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Abstract

Airborne contaminants cause significant harm to populations of people.
People spend most of their time in their own homes and so their greatest
exposure is likely to occur there. Existing standards that govern Accept-
able Indoor Air Quality (IAQ) in residential buildings only consider a few
contaminants. Exposure to them is limited using threshold mean concen-
trations over some period of time, but they do consider the harm they cause

to populations of people.

The aim of this work was to evaluate the population harm from exposure to
non-pathogen airborne contaminants in dwellings. Four stages of research

were completed.

The first stage considered the uncertainty in the concentrations of 45 air-
borne contaminants in dwellings. Ethanol is the most common contaminant
by mass (around 30%) and PMs s was the fourth most common (around

10%), but presence does not indicate harm.

Harm was evaluated using the disability adjusted life year (DALY metric,
a measure of time where a value of unity is one year of healthy life lost to
some disease or injury, or death. DALY are calculated as the sum of years
of life lost to premature mortality and morbidity in a population for some

health effect, this is the Burden of Disease (BoD). In the case of IAQ), the



BoD is a measurement of the difference between the current health status
of a population of building occupants and an ideal situation where they all
live into old age, free of disease and disability associated to exposure to

airborne contaminants.

The second stage required the development of a new metric, called a Harm
Intensity, with units of DALY's per concentration per year. It links chronic
harm (DALY /person/year) to the concentrations of airborne contaminants
to which people are exposed to. Its values were determined using epi-
demiological and/or toxicological models, depending on the availability of
information. The metric’s values varied by five orders of magnitude de-
pending on the contaminant. It has utility beyond dwellings and can be

used wherever people are exposed to airborne contaminants.

The third stage combined the concentrations and harm intensities to iden-
tify the harm caused by each of the 45 contaminants in residential dwellings.
PMay5 (67% median of all harm), PMjg o5 (17%), formaldehyde (6%), ni-
trogen dioxide (6%), radon (2%), and ozone (1%) were found to be the
most harmful contaminants by around an order of magnitude. From these,
ASHRAE 62.2 has chosen 3 contaminants of concern that account for 83%
of all harm: PM, 5, formaldehyde, and nitrogen dioxide, to add a DALY-

based path into Standard 62.2 on residential ventilation and TAQ.

The fourth and final stage used the harm intensities to determine a relative
weight of each contaminant that can be used to create a harm budget, where
a harm limit is set and then any combination of contaminant concentrations
that keeps the contaminant harm below that limit is allowed. Reference
concentrations, taken from a reference scenario of dwellings meeting a cur-
rent IAQ ventilation requirement (ANSI/ASHRAE Standard 62.2-2022)

for PM, 5, formaldehyde, nitrogen dioxide are set at 8, 20, and 6 pg/m3,
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respectively. Additionally, the discussion encompasses sensitivity analy-
ses employing diverse exposure limit values to quantify harm, highlights

emerging topics, and offers insights into the ventilation rate procedure.
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Chapter 1

Introduction

1.1 Air quality

Air is a mixture of chemicals with varying toxicity. Unexpected substances
are contaminants. Harmful contaminants are pollutants (Spengler et al.,
2000). Nearly 99% of air comprises nitrogen and oxygen. The rest in-
cludes thousands of gases, particulate matter, pathogens and bioaerosols.
Inhalation is the common route of pollutant exposure, as discussed by
Huijbregts et al. (2005). Air quality depends on pollutant concentrations,

determining health and wellbeing.

The Global Burden of Disease estimates quantify the harm to from in-
halation of pollutants in air using the disability-adjusted life year (DALY,
a metric that accounts for disease, infirmity and premature death from
inhaled pollutants (Harikrishnan et al., 2018; HEI, 2020; James et al.,
2018; Murray et al., 2020; WHO, 2021). In 2015, fine particulate matter
(PMy5) caused 4.2 million deaths and 103 million DALYs (Cohen et al.,

2017). In 2016, PM; 5 accounted for 7 million deaths, over half from house-
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hold sources (WHO, 2018a,b). By 2017, long-term PM, 5 exposure con-
tributed 83 million DALYs, 59 million from homes, largely through heart
and lung diseases (Cohen et al., 2017; HEI, 2020; Murray et al., 2020).
Several studies have linked exposure to PMs 5 with major disease burdens

(IHME, 2022; Kyu et al., 2018; Vos et al., 2020).

National bodies, environmental agencies and global health organizations
around the world attempt to influence air quality by setting short and long-
term contaminant thresholds for sundry contaminants, that should not be
exceeded over time (Hess-Kosa, 2018; WHO, 2021). Exceeding thresholds
help to identify priority contaminants but do not adequately rank impor-
tance (Logue et al., 2011a). Different organizations’ limit values some-
times differ substantially for identical periods (Abdul-Wahab et al., 2015;
Morantes et al., 2016; Salis et al., 2017). Limits reflect policy motiva-
tions, policymaker judgments, and differences in contaminant information,
not uniform hazard levels. This makes interventions to mitigate against
harm inefficient. Alternative metrics also have limitations (Jones, 2017).
It makes more sense to prioritize contaminants based on the dual condi-
tions of being harmful and commonly present in the air. This approach

would inform more effective mitigation strategies for air quality.

1.2 Indoor Air Quality

The quality of indoor air can be defined by its effects on people (Fanger,
2006). Building items, occupants, and combustion introduce pollutants to
the indoor environment, influencing its quality (Jones, 2017). As people
spend most of their time inside, mainly in homes, the greatest contaminant

exposure occurs there (Agency, 1989; Brasche and Bischof, 2005; Commis-
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sion, 2003; Jantunen et al., 2011; Klepeis et al., 2001; Lader et al., 2006;

Zeghnoun et al., 2010).

Indoor Air Quality (IAQ) has been historically characterized using proxy
indicators, like humidity and carbon dioxide (COs) levels (Borsboom et al.,
2016). COq reflects occupancy instead of direct health impacts (Fisk et al.,
2019). Under 1000 ppm CO5 and 60% humidity represent “good” TAQ, but
these are arbitrary cut-offs that work under the implication that external
air is relatively uncontaminated, high levels of COs indoors could signal
inadequate ventilation (Walker et al., 2022). CO, also relates to bio-effluent
perception. Occupants often judge TAQ by odor, influenced by volatile
organic compounds (VOCs) (Spengler et al., 2000; Zhang et al., 2022).
Smell may drive responses, with receptors detecting VOCs first, signaling
irritants as odors (the olfactory paradigm). Though not the sole perception
influence, this aids understanding reactions (Carrer et al., 2018; Persily,

2006, 2015).

Guidance documents classify TAQ and provide ventilation recommenda-
tions for specific building types using COs and odor judgments (Bonino,
2016; Persily, 1997; Zhang et al., 2017). ANSI/ASHRAE standards address
healthcare, commercial buildings, and homes in the USA, while German,
UK, and international standards cover workplaces, natural ventilation, and
general systems (Saffell and Nehr, 2023). This dependence on proxi indi-
cators overlooks diverse contaminants and risks. Standards should instead
prioritize health outcomes and occupant well-being (Carrer et al., 2018;

Guyot et al., 2019; Persily, 2006, 2015).

ANSI/ASHRAE Standard 62.2 considers acceptable home air quality by
lack of dissatisfaction and harmful pollutants (ASHRAE, 2022c). This

criterion is binary and is either passed or failed. These criteria can be
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influenced over time as a better understanding of population health is de-
veloped, notably, the Air Infiltration and Ventilation Centre advocates de-
veloping health-focused IAQ metrics beyond existing perception and CO,
proxies to directly evaluate harm (Borsboom et al., 2016). Proposed met-
rics should integrate current standards while positively impacting health

(Jones, 2017).

1.3 Understanding harm

Indoor air comprises a mixture of contaminants that people are exposed
to. The exposure to a given contaminant is a function of its concentration
and the duration of exposure, which leads to a dose through various mech-
anisms. Inhalation is the exposure route of interest for air contaminants.
Doses accrued over time are characterized as either acute or chronic. A dose
of a contaminant can be quantitatively related to negative health impacts
using established dose-response relationships. These health impacts can be

measured using metrics like the disability-adjusted life year (DALY).

DALYs account for both shortened life from early mortality and time
lived with disability from disease or functional impairment (Fryback, 1998;
Homedes, 1996; Murray, 1994). Specifically, DALY integrate two compo-
nents: years of life lost from premature death and years lived with disability
from non-fatal health outcomes. In essence, DALYs evaluate the cumula-
tive disease burden resulting from exposure to harmful contaminants (Lee
et al., 2020; Murray, 1994; Murray et al., 2020; Wang et al., 2017). DALYs
also facilitate comparisons and prioritization of exposures (Sherman et al.,

2012), providing context to target mitigation efforts.

Health Impact Assessment (HIA) methods aim to quantify harm from expo-
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sure to air contaminants. HIAs include hazard assessment, impact analysis,
risk attribution, and cost-benefit analysis (Rausand, 2013; von Stackelberg
and Williams, 2021). Together, these shape evidence-based IAQ decisions.
Global health initiatives and air quality assessments use DALYs as the
metric of harm (Hassan Bhat et al., 2021; Hauschild and Huijbregts, 2015;
Hauschild et al., 2018; Sacks et al., 2018; WHO, 2011).

Air Pollution Health Risk Assessment (AP-HRA) relate observed disease
incidence changes to harm (Lee et al., 2020; Liu et al., 2022; Morawska
et al., 2013; Murray et al., 2020), where as, Life Cycle Impact Assessments
(LCIAs) do so using contaminant mass (Huijbregts et al., 2005; Rosenbaum
et al., 2015; Wu and Apul, 2015). Assessments use either toxicology or
epidemiology data. In 2012, Logue et al. proposed combining epidemiology
and toxicology to estimate U.S. home contaminant harm. This pioneering
health-centric assessment enabled prioritizing contaminants and ventilation

to minimize disease burden (Borsboom et al., 2016; Walker et al., 2022).

There is currently no recognized process for selecting priority indoor air
quality contaminants that are most harmful and widespread in homes
(Guyot et al., 2019; Parthasarathy et al., 2011; Sherman et al., 2022, 2012;
Stanley and Bayer, 2009; Walker et al., 2022). A need exists to identify
these key contaminants for emphasis and control. Meeting this need re-
quires understanding chronic contaminant exposures, concentration varia-
tions, and uncertainties within homes. It also requires a specialized metric
linking harm to exposure levels and exposed populations over time (Gron-
lund et al., 2015; Guyot et al., 2019; Oberschelp et al., 2020; Sherman
et al., 2012; Walker et al., 2022). With such a health-impact metric, cal-
culating contaminant harm would be possible when long-term exposures
are known. This would make it possible to identify and synthesize priority

contaminants to target for health-protective strategies.
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Various daily life risks pose some acceptable harm to populations (Mur-
ray et al., 2020). The World Health Organization uses DALYs to set
allowable harm benchmarks for drinking water (WHO, 2011). Similarly,
DALYs could define a maximum allowable harm limit from indoor air pol-
lutants, allowing any concentration combination keeping harm below it
(Sherman et al., 2012; Walker et al., 2022). ANSI/ASHRAE Standard 62.2
(ASHRAE, 2022c) proposes a definition for acceptable TAQ (AIAQ) in
dwellings, but there is still a need for a quantitative definition of ATAQ.

The allowable harm limit addresses this need.

1.4 Aims and objectives

The scope of this research is focused on residential environments. Con-
centrating on homes allows for a detailed examination with direct policy
implications for these settings. The emphasis is on long-term exposures
and their associated chronic health effects, primarily relying on post-2010
data to ensure relevance. Mixtures and interactions between contaminants
are beyond the scope of this study; assessments are conducted for indi-
vidual contaminants. Only DALYs are used as a health metric in this
context; parallel metrics such as Quality-Adjusted Life Years (QALYSs) are

not considered. Harm is assessed at the population level.

The aim of this thesis is to advance IAQ assessment by developing novel
health-based metrics using the Disability-Adjusted Life Year (DALY). This
will enable evaluation of harm from residential indoor air contaminants,
improve population health, set objective metrics and remove subjectivity
when prioritizing contaminants. In pursuit of the aim of this thesis, the

following objectives were followed:
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First Objective: To synthesize uncertainties in the concentration of air
contaminants in dwellings by conducting a systematic review and meta-
analyses of existing sampling campaigns, with the goal of generating esti-

mated probability density functions for use in harm assessments.

Second Objective: To develop a novel IAQ harm metric that relates
disability-adjusted life years (DALYs) to chronic exposure concentrations of
air contaminants, utilizing available epidemiology and toxicology research,

with the goal of performing harm assessments.

Third Objective: To evaluate and assess the harm resulting from typical
exposures to indoor air contaminants in dwellings, through the integration
of the harm metric and concentrations for each contaminant. This synthesis

will define the harm assessment framework for this research.

Forth Objective: To identify and synthesize the most harmful airborne
contaminants in dwellings, prioritizing them for removal and establishing a
harm budget. The outcomes have the potential to inform the development
of health policies, building codes and regulations, and influence the design

and operation of buildings.

1.5 Thesis outline

This thesis is structured as follows:

Introduction: Provides background and motivations, states research aims

and objectives.

Chapter 2 Literature Review: Critically reviews current knowledge on

air pollution, health impacts, risk assessment, indoor contaminants, and
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harm quantification.

Chapter 3 Quantifying Harm: Describes the modeling approach, data
processing, equations, assumptions, coding, and programs used to develop

the harm metric.

Chapter 4 Parameters for Determining Harm Intensities: Ana-
lyzes required parameters from epidemiology, toxicology, exposure science,

discussing interpretations, uncertainties, and literature sources.

Chapter 5 The Harm Intensity: Presents the developed methodology

and defines the novel Harm Intensity (HI) metric for air contaminants.

Chapter 6 Airborne Contaminants in Dwellings: Presents the pro-
cess and results of quantifying representative concentrations of airborne

contaminants in dwellings.

Chapter 7 Contaminants Harm in Dwellings: Applies HI to assess
harm from indoor contaminants in homes based on representative concen-

trations.

Chapter 8 Discussion: Synthesizes key findings, including ranking and
prioritization of contaminants, proposing a harm budget, comparing to

guidelines, assessing limitations, and highlighting applications.

Conclusions: Summarizes the research outcomes, significance, and final

remarks.



Chapter 2

Literature Review

Some work from this chapter has previously been published as a book

chapter in:

Molina, C., Jones, B., & Morantes, G. (2023). Air Quality in Latin Amer-
ican Buildings. In Removing Barriers to Environmental Comfort in the
Global South (pp. 195-215). Cham: Springer International Publishing.
eBook ISBN: 978-3-031-24208-3

2.1 Air pollution

Humans have the right to breathe clean air. Poor air quality has implica-
tions for a wide range of human rights, including the rights to life, health,
water, food, housing and an adequate standard of living. States have obli-
gations to protect people on the foreseeable adverse effects of poor air

quality and exposure to (toxic) air pollution (Knox, 2019).

Pollution is defined as the introduction into the environment of substances
in concentrations that reduce its quality and can be considered harmful to
humans (or other living organisms) (Manisalidis et al., 2020). Air pollution
refers to the presence in the atmosphere of one or more pollutants (or their
combinations) in concentrations and permanence such that they represent
a threat to human health, that of animals, plants or that cause adverse

effects on infrastructures (Seinfeld and Pandis, 2016). The most convincing
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evidence that air pollution is a global environmental problem lies in the
growing number of cities that each day increase their concentrations of
air pollution caused by different sources and different air pollutants and,
the consequent increase in negative effects on health and the environment
(Priiss—Ustiin et al., 2016). Air pollution can be broadly separated into
two distinct categories: Outdoor pollution (or ambient air pollution) and
indoor pollution, generated by household combustion of fuels, and high
concentrations of pollutants in buildings. The air’s quality is evaluated
through the concentration of pollutants that are present in it. Air quality
(in both environments) is an essential determinant of healthy living and
people’s well-being. Moreover, air quality is a determinant of the state of
the (global/local) physical and social environment, proposed in frameworks
for health equity surveillance, for which indicators need to be developed
(Marmot et al., 2008).

In the 1960’s, investigations on the impacts of air pollution began to be
carried out and, as a result, the enactment of environmental legislation,
such as the National Environmental Policy Act (NEPA) was initiated and
promulgated by the Congress of the United States of America. The start-
ing point for the emergence of programs dedicated to air pollution was the
occurrence of critical episodes of air pollution in several locations arround
the globe, in Belgium, (Firket, 1936); in London, (Scott, 1953); in U.S.A.
(Jacobs et al., 2018). The term outdoor or ambient air refers to atmo-
spheric air; its pollution consists of a highly variable and complex mixture
of different substances (in gas, liquid or solid phase) that are potentially
harmful to human health and the environment (WHO, 2006). The fol-
lowing are ambient air pollutants and considered contributors of disease
in humans: particulate matter (PM, particles of variable aerodynamic di-
ameter*), ground level ozone, nitrogen oxide, sulphur dioxide, volatile or-
ganic compounds (VOCs), dioxins and, polycyclic aromatic hydrocarbons
(PAHs) (Manisalidis et al., 2020; Seinfeld and Pandis, 2016; WHO, 2006).

The term indoor air usually applies to non-industrial indoor environments:
office buildings, public buildings (schools, hospitals, theatres, restaurants)
and private homes. Indoor air is a complex blend of substances originating
from both indoor and outdoor sources. Indoor air pollutant levels can mir-

ror outdoor levels (Guardino et al., 1994), yet specific pollutants indoors

*The aerodynamic diameter of a dust particle is the diameter of a sphere-shaped
particle that shows the same behaviour in the atmosphere as a dust particle (that does
not necessarily have a spherical shape)
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can spike up to 100 times higher, as noted by the EPA (Seguel et al., 2017),
owing to factors like limited dilution, low wind speed, and concentrated

sources including biological pollutants (Siddique et al., 2023).

In the case of industrial environments, pollutant concentrations might be
higher compared to that of non-industrial environments, which is why
standards and regulations are applied in order to assess indoor air qual-
ity (ASHRAE, 2014; Government, 2010; IWBI, 2014; MTA/MA-014/A11,
2012).

Indoor air quality (IAQ) refers to the control of the quality of air inside en-
closed spaces (buildings, tunnels, etc.) in order to ensure healthy and clean
conditions for the public in general (Heinsohn and Cimbala, 2003). Indoor
air quality began to be considered a problem in the late 1960s, although the
first studies were not conducted until the 1970s, in scenarios where workers
developed negative health effects, mostly of the respiratory type, leading to
the study of possible air-suspended pollutants indoor (Jones, 1999; Samet
et al., 1987; Spengler et al., 2000).

Indoor air quality is directly affected by pollutant emission sources typical
of the space, as well as by the habits of the staff who frequent it. It
may also be influenced by outside air characteristics. Overall, indoor air
pollution can originate from both outdoor and indoor sources. It is likely
that indoor air pollution contribute more to population exposure than the
outdoor environment because people spend longer time indoors (WHO,
2006).

The major sources of indoor air pollution worldwide include combustion
of solid fuels indoors, tobacco smoking, outdoor air pollutants, emissions
from construction materials and furnishings, the inhabitants themselves,
improper maintenance of ventilation and air conditioning systems and/or
excessive use of cleaning products. The main indoor air pollutants related
to health problems and poor quality of life include: carbon monoxide (CO),
nitrogen and sulphur oxides, ozone, radon, volatile and semi-volatile organic
compounds, fine and biological particles (fungi and mites) (Guardino et al.,
1994; Samet et al., 1987; WHO, 2006).

In the TAQ research community, carbon dioxide (CO;) serves as a key indi-
cator of poor air quality and ventilation effectiveness (Walker et al., 2022),
perhaps even impacting cognitive function directly (Satish et al., 2012).

However, evidence regarding its direct effects on health, well-being, learning
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outcomes, and work performance at typical indoor concentrations remains
inconclusive (ASHRAE, 2022a; Fisk et al., 2019). This research views CO,
as a contaminant gas rather than a pollutant because it is undesirable at
high concentrations indoors, but the causal link to health outcomes remains

inconclusive.

On average, people in the USA, Europe, and the UK spend 90 % of their
time indoors (Agency, 1989; Commission, 2003; Lader et al., 2006). Homes,
offices, schools, day care centers, public buildings, health centers or other
private and public buildings are examples of indoor environments where
people spend their time. Hazardous substances (pollutants), moisture,
mold and biological particles found in these spaces lead to a wide range
of health-related problems (Guardino et al., 1994; Heseltine and Rosen,
2009; Spengler et al., 2000; Wanner et al., 1993; WHO, 2010).

2.1.1 Air contaminants

This work preferentially uses “contaminant” rather than “pollutant” for
indoor chemicals. Contaminant broadly means any unwanted, unnatural
material, regardless of toxicity. Pollutant implies confirmed toxicity. Con-
taminant enables precise, neutral representation without presuming haz-
ards. Contaminant also fits the indoor context better by highlighting for-
eign alteration of natural conditions. Given these nuances, contaminant is
preferred terminology for the wide range of indoor chemicals, only some

demonstrably toxic (Spengler et al.; 2000).

Thousands of air contaminants exist. Substances repeatedly highlighted
across air pollution literature were selected as representative troves for dis-
cussion, centered on two classifications: criteria pollutants and other air
pollutants (Manisalidis et al., 2020; Tran et al., 2020; WHO, 2006).

2.1.1.1 Criteria Pollutants

Criteria pollutants are defined as those that have a direct effect on hu-
man health, which are commonly found in the atmosphere and are released
in large quantities from a variety of emission sources. The criteria pol-
lutants are: particulate matter in its various sizes (PM), sulphur dioxide
(SO3), nitrogen dioxide (NOy) and, ozone (Oj3); furthermore, USEPA in-
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cludes carbon monoxide (CO), resulting in five so-called criteria pollutants
(EPA, 2016; WHO, 2006). There is an extensive scientific knowledge of
these pollutants that allows the proposition of relationships between their
presence and, their harmful effects on human health or on the environ-
ment (SO, and NOs are related to rain acidification, PMs are associated
with haze episodes, and O3 can cause metal corrosion and lower the rate

of photosynthesis in plants).

Particulate Matter (PM) , also referred to as aerosols, is any sub-
stance, except pure water, that exists as a liquid or solid in the atmo-
sphere under normal conditions and have microscopic or submicroscopic
sizes (Figure 2.1). PM is a heterogeneous mixture of solid and liquid parti-
cles including chemical and biological fractions. PM is classified according
to its aerodynamic diameter (Dp) in PM;y (Dp <10 pm), PMy 5 (Dp < 2.5
pm) (fine fraction), PMjg_25 (2.5 < Dp < 10 pm) (coarse fraction), and
ultrafine particles (0.1 pm ~100 nm) (Seinfeld and Pandis, 2016). The
components of PM;y and PMs 5 can be organic (polycyclic aromatic hydro-
carbons, dioxins, benzene, 1-3 butadiene) or inorganic (carbon, chlorides,
nitrates, sulfates, metals) in nature (Manisalidis et al., 2020; Seinfeld and
Pandis, 2016; Spengler et al., 2000). Moreover, a substantial component of
PMs in indoor and outdoor environments are bioaerosols: solid or liquid

particles carrying living organisms from biological sources, including fungi,

bacteria, viruses and, pollens (Ariya, 2004; Morakinyo et al., 2016).
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Ambient or outdoor PM may have a natural or anthropogenic origin. Par-
ticles of natural origin come from soil erosion, re-suspended soil dust, sea
salt transport, forest fires, volcanic eruptions and emissions of fractionated
biological material. Particles of anthropogenic origin are generated as a
result of human activity: vehicular traffic (mainly from vehicles with diesel
engines), combustion and industrial processes, mining-metallurgical activ-
ity and biomass burning (Pina, 2011; Priiss-Ustiin et al., 2016; Seinfeld and
Pandis, 2016; US-EPA, 2020b).

Sources of particles in the indoor environment include second-hand smoke
from tobacco, combustion (candles, incense, wood-or-coal for cooking, wood-
or-coal for heating, smoking), cooking, consumer products, building mate-
rials, dust, particulate resuspension from human activity, such as the use of
vacuum cleaners and foot traffic, infiltration of foreign particles (particles
of outdoor origin that migrate indoors) and secondary organic aerosols;
furthermore, indoor PM can also be of biological origin: microorganisms
(bacteria, viruses, fungi, mold and, bacterial spores) allergens, and pollen
(National Academies of Sciences, 2016; WHO, 2014).

Sulphur Dioxide (SO;) is a colorless gas with an irritating odor, solu-
ble in water. It is usually the product of burning sulphur compounds found
in fossil fuels. The oxidation of sulphur dioxide leads to the formation of
sulphurous acid (H2SO3) and sulphuric acid (H2SO,4): both responsible for
acidifying rainwater (Manisalidis et al., 2020; Seinfeld and Pandis, 2016;
WHO, 2006). SO, is one of the pollutants that is emitted along with parti-
cles during the burning of fossil fuels, it constitutes the largest fraction by
mass of fine particles, which makes it an indicator of pollution by particles
(Pope et al., 1995).

The main source of SO, is the combustion of fuels containing varying
amounts of sulphur, according to their source (most notably coal and oil).
On combustion, any sulphur in the fuel is converted to sulphur dioxide.
Other major source is the sintering process used in metal smelting, which
involves roasting metal sulfide ores in a stream of air (WHO, 2006). The
SO, present in indoor air normally comes from outside, both from nat-
ural and anthropogenic sources. It enters a building through ventilation
or infiltration. In addition, SO, can be absorbed by building materials,
furniture, and carpets, for the long-term with negligible re-emission (Tran
et al., 2020; Walsh et al., 1977), which can reduce the concentration indoors
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relative to that existing outside, particularly when sulphur dioxide concen-
trations outside are elevated (Guardino et al., 1994). Kerosene-fueled space
heaters can also be a source of indoor SO, (Samet et al., 1987; Spengler
et al., 2000; US-EPA, 2017).

Nitrogen Dioxide (NO,) is a highly reactive gas formed as a by-product
of high-temperature combustion process. Most of the atmospheric NO; is
emitted in the form of nitric oxide (NO). With sunlight, (NO) combines
with atmospheric oxygen to form nitrogen dioxide. NOs is also one of the
precursors of tropospheric ozone and nitrate aerosols, which make up a
significant fraction of the mass of PMs 5 (Seinfeld and Pandis, 2016; WHO,
2006, 2010). In ambient air, NOy is mostly emitted from automobile mo-
tor engines (US-EPA, 2016). On the other hand, indoor sources include
tobacco smoke, gas, wood, oil, kerosene, and coal burning appliances, such
as stoves, ovens, space and water heaters, and fireplaces. Outdoor NO,
also influences indoor concentrations (via infiltration), in fact, outdoor air
is the main source of nitrogen dioxide in buildings without non-ventilated
fuel appliances (Guardino et al., 1994; Manisalidis et al., 2020; Samet et al.,
1987; Spengler et al., 2000; WHO, 2010, 2014).

Ozone (O3) is found in both the troposphere and the stratosphere. It
is harmful to the environment (human health and nature) when it is at
ground level (tropospheric ozone) and beneficial to the energy balance of
the planet when it is at the level of the stratosphere (Seinfeld and Pandis,
2016). Ozone in the troposphere (ground-level ozone) is the product of
the photochemical reaction of oxygen in the lower layers of the atmosphere
with precursor gases, such as NOx, CO and volatile organic compounds
in presence of sunlight (US-EPA, 2020a; Villanyi et al., 2010). It can be
found in indoor environments in special situations where it is generated
continuously from sources such as copy machines, electrostatic air cleaners,
electrical arcing or, smog. As it degrades rapidly, indoor concentrations
are significantly lower that outside (Guardino et al., 1994; OSHA, 1999;
Spengler et al., 2000). Ozone degrading means that it undergoes chemical

reactions that break it down into other compounds.

NO; and O3 can be further classified as natural reactive oxygen species
(ROS). ROS comprise a wide range of oxygen-centered and related free
radicals. In the atmosphere, ROS and reactive nitrogen species (RNS)
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are generated via photochemistry and gas-phase, heterogeneous and multi-
phase reactions involving atmospheric oxidants and aerosol particles. ROS
include Og, hydroperoxyl (HO3), organic oxy and peroxyradicals; RNS in-
clude NO, NOy, NO;, ONOO™ , HONO and HNOj. In the atmospheric
sciences, ROS and RNS are usually mentioned as (photo)oxidants and radi-
cals (Poschl and Shiraiwa, 2015). Nitric oxide and certain radicals like HOo
and organic oxyradicals, can contribute to the generation of O3 through

complex chemical reactions in the atmosphere.

2.1.1.2 Other air pollutants

This section presents a number of pollutants not previously discussed, from
which there is evidence that certain exposure concentrations can cause
health concerns, with particular emphasis in pollutants found in indoor

(non-industrial) environments.

Volatile Organic Compounds (VOCs) are a group of chemical and
biological compounds characterized by their ability to pass into the gas
phase at room temperature. VOCs are organic compounds that elute be-
tween and, including, n-hexane and n-hexadecane on a gas chromatographic
column’ (ISO, 2011). In outdoor air, primary VOC sources include those
from incomplete combustion, whereas indoor sources of VOC are construc-
tion and building products (paints, varnishes, waxes and solvents), house-
hold consumer products (detergents, cleaning products, air fresheners and
personal care products) and the use of ink-based electronic devices (photo-
copiers and printers) (Shrubsole et al., 2019). ISO (2011) present a list of
VOCs detected in indoor air emitted from building products. The following

are common VOCs:

Benzene is a colorless liquid with a sweet odor. Is a genotoxic carcinogen
in humans. Benzene evaporates into the air quickly. Benzene is present
in both outdoor and indoor air. People living near hazardous waste sites,
oil refineries, petrochemical industries, or gas stations may be exposed to
higher concentrations of benzene. The petrochemical industry, oil refiner-
ies, the manufacture of coal and coke products, the manufacture of tires,

the storage and transportation of benzene and petroleum products con-

tGas chromatography is an analytical method for the separation and identification
of components that are gaseous or vaporized without decomposition.
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taining benzene, are the main benzene emitters. Benzene concentrations
in indoor air are generally higher than outdoors, where tobacco smoke is the
main source. Additional indoor emissions sources of benzene include con-
sumer products and construction-remodelling- decorating products (glues,
paints, furniture polish). Heating and cooking systems and detergents are
also sources. In indoor environments where there are no sources of ben-
zene, concentrations are determined by the concentration of the outside air
(Spengler et al., 2000; US-EPA, 2003a; WHO, 2010, 2014).

Formaldehyde is a colourless gas released into the environment from biomass
combustion and industrial combustion processes. Formaldehyde is consid-
ered primarily an indoor pollutant because, in ambient air, it is quickly
photo-oxidized to carbon dioxide and water (WHO, 2010). Emissions from
building materials (paints, wallpapers, glues, adhesives, varnishes and lac-
quers), furniture, construction wooden products, consumer home and office
chemicals (detergents, disinfectants, softeners), smoking, burning of fuels
(for heating, cooking), or candle or incense burning are indoor sources of
formaldehyde (Samet et al., 1988; Spengler et al., 2000; WHO, 2010, 2014).

Naphthalene is a solid white substance that evaporates easily. Its main use
in homes is in moth/insect repellants (mothballs) representing the main
source of this pollutant indoors. Mothballs are also known as white tar
and white camphor. Naphthalene evaporates from its solid state or from
the compounds that contain it. Consumer products, such as multipurpose
solvents, lubricants, herbicides, charcoal lighters and hair sprays, unvented
kerosene heaters, tobacco smoke and, rubber materials, are also sources
(Shrubsole et al., 2019; WHO, 2010).

Xylenes appear as a colorless liquid with a sweet odor that ignites easily. It
is found naturally in oil and tar. Chemical industries produce xylene from
oil. In indoor air, it is produced by the evaporation of household products
that contain it (varnish, dilute liquids) and by the combustion of fossil fuels
and tobacco smoke (Spengler et al., 2000). Usually, xylenes are treated as
a mixture of its three different isomers: meta-, ortho- and, para-xylenet
(Shrubsole et al., 2019).

Trichloroethylene (TCE) is a volatile, colourless liquid with a sweet ethe-

real (chloroform-like) smell that is widely used as an industrial solvent.

fXylene exists in three isomeric forms. The isomers can be distinguished by the
designations ortho- (o-), meta- (m-) and para- (p-), which specify to which carbon
atoms (of the benzene ring) the two methyl groups are attached.
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Sources of TCE are wood stains, varnishes, finishes, lubricants, adhesives,
typewriter correction fluid, paint removers and, certain cleaners (Spengler
et al., 2000; WHO, 2010).

Tetrachloroethylene (PCE) is a readily volatile, colourless liquid with an
ether-like smell. Caulks and sealants, miscellaneous materials, paint re-

movers, cleaners, glues and suede protectors are indoor sources (Shrubsole
et al., 2019; WHO, 2010).

Polycyclic aromatic hydrocarbons (PAHs) are a class of chemicals
present naturally in coal, crude oil, and gasoline. Benzopyrene, acenaphthy-
lene, anthracene and, fluoranthene are common PAHs (Manisalidis et al.,
2020). They are emitted from combustion processes of carbonaceous ma-
terials at high temperature (traffic, waste incinerators, power generation
plants). Indoor air is contaminated by PAHs from smoking, cooking (burn-
ing of fossil fuels and biofuel), domestic heating (fuel stoves and open fire-
places) as well as from incense and candle emissions (Spengler et al., 2000;
WHO, 2010, 2014).

Radon (Rn) is an inert noble gas that does not interact chemically with
other elements. All of the isotopes of radon are radioactive and evaluation
of the adverse health effects due to exposure to radon requires consider-
ation. The isotopes of radon encountered in nature (*!* Rn, ?*°Rn, and
?22Rn) are part of long decay chains starting with isotopes of uranium (U)
or thorium (Th) and decay very rapidly into polonium (a particle that
bonds with the soil) (Keith et al., 2012). Radon is a pollutant of concern
for the indoor environment. As a gas that occurs naturally in soils and
rocks, radon has been detected in indoor air as early as the 1950s per sam-
pling campaigns. Radon concentrations indoors depend on the amount of
radon-producing uranium in the underlying rocks and soils. Cracks, holes
in the ground, small pores, sinks and, drains are ways of entry, as a conse-
quence, radon concentrations are usually higher in basements, warehouses
and, other structural areas in contact with the ground (WHO, 2010). Pen-
etration of radon-contaminated soil gas is the principal source of the radon
found in homes (Samet et al., 1988; Spengler et al., 2000). The health
hazard from radon does not come primarily from radon itself, but rather

from its radioactive progeny (Keith et al., 2012).
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2.1. AIR POLLUTION

Biological agents, also bioaerosols, may contaminate the air within in-
door environments. These bioaerosols comprise viruses, bacteria, actino-
mycetes, fungal spores, algae, amoebae, arthropod fragments and, animal
or human dander. Most bacteria in indoor air originate from humans,
whereas most fungi in indoor air originate from spores from outdoor sources
(Heseltine and Rosen, 2009; Samet et al., 1988). A summary of air pollu-
tants, its main categories (Indoor / Outdoor) and possible sources is given
in Table 2.1.

Table 2.1: Indoor / Outdoor air contaminants, and known sources. *

q Main categories Related sources
Contaminant
I 0 Indoor Outdoor
Particulate v/ v Smoking, cooking, heating, consumer Soil (erosion, resuspen-
matter products, building materials, soil (resus- sion), sea salt, combustion
g (PMa.5) pension), infiltration of foreign particles.  (biomass, industrial, fuel).
£
% sulphur v Infiltration of foreign particles. Combustion (biomass, in-
;“ Dioxide dustrial, fuel).
5 (502)
=
S Nitrogen v Smoking, burning appliances (for cook- Combustion (industrial,
Dioxide ing/heating), infiltration. fuel).
(NO3)
Ozone (O3) v Reaction with precursors (NOx, CO and VOCs)
Carbon v v Combustion (biomass, fuel) for cook- Combustion (biomass, in-
monoxide ing/heating, smoking. dustrial, fuel).
Benzene v Smoking. Petrochemical activities.
HCHO v Building materials (paints, glues, var-

nishes, lacquers, wooden products), clean-
ing (detergents, disinfectants, softeners),
smoking, heating, cooking, candle/incense

Volatile Organic Compounds

burning.
TCE v Construction products
varnishes, paint removers).
PCE v ( P )
Naphthalene v/ Consumer products with mothballs.
Xylenes v Smoking. Petrochemical activities.
£ Polycyclic v Combustion (biomass, fuel) for cook- Combustion (industrial,
£ aromatic ing/heating, smoking. fuel).
= hydrocarbons”
2
5 Radon v Underlying rocks and soils. —
-
& Biological v/ v Bacteria, viruses, fungi, mold and, bacte- Spores, pollen, animal/hu-
O Agents rial spores. man dander.

" benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, benzo[ghi]perylene and indeno 1,2,3
[ed] pyrene. .

* Compendium from (Heseltine and Rosen, 2009; ISO, 2011; National Academies of Sciences, 2016; Priiss-Ustiin et al., 2016; Samet et al., 1987, 1988;
Seinfeld and Pandis, 2016; Shrubsole et al., 2019; Spengler et al., 2000; US-EPA, 2003a, 2010b, 2011, 2017, 2020a,b; Villdnyi et al., 2010; WHO, 2006,
2010, 2014)
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2.1.2 Overview of contaminants in dwellings

Indoor residential exposures constitute 60-95% of lifetime air contaminant
contact indoors, as homes are where people spend most time (Section 2.1).
Understanding exposure levels and patterns is crucial given the predomi-
nance of time spent indoors. Hundreds of chemicals have been measured

indoors, reflecting a research shift from outdoor to indoor environments.

Systematic reviews have compiled residential contaminant summary statis-
tics for the indoor air contaminants presented in this research so far, to
identify those with the highest central tendency and peak concentrations,
often weighted by number of homes measured (Fazli and Stephens, 2018;
Halios et al., 2022; Ilacqua et al., 2022; Liu et al., 2023b; Logue et al.,
2011a; Morawska et al., 2013, 2017; Nishihama et al., 2021; Vardoulakis
et al., 2020; Ye et al., 2017). Figure 2.2 shows central tendencies and vari-

ability of measured indoor contaminants categorized this way.

Logue et al. (2011a) showed weighted median and upper bound concen-
trations for non-biological contaminants from 77 studies in industrialized
nations. Fazli and Stephens (2018) review USA studies to describe residen-
tial concentrations for selected contaminants. Vardoulakis et al. (2020) pre-
sented minimum and maximum concentrations from 141 worldwide stud-
ies. Morawska et al. (2013, 2017) reported weighted means and maxi-
mums for particulate matter from developed country studies. Ilacqua et al.
(2022) gave median and peak PM levels across 538 global studies. Nishi-
hama et al. (2021) focused on Japanese homes, while Ye et al. (2017) and
Liu et al. (2023b) covered minimum/maximum and medians, respectively,

in China and Halios et al. (2022) examined European dwellings.

According to Borsboom et al. (2016), the most prevalent volatile organic
compounds (VOCs) that are measured indoors, grouped and ordered by
number of studies, are: toluene; benzene; ethylbenzene, m,p-xylenes, and
formaldehyde. The most common semi-volatile organic compounds (SVOCs)

are naphthalene and pentabromodiphenyl ethers (PBDES).

Inconsistencies introduce difficulties in precisely contrasting results across
the literature, a challenge largely attributed to the absence of a standard-
ized framework of reference for conducting and reporting results. While
enhanced standardization would benefit comparisons, these works collec-

tively furnish valuable perspectives on central benchmarks and concentra-
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tion distributions. In the interim, judiciously synthesizing results across
metric types provides a useful, albeit constrained, basis for grasping indoor

contaminant patterns.

This current snapshot of contaminant sampling campaigns in homes has an
extensive global scope. PM has been the focus of more systematic reviews
compared to other contaminants. Reported concentrations vary by several
orders of magnitude. This variability is due to fluctuations within the
same indoor environment, as contaminant levels are ultimately dependent
on emissions and control measures. Continued compilation of residential
exposure data is crucial for characterizing risks and prioritizing mitigation

worldwide.
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2.2. EXPOSURE TO AIR CONTAMINANTS AND HEALTH IMPACT

2.2 Exposure to air contaminants and health

impact

While numerous contaminants exist in indoor environments, health impact
data are lacking for many compounds beyond those quantified here, as
comprehensive dose-response information remains absent across the broad
spectrum of potential risks. T'wo major ways that health impacts associated
with exposure have been assessed are via epidemiology and toxicological
based studies (Borsboom et al., 2016). Epidemiology and toxicology studies
differ significantly in how they define and measure exposure, as summarized
in Table 2.2 (Ritter and Arbuckle, 2007). Both fields provide important

but complementary insights into contaminant health impacts.

Epidemiology examines the distribution and determinants of health condi-
tions in populations (Bhopal, 2016; Miettinen, 2011). Mortality and mor-
bidity quantify death and illness occurrences. Mortality frequently indi-
cates community health. Epidemiology links real-world exposures statis-
tically to disease incidences, providing population-level evidence on risk

factors.

In contrast, toxicology focuses on biological mechanisms of contaminant
harm using controlled experiments (Eaton and Gilbert, 2008; Hayes and
Kobets, 2023). Animal and cell models determine dose-response relation-
ships. Toxicology elucidates specific toxicological properties and damage
mechanisms. Cancer and non-cancer risks dominate toxicology’s health

concerns.

Both fields inform air contaminants health impacts for mitigation strate-
gies. Epidemiology offers real-world disease insights, while toxicology re-
veals mechanistic biological effects. Bringing epidemiology and toxicology
together serves to better understand cause and effect relationships and
causal inference (Adami et al., 2011; Weed, 2002)

Exposure duration is another key aspect, categorized as acute or chronic.
Chronic exposure persists more than 24 hours, while acute exposure lasts
24 hours or less (such as 8 hour averages or 1 hour averages). Both appear
in air pollution regulations and guidelines regarding public health impacts.
Impacts are also classed as chronic or acute effects. Chronic effects concern

long-term illnesses like cancer or COPD from persistent exposures. Acute
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Table 2.2: Characteristics
Studies.

of the Exposure Assessment in Toxicological and Epidemiological

Characteristic

Toxicology

Epidemiology

Design

Experimental

Observational

Study agents

Known and controlled source,
vehicle, route

Can be multiple sources, routes and ve-
hicles, not within control of investiga-
tor

Timing and duration of ex-
posure

Known, constant and con-
trolled; less likelihood of mea-
surement error

Not controlled, may be of longer
duration and even multigenerational
and variable over observation period;
higher likelihood of measurement error

Magnitude of exposure

Dose often exceeds range rele-
vant to humans

Reflect actual range of human exposure

Exposure categorization

Dose is selected a priori, fixed,
limited number of doses ad-
ministered to groups of ani-
mals by investigator; usually
one compound at a time

Estimated, commonly based on a one-
time environmental (ad libitum expo-
sure to contaminated air, drinking wa-
ter, food) or biological (blood, urine)
sampling; may or may not be catego-
rized; evaluates mixtures to which peo-
ple are exposed (although exact nature
of mixture may not be well character-
ized)

Study groups

Homogenous (genetic, nutri-
tional, environmental factors)
both within dosing groups and
between groups, except for
the exposure under study

Efforts made to make the groups as ho-
mogenous as possible (within and be-
tween groups) using selection and re-
striction criteria for study population
and/or data analysis

Relevance to humans

Species and strain selected
may have metabolic pathways
not representative of humans

Directly relevant if no selection biases
present

Statistical analysis

Straightforward; a few select
and fixed ordinal doses with
a set number of animals ex-
posed to each dose; if doses
selected appropriately lends
itself well to dose-response
curves and threshold determi-
nations (if applicable)

Complicated; concentrations are con-
tinuous variables, therefore can be is-
sues such as: (1) data are not normally
distributed; (2) may have high pro-
portions of nondetectable concentra-
tions; (3) choice of cut points to catego-
rize data; difficult to identify sufficient
numbers of truly nonexposed; choice
of statistical model for dose-response
curves

effects arise abruptly over hours or days, triggering events like strokes.
Health impacts of exposures to air contaminants have traditionally been
viewed through this duration lens (Borsboom et al., 2016).

Integrating parameters from epidemiology and toxicology is important for
comprehensive quantitative health risk assessment. Epidemiology provides
observational data on the relationship between exposures and health out-
comes in human populations. Toxicology offers experimental data on dose-
response and mechanisms from animal and in vitro studies. These expo-

sures and doses can be both chronic or acute. While derived in different
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contexts, certain parameters may be mathematically equivalent across dis-
ciplines. For example, the “relative risk” estimated from epidemiology
studies represents the ratio of risk between exposed and unexposed groups.
This can be quantitatively similar to the dose-response slope estimated
from toxicology dose-response curves. As the metrics estimate the same
relationship on a per unit exposure basis, they carry the same units and

can be combined.

Meta-analysis and weight of evidence approaches are valuable techniques
to integrate data across toxicology and epidemiology. By evaluating the
consistency of outcomes across studies, predictive models can be developed
incorporating multiple sources of evidence. This leverages the strengths of
both experimental and observational data for a more robust understanding
of potential harm (Adami et al., 2011; Bhopal, 2016; Boyes et al., 2007;
Hayes and Kobets, 2023; Herndndez and Tsatsakis, 2017; Jaffery et al.,
2002).

2.2.1 Health effects

Air pollution has numerous health effects (mostly associated with respira-
tory and cardiovascular disorders) and is linked to increased mortality and
morbidity, particularly for susceptible and sensitive individuals (children,
the elderly, pregnant women, smokers and asthmatics) (US-EPA, 2011). In
2018, during the first WHO Global Conference on Air Pollution and Health,
the WHO’s General Director, Dr. Tedros Adhanom Ghebreyesus, called air
pollution a “silent public health emergency” and “the new tobacco” (WHO,
2018d). Both long-term and short-term exposure to air contaminants can
be associated to several respiratory health impacts. Short-term effects are
temporary and range from discomfort (irritation of the eyes, nose, skin,
throat, wheezing, coughing and chest tightness and, breathing difficulties)
to more serious states (asthma, pneumonia, bronchitis and, lung and heart
problems). Long-term effects are chronic, lasting for years or the whole life
and can even lead to death (Manisalidis et al., 2020; US-EPA, 2011; WHO,
2006, 2021). Other non-respiratory health effects associated to air pollution
include psychological complications, autism, retinopathy, fetal growth, low
birth weight and diabetes (Eze et al., 2014; WHO, 2006, 2021), although
epidemiological evidence suggests that air quality in indoor spaces is pri-
marily linked to the respiratory health of its occupants (Bonjour et al.,
2007; Samet et al., 1987; Spengler et al., 2000). The majority of epidemio-
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logical studies for health effects of air pollution have been conducted using
ambient air pollution data. One reason why indoor air pollution studies are
scarce, could be that indoor air contaminants have not been as extensively
monitored as outdoor air contaminants, even in developed countries: the
evidence base for contributions to health effects needs to be strengthened
(WHO, 2006, 2021).

Exposures of the same contaminant, from different sources, can be consid-
ered as additive because, there is currently little epidemiological evidence
to firmly differentiate between health outcomes and the specific source of
air pollution (from ambient air pollution, household air pollution (HAP)
and /or secondhand tobacco smoke) for the same contaminant (Ebelt et al.,
2005; Hime et al., 2018; Priiss-Ustiin et al., 2016; WHO, 2006, 2021). The
WHO estimated the global burden of disease (BoD)? from the joint effects
of household and ambient air pollution for 2016 and, accounted for 7 mil-
lion deaths, categorized in 5 health outcomes related to the respiratory and
cardiovascular systems: acute lower respiratory disease (ALRI), chronic ob-
structive pulmonary disease (COPD), ischaemic heart disease (IHD), lung
cancer and stroke (WHO, 2018¢). Furthermore, an estimate of BoD focused
for indoor air pollution in 2000, indicated that Indoor Air Pollution (IAP)
was responsible for more than 1.5 million deaths from ALRI, COPD and
lung cancer; although, these results represent the use of biomass fuels and
coal for cooking, by women (and their children) in households in developing
countries (in many low and middle-income countries women cook indoors
with poor, if any, ventilation) because PMs 5 from solid fuels is used to
represent HAP in the BoD studies (Bonjour et al., 2007).

Particulate matter, benzene and, ozone have been highlighted, as they
cause serious damage to the respiratory system: a prediction based on a
scenario for raising concentrations of PMs 5 and Ojz indicates that, these
two contaminants solely, could account to 6-9 million premature deaths (a
death that occurs before the average life expectancy for a given population)
annually by 2060 (Guardino et al., 1994; Manisalidis et al., 2020; OECD,
2016). Furthermore, some authors have found some small (however, not
fully consistent) evidence that the specific components of particulate mat-
ter have negative effects on human health (Lavigne et al., 2020). Figure 2.3
shows selected indoor contaminants, their penetration in the human respi-

ratory track and their affected areas.

$Death and loss of health due to diseases, injuries and risk factors for all regions of
the world
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HOW INDOOR AIR POLLUTANTS
AFFECT THE BODY
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Figure 2.3: How Indoor Air contaminants Affect the Body. (A.L.A., 1987)

2.2.1.1 The criteria pollutants

Particulate Matter (PM). The smallest fractions of the PM have the
highest health risks due to their ability to penetrate deeper in the res-
piratory system reaching into the cardiovascular system (see Fig. 2.4).
Epidemiological and clinical studies have linked PM to a range of health
outcomes, for short-term (acute) and long-term (chronic) PM exposure.

Adverse effects associated to PM exposures include: mortality and hospital

27



2.2. EXPOSURE TO AIR CONTAMINANTS AND HEALTH IMPACT

admission in COPD patients, asthma exacerbation, mortality and morbid-
ity for cardiovascular diseases (ischaemic events, arrythmia, cardiovascular
events, heart rate variability), diabetes, myocardial infarction, lung/sys-
temic inflammation and respiratory cancer (WHO, 2006, 2021). Short-term
(daily time series studies) exposure to PM (PMsys, PM;g, PMjg_25) have
shown positive associations with risk for total and cause-specific mortal-
ity (respiratory, cardiovascular). Long-term exposure to PMj 5 has also
been found to be related to morbidity (hospital admissions, asthma, car-
diovascular outcomes, nonfatal heart attacks - myocardial infarction) and,
all-cause and specific mortalities (cardiopulmonary, cardiovascular, lung
cancer, COPD; stroke, IHD, ALRI) (Manisalidis et al., 2020; Priiss-Ustiin
et al., 2016; US-EPA, 2011, 2012, 2020b; WHO, 2006, 2021).

PM ...‘.',- ¢ Superior Airways
£ 'CQ‘:Q_.. 4 Coarse particles:
. ._1'! 1,"45; it P . PM < 10 um
R - :

e T

-+ Larynx

Inferior Airways
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Bronchi
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Figure 2.4: Particle size and penetration in the human respiratory system.
(CH et al., 2017)

The aerodynamic size of particles is strongly associated with respiratory
system diseases, with PMs 5 penetrating into the lungs. Emerging evidence
indicates health effects may vary by PM chemical composition and physi-
cal traits (Manisalidis et al., 2020; National Academies of Sciences, 2016;
US-EPA, 2020b). Yet, epidemiology still finds particle size the most con-

sistent, robust predictor of incidence under long-term exposure (Burnett
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et al., 2018; Xu et al., 2022). This reflects the equi-toxicity principle -
equal estimated toxicity per inhaled unit mass across PM types. More
research on composition/source-specific PM health impacts is needed to

enable differentiated exposure-response quantification (Xu et al., 2022).

Sulphur Dioxide (SO;) exposure is associated with health problems
such as respiratory irritation, reductions in mean lung function, bronchitis,
mucus production, bronchoconstriction and bronchospasm. Moreover, it
can influence the autonomic nervous system. Skin redness, damage to the
eyes (lacrimation andcorneal opacity) and mucous membranes and, worsen-
ing pre-existing cardiovascular disease have also been observed. Asthmatics
are particularly vulnerable (Chen et al., 2007; US-EPA, 2010a; WHO, 2006,
2021). Both chronic (years) and acute (hours) exposures have been asso-
ciated to increased total non-accidental, lung cancer, cardiovascular and
respiratory mortality. As for morbidity; hospital admissions for asthma,
COPD and respiratory symptoms have been related to SO exposures (Kat-
souyanni et al., 1997; OSHA, 1999; Priiss-Ustiin et al., 2016; US-EPA,
2010a; WHO, 2006, 2021).

Nitrogen Dioxide (NO,) is toxic, even for short periods of exposure,
and its adverse effects are exacerbated by the presence of other contami-
nants (PMas, SOy). Thus it becomes difficult to differentiate the effects
of nitrogen dioxide from those of other contaminants in epidemiological
studies (WHO, 2006, 2021). Extensive reviews have concluded that respi-
ratory health is associated with nitrogen dioxide exposure, independently
of these other exposures (US-EPA, 2016). As an irritant of the respira-
tory system, it penetrates deep in the lung, inducing changes in pulmonary
function, respiratory diseases, cough, wheezing, dyspnea, bronchospasm,
airway inflammation, asthma exacerbation; when inhaled at high concen-
trations is associated with pulmonary edema. Furthermore, it can cause
eye, throat and, nose irritation (Chen et al., 2007; Manisalidis et al., 2020;
WHO, 2006, 2021). Chronic exposure to high concentrations of NOs can
be responsible for chronic lung disease and can impair the sense of smell
(Chen et al., 2007). Examination of the effects of nitrogen dioxide has
focused on people with pre-existing conditions like lung disease, asthma,
COPD or chronic bronchitis (WHO, 2006, 2021). Daily mortality (all cause
-cardiovascular- respiratory), daily hospital admissions for respiratory dis-

orders and cardiovascular diseases, asthma admissions, asthma in children,
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congestive heart failure and ischemic heart disease have been associated to
acute (hourly) exposure to NO, in epidemiological and time series studies
(WHO, 2006, 2021). Cohort studies of long-term health effects have as-
sessed the association between NOs and morbidity (cancer, lung cancer,
bronchitic symptoms, recurrent wheeze, asthma, respiratory symptoms,
preterm birth) and mortality (all-cause, lung cancer, sudden infant death)
in children and adults. Epidemiological (cross-sectional and cohort) studies
on health effects of indoor nitrogen dioxide exposure have found relation-
ships with prevalence of respiratory illness, (dry) cough, wheeze, asthma,
shortness of breath, allergic reactions (US-EPA, 2016; WHO, 2010). Stud-
ies have been particularly for children exposed to NO, from gas cookers

the in home.

Ozone (O3) even in small amounts, is linked to causing biochemical,
morphologic, functional and immunological disorders, including respiratory
and cardiovascular conditions. Short-term exposure increases daily mortal-
ity (total - nonaccidental, respiratory, cardiovascular) (Manisalidis et al.,
2020; US-EPA, 2020a; WHO, 2006, 2021). Acute responses include effects
on the pulmonary system (pulmonary function and inflammatory media-
tors) and the cardiovascular system (reduced heart rate variability, heart
failure, impaired heart function, IHD, stroke, cardiac arrhythmia/arrest)
(US-EPA, 2020a). Chronic effects include reduced lung function, devel-
opment of atherosclerosis, asthma/asthma exacerbation and reduction in
life expectancy. There is evidence that ozone acutely increases morbid-
ity for respiratory conditions, hospital admissions for asthma, respiratory
tract infections and exacerbation of chronic airway diseases (WHO, 2006,
2021). Short-Term ozone exposure is linked to metabolic effects (diabetes)
(US-EPA, 2020a).

O3 and NO, are Reactive Oxygen Species - Reactive Nitrogen Species
(ROS-NRS). Excess ROS can cause oxidative stress, damaging respiratory
cells and tissues. This oxidative damage can accelerate aging, spur cell
death, and ultimately contribute to disease (Lakey et al., 2016; Poschl and
Shiraiwa, 2015).
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2.2.1.2 Other air pollutants

Volatile Organic Compounds (VOCs) contain carbon and evaporate
under normal conditions. The 1990 Clean Air Act identified 187 VOCs as
hazardous air contaminants, or air toxics (Borsboom et al., 2016). VOC
health risks depend on the specific compound, exposure level, and time
spent indoors (Shrubsole et al., 2019). Not all VOCs are harmful (Spen-
gler et al., 2000). However, some like benzene, toluene, and formaldehyde
associate with cancer in humans (Manisalidis et al., 2020; Spengler et al.,
2000). Most data on VOC and air toxic impacts come from toxicology or
occupational /accidental exposure studies. The World Health Organization
provides health effects information for numerous VOCs detected indoors.
While risks vary by compound, chronic VOC and air toxic exposures may
have neurological, carcinogenic, and other adverse effects at elevated con-

centrations. Further research on exposure scenarios is needed.

Benzene causes acute non-cancer (dizziness, nausea) and chronic non-cancer
effects (immunological) from high exposures, along with leukaemia and lung
cancer from long-term lower exposures (Manisalidis et al., 2020; US-EPA,
2003a; WHO, 2010). Formaldehyde leads to odors, irritation, lung impacts,
and eczema from indoor exposures. It also causes nasopharyngeal cancer
and leukaemia (Samet et al., 1988; US-EPA, 1990a; WHO, 2010). Naphtha-
lene risks include respiratory carcinogenicity and haemolytic anaemia, but
dose-response data are limited (WHO, 2010). Xylenes associate with de-
creased weight, mortality, and coordination (US-EPA, 2003b). Trichloroethy-
lene (TCE) causes neurotoxicity, kidney/liver cancer, autoimmunity, and
developmental effects. It is genotoxic (Shrubsole et al., 2019; WHO, 2010).
Tetrachloroethylene (PCE) causes cancer (oesophageal, cervical, lymphoma)

and mucous membrane irritation (WHO, 2010).

Polycyclic aromatic hydrocarbons (PAHs) pose mutagenic and car-
cinogenic risks via DNA adduct formation. Non-cancer effects include birth
defects, bronchitis, and asthma. Cancer effects include lung and bladder
cancer (Manisalidis et al., 2020; Spengler et al., 2000; US-EPA, 1990b;
WHO, 2010).

Radon primarily causes lung cancer. Leukemia and other cancers also
associate with radon (Keith et al., 2012; Samet et al., 1988; Spengler et al.,
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2000; WHO, 2010).

Biological agents like mold link to asthma, respiratory infections, Le-
gionnaires’ disease, wheezing, coughs, and allergies. Even dead mold emits
mycotoxins (Borsboom et al., 2016; Heseltine and Rosen, 2009; Samet et al.,
1988).

A descriptive resume of air contaminants and their plausible health out-

comes is shown in Table 2.3.

Table 2.3: Air contaminants and plausible health outcomes. *

Mortality Morbidity

Cardiovascular  Respiratory Lung

/AN e (genoral) (general)  cancer COPD ALRI IHD Stroke Cancer F e Soptetew @i
Particulate v v v v v v v Y v v v
g matter (PMys)
2 Sulfur Dioxide v v oY v v
2 (SO)
g Nitrogen Diox- v v v v v v
.‘é ide (NOy)
Ozone (O3) v v v v v
Carbon v v v v v v
monoxide®
Benzene v v
Formaldehyde v v v v
:8 TCE v
~ PCE v
Naphthalene v v
Xylenes v
% Polycyclic v v
g aromatic »
¢ hydrocarbons
; Radon v
° Mold NV v

" It refers to different cancer.

™ Volatile Organic Compounds.

™ benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, benzo[ghi]perylene and
indeno 1,2,3 [cd] pyrene.

£ The evidence found and reported for CO exposure express acute exposures, and even deaths by suicide. .

* Several sources (Heseltine and Rosen, 2009; Hime et al., 2018; National Academies of Sciences, 2016; Priiss-Ustiin et al., 2016; Samet et al.,
1987, 1988; Spengler et al., 2000; US-EPA, 1990a, 2003a,b, 2010a,b, 2011, 2012, 2016, 2017, 2020a,b; WHO, 2006, 2021)

2.2.2 Additive, synergistic and multi-contaminant ef-
fects

Chemical pollution is characterized by the simultaneous and sequential ex-

posure to unintentionally complex mixtures. This complexity arises from
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the presence of mixtures of gases, vapors, and particles that people en-
counter with every breath taken (Spengler et al., 2000). For air pollution
in particular, most toxicological and epidemiological evidence does not fo-
cus on multi contaminant mixtures, bar known risks like smoking (Bors-
boom et al., 2016; WHO, 2021). But combined effects may matter in some
circumstances. Joint impacts could match the sum of solitary effects (ad-
ditivity). Or surpass it, synergistically. Or fall short, antagonistically. One
chemical may curb another’s influence (inhibition). Or boost it, despite
its own nugatory effect (potentiation). Or opposites may cancel each other

out (masking effect).

Current proposals for potential mixture risks assume Concentration Ad-
dition, whereby components behave additively (Section 2.2.1) (Backhaus,
2023; Martin et al., 2021; Martin, 2023). Limited data often necessitates
assuming additivity for human toxicity in life cycle assessments of en-
vironmental mixtures of air pollutants (Hauschild and Huijbregts, 2015;
Hauschild et al., 2018).

If synergies manifest, they likely occur at high concentrations above in-
dividual components’ points of departure. Several reviews support this,
finding limited synergies at typical exposures (Committee et al., 2019; Ko-
rtenkamp et al., 2009; Rudén et al., 2019; Socianu et al., 2022). Car-
bon monoxide is an exception showing synergistic effects at low concen-
trations (Norris et al., 1986; Ramsden, 2021) (more discussion on CO in
Section 8.7). Aside from photo oxidant NOx, knowledge of synergistic or
antagonistic air contaminant emissions in life cycle impact assessments re-

mains scarce (Hauschild and Huijbregts, 2015).

Assessing chemical mixture toxicity requires considering potential addi-
tive, synergistic, antagonistic, and other non-additive interactions between
components. The occurrence of additive, synergistic, or antagonistic ef-
fects varies with mixture composition. Equi-toxicity models consider sin-
gle substances, assuming their toxicity combines additively in generic cases.
However, simply summing single chemical effects may miss real-world low-
dose exposures. Mixtures exhibit complex interactions deviating from dose
additivity models. Exposure timing and sequence also influence outcomes
not captured in simplified single chemical studies. Accounting for these nu-
ances is key to advancing mixture risk assessment capabilities (Hauschild
and Huijbregts, 2015; Hauschild et al., 2018; Hernandez et al., 2019).
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2.3 Health-based metrics

Different metrics to measure disease exits (Miettinen, 2011). Mortality
rates show the effect of household and outdoor air pollution on environmen-
tal health (WHO, 2018¢). Indicators and metrics are used interchangeably
in environmental contexts. Indicators tend to be broad, with quantita-
tive data and qualitative descriptions. Concentrations of PMs 5, NO,, Og,
and SO, indicate sustainability (ISO, 2016), though urban air contami-
nant levels also count as metrics (Tanzil and Beloff, 2006). Metrics mostly
mean quantitative or semi-quantitative measures (Martenies et al., 2015).
Perceived air quality serves as a metric, especially for indoor air. Carbon
dioxide indicates poor indoor air (Jones, 2017). Here metrics and indicators

mean the same in air pollution research.

Current guidelines and standards for indoor and outdoor air pollution aim
to minimise exposures and protect health (Jones, 2017; Sherman et al.,
2018). Metrics like mortality, morbidity, life years lost and disability-
adjusted life years stem from public health data. But perceived air quality
and COs3 levels do not. Both feature in assessments of indoor and out-
door air quality. Yet what is needed are health-centred indoor air quality
metrics based on known health effects (Jones et al., 2018). Moreover, air
quality benchmarks should flag hazardous indoor air using human health
and comfort as the yardsticks, even if impacts are not immediate (Jones,
2017; Jones et al., 2018; Sherman et al., 2018).

2.3.1 Threshold values

In air pollution, thresholds are concentration limits set as maximum ex-
posures over time to gauge health impacts. “Standards” and “guidelines”
refer loosely to ambient and indoor air quality rules. But standards are
enforced (EPA, 2016); guidelines are not (WHO, 2010, 2021). For work-
places, exposure limit values (ELVs) and threshold limit values (TLVs) are
the norm (Abdul-Wahab et al., 2015).

Cognizant authorities, such as, national bodies, environmental agencies and
global health organizations issue air quality standards and guidelines for
sundry contaminants. The WHO and America’s EPA publish figures for

common contaminants. Oddly, for the criteria pollutants, the EPA’s rules
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are looser than the WHO's, the toughest benchmarks for these pollutants.
For other contaminants like formaldehyde, cognizant authorities propose
a wide range of recommended limits varying by one order of magnitude
even (Table 2.4). Such values largely describe air pollution and look to
safeguard public health (EPA, 2016; WHO, 2021). Similarly, workplace
exposure limits aim to prevent or lessen health risks (Jones, 2017; Salis
et al., 2017). Prevention is guided by the ”as low as reasonably achievable”
(ALARA) principle, aim to minimize exposures while considering technical,

economic, and social factors (Andresz et al., 2022).

Bodies proposing indoor, occupational or ambient thresholds have a re-
sponsibility to establish thorough values. Countries lacking resources often
adopt standards/guidelines published by the USEPA NAAQS or WHO
AQG (Morantes et al., 2016). Abdul-Wahab et al. (2015) reviewed inter-
national bodies’” indoor air quality standards/guidelines, concluding adher-
ence depends on potential health effects. For certain contaminants such
as acrolein, meeting standards also hinges on the capability to accurately

measure their concentrations.

Importantly, different organizations’ limit values sometimes differ substan-
tially for identical exposure periods (Abdul-Wahab et al., 2015; Morantes
et al., 2016; Salis et al., 2017). Limit values reflect policy motivations,
policymaker judgments, and differences in contaminant information, not
uniform hazard levels. Guidelines and standards differ in derivation: some
from practical experience, others from comprehensive reviews and consen-
sus of experts on contaminants’ health effects. Most come from toxicolog-

ical /epidemiological health impact assessments (Borsboom et al., 2016).

Thresholds serve as air quality metrics. Concentration/threshold ratios
over one signal trouble (Jones et al., 2018; Salis et al., 2017; Sherman et al.,
2018). Measured values are compared to guidelines for each contaminant.
Exceeding a threshold signals danger; falling short suggests safety. But
breaching a limit by 1% or 10 % counts the same, although not equivalent
for health. The extent matters: a threshold cannot measure health burden

when various contaminants breach thresholds.

Table 2.4 summarizes major indoor/outdoor air contaminant thresholds
from the WHO and the USEPA. Comparing proposed concentrations to
year-long exposure thresholds shows, for example, the PM, 5 value exceeds
both organizations’ limits. However, this does not determine the health

burden of exceeding a threshold.
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Table 2.4: Threshold values for main indoor and outdoor air pollutants.*

Particulate matter . 1 year Guideline WHO 159
- Use ambient values
g (PM,5)
= 15 24-h Guideline ~ WHO
2 9 1 year 9 1 year Standard US EPA
]
g 35 24-h 35 24-h Standard US EPA
& 65 24-h - 1h Standard ~ ASHRAE
Sulfure Dioxide (SO,) 0.012 * 1 year 40 24 -h Guideline WHO 2.9
80 (0.03%) 1 year 75 1-h Standard US EPA
Nitrogen Dioxide (NO,) ambient 10 1 year Guideline WHO 13.1
values 25 24 -h Guideline WHO
100 (0.05%) 1 year 530 1 year Standard US EPA
1800 (1%) 15-min 100 2 1-h Standard NIOSH/US
EPA
Ozone (03) 200 (0.1%)  8&h 0.07 # 3year  ELV /Stan- OSHA/US 17.2
dard EPA
120 (0.064% 8-h 60 peak Guideline WHO
season
Carbon monoxide 7C 24-h 4¢ 24-h Guideline WHO 810
10¢ 8-h Guideline WHO
55°(50%) 8-h 92 8-h PEL / Stan- OSHA/US
dard EPA
352 8-H 35 ¢ 1-h REL / Stan- NIOSH/US
dard EPA
Benzene No safe level of exposure can be recommended 2.5
% Formaldehyde 0.1°¢ 30min Guideline WHO 69
g 20 10-h ELV NIOSH
9 chronic REL CA OEHHA
10 chronic ELV France
10 1 year ELV UK
0.1°¢ 30min Standard ASHRAE
Trichloroethylene 2 Whole ELV VGAI 0.16
life
2.3 Whole Guideline® ~ WHO
life
Tetrachloroethylene 250 1 year Guideline WHO 1.7
Naphthalene 10 1 year Guideline WHO 1.2
9 1 year REL OEHHA
Xylenes 22000 1-h REL OEHHA 7.4
= Polycyclic aromatic hy- No safe level of exposure can be recommended
E:) drocarbons !
o
Radon 1008t 1 year Guideline WHO
Mold 20082 1 year ELV EU
* ppm
> ppb
© mg/m?

4 Volatile Organic Compounds

e

[ed] pyrene
¢! Bq/m® (Becquerel)

22 CFU/m? (Colony Forming Units)

B Other Air Contaminants
! (Logue et al., 2011a)

J REL, Recommended exposure limit; PEL, Personal exposure limit; ELV, exposure limit value WHO, World Health Organization; USEPA, United
States Environmental Protection Agency; VGAI, Valeurs Guides de qualité d’Air Intérieur, France; OEHHA, Office of Environmental Health Hazard

excess lifetime cancer risk of 1:1,000,000
[ glanthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, benzo[ghi]perylene and indeno 1,2,3

Assessment, USA; NIOSH, National Institute for Occupational Safety and Health, USA.
* From (Abdul-Wahab et al., 2015; EPA, 2016; Morantes et al., 2016; Salis et al., 2017; WHO, 2006, 2010, 2021)
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Figure 2.5 links the former WHO PM, 5 guideline from 2005 to child ALRI
risks. While these guidelines for PM, 5 have been updated since 2005 (to 5
ng/m?), this figure is included to illustrate how a threshold can be linked to
a specific exposure-response function. Relating concentrations to a health
risk function provides a nuanced understanding of the impact across various

exposure levels, surpassing simple threshold comparisons.

4.5
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Figure 2.5: The relationship between level of PM, 5 exposure (ng/m?) and
relative risk (95 % CI) of child ALRI, based on the integrated exposure-
response (IER) function, for (a) exposure over the range 0-600 ng/m?, and
(b) over the range 040 pg/m? which spans the WHO annual AQG for
PM, 5 and the interim target (IT-1). (WHO, 2014)
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2.3.2 Disability-Adjusted Life Years (DALYS)

Health-adjusted life years (HALYS) permit simultaneous description of
morbidity and mortality within a single population health measure, useful
for comparisons across illnesses, interventions and populations (Gold et al.,
2002). HALYs include quality-adjusted life years (QALYs) and disability-
adjusted life years (DALYs) (Fryback, 1998). DALYs summarize health
impacts while QALYs capture both the quantity and quality of remaining
life years based on functional outcomes and well-being. Table 2.5 shows

descriptors, similarities and differences.

Table 2.5: Descriptives for HALY metrics: QALYs and DALYs.

Measures the quality of life in
health gain

Measures health loss in the quality
of life

Patient-centric perspective

1 = perfect health

0 = death

Accounts for healthy years

QA quality of life

LY quantity of life

Quantify health

Since the 1960’s

Measure not for specific health out-
comes

Usually used in developed or high-
income countries (UK)

Population-level perspective

1 = death

0 = perfect health

Accounts for loss of healthy years
DA morbidity

LY mortality

Quantify burden

Since the 1990’s

Measure for specific health out-
comes

Usually used in developing or low-
income countries; WHO and World

Bank
Use life tables
Can account for discount rates (discount for time preference)
Can account for age-adjustment
Do not consider comorbidity (individual experiencing multiple illnesses)

In 1993, the World Bank and WHO sought to quantify the global burden
of premature death, disease and injury: Disability-Adjusted Life Years
(DALYs) were the metric developed (Murray, 1994). DALYs indicate time
lived with disability and time lost to premature mortality for specific health
outcomes (Homedes, 1996). The DALY framework uses disability for any
illness reducing short- or long-term physical/mental health (Chen et al.,
2015). DALYs have been criticized (Anand and Hanson, 1997; Parks, 2014;
Williams, 1999) but remain under revision since proposed; however, the

underlying model is unchanged (Chen et al., 2015).
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DALYs are used in disease burden studies (Kyu et al., 2018). The number
of DALYs for a disease equals the Years of Life Lost (YLL) from premature
mortality plus Years Lost due to Disability (YLD) (Equation 2.1) (Chen
et al., 2015; Homedes, 1996; Mathers et al., 2001):

DALY = YLL+YLD (2.1)
YLL = N-IL (2.2)
YLD = I[-DW- L, (2.3)

where:

DALY is disability-adjusted life year,

YLL is years of life lost,

YLD is years lived with disability,

N is number of deaths,

L; is standard life expectancy minus age of death,
I is number of incident cases in reference period,
DW is disability weight,

Lo is average duration of condition

N, I & L; are obtained from health organizations data bases, such as the
national statistical bureaux or the United Nations Statistics Division. L;
is a life-expectancy at birth of 82.5 years for women and 80 years for men,
the highest average observed globally (Gold et al., 2002; Murray, 1994). In
parallel, life expectancy of populations can be obtained using life tables,
such as those created by WHO (Murray et al., 2000). The statistical theory
for life tables can be seen in Cox (1972). Four different measures that could
be used to estimate life expectancy for DALY's are presented in Adam and
Murray (2003). DW represents the magnitude of health loss associated
with an specific outcome, on a scale from 0 to 1, with 0 implying a state
that is equivalent to full health and 1 a state equivalent to death. Disability
weights for 235 unique health states in the Global Burden of Disease studies
(GBD) 2013-2016 are presented in Salomon et al. (2015).
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DALYSs can account for age weighting and discounting for time preferences
(Murray, 1994). The former values young adulthood years more, assuming
reliance on middle-aged groups (Barendregt et al., 1996; Gold et al., 2002;
Homedes, 1996). The latter discounts future benefits (usually 3% rate)
(Gold et al., 2002; Murray, 1994). Current estimates of DALYs in GBD
studies omit both (Chen et al., 2015; Kyu et al., 2018).

Equation 2.1 shows that DALYs depend heavily on epidemiological data,
which is scarce in developing nations. Most DALY estimates use intricate
models covering demographics, birth and death rates, and socioeconomics.
Drawbacks include tangled computation (Harikrishnan et al., 2018; James
et al., 2018) and data scarcity (population age, life expectancy, incidence,
prevalence) (Chen et al., 2015). Collecting such data present significant
challenges. Assumptions (like discounting and age-weighting rates) and
guesses (onset and death ages) (Rushby and Hanson, 2001) also compli-
cate DALYs. Table 2.6 and Figure 2.6 show DALYs variation for alcohol
use disorder from different assumptions, demonstrating estimate sensitivity
(Devleesschauwer et al., 2014).

Table 2.6: Years lived with disability (YLDs), years of life lost (YLLs) and
disability-adjusted life years (DALYSs) for the alcohol use disorder example
under different social value choices, (Devleesschauwer et al., 2014).

Scenario [K;r] Age weight- Discount YLD YLL DALY

ing, K rate, r (%)
DALY0;0] No 0 11.0 25.0 36.0
DALY[1;0] Yes 0 123 167 291
DALY[0:0.03]  No 3 83 97 179
DALY[1;0.03]  Yes 3 95 67  16.2

DALYs feature prominently in models of environmental risk and in stud-
ies of the global burden of disease. DALYs have gained wide acceptance
among scientists as health metrics, despite some flaws. They help assess
the danger of environmental hazards in particular. Myriad studies quan-
tify air pollution’s hidden health tolls using DALYs (Harikrishnan et al.,
2018; James et al., 2018; Murray, 1994; Priiss-Ustiin et al., 2016). The
latest GBD study estimate the DALY burdens of 359 diseases across 195
countries from 1990-2017. Air pollution’s impacts were associated to high-
est disease burden (Kyu et al., 2018). Assumptions for estimating DALY's
evolve across studies, reflecting a dynamic field aimed at enabling consis-
tent quantification and comparison of disease burdens across populations

and illnesses, fostering continual learning from each model.
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Figure 2.6: 1 Years lived with disability (YLDs) and years of life lost (YLLs)
for the alcohol use disorder example under different social weighting sce-
narios. The top left plot is the basic disability-adjusted life year (DALY
calculation (the “0,0” indicates no age weighting and zero discount rate, see
Table 2.6). The bottom left plot includes age weighting; the curved black
line is the age-dependent zero disability level, while the straight grey line
compares the situation without age weighting. The top right plot includes
a 3 % time discount rate; the burden is assigned to the year of disease onset
(the age of 40). The bottom right plot, finally, combines age weighting and
a 3 % time discount rate (Devleesschauwer et al., 2014).

2.4 Health risk and impact assessment

There are several prominent methods for assessing and prioritizing health
impacts of air pollutants (Rausand, 2013; von Stackelberg and Williams,
2021). Hazard assessments compare human exposures to a contaminant’s
health-based safety level, threshold, or guideline. When exposed to multiple
contaminants, summing their individual hazards (the ratio of the dose to
the reference) is a common approach (aggregating across risks assumes that
there are no interactions or synergies between different contaminants). This

assessment identifies exposures of potential concern without ranking risks.

Impact assessments apply toxicological and epidemiological evidence to es-
timate and rank pollutants by attributable health damage.

Cumulative risk assessment attributes total disease burdens across out-

comes to indoor sources, also enabling source prioritization (Sexton, 2012).
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Cost-benefit analysis monetizes health benefits of exposure reductions, weigh-
ing them against intervention costs (Pearce et al., 2006). Each approach

offers insights into indoor pollutants’ hidden tolls.

Health risk assessment (HRA) quantifies the likelihood of adverse effects by
characterizing pollutant emissions, exposures, and dose-response relation-

ships. HRA models estimate risks to guide guidelines and risk management
(Council, 2009).

Comparative risk assessment involves systematic evaluation of changes in
population health that would result from modifying the population distri-
bution of exposure to a risk factor or a group of risk factors, using consistent
and comparable methods (Ezzati, 2008)

Health impact assessment (HIA) evaluates policies and interventions through
a health lens, forecasting potential benefits or validating post-implementation
impacts (WHO, 2001).

Among these techniques, cumulative risk assessment holds particular promise
for elucidating indoor air pollution’s health footprints. By aggregating mul-
tiple pollutants’ contributions across outcomes, it captures interactive and
overlapping effects missed in single-pollutant assessments. Attributed dis-
ease burdens encapsulate prevalence and severity, overcoming limitations
of incidence-only impact measures. Nevertheless, cumulative assessments
require extensive data and modeling, along with uncertain assumptions.
Continued research on indoor pollutants’ toxicity and population exposure-
response relationships will strengthen knowledge bases for cumulative risk

efforts.

No single approach provides a complete picture; combinations of techniques
offer the most robust insights to guide indoor air quality management.
Ultimately, the shared goal remains elucidating pollutants’ health burdens

to protect the public through evidence-based decision-making.

2.4.1 Health Risk Assessment

Air Pollution Health Risk Assessment (AP-HRA) is a comprehensive method-
ology aimed at quantifying harm associated with air pollution by using the
Disability-Adjusted Life Year (DALY) as the outcome metric. AP-HRA

provides an epidemiology-based framework for comparative risk analysis,
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cost-benefit evaluation of interventions, accountability assessments of air
quality management programs, and setting exposure guidelines and stan-
dards (Bhat et al., 2021). Ensuring robust and rigorous AP-HRA is crucial

for evidence-based air quality policy and decision-making.

Concentration-response (C-R) functions form the core of AP-HRA. They
establish the relationship between changes in incidence or prevalence of ad-
verse health outcomes and changes in air pollutant exposures (Bhat et al.,
2021). These C-R coefficients are derived from epidemiological observa-
tional studies that investigate the association between air quality indicators
(like PMsy 5 concentrations) and health endpoints (asthma exacerbations,
cardiovascular mortality). The C-R function for the incidence rate, for a
health outcome £k and a contaminant 7, Iy, is most often described by
a no lower threshold (also known as Theoretical Minimum Risk Exposure
Level -TMREL, point of zero impact, baseline background concentration,
or counterfactual level) saturation expression, using a non-linear relation-
ship (Sacks et al., 2018).

T = 0, (1= €0 (2.4)

C; is the representative or reference concentration where the health effects
are calculated. The effect of a lower threshold can be introduced replacing
C; by C; — Cy, with Cy as a concentration below which effects are not

considered.

Yo, is the baseline incidence rate, 3 ;) is an empirical parameter that de-
scribes the change in the risk estimate per unit of change in the contaminant

concentration (ACy, in pug/m?, or an equivalent concentration unit),

Br,i = (B R) (2.5)

AC;
where RR is a relative risk (Sacks et al., 2018). An all-cause effect of
health impact k can be achieved by applying an all-cause disease estimate
or, by the sum of the contributions across health endpoints, caused by the

contaminant 1.

The relative risk (RR(x,)) is determined by f; and C;. The most com-
monly used C-R model is a log-linear relative risk (RR) model that relates
concentration (C') to RR (Burnett and Cohen, 2020; Nasari et al., 2016):
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RR(.;) = eBik.i) Ci) (2.6)

Here, B represents the log-linear regression coefficient for health out-
come k and pollutant i. This model approximates the observed shapes of
air pollutant C-R curves reasonably well. Nonlinearities emerge at high
concentrations because the probability of catching a disease cannot exceed
100 %, and the curve flattens at high exposure levels. Epidemiological, bio-
logical, and/or chemical mechanisms that may explain the attenuation of a
C-R function for airborne contaminants at high concentrations are: (i) The
saturation effect (biochemical and cellular processes becoming saturated);
(ii) The depletion of susceptible people (the population at risk at high
exposure levels contains relatively few susceptible people); (iii) High back-
ground rates of disease (competing risks); (iv) A decreased inhalation at
high concentrations; (v) For particles, a reduction in the fraction of toxic
matter at higher doses (dilution hypothesis) (Nirel et al., 2021; Stayner
et al., 2003).

Although alternative nonlinear forms, such as log-log and power law mod-
els, also accurately capture C-R behavior across the full concentration range
(Burnett and Cohen, 2020; Burnett et al., 2014; Nasari et al., 2016), the log-
linear model remains the most widely applied in AP-HRA analyses (Bhat
et al., 2021).

Within the field of air pollution epidemiology, researchers make frequent
use of a metric known as the population attributable fraction (PAF). This
valuable parameter enables quantification of the proportional increase in
incidence (cases) via the baseline disease incidence, or harm (DALYSs) via
the Burden of Disease (BoD), the death and loss of health due to diseases,

injuries and risk factors, the last being in this case air pollution:

[(/ﬁi) = PAF(k,i) -’}/Ok (27)

and,
Harm(kﬂ-) = PAF(k’Z') : BODk (28)

Despite its conceptual simplicity, in practice the PAF is represented by a
range of mathematical definitions and terminologies. Numerous synony-
mous versions exist, including attributable fraction, attributable risk frac-

tion, and attributable burden. Additionally, several equivalent equations
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can be utilized to calculate the PAF, including the fraction of exposed in-
dividuals, the ratio of the relative risk minus 1 to the relative risk, and 1
minus the inverse relative risk. Common definitions of PAF include (Sacks
et al., 2018):

RR ) — 1
PAF ) = ——) —~ (2.9)
RR (1)
RRpp) — 1
PAF ;) = SRRy (2.10)

f-(RRgy —1)+1

The choice among these interchangeable PAF versions appears somewhat
arbitrary, likely driven by historical precedents within a discipline or the
personal preferences of a researcher. While this flexibility allows the PAF
to be adaptable across diverse study contexts, it also permits inconsistency
and hinders comparisons. Nevertheless, regardless of the final equation or
terminology used, the PAF meaningfully condenses epidemiological data
into a proportion reflecting the disease burden attributable to air pollution
exposure. Further research is warranted on standardizing PAF use and
terminology in AP-HRA.

AP-HRA converts air quality data into quantifiable health impacts, provid-
ing a scientific basis for air pollution policy assessment, accountability, and
development. These epidemiology-based definitions align with the environ-
mental health perspective of assessing incremental effects above background

risk levels.

While conceptually straightforward, in practice AP-HRA requires extensive
data inputs, modeling choices, and uncertainty propagation steps. Evalu-
ating AP-HRA methods to improve accuracy and policy relevance remains

an active research area (Bhat et al., 2021). Challenges include:

e Obtaining consistent air pollution and health data across geographic

scales for C-R derivation and health impact assessment.
e Selecting appropriate baseline rates, especially for mortality outcomes.

e Extrapolating C-R relationships beyond observed data ranges during

application.

e Choosing suitable health impact functions and exposure lags.
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¢ Quantifying and propagating uncertainties from epidemiological data

through health impact calculations.
e Enabling analysis of demographic subgroups.

e Incorporating non-health co-benefits and costs.

Despite these complexities, AP-HRA provides a crucial quantitative link
between air quality indicators and public health outcomes. Key recent

examples of AP-HRA tools and implementations include:

e The Environmental Benefits Mapping and Analysis Program (Ben-
MAP), developed by the U.S. EPA (Sacks et al., 2018).

e Global tool for health risk assessment of air pollution, AIRQ+ 2.1
(WHO, 2020).

e Integrated dispersion and exposure model for air contaminants in
Europe, Ecosense (Schmid et al., 2019).

e Household Air Pollution Intervention Tool (HAPIT) (Pillarisetti et al.,
2016).

e Greenhouse gas—Air pollution Interactions and Synergies (GAINS)
model (Amann, 2008).

These and related tools synthesize available air quality and epidemiolog-
ical data into integrated web or desktop based platforms for quantitative
health impact assessment. They enable comparative risk analysis across
pollutants and scenarios, evaluation of air quality regulations and inter-
ventions, and accountability assessments of control programs. They often
use pooling techniques to synthesize coefficients across studies, resulting in
more precise C-R estimates with uncertainty quantification (Sacks et al.,
2018). Although data and methodology limitations remain, AP-HRA pro-
vides the fundamental scientific basis for evidence-based air quality policy

and management.

AP-HRA applies epidemiological C-R evidence within a quantitative frame-
work linking air quality to attributable health burdens. This supports
accountable, scientifically guided decision-making regarding air pollution

control. While research continues refining AP-HRA methods, existing tools
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already provide valuable insights for strengthening air quality policy devel-
opment, planning, and assessment. Improving AP-HRA models and data
will further enhance our understanding of air pollution impacts and em-
power policymakers to make well-informed choices that effectively protect
public health.

In the context of AP-HRA, Cumulative Risk Assessment (CRA) is a special-
ized approach applied to indoor air pollution. CRA studies have predom-
inantly focused on the impacts of household solid fuel use in low-income
countries, with some exceptions in Europe. The EnVIE Study and the
World Health Organization (WHO) have conducted CRA analyses to as-
sess the impacts of inadequate housing and indoor air pollution in Europe
(Braubach et al., 2011; Fernandes et al., 2009; Jantunen et al., 2011). These
studies follow the attributable burden approach. They aggregate the im-
pacts of diseases impacted by indoor air pollution, identify the dominant
pollutant exposures causing the diseases, and apportion the diseases to in-

door air impacts based on relative indoor/outdoor exposure contributions.

By linking exposure to specific contaminants with health outcomes through
C-R functions, researchers can estimate the disease burden and identify
the most significant sources of pollution. The use of epidemiological evi-
dence within a quantitative framework strengthens the scientific basis for
evidence-based air quality policy and management, supporting informed
decision-making to protect public health. Continual improvement of AP-
HRA methodologies and tools will further enhance our understanding of
air pollution impacts and help develop effective policies to mitigate the

adverse effects of air pollution.

Attributable burden techniques estimate the proportional harm reduction
if exposures were lowered to hypothetical minimum risk levels. The 2010
GBD developed relative risks from Integrated Exposure-Response (IER)
models synthesizing epidemiological evidence across four pollution sources
into continuous exposure-response curves linking PMs 5 and specific mortal-
ities (ischemic heart disease (IHD), stroke, chronic obstructive pulmonary
disease (COPD), lung cancer (LC) and, acute lower respiratory infection
(ALRI)) (Burnett et al., 2014):

RRipr(2) =1+ a(l—e G2y vz > Zef (2.11)

where:
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z is the exposure to PMy 5 in ng/m?,

zcr 18 the TMREL (Theoretical minimum risk exposure level) or counter-
factual concentration below, there is no additional risk. A TMERL
was chosen from the premise that exposure cannot be reduced to zero
in practice (Krewski et al., 2009; Priiss-Ustiin et al., 2016).

a,v,0 are unknown model parameters estimated by nonlinear regression
methods by Burnett et al. (2014); and released by IHME (2013).

These supra-linear models exhibit attenuation at high concentrations, and
represent an alternative to the log-linear function, are congruent with epi-
demiological and toxicological tenets, and enable health impact estimation
across diverse exposure levels (Burnett et al., 2014; Cohen et al., 2017). The
IERs for ALRI, stroke, IHD are highly non-linear; they flatten substantially
at exposure concentrations greater than approximately 375 pg/m? for ALRI
and 125 pg/m? for stroke/THD. Only reduction to exposure concentrations
below such values, will result in lower RRs. As for COPD and LC, the IERs
for are more linear, indicating that even incremental exposure reductions
will result in differences in RRs. Figure 2.7 show the IERs developed by
Cohen et al. (2017).

The IER function is applied to get the PAF (Equation 2.9). The PAF is
then multiplied by the BoD, to obtain the attributable burden as a measure
of harm, with Equation 2.8.

Based on IER risk relationships, GBD studies attributed 4.2 million deaths
and 103 million DALYs to ambient PMys in 2015 (Cohen et al., 2017).
Similar approaches applied to household air pollution estimate substantial
disease burdens from solid fuel use (Smith et al., 2014; WHO, 2018a.e).

Beyond classic and attributable burden methods, multimedia tools facili-
tate DALY computation (Devleesschauwer et al., 2014). The World Health
Organization proffers a simple DALY template for quick estimates (Math-
ers et al., 2001). More sophisticated tools like the Household Air Pollution
Intervention Tool (HAPIT) enable uncertainty propagation using Monte
Carlo techniques (Pillarisetti et al., 2016). Users input pre- and post-
intervention PM, 5 sampling and disease burden data to estimate averted
harm (and premature deaths) from interventions. The HAPIT tool applies
IER functions, see Fig. 2.8.

The HAPIT tool has great potential for users interested in obtaining harm
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Figure 2.7: Integrated exposure-response functions. Curves show the
central estimate of the integrated exposure-response (solid lines) and their
95 % uncertainty intervals (shaded areas). The relative risk equals 1 for
PM, 5 concentrations of 0 — 2.4 ng/m? (the lower bound of the theoretical
minimum risk exposure level uncertainty distribution) (Cohen et al., 2017).

related to indoor PM; 5 based on the best available health effects informa-

tion.

Diverse harm modelling approaches illuminate air pollution’s health tolls.
Classic methods underlie foundational global estimates, while attributable
and integrated exposure-response models discern risks across exposure lev-
els and contexts. Dedicated multimedia tools empower analysis, from sim-
ple point estimates to complex uncertainty characterization. Together,
these DALY -based techniques provide vital insights guiding efforts to ame-

liorate air pollution’s public health impacts.

2.4.2 The characterization framework in life cycle as-
sesment

Life cycle assessment (LCA) originated in the late 1960s and early 1970s as
a quantitative methodology for modeling potential human health and en-
vironmental impacts across the full life cycle of a product or process (Hunt
et al., 1996). For human health, LCA aims to characterize the relationship

between chemical emissions and resulting population-level disease burdens,
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Figure 2.8: Integrated Exposure Response (IER) curves relating Exposure
to PMy 5 to health endpoints associated with exposure to air pollution,
including ischemic heart disease (IHD), stroke, chronic obstructive pul-
monary disease (COPD) and, lung cancer (LC) in adults and acute lower
respiratory infection (ALRI) in children (Pillarisetti et al., 2016).

providing an overarching framework for comparative risk assessment and
informed decision making (Hauschild and Huijbregts, 2015; Hauschild et al.,
2018).

Within LCA, the Life-Cycle Impact Assessment (LCIA) aims to evaluate
the impacts of the different inputs and outputs identified in the relevant
stages of the LCA. The environmental fate and human exposure model is
termed the characterization framework. This translates emitted contami-
nants into human intake via various exposure pathways. For air contam-
inants, inhalation of indoor and outdoor air represents the predominant
route of exposure (Hellweg et al., 2009; Meijer et al., 2005a,c). The charac-
terization framework thereby establishes a quantitative chain from emission

to intake for any compound released into air (Hauschild et al., 2002).

To extend beyond intake and quantify resultant health damages, LCIA pro-
vides characterization factors (CFs) that link emission quantities of con-
taminant ¢ to harm (as disability-adjusted life years, DALYSs), a composite
metric representing years of life lost and years lived with disability (Mur-
ray, 1994). CFs are calculated as the product of an intake fraction (iF') and
an effect factor (EF) (Fantke et al., 2021a; Hauschild et al., 2002; Jolliet
et al., 2018; Rosenbaum et al., 2007):
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The iF encapsulates the environmental fate and exposure model, repre-
senting the fraction of an emission taken in by the exposed population
(Bennett et al., 2002). It is specific to the emission source, contaminant
fate, exposure scenario, and intake mode (inhalation, ingestion etc.). The
EF translates mass intake into health impacts, expressed as DALYs per
kilogram intake (or any equivalent mass unit). It is dependent on the con-
taminant and health outcome under consideration but independent of the

emission source and exposure context (Rosenbaum et al., 2007).

By combining the iF and EF, the CF provides a scalar linking emission
quantity to potential population health damage. It distills multimedia
modeling, exposure assessment, C-R relationships and severity weights into
a single factor converting emission to burden (Hauschild and Huijbregts,
2015). CFs thereby enable straightforward ranking and comparison of
air contaminants based on their damage potential, highlighting chemicals,
sources and life cycle stages of greatest health concern (Hauschild et al.,
2002).

The effect factor (EF) represents the most complex component of the CF,
requiring synthesis of toxicological and epidemiological evidence on expo-
sure impacts (Rosenbaum et al., 2007). The EF sums the contributions

across health outcomes k caused by the contaminant :

EF; = Y EF(, (2.13)
k

The disease specific effect factors are a product of a dose-response factor
(DRF) and a damage factor (DF),

EF ;) = DRF s - DF, (2.14)

The dose-response factor (DRF) encapsulates the toxic potency of the
chemical-outcome pair (Huijbregts et al., 2005). A widely used statisti-
cal approach for estimating the response of a population to a toxic ex-
posure is the effective dose (ED). Generally, the midpoint, or the 50 %
response level, is reported and is known as effective median dose, ED50
(Eaton and Gilbert, 2008; Gupta, 2020). The ED50 is a measure of the
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human-equivalent daily dose (kg) received by a person over their lifetime
that produces a specific effect in 50% of a population. They are derived

from toxicological studies in animals or humans.

Ideally, human data is used to derive DRF, with benchmark response levels
like ED10 or ED50 serving as points of departure. The current approach
of the LCIA characterization framework is to use the ED50 (Crettaz et al.,
2002; Fantke et al., 2017a; Huijbregts et al., 2005; Jolliet et al., 2006; McK-
one et al.; 2006; Pennington et al., 2006; Rosenbaum et al., 2008). A linear
relationship can then be assumed from the benchmark dose to lower re-
sponse levels; avoiding reliance on arbitrary safety factors (Crettaz et al.,
2002; Huijbregts et al., 2005; Jolliet et al., 2006; McKone et al., 2006; Pen-
nington et al., 2002, 2006; Rosenbaum et al., 2008).

For non-carcinogens lacking ED10 or ED50 data, no-observed adverse effect
levels (NOAEL) and lowest observed adverse effect levels (LOAEL) provide
alternative points of departure (Huijbregts et al., 2005).

DRFs are proportional to 0.5 over ED50. The default value of 0.5 is a
linear, low-dose, extrapolation slope factor that relates the inverse of the
ED50 to a potential probability of developing a disease (getting cancer).
A default multiplier for human carcinogenic effect of 0.5 assumes a linear
effect with a 50% additional chance to get cancer while inhaling a quantity
of the contaminant equal to the ED50 over lifetime (Crettaz et al., 2002;
Fantke et al., 2017a; Huijbregts et al., 2005; Jolliet et al., 2006; McKone
et al., 2006; Pennington et al., 2006; Rosenbaum et al., 2008).

By leveraging human health data and benchmark dose levels where avail-
able, the DRF aims to encapsulate chemical potency with minimal uncer-
tainty from cross-species extrapolation or safety factors (Huijbregts et al.,
2005; Rosenbaum et al., 2008). The DRF is presented with a superscript

to indicate the nature that its associated to toxicology research:

DRFtOXicity . 0.5

R 2.15
(R4 ED50 1 (2.15)

For radiological contaminants like radon, the DRF (units as cases of lung
cancer.m®/(yr.Bq)) is obtained from dose coefficients that enable an expo-
sure quantity to be converted into a dose quantity (dose conversion fac-
tor, DCF, units of sV.m?/(yr.Bq)) and fatality coefficients (FC, units of

case/sV) that refers to the estimation of the total detriment associated
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with lung cancer caused by exposure to radon.

Current research shows that DRF's are increasingly based on epidemiologi-
cal C-R functions combined with human intake rates, avoiding uncertainty
from cross-species extrapolation (Fantke et al., 2019; Gronlund et al., 2015;
Van Zelm et al., 2016). The DRF is presented with a superscript to indicate

the nature that its associated to epidemiological research:

CRF(k’Z’)

epidemiology
DRFP') i

(2.17)

Where CRF is the change in disease rate per concentration increase and
BR is the breathing rate.

Ci

CRF(k, i) = (2.18)

The PAF represents the proportional increase in incidence due to contam-

inant exposure. It has different, but equivalent definitions:

_ RRpp —1

PAF(o = —qp.— (2.19)
(RRks — 1) - C;
PAF (1. = : 2.20
" (RReuy — 1) Ci + 1 (220
RRgs) — 1
PAF 1.1y = SRRy (2.21)

f-(RRgqy —1)+1

Where f is the exposed population fraction, and the risk estimate RR(k, 1)
represents the risk of disease associated with exposure compared to a base-
line risk following a linear, log-linear or IER function, with or without a
TMREL (Fantke et al., 2019; Gronlund et al., 2015; Van Zelm et al., 2008,
2016).

So, the CRF can be expressed also as a function of the incidence rate, for

a health outcome k and a contaminant 4, I,

(2.22)
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Toxicological and epidemiological DRF's offer complementary ways to gauge
chemical toxicity. Effect factors can come just from epidemiological data,
like risk estimates or disease rates (Fantke et al., 2019; Gronlund et al.,
2015; Oberschelp et al., 2020; Van Zelm et al., 2008, 2016). These count
as human epidemiological effect factors. Or they can come from toxicolog-
ical data, such as the median effective dose, ED50 (Fantke et al., 2017a;

Huijbregts et al., 2005). These are human toxicological effect factors.

A damage factor (DF) encapsulates severity, relating mortality /morbidity
health outcomes to their corresponding harm. DFs derive from standard
DALY estimates by health outcome (k), providing a consistent metric for
comparing morbidity and mortality impacts (Hauschild and Huijbregts,

2015).
BO]:)]€

Yoy

DF ) = (2.23)
When DF}, is needed for the addition of multiple health outcomes (k') for

the same contaminant, it is proportional to the baseline incidence as:

Zk;’ DFk’ : VOk/

DFy =
zk)’ ”VO,C/

(2.24)

By combining independently modeled DRF and DF components, the EF
offers a flexible toxicological and epidemiological framework for calculating
potential air contaminant impacts. Once EFs are available for a given
contaminant, the corresponding CF allows rapid conversion of emission
estimates into expected harm (Bulle et al., 2019; Fantke et al., 2019; Goel
et al., 2019; Gronlund et al., 2015; Kvasnicka et al., 2019; Oberschelp et al.,
2020; Petrov et al., 2017; Tang et al., 2018a,b; Van Zelm et al., 2008, 2016):

Harm; = CF; - Emissions; (2.25)

This LCA-based characterization framework emerged in the 1990s and was
formalized into broader LCIA methodologies in the 2000s, with early fo-
cus on toxic emissions (Goedkoop et al., 2009; Rosenbaum et al., 2008).
It has since expanded to cover a wide range of outdoor air contaminants
and health endpoints, with insights from epidemiological studies enhancing
accuracy and policy relevance compared to purely toxicological approaches
(Huijbregts et al., 2017; Van Zelm et al., 2008, 2016) Application of the

characterization framework to indoor air contaminants and exposures fol-
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lowed shortly after initial development for outdoor emissions. Foundational
studies demonstrated viable approaches for calculating intake fractions and
effect factors specifically for indoor contexts (Hellweg et al., 2009; Meijer
et al., 2005a,c; Wenger et al., 2012). This paved the way for integrating
indoor emissions into multimedia fate and exposure models used in LCA,
providing a parallel characterization framework applicable to both indoor
and outdoor air pollution health damage (Fantke et al., 2017b; Rosenbaum
et al., 2015). Important examples include ReCiPe and USFEtox, which im-
plement indoor and outdoor air exposure models and provide toxicity-based
effect factors for characterizing health impacts. An overview of these and

other models was done by (Rosenbaum, 2018).

Various LCIA implementations now exist that incorporate both indoor and
outdoor air fate and exposure pathways, with some also beginning to in-
tegrate epidemiology-based effect factors to supplement or replace toxicity
estimates. While differing in modeling details and scope, these LCIA meth-
ods use the characterization factor concept as their standard approach for
translating air contaminant emissions into potential human health burdens
within the LCA framework.

The chronic health effects of indoor air contaminants have been a focus
area within the development of LCTA methodology. Human exposures to
indoor contaminant emissions and concentrations are increasingly consid-
ered when modeling health damage using the DALY metric (Rosenbaum
et al., 2015). Early LCA studies on indoor air led to the development of
indoor-specific intake fractions, characterization factors, and damage esti-
mates (Hellweg et al., 2009; Meijer et al., 2005a,c; Wenger et al., 2012).
Building on this foundation, case studies demonstrated application to in-
door environments, and frameworks integrated indoor emissions from build-
ing materials and products into LCAs (Collinge et al., 2013; Hellweg et al.,
2009; Park et al., 2016; Skaar and Jgrgensen, 2013; Wu and Apul, 2015).
Recently, the USEtox model, which provides characterization factors for
both indoor and outdoor air, has become commonly used, with health im-
pact assessment continuing to rely on foundational DALY estimation work
(Huijbregts et al., 2005).

By condensing complex exposure and dose-response relationships into sin-
gle comparable CF's, the LCA characterization framework enables a straight-
forward translation of air contaminant emission estimates into estimates of

population health burdens. It provides a quantitative basis for ranking
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risks, highlighting priority chemicals and sources, and guiding decisions

towards improved air quality and public health.

2.5 Assessing harm from indoor air

While many exposure levels and contaminants have been identified indoors,
uncertainty remains about which risks drive health impacts. Connecting
exposures to health is also critical. Their relationship enables identifying
and prioritizing contaminants to reduce based on quantified harm, there-
fore, identifying hazardous contaminants is essential. Diverse methods have
aimed to prioritize indoor contaminants, but quantifying population health
burdens supports evidence-based rankings. These aspects are discussed in

the following sections.

2.5.1 Exposure impact assessment of indoor air in
dwellings

Knowing that indoor air contaminants have diverse health effects, and pri-
oritizing mitigation methods requires a common damage metric, Logue
et al. (2012) pioneered an approach to quantify the chronic health impacts
of indoor air contaminants using disability-adjusted life years (DALYS).
This synthesized available disease incidence data and effect factors with
indoor contaminant concentrations to estimate harm attributable to in-

halation exposures in dwellings.

Two methods were proposed to calculate harm from estimated exposure

concentrations:

1. For the criteria pollutants (Section 2.1.1.1), an intake-incidence-DALY
(IND) method using epidemiology-based concentration-response (C-

R) functions.

2. For other pollutants (Section 2.2.1.2), an intake-DALY (ID) method,
calculating health impacts from intake using human/animal toxicity
data.

The IND method combines incidence and damage factors. The ID method
associates effect factors with intake. This enabled DALY-based health im-
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pact quantification using two distinct approaches. Logue et al. (2012) ap-
plied fitted distributions of indoor contaminant concentrations that were

representative of the effective exposure concentrations in U.S. homes (Logue
et al., 2011a).

2.5.1.1 Intake-Incidence-DALY (IND) method

This follows a health risk assessment approach (see 2.4.1) by using log-
linear epidemiology-based C-R functions to quantify disease incidence rates
(Ik,iy) for health outcome (k) and contaminant (7). The incidence rate is
combined with a damage factor (DF ), DALY /case) to estimate harm
(DALY /person/year). Addition of outcomes (k) gives all-cause effect.

k

Disease incidence (Ij;)) refers to the relationship between concentration
(Cy, ng/m?®), risk (B, change/pg/m?), and baseline incidence (70(1671.),
case/person/year). This relationship is modeled using the log-linear con-

centration response function:

I(k,i) = '70(1@,1') ) (1 - 6_(5(&1‘)'@)) (227)

The expression of chronic harm is expressed as,

Harm, = 3 DF ) - Yo, - (1 — e Ce€) (2.28)
k

Quantifying chronic harm requires integrating epidemiologic data across
three key parameters, each contributing uncertainty to final damage esti-

mates. These parameters are discussed in the following.

e Baseline incidence rates (7). These show the cases or deaths per
person-time for a health outcome. National statistics offices and the
WHO offer such data (USEPA, 2018), given cases, population and
follow-up. Rates come in cases per person-year, needing information
regarding cases of a disease, people affected and time. Baseline in-

cidence rates can be derived from cohort studies, where a group of
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individuals is monitored over time to assess health outcomes. Logue

et al. (2012) used data available by the EPA (USEPA, 1999).

Risk estimates from epidemiological C-R models (8). These show
health responses per unit pollution change. Air pollution studies re-
port health impact functions (relative risk, odds ratio, hazard ratio)
for a given change, which converts to 8 (USEPA, 2018). For re-
search, risks often reflect overall deaths from long-term exposure and
recent pollution (WHO, 2021). In teh case of absent all-cause data,
summing diseases approximates the total effect. Logue et al. (2012)
used EPA data (USEPA, 1999), adding uncertainty via probability

distributions.

Damage factors (DF'). For the IND method, these link harm to inci-
dence for health outcomes tied to a contaminant. Unlike risks, dam-
age factors do not come straight from epidemiology research. They
need to be found and extracted from studies stating cases and aver-
age DALY losses per contaminant change in similar settings. Logue
et al. (2012) used published values from air pollution studies (Lvovsky
et al., 2000) and calculated factors from independent works with both
harm and incidence (Krewski et al., 2009; Pope et al., 1995). It as-

sumed uncertainty distributions.

2.5.1.2 Intake-DALY (ID) method

This follows the LCIA framework (see 2.4.2) using contaminant-specific
effect factors (EF;, in DALY /kg) and intake (Q;, the product of concen-

trations, in pg/m3, and a breathing rate, in m?/person/year) to estimate

harm. It also considers an age-dependent adjustment factor (ADAF) for

calncer exposures

Harmi == Cl -BR - ((EF(cancer,i) : ADAF) + EF(noncancer,i)) (229)

A highlight of the data sources and synthesis used to quantify harm are

explained:

e Effect Factor (F'F). For carcinogenic and non-carcinogenic effects

were derived from dose-response data and disability severity estimates
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by Huijbregts et al. (2005). Individual EFs were utilized and uncer-

tainty was incorporated from the same study.

e Breathing rates (BR). A breathing rate of 14.4 m?®/day represent-
ing U.S. residential intake per person was used. No uncertainty was

assumed.

e Age-dependent adjustment factors (ADAF). Were implemented as
a factor of 1.6 for cancer risks based on EPA data (EPA, 2005). No

uncertainty was included.

These complementary incidence-based model (IND) and effect factor-based
model (ID) quantification approaches enabled a generalized DALY-based
framework for estimating indoor air pollution health burdens. Figure 2.9
shows a flowchart of the ID and IND methods.

2.5.1.3 Impact assessment

Logue et al. (2012) showed there was promise in using DALYs to gauge
the health toll from indoor contaminants in American homes. The study

presented harm estimates for 43 contaminants:

Acrolein, Formaldehyde, Ozone, Acetaldehyde, Ammonia, Crotonalde-
hyde, Xylenes, Chromium, 1,4-Dichlorobenzene, 1,1-Dichloroethene, Xy-
lene (o), Acrylonitrile, Styrene, Naphthalene, Manganese, Carbon tetra-
chloride, Cadmium, Toluene, d-Limonene, Hexane, Chloromethane, Xylene
(m/p), 1,2-Dibromoethane, Ethanol, 2-Butoxyethanol, 1,2-Dichloroethane,
Methylene chloride, Vinyl chloride, Tetrachloroethene, Carbon disul-
fide, Methyl methacrylate, Benzene, Hexachlorobutadiene, Benzyl chlo-
ride, 1,1,2,2-Tetrachloroethane, 2-Methoxyethanol, 1,1,2-Trichloroethane,
2-Ethylhexanol, Methyl tert-butyl ether, Sulphur dioxide, Nitrogen diox-

ide, PM, 5, and Carbon monoxide.

Three contaminants—PMs 5, acrolein and formaldehyde— appear to cause
over 80% of the harm from chronic exposure. With fine particulates con-
tributing the most to the estimated DALYs. The central estimate is 1,100
DALY losses per 100,000 people annually (with a wide confidence interval
from 400 to an implausible 13,000 -implausible because it exceeded the
burden of disease from all diseases and risks combined). By way of com-

parison, this means the damage attributable to indoor air is somewhere
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Figure 2.9: Overview of IND (above in image) and ID (below in
) methods.
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between the health effects of road traffic accidents (400 DALYs/10° per-
son/year) and heart disease from all causes (1100 DALYs/10° person/year)
(Guyot et al., 2019). This trio exacts far more harm than occasional car-
bon monoxide poisoning. Second-hand smoke and radon could also impose

sizeable population-wide harm (see Figure 2.10).

Impact Assessment Approach
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Figure 2.10: Estimated population averaged annual cost, in DALYSs, of
chronic air pollutant inhalation in U.S. residences; results for the 15 pollu-
tants with highest mean damage estimates. (Borsboom et al., 2016)

Logue et al. (2012) demonstrated the potential of DALY-based models, and
upon further examination, insights from their work are now informing the

identification of the following limitations:

1. Contaminants scope: bioaerosols such as mold and radiological con-
taminants like radon, were not subjected to the IND or the ID meth-

ods as part of the analysis

2. U.S-only scope: The data on contaminant concentrations, breath-
ing rates, risk estimates, disease incidence, and damage factors were

solely for U.S. dwellings. Expanding to global data is needed.

61



2.5. ASSESSING HARM FROM INDOOR AIR

3. Dated data: The epidemiological and toxicological data used was
from over a decade ago, prior to 2010. Updated data is needed to

reflect latest evidence.

4. Uncertainty: There were large uncertainties and wide confidence in-
tervals in the harm estimates from both the ID and IND methods
(The upper estimate exceeds the total burden from all non-infectious
diseases). Statistical approaches could help narrow these uncertain-

ties.

5. Damage factors: Assumptions and probability distributions for the
damage factors relating incidences to harm were assumed rather than

based on data. Improved damage factor estimates could help.

6. Contaminant-specific data: Damage factors and baseline incidence
where considered as contaminant-health outcome related variables,
however, this parameters are presented in HRA and LCIA as disease

specific. More work on this is needed.

7. Unclear origins: The source and reasoning behind some parameter
values used was not fully explained in the work. Transparency on
data origins would be beneficial.

8. Method complexity: The ID and IND methods for calculating DALY's
involve many parameters. Simplified approaches could improve ac-
cessibility.

Considering these caveats, Logue et al.’s work served as a start for ap-
plying the DALY metric to indoor air, recasting grasped of health impacts
from dwelling contaminants. Their framework considering toxicological and
epidemiological data has been widely adopted. Fazli and Stephens (2018)
used the framework with average contaminant measures to estimate chronic
damage from American homes. Turner et al. (2013) used it to quantify im-
pacts of residential ventilation. Patino and Siegel (2018) used it for an
specific scenario involving social housing. Ben-David and Waring (2016)
assessed simulated office air and energy performance across US cities using
Logue et al.’s method. Aldred et al. (2016) quantified the benefits of indoor
ozone removal in homes using the framework, and Zaatari et al. (2016) used
the approach to study contaminant controls balancing indoor air quality

and efficiency in shops.
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Harm (as DALYs) from household exposures have also been calculated
through independent chronic health impact assessments. Global and Euro-
pean studies have utilized comparative risk assessment approaches based on
the population attributable fraction. For example, Morawska et al. (2013)
estimated DALY for total particles, secondhand smoke, and radon. Shan
et al. (2022) focused on radon burdens. And the Global Burden of Disease
study (Murray et al., 2020) presents DALY's for PM, 5 from household solid

fuel use, radon, and secondhand smoke.

These complementary works provide additional harm quantifications and
comparisons for key residential contaminants using alternative methods
beyond the Logue framework. Together, they offer a more comprehensive

picture of the disease burden posed by indoor contaminants.

2.5.2 Harm and TAQ strategies

Ventilation has long been utilized to promote healthy indoor spaces by con-
trolling indoor air quality (IAQ). Outdoor air introduction aims to lower ex-
posures by removing or diluting indoor-generated contaminants. However,
evidence supporting the ability of ventilation to consistently lower expo-
sures remains of poor quality, with high uncertainty around defining rates
that adequately protect against health and comfort issues. While reviews
have sought to link minimum ventilation thresholds to risk reduction, these
connections rely on limited and variable data (Janssen, 1989). Ventilation
likely proves most effective for localized removal of transient bioefluents
in high-emission spaces like kitchens and bathrooms, or whole-house ven-
tilation for ubiquitous gasses like formaldehyde (Logue et al., 2011b). The
interplay of factors such as airflow distribution, emission sources, build-
ing design, the effectiveness of ventilation strategies, and considerations for
both health and comfort contributes to the complexity of ventilation’s role

in promoting [AQ.

The American Society of Heating, Refrigerating and Air Conditioning En-
gineer’s (ASHRAE) Standard 62.1 and 62.2 leads US indoor and residential
ventilation standards, respectively (ASHRAE, 2022b,c). They tackle in-
door air quality issues (Logue et al., 2011b).

Ventilation chiefly maintains acceptable indoor air quality by controlling
contaminants and minimizing exposures. ASHRAE 62.2 defines accept-

able air as lacking odor, irritation or unhealthy concentrations (ASHRAE,
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2022c¢). The standard promotes occupant wellbeing through satisfactory

air quality and healthier indoor environments.

To confine ASHRAE standards solely to ventilation oversimplifies their
purpose, which is to ensure acceptable indoor air quality (IAQ) by limiting
exposure to contaminants. While it is true that ventilation is a common
mechanism to achieve TAQ goals, the overarching objective is to attain

acceptable IAQ), rather than solely setting ventilation rates.

Ventilation standards largely prescribe rates addressing perceived poor air
and irritation, CO5 concentrations, and odors, as codes note (Carrer et al.,
2018). Too little data on indoor sources and health impacts has led stan-
dards to rely on engineering guesses, not health or contaminant analyses
(Borsboom et al., 2016; Logue et al., 2011b). This gap between standards
and health-based limits suggests a need to better focus ventilation guid-
ance (Borsboom et al., 2016). Moving towards a health-based approach
raises questions such as whether other gases besides COy would necessi-
tate higher ventilation rates to achieve lower concentrations, particularly
in cases where emissions are unknown and therefore removal rates cannot

be determined.

ASHRAE 62.1-2022 prescribe ventilation rates using either a ventilation
rate procedure or an indoor air quality procedure (ASHRAE, 2022b). The
ventilation rate method provides minimum rates based on assumed occu-
pant density and activities, aiming to satisfy 80 % of building occupants in
non-smoking environments. The TAQ procedure (IAQP) instead allows de-
riving customized rates based on design compounds selected during design,
comparing their concentrations to design limits from a cognizant authority.
This derives a mix exposure sum that should be less than the unity for the
design compounds. ASHRAE 62.1-2022 provides a list of 15 contaminants
to control to simplify the implementation of the IAQP.

Both approaches partially consider health impacts but also emphasize lim-
iting perceived irritations. Required ventilation systems must supply high-
quality outdoor air, including minimum filtration for particles and ozone
scrubbing if levels are excessive. However, ventilation only controls other
unchecked contaminants if calculations specifically incorporate them into

the TAQ procedure’s customized rate determination (Carrer et al., 2018).

European health policies have motivated needs for evidence-based venti-

lation standards that prioritize reducing indoor-attributable disease. The
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ENVIE (EU co-ordination action on indoor air quality and health effects)
and TATAQ (promoting actions for healthy indoor air) projects linked in-
door contaminants to estimated harm, finding 2 million DALYs annually
across 26 European nations (Fernandes et al., 2009; Jantunen et al., 2011).
Controlling indoor and outdoor pollution sources alongside moisture could
reduce this burden by 0.7 million DALY's per year, while mandated ventila-
tion system inspections and maintenance could prevent another 0.2 million,
they projected (Carrer et al., 2018).

Two studies show six long-term indoor contaminants influenced by venti-
lation (Fernandes et al., 2009; Logue et al., 2012). Environmental tobacco
smoke and radon stem chiefly from occupant behaviour and the location of
the house, respectively, so ventilation standards should ignore them. The
remaining four main causes of chronic risks are PMs 5, mold, formalde-
hyde and acrolein. WHO and ENVIE flagged mold /moisture as an indoor
health burden (Braubach et al., 2011; Fernandes et al., 2009; Jantunen
et al., 2011). As ventilation affects home moisture, mold joins priority con-
taminants for ventilation standards, despite occupant and building factors
(Borsboom et al., 2016).

Looking ahead, research on dwelling contaminants and health impacts
could ultimately shift Standard 62.2’s focus to effects of priority contami-
nants. Ventilation rates would become less important intermediates (Sher-
man, 2015).

2.5.3 The indoor air quality equivalence

Innovative ventilation management, including variable ventilation, can re-
duce energy or enhance IAQ and comfort. To ensure innovative ventilation
meets standards, methods are needed to determine equivalence in ventila-
tion or TAQ (Sherman, 2004; Sherman et al., 2012).

Equivalent ventilation uses exposure to a generic indoor contaminant to
gauge different scenarios’ effect on TAQ. With undefined priority contam-
inants, this may be the best approach for standards. Ideally, equivalent
IAQ would use a health metric. That requires ranking and selecting the

indoor contaminants by their potential harm (Sherman et al., 2012).

Walker et al. (2022) found that only one study proposes ventilation and TAQ
equivalence based on health metrics (Sherman et al., 2012). It applies the
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DALY- harm-based models of Logue et al. (2012) to a ventilation context
using unit damage estimate (UDE) values for contaminants of interest.
UDEs represent harm over concentration, akin to EPA’s unit risk estimates
(Agency, 2015). UDEs can be used to determine the total harm of an
exposure to selected contaminants. This is known as the IAQ equivalence

principle:

Harm = » ~C; - UDE; (2.30)

This principle can be adapted as new priority contaminants and toxicolog-
ical or epidemiological data emerge. Other tentative steps have been made
in LCIA to relate harm to a concentration unit for PMy 5 (Oberschelp et al.,
2020).

The TAQ equivalence principle proposes using UDE values to set a harm
limit. Exposures below this limit have equivalent TAQ despite differing
contaminants (Equation 2.31). To apply the principle, a limiting harm
value is needed. One approach is to use existing standards, translating
them into harm via UDEs (Sherman et al., 2012; Walker et al., 2022).

Harmyjic = Z Standard; - UDE; (2.31)

Table 2.7 lists UDEs for key compounds along with chronic exposure stan-
dards from the review of Logue et al. (2011a) - the most health-protective
of applicable guidelines and regulations. Sherman et al. (2012) set a limit
of 820 DALY /10° person/year using these UDEs and standards. Address-
ing PMy 5, radon and ozone via prescriptive measures would reduce the
DALY limit drastically because the rest of compounds only sum to 9
DALY /10° person/year (Sherman et al., 2012).

The TAQ equivalence approach relies on clearly identified and prioritized
indoor contaminants, hereon referred to as the Contaminants of Concern
(CoCs). For specific applications, engineers and architects need to de-
fine CoCs. To answer the question “How do designers choose the CoC?”
(Stanke, 2007), there must be consensus on priority contaminants in the
literature. ASHRAE 62.1, in their IJAQP proposes 15 contaminants.

Currently, there is no recognized process for selecting contaminants to con-
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Table 2.7: Indoor air contaminants — UDE and Standard values to imple-
ment TAQ equivalence (1 yDALY = 107 DALYs). From Sherman et al.
(2012)

Contaminant

UDE Chronic standard ~ Chronic harm
[4uDALYs/ng/m?3 /person/year]  see(Logue et al., 2011a)[pg/m3]  [uDALYs/person/year]
Priority contaminants
1,3 Butadi- 0.02 0.06 0.001
ene
1,4- 0.3 0.91 0.024
dichlorobenzene
Acetaldehyde 0.3 3.7 0.96
Acrolein 190 0.02 3.7
Benzene 0.08 0.34 0.025
Formaldehyde 6.8 1.7 11.4
Naphthalene 0.47 0.29 0.14
Nitrogen 0.7 40 27
Dioxide
PM, 5 500 15 7,500
Other contaminants
Ammonia 0.23 200 46
Ozone 1.4 147 200
Crotonaldehyde 1.02 N/A

trol via TAQ standards and regulations in the 62.2 series, that is specific
for residential buildings. Several studies have called for a more system-
atic, health-based approach to identifying priority indoor contaminants in
dwellings (Guyot et al., 2019; Parthasarathy et al., 2011; Sherman et al.,
2022, 2012; Stanley and Bayer, 2009; Walker et al., 2022). To date, the
minimum numbers of CoCs practitioners should consider are the 15 pro-
posed contaminants in the TAQP in 62.1 series. Steps forward into defining

a shorter list are being made (Section 8.3.2).

The TAQ equivalence approach lays the groundwork for identifying CoCs
through standardized harm-based metrics. In theory, the CoCs would be
the contaminants that contribute the most to total harm. This would
strengthen the health basis for setting exposure limits, harm thresholds,
and ventilation rates. Ongoing toxicology, epidemiology, and exposure re-
search can refine CoC selection and update harm estimates over time.

Two common methods prioritize indoor contaminants using health im-
pacts: (i) determining guideline exceedances and (ii) estimating cancer
likelihood. However, these only consider incidences, not overall population

harm. Studies ranking dwelling contaminants using these qualitative or
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quantitative methods are: Halios et al. (2022) who identified high-priority
VOCs based on adverse endpoints and concentration reports. Sarigiannis
et al. (2011) who used risk metrics, while Azuma et al. (2016) ranked by
margin of exposure. Though identifying exceedances helps pinpoint con-

cerns, it does not enable an equivalence approach.

In contrast, DALY-based studies of indoor exposures like Logue’s, EnVIE,
TATAQ, and WHO (Braubach et al., 2011; Fernandes et al., 2009; Jantunen
et al., 2011; Logue et al., 2012) allow ranking by harm. This provides a
comparable framework for population-level prioritization (Borsboom et al.,
2016). Quantifying total harm better informs risk reductions than counting
guideline exceedances or cancer probabilities alone. DALY's integrate mor-
bidity and mortality across multiple outcomes, supporting evidence-based

contaminant prioritization and risk management.

The ventilation and indoor air quality equivalence principles proposed by
Sherman et al. have been partially integrated into ASHRAE Standard
62.2-2016 on residential building ventilation. This is reflected in some U.S.
state regulations like California’s Title 24 energy performance standards re-
quiring ASHRAE 62.2 compliance. Specifically, ASHRAE 62.2-2019 incor-
porates methods to calculate minimum constant airflow rates for dwellings
based on the equivalence between ventilation and indoor air quality. By
adopting key equivalence concepts, the standard represents partial accep-
tance of the originally proposed performance-based, health-oriented ven-
tilation framework. However, further work is still needed to fully align
standards (like the WELL standard) with a contaminant exposure and
health effects basis (Guyot et al., 2019).

The WHO Drinking Water Quality Guidelines already apply harm limits
using DALY to define health-based targets (HBTs) (WHO, 2011). The
guidelines set a maximum allowable DALY loss of 107° DALY's/person /year
from waterborne pathogens. The allowable DALY loss term is equivalent

to tolerable harm and acceptable harm set to describe a limit of DALYsS.

The current limit of 107 DALY's/person/year derives from the U.S. EPA’s
accepted lifetime cancer risk of 107° from waterborne exposures. The WHO
did this because cancer risk assessment provides a well-established and
widely accepted methodology for quantifying the health impacts of expo-
sure to environmental contaminants. It was also a starting point to de-
velop health-based targets. However, this is extremely conservative, being

10,000 times lower than actual U.S. cancer incidence. Mara (2011) sug-
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gests increasing the maximum burden by two orders of magnitude. While
marginally increasing risks of cancers, diarrheal diseases and ascariasis, this
remains a low risk level. But it allows for more cost-effective water and
sanitation investments to achieve health gains in low- and middle-income
regions. Overall, Mara recommends raising the acceptable disease burden
guideline to 107* DALYs/person/year to balance public health protection

with improved access to drinking water and sanitation.

This DALY-based harm limit approach for drinking water resembles Sher-
man et al.’s proposed TAQ equivalence principle using harm limits. It pro-
vides context on applying DALYs for health-relevant limits in indoor air.
As with drinking water, feasibility and cost-effectiveness should help deter-
mine appropriate TAQ risk targets. Setting HBT's requires value judgements
on tolerable risks, analogous to judgements underlying acceptable TAQ.
One way to address this complex issue is to consider DALYs that society
as a whole already accepts, such as those associated with alcoholism (0.012
DALYs/person/year) or smoking (0.026 DALYs/person/year) (IHME, 2022),
or to base acceptability on real-world scenarios of indoor environments that
meet established TAQ standards.

2.5.4 Monetizing Harm

Economic considerations in IAQ typically focus on optimizing ventilation
costs, including design, installation, and operation. Operating costs, like
energy for running and conditioning air, often exceed initial costs. Smart
ventilation introduces complexity and value by incorporating benefits like
energy savings and exposure reduction, which are harder to monetize.
DALYs offer a means to monetize the reduction of contaminant exposure,
as economic studies have established the value people place on a DALY
(Sherman et al., 2018).

Aldred et al. (2016) conducted a benefit-cost analysis of commercially avail-
able activated carbon filters for indoor ozone removal in single-family homes
in the USA. The monetary benefit associated with reduced DALYs per
100,000 people was calculated by multiplying the value of one DALY ($
DALYs) by the reduction of harm (in DALYs) achieved when a control is

used, compared to no control (see Equation 2.32).

Benefit = $DALY s - §Harm (2.32)

69



2.5. ASSESSING HARM FROM INDOOR AIR

Harm was calculated using the methods of Logue et al. (2012). A distri-
bution of dollars per avoided DALY ($ DALYs) was estimated using the
willingness-to-pay method. The histogram of predicted willingness-to-pay
values per avoided DALY was right-skewed, suggesting a log-normal dis-
tribution (Aldred, 2015). The dollar value per DALY ($ DALY) was esti-
mated as a median of USD 125,000 [mean 150,000] with a 95% confidence
interval of USD 6,940 to 366,020 per avoided DALY.

Furthermore, Jackson (2017) used the dollar value per DALY distribution
from Aldred (2015) to obtain the health-based monetary value of reducing
HCHO concentrations in a residence to limits equal to specific exposure
limit values (Equation 2.33). The value of 150,000 USD per DALY (2014
USD) was used as it was considered reasonable. Such value is approxi-
mately equal to three times the per capita gross domestic product in the
United States for that year (Aldred et al., 2016). Sherman et al. (2018)
deemed a rough value of a DALY in a developed country is on the order of
magnitude of 150,000 USD.

HB, , =$DALY s - (harmpucno, — harmucuo,) (2.33)

where HB is health based monetary value of reducing the annual average
concentration of HCHO in a house from a concentration a to b (units of
USD); $§ DALYs is the value of a DALY; and harm are the DALY lost for

the given HCHO concentrations.

As demonstrated by Aldred (2015); Jackson (2017), the cost of averted
DALYs can be used to assign a monetary value to indoor contaminant
exposure. Daroudi et al. (2021) calculated the cost per DALY averted in
low, middle, and high-income countries, categorized by the Human Devel-
opment Index (HDI), using evidence from the global burden of disease study
(see Table 2.8). The cost per DALY averted was calculated as a function
of health expenditure per capita and age-standardized DALY rates (per
100,000 population).

Table 2.8: Cost per DALY averted

Region Mean $DALYs (range) [2016 USD]
Low HDI 998 (109 - 3507)

Medium HDI 6522 (997 - 36,091)

High HDI 23,782 (4245 - 83,997)

Very high HDI 69,499 (21,509 - 168,720)

70



2.6. SUMMARY

The monetary values of harm in USD per DALY, as shown in Table 2.8,
can be used to estimate the monetary costs associated with contaminant
concentrations once harm estimates for the contaminants are calculated
(for discussions on the value of reducing harm from typical exposure levels
in dwellings to those proposed by cognizant authorities for selected air

contaminants, see Section 8.2).

When estimating the cost of DALYs averted, it’s crucial to note that the
value extends beyond medical expenses. Disability and premature death
also encompass the loss of healthy life, employment, a family provider, and
educational opportunities. Additionally, these impacts can be multigener-

ational, painting a complex picture of costs.

The cost of a DALY for very high HDI countries is approximately half the
cost per DALY calculated by Aldred (2015) for the USA, which is $69,499.
This amount is roughly equivalent to one GDP per capita in 2016 USD.
Although one would expect these monetary values to be similar, the ob-
served difference is difficult to explain due to the methodological differences
between the estimates. A deeper understanding of the differences in mon-
etary values of harm derived from a willingness-to-pay approach versus a

health expenditure per capita approach is needed.

2.6 Summary

This literature review chapter provided a comprehensive overview of prior
research investigating indoor air quality, associated health risks, and quan-

tification methods. Key insights are summarized by section.

Exposure to indoor air contaminants constitutes a major public health
concern, as people spend most of their time indoors where contaminant lev-
els can be elevated and risks accentuated (Logue et al., 2011a; Morawska
et al., 2013; Ye et al., 2017). Systematic reviews reveal hundreds of chem-
icals measured across global homes, with concentrations varying widely
(Halios et al., 2022; Morawska et al., 2013; Ye et al., 2017). Particulates

are the most extensively studied contaminant indoors.

Diverse health effects (including all causes of mortality) are associated

with both short and long-term exposure to indoor air pollution, (WHO,
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2021). Toxicological and epidemiological research offer complementary in-
sights into biological mechanisms and real-world disease patterns crucial
for assessing risks (Adami et al., 2011; Eaton and Gilbert, 2008; Miettinen,
2011; Weed, 2002). Understanding mixture toxicity requires characterizing
additivity and non-additive interactions between chemicals like synergism
and antagonism. Advancing knowledge in these areas will improve chemical

mixture risk assessment capabilities.

There are many health-based metrics, but many focus on mortality and
morbidity incidences rather than overall population harm (Jones, 2017). In-
tegrated exposure-response models and cumulative risk assessment enable
multi-contaminant health impact estimation (Harikrishnan et al., 2018;
Sexton, 2012). Disability-adjusted life years (DALYs) are a versatile metric
integrating exposures, risks, and disease severity into a composite popula-
tion health metric (Harikrishnan et al., 2018; Murray, 1994).

Pioneering studies demonstrate feasible DALY -based models to quantify
indoor air pollution health burdens, despite limitations on scope, data cur-
rency, and uncertainty (Fernandes et al., 2009; Logue et al., 2012; Shan
et al., 2022). Their frameworks synthesize toxicology, epidemiology, ex-
posures, and health data to rank risks and guide mitigation. This means

DALYs can be used to assess indoor pollution impacts.

Various health risk and life cycle assessment tools implement DALY cal-
culations, to compare scenarios (Fantke et al., 2017a; Pillarisetti et al.,
2016; Sacks et al., 2018). Ongoing methodological development contin-
ues to strengthen characterization of contaminants, fate/transport, intake,
dose-response relationships, and uncertainties inherent in impact estima-
tion (Hassan Bhat et al., 2021; Hauschild and Huijbregts, 2015; Rosenbaum
et al., 2015).

The key insights gleaned from the chapter, are informing the approach to
designing health-based ventilation and indoor air quality strategies. It un-
derscores the importance of using the disability-adjusted life year (DALY
metric to guide the establishment of acceptable IAQ standards in dwellings.

This approach begins by identifying priority home contaminants that are
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both prevalent and highly impactful on health, designating them as Con-
taminants of Concern (CoCs). Furthermore, a monetary value can be as-
signed to harm (as DALYs) based on the costs per DALY averted available
in the literature.
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Chapter 3

Quantifying Harm

3.1 Airborne contaminants of interest

This section describes the iterative process for selecting the airborne con-
taminants expected in dwellings for which the research aims will be pursued
(Section 1.4). The initial scope draws from a list of 43 priority contami-
nants in dwellings identified by Logue et al. (2012) for their chronic harm
in dwellings (Section 2.5.1.3).

Iterative decisions then evaluated additions and exclusions based on:

e Removing contaminants that only have acute health effects, per the
chronic focus (Section 1.4). Carbon monoxide (CO) warrants men-
tion. The study of Logue et al. (2012) excluded CO from their harm
models while acknowledging that chronic indoor CO exposures, can
be up to 810 pg/m? in US homes, and that CO can be correlated with
increased hospitalization rates for conditions like congestive heart fail-
ure. However, an Integrated Science Assessment (ISA) for CO sug-
gests there is not likely to be a causal relationship between relevant
long-term CO exposures and mortality. Instead, the evidence indi-
cates a suggestive causal relationship between short-term CO expo-
sures and mortality, highlighting CO’s association with acute effects
(US-EPA, 2010b) (see Table 2.3). The chronic effects of long-term in-
door CO exposures, with specific mortality and morbidity endpoints,
remain an emerging topic requiring further exploration. This is dis-

cussed in more detail in Section 8.7.

e Inclusion of emerging contaminants, frequently found in dwellings
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and associated with health risks as documented in TAQ literature
(Section 2.1.2). PMyy, 1,3-butadiene, isoprene, and trichloroethylene
have been incorporated to align with recent reviews covering prevalent
airborne contaminants in residential environments (Gonzalez-Martin
et al., 2021). Mold (spores) and radon are included as well. Mold
refers to a measured concentration of spores rather than visual mold,
which is not use-full when a concentration is needed for harm assess-
ment (Section 3.2).

e Discarding contaminants lacking sufficient health evidence (Sections 3.3
and 3.4). Ammonia, manganese Mn(II), xylene (0), xylene (m/p) are

excluded from the list for this reason (Section 4.5.1)

This resulted in 44 contaminants of interest:

Acetaldehyde, Acrolein, Acrylonitrile, Benzene, Benzyl chloride, 1,3-
Butadiene, 2-Butoxyethanol, Cadmium Cd(II), Carbon disulfide, Car-
bon tetrachloride, Chloromethane, Chromium Cr(VI), Crotonalde-
hyde(trans), 1,2-Dibromoethane, 1,4-Dichlorobenzene, 1,2-Dichloroethane,
1,1-Dichloroethene, Ethanol, 2-Ethylhexanol, Formaldehyde, Hex-
achlorobutadiene, Hexane, Isoprene, Limonene (d-...), 2-Methoxyethanol,
Methyl methacrylate, Methyl tert-butyl ether, Methylene chloride, Mold,
Naphthalene, Nitrogen dioxide, Ozone, PM;q, PMs 5, Radon, Styrene, Sul-
phur dioxide, 1,1,2,2-Tetrachloroethane, Tetrachloroethene, Toluene, 1,1,2-
Trichloroethane, Trichloroethylene, Vinyl chloride, Xylenes.

A 45th - coarse particulate matter (PMjg_o5), defined as the difference
between PM;y and PMsy5 - is added given guidelines’ focus on particle
fractions (Sections 2.3.1, and 3.6). PM;jo_o5 separates respiratory effects

of the coarse fraction from fine particles.

The final list to be considered in here contains 45 contaminants, comprising
semi-volatile organic compounds, volatile organic compounds, metals, and

the criteria contaminants.

3.2 Quantifying harm

Indoor air quality (IAQ) assessment research uses the disability-adjusted
life year (DALY) to quantify health burdens from exposure to indoor con-

taminants (Harm).
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Harmlndoor air quality X Harmlndoor air contaminants (31)

This chapter presents the core methodology of the research. It evaluates
overall indoor-associated harm per year of exposure, and not the total life-
time. This entails summing the individual harms from contaminants ()
commonly found in residential environments to represent the total popula-

tion harm.

Harmlndoor air contaminants — E Harmi (32)

)

TAQ assessment is tied to contaminant concentrations (Hess-Kosa, 2018;
WHO, 2021), highlighting the essential role of concentrations in evaluating
indoor air quality. Achieving the research objectives (Section 1.4) involves
developing a harm-based metric that links harm with concentrations. This
allows indoor air contaminant concentrations to be used as robust indica-
tors of harm, enhancing comprehension and the proactive control of indoor

air quality hazards. For each contaminant, harm can be expressed as:

Harm; = f; - C; (3.3)

where C; is the indoor concentration of a contaminant (subscript i) and f;
is the concentration-to-harm factor (the harm-based metric). Deriving f

for a range of contaminants is an objective of this research.

For well-characterized contaminants, f; can be derived from epidemiological
relationships between concentration, disease incidence, and resulting harm
(DALYSs). When lacking disease data, f; must be approximated using more
uncertain statistical approaches. Nevertheless, accurately determining f
factors enables the connection of contaminant concentrations to health im-

pacts.

A Harm Intensity, HI is a metric that relates chronic harm (DALYs/per-
son/year) caused by the inhalation of a specific airborne contaminant (¢)

to a concentration C;.
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Generally, indoor contaminant concentrations are reported in micrograms
per cubic meter (pg/m3), but some contaminants have other units, such
as Bq/m? for radon and CFU/m? for mold spores. The harm intensity
metric measures the total harm suffered per year and not over a total
lifetime. Accordingly, for most airborne contaminants, HI; has units of
DALY /pg/m? /person/year.

Indoor air comprises mixtures of gases, vapors, and particles, necessitating
exploration of multi-contaminant effects (Section 2.2.2) for the HI metric
(Spengler et al., 2000). This will enable models to better represent real-
world exposure scenarios (Mauderly and Samet, 2009). Research has exam-
ined additive versus synergistic effects and statistical assessment methods
(Billionnet et al., 2012; Yu et al., 2022). When synergies are identified,
they are found to be rare at the concentrations typically found in buildings
(Section 2.1.2) (Committee et al., 2019; Kortenkamp et al., 2009; Rudén
et al., 2019; Socianu et al., 2022). With some exceptions like for carbon

monoxide (Section 2.2.2).

Some combinations of contaminants exhibit clear synergistic effects, like
radon and smoking in relation to lung cancer (Lee et al., 1999) and as-
bestos combined with smoking (Erren et al., 1999). Developing a com-
prehensive synergistic harm metric necessitates data encompassing chronic
effects across all potential combinations, and while some relevant litera-
ture exists (Huang et al., 2012; Ku et al., 2017; Liu et al., 2023a; Siddika
et al., 2019), evidence for chronic synergies remains limited for most indoor

contaminants.

The most accepted approach for multiple chemical exposures is the Con-
centration Addition, whereby components act additively (Backhaus, 2023;
Martin et al., 2021; Martin, 2023). It gives very similar or identical predic-
tions to competing concepts or models like the Effect Addition. The addi-
tive approach is moderately precautionary and more feasible than alterna-
tives requiring full concentration-response data. Overall, research supports

dose addition for multiple exposures.

Considering the above, this research follows an additive model for total
harm calculation aligning with prevailing risk assessment methods (Li et al.,
2023; Mauderly and Samet, 2009; WHO, 2021) (Section 8.8). Furthermore,
when evaluating total harm (DALYs) resulting from a mixture of air con-
taminants, studies typically adopt an additive framework. This approach

involves summing the impacts of multiple contaminants across different
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concentrations (Guan et al., 2021; Rojas-Rueda et al., 2019; Van Zelm
et al., 2008, 2016).

The harm from any number of contaminants can be summed to obtain the

total harm they cause, where

Harm = Z Harm, (3.5)

The individual contaminant harms can be compared against the total harm
to determine those that contribute the most. This allows the most harmful

to be identified and designated Contaminants of Concern (CoCs).

Equation 3.4 is the all-cause harm that aggregates the health impacts from
all diseases that exposure to a contaminant might induce. Some data
sources may provide all-cause information, but others are disaggregated
by disease so that the all-cause harm becomes the sum of the harms for

each health outcome, as

Harm; = Z Harmg (3.6)
k

where the subscript k& denotes a specific disease. Then, Harm,;; can be

defined as a function of the harm intensity for each disease, H I ;), where

In epidemiology, all-cause mortality often summarizes the effect of ma-
jor diseases from long-term exposures (represented by k) (WHO, 2021).
Summing known diseases approximates the all-cause effect in air pollution
impact assessments (Fantke et al., 2019; Gronlund et al., 2015; Van Zelm
et al., 2016). However, lacking morbidity data gives only a reasonable lower-
bound estimate of total harm. Similarly, in toxicology, health effects are
categorized into cancer and non-cancer groups. Their combination should
estimate the all-cause effect for a substance. However, given the intricate
assumptions about what these categories reflect, this also represents a rea-

sonable lower-bound harm estimate.

This follows the characterization framework of Life-Cycle Impact Assess-
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ment (LCIA) approach for quantifying harm (Hauschild and Huijbregts,
2015), which is rooted in toxicological and epidemiological research, and
has been widely applied in studies of outdoor (Bulle et al., 2019; Fantke
et al., 2019; Goel et al., 2019; Gronlund et al., 2015; Kvasnicka et al., 2019;
Oberschelp et al., 2020; Petrov et al., 2017; Tang et al., 2018a,b; Van Zelm
et al., 2008, 2016) and indoor air pollution, particularly inside or near
dwellings (Hellweg et al., 2009; Maury-Micolier et al., 2023; Meijer et al.,
2005b,d).

LCIA considers many parameters, but the one that is most similar to the
harm intensity is the Effect Factor (EF), relating harm to mass intake
(DALY /kg — intake). The harm intensity can be related to the effect

factor using a Breathing Rate (BR).

Hlys = EFy, - BR (3.8)

BR is a standardized breathing rate (m?/person/year) (Section 4.4).

The interest lies in determining the harm, and hence Hl ;) for every con-
taminant (¢) and health outcome (k), and so by summing all of the health
outcomes associated with each contaminant, the harm intensity can be

written for all causes as,

HI; = BR-» EF, (3.9)
k

Quantifying Harm and Harm Intensity for each disease and contaminant
requires the conversion of existing health data from the forms they are
typically reported in, which vary depending on the discipline they originate
from. The data from toxicological and epidemiological studies are now

examined in turn.

3.3 Toxicological analysis: The Tox-harm ap-
proach

Toxicological studies aim to determine the harmful effects of various con-
taminants on living organisms. Organisms (commonly rodents, mammals

and non-human primates) are exposed to doses of contaminants to deter-
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mine the quantal dose-response relationship that characterizes the distribu-
tion of responses to different doses in a population of individual organisms
(Eaton and Gilbert, 2008). The harm from a contaminant can be derived
from effect factors (DALY /mass) and their intake (mass) as,

Harm(k,i) = EF(]M) : CZ -BR (310)

Individual effect factors for each health outcome (k) associated to a con-
taminant (i) are developed from Dose-Response Factors (DRF, case/kg),
indicating the change in morbidity and/or mortality per unit mass intake of
the contaminant () and the damage factors (DF, DALY /case), explaining
the severity of disability (Huijbregts et al., 2005; Logue et al., 2012).

EFys = DRFys - DFy (3.11)

In toxicology, the specific effective dose for a given disease represents can-

cerous or non-cancerous effects for each relevant contaminant,

EF(k,z) = DRF(cancer\non-cancer,i) ’ DFk (312)

The dose-response factor is the quotient of a constant and the median ef-
fective dose (ED50) that explains a carcinogenic or non-carcinogenic effect,

for each contaminant,

0.5

-2 3.13
ED50. (3.13)

DRF(cancer non-cancer,s)

Considering Equations 3.11, 3.12, 3.13, the form of the toxicology-based
harm intensities (HI, DALY /ug/m?/person/year) is

1 DFy-BR

Hlgy = = - = 2
072 ED50 )

(3.14)

Substituting 0.5 for 1/2 in Equation 3.14 is a minor adjustment aimed at
enhancing the readability of the expression. This change in representation

will be maintained for consistency throughout this work.

These harm intensities can be disaggregated into two categories: for cancer
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and non-cancer toxicity. In LCA, toxicology-based chemical impacts are
disaggregated into these categories due to the way in which how the related
LCA impact scores are interpreted, and used when applying the assessment
(Hauschild et al., 2018).

HI(cancer,i) = DRF(cancer,i) -DFy, - BR (315)

HI(non—cancor,i) = DRF(non—canccr,i) : DFk -BR (316)

The sum over specific cancer and non-cancer categories derives the all-cause

effect harm intensity (DALY /png/m?/person/year) as

HI; = [(DRFcancer,i - DF}, - ADAF) + (DRFnon—cancer,i : DFk)] -BR
(3.17)

The Age Adjustment Dependent Factor (ADAF) is used to adjust the car-

cinogenicity effect.
The all-cause effect factor (EF;, DALY /kg) is,

EF; = (DRF.anceri - DFy, - ADAF) + (DRFpon—canceri - DF)  (3.18)

The all-cause Dose-Response Factor (DRF;, cases/kg) is,

DRF, = (DRFneeri - ADAF) 4 (DRFpon—cancers) (3.19)

Overall, in the Tox-harm approach, the determinants of the effect factor
and of the harm intensity are: dose-response metrics (DRF cancer|non—cancer,i,
ED50), the breathing rate, and the severity of the disease (DF}). Back-

ground concentrations are not required.
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3.4 Epidemiological analysis: The Epi-harm
approach

Epidemiology focuses on the patterns of disease and ill-health in a pop-
ulation. (Bhopal, 2016) Epidemiological studies statistically link disease
incidences to real-world exposures. They require substantive evidence and

so provide less data on contaminants than toxicological studies.

The Air Pollution Health Risk Assessment (AP-HRA) framework focuses
on evaluating the health risks associated with air pollution exposure. These
risks are typically quantified using Concentration-Response (C-R) func-
tions. These functions, incorporated into AP-HRA tools, reflect the epi-
demiological evidence linked to particular health outcomes and can take
the form of linear or non-linear models (Hassan Bhat et al., 2021; WHO,
2016). This approach is similar to the IND approach of Logue et al. (2012).

The incidence rate is the prime estimate of risk in epidemiology (Bhopal,
2016) and so, health risk assessments use Health Impact Functions (HIF) to
estimate changes in outcome incidence. HIF methods require information
that includes the size of the exposed population, baseline incidence rates for
diseases associated with pollutants, baseline and exposure concentrations,
and C-R estimates for each contaminant-disease pair. (Martenies et al.,
2015)

The attributable harm caused by a health outcome (k) from exposure to a
contaminant (¢) (Harm;), DALYs/person/year) is a function of the base-
line disease incidence (7o,, cases/person/year), the damage factor (DFy,
DALY /case), arisk-related empirical parameter beta (s, change/pg/m?),
and the contaminant exposure concentration (Cj, ng/m?), associated through

a non-linear relationship that considers saturation at high exposures as

Harm ;) = DFy, - 7o, - (1 — e P @) (3.20)
Important outlines from this expression are:

e In general, this analysis follows the Comparative Risk Assessment
(CRA) conceptual framework (Murray, 1994).

e This expression is equivalent to that used in the Global Burden of

Disease (GBD) studies to quantify the environmental burden of dis-
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ease attributable to a wide variety of risk factors (Hassan Bhat et al.,
2021; Hauschild et al., 2018; Logue et al., 2012; Murray et al., 2020).

e Damage factors express the relationship between the cases of mortal-
ity or morbidity attributed to a contaminant and the corresponding
harm. These factors are expressed in terms of DALY /case (Fantke
et al., 2019; Gronlund et al., 2015; Van Zelm et al., 2008, 2016).

e The term in parenthesis is known as the population attributable frac-
tion in LCIA (Fantke et al., 2019; Gronlund et al., 2015).

e The environmental burden of disease for health outcomes presented in
the GBD (DALYs/person/year) is the product of the damage factor

and the baseline disease incidence.

e This log-linear model is the most widely used function for health
impact assessment (Burnett and Cohen, 2020; Nasari et al., 2016).

e The approach assumes there is no threshold concentration (TMREL)

below which effects aren’t seen.

Dividing by the concentration derives the harm intensity as,

_ DFy -,

Hlgy = —7— - (1 — e o) (3.21)

HI has units of DALY /pg/m?/person/year. The term in parenthesis mod-
els the non-linear, no lower threshold, saturation. The shape of the curve
is a function of the exponent (the curve that is generated by the expression
is a sigmoid curve, which has a steep linear initial slope that then flattens
out as values increase). When the equation is evaluated at the low concen-
trations normally expected in dwellings (Logue et al., 2011a; Vardoulakis
et al., 2020), a linear concentration-response association is often assumed
appropriate (Gronlund et al., 2015; Huijbregts et al., 2017; Van Zelm et al.,
2016).

1—e P ~ By - C (3.22)
The simplification is justified because:

e The range of chronic exposures to contaminants in buildings is ex-

pected to be in the low to mid regimes (Halios et al., 2022; Ilacqua
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et al., 2022; Logue et al., 2011a; Ma et al., 2022; Sarigiannis et al.,
2011; Vardoulakis et al., 2020),

e the incidence rate per person is low,

e it is consistent with statements of a near-linear C-R association for

low to moderate concentrations of airborne contaminants (Burnett
and Cohen, 2020; Nasari et al., 2016), and

e it is mathematically equivalent to current practice applied by LCIAs
of air pollution (Gronlund et al., 2015; Huijbregts et al., 2017; Van Zelm
et al., 2016).

The individual intermediate expression of harm (DALY's/person/year) can

therefore be described as,

Harm(m) = DFk * Yo, ¢ 5(]97@ : CZ (323)

And the individual intermediate harm intensity (DALY /pg/m3 /person /year)
as,
HI;; = DFy - 70, - Bk, (3.24)

In epidemiological studies, k& represents all major diseases and considers
both morbidity and mortality. It can be represented by all-cause mor-
tality risk estimates that encompass all causes of death, from long-term
exposure-related chronic diseases to deaths hastened by recent exposure
to air pollution (WHO, 2021). When this information is not available,

different diseases can be summed to approximate the all-cause effect.

When the risk estimate is given for specific causes:

HI; = ) DFi - 70, - Bk (3.25)
k

When the risk estimate is given for all-cause mortality:

HI; = Y DFy -, - B (3.26)
k

The all-cause harm intensity (DALY /ng/m?/person/year) can now be de-

fined as,

HI; =) DFy -0, - B (3.27)
k
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Analogously, the linear form for the epidemiological effect factor (EF;,

DALY/kgintake) as,
_ 22 DFx -0, - Bk

EF; 3.28
BR (3.28)

The Dose-Response Factor (DRF;, cases/kg) as,
DRF, = 2670, Bk (3.29)

BR

And the Concentration-Response Factor (C'RF}, cases/ng/m? /person /year)

as,

CRF; =Y 0, - Bk (3.30)
k

Overall, in the Epi-harm approach, the determinants of the effect factor
and of the harm intensity are: disease incidence metrics (o, and B.;))
and the severity of the disease (DF}). Background concentrations are not

required.

3.5 Connecting Toxicology and Epidemiol-
ogy

Ideally, the toxicological and epidemiological approaches would yield equiv-

alent harm estimates for a given contaminant (7):

oxicity __ epidemiolo
Harmzi) Y= Harm(j & (3.31)

The dose-response factor (DRF) is a shared parameter:

i 0.5
DRFY = ——— (3.32)
(kD) ED50
epidemiology Yoy, B(kﬂ)
DRF}' = (3.33)

If toxicity reflects a contaminant’s cancer (or non-cancer) effects, epidemi-
ology should provide evidence on the associated cancer type (or disease) in

populations.
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For all-cause Dose-Response factors, DRF:

0.5 0.5 Yo * B i)
. ADAF 7 = DO T334
(ED50<kci> )+ (ED50<k",z‘> ) non-cancer BR (3:34)

Likewise, effect factors (EF;) should align because damage factors simply

translate incidence to harm, unchanged by approach:

(L . ADAF - DF(k,,O)>

ED5OU€’,Z) cancer (3 35)
N 05 g _ Yo B
ED5OGrsy ) oneamcer  BR

And, finally the same is presented for the harm intensity, HI;:

0.5
. _ADAF-DF,.
((ED50<W) * ))cancer

0.5
— . DF . -BR
+ (ED50(’§”’1}) (k )>non—cancer)

= DFk/H . ’}/Ok”/ . ﬁ(k’”,i) (336)

The subtle differences in health outcome identifiers are shown using sym-
bol notation. The prime symbol ' denotes a general cancer effect category.
The circled prime ° indicates a specific cancer type identified as associated
with the broader cancer effect represented by ’. Varying numbers of primes
visually distinguishes where different, but equivalent, health outcomes are
accounted for. For example, k' and k" could both refer to cancer effects,
with &’ representing the cancer category and k" representing leukaemia, in
the integrated factor. This symbolic notation shows the nuanced distinc-
tions between related endpoints derived from the toxicity and epidemiology

approaches.

With accurate disease rates, health outcome identifiers, and constant equiv-
alences, both approaches could theoretically estimate identical harm. Fur-
ther research is needed to achieve this equivalence. Meta-analysis can merge

toxicity and epidemiology information, supporting progress toward equiv-
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alence.

3.6 Harm from the coarse fraction of partic-
ulate matter

The coarse fraction of PM;q (referred to as thoracic coarse particles or
PMigp_25) are, in regulatory terms, particles with an upper 50% cut-point
of 10 pm aerodynamic diameter and a lower 50% cut-point of 2.5 pm aero-

dynamic diameter.

When tallying up air pollution’s health impacts, not all particulate matter
is equally harmful. Researchers aim to separate the burden attributable
to fine particles from their coarser counterparts. Mathematically, the total
disease burden (measured in disability-adjusted life years or DALYS) is the
sum of the harm from each PM size fraction. This arithmetic summation
or subtraction assumes that the harm is being calculated using the means
of the PM size fractions’ parameters. For non-normal distributions, such as
right-skewed data, medians or other robust measures should be considered,
noting that the arithmetic operations on medians may not be appropriate
(see Section 3.8 for further discussion). The relative contributions depend
on the particles’ respective harm intensities, which convert exposure to

harm.

Ideally, epidemiologists would measure each fraction’s unique harm deter-
minants directly from health data. But real-world constraints mean the
PM, 5 factor is best known, while the coarse one remains elusive. However,
since the fine fraction of PM;q is reasonably well-established, the coarse

factor can be bounded in terms of the other two.

To establish an initial mathematical foundation independent of contex-
tual assumptions, particulate matter (PM) represents particle mass and is

therefore a purely additive quantity (for PMs 5 greater than zero):

PM10 - PM2'5 + PM10,2'5 (337)

PM2,5 + PM10_2.5 > PM2‘5 >0 (338)
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where PMy_s5 represent particles between 2.5 microns and 10 microns.
Since there will be some mass in the coarse fraction, PM;q will always be
greater than PMs 5, and thus the inequality is true. The same additive

property applies to the harm per person that results from that exposure:

Harmleo = I‘IELI‘IIlp]\/[Z5 + HarmpMme's (339)

Harmpy, . + Harmpyy,, . > Harmpy, . > 0 (3.40)

For every contaminant, there is a harm intensity that converts the exposure

into the harm. Formally applying that:

Harmpr = HIPMm : PMlO (341)

HarmPMlo = HIPM2A5 -PMy5 + HIPM1072A5 ’ PMPM1072A5 (3'42)

Hlpm, 5 - PMas + Hlpaygp 5 - PMpagygp5 > (3.43)
HIPM2'5 . PM2_5 >0
Understanding the coarse fraction effect becomes important, yet the in-

dependent measurement of all three factors might not always be feasible.

Nevertheless, relationships between these factors can be established:

HIPM2.5 > HIPM1072A5 (3'44)

HI — -HI
Hlpay, 4, = PMiy — S25 PMo. 5 (3.45)

1= fas

HIPMm - f2.5 : HIPM245

T >0 (3.46)

Here the inequalities are known physical limits, that define the fraction of
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PM, 5 particles as:

(3.47)

PM, 5 has more health impact per unit mass than PM;y, and PM, 5 is
measured the most. What is wanted, is an effective harm intensity that

includes the harm from the coarse fraction as well as from the measured
PM2.5I

_ harmpy,,

Hlpy = 3.48
M7 PMs (3.48)
harmleo _ HIpr (3 49)
PMy 5 fas '
HI
PM10 > Hipy, . > Hlpy, (3.50)
2.5

The approach for the coarse fraction can now be defined. The all-cause
harm attributable to the coarse fraction of particulate matter (PM;jg_o5)
is estimated by calculating the difference between the harm due to PM;q
and PM; 5 as

HarmprfM = Harmpr — I‘I&I‘IHPMZ'5 (351)

The harm intensity for the coarse fraction can be estimated once the harm
from each fraction is quantified and once the concentrations of the other
PM fractions are known, as

H
HIPM10-2.5 = % (352)
10-2.5

3.7 Harm Budget

The harm attributable to chronic exposures is calculated using Equation 3.7.
The values of harm can be used to rank the contaminants and identify con-
taminants of concern (CoC). These CoCs can then be used to regulate TAQ
in dwellings. One way of doing this is to set a harm budget, the distribution
of harm that is expected in an acceptable reference scenario. A reference

scenario is a specific set of dwellings that all comply with a recognized
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indoor air quality (IAQ) standard (Chan et al., 2019; Martin et al., 2020;
Singer et al., 2020; Zhao et al., 2021) and so the TAQ in those dwellings
might be logically assumed to be acceptable.

Harm Budget = Y~ HI; - C; (3.53)

=1

Here Neoc is the number of CoCs and C' is the concentration representative

for a reference scenario. The equation expresses the harm budget in units
of DALYs.

For a harm budget with a value of unity, the weight of each contaminant
is determined by a partial weight for contaminant i, determined as the
product of its harm intensity (HI;) and the concentration in the reference

scenario (C;), divided by the harm budget.

HI, - C;

Partial Weight, = —————
arblal Welehh = Harm Budget

(3.54)

Each partial weight is then adjusted to a unitless target value like 1, 10, or
100, for easier interpretation. To do this, the partial weight is multiplied
by that unitless value, and the result is a new weighting factor called here
Adjusted Partial Weight;

Adjusted Partial Weight; = Partial Weight, - Unitless Target (3.55)

A common scaling factor for contaminant ¢ is determined as the ratio of

the harm associated with that contaminant to its adjusted partial weight.

Harm;
Adjusted Partial Weight;

Common Scaling Factor, = (3.56)

A weight (Weight,) for contaminant i is determined as the ratio of its harm
intensity (HI;) to the common scaling factor. The weight has units of

inverse concentration.

HI;
Common Scaling Factor;,

Weight,; =

(3.57)
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These equations are used to calculate the partial weights, adjusted partial
weights, common scaling factors, and weights associated with each contam-
inant in the context of the normilized unitless harm budget (More on this
in Section 8.3.1).

3.7.1 Regulated Harm Budget (RHB)

Merging the Indoor Air Quality (IAQ) equivalence principle proposed by
Sherman et al. (2012) with the concept of the Harm Budget, introduces
a parallel notion defined here as the Regulated Harm Budget (RHB). This
involves utilizing existing contaminant Exposure Limit Values (ELVs) for
chronic exposures presented in guidelines or standards, in the context of the
Contaminants of Concern (CoCs) and their corresponding harm intensities
to quantify the potential harm that represents the total allowed harm from

regulated contaminants implicitly set by a regulatory body.

Regulated Harm Budget (RHB) = Z HI; - C; (3.58)

Here, N¢ ¢ still represents the total number of Contaminants of Concern,
and C; denotes the long-term concentration threshold recommended in a
relevant standard or guideline The application of this is resolved in Sec-
tion 8.2.1.1.

3.8 Parameter distributions

3.8.1 Uncertainty Representation

A lognormal Probability Density Function (PDF) is plausible for all pa-
rameters that are positive and cannot physically have negative values. This
type of distribution is widely used and accepted to adequately adjust for
right-skewed data (Blackwood, 1992; Crow and Shimizu, 1987; Jia et al.,
2008; Ott, 1990). This approach is consistent with established method-
ologies (Huijbregts et al., 2005; Imbeault-Tétreault et al., 2013; Shaked
et al., 2015a; Slob, 1994). This is usually the default procedure because
the parameter values often vary over several orders of magnitude, and it

automatically excludes negative values that describe impossible scenarios
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(like a negative Harm), which are meaningless and could lead to erroneous
uncertainty estimates. The central limit theorem also indicates lognor-
mality for products of multiple independent random variables (Huijbregts
et al., 2005; Shaked et al., 2015b; Slob, 1994).

Medians represent the central value due to their robustness against outliers.
For non-normal data, medians better depict the typical result than means
(Huijbregts et al., 2005).

To characterize dispersion, the geometric standard deviation (GSD) is used.
As a multiplicative factor, the GSD indicates the relative spread around
the geometric mean rather than absolute variance (Ciroth et al., 2016;
Slob, 1994). Being a linear multiplier aligned with lognormal distribu-
tions, it quantifies uncertainty without specifying precise bounds. This
prevents potential scaling effects that can occur when combining variance-
based uncertainty measures. GSD suitably represents uncertainty because
real-world data often does not perfectly fit assumed distributions, espe-
cially in the tails where true bounds are uncertain, and the analyses do not

rely on the extreme 2.5th or 97.5th percentiles.

When lognormality and 95% confidence intervals (Cls) are known, the

GSD? approximates uncertainty (Slob, 1994):

97.5 percentile
GSD? = 3.59
\/ 2.5 percentile ( )

The GSD? can be used to approximate the 97.5th and 2.5th percentiles of

a distribution based on the median, assuming a lognormal distribution:

97.5percentile ~ GSD? - median (3.60)

median

GSD?

(3.61)

2.5percentile ~
For combined variables, output (y) variance depends on uncorrelated input

(x) variance (Hauschild et al., 2018; MacLeod et al., 2002; Morgan et al.,
1990):

92



3.8. PARAMETER DISTRIBUTIONS

GSD? = 6(@?:1[111(@517;1_)]2) (3.62)

When information is limited, expert judgement and uncertainty factors
guide uncertainty assignment for human health impact characterizations.
This allows approximating data variability when direct measures like con-

fidence intervals are unavailable (Rosenbaum et al., 2004).

3.8.2 Data Synthesis

The parameters involved in the Tox-harm and Epi-harm approaches can
have more than one available estimate of central tendency, and so they
need to be combined, or pooled, to produce a single value. Standard meta-
analysis statistical approaches were utilized to pool lognormal distributions
(Daly and Soobiah, 2022; DerSimonian and Laird, 1986a; Fisher, 2015;
Harris et al., 2008; Schmid et al., 2020; StataCorp, 2017, 2019). Meta-
analyses combine estimates for parameters with more than one central ten-
dency value available (Schmid et al., 2020). Meta-analyses employ the
random-effects DerSimonian and Laird estimators in STATA 18.0 (Daly
and Soobiah, 2022; Fisher, 2015; Harris et al., 2008). Random-effects mod-
els follow maximum likelihood methodology, assuming studies represent
random samples accounting for heterogeneity (DerSimonian and Laird,
1986b). For lognormal data, the median and geometric mean are equiva-
lent; the geometric mean closely matches meta-analysis results (StataCorp,
2019). The recommended synthesis approach is pooling independent data
points for epidemiology and toxicology harm parameters (Cooper et al.,
2019).

3.8.3 Monte Carlo Approach

A Monte Carlo approach (Metropolis and Ulam, 1949; Shaked et al., 2015a)
modeled input and output parameter distributions. The approach popu-
lates a parameter database via bootstrapping. Combining the database
with probability distribution functions generates random input samples
to compute outputs (including: Harm, harm intensity, effect factor, dose-

response factor, concentration-response factor).

The Monte Carlo simulations ran for a minimum of 100,000 iterations, with
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additional iterations as needed to meet a convergence criterion. The con-
vergence criterion was for the mean of the output parameter to become ap-
proximately normally distributed. Requiring the output mean to stabilize
into a normal distribution indicates that additional iterations are unlikely
to shift the central tendency or range substantially. Without convergence,
repeated simulations can yield slightly different statistic descriptors due to

inherent randomness.

Descriptive statistics were obtained, including means, medians, standard
deviations, geometric standard deviations, and confidence intervals. MAT-

LAB is used to code the model and run the sumulations.

Output vectors enable straightforward 95% confidence interval calculation
as quantiles. Vector bootstrapping also derives 95% confidence intervals
for medians using R’s MedianCI function (Signorell et al., 2021). The high

iteration count produced narrow median confidence intervals.

3.9 Summary

An iterative, evidence-based process established a list of 45 chronic con-

taminants in dwellings.

Acute compounds were excluded per the chronic scope. Toxicology and

epidemiology guided evaluating each option’s inclusion.
Adding PM;(_s 5 distinguishes the coarse fraction’s impacts from fine PM.

The core approach centers on determining contaminant-specific harm in-
tensities. These factors convert exposure concentrations into estimated
population harm (DALYS).

Toxicology provides dose-response factors describing contaminant toxicity.
Epidemiology offers concentration-response functions from human health
studies. Integrating evidence from both domains enables impact estimation

while balancing limitations.

Guidelines from life cycle assessment, widely applied in air pollution re-

search, inform the methodology.

By determining harm intensities, ranking contaminant contributions, and

setting harm-based benchmarks, indoor air quality is quantitatively linked
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to contaminant concentrations and resulting harm.

This methodology demonstrates policy and design value by enabling the

development of health-based exposure guidance.

Lognormal probability distribution functions represent uncertainty using
median central tendencies and GSD-based dispersion. This aligns with
data characteristics while avoiding issues with means, negative values, and

scaling effects.

Meta-analysis consolidates multiple estimates into single representative val-

ues using established techniques suited for lognormal data.

Monte Carlo simulation modeled parameters and quantified uncertainty,

with iterative convergence enabling output confidence intervals.
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Chapter 4

Parameters for Determining
Harm Intensities

The parameters needed to quantify a toxicology-based and epidemiology-
based Harm Intensity, HI are: (i) Risk estimates from epidemiologi-
cal studies, linking health effects to contaminant exposures, (ii) Baseline
disease/mortality rates, (iii) Damage factors, relating harm to incidence
(Equation 3.24), (iv) Breathing rates (Equation 3.8), (v) Dose-response
factors, relating incidence to mass intake, (vi) Age-dependent adjustment
factors (ADAF) for cancer (Equation 3.19), and (vii) Effect factors (Equa-

tion 3.8), relating harm to mass intake.

This study draws on established literature in life cycle impact assessment
(LCIA) (Hauschild and Huijbregts, 2015; Hauschild et al., 2018) and health /-
comparative risk assessments (Murray et al., 2020; Richmond-Bryant, 2020;
WHO, 2021) to identify reliable data sources. Analyzing references in these
domains offers insights into trusted sources. To ensure up-to-date data,
search strategies use keywords from reputable studies to identify appropri-

ate sources for each parameter.

The following sections detail the search and data-synthesis strategies used
to obtain values and distributions for these key exposure, health risk, and
harm parameters, for the 44 contaminants of interest (Section 3.1). Char-
acterization of each input forms the basis of the integrated harm estimation

methodology developed herein.
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4.1 Risk estimates for parameter beta (B(k,i))

The parameter ;) is an empirical factor that captures the change in a risk
estimate associated with a one-unit change in contaminant concentration
for a particular health outcome (k) and contaminant (i) (Equation 3.20).
It serves as the quantitative link between contaminant long-term expo-
sure and chronic health effects. Chronic statistics comprise deaths from
long-term exposure-related chronic diseases as well as those whose passing
was hastened by recent exposure to air pollution (WHO, 2021). These
risk estimates, represented as relative risks (RRs), odds ratios (ORs), per-
centage excess alterations, or hazard ratios (HRs), gauge the influence of
altering contaminant concentrations on specific health outcomes (Stare and
Maucort-Boulch, 2016; Symons and Moore, 2002).

The literature reflects varying viewpoints on the interchangeability of these
metrics for pooling in meta-analyses. Some researchers transformed ORs
into RRs (or vice versa) (Farhadi et al., 2020; Grant, 2014; Lamichhane
et al., 2015; Prasad et al., 2008; Shrier and Steele, 2006; van Rhee and
Suurmond, 2015; Wang, 2013); this conversion is only possible given a
complete access to raw original data (Grant, 2014; Wang, 2013). Others
endorse the equivalence of ORs and RRs (Braithwaite et al., 2019; Kihal-
Talantikite et al., 2020; Orellano et al., 2020; Shah et al., 2015; Simoncic
et al., 2020; Yuan et al., 2019), based on the “rare disease assumption”
(Greenland and Thomas, 1982; Knol et al., 2008; Pace and Multani, 2018).
Moreover, other studies correlate RRs with HRs (Chen and Hoek, 2020;
Hayes et al., 2020; Kihal-Talantikite et al., 2020; Scheers et al., 2015; Wang
et al., 2014; Yuan et al., 2019). There is a “rule of thumb” followed by
different authors: Prasad et al. (2008) mention that if 0.67 < OR < 1.3
then it is acceptable to assume RRs as equivalent to ORs. Similarly, Stare
and Maucort-Boulch (2016) and Symons and Moore (2002) reported that
when HR <2.5 it is acceptable to assume HRs are equivalent to RRs.

This study assumes the equivalence of ORs, RRs, and HRs. Standardizing
risk estimates for incremental changes in contaminant concentration is done
using a linear exposure-outcome relationship (Braithwaite et al., 2019; Chen
and Hoek, 2020; Orellano et al., 2020; Shah et al., 2015; Wang et al., 2014;
Yuan et al., 2019).

Deriving the beta parameter values involves an exhaustive systematic re-

view of risk estimate articles published after 2010 across databases. The
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4.1. RISK ESTIMATES FOR PARAMETER BETA (B.)

selected date range aligns with the exposure impact assessment of indoor
air in dwellings by Logue et al. (2012) (Section 2.5.1), which relied on risk

estimate data from epidemiological studies available up to 2010.

The search strategy incorporates pertinent keywords related to health im-
pacts and contaminants (See Appendix 1) for additional details on the
systematic review). This process is complemented by targeted reviews of
documents aggregating air pollution-related health data (USEPA, 2018;
WHO, 2021), the USEPA Integrated Science Assessments (ISAs) (US-EPA,
2010a,b, 2011, 2016, 2020a,b), and global burden of disease studies (Cohen
et al., 2017). Acute data (hourly or daily death rates attributable to recent
exposure to air pollution) was not considered because the aim of this work
is on chronic effects from long-term exposure to airborne contaminants
(Section 1.4). The review was performed for the list of 44 contaminants of
interest (the 45th contaminant, PMq_o 5, results from subtracting the PM
fractions, therefore it is not relevant for the review, Section 3.1). Mortality
data was chosen over morbidity data to represent health outcomes where
possible because mortality has a higher toll on the global burden of disease
than morbidity (Cohen et al., 2017).

For each of the 44 contaminants, there where risk estimates for ten of them:
acrolein (C3H40), benzene (CgHg), mold spores, formaldehyde (HCHO),
nitrogen dioxide (NOs), ozone (Os), respirable particulate matter (PM;g),
fine particulate matter (PMy ), radon (Rn), and sulphur dioxide (SOs).

The health effects associated to the contaminants where reported as all-
cause mortality or morbidity, or as individual outcomes (that can be summed
to obtain an all-cause estimate, Section 3). The estimate, or estimates, best
capturing the contaminant’s total disease burden or attributable mortality

is the best estimate of all-causes.

All-cause mortality was found to describe best the effect of all-causes for
five of the ten contaminants: PM;q, PMs 5, O3, SO and, NO,. They are the
commonly known criteria pollutants and have been scrutinized by health
assessments (Richmond-Bryant, 2020; WHO, 2021). For C3H,O and mold
spores, the best estimate of all-causes is represented by asthma morbidity.
Long-term mortality from carcinogenic effects was associated with CgHg,
represented by leukaemia mortality, and by lung cancer for Rn. For HCHO,
three health outcomes, leukaemia and lung cancer mortality and asthma
morbidity, are added together to obtain the best estimate of all-causes.

The health impacts chosen to represent each contaminant are the most
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reported, either for mortality or morbidity endpoints.

Table 4.1 shows these contaminants with incidence related data and the
recommended input parameters. Here, the term all-cause mortality ac-
counts for chronic data, based on cohort studies for total non-accidental
mortality causes (codes A00-R99) following the International Statistical
Classification of Diseases and Related Health Problems, 10th edition (ICD-
10) (WHO, 1993), therefore all-cause mortality excludes accidental deaths.
Chronic statistics comprise deaths from long-term exposure-related chronic
diseases as well as those whose death was hastened by recent exposure to
air pollution (WHO, 2021). The mortality risk estimates reflect all ages,
both sexes, and global location; whereas asthma morbidity is for children

(with varying ages depending on the contaminant and reference study).

The risk estimates shaping the health impact function, encompassing the
parameter (Equation 2.5), draw from diverse epidemiological studies, and
were pooled. This underscores pervasive positive associations between con-
taminants and health impacts. Importantly, most associations demonstrate

statistical significance (Riley et al., 2011).

PM, 5 has the most datasets (25) for all-cause mortality, indicating substan-
tial research on its health risks. Radon has numerous lung cancer datasets,
consolidating its status as a key contaminant. NOy has 24 total datasets,
suggesting significant research attention due to its prevalence and known
adverse effects. A global systematic review from the WHO represents the
most current, relevant, high impact and cited work providing risk estimates
for several contaminants, strengthening reliability (WHO, 2021). A current
global burden of diseae review had risk estimates for radon (IHME, 2019).
Acrolein, benzene, mold, formaldehyde, and sulphur dioxide estimates come
from this work’s review, providing needed insights on their lesser-studied
impacts. The range of morbidity to mortality outcomes shows the complex
contaminant-health interplay. Multiple cancer outcomes highlight investi-

gating priority contaminants’ carcinogenic potential.

Other authors have used different risk estimates in contaminant harm
assessments for ozone (Ojs), nitrogen dioxide (NOj), particulate matter
(PMyg, PMy5), and acrolein (C3H40). Logue et al. applied available mor-
bidity estimates for SO, and NOsy, and mortality for O3 and PMs 5, from
pre-2010 cohort studies in the USA or Canada (Logue et al., 2012). Van Zelm
et al. used a 2000 European cohort study for chronic PM;y mortality and
acute Oz mortality (Van Zelm et al., 2008). Van Zelm et al. used respi-

99



4.1. RISK ESTIMATES FOR PARAMETER BETA (B.)

/014D 001 =PIOIN tgu/Sil gep=ouozuogy : /b1 =uopey ‘qddg =70 gui/Fg] =TON-FO-wo[omY-0pA

(1102

I0-S TN J-OTNJ “UOHRIIIODU0D JURUIMIEIIOD D1} UI DU,

15

MOTADT UM() T (F2800°0-95£00°0 'T'D %S6) 86000 (FITT-GFO'T TD %S6) 6L0°T aste)) [y Aypestopy (t0s)

opxorp mydmg

(6102 ‘HINHI) 61 (9100°0-881000°0 "T'D %S6) 9260000  (PLTT6T0T T %S6) L60°T Tooue)) Funry Apresaoly (wy)

GOU@&

(120z ‘OHM) ¢z (29800°0-68500°0 T'D %S6) LL000 (60T-90°T T'D %S6) 80°T asue)) [y Ayire3aopy (“TNd)

Toyyewt opIred our{

(120z ‘OHM) L1 (£8€00°0-96200°0 "T'D %S6) ¢6800°0 (90 T-€0°T 'T'D %S6) ¥0'T asue)) [y Aypepopy (O"INd)

1019wt op1ed ojqeidsayy

(1202 “OHAN) L (86T00°0-T000000°0 T'D %S6) 660000 (20 T-100000'T T'D %S6) 10°T osue)) [y Aypesaopy (f0)

QUOZ()

(T0z ‘OHM) ¥ (6£00°0-666000°0 "TD %S6) S6T00°0 (FOT-T0T TD %S6) ¢0'T asne)) [y pelaoy (FON)

OPIXOIP USSOIIN

MOLAOL M) G (€L200°0-222000°0- 'TD %C6) 951000 (9TET-8L6'0 TD %S6) FT'T RISy Lyprqropy ,PIOIN
020z T8 10 emd]) 1 (ETT0°0760£00°0 T'D %S6) T6E00°0 (TTT-L6'0 TD %S6) 70T Teoure)) Funry GrresIoly

(ST0Z T 10 uomy[) z (F950°0-9T0°0- 'T'D %S6) 10200 (SCLT-2S8°0 T %S6) €221 RIWORY O] Ayerioy (OHOH) opAyepretio
MOLADT UM() id (68C0°0-C0£00°0- 'TD %G6) 2S20°0  (L0LT-L6°0 TD %C6) L8GT BunpISy Aypraaopy

(0T0Z “T& 10 uozOpuRR[A ) T (279000°0-622000°0 T'D %S6) 9EF000°0 (FETTTT TD %S6) 6o’ T RIUIORIOT] Aprelaoly (9H9D)

QCONCom

(310 “Te 30 ouwesovy-IsouLy) (Z0-6180°0 TD %S6) THT'0  (658°L-892°C TD %S6) 980T By Ayprqaopy (OvHED)

Uup[oIYy

QOUIDJOL UIR[A (Swsere AAS.“*UQV plojourered vyog oyeUIso ST owodino yjreoy jutodpuo yjpeoy “ueuture)juo))

‘suo1d1Iosep ejep sejeuIse sty 1§ o[qe],

100



4.2. BASELINE INCIDENCE (v,)

ratory mortality for O3 and lung cancer and cardio-pulmonary mortality
for PMy5 from USA cohort studies (Van Zelm et al., 2016). Gronlund
et al. used PMs 5 risk estimates for lung cancer, cardio-pulmonary, and
all-cause mortality from a 2002 USA cohort study (Gronlund et al., 2015).
Fantke et al. and Oberschelp et al. used the integrated exposure response
model for PMy 5 from the Global Burden of Disease (GBD) study (Bur-
nett et al., 2014; Fantke et al., 2019; Oberschelp et al., 2020). This models
five specific mortality causes (ischemic heart disease (IHD), stroke, chronic
obstructive pulmonary disease (COPD), lung cancer in adults and, acute

lower respiratory infections (ALRI) in children).

This research differs by using all-cause mortality when available, and risk
estimates from systematic reviews rather than single cohort studies. All-
cause mortality accounts for chronic data on total non-accidental causes
per the ICD-10, excluding accidental deaths (WHO, 1993).

There is an implicit assumption of the equitoxicity of PM by applying the
selected risk estimates, where particles are equivalently toxic per unit mass
intake. There is evolving evidence to suggest that adverse health effects
can vary depending on the source and chemical composition of the PM
(Thurston et al., 2021; Xu et al., 2022). Nevertheless, the size of the PM
is still the most consistent and robust predictor of incidence in studies of
long-term exposure (Burnett et al., 2018; Xu et al., 2022).

Finally, Table 4.2 presents the final beta parameter estimates used in this
research. These estimates were obtained after adapting the input data
to match the parameter distribution decisions (See Appendix 2 for full

descriptive statistics).

4.2 Baseline Incidence ()

The baseline incidence (o,) represents the average number of mortality
or morbidity cases for a given health outcome (k) in a population over a
defined time period (Van den Broeck et al., 2013). It is expressed in cases
per person-time, typically per year. The baseline incidence quantifies the
background disease burden in the absence of the contaminant exposure
under consideration. Values can be obtained from epidemiological cohort
studies reporting case counts, population, and follow-up time. Baseline

incidences are also published in global health statistic databases, like the
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4.2. BASELINE INCIDENCE (v,)

Table 4.2: Beta parameter estimates, [,
change/pg/m3.”

Contaminant Median GSD
Acrolein 0.135 1.34
Benzene 0.00041 1.39
Formaldehyde qsthma) 0.0197 1.99
Formaldehyde eukaemia) 0.0125 2.74
Formaldehyde ungcancer) 0.00236 2.63
Mold 0.0001 2.08
Nitrogen dioxide 0.00173 1.65
Ozone 0.00081 1.91
PM;q 0.00379 1.3
PM, 5 0.00763 1.14
Radon 0.00082 1.67
Sulphur dioxide 0.0056 1.35

* Values to 3 Sig. Figs.

Global Burden of Disease study.

The GBD 2019 was mainly used to find the necessary mortality and mor-
bidity central tendencies (medians) and variability (95% CI) for the ten
contaminants identified in section 4.1, and their corresponding health out-
comes (Table 4.3) (IHME, 2022; Murray et al., 2020), assuming that central
tendency estimates represent means when the reference is unclear about

what was reported.

Several approaches have been used to obtain baseline incidence rates (7o, )
for contaminant harm assessments: Van Zelm et al. (2008) consulted 2007
European Union statistics. Van Zelm et al. (2016) used 2005 WHO world
health data. Gronlund et al. (2015) obtained U.S. data from the CDC
National Center for Health Statistics. Fantke et al. (2019) used the 2016
GBD study. Although these may consult similar databases, differences can
arise based on the age, sex, and location chosen. This work similarly uses
global health data for incidence of the health outcomes pair to each con-
taminant using their risk estimate, specifically GBD 2019 statistics for all
ages, both sexes, and global location. GBD divides all-causes of disease
incidence into communicable/nutritional and non-communicable diseases,
which were combined for the all-cause estimate. This provides an appro-
priate value to represent all-cause mortality, differing from previous studies

that use specific mortalities.
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4.3. DAMAGE FACTORS (DF},)

Table 4.3: Baseline incidence findings.

+

Contaminant; Baseline Incidence (7,) Main reference

(cases/10° person/year)

Acrolein 63 (95% C.I. 6.3-630)* (Annesi-Maesano et al., 2012)
Benzene 4.32 (95% C.I. 3.97-4.66) (IHME, 2022)
Formaldehydeqsthma) 8 (95% C.I. 0.8-80)P (Rojas-Rueda et al., 2019)
Formaldehyde(eukaemia) ~ 4.32 (95% C.1. 3.97-4.66) (IHME, 2022)
Formaldehydeungcancery 26.4 (95% C.1. 24.3-28.4) (IHME, 2022)
Mold 504 (95% C.I. 401-633)° (IHME, 2022)
Nitrogen dioxide 675 (95% C.I. 637-715) (IHME, 2022)
Ozone 675 (95% C.L 637-715) (IHME, 2022)
PMio 675 (95% C.I. 637-715) (IHME, 2022)
PM, 5 675 (95% C.I 637-715) (IHME, 2022)
Radon 26.4 (95% C.L 24.3-28.4) (IHME, 2022)
Sulphur dioxide 675 (95% C.I 637-715) (IHME, 2022)

See Table 4.1 for health outcomes (k).

2 The baseline for asthma and acrolein derives from the corresponding risk estimate study. Chose an uncertainty
factor of 10 to reflect the variability of the extracted central estimate.

b The baseline for asthma and formaldehyde uses data from Rojas-Rueda et al. and the GBD. Applied an uncertainty
factor of 10 to account for variability in the selected central estimate.

¢ The baseline for asthma and mold reflects the age-standardised global burden of disease for asthma, deemed the
best match for meta-analyses of risk estimate studies of the mould Cladisporium genome. Those analyses examined
varied populations, age groups and sexes.

+ Figures are rounded to 3 significant figures.

For asthma, the baseline incidence varies highly depending on age and sex
(Rojas-Rueda et al., 2019). Asthma risk estimate and burden of disease
studies were reviewed to select the best population match, and uncertainty
estimates where assigned to reflect the span of values seen in the literature
(Annesi-Maesano et al., 2012; Braubach et al., 2011; Rojas-Rueda et al.,
2019). This addresses discrepancies from studying different ages, sexes
and locations. Logue et al. (2012) used various baseline prevalence sources,

mostly extracting untreated incidence from each study without uncertainty.

The baseline disease incidence parameter estimates after applying the pa-
rameter distributions utilized in this study (Section 3.8) are presented in
Table 4.4 (See Appendix 3 for full descriptive statistics).

4.3 Damage Factors (DF})

The damage factor (DFy) quantifies disability-adjusted life years (DALYSs)
per disease case (Hauschild and Huijbregts, 2015; Hauschild et al., 2018). It

serves as a measure of disease burden per incidence for a given health out-
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Table 4.4: Baseline disease incidence parameter esti-
mates, Yo, , cases/10° person/year.*

Contaminant?® Median GSD
Acrolein 15.5 4.93
Benzene 4.31 1.06
Formaldehyde qshma) 1.92 5.02
Formaldehyde eukaemia) 4.31 1.06
Formaldehyde jungcancer) 26.3 1.06
Mold 497 1.18
Nitrogen dioxide 675 1.04
Ozone 675 1.04
PM;j, 675 1.04
PM; 5 675 1.04
Radon 26.4 1.06
Sulphur dioxide 675 1.04

" Values to 3 Sig. Figs.

2 See Table 4.1 for health outcomes (k) that relate to each
contaminant. Case represent case counts of the disease or
deaths

come (k). Studies calculate DF's as the ratio of disease burden to incidence

for chosen health outcomes that represent contaminant effects.

In life cycle impact assessment (LCIA), damage factors are traditionally
categorized as representing either cancer or non-cancer effects, as originally
proposed by Huijbregts et al. (2005). This aligns with the toxicity-based
(tox-harm) approach in the present work. However, for the epidemiology-
based (epi-harm) method, damage factors are calculated based on the spe-
cific diseases identified in the risk estimates for each contaminant. For ex-
ample, PM, 5 should have a damage factor representing all-cause mortality,

since its risk estimate derives from a relative risk for all-cause mortality.

Damage factors should use the latest global disease burden data available.
A search for current burden of disease and health statistics databases to
derive DFs was performed. The Global Burden of Disease Collaborative
Network provides 2019 global, both sexes and all ages estimates for disease-
specific DALY burdens (IHME, 2022; Murray et al., 2020).

Damage factors are given for both cancer and non-cancer effects, follow-
ing LCIA conventions useful for the tox-harm approach. Also reported are

damage factors for specific diseases relevant to the epi-harm calculations.
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Rather than applying broad cancer and non-cancer factors, the epi-harm
method utilizes disease-specific damage factors corresponding to the health
endpoints in the epidemiological concentration-response data for each con-
taminant. This represents a key difference between the tox-harm and epi-
harm approaches in how damage factors are defined and implemented based

on the type of health risk evidence used.

Table 4.5 gives damage factors and uncertainties for cancer or non-cancer
effects, for 18 non-communicable disease types representing global health
in 2019 (IHME, 2022; Murray et al., 2020) (See Appendix 4 for full descrip-
tive statistics). The disease types align with those presented by Huijbregts
et al. (2005) for consistency and comparability. Cancer effects are repre-
sented by six specific cancers plus a cancer average. Non-cancer effects
include nine disease types and a non-cancer average. One can directly re-
late contaminants to disease types when toxicological or epidemiological
evidence describes their relationship. When evidence is insufficient, the
average effect is the representative measure (Huijbregts et al., 2005). The
weighted average damage factor for cancers is 10.6 DALYs/case (GSD 1.06)
and for non-cancers is 2.05 DALYs/case (GSD 1.06).

In earlier toxicology oriented studies, damage factors came from 1990 GBD
data (Huijbregts et al., 2005). An update is provided here by employing the
latest global statistics, with representative and consistent damage factors

for current health impact assessments.

Several contaminants with epidemiology data report combined all-cause
risk estimates representing multiple health outcomes. To define the disease
burden (DALYs) and damage factors, specific associated outcomes must be
identified (Table 4.6). Using overall all-cause risks requires selecting repre-
sentative diseases (k) for the total burden. A comprehensive review of cited
health studies in Table 4.1 determined outcomes describing all-cause mor-
tality for each contaminant (key sources: WHO, Global Burden of Disease,
EPA, toxicology reports) (Braubach et al., 2011; Hauschild and Huijbregts,
2015; Murray et al., 2020; Richmond-Bryant, 2020; WHO, 2021).

Table 4.7 presents damage factors and uncertainties for the disease-specific
outcomes identified from epidemiology risk estimates (See Appendix 5 for
full descriptive statistics). For contaminants with only one associated
health outcome, the damage factor equals that disease’s disability weight.
However, formaldehyde is represented by the combined effects of multiple

risks. All-cause damage factors also differ in magnitude, reflecting differing
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Table 4.5: Damage factors, DFy, DALY /case, by cancer
or non-cancer effects based on 2019 GBD data.”

Disease type Median GSD

Disease
Cancers
Breast cancer 10.7 1.04
Leukaemia 34.7 1.13
Liver Cancer 24.7 1.05
Lung cancer 21.2 1.04
Mouth and Oropharynx cancer 15.5 1.04
Stomach cancer 19.2 1.05
Cancer Average 10.6 1.06
Non-Cancers
Cardiovascular diseases 7.07 1.06
Chronic respiratory diseases 1.33 1.1
Asthma? 0.576 1.22
Congenital birth defects 6.17 1.18
Diabetes and kidney diseases 2.67 1.09
Digestive diseases 0.2 1.09
Mental disorders 0.327 1.22
Musculoskeletal disorders 0.451 1.22
Neurological disorders 0.113 1.42
Urinary diseases and male infertility 0.0175 1.13
Non-Cancer Average 2.05 1.06

* Values to 3 Sig. Figs.
& Asthma is part of chronic respiratory diseases

burdens across contaminants.

Other PM, 5 epidemiology-focused research derived their own damage fac-
tor estimates by considering the burden of disease from the health outcomes
that were most representative of those used for the baseline incidence and
risk estimates: Gronlund et al. (2015) used GBD 2010 estimates of Deaths,
DALY and YLL for the High-Income North America region for Cardiopul-
monary and Lung cancer mortalities. It also quantified a combined DF
for both health outcomes, and an all-cause DF that shows the influence
of age distribution on the value of the parameter. Gronlund et al. also
proves that each author can select the most appropriate descriptors that
are more likely to reflect the severity of contaminant-associated disease.
Fantke et al. (2019) used the 2016 GBD study to extract burden of disease
(BoD) estimates (DALYs) for each specific mortality (IHD, stroke, COPD,
lung cancer, and ALRI) associated to PMs 5 and divided them by the mor-
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4.4. BREATHING RATES (BR)

Table 4.7: Damage factors, DF}, DALY /case, from epidemiology

research”

Contaminant and health outcome Median GSD
Acroleingghma 0.575 1.23
Benzeneeyiaemia 34.7 1.14
Formaldehyde added ef fects 21.5 1.21
Moldgsthma 0.574 1.23
Nitrogen dioxidea;—cquse mortatity 4.82 1.14
Ozone ay—cause mortality 2.3 1.1

PMi0 At—cause mortatity 11.7 1.12
PMa 5 A11—cause mortality 11.7 1.12
Radonung cancer 21.2 1.04
Sulphur dioxide a;—cquse mortatity 0.5 4.23

* Values to 3 Sig. Figs.

tality (deaths) reported for the same health outcomes. Uncertainty was

not considered by any of these references.

Compared to previous air pollution burden of disease studies that included
PMay5, PMjp, and O3 (Fantke et al., 2019; Gronlund et al., 2015; Rojas-
Rueda et al., 2019; Van Zelm et al., 2008, 2016), the DF proposed here
align well, although differences arise from varying the health outcomes,

summary metrics, demographics, and populations used.

This approaches differ from Logue et al. (2012), who considered harm
and incidence estimates from previous air pollution studies rather than
a health database. The updated damage factors will benefit researchers us-
ing older indoor air contaminant harm estimates (Chan et al., 2016; Fazli
and Stephens, 2018; Logue et al., 2012; Zaatari et al., 2016).

4.4 Breathing Rates (BR)

Breathing rates represent the volume of air breathed (in m?®/person/year).
An average human intake of 13 m3/person/day is common in LCIA studies
(Fantke et al., 2017b; Gronlund et al., 2015; Hauschild and Huijbregts,
2015; Van Zelm et al., 2016), based on 11.3 m® for women and 15.2 m? for
men aged 19-65+ years (USEPA, 1997).
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Accounting for updated data, a change is made for 14.8 m? /person/day for
adults aged 16-81+ years (95% CI 13.5-16.2), pooling long-term inhalation
rates (Phillips and Moya, 2013; US-EPA, 2011). The median value is 5400
m? /person/year (GSD 1.07), and aligns with current epidemiology-based
studies (Fantke et al., 2017b; Gronlund et al., 2015; Hauschild and Hui-
jbregts, 2015; Van Zelm et al., 2016). While more comprehensive research
into understanding breathing exists (Del Negro et al., 2018; Layton, 1993),
and activity-specific breathing rates exist (Paek and McCOOL, 1992), a
population average value suffices here, as examining sensitivity to activity

levels exceeds the scope of this harm-based analysis.

4.5 Dose-Response Factors (DRF|; ;)

Dose-response factors (DRFs) relate the contaminant intake quantity to

potential health risk. DRFs can be derived through two main approaches:

e Toxicology-based DRFs use dose-response data from experimental
toxicology studies, primarily on animals. A common toxicology dose-
response metric is the ED50 - the effective dose resulting in a 50%
response (mortality, morbidity). Animal ED50s are converted to hu-
man equivalent doses. The DRF represents the slope of the dose-

response curve at low doses.

¢ Epidemiology-based DRFs use risk estimates from human popula-
tion health studies. Relative risk (RR) estimates from cohort studies
are commonly used. The DRF is calculated from the RR, reflecting

the exposure-response relationship observed in the study population.

Toxicology DRFs provide controlled dose-response information but have
uncertainty in animal-to-human extrapolation. Epidemiology DRF's reflect
real-world human exposures but are limited to available health studies.
Using both approaches provides complementary evidence on contaminant

toxicity for assessing health risks and impacts.

4.5.1 DRF based on effective median dose

The DRF () represents a substance’s toxicity component. It describes

disease incidence change per intake unit via inhalation, often expressed
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as cancer/non-cancer cases (k) per unit mass inhaled of contaminant ()
(cases/kg). The DRF takes as a point of departure the ED50 benchmark
measure. The ED50 (median effective dose) is a metric of the human-
equivalent lifetime daily dose per person, related to inhalation (intake) of a
substance that produces a specific effect (carcinogenic or non-carcinogenic
effects) in 50% of the population that is subject to that dose (Crettaz et al.,
2002; Fantke et al., 2021a; Pennington et al., 2002).

For life cycle impact assessments (LCIAs), carcinogenic ED50 are obtained
from toxicity databases, like the EPA’s IRIS, the International Programme
on Chemical Safety (IPCS), and the Carcinogenic Potency Database (CPDB).
Non-carcinogenic ED50 are typically estimated by extrapolating from the
no-observed adverse effect level (NOAEL) and lowest observed adverse ef-
fect level (LOAEL) (Huijbregts et al., 2005).

A review of the literature presented by Hauschild and Huijbregts (2015) and
Hauschild et al. (2018) is performed to identify relevant LCIA databases
compiling DRF's derived using an ED50. Three LCIA databases with in-

halation DRF's for airborne contaminants were identified:

1. UNEP-SETAC consensus model for the evaluation of comparative
toxicity “USEtox-2019” (Fantke et al., 2017a).

2. Globally Regionalized Life Cycle Impact Assessment Method “IM-
PACT WORLD+" (Bulle et al., 2019).

3. Life cycle impact (LCIA)-model “ReCiPe 2016” (Huijbregts et al.,
2017).

From these three, USEtox® 2.0 (USEtox-2019 consensus toxicity model)
was chosen because it is the most widely used and globally accepted model
that is the default for screening contaminant toxicity in LCAs (Fantke et al.,
2021a; Jolliet et al., 2018; Shaked et al., 2015a; Westh et al., 2015).

USEtox was screened to identify which of the 43 initial contaminants (pri-
oritized by Logue et al., as discussed in Section 2.5.1.3) are included in
it. Ammonia, Xylene (0), Manganese Mn(II), and Xylene (m/p) are ab-
sent from USEtox. Rosenbaum et al. (2008) provides a comprehensive
explanation for the criteria governing the inclusion of contaminants in this
database. It specifies that a contaminant may not be included due to rea-

sons such as (a) lack of a consistent set of data, (b) data quality falling
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below a specified minimum, and (c) inability to compute characterization

factors for as many chemicals as possible.

The carcinogenicity class according to The International Agency for Re-
search on Cancer (IARC) to the substances shown in USEtox can be found
in Huijbregts et al. (2005). Radon information from Lecomte et al. (2014)
and Reinoehl-Kompa and Grunst (2018).

Uncertainty factors for the DRF}; are unavailable in USEtox®. Steps to
assign uncertainty are shown in Huijbregts et al. (2005). DRF}; uncer-
tainty relates to extrapolating animal data to humans, time conversions,
cancer /non-cancer effect conversions, and exposure route differences. By
reviewing USEtox® and Huijbregts et al. (2005), uncertainty factors re-
flecting current research were provided for all contaminants as geomet-
ric standard deviation squared, since the parameter is log-normal. BAuA
(2019) and Martin et al. (2013) were used to define following uncertain-
ties: the interspecies conversion factor has an uncertainty of 1 for human,
4 for rat, 7 for mouse, 1.4 for dog, 2 for monkey, 2.4 for rabbit, and 3 for
guinea pig via inhalation. The duration of exposure factor is 1 for chronic,
4 for semi-chronic, and 24 for acute/sub-acute exposures. The cancer ef-
fect conversion has an uncertainty of 47. The non-cancer effect conver-
sion (NOAEL/LOAEL to ED50) has uncertainties of 9 (NOAEL) and 18
(LOAEL). A conservative approach was used for inorganic substances to
account for additional uncertainty with specific element ions (Huijbregts
et al., 2005).

USEtox® has toxicological evidence for 38 of the 44 selected contaminants
(Section 3.1). Accounting for radiological pollution via Radon, yields 39
contaminants. Table 4.8 presents medians and their deviation for 32 car-
cinogens and 27 non-carcinogens (See Appendix 6 and 7 for full descriptive
statistics). Contaminants labeled carcinogenic in USEtox via inhalation,
were considered human carcinogens although, the endpoint ED50 associ-

ated to a cancer effect is usually extrapolated from animal tests.

Typical cancer DRF uncertainty factors were 4 and 7, reflecting inter
species conversion uncertainty. Some had up to 47, mainly from cancer
effect conversion uncertainty. Non-cancer DRF typical uncertainty factor
was 16 and 18, maximum 94, primarily from NOEL/LOEL to ED50 con-

version uncertainty.

The literature on human-toxicological effect and damage factors of car-
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Table 4.8: Dose-response Factors, DRF{;;), DALY /kg, for can-
cer and non-cancer effects, via inhalation.™

DRF(cancer,i) DRF(non—cancer,i)

CAS RN Contaminant;
Median GSD Median GSD

75-07-0 Acetaldehyde 0.0043 3 0.0039 6.9
107-02-8 Acrolein 4.3 7.6
107-13-1 Acrylonitrile 0.13 1 0.033 9.3
71-43-2 Benzene 0.015 1 0.0021 3
100-44-7 Benzyl chloride 0.0096 5.2

106-99-0 1,3-Butadiene 0.056 1 0.009 8.8
111-76-2 2-Butoxyethanol 0.00042 4.1 0.0027 4.5
22537-48-0 Cadmium Cd(II) 0.17 7.8 1.4 6.4
75-15-0 Carbon disulfide 0.26 1
56-23-5 Carbon tetrachloride 0.037 4.1 0.035 7
78-87-3 Chloromethane 0.00024 16
18540-29-9 Chromium Cr(VI) 1.1 10 0.7 9.5
123-73-9 Crotonaldehyde(trans) 0.13 34

106-93-4 1,2-Dibromoethane 0.41 2.8 0.00063 7.6
106-46-7 1,4-Dichlorobenzene 0.0025 4.1 0.00033 5.7
107-06-2 1,2-Dichloroethane 0.0079 2.9

75-35-4 1,1-Dichloroethene 0.02 4.2 0.0014 7.5
64-17-5 Ethanol 0.00006 3.4

104-76-7 2-Ethylhexanol 0.00036 4.8

50-00-0 Formaldehyde 0.61 2.9 0.0011 6.2
87-68-3 Hexachlorobutadiene 0.0081 3.5

110-54-3 Hexane 0.00002 4.3 0.0012 6.9
78-79-5 Isoprene 0.0026 4.1

5989-27-5 Limonene (d-...) 0.0027 3.3

109-86-4 2-Methoxyethanol 0.0026 6.4
80-62-6 Methyl methacrylate 0.046 3
1634-04-4 Methyl tert-butyl ether 0.0022 2.9 0.0001 6.3
75-09-2 Methylene chloride 0.00064 4.3 0.0028 6.3
91-20-3 Naphthalene 0.042 2.8 0.005 7.3
10028-15-6 Ozone 0.37 4.3

10043-92-2  Radon” 0.052 1.1

100-42-5 Styrene 0.028 2.9 0.0015 7.1
79-34-5 1,1,2,2-Tetrachloroethane 0.015 4.9

127-18-4 Tetrachloroethene 0.0028 4.4 0.0023 8.8
100-88-33 Toluene 0.00079 5.1
79-00-5 1,1,2-Trichloroethane 0.011 4.6 0.0083 9.1
79-01-6 Trichloroethylene 0.00098 2.9

75-01-4 Vinyl chloride 0.11 2.8 0.0098 6.3
1330-20-7 Xylenes 0.00018 3.3 0.0009 7.1

T Values to 2 Sig. Figs.
" case/10~9Bq; Bq, Becquerels

cinogenic and non-carcinogenic chemicals for life cycle impact assessment
indicates that Huijbregts et al. (2005) remains the most relevant study, in-
fluencing the developing of USEtox® 2.0 model. Here, advances are done
for that study, by assigning new uncertainty factors for the selected con-

taminants.
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4.5.2 DRF based on risk estimates

The dose response factor (DRF ;) describes cases per intake mass, and
from an epidemiology approach, equals a concentration response factor
(CRF) divided by breathing rate (BR) (Equations 3.29 and 3.30). The
CRF ;) quantifies incidence rate (k) per concentration of contaminant (7).
The CRF is a function of the beta parameter (the risk estimate), baseline
incidence rate, and concentration. For expected indoor air concentrations,
the CRF is approximately linear. Consequently, CRFs and DRFs are es-
timated for the 10 contaminants with epidemiology research identified in
Section 4.1 and their corresponding best estimate of all-cause (Table 4.9
and Table 4.10) (Also, see Appendix 8 and 9 for full descriptive statistics).

Table 4.9: Description for Concentration-Response Factors, CRE],
case/ng/m?/10° person/year.™

Acronym Contaminant; CAS RN  All cause health Median GSD

outcome

CsH40 Acrolein 107-02-8 Asthma morbidity 2 5.1

CgHg Benzene 71-43-2 Leukaemia mortal- 0.0018 1.4
ity

HCHO Formaldehyde 50-00-0 Asthma morbidity  0.23 4.2
plus Leukaemia

mortality and Lung
cancer mortality

Mold Asthma morbidity 0.048" 2.1
NO, Nitrogen dioxide  10102-44-0  All-cause mortality 1.2 1.7
O3 Ozone 10028-15-6  All-cause mortality 0.54 1.9
PMig NA All-cause mortality 2.6 1.3
PM, 5 NA All-cause mortality 5.1 1.2
Rn Radon 10043-92-2  Lung cancer mortal-  0.021"" 1.7
ity
SO2 Sulphur dioxide 10043-92-2  All-cause mortality 3.8 1.3

T Values to 2 Sig. Figs.
" case/CFU/m?/10° person/year; CFU, Colony-Forming Units
™ case/Bq/m?/10° person/year; Bq, Becquerels

PM, 5 has the highest median and disease incidences per unit of exposure
concentration or mass intake. This represents the PMs 5 - associated annual
mortality rate per pg/m? or kg inhaled for all-cause mortality, all ages,
both sexes, and global location. Uncertainty reflects input uncertainties
modeled via the Monte Carlo simulation. Acrolein and formaldehyde have
the largest uncertainties, reflecting the influence of age distribution when

selecting appropriate asthma incidence descriptors in children. CRF and
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Table 4.10: Description for Dose-Response Factors,
DRF;, case/kg.t

Contaminant; Median GSD
Acrolein 3.8 5.3
Benzene 0.0033 1.4
Formaldehyde 0.43 4.1
Mold 0.088" 2.1
Nitrogen dioxide 2.2 1.7
Ozone 1 1.9
PM;q 4.7 1.3
PMy 5 9.5 1.2
Radon 0.04™ 1.7
Sulphur dioxide 7 1.4

T Values to 2 Sig. Figs. See Table 4.9 for acronyms, CAS
and health outcomes

* case/10~°CFU; CFU, Colony-Forming Units

™ case/1079Bq; Bq, Becquerels

DRF uncertainty factors were similar since breathing rate uncertainty was

negligible compared to other inputs.

Two relevant aspects are the interpretation of a linear low-dose relationship
yielding concentration-independent parameters, unlike previous analyses,
and the novel use of all-cause estimates, whereas previous work dealt with
specific mortalities (Fantke et al., 2019; Gronlund et al., 2015; Logue et al.,
2012; Van Zelm et al., 2008, 2016).

4.6 Age-Dependent Adjustment Factors
(ADAF)

Application of age-dependent adjustment factors (ADAFs) to dose response
factors is recommended when estimating cancer risks based on age at expo-
sure (U.S. Environmental Protection Agency (EPA), 2023). Higher ADAF
values are used for early life exposures to reflect increased lifetime cancer
risks (OEHHA, 2009). USEPA suggests the use of ADAF as: (i) 10-fold for
exposures before 2 years of age (ii) 3-fold for exposures between 2 and <16

years (iii) 1 for exposures after age 16. These recommendations from EPA
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(2005) remain widely applied, including in recent epidemiology-based effect
factors (OEHHA, 2009). The recommended ADAF estimate is 1.6 (95%
CI 1-10). After using parameter distribution, the ADAF has a median 0.63
(GSD 3.7).

4.7 Effect Factors (EF; ;)

An effect factor combines a dose-response factor and a damage factor, de-
scribing harm (k) change per contaminant (7) intake unit, typically as DA-
LY /kg (Equation 3.11). Existing LCIA methodologies have used DALY's
to quantify airborne contaminant chronic health impacts (Hauschild et al.,
2018). Effect factors are central in LCIA characterization. They can be
derived from epidemiological data like risk estimates, termed epidemiology-
based effect factors, or from toxicological data such as the median effective
dose (ED50), called toxicology-based effect factors. LCIA applies effect

factors from either domain.

4.7.1 Toxicology-Based Effect Factors

Toxicology-based effect factors (EFs) combine dose-response factors (DRFs,
cancer or non-cancer cases/kg inhaled) from animal studies with damage
factors (DFs, DALY /case) representing human disease burdens. EF's rep-
resent the cancer and non-cancer effects from inhaling a contaminant. The
EF integrates the DRF describing a substance’s toxicity and the DF quan-
tifying associated harm, first presented by Rosenbaum et al. (2008), and
relevant for LCIAs (Fantke et al., 2021a; Jolliet et al., 2018). Among the
44 contaminants, 33 have carcinogenic effects and 27 have non-carcinogenic
effects. Tables 4.11 and 4.12 present the median EFs, distribution un-
certainty as geometric standard deviation (GSD), and associated health
outcomes for cancer, non-cancer, and combined effects. A specific cancer
was assigned to each contaminant’s effect factor based on references iden-
tifying carcinogenic outcomes (Huijbregts et al., 2005; Tran et al., 2020;
Turiel, 2012). Median cancer EFs range from 107* to 10" DALY /kg (see
Table 4.11, and Appendix 10). Most are higher than Huijbregts et al.
due to USEtox® DRF’s linear constant and ED50 changes (Fantke et al.,
2017a). Formaldehyde has the highest median, consistent with previous
VOC emission impact studies (Laurent and Hauschild, 2014).
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Table 4.11: Estimates for carcinogenic Effect Factors, EF,..nceri,
DALY /kg. ™

CAS RN Contaminant Median GSD Health outcome
75-07-0 Acetaldehyde 0.09 2.9 Lung Cancer
107-13-1 Acrylonitrile 2.7 1 Lung Cancer
71-43-2 Benzene 0.51 1.1 Leukemia
100-44-7 Benzyl chloride 0.19 4.8 Stomach Cancer
106-99-0 1,3-butadiene 0.6 1.1 Cancer Average
111-76-2 2-Butoxyethanol 0.01 4.1 Liver Cancer
22537-48-0 Cadmium Cd(IT) 3.5 13 Lung Cancer
56-23-5 Carbon tetrachloride 0.92 4.4 Liver Cancer
18540-29-9 Chromium Cr(VI) 23 7.8 Lung Cancer
123-73-9 Crotonaldehyde(trans) 3.1 3.4 Liver Cancer
106-93-4 1,2-Dibromoethane 10 2.9 Liver Cancer
106-46-7 1,4-Dichlorobenzene 0.028 4.4 Cancer Average
107-06-2 1,2-Dichloroethane 0.15 29 Stomach Cancer
75-35-4 1,1-Dichloroethene 0.43 4.2 Lung Cancer
64-17-5 Ethanol 0.0015 3.4 Liver Cancer
104-76-7 2-Ethylhexanol 0.0086 4.3 Liver Cancer
50-00-0 Formaldehyde 21 2.9 Leukemia+Lung Cancer
87-68-3 Hexachlorobutadiene 0.086 3.7 Cancer Average
110-54-3 Hexane 0.00025 4.9 Cancer Average
78-79-5 Isoprene 0.027 4.3 Cancer Average
5989-27-5 Limonene (d-...) 0.028 3.7 Cancer Average
1634-04-4 Methyl tert-butyl ether 0.074 3 Leukemia
75-09-2 Methylene chloride 0.0067 4.3 Breast Cancer
91-20-3 Naphthalene 0.87 2.9 Lung Cancer
10028-15-6 Ozone 7.9 4.5 Lung Cancer
10043-92-2 Radon 1.1" 1.1 Lung Cancer
100-42-5 Styrene 0.3 2.9 Breast Cancer
79-34-5 1,1,2,2-Tetrachloroethane 0.39 4.4 Liver Cancer
127-18-4 Tetrachloroethene 0.1 4.1 Leukemia
79-00-5 1,1,2-Trichloroethane 0.26 4.7 Liver Cancer
79-01-6 Trichloroethylene 0.01 2.8 Cancer Average
75-01-4 Vinyl chloride 2.7 2.8 Liver Cancer
1330-20-7 Xylenes 0.0027 3.3 Mouth And Oropharynx
Cancer

T Values to 2 Sig. Figs.
" DALY /10~°Bq; Bq, Becquerels

Median non-carcinogenic EFs range from 107 to 10* DALY /kg inhaled.
Table 4.12 (and Appendix 11) shows the non-carcinogenic EFs, lower than
Huijbregts et al. due to lower average non-cancer damage factors. The 2019
GBD study had a cancer DF of 10.6 versus 11.5 in 1990, and a non-cancer
DF of 0.6 versus 2.7 in 1990. The lower non-cancer DFs combined with
dose-response changes give lower non-cancer EFs, demonstrating DF influ-
ence. Acrolein has the highest median, consistent with previous research
(Laurent and Hauschild, 2014). Most contaminants use an average non-

cancer effect given insufficient evidence to assign a single outcome. Asthma
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was identified as the main non-cancer effect for acrolein and formaldehyde

based on epidemiology data; see Table 4.1.

Table 4.12:  Estimates for Non-carcinogenic Effect Factors,
EFnon—cancer,i7 DALY/kg+

CAS RN Contaminant Median GSD Health outcome
75-07-0 Acetaldehyde 0.0088 6.9 Non-Cancer Average
107-02-8 Acrolein 2.4 7.2 Asthma

107-13-1 Acrylonitrile 0.068 7.6 Non-Cancer Average
71-43-2 Benzene 0.0043 2.8 Non-Cancer Average
106-99-0 1,3-butadiene 0.018 6.6 Non-Cancer Average
111-76-2 2-Butoxyethanol 0.0054 4.4 Non-Cancer Average
22537-48-0 Cadmium Cd(II) 2.8 5.2 Non-Cancer Average
75-15-0 Carbon disulfide 0.54 1.1 Non-Cancer Average
56-23-5 Carbon tetrachloride 0.069 6.6 Non-Cancer Average
78-87-3 Chloromethane 0.00049 10. Non-Cancer Average
18540-29-9 Chromium Cr(VI) 1.5 10 Non-Cancer Average
106-93-4 1,2-Dibromoethane 0.0012 5.7 Non-Cancer Average
106-46-7 1,4-Dichlorobenzene 0.00068 6.2 Non-Cancer Average
75-35-4 1,1-Dichloroethene 0.0028 6.5 Non-Cancer Average
50-00-0 Formaldehyde 0.00066 7.4 Asthma

110-54-3 Hexane 0.0024 6.9 Non-Cancer Average
109-86-4 2-Methoxyethanol 0.0051 6.5 Non-Cancer Average
80-62-6 Methyl methacrylate 0.095 2.9 Non-Cancer Average
1634-04-4 Methyl tert-butyl ether 0.00021 6.4 Non-Cancer Average
75-09-2 Methylene chloride 0.0059 6.4 Non-Cancer Average
91-20-3 Naphthalene 0.011 7.9 Non-Cancer Average
100-42-5 Styrene 0.0029 6.8 Non-Cancer Average
127-18-4 Tetrachloroethene 0.0047 6.9 Non-Cancer Average
100-88-33 Toluene 0.0016 5.4 Non-Cancer Average
79-00-5 1,1,2-Trichloroethane 0.016 6.9 Non-Cancer Average
75-01-4 Vinyl chloride 0.02 7.7 Non-Cancer Average
1330-20-7 Xylenes 0.0018 7.2 Non-Cancer Average

* Values to 2 Sig. Figs.

Adding the individual EFs (EF} ;) gives the all-cause effect factors (E'F})
(Equation 3.18). Table 4.13 presents the combined toxicology-based EF's
for 39 total contaminants ordered by magnitude of their median (See Ap-
pendix 12 for full descriptive statistics). Chromium (VI) has the highest
median, formaldehyde is highest among VOCs, and ozone is also elevated.

Uncertainty is lower than Huijbregts et al. (2005).

Typical uncertainty is a factor of 5 for cancer EFs and 15 for non-cancer,
stemming from DRF, DF, and age-adjustment (ADAF') uncertainties. DRF
uncertainty relates to animal-to-human extrapolation, time/exposure con-
versions, and effect conversions. DF uncertainty reflects evolving global

disease burden knowledge.
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Table 4.13: All-cause toxicology-based Effect Fac-
tors, EF;, DALY /kg. ™

Contaminant Median GSD
Chromium Cr(VI) 31 8.8
Formaldehyde 13 5.2
Cadmium Cd(II) 10 12
1,2-Dibromoethane 6.2 6
Ozone 4.8 6.2
Acrolein 2.4 7.2
Acrylonitrile 2.1 4.2
Crotonaldehyde(trans) 2 6.3
Vinyl chloride 1.8 5
Carbon tetrachloride 0.97 6.4
Radon 0.68" 3.7
Naphthalene 0.66 5.3
Carbon disulfide 0.54 1.1
1,3-butadiene 0.48 3.6
Benzene 0.32 3.9
1,1-Dichloroethene 0.29 6.7
1,1,2-Trichloroethane 0.28 6
1,1,2,2-Tetrachloroethane 0.24 6.2
Styrene 0.21 5.7
Benzyl chloride 0.12 6.6
Tetrachloroethene 0.1 5.2
Acetaldehyde 0.097 4.6
1,2-Dichloroethane 0.096 5.9
Methyl methacrylate 0.095 2.9
Hexachlorobutadiene 0.054 7.4
Methyl tert-butyl ether 0.048 5.7
1,4-Dichlorobenzene 0.022 7.6
2-Butoxyethanol 0.019 4.8
Methylene chloride 0.019 5.2
Limonene (d-...) 0.018 5.9
Isoprene 0.017 6.9
Xylenes 0.0066 6
Trichloroethylene 0.0064 5.4
2-Ethylhexanol 0.0053 6.8
2-Methoxyethanol 0.0051 6.5
Hexane 0.0034 6.6
Toluene 0.0016 5.4
Ethanol 0.00091 6.1
Chloromethane 0.00049 10

T Values to 2 Sig. Figs.
“ DALY /10~°Bq; Bq, Becquerels
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When ranked by median values, contaminants with the highest carcinogenic
and non-carcinogenic effects largely match those identified by Huijbregts
et al. (2005). A similar consistency emerges when comparing all-cause effect
factors, which account for age-adjustment, with estimates from Logue et al.
(2012). Uncertainties around carcinogenic, non-carcinogenic and combined
effect factors prove narrower here than in the study of Huijbregts et al.,
and therefore that of Logue et al. too. This is due to lower uncertainties
in dose-response and damage factors, both gleaned from data published
in the past decade. These updated figures for toxicology-based cancer and
non-cancer effects enhance earlier work on life-cycle impact assessments, by
Fantke et al. (2019) and Huijbregts et al. (2005). The analysis shows the
benefit of using current dose-response and disease-burden data to reduce
uncertainties. Compared with the Logue et al. values from 2012, estimates
of the median all-cause effect factors are higher for 27 contaminants by an
order of magnitude, yet lower for eight. This is because of new GBD data,
a revised 0.5 value for ED50 toxicity, updated ED50s in databases, and
newly proposed cancer/non-cancer effects for some contaminants. Overall,
Logue et al.’s results underestimate effects when compared with the newer
data given here. The age-adjustment factor also strongly sways combined
estimates. Logue et al.’s mean ADAF of 1.6 contrasts with the log-normal
distribution applied here, with the same mean but a lower median of 0.6.

This depresses median carcinogenic effects.

Some contaminants now account for both cancer and non-cancer effects,
whereas previously only one was known. This, too, can increase median
outputs. These effect factors take median effective doses (ED50) from tox-
icology studies as their starting point, which allows their application for
indoor or outdoor exposures. USEtox assumes a linear low-dose response
for contaminant-specific lifetime doses of up to a 0.5 lifetime disease proba-
bility, which is standard for life-cycle impact assessments. The toxicological
approach assumes linearity for inhalation doses of airborne contaminants
that remain below the contaminant-specific lifetime dose, as reported in the
USETox database. Carcinogenic and non-carcinogenic effects are presented
separately for use in LCA. Though toxicology databases feature in LCA
analyses, their DALY outputs relied on 1990s data and the methodology
of Huijbregts et al. (2005), which has been changed. This update repre-
sents an improvement. Limitations of the toxicology-based harm approach
followed stem from toxicity database reliance, critical effect choices, ED50
availability, publication bias, animal-to-human uncertainty, dose-response

assumptions, and updates proposed by the LCIA bibliography. Further
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work should examine multiple toxicity data sources, evaluate alternative

critical effects, and explore non-linear dose-response.

4.7.2 Epidemiology-Based EF's

Epidemiology-based effect factors (EF};) utilize concentration-response
functions from risk estimates from human health studies, for a particular
health outcome (k) from a specific contaminant (¢). This allows epidemi-
ology EFs to be derived using real-world human exposure-response data.
However, the lack of availability of cohort studies limits contaminants with

epidemiology EF's.

Table 4.14 shows the median epidemiology EFs ranked by their magnitude
(with mold and radon moved to the end given their different dimensions)
(see Appendix 13 for full descriptive statistics). PMs 5 has the highest EF,
an order above other contaminants, indicating the greatest potential health
impact per kg inhaled. Formaldehyde has the highest EF for VOCs, with
NO; third highest overall.

Table 4.14: All-cause epidemiology-based Ef-
fect Factors, EF;, DALY /kg.™

Contaminant Median GSD
PMa 5 110 1.2
PMig 55 1.3
Nitrogen dioxide 10 1.7
Formaldehyde 7.3 2.2
Sulphur dioxide 3.5 4.3
Ozone 2.3 1.9
Acrolein 2.1 5
Benzene 0.11 1.4
Mold 0.051" 2.2
Radon 0.84™" 1.7

T Values to 2 Sig. Figs.
" DALY /10~?CFU; CFU, Colony-Forming Units
" DALY /10~°Bq; Bq, Becquerels

The approach of Logue et al. implicitly used epidemiology-based EFs. By
comprehending the interconnections among the equations and parameter
properties detailed in Section 3, it becomes possible to reverse-engineer
the statistical descriptors for the parameters not explicitly shown by other
works. At this juncture, the focus is on the effect factors, enabling a com-

parison with the epidemiology-based harm approach adopted here.
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For PMs 5, the median EFs broadly agree with Logue et al., likely due to
similar all-cause mortality representations. For Oz, EFs are higher here
because the damage factor for ozone applied is one order of magnitude
higher. Logue et al.’s NOy and SO, estimates used available acute data
treated as chronic, giving at least a two order of magnitude difference.
Overall, two factors influence differences between the IND method and
epi-harm approach: first, underlying epidemiology has evolved, suggesting
contaminants are more harmful; second, data manipulation differs. The
latter refers to parameter probability distribution functions - log-normal
here versus Logue et al.’s fitted normal, log-normal, and Weibull. It also
involves truncating distributions, and convergence criteria use. The present

decisions are justified based on current best knowledge and practice.

LCIAs of O3, PM;g, and PM, 5 have been performed (Fantke et al., 2019;
Gronlund et al., 2015; Oberschelp et al., 2020; Van Zelm et al., 2008, 2016).
Some of these studies presented mean/median EFs explicitly, with and
without uncertainty, for all-cause or cause-specific mortality. When pa-
rameter descriptors where not shown, they were quantified from the results
given in each study. All these references have one thing in common: the
approach towards the effect factor is dependent on a background concen-
tration, which could represent a weakness because EF's are sensitive toward
fixed contaminant background concentrations (Fantke et al., 2019; Ober-
schelp et al., 2020). Conversely, background concentrations are not required

here.

General overlap is observed between this and previous works, but incon-
sistencies exist. Ideally, harm related effects for a contaminant should
align across studies. However, differences arise due to varied analytical
choices influencing uncertainty, including: C-R function, health outcomes,
central tendency metrics, spatial/population resolution, breathing rates,

background concentrations, and methodological frameworks.

Epidemiology-based effect factors provide unique human evidence on con-
taminant impacts. Effect factors were derived per current life cycle impact
assessment practice, reporting dose-response and disability-adjusted life
year factors. However, limitations exist. A linear concentration-response
function was assumed given the expected low-moderate exposure levels.
Only epidemiology on the specific contaminant was used, avoiding cross-
contaminant toxicity assumptions. Pooling risk and health estimates across

demographics was done, although stratification can influence results. Re-
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liance on cohort studies restricts anaysis to contaminants with available
data. Use of all-cause mortality may underestimate chronic effects. Out-

door air studies are relied upon pending more indoor epidemiology.

Particulate matter assumes equitoxicity despite different compositional fac-
tors. Additional epidemiological research would reduce uncertainties, es-
pecially on particulate matter toxicity mechanisms and demographically-
stratified analyses to capture exposure differences. Long-term studies show-
ing chronic effects accounting for PM composition are also needed. While
limited by the available data, these initial epidemiology-based factors offer

complementary evidence and insights into human health impacts.

4.8 SWOT Analysis

A comparative SWOT (strengths, weaknesses, opportunities, and threats)
analysis is performed for each parameter to assess the updated methodol-
ogy’s validity and relevance for quantifying indoor air contaminants harm
(Ghazinoory et al., 2011). This evaluation examines interrelations between
the approach’s internal and external factors. Table 4.15 summarizes the

analysis.

The epidemiology-based approach relies heavily on available concentration-
response data to derive effect factors, a key limitation. However, the use of
pooled results accounts for variability. While curated data is ideal for accu-
racy, limited availability for certain pollutants or outcomes may cause inac-
curacies. The toxicology-based approach utilizes regularly updated expert-
reviewed databases, providing current dose-response information. However,
lack of standardized procedures to combine cancer and non-cancer effects

introduces uncertainty.

A shared strength among the parameters is updated literature-based pa-
rameter data, enhancing outputs for policymakers. Reduced uncertainty
compared to previous methods is advantageous. Uncertainty representa-
tion also aids interpretation of central tendencies and distributions. As
databases evolve, parameter updates are enabled. The subjectivity of as-
sumptions is a core weakness. Transparency in documenting assumptions
improves reproducibility. Overall, the methodology can produce the neces-
sary parameters to quantify indoor contaminant harm. The SWOT analysis

will guide improvements in future work.
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Table 4.15: SWOT analysis of updated methodology and recommended parameters.

Parameter Strengths Weaknesses Opportunities Threats
Database discrepancies
. R Subjective distribution assumptions
Effect Expert-guided methodology Method variability . . . P
Disease-contaminant
factor
EFy misalignment
ADAF Uncertainty management Limited population Subjective distribution assumptions
representativeness
Database discrepancies
Subjective distribution assumptions
Dose Expert-guided methodology Expert recommendation ! Di ) P
response discrepancies 1sease-contaminant
misalignments
factor Continuous updates &
DRFy, 4 )

. . o . To enrich datasets . e .
Breathing Uncertainty management Limited population . - Subjective distribution assumptions
rate representativeness Demographic adaptability

Robust databases ) Disease-contaminant
Damage ) Chosen data time scope L
Factor Confident uncertainty misalignments
DF; k and
Baseline
incidence
Yo
Effective risks pooling Linear assumption

Bot Confident uncertainty Generalized assessment Heterogeneity health outcomes

eta
Bk Significant chronic effects Context limitations Single-Reference Endpoints

N

Strong epidemiological linkage

Time scope constraints
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4.9. SUMMARY

4.9 Summary

Epidemiological evidence was found for 10 contaminants: acrolein, ben-
zene, mold, formaldehyde, nitrogen dioxide, ozone, PM;q, PMs 5, radon,
and sulphur dioxide. A representative health outcome was identified for
each, chosen as the most reported endpoint. This enabled developing
epidemiology-based effect factors relating harm to intake mass (DALY /kg)
using risk estimates, baseline rates, and damage data. A linear exposure-
response function modeled the low-concentration regime. PMs 5 had the

highest median harm per unit mass.

This work presents carcinogenic and non-carcinogenic toxicology-based ef-
fect factors for 39 indoor contaminants. Formaldehyde has the highest
median carcinogenic factor. Compared to previous estimates, carcinogenic
factors are higher but with reduced uncertainty. Acrolein has the highest
non-carcinogenic factor. These are lower than previous estimates but with

lower uncertainty:.

An integrated methodology has been developed to derive needed param-
eters for modeling harm, readily applicable in health risk and life cycle
assessments. Major strengths include accounting for parameter uncertain-

ties. Key limitations are assumptions required to derive data.
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Chapter 5

The Harm Intensity

The contents of Sections 5.4 and 5.5 are part of the publication:

Morantes, G., Jones, B., Sherman, M., & Molina, C. (2023). Harm from
residential indoor air contaminants. Environmental Science € Technology.
Article ASAP DOI: 10.1021/acs.est.3c07374

5.1 Introduction

LCIA use effect factors (EFs) in units of DALY /kg as a step to quantify
harm from air contaminants, as the mass emitted is the metric of interest
(Section 2.4.2). However, relating total harm to contaminant exposure

better evaluates potential population impacts in indoor settings.

Concentration and exposure length influence harm (Hess-Kosa, 2018). Ex-
isting TAQ metrics, like limit values, rely on concentrations (Hess-Kosa,
2018; WHO, 2021) but do not directly consider health risks, rather they
advise on exceeding limits. To address this, a new harm-based metric called
Harm Intensity (HI) is introduced, linking chronic harm (DALY /person-
/year) to contaminant concentrations (typically pg/m?). Therefore, for air-
borne contaminant (i), HI; has units of DALY /ug/m3/person/year. This is
equivalent to the EPA’s inhalation unit risk relating cancer risk to exposure

concentration (Agency, 2015).

Literature on ventilation and IAQ has connected DALYs per concentration
unit (Guyot et al., 2019; Sherman et al., 2012) and PMy 5 in LCAs (Gron-
lund et al., 2015; Oberschelp et al., 2020). However, the HI concept has
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not been explicitly defined before. HI relates contaminant exposure to esti-
mated harm, enabling the identification of the most harmful contaminants

that can be prioritized for control when chronic concentrations are known.

Two evidence domains guide HI derivation: epidemiology and toxicology
research on air contaminant health impacts. The following sections discuss

defining HI based on each approach.

5.2 A toxicology-based Harm Intensity, HI;.

This work reviewed relevant LCIA literature to identify current, data
sources for key parameters deriving the harm intensity. Examining promi-
nent bibliographies (Hauschild and Huijbregts, 2015; Hauschild et al., 2018)
provided insights into sources widely used by experts. Search terms and

criteria from these studies enabled the retrieval of up-to-date information.

For damage factors, the 2019 Global Burden of Disease study offered ex-
tensive data on disease statistics (IHME, 2022; Murray et al., 2020). For
toxicology-based dose-response factors, the USEtox consensus model served
as the leading toxicity evaluation reference (Fantke et al., 2017a). US-
EPA (2011) data was fundamental to derive an adult breathing rate of
14.8 m? /person/day. Age-dependent adjustment factors for cancer risk es-
timations were used, as recommended by EPA (2005). An outline of the
relationship between these parameters to obtain a toxicology-based harm

intensity is given in Figure 5.1.

Figure 5.2 is a visual representation of the analytical model employed to
estimate the toxicology-based harm intensity. It is a more detailed version

of Figure 5.1.

Harm intensities following the tox-harm approach were calculated for
39 contaminants commonly found in dwellings (see Sections 3.3, 4.7.1).
Single-point median harm intensities (DALY /ug/m?/10° person/year), un-
certainty estimates expressed through the Geometric Standard Deviation
(GSD) (Section 3.8.1) and the best estimate for all-cause effect (Section 4.1)
are shown in Table 5.3, ordered from highest to lowest median. To be con-
sistent with current practice in LCA (LCA), Tables 5.1 and 5.2 show the
single-point estimates and uncertainties for harm intensities dis-aggregated

per carcinogenic (Hlcaneer;) and noncarcinogenic (Hlyoncancer:) effects, re-
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Figure 5.1: Overview of parameters used to determine a toxicology-based

harm intensity, HI;, DALY /ng/m3/person /year.
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spectively (see Appendices 14, 15, 16 for full descriptive statistics).

Table 5.1: Toxicology-based cancer HI;,

DALY /pg/m?/10° person /year. ™
CAS RN Contaminant Median GSD Health outcomeS
75-07-0 Acetaldehyde 0.048 2.9 Lung Cancer
107-13-1 Acrylonitrile 1.5 1.1 Lung Cancer
71-43-2 Benzene 0.27 1.2 Leukemia
100-44-7 Benzyl chloride 0.1 4.5 Stomach Cancer
106-99-0 1,3-butadiene 0.32 1.1 Cancer Average
111-76-2 2-Butoxyethanol 0.0054 4.4 Liver Cancer
22537-48-0 Cadmium Cd(II) 1.9 10 Lung Cancer
56-23-5 Carbon tetrachloride 0.48 4 Liver Cancer
18540-29-9 Chromium Cr(VI) 13 8.5 Lung Cancer
123-73-9 Crotonaldehyde(trans) 1.7 3.3 Liver Cancer
106-93-4 1,2-Dibromoethane 5.3 2.8 Liver Cancer
106-46-7 1,4-Dichlorobenzene 0.015 4.2 Cancer Average
107-06-2 1,2-Dichloroethane 0.084 3 Stomach Cancer
75-35-4 1,1-Dichloroethene 0.23 4.1 Lung Cancer
64-17-5 Ethanol 0.0008 3.2 Liver Cancer
104-76-7 2-Ethylhexanol 0.0046 4.9 Liver Cancer
50-00-0 Formaldehyde 11 2.9 Leukemia+Lung Cancer
87-68-3 Hexachlorobutadiene 0.047 3.7 Cancer Average
110-54-3 Hexane 0.00013 4.8 Cancer Average
78-79-5 Isoprene 0.015 4 Cancer Average
5989-27-5 Limonene (d-...) 0.015 3.4 Cancer Average
1634-04-4 Methyl tert-butyl ether 0.041 2.8 Leukemia
75-09-2 Methylene chloride 0.0036 5.3 Breast Cancer
91-20-3 Naphthalene 0.47 2.9 Lung Cancer
10028-15-6 Ozone 4.2 4.2 Lung Cancer
10043-92-2 Radon” 0.6 1.1 Lung Cancer
100-42-5 Styrene 0.16 29 Breast Cancer
79-34-5 1,1,2,2-Tetrachloroethane 0.2 4.7 Liver Cancer
127-18-4 Tetrachloroethene 0.053 3.8 Leukemia
79-00-5 1,1,2-Trichloroethane 0.14 4.7 Liver Cancer
79-01-6 Trichloroethylene 0.0055 2.9 Cancer Average
75-01-4 Vinyl chloride 1.5 3 Liver Cancer
1330-20-7 Xylenes 0.0015 3.4 Mouth And Oropharynx

Cancer

*+ Values to 2 Sig. Figs.
* DALY /Bq/m3/10° person/year; Bq, Becquerels

Median HI; have a range of five orders of magnitude from 10~* to 10!
DALY /png/m?®/10° person/year, implying that some contaminants have
100,000 times the toxic effect of others. The contaminant with the highest
median is chromium Cr(VI) (Hleyvry 17; GSD 15), followed by formalde-
hyde (Hlgcao 7.1; GSD 5.4).

Table 5.3 shows that ozone and acrolein are ranked within the first six
most toxic contaminants. High HI; are obtained for inorganic contami-

nants, VOCs, and ozone. Although these contaminants have high HI;, a
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Table 5.2 Toxicology-based non-cancer HI,
DALY /pg/m?*/10° person/year.t

CAS RN Contaminant Median GSD Health outcomeS
75-07-0 Acetaldehyde 0.0045 7 Non-Cancer Average
107-02-8 Acrolein 1.3 7.4 Asthma

107-13-1 Acrylonitrile 0.037 7.6 Non-Cancer Average
71-43-2 Benzene 0.0023 2.9 Non-Cancer Average
106-99-0 1,3-butadiene 0.0097 6.4 Non-Cancer Average
111-76-2 2-Butoxyethanol 0.0029 4.3 Non-Cancer Average
22537-48-0 Cadmium Cd(IT) 1.5 5.6 Non-Cancer Average
75-15-0 Carbon disulfide 0.29 1.1 Non-Cancer Average
56-23-5 Carbon tetrachloride 0.038 6.3 Non-Cancer Average
78-87-3 Chloromethane 0.00027 12 Non-Cancer Average
18540-29-9 Chromium Cr(VI) 0.82 9.2 Non-Cancer Average
106-93-4 1,2-Dibromoethane 0.00068 6.2 Non-Cancer Average
106-46-7 1,4-Dichlorobenzene 0.00035 5.6 Non-Cancer Average
75-35-4 1,1-Dichloroethene 0.0016 6.6 Non-Cancer Average
50-00-0 Formaldehyde 0.00036 7.1 Asthma

110-54-3 Hexane 0.0013 7.1 Non-Cancer Average
109-86-4 2-Methoxyethanol 0.0027 7.1 Non-Cancer Average
80-62-6 Methyl methacrylate 0.05 2.8 Non-Cancer Average
1634-04-4 Methyl tert-butyl ether 0.0001 7.4 Non-Cancer Average
75-09-2 Methylene chloride 0.0031 7 Non-Cancer Average
91-20-3 Naphthalene 0.0056 7.4 Non-Cancer Average
100-42-5 Styrene 0.0016 6.9 Non-Cancer Average
127-18-4 Tetrachloroethene 0.0025 8.4 Non-Cancer Average
100-88-33 Toluene 0.00086 5.3 Non-Cancer Average
79-00-5 1,1,2-Trichloroethane 0.0095 8.4 Non-Cancer Average
75-01-4 Vinyl chloride 0.011 6.1 Non-Cancer Average
1330-20-7 Xylenes 0.001 6 Non-Cancer Average

+ Values to 2 Sig. Figs.

representative measure of concentration must be assigned to quantify the

magnitude of harm on the population.

Slightly different ranks when compared to the EF; are observed in the
full list, particularly for contaminants with median estimates of similar
magnitudes (see section 4.7.1). Differences are attributed to the Monte
Carlo (MC) randomization approach. GSDs of harm intensities and ef-
fect factors are almost identical, ranging from 1.1 for carbon disulfide to
15 for Chromium Cr(VI), indicating that the influence of the uncertainty
from the breathing rate parameter is relatively small, perhaps because BR
has the smallest uncertainty factor amongst the parameters in the anal-
ysis. The large uncertainties for Cr(VI), acrolein, and chloromethane in-
dicate that a harm intensity estimate can have a wide range of values.
The main input parameter driving the GSD of a toxicology-based HI; is

the DRF (non—cancer,i)- This is reasonable because the extrapolation from

130



5.2. A TOXICOLOGY-BASED HARM INTENSITY, HI,.

Table 5.3: Toxicology-based all-cause Harm Intensities, HI;,
DALY /png/m?/10° person/year.™ (high to low median).

Contaminant Median GSD Best estimate of all-cause

Chromium Cr(VI) 17 15 Lung Cancer & Non-Cancer Average

Formaldehyde 7.1 5.4 Leukaemia & Asthma

Cadmium Cd(II) 5.3 8.9 Lung Cancer & Non-Cancer Average

1,2-Dibromoethane 3.4 5.8 Liver Cancer & Non-Cancer Average

Ozone 2.6 6.2 Lung Cancer

Acrolein 1.3 8.5 Asthma

Acrylonitrile 1.2 4.1 Lung Cancer & Non-Cancer Average

Crotonaldehyde(trans) 1.1 7.2 Liver Cancer

Vinyl chloride 0.98 5.4 Liver Cancer & Non-Cancer Average

Carbon tetrachloride 0.52 7.3 Liver Cancer & Non-Cancer Average

Radon™ 0.37 3.7 Lung Cancer

Naphthalene 0.36 5.9 Lung Cancer & Non-Cancer Average

Carbon disulfide 0.29 1.1 Non-Cancer Average

1,3-Butadiene 0.27 3.9 Cancer Average & Non-Cancer Average

Benzene 0.18 4.4 Leukaemia & Non-Cancer Average

1,1,2-Trichloroethane 0.15 5.7 Liver Cancer & Non-Cancer Average

1,1-Dichloroethene 0.15 6.1 Lung Cancer & Non-Cancer Average

1,1,2,2-Tetrachloroethane 0.13 6.2 Liver Cancer

Styrene 0.11 4.7 Breast Cancer & Non-Cancer Average

Benzyl chloride 0.062 11 Stomach Cancer

Acetaldehyde 0.053 4.8 Lung Cancer & Non-Cancer Average

Tetrachloroethene 0.052 6.2 Leukaemia & Non-Cancer Average

1,2-Dichloroethane 0.052 5.4 Stomach Cancer

Methyl methacrylate 0.051 2.8 Non-Cancer Average

Hexachlorobutadiene 0.03 4.8 Cancer Average &

Methyl tert-butyl ether 0.026 4.6 Leukaemia & Non-Cancer Average

1,4-Dichlorobenzene 0.012 6.4 Cancer Average & Non-Cancer Average

Methylene chloride 0.01 5.6 Breast Cancer & Non-Cancer Average

2-Butoxyethanol 0.01 8.7 Liver Cancer & Non-Cancer Average

Limonene (d-...) 0.0093 6.5 Cancer Average

Isoprene 0.0092 7 Cancer Average

Trichloroethylene 0.0035 5.1 Cancer Average

Xylenes 0.0034 6.1 Mouth And Oropharynx Cancer & Non-
Cancer Average

2-Ethylhexanol 0.0029 8.4 Liver Cancer

2-Methoxyethanol 0.0028 7.8 Non-Cancer Average

Hexane 0.0018 8.7 Cancer Average & Non-Cancer Average

Toluene 0.00087 5.4 Non-Cancer Average

Ethanol 0.0005 5.8 Liver Cancer

Chloromethane 0.00027 10 Non-Cancer Average

+ Values to 2 Sig. Figs.

* DALY /Bq/m?3/10° person/year; Bq, Becquerels

LOAEL or NOAEL to non-carcinogenic effective median doses carries sev-

eral steps, each adding uncertainty (Section 4.5.1).

5.2.1 Comparison with Previous Work

The concept of harm intensity (HI;) arises from the mathematical combi-

nation of dose-response and damage factors (Sections 4.5, 4.3), which leads

to the derivation of the effect factor parameter (Section 4.7). In the field

of LCIA for air pollution, effect factors are a well-established component.

131



5.2. A TOXICOLOGY-BASED HARM INTENSITY, HI,.

This research builds upon prior methodologies. Logue et al. (2012) intro-
duced an intake-DALY model to quantify harm caused by indoor airborne
contaminants, while Huijbregts et al. (2005) designed a comprehensive set
of human damage and effect factors for a wide range of chemical substances.
Table 5.4 provides an overview and contrast of the parameters used in de-
riving HI; to the ID-DALY approac of Logue et al. and the approach of
Huijbregts et al..

Both Logue et al. and Huijbregts et al. provided explicit or implicit esti-
mates of central tendency, with and without uncertainty, for key parameters
including damage factors (DF’), harm intensities (HI), effect factors (EF),
and dose-response factors (DRF'). These parameters are associated with
various health outcomes, be it all-cause or cause-specific cancer or non-
cancer effects. The quantification of harm intensity and uncertainty was
not explicit in them, so in the current study, these were reverse-engineered

from the available data, and using standard assumptions.

Table 5.4: Comparison of determinants for a Tox-approach

Parameter Notation® Tox-harm ap- ID-DALY Huijbregts
proach aproach et al. (2005)
Age de- ADAF Median with vari- Mean value N/A
pendent ability
adjustments
factors
Breathing Pooled from rele- Mean value U.S. Mean human in-
rate, BR m?/ person/year vant sources; Con-  air intake take; No uncer-
sidering variabil- tainty
ity
Dose- #g’” Disease. specific  N/A Complex nonlin-
response ’ uncertainty; GSD ear
factors based 95% CI;
DRFy 4 USEtox and tox-
icity database
case/mass sources
Damage fac- w 2019 Global bur- N/A 1990 world repre-
tor DFy k den of disease sentation
database
DALY /Case
(individual) DRFy; - DFp Monte Carlo un- Values and Uncer- % . Oeffect
) effect intake
Effect factor certainty tainty from Hui-
EF (x5 jbregts et al.
DALY /mass
(All cause) (EFcancer,i - Monte Carlo un- Monte Carlo un- NA
Effect factor ADAF) +  certainty certainty
EF(kﬂ) EFnoncancer,i
DALY /mass

? Note: (i) Contaminant, (k) Health outcome - disease - cancer or noncancer effect; Y0y, related baseline disease
incidence; ED50: median effective dose.
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The most important issue identified by Table 5.4 is that the evidence previ-
ously used to determine harm (as Disability-Adjusted Life Years, DALYSs)
for airborne contaminants is over a decade old, as is the method proposed
by Huijbregts et al. to derive an effect factor (later modified by Rosenbaum
et al. (2008)) and used by LCIA (Hauschild and Huijbregts, 2015).

Most of the cancer harm intensity (H Icanceri) estimates in Table 5.1 exceed
those derived from Huijbregts et al. (2005) via Toxicology-based Effect Fac-
tors, by several orders of magnitude (see Figure 5.3 comparing current and
prior work). This divergence stems from differences in the dose-response
factor (DRF) derivation. Huijbregts et al. (2005) used a two-part DRF: a
disease-specific probability of disease occurrence, and a substance-specific
inverse ED50 component. The disease probability was 0.03 for average car-
cinogenic effects and 0.16 for non-carcinogens. The Fantke et al. (2017a)
model updated this DRF derivation via a 0.5 constant multiplyer, yield-
ing higher estimates. Additionally, the toxicity data in USEtox has lower
ED50 values for five contaminants, reflecting higher toxicity: Formalde-
hyde changed from 0.59 to 0.47 mg/keg-day, Crotonaldehyde from 1.85 to
1.83 mg/kg-day, Chromium (VI) from 0.23 to 0.02 mg/kg-day, Acryloni-
trile from 7.14 to 3.91 mg/keg-day, d-Limonene from 91 to 89 mg/kg-day,
and Vinyl chloride from 8.33 to 2.59 mg/kg-day. Updates to DRF calcula-
tion and toxicity data contribute to substantially higher H I ncer ;i estimates
in this work versus previous approximations. This implies that previous

assessments may have underestimated the cancer-related harm.

A DF sverage cancer 0f 10.6 (GSD 1.05) was calculated here, whereas the value
of Huijbregts et al. was 11.5 (GSD 1.67). These medians are close in
magnitude, and so this parameter does not influence the differences in

medians found in Hlapeer -

Median Hl,on-cancer; Presented in Table 5.2 are generally lower than the
estimates reverse-engineered from Huijbregts et al. That work reported
average damage for non-carcinogenic effects of 2.7 (GSD 3.6), whereas here
the average was 2.1 (GSD 1.1). The parameter that influences the differ-
ences in HI,on cancer; 15 the smaller uncertainty in the DFy,, which effects the
median of the lognormally distributed parameter (see Figure 5.4 comparing

current and prior work).

Estimates of the median all-cause harm intensities (HI;) in Table 5.3 exceed
those implicit in Logue et al. (2012) for 27 contaminants by one order of

magnitude. They are lower for 8 contaminants but within the same order
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Figure 5.3: Cancer-Harm intensities and previous works. Black: current
work, Magenta: Huijbregts et al. (2005). Median and 95% C.I.
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Figure 5.4: Non-cancer-Harm intensities and previous works. Black: cur-
rent work, Magenta: Huijbregts et al. (2005). Median and 95% C.I.

135



5.2. A TOXICOLOGY-BASED HARM INTENSITY, HI,.

of magnitude. Overall, Logue et al. (2012) underestimates the effects when

contrasted with the results presented here.

The age-dependent adjustment factor (ADAF) influences the combined es-
timates. Logue et al. (2012) applied a mean ADAF of 1.6, whereas the
current work uses a lognormal vector with a median of 0.6. This lowers the
median for carcinogenic effects. Additionally, formaldehyde, carbon tetra-
chloride, cadmium Cd(II), 1,2-dibromoethane, and hexane, in this work
have both cancer and non-cancer effects, which increases the output me-
dian. Previously, only one effect type was available for these contaminants.
Updates to toxicity data and the ADAF parameter contribute to higher
HI estimates here versus Logue et al. (2012). Accounting for both effect
types also increases median HI for certain contaminants (see Figure 5.5

comparing all cause-Harm intensities in current to prior works).

When ordering harm intensity by their median, contaminants with the
highest carcinogenic and non-carcinogenic estimates broadly agree with
those of Huijbregts et al.. A similar result was found when comparing
the estimate of all-cause effect factors, which account for the ADAF in-
fluence, with those of Logue et al. Uncertainties, expressed as a GSD,
in carcinogenic, non-carcinogenic, and all-cause HI; for all contaminants
have reduced. For toxicology, Logue et al. relied on uncertainties from
Huijbregts et al., where interspecies conversion, effect conversion, and non-
cancer damage factors dominated. This work aimed to reduce uncertainties
by leveraging improved health data. Some studies report reduced uncer-
tainty factors reflecting increasing certainty in animal-to-human extrap-
olation, effect conversion, and non-cancer damage quantification (Martin
et al., 2013; Xu et al., 2022).

Reverse engineering the harm intensity from available data required incor-
porating breathing rates. While each study used slightly different values,
mainly related to uncertainty handling, the influence on median harm inten-
sity was inconsequential. Logue et al. used 14.4 m?/person/day, Huijbregts

et al. used 13 m3/person/day, and this work used 14.8 m?/person/day.

5.2.2 Applications and applicability of Tox-HI;

The USEtox model assumes a linear low-dose-response for the inhalation
of contaminants considered here (Fantke et al., 2017a). In LCIA, this is
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Figure 5.5: All cause-Harm intensities and previous works. Black: current
work, Magenta: Logue et al. (2012). Median and 95% C.I.
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known as the average approach, and it is applied to derive characterization
factors. It states that the distance between the median effective dose,
ED50, (known as the current state) and the point of zero impact (known as
the state of zero impact) is set to be linear (Hauschild and Huijbregts, 2015;
Heijungs, 2021). Thus, proposed harm intensities are valid where intake
remains under the contaminant’s lifetime dose. These can be compared to
indoor concentrations in USEtox. ED50 is derived from toxicology studies
independent of indoor or outdoor exposures and so, it can be applied in
both contexts.

Carcinogenic and non-carcinogenic harm intensities are presented for LCA
use. Although USEtox is widely used, its endpoint DALYs rely on 1990s
data. This work updates those values. All-cause effects are also given for
TAQ assessments beyond LCA, for works like Fazli and Stephens (2018) and
De Jonge and Laverge (2022) aiming to quantify chronic health impacts
associated with exposure to indoor contaminants that relied on the ID-

method of Logue et al..

In LCA, concentrations and breathing rates are used for estimating the
intake fraction (iF, mass intake/mass emitted). The iF translate emissions
to intake (Hellweg et al., 2009; Wenger et al., 2012). This is not unlike the
harm intensity metric, and LCA could also find the HI; of use.

A common strength of the harm approach developed here is the considera-
tion of uncertainties throughout. Furthermore, qualitative certainty arises
from expert-revised databases. As databases evolve with new estimates,

any parameter can be updated.

However, some limitations exist: (i) Severity factors are derived from a
global dataset covering all age groups and both genders. Furtheremore,
median effective doses are not available by age, sex, or race, or by country or
region. (i) Median effective dose derivation relies on the USEtox database.
Other ED50 sources could influence results. (iii) The best estimate of
all-causes for toxicology-based harm intensities can impact results. For
example, asthma represented acrolein and formaldehyde non-cancer effects

here, but other outcomes may be selected.
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5.3 An epidemiology-based Harm Intensity,
HI,.

Relevant LCIA, health risk assessment, and comparative risk assessment
literature was reviewed (Chapter 4) to identify commonly used data sources
for deriving the determinants of the epidemiology-based HI;: 8 ;, DFj, and
Y0, (Chapter 4) (Hauschild and Huijbregts, 2015; Hauschild et al., 2018;
Murray et al., 2020; Richmond-Bryant, 2020; WHO, 2021). Search terms
and criteria from these studies were applied to retrieve current information.
Data sources were selected based on their appropriateness for each required

parameter.

A literature review of studies published between 2010-2020 and other litera-
ture that compiled or reviewed risk estimates to obtain the beta parameter
(Br.i) for risk derivation. The approach is based on individual contaminant
risk estimates, considering their availability, while acknowledging the po-

tential of multipollutant regressions in epidemiological exposure assessment
studies (Cohen et al., 2017; Sacks et al., 2018; WHO, 2021).

The GBD Collaborative Network was the main database for the estimates
of the disease-specific baseline incidence rates (7,) and damage factors
(DFy) for the target health effects (k) identified through the risk estimates
(Br.i)- The estimates where extracted for the year 2019, and the global
population of all ages and both sexes (IHME, 2022; Murray et al., 2020).

Figure 5.6 and its more detailed counterpart Figure 5.7, offer visual repre-
sentations of the analytical model utilized for estimating the epidemiology-

based harm intensity.

Harm intensities, derived from epidemiological research, were used to re-
late harm to exposure for the ten indoor airborne contaminants with data
on the epidemiological inputs needed (Section 4.7.2). Table 5.5 presents
the median harm intensities, along with uncertainty estimates expressed
through the Geometric Standard Deviation (GSD), and the best estimate

for all-cause effect (see Appendix 17 for full descriptive statistics).

Epidemiology-based HI; have significant variability, spanning three orders
of magnitude (from 1072 to 10" DALY /pg/m?/10° person/year). The con-
taminant that registers the highest median harm intensity is PMa 5 (Hlpay, .
60 DALY /ug/m?3 /105 person/year, GSD 1.2). These values can later be as-
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Table 5.5:  Epidemiology-based all-cause Harm Intensities, HI;,
DALY /ng/m?/10° person/year.™ (high to low median)

CAS RN Contaminant Median GSD Best estimate of

all-cause
PMa.s 60 19 All-cause mortality
(THD+DM+Str+COPD+LRI+LC)
All- li
PM0 30 13 cause mortality
(IHD+DM+Str+COPD+LRI+LC)
10102-44-0  Nitrogen Dioxide 5.6 17 Allcause mortality
(COPD+LRI4+URI4LC)
50-00-0 Formaldehyde 4 2.2 Asthma morbidity
7446-09-5 Sulphur Dioxide 1.9 g5 All-cause mortality
(COPD)
10028-15-6 Ozone 1.3 1.9 All cause mortality
107-02-8 Acrolein 1.2 5.5 Asthma morbidity
71-43-2 Benzene 0.062 1.4 Leukemia mortality
Mold 0.027" 2.2 All-cause
(LC+Leukaemia+asthma)
10043-92-2 Radon 0.45™" 1.7 Lung Cancer mor-
tality

Abbreviations. LC: Lung Cancer; Lk: Leukaemia; COPD: Chronic Obstructive Pulmonary Dis-
ease; LRI: Lower Respiratory Infections; URI: Upper Respiratory Infections; IHD: Ischaemic Heart
Disease; DM: Diabetes Mellitus; Str: Stroke.

+ Values to 2 Sig. Figs.

* DALY /CFU/m3/10% person/year; CFU, Colony-Forming Units. As mold spores of the genus
Cladosporium

* DALY /Bq/m3/10° person/year; Bq, Becquerels

sociated to exposures to quantify harm

A harm intensity has been calculated for radon, the radioactive element
found in indoor air that is considered in LCA as well. This harm intensity
encompasses mortality attributed to lung cancer resulting from radon ex-
posure. Mold, on the other hand, contributes to harm through exposure
to mold spores within households, considering the genome Cladosporium,
that represents a significant portion of indoor molds, ranking among the
most common fungal genomes in households alongside Penicillium and As-
pergillus (Braubach et al., 2011; Garrett et al., 1998). The concentrations
of Cladosporium spores were employed as an indicator for mold, as this
data is a prerequisite for the epi-harm approach (More on this later in
Section 7.1.2).

The ratio of mean harm intensities for PMy 5 to PM;q is 1.69, indicating
that approximately 60 % of the mass in PM;q is PM, 5. However, the harm
intensity of the coarse fraction still requires investigation. Estimating the
harm intensity for the coarse fraction involves considering the difference in

the harms for PM;o and PM, 5 separately (this is discussed in chapter 7).

Uncertainties in harm intensities and effect factors exhibit similarities
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across the same contaminants, with GSD values ranging from 1.2 for PM, 5
to 5.5 for mold. This variation reflects the uncertainty in the baseline inci-
dence, risk estimate and damage factors. The uncertainty associated with
breathing rates (BR) is negligible (Section 4.4). Larger uncertainties are

observed in mold and SO,.

5.3.1 Determinants of the epidemiology-based harm
intensities

This simplified linear approach for estimating HI; relies on four essential
components: (i) parameters from epidemiology-based exposure-response
functions (f;), (i) mortality or morbidity rates associated with diseases
linked to contaminant exposure (7, ), (iii) damage factors representing the
loss of healthy lifetime (DF;), and (iv) breathing rates standardized to a
chosen time unit (BR).

Based on an analysis of current global data, this research proposes a set
of concentration, dose, effect, and harm parameters with applications in
LCTA, comparative risk assessment, health impact analysis, and contam-
inant reduction policy evaluations, from globally-derived epidemiological

data lacking geographic specificity.

5.3.2 Evaluation Against Prior Research
5.3.2.1 The Intake-Incidence DALY (IND) Method

Damage factors for NOy, SO, O3, and PMy 5 exceeded prior estimates
for U.S. dwellings. Logue et al. (2012) calculated PM, 5 and O3 damage
factors using U.S. epidemiological data on mortality and incidence, but de-
tails were limited. The approach here suggests their PMs, 5 and O3 damage
factors likely underestimated impacts, as current results align more closely
with the upper confidence intervals. Additionally, Logue et al. significantly
underestimated NOy and SO, severity by assuming identical damage fac-
tors across criteria contaminants. Table 5.6 compares the determinants
between the IND method and the Epi-harm approach. Logue et al. used
mostly U.S. epidemiological data from before 1999 and applied undisclosed

assumptions.
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Table 5.6: Comparison of determinants for an Epi-approach

Parameter Notation® Epi-harm approach IND-DALY approach

1 isk i ;

Beta B(x,q) Infrisk estimateq,)) Robust meta analysis Dated USEPA source;

methodology U.S. centric studies; Un-
explained PDF (Weibull,

Normal) assumptions

i

change/concentration

Baseline Case/Person/year Global burden of disease  Dated USEPA source; Un-
incidence database explained values; Mean
rate o, value

Damage M Global burden of disease U.S. PMsy s, Oz study
factor DF}, k database basis; U.S. air pollution

study basis; Arbitrary un-
certainty factor
DALY /case

Breathing m? /person/year Pooled from relevant U.S. air intake basis; Point
rate, BR sources; Considering vari-  value assumption
ability

? Note: (i) Contaminant, (k) Health outcome - disease

Epidemiology-based harm intensities (HI;) were reverse-engineered for five
contaminants from Logue et al. (see Figure 5.8 in the next Section 5.3.2.2).
For PMs 5, median HI; broadly agree with Logue et al., likely because both
used an estimate to reflect total mortality. For Os, current values are higher
due to the one order of magnitude larger damage factor. Previous NOy and
SO, estimates relied on available specific morbidity data (hospital admis-
sions) treated as chronic, differing by at least two orders of magnitude. In
general, uncertainties in this study are lower than those reported in Logue
et al. The GSD for Hlp,y, . is 1.2 in this study compared to 2.2 in Logue
et al.’s work. Similarly, for Os, this study reports a GSD of 1.9, while
Logue’s study had a GSD of 3.4. This trend continues with NO,, where
the GSD is 1.7, contrasting with Logue’s 4.7.

Two factors influence the differences in medians and GSD between the IND
method and the Epi-harm approach: underlying epidemiological data has
evolved to indicate greater harm, and data manipulation differs, including
probability distribution fitting, confidence interval truncation, and conver-
gence criteria. Nevertheless, current decisions follow best practices and
knowledge.
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5.3.2.2 LCIAs of Air Pollutants

LCIAs of O3, PMjy, and PMy 5 have been proposed (Fantke et al., 2019;
Gronlund et al., 2015; Huijbregts et al., 2017; Oberschelp et al., 2020;
Van Zelm et al., 2008, 2016). These analyses presented, either explicitly
or implicitly, mean/medians with and without uncertainty for DF;, HI,,
EF;, DRF;, and CRF;, for all-cause or cause-specific mortality risks. For
comparison, HI; medians and GSD were reverse-engineered (see Table 5.7

for further specifications).

This research quantified a median Hlpy, . 60 DALY /pg/m?/10° person-
/year to describe the relationship between harm and exposure to PMs 3,
using a linear concentration-response function. Other estimates include 46
from Van Zelm et al., based on a single study risk estimate; 52 from Gron-
lund et al., using the risk estimate from the American Cancer Society study
and approximating the C-R function linearly; 79 from Huijbregts et al.;
Van Zelm et al., by the algebraic summation of specific cardiopulmonary
and lung cancer mortalities to represent the all-cause effect and using risk
estimates from the re-analysis of the ACS study; 35 from Fantke et al., by
algebraic summation of ischemic heart disease, stroke, lower respiratory in-
fections, lung cancer, and chronic obstructive pulmonary disease as specific
causes of mortality using a non-linear integrated exposure-response model
(that is approximate linear at low concentrations); and 54 from Oberschelp
et al., using the same as Fantke et al.. Ozone has been represented by res-
piratory disease mortality in Huijbregts et al.; Van Zelm et al.. For PMyq

Van Zelm et al. used chronic mortality.

Figure 5.8 shows there is a general overlap between the estimates of the
epi-based HI;. All these references have one thing in common: the ap-
proach towards the harm intensity is dependent on a background concen-
tration, which could represent a weakness because EF;, and hence HI;, is
extremely sensitive toward fixed contaminant background concentrations
(Fantke et al., 2019; Oberschelp et al., 2020). Conversely, background con-

centrations are not required for the simplified linear Epi-harm approach.
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