mRNA.

(ii) Prediction of chemical reaction yields in a set of Buchwald-Hartwig am-

ination reactions.

(iii) Classification of Antimicrobial Peptides (AMP).
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Task (i) is the problem of identifying which AUG triple in an mRNA se-

quence starts the translation process. Translation is a crucial component of

gene expression, a fundamental life process by which information encoded

in genes is transformed into functional gene products, such as RNA and pro-

teins (Volgin, 2014). Irregularities in translation initiation can lead to many

human diseases, including cancers and metabolic disorders (Sonenberg and

Hinnebusch, 2009; Jackson et al., 2010; Hershey et al., 2012). In eukaryotes,

translation is not always initiated by the first AUG triple, implying that con-

text information surrounding the triple also plays a role. Hence, automated

identification of TIS is a task well-suited to machine learning that can benefit

genetics research and further the understanding of genetic disorders (Kapur

and Ackerman, 2018). We choose this task since it is clearly of biological

importance and, using the representation of mRNA molecules as biological

sequences, naturally lends itself well to the framework of Kreı̆n space meth-

ods for structured data.

Task (ii) represents a problem with broad applications in the pharmaceu-

tical industry. The Buchwald-Hartwig amination is a palladium-catalysed

carbon-nitrogen (C-N) cross-coupling of amines and aryl halides (Torborg

and Beller, 2009; Magano and Dunetz, 2011; Ruiz-Castillo and Buchwald,

2016). The aromatic amine products play a vital role in synthesising small

drug-like molecules (Vitaku et al., 2014). We choose this task since accurate

quantification of reaction yield could support the drug discovery process and

streamline laboratory experiments. It is also well suited to structured data

methods, owing to the molecular graph representation of molecules. The
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optimal molecular assignment kernel (OMA) (Fröhlich et al., 2005) is an in-

definite kernel that can directly exploit this representation. Therefore, we

consider whether Kreı̆n space methods, equipped with the OMA kernel, can

provide a suitable methodology for predicting chemical reaction yield.

Task (iii) involves the classification of AMPs, also known as host defence

peptides. They are a class of molecules that play a crucial role in the innate

immune system (Mookherjee et al., 2020; Hancock et al., 2016; Ting et al.,

2022). These peptides are typically composed of 12 to 50 amino acids and

are highly effective against a wide range of microorganisms such as bacte-

ria, viruses, fungi, and parasites. Moreover, they are less likely to develop

antimicrobial resistance (AMR) due to their rapid membrane permeabilising

activity (Mookherjee et al., 2020; Ting et al., 2021a; Mayandi et al., 2020).

Given their broad-spectrum and rapid antimicrobial activity, researchers are

exploring AMPs as a potential solution to the growing AMR problem, a ma-

jor global health concern (Murray et al., 2022; Ali et al., 2022). Therefore,

the computational classification of peptides that exhibit antimicrobial activ-

ity could significantly speed up the discovery and development of AMPs for

clinical use. Aside from the potential benefits that the automated classifi-

cation of AMPs could deliver, this is another task for which learning from

structured data is a suitable framework. Peptides can be represented as bio-

logical sequences, a representation that can be utilised by standard, domain-

specific similarity measures such as the sequence alignment algorithm of

Smith and Waterman (1981). Given that many of these similarity measures

are, in fact, indefinite kernels, the classification of AMPs naturally lends itself
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to the learning paradigm of Kreı̆n space methods for structured data.

1.2 Overview and Contributions

In this section we provide an overview of the structure of the thesis and detail

the contributions we have made to the fields of bioinformatics, chemoinfor-

matics and machine learning research. The remaining thesis consists of 7

chapters, which are broken down as follows:

Chapter 2, Review of Current Literature The next chapter reviews the cur-

rent literature pertaining to kernel methods and their application to struc-

tured data. We focus our discussion on a few key papers relevant to prob-

lems involving molecules and biological sequences. In particular, we begin

by reviewing kernel methods applied to molecules and reactions. We cen-

tre our discussion on works utilising the SMILES, molecular fingerprint or

molecular graph representation of molecules. This is followed by a review

of literature applying kernel methods to problems involving biological se-

quences, in which we focus on methods that utilise alignment, compression

and string kernels. Finally, we discuss the current literature comprising in-

definite kernel methods. We focus on two categories of approaches: those

that transform an indefinite kernel into one which is positive-definite and

those that work directly with an indefinite kernel, Kreı̆n space methods.

Chapter 3, Machine Learning This chapter covers the background math-

ematical theory of some fundamental elements of machine learning, which
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are required to understand the remaining chapters. We start by providing

an overview of learning theory and how a predictive function can be learnt

from the principle of regularised risk minimisation (RRM). This is followed

by a first-principles derivation of the linear support vector machine (SVM)

and the linear support vector regression (SVR) algorithms. We further show

how the theory of convex optimisation can be employed to reveal deeper in-

sights into SVMs. We conclude the chapter by demonstrating how SVMs can

learn non-linear decision functions through the use of kernels.

Chapter 4, Kreı̆n Space Methods for Structured Data Using the theory de-

veloped in Chapter 3, this chapter presents the main methodological contri-

butions of the thesis. Initially, we discuss the fundamental theory of Kreı̆n

spaces and the notion of a Reproducing Kernel Kreı̆ Space (RKKS). Then, we

present the first major methodological contribution of the chapter. In partic-

ular, we provide the first formal derviation of the dual formulation of a sup-

port vector machine (SVM) in a Kreı̆n space. The notion of duality, which we

make explicit in section 3.2.3, states that some optimisation problems can be

viewed from either of two perspectives, the primal or the dual. Transforming

the original problem, the primal, into the dual can reveal new insights and,

in some cases, simplify the problem. The Kreı̆n-SVM, a generalisation of the

SVM to indefinite kernels, was initially proposed by Oglic and Gärtner (2019)

in its primal form. We provide the first complete derivation of the Kreı̆n-

SVM dual, showing that it can be solved via quadratic programming. This

is followed by the second major methodological contribution of the thesis.
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In particular, we apply the notion of Kolmogorov Complexity (Cover, 1999;

Kolmogorov, 1965) to develop a novel, indefinite string kernel, the string com-

pression kernel (SCK). The Kolmogorov complexity of an arbitrary digital ob-

ject is the length of the shortest computer program, in a given programming

language, which produces the object as output. Whilst conceptually simple,

it is not a computable function. However, it can be well-approximated by

real-world compression software. The SCK makes use of this observation in

order to define a similarity measure over strings, using a number of common

compression algorithms to approximate the Kolmogorov Complexity.

Chapter 5, Identification of Translation Initiation Sites This chapter pro-

vides the first empirical contribution of the thesis. The Kreı̆n-SVM and SCK

developed in Chapter 4, alongside a dataset of Arabidopsis Thaliana mRNA

sequences, are utilised to develop classification models that identify the lo-

cation of TIS codons. Using several standard compression algorithms, we

compare our approach to the state-of-the-art positive-definite kernel method

for this task, an SVM equipped with the locality-improved (LI) kernel (Zien

et al., 2000). Our methodology is initially validated on a dataset of synthetic

strings, distributed according to a k-order Markov model. This particular

distribution is well-suited to the PPM compression function since, internally,

it uses a k-order Markov model to encode the sequence of characters. In-

deed, our experiments confirm this, as the PPM model drastically outper-

forms the LI baseline. Our methodology is then evaluated on the real-world
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TIS dataset. In this case, the PPM compression algorithm (Cleary and Wit-

ten, 1984) leads to the best-performing Kreı̆n-SVM model, achieving similar

results to the positive-definite LI baseline.

Chapter 5, Prediction of C-N Cross Coupling Reaction Yield This chapter

presents another empirical contribution of the thesis. Utilising the regres-

sion algorithm of Oglic and Gärtner (2018), equipped with the OMA kernel

of Fröhlich et al. (2005), we develop and evaluate a Kreı̆n space model to

predict the yield in a set of Buchwald-Hartwig amination reactions. Models

were developed using an open-source combinatorial dataset, in which each

reaction consisted of an additive, aryl halide, base, ligand and experimen-

tally validated yield (Ahneman et al., 2018). Our approach was compared

to a baseline support vector regression model equipped with the positive-

definite Weisfeiler-Lehman graph kernel, a methodology that has previously

been demonstrated to perform well on this dataset (Haywood et al., 2021). In

a set of in-sample experiments, our methodology performs similarly to the

baseline, with approaches achieving a small error. However, in a set of out-

of-sample experiments, in which certain additives were completely removed

from the training set, our approach, as well as the baseline, suffers a degra-

dation in performance. The results demonstrate that the proposed method-

ology is applicable when operating in known regions of chemical space but

fails to suitably generalise to unknown regions.
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Chapter 7, Classification of Antimicrobial Peptides This chapter presents

the main empirical contribution of the thesis. Utilising the Kreı̆n-SVM devel-

oped in Chapter 4, in conjunction with standard sequence alignment mea-

sures, we develop models to classify peptides as antimicrobial. More specif-

ically, we utilise the Smith-Waterman alignment score and Levenshtein dis-

tance to develop models capable of detecting both general and species-specific

antimicrobial activity in peptides. We utilise two datasets from the litera-

ture to evaluate our methodology in identifying peptides exhibiting general

antimicrobial activity. We compare against two in-house positive-definite

baselines and pre-established models associated with each dataset. On both

datasets, either the Smith-Waterman alignment score or Levenshtein distance

leads to the best-performing model. Utilising another dataset from the liter-

ature, we further assess our methodology by developing models capable of

identifying activity against specific species. We test these models on a small

set of in-house, experimentally validated peptides. In this case, one of the

positive-definite baselines outperforms our proposed approach. Neverthe-

less, the general and species-specific models are made freely available as web

applications at http://comp.chem.nottingham.ac.uk/KreinAMP.

Chapter 8, Conclusion The final chapter summarizes the content of the pre-

vious chapters and suggests possible avenues to improve our work.

http://comp.chem.nottingham.ac.uk/KreinAMP
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Chapter 2

Review of Current Literature

This section reviews the current literature on kernel methods and their ap-

plication to structured data. Given the domain of the tasks laid out in the

previous chapter, we focus our discussion on the application of kernel meth-

ods to problems in bioinformatics and chemoinformatics in which structured

data representations have been utilised.

We start our review with a discussion of the application of kernel meth-

ods to chemoinformatics, focusing on the SMILES string, molecular finger-

print and molecular graph representation of molecules. We choose these rep-

resentations since they are commonplace in chemoinformatics (Wigh et al.,

2022) and, as we will see, are widely used when applying kernel methods

to chemoinformatics. Following this, we move on to review the applica-

tion of kernel methods to bioinformatics. We focus our discussion on ap-

proaches that use alignment, compression, and string kernels. Chapters 5

and 7 both use these approaches, and we have aimed to keep the discussion

relevant to our work. In terms of the specific applications to chemoinformat-

ics and bioinformatics, most of the review discusses supervised learning. In
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particular, the prediction of physical, chemical and structural properties of

molecules, reactions and biological sequences. The subject of the thesis is

wholly centred around supervised learning, and, as before, we have focused

on keeping the discussion relevant.

The review’s final section discusses various methods to learn functional

relationships with indefinite kernels. We group the methods into two cat-

egories: those that modify the kernel function and those that modify the

learning algorithm. The former category of methods transforms an indef-

inite kernel function into one that is positive definite. The latter category

of methods devise learning algorithms that naturally incorporate indefinite

kernel functions; we refer to these as Kreı̆n Space methods.

In order to provide context for the rest of the chapter, the following section

provides a qualitative description of kernel methods. For the sake of brevity,

a complete, quantitative description is left until Chapter 3.

2.1 Kernel Methods for Structured Data

Kernel methods are a class of machine learning algorithms, the most notable

example being the Support Vector Machine (SVM). They have been success-

fully applied to several real-world problems and are considered a standard

tool for a machine learning practitioner. Much of this success stems from the

kernel trick, which facilitates the modelling of non-linear relationships with

linear algorithms through the utilisation of a kernel function. The class encom-

passes algorithms to solve many problems encountered in machine learning,
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including, for example, classification, regression and dimensionality reduc-

tion, to name but a few (Schölkopf and Smola, 2002). A standard under-

graduate statistics course will cover linear algorithms to solve all the afore-

mentioned problems, for instance, logistic regression, linear regression and

PCA, respectively. However, each of these algorithms has an equivalent ker-

nel method, namely, kernel logistic regression, kernel ridge regression and

kernel PCA. These can be seen as a non-linear generalisation of their linear

counterparts. Indeed, many well-known linear algorithms can be viewed as

a special case of a more general kernel method.

Using a kernel method as opposed to its linear counterpart is beneficial

for a number of reasons. As previously stated, kernel methods are capa-

ble of modelling arbitrary, non-linear relationships. Many real-world prob-

lems require greater flexibility than a linear method can provide. Allowing

for greater modelling flexibility increases the types of problems that can be

solved with a given algorithm. As a small example, consider modelling the

function f (x) = x2 with linear regression. Try as one might, the resulting

model would not be able to capture the true functional relationship. On the

other hand, there are a plethora of kernel methods equipped to solve this

problem.

Another benefit of using a kernel method is the applicability to non-vectorial

data. By this, we mean data that cannot be naturally represented in a table.

Common examples, some of which we discuss in more detail in later sections,

include strings, graphs and trees. Linear algorithms assume that instances of

data are represented as n-dimensional vectors. Without first representing,
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say, a set of strings as a set of vectors, it would not be possible to apply any

of the standard linear algorithms. Furthermore, there are many such possible

representations, and it is not a trivial task to choose one that is suitable to the

given problem. On the other hand, kernel methods are directly applicable

to non-vectorial data. As long as a kernel function exists for the considered

data type (which, in most cases, is true), it is straightforward to apply a ker-

nel method directly to non-vectorial data, thus bypassing the need to find a

suitable representation.

As one would expect, the added benefits of using a kernel method does

not come without its drawbacks and we would be remiss without mention-

ing these. The transition from linear to kernel methods, whilst allowing for

greater modelling flexibility, also increases the complexity of deriving a suit-

able model. Inherent to all kernel methods are hyperparameters. As opposed

to other parameters of the model, which we refer to as weights, hyperparam-

eters are those which are decided a priori. The process of computing model

weights, commonly known as fitting a model, is defined by the learning algo-

rithm and is therefore usually abstracted away from the end user. With many

kernel methods, fitting a model is a deterministic procedure that will always

return the same set of weights given the same input. That is, given a set of in-

puts, the learning algorithm is a procedure to fit a model. On the other hand,

the procedure of choosing hyperparameters sits on top of fitting a model. A

practitioner wants to select the best set of hyperparameters such that, when

provided to the learning algorithm, the fitted model is in some sense opti-

mal. This is a task that cannot be overlooked, since the resulting model can



Chapter 2. Review of Current Literature 15

be sensitive to the choice of the provided hyperparameters. Hyperparamter

optimisation, the procedure of choosing a set of optimal hyperparameters for a

learning algorithm, is largely performed in an experimental fashion. Whilst

the fundamental process of selecting suitable hyperparameters is performed

via experimentation, there have been many recent developments to automate

and streamline this (Shahriari et al., 2015; Chapelle et al., 2002; Yu and Zhu,

2020). AutoML, a sub-field of machine learning, considers learning algo-

rithms as hyperparameters. More specifically, AutoML performs the simul-

taneous selection of a machine learning algorithm and its hyperparameters,

thereby abstracting away many of the repetitive tasks one faces when build-

ing a machine learning model (Yu and Zhu, 2020; Karmaker et al., 2021; He

et al., 2021). There are three main sources of hyperparameters in a kernel

method. The learning algorithm itself usually defined with at least one hy-

perparameter. Furthermore, there typically exist many appropriate kernel

functions for the data type considered, the decision of which kernel func-

tion to use can also be viewed as one of selecting a hyperparameter. Finally,

most kernel functions themselves include hyperparameters. Compared to

standard linear algorithms with no hyperparameters, this added complexity

can seem daunting to the end user. However, it is often the case that the

improved modelling capabilities outweigh the increased overhead of hyper-

parameter optimisation.

Another main drawback of using kernel methods is that of computational

complexity. Fundamental to kernel methods is the kernel matrix. This is a

matrix whose elements consist of evaluation of the kernel function at each
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pair of instances. Hence, the size of this matrix grows as O(N2) for a data set

of size N. With modern data sets consisting of tens of millions of instances,

application of kernel methods can be computationally prohibitive. In their

standard implementation, it is necessary to compute and store the whole ker-

nel matrix as a stage in fitting a kernel method. Furthermore, a number of

kernel methods require the inverse of this matrix; an operation that scales as

O(N3). These issues, however, have been understood for many years. There

exist numerous approximation methods to alleviate the computational bur-

dens associated with the kernel matrix (Rahimi and Recht, 2007; Bach, 2013;

Rudi et al., 2015; Rudi and Rosasco, 2017; Rudi et al., 2017; Oglic and Gärtner,

2017).

Having provided an overview of kernel methods, we proceed to discuss

their application to structured data. A broad overview of kernel methods

for structured data can be found in the following references: Passerini (2013),

Gärtner (2003), Schölkopf et al. (2004), Schaid (2010), Borgwardt (2011), Saun-

ders and Demco (2007), Ralaivola et al. (2005), and Akutsu and Nagamochi

(2011).

2.1.1 Molecules and Reactions

The synthesis of new molecules is fundamental to the development of the

field of synthetic chemistry. However, synthesising a molecule is both a

time-consuming and costly procedure that is usually carried out on a trial-

and-error basis. This long-winded process has the potential to be automated

and optimised, which in turn could reduce expenditure and allow synthetic
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chemists to spend more time designing molecules. This section discusses cur-

rent computational approaches to problems in synthetic chemistry, focusing

on kernel methods and their various molecular representations.

SMILES

The Simplified Molecular Input Line System (SMILES) is a chemical nota-

tion language that uniquely specifies two-dimensional molecular structures

(Weininger, 1988). The uniqueness of the representation is a consequence of

the rules that govern the SMILES specification. As such, a SMILES string is

a string of ASCII characters that uniquely represents a molecule. The basic

rules for constructing a SMILES string are given in Table 2.1. It is impor-

Molecular feature Representation

Non-aromatic atoms Element symbols, first letter in upper case letters
Single bonds - (but may be omitted)
Double bonds =
Branching Denoted using ()
Ring closure Label (with the same number) atoms that were

connected to each other
Aromatic atoms Lower case letters

TABLE 2.1: Basic rules for constructing a SMILES string (Hirst
et al., 2023).

tant to note that, although each valid SMILES string corresponds to a unique

molecule, the converse is not true; each molecule can have more than one

valid SMILES representation. It is for this reason that the canonical SMILES

exists. This defines an extension to the SMILES representation in which each

molecule is assigned one, unique SMILES string. Figure 2.1 indicates all the

valid SMILES representations of a toluene molecule, as well as the canonical

representation.



Chapter 2. Review of Current Literature 18

FIGURE 2.1: A toluene molecule accompanied by its numer-
ous SMILES representations. The first SMILES is the canonical

SMILES (Bjerrum, 2017).

SMILES are often used to store molecules in a database, since their con-

densed representation allows for minimal storage overhead and efficient query-

ing. However, their one-to-one mapping between molecules has prompted

researchers to consider whether predictive models can be developed based

solely on the SMILES string. Perhaps the first authors to consider this idea

were Swamidass et al. (2005), in which they compare one, two and three

dimensional kernels for small molecules on a number of real-world classifi-

cation data sets. The one-dimensional kernels are simply string kernels tak-

ing SMILES strings as input (Leslie et al., 2003). These are used in conjunc-

tion with an SVM in order to classify compounds indicating carcinogenicity

in mice and rats, mutagenicity in Salmonella typhimurium and inhibition of

cancer growth across human tumour cell lines. Interestingly, in all cases,

the resulting models achieve accuracies much greater than that of random

guessing. However, generally speaking, the one-dimensional kernels do not

produce models as accurate as those with two-dimensions. Cao et al. (2012)

observe similar results for the task of compound toxicity classification. They



Chapter 2. Review of Current Literature 19

compare a string kernel on SMILES strings with a Gaussian kernel on com-

mon molecular descriptors and find both methods perform comparably, re-

sulting in accurate classifiers. It is surprising to observe that the encoding of

molecules as strings retains sufficient information to produce accurate classi-

fiers for such a diverse set of problems.

Fingerprints

Molecular fingerprints are a class of representations of (usually 2D) molec-

ular structures that represent a molecule as a bit vector. This class can be

further subdivided into different sets that are defined through the means in

which the fingerprint is calculated. For the purpose of this thesis, we focus

on two of the main fingerprinting methods, namely, substructure keys-based

fingerprints and circular fingerprints (Cereto-Massagué et al., 2015).

Substructure keys-based fingerprints set the bits in the fingerprint vec-

tor using predefined substructures. The number of bits is determined by the

number of predefined substructures, with a bit i being set to 1 if substructure

i is present in the molecule, and set to 0 otherwise. One popular method is

the MACCS (MDL) fingerprint. It comes in two variants, one with 166 and

the other with 960 predefined substructures (Cereto-Massagué et al., 2015;

Durant et al., 2002). The shorter one is the more common of the two since it

covers most of the interesting chemical features for drug discovery and vir-

tual screening (Cereto-Massagué et al., 2015). Circular Fingerprints work by

analysing a neighbourhood of each atom (all paths of a set length originating
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from an atom) in a molecule, with most variants based on the Morgan algo-

rithm (Morgan, 1965). The substructure contained within the neighbourhood

is hashed to produce the relevant bit index (Cereto-Massagué et al., 2015).

One notable and common method is the Extended-Connectivity Fingerprints

(ECFP) (Rogers and Hahn, 2010). This method is defined by a diameter pa-

rameter, which controls the size of the neighbourhood of each atom. An

immediate improvement over substructure keys-based fingerprints is that

ECFP can represent novel structural classes, since they not defined a priori

(Rogers and Hahn, 2010).

Since fingerprints map a molecule to a bit vector, they naturally induce a

kernel function that is simply the inner product of the bit vectors. However,

a more common approach is to use fingerprints in conjunction with the Tani-

moto coefficient (Tanimoto, 1958), as this also induces a kernel function. Fur-

thermore, the vectorial representation of a fingerprint can be combined with

any common vector kernel function, including, for instance, the Gaussian

kernel. Haywood et al. (2021) explore this idea in more detail, in which they

perform a detailed comparison of numerous molecular descriptors and vec-

tor kernel functions. Included in the comparison are MACCS fingerprints,

circular fingerprints as well as the Tanimoto coeffcient. The comparison is

performed for the task of yield prediction in the Buchwald-Hartwig ami-

nation reaction (Ahneman et al., 2018), using the support vector regression

(SVR) algorithm. Of the various descriptors tested, fingerprints were rated

the highest for generalisability, outperforming a set of expensive quantum

chemical descriptors. Fingerprints are also used in the work of Ullrich et
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al. (2016), in which they are combined with other descriptors to predict the

binding affinity of 20 ligands. They observe substantial improvements when

combining multiple descriptors as opposed to any one single descriptor. In

one experiment in particular, they find that combining MACCS and ECFP

fingerprints produces models with smaller prediction errors than those us-

ing either fingerprint separately.

Extensions to fingerprints have also been considered by Swamidass et al.

(2005). Through the use of a hash function, standard circular fingerprints

produce bit vectors of a predetermined length. It may be the case that more

substructures exist than the length of the bit vector. Hence, the compression

to a predetermined length is a source of information loss. To circumvent this

issue, the authors propose to use long bit vectors with a unique bit position

reserved for each possible path. They compare these two-dimensional repre-

sentations with one and three dimensional representations. From an analysis

over numerous classification tasks, they conclude that two-dimensional fin-

gerprints may be preferred.

Graphs

Molecular graphs, first considered by Cayley (1874), describe molecules as a

vertex and edge labelled mathematical graph. Consider a graph G = (V , E)

where V is the set of vertices and E the set of edges. Using a vertex labelling

function fV , each vertex is labelled by its atomic element. Similarly, the edge

labelling function fE labels each edge by its bond type. Whilst atomic ele-

ments and bond types are standard labels for the vertices and edges, it is
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possible to provide more contextual information. Ceroni et al. (2007) describe

a kernel function that accounts for two and three dimensional structural in-

formation in small molecules. In this case, the vertices of the molecular graph

are labelled with the atom type, partial charge and its three-dimensional co-

ordinates. In a set of experiments to classify compounds active against HIV

as well as those that inhibit cancer growth, they found that providing both

the two (atom type, partial charge) and three dimensional information pro-

duced more accurate models than using either separately. Fröhlich et al.

(2005) also explore this idea, in which they define a kernel function that ac-

counts for numerous properties of atoms and bonds. This kernel, known as

the Optimal Assignment kernel, compares two molecules by finding a maxi-

mal similarity mapping from the atoms of one molecule to another. It does so

by comparing not only the properties of the considered atom but also those

of its surrounding neighbourhood. In a set of molecular regression and clas-

sification experiments, they find their approach produces less error than a

baseline approach that also uses the atom and bond properties, but does not

perform the optimal assignment. We discuss their approach in more detail in

section ??.

As we have seen, embedding contextual information into the molecular

graph can aid in the development of predictive models. The previously de-

scribed approaches were defined for small molecules, yet the concept of a

graph is more general than the two-dimensional description of a molecule.

There exist numerous graph kernels that, whilst not designed with molecules

in mind, have been shown to excel in tasks relating to chemoinformatics. One
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notable example is the Weisfeiler-Lehman kernel function (Shervashidze et

al., 2011). This kernel, which we discuss further in ??, is inspired by the

Weisfeiler-Lehman test of isomorphism on graphs (Leman and Weisfeiler,

1968). For two graphs to be isomorphic, they must contain the same number

of vertices and be connected in the same way. That is, they must be topo-

logically equivalent. Whilst no efficient algorithm exists for deciding graph

isomorphism, the resulting Weisfeiler-Lehman kernel has proven to be very

useful in all manner of machine learning problems involving graphs. In their

comparison of numerous molecular descriptors, Haywood et al. (2021) also

consider the Weisfeiler-Lehman kernel. They rank this descriptor as second

best in terms of generalisability, placing only behind molecular fingerprints.

Both methods are descriptors that account for structural information, hence

there is certainly benefit to using the molecular graph representation.

All the approaches we have previously considered are problems of pre-

dicting properties of a given molecule. Oglic et al. (2018) turn this problem

on its head and, instead, search for a molecule with a given property. This

approach, known as lead discovery, is a crucial stage of the drug development

life-cycle (Hughes et al., 2011). It is a time-consuming process that is usu-

ally performed in a lab but can greatly benefit from computational assistance

(Sliwoski et al., 2014). Oglic et al. develop a novel algorithm to explore the

space of possible molecules in search of those that exhibit large binding affin-

ity to a specific receptor, using the Weisfeiler-Lehman kernel as a molecular

descriptor.
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2.1.2 Biological Sequences

Understanding the structure and function of the molecules which make up

and control living organisms is a significant aim of molecular biology. Two

categories of molecules of particular interest to the field are nucleic acids and

proteins. These are both chain molecules, consisting of a small set of indi-

vidual components which, when joined together in a chain, form complex

molecules that dictate many of the biological processes in living organisms.

The chain-like structure allows one to represent these molecules as sequences

of characters from a given alphabet. Indeed, a DNA molecule can be repre-

sented as a sequence defined over the alphabet Σ = {A, C, G, T}. Similarly, a

protein can be viewed as a sequence of characters taken from the alphabet of

amino acids. The representation of nucleic acids and proteins as sequences

facilitates their study through the lens of sequence analysis. In what fol-

lows, we discuss the application of kernel methods to biological sequence

problems, focusing on those utilising sequence alignment, compression and

string kernels.

Alignment

Pairwise sequence alignment is a fundamental tool in bioinformatics, aim-

ing to establish a correspondence between the characters in two sequences.

It has allowed practitioners to analyse the similarity of pairs of biological

sequences and detect ancestral, structural or functional similarities between

them. The general aim of an alignment is to associate the characters of two
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Sequences Global Alignment Local Alignment
HEAGAWGHEE HEAGAWGHEE AWGHE
PAWHEAE –––PAWHEAE AW-HE

TABLE 2.2: An example of the optimal pairwise alignments of
two amino acid sequences. The global and local alignments
were computed using the EMBOSS Needle and EMBOSS Wa-
ter services, respectively (Madeira et al., 2022). Both methods
used the BLOSUM62 scoring matrix and default gap penalties
The identical regions are displayed in green and gaps are de-

noted by "-".

sequences such that a given measure of similarity is maximised. The result-

ing alignment is known as the optimal alignment. Each association between

two characters induces a score, and the sum of these scores is maximised

when computing the optimal alignment. However, deciding the score for a

pair of characters is a non-trivial task that can drastically affect the result-

ing alignment. In the context of amino acid sequences, BLOSUM matrices

are a standard choice since they provide scores that reflect observed evo-

lutionary relationships (Henikoff and Henikoff, 1992). When performing

an alignment, a practitioner must decide between a global and local align-

ment. A global alignment produces a correspondence between all characters

in both sequences. Using a global alignment implicitly assumes that the two

sequences are related in their entirety. A local alignment does not make this

assumption, as it finds the two maximally aligned subsequences of the con-

sidered sequences. An example of both is provided in Table 2.2.

Sequence alignments are limited in kernel methods since the resulting

alignment score is not a valid kernel function (see Definition 3.3.5), mean-

ing they cannot directly be applied to a kernel method. However, one can

implicitly incorporate alignment scores into kernel methods through certain



Chapter 2. Review of Current Literature 26

computational tricks. The pairwise-SVM method is one such trick, in which,

for a data set of N sequences, a sequence is represented by a length N vector

containing the optimal alignment scores of that sequence with every other

sequence in the data set (Tsuda, 1999). Under this vector representation,

a standard SVM can be applied. Liao and Noble (2003) use the pairwise-

SVM method to detect homologous proteins, demonstrating that it signifi-

cantly outperforms all other considered approaches, including the state-of-

the-art. One competing method in their comparison is the pairwise-SVM

using BLAST scores (Altschul et al., 1990). The BLAST algorithm is a heuris-

tic alignment tool that sacrifices optimality for computational efficiency. As

one would expect, the model using non-optimal alignments is far inferior to

its optimal counterpart. This has also been observed in other protein classifi-

cation tasks (Kocsor et al., 2006; Shah et al., 2008). Vert et al. (2004) generalise

the optimal local alignment score by defining a similarity measure that ac-

counts for all possible local alignments instead of just the optimal one. Whilst

this doesn’t lead to a valid kernel function, it can still be incorporated under

the pairwise-SVM framework. Their experiments indicate that the gener-

alised score leads to more accurate models than the optimal local alignment

score.

Compression

In the context of computer science, compression is the process of encoding a

digital object in a representation that is smaller than its original format. In

particular, since all digital objects can be represented as a sequence of bits,
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compression aims to represent the object with fewer bits by identifying and

removing redundant information. Many statistical and machine learning al-

gorithms operate in a similar way. Indeed, the process of dimensionality

reduction can be viewed as one of data compression (Van Der Maaten et al.,

2009). With modern compression algorithms being extremely efficient, it is

natural to consider whether they can be incorporated into a machine learn-

ing process (Gupta et al., 2017). Kocsor et al. (2006) investigate this idea in

the context of SVMs. They utilise a compression-based similarity measure

(CBM) that quantifies the relative improvement in compression of a given

string when another string is provided as input. In a set of protein homology

detection experiments, they find that CBM-based models outperform those

based on BLAST scores. However, the CBM-based models fall short of mod-

els incorporating the optimal alignment score. Yet, interestingly, when using

a combination of CBMs and BLAST scores, the resulting models match and,

sometimes, outperform those based on the optimal alignment score. Tangent

to the notion of compression are compression-complexity measures (CCMs)

such as the Lempel-Ziv complexity (Lempel and Ziv, 1976). These are func-

tions which take a string as input and produce a number which, in some

sense, quantifies its complexity. Munagala et al. (2022) make use of CCMs

to classify coronavirus sequences that cause COVID-19. Utilising the both

Lempel-Ziv and Effort-to-Compress (ETC) complexity measures (Nagaraj et

al., 2013), they are able to correctly identify 98% of coronavirus sequences.

Whilst not related to biological sequences or kernel methods, we mention

the work of Melville et al. (2007) as it presents an interesting application of
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CBMs. Melville et al. develop a compression-based tool to perform similar-

ity searching in a database of chemical compounds. Using only the SMILES

representation of a molecule and gzip compression software (which comes

pre-installed on most Unix-based operating systems), they develop a tool ca-

pable of accurate similarity searching that is competitive with state-of-the-art

techniques based on molecular fingerprints.

String Kernels

The use of string kernel models in computational biology is common prac-

tice, primarily due to their simplicity, predictive power and computational

efficiency. Perhaps the simplest example of a string kernel is the spectrum

kernel (Leslie et al., 2001). This kernel considers the k-spectrum of a given

string, which is the set of all k-length subsequences it contains. Under this

kernel, a string is mapped to a vector representation indexed by all possible

k-length subsequences of a given alphabet Σ. For a given k-length subse-

quence in the alphabet, the value at the corresponding index of this repre-

sentation is the number of occurrences of that subsequence in the k-spectrum

of the string. Evaluation of the kernel for a pair of strings is simply the inner-

product of the two vectors. Leslie et al. (2001) test the spectrum kernel’s effi-

cacy for remote homology detection in protein sequences. They find that the

spectrum kernel performs comparably with some state-of-the-art homology

detection methods (at the time of publication). It does, however, fall behind

the best performing method.
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The introduction of the spectrum kernel encouraged the creation of nu-

merous string kernels that were largely inspired by it. The mismatch kernel

(Leslie et al., 2003) is one such kernel that is an extension of the spectrum ker-

nel that also allows for a certain number of mismatches. Using the same vec-

tor representation as the spectrum kernel, the (k, m)-mismatch kernel counts

the occurrences of a given k-length subsequence in a string, as well as those

that differ from it by at most m mismatches (substitution of characters). Leslie

et al. (2003) perform the same remote homology detection experiment as that

of the spectrum kernel. Their results indicate that the mismatch kernel per-

forms as well as the best-known method, representing a substantial improve-

ment over the spectrum kernel. Further modifications to the spectrum kernel

include the substitution kernel, wildcard kernel and gappy kernel (Leslie et

al., 2004). The substitution kernel is analogous to the mismatch kernel but

only allows for mismatches whose probability of occurring exceeds a prede-

termined threshold. Occurrence probabilities are estimated from alignment

substitution matrices and, hence, are biologically well-founded (Schwartz,

1978; Henikoff and Henikoff, 1992). The wildcard kernel augments the al-

phabet with a wildcard character, representing the presence of any symbol.

Occurrences are counted whilst allowing for a maximum number of wild-

card characters per subsequence. The gappy kernel, which is similar in style

to the mismatch kernel, counts the occurrences of k-length subsequences but

also allows for a certain number of gaps. Whilst Leslie et al. (2004) show that

all variants lead to accurate models on protein homology tasks, the resulting

models are usually difficult to interpret. Shrikumar et al. (2019) develop a
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method to explain the output of gappy kernel models and utilise it in detect-

ing motifs that play an essential role in transcription factor binding.

The previously mentioned k-spectrum kernels define a general family of

kernels that have found applications in all manner of biological sequence

tasks. However, for certain tasks, kernels crafted for the problem at hand can

often lead to superior models. Zien et al. (2000) describe a kernel designed

explicitly for the task of TIS identification. The resulting kernel, known as

the locality-improved kernel, reflects the biological hypothesis that local cor-

relations play a more critical role than distant correlations in the TIS process.

Hence, the locality-improved kernel is designed to emphasise local correla-

tions more. In a set of experiments, it is demonstrated that the specifically

designed kernel outperforms two previous state-of-the-art methods. We dis-

cuss this kernel in greater detail in Section 5.2.2. Similarly, Rätsch and Son-

nenburg (2004) describe a kernel designed to reflect important contextual in-

formation governing the location of splice sites in nucleotide sequences. Cru-

cially, as is the case with TIS identification, local correlations play a key role,

and they design a kernel, known as the weighted degree kernel, to reflect

this. In an experiment comparing many state-of-the-art splice site models,

they find that the weighted degree and locality-improved kernels are best

suited to the task.

The generic string kernel proposed by Giguere et al. (2013) can be viewed

as a generalisation of the weighted degree kernel, as well as numerous oth-

ers, that incorporates the physicochemical properties of amino acids into its

computation. The kernel acts similarly to the k-spectrum kernels in that small
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Input Sequence 2-spectrum representation

AA AB BA BB
ABBA −→ [ 0 1 1 1 ]

AABBB −→ [ 1 1 0 2 ]

TABLE 2.3: The 2-spectrum representation of the strings ABBA
and AABBB under the alphabet Σ = {A, B}.

subsequences of an amino acid sequence are compared to one another. How-

ever, this comparison is performed on the basis of the physicochemical prop-

erties of the considered subsequences. Furthermore, the comparisons are

weighted by the distance in the starting positions of the two subsequences,

with those occurring in similar positions providing more significant contri-

bution. Giguere et al. combine the generic string kernel with one designed

for protein binding pockets (Hoffmann et al., 2010) and another designed for

protein secondary structure (Qiu et al., 2007) in order to estimate the bind-

ing affinity of peptide-protein pairs. In a set of experiments, the proposed

method outperforms the kernel method baselines as well as previous state-

of-the-art models. In a separate work, Giguere et al. apply the generic string

kernel to the problem of finding peptides of maximal antimicrobial activity

(Giguere et al., 2015). The specific structure of the kernel allows them to

pose the problem of constructing a peptide with high activity as one of find-

ing a path of maximal length in a graph. In a comparison against a random

selection of peptides, the average and maximum activity of the peptides gen-

erated by their approach was much greater than those that were randomly

sampled. An in vitro experiment, in which several identified peptides were

synthesised and measured against Escherichia coli and Staphylococcus aureus,
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confirmed the validity of their method.

2.2 Indefinite Kernel Methods

Standard kernel methods operate using a pairwise similarity function known

as the kernel function. In order for a given similarity function to be a valid

kernel function, it must be a symmetric, positive-definite function (see defini-

tion 3.3.3). Whilst it is trivial to transform a similarity function into one that is

symmetric, many expressive notions of similarity do not satisfy the positive-

definite requirement. This is particularly true for structured data, in which

domain-specific similarity measures are commonplace. Similarity functions

of this kind, known as indefinite kernels, cannot directly be applied to stan-

dard kernel methods. This issue can be circumvented, but requires either

modification of the indefinite kernel or modification of the kernel method. In

this section, we discuss current approaches to learning with indefinite ker-

nels.

2.2.1 Transformation Methods

The first class of approaches that we consider are those which transform an

indefinite kernel into one which is positive-definite. The general motivation

for these methods is that the indefinite part of the kernel is merely a nui-

sance to be removed. Whilst it has been shown that this assumption does

not always hold (Oglic and Gärtner, 2018) and, indeed, useful information
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resides in the indefinite part of the kernel, transformation methods are still

an attractive approach to facilitate learning with indefinite kernels.

An indefinite kernel can be identified as one whose resulting kernel ma-

trix (see section 3.3.3) has negative eigenvalues. A matrix of this form is

known as indefinite, whereas a matrix whose eigenvalues are non-negative

is known as positive semi-definite. The class of approaches we consider in this

section are those which transform the indefinite kernel matrix into one which

is positive semi-definite. These can broadly be grouped into two categories:

spectrum transformation approaches and proxy matrix approaches. The for-

mer can be categorised as methods which operate on the set of eigenvalues

of the indefinite kernel matrix, producing a new set of non-negative eigen-

values. The latter encapsulates approaches which look for a positive semi-

definite matrix that is, in some sense, representative of the indefinite kernel

matrix. Given the importance of eigenvalues in the proceeding discussion,

we first clarify exactly what is meant by the eigenvalue of a matrix.

Eigenvalues

Given a square matrix K ∈ Rn×n, a vector x ∈ Rn is called an eigenvector of

K if, for some λ ∈ R, the following holds:

K x = λ x . (2.1)
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That is, an eigenvector of K is a vector which, when transformed by K, re-

sults in a scalar multiple of itself. The scalar multiple λ is known as the corre-

sponding eigenvalue. The complete set of eigenvalues of a matrix is known as

the spectrum of the matrix. In general, the eigenvalues and eigenvectors of a

matrix are complex-valued. However, for a real, symmetric matrix, they are

guaranteed to be real-valued. Furthermore, every n × n matrix has exactly n

eigenvector, eigenvalue pairs. This fact leads to the well-known eigendecom-

position of a matrix. Namely, let V ∈ Rn×n be a matrix whose ith column

equals the ith eigenvector of K and let Σ ∈ Rn×n be the diagonal matrix1

whose ith diagonal element equals the ith eigenvalue of K. The eigendecom-

position states that K can be factorised as

K = V Σ V−1 . (2.2)

Furthermore, if K is a real, symmetric matrix then K can be factorised as

K = V Σ VT . (2.3)

Spectrum Transformation

The class of spectrum2 transformation approaches perform operations on

the eigenvalues of the indefinite kernel matrix, resulting in a matrix whose

eigenvalues are non-negative. In the remainder of this discussion, we con-

sider a real, symmetric kernel matrix K ∈ Rn×n with eigendecomposition

1A diagonal matrix is one whose only non-zero elements are those along the main diago-
nal.

2The spectrum of a matrix is defined as set of its eigenvalues.
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K = V Σ VT.

Perhaps the most intuitive approach, the spectrum clip transformation sim-

ply sets all negative eigenvalues to zero. It boasts the attractive property of

producing the nearest positive semi-definite matrix, in terms of the Frobenius

norm (Higham, 1988). The resulting kernel matrix Kclip is expressed as

Kclip = V Σ diag(Iλ0>0, . . . , Iλn>0)VT, (2.4)

where I is an indicator function.

In a similar vein, the spectrum flip transformation maps each eigenvalue to

its absolute value. Retention of the absolute values can be useful in situations

where the negative eigenvalues contain important information (Pękalska et

al., 2004). The resulting kernel matrix Kflip is written as

Kflip = V|Σ|VT, (2.5)

where |Σ| denotes the diagonal matrix whose elements are the absolute val-

ues of Σ.

The spectrum shift transformation translates the whole spectrum of the

matrix such that its minimal value is 0. That is, let ν be the minimal eigen-

value of K. The spectrum shift transformation maps each eigenvalue λi to

λi − ν. The resulting kernel matrix Kshift can be concisely expressed as

Kshift = V(Σ−ν I)VT, (2.6)
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where I is the identity matrix. Whilst this transformation does not change the

similarity of any two distinct instances, it does increase all self-similarities in

the kernel matrix.

The spectrum square transformation, which maps each eigenvalue to its

square, is the most computationally efficient approach, since it does not re-

quire the eigendecomposition of the kernel matrix. To see this, observe that

the resulting kernel matrix Ksquare can be expressed as

Ksquare = V Σ2 VT = K2 . (2.7)

Hence, to compute spectrum square, it is sufficient to square the original

kernel matrix.

Wu et al. (2005) performed a comparative analysis of spectrum clip, flip

and shift over eight classification data sets, each equipped with an indefinite

kernel. They observed that clip is to be preferred only when the ratio of the

smallest to largest eigenvalue was close to zero. In the case that this ratio

was large in magnitude, flip exhibited a superior performance. This observa-

tion provides evidence that negative eigenvalues of large absolute value may

constitute more information than just noise. Both flip and shift worked best

in five out of eight data sets, with shift being preferred in situations when the

ratio of the smallest to largest eigenvalue was small in magnitude.

The spectrum transformation approaches represent a simple solution to

the handling of indefinite kernels. However, as we have seen, the resulting

performance of the approaches are dependent on the spectrum of the kernel
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matrix. From the point of view of a practitioner, a blanket method to cover

all bases would be to test each spectrum transformation and select the one

that performs best. It would be preferred if one could automatically select

the optimal transformation for a given problem. Chen et al. (2009) follow

this line of reasoning and design an algorithm that simultaneously learns an

SVM classifier and a spectrum transformation. More specifically, the authors

find a vector α such that the resulting kernel matrix Klearnt, expressed as

Klearnt = V Σ diag(α)VT, (2.8)

is positive semi-definite. It is clear to see that clip, flip, shift and square

are all special cases of this more general spectrum transformation. In a com-

parison against clip, flip and shift, Chen et al. demonstrate that their method

is among the top performing methods on five out of the six classification data

sets. Moreover, on some data sets, the learnt spectrum modification achieves

statistically significant improvements over the simple spectrum transforma-

tions.

Proxy Matrices

Similarly to spectrum transformations, the class of proxy matrix approaches

produce a positive semi-definite matrix, the proxy matrix, from an indefinite

input. However, instead of operating solely on the eigenvalues of the in-

definite kernel matrix, proxy matrix approaches search for a positive semi-

definite matrix that is close the original indefinite matrix. Moreover, this is
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performed whilst simultaneously inferring a decision function. The method

of Chen et al. (2009) for learning a spectrum transformation can be consid-

ered as a special case of a proxy matrix approach, in which the proxy matrix

is endowed with a specific structure according to Equation (2.8). More gen-

erally, however, the only requirements of a proxy matrix is that it is positive

semi-definite. This general approach is addressed by Luss and d’Aspremont

(2007), in which a proxy matrix is sought that minimises the Frobenius norm

between itself and the indefinite kernel matrix. Whilst their main focus is a

proxy matrix SVM, algorithms are also developed for the problems of regres-

sion and anomaly detection. In a set of experiments across four classification

data sets, Luss and d’Aspremont compare their approach to spectrum clip,

flip and shift. It is observed that the proxy matrix approach performs best

when the original indefinite kernel matrix has negative eigenvalues that are

large in magnitude. We note, however, that no tests of significance were per-

formed. Even so, the flexibility to find a proxy matrix for the problem at

hand represents a substantial improvement over the fixed spectrum trans-

formations.

Zhan et al. (2019) apply the anomaly detection algorithm of Luss and

d’Aspremont for the task of virtual screening. More specifically, using a 3D

alignment score as an indefinite kernel between chemical compounds, Zhan

et al. (2019) aim to identify whether an input compound is a drug candidate

for a given drug target. Comparing to spectrum clip, flip, shift and square

across numerous data sets, they observe that the proxy matrix anomaly de-

tection algorithm is the best performing method in the majority of cases.



Chapter 2. Review of Current Literature 39

2.2.2 Kreı̆n Space Methods

As discussed in the previous section, transformation methods approach the

problem of learning with indefinite kernels as one of learning with an appro-

priate positive-definite surrogate. While these methods facilitate the learning

process, they still require the additional complexity of choosing an appro-

priate surrogate. This additional preprocessing step is inherent to their de-

sign since transformation methods aim to apply indefinite kernels to learn-

ing algorithms designed for positive-definite kernels. An arguably prefer-

able approach is to design learning algorithms for indefinite kernels explic-

itly. This section discusses Kreı̆n space methods, a set of learning algorithms

that utilise the geometry of a Kreı̆n space to incorporate an indefinite ker-

nel directly. We qualitatively discuss the algorithms, leaving their theoretical

description to Section 4.1.

Developing a learning algorithm incorporating an indefinite kernel func-

tion constitutes learning a function in a Kreı̆n space. Whilst the theory of

Kreı̆n spaces has long been known (Bognár, 1974), their first application to

machine learning is due to Ong et al. (2004). The authors recognise the im-

portance of Kreı̆n spaces and devise iterative algorithms to perform regres-

sion with indefinite kernels. Whilst they only present results on toy prob-

lems, their work represents a remarkable leap forward in indefinite kernel

methods.

Haasdonk and Pekalska (2008) present Indefinite Kernel Fisher Discrim-

inant (IKFD), an algorithm to perform classification with indefinite kernels.
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Similarly to linear discriminant analysis, IKFD learns a classifier that max-

imises the between-class scatter matrix 3 whilst minimising the within-class

scatter matrix. The authors show that the solution resembles that of Ker-

nel Fisher Discriminant (Ghojogh et al., 2019), and hence can be solved effi-

ciently. In a set of experiments on both toy and real-world data sets, Haas-

donk and Pekalska demonstrate the superiority of IKFD in comparison to

two other baseline indefinite kernel classifiers (Duin and Pekalska, 2005; Haas-

donk, 2005). In another work, the same authors extend IKFD to one in which

the class scatter matrices can vary between the classes (Pekalska and Haas-

donk, 2008). The algorithm, known as Indefinite Kernel Quadratic Discrim-

inant (IKQD), is compared to IKFD and two other baseline indefinite kernel

classifiers on many binary and multi-class classification data sets. Whilst

there are no clear winners between the two discriminant learners, both gen-

erally outperform the baseline classifiers.

When discussing kernel-based classifiers, the most well-known algorithm

is the SVM. Loosli et al. (2015) present an algorithm, which we refer to as the

Loosli Kreı̆n-SVM (LK-SVM), that exploits the properties of a Kreı̆n space to

learn an SVM-like classifier with an indefinite kernel. A standard SVM is

formulated as a convex optimisation problem (see Section 3.2.3 for more in-

formation) and, therefore, admits a globally optimal solution. On the other

hand, the LK-SVM is formulated as a stabilisation problem, with its solu-

tion only guaranteed to be locally optimal. Furthermore, Loosli et al. show

that their approach can equivalently be solved via a standard SVM using

3The scatter matrix is the covariance matrix estimated from a sample of data.
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the spectrum flip kernel matrix followed by a linear transformation. Never-

theless, in a set of experiments comparing the LK-SVM to several indefinite

SVM approaches, the LK-SVM performs favourably. Furthermore, the au-

thors provide a detailed explanation of why one should and should not use

their algorithm.

Whilst kernel methods are primarily known for their supervised learning

algorithms, there do exist several unsupervised kernel methods, including,

for instance, kernel k-means and kernel PCA (Dhillon et al., 2004; Schölkopf

et al., 1997). Less attention has been placed on unsupervised indefinite kernel

methods. However, kernel PCA has been successfully generalised to the in-

definite kernel setting (Zafeiriou, 2012). Similarly to standard PCA, Zafeiriou

develops an algorithm to compute the principal components of the data in a

Kreı̆n space. The projection of the data onto the principal components de-

fines a nonlinear mapping that can reveal hidden structures. The algorithm

is tested in a classification setting by coupling the nonlinear mapping with

a simple nearest neighbour classifier, demonstrating highly accurate classi-

fiers.

Another exciting line of work in Kreı̆n space methods is the study of their

application to large data sets. Positive definite and indefinite kernel meth-

ods require computation and storage of the kernel matrix. For a data set

of size N, these operations grow as O(N2) in run time and memory. Fur-

thermore, many kernel methods require solving a linear system involving

the kernel matrix, an operation that, in its worst case, grows as O(N3) in

run time. Hence, applying kernel methods to large data sets is infeasible in
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their naive implementation. This fact has prompted researchers to consider

approximate kernel methods that exhibit better scaling properties but retain

the predictive performance of the exact method. The two most prominent ap-

proaches in this line of work are Nyström subsampling and random features

(Bach, 2013; Rahimi and Recht, 2007), both of which have indefinite kernel ex-

tensions. Oglic and Gärtner (2019) derive the first-known technique for scal-

ing up indefinite kernel methods, in which they provide a mathematically

complete Nyström subsampling method. This derivation is accompanied by

large-scale least squares and SVM-like algorithms for indefinite kernels. The

results demonstrate not only the computational efficiency of Nyström sub-

sampling but also the accuracy of the approximated model. Similarly, Liu

et al. (2021) have devised a random feature approximation scheme for in-

definite kernels. Once again, the results are promising, and their method

performs comparably with Nyström subsampling.

The work of Oglic and Gärtner (2019) and, indeed, their earlier work

(Oglic and Gärtner, 2018), tackles learning with indefinite kernels from a

subtly different perspective. Oglic and Gärtner consider a different regu-

larisation scheme to what is considered by Ong et al. (2004) and Loosli et

al. (2015). The previous approaches considered regularisation directly in

the Kreı̆n space. However, this leads to non-convex optimisation problems

that can exhibit exponentially many local optima. Thus, the problems being

solved are one of stabilisation, as opposed to minimisation. The resulting

models are not guaranteed to be globally optimal. It has been empirically

observed that models resulting from solving the stabilisation problem fail to
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generalise to unseen instances (Oglic and Gärtner, 2018). On the other hand,

the regularisation scheme proposed by Oglic and Gärtner leads to optimisa-

tion problems that exhibit globally optimal solutions and good generalisation

properties. When discussing the Kreı̆n-SVM in Equation (4.8), we follow the

regularisation scheme of Oglic and Gärtner.
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Chapter 3

Machine Learning

This chapter covers the background mathematical theory of some fundamen-

tal elements of machine learning, which are required to understand the re-

maining chapters. Section 3.1 provides an overview of learning theory, cen-

tering the discussion on supervised learning. We discuss how to measure the

quality of a prediction, as well as how the risk minimisation framework al-

lows one to learn a predictive function. Section 3.2 presents algorithms to

learn linear functions for the tasks of classification and regression, known

as Support Vector Machines (SVMs). We further show how the theory of

convex optimisation can be employed to reveal deeper insights into SVMs.

In particular, how the resulting decision function depends only on a sub-

set of instances known as support vectors, from which the algorithm gets its

name. We conclude the chapter by showing how SVMs can be generalised to

learn non-linear functions through the use of kernels. Section 3.3 provides the

relevant theory of kernel functions and their associated reproducing kernel

Hilbert spaces (RKHS). This theory is used to derive the SVM from the point

of view of risk minimisation in a RKHS.
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3.1 Learning Theory

3.1.1 Loss Functions

In the pursuit of solving a machine learning task and discovering an optimal

prediction model, a loss function is generally employed to measure the suit-

ability of a single model. In particular, a significant component of training a

model corresponds to minimisation of a given loss function. In the context of

supervised learning, in which one is trying to model a relationship between

input-output pairs, the loss function should quantify the difference between

a prediction and its corresponding true output.

Definition 3.1.1 (Loss Function). Let Y be a label space. The non-negative

function ℓ : Y × Y → R+ is called a loss function if ℓ(y, y) = 0 for all y ∈ Y .

(Schölkopf and Smola, 2002)

In particular, given a data example (x, y) ∈ X × Y and a hypothesis

f : X → Y , the loss function ℓ(y, f (x)) will output zero if and only if the

observation y agrees with the prediction f (x). Different output spaces con-

stitute different loss functions and there exist many applicable loss functions

for a given space. In the following, we describe some common examples

when solving a binary classification or regression problem.

Binary Classification

In the setting of binary classification, we describe the output space Y as the

set {−1,+1}. For our purposes, let the hypothesis f : X → R be a real-

valued function such that sign( f (x)) is the class prediction for instance x.
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The simplest way to measure the loss of a prediction f (x) is to incur a value

of 1 for an incorrect prediction; otherwise, there is no penalty. This is known

as the 0-1 loss function and is given in Definition 3.1.2

Definition 3.1.2 (0-1 Loss). Let Y = {−1,+1} be the binary classification

label space, X be an instance space, f : X → R and (x, y) ∈ X × Y . The 0-1

loss function ℓ0-1 : Y × R → R+ is defined as

ℓ0-1(y, f (x)) =


0, if y = sign( f (x)),

1, otherwise.

Whilst arguably the most intuitive, the 0-1 loss is difficult to use in practice

since it is non-convex (see Definition 3.2.3) and discontinuous. It also ignores

any notion of confidence from a prediction. For instance, by defining the

absolute value | f (x)| as the confidence of a prediction, one can apply greater

penalisation to predictions which are confidently incorrect. The hinge loss,

presented in Definition 3.1.3 and utilised throughout the thesis, is a notable

example. Figure 3.1 depicts both the 0-1 loss and hinge loss.

Definition 3.1.3 (Hinge Loss). Let Y = {−1,+1} be the binary classification

label space, X be an instance space, f : X → Y and (x, y) ∈ X × Y . The

Hinge loss function ℓhinge : Y × Y → R+ is defined as

ℓhinge(y, f (x)) = max(0, 1 − y f (x)) =


0, if y f (x) ≥ 1,

1 − y f (x), otherwise.
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FIGURE 3.1: Classification loss functions.

Regression

When performing regression, our output space is defined as the real num-

bers Y = R. A loss function in this case should quantify the closeness of a

prediction. A very common example would be the squared loss, given in

Definition 3.1.4 as the squared distance between a prediction and its true

value.

Definition 3.1.4 (Squared Loss). Let Y = R be the regression label space,

X be an instance space, f : X → Y and (x, y) ∈ X × Y . The squared loss

function ℓ2 : Y × Y → R+ is defined as

ℓ2(y, f (x)) = ( f (x)− y)2.

Whilst being widely applicable, the squared loss is non-negative for any pre-

diction which does not exactly equal its true value. In some cases, one may

be satisfied if the prediction is within a given tolerance. As seen in Defini-

tion 3.1.5, the ε-insensitive loss function is equal to zero for all predictions
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that are a within a distance of ε of their true value. Examples of both the

aforementioned loss functions are given in Figure 3.2.

Definition 3.1.5 (ε-insensitive Loss). Let Y = R be the regression label space,

X be an instance space, f : X → Y , (x, y) ∈ X × Y and ε > 0. The ε-

insensitive loss function ℓε : Y × Y → R+ is defined as

ℓε(y, f (x)) = max(0, | f (x)− y| − ε)
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(A) Squared Loss
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FIGURE 3.2: Regression loss functions with ε = 1.

3.1.2 Empirical Risk Minimisation

Having defined the notion of a loss function, an approach to selecting a pre-

dictive model is to choose one that minimises a given loss function. Suppose

that data examples (x, y) belong to the product space X × Y and are gener-

ated according to the joint distribution P(x, y). As noted in previous works
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(Vapnik, 1999; Schölkopf and Smola, 2002), one can aim to minimise the ex-

pected risk, defined as

R( f ) = EP

[
ℓ(y, f (x))

]
=

∫
X×Y

ℓ(y, f (x)) dP(x, y). (3.1)

The minimiser of Equation (3.1) would yield the ideal predictive model. How-

ever, it is assumed that the underlying probability distribution P is unknown.

Instead, one can minimise an estimate of EP from a sample S = {(xi, yi)}m
i=1,

such that each (xi, yi) ∼ P. The empirical risk, defined below, estimates the

expected risk for the sample S

Remp( f ) =
1
m

m

∑
i=1

ℓ(yi, f (xi)). (3.2)

So far, we have made no reference to the hypothesis f : X → Y . In practice,

one often restricts it to belong to a certain class of functions H, commonly

referred to as the hypothesis space. The objective is to determine the best func-

tion of the hypothesis space with respect to the empirical risk, which gives

rise to the principle of empirical risk minimisation.

Definition 3.1.6 (Empirical Risk Minimisation, Schölkopf and Smola 2002).

Let H be a space of functions mapping from X to Y and ℓ be a loss function.

The optimisation problem

minimise
f∈H

Remp( f ) (3.3)

is called empirical risk minimisation (ERM).
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It is possible that many candidate functions will minimise the empirical risk.

Of these functions, some may overfit the training set S. By this, we mean

a function that describes well the samples in S but fails to capture the true

functional relationship between the inputs and outputs. These effects can

be mitigated by imposing additional constraints on the functions in the hy-

pothesis space, commonly referred to as regularisation. A notable instance of

regularisation is incorporation of the function norm into the objective func-

tion. The norm can be considered as a measure of complexity of a function.

Including it into the objective function allows one to not only select a function

which minimises the empirical risk, but to also select the simplest example

(with respect to the norm) of such a function.

Definition 3.1.7 (Regularised Risk Minimisation). Let H be a hypothesis space

and g : R → R be a strictly monotonically increasing function. The func-

tional

Rreg( f ) =
1
m

m

∑
i=1

ℓ(yi, f (xi)) + g(∥ f ∥H), f ∈ H (3.4)

is called the regularised empirical risk and its minimisation with respect to f is

called regularised risk minimisation (RRM).

The regularised risk functional Rreg is a fundamental concept in various ma-

chine learning algorithms, where the choice of loss function ℓ and regular-

isation term g(∥ f ∥H) can differ depending on the approach. All machine

learning algorithms discussed in the following chapters adhere to the RRM

principle.
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3.2 Support Vector Learning

In the present section, we describe a class of algorithms known as Support

Vector Machines (SVMs). These are discriminative learning algorithms, whose

output is a hyperplane in an inner product space. For the time being, we will

focus our discussion on the space Rn.

3.2.1 Hyperplane Classifiers

Consider the problem of binary classification in Rn: we are given a training

set S = {(xi, yi)}m
i=1 ⊂ Rn × {−1,+1}. We suppose that our training set

is linearly separable, meaning there exists some hyperplane which separates

the sets Y+ = {xi |yi = +1} and Y− = {xi |yi = −1}. A simple learning

algorithm for this scenario would be to find a separating hyperplane. Classi-

fication is then performed based on which side of the hyperplane an instance

resides. However, it is often the case that if one such hyperplane exists, then

many more also exist. Ideally we would like to select the optimal hyper-

plane with respect to some quantity. To do so, we introduce the concept of a

margin.

Margin of a Hyperplane

A hyperplane P , parameterised by w ∈ Rn and b ∈ R, can be described as

the set of points such that

P = {x |⟨w, x⟩+ b = 0}. (3.5)
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The vector w is always normal the hyperplane, Figure 3.3 provides an ex-

ample in R2. The margin of P is defined as the minimum distance from the

P

w

hP

∥ δ ∥2

h

FIGURE 3.3: An example of a hyperplane P in R2 and an arbi-
trary point h. The normal vector to the hyperplane is shown,
denoted by w. The orthogonal projection of h onto P is shown,
denoted by hP . The distance between h and hP is denoted by

∥ δ ∥2.

hyperplane to the training instances. To compute the distance, consider an

arbitrary point h ∈ Rn and let δ ∈ Rn be the vector from P to h such that

δ is orthogonal to P . The vector hP = h− δ is the projection of h onto P .

Figure 3.3 depicts this scenario. Since hP ∈ P , we have that

⟨w, hP ⟩+ b = ⟨w, (h− δ)⟩+ b = 0. (3.6)

Furthermore, δ is parallel to w so we can express δ = α w for some α ∈ R.

Hence

⟨w, (h−α w)⟩+ b = 0, (3.7)

which implies that

α =
⟨w, h⟩+ b
∥w ∥2

2
. (3.8)
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The length of δ, which is the orthogonal distance between h and P , can there-

fore be expressed as

∥ δ ∥2 =
|⟨w, h⟩+ b|

∥w ∥2
. (3.9)

With this in mind, Definition 3.2.1 provides a definition of the margin of a

hyperplane.

Definition 3.2.1. Let S = {(xi, yi)}m
i=1 ⊂ Rn × {−1,+1} be a linearly separa-

ble data set. Furthermore, for h ∈ Rn and b ∈ R, let P = {x |⟨w, x⟩+ b = 0}

be a separating hyperplane of S. The margin γ(w, b) of P with respect to S

is defined as

γ(w, b) = minimise
x∈S

|⟨w, x⟩+ b|
∥w ∥2

. (3.10)

w

γsv

sv

sv

FIGURE 3.4: An example of a maximum-margin hyperplane
separating the circles from triangles. The normal vector to the
hyperplane is shown, denoted by w. The support vectors are
shown, denoted by SV. The margin of the hyperplane is shown

and denoted by γ.
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Hard Margin SVM

Going back to our example, we wish to select the separating hyperplane that

maximises the margin. Requiring that the hyperplane separates the classes

is to require that all instances of the positive class reside on one side of the

hyperplane and all instances of the negative class reside on the other side.

For an instance of the positive class xp, note that

⟨w, xp⟩+ b ≥ 0. (3.11)

Similarly, for an instance of the negative class xn, we have

⟨w, xn⟩+ b ≤ 0. (3.12)

Hence, for a separating hyperplane, we have

yi(⟨w, xi⟩+ b) ≥ 0, ∀i. (3.13)

The problem of finding a maximum-margin separating hyperplane for the

data set S can be expressed as

arg maximise
w,b

γ(w, b)

subject to yi(⟨w, xi⟩+ b) ≥ 0 ∀(xi, yi) ∈ S. (3.14)

In order to solve Equation (3.14), we first note that the margin of a hyperplane

is scale invariant so that γ(β w, βb) = γ(w, b) for β ∈ R. Hence, we can
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choose w, b such that

minimise
x∈S

|⟨w, x⟩+ b| = 1. (3.15)

Equation (3.14) can therefore be expressed as

maximise
w,b

1
∥w ∥2

subject to yi(⟨w, xi⟩+ b) ≥ 0 ∀(xi, yi) ∈ S,

minimise
x∈S

|⟨w, x⟩+ b| = 1.

The second constraint implies that

|⟨w, x⟩+ b| ≥ 1 (3.16)

for all x ∈ S. Hence,

yi(⟨w, xi⟩+ b) ≥ 1 ∀(xi, yi) ∈ S. (3.17)

Noting that

maximise
w

1
∥w ∥2

= minimise
w

∥w ∥2 = minimise
w

∥w ∥2
2, (3.18)
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we can formulate Equation (3.14) as

minimise
w,b

∥w ∥2
2

subject to yi(⟨w, xi⟩+ b) ≥ 1 ∀(xi, yi) ∈ S. (3.19)

For a given solution (w⋆, b⋆) to Equation (3.19), the resulting decision func-

tion f : Rn → {−1,+1} is expressed as

f (x) = sign(⟨w⋆, x⟩+ b⋆). (3.20)

It will always be the case that some of the instances in S will satisfy the con-

straints with equality e.g.

yi(⟨w⋆, xi⟩+ b⋆) = 1. (3.21)

These instances define the margin of the hyperplane and therefore the result-

ing hyperplane itself. They are known as support vectors and the problem

being solved in Equation (3.19) is known as the hard-margin SVM. Figure 3.4

illustrates the maximum-margin separating hyperplane, as well as the sup-

port vectors, for a toy problem.

Soft Margin SVM

The derivations of the previous section are only applicable when the data set

exhibits linear separability, which is often too optimistic of an assumption.

When this is not true, we can allow some instances to violate the constraints
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of Equation (3.19). In particular, we introduce slack variables

ξi ≥ 0 , i = 1, . . . , m, (3.22)

and modify the constraints to

yi(⟨w, xi⟩+ b) ≥ 1 − ξi, i = 1, . . . , m. (3.23)

For each pair (xi, yi), one can make ξi arbitrarily large such that the constraint

is always satisfied. In order to avoid this trivial solution, a penalisation term

is added to the objective function of Equation (3.19). This leads to the follow-

ing optimisation problem, known as the soft margin SVM,

minimise
w,b,ξ

∥w ∥2
2 + C

m

∑
i=1

ξi

subject to yi(⟨w, xi⟩+ b) ≥ 1 − ξi, i = 1, . . . , m,

ξi ≥ 0, i = 1, . . . , m,

(3.24)

where C > 0. Whenever ξi > 0, a margin error occurs in which instance

xi does not lie on the correct side of the margin. In this case, the value ξi

represents the perpendicular distance to the margin. The constant C is an a

priori chosen parameter allowing one to balance the total margin errors with

the complexity of the resulting hyperplane.
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We note that the constraints of Equation (3.24) can be equivalently written

as

ξi =


1 − yi(⟨w, xi⟩+ b), if yi(⟨w, xi⟩+ b) < 1,

0, if yi(⟨w, xi⟩+ b) ≥ 1,

i = 1, . . . , m. (3.25)

This can be compactly expressed as

ξi = ℓhinge(yi, ⟨w, xi⟩+ b), (3.26)

where ℓhinge is the hinge loss (see Definition 3.1.3). This leads to the following

unconstrained formulation of the soft margin SVM, which is an example of

RRM.

minimise
w,b

∥w ∥2
2 + C

m

∑
i=1

ℓhinge(yi, ⟨w, xi⟩+ b). (3.27)

3.2.2 Epsilon Tubes

The intuitive idea of learning a maximum-margin separating hyperplane can

be extended to the case of regression. In this setting, we are given a training

data set S = {(xi, yi)}m
i=1 ⊂ Rn × R and would like to estimate a function

f : Rn → R such that

f (x) = ⟨w, x⟩+ b. (3.28)
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−ε

0
+ε

FIGURE 3.5: An example of a set of points and a tube with ra-
dius ε enclosing them.

This is the standard problem of linear regression. However, we further im-

pose that the predictions have at most ε > 0 deviation from the true observa-

tions. Formally, we require that

| f (xi)− yi| ≤ ε, ∀(xi, yi) ∈ S. (3.29)

It may be the case that multiple functions satisfy this property. In order to

decide between them, we choose the one with minimum norm. This leads to

the problem presented in Equation (3.30), which is known as support vector

regression (SVR). The result of which is a tube of radius ε fitted to the data,

known as an epsilon tube.

minimise
w,b

∥w ∥2
2

subject to ⟨w, xi⟩+ b − yi ≤ ε ∀(xi, yi) ∈ S,

yi − ⟨w, xi⟩ − b ≤ ε ∀(xi, yi) ∈ S. (3.30)

An example of a hyperplane and corresponding epsilon tube is given in Fig-

ure 3.5. Since ε is fixed, it can be difficult to choose its value a priori. In

practice, the value which minimises generalisation error on a validation set
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is usually chosen.1 There will clearly be a value of epsilon such that all the

constraints of Equation (3.30) are satisfied. However, due to the presence of

outliers and other non-regularities in the training data set, this value may

need to be arbitrarily large. In a similar vein to allow some instances to lie on

the incorrect side of the margin in the soft margin SVM, we can allow some

instances to lie outside the epsilon tube. In this case, we introduce two sets

of slack variables

ξi ≥ 0,

ξ∗i ≥ 0,

and modify the constraints of Equation (3.30) to

⟨w, xi⟩+ b − yi ≤ ε + ξi i = 1, . . . , m,

yi − ⟨w, xi⟩ − b ≤ ε + ξ∗i i = 1, . . . , m.

This leads to the more familiar form of the SVR algorithm, presented below

minimise
w,b,ξ,ξ∗

∥w ∥2
2 + C

m

∑
i=1

(ξi + ξ∗i )

subject to ⟨w, xi⟩+ b − yi ≤ ε + ξi i = 1, . . . , m,

yi − ⟨w, xi⟩ − b ≤ ε + ξ∗i i = 1, . . . , m,

ξi, ξ∗i ≥ 0, (3.31)

1It is important to note that generalisation error should not be measured with the
ε−insensitive loss. Taking ε → ∞ would lead to zero loss on all instances in the valida-
tion set. An appropriate measure of generalisation error in this case would be the squared
loss.
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where C > 0. Those instances with ξi > 0 or ξ∗i > 0 lie outside the epsilon

tube, with their distance to the tube boundary being ξi or ξ∗i , respectively.

The constant C allows one to balance the total deviation with the complexity

of the resulting hyperplane. Equation (3.31) can be equivalently expressed in

the form of RRM by noting that if ξi > 0, then it must the case that ξ∗i = 0

and vice versa. Hence each ξi can be expressed as

ξi =


⟨w, xi⟩+ b − yi − ε, if ⟨w, xi⟩+ b − yi > ε,

0, if ⟨w, xi⟩+ b − yi ≤ ε,

i = 1, . . . , m.

(3.32)

Similarly, each ξ∗i can be expressed as

ξ∗i =


yi − ⟨w, xi⟩ − b − ε, if yi − ⟨w, xi⟩ − b > ε,

0, if yi − ⟨w, xi⟩ − b ≤ ε,

i = 1, . . . , m,

(3.33)

so that their sum can be written as

ξi + ξ∗i =


|⟨w, xi⟩+ b − yi| − ε, if |⟨w, xi⟩+ b − yi| > ε,

0, if |⟨w, xi⟩+ b − yi| ≤ ε,

i = 1, . . . , m.

(3.34)

This is equivalent to

ξi + ξ∗i = ℓε(yi, ⟨w, xi⟩+ b), i = 1, . . . , m, (3.35)
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where ℓε is the epsilon-insensitive loss (see Definition 3.1.5). Therefore, the

SVR algorithm can be equivalently formulated as

minimise
w,b

∥w ∥2
2 + C

m

∑
i=1

ℓε(yi, ⟨w, xi⟩+ b), (3.36)

which is in the form of RRM.

3.2.3 Convex Optimisation

The preceding sections derived SVM algorithms for the tasks of classification

and regression. The problems presented in Equations (3.24) and (3.31) are

known as convex optimisation problems. These are optimisation problems in

which the objective function and the feasible set are convex. Convex func-

tions have the attractive property that any local minimiser of the function

is also a global minimiser. Furthermore, there are very efficient methods to

solve convex optimisation problems. This section describes some useful re-

sults related to such problems, which we will later use to our advantage in

solving Equations (3.24) and (3.31). Our description follows that of Cristian-

ini, Shawe-Taylor, et al. (2000) and Boyd and Vandenberghe (2004). Initially,

we define the notion of a convex set.

Definition 3.2.2 (Convex Set, Boyd and Vandenberghe 2004). A set C is con-

vex if the line segment between any two points in C lies in C, i.e., if for any

x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θ x1 +(1 − θ) x2 ∈ C. (3.37)
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As shown in Definition 3.2.2, a set is convex if the line drawn between any

two elements in the set lies completely in the set. Similarly, we call a function

convex if the line drawn between any two points on the function lies above

the graph of the function. We formally define this notion in Definition 3.2.3.

Definition 3.2.3 (Convex Function, Cristianini, Shawe-Taylor, et al. 2000). A

function f : Rd → R is convex if for any x1, x2 ∈ Rd,

f (τ x1 +(1 − τ) x2) ≤ τ f (x1) + (1 − τ) f (x2)

holds true for all τ ∈ (0, 1). In the case of a strict inequality, the function is

called strictly convex.

In order to define a convex optimisation problem, we also need the definition

of an affine function.

Definition 3.2.4 (Affine Function, Cristianini, Shawe-Taylor, et al. 2000). Let

A ∈ Rn×m be a real-valued matrix and b ∈ Rn a vector. A function f : Rm →

Rn with f (x) = A x+b is said to be affine.

We now present the definition of a convex optimisation problem

Definition 3.2.5 (Convex Optimistion Problem, Cristianini, Shawe-Taylor, et

al. 2000). Given a convex set Ω ⊂ Rn, convex functions f : Ω → R, gi :

Ω → R, i = 1, . . . , k, and affine functions hi : Ω → R, i = 1, . . . , m, the
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minimisation

minimise f (x), x ∈ Ω,

subject to gi(x) ≤ 0, i = 1, . . . , k,

hi(x) = 0, i = 1, . . . , m,

(3.38)

is a convex optimisation problem.

The function f is called the objective function, the gi are inequality constraints

and the hi are equality constraints. For problems in which f is differentiable

and the gi, hi = 0, a necessary and sufficient condition for x⋆ ∈ Ω to solve

Definition 3.2.5 is

∇ f (x⋆) = 0. (3.39)

The concept of duality can help in solving the most general form of Defini-

tion 3.2.5. However, we must first introduce the Lagrangian. For a set Ω ∈ Rn

and functions f : Ω → R, gi : Ω → R, i = 1, . . . , k, and hi : Ω → R, i =

1, . . . , m, consider an optimisation of the form

minimise f (x), x ∈ Ω,

subject to gi(x) ≤ 0, i = 1, . . . , k,

hi(x) = 0, i = 1, . . . , m, .

(3.40)
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The Lagrangian L : Rn × Rk × Rm → R associated with Equation (3.40) is

defined as

L(x, α, ν) = f (x) +
k

∑
i=1

αi gi(x) +
m

∑
i=1

νi hi(x)

Here, the numbers αi for i = 1, . . . , k, and νi for i = 1, . . . , m, are known as the

Lagrangian multipliers. Note that there is no requirement for the optimisation

problem to be convex. Indeed, the Lagrangian is defined for constrained,

non-convex optimisation problems. The basic idea of the Lagrangian is to

account for the constraints with a new objective function as a weighted sum

of the constraint functions. Given the Lagrangian function, we can define the

Lagrangian dual function as the infimum of the Lagrangian over x:

θ(α, ν) = inf
x∈Ω

L(x, α, ν) = inf
x∈Ω

(
f (x) +

k

∑
i=1

αi gi(x) +
m

∑
i=1

ν hi(x)
)

. (3.41)

In the context of the Lagrangian dual function, the problem presented in

Equation (3.40) is known as the primal problem. It can be shown that, if

αi ≥ 0 for i = 1, . . . , k, then the optimal value f (x⋆) of the primal problem is

bounded below by the dual function θ(α, ν) (Boyd and Vandenberghe, 2004).

Hence, a strategy to approximately solve the primal problem is to maximise

the dual function and obtain the best lower bound possible.
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Definition 3.2.6 (Dual Problem, Boyd and Vandenberghe 2004). Assume the

primal problem is given by Equation (3.40). The maximisation problem

maximise
α,ν

θ(α, ν),

subject to αi ≥ 0, i = 1, . . . , k

is called the dual problem. The difference between the optimal value of the

primal problem and that of the dual problem, f (x⋆)− θ(α⋆, ν⋆) is called the

duality gap.

The dual problem is a convex optimisation problem, regardless of whether

or not the primal problem is convex. The lower bound property of the dual

function ensures the duality gap is non-negative. This is referred to as weak

duality. Strong duality is the case when the duality gap is equal to zero. If

strong duality holds, the considered optimisation problem can be equiva-

lently solved in its dual formulation. As shown in Definition 3.2.7, Slater’s

condition is an example in which strong duality is guaranteed.

Definition 3.2.7 (Slater’s Condition, Boyd and Vandenberghe 2004). Con-

sider a convex optimisation problem of the form of Definition 3.2.5. If there



Chapter 3. Machine Learning 67

exists a point x⋆ ∈ relint(Ω)2 such that

gi(x⋆) < 0 i = 1, . . . , k,

hi(x⋆) = 0 i = 1, . . . , m,

then strong duality holds.

Whilst Slater’s condition allows one to equivalently solve the dual formula-

tion, it provides no insight into what that solution will be. For the case of

convex optimisation with differentiable objective and constraint functions,

the KKT conditions provide a set of necessary and sufficient conditions that

the optimal point must satisfy. These are presented in Definition 3.2.8.

Definition 3.2.8 (KKT Conditions, Boyd and Vandenberghe 2004). Consider

a convex optimisation problem of the form of Definition 3.2.5 in which the

objective function, the inequality constraints and the equality constraints are

differentiable. Let L : Rn × Rk × Rm → R be the Lagrangian of the problem

L(x, α, ν) = f (x) +
k

∑
i=1

αi gi(x) +
m

∑
i=1

νi hi(x).

Suppose strong duality is satisfied and let x⋆ ∈ Ω, α⋆ ∈ Rk, ν⋆ ∈ Rm be

the points at which it is satisfied. Then the following conditions, which are

2By x⋆ ∈ relint(Ω), we mean that x⋆ belongs to the relative interior of Ω. For a precise
definition, please see Boyd and Vandenberghe, 2004.
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known as the KKT conditions, hold:

gi(x⋆) ≤ 0, i = 1, . . . , k, primal feasibility,

hi(x⋆) = 0, i = 1, . . . , m, primal feasibility,

α⋆
i ≥ 0, i = 1, . . . , k, dual feasibility,

α⋆
i gi(x⋆) = 0, i = 1, . . . , k, complementary slackness,

∂L(x⋆, α⋆, ν⋆)

∂ x
= 0, zero derivative.

3.2.4 Dual Formulations

The previous section has highlighted a number of useful results for the theory

of convex optimisation. In this section, we use the aforementioned results to

present the dual formulations of Equations (3.24) and (3.31).

SVM

Before deriving the dual, it is useful to check whether strong duality holds.

The problem presented in Equation (3.24) is a constrained optimisation prob-

lem over RN for some N. Given that relint(RN) = RN, checking Slater’s

condition is equivalent to finding a point w̃, b̃, ξ̃ such that

yi(⟨w̃, xi⟩+ b̃) > 1 − ξ̃i, i = 1, . . . , m,

ξ̃i > 0, i = 1, . . . , m,
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Selecting each ξ̃i > 0 such that

ξ̃i > 1 − yi(⟨w̃, xi⟩+ b̃) i = 1, . . . , m, (3.42)

for all w̃, b̃ clearly satisfies the constraints. Hence, strong duality holds and

Equation (3.24) can be equivalently solved in the dual. Furthermore, the

problem is differentiable, implying that the KKT conditions can be applied.

Recall from the previous section that in order to define the dual problem, one

must first form the Lagrangian. For the soft margin SVM, this is given by

L(w, b, ξ, α, β) = ∥w ∥2
2 +C

m

∑
i=1

ξi +
m

∑
i=1

αi(1− ξi −yi(⟨w, xi⟩+ b))−
m

∑
i=1

βi ξi .

(3.43)

The zero derivative property of the KKT conditions implies that the optimal

w⋆, b⋆, ξ⋆ solving Equation (3.24) must satisfy

∂L(w⋆, b⋆, ξ⋆, α, β)

∂ w
= 0,

∂L(w⋆, b⋆, ξ⋆, α, β)

∂b
= 0,

∂L(w⋆, b⋆, ξ⋆, α, β)

∂ ξ
= 0.
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Hence

w⋆ =
1
2

m

∑
i=1

αi yi xi,

0 =
m

∑
i=1

yi αi,

0 = C − αi − βi, i = 1, . . . , m.

(3.44)

Substituting these expressions into the Lagrangian gives the equivalent dual

problem

maximise
α

m

∑
i=1

αi −
1
4

m

∑
i,j=1

αi αj yiyj⟨xi, xj⟩

subject to
m

∑
i=1

yi αi = 0,

0 ≤ αi ≤ C, i = 1, . . . , m.

(3.45)

We can further analyse the solution α⋆ by inspecting the complementary

slackness property of the KKT conditions, which gives

α⋆
i (1 − ξi −yi(⟨w, xi⟩+ b)) = 0, i = 1, . . . , m,

ξi βi = 0, i = 1, . . . , m.

We consider three cases in this setting:
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(i) α⋆
i = C

(ii) 0 < α⋆
i < C

(iii) α⋆
i = 0

Case (i): α⋆
i = C combined with the final condition of Equation (3.44) gives

βi = 0 and therefore ξi > 0. We also have that 1 − ξi = yi(⟨w, xi⟩ + b),

meaning instance xi must lie on the incorrect side of the margin.

Case (ii): 0 ≤ α⋆
i ≤ C also gives 1 − ξi = yi(⟨w, xi⟩+ b). Furthermore, the

final condition of Equation (3.44) shows βi ̸= 0 and hence ξi = 0. Therefore,

instance xi lies directly on the margin.

Case (iii): α⋆
i = 0 implies yi(⟨w, xi⟩ + b) > 1 − ξi. The final condition of

Equation (3.44) shows βi ̸= 0 and hence ξi = 0. Therefore, instance xi is a

correctly classified point lying away from the margin.

The three cases considered above provide useful insights into the solution

of the dual. In the soft margin case, points belonging to cases (i) or (ii) are

known as support vectors. Clearly the solution depends only on the support

vectors and is therefore sparse. Furthermore, the influence of any support

vector is bounded, since α⋆
i < C for i = 1, . . . , m.

The optimal w⋆ of the primal can be computed according to the first con-

dition of Equation (3.44). The optimal b⋆ can be computed by considering,

for a point xp belonging to case (ii), the following is satisfied

1 = yp(⟨w⋆, xp⟩+ b⋆), (3.46)



Chapter 3. Machine Learning 72

hence

b⋆ = yp − ⟨w⋆, xp⟩. (3.47)

Since this equation is satisfied for all points belonging to case (ii), it is prefer-

able to take an average. Note that computation of w⋆ and b⋆ involves evalu-

ating the inner product

⟨w⋆, x⟩, (3.48)

for a given x. Using the first condition of Equation (3.44), this can be ex-

pressed as

⟨w⋆, x⟩ = 1
2

m

∑
i=1

α⋆
i yi⟨x, xi⟩. (3.49)

Hence, prediction at a new point x̃ can be expressed as

f (x̃) = ⟨w⋆, x̃⟩+ b⋆ =
1
2

m

∑
i=1

α⋆i yi⟨xi, x̃⟩+ b⋆, (3.50)

where b⋆ is defined as above.

SVR

The dual formulation of the SVR follows a similar derivation to that of the

SVM. As shown in Equation (3.51), it constitutes a convex optimisation prob-

lem over two variables. For a full derivation, please see (Schölkopf and
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Smola, 2002).

maximise
α,α∗

m

∑
i=1

yi(αi − α∗
i )−

1
4

m

∑
i,j=1

(αi − α∗
i )(αj − α∗

j )⟨xi, xj⟩ − ε
m

∑
i=1

(αi + α∗
i )

subject to
m

∑
i=1

(αi − α∗
i ) = 0

0 ≤ αi ≤ C, i = 1, . . . , m,

0 ≤ α∗
i ≤ C, i = 1, . . . , m.

(3.51)

For a given solution α̃, α̃∗, the KKT conditions allow one to reveal similar

insights to that of the SVM dual. Indeed, by labelling as support vectors the

points xp such that | f (xp) − yp| ≥ ε, it can be shown that both α̃i, α̃∗
i = 0

if and only if point xi is not a support vector. Hence, the solution vectors

are sparse and depend only on points lying on or outside the epsilon tube.

The optimal w̃, and therefore the functional form of f (x), can be expressed

entirely in terms of the dual solution:

f (x) = ⟨w̃, x⟩+ b̃ =
1
2

m

∑
i=1

(α̃i − α̃∗
i )⟨xi, x⟩+ b̃, (3.52)

where the optimal b̃ satisfies

b̃ = yi − ⟨w̃, xi⟩ − ϵ, for i ∈ {i|0 < α̃i < C},

b̃ = yi − ⟨w̃, xi⟩+ ϵ, for i ∈ {i|0 < α̃∗
i < C}.
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Solutions

The previous sections derived the optimisation problems that are solved when

training an SVM or SVR, but made no indication as to how to solve them. The

problems presented in Equations (3.45) and (3.51) are known as quadratic

programs (Boyd and Vandenberghe, 2004). These are a class of convex opti-

misation problem with a quadratic objective function and affine constraints.

They are a well studied problem for which a number of general solvers ex-

ist, see (Boyd and Vandenberghe, 2004) for more details. Hence, third-party

software can be used to solve the problems. Furthermore, specific analysis of

the problems can lead to even more efficient solutions. The sequential mini-

mal optimisation (SMO) algorithm takes advantage of the box-constraints on

αi in order to improve computational efficiency (Platt, 1998; Takahashi et al.,

2008).

3.3 Kernel Methods

The dual formulations derived in Section 3.2.4 have shown that the resulting

decision function of a support vector algorithm depends only on the support

vectors. However, one major drawback of both the SVM and SVR algorithm

is that the resulting function is linear in the data. This property is very re-

strictive as to what problems the algorithms can be applied to. Indeed, for

the case of the SVM, Figure 3.6 provides an example in which the problem is

not solvable by a hyperplane. Similar examples can be imagined for regres-

sion, such as trying to model the function f (x) = x2. We refer to problems of
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this kind as nonlinear problems.

FIGURE 3.6: An example classification problem that cannot be
solved with a hyperplane. The circles belong to one class and

the triangles to the other.

Kernel methods define a principled methodology to model nonlinear prob-

lems. The main idea being that nonlinear problems may be solvable by linear

methods in a new space. More specifically, suppose we want to classify vec-

tors in Rn. We are given a training set S = {(xi, yi)}m
i=1 ⊂ X ×Y such that S

represents a nonlinear problem. Let us define the function ϕ : X → H such

that ϕ(x) maps x to a high-dimensional space H in which the classification

problem is now solvable by linear methods. Two questions naturally arise:

(i) Can we be sure the problem is linearly separable in H?

(ii) How does one choose the function ϕ?

Cover’s Theorem can help to answer question (i). The theorem, stated in

Definition 3.3.1, depends on the notion of vectors being in general position.

This means that, for a set of m vectors, every subset of m or fewer vectors is

orthogonal.

Definition 3.3.1 (Cover’s Theorem, Cover 1965 ). Consider a set of m vectors

in general position in Rn. The number of ways to separate the points with a
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hyperplane is C(m, n), where

C(m, n) = 2
n

∑
i=0

(
m − 1

i

)
. (3.53)

It is clear that C(m, n) increases with the dimensionality n. However, for an

arbitrary data set, it is unlikely that the instances will be in general position.

Nevertheless, it provides intuition that moving to higher dimensions can im-

prove our chances of finding a separating hyperplane.

3.3.1 Kernel Functions

In order to answer question (ii), let us first consider the functional form re-

turned by the SVM. Indeed, for some α ∈ Rm, the hyperplane f is of the

form3

f (x) =
m

∑
i=1

αi⟨xi, x⟩+ b. (3.54)

For a given instance x, f (x) depends only on the inner product between x

and the training instances xi for i = 1, . . . , m.4 Suppose instead that we have

mapped all instances into H according to ϕ. Then f now takes the form

f (x) =
m

∑
i=1

αi⟨ϕ(xi), ϕ(x)⟩H + b. (3.55)

3Here, we have absorbed the 1
2 multiplier into the αi for the sake of brevity.

4Technically, f (x) depends on the inner product between x and the support vectors in the
training set. For the sake of brevity, that detail is omitted in the proceeding discussion.
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As before, f (x) depends only on the inner product between ϕ(x) and the

training instances ϕ(xi) for i = 1, . . . , m. However, the inner product is now

taken in the space H. In order for this inner product to exist, we require

that H admits a certain structure. More specifically, we require that H is an

Hilbert Space.

Definition 3.3.2 (Hilbert Space, Schölkopf and Smola 2002). Let H be an in-

ner product space with inner product ⟨·, ·⟩H : H ×H → R and associated

norm ∥ · ∥H : H → R+ defined by

∥ x ∥H =
√
⟨x, x⟩

H
. (3.56)

H is called a Hilbert Space if it is complete with respect to the norm ∥ · ∥H.

For the defintions of an inner product space and completeness, please see

Kreyszig (1991). Technically, for the inner product to exist, we only require

that H is an inner product space. However, as the following theorem shows,

requiring H to be a Hilbert Space allows one to evaluate the inner product

with a kernel function.

Definition 3.3.3 (Kernel Function, Steinwart and Christmann 2008). Let X

be a non-empty set. Then a function k : X × X → R is called a kernel on

X if there exists a Hilbert space H and a map ϕ : X → H such that for all

x, x′ ∈ X we have

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H. (3.57)

We call ϕ a feature map and H a feature space.
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As shown in Definition 3.3.3, choosing a specific feature map into a Hilbert

space is equivalent to choosing a kernel function. However, the converse is

not true, since infinitely many feature maps can be associated with a given

kernel function (Minh et al., 2006). Nevertheless, for a given kernel function,

there always exists a canonical feature map associated with the reproducing ker-

nel Hilbert space (RKHS) of that kernel.

Definition 3.3.4 (Reproducing kernel Hilbert Space, Steinwart and Christ-

mann 2008). Let X be a non-empty set and Hk be a Hilbert space of functions

f such that f : X → R. A function k : X × X → R is called a reproducing

kernel of Hk if, for all x ∈ X and f ∈ Hk, we have

(i) k(x, ·) ∈ Hk,

(ii) f (x) = ⟨k(x, ·), f ⟩Hk (reproducing property).

The space Hk is called a reproducing kernel Hilbert space over X if, for all x ∈ X

and f ∈ Hk, the evaluation functional Lx : Hk → R defined by

Lx( f ) = f (x), (3.58)

is continuous.

To see that a reproducing kernel satisfies Definition 3.3.3, define the feature

map ϕk : X → Hk into an RKHS Hk such that

ϕk(x) = k(x, ·), for x ∈ X . (3.59)
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Since k(x, ·) ∈ Hk, we can apply the reproducing property of Definition 3.3.4

to yield

k(x, x′) = ⟨k(x, ·), k(x′, ·)⟩Hk = ⟨ϕk(x), ϕk(x′)⟩Hk . (3.60)

The feature map defined in Equation (3.59) is known as the canonical fea-

ture map. Furthermore, this definition defines a one-to-one correspondence

between reproducing kernels and RKHSs (Steinwart and Christmann, 2008).

Hence, going back to question (ii), it is natural to restrict the possible fea-

ture maps to canonical feature maps associated to a RKHS. The question

is then equivalent to asking: How does one choose a kernel function? In

general, the answer is problem-dependant. The choice of instance space X

defines what kernels are applicable and, as we will see in later sections, ker-

nels crafted for specific problems can often outperform their more general

counterparts. However, we can restrict our search by considering only those

functions k : X ×X → R which are positive semi-definite.

Definition 3.3.5 (Positive semi-definite property, Cristianini, Shawe-Taylor,

et al. 2000). Let X be a non-empty set. A function k : X × X → R is called

positive semi-definite if, for all n ∈ N, α1, . . . , αn ∈ R and x1, . . . , xn ∈ X , we

have
m

∑
i,j=1

αi αj k(xi, xj) ≥ 0. (3.61)

The function k is a kernel according to Definition 3.3.3 if and only if it is

symmetric and positive semi-definite.
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3.3.2 Learning Functions in a RKHS

As mentioned above, the use of a kernel function allows one to extend the

support vector algorithms in order to learn non-linear functions. The general

idea is to map the data into a feature space in which the problem is solved.

The reproducing property of Definition 3.3.4 ensures we can efficiently oper-

ate in the high or even infinite-dimensional feature space without having to

explicitly express the feature map. This is known as the kernel trick. In this

section, we review the problem of supervised learning in a RKHS.

We approach the problem of supervised learning in a RKHS from the per-

spective of RRM. According to Equation (3.4), this is a problem of the form

minimise
f∈Hk

1
m

m

∑
i=1

ℓ(yi, f (xi)) + g(∥ f ∥Hk) (3.62)

where Hk is a RKHS associated with kernel k : X ×X → R. This is a minimi-

sation problem over the function space Hk, which, in general, is not an easy

problem to solve. Hk is not explicitly defined and can potentially be infinite-

dimensional. However, Theorem 3.3.1, known as the Representer Theorem,

characterises solutions to problems of the form of Equation (3.62).

Theorem 3.3.1 (Representer Theorem). (Schölkopf et al., 2001) Let X and Y

be a non-empty sets, k : X × X → R a reproducing kernel associated to a

RKHS Hk, g : R → R a strictly monotonically increasing function and ℓ :

Y ×Y → R+ a loss function. Given a training sample {(xi, yi)}m
i=1 ⊂ X ×Y ,
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any solution f ∗ ∈ Hk to the following problem

minimise
f∈Hk

1
m

m

∑
i=1

ℓ(yi, f (xi)) + g(∥ f ∥Hk) (3.63)

admits a representation of the form

f ∗(·) =
m

∑
i=1

αik(·, xi). (3.64)

The remarkable Representer Theorem states that any solution to Equation (3.62)

can be expressed as a linear combination of the kernel function evaluated at

the training data. Hence, the problem of finding a function from the possi-

bly infinite-dimensional space Hk is reduced to the finite-dimensional prob-

lem of finding the set of multipliers αi which minimise Equation (3.62). Fur-

thermore, we have made no reference to the form of the loss function or the

regularisation function. Indeed, many kernel-based learning algorithms are

derived as manifestations of this theorem for differing choices of the loss

function and regularisation function.

3.3.3 Kernel-SVM

In what follows, we present a derivation of the SVM from the perspective

Equation (3.62). To do so, we define the loss function as the hinge loss and the
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regularisation function as a positively-scaled quadratic. This leads to Equa-

tion (3.65)

minimise
f∈Hk

1
m

m

∑
i=1

max(0, 1 − yi f (xi)) + λ∥ f ∥2
Hk

, (3.65)

where λ > 0. The Representer Theorem states that any solution f ∗ ∈ Hk to

Equation (3.65) can be expresed as

f ∗(·) =
m

∑
i=1

αik(·, xi). (3.66)

Hence, a strategy to solve the problem is to plug in this representation and

solve for the weights αi. First, note that the squared norm of f ∗ can be written

as

∥ f ∗∥2
Hk

= ⟨ f ∗, f ∗⟩Hk =

〈 m

∑
i=1

αi k(·, xi),
m

∑
j=1

αj k(·, xj)

〉
Hk

, (3.67)

where the inner product ⟨·, ·⟩Hk is taken in the RKHS Hk. Since the inner

product is linear, application of the reproducing property yields

∥ f ∗∥2
Hk

=
m

∑
i,j=1

αi αj k(xi, xj). (3.68)

Equation (3.65) can therefore be expressed as

minimise
α∈Rm

1
n

m

∑
i=1

max
(

0, 1 − yi

m

∑
j=1

αj k(xi, xj)

)
+ λ

m

∑
i,j=1

αi αj k(xi, xj) (3.69)
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We have already shown in Section 3.2.1 that optimisation of a functional in-

volving the hinge-loss can be expressed as a constrained optimisation prob-

lem in terms of slack variables. Hence Equation (3.69) can be expressed as

minimise
α,ξ

1
mλ

m

∑
i=1

ξi +
m

∑
i,j=1

αi αj k(xi, xj)

subject to yi

m

∑
j=1

αj k(xi, xj) ≥ 1 − ξi, i = 1, . . . , m,

ξi ≥ 0, i = 1, . . . , m.

(3.70)

This problem is a constrained convex optimisation problem in terms of α ∈

Rm and ξ ∈ Rm. It is the primal form of the kernel-SVM problem. Similarly

to the dual of the soft-margin SVM, the dual of the kernel-SVM is expressed

in terms of one variable. To derive the dual, we first express Equation (3.70)

in terms of matrices.

Let us define the matrix K ∈ Rm×m such that its i, j entries are equal to

k(xi, xj). This is known as the kernel matrix. Furthermore, define Y ∈ Rm×m as

a diagonal matrix whose ith diagonal element entry is equal to yi, 1m ∈ Rm as

the vector of all ones and 0m ∈ Rm as the vector of all zeroes. Equation (3.70)

can be compactly expressed as5

5The ⪰ symbol is an element-wise application of ≥.
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minimise
α,ξ

1
mλ

1T
m ξ + αT K α

subject to Y K α ⪰ 1m − ξ,

ξ ⪰ 0m .

(3.71)

The Lagrangian of Equation (3.71) is

L(α, ξ, β, ω) =
1

mλ
1T

m ξ + αT K α+ βT(1m − ξ −Y K α)− ωT ξ, (3.72)

where β ∈ Rm and ω ∈ Rm are the Lagrangian Multipliers. Similarly to the

hard-margin SVM, strong duality holds via application of Slater’s Condition.

Since the problem is differentiable, the KKT conditions can be applied. The

derivatives of the Lagrangian with respect to α and ξ are

∂L(α, ξ, β, ω)

∂ α
= K(2 α−Y β),

∂L(α, ξ, β, ω)

∂ ξ
=

1
mλ

1m − β−ω .

Equating both to 0m gives the following sufficient conditions

α =
1
2

Y β,

0m =
1

mλ
1m − β−ω .

Substituting these expressions back into the Lagrangian and applying the
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dual feasibility property of Definition 3.2.8 gives Equation (3.74), the Kernel-

SVM Dual.

maximise
β

1T
m β−1

4
βT Y K Y β

subject to 0m ⪯ β ⪯ 1
mλ

1m . (3.73)

(3.74)

Whilst we omit the specific analysis, the complementary slackness property

of the KKT conditions allows one to draw similar conclusions regarding sup-

port vectors to that of the soft-margin SVM. Prediction at a new point x̃ is

expressed in terms of β and kx̃ = (k(x1, x̃), . . . , k(xm, x̃))T as

f (x̃) =
1
2

kT
x̃ Y β (3.75)

3.3.4 Kernel SVR

The SVR algorithm can also be derived from the perspective of RRM in a

RKHS. In particular, using the ε-insensitive loss and a positively-scaled quadratic

regulariser leads to the primal form of Kernel SVR, as given in Equation (3.76).
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minimise
α,ξ,ξ∗

1
mλ

1T
m(ξ + ξ∗) + αT K α

subject to K α− y ⪯ ε 1m + ξ,

y−K α ⪯ ε 1m + ξ∗,

ξ, ξ∗ ⪰ 0m .

(3.76)

Here, ξ, ξ∗ ∈ Rm are the two sets of slack variables corresponding to the up-

per and lower boundaries of the epsilon tube and y ∈ Rm is a vector whose

ith element equals yi. This is a convex optimisation problem with differen-

tiable objective and constraint functions. Furthermore, one can trivially find

a point such that Slater’s condition holds. Hence, the KKT conditions can be

applied. The dual formulation of the Kernel SVR problem is given in Equa-

tion (3.78).

maximise
β,β∗

yT(β∗ − β)− 1
4
(β∗ − β)T K(β∗ − β)− ε 1T

m(β∗ + β)

subject to 0m ⪯ β, β∗ ⪯ 1
mλ

1m . (3.77)

(3.78)
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Chapter 4

Kreı̆n Space Methods for

Structured Data

This chapter presents the main methodological contributions of the thesis.

In particular, we derive the dual problem of an SVM in a Kreı̆n space and

present a novel, indefinite string kernel rooted in compression, the string

compression kernel (SCK). The first section provides an overview of the fun-

damental theory of Kreı̆n spaces and the notion of a Reproducing Kernel

Kreı̆n Space in Section 4.1. This theory is used in the following section to

derive the dual problem of the Kreı̆n-SVM. Similarly to a kernel-SVM, the

derivation results in a quadratic program that can be readily solved with an

off-the-shelf solver. We conclude the chapter with a discussion of the SCK.

Using the notion of Kolmogorov Complexity (Cover, 1999; Kolmogorov, 1965)

and its approximation via real-world compression software, we propose to

measure the similarity of two strings by comparing their lenghts when com-

pressed.
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4.1 Kreı̆n Space Theory

Let K be a vector space equipped with a bilinear form ⟨·, ·⟩K : K ×K → R.

The bilinear form is called positive if ⟨ f , f ⟩K ≥ 0 for all f ∈ K. It is called

symmetric if, for all f , g ∈ K, ⟨ f , g⟩K = ⟨g, f ⟩K. The bilinear form is called

indefinite if there exists f , g ∈ K such that ⟨ f , f ⟩K > 0 and ⟨g, g⟩K < 0. We

call the form non-degenerate if, for f ∈ K, ⟨ f , g⟩K = 0 for all g ∈ K implies

f = 0. Any non-degenerate, symmetric and positive bilinear form is called

an inner product.

To formally define a Kreı̆n space, we must first introduce the notion of a

direct sum. This is given in Definition 4.1.1.

Definition 4.1.1 (Direct Sum, Kreyszig 1991). A vector space K is said to be

the direct sum of two subspaces K1,K2, written

K = K1 ⊕K2, (4.1)

if each f ∈ K has a unique representation

f = f1 + f2 (4.2)

for f1 ∈ K1, f2 ∈ K2. To be more explicit, we often write

f = f1 ⊕ f2. (4.3)

As shown in Definition 4.1.2, a Kreı̆n space is simply a vector space equipped
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with a bilinear form that can be expressed as an orthogonal direct sum of two

Hilbert spaces.

Definition 4.1.2 (Kreı̆n Space, Ong et al. 2004). Let K be a vector space equipped

with a bilinear form ⟨·, ·⟩K. The pair (K, ⟨·, ·⟩K) is called a Kreı̆n space if there

exist two linear manifolds H± in K with inner products ⟨·, ·⟩H± such that

K = H+ ⊕H−. (4.4)

The pairs (H±, ⟨·, ·⟩H±) define Hilbert spaces which are orthogonal to each

other.

A consequence of Definition 4.1.2, given in Corollary 4.1.1, is that the bilinear

form of a Kreı̆n space can be expressed as the difference of inner products in

the asscociated Hilbert spaces. Hence, it is a symmetric, non-degenerate and

indefinite bilinear form.

Corollary 4.1.1. As in Definition 4.1.2, let (K, ⟨·, ·⟩K) be a Kreı̆n space such

that K = H+ ⊕H− for Hilbert spaces (H±, ⟨·, ·⟩H±). For elements f , g ∈ K,

f±, g± ∈ H± such that f = f+⊕ f− and g = g+⊕ g−, the bilinear form ⟨·, ·⟩K

can be expressed as

⟨ f , g⟩K = ⟨ f+, g+⟩H+ − ⟨ f−, g−⟩H− . (4.5)

The decomposition in Corollary 4.1.1 allows one to define a Hilbert space by

replacing the difference of inner products with a sum. This space, known as

the associated Hilbert space, is defined in Definition 4.1.3.
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Definition 4.1.3 (Asscociated Hilbert Space, Ong et al. 2004). Let (K, ⟨·, ·⟩K)

be a Kreı̆n space with decomposition into Hilbert spaces (H±, ⟨·, ·⟩H±). De-

fine (HK, ⟨·, ·⟩HK) as the Hilbert space such that

(i) HK = H+ ⊕H−

(ii) ⟨ f , g⟩HK = ⟨ f+, g+⟩H+ + ⟨ f−, g−⟩H− , ( f±, g± ∈ H±).

We say (HK, ⟨·, ·⟩HK) is the associated Hilbert space of the Kreı̆n space (K, ⟨·, ·⟩K).

For a Kreı̆n space K, the decomposition K = H+ ⊕ H− is not necessarily

unique. Generally, a Kreı̆n space can be associated to infinitely many Hilbert

spaces. However, the topology introduced on K via the norm ∥ f ∥HK =√
⟨ f , f ⟩HK

is independent of the specific decomposition and associated Hilbert

space (Oglic and Gärtner, 2019). We refer to this topology as the strong topol-

ogy.

Given an instance space X , the evaluation functional Lx : RX → R on K

is an operator that evaluates each function f ∈ K at a point x ∈ X . We call

the Kreı̆n space K a reproducing kernel Kreı̆n space (RKKS) if the evaluation

functional is continuous on K with respect to the strong topology (Alpay,

1991; Ong et al., 2004). The following theorem provides a useful characteri-

sation of RKKSs and their relation to RKHSs.

Theorem 4.1.1 (Kreı̆n Kernel, Alpay 1991). Let k : X × X → R be a real-

valued, symmetric function. Then, there is an associated RKKS if and only if

there exists positive definite kernels k+ and k− such that

k = k+ − k−. (4.6)
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If k admits such a decomposition, k+ and k− can be chosen such that the

corresponding RKHSs are disjoint.

A consequence of Theorem 4.1.1 allows us to define an analog of the repro-

ducing property of an RKHS. This is given in Corollary 4.1.2.

Corollary 4.1.2 (Reproducing Kreı̆n Kernel, Ong et al. 2004). Let (K, ⟨·, ·⟩K)

be a RKKS with decomposition into Hilbert spaces (H±, ⟨·, ·⟩H±). Then (H±, ⟨·, ·⟩H±)

are RKHSs with kernels k±. Furthermore, there is a unique symmetric func-

tion k : X ×X → R such that for all f ∈ K and x, x′ ∈ X ,

(i) k(x, ·) ∈ K,

(ii) ⟨ f , k(x, ·)⟩K = f (x) (reproducing property),

(iii) k(x, x′) = k+(x, x′)− k−(x, x′).

We call k the reproducing Kreı̆n kernel of K.

A RKKS can also be associated to a Hilbert space in the same manner as given

in Definition 4.1.3. In this case, the associated space is a RKHS whose kernel

is defined as the sum of the kernels from the decomposition spaces.

The notion of a Kreı̆n space and also a RKKS generalises that of a Hilbert

space and a RKHS, respectively. Indeed, a Hilbert space can be seen as a

Kreı̆n space such that H− = 0. Similarly, a RKKS can be seen as a RKHS in

which H− = 0, or equivalently, k− = 0.
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4.2 Classification in a RKKS

Having reviewed the relevant theory of Kreı̆n spaces and RKKSs, we now

move on to function estimation. In this section, we derive a support vector

classifier for a hypothesis belonging to a RKKS. We will focus on the prob-

lem of RRM in a RKKS. Recall that RRM involves minimising the empirical

risk together with a regularisation term. As a loss function, we choose the

squared-hinge loss. The algorithms using the hinge and squared-hinge loss

functions are derived in a similar manner. However, the squared-hinge pro-

vides greater penalisation to instances residing on the incorrect side of the

hyperplane. As a regularisation term, we select the norm induced via the

the strong topology in which each decomposition component is separately

scaled. That is, for a RKKS (K, ⟨·, ·⟩K) we regularise with the term

λ+∥ f+∥2
H+

+ λ−∥ f−∥2
H− . (4.7)

Providing distinct regularisation parameters λ± for each component allows

for greater control over the hypothesis. Previous approaches have regu-

larised with respect to the bilinear form ⟨ f , f ⟩K = ∥ f+∥2
H+

− ∥ f+∥2
H−

of the

RKKS (Ong et al., 2004). However, this does not define a norm. These ap-

proaches have been empirically shown to produce hypotheses that struggle

to generalise to unseen instances (Oglic and Gärtner, 2018). Furthermore, for

specific loss functions, regularising with respect to the strong topology leads

to convex optimisation problems.

Given a training set S = {(xi, yi)}m
i=1 ⊂ Rn × {−1,+1}, positive scalars
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λ± > 0 and a RKKS K, we aim to solve the optimisation problem of Equa-

tion (4.8).

minimise
f∈K

1
2

m

∑
i=1

max(0, 1 − yi f (xi))
2 +

λ+

2
∥ f+∥2

H+
+

λ−
2
∥ f−∥2

H− , (4.8)

We refer to Equation (4.8) as the Kreı̆n-SVM problem. It is a minimisation

problem over a potentially infinite function space and is thus not an easy

problem to solve. However, as shown in Theorem 4.2.1, a representer-like

theorem holds for Equation (4.8).

Theorem 4.2.1. Let f ∗ ∈ K be an optimal solution to the Kreı̆n-SVM problem

of Equation (4.8) and let k : X × X → R be the reproducing Kreı̆n kernel

associated to K. Then f ∗ admits a representation of the form

f ∗ =
m

∑
i=1

αik(·, xi). (4.9)

The proof of Theorem 4.2.1 is similar to that provided by Oglic and Gärt-

ner (2018), with a slight modification for the different objective function.

Similarly to the derivation of the kernel-SVM, the representer theorem al-

lows us to express the solution to Equation (4.8) in terms of a minimisation

problem over a finite domain. Firstly, note that for f ∗ = ∑m
i=1 αik(·, xi) and

f ∗ = f ∗+ ⊕ f ∗− we have f ∗± = ∑m
i=1 αik±(·, xi). Therefore, we obtain

minimise
α

1
2

m

∑
i=1

max(0, 1 − yi

m

∑
j=1

αi k(xi, xj))
2

+
λ+

2

m

∑
i,j=1

αi αj k+(xi, xj) +
λ−
2

m

∑
i,j=1

αi αj k−(xi, xj).

(4.10)
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This can be expressed in terms of slack variables as

minimise
α,ξ

1
2

m

∑
i=1

ξ2
i ++

λ+

2

m

∑
i,j=1

αi αj k+(xi, xj) +
λ−
2

m

∑
i,j=1

αi αj k−(xi, xj)

subject to yi

m

∑
j=1

αj k(xi, xj) ≥ 1 − ξi, i = 1, . . . , m.

(4.11)

As with the kernel-SVM, it is simpler to proceed by first expressing Equa-

tion (4.11) in terms of matrices. Define Y ∈ Rm×m, 1m ∈ Rm and 0m ∈ Rm

as was done in Section 3.3.3. Define the matrix K ∈ Rm×m such that its i, j

entries are equal to k(xi, xj). Similarly, define the matrices K± ∈ Rm×m with

i, j entries are equal to k±(xi, xj). It follows that K = K+ −K−. In practice,

the matrices K± are computed from K via its eigendecomposition. In partic-

ular, let the eigendecomposition be K = V Σ VT where V is the matrix with

eigenvectors as columns and Σ is the diagonal matrix with eigenvalues along

its diagonal. Defining Σ± as the diagonal matrices that contain the absolute

values of the positive/negative eigenvalues of Σ, we have that Σ = Σ+ −Σ−

and hence K± = V Σ± VT. Furthermore, for σi(K) being the ith eigenvalue

of K, let Λ be the diagonal matrix whose ith diagonal entry Λi,i can be ex-

pressed as

Λi,i =


λ+, σi(K) ≥ 0,

−λ−, σi(K) < 0.

(4.12)
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These definitions lead to the equivalent problem given in Equation (4.13).

minimise
α,ξ

1
2

ξT ξ ++
1
2

αT H K α

subject to Y K α ⪰ 1m − ξ,

(4.13)

where H = V Λ VT. Upon inspection, this problem looks remarkably similar

to that of the kernel-SVM. We do not require the positivity constraint on the

ξ since the square of the values are incorporated into the objective function.

However, apart from that, the only notable difference is the replacement of

H K in place of the standard kernel matrix. By construction, this product can

be expressed as H K = λ+ K+ +λ− K−. Hence, this problem reduces to a

standard squared-hinge SVM when the kernel function is positive-definite

i.e. K− = 0.

The problem presented in Equation (4.13) is a constrained convex optimi-

sation problem over α ∈ Rm and ξ ∈ Rm. Viewing it as the primal problem,

we can apply the theory of Langrangian Duality in order to derive the dual.

The Lagrangian is defined as

L(α, ξ, β) =
1
2

ξT ξ ++
1
2

αT H K α+ β(1m − ξ −Y K α). (4.14)

where β ∈ Rm is the Langrangian Multiplier. Similarly to the kernel-SVM

problem, strong duality holds via application of Slater’s Condition. Since the

problem is differentiable, the KKT conditions can be applied. The derivatives
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of the Langrangian with respect to α and ξ are

∂L(α, ξ, β, ω)

∂ α
= H K α−K Y β,

∂L(α, ξ, β, ω)

∂ β
= ξ − β .

Setting these equations equal to 0m gives the following conditions

H K α = K Y β,

ξ = β,

or, equivalently,

α = H−1 Y β . (4.15)

Substituting these expressions back into the Langrangian and applying the

dual feasibility property of Definition 3.2.8 gives Equation (4.16), the Kreı̆n-

SVM Dual.

maximise
β

1T
m β−1

2
βT(Y K H−1 Y+ Im) β

subject to β ⪰ 0m .

(4.16)

As with the kernel-SVM, Equation (4.16) is a quadratic program and can be

solved efficiently with an off-the-shelf solver. Computation of the inverse

matrix may can be performed efficiently by recalling that H = V Λ VT, and

therefore H−1 = V Λ−1 VT. Since Λ is a diagonal matrix, its inverse is the
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matrix whose diagonal entries are the reciprocal of those of Λ.

4.3 Compression-Based Similarity

Compression-based similarity methods have been widely used across many

areas of informatics, including, for example, the comparison of molecules in

cheminformatics (Melville et al., 2007) and as feature space embeddings in

machine learning (Sculley and Brodley, 2006). Motivated by this, we propose

to measure the similarity of strings by comparing their lengths when com-

pressed, and define an intuitive string kernel that is not a positive-definite

function. We call this kernel the string compression kernel (SCK). Before mov-

ing forward, we clarify our terminology.

Let Σ be a finite alphabet, Σn ⊆ Σ be the set of all strings of length n from

Σ and Σ∗ the set of all strings from that alphabet. A string s ∈ Σ∗ of length

|s| is a sequence of characters that can be indexed as s = s1 . . . s|s|.

Intuitive Construction In order to understand the motivation for the SCK

in more detail, consider a compression function f : Σ∗ → Σ∗ and two strings

s, s′ ∈ Σ∗. Furthermore, denote by ss′ the concatenation of s and s′, | f (s)| the

size of the string s when compressed by f and consider the function

d(s, s′) = | f (s)| − | f (ss′)|. (4.17)

For an efficient compressor, one would expect d(s, s) to be small in mag-

nitude. Compressing a string concatenated with itself should require little
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overhead compared to compressing the string directly. Hence, the size of

the compressed strings should be similar. This is the idea that underpins the

SCK. Furthermore, it can be expanded to similar and dissimilar strings. Con-

sider three strings t, u, v ∈ Σ∗ such that u and v are similar strings whilst v

and t are dissimilar strings 1. The difference d(v, u)− d(v, t) can be expressed

as

d(v, u)− d(v, t) = | f (vt)| − | f (vu)|. (4.18)

Given that v and u are similar, a compressor should be able to utilise the

information provided by v in order to compress u more efficiently than that

of t. Hence, one would expect | f (vt)| to be greater in magnitude than | f (vu)|,

implying that d(v, u)− d(v, t) is positive. That is, d(v, u) > d(v, t) when v is

more similar to u than it is to t. Whilst not a formal argument, this theoretical

scenario provides intuition into the SCK. In order to transform this idea into

a valid Kreı̆n kernel, we require a symmetric function. Hence, for strings s

and s′, the SCK kernel kSCK : Σ∗ × Σ∗ → R is simply the sum of d(s, s′) and

d(s′, s), as shown below

kSCK(s, s′) = | f (s)|+ | f (s′)| − | f (ss′)| − | f (s′s)|. (4.19)

Formal Construction The intuitive construction of the SCK can be formalised

by considering the notion of Kolmogorov complexity, the definition of which

is given below:

1In this hypothetical scenario, any notion of similarity is sufficient. The main idea is that
of similar and dissimilar strings.
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Definition 4.3.1 (Kolmogorov complexity, Li, Vitányi, et al. 2008). Let s ∈ Σ∗

be a string and K : Σ∗ → N a function such that K(s) is the length of the

shortest computer program, in a predefined language, that produces s as output. We

call K(s) the Kolmogorov complexity of s.

The Kolmogorov complexity of a string or, more generally, an arbitrary digi-

tal object, is essentially the length of the ultimate compressed version of the

object (Li et al., 2004). The notion can be extended into a conditional form, in

which an auxiliary input is provided:

Definition 4.3.2 (Conditional Kolmogorov complexity, Li, Vitányi, et al. 2008).

Let s, s′ ∈ Σ∗ be two strings and KC : Σ∗ × Σ∗ → N a function such that

KC(s | s′) is the length of the shortest computer program, in a predefined lan-

guage, that produces s as output when s′ is provided as an auxiliary input. We

call KC(s | s′) the Conditional Kolmogorov complexity of s given s′.

We can also consider the joint complexity of two strings:

Definition 4.3.3 (Joint Kolmogorov complexity, Li, Vitányi, et al. 2008). Let

s, s′ ∈ Σ∗ be two strings and KJ : Σ∗×Σ∗ → N a function such that KJ(s, s′) is

the length of the shortest computer program, in a predefined language, that produces

s and s′ as output, as well as a method to distinguish them. We call KJ(s, s′) the

Joint Kolmogorov Complexity of s and s′.

Finally, for two strings s, s′ ∈ Σ∗, the various notions of Kolmogorov com-

plexity are related via the following formula:

KC(s | s′) = KJ(s, s′)− K(s′). (4.20)
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Whilst intuitively simple, the preceding definitions are not computable func-

tions. Hence, in order to incorporate them into a notion of string similarity,

once must approximate the various notions of Kolmogorov complexity. It

turns out that real-world compression software serves as a good proxy for

the Kolmogorov complexity (Li et al., 2004). Indeed, given a string s and a

compression function f : Σ∗ → Σ∗, the Kolmogorov complexity of s is well-

approximated by | f (s)|. We have that K(s) serves as the universal, lower

bound that any real-world compressor can possibly achieve (Li et al., 2004).

This notion also extends to the joint complexity, in which for two strings

s, s′ ∈ Σ∗ and a compression function f : Σ∗ → Σ∗, the joint complexity of s

and s′ is well-approximated by | f (ss′)|, where ss′ denotes the concatenation

of s and s′. Hence, by Equation (4.20), the conditional Kolmogorov complex-

ity of s given s′ can be approximated by | f (ss′)| − | f (s′)|. That is,

KC(s | s′) ≈ | f (ss′)| − | f (s′)|. (4.21)

Therefore the SCK can be expressed as

kSCK(s, s′) ≈ −
(

KC(s | s′) + KC(s′ | s)
)

. (4.22)

We note that the negative sign in Equation (4.22) is merely a constant and

does not defer from the fact the the SCK approximates the sum of conditional

Kolmogorov complexities.



Chapter 4. Kreı̆n Space Methods for Structured Data 101

4.4 Software and Programming Languages

The main goal of the software developed in this thesis is to produce reli-

able results. To ensure trustworthiness, the code must be thoroughly tested,

well-documented, concise, and accessible. Therefore, the proof-of-concept

reference implementations are created using the Python scripting language.

This offers readability and brevity, enabling fast development times and re-

ducing the number of potential errors. As the software is scientific, the stan-

dard Python scientific development stack of numpy, pandas, and matplotlib

is used. We utilise the machine learning framework scikit-learn for useful

preprocessing functionality and the convex optimisation framework cvxopt

to fit the Kreı̆n-SVM. Reference implementations of both the Kreı̆n-SVM and

SCK are provided at https://github.com/Mrjoeybux/KreinAMP and

https://github.com/Mrjoeybux/strukern, respectively.

https://github.com/Mrjoeybux/KreinAMP
https://github.com/Mrjoeybux/strukern
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Chapter 5

Identification of Translation

Initiation Sites

This chapter describes and evaluates a framework to develop models that

identify TIS codons. We assess the effectiveness of our proposed approach on

two datasets. The first is a synthetic string dataset in which the instances are

distributed according to a k-order Markov model. The second is a real-world

dataset of mRNA sequences and their respective TIS codons. The synthetic

dataset is designed to suit our methodology well, and our results support

this. The results on the real-world dataset are not as clear-cut, indicating that

a k-order Markov model can not fully describe mRNA sequences. The rest

of the chapter is organised as follows: First, we provide a background on the

problem of TIS identification, giving a broad description of gene expression

and how TIS codons fit into this. This is followed by a detailed description

of our methodology, in which we discuss the datasets and kernel functions

used in our experiments and our computational setup. Finally, we discuss

the results of our experiments and propose some avenues for further work.
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5.1 Background

Gene expression is a fundamental biological process that converts the genetic

information encoded in DNA into functional proteins. It consists of two main

stages: transcription and translation. Transcription, which occurs in the nu-

cleus of a cell, copies the information encoded in DNA into messenger RNA

(mRNA). Once created, the mRNA molecule leaves the nucleus and starts

the translation process. This process consists of three main stages: initiation,

elongation, and termination. The ribosome assembles on the mRNA during

initiation and locates the TIS, where it begins synthesizing the polypeptide

chain. Codons, a sequence of three consecutive nucleotides in the mRNA

molecule, correspond to specific amino acids. Elongation involves the se-

quential reading of codons and the addition of corresponding amino acids

to the growing polypeptide chain. Termination occurs when the ribosome

encounters a stop codon, releasing the completed protein (Dever and Green,

2012).

The TIS is a specific codon in the mRNA sequence where the ribosome be-

gins translation. The selection of the TIS is crucial as it establishes the correct

open reading frame for mRNA decoding, ensuring that the protein is syn-

thesized correctly. The most common TIS in eukaryotes is the AUG codon,

which codes for the amino acid methionine(Jackson et al., 2010). However,

eukaryote translation does not always start at the initial AUG codon. Thus,

context information plays a role, making prediction of TIS non-trivial.

Accurate identification of TIS codons is crucial for understanding gene
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expression and protein synthesis. Automating this process, particularly with

machine learning and deep learning techniques, leads to many potential ben-

efits, including enhanced gene annotation, improved understanding of dis-

eases and therapeutics, and large-scale, cost-effective processing (Gleason et

al., 2022; Kozak, 2002; Hyatt et al., 2010; Hyatt et al., 2012). Hence, automated

TIS prediction is a valuable tool in modern genomic research.

5.2 Methodology

This section describes the methodology used to develop and evaluate our

models. We start with a detailed discussion of the datasets. This is followed

by a description of the positive-definite kernel function we have used as a

baseline. We conclude the section with a description of our computational

setup.

5.2.1 The Datasets

Synthetic String

Many text compression algorithms are either statistical or dictionary based.

A dictionary based compressor works by substituting common fragments of

text for keys (of smaller size), according to a given dictionary. In comparison,

a statistical based compressor works by developing a statistical model of the

text. Most consist of two stages, a modelling stage and a coding stage. Dur-

ing the modelling stage, the model assigns a probability distribution over the

next symbol, given the previously processed text. During the coding stage,
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a coder computes a codeword (a binary number) for the next symbol. The

length of the codeword is related to the assigned distribution, with higher

probability elements corresponding to shorter codewords (Salomon, 2007).

The prediction by partial matching (PPM) compression algorithm (Cleary

and Witten, 1984) is a statistical compression algorithm whose modelling

stage assigns probability distributions based on a number of Markov models

of varying order. With this in mind, we generated a number of synthetic clas-

sification datasets to test our compression kernel (using PPM). We created

these datasets in the hope that they would be well suited to our compres-

sion kernel yet may be more difficult for the locality-improved kernel. Each

dataset consisted of strings distributed according to two k-order Markov

models (see Algorithm 1 for details) i.e. the positive and negative instances

followed different distributions. We created four datasets corresponding to

values of k ∈ {1, 3, 5, 7}. Each dataset consisted of 500 positive instances

and 500 negative instances, in which each instance was a string of length 300

belonging to the alphabet {"A", "T", "C", "G"}.

Translation Initiation Sites

In order to develop TIS classifiers, we utilise a dataset of eukaryotic mRNA

sequences from the Arabidopsis thaliana plant. This dataset, which has been

widely studied over the years (Pedersen and Nielsen, 1997; Zien et al., 2000),

consists of 514 sequences, each annotated with its corresponding TIS codon.

In its raw form, the dataset is unsuitable for the classification task at hand.

However, Pedersen and Nielsen (1997) describe a method to transform it into
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Algorithm 1 An algorithm to generate string data according to a k-order
markov model.

Input: Σ, an alphabet. N, number of instances to generate. L, the length of
each instance. k, the order of the markov model. α ∈ R

|Σ|
>0, parameters of

the Dirichlet distribution.
Output: D, the data set of strings.
Set D = ∅.
for s ∈ Σk do

Sample p ∼ Dir(α).
Set P(Σ|s) = p.

end for
while |D| < N do

Choose uniformly at random z ∈ Σk. Set x = z.
while |x| < L do

Sample l ∼ P(Σ|x(|x|−k) . . . x|x|)
x = xl

end while
D = D ∪ {x}

end while

a classification data set. The process converts a sequence into a set of subse-

quences, each of which is assigned a binary label indicating whether or not

the subsequence contains the actual TIS codon. The subsequences are ex-

tracted from the original sequence as a length l window centred at every

potential TIS codon. Algorithm 2 provides pseudocode for this procedure.

When transformed using Algorithm 2, the dataset contains 2021 instances.

The class ratio, i.e., the ratio of the number of TIS sequence fragments to

non-TIS sequence fragments, is 0.242.

5.2.2 Kernel Functions

This section briefly reviews the locality-improved kernel, a positive-definite

kernel function which we have used as a baseline to compare against the

SCK from Section 4.3. This section uses the same notation and terminology
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Algorithm 2 Pseudocode describing the transformation of the TIS data sets.
Input: D, a data set of mRNA sequences. l, a window size.
Output: Dt, the transformed data set.
Set Dt = ∅
for x ∈ D do

Set Ix = {i : x[i : i + 2] = ‘ATG’}.
for i ∈ Ix do

Set x′ = x[i − l : i + 2 + l]
if i is the TIS index then

Set y = 1
else

Set y = 0
end if
Dt = Dt ∪ {(x′, y)}

end for
end for

as Section 4.3. For ease of exposition, we repeat it below:

Let Σ be a finite alphabet, Σn ⊆ Σ be the set of all strings of length n from

Σ and Σ∗ the set of all strings from that alphabet. A string s ∈ Σ∗ of length

|s| is a sequence of characters that can be indexed as s = s1 . . . s|s|.

Locality-Improved kernel The locality-improved kernel kLI : Σ∗ × Σ∗ →

R is a positive-definite string kernel, first published by Zien et al. (2000).

It emphasises local correlations by analysing fixed length substrings of the

original strings. To define it, we first introduce the matching kernel. For two

characters c1, c2 ∈ Σ, define the matching kernel kδ : Σ × Σ → {0, 1}

kδ(c1, c2) =


1, if c1 = c2.

0, otherwise.

, (5.1)
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Let s, s′ ∈ Σn be two strings, l ∈ N be the substring length parameter and

d1 ∈ N the substring polynomial power. The substring polynomial kernel is

defined as

ki(s, s′) =
( l

∑
j=−l

kδ(si+j, s′i+j)

)d1

. (5.2)

The locality-improved kernel, given below, is then another polynomial kernel

of power d2 ∈ N computed on all substring polynomial kernels.

kLI(s, s′) =
( n−l

∑
i=l

ki(s, s′)
)d2

. (5.3)

5.2.3 Computational Setup

In our experiments, we performed nested-cross validation with 10 inner and

10 outer folds. We ensured consistency in the results by using the same outer

cross-validation splits across all models. We followed the scheme outlined in

Algorithm 2 to create a usable classification data set, using a fixed window

size of 203. In order to avoid data-leakage in the TIS experiments i.e., the

process in which unwarranted information is shared between train and test

sets, we defined our cross-validation splits on the original mRNA sequences

and transformed these when required. We used the continuous optimisation

scheme described by Chapelle et al. (2002) to select the best combination of

regularisation parameters for the KSVM algorithm. The three hyperparame-

ters of the locality-improved kernel were optimised with grid search. Values

of 1 to 5 were tested for the d1 and d2 parameters, whilst values of 1 to 7 were

tested for the l parameter. The zlib, snappy, and PPM (Gailly and Adler, 2020;
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Google, 2020; Cleary and Witten, 1984) compression functions were used in

conjunction with the SCK. Where applicable, the compression level of a com-

pression function was optimised using grid search.

5.3 Experimental Evaluation

This section presents our experimental evaluation of the Kreı̆n-SVM equipped

with the SCK. We first discuss the results on the synthetic string dataset, in

which we assess the efficacy of the SCK, equipped with PPM compression

function, in classifying strings distributed accoridng to a k-order Markov

Model. This is followed by results on the TIS dataset, in which we evalu-

ate the effectiveness of the SCK in identifying TIS codons.

5.3.1 Synthetic string dataset

In our first set of experiments, we used the SCK (with PPM compression

function) and locality-improved kernel to perform classification on our syn-

thetic datasets. The results from this set of experiments can be seen in Ta-

ble 5.1. For k ∈ {1, 3}, there is no difference between between performance

of the models. For k = 5, KSVM-PPM is still perfectly discriminating be-

tween instances whilst SVM-LI suffers a small loss in performance. The re-

sults for k = 7 are the most noticeable, with SVM-LI suffering from a large

degradation in performance compared to lesser values of k. On the other

hand, KSVM-PPM still performs very well. These results indicate that the
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locality-improved kernel fails to accurately discriminate between instances

distributed according to a k-order Markov models when k = 7.

k Model Train AUC Test AUC Train Accuracy Test Accuracy

1 SVM-LI 1.0 (0.000) 1.0 (0.000) 1.0 (0.000) 0.991 (0.007)
KSVM-PPM 1.0 (0.000) 1.0 (0.000) 1.0 (0.000) 1.0 (0.000)

3 SVM-LI 1.0 (0.000) 1.0 (0.000) 1.0 (0.000) 0.998 (0.004)
KSVM-PPM 1.0 (0.000) 1.0 (0.000) 1.0 (0.000) 1.0 (0.000)

5 SVM-LI 1.0 (0.000) 0.941 (0.006) 1.0 (0.000) 0.866 (0.013)
KSVM-PPM 1.0 (0.000) 1.0 (0.000) 1.0 (0.000) 1.0 (0.000)

7 SVM-LI 1.0 (0.000) 0.666 (0.017) 1.0 (0.000) 0.623 (0.013)
KSVM-PPM 1.0 (0.000) 0.982 (0.005) 1.0 (0.000) 0.925 (0.018)

TABLE 5.1: The average accuracy and average area under the
ROC curve (AUC) on the synthetic string dataset for varying
values of k. KSVM-PPM denotes the Kreı̆n squared-hinge SVM
algorithm with PPM compression kernel, SVM-LI denotes the
SVM with locality-improved kernel (standard deviations are

given in brackets).

Arabidopsis

In our second set of experiments, we used the string compression and locality-

improved kernels to perform classification on the Arabidopsis mRNA data set.

The results for this set of experiments, as well as a baseline SVM using the

locality-improved kernel, can be seen in Table 5.2. We chose this as a baseline

as it produces an accurate classifier on similar data sets; for example, Zien et

al. (2000) report an overall error rate of 11.9% on a similar data set consisting

of vertebrate sequences. Inspecting Table 5.2, in terms of accuracy, it is clear

that the baseline provides superior performance over the proposed string

compression kernels. However, the ability of a classifier to discriminate be-

tween instances is better represented by the AUC. Our results indicate that
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the Kreı̆n-SVM models outperform the baseline in this respect. Inspecting

only the Kreı̆n-SVM models, it is clear that the PPM compression algorithm

provides the best results. The snappy compression algorithm is designed to

sacrifice compression rates for speed, and the zlib compression algorithm is

designed as an all-round compression algorithm for any data type. In com-

parison, PPM is designed for compression of text data, and achieves high com-

pression rates across a number test data sets. With this in mind, we attribute

the superior performance of PPM to the fact that it is designed for textual data.

MODEL ACCURACY AUC

SVM-LI 0.875 (0.022) 0.821 (0.027)
KSVM-PPM 0.731 (0.004) 0.887 (0.004)
KSVM-ZLIB 0.678 (0.003) 0.867 (0.005)
KSVM-SNAPPY 0.707 (0.004) 0.875 (0.007)

TABLE 5.2: The average accuracy and average area under the
ROC curve (AUC) for a number of models. KSVM-N denotes
the Kreı̆n squared-hinge SVM algorithm with string compres-
sion kernel, where N is the compression function. SVM-LI de-
notes the SVM with locality-improved kernel (standard devia-

tions are given in brackets).

5.4 Discussion

This chapter has proposed and evaluated a methodology to perform TIS

identification. More specifically, we have used the Kreı̆n-SVM and SCK from

Chapter 4 to develop models capable of identifying the location of TIS codons.

We initially validated our methodology on a synthetic dataset of strings, dis-

tributed according to a k-order Markov model. This particular distribution

is well-suited to the PPM compression function since, internally, it uses a
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k-order Markov model to encode the sequence of characters. Hence, we sus-

pected that the proposed methodology, using the PPM compression function,

would excel in this setting. Indeed, our experimental evaluation confirms

this. What’s more, the baseline model, which was specifically designed for

the task of TIS identification, exhibits a large degradation in performance as k

increases. This indicates that, perhaps, the TIS data cannot be fully described

by a k-order Markov model. This hypothesis is further reinforced by our ex-

periments on the real-world TIS data. In this case, the baseline is the most

accurate model. Comparing only against the SCK models, PPM clearly leads

to the best performing model. Whilst TIS data cannot be fully described via

a k-order Markov model, it still serves as a good proxy for the compression

function.

The results of this chapter are significant to the fields of machine learn-

ing and bioinformatics. We have presented a methodology for classifying

sequence data using readily available compression software. This is greatly

beneficial since we suspect our methodology will translate to other forms of

sequence data. It could serve as a benchmark to rapidly prototype sequence

classification models, including biological sequences. Although our models

were less accurate than the baseline in identifying TIS codons, we have lo-

cated several starting points for further work. Firstly, the observation that

our methodology excels in classifying sequences distributed according to a

k-order Markov model should be explored further. Ideally, a practitioner
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wanting to develop a sequence classification model could test for the Marko-

vian property ahead of time, e.g. using the framework of hypothesis test-

ing (Pethel and Hahs, 2014). A significant result would indicate that our

methodology is warranted and likely applicable. Another avenue for further

work would be to evaluate compression functions explicitly designed for bi-

ological sequence data (Rajarajeswari and Apparao, 2011; Deorowicz, 2020;

Pratas et al., 2020). Our evaluation of general-purpose compression func-

tions looked promising, so it is natural to consider whether mRNA-specific

compression functions may improve model performance. Finally, our ex-

periments only considered a single kernel function. However, combining

multiple potential kernel functions is common, e.g., through their product,

sum or linear combination (Gönen and Alpaydın, 2011). It is often the case

that combinations of kernel functions result in more accurate models than

those of their constituent components. Indeed, when used with the SCK,

each compression function implicitly defines a different data representation.

It is worth considering combining them, as combining the implicit represen-

tations could lead to a more robust representation. As with all kernel meth-

ods, the resulting model is heavily influenced by the choice of kernel func-

tion. Hence, a more robust representation could lead to increased modelling

performance.
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Chapter 6

Prediction of C-N Cross Coupling

Reaction Yield

This chapter proposes and evaluates a methodology to predict the yield across

a set of Buchwald-Hartwig C-N cross-coupling reactions. We assess the ef-

fectiveness of our approach in two settings. The first helps us understand

how our models perform on known molecules. More specifically, the models

predict the yield of reactions consisting of molecules present in the training

dataset. The results in this setting are promising, with our approach perform-

ing very similarly to the baseline. The second setting is an out-of-sample

evaluation in which certain additives are removed entirely from the train-

ing set, and we aim to understand how our models generalise to unknown

areas of chemical space. The results in this setting demonstrate that both

our approach and the baseline struggle to generalise. The rest of the chapter

is organised as follows: First, we provide a background on the Buchwald-

Hartwig reaction and machine learning for reaction prediction. This is fol-

lowed by a detailed description of our methodology, in which we discuss the
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dataset, learning algorithm and kernel functions used in our experiments,

and our computational setup. Finally, we discuss the results of our experi-

ments and propose some avenues for further work.

6.1 Background

The Buchwald-Hartwig amination is a pivotal cross-coupling reaction, cat-

alyzed by palladium complexes, that facilitates the formation of C-N bonds

between aryl halides and amines. Since its inception in the mid-1990s by

Stephen L. Buchwald and John F. Hartwig (Guram and Buchwald, 1994;

Louie and Hartwig, 1995), this reaction has evolved significantly, becoming

a cornerstone in academic and industrial chemistry for the synthesis of aryl

amines. The reaction’s versatility and efficiency have made it a preferred

method for the synthesis of pharmaceuticals, agrochemicals, and materials

science applications (Dorel et al., 2019; Forero-Cortés and Haydl, 2019).

The reaction mechanism typically involves the oxidative addition of an

aryl halide to a palladium(0) complex, followed by the coordination and

deprotonation of the amine, and finally, reductive elimination to form the

C-N bond. Over the years, the scope of the Buchwald-Hartwig amination

has expanded through the development of various ligands and catalytic sys-

tems, enhancing its efficiency and substrate compatibility (Dorel et al., 2019).

However, it can still present challenges when applied to complex drug-like

molecules (Kutchukian et al., 2016). One such challenge is that traditional

solvents like toluene, xylene, and 1,4-dioxane are commonly used, but they
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pose environmental and safety concerns. Recent advancements have ex-

plored the use of water and solvent-free conditions to address these issues.

These greener alternatives not only reduce the environmental impact but also

often lead to improved reaction efficiencies and yields (Wagner et al., 2014;

Fleckenstein and Plenio, 2007; Topchiy et al., 2014).

Automatically predicting the yield of chemical reactions, including Buchwald-

Hartwig aminations, is a critical task in synthetic chemistry. Machine learn-

ing models have shown promise in this area by leveraging large datasets to

predict reaction outcomes (Zhao et al., 2021; Kwon et al., 2022; Ahneman

et al., 2018; Haywood et al., 2021). Accurate quantification of reaction yield

poses many potential benefits, including, for example, the streamlining of

laboratory experiments and prior optimisation of reaction conditions. How-

ever, care must be taken to ensure a generalisable and robust model. The

chemistry of Buchwald-Hartwig aminations can be difficult (or low yield-

ing) on compounds featuring chemical moieties typically used in medicinal

chemistry. Hence, chemical knowledge plays an important role in the synthe-

sis of drug-like molecules and must be incorporated when learning chemical

relationships.

6.2 Methodology

This section describes the methodology used to develop and evaluate our

models. We start by discussing the dataset. This is followed by a brief de-

scription of the learning algorithm and positive-definite and indefinite kernel
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functions we have used. We conclude the section with a description of our

computational setup.

6.2.1 The Dataset

The dataset used in this chapter, curated by Ahneman et al. (2018), contains

3955 C-N cross coupling chemical reactions. Each instance is an example of

a Buchwald-Hartwig C-N cross coupling reaction of the form
(
additive, lig-

and, aryl halide, base, yield
)
, and is a unique combination of the four chem-

ical species in the reaction. In particular, the reactions varied in 23 isoxazole

additives, 15 aryl/heteroaryl halides, 3 bases, and 4 Buchwald ligands. Ah-

neman et al. perform both in-sample and out-of-sample experiments. The

in-sample uses a random 70/30 split of the whole data set, whereas the out-

of-sample experiment completely removes additives 16 - 23 from the training

set. We use the same out-of-sample partition in our experiments.

6.2.2 The Algorithm

This section briefly discusses the learning algorithm we have used to predict

reaction yield. It is a Kreı̆n regression algorithm, first proposed by Oglic and

Gärtner (2018), in which the variance of the solution is constrained to an a

priori specified value. The algorithm is called the Variance-Constrained Least

Squares Method (VCLSM).

Given a training set S = {(xi, yi)}m
i=1 ⊂ Rn × R, RRM in a RKKS K with

the squared-loss leads to a convex optimisation problem of the form
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minimise
f∈K

1
m

m

∑
i=1

( f (xi)− yi)
2 + λ+∥ f+∥2

H+
+ λ−∥ f−∥2

H− . (6.1)

As mentioned, we require the variance of f to be equal to a prespecified pa-

rameter r2 ∈ R. Hence, we require that

1
m

m

∑
i=1

(
f (xi)−

1
m

m

∑
j=1

f (xj)

)2

= r2. (6.2)

Combining this with Equation (6.1) leads to the VCLSM problem, given in

Equation (6.3).

minimise
f∈K

1
m

m

∑
i=1

( f (xi)− yi)
2 + λ+∥ f+∥2

H+
+ λ−∥ f−∥2

H−

subject to
1
m

m

∑
i=1

(
f (xi)−

1
m

m

∑
j=1

f (xj)

)2

= r2. (6.3)

Similarly to the Kreı̆n-SVM, the representer theorem can be applied to the

VCLSM problem (Oglic and Gärtner, 2018). Hence, it can be expressed as the

following finite-dimensional minimisation problem.

minimise
α

1
m
∥K α− y ∥2

2 + m αT H K α

subject to αT K2 α = mr2. (6.4)

Here, y ∈ Rm is a vector whose ith element is equal to yi. Equation (6.4)

is a non-convex minimisation problem that minimises a quadratic form over

a hyperellipsoid of radius r. The solution to which is quite involved and

beyond the scope of this thesis. We refer the interested reader to (Oglic and
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Gärtner, 2018), in which the authors present an algorithm to find a globally

optimal solution.

6.2.3 Kernel Functions

This section discusses the two kernel functions used in our study. As each

reaction is of the form (additive, ligand, aryl halide, base), we computed ker-

nels for reactions in the following manner. Let ai, li, hi, bi represent the ad-

ditive, ligand, aryl halide and base present in the ith reaction, respectively.

Then, for two reactions r1 = (a1, l1, h1, b1), r2 = (a2, l2, h2, b2) and a base ker-

nel k(x, x′), the reaction kernel krxn(r1, r2) is defined as

krxn(r1, r2) = k(a1, a2)k(l1, l2)k(h1, h2)k(b1, b2), (6.5)

and is equivalent to the Hadamard product of the respective kernel matrices.

For the remainder of this section, when referring to a graph kernel k(x, x′),

we mean the reaction kernel with k(x, x′) as the base kernel. Before moving

forward with the definitions of the kernel functions, we clarify our terminol-

ogy.

A graph G is defined as the triplet (V, E, l), where V is the set of vertices,

E is the set of edges (for this work, we only consider undirected edges) and

l : V → Σ is a labelling function that assigns labels from the alphabet Σ to

the nodes of the graph. We define the neighbourhood N (v) of node v as the

set of nodes to which v is connected by an edge, so N (v) = {v′ : (v, v′) ∈ E}
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Weisfeiler-Lehman Kernel The Weisfeiler-Lehman kernel (Shervashidze et

al., 2011) defines a feature space embedding for extracting structural infor-

mation from a graph. It has been proven to be useful in other applications

(Oglic et al., 2018). Inherent to the kernel is the relabelling scheme, which

iteratively assigns new labels to the nodes of the considered graphs. For a

definition of this scheme, please refer to Shervashidze et al. (2011).

Given two graphs G,G ′, let Σi be the set of shared node labels gathered

from the ith iteration of the relabelling scheme (with Σ0 the set of original

node labels). Define a map ci : {G,G ′} × Σi → N such that ci(G, σij) is the

number of occurences of the letter σij in the graph G. Given an iteration

parameter h, the Weisfeiler-Lehman kernel kWL(G,G) is defined as

kWL(G,G ′) = ⟨ϕ(h)
WL(G), ϕ

(h)
WL(G

′)⟩, (6.6)

where

ϕ
(h)
WL(G) = (c0(G, σ01), . . . , c0(G, σ0|σ0|),

. . . , ch(G, σh1), . . . , ch(G, σh|σh|)),

and

ϕ
(h)
WL(G

′) = (c0(G ′, σ01), . . . , c0(G ′, σ0|σ0|)

. . . , ch(G ′, σh1), . . . , ch(G ′, σh|σh|)).

Optimal Molecule Assignment Kernel The optimal assignment kernel (Fröh-

lich et al., 2005) is an indefinite kernel (Vert, 2008) defined on structured ob-

jects that can be decomposed into parts, including, for example, graphs com-

posed as a set of nodes and a set of edges. Let X be a domain of structured
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objects and let X, Z ∈ X be objects from that domain such that X and Z

consist of |X| and |Z| parts, respectively. We denote the parts of X and Z as

X = {x1, . . . , x|X|} and Z = {z1, . . . , z|Z|}. Furthermore, let X ′ denote the

domain of the parts i.e., xi, zj ∈ X ′ for all 1 ≤ i ≤ |X| and 1 ≤ j ≤ |Z|. Given

a valid Hilbert kernel k1 : X ′ × X ′ → R and π, a permutation of the first

|X| or |Z| natural numbers (this will be clear from the context), the optimal

assignment kernel kA : X ×X → R is defined as

kA(X, Z) =


maximiseπ ∑|X|

i=1 k1(xi, zπ(i)), if |Z| ≥ |X|

maximiseπ ∑|Z|
i=1 k1(xπ(i), zi), otherwise.

(6.7)

For the case of two molecules m, m′ composed of atoms i.e., m = {a1, . . . , a|m|}

and m′ = {a′1, . . . , a′|m|}, one needs to define k1 on the space of atoms. Fröh-

lich et al. (2005) do so by first defining katom : A×A → R and kbond : B×B →

R as kernels that compare atom and bond features, where A and B are the

spaces of atoms and bonds, respectively. katom and kbond are taken to be RBF

kernels, defined as

katom/bond(xi, x′i) = exp
(∥xi − x′i∥2

2σ2

)
, (6.8)

where xi are the features of the ith atom or bond. They also define a kernel

R0 : A × A → R which compares all direct neighbours of atoms a and a′.

Denote by |N(a)| the number of neighbours of atom a, ni(a) ∈ N (a) the

ith neighbour of atom a and bi(a) the bond connecting atom a with its ith
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neighbour. Assuming |N(a′)| ≥ |N(a)|, R0(a, a′) is defined as

R0(a, a′) =
1

|N(a′)| maximise
π

|N(a)|

∑
i=1

(
katom

(
ni(a), nπ(i)(a′)

)
kbond

(
bi(a), bπ(i)(a′)

))
.

(6.9)

By considering neighbours at a distance l away from an atom, another kernel

Rl : A×A → R is defined recursively as

Rl(a, a′) =
1

|N(a)||N(a′)| ∑
i,j

Rl−1(ni(a), nj(a′)). (6.10)

With a parameter L controlling the maximum distance to consider and a de-

cay parameter γ which reduces the influence of neighbours that are further

away, k1 from Equation (6.7) can be defined as

k1(a, a′) = katom(a, a′) + R0(a, a′) +
L

∑
l=1

γ(l)Rl(a, a′), (6.11)

where γ(l) = γl.

6.2.4 Computational Setup

In our experiments, we performed nested cross-validation across the whole

dataset as well as an out-of-sample evaluation. The nested cross-validation

experiments used 10 inner and 10 outer folds. During the out-of-sample ex-

periments, we re-trained our models using ten-fold cross-validation on a spe-

cific training set, and then evaluated these models on the hold-out test set.

This test set, which is the same as that of Ahneman et al. (2018), was chosen
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as it contained a number of additives not present in the training set, in partic-

ular, additives 16 - 23 (Ahneman et al., 2018). We ensured consistency in the

results by using the same outer cross-validation splits across all models. For

both sets of experiments, all regularisation parameters of the VCLSM models

were optimised using a continuous optimisation scheme described by Oglic

and Gärtner (2018). All kernel hyperparameters were optimised over the in-

ner folds using grid search. Values of 1 to 4 were tested for the L parameter

of the OMA, the tested values for the σ and γ parameters were {0.1, 1, 10}

and {0.1, 0.5, 0.9}, respectively. Of the tested kernel hyperparameters, we

present results for a select few combinations in order to display a range of

performances, including those which achieved the largest coefficient of de-

termination.

6.3 Experimental Evaluation

This section discusses the results of our experimental evaluation. Utilising

the OMA kernel, we performed two sets of experiments on the C-N data

set: i) nested cross-validation across the whole data set; ii) an out-of-sample

evaluation that withheld a specific set of additives from the training set. Ex-

periment i) is designed to gauge the performance of models within known

chemical space, whereas experiment ii) is designed to evaluate how the mod-

els generalise to unseen areas of chemical space.
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6.3.1 Nested Cross-Validation

The results of our nested cross-validation experiments, for both the proposed

approach, as well as the baseline, are given in Table 6.1, experiment i). We

report the average root mean-squared error (RMSE) and coefficient of de-

termination (r2). The units of the RMSE are percentages since it derives its

units from those of the dependent variable; in this case, the percentage yield.

The results demonstrate that both the baseline and VCLSM OMA models ex-

hibit similar performance. The baseline achieved a slightly smaller RMSE

than the best performing VCLSM OMA model, at 9.97% compared to 10%.

However, the r2 for both of these models was equal. Interestingly, the tested

hyperparameters of the OMA kernel had little effect on predictive perfor-

mance. Across all hyperparameter combinations, the average RMSE and r2

are 10.2 ± 0.192 and 0.859 ± 0.007, respectively. These results demonstrate

that the proposed approach, as well as the baseline, work well when oper-

ating in known chemical space. Whilst not as accurate as the random forest

proposed by Ahneman et al. (2018) (which achieves an RMSE of 7.8% and

an r2 of 0.92), both models produce accurate regressors that are capable of

learning the relationship between a reaction and its yield.

6.3.2 Out-of-sample Evaluation

The out-of-sample experiments were performed to assess the generalisability

of the proposed models. Table 6.1, experiment ii) displays the results (aver-

aged over all test additives) and indicates that all models performed worse
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Experiment Model Hyperparameters RMSE(%) r2

i)

VCLSM OMA σ = 0.1, L = 1, γ = 0.5 10.1 (0.539) 0.862 (0.014)
VCLSM OMA σ = 1, L = 1, γ = 0.9 10.0 (0.482) 0.865 (0.013)
VCLSM OMA σ = 10, L = 4, γ = 0.1 10.7 (2.05 ) 0.841 (0.071)
SVR WL h = 1 17.0 (0.927) 0.610 (0.044)
SVR WL h = 7 10.4 (0.717) 0.853 (0.023)
SVR WL h = 15 9.97 (0.653) 0.865 (0.019)

ii)

VCLSM OMA σ = 0.1, L = 1, γ = 0.5 15.8 (1.64) 0.539 (0.144)
VCLSM OMA σ = 1, L = 1, γ = 0.9 19.4 (1.67) 0.305 (0.211)
VCLSM OMA σ = 10, L = 4, γ = 0.1 22.1 (2.1 ) 0.099 (0.278)
SVR WL h = 1 18.8 (1.74) 0.423 (0.114)
SVR WL h = 7 15.7 (3.02) 0.583 (0.177)
SVR WL h = 15 16.6 (2.99) 0.541 (0.165)

TABLE 6.1: The average RMSE and r2 values achieved during
experiments i) and ii) on the C-N data set. SVR WL denotes the
(SVR) algorithm with Weisfeiler-Lehman kernel, VCLSM OMA
denotes the the VCLSM algorithm using the OMA kernel (stan-
dard deviations are given in brackets). σ, L and γ are the hyper-
parameters of the OMA kernel and h is the hyperparameter of

the Weisfeiler-Lehman kernel; see Section 5.2.2 for details.

when generalising to unseen examples. There is a clear increase in RMSE and

decrease in r2 when comparing between experiments i) and ii). Once again,

the baseline SVR WL model outperforms the VCLSM OMA model. However,

both models are outperformed by the random forest proposed by Ahneman

et al. (2018) (which achieves an average RMSE of 11.3% and an average r2 of

0.83). The overall inferior performance is indicative of the general difficulty

statistical models encounter when generalising to unseen data. The notion

of activity cliffs make this especially true when working with chemical data

(Stumpfe et al., 2019). Analysis of the predictions for individual additives

indicates that both models systematically performed worse on additives 18

and 19 and perform the best on additive 16. The same result is observed in

the work of Ahneman et al. (2018). Figure 6.1 provides a heatmap detailing
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the pairwise similarities between all additives. There are clear patterns be-

tween the set of training and test additives. Additives 1 - 16 are generally

more similar to each other than they are to additives 17 - 23. Furthermore,

additives 18 and 19 display high similarity to each other and low similarity to

all other additives in the set. We suspect this is why both models performed

worst on these additives.

FIGURE 6.1: The pairwise similarities between all additives in
the C-N data set. Similarities were calculated using the tan-
imoto coeffcient, with molecules represented using MACCS

keys (Durant et al., 2002).

6.4 Discussion

This chapter has developed and evaluated models to predict chemical reac-

tion yield. More specifically, we have used the VCLSM algorithm, in con-

junction with the OMA kernel, to develop models that predict the yield of

a set of Buchwald-Hartwig amination reactions. We initially performed a
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set of nested cross-validation experiments to understand the applicability of

our approach when deployed in known chemical space. Our methodology

performs very similarly to the baseline in this setting, with both approaches

achieving a small RMSE and large r2. We conclude from this set of exper-

iments that our approach is capable of high performance when operating

in known chemical space. However, it is more desirable that the models

generalise to unseen areas of chemical space. To test this, we followed the

approach of Ahneman et al. (2018) to perform an out-of-sample evaluation.

In particular, additives 16 - 23 were removed from the training set entirely,

therefore simulating the setting in which an unknown molecule is presented

to the model. In this setting, all models performed worse than the in-sample

case. However, this is to be expected since generalising to unseen additives

is much more challenging. Furthermore, observing that our proposed ap-

proach performed similarly to the baseline is encouraging. Nevertheless,

more work is needed to improve the generalisability of our approach.

The results of this chapter are significant to the field of chemoinformatics.

We have established that Kreı̆n-based approaches using a kernel for graph-

structured data performs similarly to positive-definite kernel methods using

the same representation. With Kreı̆n-based methods being a relatively new

approach, this leads to many potential areas for future work. One approach

that could directly benefit our current methodology is incorporating more

information, beyond structural, into the model. Whilst they have shown

promise, the kernels we have considered, both positive-definite and indef-

inite, operate solely on the structure of the molecules in a reaction. On the
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other hand, the model of Ahneman et al. (2018) uses the random forest al-

gorithm in conjunction with atomic, molecular and vibrational features. It

would be a relatively straightforward task to extend the OMA kernel to ac-

count for more molecular information, e.g. via the sum of itself and a Gaus-

sian kernel defined over the molecular features. We suspect that the superior

generalisability of the model of Ahneman et al. is likely due to the infor-

mation contained within the features. Hence, incorporating these features

into the OMA kernel could improve the generalisability of our approach. It

should be noted, however, that many of the features used by Ahneman et al.

are quantum chemical and, therefore, time-consuming and computationally

demanding to obtain.

Our approach could also benefit from a method to constrain the predic-

tions. In our experiments, we noticed that some yield predictions were out-

side the range of admissible values (less than 0% or greater than 100%). Im-

posing upon the models the prior knowledge that the yield is constrained

to lie between 0% and 100% would remove dubious predictions and im-

prove model performance. This would, however, require a modification of

the learning algorithm, which is much more involved than our previous rec-

ommendation of incorporating chemical features into the model. A possi-

ble avenue to accomplish this would be a Kreı̆n space extension of beta re-

gression. Beta regression, which falls under the family of generalised linear

models, is a statistical technique used to predict proportions, i.e. values ly-

ing in the interval (0, 1) (Ferrari and Cribari-Neto, 2004; Agresti, 2015). The

standard formulation assumes a linear relation between the dependent and
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independent variables. However, similarly to Section 4.2, one could instead

assume the relationship is described as a function within an RKKS and derive

a learning algorithm from this perspective.
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Chapter 7

Classification of Antimicrobial

Peptides

This chapter proposes and evaluates a methodology to classify antimicro-

bial peptides. We initially assess the effectiveness of our method in identi-

fying peptides exhibiting general antimicrobial activity. That is, those which

are active against any microbe. A detailed experimental evaluation high-

lights the promise of our approach in this setting. We further tested our

methodology in experiments to identify species-specific activity. In this case,

our models fell short of one of the in-house baselines, outperforming the

other in-house baseline and a preexisting web-tool. Additionally, the general

and species-specific models are made freely available as web applications at

http://comp.chem.nottingham.ac.uk/KreinAMP. The rest of the chapter

is organised as follows: First, we provide a background on AMPs and their

automated identification. This is followed by a detailed description of our

methodology, in which we discuss the datasets and kernel functions used in

our experiments and our computational setup. Finally, we discuss the results

http://comp.chem.nottingham.ac.uk/KreinAMP
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of our experiments and propose some avenues for further work.

7.1 Background

AMPs, also known as host defense peptides, are a class of evolutionary con-

served molecules that form an important component in the innate immune

system (Mookherjee et al., 2020; Hancock et al., 2016; Ting et al., 2022). These

molecules are usually made of 12 to 50 amino acid residues, and they typi-

cally possess certain properties, including cationicity, 30-50% hydrophobic-

ity, and amphiphilicity. They exhibit good antimicrobial activity against a

broad range of bacteria, viruses, fungi, and parasites. In addition, they have

an inherent low risk of developing antimicrobial resistance (AMR), largely at-

tributed to their underlying rapid membrane permeabilising activity (Mookher-

jee et al., 2020; Ting et al., 2021a; Mayandi et al., 2020). Such broad-spectrum

and rapid antimicrobial activity has prompted researchers to consider AMPs

as a potential remedy to the growing problem of AMR, which is a major

global health threat (Murray et al., 2022; Ali et al., 2022). Nonetheless, there

has so far been a lack of success in translating AMP-based therapy to clin-

ical use, due to challenges such as complex structure-activity relationship

(SAR), drug toxicity, instability in host and inefective environment, and low

financial incentives (Fjell et al., 2012; Ting et al., 2020). Owing to the com-

plex SAR and the costly and time-consuming process of wet-lab experiments

associated with AMP investigations, many researchers have proposed com-

putational approaches, including molecular dynamics (MD) simulations and
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machine learning (ML) algorithms, to accelerate the discovery and develop-

ment of potential AMPs for clinical use (Das et al., 2021; Yount et al., 2019;

Ting et al., 2021b; Capecchi et al., 2021; Li et al., 2022; Aronica et al., 2021;

Pinacho-Castellanos et al., 2021).

Several studies have highlighted the promise of ML algorithms in pre-

dicting the antimicrobial activity, dissecting the complex SAR, and inform-

ing the drug design of AMPs (Das et al., 2021; Yount et al., 2019; Ting et al.,

2021b). A wide range of ML algorithms have been utilised, including random

forests (Thomas et al., 2010), support vector machines (SVMs) (Thomas et al.,

2010; Lata et al., 2010; Torrent et al., 2011; Lee et al., 2016; Meher et al., 2017)

and artificial neural networks (Lata et al., 2010; Thomas et al., 2010; Torrent

et al., 2011; Yan et al., 2020; Veltri et al., 2018). Many of these algorithms

are used in combination with a carefully selected set of peptide features,

which can be divided into two categories: compositional and physicochemi-

cal. The amino acid composition is the simplest example of a compositional

feature, which is a vector containing counts of each amino acid in a given

peptide. There are various extensions, such as the reduced amino acid com-

position (Feng et al., 2013) and the pseudo amino acid composition (Chou,

2001). When computing the reduced amino acid composition, a peptide is

represented in a reduced alphabet in which similar amino acids are grouped

together. The pseudo amino acid composition accounts for composition as

well as sequence-order information, as this is not considered in the standard

amino acid composition. The set of physicochemical features include peptide

properties such as the charge, hydrophobicity and isoelectric point (Rose et
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al., 1985; Thomas et al., 2010; Meher et al., 2017). These features are typically

average values of the respective properties calculated over the length of the

peptide.

7.2 Methodology

This section describes the methodology used to produce our AMP classi-

fiers. We start with a discussion of the datasets, distinguishing those used to

develop general AMP classifiers and those used to develop species-specific

AMP classifiers. This is followed by a detailed description of the sequence

alignment measures we have used as kernel functions in the Kreı̆n-SVM al-

gorithm. We conclude the section with a description of our computational

setup.

7.2.1 The Datasets

General Antimicrobial Datasets

We selected two AMP classification data sets from the literature, which we

refer to as AMPScan (Veltri et al., 2018) and DeepAMP (Yan et al., 2020), in

order to test the ability of approach to predict general antimicrobial activ-

ity. Detailed discussions on the creation of these data sets can be found in

the original studies. The AMPScan and DeepAMP data sets contain 3556

and 3246 instances, respectively. Each data set also contains a 50:50 ratio of

AMPs to non-AMPs, allowing us to avoid issues that result from class imbal-

ance. Associated to each data set is a specific test set, and reporting results
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on this set allows comparison with the authors’ proposed models. Despite

being of similar size, one major differentiating factor between the two data

sets is the length of peptides. Figure 7.1 displays the empirical distribution

of peptide lengths for both data sets, partitioned by peptide classification. In

both cases, the distributions corresponding to AMPs and non-AMPs are very

similar. However, the distributions across data sets are clearly very different.

The Kolmogorov-Smirnov two-sample test (Hodges Jr, 1958) provides evi-

dence to reject the null hypothesis that the peptide length distributions of the

AMPScan and DeepAMP data sets are identical. DeepAMP contains gen-

erally shorter peptides than AMPScan. Indeed, the DeepAMP data set was

curated since short-length AMPs have been shown to exhibit enhanced activ-

ity, lower toxicity and higher stability as opposed to their longer counterparts

(Kim et al., 2014; Ramesh et al., 2016). More importantly, synthesis is cheaper

for the short AMPs than the full-length AMPs, which increases the potential

for clinical translation and commercialisation (Ting et al., 2020). Figure 7.2

displays the empirical amino acid distributions for both data sets, indicating

their similarity.

Species-Specific Training Datasets

Vishnepolsky et al. (2018) have shown that, given an appropriate training

data set, predictive models of peptide activity against specific species can be

constructed. This involves training a separate model for each species of in-

terest. Their model, predicting activity against E. coli ATCC 25922, achieved

a balanced accuracy of 0.79, which was greater than a number of common
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FIGURE 7.1: The distribution of peptide lengths for (a) the
AMPScan and (b) DeepAMP data sets.

FIGURE 7.2: The distribution of amino acids for the AMPScan
and DeepAMP data sets.

AMP prediction tools (Vishnepolsky et al., 2018). Furthermore, models to

predict activity against S. aureus ATCC 25923 and P. aeruginosa ATCC 27853

were made publicly available as web-tools.

We follow the methodology of Vishnepolsky et al. to construct useful

training data sets for our problem. We utilised the Database of Antimicrobial

Activity and Structure of Peptides (DBAASP) as a source of data. DBAASP

contains peptide activity measurements against a wide-range of species (Pirt-

skhalava et al., 2021), including those of interest to us. We extracted from

DBAASP all peptides with activity measured against S. aureus ATCC 29213,



Chapter 7. Classification of Antimicrobial Peptides 136

S. aureus ATCC 25923 or P. aeruginosa ATCC 27853 subject to the following

conditions: i) peptide length in the range [6, 18], ii) without intrachain bonds,

iii) without non-standard amino acids and iv) MIC measured in µg/mL or

µM. Condition i) was imposed as that is the range of peptide lengths in our

external test set. Conditions ii) and iii) were imposed following the recom-

mendation of the Vishnepolsky et al. and condition iv) was imposed as con-

version from µM to µg/mL is possible by estimating the molecular weight

of a given sequence. Since no web-tool to predict activity against S. aureus

ATCC 29213 was available, we couldn’t directly compare our results. In-

stead, we collected data for peptides active against S. aureus ATCC 25923.

This allowed us to compare our models with the state of the art provided by

Vishnepolsky et al.

Three separate data sets of peptides with activity measured against S.

aureus ATCC 29213, S. aureus ATCC 25923 and P. aeruginosa ATCC 27853

were created using the data collected from DBAASP. We refer to these data

sets as SA29213, SA25923, and PA27853, respectively. The peptides in the re-

spective data sets were labelled according to their activity against the spe-

cific strain. Each data set is constructed from highly active peptides (MIC

≤ 25µg/mL) and inactive peptides (MIC ≥ 100µg/mL). A peptide with

25µg/mL < MIC < 100µg/mL would not be included in our training data

set. This large interval allows us to account for experimental errors, which in

turn increases the confidence in our class labels. In the case that a peptide was

associated to multiple activity measurements, the median value was taken to

represent its activity. As shown in Table 7.1, the three training data sets are
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Data set Size Class Ratio

SA29213 463 0.644
SA25923 808 0.646
PA27853 686 0.547

TABLE 7.1: Descriptive statistics of the SA29213, SA25923 and
PA27853 data sets

all relatively small and contain slightly more active peptides than inactive

peptides.

Species-Specific Testing Datasets

A previously established data set of 16 short-length peptides (18 amino acids

or shorter in length), with minimum inhibitory concentration (MIC) mea-

sured against S. aureus ATCC 29213 and P. aeruginosa ATCC 27853, was used

to test the ability of the developed models in predicting species-specific an-

timicrobial activity (Ting et al., 2021a). These peptides were commercially

synthesised by Mimotopes (Mulgrave Victoria, Australia) via solid phase

Fmoc synthesis and were purified by reverse phase high performance liq-

uid chromatography (RP-HPLC) to >95% purity. The efficacy of these pep-

tides was already experimentally validated using established MIC assay with

broth microdilution method approved by the Clinical and Laboratory Stan-

dards Institute. Full detail of the previously conducted microbiological ex-

periment can be found in the previous study (Ting et al., 2021a). To make

this data set suitable for classification, we label a peptide as active if its MIC

< 100µg/mL and inactive otherwise.
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7.2.2 Kernel Functions

Classical sequence alignment algorithms, such as the Smith-Waterman (Smith

and Waterman, 1981) and Needleman-Wunsch (Needleman and Wunsch,

1970) algorithms, are computationally intensive and do not scale well to large

problems. Many papers have advocated the use of alignment-free methods

to determine sequence similarity (Zielezinski et al., 2019; Kantorovitz et al.,

2007; Zielezinski et al., 2017; Kuksa and Pavlovic, 2009; Pinacho-Castellanos

et al., 2021). The success of these endeavours notwithstanding, sequence

alignment functions are effective notions of biological-sequence similarity

that can reflect ancestral, structural or functional similarity and therefore

should not be overlooked. Several studies have utilised sequence alignment

functions for AMP prediction. For example, Wang et al. (2011) and Ng et al.

(2015) utilised the BLAST algorithm (Altschul et al., 1990) in a classification

model by comparing the BLAST similarity scores of a query peptide to all

those in the training set. Whilst these approaches led to accurate models,

the BLAST algorithm is a heuristic method that finds only approximate op-

timal alignments. This approximation leads to generally faster results than

what could be obtained by the Smith-Waterman algorithm, and it is one of

the main reasons practitioners choose to use it. However, on the relatively

small data sets in the aforementioned studies, it is interesting to consider

whether the same approaches using the optimal alignment score would im-

prove the models. In this work, we have decided to focus only on exact

alignments. Whilst heuristic alignment algorithms such as BLAST lead to

generally faster results, this benefit only materialises when working with
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much larger datasets than what we have considered. Furthermore, due to

the sensitivity of the resulting model to the choice of kernel function, the po-

tential loss in performance caused by approximately optimal, as opposed to

optimal, alignments does not outweigh the benefit of more efficient compu-

tation.

We now proceed to define the sequence similarities used throughout this

work. This section closely follows the works of Setubal and Meidanis (1997)

and Yujian and Bo (2007). First, we clarify our terminology.

Notation and Terminology

Let Σ be a finite alphabet, Σn ⊆ Σ be the set of all strings of length n from

Σ and Σ∗ the set of all strings from that alphabet. A string s ∈ Σ∗ of length

n is a sequence of characters that can be indexed as s = s1 . . . sn. Given a

string s ∈ Σn, we say that u ∈ Σm is a subsequence of s if there exists a set

of indices I = {i1, . . . , im} with 1 ≤ i1 ≤ . . . ≤ im ≤ n, such that uj = sij for

j = 1, . . . , m. We write u = s[I] for short. We say that v ∈ Σl is a substring of s

if v is a subsequence of s with index set J = {j1, . . . , jl} such that jr+1 = jr + 1

for r = 1, . . . , l − 1. That is, v is a subsequence consisting of consecutive

characters of s.

Global Alignments

The goal of a sequence alignment is to establish a correspondence between

the characters in two sequences. In the context of bioinformatics, a pairwise

alignment can indicate ancestral, structural or functional similarities between
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the pair of sequences. In this section, we provide a formal review of global

sequence alignment.

Definition 7.2.1 (Global Alignment). Let Σ be an alphabet and let s ∈ Σn and

t ∈ Σm be two strings over Σ. Define Σg = Σ ∪ {“ − ”} as the extension of Σ

with the gap character “ − ”. The tuple α(s, t) = (s′, t′) is a global alignment

of sequences s and t if and only if

1. s′, t′ ∈ Σ∗
g

2. |s′| = |t′| = l, such that max(n, m) ≤ l ≤ m + n,

3. The subsequence of s′ obtained by removing all gap characters is equal

to s,

4. The subsequence of t′ obtained by removing all gap characters is equal

to t,

5. {i|s′i = “ − ”} ∩ {i|t′i = “ − ”} = ∅.

Definition 7.2.1 provides a formal definition of global alignment. Whilst

many possible alignments exist for two strings, the goal of sequence align-

ment is to find an alignment that optimises some criterion. A scoring func-

tion, presented in Definition 7.2.2, can be used to quantify the “appropri-

ateness" of an alignment. An optimal global alignment is then one which is

optimal with respect to a given scoring function, as shown in Definition 7.2.3.

Definition 7.2.2 (Scoring Functions). Let Σ be an alphabet, Σg = Σ ∪ {“ − ”}

be the extension of Σ with the gap character “ − ” and p : Σg × Σg → R be
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a function defined over the elements of Σg. We say p is a similarity scoring

function over Σg if, for all x, y ∈ Σ, we have

1. p(x, x) > 0,

2. p(x, x) > p(x, y),

3. p(x, y) = p(y, x),

4. p(x, “ − ”) ≤ 0,

5. p(“ − ”, “ − ”) = −∞.

Similarly, we say p is a distance scoring function over Σg if, for all x, y, z ∈ Σ,

we have

1. p(x, x) = 0,

2. p(x, y) > 0,

3. p(x, y) = p(y, x),

4. p(x, “ − ”) > 0,

5. p(x, z) ≤ p(x, y) + p(y, z),

6. p(“ − ”, “ − ”) = ∞.

Definition 7.2.3 (Optimal Global Alignment). Let Σ be an alphabet, Σg =

Σ ∪ {“ − ”} be the extension of Σ with the gap character “ − ” and consider

two strings s ∈ Σn, t ∈ Σm. Let α(s, t) = (s′, t′) be a valid global alignment of

s and t (valid in the sense that it satisfies the conditions of Definition 7.2.1),

p : Σg × Σg → R be a scoring function over Σg and A(s, t) be the space of all
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valid alignments of s and t. The score Sp(α(s, t)) of α(s, t) with respect to the

scoring function p is defined as

Sp(α(s, t)) =
l

∑
i=1

p(s′i, t′i). (7.1)

If p is a similarity scoring function, then the optimal global alignment

α∗(s, t) with respect to p is defined as

α∗(s, t) = arg max
α(s,t)∈A(s,t)

Sp(α(s, t)). (7.2)

Similarly, if p is a distance scoring function then the optimal global alignment

α∗(s, t) with respect to p is defined as

α∗(s, t) = arg min
α(s,t)∈A(s,t)

Sp(α(s, t)). (7.3)

Since an alignment is optimal with respect to a given scoring function, it is

natural to consider which scoring function to use in order to obtain the most

meaningful alignments. In the context of biological sequences, researchers

have been considering this problem for many years. A number of families of

scoring matrices have been designed to encode useful notions of similarity.

In this work, we only considered the BLOSUM62 scoring matrix (Henikoff

and Henikoff, 1992), as it is a standard choice when performing sequence

alignment. However, one could consider the position-specific scoring ma-

trix (PSSM) generated from the PSI-BLAST algorithm (Altschul et al., 1997).

PSI-BLAST generates a PSSM, or profile, by scanning a protein database. The
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PSSM can be used to construct a scoring matrix, which is ordinarily used for

further scanning of the database. This process is repeated, wherein each it-

eration the PSSM is updated using the results from the previous scan. This

iterative method allows for refinement of the PSSM to detect distant relation-

ships between proteins (Bhagwat and Aravind, 2008). The resulting PSSM

could be provided as input to, say, the Smith-Waterman algorithm, leading

to a custom scoring matrix tailored to the distant evolutionary relationships

of a given protein. Our choice of the BLOSUM62 scoring matrix is mainly

due to simplicity. The generation of custom PSSMs could be very beneficial

for our task, but we aim to demonstrate that accurate models can be built

using only relatively simple scoring matrices.

Levenshtein Distance

The string edit distance defines a useful notion of distance between a pair of

strings. It is informally defined as the minimum number of edit operations

required to transform one string into another. The Levenshtein distance is a

variant of the string edit distance that allows the operations of substitution,

deletion and insertion of characters, and these are defined in Definition 7.2.4.

Definition 7.2.4 (Elementary Edit Operations). Let Σ be an alphabet. For two

characters a, b ∈ Σ, we denote by a → b the elementary edit operation that

substitutes a with b. Denoting by ε the null character (the empty string), we

can define the elementary edit operations of insertion and deletion as ε → b

and a → ε, respectively.
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In order to define more complex transformations, one can consider the

consecutive application of a sequence of elementary edit operations. Of spe-

cial interest to the Levenshtein distance are those sequences of operations

that transform one string into another. Such a sequence is known as an edit

path and its length is defined as the number of operations in the sequence.

The Levenshtein distance between two strings is defined as the length of the

minimum length edit path, as seen in Definition 7.2.5.

Definition 7.2.5 (Levenshtein Distance). Let Σ be an alphabet and consider

two strings s ∈ Σn and t ∈ Σm from Σ. An edit path from s to t is denoted by

Ps,t and represents a sequence of elementary edit operations that transforms

s into t. Denote by |Ps,t| the number of operations contained in Ps,t and by

Ps,t the space of all edit paths from s to t. The Levenshtein distance dL(s, t)

between s and t is defined as

dL(s, t) = min
Ps,t∈Ps,t

|Ps,t|. (7.4)

Definition 7.2.5 shares some interesting similarities with Definition 7.2.3.

Both problems solve a combinatorial optimisation problem and, indeed, the

Levenshtein distance can be realised as a special case of global alignment.

More specifically, consider the distance scoring function p : Σg ×Σg → {0, 1}

defined as

p(x, y) =


0, if x = y

1, otherwise.

(7.5)
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For two strings s ∈ Σn and t ∈ Σm, let their optimal global alignment with

respect to p be equal to α∗(s, t) = {s′, t′}. Define the set U as

U = {i | s′i ̸= t′i}. (7.6)

Then the score Sp(α∗(s, t)) of α∗(s, t) with respect to p is equal to the cardi-

nality of U. This is exactly equal to the Levenshtein distance between s and

t.

Local Alignments

A global alignment produces an alignment which spans the whole length of

a pair of strings. It is based on the assumption that the strings are related in

their entirety. This assumption can be restrictive, since it is often the case that

certain substrings exhibit high similarity whilst others do not. A local align-

ment produces an alignment that finds those high similarity substrings. That

is, it finds the highest scoring global alignment from all possible substrings

of the pair of strings. We formalise this notion in Definition 7.2.6.

Definition 7.2.6 (Optimal Local Alignment). Let Σ be an alphabet, Σg = Σ ∪

{“ − ”} be the extension of Σ with the gap character “ − ” and p : Σg × Σg →

R be a similarity scoring function. For a string s ∈ Σn, let Is be the space of

all index sets such that for any Is ∈ Is, s[Is] is a valid substring of s. Similarly,

for a string t ∈ Σm, let It be the space of all index sets such that for any

It ∈ It, t[It] is a valid substring of t. For any Is ∈ Is and It ∈ It, denote by

α∗(s[Is], s[It]) the optimal global alignment of s[Is] and t[It] with respect to p.
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The optimal local alignment α∗L(s, t) of s and t with respect to p is defined as

α∗L(s, t) = arg max
Is∈Is,It∈It

Sp(α
∗(s[Is], t[It])). (7.7)

7.2.3 Computational Setup

This section discusses the setup of our computational evaluation. To assess

the usage of learning with sequence alignment functions, we performed a se-

ries of computational experiments on a number of AMP data sets. In each of

our evaluations, we tested both the local alignment score (LA) and the Lev-

enshtein distance (LEV) in conjunction with the Kreı̆n-SVM algorithm. We

compare against two baselines: an SVM with amino acid composition kernel

and an SVM using the gapped k-mer kernel. The former is a positive-definite

kernel function; peptides are represented via their amino acid composition

and the kernel is defined as the inner product under this representation.

The latter is also a positive-definite kernel function. It has produced accu-

rate models in a number of biological-sequence classification tasks (Wang

et al., 2016; Ghandi et al., 2014; Blakely et al., 2020) and hence makes for a

useful baseline. When applicable, we also compared our models with AMP

identification tools from the literature. The parasail package (Daily, 2016)

was used to compute local alignment scores. We only considered normalised

variants of the local alignment score and Levenshtein distance, with the nor-

malisation performed according to Schölkopf et al. (2004) and Yujian and Bo

(2007), respectively. We report the accuracy, the area under the receiver oper-

ating characteristic curve (AUC) and Matthews correlation coefficient (MCC)
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to compare models. The accuracy and MCC are defined in Equation (7.8),

where TP, TN, FP and FN are the number of true-positives, true-negatives,

false-positives and false-negatives, respectively.

ACC =
TP+TN

TP+ FP+TN+ FN
(7.8)

MCC =
(TP×TN)− (FN× FP)

(TP+ FN)× (TN+ FP)× (TP+ FP)× (TN+ FN)
(7.9)

The AUC is defined as the probability that a classifier will score a ran-

domly chosen positive instance higher than a randomly chosen negative in-

stance (Fawcett, 2006). In order to allow for a fair comparison, all models

used the same training and test splits. The optimal hyperparameters were

selected by performing an exhaustive grid search over the training set, us-

ing 10-fold cross validation. The λ hyperparameter of the SVM algorithm, as

well as the λ+ and λ− hyperparameters of the Kreı̆n-SVM algorithm, were

selected from {0.01, 0.1, 1, 10, 100}. The Levenshtein distance and amino acid

composition kernel have no hyperparameters to control; we used the default

values for the hyperparameters of the local alignment score. The gapped k-

mer kernel has two hyperparameters g and m and is quite susceptible to their

values. The optimal value of g was selected from {1, 2, 3, 4, 5} and the opti-

mal value of m was selected from {1, 2, 3, . . . , 10}. It is required that g > m,

so only valid combinations of the two were considered. In our nested cross-

validation experiments, we used 10 inner and 10 outer folds and the reported

results are averaged over the outer fold test sets.
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7.3 Results

In Section 7.3.1, we discuss the ability of our models to identify general an-

timicrobial activity. We observe that our proposed models consistently out-

perform the baselines and, in some cases, the models proposed in the litera-

ture. One shortcoming of any computational model that identifies general

antimicrobial activity is that it cannot be used to identify activity against

specific species. We address this shortcoming in Section 7.3.2, by training

our models to identify activity against S. aureus ATCC 29213 and P. aerugi-

nosa ATCC 27853 on an experimentally validated data set of 16 peptides, for

which the proposed approach produces accurate models.

7.3.1 Identifying General Antimicrobial Activity

Nested Cross-Validation

The performance of the AMP classifiers on the considered data sets is re-

ported in Table 7.2. The results are averaged over the multiple test sets gen-

erated by nested-cross validation. On both data sets, the proposed models

achieve a greater average accuracy, AUC and MCC than the baselines, with

the local alignment score achieving the best values in all cases. The Welch

t-test (Welch, 1947), with p = 0.05, is used to compare the test set AUC of

our proposed models against the baseline SVM with Gapped k-mer kernel

across the outer folds of nested cross-validation. Adjusting for the testing of

multiple hypotheses with the Bonferroni correction, we observe a significant

difference between the mean AUC of the local alignment score and that of the
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baseline SVM with Gapped k-mer kernel on the AMPScan data set. All other

comparisons, including those on the DeepAMP data set, are not significant.

The performance of all models is greater on the AMPScan data set than on

the DeepAMP data set.

AMPScan DeepAMP

Model Accuracy AUC MCC Accuracy AUC MCC

LA-KSVM 0.920 (0.017) 0.969 (0.006) 0.842 (0.033) 0.760 (0.025) 0.821 (0.028) 0.522 (0.051)
LEV-KSVM 0.910 (0.021) 0.966 (0.010) 0.821 (0.042) 0.756 (0.032) 0.819 (0.029) 0.513 (0.063)
GKM-SVM 0.899 (0.015) 0.957 (0.007) 0.799 (0.030) 0.751 (0.032) 0.817 (0.029) 0.506 (0.066)
AAC-SVM 0.865 (0.023) 0.930 (0.009) 0.732 (0.044) 0.723 (0.031) 0.784 (0.035) 0.447 (0.061)

TABLE 7.2: Quality of the predictions on the AMPScan and
DeepAMP data sets. The average accuracy. AUC and MCC are
reported (standard deviation in parentheses), computed over
the outer fold test sets of the nested cross-validation procedure.
Results are presented for the Kreı̆n-SVM with local alignment
score (LA-KSVM), the Kreı̆n-SVM with Levenshtein distance
(LEV-KSVM), the SVM with Gapped k-mer kernel (GKM-SVM)
and the SVM with amino acid composition kernel (AAC-SVM)

Predefined Test Set

Table 7.3 reports the results of all models on the predefined test set associated

with each data set. For the sake of completeness, we also include the perfor-

mance of the neural network-based classifiers proposed by the authors of

each data set. As for the nested cross-validation results, we observe that all

models perform better on the AMPScan data set than the DeepAMP data set.

Considering the former, the local alignment score achieves the largest accu-

racy, AUC and MCC, and is followed closely by the literature model. On the

DeepAMP data set, the performance is similar among all methods. The local

alignment score achieves the best AUC but the Levenshtein distance achieves

the best accuracy and MCC. However, the Levenshtein distance outperforms
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the literature model against all metrics. On both data sets, the baselines are

the least predictive models. It is encouraging to observe that the sequence

alignment functions can produce classifiers that match, and also outperform,

the neural network-based classifiers.

AMPScan DeepAMP

Model Accuracy AUC MCC Accuracy AUC MCC

LA-KSVM 0.911 0.967 0.823 0.761 0.863 0.523
LEV-KSVM 0.904 0.960 0.809 0.798 0.860 0.596
GKM-SVM 0.900 0.954 0.801 0.782 0.838 0.564
AAC-SVM 0.870 0.929 0.742 0.771 0.853 0.543
Literature 0.910 0.965 0.820 0.771 0.853 0.543

TABLE 7.3: Quality of the predictions on the AMPScan and
DeepAMP data sets. The accuracy, AUC and MCC are reported,
computed on the predefined test sets. Results are presented
for the Kreı̆n-SVM with local alignment score (LA-KSVM), the
Kreı̆n-SVM with Levenshtein distance (LEV-KSVM), the SVM
with Gapped k-mer kernel (GKM-SVM) and the SVM with
amino acid composition kernel (AAC-SVM). Results from the
respective neural network-based classifiers(Veltri et al., 2018;
Yan et al., 2020) proposed by the authors of each data set are

also presented, denoted by Literature

7.3.2 Identifying Species-Specific Activity

In this section, we highlight the ability of our models to identify AMPs that

are active against specific species, particularly S. aureus ATCC 29213 and P.

aeruginosa ATCC 27853. Table 7.4 displays the accuracy on the external test

set for models trained on the AMPScan and DeepAMP data sets. Once again,

we also include the performance of the neural-network-based classifiers pro-

posed by the authors of the AMPScan and DeepAMP data sets. We observe

that the performance of all models is very poor. We noticed in our investiga-

tions that the majority of models predicted active for a large proportion of the
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peptides. This general poor performance is to be expected. We attribute it to

the fact that these models have been trained to recognise if a peptide exhibits

antimicrobial activity against any type of species. It is therefore unreasonable

to assume that they are able to discriminate activity against a specific species.

Model Data set S. aureus P. aeruginosa

LA-KSVM AMPScan 0.312 0.312
DeepAMP 0.250 0.250

LEV-KSVM AMPScan 0.312 0.312
DeepAMP 0.312 0.312

GKM-SVM AMPScan 0.312 0.312
DeepAMP 0.375 0.375

AAC-SVM AMPScan 0.312 0.312
DeepAMP 0.312 0.312

Literature AMPScan 0.250 0.250
DeepAMP 0.438 0.438

TABLE 7.4: Predictive accuracy of the Kreı̆n-SVM with local
alignment score (LA-KSVM), the Kreı̆n-SVM with Levenshtein
distance (LEV-KSVM) and the SVM with Gapped k-mer kernel
(GKM-SVM) on the species-specific test sets of 16 peptides. Re-
sults from the respective neural network-based classifiers(Veltri
et al., 2018; Yan et al., 2020) proposed by the authors of each
data set are also presented, denoted by Literature. The data set
column indicates which data set a model was trained on. The
heading S. aureus indicates the model was predicting activity
against S. aureus ATCC 29213 and the heading P. aeruginosa in-
dicates the model was predicting activity against P. aeruginosa

ATCC 27853

Table 7.5 displays the accuracy on the external test set for models trained

on the species-specific data sets. We also present the performance of the web-

tools provided by Vishnepolsky et al. (2018) As mentioned in Section 7.2.1,

at the time of publication, there is no web-tool to predict activity against S.

aureus ATCC 29213. Hence, we also provide results for models trained on

SA25923 and tasked with predicting activity against S. aureus ATCC 29213.
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There is clearly a general improvement over the models trained on the AMP-

Scan and DeepAMP data sets, indicating that the models have much greater

discriminative power. On the SA29213 data set, the baseline SVM with amino

acid composition kernel is the most predictive with respect to all the metrics.

All remaining models achieve the same accuracy and MCC. Considering the

SA25923 data set, the Levenshtein distance produces a model with the same

accuracy and MCC as the web-tool but with a larger AUC. It also achieves

the same accuracy and AUC as the baseline SVM with amino acid compo-

sition kernel, but with a larger MCC. It is interesting to note that the mod-

els trained on SA25923 can still make accurate predictions on S. aureus ATCC

29213. Whilst these are two different strains, the findings suggest that the

antimicrobial susceptibility to the AMPs is similar for both strains, imply-

ing similar mechanisms work in the same species. Considering the PA27853

data set, the baseline SVM with amino acid composition kernel performs the

best against all metrics. We find that the local alignment score, Levenshtein

distance and baseline SVM with Gapped k-mer kernel produce equally accu-

rate models, all of which are more accurate than the web-tool. However, the

AUC of the local alignment score and Levenshtein distance are considerably

higher than that of the baseline SVM with Gapped k-mer kernel. Whilst it

is difficult to make any strong conclusions on such a small data set, it is still

encouraging to observe that our models achieve similar accuracy to both the

baseline models and web-tools.
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Model Evaluation Metric
Training Data set

SA29213 SA25923 PA27853

LA-KSVM
Accuracy 0.688 0.688 0.750
AUC 0.873 0.909 0.891
MCC 0.522 0.405 0.595

LEV-KSVM
Accuracy 0.688 0.875 0.750
AUC 0.927 0.982 0.855
MCC 0.522 0.764 0.595

GKM-SVM
Accuracy 0.688 0.688 0.750
AUC 0.945 0.891 0.655
MCC 0.522 0.405 0.389

AAC-SVM
Accuracy 0.875 0.875 0.875
AUC 0.964 0.982 0.964
MCC 0.709 0.709 0.764

DBAASP Web-tool
Accuracy - 0.875 0.688
AUC - 0.945 0.718
MCC - 0.764 0.522

TABLE 7.5: Quality of the predictions of the Kreı̆n-SVM with
local alignment score (LA-KSVM), the Kreı̆n-SVM with Lev-
enshtein distance (LEV-KSVM), the SVM with Gapped k-mer
kernel (GKM-SVM) and the SVM with amino acid composition
kernel (AAC-SVM) on the test sets of 16 peptides. Results from
the DBAASP Web-tools are also presented(Vishnepolsky et al.,
2018; Pirtskhalava et al., 2021). The headings in the third to fifth
columns indicate which data set the models were trained on.
The models trained on both SA29213 and SA25923 were tasked
with predicting activity against S. aureus ATCC 29213. The
models trained on PA27853 were tasked with predicting activ-
ity against P. aeruginosa ATCC 27853. Numbers highlighted in
bold indicate the largest AUC achieved on the respective data

set

7.4 Discussion

This chapter has proposed and evaluated a framework to classify AMPs.

More specifically, we have used the Kreı̆n-SVM from chapter 4, in conjunc-

tion with the local-alignment score and Levenshtein distance, to develop

models capable of classifying general and species-specific antimicrobial ac-

tivity. We performed two sets of experiments to evaluate the effectiveness of
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our methodology to identify general antimicrobial activity. The first, a nested

cross-validation experiment, was designed as a robust test of model perfor-

mance. The multiple test sets of nested cross-validation allowed us to obtain

a mean and standard deviation of each performance metric. It also enabled

testing differences in model performance via hypothesis testing. Across two

datasets, this set of experiments confirmed the validity of our approach. In-

deed, our methodology achieved a greater average accuracy, AUC and MCC

than the in-house baselines on both datasets. Additionally, on the AMPScan

data set, we observed a significant difference between the mean AUC of the

local alignment score and that of the baseline SVM with Gapped k-mer ker-

nel. The second set of experiments allowed us to compare our approach to

models from the literature, as a predefined test set was associated with each

dataset. We observed similar results in this case, with our proposed approach

outperforming the in-house and literature baselines. With such promising

performance in predicting general antimicrobial activity, we further evalu-

ated our models by predicting antimicrobial activity in specific species. This

was accomplished by compiling a dataset of peptides with activity measured

S. aureus ATCC 29213, S. aureus ATCC 25923 or P. aeruginosa ATCC 27853.

The models trained on this dataset were evaluated on a small dataset of pep-

tides with experimentally validated activities. In this case, our models fell

short of one of the in-house baselines but outperformed the other in-house

baseline and preexisting web-tool. However, with the testing dataset consist-

ing of only 16 peptides, it is difficult to draw firm conclusions.



Chapter 7. Classification of Antimicrobial Peptides 155

The current chapter presents significant contributions to machine learn-

ing and bioinformatics research. We have presented a methodology for clas-

sifying peptides using common sequence alignment algorithms. Whilst we

have focused on the specific application of identifying antimicrobial activ-

ity in peptides, the approach we have presented is much more general. The

main benefit of our approach is the implicit representation of peptides pro-

vided by the alignment measures. As this representation is agnostic of the

specific task, our methodology is likely applicable to other peptide classi-

fication problems. Therefore, we have presented an approach for bioinfor-

maticians and machine learning researchers to develop peptide classifica-

tion models. Furthermore, releasing our models as web-tools allows those

working in AMP research to rapidly screen a prospective set of peptides

for antimicrobial activity, thus allowing practitioners to focus their efforts on

only the most promising candidates. This significant contribution will help

streamline laboratory experiments and aid in AMP discovery.

The success of our approach notwithstanding, we would be remiss with-

out discussing areas of improvement. The size of the testing dataset in our

species-specific experiments is a limiting factor that inhibits our ability to

fully understand the effectiveness of our approach. The study could be sub-

stantially enhanced by using a larger sample size, perhaps with a wider range

of species. This would allow us to draw stronger conclusions and investigate

the benefits and weaknesses our approach in more detail. Another possi-

ble improvement, applicable to all our experiments, would be to equip the

models with a notion of confidence. In particular, the current models predict
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whether a given peptide exhibits antimicrobial properties, but they do not

indicate the confidence of their prediction. This problem could be tackled

in several ways, the simplest of which would be to measure the distance of

an instance to the classification hyperplane. Recall from Chapter 3 that the

fitting of an SVM classifier corresponds to finding a maximum-margin hyper-

plane that separates the two classes. That is, of all possible hyperplanes that

separate the two classes, the SVM finds the one which maximises the total

distance from both classes. Hence, the further away from the hyperplane an

instance lies, the more confident we are in its class. Combined with a method

to normalise the distances, this would produce a number in the interval (0, 1)

that indicates the confidence of a prediction. The procedure we have alluded

to is remarkably similar to how the logistic regression algorithm operates. In-

deed, it finds a hyperplane separating the two classes. Furthermore, using a

sigmoid function, the distance of an instance to the hyperplane is normalised

into a probabilistic prediction. Hence, another approach to embedding our

models with a notion of confidence would be to use a logistic regression al-

gorithm that operates in a Kreı̆n space. Whilst potentially more beneficial,

this is a more involved endeavour as it would require the derivation of a

new algorithm. However, in a similar manner to how we have derived the

Kreı̆n-SVM by minimising the hinge loss over a RKKS, one could minimise

the logistic loss over a RKKS to derive a Kreı̆n logistic regression algorithm.
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Chapter 8

Conclusions and Future Directions

The work done in this thesis explores the applicability of Kreı̆n space meth-

ods for problems involving structured data, particularly string and graph

data originating from bioinformatics and chemoinformatics. In doing so, we

have made theoretical and empirical contributions to the fields of machine

learning, bioinformatics and chemoinformatics. In this chapter, we sum-

marise our main contributions and identify further research areas.

8.1 Summary of Contributions

In Chapter 4 we introduced the major theoretical contribution of the thesis,

a complete derivation and solution of the Kreı̆n-SVM dual problem. The

idea of the Kreı̆n-SVM was first proposed by Oglic and Gärtner (2019), but

only in its primal form. The primal is an optimisation problem in two vari-

ables (the coefficients and the slack variables), which makes fitting the model

cumbersome. On the other hand, the dual problem is an optimisation prob-

lem in one variable that can be solved efficiently with an off-the-shelf solver.

Furthermore, since the Kreı̆n-SVM satisfies strong duality, one can solve the
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problem in its dual without any loss of information. The derivation of the

Kreı̆n-SVM dual, as well as its reference implementation, represents a signif-

icant contribution to the field of machine learning, which we hope inspires

the creation and adoption of other Kreı̆n-based learning algorithms.

Chapter 4 provided the other theoretical contribution of the thesis. We

introduced the SCK, a novel, indefinite string kernel that measures the simi-

larity of strings by comparing their lengths when compressed. We provided

an intuitive and formal construction of the SCK. The intuitive construction

helped explain our reasoning for the proposal of the SCK, whilst the formal

construction used the notion of Kolmogorov complexity to present a theoret-

ical justification for its existence. We also provided a reference implementa-

tion of the SCK, making this an important contribution to the field of machine

learning.

In Chapter 5, we introduced the first empirical contribution of the thesis.

Specifically, we proposed and evaluated models to identify TIS codons from

mRNA sequence data using the Kreı̆n-SVM and SCK of Chapter 4. We ini-

tially validated our methodology on a synthetic dataset of strings distributed

according to a k-order Markov model. This dataset was suspected to be well-

suited to the PPM compression function, and the experimental evaluation

supported this. We then evaluated our approach on a real-world TIS dataset,

finding that our approach yielded accurate models but did not outperform

the state-of-the-art baseline. Nevertheless, this chapter still contributes sig-

nificantly to machine learning and bioinformatics research. The experiments

on the synthetic dataset provide a deep insight into the scenarios in which
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the SCK with the PPM compression function is applicable. Furthermore, the

general methodology we have presented is agnostic of the specific task of TIS

identification, and we suspect it would apply to other biological sequence

classification tasks.

Chapter 6 presented another empirical contribution of the thesis, in which

we proposed and evaluated models to predict the yield across a set of Buchwald-

Hartwig C-N cross-coupling reactions. Our approach, which used the molec-

ular graph representation of molecules, excelled when operating in known

chemical space, but struggled to generalise to areas of unknown chemical

space. However, similar conclusions were drawn from a positive-definite

baseline using the same representation. This indicated that the molecular

graph representation may not be sufficient for accurate generalisation in yield

prediction. Nevertheless, the findings in this chapter represent a significant

contribution to the field of chemoinformatics, as our analysis provides a start-

ing point from which more sophisticated models can be created.

Chapter 7 presented the major empirical contribution of the thesis, which

described the development and assessment of Kreı̆n-SVM models to iden-

tify peptides exhibiting antimicrobial activity. We used two data sets from

the literature to develop models capable of identifying general antimicro-

bial activity in a peptide. In a comparison against two in-house and one

literature baseline, we observed that our proposed methodology performed

best across all performance metrics. Using the same methodology, we ex-

tended our analysis by creating models to identify peptides active against
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specific species. These were evaluated on an external data set of 16 pep-

tides with experimentally validated activity. In this case, our approach led

to accurate models but was outperformed by the baseline. A final contri-

bution of the chapter is the release of our peptide models, both general and

species-specific, as web-tools. This itself represents a significant contribu-

tion to bioinformatics research, as it will help those investigating AMPs to

streamline their laboratory research. The methodology presented is also of

significant value, since it is broadly applicable to all manner of peptide clas-

sification tasks.

8.2 Future Directions

Having reviewed our direct contributions, we now discuss the potential re-

search topics which might emerge from this thesis. We distinguish between

methodological and application-specific improvements.

8.2.1 Methodological Improvements

This thesis has focused on the application of Kreı̆n space methods to the

molecular graph and biological sequence representations. However, many

other forms of structured data exist, and expanding the scope of considered

data types beyond these representations would help us understand the broad

applicability of Kreı̆n space methods. Within the life sciences, trees are used

to represent ancestral relationships of organisms and directed acyclic graphs

(DAGs) can be used to represent the steps required to synthesise a molecule
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(Bradshaw et al., 2020; Kapli et al., 2020). Beyond the life sciences, time-

series data is often the natural description of phenomena in finance, images

and videos play a central role in computer vision applications, and raw text

data is the main object of study in natural language processing (Tsay, 2005;

Voulodimos et al., 2018; Chowdhary and Chowdhary, 2020). Moreover, ex-

pressive indefinite kernels for these data types naturally exist. For example,

edit distances and alignment measures are defined for strings, graphs, trees

and time-series (Müller, 2007; Varón and Wheeler, 2012; Ganassali, 2022;

Smith and Waterman, 1981; Levenshtein, 1966; Marteau, 2008; Bille, 2005;

Gao et al., 2010). Additionally, the SCK of Chapter 4 applies to all digital

data types, including, for instance, images and videos. As such, there is a

large body of problems for which Kreı̆n space methods for structured data

can be applied, and doing so would provide further understanding of the

benefits and weaknesses of the approach.

In Chapters 6 and 7, we alluded to the idea of developing more Kreı̆n-

based learning algorithms, suggesting a Kreı̆n extension of beta regression

to ensure the validity of yield predictions and a Kreı̆n extension of logistic

regression to equip our AMP classifiers with a notion of confidence. While

these proposals were specific to the considered applications, they would also

apply to various machine learning problems. The literature on positive-

definite kernel methods is dense, with many well-known linear algorithms

having an equivalent kernelised version. On the other hand, Kreı̆n-based

learning algorithms are a relatively new idea, and the algorithmic develop-

ments have yet to catch up with their positive-definite counterparts. We hope
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the ideas presented in this thesis encourage those working in methodological

development to try deriving a Kreı̆n-based generalisation of a well-known

kernel method. Some possible algorithms that could result from this line

of work include Kreı̆n-based generalised linear models (Cawley et al., 2007;

Agresti, 2015), Kreı̆n-based Gaussian processes or, more generally, Bayesian

Kreı̆n methods (Ayhan and Chu, 2012; Rasmussen and Williams, 2006) and

Kreı̆n-based multi-task learning (Alvarez et al., 2012; Dinuzzo et al., 2011;

Ciliberto et al., 2015). We envisage an extensive library of Kreı̆n-based learn-

ing algorithms, in which a practitioner could select the most appropriate ker-

nel function and learning algorithm for their task. Moreover, a Kreı̆n-based

method will naturally reduce to its positive-definite counterpart when pre-

sented with a positive-definite kernel function. It may not be the case that an

indefinite kernel function is the most appropriate choice, but providing the

possibility of using one is certainly more beneficial than outright rejecting it.

8.2.2 Application-Specific Improvements

The models developed in this thesis have generally used small-to-medium-

sized datasets, with the largest being the Buchwald-Hartwig cross-coupling

dataset, containing 3955 instances. In this case, our methodology is highly

applicable. Indeed, kernel methods are known to excel on small-to-medium-

sized datasets. However, their application to large datasets can become com-

putationally prohibitive due to their memory requirements. In their standard

implementation, it is necessary to compute and store the whole kernel ma-

trix as a stage in fitting a kernel method, an operation which grows as O(N2)
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for a data set of size N. Many modern biological and chemical datasets are

orders of magnitude larger than we have considered, making our approach

infeasible for large-scale analysis. However, this drawback of kernel meth-

ods has long been understood. In Sections 2.1 and 2.2.2, we mentioned the

numerous approximation methods designed to alleviate this computational

burden and their extensions to indefinite kernels. The most applicable exam-

ple, the Nyström subsampling technique (Oglic and Gärtner, 2019), could be

utilised to scale our methodology to much larger datasets of interest. For in-

stance, our AMP classification methodology could be applied to the whole of

DBAASP, which currently contains over 22,000 peptides and is continually

growing (Pirtskhalava et al., 2021). Furthermore, we could apply our pro-

cedure to produce yield prediction models to the USPTO reaction dataset,

which contains over 1.8 million organic chemical reactions extracted from

US patents and patent applications (Lowe, 2012). Finally, our approach to

perform TIS identification could be applied to the Gao15 dataset (Zhang et

al., 2017), which contains over 100,000 mRNA sequences. The application

of our methodology to much larger-scale datasets would provide further in-

sight into its effectiveness, allowing us to draw much stronger conclusions

than what is possible on the datasets we have considered.

In Chapter 5, we suggested that combining the representation of multi-

ple compression functions may prove to be beneficial. We believe this is true

not only for our TIS identification models but, more generally, that all of our

applications could benefit from multiple representations. Peptides and pro-

teins can be considered from three different levels of abstraction (Buxbaum
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et al., 2007). The primary structure, which is the most abstract, considers

only the sequence of amino acids and is the structure we have utilised. The

secondary structure is the second abstraction layer and describes a protein

via its local spatial conformation. Due to interactions between the atoms in

amino acids, proteins tend to arrange themselves into common shapes, the

two most common being α-helices and β-sheets. The least abstract descrip-

tion is the tertiary structure, which describes the overall three-dimensional

structure of a protein. There is also the quaternary structure, which only

applies to proteins consisting of multiple peptide chains. DNA and mRNA

molecules can also be described by primary, secondary, tertiary or quaternary

structure (Lodish, 2008). Furthermore, the notion of layers of abstraction also

exists when describing molecules. Indeed, whilst we have worked with the

molecular graph representation, we could have also considered the three-

dimensional conformation of a molecule. In the applications considered, we

have access to a whole hierarchy of levels to describe the instances but have

only considered the most abstract. The reasons for doing so are mainly that

of efficiency and practicality. Moving down the layers of abstraction requires

more complex methods to process data and is also more computationally de-

manding. Indeed, one would require a kernel function operating on every

considered representation. Nevertheless, it would be interesting to investi-

gate how using less abstract descriptions, independently or in combination

with more abstract descriptions, would influence our models.
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