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Abstract

Airborne contaminants cause significant harm to populations of people.

People spend most of their time in their own homes and so their greatest

exposure is likely to occur there. Existing standards that govern Accept-

able Indoor Air Quality (IAQ) in residential buildings only consider a few

contaminants. Exposure to them is limited using threshold mean concen-

trations over some period of time, but they do consider the harm they cause

to populations of people.

The aim of this work was to evaluate the population harm from exposure to

non-pathogen airborne contaminants in dwellings. Four stages of research

were completed.

The first stage considered the uncertainty in the concentrations of 45 air-

borne contaminants in dwellings. Ethanol is the most common contaminant

by mass (around 30%) and PM2.5 was the fourth most common (around

10%), but presence does not indicate harm.

Harm was evaluated using the disability adjusted life year (DALY) metric,

a measure of time where a value of unity is one year of healthy life lost to

some disease or injury, or death. DALYs are calculated as the sum of years

of life lost to premature mortality and morbidity in a population for some

health effect, this is the Burden of Disease (BoD). In the case of IAQ, the
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BoD is a measurement of the difference between the current health status

of a population of building occupants and an ideal situation where they all

live into old age, free of disease and disability associated to exposure to

airborne contaminants.

The second stage required the development of a new metric, called a Harm

Intensity, with units of DALYs per concentration per year. It links chronic

harm (DALY/person/year) to the concentrations of airborne contaminants

to which people are exposed to. Its values were determined using epi-

demiological and/or toxicological models, depending on the availability of

information. The metric’s values varied by five orders of magnitude de-

pending on the contaminant. It has utility beyond dwellings and can be

used wherever people are exposed to airborne contaminants.

The third stage combined the concentrations and harm intensities to iden-

tify the harm caused by each of the 45 contaminants in residential dwellings.

PM2.5 (67% median of all harm), PM10−2.5 (17%), formaldehyde (6%), ni-

trogen dioxide (6%), radon (2%), and ozone (1%) were found to be the

most harmful contaminants by around an order of magnitude. From these,

ASHRAE 62.2 has chosen 3 contaminants of concern that account for 83%

of all harm: PM2.5, formaldehyde, and nitrogen dioxide, to add a DALY-

based path into Standard 62.2 on residential ventilation and IAQ.

The fourth and final stage used the harm intensities to determine a relative

weight of each contaminant that can be used to create a harm budget, where

a harm limit is set and then any combination of contaminant concentrations

that keeps the contaminant harm below that limit is allowed. Reference

concentrations, taken from a reference scenario of dwellings meeting a cur-

rent IAQ ventilation requirement (ANSI/ASHRAE Standard 62.2-2022)

for PM2.5, formaldehyde, nitrogen dioxide are set at 8, 20, and 6 µg/m3,
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respectively. Additionally, the discussion encompasses sensitivity analy-

ses employing diverse exposure limit values to quantify harm, highlights

emerging topics, and offers insights into the ventilation rate procedure.
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Chapter 1

Introduction

1.1 Air quality

Air is a mixture of chemicals with varying toxicity. Unexpected substances

are contaminants. Harmful contaminants are pollutants (Spengler et al.,

2000). Nearly 99% of air comprises nitrogen and oxygen. The rest in-

cludes thousands of gases, particulate matter, pathogens and bioaerosols.

Inhalation is the common route of pollutant exposure, as discussed by

Huijbregts et al. (2005). Air quality depends on pollutant concentrations,

determining health and wellbeing.

The Global Burden of Disease estimates quantify the harm to from in-

halation of pollutants in air using the disability-adjusted life year (DALY),

a metric that accounts for disease, infirmity and premature death from

inhaled pollutants (Harikrishnan et al., 2018; HEI, 2020; James et al.,

2018; Murray et al., 2020; WHO, 2021). In 2015, fine particulate matter

(PM2.5) caused 4.2 million deaths and 103 million DALYs (Cohen et al.,

2017). In 2016, PM2.5 accounted for 7 million deaths, over half from house-
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hold sources (WHO, 2018a,b). By 2017, long-term PM2.5 exposure con-

tributed 83 million DALYs, 59 million from homes, largely through heart

and lung diseases (Cohen et al., 2017; HEI, 2020; Murray et al., 2020).

Several studies have linked exposure to PM2.5 with major disease burdens

(IHME, 2022; Kyu et al., 2018; Vos et al., 2020).

National bodies, environmental agencies and global health organizations

around the world attempt to influence air quality by setting short and long-

term contaminant thresholds for sundry contaminants, that should not be

exceeded over time (Hess-Kosa, 2018; WHO, 2021). Exceeding thresholds

help to identify priority contaminants but do not adequately rank impor-

tance (Logue et al., 2011a). Different organizations’ limit values some-

times differ substantially for identical periods (Abdul-Wahab et al., 2015;

Morantes et al., 2016; Salis et al., 2017). Limits reflect policy motiva-

tions, policymaker judgments, and differences in contaminant information,

not uniform hazard levels. This makes interventions to mitigate against

harm inefficient. Alternative metrics also have limitations (Jones, 2017).

It makes more sense to prioritize contaminants based on the dual condi-

tions of being harmful and commonly present in the air. This approach

would inform more effective mitigation strategies for air quality.

1.2 Indoor Air Quality

The quality of indoor air can be defined by its effects on people (Fanger,

2006). Building items, occupants, and combustion introduce pollutants to

the indoor environment, influencing its quality (Jones, 2017). As people

spend most of their time inside, mainly in homes, the greatest contaminant

exposure occurs there (Agency, 1989; Brasche and Bischof, 2005; Commis-
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sion, 2003; Jantunen et al., 2011; Klepeis et al., 2001; Lader et al., 2006;

Zeghnoun et al., 2010).

Indoor Air Quality (IAQ) has been historically characterized using proxy

indicators, like humidity and carbon dioxide (CO2) levels (Borsboom et al.,

2016). CO2 reflects occupancy instead of direct health impacts (Fisk et al.,

2019). Under 1000 ppm CO2 and 60% humidity represent “good” IAQ, but

these are arbitrary cut-offs that work under the implication that external

air is relatively uncontaminated, high levels of CO2 indoors could signal

inadequate ventilation (Walker et al., 2022). CO2 also relates to bio-effluent

perception. Occupants often judge IAQ by odor, influenced by volatile

organic compounds (VOCs) (Spengler et al., 2000; Zhang et al., 2022).

Smell may drive responses, with receptors detecting VOCs first, signaling

irritants as odors (the olfactory paradigm). Though not the sole perception

influence, this aids understanding reactions (Carrer et al., 2018; Persily,

2006, 2015).

Guidance documents classify IAQ and provide ventilation recommenda-

tions for specific building types using CO2 and odor judgments (Bonino,

2016; Persily, 1997; Zhang et al., 2017). ANSI/ASHRAE standards address

healthcare, commercial buildings, and homes in the USA, while German,

UK, and international standards cover workplaces, natural ventilation, and

general systems (Saffell and Nehr, 2023). This dependence on proxi indi-

cators overlooks diverse contaminants and risks. Standards should instead

prioritize health outcomes and occupant well-being (Carrer et al., 2018;

Guyot et al., 2019; Persily, 2006, 2015).

ANSI/ASHRAE Standard 62.2 considers acceptable home air quality by

lack of dissatisfaction and harmful pollutants (ASHRAE, 2022c). This

criterion is binary and is either passed or failed. These criteria can be
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influenced over time as a better understanding of population health is de-

veloped, notably, the Air Infiltration and Ventilation Centre advocates de-

veloping health-focused IAQ metrics beyond existing perception and CO2

proxies to directly evaluate harm (Borsboom et al., 2016). Proposed met-

rics should integrate current standards while positively impacting health

(Jones, 2017).

1.3 Understanding harm

Indoor air comprises a mixture of contaminants that people are exposed

to. The exposure to a given contaminant is a function of its concentration

and the duration of exposure, which leads to a dose through various mech-

anisms. Inhalation is the exposure route of interest for air contaminants.

Doses accrued over time are characterized as either acute or chronic. A dose

of a contaminant can be quantitatively related to negative health impacts

using established dose-response relationships. These health impacts can be

measured using metrics like the disability-adjusted life year (DALY).

DALYs account for both shortened life from early mortality and time

lived with disability from disease or functional impairment (Fryback, 1998;

Homedes, 1996; Murray, 1994). Specifically, DALYs integrate two compo-

nents: years of life lost from premature death and years lived with disability

from non-fatal health outcomes. In essence, DALYs evaluate the cumula-

tive disease burden resulting from exposure to harmful contaminants (Lee

et al., 2020; Murray, 1994; Murray et al., 2020; Wang et al., 2017). DALYs

also facilitate comparisons and prioritization of exposures (Sherman et al.,

2012), providing context to target mitigation efforts.

Health Impact Assessment (HIA) methods aim to quantify harm from expo-
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sure to air contaminants. HIAs include hazard assessment, impact analysis,

risk attribution, and cost-benefit analysis (Rausand, 2013; von Stackelberg

and Williams, 2021). Together, these shape evidence-based IAQ decisions.

Global health initiatives and air quality assessments use DALYs as the

metric of harm (Hassan Bhat et al., 2021; Hauschild and Huijbregts, 2015;

Hauschild et al., 2018; Sacks et al., 2018; WHO, 2011).

Air Pollution Health Risk Assessment (AP-HRA) relate observed disease

incidence changes to harm (Lee et al., 2020; Liu et al., 2022; Morawska

et al., 2013; Murray et al., 2020), where as, Life Cycle Impact Assessments

(LCIAs) do so using contaminant mass (Huijbregts et al., 2005; Rosenbaum

et al., 2015; Wu and Apul, 2015). Assessments use either toxicology or

epidemiology data. In 2012, Logue et al. proposed combining epidemiology

and toxicology to estimate U.S. home contaminant harm. This pioneering

health-centric assessment enabled prioritizing contaminants and ventilation

to minimize disease burden (Borsboom et al., 2016; Walker et al., 2022).

There is currently no recognized process for selecting priority indoor air

quality contaminants that are most harmful and widespread in homes

(Guyot et al., 2019; Parthasarathy et al., 2011; Sherman et al., 2022, 2012;

Stanley and Bayer, 2009; Walker et al., 2022). A need exists to identify

these key contaminants for emphasis and control. Meeting this need re-

quires understanding chronic contaminant exposures, concentration varia-

tions, and uncertainties within homes. It also requires a specialized metric

linking harm to exposure levels and exposed populations over time (Gron-

lund et al., 2015; Guyot et al., 2019; Oberschelp et al., 2020; Sherman

et al., 2012; Walker et al., 2022). With such a health-impact metric, cal-

culating contaminant harm would be possible when long-term exposures

are known. This would make it possible to identify and synthesize priority

contaminants to target for health-protective strategies.
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Various daily life risks pose some acceptable harm to populations (Mur-

ray et al., 2020). The World Health Organization uses DALYs to set

allowable harm benchmarks for drinking water (WHO, 2011). Similarly,

DALYs could define a maximum allowable harm limit from indoor air pol-

lutants, allowing any concentration combination keeping harm below it

(Sherman et al., 2012; Walker et al., 2022). ANSI/ASHRAE Standard 62.2

(ASHRAE, 2022c) proposes a definition for acceptable IAQ (AIAQ) in

dwellings, but there is still a need for a quantitative definition of AIAQ.

The allowable harm limit addresses this need.

1.4 Aims and objectives

The scope of this research is focused on residential environments. Con-

centrating on homes allows for a detailed examination with direct policy

implications for these settings. The emphasis is on long-term exposures

and their associated chronic health effects, primarily relying on post-2010

data to ensure relevance. Mixtures and interactions between contaminants

are beyond the scope of this study; assessments are conducted for indi-

vidual contaminants. Only DALYs are used as a health metric in this

context; parallel metrics such as Quality-Adjusted Life Years (QALYs) are

not considered. Harm is assessed at the population level.

The aim of this thesis is to advance IAQ assessment by developing novel

health-based metrics using the Disability-Adjusted Life Year (DALY). This

will enable evaluation of harm from residential indoor air contaminants,

improve population health, set objective metrics and remove subjectivity

when prioritizing contaminants. In pursuit of the aim of this thesis, the

following objectives were followed:
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First Objective: To synthesize uncertainties in the concentration of air

contaminants in dwellings by conducting a systematic review and meta-

analyses of existing sampling campaigns, with the goal of generating esti-

mated probability density functions for use in harm assessments.

Second Objective: To develop a novel IAQ harm metric that relates

disability-adjusted life years (DALYs) to chronic exposure concentrations of

air contaminants, utilizing available epidemiology and toxicology research,

with the goal of performing harm assessments.

Third Objective: To evaluate and assess the harm resulting from typical

exposures to indoor air contaminants in dwellings, through the integration

of the harm metric and concentrations for each contaminant. This synthesis

will define the harm assessment framework for this research.

Forth Objective: To identify and synthesize the most harmful airborne

contaminants in dwellings, prioritizing them for removal and establishing a

harm budget. The outcomes have the potential to inform the development

of health policies, building codes and regulations, and influence the design

and operation of buildings.

1.5 Thesis outline

This thesis is structured as follows:

Introduction: Provides background and motivations, states research aims

and objectives.

Chapter 2 Literature Review: Critically reviews current knowledge on

air pollution, health impacts, risk assessment, indoor contaminants, and
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harm quantification.

Chapter 3 Quantifying Harm: Describes the modeling approach, data

processing, equations, assumptions, coding, and programs used to develop

the harm metric.

Chapter 4 Parameters for Determining Harm Intensities: Ana-

lyzes required parameters from epidemiology, toxicology, exposure science,

discussing interpretations, uncertainties, and literature sources.

Chapter 5 The Harm Intensity: Presents the developed methodology

and defines the novel Harm Intensity (HI) metric for air contaminants.

Chapter 6 Airborne Contaminants in Dwellings: Presents the pro-

cess and results of quantifying representative concentrations of airborne

contaminants in dwellings.

Chapter 7 Contaminants Harm in Dwellings: Applies HI to assess

harm from indoor contaminants in homes based on representative concen-

trations.

Chapter 8 Discussion: Synthesizes key findings, including ranking and

prioritization of contaminants, proposing a harm budget, comparing to

guidelines, assessing limitations, and highlighting applications.

Conclusions: Summarizes the research outcomes, significance, and final

remarks.
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Chapter 2

Literature Review

Some work from this chapter has previously been published as a book

chapter in:

Molina, C., Jones, B., & Morantes, G. (2023). Air Quality in Latin Amer-

ican Buildings. In Removing Barriers to Environmental Comfort in the

Global South (pp. 195-215). Cham: Springer International Publishing.

eBook ISBN: 978-3-031-24208-3

2.1 Air pollution

Humans have the right to breathe clean air. Poor air quality has implica-

tions for a wide range of human rights, including the rights to life, health,

water, food, housing and an adequate standard of living. States have obli-

gations to protect people on the foreseeable adverse effects of poor air

quality and exposure to (toxic) air pollution (Knox, 2019).

Pollution is defined as the introduction into the environment of substances

in concentrations that reduce its quality and can be considered harmful to

humans (or other living organisms) (Manisalidis et al., 2020). Air pollution

refers to the presence in the atmosphere of one or more pollutants (or their

combinations) in concentrations and permanence such that they represent

a threat to human health, that of animals, plants or that cause adverse

effects on infrastructures (Seinfeld and Pandis, 2016). The most convincing
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evidence that air pollution is a global environmental problem lies in the

growing number of cities that each day increase their concentrations of

air pollution caused by different sources and different air pollutants and,

the consequent increase in negative effects on health and the environment

(Prüss-Üstün et al., 2016). Air pollution can be broadly separated into

two distinct categories: Outdoor pollution (or ambient air pollution) and

indoor pollution, generated by household combustion of fuels, and high

concentrations of pollutants in buildings. The air’s quality is evaluated

through the concentration of pollutants that are present in it. Air quality

(in both environments) is an essential determinant of healthy living and

people’s well-being. Moreover, air quality is a determinant of the state of

the (global/local) physical and social environment, proposed in frameworks

for health equity surveillance, for which indicators need to be developed

(Marmot et al., 2008).

In the 1960’s, investigations on the impacts of air pollution began to be

carried out and, as a result, the enactment of environmental legislation,

such as the National Environmental Policy Act (NEPA) was initiated and

promulgated by the Congress of the United States of America. The start-

ing point for the emergence of programs dedicated to air pollution was the

occurrence of critical episodes of air pollution in several locations arround

the globe, in Belgium, (Firket, 1936); in London, (Scott, 1953); in U.S.A.

(Jacobs et al., 2018). The term outdoor or ambient air refers to atmo-

spheric air; its pollution consists of a highly variable and complex mixture

of different substances (in gas, liquid or solid phase) that are potentially

harmful to human health and the environment (WHO, 2006). The fol-

lowing are ambient air pollutants and considered contributors of disease

in humans: particulate matter (PM, particles of variable aerodynamic di-

ameter∗), ground level ozone, nitrogen oxide, sulphur dioxide, volatile or-

ganic compounds (VOCs), dioxins and, polycyclic aromatic hydrocarbons

(PAHs) (Manisalidis et al., 2020; Seinfeld and Pandis, 2016; WHO, 2006).

The term indoor air usually applies to non-industrial indoor environments:

office buildings, public buildings (schools, hospitals, theatres, restaurants)

and private homes. Indoor air is a complex blend of substances originating

from both indoor and outdoor sources. Indoor air pollutant levels can mir-

ror outdoor levels (Guardino et al., 1994), yet specific pollutants indoors

∗The aerodynamic diameter of a dust particle is the diameter of a sphere-shaped
particle that shows the same behaviour in the atmosphere as a dust particle (that does
not necessarily have a spherical shape)
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can spike up to 100 times higher, as noted by the EPA (Seguel et al., 2017),

owing to factors like limited dilution, low wind speed, and concentrated

sources including biological pollutants (Siddique et al., 2023).

In the case of industrial environments, pollutant concentrations might be

higher compared to that of non-industrial environments, which is why

standards and regulations are applied in order to assess indoor air qual-

ity (ASHRAE, 2014; Government, 2010; IWBI, 2014; MTA/MA–014/A11,

2012).

Indoor air quality (IAQ) refers to the control of the quality of air inside en-

closed spaces (buildings, tunnels, etc.) in order to ensure healthy and clean

conditions for the public in general (Heinsohn and Cimbala, 2003). Indoor

air quality began to be considered a problem in the late 1960s, although the

first studies were not conducted until the 1970s, in scenarios where workers

developed negative health effects, mostly of the respiratory type, leading to

the study of possible air-suspended pollutants indoor (Jones, 1999; Samet

et al., 1987; Spengler et al., 2000).

Indoor air quality is directly affected by pollutant emission sources typical

of the space, as well as by the habits of the staff who frequent it. It

may also be influenced by outside air characteristics. Overall, indoor air

pollution can originate from both outdoor and indoor sources. It is likely

that indoor air pollution contribute more to population exposure than the

outdoor environment because people spend longer time indoors (WHO,

2006).

The major sources of indoor air pollution worldwide include combustion

of solid fuels indoors, tobacco smoking, outdoor air pollutants, emissions

from construction materials and furnishings, the inhabitants themselves,

improper maintenance of ventilation and air conditioning systems and/or

excessive use of cleaning products. The main indoor air pollutants related

to health problems and poor quality of life include: carbon monoxide (CO),

nitrogen and sulphur oxides, ozone, radon, volatile and semi-volatile organic

compounds, fine and biological particles (fungi and mites) (Guardino et al.,

1994; Samet et al., 1987; WHO, 2006).

In the IAQ research community, carbon dioxide (CO2) serves as a key indi-

cator of poor air quality and ventilation effectiveness (Walker et al., 2022),

perhaps even impacting cognitive function directly (Satish et al., 2012).

However, evidence regarding its direct effects on health, well-being, learning
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outcomes, and work performance at typical indoor concentrations remains

inconclusive (ASHRAE, 2022a; Fisk et al., 2019). This research views CO2

as a contaminant gas rather than a pollutant because it is undesirable at

high concentrations indoors, but the causal link to health outcomes remains

inconclusive.

On average, people in the USA, Europe, and the UK spend 90% of their

time indoors (Agency, 1989; Commission, 2003; Lader et al., 2006). Homes,

offices, schools, day care centers, public buildings, health centers or other

private and public buildings are examples of indoor environments where

people spend their time. Hazardous substances (pollutants), moisture,

mold and biological particles found in these spaces lead to a wide range

of health-related problems (Guardino et al., 1994; Heseltine and Rosen,

2009; Spengler et al., 2000; Wanner et al., 1993; WHO, 2010).

2.1.1 Air contaminants

This work preferentially uses “contaminant” rather than “pollutant” for

indoor chemicals. Contaminant broadly means any unwanted, unnatural

material, regardless of toxicity. Pollutant implies confirmed toxicity. Con-

taminant enables precise, neutral representation without presuming haz-

ards. Contaminant also fits the indoor context better by highlighting for-

eign alteration of natural conditions. Given these nuances, contaminant is

preferred terminology for the wide range of indoor chemicals, only some

demonstrably toxic (Spengler et al., 2000).

Thousands of air contaminants exist. Substances repeatedly highlighted

across air pollution literature were selected as representative troves for dis-

cussion, centered on two classifications: criteria pollutants and other air

pollutants (Manisalidis et al., 2020; Tran et al., 2020; WHO, 2006).

2.1.1.1 Criteria Pollutants

Criteria pollutants are defined as those that have a direct effect on hu-

man health, which are commonly found in the atmosphere and are released

in large quantities from a variety of emission sources. The criteria pol-

lutants are: particulate matter in its various sizes (PM), sulphur dioxide

(SO2), nitrogen dioxide (NO2) and, ozone (O3); furthermore, USEPA in-
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cludes carbon monoxide (CO), resulting in five so-called criteria pollutants

(EPA, 2016; WHO, 2006). There is an extensive scientific knowledge of

these pollutants that allows the proposition of relationships between their

presence and, their harmful effects on human health or on the environ-

ment (SO2 and NO2 are related to rain acidification, PMs are associated

with haze episodes, and O3 can cause metal corrosion and lower the rate

of photosynthesis in plants).

Particulate Matter (PM) , also referred to as aerosols, is any sub-

stance, except pure water, that exists as a liquid or solid in the atmo-

sphere under normal conditions and have microscopic or submicroscopic

sizes (Figure 2.1). PM is a heterogeneous mixture of solid and liquid parti-

cles including chemical and biological fractions. PM is classified according

to its aerodynamic diameter (Dp) in PM10 (Dp ≤10 µm), PM2.5 (Dp ≤ 2.5

µm) (fine fraction), PM10−2.5 (2.5 < Dp < 10 µm) (coarse fraction), and

ultrafine particles (0.1 µm ∼100 nm) (Seinfeld and Pandis, 2016). The

components of PM10 and PM2.5 can be organic (polycyclic aromatic hydro-

carbons, dioxins, benzene, 1-3 butadiene) or inorganic (carbon, chlorides,

nitrates, sulfates, metals) in nature (Manisalidis et al., 2020; Seinfeld and

Pandis, 2016; Spengler et al., 2000). Moreover, a substantial component of

PMs in indoor and outdoor environments are bioaerosols: solid or liquid

particles carrying living organisms from biological sources, including fungi,

bacteria, viruses and, pollens (Ariya, 2004; Morakinyo et al., 2016).

Figure 2.1: Relative size of particulate matter. (Ang, 2020)
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Ambient or outdoor PM may have a natural or anthropogenic origin. Par-

ticles of natural origin come from soil erosion, re-suspended soil dust, sea

salt transport, forest fires, volcanic eruptions and emissions of fractionated

biological material. Particles of anthropogenic origin are generated as a

result of human activity: vehicular traffic (mainly from vehicles with diesel

engines), combustion and industrial processes, mining-metallurgical activ-

ity and biomass burning (Piña, 2011; Prüss-Üstün et al., 2016; Seinfeld and

Pandis, 2016; US-EPA, 2020b).

Sources of particles in the indoor environment include second-hand smoke

from tobacco, combustion (candles, incense, wood-or-coal for cooking, wood-

or-coal for heating, smoking), cooking, consumer products, building mate-

rials, dust, particulate resuspension from human activity, such as the use of

vacuum cleaners and foot traffic, infiltration of foreign particles (particles

of outdoor origin that migrate indoors) and secondary organic aerosols;

furthermore, indoor PM can also be of biological origin: microorganisms

(bacteria, viruses, fungi, mold and, bacterial spores) allergens, and pollen

(National Academies of Sciences, 2016; WHO, 2014).

Sulphur Dioxide (SO2) is a colorless gas with an irritating odor, solu-

ble in water. It is usually the product of burning sulphur compounds found

in fossil fuels. The oxidation of sulphur dioxide leads to the formation of

sulphurous acid (H2SO3) and sulphuric acid (H2SO4): both responsible for

acidifying rainwater (Manisalidis et al., 2020; Seinfeld and Pandis, 2016;

WHO, 2006). SO2 is one of the pollutants that is emitted along with parti-

cles during the burning of fossil fuels, it constitutes the largest fraction by

mass of fine particles, which makes it an indicator of pollution by particles

(Pope et al., 1995).

The main source of SO2 is the combustion of fuels containing varying

amounts of sulphur, according to their source (most notably coal and oil).

On combustion, any sulphur in the fuel is converted to sulphur dioxide.

Other major source is the sintering process used in metal smelting, which

involves roasting metal sulfide ores in a stream of air (WHO, 2006). The

SO2 present in indoor air normally comes from outside, both from nat-

ural and anthropogenic sources. It enters a building through ventilation

or infiltration. In addition, SO2 can be absorbed by building materials,

furniture, and carpets, for the long-term with negligible re-emission (Tran

et al., 2020; Walsh et al., 1977), which can reduce the concentration indoors
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relative to that existing outside, particularly when sulphur dioxide concen-

trations outside are elevated (Guardino et al., 1994). Kerosene-fueled space

heaters can also be a source of indoor SO2 (Samet et al., 1987; Spengler

et al., 2000; US-EPA, 2017).

Nitrogen Dioxide (NO2) is a highly reactive gas formed as a by-product

of high-temperature combustion process. Most of the atmospheric NO2 is

emitted in the form of nitric oxide (NO). With sunlight, (NO) combines

with atmospheric oxygen to form nitrogen dioxide. NO2 is also one of the

precursors of tropospheric ozone and nitrate aerosols, which make up a

significant fraction of the mass of PM2.5 (Seinfeld and Pandis, 2016; WHO,

2006, 2010). In ambient air, NO2 is mostly emitted from automobile mo-

tor engines (US-EPA, 2016). On the other hand, indoor sources include

tobacco smoke, gas, wood, oil, kerosene, and coal burning appliances, such

as stoves, ovens, space and water heaters, and fireplaces. Outdoor NO2

also influences indoor concentrations (via infiltration), in fact, outdoor air

is the main source of nitrogen dioxide in buildings without non-ventilated

fuel appliances (Guardino et al., 1994; Manisalidis et al., 2020; Samet et al.,

1987; Spengler et al., 2000; WHO, 2010, 2014).

Ozone (O3) is found in both the troposphere and the stratosphere. It

is harmful to the environment (human health and nature) when it is at

ground level (tropospheric ozone) and beneficial to the energy balance of

the planet when it is at the level of the stratosphere (Seinfeld and Pandis,

2016). Ozone in the troposphere (ground-level ozone) is the product of

the photochemical reaction of oxygen in the lower layers of the atmosphere

with precursor gases, such as NOx, CO and volatile organic compounds

in presence of sunlight (US-EPA, 2020a; Villányi et al., 2010). It can be

found in indoor environments in special situations where it is generated

continuously from sources such as copy machines, electrostatic air cleaners,

electrical arcing or, smog. As it degrades rapidly, indoor concentrations

are significantly lower that outside (Guardino et al., 1994; OSHA, 1999;

Spengler et al., 2000). Ozone degrading means that it undergoes chemical

reactions that break it down into other compounds.

NO2 and O3 can be further classified as natural reactive oxygen species

(ROS). ROS comprise a wide range of oxygen-centered and related free

radicals. In the atmosphere, ROS and reactive nitrogen species (RNS)
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are generated via photochemistry and gas-phase, heterogeneous and multi-

phase reactions involving atmospheric oxidants and aerosol particles. ROS

include O3, hydroperoxyl (HO2), organic oxy and peroxyradicals; RNS in-

clude NO, NO2, NO
−
2 , ONOO− , HONO and HNO3. In the atmospheric

sciences, ROS and RNS are usually mentioned as (photo)oxidants and radi-

cals (Poschl and Shiraiwa, 2015). Nitric oxide and certain radicals like HO2

and organic oxyradicals, can contribute to the generation of O3 through

complex chemical reactions in the atmosphere.

2.1.1.2 Other air pollutants

This section presents a number of pollutants not previously discussed, from

which there is evidence that certain exposure concentrations can cause

health concerns, with particular emphasis in pollutants found in indoor

(non-industrial) environments.

Volatile Organic Compounds (VOCs) are a group of chemical and

biological compounds characterized by their ability to pass into the gas

phase at room temperature. VOCs are organic compounds that elute be-

tween and, including, n-hexane and n-hexadecane on a gas chromatographic

column† (ISO, 2011). In outdoor air, primary VOC sources include those

from incomplete combustion, whereas indoor sources of VOC are construc-

tion and building products (paints, varnishes, waxes and solvents), house-

hold consumer products (detergents, cleaning products, air fresheners and

personal care products) and the use of ink-based electronic devices (photo-

copiers and printers) (Shrubsole et al., 2019). ISO (2011) present a list of

VOCs detected in indoor air emitted from building products. The following

are common VOCs:

Benzene is a colorless liquid with a sweet odor. Is a genotoxic carcinogen

in humans. Benzene evaporates into the air quickly. Benzene is present

in both outdoor and indoor air. People living near hazardous waste sites,

oil refineries, petrochemical industries, or gas stations may be exposed to

higher concentrations of benzene. The petrochemical industry, oil refiner-

ies, the manufacture of coal and coke products, the manufacture of tires,

the storage and transportation of benzene and petroleum products con-

†Gas chromatography is an analytical method for the separation and identification
of components that are gaseous or vaporized without decomposition.
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taining benzene, are the main benzene emitters. Benzene concentrations

in indoor air are generally higher than outdoors, where tobacco smoke is the

main source. Additional indoor emissions sources of benzene include con-

sumer products and construction-remodelling- decorating products (glues,

paints, furniture polish). Heating and cooking systems and detergents are

also sources. In indoor environments where there are no sources of ben-

zene, concentrations are determined by the concentration of the outside air

(Spengler et al., 2000; US-EPA, 2003a; WHO, 2010, 2014).

Formaldehyde is a colourless gas released into the environment from biomass

combustion and industrial combustion processes. Formaldehyde is consid-

ered primarily an indoor pollutant because, in ambient air, it is quickly

photo-oxidized to carbon dioxide and water (WHO, 2010). Emissions from

building materials (paints, wallpapers, glues, adhesives, varnishes and lac-

quers), furniture, construction wooden products, consumer home and office

chemicals (detergents, disinfectants, softeners), smoking, burning of fuels

(for heating, cooking), or candle or incense burning are indoor sources of

formaldehyde (Samet et al., 1988; Spengler et al., 2000; WHO, 2010, 2014).

Naphthalene is a solid white substance that evaporates easily. Its main use

in homes is in moth/insect repellants (mothballs) representing the main

source of this pollutant indoors. Mothballs are also known as white tar

and white camphor. Naphthalene evaporates from its solid state or from

the compounds that contain it. Consumer products, such as multipurpose

solvents, lubricants, herbicides, charcoal lighters and hair sprays, unvented

kerosene heaters, tobacco smoke and, rubber materials, are also sources

(Shrubsole et al., 2019; WHO, 2010).

Xylenes appear as a colorless liquid with a sweet odor that ignites easily. It

is found naturally in oil and tar. Chemical industries produce xylene from

oil. In indoor air, it is produced by the evaporation of household products

that contain it (varnish, dilute liquids) and by the combustion of fossil fuels

and tobacco smoke (Spengler et al., 2000). Usually, xylenes are treated as

a mixture of its three different isomers: meta-, ortho- and, para-xylene‡

(Shrubsole et al., 2019).

Trichloroethylene (TCE) is a volatile, colourless liquid with a sweet ethe-

real (chloroform-like) smell that is widely used as an industrial solvent.

‡Xylene exists in three isomeric forms. The isomers can be distinguished by the
designations ortho- (o-), meta- (m-) and para- (p-), which specify to which carbon
atoms (of the benzene ring) the two methyl groups are attached.
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Sources of TCE are wood stains, varnishes, finishes, lubricants, adhesives,

typewriter correction fluid, paint removers and, certain cleaners (Spengler

et al., 2000; WHO, 2010).

Tetrachloroethylene (PCE) is a readily volatile, colourless liquid with an

ether-like smell. Caulks and sealants, miscellaneous materials, paint re-

movers, cleaners, glues and suede protectors are indoor sources (Shrubsole

et al., 2019; WHO, 2010).

Polycyclic aromatic hydrocarbons (PAHs) are a class of chemicals

present naturally in coal, crude oil, and gasoline. Benzopyrene, acenaphthy-

lene, anthracene and, fluoranthene are common PAHs (Manisalidis et al.,

2020). They are emitted from combustion processes of carbonaceous ma-

terials at high temperature (traffic, waste incinerators, power generation

plants). Indoor air is contaminated by PAHs from smoking, cooking (burn-

ing of fossil fuels and biofuel), domestic heating (fuel stoves and open fire-

places) as well as from incense and candle emissions (Spengler et al., 2000;

WHO, 2010, 2014).

Radon (Rn) is an inert noble gas that does not interact chemically with

other elements. All of the isotopes of radon are radioactive and evaluation

of the adverse health effects due to exposure to radon requires consider-

ation. The isotopes of radon encountered in nature (219 Rn, 220Rn, and
222Rn) are part of long decay chains starting with isotopes of uranium (U)

or thorium (Th) and decay very rapidly into polonium (a particle that

bonds with the soil) (Keith et al., 2012). Radon is a pollutant of concern

for the indoor environment. As a gas that occurs naturally in soils and

rocks, radon has been detected in indoor air as early as the 1950s per sam-

pling campaigns. Radon concentrations indoors depend on the amount of

radon-producing uranium in the underlying rocks and soils. Cracks, holes

in the ground, small pores, sinks and, drains are ways of entry, as a conse-

quence, radon concentrations are usually higher in basements, warehouses

and, other structural areas in contact with the ground (WHO, 2010). Pen-

etration of radon-contaminated soil gas is the principal source of the radon

found in homes (Samet et al., 1988; Spengler et al., 2000). The health

hazard from radon does not come primarily from radon itself, but rather

from its radioactive progeny (Keith et al., 2012).
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Biological agents, also bioaerosols, may contaminate the air within in-

door environments. These bioaerosols comprise viruses, bacteria, actino-

mycetes, fungal spores, algae, amoebae, arthropod fragments and, animal

or human dander. Most bacteria in indoor air originate from humans,

whereas most fungi in indoor air originate from spores from outdoor sources

(Heseltine and Rosen, 2009; Samet et al., 1988). A summary of air pollu-

tants, its main categories (Indoor / Outdoor) and possible sources is given

in Table 2.1.

Table 2.1: Indoor / Outdoor air contaminants, and known sources. +

Main categories Related sources
Contaminant

I O Indoor Outdoor

C
ri
te
ri
a
p
ol
lu
ta
n
t

Particulate
matter
(PM2.5)

✓ ✓ Smoking, cooking, heating, consumer
products, building materials, soil (resus-
pension), infiltration of foreign particles.

Soil (erosion, resuspen-
sion), sea salt, combustion
(biomass, industrial, fuel).

sulphur
Dioxide
(SO2)

✓ Infiltration of foreign particles. Combustion (biomass, in-
dustrial, fuel).

Nitrogen
Dioxide
(NO2)

✓ Smoking, burning appliances (for cook-
ing/heating), infiltration.

Combustion (industrial,
fuel).

Ozone (O3) ✓ Reaction with precursors (NOx, CO and VOCs)

Carbon
monoxide

✓ ✓ Combustion (biomass, fuel) for cook-
ing/heating, smoking.

Combustion (biomass, in-
dustrial, fuel).

V
ol
at
il
e
O
rg
an

ic
C
om

p
ou

n
d
s

Benzene ✓ Smoking. Petrochemical activities.

HCHO ✓ Building materials (paints, glues, var-
nishes, lacquers, wooden products), clean-
ing (detergents, disinfectants, softeners),
smoking, heating, cooking, candle/incense
burning.

TCE ✓ Construction products
(varnishes, paint removers).

PCE ✓

Naphthalene ✓ Consumer products with mothballs.

Xylenes ✓ Smoking. Petrochemical activities.

O
th
er

ai
r
p
ol
lu
ta
n
ts Polycyclic

aromatic
hydrocarbons*

✓ Combustion (biomass, fuel) for cook-
ing/heating, smoking.

Combustion (industrial,
fuel).

Radon ✓ Underlying rocks and soils. –

Biological
Agents

✓ ✓ Bacteria, viruses, fungi, mold and, bacte-
rial spores.

Spores, pollen, animal/hu-
man dander.

* benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k ]fluoranthene, chrysene, dibenzo[a,h]anthracene, benzo[ghi ]perylene and indeno 1,2,3
[cd ] pyrene.

+ Compendium from (Heseltine and Rosen, 2009; ISO, 2011; National Academies of Sciences, 2016; Prüss-Üstün et al., 2016; Samet et al., 1987, 1988;
Seinfeld and Pandis, 2016; Shrubsole et al., 2019; Spengler et al., 2000; US-EPA, 2003a, 2010b, 2011, 2017, 2020a,b; Villányi et al., 2010; WHO, 2006,
2010, 2014)
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2.1.2 Overview of contaminants in dwellings

Indoor residential exposures constitute 60-95% of lifetime air contaminant

contact indoors, as homes are where people spend most time (Section 2.1).

Understanding exposure levels and patterns is crucial given the predomi-

nance of time spent indoors. Hundreds of chemicals have been measured

indoors, reflecting a research shift from outdoor to indoor environments.

Systematic reviews have compiled residential contaminant summary statis-

tics for the indoor air contaminants presented in this research so far, to

identify those with the highest central tendency and peak concentrations,

often weighted by number of homes measured (Fazli and Stephens, 2018;

Halios et al., 2022; Ilacqua et al., 2022; Liu et al., 2023b; Logue et al.,

2011a; Morawska et al., 2013, 2017; Nishihama et al., 2021; Vardoulakis

et al., 2020; Ye et al., 2017). Figure 2.2 shows central tendencies and vari-

ability of measured indoor contaminants categorized this way.

Logue et al. (2011a) showed weighted median and upper bound concen-

trations for non-biological contaminants from 77 studies in industrialized

nations. Fazli and Stephens (2018) review USA studies to describe residen-

tial concentrations for selected contaminants. Vardoulakis et al. (2020) pre-

sented minimum and maximum concentrations from 141 worldwide stud-

ies. Morawska et al. (2013, 2017) reported weighted means and maxi-

mums for particulate matter from developed country studies. Ilacqua et al.

(2022) gave median and peak PM levels across 538 global studies. Nishi-

hama et al. (2021) focused on Japanese homes, while Ye et al. (2017) and

Liu et al. (2023b) covered minimum/maximum and medians, respectively,

in China and Halios et al. (2022) examined European dwellings.

According to Borsboom et al. (2016), the most prevalent volatile organic

compounds (VOCs) that are measured indoors, grouped and ordered by

number of studies, are: toluene; benzene; ethylbenzene, m,p-xylenes, and

formaldehyde. The most common semi-volatile organic compounds (SVOCs)

are naphthalene and pentabromodiphenyl ethers (PBDEs).

Inconsistencies introduce difficulties in precisely contrasting results across

the literature, a challenge largely attributed to the absence of a standard-

ized framework of reference for conducting and reporting results. While

enhanced standardization would benefit comparisons, these works collec-

tively furnish valuable perspectives on central benchmarks and concentra-
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tion distributions. In the interim, judiciously synthesizing results across

metric types provides a useful, albeit constrained, basis for grasping indoor

contaminant patterns.

This current snapshot of contaminant sampling campaigns in homes has an

extensive global scope. PM has been the focus of more systematic reviews

compared to other contaminants. Reported concentrations vary by several

orders of magnitude. This variability is due to fluctuations within the

same indoor environment, as contaminant levels are ultimately dependent

on emissions and control measures. Continued compilation of residential

exposure data is crucial for characterizing risks and prioritizing mitigation

worldwide.
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Figure 2.2: Selected indoor contaminants measured in homes. See the key on the plot for meaning of squares, triangles, colours, solid lines and dashed lines.
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2.2 Exposure to air contaminants and health

impact

While numerous contaminants exist in indoor environments, health impact

data are lacking for many compounds beyond those quantified here, as

comprehensive dose-response information remains absent across the broad

spectrum of potential risks. Two major ways that health impacts associated

with exposure have been assessed are via epidemiology and toxicological

based studies (Borsboom et al., 2016). Epidemiology and toxicology studies

differ significantly in how they define and measure exposure, as summarized

in Table 2.2 (Ritter and Arbuckle, 2007). Both fields provide important

but complementary insights into contaminant health impacts.

Epidemiology examines the distribution and determinants of health condi-

tions in populations (Bhopal, 2016; Miettinen, 2011). Mortality and mor-

bidity quantify death and illness occurrences. Mortality frequently indi-

cates community health. Epidemiology links real-world exposures statis-

tically to disease incidences, providing population-level evidence on risk

factors.

In contrast, toxicology focuses on biological mechanisms of contaminant

harm using controlled experiments (Eaton and Gilbert, 2008; Hayes and

Kobets, 2023). Animal and cell models determine dose-response relation-

ships. Toxicology elucidates specific toxicological properties and damage

mechanisms. Cancer and non-cancer risks dominate toxicology’s health

concerns.

Both fields inform air contaminants health impacts for mitigation strate-

gies. Epidemiology offers real-world disease insights, while toxicology re-

veals mechanistic biological effects. Bringing epidemiology and toxicology

together serves to better understand cause and effect relationships and

causal inference (Adami et al., 2011; Weed, 2002)

Exposure duration is another key aspect, categorized as acute or chronic.

Chronic exposure persists more than 24 hours, while acute exposure lasts

24 hours or less (such as 8 hour averages or 1 hour averages). Both appear

in air pollution regulations and guidelines regarding public health impacts.

Impacts are also classed as chronic or acute effects. Chronic effects concern

long-term illnesses like cancer or COPD from persistent exposures. Acute
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Table 2.2: Characteristics of the Exposure Assessment in Toxicological and Epidemiological
Studies.

Characteristic Toxicology Epidemiology

Design Experimental Observational

Study agents Known and controlled source,
vehicle, route

Can be multiple sources, routes and ve-
hicles, not within control of investiga-
tor

Timing and duration of ex-
posure

Known, constant and con-
trolled; less likelihood of mea-
surement error

Not controlled, may be of longer
duration and even multigenerational
and variable over observation period;
higher likelihood of measurement error

Magnitude of exposure Dose often exceeds range rele-
vant to humans

Reflect actual range of human exposure

Exposure categorization Dose is selected a priori, fixed,
limited number of doses ad-
ministered to groups of ani-
mals by investigator; usually
one compound at a time

Estimated, commonly based on a one-
time environmental (ad libitum expo-
sure to contaminated air, drinking wa-
ter, food) or biological (blood, urine)
sampling; may or may not be catego-
rized; evaluates mixtures to which peo-
ple are exposed (although exact nature
of mixture may not be well character-
ized)

Study groups Homogenous (genetic, nutri-
tional, environmental factors)
both within dosing groups and
between groups, except for
the exposure under study

Efforts made to make the groups as ho-
mogenous as possible (within and be-
tween groups) using selection and re-
striction criteria for study population
and/or data analysis

Relevance to humans Species and strain selected
may have metabolic pathways
not representative of humans

Directly relevant if no selection biases
present

Statistical analysis Straightforward; a few select
and fixed ordinal doses with
a set number of animals ex-
posed to each dose; if doses
selected appropriately lends
itself well to dose-response
curves and threshold determi-
nations (if applicable)

Complicated; concentrations are con-
tinuous variables, therefore can be is-
sues such as: (1) data are not normally
distributed; (2) may have high pro-
portions of nondetectable concentra-
tions; (3) choice of cut points to catego-
rize data; difficult to identify sufficient
numbers of truly nonexposed; choice
of statistical model for dose-response
curves

effects arise abruptly over hours or days, triggering events like strokes.

Health impacts of exposures to air contaminants have traditionally been

viewed through this duration lens (Borsboom et al., 2016).

Integrating parameters from epidemiology and toxicology is important for

comprehensive quantitative health risk assessment. Epidemiology provides

observational data on the relationship between exposures and health out-

comes in human populations. Toxicology offers experimental data on dose-

response and mechanisms from animal and in vitro studies. These expo-

sures and doses can be both chronic or acute. While derived in different
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contexts, certain parameters may be mathematically equivalent across dis-

ciplines. For example, the “relative risk” estimated from epidemiology

studies represents the ratio of risk between exposed and unexposed groups.

This can be quantitatively similar to the dose-response slope estimated

from toxicology dose-response curves. As the metrics estimate the same

relationship on a per unit exposure basis, they carry the same units and

can be combined.

Meta-analysis and weight of evidence approaches are valuable techniques

to integrate data across toxicology and epidemiology. By evaluating the

consistency of outcomes across studies, predictive models can be developed

incorporating multiple sources of evidence. This leverages the strengths of

both experimental and observational data for a more robust understanding

of potential harm (Adami et al., 2011; Bhopal, 2016; Boyes et al., 2007;

Hayes and Kobets, 2023; Hernández and Tsatsakis, 2017; Jaffery et al.,

2002).

2.2.1 Health effects

Air pollution has numerous health effects (mostly associated with respira-

tory and cardiovascular disorders) and is linked to increased mortality and

morbidity, particularly for susceptible and sensitive individuals (children,

the elderly, pregnant women, smokers and asthmatics) (US-EPA, 2011). In

2018, during the first WHO Global Conference on Air Pollution and Health,

the WHO’s General Director, Dr. Tedros Adhanom Ghebreyesus, called air

pollution a “silent public health emergency” and “the new tobacco” (WHO,

2018d). Both long-term and short-term exposure to air contaminants can

be associated to several respiratory health impacts. Short-term effects are

temporary and range from discomfort (irritation of the eyes, nose, skin,

throat, wheezing, coughing and chest tightness and, breathing difficulties)

to more serious states (asthma, pneumonia, bronchitis and, lung and heart

problems). Long-term effects are chronic, lasting for years or the whole life

and can even lead to death (Manisalidis et al., 2020; US-EPA, 2011; WHO,

2006, 2021). Other non-respiratory health effects associated to air pollution

include psychological complications, autism, retinopathy, fetal growth, low

birth weight and diabetes (Eze et al., 2014; WHO, 2006, 2021), although

epidemiological evidence suggests that air quality in indoor spaces is pri-

marily linked to the respiratory health of its occupants (Bonjour et al.,

2007; Samet et al., 1987; Spengler et al., 2000). The majority of epidemio-
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logical studies for health effects of air pollution have been conducted using

ambient air pollution data. One reason why indoor air pollution studies are

scarce, could be that indoor air contaminants have not been as extensively

monitored as outdoor air contaminants, even in developed countries: the

evidence base for contributions to health effects needs to be strengthened

(WHO, 2006, 2021).

Exposures of the same contaminant, from different sources, can be consid-

ered as additive because, there is currently little epidemiological evidence

to firmly differentiate between health outcomes and the specific source of

air pollution (from ambient air pollution, household air pollution (HAP)

and/or secondhand tobacco smoke) for the same contaminant (Ebelt et al.,

2005; Hime et al., 2018; Prüss-Üstün et al., 2016; WHO, 2006, 2021). The

WHO estimated the global burden of disease (BoD)§ from the joint effects

of household and ambient air pollution for 2016 and, accounted for 7 mil-

lion deaths, categorized in 5 health outcomes related to the respiratory and

cardiovascular systems: acute lower respiratory disease (ALRI), chronic ob-

structive pulmonary disease (COPD), ischaemic heart disease (IHD), lung

cancer and stroke (WHO, 2018c). Furthermore, an estimate of BoD focused

for indoor air pollution in 2000, indicated that Indoor Air Pollution (IAP)

was responsible for more than 1.5 million deaths from ALRI, COPD and

lung cancer; although, these results represent the use of biomass fuels and

coal for cooking, by women (and their children) in households in developing

countries (in many low and middle-income countries women cook indoors

with poor, if any, ventilation) because PM2.5 from solid fuels is used to

represent HAP in the BoD studies (Bonjour et al., 2007).

Particulate matter, benzene and, ozone have been highlighted, as they

cause serious damage to the respiratory system: a prediction based on a

scenario for raising concentrations of PM2.5 and O3 indicates that, these

two contaminants solely, could account to 6-9 million premature deaths (a

death that occurs before the average life expectancy for a given population)

annually by 2060 (Guardino et al., 1994; Manisalidis et al., 2020; OECD,

2016). Furthermore, some authors have found some small (however, not

fully consistent) evidence that the specific components of particulate mat-

ter have negative effects on human health (Lavigne et al., 2020). Figure 2.3

shows selected indoor contaminants, their penetration in the human respi-

ratory track and their affected areas.

§Death and loss of health due to diseases, injuries and risk factors for all regions of
the world
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Figure 2.3: How Indoor Air contaminants Affect the Body. (A.L.A., 1987)

2.2.1.1 The criteria pollutants

Particulate Matter (PM). The smallest fractions of the PM have the

highest health risks due to their ability to penetrate deeper in the res-

piratory system reaching into the cardiovascular system (see Fig. 2.4).

Epidemiological and clinical studies have linked PM to a range of health

outcomes, for short-term (acute) and long-term (chronic) PM exposure.

Adverse effects associated to PM exposures include: mortality and hospital
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admission in COPD patients, asthma exacerbation, mortality and morbid-

ity for cardiovascular diseases (ischaemic events, arrythmia, cardiovascular

events, heart rate variability), diabetes, myocardial infarction, lung/sys-

temic inflammation and respiratory cancer (WHO, 2006, 2021). Short-term

(daily time series studies) exposure to PM (PM2.5, PM10, PM10−2.5) have

shown positive associations with risk for total and cause-specific mortal-

ity (respiratory, cardiovascular). Long-term exposure to PM2.5 has also

been found to be related to morbidity (hospital admissions, asthma, car-

diovascular outcomes, nonfatal heart attacks - myocardial infarction) and,

all-cause and specific mortalities (cardiopulmonary, cardiovascular, lung

cancer, COPD, stroke, IHD, ALRI) (Manisalidis et al., 2020; Prüss-Üstün

et al., 2016; US-EPA, 2011, 2012, 2020b; WHO, 2006, 2021).

Figure 2.4: Particle size and penetration in the human respiratory system.

(CH et al., 2017)

The aerodynamic size of particles is strongly associated with respiratory

system diseases, with PM2.5 penetrating into the lungs. Emerging evidence

indicates health effects may vary by PM chemical composition and physi-

cal traits (Manisalidis et al., 2020; National Academies of Sciences, 2016;

US-EPA, 2020b). Yet, epidemiology still finds particle size the most con-

sistent, robust predictor of incidence under long-term exposure (Burnett
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et al., 2018; Xu et al., 2022). This reflects the equi-toxicity principle -

equal estimated toxicity per inhaled unit mass across PM types. More

research on composition/source-specific PM health impacts is needed to

enable differentiated exposure-response quantification (Xu et al., 2022).

Sulphur Dioxide (SO2) exposure is associated with health problems

such as respiratory irritation, reductions in mean lung function, bronchitis,

mucus production, bronchoconstriction and bronchospasm. Moreover, it

can influence the autonomic nervous system. Skin redness, damage to the

eyes (lacrimation andcorneal opacity) and mucous membranes and, worsen-

ing pre-existing cardiovascular disease have also been observed. Asthmatics

are particularly vulnerable (Chen et al., 2007; US-EPA, 2010a; WHO, 2006,

2021). Both chronic (years) and acute (hours) exposures have been asso-

ciated to increased total non-accidental, lung cancer, cardiovascular and

respiratory mortality. As for morbidity; hospital admissions for asthma,

COPD and respiratory symptoms have been related to SO2 exposures (Kat-

souyanni et al., 1997; OSHA, 1999; Prüss-Üstün et al., 2016; US-EPA,

2010a; WHO, 2006, 2021).

Nitrogen Dioxide (NO2) is toxic, even for short periods of exposure,

and its adverse effects are exacerbated by the presence of other contami-

nants (PM2.5, SO2). Thus it becomes difficult to differentiate the effects

of nitrogen dioxide from those of other contaminants in epidemiological

studies (WHO, 2006, 2021). Extensive reviews have concluded that respi-

ratory health is associated with nitrogen dioxide exposure, independently

of these other exposures (US-EPA, 2016). As an irritant of the respira-

tory system, it penetrates deep in the lung, inducing changes in pulmonary

function, respiratory diseases, cough, wheezing, dyspnea, bronchospasm,

airway inflammation, asthma exacerbation; when inhaled at high concen-

trations is associated with pulmonary edema. Furthermore, it can cause

eye, throat and, nose irritation (Chen et al., 2007; Manisalidis et al., 2020;

WHO, 2006, 2021). Chronic exposure to high concentrations of NO2 can

be responsible for chronic lung disease and can impair the sense of smell

(Chen et al., 2007). Examination of the effects of nitrogen dioxide has

focused on people with pre-existing conditions like lung disease, asthma,

COPD or chronic bronchitis (WHO, 2006, 2021). Daily mortality (all cause

-cardiovascular- respiratory), daily hospital admissions for respiratory dis-

orders and cardiovascular diseases, asthma admissions, asthma in children,
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congestive heart failure and ischemic heart disease have been associated to

acute (hourly) exposure to NO2 in epidemiological and time series studies

(WHO, 2006, 2021). Cohort studies of long-term health effects have as-

sessed the association between NO2 and morbidity (cancer, lung cancer,

bronchitic symptoms, recurrent wheeze, asthma, respiratory symptoms,

preterm birth) and mortality (all-cause, lung cancer, sudden infant death)

in children and adults. Epidemiological (cross-sectional and cohort) studies

on health effects of indoor nitrogen dioxide exposure have found relation-

ships with prevalence of respiratory illness, (dry) cough, wheeze, asthma,

shortness of breath, allergic reactions (US-EPA, 2016; WHO, 2010). Stud-

ies have been particularly for children exposed to NO2 from gas cookers

the in home.

Ozone (O3) even in small amounts, is linked to causing biochemical,

morphologic, functional and immunological disorders, including respiratory

and cardiovascular conditions. Short-term exposure increases daily mortal-

ity (total - nonaccidental, respiratory, cardiovascular) (Manisalidis et al.,

2020; US-EPA, 2020a; WHO, 2006, 2021). Acute responses include effects

on the pulmonary system (pulmonary function and inflammatory media-

tors) and the cardiovascular system (reduced heart rate variability, heart

failure, impaired heart function, IHD, stroke, cardiac arrhythmia/arrest)

(US-EPA, 2020a). Chronic effects include reduced lung function, devel-

opment of atherosclerosis, asthma/asthma exacerbation and reduction in

life expectancy. There is evidence that ozone acutely increases morbid-

ity for respiratory conditions, hospital admissions for asthma, respiratory

tract infections and exacerbation of chronic airway diseases (WHO, 2006,

2021). Short-Term ozone exposure is linked to metabolic effects (diabetes)

(US-EPA, 2020a).

O3 and NO2 are Reactive Oxygen Species - Reactive Nitrogen Species

(ROS-NRS). Excess ROS can cause oxidative stress, damaging respiratory

cells and tissues. This oxidative damage can accelerate aging, spur cell

death, and ultimately contribute to disease (Lakey et al., 2016; Poschl and

Shiraiwa, 2015).
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2.2.1.2 Other air pollutants

Volatile Organic Compounds (VOCs) contain carbon and evaporate

under normal conditions. The 1990 Clean Air Act identified 187 VOCs as

hazardous air contaminants, or air toxics (Borsboom et al., 2016). VOC

health risks depend on the specific compound, exposure level, and time

spent indoors (Shrubsole et al., 2019). Not all VOCs are harmful (Spen-

gler et al., 2000). However, some like benzene, toluene, and formaldehyde

associate with cancer in humans (Manisalidis et al., 2020; Spengler et al.,

2000). Most data on VOC and air toxic impacts come from toxicology or

occupational/accidental exposure studies. The World Health Organization

provides health effects information for numerous VOCs detected indoors.

While risks vary by compound, chronic VOC and air toxic exposures may

have neurological, carcinogenic, and other adverse effects at elevated con-

centrations. Further research on exposure scenarios is needed.

Benzene causes acute non-cancer (dizziness, nausea) and chronic non-cancer

effects (immunological) from high exposures, along with leukaemia and lung

cancer from long-term lower exposures (Manisalidis et al., 2020; US-EPA,

2003a; WHO, 2010). Formaldehyde leads to odors, irritation, lung impacts,

and eczema from indoor exposures. It also causes nasopharyngeal cancer

and leukaemia (Samet et al., 1988; US-EPA, 1990a; WHO, 2010). Naphtha-

lene risks include respiratory carcinogenicity and haemolytic anaemia, but

dose-response data are limited (WHO, 2010). Xylenes associate with de-

creased weight, mortality, and coordination (US-EPA, 2003b). Trichloroethy-

lene (TCE) causes neurotoxicity, kidney/liver cancer, autoimmunity, and

developmental effects. It is genotoxic (Shrubsole et al., 2019; WHO, 2010).

Tetrachloroethylene (PCE) causes cancer (oesophageal, cervical, lymphoma)

and mucous membrane irritation (WHO, 2010).

Polycyclic aromatic hydrocarbons (PAHs) pose mutagenic and car-

cinogenic risks via DNA adduct formation. Non-cancer effects include birth

defects, bronchitis, and asthma. Cancer effects include lung and bladder

cancer (Manisalidis et al., 2020; Spengler et al., 2000; US-EPA, 1990b;

WHO, 2010).

Radon primarily causes lung cancer. Leukemia and other cancers also

associate with radon (Keith et al., 2012; Samet et al., 1988; Spengler et al.,

31



2.2. EXPOSURE TO AIR CONTAMINANTS AND HEALTH IMPACT

2000; WHO, 2010).

Biological agents like mold link to asthma, respiratory infections, Le-

gionnaires’ disease, wheezing, coughs, and allergies. Even dead mold emits

mycotoxins (Borsboom et al., 2016; Heseltine and Rosen, 2009; Samet et al.,

1988).

A descriptive resume of air contaminants and their plausible health out-

comes is shown in Table 2.3.

Table 2.3: Air contaminants and plausible health outcomes. +

Plausible health outcomes

Mortality Morbidity

Cardiovascular Respiratory Lung

Contaminant
All cause (general) (general) cancer COPD ALRI IHD Stroke Cancer * Asthma Respiratory Cardiovascular

cr
it
er
ia

p
ol
lu
ta
n
t

Particulate
matter (PM2.5)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sulfur Dioxide
(SO2)

✓ ✓ ✓ ✓ ✓ ✓

Nitrogen Diox-
ide (NO2)

✓ ✓ ✓ ✓ ✓ ✓

Ozone (O3) ✓ ✓ ✓ ✓ ✓

Carbon
monoxide£

✓ ✓ ✓ ✓ ✓ ✓

V
O
C

*
*

Benzene ✓ ✓

Formaldehyde ✓ ✓ ✓ ✓

TCE ✓

PCE ✓

Naphthalene ✓ ✓

Xylenes ✓

O
th

er
a
ir

co
n
ta
m
in
a
n
ts

Polycyclic
aromatic
hydrocarbons***

✓ ✓

Radon ✓

Mold ✓ ✓ ✓
* It refers to different cancer.
** Volatile Organic Compounds.
*** benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k ]fluoranthene, chrysene, dibenzo[a,h]anthracene, benzo[ghi ]perylene and
indeno 1,2,3 [cd ] pyrene.

£ The evidence found and reported for CO exposure express acute exposures, and even deaths by suicide.
+ Several sources (Heseltine and Rosen, 2009; Hime et al., 2018; National Academies of Sciences, 2016; Prüss-Üstün et al., 2016; Samet et al.,
1987, 1988; Spengler et al., 2000; US-EPA, 1990a, 2003a,b, 2010a,b, 2011, 2012, 2016, 2017, 2020a,b; WHO, 2006, 2021)

2.2.2 Additive, synergistic and multi-contaminant ef-

fects

Chemical pollution is characterized by the simultaneous and sequential ex-

posure to unintentionally complex mixtures. This complexity arises from

32



2.2. EXPOSURE TO AIR CONTAMINANTS AND HEALTH IMPACT

the presence of mixtures of gases, vapors, and particles that people en-

counter with every breath taken (Spengler et al., 2000). For air pollution

in particular, most toxicological and epidemiological evidence does not fo-

cus on multi contaminant mixtures, bar known risks like smoking (Bors-

boom et al., 2016; WHO, 2021). But combined effects may matter in some

circumstances. Joint impacts could match the sum of solitary effects (ad-

ditivity). Or surpass it, synergistically. Or fall short, antagonistically. One

chemical may curb another’s influence (inhibition). Or boost it, despite

its own nugatory effect (potentiation). Or opposites may cancel each other

out (masking effect).

Current proposals for potential mixture risks assume Concentration Ad-

dition, whereby components behave additively (Section 2.2.1) (Backhaus,

2023; Martin et al., 2021; Martin, 2023). Limited data often necessitates

assuming additivity for human toxicity in life cycle assessments of en-

vironmental mixtures of air pollutants (Hauschild and Huijbregts, 2015;

Hauschild et al., 2018).

If synergies manifest, they likely occur at high concentrations above in-

dividual components’ points of departure. Several reviews support this,

finding limited synergies at typical exposures (Committee et al., 2019; Ko-

rtenkamp et al., 2009; Rudén et al., 2019; Socianu et al., 2022). Car-

bon monoxide is an exception showing synergistic effects at low concen-

trations (Norris et al., 1986; Ramsden, 2021) (more discussion on CO in

Section 8.7). Aside from photo oxidant NOx, knowledge of synergistic or

antagonistic air contaminant emissions in life cycle impact assessments re-

mains scarce (Hauschild and Huijbregts, 2015).

Assessing chemical mixture toxicity requires considering potential addi-

tive, synergistic, antagonistic, and other non-additive interactions between

components. The occurrence of additive, synergistic, or antagonistic ef-

fects varies with mixture composition. Equi-toxicity models consider sin-

gle substances, assuming their toxicity combines additively in generic cases.

However, simply summing single chemical effects may miss real-world low-

dose exposures. Mixtures exhibit complex interactions deviating from dose

additivity models. Exposure timing and sequence also influence outcomes

not captured in simplified single chemical studies. Accounting for these nu-

ances is key to advancing mixture risk assessment capabilities (Hauschild

and Huijbregts, 2015; Hauschild et al., 2018; Hernandez et al., 2019).
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2.3 Health-based metrics

Different metrics to measure disease exits (Miettinen, 2011). Mortality

rates show the effect of household and outdoor air pollution on environmen-

tal health (WHO, 2018c). Indicators and metrics are used interchangeably

in environmental contexts. Indicators tend to be broad, with quantita-

tive data and qualitative descriptions. Concentrations of PM2.5, NO2, O3,

and SO2 indicate sustainability (ISO, 2016), though urban air contami-

nant levels also count as metrics (Tanzil and Beloff, 2006). Metrics mostly

mean quantitative or semi-quantitative measures (Martenies et al., 2015).

Perceived air quality serves as a metric, especially for indoor air. Carbon

dioxide indicates poor indoor air (Jones, 2017). Here metrics and indicators

mean the same in air pollution research.

Current guidelines and standards for indoor and outdoor air pollution aim

to minimise exposures and protect health (Jones, 2017; Sherman et al.,

2018). Metrics like mortality, morbidity, life years lost and disability-

adjusted life years stem from public health data. But perceived air quality

and CO2 levels do not. Both feature in assessments of indoor and out-

door air quality. Yet what is needed are health-centred indoor air quality

metrics based on known health effects (Jones et al., 2018). Moreover, air

quality benchmarks should flag hazardous indoor air using human health

and comfort as the yardsticks, even if impacts are not immediate (Jones,

2017; Jones et al., 2018; Sherman et al., 2018).

2.3.1 Threshold values

In air pollution, thresholds are concentration limits set as maximum ex-

posures over time to gauge health impacts. “Standards” and “guidelines”

refer loosely to ambient and indoor air quality rules. But standards are

enforced (EPA, 2016); guidelines are not (WHO, 2010, 2021). For work-

places, exposure limit values (ELVs) and threshold limit values (TLVs) are

the norm (Abdul-Wahab et al., 2015).

Cognizant authorities, such as, national bodies, environmental agencies and

global health organizations issue air quality standards and guidelines for

sundry contaminants. The WHO and America’s EPA publish figures for

common contaminants. Oddly, for the criteria pollutants, the EPA’s rules
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are looser than the WHO’s, the toughest benchmarks for these pollutants.

For other contaminants like formaldehyde, cognizant authorities propose

a wide range of recommended limits varying by one order of magnitude

even (Table 2.4). Such values largely describe air pollution and look to

safeguard public health (EPA, 2016; WHO, 2021). Similarly, workplace

exposure limits aim to prevent or lessen health risks (Jones, 2017; Salis

et al., 2017). Prevention is guided by the ”as low as reasonably achievable”

(ALARA) principle, aim to minimize exposures while considering technical,

economic, and social factors (Andresz et al., 2022).

Bodies proposing indoor, occupational or ambient thresholds have a re-

sponsibility to establish thorough values. Countries lacking resources often

adopt standards/guidelines published by the USEPA NAAQS or WHO

AQG (Morantes et al., 2016). Abdul-Wahab et al. (2015) reviewed inter-

national bodies’ indoor air quality standards/guidelines, concluding adher-

ence depends on potential health effects. For certain contaminants such

as acrolein, meeting standards also hinges on the capability to accurately

measure their concentrations.

Importantly, different organizations’ limit values sometimes differ substan-

tially for identical exposure periods (Abdul-Wahab et al., 2015; Morantes

et al., 2016; Salis et al., 2017). Limit values reflect policy motivations,

policymaker judgments, and differences in contaminant information, not

uniform hazard levels. Guidelines and standards differ in derivation: some

from practical experience, others from comprehensive reviews and consen-

sus of experts on contaminants’ health effects. Most come from toxicolog-

ical/epidemiological health impact assessments (Borsboom et al., 2016).

Thresholds serve as air quality metrics. Concentration/threshold ratios

over one signal trouble (Jones et al., 2018; Salis et al., 2017; Sherman et al.,

2018). Measured values are compared to guidelines for each contaminant.

Exceeding a threshold signals danger; falling short suggests safety. But

breaching a limit by 1% or 10% counts the same, although not equivalent

for health. The extent matters: a threshold cannot measure health burden

when various contaminants breach thresholds.

Table 2.4 summarizes major indoor/outdoor air contaminant thresholds

from the WHO and the USEPA. Comparing proposed concentrations to

year-long exposure thresholds shows, for example, the PM2.5 value exceeds

both organizations’ limits. However, this does not determine the health

burden of exceeding a threshold.
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Table 2.4: Threshold values for main indoor and outdoor air pollutants.+

Indoor/occupational Outdoor/ambient In homesi

Contaminant
µg/m3 Time µg/m3 Time Typej Byj µg/m3

C
ri
te
ri
a
p
ol
lu
ta
n
t

Particulate matter

(PM2.5)
Use ambient values

5 1 year Guideline WHO 15.9

15 24-h Guideline WHO

9 1 year 9 1 year Standard US EPA

35 24-h 35 24-h Standard US EPA

65 24-h - 1-h Standard ASHRAE

Sulfure Dioxide (SO2) 0.012 a 1 year 40 24 -h Guideline WHO 2.9

80 (0.03a) 1 year 75 1 -h Standard US EPA

Nitrogen Dioxide (NO2) ambient 10 1 year Guideline WHO 13.1

values 25 24 -h Guideline WHO

100 (0.05a) 1 year 53b 1 year Standard US EPA

1800 (1a) 15-min 100 a 1 -h Standard NIOSH/US

EPA

Ozone (O3) 200 (0.1a) 8-h 0.07 a 3 year ELV / Stan-

dard

OSHA/US

EPA

17.2

120 (0.064a) 8-h 60 peak

season

Guideline WHO

Carbon monoxide 7 c 24-h 4c 24-h Guideline WHO 810

10c 8-h Guideline WHO

55c(50a) 8-h 9 a 8-h PEL / Stan-

dard

OSHA/US

EPA

35 a 8-H 35 c 1-h REL / Stan-

dard

NIOSH/US

EPA

V
O
C

d

Benzene No safe level of exposure can be recommended 2.5

Formaldehyde 0.1 c 30min – Guideline WHO 69

20 10-h ELV NIOSH

9 chronic REL CA OEHHA

10 chronic ELV France

10 1 year ELV UK

0.1 c 30min Standard ASHRAE

Trichloroethylene 2 Whole

life

– ELV VGAI 0.16

2.3 Whole

life

Guidelinee WHO

Tetrachloroethylene 250 1 year – Guideline WHO 1.7

Naphthalene 10 1 year – Guideline WHO 1.2

9 1 year REL OEHHA

Xylenes 22000 1-h REL OEHHA 7.4

O
A
C

h Polycyclic aromatic hy-

drocarbons f

No safe level of exposure can be recommended

Radon 100g1 1 year – Guideline WHO

Mold 200g2 1 year ELV EU

a ppm
b ppb
c mg/m3

d Volatile Organic Compounds
e excess lifetime cancer risk of 1:1,000,000
f a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k ]fluoranthene, chrysene, dibenzo[a,h]anthracene, benzo[ghi ]perylene and indeno 1,2,3

[cd ] pyrene
g1 Bq/m3 (Becquerel)
g2 CFU/m3 (Colony Forming Units)
h Other Air Contaminants
i (Logue et al., 2011a)
j REL, Recommended exposure limit; PEL, Personal exposure limit; ELV, exposure limit value WHO, World Health Organization; USEPA,United

States Environmental Protection Agency; VGAI, Valeurs Guides de qualité d’Air Intérieur, France; OEHHA, Office of Environmental Health Hazard

Assessment, USA; NIOSH, National Institute for Occupational Safety and Health, USA.
+ From (Abdul-Wahab et al., 2015; EPA, 2016; Morantes et al., 2016; Salis et al., 2017; WHO, 2006, 2010, 2021)
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Figure 2.5 links the former WHO PM2.5 guideline from 2005 to child ALRI

risks. While these guidelines for PM2.5 have been updated since 2005 (to 5

µg/m3), this figure is included to illustrate how a threshold can be linked to

a specific exposure-response function. Relating concentrations to a health

risk function provides a nuanced understanding of the impact across various

exposure levels, surpassing simple threshold comparisons.

(a)

(b)

Figure 2.5: The relationship between level of PM2.5 exposure (µg/m3) and
relative risk (95 % CI) of child ALRI, based on the integrated exposure-
response (IER) function, for (a) exposure over the range 0–600 µg/m3, and
(b) over the range 0–40 µg/m3 which spans the WHO annual AQG for
PM2.5 and the interim target (IT-1). (WHO, 2014)
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2.3.2 Disability-Adjusted Life Years (DALYs)

Health-adjusted life years (HALYs) permit simultaneous description of

morbidity and mortality within a single population health measure, useful

for comparisons across illnesses, interventions and populations (Gold et al.,

2002). HALYs include quality-adjusted life years (QALYs) and disability-

adjusted life years (DALYs) (Fryback, 1998). DALYs summarize health

impacts while QALYs capture both the quantity and quality of remaining

life years based on functional outcomes and well-being. Table 2.5 shows

descriptors, similarities and differences.

Table 2.5: Descriptives for HALY metrics: QALYs and DALYs.

QALY DALY

Measures the quality of life in
health gain

Measures health loss in the quality
of life

Patient-centric perspective Population-level perspective
1 = perfect health 1 = death
0 = death 0 = perfect health
Accounts for healthy years Accounts for loss of healthy years
QA quality of life DA morbidity
LY quantity of life LY mortality
Quantify health Quantify burden
Since the 1960’s Since the 1990’s
Measure not for specific health out-
comes

Measure for specific health out-
comes

Usually used in developed or high-
income countries (UK)

Usually used in developing or low-
income countries; WHO and World
Bank

Use life tables
Can account for discount rates (discount for time preference)

Can account for age-adjustment
Do not consider comorbidity (individual experiencing multiple illnesses)

In 1993, the World Bank and WHO sought to quantify the global burden

of premature death, disease and injury: Disability-Adjusted Life Years

(DALYs) were the metric developed (Murray, 1994). DALYs indicate time

lived with disability and time lost to premature mortality for specific health

outcomes (Homedes, 1996). The DALY framework uses disability for any

illness reducing short- or long-term physical/mental health (Chen et al.,

2015). DALYs have been criticized (Anand and Hanson, 1997; Parks, 2014;

Williams, 1999) but remain under revision since proposed; however, the

underlying model is unchanged (Chen et al., 2015).
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DALYs are used in disease burden studies (Kyu et al., 2018). The number

of DALYs for a disease equals the Years of Life Lost (YLL) from premature

mortality plus Years Lost due to Disability (YLD) (Equation 2.1) (Chen

et al., 2015; Homedes, 1996; Mathers et al., 2001):

DALY = Y LL+ Y LD (2.1)

Y LL = N · L1 (2.2)

Y LD = I ·DW · L2 (2.3)

where:

DALY is disability-adjusted life year,

YLL is years of life lost,

YLD is years lived with disability,

N is number of deaths,

L1 is standard life expectancy minus age of death,

I is number of incident cases in reference period,

DW is disability weight,

L2 is average duration of condition

N, I & L2 are obtained from health organizations data bases, such as the

national statistical bureaux or the United Nations Statistics Division. L1

is a life-expectancy at birth of 82.5 years for women and 80 years for men,

the highest average observed globally (Gold et al., 2002; Murray, 1994). In

parallel, life expectancy of populations can be obtained using life tables,

such as those created by WHO (Murray et al., 2000). The statistical theory

for life tables can be seen in Cox (1972). Four different measures that could

be used to estimate life expectancy for DALYs are presented in Adam and

Murray (2003). DW represents the magnitude of health loss associated

with an specific outcome, on a scale from 0 to 1, with 0 implying a state

that is equivalent to full health and 1 a state equivalent to death. Disability

weights for 235 unique health states in the Global Burden of Disease studies

(GBD) 2013-2016 are presented in Salomon et al. (2015).
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DALYs can account for age weighting and discounting for time preferences

(Murray, 1994). The former values young adulthood years more, assuming

reliance on middle-aged groups (Barendregt et al., 1996; Gold et al., 2002;

Homedes, 1996). The latter discounts future benefits (usually 3% rate)

(Gold et al., 2002; Murray, 1994). Current estimates of DALYs in GBD

studies omit both (Chen et al., 2015; Kyu et al., 2018).

Equation 2.1 shows that DALYs depend heavily on epidemiological data,

which is scarce in developing nations. Most DALY estimates use intricate

models covering demographics, birth and death rates, and socioeconomics.

Drawbacks include tangled computation (Harikrishnan et al., 2018; James

et al., 2018) and data scarcity (population age, life expectancy, incidence,

prevalence) (Chen et al., 2015). Collecting such data present significant

challenges. Assumptions (like discounting and age-weighting rates) and

guesses (onset and death ages) (Rushby and Hanson, 2001) also compli-

cate DALYs. Table 2.6 and Figure 2.6 show DALYs variation for alcohol

use disorder from different assumptions, demonstrating estimate sensitivity

(Devleesschauwer et al., 2014).

Table 2.6: Years lived with disability (YLDs), years of life lost (YLLs) and
disability-adjusted life years (DALYs) for the alcohol use disorder example
under different social value choices, (Devleesschauwer et al., 2014).

Scenario [K; r] Age weight-
ing, K

Discount
rate, r (%)

YLD YLL DALY

DALY[0;0] No 0 11.0 25.0 36.0
DALY[1;0] Yes 0 12.3 16.7 29.1
DALY[0;0.03] No 3 8.3 9.7 17.9
DALY[1;0.03] Yes 3 9.5 6.7 16.2

DALYs feature prominently in models of environmental risk and in stud-

ies of the global burden of disease. DALYs have gained wide acceptance

among scientists as health metrics, despite some flaws. They help assess

the danger of environmental hazards in particular. Myriad studies quan-

tify air pollution’s hidden health tolls using DALYs (Harikrishnan et al.,

2018; James et al., 2018; Murray, 1994; Prüss-Üstün et al., 2016). The

latest GBD study estimate the DALY burdens of 359 diseases across 195

countries from 1990-2017. Air pollution’s impacts were associated to high-

est disease burden (Kyu et al., 2018). Assumptions for estimating DALYs

evolve across studies, reflecting a dynamic field aimed at enabling consis-

tent quantification and comparison of disease burdens across populations

and illnesses, fostering continual learning from each model.
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Figure 2.6: 1 Years lived with disability (YLDs) and years of life lost (YLLs)
for the alcohol use disorder example under different social weighting sce-
narios. The top left plot is the basic disability-adjusted life year (DALY)
calculation (the “0,0” indicates no age weighting and zero discount rate, see
Table 2.6). The bottom left plot includes age weighting; the curved black
line is the age-dependent zero disability level, while the straight grey line
compares the situation without age weighting. The top right plot includes
a 3 % time discount rate; the burden is assigned to the year of disease onset
(the age of 40). The bottom right plot, finally, combines age weighting and
a 3 % time discount rate (Devleesschauwer et al., 2014).

2.4 Health risk and impact assessment

There are several prominent methods for assessing and prioritizing health

impacts of air pollutants (Rausand, 2013; von Stackelberg and Williams,

2021). Hazard assessments compare human exposures to a contaminant’s

health-based safety level, threshold, or guideline. When exposed to multiple

contaminants, summing their individual hazards (the ratio of the dose to

the reference) is a common approach (aggregating across risks assumes that

there are no interactions or synergies between different contaminants). This

assessment identifies exposures of potential concern without ranking risks.

Impact assessments apply toxicological and epidemiological evidence to es-

timate and rank pollutants by attributable health damage.

Cumulative risk assessment attributes total disease burdens across out-

comes to indoor sources, also enabling source prioritization (Sexton, 2012).
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Cost-benefit analysis monetizes health benefits of exposure reductions, weigh-

ing them against intervention costs (Pearce et al., 2006). Each approach

offers insights into indoor pollutants’ hidden tolls.

Health risk assessment (HRA) quantifies the likelihood of adverse effects by

characterizing pollutant emissions, exposures, and dose-response relation-

ships. HRA models estimate risks to guide guidelines and risk management

(Council, 2009).

Comparative risk assessment involves systematic evaluation of changes in

population health that would result from modifying the population distri-

bution of exposure to a risk factor or a group of risk factors, using consistent

and comparable methods (Ezzati, 2008)

Health impact assessment (HIA) evaluates policies and interventions through

a health lens, forecasting potential benefits or validating post-implementation

impacts (WHO, 2001).

Among these techniques, cumulative risk assessment holds particular promise

for elucidating indoor air pollution’s health footprints. By aggregating mul-

tiple pollutants’ contributions across outcomes, it captures interactive and

overlapping effects missed in single-pollutant assessments. Attributed dis-

ease burdens encapsulate prevalence and severity, overcoming limitations

of incidence-only impact measures. Nevertheless, cumulative assessments

require extensive data and modeling, along with uncertain assumptions.

Continued research on indoor pollutants’ toxicity and population exposure-

response relationships will strengthen knowledge bases for cumulative risk

efforts.

No single approach provides a complete picture; combinations of techniques

offer the most robust insights to guide indoor air quality management.

Ultimately, the shared goal remains elucidating pollutants’ health burdens

to protect the public through evidence-based decision-making.

2.4.1 Health Risk Assessment

Air Pollution Health Risk Assessment (AP-HRA) is a comprehensive method-

ology aimed at quantifying harm associated with air pollution by using the

Disability-Adjusted Life Year (DALY) as the outcome metric. AP-HRA

provides an epidemiology-based framework for comparative risk analysis,
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cost-benefit evaluation of interventions, accountability assessments of air

quality management programs, and setting exposure guidelines and stan-

dards (Bhat et al., 2021). Ensuring robust and rigorous AP-HRA is crucial

for evidence-based air quality policy and decision-making.

Concentration-response (C-R) functions form the core of AP-HRA. They

establish the relationship between changes in incidence or prevalence of ad-

verse health outcomes and changes in air pollutant exposures (Bhat et al.,

2021). These C-R coefficients are derived from epidemiological observa-

tional studies that investigate the association between air quality indicators

(like PM2.5 concentrations) and health endpoints (asthma exacerbations,

cardiovascular mortality). The C-R function for the incidence rate, for a

health outcome k and a contaminant i, I(k,i), is most often described by

a no lower threshold (also known as Theoretical Minimum Risk Exposure

Level -TMREL, point of zero impact, baseline background concentration,

or counterfactual level) saturation expression, using a non-linear relation-

ship (Sacks et al., 2018).

I(k,i) = γ0k
(
1− e−(β(k,i)·Ci)

)
(2.4)

Ci is the representative or reference concentration where the health effects

are calculated. The effect of a lower threshold can be introduced replacing

Ci by Ci − C0, with C0 as a concentration below which effects are not

considered.

γ0k is the baseline incidence rate, β(k,i) is an empirical parameter that de-

scribes the change in the risk estimate per unit of change in the contaminant

concentration (∆Ci, in µg/m3, or an equivalent concentration unit),

βk,i =
ln(RR(k,i))

∆Ci

(2.5)

where RR is a relative risk (Sacks et al., 2018). An all-cause effect of

health impact k can be achieved by applying an all-cause disease estimate

or, by the sum of the contributions across health endpoints, caused by the

contaminant i.

The relative risk (RR(k,i)) is determined by β(k,i) and Ci. The most com-

monly used C-R model is a log-linear relative risk (RR) model that relates

concentration (C) to RR (Burnett and Cohen, 2020; Nasari et al., 2016):
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RR(k,i) = e(β(k,i)·Ci) (2.6)

Here, β(k,i) represents the log-linear regression coefficient for health out-

come k and pollutant i. This model approximates the observed shapes of

air pollutant C-R curves reasonably well. Nonlinearities emerge at high

concentrations because the probability of catching a disease cannot exceed

100%, and the curve flattens at high exposure levels. Epidemiological, bio-

logical, and/or chemical mechanisms that may explain the attenuation of a

C-R function for airborne contaminants at high concentrations are: (i) The

saturation effect (biochemical and cellular processes becoming saturated);

(ii) The depletion of susceptible people (the population at risk at high

exposure levels contains relatively few susceptible people); (iii) High back-

ground rates of disease (competing risks); (iv) A decreased inhalation at

high concentrations; (v) For particles, a reduction in the fraction of toxic

matter at higher doses (dilution hypothesis) (Nirel et al., 2021; Stayner

et al., 2003).

Although alternative nonlinear forms, such as log-log and power law mod-

els, also accurately capture C-R behavior across the full concentration range

(Burnett and Cohen, 2020; Burnett et al., 2014; Nasari et al., 2016), the log-

linear model remains the most widely applied in AP-HRA analyses (Bhat

et al., 2021).

Within the field of air pollution epidemiology, researchers make frequent

use of a metric known as the population attributable fraction (PAF). This

valuable parameter enables quantification of the proportional increase in

incidence (cases) via the baseline disease incidence, or harm (DALYs) via

the Burden of Disease (BoD), the death and loss of health due to diseases,

injuries and risk factors, the last being in this case air pollution:

I(k,i) = PAF(k,i) · γ0k (2.7)

and,

Harm(k,i) = PAF(k,i) · BoDk (2.8)

Despite its conceptual simplicity, in practice the PAF is represented by a

range of mathematical definitions and terminologies. Numerous synony-

mous versions exist, including attributable fraction, attributable risk frac-

tion, and attributable burden. Additionally, several equivalent equations
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can be utilized to calculate the PAF, including the fraction of exposed in-

dividuals, the ratio of the relative risk minus 1 to the relative risk, and 1

minus the inverse relative risk. Common definitions of PAF include (Sacks

et al., 2018):

PAF(k,i) =
RR(k,i) − 1

RR(k,i)

(2.9)

PAF(k,i) =
f · RR(k,i) − 1

f · (RR(k,i) − 1) + 1
(2.10)

The choice among these interchangeable PAF versions appears somewhat

arbitrary, likely driven by historical precedents within a discipline or the

personal preferences of a researcher. While this flexibility allows the PAF

to be adaptable across diverse study contexts, it also permits inconsistency

and hinders comparisons. Nevertheless, regardless of the final equation or

terminology used, the PAF meaningfully condenses epidemiological data

into a proportion reflecting the disease burden attributable to air pollution

exposure. Further research is warranted on standardizing PAF use and

terminology in AP-HRA.

AP-HRA converts air quality data into quantifiable health impacts, provid-

ing a scientific basis for air pollution policy assessment, accountability, and

development. These epidemiology-based definitions align with the environ-

mental health perspective of assessing incremental effects above background

risk levels.

While conceptually straightforward, in practice AP-HRA requires extensive

data inputs, modeling choices, and uncertainty propagation steps. Evalu-

ating AP-HRA methods to improve accuracy and policy relevance remains

an active research area (Bhat et al., 2021). Challenges include:

• Obtaining consistent air pollution and health data across geographic

scales for C-R derivation and health impact assessment.

• Selecting appropriate baseline rates, especially for mortality outcomes.

• Extrapolating C-R relationships beyond observed data ranges during

application.

• Choosing suitable health impact functions and exposure lags.
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• Quantifying and propagating uncertainties from epidemiological data

through health impact calculations.

• Enabling analysis of demographic subgroups.

• Incorporating non-health co-benefits and costs.

Despite these complexities, AP-HRA provides a crucial quantitative link

between air quality indicators and public health outcomes. Key recent

examples of AP-HRA tools and implementations include:

• The Environmental Benefits Mapping and Analysis Program (Ben-

MAP), developed by the U.S. EPA (Sacks et al., 2018).

• Global tool for health risk assessment of air pollution, AIRQ+ 2.1

(WHO, 2020).

• Integrated dispersion and exposure model for air contaminants in

Europe, Ecosense (Schmid et al., 2019).

• Household Air Pollution Intervention Tool (HAPIT) (Pillarisetti et al.,

2016).

• Greenhouse gas—Air pollution Interactions and Synergies (GAINS)

model (Amann, 2008).

These and related tools synthesize available air quality and epidemiolog-

ical data into integrated web or desktop based platforms for quantitative

health impact assessment. They enable comparative risk analysis across

pollutants and scenarios, evaluation of air quality regulations and inter-

ventions, and accountability assessments of control programs. They often

use pooling techniques to synthesize coefficients across studies, resulting in

more precise C-R estimates with uncertainty quantification (Sacks et al.,

2018). Although data and methodology limitations remain, AP-HRA pro-

vides the fundamental scientific basis for evidence-based air quality policy

and management.

AP-HRA applies epidemiological C-R evidence within a quantitative frame-

work linking air quality to attributable health burdens. This supports

accountable, scientifically guided decision-making regarding air pollution

control. While research continues refining AP-HRA methods, existing tools
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already provide valuable insights for strengthening air quality policy devel-

opment, planning, and assessment. Improving AP-HRA models and data

will further enhance our understanding of air pollution impacts and em-

power policymakers to make well-informed choices that effectively protect

public health.

In the context of AP-HRA, Cumulative Risk Assessment (CRA) is a special-

ized approach applied to indoor air pollution. CRA studies have predom-

inantly focused on the impacts of household solid fuel use in low-income

countries, with some exceptions in Europe. The EnVIE Study and the

World Health Organization (WHO) have conducted CRA analyses to as-

sess the impacts of inadequate housing and indoor air pollution in Europe

(Braubach et al., 2011; Fernandes et al., 2009; Jantunen et al., 2011). These

studies follow the attributable burden approach. They aggregate the im-

pacts of diseases impacted by indoor air pollution, identify the dominant

pollutant exposures causing the diseases, and apportion the diseases to in-

door air impacts based on relative indoor/outdoor exposure contributions.

By linking exposure to specific contaminants with health outcomes through

C-R functions, researchers can estimate the disease burden and identify

the most significant sources of pollution. The use of epidemiological evi-

dence within a quantitative framework strengthens the scientific basis for

evidence-based air quality policy and management, supporting informed

decision-making to protect public health. Continual improvement of AP-

HRA methodologies and tools will further enhance our understanding of

air pollution impacts and help develop effective policies to mitigate the

adverse effects of air pollution.

Attributable burden techniques estimate the proportional harm reduction

if exposures were lowered to hypothetical minimum risk levels. The 2010

GBD developed relative risks from Integrated Exposure-Response (IER)

models synthesizing epidemiological evidence across four pollution sources

into continuous exposure-response curves linking PM2.5 and specific mortal-

ities (ischemic heart disease (IHD), stroke, chronic obstructive pulmonary

disease (COPD), lung cancer (LC) and, acute lower respiratory infection

(ALRI)) (Burnett et al., 2014):

RRIER(z) = 1 + α(1− e−γ(z−zcf )
δ

) ∀ z ≥ zcf (2.11)

where:
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z is the exposure to PM2.5 in µg/m3,

zcf is the TMREL (Theoretical minimum risk exposure level) or counter-

factual concentration below, there is no additional risk. A TMERL

was chosen from the premise that exposure cannot be reduced to zero

in practice (Krewski et al., 2009; Prüss-Üstün et al., 2016).

α, γ, δ are unknown model parameters estimated by nonlinear regression

methods by Burnett et al. (2014); and released by IHME (2013).

These supra-linear models exhibit attenuation at high concentrations, and

represent an alternative to the log-linear function, are congruent with epi-

demiological and toxicological tenets, and enable health impact estimation

across diverse exposure levels (Burnett et al., 2014; Cohen et al., 2017). The

IERs for ALRI, stroke, IHD are highly non-linear; they flatten substantially

at exposure concentrations greater than approximately 375 µg/m3 for ALRI

and 125 µg/m3 for stroke/IHD. Only reduction to exposure concentrations

below such values, will result in lower RRs. As for COPD and LC, the IERs

for are more linear, indicating that even incremental exposure reductions

will result in differences in RRs. Figure 2.7 show the IERs developed by

Cohen et al. (2017).

The IER function is applied to get the PAF (Equation 2.9). The PAF is

then multiplied by the BoD, to obtain the attributable burden as a measure

of harm, with Equation 2.8.

Based on IER risk relationships, GBD studies attributed 4.2 million deaths

and 103 million DALYs to ambient PM2.5 in 2015 (Cohen et al., 2017).

Similar approaches applied to household air pollution estimate substantial

disease burdens from solid fuel use (Smith et al., 2014; WHO, 2018a,e).

Beyond classic and attributable burden methods, multimedia tools facili-

tate DALY computation (Devleesschauwer et al., 2014). The World Health

Organization proffers a simple DALY template for quick estimates (Math-

ers et al., 2001). More sophisticated tools like the Household Air Pollution

Intervention Tool (HAPIT) enable uncertainty propagation using Monte

Carlo techniques (Pillarisetti et al., 2016). Users input pre- and post-

intervention PM2.5 sampling and disease burden data to estimate averted

harm (and premature deaths) from interventions. The HAPIT tool applies

IER functions, see Fig. 2.8.

The HAPIT tool has great potential for users interested in obtaining harm
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Figure 2.7: Integrated exposure–response functions. Curves show the
central estimate of the integrated exposure–response (solid lines) and their
95% uncertainty intervals (shaded areas). The relative risk equals 1 for
PM2.5 concentrations of 0 – 2.4 µg/m3 (the lower bound of the theoretical
minimum risk exposure level uncertainty distribution) (Cohen et al., 2017).

related to indoor PM2.5 based on the best available health effects informa-

tion.

Diverse harm modelling approaches illuminate air pollution’s health tolls.

Classic methods underlie foundational global estimates, while attributable

and integrated exposure-response models discern risks across exposure lev-

els and contexts. Dedicated multimedia tools empower analysis, from sim-

ple point estimates to complex uncertainty characterization. Together,

these DALY-based techniques provide vital insights guiding efforts to ame-

liorate air pollution’s public health impacts.

2.4.2 The characterization framework in life cycle as-
sesment

Life cycle assessment (LCA) originated in the late 1960s and early 1970s as

a quantitative methodology for modeling potential human health and en-

vironmental impacts across the full life cycle of a product or process (Hunt

et al., 1996). For human health, LCA aims to characterize the relationship

between chemical emissions and resulting population-level disease burdens,
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Figure 2.8: Integrated Exposure Response (IER) curves relating Exposure
to PM2.5 to health endpoints associated with exposure to air pollution,
including ischemic heart disease (IHD), stroke, chronic obstructive pul-
monary disease (COPD) and, lung cancer (LC) in adults and acute lower
respiratory infection (ALRI) in children (Pillarisetti et al., 2016).

providing an overarching framework for comparative risk assessment and

informed decision making (Hauschild and Huijbregts, 2015; Hauschild et al.,

2018).

Within LCA, the Life-Cycle Impact Assessment (LCIA) aims to evaluate

the impacts of the different inputs and outputs identified in the relevant

stages of the LCA. The environmental fate and human exposure model is

termed the characterization framework. This translates emitted contami-

nants into human intake via various exposure pathways. For air contam-

inants, inhalation of indoor and outdoor air represents the predominant

route of exposure (Hellweg et al., 2009; Meijer et al., 2005a,c). The charac-

terization framework thereby establishes a quantitative chain from emission

to intake for any compound released into air (Hauschild et al., 2002).

To extend beyond intake and quantify resultant health damages, LCIA pro-

vides characterization factors (CFs) that link emission quantities of con-

taminant i to harm (as disability-adjusted life years, DALYs), a composite

metric representing years of life lost and years lived with disability (Mur-

ray, 1994). CFs are calculated as the product of an intake fraction (iF) and

an effect factor (EF) (Fantke et al., 2021a; Hauschild et al., 2002; Jolliet

et al., 2018; Rosenbaum et al., 2007):
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CFi = iFi · EFi (2.12)

The iF encapsulates the environmental fate and exposure model, repre-

senting the fraction of an emission taken in by the exposed population

(Bennett et al., 2002). It is specific to the emission source, contaminant

fate, exposure scenario, and intake mode (inhalation, ingestion etc.). The

EF translates mass intake into health impacts, expressed as DALYs per

kilogram intake (or any equivalent mass unit). It is dependent on the con-

taminant and health outcome under consideration but independent of the

emission source and exposure context (Rosenbaum et al., 2007).

By combining the iF and EF, the CF provides a scalar linking emission

quantity to potential population health damage. It distills multimedia

modeling, exposure assessment, C-R relationships and severity weights into

a single factor converting emission to burden (Hauschild and Huijbregts,

2015). CFs thereby enable straightforward ranking and comparison of

air contaminants based on their damage potential, highlighting chemicals,

sources and life cycle stages of greatest health concern (Hauschild et al.,

2002).

The effect factor (EF) represents the most complex component of the CF,

requiring synthesis of toxicological and epidemiological evidence on expo-

sure impacts (Rosenbaum et al., 2007). The EF sums the contributions

across health outcomes k caused by the contaminant i:

EFi =
∑
k

EF(k,i) (2.13)

The disease specific effect factors are a product of a dose-response factor

(DRF) and a damage factor (DF),

EF(k,i) = DRF(k,i) ·DFk (2.14)

The dose-response factor (DRF) encapsulates the toxic potency of the

chemical-outcome pair (Huijbregts et al., 2005). A widely used statisti-

cal approach for estimating the response of a population to a toxic ex-

posure is the effective dose (ED). Generally, the midpoint, or the 50%

response level, is reported and is known as effective median dose, ED50

(Eaton and Gilbert, 2008; Gupta, 2020). The ED50 is a measure of the
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human-equivalent daily dose (kg) received by a person over their lifetime

that produces a specific effect in 50% of a population. They are derived

from toxicological studies in animals or humans.

Ideally, human data is used to derive DRF, with benchmark response levels

like ED10 or ED50 serving as points of departure. The current approach

of the LCIA characterization framework is to use the ED50 (Crettaz et al.,

2002; Fantke et al., 2017a; Huijbregts et al., 2005; Jolliet et al., 2006; McK-

one et al., 2006; Pennington et al., 2006; Rosenbaum et al., 2008). A linear

relationship can then be assumed from the benchmark dose to lower re-

sponse levels, avoiding reliance on arbitrary safety factors (Crettaz et al.,

2002; Huijbregts et al., 2005; Jolliet et al., 2006; McKone et al., 2006; Pen-

nington et al., 2002, 2006; Rosenbaum et al., 2008).

For non-carcinogens lacking ED10 or ED50 data, no-observed adverse effect

levels (NOAEL) and lowest observed adverse effect levels (LOAEL) provide

alternative points of departure (Huijbregts et al., 2005).

DRFs are proportional to 0.5 over ED50. The default value of 0.5 is a

linear, low-dose, extrapolation slope factor that relates the inverse of the

ED50 to a potential probability of developing a disease (getting cancer).

A default multiplier for human carcinogenic effect of 0.5 assumes a linear

effect with a 50% additional chance to get cancer while inhaling a quantity

of the contaminant equal to the ED50 over lifetime (Crettaz et al., 2002;

Fantke et al., 2017a; Huijbregts et al., 2005; Jolliet et al., 2006; McKone

et al., 2006; Pennington et al., 2006; Rosenbaum et al., 2008).

By leveraging human health data and benchmark dose levels where avail-

able, the DRF aims to encapsulate chemical potency with minimal uncer-

tainty from cross-species extrapolation or safety factors (Huijbregts et al.,

2005; Rosenbaum et al., 2008). The DRF is presented with a superscript

to indicate the nature that its associated to toxicology research:

DRFtoxicity
(k,i) =

0.5

ED50(k,i)
(2.15)

For radiological contaminants like radon, the DRF (units as cases of lung

cancer.m3/(yr.Bq)) is obtained from dose coefficients that enable an expo-

sure quantity to be converted into a dose quantity (dose conversion fac-

tor, DCF, units of sV.m3/(yr.Bq)) and fatality coefficients (FC, units of

case/sV) that refers to the estimation of the total detriment associated
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with lung cancer caused by exposure to radon.

DRF(k,i) = DCF(k,i) · FC(k,i) (2.16)

Current research shows that DRFs are increasingly based on epidemiologi-

cal C-R functions combined with human intake rates, avoiding uncertainty

from cross-species extrapolation (Fantke et al., 2019; Gronlund et al., 2015;

Van Zelm et al., 2016). The DRF is presented with a superscript to indicate

the nature that its associated to epidemiological research:

DRFepidemiology
(k,i) =

CRF(k,i)

BR
(2.17)

Where CRF is the change in disease rate per concentration increase and

BR is the breathing rate.

CRF(k, i) =
PAF(k, i) · γ0k

Ci

(2.18)

The PAF represents the proportional increase in incidence due to contam-

inant exposure. It has different, but equivalent definitions:

PAF(k,i) =
RR(k,i) − 1

RR(k,i)

(2.19)

PAF(k,i) =
(RR(k,i) − 1) · Ci

(RR(k,i) − 1) · Ci + 1
(2.20)

PAF(k,i) =
f · RR(k,i) − 1

f · (RR(k,i) − 1) + 1
(2.21)

Where f is the exposed population fraction, and the risk estimate RR(k, i)

represents the risk of disease associated with exposure compared to a base-

line risk following a linear, log-linear or IER function, with or without a

TMREL (Fantke et al., 2019; Gronlund et al., 2015; Van Zelm et al., 2008,

2016).

So, the CRF can be expressed also as a function of the incidence rate, for

a health outcome k and a contaminant i, I(k,i),

CRF(k, i) =
I(k, i)

Ci

(2.22)
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Toxicological and epidemiological DRFs offer complementary ways to gauge

chemical toxicity. Effect factors can come just from epidemiological data,

like risk estimates or disease rates (Fantke et al., 2019; Gronlund et al.,

2015; Oberschelp et al., 2020; Van Zelm et al., 2008, 2016). These count

as human epidemiological effect factors. Or they can come from toxicolog-

ical data, such as the median effective dose, ED50 (Fantke et al., 2017a;

Huijbregts et al., 2005). These are human toxicological effect factors.

A damage factor (DF) encapsulates severity, relating mortality/morbidity

health outcomes to their corresponding harm. DFs derive from standard

DALY estimates by health outcome (k), providing a consistent metric for

comparing morbidity and mortality impacts (Hauschild and Huijbregts,

2015).

DF(k) =
BoDk

γ0k
(2.23)

When DFk is needed for the addition of multiple health outcomes (k′) for

the same contaminant, it is proportional to the baseline incidence as:

DFk =

∑
k′ DFk′ · γ0k′∑

k′ γ0k′
(2.24)

By combining independently modeled DRF and DF components, the EF

offers a flexible toxicological and epidemiological framework for calculating

potential air contaminant impacts. Once EFs are available for a given

contaminant, the corresponding CF allows rapid conversion of emission

estimates into expected harm (Bulle et al., 2019; Fantke et al., 2019; Goel

et al., 2019; Gronlund et al., 2015; Kvasnicka et al., 2019; Oberschelp et al.,

2020; Petrov et al., 2017; Tang et al., 2018a,b; Van Zelm et al., 2008, 2016):

Harmi = CFi · Emissionsi (2.25)

This LCA-based characterization framework emerged in the 1990s and was

formalized into broader LCIA methodologies in the 2000s, with early fo-

cus on toxic emissions (Goedkoop et al., 2009; Rosenbaum et al., 2008).

It has since expanded to cover a wide range of outdoor air contaminants

and health endpoints, with insights from epidemiological studies enhancing

accuracy and policy relevance compared to purely toxicological approaches

(Huijbregts et al., 2017; Van Zelm et al., 2008, 2016) Application of the

characterization framework to indoor air contaminants and exposures fol-
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lowed shortly after initial development for outdoor emissions. Foundational

studies demonstrated viable approaches for calculating intake fractions and

effect factors specifically for indoor contexts (Hellweg et al., 2009; Meijer

et al., 2005a,c; Wenger et al., 2012). This paved the way for integrating

indoor emissions into multimedia fate and exposure models used in LCA,

providing a parallel characterization framework applicable to both indoor

and outdoor air pollution health damage (Fantke et al., 2017b; Rosenbaum

et al., 2015). Important examples include ReCiPe and USEtox, which im-

plement indoor and outdoor air exposure models and provide toxicity-based

effect factors for characterizing health impacts. An overview of these and

other models was done by (Rosenbaum, 2018).

Various LCIA implementations now exist that incorporate both indoor and

outdoor air fate and exposure pathways, with some also beginning to in-

tegrate epidemiology-based effect factors to supplement or replace toxicity

estimates. While differing in modeling details and scope, these LCIA meth-

ods use the characterization factor concept as their standard approach for

translating air contaminant emissions into potential human health burdens

within the LCA framework.

The chronic health effects of indoor air contaminants have been a focus

area within the development of LCIA methodology. Human exposures to

indoor contaminant emissions and concentrations are increasingly consid-

ered when modeling health damage using the DALY metric (Rosenbaum

et al., 2015). Early LCA studies on indoor air led to the development of

indoor-specific intake fractions, characterization factors, and damage esti-

mates (Hellweg et al., 2009; Meijer et al., 2005a,c; Wenger et al., 2012).

Building on this foundation, case studies demonstrated application to in-

door environments, and frameworks integrated indoor emissions from build-

ing materials and products into LCAs (Collinge et al., 2013; Hellweg et al.,

2009; Park et al., 2016; Skaar and Jørgensen, 2013; Wu and Apul, 2015).

Recently, the USEtox model, which provides characterization factors for

both indoor and outdoor air, has become commonly used, with health im-

pact assessment continuing to rely on foundational DALY estimation work

(Huijbregts et al., 2005).

By condensing complex exposure and dose-response relationships into sin-

gle comparable CFs, the LCA characterization framework enables a straight-

forward translation of air contaminant emission estimates into estimates of

population health burdens. It provides a quantitative basis for ranking
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risks, highlighting priority chemicals and sources, and guiding decisions

towards improved air quality and public health.

2.5 Assessing harm from indoor air

While many exposure levels and contaminants have been identified indoors,

uncertainty remains about which risks drive health impacts. Connecting

exposures to health is also critical. Their relationship enables identifying

and prioritizing contaminants to reduce based on quantified harm, there-

fore, identifying hazardous contaminants is essential. Diverse methods have

aimed to prioritize indoor contaminants, but quantifying population health

burdens supports evidence-based rankings. These aspects are discussed in

the following sections.

2.5.1 Exposure impact assessment of indoor air in
dwellings

Knowing that indoor air contaminants have diverse health effects, and pri-

oritizing mitigation methods requires a common damage metric, Logue

et al. (2012) pioneered an approach to quantify the chronic health impacts

of indoor air contaminants using disability-adjusted life years (DALYs).

This synthesized available disease incidence data and effect factors with

indoor contaminant concentrations to estimate harm attributable to in-

halation exposures in dwellings.

Two methods were proposed to calculate harm from estimated exposure

concentrations:

1. For the criteria pollutants (Section 2.1.1.1), an intake–incidence–DALY

(IND) method using epidemiology-based concentration-response (C-

R) functions.

2. For other pollutants (Section 2.2.1.2), an intake–DALY (ID) method,

calculating health impacts from intake using human/animal toxicity

data.

The IND method combines incidence and damage factors. The ID method

associates effect factors with intake. This enabled DALY-based health im-
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pact quantification using two distinct approaches. Logue et al. (2012) ap-

plied fitted distributions of indoor contaminant concentrations that were

representative of the effective exposure concentrations in U.S. homes (Logue

et al., 2011a).

2.5.1.1 Intake-Incidence-DALY (IND) method

This follows a health risk assessment approach (see 2.4.1) by using log-

linear epidemiology-based C-R functions to quantify disease incidence rates

(I(k,i)) for health outcome (k) and contaminant (i). The incidence rate is

combined with a damage factor (DF(k,i), DALY/case) to estimate harm

(DALY/person/year). Addition of outcomes (k) gives all-cause effect.

harmi =
∑
k

DF(k,i) · I(k,i) (2.26)

Disease incidence (I(k,i)) refers to the relationship between concentration

(Ci, µg/m3), risk (β(k,i), change/µg/m3), and baseline incidence (γ0(k,i) ,

case/person/year). This relationship is modeled using the log-linear con-

centration response function:

I(k,i) = γ0(k,i) · (1− e−(β(k,i)·Ci)) (2.27)

The expression of chronic harm is expressed as,

Harmi =
∑
k

DF (k,i) · γ0(k,i) · (1− e−(β(k,i)·Ci)) (2.28)

Quantifying chronic harm requires integrating epidemiologic data across

three key parameters, each contributing uncertainty to final damage esti-

mates. These parameters are discussed in the following.

• Baseline incidence rates (γ0). These show the cases or deaths per

person-time for a health outcome. National statistics offices and the

WHO offer such data (USEPA, 2018), given cases, population and

follow-up. Rates come in cases per person-year, needing information

regarding cases of a disease, people affected and time. Baseline in-

cidence rates can be derived from cohort studies, where a group of
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individuals is monitored over time to assess health outcomes. Logue

et al. (2012) used data available by the EPA (USEPA, 1999).

• Risk estimates from epidemiological C-R models (β). These show

health responses per unit pollution change. Air pollution studies re-

port health impact functions (relative risk, odds ratio, hazard ratio)

for a given change, which converts to β (USEPA, 2018). For re-

search, risks often reflect overall deaths from long-term exposure and

recent pollution (WHO, 2021). In teh case of absent all-cause data,

summing diseases approximates the total effect. Logue et al. (2012)

used EPA data (USEPA, 1999), adding uncertainty via probability

distributions.

• Damage factors (DF ). For the IND method, these link harm to inci-

dence for health outcomes tied to a contaminant. Unlike risks, dam-

age factors do not come straight from epidemiology research. They

need to be found and extracted from studies stating cases and aver-

age DALY losses per contaminant change in similar settings. Logue

et al. (2012) used published values from air pollution studies (Lvovsky

et al., 2000) and calculated factors from independent works with both

harm and incidence (Krewski et al., 2009; Pope et al., 1995). It as-

sumed uncertainty distributions.

2.5.1.2 Intake-DALY (ID) method

This follows the LCIA framework (see 2.4.2) using contaminant-specific

effect factors (EFi, in DALY/kg) and intake (Qi, the product of concen-

trations, in µg/m3, and a breathing rate, in m3/person/year) to estimate

harm. It also considers an age-dependent adjustment factor (ADAF) for

cancer exposures

Harmi = Ci · BR · ((EF(cancer,i) · ADAF) + EF(noncancer,i)) (2.29)

A highlight of the data sources and synthesis used to quantify harm are

explained:

• Effect Factor (EF ). For carcinogenic and non-carcinogenic effects

were derived from dose-response data and disability severity estimates
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by Huijbregts et al. (2005). Individual EFs were utilized and uncer-

tainty was incorporated from the same study.

• Breathing rates (BR). A breathing rate of 14.4 m3/day represent-

ing U.S. residential intake per person was used. No uncertainty was

assumed.

• Age-dependent adjustment factors (ADAF ). Were implemented as

a factor of 1.6 for cancer risks based on EPA data (EPA, 2005). No

uncertainty was included.

These complementary incidence-based model (IND) and effect factor-based

model (ID) quantification approaches enabled a generalized DALY-based

framework for estimating indoor air pollution health burdens. Figure 2.9

shows a flowchart of the ID and IND methods.

2.5.1.3 Impact assessment

Logue et al. (2012) showed there was promise in using DALYs to gauge

the health toll from indoor contaminants in American homes. The study

presented harm estimates for 43 contaminants:

Acrolein, Formaldehyde, Ozone, Acetaldehyde, Ammonia, Crotonalde-

hyde, Xylenes, Chromium, 1,4-Dichlorobenzene, 1,1-Dichloroethene, Xy-

lene (o), Acrylonitrile, Styrene, Naphthalene, Manganese, Carbon tetra-

chloride, Cadmium, Toluene, d-Limonene, Hexane, Chloromethane, Xylene

(m/p), 1,2-Dibromoethane, Ethanol, 2-Butoxyethanol, 1,2-Dichloroethane,

Methylene chloride, Vinyl chloride, Tetrachloroethene, Carbon disul-

fide, Methyl methacrylate, Benzene, Hexachlorobutadiene, Benzyl chlo-

ride, 1,1,2,2-Tetrachloroethane, 2-Methoxyethanol, 1,1,2-Trichloroethane,

2-Ethylhexanol, Methyl tert-butyl ether, Sulphur dioxide, Nitrogen diox-

ide, PM2.5, and Carbon monoxide.

Three contaminants—PM2.5, acrolein and formaldehyde— appear to cause

over 80% of the harm from chronic exposure. With fine particulates con-

tributing the most to the estimated DALYs. The central estimate is 1,100

DALY losses per 100,000 people annually (with a wide confidence interval

from 400 to an implausible 13,000 -implausible because it exceeded the

burden of disease from all diseases and risks combined). By way of com-

parison, this means the damage attributable to indoor air is somewhere
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Figure 2.9: Overview of IND (above in image) and ID (below in
image) methods.
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between the health effects of road traffic accidents (400 DALYs/105 per-

son/year) and heart disease from all causes (1100 DALYs/105 person/year)

(Guyot et al., 2019). This trio exacts far more harm than occasional car-

bon monoxide poisoning. Second-hand smoke and radon could also impose

sizeable population-wide harm (see Figure 2.10).

Figure 2.10: Estimated population averaged annual cost, in DALYs, of
chronic air pollutant inhalation in U.S. residences; results for the 15 pollu-
tants with highest mean damage estimates. (Borsboom et al., 2016)

Logue et al. (2012) demonstrated the potential of DALY-based models, and

upon further examination, insights from their work are now informing the

identification of the following limitations:

1. Contaminants scope: bioaerosols such as mold and radiological con-

taminants like radon, were not subjected to the IND or the ID meth-

ods as part of the analysis

2. U.S-only scope: The data on contaminant concentrations, breath-

ing rates, risk estimates, disease incidence, and damage factors were

solely for U.S. dwellings. Expanding to global data is needed.
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3. Dated data: The epidemiological and toxicological data used was

from over a decade ago, prior to 2010. Updated data is needed to

reflect latest evidence.

4. Uncertainty: There were large uncertainties and wide confidence in-

tervals in the harm estimates from both the ID and IND methods

(The upper estimate exceeds the total burden from all non-infectious

diseases). Statistical approaches could help narrow these uncertain-

ties.

5. Damage factors: Assumptions and probability distributions for the

damage factors relating incidences to harm were assumed rather than

based on data. Improved damage factor estimates could help.

6. Contaminant-specific data: Damage factors and baseline incidence

where considered as contaminant-health outcome related variables,

however, this parameters are presented in HRA and LCIA as disease

specific. More work on this is needed.

7. Unclear origins: The source and reasoning behind some parameter

values used was not fully explained in the work. Transparency on

data origins would be beneficial.

8. Method complexity: The ID and IND methods for calculating DALYs

involve many parameters. Simplified approaches could improve ac-

cessibility.

Considering these caveats, Logue et al.’s work served as a start for ap-

plying the DALY metric to indoor air, recasting grasped of health impacts

from dwelling contaminants. Their framework considering toxicological and

epidemiological data has been widely adopted. Fazli and Stephens (2018)

used the framework with average contaminant measures to estimate chronic

damage from American homes. Turner et al. (2013) used it to quantify im-

pacts of residential ventilation. Patino and Siegel (2018) used it for an

specific scenario involving social housing. Ben-David and Waring (2016)

assessed simulated office air and energy performance across US cities using

Logue et al.’s method. Aldred et al. (2016) quantified the benefits of indoor

ozone removal in homes using the framework, and Zaatari et al. (2016) used

the approach to study contaminant controls balancing indoor air quality

and efficiency in shops.
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Harm (as DALYs) from household exposures have also been calculated

through independent chronic health impact assessments. Global and Euro-

pean studies have utilized comparative risk assessment approaches based on

the population attributable fraction. For example, Morawska et al. (2013)

estimated DALYs for total particles, secondhand smoke, and radon. Shan

et al. (2022) focused on radon burdens. And the Global Burden of Disease

study (Murray et al., 2020) presents DALYs for PM2.5 from household solid

fuel use, radon, and secondhand smoke.

These complementary works provide additional harm quantifications and

comparisons for key residential contaminants using alternative methods

beyond the Logue framework. Together, they offer a more comprehensive

picture of the disease burden posed by indoor contaminants.

2.5.2 Harm and IAQ strategies

Ventilation has long been utilized to promote healthy indoor spaces by con-

trolling indoor air quality (IAQ). Outdoor air introduction aims to lower ex-

posures by removing or diluting indoor-generated contaminants. However,

evidence supporting the ability of ventilation to consistently lower expo-

sures remains of poor quality, with high uncertainty around defining rates

that adequately protect against health and comfort issues. While reviews

have sought to link minimum ventilation thresholds to risk reduction, these

connections rely on limited and variable data (Janssen, 1989). Ventilation

likely proves most effective for localized removal of transient bioeffluents

in high-emission spaces like kitchens and bathrooms, or whole-house ven-

tilation for ubiquitous gasses like formaldehyde (Logue et al., 2011b). The

interplay of factors such as airflow distribution, emission sources, build-

ing design, the effectiveness of ventilation strategies, and considerations for

both health and comfort contributes to the complexity of ventilation’s role

in promoting IAQ.

The American Society of Heating, Refrigerating and Air Conditioning En-

gineer’s (ASHRAE) Standard 62.1 and 62.2 leads US indoor and residential

ventilation standards, respectively (ASHRAE, 2022b,c). They tackle in-

door air quality issues (Logue et al., 2011b).

Ventilation chiefly maintains acceptable indoor air quality by controlling

contaminants and minimizing exposures. ASHRAE 62.2 defines accept-

able air as lacking odor, irritation or unhealthy concentrations (ASHRAE,
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2022c). The standard promotes occupant wellbeing through satisfactory

air quality and healthier indoor environments.

To confine ASHRAE standards solely to ventilation oversimplifies their

purpose, which is to ensure acceptable indoor air quality (IAQ) by limiting

exposure to contaminants. While it is true that ventilation is a common

mechanism to achieve IAQ goals, the overarching objective is to attain

acceptable IAQ, rather than solely setting ventilation rates.

Ventilation standards largely prescribe rates addressing perceived poor air

and irritation, CO2 concentrations, and odors, as codes note (Carrer et al.,

2018). Too little data on indoor sources and health impacts has led stan-

dards to rely on engineering guesses, not health or contaminant analyses

(Borsboom et al., 2016; Logue et al., 2011b). This gap between standards

and health-based limits suggests a need to better focus ventilation guid-

ance (Borsboom et al., 2016). Moving towards a health-based approach

raises questions such as whether other gases besides CO2 would necessi-

tate higher ventilation rates to achieve lower concentrations, particularly

in cases where emissions are unknown and therefore removal rates cannot

be determined.

ASHRAE 62.1-2022 prescribe ventilation rates using either a ventilation

rate procedure or an indoor air quality procedure (ASHRAE, 2022b). The

ventilation rate method provides minimum rates based on assumed occu-

pant density and activities, aiming to satisfy 80% of building occupants in

non-smoking environments. The IAQ procedure (IAQP) instead allows de-

riving customized rates based on design compounds selected during design,

comparing their concentrations to design limits from a cognizant authority.

This derives a mix exposure sum that should be less than the unity for the

design compounds. ASHRAE 62.1-2022 provides a list of 15 contaminants

to control to simplify the implementation of the IAQP.

Both approaches partially consider health impacts but also emphasize lim-

iting perceived irritations. Required ventilation systems must supply high-

quality outdoor air, including minimum filtration for particles and ozone

scrubbing if levels are excessive. However, ventilation only controls other

unchecked contaminants if calculations specifically incorporate them into

the IAQ procedure’s customized rate determination (Carrer et al., 2018).

European health policies have motivated needs for evidence-based venti-

lation standards that prioritize reducing indoor-attributable disease. The
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ENVIE (EU co-ordination action on indoor air quality and health effects)

and IAIAQ (promoting actions for healthy indoor air) projects linked in-

door contaminants to estimated harm, finding 2 million DALYs annually

across 26 European nations (Fernandes et al., 2009; Jantunen et al., 2011).

Controlling indoor and outdoor pollution sources alongside moisture could

reduce this burden by 0.7 million DALYs per year, while mandated ventila-

tion system inspections and maintenance could prevent another 0.2 million,

they projected (Carrer et al., 2018).

Two studies show six long-term indoor contaminants influenced by venti-

lation (Fernandes et al., 2009; Logue et al., 2012). Environmental tobacco

smoke and radon stem chiefly from occupant behaviour and the location of

the house, respectively, so ventilation standards should ignore them. The

remaining four main causes of chronic risks are PM2.5, mold, formalde-

hyde and acrolein. WHO and ENVIE flagged mold/moisture as an indoor

health burden (Braubach et al., 2011; Fernandes et al., 2009; Jantunen

et al., 2011). As ventilation affects home moisture, mold joins priority con-

taminants for ventilation standards, despite occupant and building factors

(Borsboom et al., 2016).

Looking ahead, research on dwelling contaminants and health impacts

could ultimately shift Standard 62.2’s focus to effects of priority contami-

nants. Ventilation rates would become less important intermediates (Sher-

man, 2015).

2.5.3 The indoor air quality equivalence

Innovative ventilation management, including variable ventilation, can re-

duce energy or enhance IAQ and comfort. To ensure innovative ventilation

meets standards, methods are needed to determine equivalence in ventila-

tion or IAQ (Sherman, 2004; Sherman et al., 2012).

Equivalent ventilation uses exposure to a generic indoor contaminant to

gauge different scenarios’ effect on IAQ. With undefined priority contam-

inants, this may be the best approach for standards. Ideally, equivalent

IAQ would use a health metric. That requires ranking and selecting the

indoor contaminants by their potential harm (Sherman et al., 2012).

Walker et al. (2022) found that only one study proposes ventilation and IAQ

equivalence based on health metrics (Sherman et al., 2012). It applies the
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DALY- harm-based models of Logue et al. (2012) to a ventilation context

using unit damage estimate (UDE) values for contaminants of interest.

UDEs represent harm over concentration, akin to EPA’s unit risk estimates

(Agency, 2015). UDEs can be used to determine the total harm of an

exposure to selected contaminants. This is known as the IAQ equivalence

principle:

Harm =
∑
i

Ci · UDEi (2.30)

This principle can be adapted as new priority contaminants and toxicolog-

ical or epidemiological data emerge. Other tentative steps have been made

in LCIA to relate harm to a concentration unit for PM2.5 (Oberschelp et al.,

2020).

The IAQ equivalence principle proposes using UDE values to set a harm

limit. Exposures below this limit have equivalent IAQ despite differing

contaminants (Equation 2.31). To apply the principle, a limiting harm

value is needed. One approach is to use existing standards, translating

them into harm via UDEs (Sherman et al., 2012; Walker et al., 2022).

Harmlimit =
∑
i

Standardi · UDEi (2.31)

Table 2.7 lists UDEs for key compounds along with chronic exposure stan-

dards from the review of Logue et al. (2011a) - the most health-protective

of applicable guidelines and regulations. Sherman et al. (2012) set a limit

of 820 DALY/105 person/year using these UDEs and standards. Address-

ing PM2.5, radon and ozone via prescriptive measures would reduce the

DALY limit drastically because the rest of compounds only sum to 9

DALY/105 person/year (Sherman et al., 2012).

The IAQ equivalence approach relies on clearly identified and prioritized

indoor contaminants, hereon referred to as the Contaminants of Concern

(CoCs). For specific applications, engineers and architects need to de-

fine CoCs. To answer the question “How do designers choose the CoC?”

(Stanke, 2007), there must be consensus on priority contaminants in the

literature. ASHRAE 62.1, in their IAQP proposes 15 contaminants.

Currently, there is no recognized process for selecting contaminants to con-
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Table 2.7: Indoor air contaminants – UDE and Standard values to imple-
ment IAQ equivalence (1 µDALY = 10−6 DALYs). From Sherman et al.
(2012)

Contaminant
UDE Chronic standard Chronic harm

[µDALYs/µg/m3/person/year] see(Logue et al., 2011a)[µg/m3] [µDALYs/person/year]

Priority contaminants
1,3 Butadi-
ene

0.02 0.06 0.001

1,4-
dichlorobenzene

0.3 0.91 0.024

Acetaldehyde 0.3 3.7 0.96
Acrolein 190 0.02 3.7
Benzene 0.08 0.34 0.025
Formaldehyde 6.8 1.7 11.4
Naphthalene 0.47 0.29 0.14
Nitrogen
Dioxide

0.7 40 27

PM2.5 500 15 7,500
Other contaminants

Ammonia 0.23 200 46
Ozone 1.4 147 200
Crotonaldehyde 1.02 N/A

trol via IAQ standards and regulations in the 62.2 series, that is specific

for residential buildings. Several studies have called for a more system-

atic, health-based approach to identifying priority indoor contaminants in

dwellings (Guyot et al., 2019; Parthasarathy et al., 2011; Sherman et al.,

2022, 2012; Stanley and Bayer, 2009; Walker et al., 2022). To date, the

minimum numbers of CoCs practitioners should consider are the 15 pro-

posed contaminants in the IAQP in 62.1 series. Steps forward into defining

a shorter list are being made (Section 8.3.2).

The IAQ equivalence approach lays the groundwork for identifying CoCs

through standardized harm-based metrics. In theory, the CoCs would be

the contaminants that contribute the most to total harm. This would

strengthen the health basis for setting exposure limits, harm thresholds,

and ventilation rates. Ongoing toxicology, epidemiology, and exposure re-

search can refine CoC selection and update harm estimates over time.

Two common methods prioritize indoor contaminants using health im-

pacts: (i) determining guideline exceedances and (ii) estimating cancer

likelihood. However, these only consider incidences, not overall population

harm. Studies ranking dwelling contaminants using these qualitative or
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quantitative methods are: Halios et al. (2022) who identified high-priority

VOCs based on adverse endpoints and concentration reports. Sarigiannis

et al. (2011) who used risk metrics, while Azuma et al. (2016) ranked by

margin of exposure. Though identifying exceedances helps pinpoint con-

cerns, it does not enable an equivalence approach.

In contrast, DALY-based studies of indoor exposures like Logue’s, EnVIE,

IAIAQ, and WHO (Braubach et al., 2011; Fernandes et al., 2009; Jantunen

et al., 2011; Logue et al., 2012) allow ranking by harm. This provides a

comparable framework for population-level prioritization (Borsboom et al.,

2016). Quantifying total harm better informs risk reductions than counting

guideline exceedances or cancer probabilities alone. DALYs integrate mor-

bidity and mortality across multiple outcomes, supporting evidence-based

contaminant prioritization and risk management.

The ventilation and indoor air quality equivalence principles proposed by

Sherman et al. have been partially integrated into ASHRAE Standard

62.2-2016 on residential building ventilation. This is reflected in some U.S.

state regulations like California’s Title 24 energy performance standards re-

quiring ASHRAE 62.2 compliance. Specifically, ASHRAE 62.2-2019 incor-

porates methods to calculate minimum constant airflow rates for dwellings

based on the equivalence between ventilation and indoor air quality. By

adopting key equivalence concepts, the standard represents partial accep-

tance of the originally proposed performance-based, health-oriented ven-

tilation framework. However, further work is still needed to fully align

standards (like the WELL standard) with a contaminant exposure and

health effects basis (Guyot et al., 2019).

The WHO Drinking Water Quality Guidelines already apply harm limits

using DALYs to define health-based targets (HBTs) (WHO, 2011). The

guidelines set a maximum allowable DALY loss of 10−6 DALYs/person/year

from waterborne pathogens. The allowable DALY loss term is equivalent

to tolerable harm and acceptable harm set to describe a limit of DALYs.

The current limit of 10−6 DALYs/person/year derives from the U.S. EPA’s

accepted lifetime cancer risk of 10−5 from waterborne exposures. The WHO

did this because cancer risk assessment provides a well-established and

widely accepted methodology for quantifying the health impacts of expo-

sure to environmental contaminants. It was also a starting point to de-

velop health-based targets. However, this is extremely conservative, being

10,000 times lower than actual U.S. cancer incidence. Mara (2011) sug-
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gests increasing the maximum burden by two orders of magnitude. While

marginally increasing risks of cancers, diarrheal diseases and ascariasis, this

remains a low risk level. But it allows for more cost-effective water and

sanitation investments to achieve health gains in low- and middle-income

regions. Overall, Mara recommends raising the acceptable disease burden

guideline to 10−4 DALYs/person/year to balance public health protection

with improved access to drinking water and sanitation.

This DALY-based harm limit approach for drinking water resembles Sher-

man et al.’s proposed IAQ equivalence principle using harm limits. It pro-

vides context on applying DALYs for health-relevant limits in indoor air.

As with drinking water, feasibility and cost-effectiveness should help deter-

mine appropriate IAQ risk targets. Setting HBTs requires value judgements

on tolerable risks, analogous to judgements underlying acceptable IAQ.

One way to address this complex issue is to consider DALYs that society

as a whole already accepts, such as those associated with alcoholism (0.012

DALYs/person/year) or smoking (0.026 DALYs/person/year) (IHME, 2022),

or to base acceptability on real-world scenarios of indoor environments that

meet established IAQ standards.

2.5.4 Monetizing Harm

Economic considerations in IAQ typically focus on optimizing ventilation

costs, including design, installation, and operation. Operating costs, like

energy for running and conditioning air, often exceed initial costs. Smart

ventilation introduces complexity and value by incorporating benefits like

energy savings and exposure reduction, which are harder to monetize.

DALYs offer a means to monetize the reduction of contaminant exposure,

as economic studies have established the value people place on a DALY

(Sherman et al., 2018).

Aldred et al. (2016) conducted a benefit-cost analysis of commercially avail-

able activated carbon filters for indoor ozone removal in single-family homes

in the USA. The monetary benefit associated with reduced DALYs per

100,000 people was calculated by multiplying the value of one DALY ($
DALYs) by the reduction of harm (in DALYs) achieved when a control is

used, compared to no control (see Equation 2.32).

Benefit = $DALY s · δHarm (2.32)
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Harm was calculated using the methods of Logue et al. (2012). A distri-

bution of dollars per avoided DALY ($ DALYs) was estimated using the

willingness-to-pay method. The histogram of predicted willingness-to-pay

values per avoided DALY was right-skewed, suggesting a log-normal dis-

tribution (Aldred, 2015). The dollar value per DALY ($ DALY) was esti-

mated as a median of USD 125,000 [mean 150,000] with a 95% confidence

interval of USD 6,940 to 366,020 per avoided DALY.

Furthermore, Jackson (2017) used the dollar value per DALY distribution

from Aldred (2015) to obtain the health-based monetary value of reducing

HCHO concentrations in a residence to limits equal to specific exposure

limit values (Equation 2.33). The value of 150,000 USD per DALY (2014

USD) was used as it was considered reasonable. Such value is approxi-

mately equal to three times the per capita gross domestic product in the

United States for that year (Aldred et al., 2016). Sherman et al. (2018)

deemed a rough value of a DALY in a developed country is on the order of

magnitude of 150,000 USD.

HBa−b = $DALY s · (harmHCHOa − harmHCHOb
) (2.33)

where HB is health based monetary value of reducing the annual average

concentration of HCHO in a house from a concentration a to b (units of

USD); $ DALYs is the value of a DALY; and harm are the DALYs lost for

the given HCHO concentrations.

As demonstrated by Aldred (2015); Jackson (2017), the cost of averted

DALYs can be used to assign a monetary value to indoor contaminant

exposure. Daroudi et al. (2021) calculated the cost per DALY averted in

low, middle, and high-income countries, categorized by the Human Devel-

opment Index (HDI), using evidence from the global burden of disease study

(see Table 2.8). The cost per DALY averted was calculated as a function

of health expenditure per capita and age-standardized DALY rates (per

100,000 population).

Table 2.8: Cost per DALY averted

Region Mean $DALYs (range) [2016 USD]
Low HDI 998 (109 - 3507)
Medium HDI 6522 (997 - 36,091)
High HDI 23,782 (4245 - 83,997)
Very high HDI 69,499 (21,509 - 168,720)
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The monetary values of harm in USD per DALY, as shown in Table 2.8,

can be used to estimate the monetary costs associated with contaminant

concentrations once harm estimates for the contaminants are calculated

(for discussions on the value of reducing harm from typical exposure levels

in dwellings to those proposed by cognizant authorities for selected air

contaminants, see Section 8.2).

When estimating the cost of DALYs averted, it’s crucial to note that the

value extends beyond medical expenses. Disability and premature death

also encompass the loss of healthy life, employment, a family provider, and

educational opportunities. Additionally, these impacts can be multigener-

ational, painting a complex picture of costs.

The cost of a DALY for very high HDI countries is approximately half the

cost per DALY calculated by Aldred (2015) for the USA, which is $69,499.
This amount is roughly equivalent to one GDP per capita in 2016 USD.

Although one would expect these monetary values to be similar, the ob-

served difference is difficult to explain due to the methodological differences

between the estimates. A deeper understanding of the differences in mon-

etary values of harm derived from a willingness-to-pay approach versus a

health expenditure per capita approach is needed.

2.6 Summary

This literature review chapter provided a comprehensive overview of prior

research investigating indoor air quality, associated health risks, and quan-

tification methods. Key insights are summarized by section.

Exposure to indoor air contaminants constitutes a major public health

concern, as people spend most of their time indoors where contaminant lev-

els can be elevated and risks accentuated (Logue et al., 2011a; Morawska

et al., 2013; Ye et al., 2017). Systematic reviews reveal hundreds of chem-

icals measured across global homes, with concentrations varying widely

(Halios et al., 2022; Morawska et al., 2013; Ye et al., 2017). Particulates

are the most extensively studied contaminant indoors.

Diverse health effects (including all causes of mortality) are associated

with both short and long-term exposure to indoor air pollution, (WHO,
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2021). Toxicological and epidemiological research offer complementary in-

sights into biological mechanisms and real-world disease patterns crucial

for assessing risks (Adami et al., 2011; Eaton and Gilbert, 2008; Miettinen,

2011; Weed, 2002). Understanding mixture toxicity requires characterizing

additivity and non-additive interactions between chemicals like synergism

and antagonism. Advancing knowledge in these areas will improve chemical

mixture risk assessment capabilities.

There are many health-based metrics, but many focus on mortality and

morbidity incidences rather than overall population harm (Jones, 2017). In-

tegrated exposure-response models and cumulative risk assessment enable

multi-contaminant health impact estimation (Harikrishnan et al., 2018;

Sexton, 2012). Disability-adjusted life years (DALYs) are a versatile metric

integrating exposures, risks, and disease severity into a composite popula-

tion health metric (Harikrishnan et al., 2018; Murray, 1994).

Pioneering studies demonstrate feasible DALY-based models to quantify

indoor air pollution health burdens, despite limitations on scope, data cur-

rency, and uncertainty (Fernandes et al., 2009; Logue et al., 2012; Shan

et al., 2022). Their frameworks synthesize toxicology, epidemiology, ex-

posures, and health data to rank risks and guide mitigation. This means

DALYs can be used to assess indoor pollution impacts.

Various health risk and life cycle assessment tools implement DALY cal-

culations, to compare scenarios (Fantke et al., 2017a; Pillarisetti et al.,

2016; Sacks et al., 2018). Ongoing methodological development contin-

ues to strengthen characterization of contaminants, fate/transport, intake,

dose-response relationships, and uncertainties inherent in impact estima-

tion (Hassan Bhat et al., 2021; Hauschild and Huijbregts, 2015; Rosenbaum

et al., 2015).

The key insights gleaned from the chapter, are informing the approach to

designing health-based ventilation and indoor air quality strategies. It un-

derscores the importance of using the disability-adjusted life year (DALY)

metric to guide the establishment of acceptable IAQ standards in dwellings.

This approach begins by identifying priority home contaminants that are
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both prevalent and highly impactful on health, designating them as Con-

taminants of Concern (CoCs). Furthermore, a monetary value can be as-

signed to harm (as DALYs) based on the costs per DALY averted available

in the literature.
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Chapter 3

Quantifying Harm

3.1 Airborne contaminants of interest

This section describes the iterative process for selecting the airborne con-

taminants expected in dwellings for which the research aims will be pursued

(Section 1.4). The initial scope draws from a list of 43 priority contami-

nants in dwellings identified by Logue et al. (2012) for their chronic harm

in dwellings (Section 2.5.1.3).

Iterative decisions then evaluated additions and exclusions based on:

• Removing contaminants that only have acute health effects, per the

chronic focus (Section 1.4). Carbon monoxide (CO) warrants men-

tion. The study of Logue et al. (2012) excluded CO from their harm

models while acknowledging that chronic indoor CO exposures, can

be up to 810 µg/m3 in US homes, and that CO can be correlated with

increased hospitalization rates for conditions like congestive heart fail-

ure. However, an Integrated Science Assessment (ISA) for CO sug-

gests there is not likely to be a causal relationship between relevant

long-term CO exposures and mortality. Instead, the evidence indi-

cates a suggestive causal relationship between short-term CO expo-

sures and mortality, highlighting CO’s association with acute effects

(US-EPA, 2010b) (see Table 2.3). The chronic effects of long-term in-

door CO exposures, with specific mortality and morbidity endpoints,

remain an emerging topic requiring further exploration. This is dis-

cussed in more detail in Section 8.7.

• Inclusion of emerging contaminants, frequently found in dwellings
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and associated with health risks as documented in IAQ literature

(Section 2.1.2). PM10, 1,3-butadiene, isoprene, and trichloroethylene

have been incorporated to align with recent reviews covering prevalent

airborne contaminants in residential environments (Gonzalez-Martin

et al., 2021). Mold (spores) and radon are included as well. Mold

refers to a measured concentration of spores rather than visual mold,

which is not use-full when a concentration is needed for harm assess-

ment (Section 3.2).

• Discarding contaminants lacking sufficient health evidence (Sections 3.3

and 3.4). Ammonia, manganese Mn(II), xylene (o), xylene (m/p) are

excluded from the list for this reason (Section 4.5.1)

This resulted in 44 contaminants of interest:

Acetaldehyde, Acrolein, Acrylonitrile, Benzene, Benzyl chloride, 1,3-

Butadiene, 2-Butoxyethanol, Cadmium Cd(II), Carbon disulfide, Car-

bon tetrachloride, Chloromethane, Chromium Cr(VI), Crotonalde-

hyde(trans), 1,2-Dibromoethane, 1,4-Dichlorobenzene, 1,2-Dichloroethane,

1,1-Dichloroethene, Ethanol, 2-Ethylhexanol, Formaldehyde, Hex-

achlorobutadiene, Hexane, Isoprene, Limonene (d-...), 2-Methoxyethanol,

Methyl methacrylate, Methyl tert-butyl ether, Methylene chloride, Mold,

Naphthalene, Nitrogen dioxide, Ozone, PM10, PM2.5, Radon, Styrene, Sul-

phur dioxide, 1,1,2,2-Tetrachloroethane, Tetrachloroethene, Toluene, 1,1,2-

Trichloroethane, Trichloroethylene, Vinyl chloride, Xylenes.

A 45th - coarse particulate matter (PM10−2.5), defined as the difference

between PM10 and PM2.5 - is added given guidelines’ focus on particle

fractions (Sections 2.3.1, and 3.6). PM10−2.5 separates respiratory effects

of the coarse fraction from fine particles.

The final list to be considered in here contains 45 contaminants, comprising

semi-volatile organic compounds, volatile organic compounds, metals, and

the criteria contaminants.

3.2 Quantifying harm

Indoor air quality (IAQ) assessment research uses the disability-adjusted

life year (DALY) to quantify health burdens from exposure to indoor con-

taminants (Harm).
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HarmIndoor air quality ∝ HarmIndoor air contaminants (3.1)

This chapter presents the core methodology of the research. It evaluates

overall indoor-associated harm per year of exposure, and not the total life-

time. This entails summing the individual harms from contaminants (i)

commonly found in residential environments to represent the total popula-

tion harm.

HarmIndoor air contaminants ≡
∑
i

Harmi (3.2)

IAQ assessment is tied to contaminant concentrations (Hess-Kosa, 2018;

WHO, 2021), highlighting the essential role of concentrations in evaluating

indoor air quality. Achieving the research objectives (Section 1.4) involves

developing a harm-based metric that links harm with concentrations. This

allows indoor air contaminant concentrations to be used as robust indica-

tors of harm, enhancing comprehension and the proactive control of indoor

air quality hazards. For each contaminant, harm can be expressed as:

Harmi ≡ fi · Ci (3.3)

where Ci is the indoor concentration of a contaminant (subscript i) and fi

is the concentration-to-harm factor (the harm-based metric). Deriving f

for a range of contaminants is an objective of this research.

For well-characterized contaminants, fi can be derived from epidemiological

relationships between concentration, disease incidence, and resulting harm

(DALYs). When lacking disease data, fi must be approximated using more

uncertain statistical approaches. Nevertheless, accurately determining f

factors enables the connection of contaminant concentrations to health im-

pacts.

A Harm Intensity,HI is a metric that relates chronic harm (DALYs/per-

son/year) caused by the inhalation of a specific airborne contaminant (i)

to a concentration Ci.

Harmi = HIi · Ci (3.4)
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Generally, indoor contaminant concentrations are reported in micrograms

per cubic meter (µg/m3), but some contaminants have other units, such

as Bq/m3 for radon and CFU/m3 for mold spores. The harm intensity

metric measures the total harm suffered per year and not over a total

lifetime. Accordingly, for most airborne contaminants, HIi has units of

DALY/µg/m3/person/year.

Indoor air comprises mixtures of gases, vapors, and particles, necessitating

exploration of multi-contaminant effects (Section 2.2.2) for the HI metric

(Spengler et al., 2000). This will enable models to better represent real-

world exposure scenarios (Mauderly and Samet, 2009). Research has exam-

ined additive versus synergistic effects and statistical assessment methods

(Billionnet et al., 2012; Yu et al., 2022). When synergies are identified,

they are found to be rare at the concentrations typically found in buildings

(Section 2.1.2) (Committee et al., 2019; Kortenkamp et al., 2009; Rudén

et al., 2019; Socianu et al., 2022). With some exceptions like for carbon

monoxide (Section 2.2.2).

Some combinations of contaminants exhibit clear synergistic effects, like

radon and smoking in relation to lung cancer (Lee et al., 1999) and as-

bestos combined with smoking (Erren et al., 1999). Developing a com-

prehensive synergistic harm metric necessitates data encompassing chronic

effects across all potential combinations, and while some relevant litera-

ture exists (Huang et al., 2012; Ku et al., 2017; Liu et al., 2023a; Siddika

et al., 2019), evidence for chronic synergies remains limited for most indoor

contaminants.

The most accepted approach for multiple chemical exposures is the Con-

centration Addition, whereby components act additively (Backhaus, 2023;

Martin et al., 2021; Martin, 2023). It gives very similar or identical predic-

tions to competing concepts or models like the Effect Addition. The addi-

tive approach is moderately precautionary and more feasible than alterna-

tives requiring full concentration-response data. Overall, research supports

dose addition for multiple exposures.

Considering the above, this research follows an additive model for total

harm calculation aligning with prevailing risk assessment methods (Li et al.,

2023; Mauderly and Samet, 2009; WHO, 2021) (Section 8.8). Furthermore,

when evaluating total harm (DALYs) resulting from a mixture of air con-

taminants, studies typically adopt an additive framework. This approach

involves summing the impacts of multiple contaminants across different
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concentrations (Guan et al., 2021; Rojas-Rueda et al., 2019; Van Zelm

et al., 2008, 2016).

The harm from any number of contaminants can be summed to obtain the

total harm they cause, where

Harm =
∑
i

Harmi (3.5)

The individual contaminant harms can be compared against the total harm

to determine those that contribute the most. This allows the most harmful

to be identified and designated Contaminants of Concern (CoCs).

Equation 3.4 is the all-cause harm that aggregates the health impacts from

all diseases that exposure to a contaminant might induce. Some data

sources may provide all-cause information, but others are disaggregated

by disease so that the all-cause harm becomes the sum of the harms for

each health outcome, as

Harmi =
∑
k

Harm(k,i) (3.6)

where the subscript k denotes a specific disease. Then, Harm(k,i) can be

defined as a function of the harm intensity for each disease, HI(k,i), where

Harm(k,i) = HI(k,i) · Ci (3.7)

In epidemiology, all-cause mortality often summarizes the effect of ma-

jor diseases from long-term exposures (represented by k) (WHO, 2021).

Summing known diseases approximates the all-cause effect in air pollution

impact assessments (Fantke et al., 2019; Gronlund et al., 2015; Van Zelm

et al., 2016). However, lacking morbidity data gives only a reasonable lower-

bound estimate of total harm. Similarly, in toxicology, health effects are

categorized into cancer and non-cancer groups. Their combination should

estimate the all-cause effect for a substance. However, given the intricate

assumptions about what these categories reflect, this also represents a rea-

sonable lower-bound harm estimate.

This follows the characterization framework of Life-Cycle Impact Assess-
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ment (LCIA) approach for quantifying harm (Hauschild and Huijbregts,

2015), which is rooted in toxicological and epidemiological research, and

has been widely applied in studies of outdoor (Bulle et al., 2019; Fantke

et al., 2019; Goel et al., 2019; Gronlund et al., 2015; Kvasnicka et al., 2019;

Oberschelp et al., 2020; Petrov et al., 2017; Tang et al., 2018a,b; Van Zelm

et al., 2008, 2016) and indoor air pollution, particularly inside or near

dwellings (Hellweg et al., 2009; Maury-Micolier et al., 2023; Meijer et al.,

2005b,d).

LCIA considers many parameters, but the one that is most similar to the

harm intensity is the Effect Factor (EF), relating harm to mass intake

(DALY/kg − intake). The harm intensity can be related to the effect

factor using a Breathing Rate (BR).

HI(k,i) = EF(k,i) ·BR (3.8)

BR is a standardized breathing rate (m3/person/year) (Section 4.4).

The interest lies in determining the harm, and hence HI(k,i) for every con-

taminant (i) and health outcome (k), and so by summing all of the health

outcomes associated with each contaminant, the harm intensity can be

written for all causes as,

HIi = BR ·
∑
k

EF(k,i) (3.9)

QuantifyingHarm andHarm Intensity for each disease and contaminant

requires the conversion of existing health data from the forms they are

typically reported in, which vary depending on the discipline they originate

from. The data from toxicological and epidemiological studies are now

examined in turn.

3.3 Toxicological analysis: The Tox-harm ap-
proach

Toxicological studies aim to determine the harmful effects of various con-

taminants on living organisms. Organisms (commonly rodents, mammals

and non-human primates) are exposed to doses of contaminants to deter-
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mine the quantal dose–response relationship that characterizes the distribu-

tion of responses to different doses in a population of individual organisms

(Eaton and Gilbert, 2008). The harm from a contaminant can be derived

from effect factors (DALY/mass) and their intake (mass) as,

Harm(k,i) = EF(k,i) · Ci · BR (3.10)

Individual effect factors for each health outcome (k) associated to a con-

taminant (i) are developed from Dose-Response Factors (DRF, case/kg),

indicating the change in morbidity and/or mortality per unit mass intake of

the contaminant (i) and the damage factors (DF, DALY/case), explaining

the severity of disability (Huijbregts et al., 2005; Logue et al., 2012).

EF(k,i) = DRF(k,i) ·DFk (3.11)

In toxicology, the specific effective dose for a given disease represents can-

cerous or non-cancerous effects for each relevant contaminant,

EF(k,i) = DRF(cancer|non-cancer,i) ·DFk (3.12)

The dose-response factor is the quotient of a constant and the median ef-

fective dose (ED50) that explains a carcinogenic or non-carcinogenic effect,

for each contaminant,

DRF(cancer|non-cancer,i) =
0.5

ED50(k,i)
(3.13)

Considering Equations 3.11, 3.12, 3.13, the form of the toxicology-based

harm intensities (HI, DALY/µg/m3/person/year) is

HI(k,i) =
1

2
· DFk ·BR

ED50(k,i)
(3.14)

Substituting 0.5 for 1/2 in Equation 3.14 is a minor adjustment aimed at

enhancing the readability of the expression. This change in representation

will be maintained for consistency throughout this work.

These harm intensities can be disaggregated into two categories: for cancer
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and non-cancer toxicity. In LCA, toxicology-based chemical impacts are

disaggregated into these categories due to the way in which how the related

LCA impact scores are interpreted, and used when applying the assessment

(Hauschild et al., 2018).

HI(cancer,i) = DRF(cancer,i) ·DFk ·BR (3.15)

HI(non-cancer,i) = DRF(non-cancer,i) ·DFk ·BR (3.16)

The sum over specific cancer and non-cancer categories derives the all-cause

effect harm intensity (DALY/µg/m3/person/year) as

HIi = [(DRFcancer,i ·DFk · ADAF ) + (DRFnon−cancer,i ·DFk)] ·BR

(3.17)

The Age Adjustment Dependent Factor (ADAF) is used to adjust the car-

cinogenicity effect.

The all-cause effect factor (EFi, DALY/kg) is,

EFi = (DRFcancer,i ·DFk · ADAF ) + (DRFnon−cancer,i ·DFk) (3.18)

The all-cause Dose-Response Factor (DRFi, cases/kg) is,

DRFi = (DRFcancer,i · ADAF ) + (DRFnon−cancer,i) (3.19)

Overall, in the Tox-harm approach, the determinants of the effect factor

and of the harm intensity are: dose-response metrics (DRFcancer|non−cancer,i,

ED50), the breathing rate, and the severity of the disease (DFk). Back-

ground concentrations are not required.
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3.4 Epidemiological analysis: The Epi-harm
approach

Epidemiology focuses on the patterns of disease and ill-health in a pop-

ulation. (Bhopal, 2016) Epidemiological studies statistically link disease

incidences to real-world exposures. They require substantive evidence and

so provide less data on contaminants than toxicological studies.

The Air Pollution Health Risk Assessment (AP-HRA) framework focuses

on evaluating the health risks associated with air pollution exposure. These

risks are typically quantified using Concentration-Response (C-R) func-

tions. These functions, incorporated into AP-HRA tools, reflect the epi-

demiological evidence linked to particular health outcomes and can take

the form of linear or non-linear models (Hassan Bhat et al., 2021; WHO,

2016). This approach is similar to the IND approach of Logue et al. (2012).

The incidence rate is the prime estimate of risk in epidemiology (Bhopal,

2016) and so, health risk assessments use Health Impact Functions (HIF) to

estimate changes in outcome incidence. HIF methods require information

that includes the size of the exposed population, baseline incidence rates for

diseases associated with pollutants, baseline and exposure concentrations,

and C-R estimates for each contaminant-disease pair. (Martenies et al.,

2015)

The attributable harm caused by a health outcome (k) from exposure to a

contaminant (i) (Harm(k,i), DALYs/person/year) is a function of the base-

line disease incidence (γ0k , cases/person/year), the damage factor (DFk,

DALY/case), a risk-related empirical parameter beta (β(k,i), change/µg/m3),

and the contaminant exposure concentration (Ci, µg/m3), associated through

a non-linear relationship that considers saturation at high exposures as

Harm(k,i) = DFk · γ0k · (1− e−β(k,i)·Ci) (3.20)

Important outlines from this expression are:

• In general, this analysis follows the Comparative Risk Assessment

(CRA) conceptual framework (Murray, 1994).

• This expression is equivalent to that used in the Global Burden of

Disease (GBD) studies to quantify the environmental burden of dis-
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ease attributable to a wide variety of risk factors (Hassan Bhat et al.,

2021; Hauschild et al., 2018; Logue et al., 2012; Murray et al., 2020).

• Damage factors express the relationship between the cases of mortal-

ity or morbidity attributed to a contaminant and the corresponding

harm. These factors are expressed in terms of DALY/case (Fantke

et al., 2019; Gronlund et al., 2015; Van Zelm et al., 2008, 2016).

• The term in parenthesis is known as the population attributable frac-

tion in LCIA (Fantke et al., 2019; Gronlund et al., 2015).

• The environmental burden of disease for health outcomes presented in

the GBD (DALYs/person/year) is the product of the damage factor

and the baseline disease incidence.

• This log-linear model is the most widely used function for health

impact assessment (Burnett and Cohen, 2020; Nasari et al., 2016).

• The approach assumes there is no threshold concentration (TMREL)

below which effects aren’t seen.

Dividing by the concentration derives the harm intensity as,

HI(k,i) =
DFk · γ0k

Ci

· (1− e−β(k,i)·Ci) (3.21)

HI has units of DALY/µg/m3/person/year. The term in parenthesis mod-

els the non-linear, no lower threshold, saturation. The shape of the curve

is a function of the exponent (the curve that is generated by the expression

is a sigmoid curve, which has a steep linear initial slope that then flattens

out as values increase). When the equation is evaluated at the low concen-

trations normally expected in dwellings (Logue et al., 2011a; Vardoulakis

et al., 2020), a linear concentration-response association is often assumed

appropriate (Gronlund et al., 2015; Huijbregts et al., 2017; Van Zelm et al.,

2016).

1− e−β(k,i)·Ci ≈ β(k,i) · Ci (3.22)

The simplification is justified because:

• The range of chronic exposures to contaminants in buildings is ex-

pected to be in the low to mid regimes (Halios et al., 2022; Ilacqua
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et al., 2022; Logue et al., 2011a; Ma et al., 2022; Sarigiannis et al.,

2011; Vardoulakis et al., 2020),

• the incidence rate per person is low,

• it is consistent with statements of a near-linear C-R association for

low to moderate concentrations of airborne contaminants (Burnett

and Cohen, 2020; Nasari et al., 2016), and

• it is mathematically equivalent to current practice applied by LCIAs

of air pollution (Gronlund et al., 2015; Huijbregts et al., 2017; Van Zelm

et al., 2016).

The individual intermediate expression of harm (DALYs/person/year) can

therefore be described as,

Harm(k,i) = DFk · γ0k · β(k,i) · Ci (3.23)

And the individual intermediate harm intensity (DALY/µg/m3/person/year)

as,

HIk.i = DFk · γ0k · β(k,i) (3.24)

In epidemiological studies, k represents all major diseases and considers

both morbidity and mortality. It can be represented by all-cause mor-

tality risk estimates that encompass all causes of death, from long-term

exposure-related chronic diseases to deaths hastened by recent exposure

to air pollution (WHO, 2021). When this information is not available,

different diseases can be summed to approximate the all-cause effect.

When the risk estimate is given for specific causes:

HIi =
∑
k

DFk · γ0k · β(k,i) (3.25)

When the risk estimate is given for all-cause mortality:

HIi =
∑
k

DFk · γ0k · βi (3.26)

The all-cause harm intensity (DALY/µg/m3/person/year) can now be de-

fined as,

HIi =
∑
k

DFk · γ0k · β(k,i) (3.27)
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Analogously, the linear form for the epidemiological effect factor (EFi,

DALY/kgintake) as,

EFi =

∑
k DFk · γ0k · β(k,i)

BR
(3.28)

The Dose-Response Factor (DRFi, cases/kg) as,

DRFi =

∑
k γ0k · β(k,i)

BR
(3.29)

And the Concentration-Response Factor (CRFk, cases/µg/m3/person/year)

as,

CRFi =
∑
k

γ0k · β(k,i) (3.30)

Overall, in the Epi-harm approach, the determinants of the effect factor

and of the harm intensity are: disease incidence metrics (γ0k and β(k,i))

and the severity of the disease (DFk). Background concentrations are not

required.

3.5 Connecting Toxicology and Epidemiol-
ogy

Ideally, the toxicological and epidemiological approaches would yield equiv-

alent harm estimates for a given contaminant (i):

Harmtoxicity
(i) ≡ Harmepidemiology

(i) (3.31)

The dose-response factor (DRF) is a shared parameter:

DRFtoxicity
(k,i) =

0.5

ED50(k,i)
(3.32)

DRFepidemiology
(k,i) =

γ0k · β(k,i)

BR
(3.33)

If toxicity reflects a contaminant’s cancer (or non-cancer) effects, epidemi-

ology should provide evidence on the associated cancer type (or disease) in

populations.
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For all-cause Dose-Response factors, DRFi:

(
0.5

ED50(k′,i)
· ADAF

)
cancer

+

(
0.5

ED50(k′′,i)

)
non-cancer

≡
γ0k′′′ · β(k′′′,i)

BR
(3.34)

Likewise, effect factors (EFi) should align because damage factors simply

translate incidence to harm, unchanged by approach:

(
0.5

ED50(k′,i)
· ADAF ·DF(k′◦)

)
cancer

+

(
0.5

ED50(k′′,i)
·DF(k′′◦)

)
non-cancer

≡
γ0k′′′ · β(k′′′,i)

BR

(3.35)

And, finally the same is presented for the harm intensity, HIi:

((
0.5

ED50(k′,i)
· ADAF ·DF(k′◦)

)
cancer

+

(
0.5

ED50(k′′,i)
·DF(k′′◦)

)
non-cancer

)
· BR

≡ DFk′′′ · γ0k′′′ · β(k′′′,i) (3.36)

The subtle differences in health outcome identifiers are shown using sym-

bol notation. The prime symbol ′ denotes a general cancer effect category.

The circled prime ◦ indicates a specific cancer type identified as associated

with the broader cancer effect represented by ′. Varying numbers of primes

visually distinguishes where different, but equivalent, health outcomes are

accounted for. For example, k′ and k′′′ could both refer to cancer effects,

with k′ representing the cancer category and k′′′ representing leukaemia, in

the integrated factor. This symbolic notation shows the nuanced distinc-

tions between related endpoints derived from the toxicity and epidemiology

approaches.

With accurate disease rates, health outcome identifiers, and constant equiv-

alences, both approaches could theoretically estimate identical harm. Fur-

ther research is needed to achieve this equivalence. Meta-analysis can merge

toxicity and epidemiology information, supporting progress toward equiv-
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alence.

3.6 Harm from the coarse fraction of partic-
ulate matter

The coarse fraction of PM10 (referred to as thoracic coarse particles or

PM10−2.5) are, in regulatory terms, particles with an upper 50% cut-point

of 10 µm aerodynamic diameter and a lower 50% cut-point of 2.5 µm aero-

dynamic diameter.

When tallying up air pollution’s health impacts, not all particulate matter

is equally harmful. Researchers aim to separate the burden attributable

to fine particles from their coarser counterparts. Mathematically, the total

disease burden (measured in disability-adjusted life years or DALYs) is the

sum of the harm from each PM size fraction. This arithmetic summation

or subtraction assumes that the harm is being calculated using the means

of the PM size fractions’ parameters. For non-normal distributions, such as

right-skewed data, medians or other robust measures should be considered,

noting that the arithmetic operations on medians may not be appropriate

(see Section 3.8 for further discussion). The relative contributions depend

on the particles’ respective harm intensities, which convert exposure to

harm.

Ideally, epidemiologists would measure each fraction’s unique harm deter-

minants directly from health data. But real-world constraints mean the

PM2.5 factor is best known, while the coarse one remains elusive. However,

since the fine fraction of PM10 is reasonably well-established, the coarse

factor can be bounded in terms of the other two.

To establish an initial mathematical foundation independent of contex-

tual assumptions, particulate matter (PM) represents particle mass and is

therefore a purely additive quantity (for PM2.5 greater than zero):

PM10 = PM2.5 + PM10−2.5 (3.37)

PM2.5 + PM10−2.5 > PM2.5 > 0 (3.38)
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where PM10−2.5 represent particles between 2.5 microns and 10 microns.

Since there will be some mass in the coarse fraction, PM10 will always be

greater than PM2.5, and thus the inequality is true. The same additive

property applies to the harm per person that results from that exposure:

HarmPM10 = HarmPM2.5 +HarmPM10−2.5 (3.39)

HarmPM2.5 +HarmPM10−2.5 > HarmPM2.5 > 0 (3.40)

For every contaminant, there is a harm intensity that converts the exposure

into the harm. Formally applying that:

HarmPM10 = HIPM10 · PM10 (3.41)

HarmPM10 = HIPM2.5 · PM2.5 +HIPM10−2.5 · PMPM10−2.5
(3.42)

HIPM2.5 · PM2.5 +HIPM10−2.5 · PMPM10−2.5 >

HIPM2.5 · PM2.5 > 0
(3.43)

Understanding the coarse fraction effect becomes important, yet the in-

dependent measurement of all three factors might not always be feasible.

Nevertheless, relationships between these factors can be established:

HIPM2.5 > HIPM10−2.5 (3.44)

HIPM10−2.5 =
HIPM10 − f2.5 · HIPM2.5

1− f2.5
(3.45)

HIPM10 − f2.5 · HIPM2.5

1− f2.5
> 0 (3.46)

Here the inequalities are known physical limits, that define the fraction of
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PM2.5 particles as:

f2.5 ≡
PM2.5

PM10

(3.47)

PM2.5 has more health impact per unit mass than PM10, and PM2.5 is

measured the most. What is wanted, is an effective harm intensity that

includes the harm from the coarse fraction as well as from the measured

PM2.5:

HIPM ≡ harmPM10

PM2.5

(3.48)

harmPM10

PM2.5

=
HIPM10

f2.5
(3.49)

HIPM10

f2.5
> HIPM2.5 > HIPM10 (3.50)

The approach for the coarse fraction can now be defined. The all-cause

harm attributable to the coarse fraction of particulate matter (PM10−2.5)

is estimated by calculating the difference between the harm due to PM10

and PM2.5 as

HarmPM10−2.5 = HarmPM10 − HarmPM2.5 (3.51)

The harm intensity for the coarse fraction can be estimated once the harm

from each fraction is quantified and once the concentrations of the other

PM fractions are known, as

HIPM10-2.5 =
HarmPM10−2.5

CPM10−2.5

(3.52)

3.7 Harm Budget

The harm attributable to chronic exposures is calculated using Equation 3.7.

The values of harm can be used to rank the contaminants and identify con-

taminants of concern (CoC). These CoCs can then be used to regulate IAQ

in dwellings. One way of doing this is to set a harm budget, the distribution

of harm that is expected in an acceptable reference scenario. A reference

scenario is a specific set of dwellings that all comply with a recognized
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indoor air quality (IAQ) standard (Chan et al., 2019; Martin et al., 2020;

Singer et al., 2020; Zhao et al., 2021) and so the IAQ in those dwellings

might be logically assumed to be acceptable.

Harm Budget =

NCoC∑
i=1

HIi · Ci (3.53)

Here NCoC is the number of CoCs and C is the concentration representative

for a reference scenario. The equation expresses the harm budget in units

of DALYs.

For a harm budget with a value of unity, the weight of each contaminant

is determined by a partial weight for contaminant i, determined as the

product of its harm intensity (HIi) and the concentration in the reference

scenario (Ci), divided by the harm budget.

Partial Weighti =
HIi · Ci

Harm Budget
(3.54)

Each partial weight is then adjusted to a unitless target value like 1, 10, or

100, for easier interpretation. To do this, the partial weight is multiplied

by that unitless value, and the result is a new weighting factor called here

Adjusted Partial Weight′i

Adjusted Partial Weight′i = Partial Weighti · Unitless Target (3.55)

A common scaling factor for contaminant i is determined as the ratio of

the harm associated with that contaminant to its adjusted partial weight.

Common Scaling Factori =
Harmi

Adjusted Partial Weight′i
(3.56)

A weight (Weighti) for contaminant i is determined as the ratio of its harm

intensity (HIi) to the common scaling factor. The weight has units of

inverse concentration.

Weighti =
HIi

Common Scaling Factori
(3.57)
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These equations are used to calculate the partial weights, adjusted partial

weights, common scaling factors, and weights associated with each contam-

inant in the context of the normilized unitless harm budget (More on this

in Section 8.3.1).

3.7.1 Regulated Harm Budget (RHB)

Merging the Indoor Air Quality (IAQ) equivalence principle proposed by

Sherman et al. (2012) with the concept of the Harm Budget, introduces

a parallel notion defined here as the Regulated Harm Budget (RHB). This

involves utilizing existing contaminant Exposure Limit Values (ELVs) for

chronic exposures presented in guidelines or standards, in the context of the

Contaminants of Concern (CoCs) and their corresponding harm intensities

to quantify the potential harm that represents the total allowed harm from

regulated contaminants implicitly set by a regulatory body.

Regulated Harm Budget (RHB) =

NCoC∑
i=1

HIi · Ĉi (3.58)

Here, NCoC still represents the total number of Contaminants of Concern,

and Ĉi denotes the long-term concentration threshold recommended in a

relevant standard or guideline The application of this is resolved in Sec-

tion 8.2.1.1.

3.8 Parameter distributions

3.8.1 Uncertainty Representation

A lognormal Probability Density Function (PDF) is plausible for all pa-

rameters that are positive and cannot physically have negative values. This

type of distribution is widely used and accepted to adequately adjust for

right-skewed data (Blackwood, 1992; Crow and Shimizu, 1987; Jia et al.,

2008; Ott, 1990). This approach is consistent with established method-

ologies (Huijbregts et al., 2005; Imbeault-Tétreault et al., 2013; Shaked

et al., 2015a; Slob, 1994). This is usually the default procedure because

the parameter values often vary over several orders of magnitude, and it

automatically excludes negative values that describe impossible scenarios

91



3.8. PARAMETER DISTRIBUTIONS

(like a negative Harm), which are meaningless and could lead to erroneous

uncertainty estimates. The central limit theorem also indicates lognor-

mality for products of multiple independent random variables (Huijbregts

et al., 2005; Shaked et al., 2015b; Slob, 1994).

Medians represent the central value due to their robustness against outliers.

For non-normal data, medians better depict the typical result than means

(Huijbregts et al., 2005).

To characterize dispersion, the geometric standard deviation (GSD) is used.

As a multiplicative factor, the GSD indicates the relative spread around

the geometric mean rather than absolute variance (Ciroth et al., 2016;

Slob, 1994). Being a linear multiplier aligned with lognormal distribu-

tions, it quantifies uncertainty without specifying precise bounds. This

prevents potential scaling effects that can occur when combining variance-

based uncertainty measures. GSD suitably represents uncertainty because

real-world data often does not perfectly fit assumed distributions, espe-

cially in the tails where true bounds are uncertain, and the analyses do not

rely on the extreme 2.5th or 97.5th percentiles.

When lognormality and 95% confidence intervals (CIs) are known, the

GSD2 approximates uncertainty (Slob, 1994):

GSD2 =

√
97.5 percentile

2.5 percentile
(3.59)

The GSD2 can be used to approximate the 97.5th and 2.5th percentiles of

a distribution based on the median, assuming a lognormal distribution:

97.5percentile ≈ GSD2 ·median (3.60)

2.5percentile ≈ median

GSD2
(3.61)

For combined variables, output (y) variance depends on uncorrelated input

(x) variance (Hauschild et al., 2018; MacLeod et al., 2002; Morgan et al.,

1990):
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GSD2
y = e

(√∑n
i=1[ln(GSD2

xi)]
2
)

(3.62)

When information is limited, expert judgement and uncertainty factors

guide uncertainty assignment for human health impact characterizations.

This allows approximating data variability when direct measures like con-

fidence intervals are unavailable (Rosenbaum et al., 2004).

3.8.2 Data Synthesis

The parameters involved in the Tox-harm and Epi-harm approaches can

have more than one available estimate of central tendency, and so they

need to be combined, or pooled, to produce a single value. Standard meta-

analysis statistical approaches were utilized to pool lognormal distributions

(Daly and Soobiah, 2022; DerSimonian and Laird, 1986a; Fisher, 2015;

Harris et al., 2008; Schmid et al., 2020; StataCorp, 2017, 2019). Meta-

analyses combine estimates for parameters with more than one central ten-

dency value available (Schmid et al., 2020). Meta-analyses employ the

random-effects DerSimonian and Laird estimators in STATA 18.0 (Daly

and Soobiah, 2022; Fisher, 2015; Harris et al., 2008). Random-effects mod-

els follow maximum likelihood methodology, assuming studies represent

random samples accounting for heterogeneity (DerSimonian and Laird,

1986b). For lognormal data, the median and geometric mean are equiva-

lent; the geometric mean closely matches meta-analysis results (StataCorp,

2019). The recommended synthesis approach is pooling independent data

points for epidemiology and toxicology harm parameters (Cooper et al.,

2019).

3.8.3 Monte Carlo Approach

A Monte Carlo approach (Metropolis and Ulam, 1949; Shaked et al., 2015a)

modeled input and output parameter distributions. The approach popu-

lates a parameter database via bootstrapping. Combining the database

with probability distribution functions generates random input samples

to compute outputs (including: Harm, harm intensity, effect factor, dose-

response factor, concentration-response factor).

The Monte Carlo simulations ran for a minimum of 100,000 iterations, with
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additional iterations as needed to meet a convergence criterion. The con-

vergence criterion was for the mean of the output parameter to become ap-

proximately normally distributed. Requiring the output mean to stabilize

into a normal distribution indicates that additional iterations are unlikely

to shift the central tendency or range substantially. Without convergence,

repeated simulations can yield slightly different statistic descriptors due to

inherent randomness.

Descriptive statistics were obtained, including means, medians, standard

deviations, geometric standard deviations, and confidence intervals. MAT-

LAB is used to code the model and run the sumulations.

Output vectors enable straightforward 95% confidence interval calculation

as quantiles. Vector bootstrapping also derives 95% confidence intervals

for medians using R’s MedianCI function (Signorell et al., 2021). The high

iteration count produced narrow median confidence intervals.

3.9 Summary

An iterative, evidence-based process established a list of 45 chronic con-

taminants in dwellings.

Acute compounds were excluded per the chronic scope. Toxicology and

epidemiology guided evaluating each option’s inclusion.

Adding PM10−2.5 distinguishes the coarse fraction’s impacts from fine PM.

The core approach centers on determining contaminant-specific harm in-

tensities. These factors convert exposure concentrations into estimated

population harm (DALYs).

Toxicology provides dose-response factors describing contaminant toxicity.

Epidemiology offers concentration-response functions from human health

studies. Integrating evidence from both domains enables impact estimation

while balancing limitations.

Guidelines from life cycle assessment, widely applied in air pollution re-

search, inform the methodology.

By determining harm intensities, ranking contaminant contributions, and

setting harm-based benchmarks, indoor air quality is quantitatively linked
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to contaminant concentrations and resulting harm.

This methodology demonstrates policy and design value by enabling the

development of health-based exposure guidance.

Lognormal probability distribution functions represent uncertainty using

median central tendencies and GSD-based dispersion. This aligns with

data characteristics while avoiding issues with means, negative values, and

scaling effects.

Meta-analysis consolidates multiple estimates into single representative val-

ues using established techniques suited for lognormal data.

Monte Carlo simulation modeled parameters and quantified uncertainty,

with iterative convergence enabling output confidence intervals.
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Chapter 4

Parameters for Determining
Harm Intensities

The parameters needed to quantify a toxicology-based and epidemiology-

based Harm Intensity,HI are: (i) Risk estimates from epidemiologi-

cal studies, linking health effects to contaminant exposures, (ii) Baseline

disease/mortality rates, (iii) Damage factors, relating harm to incidence

(Equation 3.24), (iv) Breathing rates (Equation 3.8), (v) Dose-response

factors, relating incidence to mass intake, (vi) Age-dependent adjustment

factors (ADAF) for cancer (Equation 3.19), and (vii) Effect factors (Equa-

tion 3.8), relating harm to mass intake.

This study draws on established literature in life cycle impact assessment

(LCIA) (Hauschild and Huijbregts, 2015; Hauschild et al., 2018) and health/-

comparative risk assessments (Murray et al., 2020; Richmond-Bryant, 2020;

WHO, 2021) to identify reliable data sources. Analyzing references in these

domains offers insights into trusted sources. To ensure up-to-date data,

search strategies use keywords from reputable studies to identify appropri-

ate sources for each parameter.

The following sections detail the search and data-synthesis strategies used

to obtain values and distributions for these key exposure, health risk, and

harm parameters, for the 44 contaminants of interest (Section 3.1). Char-

acterization of each input forms the basis of the integrated harm estimation

methodology developed herein.
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4.1 Risk estimates for parameter beta (β(k,i))

The parameter β(k,i) is an empirical factor that captures the change in a risk

estimate associated with a one-unit change in contaminant concentration

for a particular health outcome (k) and contaminant (i) (Equation 3.20).

It serves as the quantitative link between contaminant long-term expo-

sure and chronic health effects. Chronic statistics comprise deaths from

long-term exposure-related chronic diseases as well as those whose passing

was hastened by recent exposure to air pollution (WHO, 2021). These

risk estimates, represented as relative risks (RRs), odds ratios (ORs), per-

centage excess alterations, or hazard ratios (HRs), gauge the influence of

altering contaminant concentrations on specific health outcomes (Stare and

Maucort-Boulch, 2016; Symons and Moore, 2002).

The literature reflects varying viewpoints on the interchangeability of these

metrics for pooling in meta-analyses. Some researchers transformed ORs

into RRs (or vice versa) (Farhadi et al., 2020; Grant, 2014; Lamichhane

et al., 2015; Prasad et al., 2008; Shrier and Steele, 2006; van Rhee and

Suurmond, 2015; Wang, 2013); this conversion is only possible given a

complete access to raw original data (Grant, 2014; Wang, 2013). Others

endorse the equivalence of ORs and RRs (Braithwaite et al., 2019; Kihal-

Talantikite et al., 2020; Orellano et al., 2020; Shah et al., 2015; Simoncic

et al., 2020; Yuan et al., 2019), based on the “rare disease assumption”

(Greenland and Thomas, 1982; Knol et al., 2008; Pace and Multani, 2018).

Moreover, other studies correlate RRs with HRs (Chen and Hoek, 2020;

Hayes et al., 2020; Kihal-Talantikite et al., 2020; Scheers et al., 2015; Wang

et al., 2014; Yuan et al., 2019). There is a “rule of thumb” followed by

different authors: Prasad et al. (2008) mention that if 0.67 < OR < 1.3

then it is acceptable to assume RRs as equivalent to ORs. Similarly, Stare

and Maucort-Boulch (2016) and Symons and Moore (2002) reported that

when HR <2.5 it is acceptable to assume HRs are equivalent to RRs.

This study assumes the equivalence of ORs, RRs, and HRs. Standardizing

risk estimates for incremental changes in contaminant concentration is done

using a linear exposure-outcome relationship (Braithwaite et al., 2019; Chen

and Hoek, 2020; Orellano et al., 2020; Shah et al., 2015; Wang et al., 2014;

Yuan et al., 2019).

Deriving the beta parameter values involves an exhaustive systematic re-

view of risk estimate articles published after 2010 across databases. The
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selected date range aligns with the exposure impact assessment of indoor

air in dwellings by Logue et al. (2012) (Section 2.5.1), which relied on risk

estimate data from epidemiological studies available up to 2010.

The search strategy incorporates pertinent keywords related to health im-

pacts and contaminants (See Appendix 1) for additional details on the

systematic review). This process is complemented by targeted reviews of

documents aggregating air pollution-related health data (USEPA, 2018;

WHO, 2021), the USEPA Integrated Science Assessments (ISAs) (US-EPA,

2010a,b, 2011, 2016, 2020a,b), and global burden of disease studies (Cohen

et al., 2017). Acute data (hourly or daily death rates attributable to recent

exposure to air pollution) was not considered because the aim of this work

is on chronic effects from long-term exposure to airborne contaminants

(Section 1.4). The review was performed for the list of 44 contaminants of

interest (the 45th contaminant, PM10−2.5, results from subtracting the PM

fractions, therefore it is not relevant for the review, Section 3.1). Mortality

data was chosen over morbidity data to represent health outcomes where

possible because mortality has a higher toll on the global burden of disease

than morbidity (Cohen et al., 2017).

For each of the 44 contaminants, there where risk estimates for ten of them:

acrolein (C3H4O), benzene (C6H6), mold spores, formaldehyde (HCHO),

nitrogen dioxide (NO2), ozone (O3), respirable particulate matter (PM10),

fine particulate matter (PM2.5), radon (Rn), and sulphur dioxide (SO2).

The health effects associated to the contaminants where reported as all-

cause mortality or morbidity, or as individual outcomes (that can be summed

to obtain an all-cause estimate, Section 3). The estimate, or estimates, best

capturing the contaminant’s total disease burden or attributable mortality

is the best estimate of all-causes.

All-cause mortality was found to describe best the effect of all-causes for

five of the ten contaminants: PM10, PM2.5, O3, SO2 and, NO2. They are the

commonly known criteria pollutants and have been scrutinized by health

assessments (Richmond-Bryant, 2020; WHO, 2021). For C3H4O and mold

spores, the best estimate of all-causes is represented by asthma morbidity.

Long-term mortality from carcinogenic effects was associated with C6H6,

represented by leukaemia mortality, and by lung cancer for Rn. For HCHO,

three health outcomes, leukaemia and lung cancer mortality and asthma

morbidity, are added together to obtain the best estimate of all-causes.

The health impacts chosen to represent each contaminant are the most
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reported, either for mortality or morbidity endpoints.

Table 4.1 shows these contaminants with incidence related data and the

recommended input parameters. Here, the term all-cause mortality ac-

counts for chronic data, based on cohort studies for total non-accidental

mortality causes (codes A00–R99) following the International Statistical

Classification of Diseases and Related Health Problems, 10th edition (ICD-

10) (WHO, 1993), therefore all-cause mortality excludes accidental deaths.

Chronic statistics comprise deaths from long-term exposure-related chronic

diseases as well as those whose death was hastened by recent exposure to

air pollution (WHO, 2021). The mortality risk estimates reflect all ages,

both sexes, and global location; whereas asthma morbidity is for children

(with varying ages depending on the contaminant and reference study).

The risk estimates shaping the health impact function, encompassing the β

parameter (Equation 2.5), draw from diverse epidemiological studies, and

were pooled. This underscores pervasive positive associations between con-

taminants and health impacts. Importantly, most associations demonstrate

statistical significance (Riley et al., 2011).

PM2.5 has the most datasets (25) for all-cause mortality, indicating substan-

tial research on its health risks. Radon has numerous lung cancer datasets,

consolidating its status as a key contaminant. NO2 has 24 total datasets,

suggesting significant research attention due to its prevalence and known

adverse effects. A global systematic review from the WHO represents the

most current, relevant, high impact and cited work providing risk estimates

for several contaminants, strengthening reliability (WHO, 2021). A current

global burden of diseae review had risk estimates for radon (IHME, 2019).

Acrolein, benzene, mold, formaldehyde, and sulphur dioxide estimates come

from this work’s review, providing needed insights on their lesser-studied

impacts. The range of morbidity to mortality outcomes shows the complex

contaminant-health interplay. Multiple cancer outcomes highlight investi-

gating priority contaminants’ carcinogenic potential.

Other authors have used different risk estimates in contaminant harm

assessments for ozone (O3), nitrogen dioxide (NO2), particulate matter

(PM10, PM2.5), and acrolein (C3H4O). Logue et al. applied available mor-

bidity estimates for SO2 and NO2, and mortality for O3 and PM2.5, from

pre-2010 cohort studies in the USA or Canada (Logue et al., 2012). Van Zelm

et al. used a 2000 European cohort study for chronic PM10 mortality and

acute O3 mortality (Van Zelm et al., 2008). Van Zelm et al. used respi-
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4.2. BASELINE INCIDENCE (γ0k)

ratory mortality for O3 and lung cancer and cardio-pulmonary mortality

for PM2.5 from USA cohort studies (Van Zelm et al., 2016). Gronlund

et al. used PM2.5 risk estimates for lung cancer, cardio-pulmonary, and

all-cause mortality from a 2002 USA cohort study (Gronlund et al., 2015).

Fantke et al. and Oberschelp et al. used the integrated exposure response

model for PM2.5 from the Global Burden of Disease (GBD) study (Bur-

nett et al., 2014; Fantke et al., 2019; Oberschelp et al., 2020). This models

five specific mortality causes (ischemic heart disease (IHD), stroke, chronic

obstructive pulmonary disease (COPD), lung cancer in adults and, acute

lower respiratory infections (ALRI) in children).

This research differs by using all-cause mortality when available, and risk

estimates from systematic reviews rather than single cohort studies. All-

cause mortality accounts for chronic data on total non-accidental causes

per the ICD-10, excluding accidental deaths (WHO, 1993).

There is an implicit assumption of the equitoxicity of PM by applying the

selected risk estimates, where particles are equivalently toxic per unit mass

intake. There is evolving evidence to suggest that adverse health effects

can vary depending on the source and chemical composition of the PM

(Thurston et al., 2021; Xu et al., 2022). Nevertheless, the size of the PM

is still the most consistent and robust predictor of incidence in studies of

long-term exposure (Burnett et al., 2018; Xu et al., 2022).

Finally, Table 4.2 presents the final beta parameter estimates used in this

research. These estimates were obtained after adapting the input data

to match the parameter distribution decisions (See Appendix 2 for full

descriptive statistics).

4.2 Baseline Incidence (γ0k)

The baseline incidence (γ0k) represents the average number of mortality

or morbidity cases for a given health outcome (k) in a population over a

defined time period (Van den Broeck et al., 2013). It is expressed in cases

per person-time, typically per year. The baseline incidence quantifies the

background disease burden in the absence of the contaminant exposure

under consideration. Values can be obtained from epidemiological cohort

studies reporting case counts, population, and follow-up time. Baseline

incidences are also published in global health statistic databases, like the
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4.2. BASELINE INCIDENCE (γ0k)

Table 4.2: Beta parameter estimates, β(k,i),
change/µg/m3.*

Contaminant Median GSD

Acrolein 0.135 1.34

Benzene 0.00041 1.39

Formaldehyde(asthma) 0.0197 1.99

Formaldehyde(leukaemia) 0.0125 2.74

Formaldehyde(lungCancer) 0.00236 2.63

Mold 0.0001 2.08

Nitrogen dioxide 0.00173 1.65

Ozone 0.00081 1.91

PM10 0.00379 1.3

PM2.5 0.00763 1.14

Radon 0.00082 1.67

Sulphur dioxide 0.0056 1.35
* Values to 3 Sig. Figs.

Global Burden of Disease study.

The GBD 2019 was mainly used to find the necessary mortality and mor-

bidity central tendencies (medians) and variability (95% CI) for the ten

contaminants identified in section 4.1, and their corresponding health out-

comes (Table 4.3) (IHME, 2022; Murray et al., 2020), assuming that central

tendency estimates represent means when the reference is unclear about

what was reported.

Several approaches have been used to obtain baseline incidence rates (γ0k)

for contaminant harm assessments: Van Zelm et al. (2008) consulted 2007

European Union statistics. Van Zelm et al. (2016) used 2005 WHO world

health data. Gronlund et al. (2015) obtained U.S. data from the CDC

National Center for Health Statistics. Fantke et al. (2019) used the 2016

GBD study. Although these may consult similar databases, differences can

arise based on the age, sex, and location chosen. This work similarly uses

global health data for incidence of the health outcomes pair to each con-

taminant using their risk estimate, specifically GBD 2019 statistics for all

ages, both sexes, and global location. GBD divides all-causes of disease

incidence into communicable/nutritional and non-communicable diseases,

which were combined for the all-cause estimate. This provides an appro-

priate value to represent all-cause mortality, differing from previous studies

that use specific mortalities.
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4.3. DAMAGE FACTORS (DFk)

Table 4.3: Baseline incidence findings.

Contaminanti Baseline Incidence (γ0k)
+ Main reference

(cases/105 person/year)

Acrolein 63 (95% C.I. 6.3-630)a (Annesi-Maesano et al., 2012)

Benzene 4.32 (95% C.I. 3.97-4.66) (IHME, 2022)

Formaldehyde(asthma) 8 (95% C.I. 0.8-80)b (Rojas-Rueda et al., 2019)

Formaldehyde(leukaemia) 4.32 (95% C.I. 3.97-4.66) (IHME, 2022)

Formaldehyde(lungCancer) 26.4 (95% C.I. 24.3-28.4) (IHME, 2022)

Mold 504 (95% C.I. 401-633)c (IHME, 2022)

Nitrogen dioxide 675 (95% C.I. 637-715) (IHME, 2022)

Ozone 675 (95% C.I. 637-715) (IHME, 2022)

PM10 675 (95% C.I. 637-715) (IHME, 2022)

PM2.5 675 (95% C.I. 637-715) (IHME, 2022)

Radon 26.4 (95% C.I. 24.3-28.4) (IHME, 2022)

Sulphur dioxide 675 (95% C.I. 637-715) (IHME, 2022)

See Table 4.1 for health outcomes (k).
a The baseline for asthma and acrolein derives from the corresponding risk estimate study. Chose an uncertainty

factor of 10 to reflect the variability of the extracted central estimate.
b The baseline for asthma and formaldehyde uses data from Rojas-Rueda et al. and the GBD. Applied an uncertainty

factor of 10 to account for variability in the selected central estimate.
c The baseline for asthma and mold reflects the age-standardised global burden of disease for asthma, deemed the

best match for meta-analyses of risk estimate studies of the mould Cladisporium genome. Those analyses examined
varied populations, age groups and sexes.

+ Figures are rounded to 3 significant figures.

For asthma, the baseline incidence varies highly depending on age and sex

(Rojas-Rueda et al., 2019). Asthma risk estimate and burden of disease

studies were reviewed to select the best population match, and uncertainty

estimates where assigned to reflect the span of values seen in the literature

(Annesi-Maesano et al., 2012; Braubach et al., 2011; Rojas-Rueda et al.,

2019). This addresses discrepancies from studying different ages, sexes

and locations. Logue et al. (2012) used various baseline prevalence sources,

mostly extracting untreated incidence from each study without uncertainty.

The baseline disease incidence parameter estimates after applying the pa-

rameter distributions utilized in this study (Section 3.8) are presented in

Table 4.4 (See Appendix 3 for full descriptive statistics).

4.3 Damage Factors (DFk)

The damage factor (DFk) quantifies disability-adjusted life years (DALYs)

per disease case (Hauschild and Huijbregts, 2015; Hauschild et al., 2018). It

serves as a measure of disease burden per incidence for a given health out-
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4.3. DAMAGE FACTORS (DFk)

Table 4.4: Baseline disease incidence parameter esti-
mates, γ0k , cases/10

5 person/year.*

Contaminanta Median GSD

Acrolein 15.5 4.93

Benzene 4.31 1.06

Formaldehyde(asthma) 1.92 5.02

Formaldehyde(leukaemia) 4.31 1.06

Formaldehyde(lungCancer) 26.3 1.06

Mold 497 1.18

Nitrogen dioxide 675 1.04

Ozone 675 1.04

PM10 675 1.04

PM2.5 675 1.04

Radon 26.4 1.06

Sulphur dioxide 675 1.04
* Values to 3 Sig. Figs.
a See Table 4.1 for health outcomes (k) that relate to each
contaminant. Case represent case counts of the disease or
deaths

come (k). Studies calculate DFs as the ratio of disease burden to incidence

for chosen health outcomes that represent contaminant effects.

In life cycle impact assessment (LCIA), damage factors are traditionally

categorized as representing either cancer or non-cancer effects, as originally

proposed by Huijbregts et al. (2005). This aligns with the toxicity-based

(tox-harm) approach in the present work. However, for the epidemiology-

based (epi-harm) method, damage factors are calculated based on the spe-

cific diseases identified in the risk estimates for each contaminant. For ex-

ample, PM2.5 should have a damage factor representing all-cause mortality,

since its risk estimate derives from a relative risk for all-cause mortality.

Damage factors should use the latest global disease burden data available.

A search for current burden of disease and health statistics databases to

derive DFs was performed. The Global Burden of Disease Collaborative

Network provides 2019 global, both sexes and all ages estimates for disease-

specific DALY burdens (IHME, 2022; Murray et al., 2020).

Damage factors are given for both cancer and non-cancer effects, follow-

ing LCIA conventions useful for the tox-harm approach. Also reported are

damage factors for specific diseases relevant to the epi-harm calculations.
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4.3. DAMAGE FACTORS (DFk)

Rather than applying broad cancer and non-cancer factors, the epi-harm

method utilizes disease-specific damage factors corresponding to the health

endpoints in the epidemiological concentration-response data for each con-

taminant. This represents a key difference between the tox-harm and epi-

harm approaches in how damage factors are defined and implemented based

on the type of health risk evidence used.

Table 4.5 gives damage factors and uncertainties for cancer or non-cancer

effects, for 18 non-communicable disease types representing global health

in 2019 (IHME, 2022; Murray et al., 2020) (See Appendix 4 for full descrip-

tive statistics). The disease types align with those presented by Huijbregts

et al. (2005) for consistency and comparability. Cancer effects are repre-

sented by six specific cancers plus a cancer average. Non-cancer effects

include nine disease types and a non-cancer average. One can directly re-

late contaminants to disease types when toxicological or epidemiological

evidence describes their relationship. When evidence is insufficient, the

average effect is the representative measure (Huijbregts et al., 2005). The

weighted average damage factor for cancers is 10.6 DALYs/case (GSD 1.06)

and for non-cancers is 2.05 DALYs/case (GSD 1.06).

In earlier toxicology oriented studies, damage factors came from 1990 GBD

data (Huijbregts et al., 2005). An update is provided here by employing the

latest global statistics, with representative and consistent damage factors

for current health impact assessments.

Several contaminants with epidemiology data report combined all-cause

risk estimates representing multiple health outcomes. To define the disease

burden (DALYs) and damage factors, specific associated outcomes must be

identified (Table 4.6). Using overall all-cause risks requires selecting repre-

sentative diseases (k) for the total burden. A comprehensive review of cited

health studies in Table 4.1 determined outcomes describing all-cause mor-

tality for each contaminant (key sources: WHO, Global Burden of Disease,

EPA, toxicology reports) (Braubach et al., 2011; Hauschild and Huijbregts,

2015; Murray et al., 2020; Richmond-Bryant, 2020; WHO, 2021).

Table 4.7 presents damage factors and uncertainties for the disease-specific

outcomes identified from epidemiology risk estimates (See Appendix 5 for

full descriptive statistics). For contaminants with only one associated

health outcome, the damage factor equals that disease’s disability weight.

However, formaldehyde is represented by the combined effects of multiple

risks. All-cause damage factors also differ in magnitude, reflecting differing
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4.3. DAMAGE FACTORS (DFk)

Table 4.5: Damage factors, DFk, DALY/case, by cancer
or non-cancer effects based on 2019 GBD data.*

Disease type
Median GSD

Disease

Cancers

Breast cancer 10.7 1.04

Leukaemia 34.7 1.13

Liver Cancer 24.7 1.05

Lung cancer 21.2 1.04

Mouth and Oropharynx cancer 15.5 1.04

Stomach cancer 19.2 1.05

Cancer Average 10.6 1.06

Non-Cancers

Cardiovascular diseases 7.07 1.06

Chronic respiratory diseases 1.33 1.1

Asthmaa 0.576 1.22

Congenital birth defects 6.17 1.18

Diabetes and kidney diseases 2.67 1.09

Digestive diseases 0.2 1.09

Mental disorders 0.327 1.22

Musculoskeletal disorders 0.451 1.22

Neurological disorders 0.113 1.42

Urinary diseases and male infertility 0.0175 1.13

Non-Cancer Average 2.05 1.06

* Values to 3 Sig. Figs.
a Asthma is part of chronic respiratory diseases

burdens across contaminants.

Other PM2.5 epidemiology-focused research derived their own damage fac-

tor estimates by considering the burden of disease from the health outcomes

that were most representative of those used for the baseline incidence and

risk estimates: Gronlund et al. (2015) used GBD 2010 estimates of Deaths,

DALY and YLL for the High-Income North America region for Cardiopul-

monary and Lung cancer mortalities. It also quantified a combined DF

for both health outcomes, and an all-cause DF that shows the influence

of age distribution on the value of the parameter. Gronlund et al. also

proves that each author can select the most appropriate descriptors that

are more likely to reflect the severity of contaminant-associated disease.

Fantke et al. (2019) used the 2016 GBD study to extract burden of disease

(BoD) estimates (DALYs) for each specific mortality (IHD, stroke, COPD,

lung cancer, and ALRI) associated to PM2.5 and divided them by the mor-
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4.3. DAMAGE FACTORS (DFk)
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4.4. BREATHING RATES (BR)

Table 4.7: Damage factors, DFk, DALY/case, from epidemiology
research*

Contaminant and health outcome Median GSD

Acroleinasthma 0.575 1.23

Benzeneleukaemia 34.7 1.14

FormaldehydeAdded effects 21.5 1.21

Moldasthma 0.574 1.23

Nitrogen dioxideAll−cause mortality 4.82 1.14

OzoneAll−cause mortality 2.3 1.1

PM10All−cause mortality 11.7 1.12

PM2.5All−cause mortality 11.7 1.12

Radonlung cancer 21.2 1.04

Sulphur dioxideAll−cause mortality 0.5 4.23
* Values to 3 Sig. Figs.

tality (deaths) reported for the same health outcomes. Uncertainty was

not considered by any of these references.

Compared to previous air pollution burden of disease studies that included

PM2.5, PM10, and O3 (Fantke et al., 2019; Gronlund et al., 2015; Rojas-

Rueda et al., 2019; Van Zelm et al., 2008, 2016), the DF proposed here

align well, although differences arise from varying the health outcomes,

summary metrics, demographics, and populations used.

This approaches differ from Logue et al. (2012), who considered harm

and incidence estimates from previous air pollution studies rather than

a health database. The updated damage factors will benefit researchers us-

ing older indoor air contaminant harm estimates (Chan et al., 2016; Fazli

and Stephens, 2018; Logue et al., 2012; Zaatari et al., 2016).

4.4 Breathing Rates (BR)

Breathing rates represent the volume of air breathed (in m3/person/year).

An average human intake of 13 m3/person/day is common in LCIA studies

(Fantke et al., 2017b; Gronlund et al., 2015; Hauschild and Huijbregts,

2015; Van Zelm et al., 2016), based on 11.3 m3 for women and 15.2 m3 for

men aged 19-65+ years (USEPA, 1997).
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Accounting for updated data, a change is made for 14.8 m3/person/day for

adults aged 16-81+ years (95% CI 13.5-16.2), pooling long-term inhalation

rates (Phillips and Moya, 2013; US-EPA, 2011). The median value is 5400

m3/person/year (GSD 1.07), and aligns with current epidemiology-based

studies (Fantke et al., 2017b; Gronlund et al., 2015; Hauschild and Hui-

jbregts, 2015; Van Zelm et al., 2016). While more comprehensive research

into understanding breathing exists (Del Negro et al., 2018; Layton, 1993),

and activity-specific breathing rates exist (Paek and McCOOL, 1992), a

population average value suffices here, as examining sensitivity to activity

levels exceeds the scope of this harm-based analysis.

4.5 Dose-Response Factors (DRF(k,i))

Dose-response factors (DRFs) relate the contaminant intake quantity to

potential health risk. DRFs can be derived through two main approaches:

• Toxicology-based DRFs use dose-response data from experimental

toxicology studies, primarily on animals. A common toxicology dose-

response metric is the ED50 - the effective dose resulting in a 50%

response (mortality, morbidity). Animal ED50s are converted to hu-

man equivalent doses. The DRF represents the slope of the dose-

response curve at low doses.

• Epidemiology-based DRFs use risk estimates from human popula-

tion health studies. Relative risk (RR) estimates from cohort studies

are commonly used. The DRF is calculated from the RR, reflecting

the exposure-response relationship observed in the study population.

Toxicology DRFs provide controlled dose-response information but have

uncertainty in animal-to-human extrapolation. Epidemiology DRFs reflect

real-world human exposures but are limited to available health studies.

Using both approaches provides complementary evidence on contaminant

toxicity for assessing health risks and impacts.

4.5.1 DRF based on effective median dose

The DRF(k,i) represents a substance’s toxicity component. It describes

disease incidence change per intake unit via inhalation, often expressed
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as cancer/non-cancer cases (k) per unit mass inhaled of contaminant (i)

(cases/kg). The DRF takes as a point of departure the ED50 benchmark

measure. The ED50 (median effective dose) is a metric of the human-

equivalent lifetime daily dose per person, related to inhalation (intake) of a

substance that produces a specific effect (carcinogenic or non-carcinogenic

effects) in 50% of the population that is subject to that dose (Crettaz et al.,

2002; Fantke et al., 2021a; Pennington et al., 2002).

For life cycle impact assessments (LCIAs), carcinogenic ED50 are obtained

from toxicity databases, like the EPA’s IRIS, the International Programme

on Chemical Safety (IPCS), and the Carcinogenic Potency Database (CPDB).

Non-carcinogenic ED50 are typically estimated by extrapolating from the

no-observed adverse effect level (NOAEL) and lowest observed adverse ef-

fect level (LOAEL) (Huijbregts et al., 2005).

A review of the literature presented by Hauschild and Huijbregts (2015) and

Hauschild et al. (2018) is performed to identify relevant LCIA databases

compiling DRFs derived using an ED50. Three LCIA databases with in-

halation DRFs for airborne contaminants were identified:

1. UNEP-SETAC consensus model for the evaluation of comparative

toxicity “USEtox-2019” (Fantke et al., 2017a).

2. Globally Regionalized Life Cycle Impact Assessment Method “IM-

PACT WORLD+” (Bulle et al., 2019).

3. Life cycle impact (LCIA)-model “ReCiPe 2016” (Huijbregts et al.,

2017).

From these three, USEtox® 2.0 (USEtox-2019 consensus toxicity model)

was chosen because it is the most widely used and globally accepted model

that is the default for screening contaminant toxicity in LCAs (Fantke et al.,

2021a; Jolliet et al., 2018; Shaked et al., 2015a; Westh et al., 2015).

USEtox was screened to identify which of the 43 initial contaminants (pri-

oritized by Logue et al., as discussed in Section 2.5.1.3) are included in

it. Ammonia, Xylene (o), Manganese Mn(II), and Xylene (m/p) are ab-

sent from USEtox. Rosenbaum et al. (2008) provides a comprehensive

explanation for the criteria governing the inclusion of contaminants in this

database. It specifies that a contaminant may not be included due to rea-

sons such as (a) lack of a consistent set of data, (b) data quality falling
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below a specified minimum, and (c) inability to compute characterization

factors for as many chemicals as possible.

The carcinogenicity class according to The International Agency for Re-

search on Cancer (IARC) to the substances shown in USEtox can be found

in Huijbregts et al. (2005). Radon information from Lecomte et al. (2014)

and Reinoehl-Kompa and Grunst (2018).

Uncertainty factors for the DRFk,i are unavailable in USEtox®. Steps to

assign uncertainty are shown in Huijbregts et al. (2005). DRFk,i uncer-

tainty relates to extrapolating animal data to humans, time conversions,

cancer/non-cancer effect conversions, and exposure route differences. By

reviewing USEtox® and Huijbregts et al. (2005), uncertainty factors re-

flecting current research were provided for all contaminants as geomet-

ric standard deviation squared, since the parameter is log-normal. BAuA

(2019) and Martin et al. (2013) were used to define following uncertain-

ties: the interspecies conversion factor has an uncertainty of 1 for human,

4 for rat, 7 for mouse, 1.4 for dog, 2 for monkey, 2.4 for rabbit, and 3 for

guinea pig via inhalation. The duration of exposure factor is 1 for chronic,

4 for semi-chronic, and 24 for acute/sub-acute exposures. The cancer ef-

fect conversion has an uncertainty of 47. The non-cancer effect conver-

sion (NOAEL/LOAEL to ED50) has uncertainties of 9 (NOAEL) and 18

(LOAEL). A conservative approach was used for inorganic substances to

account for additional uncertainty with specific element ions (Huijbregts

et al., 2005).

USEtox® has toxicological evidence for 38 of the 44 selected contaminants

(Section 3.1). Accounting for radiological pollution via Radon, yields 39

contaminants. Table 4.8 presents medians and their deviation for 32 car-

cinogens and 27 non-carcinogens (See Appendix 6 and 7 for full descriptive

statistics). Contaminants labeled carcinogenic in USEtox via inhalation,

were considered human carcinogens although, the endpoint ED50 associ-

ated to a cancer effect is usually extrapolated from animal tests.

Typical cancer DRF uncertainty factors were 4 and 7, reflecting inter

species conversion uncertainty. Some had up to 47, mainly from cancer

effect conversion uncertainty. Non-cancer DRF typical uncertainty factor

was 16 and 18, maximum 94, primarily from NOEL/LOEL to ED50 con-

version uncertainty.

The literature on human-toxicological effect and damage factors of car-
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Table 4.8: Dose-response Factors, DRF(k,i), DALY/kg, for can-
cer and non-cancer effects, via inhalation.+

CAS RN Contaminanti
DRF(cancer,i) DRF(non−cancer,i)

Median GSD Median GSD

75-07-0 Acetaldehyde 0.0043 3 0.0039 6.9

107-02-8 Acrolein 4.3 7.6

107-13-1 Acrylonitrile 0.13 1 0.033 9.3

71-43-2 Benzene 0.015 1 0.0021 3

100-44-7 Benzyl chloride 0.0096 5.2

106-99-0 1,3-Butadiene 0.056 1 0.009 8.8

111-76-2 2-Butoxyethanol 0.00042 4.1 0.0027 4.5

22537-48-0 Cadmium Cd(II) 0.17 7.8 1.4 6.4

75-15-0 Carbon disulfide 0.26 1

56-23-5 Carbon tetrachloride 0.037 4.1 0.035 7

78-87-3 Chloromethane 0.00024 16

18540-29-9 Chromium Cr(VI) 1.1 10 0.7 9.5

123-73-9 Crotonaldehyde(trans) 0.13 3.4

106-93-4 1,2-Dibromoethane 0.41 2.8 0.00063 7.6

106-46-7 1,4-Dichlorobenzene 0.0025 4.1 0.00033 5.7

107-06-2 1,2-Dichloroethane 0.0079 2.9

75-35-4 1,1-Dichloroethene 0.02 4.2 0.0014 7.5

64-17-5 Ethanol 0.00006 3.4

104-76-7 2-Ethylhexanol 0.00036 4.8

50-00-0 Formaldehyde 0.61 2.9 0.0011 6.2

87-68-3 Hexachlorobutadiene 0.0081 3.5

110-54-3 Hexane 0.00002 4.3 0.0012 6.9

78-79-5 Isoprene 0.0026 4.1

5989-27-5 Limonene (d-...) 0.0027 3.3

109-86-4 2-Methoxyethanol 0.0026 6.4

80-62-6 Methyl methacrylate 0.046 3

1634-04-4 Methyl tert-butyl ether 0.0022 2.9 0.0001 6.3

75-09-2 Methylene chloride 0.00064 4.3 0.0028 6.3

91-20-3 Naphthalene 0.042 2.8 0.005 7.3

10028-15-6 Ozone 0.37 4.3

10043-92-2 Radon* 0.052 1.1

100-42-5 Styrene 0.028 2.9 0.0015 7.1

79-34-5 1,1,2,2-Tetrachloroethane 0.015 4.9

127-18-4 Tetrachloroethene 0.0028 4.4 0.0023 8.8

100-88-33 Toluene 0.00079 5.1

79-00-5 1,1,2-Trichloroethane 0.011 4.6 0.0083 9.1

79-01-6 Trichloroethylene 0.00098 2.9

75-01-4 Vinyl chloride 0.11 2.8 0.0098 6.3

1330-20-7 Xylenes 0.00018 3.3 0.0009 7.1

+ Values to 2 Sig. Figs.
* case/10−9Bq; Bq, Becquerels

cinogenic and non-carcinogenic chemicals for life cycle impact assessment

indicates that Huijbregts et al. (2005) remains the most relevant study, in-

fluencing the developing of USEtox® 2.0 model. Here, advances are done

for that study, by assigning new uncertainty factors for the selected con-

taminants.
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4.5.2 DRF based on risk estimates

The dose response factor (DRF(k,i)) describes cases per intake mass, and

from an epidemiology approach, equals a concentration response factor

(CRF) divided by breathing rate (BR) (Equations 3.29 and 3.30). The

CRF(k,i) quantifies incidence rate (k) per concentration of contaminant (i).

The CRF is a function of the beta parameter (the risk estimate), baseline

incidence rate, and concentration. For expected indoor air concentrations,

the CRF is approximately linear. Consequently, CRFs and DRFs are es-

timated for the 10 contaminants with epidemiology research identified in

Section 4.1 and their corresponding best estimate of all-cause (Table 4.9

and Table 4.10) (Also, see Appendix 8 and 9 for full descriptive statistics).

Table 4.9: Description for Concentration-Response Factors, CRFi,
case/µg/m3/105 person/year.+

Acronym Contaminanti CAS RN All cause health
outcome

Median GSD

C3H4O Acrolein 107-02-8 Asthma morbidity 2 5.1

C6H6 Benzene 71-43-2 Leukaemia mortal-
ity

0.0018 1.4

HCHO Formaldehyde 50-00-0 Asthma morbidity
plus Leukaemia
mortality and Lung
cancer mortality

0.23 4.2

Mold Asthma morbidity 0.048* 2.1

NO2 Nitrogen dioxide 10102-44-0 All-cause mortality 1.2 1.7

O3 Ozone 10028-15-6 All-cause mortality 0.54 1.9

PM10 NA All-cause mortality 2.6 1.3

PM2.5 NA All-cause mortality 5.1 1.2

Rn Radon 10043-92-2 Lung cancer mortal-
ity

0.021** 1.7

SO2 Sulphur dioxide 10043-92-2 All-cause mortality 3.8 1.3

+ Values to 2 Sig. Figs.
* case/CFU/m3/105 person/year; CFU, Colony-Forming Units
** case/Bq/m3/105 person/year; Bq, Becquerels

PM2.5 has the highest median and disease incidences per unit of exposure

concentration or mass intake. This represents the PM2.5 - associated annual

mortality rate per µg/m3 or kg inhaled for all-cause mortality, all ages,

both sexes, and global location. Uncertainty reflects input uncertainties

modeled via the Monte Carlo simulation. Acrolein and formaldehyde have

the largest uncertainties, reflecting the influence of age distribution when

selecting appropriate asthma incidence descriptors in children. CRF and
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Table 4.10: Description for Dose-Response Factors,
DRFi, case/kg.

+

Contaminanti Median GSD

Acrolein 3.8 5.3

Benzene 0.0033 1.4

Formaldehyde 0.43 4.1

Mold 0.088* 2.1

Nitrogen dioxide 2.2 1.7

Ozone 1 1.9

PM10 4.7 1.3

PM2.5 9.5 1.2

Radon 0.04** 1.7

Sulphur dioxide 7 1.4
+ Values to 2 Sig. Figs. See Table 4.9 for acronyms, CAS
and health outcomes

* case/10−9CFU; CFU, Colony-Forming Units
** case/10−9Bq; Bq, Becquerels

DRF uncertainty factors were similar since breathing rate uncertainty was

negligible compared to other inputs.

Two relevant aspects are the interpretation of a linear low-dose relationship

yielding concentration-independent parameters, unlike previous analyses,

and the novel use of all-cause estimates, whereas previous work dealt with

specific mortalities (Fantke et al., 2019; Gronlund et al., 2015; Logue et al.,

2012; Van Zelm et al., 2008, 2016).

4.6 Age-Dependent Adjustment Factors

(ADAF)

Application of age-dependent adjustment factors (ADAFs) to dose response

factors is recommended when estimating cancer risks based on age at expo-

sure (U.S. Environmental Protection Agency (EPA), 2023). Higher ADAF

values are used for early life exposures to reflect increased lifetime cancer

risks (OEHHA, 2009). USEPA suggests the use of ADAF as: (i) 10-fold for

exposures before 2 years of age (ii) 3-fold for exposures between 2 and <16

years (iii) 1 for exposures after age 16. These recommendations from EPA
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(2005) remain widely applied, including in recent epidemiology-based effect

factors (OEHHA, 2009). The recommended ADAF estimate is 1.6 (95%

CI 1-10). After using parameter distribution, the ADAF has a median 0.63

(GSD 3.7).

4.7 Effect Factors (EF(k,i))

An effect factor combines a dose-response factor and a damage factor, de-

scribing harm (k) change per contaminant (i) intake unit, typically as DA-

LY/kg (Equation 3.11). Existing LCIA methodologies have used DALYs

to quantify airborne contaminant chronic health impacts (Hauschild et al.,

2018). Effect factors are central in LCIA characterization. They can be

derived from epidemiological data like risk estimates, termed epidemiology-

based effect factors, or from toxicological data such as the median effective

dose (ED50), called toxicology-based effect factors. LCIA applies effect

factors from either domain.

4.7.1 Toxicology-Based Effect Factors

Toxicology-based effect factors (EFs) combine dose-response factors (DRFs,

cancer or non-cancer cases/kg inhaled) from animal studies with damage

factors (DFs, DALY/case) representing human disease burdens. EFs rep-

resent the cancer and non-cancer effects from inhaling a contaminant. The

EF integrates the DRF describing a substance’s toxicity and the DF quan-

tifying associated harm, first presented by Rosenbaum et al. (2008), and

relevant for LCIAs (Fantke et al., 2021a; Jolliet et al., 2018). Among the

44 contaminants, 33 have carcinogenic effects and 27 have non-carcinogenic

effects. Tables 4.11 and 4.12 present the median EFs, distribution un-

certainty as geometric standard deviation (GSD), and associated health

outcomes for cancer, non-cancer, and combined effects. A specific cancer

was assigned to each contaminant’s effect factor based on references iden-

tifying carcinogenic outcomes (Huijbregts et al., 2005; Tran et al., 2020;

Turiel, 2012). Median cancer EFs range from 10−4 to 101 DALY/kg (see

Table 4.11, and Appendix 10). Most are higher than Huijbregts et al.

due to USEtox® DRF’s linear constant and ED50 changes (Fantke et al.,

2017a). Formaldehyde has the highest median, consistent with previous

VOC emission impact studies (Laurent and Hauschild, 2014).
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Table 4.11: Estimates for carcinogenic Effect Factors, EFcancer,i,
DALY/kg.+

CAS RN Contaminant Median GSD Health outcome

75-07-0 Acetaldehyde 0.09 2.9 Lung Cancer

107-13-1 Acrylonitrile 2.7 1 Lung Cancer

71-43-2 Benzene 0.51 1.1 Leukemia

100-44-7 Benzyl chloride 0.19 4.8 Stomach Cancer

106-99-0 1,3-butadiene 0.6 1.1 Cancer Average

111-76-2 2-Butoxyethanol 0.01 4.1 Liver Cancer

22537-48-0 Cadmium Cd(II) 3.5 13 Lung Cancer

56-23-5 Carbon tetrachloride 0.92 4.4 Liver Cancer

18540-29-9 Chromium Cr(VI) 23 7.8 Lung Cancer

123-73-9 Crotonaldehyde(trans) 3.1 3.4 Liver Cancer

106-93-4 1,2-Dibromoethane 10 2.9 Liver Cancer

106-46-7 1,4-Dichlorobenzene 0.028 4.4 Cancer Average

107-06-2 1,2-Dichloroethane 0.15 2.9 Stomach Cancer

75-35-4 1,1-Dichloroethene 0.43 4.2 Lung Cancer

64-17-5 Ethanol 0.0015 3.4 Liver Cancer

104-76-7 2-Ethylhexanol 0.0086 4.3 Liver Cancer

50-00-0 Formaldehyde 21 2.9 Leukemia+Lung Cancer

87-68-3 Hexachlorobutadiene 0.086 3.7 Cancer Average

110-54-3 Hexane 0.00025 4.9 Cancer Average

78-79-5 Isoprene 0.027 4.3 Cancer Average

5989-27-5 Limonene (d-...) 0.028 3.7 Cancer Average

1634-04-4 Methyl tert-butyl ether 0.074 3 Leukemia

75-09-2 Methylene chloride 0.0067 4.3 Breast Cancer

91-20-3 Naphthalene 0.87 2.9 Lung Cancer

10028-15-6 Ozone 7.9 4.5 Lung Cancer

10043-92-2 Radon 1.1* 1.1 Lung Cancer

100-42-5 Styrene 0.3 2.9 Breast Cancer

79-34-5 1,1,2,2-Tetrachloroethane 0.39 4.4 Liver Cancer

127-18-4 Tetrachloroethene 0.1 4.1 Leukemia

79-00-5 1,1,2-Trichloroethane 0.26 4.7 Liver Cancer

79-01-6 Trichloroethylene 0.01 2.8 Cancer Average

75-01-4 Vinyl chloride 2.7 2.8 Liver Cancer

1330-20-7 Xylenes 0.0027 3.3 Mouth And Oropharynx
Cancer

+ Values to 2 Sig. Figs.
* DALY/10−9Bq; Bq, Becquerels

Median non-carcinogenic EFs range from 10−4 to 102 DALY/kg inhaled.

Table 4.12 (and Appendix 11) shows the non-carcinogenic EFs, lower than

Huijbregts et al. due to lower average non-cancer damage factors. The 2019

GBD study had a cancer DF of 10.6 versus 11.5 in 1990, and a non-cancer

DF of 0.6 versus 2.7 in 1990. The lower non-cancer DFs combined with

dose-response changes give lower non-cancer EFs, demonstrating DF influ-

ence. Acrolein has the highest median, consistent with previous research

(Laurent and Hauschild, 2014). Most contaminants use an average non-

cancer effect given insufficient evidence to assign a single outcome. Asthma
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was identified as the main non-cancer effect for acrolein and formaldehyde

based on epidemiology data; see Table 4.1.

Table 4.12: Estimates for Non-carcinogenic Effect Factors,
EFnon−cancer,i, DALY/kg.

+

CAS RN Contaminant Median GSD Health outcome

75-07-0 Acetaldehyde 0.0088 6.9 Non-Cancer Average

107-02-8 Acrolein 2.4 7.2 Asthma

107-13-1 Acrylonitrile 0.068 7.6 Non-Cancer Average

71-43-2 Benzene 0.0043 2.8 Non-Cancer Average

106-99-0 1,3-butadiene 0.018 6.6 Non-Cancer Average

111-76-2 2-Butoxyethanol 0.0054 4.4 Non-Cancer Average

22537-48-0 Cadmium Cd(II) 2.8 5.2 Non-Cancer Average

75-15-0 Carbon disulfide 0.54 1.1 Non-Cancer Average

56-23-5 Carbon tetrachloride 0.069 6.6 Non-Cancer Average

78-87-3 Chloromethane 0.00049 10. Non-Cancer Average

18540-29-9 Chromium Cr(VI) 1.5 10 Non-Cancer Average

106-93-4 1,2-Dibromoethane 0.0012 5.7 Non-Cancer Average

106-46-7 1,4-Dichlorobenzene 0.00068 6.2 Non-Cancer Average

75-35-4 1,1-Dichloroethene 0.0028 6.5 Non-Cancer Average

50-00-0 Formaldehyde 0.00066 7.4 Asthma

110-54-3 Hexane 0.0024 6.9 Non-Cancer Average

109-86-4 2-Methoxyethanol 0.0051 6.5 Non-Cancer Average

80-62-6 Methyl methacrylate 0.095 2.9 Non-Cancer Average

1634-04-4 Methyl tert-butyl ether 0.00021 6.4 Non-Cancer Average

75-09-2 Methylene chloride 0.0059 6.4 Non-Cancer Average

91-20-3 Naphthalene 0.011 7.9 Non-Cancer Average

100-42-5 Styrene 0.0029 6.8 Non-Cancer Average

127-18-4 Tetrachloroethene 0.0047 6.9 Non-Cancer Average

100-88-33 Toluene 0.0016 5.4 Non-Cancer Average

79-00-5 1,1,2-Trichloroethane 0.016 6.9 Non-Cancer Average

75-01-4 Vinyl chloride 0.02 7.7 Non-Cancer Average

1330-20-7 Xylenes 0.0018 7.2 Non-Cancer Average

+ Values to 2 Sig. Figs.

Adding the individual EFs (EFk,i) gives the all-cause effect factors (EFi)

(Equation 3.18). Table 4.13 presents the combined toxicology-based EFs

for 39 total contaminants ordered by magnitude of their median (See Ap-

pendix 12 for full descriptive statistics). Chromium (VI) has the highest

median, formaldehyde is highest among VOCs, and ozone is also elevated.

Uncertainty is lower than Huijbregts et al. (2005).

Typical uncertainty is a factor of 5 for cancer EFs and 15 for non-cancer,

stemming from DRF, DF, and age-adjustment (ADAF) uncertainties. DRF

uncertainty relates to animal-to-human extrapolation, time/exposure con-

versions, and effect conversions. DF uncertainty reflects evolving global

disease burden knowledge.
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Table 4.13: All-cause toxicology-based Effect Fac-
tors, EFi, DALY/kg.

+

Contaminant Median GSD

Chromium Cr(VI) 31 8.8

Formaldehyde 13 5.2

Cadmium Cd(II) 10 12

1,2-Dibromoethane 6.2 6

Ozone 4.8 6.2

Acrolein 2.4 7.2

Acrylonitrile 2.1 4.2

Crotonaldehyde(trans) 2 6.3

Vinyl chloride 1.8 5

Carbon tetrachloride 0.97 6.4

Radon 0.68* 3.7

Naphthalene 0.66 5.3

Carbon disulfide 0.54 1.1

1,3-butadiene 0.48 3.6

Benzene 0.32 3.9

1,1-Dichloroethene 0.29 6.7

1,1,2-Trichloroethane 0.28 6

1,1,2,2-Tetrachloroethane 0.24 6.2

Styrene 0.21 5.7

Benzyl chloride 0.12 6.6

Tetrachloroethene 0.1 5.2

Acetaldehyde 0.097 4.6

1,2-Dichloroethane 0.096 5.9

Methyl methacrylate 0.095 2.9

Hexachlorobutadiene 0.054 7.4

Methyl tert-butyl ether 0.048 5.7

1,4-Dichlorobenzene 0.022 7.6

2-Butoxyethanol 0.019 4.8

Methylene chloride 0.019 5.2

Limonene (d-...) 0.018 5.9

Isoprene 0.017 6.9

Xylenes 0.0066 6

Trichloroethylene 0.0064 5.4

2-Ethylhexanol 0.0053 6.8

2-Methoxyethanol 0.0051 6.5

Hexane 0.0034 6.6

Toluene 0.0016 5.4

Ethanol 0.00091 6.1

Chloromethane 0.00049 10

+ Values to 2 Sig. Figs.
* DALY/10−9Bq; Bq, Becquerels
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When ranked by median values, contaminants with the highest carcinogenic

and non-carcinogenic effects largely match those identified by Huijbregts

et al. (2005). A similar consistency emerges when comparing all-cause effect

factors, which account for age-adjustment, with estimates from Logue et al.

(2012). Uncertainties around carcinogenic, non-carcinogenic and combined

effect factors prove narrower here than in the study of Huijbregts et al.,

and therefore that of Logue et al. too. This is due to lower uncertainties

in dose-response and damage factors, both gleaned from data published

in the past decade. These updated figures for toxicology-based cancer and

non-cancer effects enhance earlier work on life-cycle impact assessments, by

Fantke et al. (2019) and Huijbregts et al. (2005). The analysis shows the

benefit of using current dose-response and disease-burden data to reduce

uncertainties. Compared with the Logue et al. values from 2012, estimates

of the median all-cause effect factors are higher for 27 contaminants by an

order of magnitude, yet lower for eight. This is because of new GBD data,

a revised 0.5 value for ED50 toxicity, updated ED50s in databases, and

newly proposed cancer/non-cancer effects for some contaminants. Overall,

Logue et al.’s results underestimate effects when compared with the newer

data given here. The age-adjustment factor also strongly sways combined

estimates. Logue et al.’s mean ADAF of 1.6 contrasts with the log-normal

distribution applied here, with the same mean but a lower median of 0.6.

This depresses median carcinogenic effects.

Some contaminants now account for both cancer and non-cancer effects,

whereas previously only one was known. This, too, can increase median

outputs. These effect factors take median effective doses (ED50) from tox-

icology studies as their starting point, which allows their application for

indoor or outdoor exposures. USEtox assumes a linear low-dose response

for contaminant-specific lifetime doses of up to a 0.5 lifetime disease proba-

bility, which is standard for life-cycle impact assessments. The toxicological

approach assumes linearity for inhalation doses of airborne contaminants

that remain below the contaminant-specific lifetime dose, as reported in the

USETox database. Carcinogenic and non-carcinogenic effects are presented

separately for use in LCA. Though toxicology databases feature in LCA

analyses, their DALY outputs relied on 1990s data and the methodology

of Huijbregts et al. (2005), which has been changed. This update repre-

sents an improvement. Limitations of the toxicology-based harm approach

followed stem from toxicity database reliance, critical effect choices, ED50

availability, publication bias, animal-to-human uncertainty, dose-response

assumptions, and updates proposed by the LCIA bibliography. Further
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work should examine multiple toxicity data sources, evaluate alternative

critical effects, and explore non-linear dose-response.

4.7.2 Epidemiology-Based EFs

Epidemiology-based effect factors (EFk,i) utilize concentration-response

functions from risk estimates from human health studies, for a particular

health outcome (k) from a specific contaminant (i). This allows epidemi-

ology EFs to be derived using real-world human exposure-response data.

However, the lack of availability of cohort studies limits contaminants with

epidemiology EFs.

Table 4.14 shows the median epidemiology EFs ranked by their magnitude

(with mold and radon moved to the end given their different dimensions)

(see Appendix 13 for full descriptive statistics). PM2.5 has the highest EF,

an order above other contaminants, indicating the greatest potential health

impact per kg inhaled. Formaldehyde has the highest EF for VOCs, with

NO2 third highest overall.

Table 4.14: All-cause epidemiology-based Ef-
fect Factors, EFi, DALY/kg.

+

Contaminant Median GSD

PM2.5 110 1.2

PM10 55 1.3

Nitrogen dioxide 10 1.7

Formaldehyde 7.3 2.2

Sulphur dioxide 3.5 4.3

Ozone 2.3 1.9

Acrolein 2.1 5

Benzene 0.11 1.4

Mold 0.051* 2.2

Radon 0.84** 1.7

+ Values to 2 Sig. Figs.
* DALY/10−9CFU; CFU, Colony-Forming Units
** DALY/10−9Bq; Bq, Becquerels

The approach of Logue et al. implicitly used epidemiology-based EFs. By

comprehending the interconnections among the equations and parameter

properties detailed in Section 3, it becomes possible to reverse-engineer

the statistical descriptors for the parameters not explicitly shown by other

works. At this juncture, the focus is on the effect factors, enabling a com-

parison with the epidemiology-based harm approach adopted here.

120



4.7. EFFECT FACTORS (EF(k,i))

For PM2.5, the median EFs broadly agree with Logue et al., likely due to

similar all-cause mortality representations. For O3, EFs are higher here

because the damage factor for ozone applied is one order of magnitude

higher. Logue et al.’s NO2 and SO2 estimates used available acute data

treated as chronic, giving at least a two order of magnitude difference.

Overall, two factors influence differences between the IND method and

epi-harm approach: first, underlying epidemiology has evolved, suggesting

contaminants are more harmful; second, data manipulation differs. The

latter refers to parameter probability distribution functions - log-normal

here versus Logue et al.’s fitted normal, log-normal, and Weibull. It also

involves truncating distributions, and convergence criteria use. The present

decisions are justified based on current best knowledge and practice.

LCIAs of O3, PM10, and PM2.5 have been performed (Fantke et al., 2019;

Gronlund et al., 2015; Oberschelp et al., 2020; Van Zelm et al., 2008, 2016).

Some of these studies presented mean/median EFs explicitly, with and

without uncertainty, for all-cause or cause-specific mortality. When pa-

rameter descriptors where not shown, they were quantified from the results

given in each study. All these references have one thing in common: the

approach towards the effect factor is dependent on a background concen-

tration, which could represent a weakness because EFs are sensitive toward

fixed contaminant background concentrations (Fantke et al., 2019; Ober-

schelp et al., 2020). Conversely, background concentrations are not required

here.

General overlap is observed between this and previous works, but incon-

sistencies exist. Ideally, harm related effects for a contaminant should

align across studies. However, differences arise due to varied analytical

choices influencing uncertainty, including: C-R function, health outcomes,

central tendency metrics, spatial/population resolution, breathing rates,

background concentrations, and methodological frameworks.

Epidemiology-based effect factors provide unique human evidence on con-

taminant impacts. Effect factors were derived per current life cycle impact

assessment practice, reporting dose-response and disability-adjusted life

year factors. However, limitations exist. A linear concentration-response

function was assumed given the expected low-moderate exposure levels.

Only epidemiology on the specific contaminant was used, avoiding cross-

contaminant toxicity assumptions. Pooling risk and health estimates across

demographics was done, although stratification can influence results. Re-
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liance on cohort studies restricts anaysis to contaminants with available

data. Use of all-cause mortality may underestimate chronic effects. Out-

door air studies are relied upon pending more indoor epidemiology.

Particulate matter assumes equitoxicity despite different compositional fac-

tors. Additional epidemiological research would reduce uncertainties, es-

pecially on particulate matter toxicity mechanisms and demographically-

stratified analyses to capture exposure differences. Long-term studies show-

ing chronic effects accounting for PM composition are also needed. While

limited by the available data, these initial epidemiology-based factors offer

complementary evidence and insights into human health impacts.

4.8 SWOT Analysis

A comparative SWOT (strengths, weaknesses, opportunities, and threats)

analysis is performed for each parameter to assess the updated methodol-

ogy’s validity and relevance for quantifying indoor air contaminants harm

(Ghazinoory et al., 2011). This evaluation examines interrelations between

the approach’s internal and external factors. Table 4.15 summarizes the

analysis.

The epidemiology-based approach relies heavily on available concentration-

response data to derive effect factors, a key limitation. However, the use of

pooled results accounts for variability. While curated data is ideal for accu-

racy, limited availability for certain pollutants or outcomes may cause inac-

curacies. The toxicology-based approach utilizes regularly updated expert-

reviewed databases, providing current dose-response information. However,

lack of standardized procedures to combine cancer and non-cancer effects

introduces uncertainty.

A shared strength among the parameters is updated literature-based pa-

rameter data, enhancing outputs for policymakers. Reduced uncertainty

compared to previous methods is advantageous. Uncertainty representa-

tion also aids interpretation of central tendencies and distributions. As

databases evolve, parameter updates are enabled. The subjectivity of as-

sumptions is a core weakness. Transparency in documenting assumptions

improves reproducibility. Overall, the methodology can produce the neces-

sary parameters to quantify indoor contaminant harm. The SWOT analysis

will guide improvements in future work.
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Table 4.15: SWOT analysis of updated methodology and recommended parameters.

Parameter Strengths Weaknesses Opportunities Threats

Effect
factor
EF(k,i)

Expert-guided methodology Method variability

Continuous updates

To enrich datasets

Demographic adaptability

Database discrepancies

Subjective distribution assumptions

Disease-contaminant

misalignment

ADAF Uncertainty management Limited population
representativeness

Subjective distribution assumptions

Dose
response
factor
DRF(k,i)

Expert-guided methodology Expert recommendation
discrepancies

Database discrepancies

Subjective distribution assumptions

Disease-contaminant

misalignments

Breathing
rate

Uncertainty management Limited population
representativeness

Subjective distribution assumptions

Damage
Factor
DFk and
Baseline
incidence
γ0k

Robust databases

Confident uncertainty
Chosen data time scope

Disease-contaminant

misalignments

Beta
β(k,i)

Effective risks pooling

Confident uncertainty

Significant chronic effects

Strong epidemiological linkage

Linear assumption

Generalized assessment

Context limitations

Time scope constraints

Heterogeneity health outcomes

Single-Reference Endpoints
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4.9 Summary

Epidemiological evidence was found for 10 contaminants: acrolein, ben-

zene, mold, formaldehyde, nitrogen dioxide, ozone, PM10, PM2.5, radon,

and sulphur dioxide. A representative health outcome was identified for

each, chosen as the most reported endpoint. This enabled developing

epidemiology-based effect factors relating harm to intake mass (DALY/kg)

using risk estimates, baseline rates, and damage data. A linear exposure-

response function modeled the low-concentration regime. PM2.5 had the

highest median harm per unit mass.

This work presents carcinogenic and non-carcinogenic toxicology-based ef-

fect factors for 39 indoor contaminants. Formaldehyde has the highest

median carcinogenic factor. Compared to previous estimates, carcinogenic

factors are higher but with reduced uncertainty. Acrolein has the highest

non-carcinogenic factor. These are lower than previous estimates but with

lower uncertainty.

An integrated methodology has been developed to derive needed param-

eters for modeling harm, readily applicable in health risk and life cycle

assessments. Major strengths include accounting for parameter uncertain-

ties. Key limitations are assumptions required to derive data.
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Chapter 5

The Harm Intensity

The contents of Sections 5.4 and 5.5 are part of the publication:

Morantes, G., Jones, B., Sherman, M., & Molina, C. (2023). Harm from

residential indoor air contaminants. Environmental Science & Technology.

Article ASAP DOI: 10.1021/acs.est.3c07374

5.1 Introduction

LCIA use effect factors (EFs) in units of DALY/kg as a step to quantify

harm from air contaminants, as the mass emitted is the metric of interest

(Section 2.4.2). However, relating total harm to contaminant exposure

better evaluates potential population impacts in indoor settings.

Concentration and exposure length influence harm (Hess-Kosa, 2018). Ex-

isting IAQ metrics, like limit values, rely on concentrations (Hess-Kosa,

2018; WHO, 2021) but do not directly consider health risks, rather they

advise on exceeding limits. To address this, a new harm-based metric called

Harm Intensity (HI) is introduced, linking chronic harm (DALY/person-

/year) to contaminant concentrations (typically µg/m3). Therefore, for air-

borne contaminant (i), HIi has units of DALY/µg/m3/person/year. This is

equivalent to the EPA’s inhalation unit risk relating cancer risk to exposure

concentration (Agency, 2015).

Literature on ventilation and IAQ has connected DALYs per concentration

unit (Guyot et al., 2019; Sherman et al., 2012) and PM2.5 in LCAs (Gron-

lund et al., 2015; Oberschelp et al., 2020). However, the HI concept has
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not been explicitly defined before. HI relates contaminant exposure to esti-

mated harm, enabling the identification of the most harmful contaminants

that can be prioritized for control when chronic concentrations are known.

Two evidence domains guide HI derivation: epidemiology and toxicology

research on air contaminant health impacts. The following sections discuss

defining HI based on each approach.

5.2 A toxicology-based Harm Intensity, HIi.

This work reviewed relevant LCIA literature to identify current, data

sources for key parameters deriving the harm intensity. Examining promi-

nent bibliographies (Hauschild and Huijbregts, 2015; Hauschild et al., 2018)

provided insights into sources widely used by experts. Search terms and

criteria from these studies enabled the retrieval of up-to-date information.

For damage factors, the 2019 Global Burden of Disease study offered ex-

tensive data on disease statistics (IHME, 2022; Murray et al., 2020). For

toxicology-based dose-response factors, the USEtox consensus model served

as the leading toxicity evaluation reference (Fantke et al., 2017a). US-

EPA (2011) data was fundamental to derive an adult breathing rate of

14.8 m3/person/day. Age-dependent adjustment factors for cancer risk es-

timations were used, as recommended by EPA (2005). An outline of the

relationship between these parameters to obtain a toxicology-based harm

intensity is given in Figure 5.1.

Figure 5.2 is a visual representation of the analytical model employed to

estimate the toxicology-based harm intensity. It is a more detailed version

of Figure 5.1.

Harm intensities following the tox-harm approach were calculated for

39 contaminants commonly found in dwellings (see Sections 3.3, 4.7.1).

Single-point median harm intensities (DALY/µg/m3/105 person/year), un-

certainty estimates expressed through the Geometric Standard Deviation

(GSD) (Section 3.8.1) and the best estimate for all-cause effect (Section 4.1)

are shown in Table 5.3, ordered from highest to lowest median. To be con-

sistent with current practice in LCA (LCA), Tables 5.1 and 5.2 show the

single-point estimates and uncertainties for harm intensities dis-aggregated

per carcinogenic (HIcancer,i) and noncarcinogenic (HInoncancer,i) effects, re-
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Figure 5.1: Overview of parameters used to determine a toxicology-based
harm intensity, HIi, DALY/µg/m3/person/year.
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Figure 5.2: Analytical Flow Chart for Toxicology-Based Harm Intensity,
HIi, DALY/µg/m3/person/year.
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spectively (see Appendices 14, 15, 16 for full descriptive statistics).

Table 5.1: Toxicology-based cancer HIi,
DALY/µg/m3/105 person/year.+

CAS RN Contaminant Median GSD Health outcomeS

75-07-0 Acetaldehyde 0.048 2.9 Lung Cancer

107-13-1 Acrylonitrile 1.5 1.1 Lung Cancer

71-43-2 Benzene 0.27 1.2 Leukemia

100-44-7 Benzyl chloride 0.1 4.5 Stomach Cancer

106-99-0 1,3-butadiene 0.32 1.1 Cancer Average

111-76-2 2-Butoxyethanol 0.0054 4.4 Liver Cancer

22537-48-0 Cadmium Cd(II) 1.9 10 Lung Cancer

56-23-5 Carbon tetrachloride 0.48 4 Liver Cancer

18540-29-9 Chromium Cr(VI) 13 8.5 Lung Cancer

123-73-9 Crotonaldehyde(trans) 1.7 3.3 Liver Cancer

106-93-4 1,2-Dibromoethane 5.3 2.8 Liver Cancer

106-46-7 1,4-Dichlorobenzene 0.015 4.2 Cancer Average

107-06-2 1,2-Dichloroethane 0.084 3 Stomach Cancer

75-35-4 1,1-Dichloroethene 0.23 4.1 Lung Cancer

64-17-5 Ethanol 0.0008 3.2 Liver Cancer

104-76-7 2-Ethylhexanol 0.0046 4.9 Liver Cancer

50-00-0 Formaldehyde 11 2.9 Leukemia+Lung Cancer

87-68-3 Hexachlorobutadiene 0.047 3.7 Cancer Average

110-54-3 Hexane 0.00013 4.8 Cancer Average

78-79-5 Isoprene 0.015 4 Cancer Average

5989-27-5 Limonene (d-...) 0.015 3.4 Cancer Average

1634-04-4 Methyl tert-butyl ether 0.041 2.8 Leukemia

75-09-2 Methylene chloride 0.0036 5.3 Breast Cancer

91-20-3 Naphthalene 0.47 2.9 Lung Cancer

10028-15-6 Ozone 4.2 4.2 Lung Cancer

10043-92-2 Radon* 0.6 1.1 Lung Cancer

100-42-5 Styrene 0.16 2.9 Breast Cancer

79-34-5 1,1,2,2-Tetrachloroethane 0.2 4.7 Liver Cancer

127-18-4 Tetrachloroethene 0.053 3.8 Leukemia

79-00-5 1,1,2-Trichloroethane 0.14 4.7 Liver Cancer

79-01-6 Trichloroethylene 0.0055 2.9 Cancer Average

75-01-4 Vinyl chloride 1.5 3 Liver Cancer

1330-20-7 Xylenes 0.0015 3.4 Mouth And Oropharynx
Cancer

+ Values to 2 Sig. Figs.
* DALY/Bq/m3/105 person/year; Bq, Becquerels

Median HIi have a range of five orders of magnitude from 10−4 to 101

DALY/µg/m3/105 person/year, implying that some contaminants have

100,000 times the toxic effect of others. The contaminant with the highest

median is chromium Cr(VI) (HICr(VI) 17; GSD 15), followed by formalde-

hyde (HIHCHO 7.1; GSD 5.4).

Table 5.3 shows that ozone and acrolein are ranked within the first six

most toxic contaminants. High HIi are obtained for inorganic contami-

nants, VOCs, and ozone. Although these contaminants have high HIi, a
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Table 5.2: Toxicology-based non-cancer HIi,
DALY/µg/m3/105 person/year.+

CAS RN Contaminant Median GSD Health outcomeS

75-07-0 Acetaldehyde 0.0045 7 Non-Cancer Average

107-02-8 Acrolein 1.3 7.4 Asthma

107-13-1 Acrylonitrile 0.037 7.6 Non-Cancer Average

71-43-2 Benzene 0.0023 2.9 Non-Cancer Average

106-99-0 1,3-butadiene 0.0097 6.4 Non-Cancer Average

111-76-2 2-Butoxyethanol 0.0029 4.3 Non-Cancer Average

22537-48-0 Cadmium Cd(II) 1.5 5.6 Non-Cancer Average

75-15-0 Carbon disulfide 0.29 1.1 Non-Cancer Average

56-23-5 Carbon tetrachloride 0.038 6.3 Non-Cancer Average

78-87-3 Chloromethane 0.00027 12 Non-Cancer Average

18540-29-9 Chromium Cr(VI) 0.82 9.2 Non-Cancer Average

106-93-4 1,2-Dibromoethane 0.00068 6.2 Non-Cancer Average

106-46-7 1,4-Dichlorobenzene 0.00035 5.6 Non-Cancer Average

75-35-4 1,1-Dichloroethene 0.0016 6.6 Non-Cancer Average

50-00-0 Formaldehyde 0.00036 7.1 Asthma

110-54-3 Hexane 0.0013 7.1 Non-Cancer Average

109-86-4 2-Methoxyethanol 0.0027 7.1 Non-Cancer Average

80-62-6 Methyl methacrylate 0.05 2.8 Non-Cancer Average

1634-04-4 Methyl tert-butyl ether 0.0001 7.4 Non-Cancer Average

75-09-2 Methylene chloride 0.0031 7 Non-Cancer Average

91-20-3 Naphthalene 0.0056 7.4 Non-Cancer Average

100-42-5 Styrene 0.0016 6.9 Non-Cancer Average

127-18-4 Tetrachloroethene 0.0025 8.4 Non-Cancer Average

100-88-33 Toluene 0.00086 5.3 Non-Cancer Average

79-00-5 1,1,2-Trichloroethane 0.0095 8.4 Non-Cancer Average

75-01-4 Vinyl chloride 0.011 6.1 Non-Cancer Average

1330-20-7 Xylenes 0.001 6 Non-Cancer Average

+ Values to 2 Sig. Figs.

representative measure of concentration must be assigned to quantify the

magnitude of harm on the population.

Slightly different ranks when compared to the EFi are observed in the

full list, particularly for contaminants with median estimates of similar

magnitudes (see section 4.7.1). Differences are attributed to the Monte

Carlo (MC) randomization approach. GSDs of harm intensities and ef-

fect factors are almost identical, ranging from 1.1 for carbon disulfide to

15 for Chromium Cr(VI), indicating that the influence of the uncertainty

from the breathing rate parameter is relatively small, perhaps because BR

has the smallest uncertainty factor amongst the parameters in the anal-

ysis. The large uncertainties for Cr(VI), acrolein, and chloromethane in-

dicate that a harm intensity estimate can have a wide range of values.

The main input parameter driving the GSD of a toxicology-based HIi is

the DRF(non−cancer,i). This is reasonable because the extrapolation from
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Table 5.3: Toxicology-based all-cause Harm Intensities, HIi,
DALY/µg/m3/105 person/year.+ (high to low median).

Contaminant Median GSD Best estimate of all-cause

Chromium Cr(VI) 17 15 Lung Cancer & Non-Cancer Average

Formaldehyde 7.1 5.4 Leukaemia & Asthma

Cadmium Cd(II) 5.3 8.9 Lung Cancer & Non-Cancer Average

1,2-Dibromoethane 3.4 5.8 Liver Cancer & Non-Cancer Average

Ozone 2.6 6.2 Lung Cancer

Acrolein 1.3 8.5 Asthma

Acrylonitrile 1.2 4.1 Lung Cancer & Non-Cancer Average

Crotonaldehyde(trans) 1.1 7.2 Liver Cancer

Vinyl chloride 0.98 5.4 Liver Cancer & Non-Cancer Average

Carbon tetrachloride 0.52 7.3 Liver Cancer & Non-Cancer Average

Radon* 0.37 3.7 Lung Cancer

Naphthalene 0.36 5.9 Lung Cancer & Non-Cancer Average

Carbon disulfide 0.29 1.1 Non-Cancer Average

1,3-Butadiene 0.27 3.9 Cancer Average & Non-Cancer Average

Benzene 0.18 4.4 Leukaemia & Non-Cancer Average

1,1,2-Trichloroethane 0.15 5.7 Liver Cancer & Non-Cancer Average

1,1-Dichloroethene 0.15 6.1 Lung Cancer & Non-Cancer Average

1,1,2,2-Tetrachloroethane 0.13 6.2 Liver Cancer

Styrene 0.11 4.7 Breast Cancer & Non-Cancer Average

Benzyl chloride 0.062 11 Stomach Cancer

Acetaldehyde 0.053 4.8 Lung Cancer & Non-Cancer Average

Tetrachloroethene 0.052 6.2 Leukaemia & Non-Cancer Average

1,2-Dichloroethane 0.052 5.4 Stomach Cancer

Methyl methacrylate 0.051 2.8 Non-Cancer Average

Hexachlorobutadiene 0.03 4.8 Cancer Average &

Methyl tert-butyl ether 0.026 4.6 Leukaemia & Non-Cancer Average

1,4-Dichlorobenzene 0.012 6.4 Cancer Average & Non-Cancer Average

Methylene chloride 0.01 5.6 Breast Cancer & Non-Cancer Average

2-Butoxyethanol 0.01 8.7 Liver Cancer & Non-Cancer Average

Limonene (d-...) 0.0093 6.5 Cancer Average

Isoprene 0.0092 7 Cancer Average

Trichloroethylene 0.0035 5.1 Cancer Average

Xylenes 0.0034 6.1 Mouth And Oropharynx Cancer & Non-
Cancer Average

2-Ethylhexanol 0.0029 8.4 Liver Cancer

2-Methoxyethanol 0.0028 7.8 Non-Cancer Average

Hexane 0.0018 8.7 Cancer Average & Non-Cancer Average

Toluene 0.00087 5.4 Non-Cancer Average

Ethanol 0.0005 5.8 Liver Cancer

Chloromethane 0.00027 10 Non-Cancer Average

+ Values to 2 Sig. Figs.
* DALY/Bq/m3/105 person/year; Bq, Becquerels

LOAEL or NOAEL to non-carcinogenic effective median doses carries sev-

eral steps, each adding uncertainty (Section 4.5.1).

5.2.1 Comparison with Previous Work

The concept of harm intensity (HIi) arises from the mathematical combi-

nation of dose-response and damage factors (Sections 4.5, 4.3), which leads

to the derivation of the effect factor parameter (Section 4.7). In the field

of LCIA for air pollution, effect factors are a well-established component.
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This research builds upon prior methodologies. Logue et al. (2012) intro-

duced an intake-DALY model to quantify harm caused by indoor airborne

contaminants, while Huijbregts et al. (2005) designed a comprehensive set

of human damage and effect factors for a wide range of chemical substances.

Table 5.4 provides an overview and contrast of the parameters used in de-

riving HIi to the ID-DALY approac of Logue et al. and the approach of

Huijbregts et al..

Both Logue et al. and Huijbregts et al. provided explicit or implicit esti-

mates of central tendency, with and without uncertainty, for key parameters

including damage factors (DF ), harm intensities (HI ), effect factors (EF ),

and dose-response factors (DRF ). These parameters are associated with

various health outcomes, be it all-cause or cause-specific cancer or non-

cancer effects. The quantification of harm intensity and uncertainty was

not explicit in them, so in the current study, these were reverse-engineered

from the available data, and using standard assumptions.

Table 5.4: Comparison of determinants for a Tox-approach

Parameter Notationa Tox-harm ap-
proach

ID-DALY
aproach

Huijbregts
et al. (2005)

Age de-
pendent
adjustments
factors

ADAF Median with vari-
ability

Mean value N/A

Breathing
rate, BR m3/person/year

Pooled from rele-
vant sources; Con-
sidering variabil-
ity

Mean value U.S.
air intake

Mean human in-
take; No uncer-
tainty

Dose-
response
factors
DRF(k,i)

0.5
ED50k,i

case/mass

Disease specific
uncertainty; GSD
based 95% CI;
USEtox and tox-
icity database
sources

N/A Complex nonlin-
ear

Damage fac-
tor DFk

Burden of Diseasek
γ0k

DALY/Case

2019 Global bur-
den of disease
database

N/A 1990 world repre-
sentation

(individual)
Effect factor
EF(k,i)

DRFk,i · DFk

DALY/mass

Monte Carlo un-
certainty

Values and Uncer-
tainty from Hui-
jbregts et al.

∂damage
∂effect

· ∂effect
intake

(All cause)
Effect factor
EF(k,i)

(EFcancer,i ·
ADAF ) +
EFnoncancer,i

DALY/mass

Monte Carlo un-
certainty

Monte Carlo un-
certainty

NA

a Note: (i) Contaminant, (k) Health outcome - disease - cancer or noncancer effect; γ0k
related baseline disease

incidence; ED50: median effective dose.
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The most important issue identified by Table 5.4 is that the evidence previ-

ously used to determine harm (as Disability-Adjusted Life Years, DALYs)

for airborne contaminants is over a decade old, as is the method proposed

by Huijbregts et al. to derive an effect factor (later modified by Rosenbaum

et al. (2008)) and used by LCIA (Hauschild and Huijbregts, 2015).

Most of the cancer harm intensity (HIcancer,i) estimates in Table 5.1 exceed

those derived from Huijbregts et al. (2005) via Toxicology-based Effect Fac-

tors, by several orders of magnitude (see Figure 5.3 comparing current and

prior work). This divergence stems from differences in the dose-response

factor (DRF) derivation. Huijbregts et al. (2005) used a two-part DRF: a

disease-specific probability of disease occurrence, and a substance-specific

inverse ED50 component. The disease probability was 0.03 for average car-

cinogenic effects and 0.16 for non-carcinogens. The Fantke et al. (2017a)

model updated this DRF derivation via a 0.5 constant multiplyer, yield-

ing higher estimates. Additionally, the toxicity data in USEtox has lower

ED50 values for five contaminants, reflecting higher toxicity: Formalde-

hyde changed from 0.59 to 0.47 mg/kg-day, Crotonaldehyde from 1.85 to

1.83 mg/kg-day, Chromium (VI) from 0.23 to 0.02 mg/kg-day, Acryloni-

trile from 7.14 to 3.91 mg/kg-day, d-Limonene from 91 to 89 mg/kg-day,

and Vinyl chloride from 8.33 to 2.59 mg/kg-day. Updates to DRF calcula-

tion and toxicity data contribute to substantially higher HIcancer,i estimates

in this work versus previous approximations. This implies that previous

assessments may have underestimated the cancer-related harm.

A DFaverage cancer of 10.6 (GSD 1.05) was calculated here, whereas the value

of Huijbregts et al. was 11.5 (GSD 1.67). These medians are close in

magnitude, and so this parameter does not influence the differences in

medians found in HIcancer,i.

Median HInon-cancer,i presented in Table 5.2 are generally lower than the

estimates reverse-engineered from Huijbregts et al. That work reported

average damage for non-carcinogenic effects of 2.7 (GSD 3.6), whereas here

the average was 2.1 (GSD 1.1). The parameter that influences the differ-

ences in HInon-cancer,i is the smaller uncertainty in the DFk, which effects the

median of the lognormally distributed parameter (see Figure 5.4 comparing

current and prior work).

Estimates of the median all-cause harm intensities (HIi) in Table 5.3 exceed

those implicit in Logue et al. (2012) for 27 contaminants by one order of

magnitude. They are lower for 8 contaminants but within the same order
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Figure 5.3: Cancer-Harm intensities and previous works. Black: current
work, Magenta: Huijbregts et al. (2005). Median and 95% C.I.
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Figure 5.4: Non-cancer-Harm intensities and previous works. Black: cur-
rent work, Magenta: Huijbregts et al. (2005). Median and 95% C.I.
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of magnitude. Overall, Logue et al. (2012) underestimates the effects when

contrasted with the results presented here.

The age-dependent adjustment factor (ADAF) influences the combined es-

timates. Logue et al. (2012) applied a mean ADAF of 1.6, whereas the

current work uses a lognormal vector with a median of 0.6. This lowers the

median for carcinogenic effects. Additionally, formaldehyde, carbon tetra-

chloride, cadmium Cd(II), 1,2-dibromoethane, and hexane, in this work

have both cancer and non-cancer effects, which increases the output me-

dian. Previously, only one effect type was available for these contaminants.

Updates to toxicity data and the ADAF parameter contribute to higher

HI estimates here versus Logue et al. (2012). Accounting for both effect

types also increases median HI for certain contaminants (see Figure 5.5

comparing all cause-Harm intensities in current to prior works).

When ordering harm intensity by their median, contaminants with the

highest carcinogenic and non-carcinogenic estimates broadly agree with

those of Huijbregts et al.. A similar result was found when comparing

the estimate of all-cause effect factors, which account for the ADAF in-

fluence, with those of Logue et al. Uncertainties, expressed as a GSD,

in carcinogenic, non-carcinogenic, and all-cause HIi for all contaminants

have reduced. For toxicology, Logue et al. relied on uncertainties from

Huijbregts et al., where interspecies conversion, effect conversion, and non-

cancer damage factors dominated. This work aimed to reduce uncertainties

by leveraging improved health data. Some studies report reduced uncer-

tainty factors reflecting increasing certainty in animal-to-human extrap-

olation, effect conversion, and non-cancer damage quantification (Martin

et al., 2013; Xu et al., 2022).

Reverse engineering the harm intensity from available data required incor-

porating breathing rates. While each study used slightly different values,

mainly related to uncertainty handling, the influence on median harm inten-

sity was inconsequential. Logue et al. used 14.4 m3/person/day, Huijbregts

et al. used 13 m3/person/day, and this work used 14.8 m3/person/day.

5.2.2 Applications and applicability of Tox-HIi

The USEtox model assumes a linear low-dose–response for the inhalation

of contaminants considered here (Fantke et al., 2017a). In LCIA, this is
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Figure 5.5: All cause-Harm intensities and previous works. Black: current
work, Magenta: Logue et al. (2012). Median and 95% C.I.
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known as the average approach, and it is applied to derive characterization

factors. It states that the distance between the median effective dose,

ED50, (known as the current state) and the point of zero impact (known as

the state of zero impact) is set to be linear (Hauschild and Huijbregts, 2015;

Heijungs, 2021). Thus, proposed harm intensities are valid where intake

remains under the contaminant’s lifetime dose. These can be compared to

indoor concentrations in USEtox. ED50 is derived from toxicology studies

independent of indoor or outdoor exposures and so, it can be applied in

both contexts.

Carcinogenic and non-carcinogenic harm intensities are presented for LCA

use. Although USEtox is widely used, its endpoint DALYs rely on 1990s

data. This work updates those values. All-cause effects are also given for

IAQ assessments beyond LCA, for works like Fazli and Stephens (2018) and

De Jonge and Laverge (2022) aiming to quantify chronic health impacts

associated with exposure to indoor contaminants that relied on the ID-

method of Logue et al..

In LCA, concentrations and breathing rates are used for estimating the

intake fraction (iF, mass intake/mass emitted). The iF translate emissions

to intake (Hellweg et al., 2009; Wenger et al., 2012). This is not unlike the

harm intensity metric, and LCA could also find the HIi of use.

A common strength of the harm approach developed here is the considera-

tion of uncertainties throughout. Furthermore, qualitative certainty arises

from expert-revised databases. As databases evolve with new estimates,

any parameter can be updated.

However, some limitations exist: (i) Severity factors are derived from a

global dataset covering all age groups and both genders. Furtheremore,

median effective doses are not available by age, sex, or race, or by country or

region. (ii) Median effective dose derivation relies on the USEtox database.

Other ED50 sources could influence results. (iii) The best estimate of

all-causes for toxicology-based harm intensities can impact results. For

example, asthma represented acrolein and formaldehyde non-cancer effects

here, but other outcomes may be selected.
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5.3 An epidemiology-based Harm Intensity,

HIi.

Relevant LCIA, health risk assessment, and comparative risk assessment

literature was reviewed (Chapter 4) to identify commonly used data sources

for deriving the determinants of the epidemiology-based HIi: βk,i, DFk, and

γ0k (Chapter 4) (Hauschild and Huijbregts, 2015; Hauschild et al., 2018;

Murray et al., 2020; Richmond-Bryant, 2020; WHO, 2021). Search terms

and criteria from these studies were applied to retrieve current information.

Data sources were selected based on their appropriateness for each required

parameter.

A literature review of studies published between 2010-2020 and other litera-

ture that compiled or reviewed risk estimates to obtain the beta parameter

(βk,i) for risk derivation. The approach is based on individual contaminant

risk estimates, considering their availability, while acknowledging the po-

tential of multipollutant regressions in epidemiological exposure assessment

studies (Cohen et al., 2017; Sacks et al., 2018; WHO, 2021).

The GBD Collaborative Network was the main database for the estimates

of the disease-specific baseline incidence rates (γ0k) and damage factors

(DFk) for the target health effects (k) identified through the risk estimates

(βk,i). The estimates where extracted for the year 2019, and the global

population of all ages and both sexes (IHME, 2022; Murray et al., 2020).

Figure 5.6 and its more detailed counterpart Figure 5.7, offer visual repre-

sentations of the analytical model utilized for estimating the epidemiology-

based harm intensity.

Harm intensities, derived from epidemiological research, were used to re-

late harm to exposure for the ten indoor airborne contaminants with data

on the epidemiological inputs needed (Section 4.7.2). Table 5.5 presents

the median harm intensities, along with uncertainty estimates expressed

through the Geometric Standard Deviation (GSD), and the best estimate

for all-cause effect (see Appendix 17 for full descriptive statistics).

Epidemiology-based HIi have significant variability, spanning three orders

of magnitude (from 10−2 to 101 DALY/µg/m3/105 person/year). The con-

taminant that registers the highest median harm intensity is PM2.5 (HIPM2.5

60 DALY/µg/m3/105 person/year, GSD 1.2). These values can later be as-
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Figure 5.6: Overview of parameters required to determine an epidemiology-
based harm intensity, HIi, DALY/µg/m3/person/year.
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Figure 5.7: Analytical Flow Chart for an Epidemiology-Based Harm Inten-
sity, HIi, DALY/µg/m3/person/year.

141



5.3. AN EPIDEMIOLOGY-BASED HARM INTENSITY, HIi.

Table 5.5: Epidemiology-based all-cause Harm Intensities, HIi,
DALY/µg/m3/105 person/year.+ (high to low median)

CAS RN Contaminant Median GSD Best estimate of
all-cause

PM2.5 60 1.2
All-cause mortality

(IHD+DM+Str+COPD+LRI+LC)

PM10 30 1.3
All-cause mortality

(IHD+DM+Str+COPD+LRI+LC)

10102-44-0 Nitrogen Dioxide 5.6 1.7
All-cause mortality

(COPD+LRI+URI+LC)

50-00-0 Formaldehyde 4 2.2 Asthma morbidity

7446-09-5 Sulphur Dioxide 1.9 4.5
All-cause mortality

(COPD)

10028-15-6 Ozone 1.3 1.9 All cause mortality

107-02-8 Acrolein 1.2 5.5 Asthma morbidity

71-43-2 Benzene 0.062 1.4 Leukemia mortality

Mold 0.027* 2.2 All-cause
(LC+Leukaemia+asthma)

10043-92-2 Radon 0.45** 1.7 Lung Cancer mor-
tality

Abbreviations. LC: Lung Cancer; Lk: Leukaemia; COPD: Chronic Obstructive Pulmonary Dis-
ease; LRI: Lower Respiratory Infections; URI: Upper Respiratory Infections; IHD: Ischaemic Heart
Disease; DM: Diabetes Mellitus; Str: Stroke.

+ Values to 2 Sig. Figs.
* DALY/CFU/m3/105 person/year; CFU, Colony-Forming Units. As mold spores of the genus
Cladosporium

** DALY/Bq/m3/105 person/year; Bq, Becquerels

sociated to exposures to quantify harm

A harm intensity has been calculated for radon, the radioactive element

found in indoor air that is considered in LCA as well. This harm intensity

encompasses mortality attributed to lung cancer resulting from radon ex-

posure. Mold, on the other hand, contributes to harm through exposure

to mold spores within households, considering the genome Cladosporium,

that represents a significant portion of indoor molds, ranking among the

most common fungal genomes in households alongside Penicillium and As-

pergillus (Braubach et al., 2011; Garrett et al., 1998). The concentrations

of Cladosporium spores were employed as an indicator for mold, as this

data is a prerequisite for the epi-harm approach (More on this later in

Section 7.1.2).

The ratio of mean harm intensities for PM2.5 to PM10 is 1.69, indicating

that approximately 60% of the mass in PM10 is PM2.5. However, the harm

intensity of the coarse fraction still requires investigation. Estimating the

harm intensity for the coarse fraction involves considering the difference in

the harms for PM10 and PM2.5 separately (this is discussed in chapter 7).

Uncertainties in harm intensities and effect factors exhibit similarities
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across the same contaminants, with GSD values ranging from 1.2 for PM2.5

to 5.5 for mold. This variation reflects the uncertainty in the baseline inci-

dence, risk estimate and damage factors. The uncertainty associated with

breathing rates (BR) is negligible (Section 4.4). Larger uncertainties are

observed in mold and SO2.

5.3.1 Determinants of the epidemiology-based harm

intensities

This simplified linear approach for estimating HIi relies on four essential

components: (i) parameters from epidemiology-based exposure-response

functions (βk,i), (ii) mortality or morbidity rates associated with diseases

linked to contaminant exposure (γ0k), (iii) damage factors representing the

loss of healthy lifetime (DFi), and (iv) breathing rates standardized to a

chosen time unit (BR).

Based on an analysis of current global data, this research proposes a set

of concentration, dose, effect, and harm parameters with applications in

LCIA, comparative risk assessment, health impact analysis, and contam-

inant reduction policy evaluations, from globally-derived epidemiological

data lacking geographic specificity.

5.3.2 Evaluation Against Prior Research

5.3.2.1 The Intake-Incidence DALY (IND) Method

Damage factors for NO2, SO2, O3, and PM2.5 exceeded prior estimates

for U.S. dwellings. Logue et al. (2012) calculated PM2.5 and O3 damage

factors using U.S. epidemiological data on mortality and incidence, but de-

tails were limited. The approach here suggests their PM2.5 and O3 damage

factors likely underestimated impacts, as current results align more closely

with the upper confidence intervals. Additionally, Logue et al. significantly

underestimated NO2 and SO2 severity by assuming identical damage fac-

tors across criteria contaminants. Table 5.6 compares the determinants

between the IND method and the Epi-harm approach. Logue et al. used

mostly U.S. epidemiological data from before 1999 and applied undisclosed

assumptions.
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Table 5.6: Comparison of determinants for an Epi-approach

Parameter Notationa Epi-harm approach IND-DALY approach

Beta β(k,i)
ln(risk estimate(k,i))

∆Ci

change/concentration

Robust meta analysis
methodology

Dated USEPA source;
U.S. centric studies; Un-
explained PDF (Weibull,
Normal) assumptions

Baseline
incidence
rate γ0k

Case/Person/year Global burden of disease
database

Dated USEPA source; Un-
explained values; Mean
value

Damage
factor DFk

Burden of Diseasek
γ0k

DALY/case

Global burden of disease
database

U.S. PM2.5, O3 study
basis; U.S. air pollution
study basis; Arbitrary un-
certainty factor

Breathing
rate, BR

m3/person/year Pooled from relevant
sources; Considering vari-
ability

U.S. air intake basis; Point
value assumption

a Note: (i) Contaminant, (k) Health outcome - disease

Epidemiology-based harm intensities (HIi) were reverse-engineered for five

contaminants from Logue et al. (see Figure 5.8 in the next Section 5.3.2.2).

For PM2.5, median HIi broadly agree with Logue et al., likely because both

used an estimate to reflect total mortality. For O3, current values are higher

due to the one order of magnitude larger damage factor. Previous NO2 and

SO2 estimates relied on available specific morbidity data (hospital admis-

sions) treated as chronic, differing by at least two orders of magnitude. In

general, uncertainties in this study are lower than those reported in Logue

et al. The GSD for HIPM2.5 is 1.2 in this study compared to 2.2 in Logue

et al.’s work. Similarly, for O3, this study reports a GSD of 1.9, while

Logue’s study had a GSD of 3.4. This trend continues with NO2, where

the GSD is 1.7, contrasting with Logue’s 4.7.

Two factors influence the differences in medians and GSD between the IND

method and the Epi-harm approach: underlying epidemiological data has

evolved to indicate greater harm, and data manipulation differs, including

probability distribution fitting, confidence interval truncation, and conver-

gence criteria. Nevertheless, current decisions follow best practices and

knowledge.
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5.3.2.2 LCIAs of Air Pollutants

LCIAs of O3, PM10, and PM2.5 have been proposed (Fantke et al., 2019;

Gronlund et al., 2015; Huijbregts et al., 2017; Oberschelp et al., 2020;

Van Zelm et al., 2008, 2016). These analyses presented, either explicitly

or implicitly, mean/medians with and without uncertainty for DFi, HIi,

EFi, DRFi, and CRFi, for all-cause or cause-specific mortality risks. For

comparison, HIi medians and GSD were reverse-engineered (see Table 5.7

for further specifications).

This research quantified a median HIPM2.5 60 DALY/µg/m3/105 person-

/year to describe the relationship between harm and exposure to PM2.5,

using a linear concentration-response function. Other estimates include 46

from Van Zelm et al., based on a single study risk estimate; 52 from Gron-

lund et al., using the risk estimate from the American Cancer Society study

and approximating the C-R function linearly; 79 from Huijbregts et al.;

Van Zelm et al., by the algebraic summation of specific cardiopulmonary

and lung cancer mortalities to represent the all-cause effect and using risk

estimates from the re-analysis of the ACS study; 35 from Fantke et al., by

algebraic summation of ischemic heart disease, stroke, lower respiratory in-

fections, lung cancer, and chronic obstructive pulmonary disease as specific

causes of mortality using a non-linear integrated exposure-response model

(that is approximate linear at low concentrations); and 54 from Oberschelp

et al., using the same as Fantke et al.. Ozone has been represented by res-

piratory disease mortality in Huijbregts et al.; Van Zelm et al.. For PM10

Van Zelm et al. used chronic mortality.

Figure 5.8 shows there is a general overlap between the estimates of the

epi-based HIi. All these references have one thing in common: the ap-

proach towards the harm intensity is dependent on a background concen-

tration, which could represent a weakness because EFi, and hence HIi, is

extremely sensitive toward fixed contaminant background concentrations

(Fantke et al., 2019; Oberschelp et al., 2020). Conversely, background con-

centrations are not required for the simplified linear Epi-harm approach.
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Figure 5.8: Epi harm intensities: Evaluation against prior research. Median
and 95%C.I. Black: current work; Green: Logue et al.; Blue: Gronlund
et al.; Red: Van Zelm et al.; Cian: Van Zelm et al.; Magenta: Fantke
et al.; Yellow: Oberschelp et al.

The GSD for the harm intensity for all-cause mortality from PM2.5 of 1.2
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here, is lower than 1.7 (Van Zelm et al., 2008), 1.7 (Fantke et al., 2019),

and 1.5 (Gronlund et al., 2015). The uncertainty in the distributions and

the output metric is a function of the C-R function applied, the use of

different health outcomes, the central tendency metric reported, the spatial

and population resolution used, the chosen breathing rate, the background

concentration, the accounting for variability in all determinants of the harm

intensity, and the methodological framework.

5.3.3 Applications and applicability of Epi-HIi

The epidemiology-based model incorporates both linear (Lin) and log-linear

(LogL) no-lower-threshold concentration-response (C-R) functions, which

are represented by the following equations:

HIk,i = DFk · γ0k

(
1− e−(βk,i·Ci)

Ci

)
(5.1)

The equation for HIi contains a term in parentheses that signifies a non-

linear, no-lower-threshold saturation effect. However, at low concentra-

tions, this equation approximates a linear relationship:

HIk,i = DFk · γ0k · βk,i (5.2)

The Epi-harm approach employed a linear, no-lower-threshold C-R curve

to model HIi for all contaminants. This choice is due to the adequacy of

a linearized curve for low background concentration regimes. It is com-

monly assumed that linear effects at low exposures are appropriate for

LCIA of airborne contaminants (Gronlund et al., 2015; Huijbregts et al.,

2017; Van Zelm et al., 2016).

Air pollution risk research has not precisely established quantitative defi-

nitions for “low” and “high” concentrations of contaminants. We can draw

insights from the integrated exposure-response (IER) model for PM2.5(See

Figures 2.7 and 2.8). A 30-50 µg/m3 range potentially constitutes high

exposure based on attributable disease burdens (Burnett et al., 2014). No

such details can be found for other air contaminants in the literature. Fur-

ther research and clearer definitions would aid risk analysis.
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Figure 5.9 shows median and 95% confidence intervals of HIi derived from

both the linear (Lin) and log-linear (LogL) C-R functions. The linear ap-

proach appears as a straight line in the concentration – harm intensity plot

because the harm intensity is independent of the concentrations. The log-

linear equation has a decreasing exponential shape. At low concentrations,

the exponential term approaches 0, resulting in a harm intensity dominated

by the quotient of the concentration. As the concentration continues to in-

crease, the exponential term approaches 1, and the harm intensity gradually

decreases. Eventually, at high concentrations, the harm intensity flattens

as it tends to zero.

The Absolute Percentage Error (APE) and mean absolute percentage error

(MAPE), are calculated to assess the agreement between the Lin and LogL

approaches. By setting a cutoff point of 10% (approximately one standard

deviation), one can identify the concentration range where the MAPE falls

below this threshold, taking the log-linear approach as the reference because

this C-R function flattens the curve, reflecting a saturation effect of harm at

high concentrations. Variability and instability are expected in the MAPE

outputs generated by a MATLAB code that creates random harm vectors.

Each execution of the code would yield varying MAPE and APE values,

introducing challenges in achieving absolute stability in the error metrics.

To mitigate this issue, the sample size was increased, convergence criterion

were stablished, and average MAPE values across 10,000 sample sets were

computed. These strategies were employed to minimize variability and

ensure a more consistent evaluation of errors.

Table 5.8 presents the MAPEs for the harm intensities at the concentra-

tion distribution of contaminants found in dwellings. These MAPE values

represent the discrepancy between applying a linear equation for harm in-

tensity versus the log-linear equation. The MAPE values provide insights

into the extent to which the linear output, which remains constant in this

case, differs from the log-linear approach. Formaldehyde, PM10, and PM2.5

exhibit relatively higher MAPE values of 11%, 9%, and 7%, respectively.

The saturation effect becomes prominent at the concentration distribution

applied to these contaminants. These MAPE values reassure the appro-

priateness of interpreting the harm intensity metric as a constant when

evaluated at low concentrations.
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Figure 5.9: Comparison of harm intensities from linear and log-linear C-R
functions. Median [solid lines] and 95%C.I. [dash lines]. The x-axis width
represents the low concentration regime for each contaminant, as based on
measurements in dwellings (Halios et al., 2022; Ilacqua et al., 2022; Liu
et al., 2022; Logue et al., 2011a; Sarigiannis et al., 2011; Vardoulakis et al.,
2020)
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Table 5.8: Mean Absolute Percentage Error (MAPE) for harm intensities
for contaminant concentration distribution expected in dwellings.

Contaminant Concentration distributiona,b MAPE (%)b

Acrolein (0 - 1.1) 4.4 (95%C.I. 2.9-5.8)

Benzene (0 - 3.4) 0.4 (95%C.I. 0.056-0.65)

Formaldehyde (0 - 34) 11 (95%C.I. 9.6-11)

Moldc (0 - 240) 1 (95%C.I. 0.42-2.5)

Nitrogen dioxide (0 - 32) 1.8 (95%C.I. 1.3-2.1)

Ozone (0 - 28) 0.86 (95%C.I. 0.28-2.2)

PM10 (0 - 89) 8.8 (95%C.I. 8.1-9.2)

PM2.5 (0 - 37) 7.4 (95%C.I. 7-7.9)

Radond (0 - 130) 2.5 (95%C.I. 1.9-3.4)

Sulphur dioxide (0 - 5.4) 3.2 (95%C.I. 1.6-5)

a µg/m3; 2 Sig. Figs. (2.5th and 97.5th) percentiles

b Averaged over 10,000 interactions

c Mold in CFU/m3 CFU, Colony-Forming Units

d Radon in Bq/m3; ; Bq, Becquerels

Table 5.9 presents the APE between the Lin and LogL approaches for esti-

mating harm intensities (See Equations 3.21, 3.24) at the central tendency

estimate of concentrations (from meta-analysis results, See Table 6.2).

APEs indicate close agreement between linear and log-linear approaches

for most contaminants, ranging from 0.3% to 13%. The contaminants with

higher risk estimates and concentrations (the exponential term in the LogL

equation) have the highest disagreements to the linear approach, as ex-

pected. Particular attention should be given to formaldehyde, having an

APE of 21%. Its concentration-response (C-R) function, as depicted in Fig-

ure 5.9, illustrates the drastic nature of the saturation effect compared to

a linear response. This saturation effect is influenced by the product of the

beta parameter (risk estimates) and the concentration. A higher product

of these two factors results in a quicker flattening of the curve in a C-R plot

(see the upper confidence interval in the sub-plot). Formaldehyde exhibits

a relatively high beta value for the health outcomes chosen (asthma and

leukemia) compared to the rest of the contaminants, as shown in Table 4.1,

and its concentrations span two orders of magnitude. These aspects are

the reason of the high APE.
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Table 5.9: Absolute Percentage Error (APE) for harm intensities from Linear and Loglinear approaches

Contaminanti
a Ci, Central tendency

Approach
APE (%)c RankLinear LogLinear

median HIi
b GSD median HIi

b GSD Lin LogL
Acrolein 0.65 1.2 5.1 1.1 5.3 4.6 (95%C.I. 2-6.6) 7 7
Benzene 2.3 0.062 1.4 0.062 1.4 0.34 (95%C.I. 0.19-0.50) 9 9
Formaldehyde 28 4 2.2 3.3 1.8 21 (95%C.I. 20-21) 4 4
Mold 160 0.027 2.2 0.027 2.1 0.88 (95%C.I. 0.19-1.3) 10 10
Nitrogen dioxide 22 5.7 1.7 5.5 1.7 2.2 (95%C.I. 1.8-2.6) 3 3
Ozone 10 1.3 1.9 1.3 1.9 0.37 (95%C.I. 0.19-0.73) 6 6
PM10 64 30 1.3 26 1.3 13 (95%C.I. 12-13) 2 2
PM2.5 27 60 1.2 54 1.2 10 (95%C.I. 10-11) 1 1
Radon 83 0.45 1.7 0.44 1.6 3.3 (95%C.I. 2.5-3.8) 8 8
Sulphur dioxide 0.97 1.9 4.5 1.9 4.3 0.73 (95%C.I. 0.26-1.4) 5 5

Values to 2 Sig. Figs.
a µg/m3; Mold in CFU/m3;Radon in Bq/m3

b DALY/µg/m3/105 person/year(see mold and radon)
c Averaged over 10,000 interactions
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The APEs support using the linear approach for estimating harm as it

yields estimates with minimal deviation from the log-linear approach, being

particularly cautions with formaldehyde (for the reasons just mentioned).

The relevance of contaminants remains consistent regardless of the ap-

proach used.

An extrapolation was conducted to identify the upper limits of the con-

centration distribution that would yield a MAPE of 10% or below for each

contaminant (Table 5.10). The resulting concentration ranges indicate that

a MAPE of 10% or below could be achieved within the upper limits typi-

cally found in dwellings for all contaminants. For example, when applying

the model to PM10 concentrations ranging from 0 to 108 µg/m3, both the

linear and log-linear approaches are expected to yield an average MAPE

of approximately 10%. The 95% confidence intervals are provided to rep-

resent the variability of the error. Similar interpretations can be made for

other contaminants.

Table 5.10: Appropriate concentration thresholds for a linear HIi approach

Contaminant Concentration distributiona MAPE (%)b

Acrolein (0 - 2.7) 10 (95%C.I. 9-20)

Benzene (0 - 890) 10 (95%C.I. 8-10)

HCHO (0 - 33) 10 (95%C.I. 10-10)

Mold (0 - 3750) 10 (95%C.I. 9-10)

Nitrogen dioxide (0 - 225) 10 (95%C.I. 10-10)

Ozone (0 - 495) 10 (95%C.I. 10-10)

PM10 (0 - 108) 10 (95%C.I. 10-10)

PM2.5 (0 - 50) 10 (95%C.I. 10-10)

Radon (0 - 425) 9 (95%C.I. 8-10)

Sulphur dioxide (0 - 66) 10 (95%C.I. 9-10)
a µg/m3; Mold in CFU/m3; Radon in Bq/m3

b 1 Sig. Figs.; Averaged over 10,000 interactions

Comparing Table 5.10 with the 97.5th percentile concentrations in

dwellings in Table 5.8, one can determine whether reported values fall

within a realistic range or appear excessively high. PMs and formaldehyde

have upper limit concentrations near the threshold where a 10% MAPE

is expected. Users of this metric should exercise caution when applying

it to these contaminants to avoid obtaining implausible high estimates of

harm. For the remaining contaminants, the linear HIi metric remains ap-

plicable and reasonable, as concentrations required to yield significantly

higher APE are improbable in residential environments.
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Table 5.11 provides insight into the anticipated concentrations where an

APE of approximately 10% is expected for the contaminants. These con-

centrations represent the point at which the linear approach demonstrates

a deviation of around 10% higher compared to the log-linear approach. For

particulate matter PM2.5, this saturation effect emerges around 25 µg/m3.

The linear HIi metric is likely to overestimate harm at these median concen-

trations (compared to the non-linear C-R), although the MAPE for both

models remains below the 10% margin of error.

Table 5.11: APE ∼10% (anticipated at)

Contaminant Median Concentration (SD)a

Acrolein 1.5 (1)

Benzene 480 (10)

Formaldehyde 16 (2)

Mold 1900 (50)

Nitrogen dioxide 110 (3)

Ozone 230 (5)

PM10 52 (1)

PM2.5 25 (1)

Radon 240 (5)

Sulphur dioxide 36 (3)
a 2 Sig. Figs.; µg/m3; Mold in CFU/m3; Radon in Bq/m3

Central estimate concentrations pooled for acrolein, benzene, mold, nitro-

gen dioxide, sulphur dioxide, ozone, and radon sit well below these thresh-

olds. The linear model should, therefore, reasonably approximate harm for

these contaminants, with minimal deviation from the log-linear approach.

The linear approach remains effective within the concentrations limits given

in Table 5.10.

By contrast, median levels of formaldehyde, PM10, and PM2.5 lie closer to

these anticipated magnitudes. This signals greater potential for discrep-

ancies between the linear and log-linear models. At higher concentrations

than these, the disagreement will keep increasing. With these insights,

researchers can make informed decisions about applying the epidemiology-

based harm metric. When contaminants approach Table 5.8 thresholds,

the log-linear model reflects the flattening of the curve that the literature

recommends to reflect the saturation effect. Otherwise, the simple linear

model suffices for approximating harm.
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The epidemiology-derived harm intensities (HIi) presented are simple ex-

posure concentration multipliers with quantified uncertainty for assessing

chronic indoor contaminant health impacts. However, some limitations

exist: Results apply to concentration regimes with approximately linear

concentration-response (C-R) functions. Increasing concentrations where

the saturation flattens curves will increase disagreement from C-R func-

tions, as the linear is always higher. This work compared only linear and

log-linear C-R functions, leaving gaps for future work on other C-R curve

fits.

Health data was systematically pooled across geographic regions and de-

mographics without differentiation by country, region, age, sex, or race.

The proposed harm metric aims for universal application without singling

out specific groups, as is sometimes the case with certain burden of disease

harm scenarios targeting only women. Regionalized analysis is especially

pertinent in life cycle impact assessment (LCIA) when impacts or envi-

ronmental conditions exhibit spatial variability. In theory, a regionalized

LCIA could yield less uncertain results in life cycle assessments. Likewise,

stratified analysis by exposure factors (such as age, gender, occupation,

smoking status, and socioeconomic status) becomes necessary depending

on the research objective, as seen in studies examining environmental jus-

tice disparities.

For particulate matter, equitoxicity was assumed whereby particles are

equally toxic per unit of mass intake. Mortality data was preferred to

represent harm where possible. However, some contaminant estimates rely

on limited outcomes, likely underestimating chronic harm to an unknown

degree. Until more indoor epidemiology research emerges, this approach

relies on outdoor epidemiology studies to assess indoor impacts.

5.4 Unifying Toxicity and Epidemiology

Toxicology and epidemiology furnish complementary evidence on the health

effects of contaminants through a shared parameter: the dose-response fac-

tor (DRF). The DRF in toxicology, denoted as DRFtox
(i) , stems from animal

studies. Its epidemiological counterpart, DRFepi
(i) , relies on human cohort

studies. The subscript ”i” denotes the nomenclature for a contaminant.
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Comparing these DRFs enhances human health assessments. Animal stud-

ies provide controlled data but suffer from cross-species uncertainties. In

contrast, human studies offer direct evidence but are restricted by the spe-

cific cohorts available.

DRFtox
(i) and DRFepi

(i) are mathematically equivalent (see equation 3.34).

Meta-analysis techniques can unify these independent streams of evidence.

This mathematical alignment extends to effect factors (EFi) and harm in-

tensities (HIi), which also share units.

Meta-analyses have gained traction for fusing epidemiological and toxico-

logical data in human health risk assessments. They reduce uncertainties

and offer a comprehensive view, despite inherent challenges such as hetero-

geneous study designs and data types (Authority, 2018; Boyes et al., 2007;

Hernández and Tsatsakis, 2017; Peters et al., 2005; Verde and Ohmann,

2015).

Five contaminants appeared in both types of studies: acrolein, benzene,

formaldehyde, ozone, and radon. Their harm intensities were therefore

pooled. Table 5.12 outlines the estimates and uncertainties (See Ap-

pendix 18 for full descriptive statistics).

Table 5.12: Pooled Epi and Tox HIi estimates,
DALY/µg/m3/105 person/year.+

Contaminant Median GSD

Acrolein 1.2 4

Benzene 0.067 1.4

Formaldehyde 4.3 2

Ozone 1.3 1.9

Radon* 0.44 1.6
+ Values to 2 Sig. Figs.
* DALY/Bq/m3/105 person/year; Bq, Becquerels

Toxicology often predicts higher harm intensity medians and means than

epidemiology, reflecting its greater potency estimates from controlled set-

tings. Yet, it also presents higher uncertainties. Pooled estimates balance

these aspects. They keep medians close to epidemiological estimates while

raising means, thus integrating high potency evidence from toxicology.

The shared parameters reveal further insights. A mathematical relation-

ship exists between the toxicological effective median dose (ED50) and epi-

156



5.5. HARM INTENSITIES, HIi.

demiological risk factors. Equation 5.3 delineates this relationship. This

proportional linkage reinforces the complimentary roles of toxicology and

epidemiology, highlighting the benefits of integrating both disciplines.

1

ED50(k′,i)
∝ γ0k′′′ · β(k′′′,i) (5.3)

Varying numbers of ′ visually distinguish where different health outcomes

are being accounted for, however considered equivalent (Section 3.5).

In the USEtox model, a 0.5 multiplier is applied to represent assumed

linearity in low-dose impacts. This multiplier is mathematically equivalent

to key parameters from both disciplines, as shown in Equation 5.4.

0.5 ≡ γ0 · β · ED50

BR
(5.4)

When evaluating the 0.5 assumption for specific contaminants based on

their parameter inputs, acrolein exhibits a value of 0.004, suggesting ap-

propriateness of the linear low-dose approximation. Benzene and ozone

showed reasonable agreement with 0.5. However, radon results in a higher

equivalence value of 1.5, indicating potential nonlinearity or threshold ef-

fects not captured by this simplifying assumption.

Meta-analyses are underutilized in life cycle and air pollution risk assess-

ments (to pool EFtox
(i) and EFepi

(i) for example). This could complement the

prevailing ’weight of evidence’ approach (Goodman et al., 2021; Richmond-

Bryant, 2020), especially when handling complex and varied data streams.

One might think that mean, median, or the central estimate should be

identical across both methodologies. However, discrepancies arise due to

differences in approach and specificity. Despite these challenges, DRFs,

EFs, and harm intensities showed significant alignment for the five contam-

inants. This underscores the value and validity of this integrated approach,

even if perfect parity remains out of reach.

5.5 Harm Intensities, HIi.

Epidemiological and toxicological research was used, and pooled, to calcu-

late the harm intensity (HIi) of 44 common indoor air contaminants found
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in dwellings (Section 3.1).

Table 5.13 shows the single-point estimates and uncertainties. The HI of the

coarse fraction can be calculated once the harm from the other PM fractions

is known by subtracting the fine fraction from PM10 (this is discussed in

chapter 7).

PM2.5 shows the greatest harm intensity, but PM10 and chromium are also

important because they have HIi that are several times higher than any

other of the included contaminants.

The elevated harm intensity observed for PM results from the combined

effects of baseline incidence, relative risk, and damage factors, all of which

relate to all-cause mortality associated with particle exposure.

Chromium’s high magnitude of harm intensity is a function of its toxicolog-

ical characteristics, specifically the low effective median dose, that induces

an effect in the population.

The harm intensities derived from toxicology-based and epidemiology-

based approaches are not dependent on specific concentration values.

In the toxicology-based approach, the ED50 (effective dose for 50% of the

population) encompasses the dose, including the exposure itself.

In the epidemiology-based approach, the risk coefficient derived from ex-

posure concentrations implicitly incorporates the exposure. This inherent

feature of the harm metric enables its broad application across different

environments.

Harm intensities alone do not give a complete understanding of the poten-

tial harm a contaminant can cause in a space, and neither do concentra-

tions. Concentrations and harm intensities are required together.

It is important to note that a low concentration of a contaminant with a

high harm intensity could pose a higher health risk than a high concentra-

tion of a contaminant with a low harm intensity.
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Table 5.13: Harm intensities, HIi, DALY/µg/m3/105 person/year.+

Contaminant Median GSD Approach

Acetaldehyde 0.053 4.8 Toxicology

Acrolein 1.2 4.0 Pooled

Acrylonitrile 1.2 4.1 Toxicology

Benzene 0.067 1.4 Pooled

Benzyl chloride 0.062 11 Toxicology

1,3-Butadiene 0.27 3.9 Toxicology

2-Butoxyethanol 0.010 8.7 Toxicology

Cadmium Cd(II) 5.3 8.9 Toxicology

Carbon disulfide 0.29 1.1 Toxicology

Carbon tetrachloride 0.52 7.3 Toxicology

Chloromethane 0.00027 10 Toxicology

Chromium Cr(VI) 17 15 Toxicology

Crotonaldehyde(trans) 1.1 7.2 Toxicology

1,2-Dibromoethane 3.4 5.8 Toxicology

1,4-Dichlorobenzene 0.012 6.4 Toxicology

1,2-Dichloroethane 0.052 5.4 Toxicology

1,1-Dichloroethene 0.15 6.1 Toxicology

Ethanol 0.0005 5.8 Toxicology

2-Ethylhexanol 0.0029 8.4 Toxicology

Formaldehyde 4.3 2.0 Pooled

Hexachlorobutadiene 0.030 4.8 Toxicology

Hexane 0.0018 8.7 Toxicology

Isoprene 0.0092 7.0 Toxicology

Limonene (d-...) 0.0093 6.5 Toxicology

2-Methoxyethanol 0.0028 7.8 Toxicology

Methyl methacrylate 0.051 2.8 Toxicology

Methyl tert-butyl ether 0.026 4.6 Toxicology

Methylene chloride 0.010 5.6 Toxicology

Mold 0.026* 2.1 Epidemiology

Naphthalene 0.36 5.9 Toxicology

Nitrogen dioxide 5.7 1.7 Epidemiology

Ozone 1.3 1.9 Pooled

PM10 30 1.3 Epidemiology

PM10−2.5 3.8 4.3 –

PM2.5 60 1.2 Epidemiology

Radon 0.44** 1.6 Pooled

Styrene 0.11 4.7 Toxicology

Sulphur dioxide 1.3 5.3 Epidemiology

1,1,2,2-Tetrachloroethane 0.13 6.2 Toxicology

Tetrachloroethene 0.052 6.2 Toxicology

Toluene 0.00087 5.4 Toxicology

1,1,2-Trichloroethane 0.15 5.7 Toxicology

Trichloroethylene 0.0035 5.1 Toxicology

Vinyl chloride 0.98 5.4 Toxicology

Xylenes 0.0034 6.1 Toxicology

+ Values to 2 Sig. Figs.
* DALY/CFU/m3/105 person/year; CFU, Colony-Forming Units. As mold spores of the genus
Cladosporium

** DALY/Bq/m3/105 person/year; Bq, Becquerels
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5.6 Summary

This chapter introduced the concept of harm intensity as a metric link-

ing chronic exposure to indoor air contaminants with potential population

health impacts. Both toxicology and epidemiology research were leveraged

to derive harm intensity values for a range of common indoor pollutants.

Key highlights include:

• The harm intensity relates total harm (in DALY/person/year) to an-

nual contaminant exposure, with units of DALY/µg/m3/person/year.

This enables direct estimation of health impacts given exposure con-

centrations.

• Harm intensities were calculated for 44 contaminants. PM2.5 showed

the highest median.

• Comparison with previous methods demonstrated reduced uncer-

tainty and updated inputs, yielding revised harm intensity estimates.

Toxicology medians exceeded epidemiology, while pooling provided a

balance.

• Both linear and non-linear concentration-response epidemiological

models were evaluated. The simple linear approximation is reason-

able for most contaminants given typical indoor levels. Formaldehyde

requires extra caution when used (later on Section 7.1).

• Limitations remain around geographic and demographic specificity,

toxicity assumptions, and reliance on outdoor epidemiology evidence.

But the metric provides an improved basis for exposure-based risk

screening and prioritization.
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Chapter 6

Airborne Contaminants in
Dwellings

The contents of this chapter are part of the publication:

Morantes, G., Jones, B., Sherman, M., & Molina, C. (2023). Harm from

residential indoor air contaminants. Environmental Science & Technology.

Article ASAP DOI: 10.1021/acs.est.3c07374

6.1 A systematic review to quantify rep-

resentative concentrations in dwellings

(Ci)

This section describes the approach for determining representative indoor

air contaminant concentrations (Ci). Ci is defined as the median concen-

tration of an airborne contaminant (i) found in dwellings.

To determine the uncertainty in the concentrations of the 44 contaminants

of interest (Section 3.1), a global systematic literature review identified

studies reporting measurements of these 44 contaminants in residences,

published between 2010-2020. Review was limited towards chronic expo-

sures (periods > 24 hours). Publications in any language were included

if an English abstract was available. Modeling, policy, and commentary

studies were excluded. The search criteria are listed in Table 6.1 excluding

the specific syntax for each database.
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Table 6.1: Keywords and Boolean operators when performing systematic
reviews on input parameters.

Input parameter Representative Indoor Air Contaminant Concen-
tration (Ci)

Research question What are the values of indoor air pollutants in
households?

Keywords and
Boolean operators a

(house* OR domestic OR dwelling*) AND ”indoor
air” AND (”air pollution” OR ”air quality” OR
”particulate matter” OR ”Nitrogen Dioxide” OR
NO2 OR Ozone OR O3 OR ”Sulphur Dioxide”
OR SO2 OR (”Carbon Monoxide” NOT poison*))
AND (review OR ”observational stud*”) AND (ex-
posure OR monitor* OR sampl* OR measure*)
AND (concentrat*) AND (mean OR median) AND
(sample*)

Databases Scopus, Pubmed, and Web of Science.
a All 44 contaminants followed the same logic, with each one as a keyword.

A 45th contaminant, coarse fraction particulate matter (PM10−2.5), is added

by taking the difference between respirable particulate matter (PM10) and

fine particulate matter (PM2.5). Albeit not included in the review, it is

relevant for later analyses.

The search was limited to residential environments including apartments,

dormitories, and houses. The 2010-2021 date range was selected based on

Logue et al.’s work (Logue et al., 2011a). The search was expanded for

contaminants lacking studies in this range. The search was complemented

by other indoor exposure reviews (Gonzalez-Martin et al., 2021) and tech-

nical reports from international organizations mentioned in these studies.

All countries and regions were included. The review considered contam-

inants regardless of source - emitted indoors, entering from outdoors, or

both. Concentrations measured by fixed or portable samplers/monitors

and, both optical or gravimetric samplers were included. The results of

this process of literature search and publication review are shown in Fig-

ure 6.1.

The search strategy concentrated on gathering data from households in

common, everyday conditions, aiming to reflect the variety of activities and

behaviors typically encountered in such environments (cooking, cleaning,

bathing, sleeping, working, and alike). The aim was to create concentration

summaries that could be generalized or applied broadly. Highly controlled

or constrained scenarios were avoided to prevent outliers: Studies focused
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Figure 6.1: Review process diagram.

solely on periodic indoor activities like cooking or cleaning, like O’Leary

et al. (2019) for PM2.5 emissions from cooking were not considered. Atyp-

ical dwellings like passive houses were excluded. The review conducted by

Moreno-Rangel et al. (2020) on IAQ parameters in Passivhaus dwellings

highlighted a wide variation in PM2.5, ranging from 16 to 90 µg/m3. How-

ever, the limited availability of databases impedes drawing definitive con-

clusions. Moreover, the majority of studies primarily evaluate air quality

based on CO2 levels or perceived stuffiness.

The reviews’ aim is to provide evidence of uncertainty in the median con-

taminant concentrations for dwellings from a non-spatially-restrictive per-

spective.

The primary data extracted from the studies included concentration statis-

tics and country/region. Concentration measurements’ central tendency

estimates were reported using various metrics, including means, medians,

and geometric means. Statistics used to reflect the spread of the data in-

clude standard deviations, confidence intervals, and extreme values (such

as the minimum and maximum). To ensure consistency, medians and 95%

confidence intervals were extracted from the papers. The assumption is

that concentrations follow a right-skewed and log-normal distribution, sup-

ported by studies such as Ott (1990) and referenced by Blackwood (1992);

Crow and Shimizu (1987); Jia et al. (2008). This remains widely accepted

in the field, as indicated by Halios et al. (2022); Logue et al. (2011a); Spen-

gler et al. (2000).
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A database was created, including the study, the contaminant, and the

median and the 95% confidence intervals (CIs) for each sampling campaign

reported in the study (this constitutes a dataset). Descriptive statistics,

including mean, standard deviation (SD), minimum, maximum, geometric

mean (GM), geometric standard deviation (GSD), and median, are cal-

culated from the list of medians of the database. These are presented in

Table 6.2. Next, medians and confidence intervals from the database were

pooled using meta-analysis. Meta-analysis combines results accounting for

uncertainty. The outputs given from a meta-analysis are a central tendency

estimate, called outcome effect measure and a 95% CI interval that is af-

fected by the 95% CIs of each input, so that inputs with wide spread of

values weight less and have less influence on the results, as well as assump-

tions regarding normality of distributions (DerSimonian and Laird, 1986b;

StataCorp, 2019). Other techniques based on weighted means (Logue et al.,

2011a) and geometric means (Halios et al., 2022) have also been used in the

literature: medians are often weighted by sample size, and the weighted me-

dian is reported as the primary result of the analysis, as shown in Table 6.3.

Here, the results from each meta-analysis were taken and modeled by ap-

plying parameter distributions (Section 3.8). This process is illustrated in

the creation of Table 6.4.

Table 6.2 details a full list of the extracted information with summary

statistics of the studies included, and the results of the meta-analyses per-

formed for the datasets of each contaminant (the latter were the inputs for

the Monte Carlo approach).

The review included 145 references with 827 indoor air contaminant mea-

surement datasets. The United States, China, Canada, and United King-

dom were most represented. Just these four locations account for 55% of

the studies. When considering classification of countries into “the global

North” (Lees, 2021) this increases to 82%. The categorization of countries

into terms like “the global North” or “developed nations” lacks straight-

forwardness and is contingent on the context. Certain influential nations

defy clear placement within the dichotomy of the global North and South.

China, in particular, stands out as a significant example (Lees, 2021).

Africa, Latin America, and the Middle East were sparsely studied, po-

tentially leading to lifestyle-based concentration discrepancies. The United

States was the most intensely studied country, with 37 publications and

166 of the datasets; followed by China, with 20 publications and 104 of the

datasets; and Canada, with 12 publications and 95 of the datasets.
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Table 6.2: Systematic review and meta-analysis on indoor air contaminant concentration in dwellings.

Descriptive statistics from the systematic review Meta-analysis results

CAS Contaminant Mean Std dev Min Max Geom
mean

Geom
Std dev

Median Data
Sets

Outcome
effect
measure

2.5ptile 97.5ptile

75-07-0 Acetaldehyde 22 29 6.8 140 15 2.5 17 36 15 7.3 30

107-02-8 Acrolein 2.5 3.5 0.1 15 1 4.7 1.2 20 0.65 0.37 1.1

107-13-1 Acrylonitrile 0.39 0.2 0.27 0.74 0.35 1.7 0.27 4 0.72 0.58 0.89

71-43-2 Benzene 3.3 2.7 0.85 12 2.2 2.3 2.1 65 2.3 1.6 3.4

100-44-7 Benzyl chloride 0.5 0 0.5 0.5 0.5 1 0.5 2 0.5 0.098 2.5

106-99-0 1,3-butadiene 0.88 1 0.05 3.1 0.45 1.4 0.46 11 0.46 0.27 0.79

111-76-2 2-Butoxyethanol 2.9 0.82 2.1 4.5 2.5 1.3 2.8 8 3 1.7 5.1

22537-48-0 Cadmium Cd(II) 0.024 0.024 0.0026 0.07 0.014 3.4 0.018 5 0.015 0.005 0.042

75-15-0 Carbon disulfide 0.34 0 0.34 0.34 0.34 1 0.34 2 0.34 0.19 0.63

56-23-5 Carbon tetrachloride 0.55 0.53 0.077 2.2 0.35 2.7 0.41 18 0.52 0.37 0.72

78-87-3 Chloromethane 1.7 0.1 1.6 1.8 1.7 1.1 1.7 2 1.6 1.5 1.8

18540-29-9 Chromium Cr(VI) 0.0064 0.0042 0.0022 0.011 0.0048 3 0.0064 2 0.006 0.002 0.027

123-73-9 Crotonaldehyde(trans) 1.9 1.9 0.09 5.6 0.85 4.3 1.1 13 0.8 0.34 1.9

106-93-4 1,2-Dibromoethane 0.38 0.43 0.006 0.98 0.094 13 0.14 3 0.096 0.008 1.2

106-46-7 1,4-Dichlorobenzene 15 26 0.05 120 5.3 10 2.8 30 2.2 1.1 4.6

107-06-2 1,2-Dichloroethane 0.73 0.89 0.0032 2.7 0.29 5 0.25 21 0.53 0.38 0.73

75-35-4 1,1-Dichloroethene 0.34 0.24 0.018 0.6 0.16 6.8 0.4 3 0.51 0.3 0.86

64-17-5 Ethanol 350 290 56 860 230 2.8 290 7 130 67 250

104-76-7 2-Ethylhexanol 2.1 0.9 1 3.7 1.9 1.6 1.7 6 2 0.97 3.9

50-00-0 Formaldehyde 32 22 6.6 110 26 1.9 24 67 28 23 34

87-68-3 Hexachlorobutadiene 1.7 0 1.7 1.7 1.7 1 1.7 2 1.7 0.62 4.7

110-54-3 Hexane 3 2.7 0.1 11 1.8 3.4 1.8 19 1.7 0.83 3.3

78-79-5 Isoprene 5.3 4.5 1.6 16 4 2.2 3.6 8 6.5 3.9 11

5989-27-5 Limonene (d-...) 34 87 0.27 410 14 3.3 18 39 15 6.5 33

109-86-4 2-Methoxyethanol 43 61 0.12 130 1.2 56 0.13 4 1.3 0.009 170

80-62-6 Methyl methacrylate 0.27 0 0.27 0.27 0.27 1 0.27 2 0.27 0.034 2.1

1634-04-4 Methyl tert-butyl ether 7.2 5 0.1 16 4.1 5 4.6 8 4.4 1.7 12

continue on the next page.... . .
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Table 6.2 – Continue

Descriptive statistics from the systematic review Meta-analysis results

CAS Contaminant Mean Std dev Min Max Geom
mean

Geom
Std dev

Median Data
Sets

Outcome
effect
measure

2.5ptile 97.5ptile

75-09-2 Methylene chloride 2.2 2.8 0.1 8.2 0.82 5.1 0.98 6 0.91 0.32 2.5

– Mold 200 140 44 510 160 2.1 180 9 160 110 240

91-20-3 Naphthalene 33 120 0.18 500 1.6 7.4 0.85 19 1.5 0.54 4.4

10102-44-0 Nitrogen dioxide 38 52 2.8 240 23 4.6 23 48 22 16 32

10028-15-6 Ozone 15 16 1.3 59 9.5 5500 9 10 10 4 28

– PM10 82 76 17 350 60 2.1 53 35 64 46 89

– PM10−2.5
a 29 – 37 27 52

– PM2.5 52 67 0.022 430 25 4 28 110 27 19 37

10043-92-2 Radon 130 110 32 360 92 2.3 60 10 83 53 130

100-42-5 Styrene 2.2 2.5 0.11 13 1.4 2.7 1.4 34 1.6 1.1 2.4

7446-09-5 Sulphur dioxide 5.9 9 0.09 26 1.4 19 1.4 8 0.97 0.18 5.4

79-34-5 1,1,2,2-
Tetrachloroethane

0.24 0.18 0.005 0.42 0.099 8.1 0.27 4 0.088 0.017 0.45

127-18-4 Tetrachloroethene 0.92 0.8 2.9 0.65 2.8 0.58 21 0.84 0.7 1

100-88-33 Toluene 15 15 0.69 95 11 2.2 12 67 13 11 16

79-00-5 1,1,2-Trichloroethane 0.34 0.18 0.1 0.6 0.28 2 0.45 9 0.3 0.18 0.5

79-01-6 Trichloroethylene 0.44 0.54 0.015 1.8 0.23 3.3 0.24 20 0.46 0.39 0.54

75-01-4 Vinyl chloride 0.16 0.0025 0.16 0.16 0.16 1 0.16 2 0.16 0.031 0.8

1330-20-7 Xylenes 7.7 2.9 1.4 13 6.9 1.7 7.7 13 7 4.8 10

Units in µg/m3; Radon in Bq/m3; Mold in CFU/m3.
a PM2.5 subtracted from PM10 to estimate PM10−2.5. Uncertainty calculated per PM fractions. Approach adds uncertainty but is common practice (Sacks et al., 2022). Coarse PM fraction of 0.36 based on
mean of table data.
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Though a non-spatially-restrictive perspective was pursued, some regions

were not well accounted for, likely due to search strategy limitations exclud-

ing non-English studies (sampling campaigns published in Spanish, French,

Chinese language journals for example) rather than lack of data. Four pre-

2010 references were included for cadmium, chromium, mold, and acrolein,

which lacked sufficient 2010-2020 studies (Canada, 2020; Finley et al., 1996;

Matheson et al., 2005; National Research Council (US) Subcommittee on

Zinc Cadmium Sulfide, 1997; Stark et al., 2005).

Sampling of the PM10−2.5 size fraction in dwellings is still under-reported

in the literature, and it is common practice to derive this contaminant by

subtracting PM2.5 from PM10 (Sacks et al., 2022; US-EPA, 2020b). An

uncertainty factor was assigned to the central tendency of PM10−2.5 using

the GSD for the other PM fractions. The fraction of PM10 attributed to

PM10−2.5 is 0.36 (see mean column Table 6.2).

While substantial, the data may not accurately reflect all countries’ con-

taminant concentrations due to uneven representation. Caution is advised

when generalizing results to specific locations. Further work is needed to

reduce uncertainty for the 12 contaminants with fewer than 5 data sources.

Detailed analysis accounting for country/region, climate, and building dif-

ferences affecting exposure would improve accuracy for local populations

and may reveal other important local contaminants.

Review articles have been conducted on airborne contaminants present in

indoor residential environments (Fazli and Stephens, 2018; Halios et al.,

2022; Ilacqua et al., 2022; Logue et al., 2011a; Morawska et al., 2013, 2017;

Nishihama et al., 2021; Vardoulakis et al., 2020; Ye et al., 2017). How-

ever, these studies vary in their objectives, geographical scope, types of

contaminants, underlying methodology decisions, and time periods consid-

ered. The central tendency and statistics reported in each study varies

(mean, median, Weighted Average Geometric Mean- WAGM). Addition-

ally, some review articles employ a narrative approach, without pooling

data in a quantitative manner. Table 6.3 summarizes details on existing

literature reviews of indoor contaminants in dwellings.

Adopting a non-spatially-restricted perspective has both advantages and

limitations. To provide insights on data variability, PM10 and PM2.5 are

examined for the most studied regions: the USA, China, Canada, and the

UK. For PM2.5, these countries provided: USA 24%, China 22%, Canada

6%, UK 5% of studies. Meta-analysis by country gives concentrations
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(95%CI) of: USA 14 (11-18) µg/m3; China 73 (52-103) µg/m3; Canada

3 (2-5) µg/m3; UK 25 (14-45) µg/m3. The studies included for China re-

flect the use of solid fuels (wood and coal) in homes, influencing a relatively

higher central estimate. The USA estimate aligns well with reported values

for that country. The USA and China hold 25% and 23% weight in the

PM2.5 pooled concentration. Table 6.2 shows the PM2.5 pooled concentra-

tions. For PM10: USA 3%, China 17%, UK 9% of studies. By country:

USA 20 (5-79) µg/m3; China 171 (112-261) µg/m3; UK 42 (25-71) µg/m3.

China has 21% PM10 pooled concentration weight. Table 6.2 shows the

PM10 pooled concentrations.

Source attributions, including appliances, fuel types, and personal activ-

ities, were reported by the revised papers during the sampling periods.

Recent works provide additional insights on source attribution and their

influence on indoor concentrations (Halios et al., 2022; Morawska et al.,

2017; Vardoulakis et al., 2020). To investigate findings, PM2.5 influencing

sources were extracted from included studies. Seven prominent sources

were identified and the frequency each one was linked to PM2.5: Combus-

tion [candles, incense, cooking, heating/cooling, smoking] - 52%; Cleaning

- 9%; Occupant activities - 9%; Outdoor - 9%; Personal care products - 8%;

Pets - 3%; Interior modifications - 11%. As expected, everyday combustion

activities within homes were the primary PM2.5 source.

All sampler types were included, excluding modeled concentrations. Gravi-

metric equivalency was not addressed (for more see (Okello et al., 2018;

Soneja et al., 2014; Zhang et al., 2018)). This represents an opportunity

for further discussion, as previous PM reviews do not address this issue.

For PM2.5 studies in the datasets for the four most studied regions, 3/5

used gravimetric and 2/5 used optical samplers. Pooled values by sampler

were: -Optical: 22 µg/m3 (95% CI 14 - 34); -Gravimetric: 29 µg/m3 (95%

CI 19 - 45). Although differences in these central tendencies exist, statisti-

cal significance was not explored, as examining sampler influence on harm

differences was outside the current scope.

While indoor contaminant concentrations certainly vary across diverse fac-

tors like country, source, and season, the depth of concentration analysis

provided sufficiently achieves this research’s aim of developing a health-

based metrics and its applicability to select contaminants of concern for

dwellings. The pooled meta-analyses incorporating available non-spatially-

restrictive data are appropriate given this focus. This section prioritized
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conveying the fundamental principles of the concentration systematic re-

view to ensure a clear understanding of the approach.

6.1.1 Representative indoor contaminant concentra-

tions (Ci)

Table 6.4 presents the medians, uncertainty in the representative concen-

trations (after modeling their distributions), and the number of datasets

reviewed for each contaminant (See Appendix 19 for full descriptive statis-

tics). Contaminant concentrations are reported in µg/m3, except for radon

(Bq/m3) and mold spores (CFU/m3). The five most abundant contami-

nants by mass are ethanol, PM10, formaldehyde, PM2.5, and nitrogen diox-

ide (NO2). PM10−2.5 is within this group but not mentioned because it was

inferred from the other PM fractions. Median representative concentrations

for ethanol, PM10, and formaldehyde are 110 µg/m3 (7 datasets), 62 µg/m3

(48 datasets), and 28 µg/m3 (67 datasets), respectively. 28 contaminants

have a median concentration of < 2.0 µg/m3.

The contaminant concentration distributions in Table 6.4 reflect exposures

caused by common activities expected to occur in homes, which might

include cooking, candle use, smoking, the combustion of solid fuels (wood

and coal), and incense burning. There is still significant uncertainty in the

concentrations of some contaminants.

The concentration statistics of the 45 contaminants are broadly similar to

those reported in other literature reviews (Fazli and Stephens, 2018; Halios

et al., 2022; Ilacqua et al., 2022; Logue et al., 2011a; Morawska et al., 2013,

2017; Nishihama et al., 2021; Vardoulakis et al., 2020; Ye et al., 2017).

Figure 6.2 illustrates their trends over the past three decades. There are

some noticeable differences in the medians, and in the overlaps of the GSD,

but generally, there is good agreement between these results (in black) and

other studies. Differences may be attributed to the inherent variations in

the individual studies (see Table 6.3). The similarities in concentrations

may be attributed to the fact that this review, and the previous studies,

primarily rely on data from a limited number of countries, including the

USA, China, Canada, and the UK; predominantly high-income industrial-

ized nations that are often referred to as Global North countries (these are

regions with reasonable data homogeneity and representation).
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Table 6.4: Representative concentrations, Ci, µg/m3.+

Contaminant Median GSD Datasets

Acetaldehyde 13 1.7 36

Acrolein 0.60 1.5 20

Acrylonitrile 0.71 1.2 4

Benzene 2.2 1.3 65

Benzyl chloride 0.22 3.4 2

1,3-Butadiene 0.43 1.5 11

2-Butoxyethanol 2.7 1.5 8

Cadmium Cd(II) 0.011 2.2 5

Carbon disulfide 0.31 1.6 2

Carbon tetrachloride 0.50 1.3 18

Chloromethane 1.6 1.1 2

Chromium Cr(VI) 0.0031 3.2 2

Crotonaldehyde(trans) 0.65 1.9 13

1,2-Dibromoethane 0.018 6.0 3

1,4-Dichlorobenzene 1.90 1.7 30

1,2-Dichloroethane 0.52 1.3 21

1,1-Dichloroethene 0.48 1.5 3

Ethanol 110 1.6 7

2-Ethylhexanol 1.7 1.7 6

Formaldehyde 28 1.2 67

Hexachlorobutadiene 1.3 2.2 2

Hexane 1.4 1.7 19

Isoprene 6.0 1.5 8

Limonene (d-...) 12 1.9 39

2-Methoxyethanol 0.021 12 4

Methyl methacrylate 0.082 4.3 2

Methyl tert-butyl ether 3.3 2.1 8

Methylene chloride 0.67 2.1 6

Mold 160* 1.3 9

Naphthalene 1.1 2.2 19

Nitrogen dioxide 22 1.3 48

Ozone 7.3 2.2 10

PM10 62 1.3 35

PM10−2.5 35 1.4 –

PM2.5 26 1.3 107

Radon 78** 1.4 10

Styrene 1.6 1.3 34

Sulphur dioxide 0.41 4.0 8

1,1,2,2-Tetrachloroethane 0.040 3.4 4

Tetrachloroethene 0.83 1.1 21

Toluene 13 1.1 67

1,1,2-Trichloroethane 0.28 1.4 9

Trichloroethylene 0.45 1.1 20

Vinyl chloride 0.072 3.3 2

Xylenes 6.8 1.3 13

+ Values to 2 Sig. Figs.
* CFU/m3; CFU, Colony-Forming Units
** Bq/m3; Bq, Becquerels

The estimation of PM10−2.5 concentrations, determined by subtracting

PM2.5 from PM10, introduces some uncertainty in interpreting the coarse
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fraction. However, the central tendency aligns well with the findings of

Ilacqua et al. (2022) who compiled measurements of PM10−2.5 from various

studies (Figure 6.2). The fraction of PM10 attributed to PM10−2.5 is 0.36,

which is comparable to in-situ measurements in dwellings of 0.56 reported

by Morawska et al. (2017), 0.46 by Ilacqua et al. (2022), 0.26 by Nishihama

et al. (2021) and 0.19 by Morawska et al. (2013).

6.2 Summary

A global systematic review compiled indoor contaminant concentration

data to determine representative exposure levels and uncertainties for 44

contaminants of interest, in dwellings. Measurements from 145 studies and

31 countries provided over 800 datasets spanning 2000-2020. Meta-analysis

derived central tendencies. While substantial, uneven global representa-

tion warrants caution generalizing to all regions. Figure 6.2 provides a

visual representation of the distribution uncertainty of air contaminants

commonly found in dwellings over the past two decades. This snapshot

offers insights into the variability and trends of these contaminants. The

concentration data predominantly originate from countries with extensive

research, notably the USA, Canada, and the UK—representative of the

Global North, and China.
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6.2. SUMMARY

Figure 6.2: Representative airborne contaminant concentrations. Evalua-
tion against prior research. Median & GSD. Black, current work; Green-triangle=

Logue et al., Blue-triangle= Fazli and Stephens, Red-triangle= Morawska et al.; Morawska et al.,Cian-triangle= Ilac-

qua et al., Magenta-triangle= Nishihama et al., Yellow-triangle= Ye et al., Green-square,dashes= Vardoulakis et al.,
Blue-square,dashes= Halios et al.

173



Chapter 7

Contaminants Harm in
Dwellings

The contents of this chapter are part of the publication:

Morantes, G., Jones, B., Sherman, M., & Molina, C. (2023). Harm from

residential indoor air contaminants. Environmental Science & Technology.

Article ASAP DOI: 10.1021/acs.est.3c07374

In addition, preliminary results from this chapter were previously presented

as a long presentation, and paper at the AIVC conference 2022, and as a

journal publication:

Morantes, G., Jones, B., Sherman, M., & Molina, C. (2022). Health im-

pacts of indoor air contaminants determined using the DALY metric. In

42nd AIVC - 10th TightVent - 8th venticool Conference - Rotterdam, Nether-

lands. 10 pp. ISBN: 2-930471-63-1

Morantes, G., Jones, B., Sherman, M., & Molina, C. (2023). A preliminary

assessment of the health impacts of indoor air contaminants determined

using the DALY metric. International Journal of Ventilation, 1-10. ISSN:

2044-4044
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7.1 Harm from air contaminants in

dwellings

A preliminary assessment revisited the models proposed by Logue et al.,

enhancing them with more recent and comprehensive data. Appendix A4.1

provides the complete discussion of the preliminary assessment. However,

it did not address the adoption of the proposed unified harm metric -

Harm Intensity (HI)- that is intended to replace both the IND and ID

approaches.

The preliminary assessment did not cover several important aspects, in-

cluding consolidating data on damage factors and incidence from a global

burden of disease review into a single database. Additionally, it did not

address the linearization of the IND method, or the simplification and sep-

aration of the IND and ID methods.

This section aims to identify the most harmful airborne contaminants com-

monly found in today’s dwellings. It involves the combination of harm in-

tensities and contaminant concentrations to assess the harm resulting from

representative exposures.

The harm intensity metric, as explained in Chapter 5, is derived from both

toxicological and epidemiological health research, specifically for chronic

impacts at a population scale. This metric is normalized by a concentra-

tion. Importantly, it can be employed to evaluate the harm associated

with inhaling airborne contaminants in scenarios where the assumption of

a linear concentration-response function holds. Consequently, it is well-

suited for application in most types of buildings, where concentrations are

expected to be low. While the quality of health data may improve in the

future, it is expected that the harm intensity will remain relatively consis-

tent, unaffected by factors such as activity, region, or building type. The

assertion is that populations will universally react similarly to exposures.

However, this assumption hinges on factors such as biochemical individu-

ality (genetic makeup), detox pathways, nutrition, and health status. If

the population under consideration is sufficiently large, this assertion is

likely to hold true. This universality makes it a robust and intervention-

independent metric. In contrast, contaminant concentrations are subject

to variation based on these factors, and interventions can influence them.
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Table 7.1 gives the estimated chronic harm (DALYs/105 person/year) from

exposure to 45 contaminants, in descending order (See Appendix 20 for

full descriptive statistics). The all-cause harm attributable to the coarse

fraction of particulate matter (PM10−2.5) was estimated by calculating the

difference between the harm due to PM10 and PM2.5. Particulate mat-

ter shows the greatest harm, with PM2.5 and PM10 contributing median

losses of 1,600 (GSD 1.3) and 1,900 (GSD 1.4) DALYs per 100,000 persons

annually. This substantial harm reflects the elevated harm intensities for

particles combined with ubiquitous exposure.

After the PM fractions, nitrogen dioxide and formaldehyde also lead to con-

siderable harm exceeding 100 DALYs per 100,000 people annually. Radon

and ozone follows with more than 10DALYs/105 person/year. The remain-

ing contaminants show harm below 10DALYs/105 person/year, although

many still contribute non-negligible impacts. These central estimates pro-

vide an initial basis for comparing and prioritizing contaminants.

These results reinforce particulate matter, nitrogen dioxide, formaldehyde,

radon, and ozone as the most concerning chronic contaminant exposures on

a population basis. The contaminants identified to pose the highest harm,

PM10, PM2.5, formaldehyde, and nitrogen dioxide, are extensively studied;

see Table 6.4. Ethanol is the most abundant species in dwellings, but its

contribution to harm is negligible.

Uncertainty spans several orders of magnitude for most contaminants, high-

lighting the need for improved exposure and toxicology data to constrain

harm estimates. The lowest uncertainty is for PM and other contaminants

with extensive dose-response research (carbon disulfide and benzene). Wide

uncertainties reflect data gaps limiting more precise quantification currently

(Chromium Cr(VI), 2-Methoxyethanol).

Figure 7.1 compares the estimates from this research to Logue et al.’s IND

and ID approaches (Section 2.5.1). There are several differences. Three

additional contaminants (PM10−2.5, radon, and mold) are analyzed in this

research, and the IND approach has been expanded to include four con-

taminants (acrolein, benzene, formaldehyde, and radon) due to the growing

number of epidemiology-based studies focusing on their health impacts in

recent years.

The similarities in Figure 7.1 suggest that the studies are converging toward

the same conclusion, which is perhaps reassuring given the assumption
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7.1. HARM FROM AIR CONTAMINANTS IN DWELLINGS

Table 7.1: Contaminant harm, harmi,
DALYs/105 person/year+

Contaminant Median GSD

PM10 1900 1.4

PM2.5 1600 1.3

PM10−2.5 130* 4.5

Nitrogen dioxide 120 1.8

Formaldehyde 120 2.0

Radon 34 1.8

Ozone 10 2.7

Mold 4.0 2.3

Acrolein 0.73 4.1

Acrylonitrile 0.73 4.3

Acetaldehyde 0.68 5.1

Crotonaldehyde(trans) 0.59 8.0

Sulphur dioxide 0.56 8.1

Naphthalene 0.33 6.4

Styrene 0.21 4.8

Carbon tetrachloride 0.19 6.5

Benzene 0.15 1.6

Methyl tert-butyl ether 0.11 5.6

Limonene (d-...) 0.11 7.5

1,3-Butadiene 0.10 4.0

1,1-Dichloroethene 0.10 5.7

Carbon disulfide 0.089 1.6

Vinyl chloride 0.070 7.6

Ethanol 0.068 6.2

1,2-Dibromoethane 0.062 10

Isoprene 0.061 7.1

Cadmium Cd(II) 0.058 9.1

1,1,2-Trichloroethane 0.056 5.9

Hexachlorobutadiene 0.054 5.6

Chromium Cr(VI) 0.045 11

Tetrachloroethene 0.044 5.7

1,2-Dichloroethane 0.030 5.2

1,4-Dichlorobenzene 0.024 6.2

Xylenes 0.018 6.2

Toluene 0.013 5.2

2-Butoxyethanol 0.0098 7.2

1,1,2,2-Tetrachloroethane 0.0083 8.8

Benzyl chloride 0.0075 11

Methylene chloride 0.0061 6.2

2-Ethylhexanol 0.0048 7.9

Methyl methacrylate 0.0042 6.5

Trichloroethylene 0.0018 5.1

Hexane 0.0017 9.8

Chloromethane 0.0010 9.2

2-Methoxyethanol 0.000060 21
+ Values to 2 Sig. Figs.
* Note that these values are medians and DALYs are log-normally dis-
tributed. Therefore, subtracting the median PM2.5 to the PM10 median
does not equal the median of PM10−2.5 (Section 3.6). Means add up with
a minor deviation (See Appendix Table 20)
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Figure 7.1: Comparing chronic harm for the 10 most harmful contaminants
against Logue et al. (2012). Median & GSD. Black, current work; Blue,
Logue et al.

of a linear concentration-response relationship at low concentrations used

here. However, it is also evident that while the harm estimates for some

contaminants remain relatively consistent, there are noticeable changes in

the harm estimate for others, such as acrolein. The harm estimates in

this research have reduced uncertainty by using the most up-to-date health

data, including current GBD damage factors (IHME, 2022) and dedicated

uncertainties studies (Martin et al., 2013).

The harm estimate from PM2.5 in this research is three times higher than

that of Logue et al. and one order of magnitude higher than that of Fazli

and Stephens, a work directly linked to Logue’s. This is explained by:

• The representative concentrations of this research being higher.

• Using U.S. residential indoor PM2.5 concentrations from Logue et al.,

with a 70% time-weighting factor, which reduces the estimated harm

by 59%,

• Incorporating concentration data from Fazli and Stephens which fur-

ther decreases harm by 71%, highlighting the impact of lower PM2.5

exposure levels coupled with time-weighting factors applied in earlier

works, and

• The use of a higher risk estimate. Using the risk estimates of these

works yields a 30% reduction in harm, reflecting a smaller yet signif-
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7.1. HARM FROM AIR CONTAMINANTS IN DWELLINGS

icant effect, which indicates that PM2.5 is more harmful than previ-

ously thought.

However, given identical inputs to the linear or log-linear approaches, one

expects that the linear approach estimates greater harm beacuse of the

linearity assumption of the harm-concentration function (more later on

Section 8.5).

The estimated harm from nitrogen dioxide is higher than that of Logue

et al. (2012) and Fazli and Stephens (2018) because they used lower risk

and damage estimates solely linked to hospital admissions, whereas this

work use the broader measure of all-cause mortality (two to three orders

of magnitude above).

Formaldehyde harm was estimated using toxicology evidence. This harm

estimate is higher than Logue’s because of the 0.5 constant multiplier used

for the toxicology-based dose-response factor, and because this research

accounts for the effects of three health outcomes, while Huijbregts et al.

(2005) only considered carcinogenic effects.

Logue et al. used disease incidence estimates from the literature for radon

harm, individually for smokers and non-smokers. The harm estimate in this

research falls within the estimates for smokers and non-smokers, indicating

that the determinants of the incidence (risk estimate, baseline disease inci-

dence, and median radon concentrations in homes) average out to a similar

central tendency at the population scale.

Harm from indoor ozone inhalation was previously estimated using the ID

and IND approaches by Logue et al.. Similarly, the present work estimated

ozone harm via independent epidemiology and toxicology models. In both

cases, the current harm estimates exceeded those of Logue’s despite relying

on similar risk estimates and concentrations. The higher epidemiology-

based damage factor here reflects updated evidence on ozone’s all-cause

mortality impacts. Logue’s toxicology approach was lower due to the

0.5 cases constant multiplier now applied for dose-response factors. Ul-

timately, pooling the epidemiology and toxicology-based harm led to esti-

mates marginally higher than Logue’s and Fazli’s.

The estimated harm from acrolein is lower in the present work versus

Logue’s. The lower severity for non-cancer effects like asthma reduced

damage factors. The dose-response factor declined due to the three-fold

179



7.1. HARM FROM AIR CONTAMINANTS IN DWELLINGS

lower uncertainty shifting the median downwards. Additionally, the rep-

resentative acrolein concentration identified in the review was below levels

used previously. In contrast, acrylonitrile harm increased due to higher

DRFs and concentrations found. For acetaldehyde, harm remained largely

unchanged over the past decade, suggesting no change despite new concen-

tration and dose studies.

Mold harm was not included in Logue’s analysis. The present work provides

initial concentration spores DALY-based harm estimates for this pervasive

indoor contaminant. Additionally, estimated harm caused by coarse partic-

ulate matter represents a novel contribution, as no previous DALY-based

quantifications of PM10−2.5 impacts were identified.

Contaminants varied in the range of GSDs covered. The variability (GSD)

in the harm estimates in this research is narrower than in Logue et al..

They reported large uncertainties in harm estimates due to assumptions

made in quantifying uncertainty. For epidemiology-based damage factors,

an uncertainty of 10 was assumed for PM2.5 and ozone mortality to broadly

span literature values, being coherent with expert judgement guides for as-

signing uncertainty factors (Rosenbaum et al., 2004). For toxicology, they

relied on uncertainties from Huijbregts et al. (2005), where interspecies

conversion, effect conversion, and non-cancer damage factors dominated.

This research aimed to reduce uncertainties by leveraging improved health

data. Damage factors were drawn directly from the 2019 Global Burden of

Disease study rather than arbitrarily wide literature ranges (IHME, 2022).

For toxicology, dedicated studies were consulted that report reduced un-

certainty factors reflecting increasing certainty in animal-to-human extrap-

olation, effect conversion, and non-cancer damage quantification. Further-

more, health effects data, as exemplified by PM2.5, has improved in both

robustness and precision over time. Regarding robustness, EPA Integrated

Science Assessments between 2009-2019 increasingly classified PM2.5 expo-

sure as having a “causal relationship” with mortality/morbidity, reflecting

growing strength of evidence (US-EPA, 2020b). For precision, the PM2.5

mortality risk estimate used by Logue et al. from earlier epidemiology had

an uncertainty factor of 1.027, while the WHO estimate used here has a

reduced uncertainty factor of 1.014, demonstrating increased precision.

To assess the validity and context of harm estimates, the literature on harm

estimates caused by indoor air contaminants (IACs) in dwellings was re-

viewed, focusing on Disability-Adjusted Life-Years (DALYs). Logue et al.

180



7.1. HARM FROM AIR CONTAMINANTS IN DWELLINGS

seminal work served as the basis for two other US studies (Aldred et al.,

2016; Fazli and Stephens, 2018). Three global/European studies (Braubach

et al., 2011; Morawska et al., 2013; Shan et al., 2022) followed a compar-

ative risk assessment approach using the population attributable fraction,

which is widely employed in Global Burden of Disease (GBD) studies (see

Table 7.2 and Figure 7.2).

The analysis revealed similar central tendency estimates for most con-

taminants, with overlapping variability across the results. Compared to

the studies in Table 7.2, the median estimates of harm are higher for

19 contaminants (PM10, PM2.5, formaldehyde, nitrogen dioxide, radon,

ozone, sulphur dioxide, acrylonitrile, naphthalene, benzene, limonene (d-

...), 1, 3-butadiene, carbon disulfide, vinyl chloride, methyl tert-butyl

ether, hexachlorobutadiene, 1, 1, 2-trichloroethane, 2-butoxyethanol, and

2-ethylhexanol). The median estimate of harm is lower for 12 contam-

inants (acrolein, 1, 1-dichloroethene, chromium Cr(VI), xylenes, toluene,

methylene chloride, methyl methacrylate, hexane, chloromethane, 2-

methoxyethanol, and mold). The median estimate of harm is similar

for 11 contaminants (crotonaldehyde(trans), acetaldehyde, carbon tetra-

chloride, styrene, 1, 2-dibromoethane, ethanol, cadmium Cd(II), 1, 2-

dichloroethane, tetrachloroethene, benzyl chloride, and 1, 1, 2, 2-TCE) and

1, 4-dichlorobenzene is bound by existing values.

Several factors contribute to variability when comparing harm estimates

across different studies, including: (i) Choice of concentration-response

function, (ii) Health outcomes used, (iii) Central tendency metrics re-

ported, (iv) Spatial and population resolution, (v) Geographic scope cov-

ered, (vi) Concentration estimates, (vii) Methodological frameworks fol-

lowed. While the disability-adjusted life year facilitates comparison, un-

derlying differences in assumptions, data, and methods across studies lead

to uncertainty. Each author’s approach regarding the factors above affects

results.

The findings of all studies considered are in Figure 7.2. This analysis found

that the total harm caused by all the contaminants considered was not

implausibly high, despite the possibility of 100% of the population being

affected. Other studies have attempted to address this issue by adjusting

the beta parameter or adding a lower percentage of exposure based on the

time people spend indoors or at home. However, there is no consensus in

the literature on this matter. Despite current GSDs being narrow, are not
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7.1. HARM FROM AIR CONTAMINANTS IN DWELLINGS

Figure 7.2: Studies on harm of air contaminants in dwellings using DALYs.
Median & GSD. Black, current work; Green-triangle= Logue et al., Blue-triangle= Fazli and

Stephens, Red-triangle= Morawska et al., Cian-triangle= Aldred et al., Magenta-triangle= Shan et al., Yellow-

triangle= Braubach et al.; IHME.
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implausible, as current GBD results indicate an even narrower ranges.

7.1.1 Harm from radon exposure

The estimated harm from radon is 34DALYs/105 person/year, derived from

the pooling of available epidemiological and toxicological data. This esti-

mate falls within the same order of magnitude as previous global harm

assessments that encompass all age groups and both sexes.

Residential radon exposure contributed to 24DALYs/105 person/year of

lung cancer cases globally in 2019. This estimation is based on the average

daily exposure to indoor air radon gas levels in homes, primarily associated

with a relative risk of 1.1 (95% CI: 1.0–1.2) per 100 Bq/m3 increase in

exposure (IHME, 2019, 2022).

A global burden assessment for lung cancer attributed to residential radon

exposure during 1990–2019 resulted in a central tendency estimate of

23DALYs/105 person/year, as reported by Shan et al. (2022) using the

Global Burden of Disease Study health statistics. The similarities between

these estimates arise from the usage of comparable risk estimates and ex-

posure concentrations, with the primary distinction lying in the method-

ological approaches employed to quantify and report harm estimates.

Morawska et al. (2013) indicated that the European BoD associated with

household radon exposure ranged from 60 to 90DALYs/105 person/year in

2011. Over the period from 1990 to 2019, the global lung cancer burden

attributable to residential radon exposure has exhibited a decline due to

the implementation of effective interventions aimed at reducing residential

radon levels (Shan et al., 2022).

7.1.2 Harm from mold exposure

For the contaminants discussed in the previous section, all but one had

harm estimates allowing for a harm intensity to be reversed-engineered,

except mold because, unlike previous analyses that relied on visual mold

presence (Braubach et al., 2011) this assessment of mold burden incor-

porates the measured concentration of Cladosporium mold spores. Mold
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emerges adding 0.2% to the overall harm, and its significance is under-

scored by its widespread presence in thousands of dwellings.

Exposure to mold contaminants has been shown to have a substantial

impact on health, as highlighted by the WHO Europe Asthma burden

study, which measured DALYs and deaths in 45 European countries for

children (age 0-14) affected by indoor mold and dampness-related asthma

(Braubach et al., 2011). The burden from damp and moldy housing was

estimated at 40DALYs/105 person/year (GSD 2.4). The median harm es-

timated for mold in the present research considering Cladosporium mold

spores was 4DALYs/105 person/year (GSD 2.3). Remarkably, the esti-

mated harm from damp and moldy housing indicates that mold can be

a higher priority in homes than radon (34DALYs/105 person/year) and

ozone (10DALYs/105 person/year), becoming the fifth most harmful con-

taminant in dwellings, ranking after formaldehyde (See Contaminants of

Concern in Section 8.1).

It is essential to address the differences between present harm estimate

and the WHO estimate, and explore the reasons behind such a one-order-of-

magnitude discrepancy. Braubach et al.’s reported burden being the higher

of the two (Figure 7.2).

The primary divergence lies in the methodology used to define exposure

to mold in dwellings. While the WHO relies on non-destructive (primarily

visual) observation of mold as an indicator of microbial growth based on

visible mold and/or mold odor, the present work uses actual concentrations

of mold using colony-forming units (CFU) specifically for mold spores of

the genus Cladosporium. This approach may lead to an underestimation

of mold harm due to the consideration of a single genome of mold in the

environment. Furthermore, damp and moldy housing conditions likely in-

volve multiple exposures to different spore genomes and its influenced by

the humidity effect that may contribute to the development of asthma,

potentially resulting in an overestimation of asthma-related health effects.

This discussion is necessary to better understand the relationship between

qualitative and quantitative indicators of mold exposure and the corre-

sponding quantification of harm. The current approach is not meant to

represent an improved approach to evaluate mold in homes, rather ex-

ploring these aspects will provide insights into the accurate assessment of

mold-related health risks and help bridge the gap between qualitative ob-

servations and quantitative measurements in mold exposure assessment.
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7.1.3 The harm intensity from coarse PM

The harm intensity for the coarse fraction was estimated once the harm

from each fraction was quantified, and the concentrations of the other PM

fractions were known. Median harm intensities per 100,000 population,

uncertainty estimates expressed through the GSD, and the best estimate for

all-cause effects are shown in Table 7.3 (see Appendix 21 for full descriptive

statistics).

In the present analysis, the harm from PM10−2.5 that is not covered by

PM2.5 is explained by the coarse fraction, suggesting an effect on all-cause

mortality from chronic exposure to this fraction. While there are still limi-

tations and uncertainties in the health evidence base for long-term PM10−2.5

exposure and all-cause or cause-specific mortality, epidemiologic studies re-

porting positive associations suggest there is a relationship between long-

term exposure to this fraction and all-cause mortality (specifically cardio-

vascular and respiratory morbidity and metabolic disease) (Sacks et al.,

2022).

Table 7.3: Epidemiology-based pseudo all-cause Harm Intensity for the
coarse fraction, HIPM10−2.5 , DALY/µg/m3/105 person/year.+

Contaminant Median∗ GSD Best estimate of all-
cause

PM10−2.5 3.8 4.3
Pseudo All-cause mortality

(IHD+DM+Str+COPD+LRI+LC)

Abbreviations. LC: Lung Cancer; COPD: Chronic Obstructive Pulmonary Disease; LRI: Lower
Respiratory Infections; IHD: Ischaemic Heart Disease; DM: Diabetes Mellitus; Str: Stroke.

+ Values to 2 Sig. Figs.

Guidelines are still proposed based on PM10−2.5 exposures to continue to

provide protection against effects associated with chronic exposure to tho-

racic coarse particles (PM10). Considering the harm attributable to the

coarse fraction helps to highlight that PM2.5 is the main driver of the health

burden from particulate matter (Cohen et al., 2017; WHO, 2021).

A lack of specific test methods or epidemiology for PM10−2.5 exists.

PM10−2.5 comprises PM2.5 plus PM10−2.5. This work calculated PM2.5 and

PM10−2.5 harm intensities based on specific evidence per PM size. PM10−2.5

HI gets determined by assuming additive harm extends across sizes. This

relies on additive harm across fractions and no nonlinear interactions, which

is reasonable but requires verification. A caveat is, while causal all-cause

mortality PM10−2.5 epidemiology does not exist currently, estimation is pos-

186



7.2. PLAUSIBILITY AND IMPLICATIONS

sible.

7.2 Plausibility and Implications

Some contaminants pose a higher or lower level of harm than previously es-

timated. This change is not solely attributed to the methodology, because

it is similar to those followed in previous studies of harm in dwellings (Al-

dred et al., 2016; Fazli and Stephens, 2018; Logue et al., 2012; Morawska

et al., 2013; Murray et al., 2020; Shan et al., 2022).

Acrolein, benzene, formaldehyde, radon, and ozone have data from both

epidemiology and toxicology studies. However, the most harmfull contam-

inants PM2.5, PM10−2.5, and nitrogen dioxide are only characterized by

epidemiological data. This highlights a key need for additional toxicolog-

ical research into these pollutants to improve the understanding of their

health effects and provide a more comprehensive and robust estimate of

the harm they cause.

The analysis of harm caused by the coarse fraction suggests that chronic

exposure to it has a considerable impact on health (Sacks et al., 2022; US-

EPA, 2020b). Nevertheless, the analysis also shows that PM2.5 contributes

more to the health burden.

The total harm for all 44 independent indoor airborne contaminants has

a median value of 2,200DALYs/105 person/year (GSD 1.6). This is

roughly 5 times higher than the Global Burden of Disease (GBD) from

secondhand smoke in dwellings of 480DALYs/105 person/year, double

the GBD from PM2.5 Household Air Pollution (HAP) and alcoholism of

1,200DALYs/105 person/year, and a bit lower than the global burden from

smoking 2,600DALYs/105 person/year (Murray et al., 2020).

The burden from the 44 contaminants, estimated at 2,200DALYs/105 per-

son/year, represents approximately 7% of the total GBD, which is esti-

mated at 33,000DALYs/105 person/year (GSD 1.1) (Murray et al., 2020).

Direct validation of this figure is lacking in existing studies. To address this

gap, an approximation is made based on several factors: 1) the reported

burden of HAP is 1,200DALYs/105 person/year according to the GBD,

with PM2.5 emitted from solid fuels for cooking being the contributor, 2)

analysis of Table 7.1 suggests that PM2.5 accounts for 65% of the total
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household burden, and 3) applying this relationship to the overall HAP

burden suggests that the combined burden from all contaminants may be

around 1,850DALYs/105 person/year, constituting 5.5% of the total GBD

(1,850DALYs/105 person/year out of 33,000DALYs/105 person/year) This

is approximately similar to the value of 7% and provides some reassurance

of its plausibility.

7.3 Summary

This chapter presented a health-centered approach to quantify chronic

harm caused by indoor air contaminants using the Disability-Adjusted

Life-Year (DALY). Chronic harm is estimated from the harm intensities

(Section 5) and representative concentrations in dwellings of 45 contami-

nants (Section 6). The most harmful contaminants in dwellings are PM2.5,

PM10−2.5, NO2, formaldehyde, radon, and O3, accounting for over 99% of

total median harm of 2,200DALYs/105 person/year. The chronic harm

caused by all airborne contaminants in dwellings accounts for 7% of the

total global burden from all diseases (See Table 8.10 in next chapter for an

expanded comparision).
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8.1 Contaminants of concern in dwellings

To implement the IAQ Procedure effectively, designers must know the Con-

taminants of Concern (CoCs). This section addresses the critical issue of

determining the CoCs that practitioners should consider. The harm at-

tributable to chronic exposures was calculated using the representative in-

door concentrations (Table 6.4) and the harm intensities (Table 5.13). The

results are used to rank the contaminants by harm and identify CoCs. This

rank can then be used to regulate air quality in dwellings.

Table 7.1 showed the estimated chronic harm (DALYs/105 person/year)

from exposure to the 45 contaminants, in descending order. PM2.5,

PM10−2.5, nitrogen dioxide, formaldehyde, radon, and ozone are ranked

first with estimated median of 1600 (GSD 1.3), 130 (GSD 4.5), 120 (GSD

1.8), 120 (GSD 2.0), 34 (GSD 1.8) and 10 (GSD 2.7) DALYs/105 person-

/year respectively; higher than the remaining contaminants by at least one

order of magnitude (see Figure 8.1).

The total harm for all 44 contaminants at their representative concentra-

tions gives a total median harm of 2,200DALYs/105 person/year (GSD

1.6). PM2.5, PM10−2.5, nitrogen dioxide, formaldehyde, radon, and ozone

account for 99% of the total harm caused by typical indoor air contam-

inants. Therefore, they should be considered Contaminants of Concern,

CoC for dwellings (Section 2.5.3).

PM
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Figure 8.1: Harm caused by contaminants of concern. Median (bar) &
GSD (error bar). Percentage contribution for total harm.
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The contaminants of concern in dwellings, PM2.5, PM10−2.5, nitrogen diox-

ide, formaldehyde, ozone, and radon, each contribute 67%, 17%, 6%, 6%,

2%, and 1% to the median total harm, respectively. This shows that it

is possible to influence the air quality in a dwelling by addressing only a

few contaminants. This finding is important for building professionals and

regulatory bodies.

The value of an avoided DALY for very high HDI countries fits a proba-

bilistic distribution with a mean of 2016$ 69,499, ranging from $21,509 to

$168,720 (see Table 2.8). This has a median value of approximately $55,000
(2016 US dollars) per avoided DALY (after fitting a log-normal distribu-

tion). This monetary value per DALY is used to calculate the costs of

harm due to exposure to the contaminants of concern (CoCs) in dwellings.

Table 8.1 shows the annual monetary losses in 2016 dollars due to harm

from CoCs in dwellings. Additionally, the median value per annual average

concentration of the CoC in a home per person per year in 2016 dollars is

also calculated ($/µg/m3).

Table 8.1: $ lost annually due to the CoCs in dwellings per person+

Contaminant Concentrationa Harmb $ lost GSD $/µg/m3

PM2.5 26 1600 850 2.1 33

PM10−2.5 35 130 71 5.3 2

Nitrogen dioxide 22 120 67 2.5 3

Formaldehyde 28 120 65 2.6 2.3

Radon 78++ 34 19 2.5 0.24++

Ozone 7.3 10 5.5 3.2 0.75
a µg/m3

b DALYs/105 person/year
+ Values to 2 Sig. Figs.
++ Bq/m3

If the cost of applying control strategies for each contaminant is less than

the monetary value per DALY, then these strategies can be explored as

potentially cost-effective interventions for homes. This analysis does not

yet consider offsets such as additional energy use or societal costs. Evalu-

ating the cost-effectiveness of potential control strategies is the first step in

understanding the economic implications of mitigating harm from indoor

contaminants.

Interestingly, significant global efforts have been dedicated to reducing

radon exposure, with evidence spanning at least two decades of research on

this topic. Recent findings have addressed the cost-effectiveness of such ef-
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forts (Denman and Phillips, 1998; Gaskin et al., 2019; Khan et al., 2019).

However, as shown in Table 8.1, the level of harm associated with radon

is substantially lower compared to contaminants such as PM2.5, PM10−2.5,

NO2, and HCHO. Therefore, one could argue that the resources allocated

to mitigate radon exposure may be disproportionate relative to the poten-

tial health benefits, especially when contrasted with the more significant

burdens imposed by other indoor air contaminants.

When considering ventilation standards to protect public health, certain

contaminants require focus based on their widespread presence and harm

potential. Past reviews have highlighted fine particulate matter, mold,

formaldehyde, acrolein, environmental tobacco smoke, ozone, and radon as

key chronic exposure risks in indoor environments (Fernandes et al., 2009;

Logue et al., 2012). The hazards of tobacco smoke and radon may be more

widely recognized and limited to a fraction of homes. PM2.5, nitrogen

dioxide, and formaldehyde are prevalent in dwellings and harmful to its

occupants yet, there may be less recognition of their impacts.

Much of the literature considers ventilation’s contribution to IAQ. While

dilution ventilation is an effective strategy, not all CoCs react similarly

to ventilation and dilution. HCHO and PM can be efficiently removed

or diluted through ventilation due to their primarily area-based emissions,

dispersing easily indoors. However, others like radon or certain gases from

localized sources, such as combustion appliances, may not respond as read-

ily to ventilation, requiring tailored removal strategies like filtration, ven-

tilation or, chemical filtration (carbon/sorbents) (Table 8.2).

Mechanical filtration is the primary method for removing particles. High

efficiency particle arresting (HEPA) filters are used by professionals. Fur-

thermore, ASHRAE 241 (Sherman and Jones, 2023) requires a minimum

filtration efficiency of Minimum Efficiency Reporting Values (MERV) 11A

or ISO 16890 ePM2.5 50%. ASHRAE 62.2 currently mandates a minimum

efficiency of MERV 11. It also gives credit for using higher efficiency fil-

ters. HEPA filters are over 95% efficient in removing particles of all sizes

(Kelly and Fussell, 2019). Therefore, meeting PM2.5 filtration standards

should also remove PM10−2.5 particles. NO2 and O3, which are associated

with outdoor air infiltration into dwellings, can be effectively controlled

through adsorption using activated carbon (Kelly and Fussell, 2019).
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Table 8.2: Contaminants of concern and Control Strategies

Contaminant Sources Main Strategy

PM2.5 Formed from combus-
tion (cooking, heating,
smoking), outdoor air,
reactions with gases.

Ventilation and mechanical
filtration efficacious for re-
moval.

PM10−2.5 Resuspended dusts,
indoor activities like
cleaning.

Enhanced filtration and dust
control help reduce levels.

NO2 Primarily of outdoor
origin, some gas appli-
ances.

Dilution ventilation effective,
gas stove replacements bene-
ficial. Adsorption (activated
carbon)

Formaldehyde Off-gassing from mate-
rials/furnishings.

Source control via low-
emission materials impacts
levels. Ventilation.

Radon Soil/rock source. Building shell mitigation and
ventilation dilution are pri-
mary controls.

Ozone Primarily of outdoor
origin, some electronic
devices.

Dilution via ventilation low-
ers indoor levels. Air cleaning
could assist. Adsorption (ac-
tivated carbon)

8.2 Hazard assessment and monetary costs

analysis for the contaminants of concern

This hazard assessment quantifies the harm of the contaminants of concern

at recommended Exposure Limit Values, ELVs. This includes computing

a regulated harm by multiplying suitable ELVs with respective harm in-

tensities, which allows for exploring Regulated Harm Budgets (RHBs).

Additionally, assessing a relative harm, examining the ratio between a

benchmark contaminant’s harm and that of each individual contaminant.

Lastly, determining an equivalent harm threshold, representing the thresh-

old needed to yield the same harm as the benchmark contaminant. Only

CoCs accounting for 99% of harm are evaluated in this section. Other con-

taminants have a negligible impact relative to the CoCs. The goal is to

identify and understand the appropriateness of the ELVs. The assessment

is divided into two parts, the first focusing on the WHO air quality guide-

lines, and the second exploring ELVs from other cognizant authorities.
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8.2.1 Part 1. WHO Global air quality guidelines

Recommended ELVs vary between regulatory bodies (see Table 2.4 in

Chapter 2). Chronic World Health Organization (WHO) thresholds, are

used for the Part 1 of this hazard assessment. For formaldehyde, 100 µg/m3

is the threshold recommended to protect the general population from acute

and chronic health effects in occupied buildings (WHO, 2010, 2021).

Fine particulate matter (PM2.5) serves as the benchmark contaminant for

comparing harm across different contaminants. PM2.5 is a major contrib-

utor to harm in dwellings among the CoCs. Additionally, it stands out as

one of the most extensively studied contaminants in air pollution literature

(Sections 2.1.1.1 and 2.2.1.1). While the choice might seem somewhat ar-

bitrary, selecting a specific contaminant is necessary, and PM2.5 proves to

be a suitable candidate for this purpose.

Harm quantification for the CoCs based on their recommended WHO

thresholds is shown in Table 8.3. An annual monetary cost can be at-

tributed to the regulated harm shown in this Table. In this dissertation, a

median of 2016$ 55,000/DALY is used. For PM2.5 at 5 µg/m3, the median

annual cost is $160/person/year ($16 million/105person/year). Further-

more, at the upper bound of the 95% CI the value reaches $510/person/year
(Table 2.8).

The World Health Organization thresholds should all lead to the same

harm. However, the regulated harm vary substantially across contami-

nants: (i) PM2.5 threshold of 5 µg/m3 allows up to 300DALYs/105 per-

son/year, establishing a benchmark for comparison. (ii) The PM10

threshold of 15 µg/m3 allows for 450DALYs/105 person/year, encom-

passing PM2.5 harm. This value is seen as protective against PM10−2.5

with 150DALYs/105 person/year. Further consideration is warranted.

(iii) Nitrogen dioxide threshold caps DALYs at 57DALYs/105 person-

/year, below the PM2.5 benchmark. (iv) Formaldehyde threshold re-

sults in 430DALYs/105 person/year, higher than the PM2.5 benchmark.

The short-term guideline may not adequately protect from chronic expo-

sures. (v) Ozone and radon also remain below the PM2.5 benchmark, at

78DALYs/105 person/year and 44DALYs/105 person/year respectively.

While PM2.5 is a significant contributor to indoor air pollution and poses

substantial health risks, relying solely on it as the benchmark may not fully
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capture the overall health impacts. Considering a broader range of contam-

inants and their additive effects provides a more comprehensive assessment

of health risks (more on this in Sections 8.2.1.1 and 8.3).

Using PM2.5 as a benchmark reveals inconsistencies in the regulated harm

calculated from WHO thresholds. Contaminants with higher DALY ra-

tios (relative harm) indicate guidelines permitting disproportionately more

harm than fine PM’s limit. Conversely, lower DALY ratios suggest overly

stringent thresholds. This raises concerns about inadequate protection of

public health.

This is not suggesting that thresholds should be based on a regulated harm

being the unity (1DALYs/105 person/year) because, while safeguarding

health is critical, excessively low limits may be impractical to implement,

unachievable in real-world conditions, or financially burdensome. A rela-

tive harm of 1 in Table 8.3 for all contaminants means that they are all

regulating the same harm.

Optimizing thresholds by aligning allowed harm could balance health pro-

tection and feasibility. This would lead to standards that benefit public

well-being and promote compliance. There is a compelling need to re-

evaluate guidelines to determine if they strike the right balance between

protection and attainability. Adjusting disproportionate ratios could result

in more effective indoor air quality standards.

To align with the principle that all DALYs have equal significance, WHO

thresholds considered here warrant re-evaluation (see Table 8.3): (i) The

PM10 limit could be rethought considering that includes the harm from

PM2.5. (ii) The formaldehyde guideline may need lowering to 70 µg/m3 to

match the PM2.5 benchmark. (iii) Nitrogen dioxide could be raised to 53

µg/m3 to permit 300 DALYs. (iv) Ozone and radon limits could also be

adjusted to allow equivalent regulatory harm as PM2.5.

Optimizing thresholds so that all threshold led to the same regulated harm

would promote a more equitable approach to public health protection. Fur-

ther analyses on the feasibility and health trade-offs of revised limits is still

needed. But aligning permitted harm creates a principled starting point

for determining appropriate chronic exposure guidelines.
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8.2.1.1 Regulated Harm Budget using WHO guidelines

A Regulated Harm Budget utilizes existing chronic exposure limit values

of the CoCs and their corresponding harm intensities to quantify harm

(regulated harm). The RHB sums the harm permitted at each guideline

value for five CoCs (as per for the harm budget Section 8.3). It can also

be conceptualized as an IAQ index.

Proposed in absolute terms, the median of the RHB representing the total

allowed harm by the WHO thresholds (WHO-RHB), rounded to one signif-

icant figure, is 1000DALYs/105 person/year (GSD 1.5) (Table 8.3). In this

context, using one significant figure makes sense because the thresholds are

expected to vary. Consequently, it will cause the output to fluctuate, most

likely converging around the same order of magnitude.

The median WHO-RHB of 1000DALYs/105 person/year exceeds the harm

budget (Section 8.3). The primary driver is the formaldehyde guideline,

which is four times higher than the concentration used in the harm bud-

get’s reference scenario. This guideline is also the most uncertain input, as

it is based on acute rather than chronic effects. Discussions are underway

to lower the formaldehyde threshold by an order of magnitude (HCSP’s En-

vironmental Health Expert Committee (CSRE), 2019), which would reduce

the RHB below the harm budget.

Ideally, exceeding the WHO-RHB would indicate guidelines are not protec-

tive enough for typical exposures. However, this conclusion is uncertain due

to high variability in thresholds across cognizant authorities. For example,

using American or European Union guidelines instead of WHO would al-

ter the standard budget substantially. To shed light on this conundrum,

the following section expands to include ELVs proposed by cognizant au-

thorities for the CoCs in a sensitivity analysis of limit values for regulated

harm.

8.2.2 Part 2. Sensitivity analysis using ELVs from
cognizant authorities

A comprehensive database of ELVs from cognizant authorities worldwide

was recently presented by Dimitroulopoulou et al. (2023). This database,

hosted by the International Society of Indoor Air Quality and Climate
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(ISIAQ) STC34 Indoor Environmental Quality (IEQ), comprises 844 en-

tries. Given the chronic focus of the present research, entries in the

database were categorized based on averaging times, denoted as chronic

(>24h, annual), acute (<24h), and no data. Entries without exposure pe-

riods were retained by assuming applicability across all timeframes. Only

ELVs appropriate for residential environments are considered here. The

ELVs for the CoCs in dwellings were used to calculate their regulated harm.

When multiple values were provided by the same agency, accounting for

both 24-hour and annual exposures, each estimate was considered. Hence,

some agencies in the tables feature more than one harm estimate. All ELVs

specified by cognizant authorities/countries, the corresponding median reg-

ulated harm, and the 2016$ lost annually due to such harm are presented

in Tables 8.4, 8.5, 8.6, 8.7, and 8.8, for PM2.5, NO2, HCHO, O3, and radon,

respectively. The WHO thresholds are included for reference.

For PM2.5, there are 17 entries in the database (after deleting unclear data

inputs), resulting in 10 different harm values due to multiple cognizant

authorities regulating at the same ELV. The regulated PM2.5-attributable

harm ranges from 480 to 3000DALYs/105 person/year. Comparing these

ELVs to the WHO threshold in Table 8.3, all exceed it, implicitly allowing

more harm. The values from Table 8.4 can be used to assess the value of in-

terventions aimed at reducing PM2.5 concentrations to the WHO threshold

(Table 8.3). Reducing the annual PM2.5 ELV from 50 to 5 µg/m3 results

in an annual monetary benefit of approximately $1,900/person/year. At

the upper bound of the 95% CI, this value increases to $5,900/person/year.
The same approach can be applied to evaluate interventions for other con-

taminants as presented in the respective tables.

Concerning NO2, the database contains 10 entries, resulting in 5 distinct

harm values due to overlapping ELVs regulated by different authorities.

Regulated NO2-attributable harm ranges from 1100 to 110DALYs/105 per-

son/year. Similarly, all these ELVs exceed the WHO threshold in Table 8.3,

indicating a tolerance for higher harm levels.

For HCHO, the database includes 18 entries, that derive into 9 regulated

harm values due to regulatory discrepancies. An ELV proposed by the

CA OEHHA is added to this list given its relevance. Regulated HCHO-

attributable harm ranges from 520 to 39DALYs/105 person/year. Notably,

while six countries report the same threshold as WHO (Table 8.3), three

countries regulate harm at one order of magnitude lower.
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Table 8.4: ELVs (µg/m3), regulated harm (DALYs/105 person/year) and
2016$ lost ($/person/year) for PM2.5. Highest to lowest median.+ !

Cognizant authorities/Countries ELV Harm $lost
China 50 3000 1600

Lithuania 40 2400 1300

Singapore 37.5 2300 1300

United States of America 35 2100 1200

Finland, Germany, South Africa,
Thailand

25 1500 820

Norway, Spain 20 1200 660

ASHRAE*, Norway, WELL Standards** 15 910 500

Finland, South Africa 10 600 330

United States of America 9 540 300

Norway 8 480 260

WHO 5 300 160
+ Values to 2 Sig. Figs.
** see https://standard.wellcertified.com/air/air-quality-standards
* ASHRAE 62.2-2022, Table E-1
! ELVs presented in this section were extracted from the ISIAQ database. However, some database

inputs appear unclear or questionable, like ASHRAE’s 35 µg/m3 input for the United States,
which is not included due to ambiguity. A thorough review of the database inputs is warranted
for future work.

Table 8.5: ELVs (µg/m3), regulated harm (DALYs/105 person/year) and
2016$ lost ($/person/year) for NO2. Highest to lowest median.+

Cognizant authorities/Countries ELV Harm $lost
Spain 200 1100 600

ASHRAE, China 100 570 310

India, Lithuania, Norway, South
Africa, United Kingdom

40 230 130

Canada 21 120 66

France 20 110 60

WHO 10 57 31
+ Values to 2 Sig. Figs.

Regarding O3, the database contains 8 entries, resulting in 4 distinct harm

values due to varying ELVs set by different authorities. Regulated O3-

attributable harm ranges from 260 to 27DALYs/105 person/year. Most

authorities/countries regulate at higher thresholds compared to the WHO

(Table 8.3). O3 presents a unique challenge due to the scarcity of chronic

ELVs, with the WHO threshold being relatively new. The database in-

cludes 24-hour ELVs for Poland and Thailand, while the rest are as-
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Table 8.6: ELVs (µg/m3), regulated harm (DALYs/105 person/year) and
2016$ lost ($/person/year) for HCHO. Highest to lowest median.+

Cognizant authorities/Countries ELV Harm $lost
Italy, Netherlands 120 520 290

Denmark, Germany, Japan, Slovenia,
Thailand

100 430 240

Finland, Poland 50 220 120

ASHRAE 33 140 77

WELL Standards 32 140 77

India 30 130 71

Poland 20 87 48

United States of America 19 83 46

Bulgaria, France*, Lithuania, United
Kingdom

10 43 24

CA OEHHA 9 39 21

WHO 100 430 240
+ Values to 2 Sig. Figs.
* The database shows France having the 100 µg/m3 ELV. The table includes the more recent 10

µg/m3 ELV found in the bibliography, given its relevance.

sumed for chronic exposure. Current Chinese indoor ozone standards

of 160 µg/m3-1h and 112 µg/m3-8h do not significantly reduce mortali-

ties (Xiang et al., 2019). Much lower indoor ozone guidelines are needed.

Xiang et al. (2019) suggests that a 1-h standard of 10 µg/m3 could reduce

premature mortalities by 83%. Applying the harm intensity of ozone to this

1-h ELV results in 13DALYs/105 person/year, this is lower than all other

regulated harm shown in Table 8.7. Although using the chronic harm in-

tensity for an acute threshold is not ideal, it provides a preliminary insight

and underscores the need to explore acute harm intensities (Section 8.8).

For Rn, there are 18 entries in the database, resulting in 5 unique harm val-

ues due to regulatory variations. Regulated Rn-attributable harm ranges

from 180 to 44DALYs/105 person/year. Similarly to O3, most authorities/-

countries regulate at higher thresholds compared to the WHO (Table 8.3).

As discussed in Section 7.1.2, mold could be considered a Contaminant of

Concern in dwellings, given the harm estimates by Braubach et al. (2011).

Therefore, its ELVs are also explored here. Based on the same database,

Belgium, Finland, France, Singapore, and Spain have ELVs for mold, mea-

sured in CFU/m3, with some specifically addressing Cladosporium. These

ELVs range from 50 to 1000 CFU/m3, resulting in harm estimates of 1.3
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Table 8.7: ELVs (µg/m3), regulated harm (DALYs/105 person/year) and
2016$ lost ($/person/year) for O3. Highest to lowest median.+

Cognizant authorities/Countries ELV Harm $lost
Spain 196 260 140

ASHRAE, Poland, Slovenia, WELL
Standards

100 130 71

Thailand 98 130 71

India 50 67 35

Finland 20 27 15

WHO 60 78 43
+ Values to 2 Sig. Figs.

Table 8.8: ELVs (Bq/m3), regulated harm (DALYs/105 person/year) and
2016$ lost ($/person/year) for radon. Highest to lowest median.+

Cognizant authorities/Countries ELV Harm $lost
Slovenia 400 180 99

Estonia, EU, Finland 300 130 71

Canada, China, Ireland, Latvia, Nor-
way, Spain, Sweden, Finland

200 88 48

Romania 140 62 34

Belgium, Denmark, Russia, South
Africa, United Kingdom

100 44 24

WHO 100 44 24
+ Values to 2 Sig. Figs.

to 26DALYs/105 person/year. The median harm of 4DALYs/105 person-

/year found in this research is lower than the regulated harm for Belgium

but higher than that for the other countries.

The variability in regulated harm among contaminants raises concerns

regarding the effectiveness of current IAQ building recommendations in

protecting public health. Moreover, significant discrepancies exist be-

tween different contaminants. For instance, a residential building in

the UK may fully comply with formaldehyde guidelines (preventing

43DALYs/105 person/year, Table 8.6), yet allow NO2 levels associated with

230DALYs/105 person/year (Table 8.5). The sensitivity analysis clearly

highlights doubts regarding the true preservation of occupants’ health when

meeting ELVs.

The range of values for a disability-adjusted life year typically spans from

201



8.2. HAZARD ASSESSMENT AND MONETARY COSTS ANALYSIS
FOR THE CONTAMINANTS OF CONCERN

$70,000 to $150,000. Table 8.9 presents the monetary savings that could

result from reducing the harm caused by the concentrations of contaminants

of concern in residences, from the levels found (Table 6.4) to the most

conservative exposure limit values discussed in Sections 8.2.1 and 8.2.2.

Although this table considers the most stringent ELVs, a critical question

remains: What level of harm should ELVs aim to consider acceptable,

tolerable, or allowable?.

Table 8.9: Saved $ costs by reducing concentrations in dwellings to most
conservative ELVs+

Contaminant Concentration in dwellingsa Lowest ELVa Averted $lostb

PM2.5 26 5 930

NO2 22 10 52

HCHO 28 9 76
+ Values to 2 Sig. Figs.
a µg/m3

b 2016$/person/year Note that PM10−2.5 does not appear in the table because no exposure limit
value has been established for this contaminant. Additionally, Rn and O3 are not included as
the concentrations typically found in residences are lower than the most conservative ELVs.

The assessment shown in Sections 8.2.1 and 8.2.2 serve as an initial eval-

uation of standards rather than a definitive benchmark. Several caveats

should be noted in this hazard assessment considering ELVs:

• While the database is relatively recent, ELVs may have been updated

for any of the entries since its publication.

• ELVs for certain agencies, such as CA OEHHA (the California Office

of Environmental Health Hazard Assessment), do not seem to appear

in the database. For example, CA OEHHA proposed a chronic ELV at

9 µg/m3 for HCHO, which was particularly included for its relevance.

• The ELVs used were specified in the database to apply to residential

environments. ELVs for non-residential, commercial, and industrial

environments were filtered out and do not appear in the hazard as-

sessment.

• Several entries were considered to apply to chronic exposures, and

this needs to be explicitly checked. Due to the exclusion criteria for

chronic exposure, some ELVs that are known in the IAQ community

were not shown. For instance, HCHO has ELVs from NIOSH (Na-

tional Institute for Occupational Safety and Health) at 20 µg/m3 for

8 hours; this is classified as an acute ELV (Chapter 2.2).
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• Upper concentration limits were proposed to avoid overestimations

of harm (Table 5.10), and some contaminants have ELVs higher than

that, so the regulated harm shown might be higher than what is

adequate.

• A RHB was calculated for the WHO thresholds. Equivalent calcula-

tions can be done exploring the cognizant authorities/countries that

have ELVs for all five CoCs and adding the regulated harm. All these

aspects can be explored in a focused work.

More research is needed on guideline development and resulting health

impacts, as there is considerable uncertainty in this arena. Nonetheless,

this approach provides a starting point for assessing the protectiveness of

indoor air quality regulations. While addressing the CoCs in dwellings is

sufficient from a harm perspective, extending the analysis to contaminants

prevalent in dwellings (Table 6.4) would enhance understanding and reveal

additional inconsistencies in limit values.

8.2.3 Comparing harm, risks, and monetary costs

Table 8.10 summarizes the harm, and the corresponding annual mon-

etary cost per person for various contaminants found in residen-

tial dwellings, as well as several environmental and behavioral risks

(IHME, 2022; Vardell, 2020). Among the indoor air contaminants, PM2.5

stands out as the most harmful, accounting for 1,600DALYs/105 person-

/year and nearly (2016)$ 900 per person annually. While present at lower

levels indoors, nitrogen dioxide, formaldehyde, and radon collectively cause

over 270DALYs/105 person/year and $150 in costs per person yearly. The

table also highlights the substantial global burdens imposed by risks out-

side of residences, such as road injuries, alcoholism, self-harm, interpersonal

violence, unsafe water, and unsafe sex, underscoring the importance of ad-

dressing both indoor and outdoor environmental hazards and behavioral

risk factors.

8.2.4 Harm intensity ratios relative to PM2.5

PM2.5 has a median harm intensity of 60 DALY/µg/m3/105 person/year.

Ratios are calculated by dividing this by each HIi for the other CoCs. This
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Table 8.10: Contaminant or risk, harm,
and costs summary+

Contaminant or risks Harma $costb

PM10 1900 1000

PM2.5 1600 880

PM10−2.5 130* 71

Nitrogen dioxide 120 66

Formaldehyde 120 66

Radon 34 19

Ozone 10 6

Other 39 contaminants 22 12

All 44 independent IACs 2200 1200

Harm Budget 580 320

Dampness and mould (WHO) 40 22

Carbon Monoxide (24-h)c 180 99

Road Injuries 1300 710

Alcoholism 1200 660

Self harm 630 350

Interpersonal violence 500 270

Unsafe water 930 510

Unsafe sex 600 330

+ Values to 2 Sig. Figs.
a DALYs/105 person/year
b (2016)$/person/year
c See Table 8.21
* Note that these values are medians and DALYs are log-
normally distributed. Therefore, subtracting the median
PM2.5 to the PM10 median does not equal the median
of PM10−2.5 (Section 3.6). Means add up with a minor
deviation (See Appendix Table 20)

gives: PM2.5: 1 Nitrogen Dioxide: ≈ 11 Formaldehyde: ≈ 14 Ozone: ≈ 46

Radon: ≈ 136 (µg/Bq)

These ratios serve as a relative “weight” for comparing harm intensities

to the PM2.5 benchmark. A value closer to 1 indicates similar harm per

unit concentration, assuming equal exposure time. For example, nitrogen

dioxide would need to be 11 times more harmful per µg/m3 to equal PM2.5’s

impact.

The ratios quantify each contaminant’s potency relative to fine particu-

late matter. This provides perspective on the harm intensities, giving a

principled basis for comparing the hazards posed by different pollutants.

The ratios contextualize the risks and highlight which contaminants are of

greatest concern on a per unit basis.
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8.3 Framework for a harm budget and ac-

ceptable IAQ

The selected six contaminants of concern (CoCs) in Section 8.1 can also

be used to regulate Indoor Air Quality (IAQ) in dwellings. One way of

doing this is to set a harm budget, this is, the distribution of harm that

is expected in an acceptable reference scenario. A reference scenario can

be a specific set of dwellings that all comply with a recognized indoor air

quality standard (Chan et al., 2019; Martin et al., 2020; Singer et al., 2020;

Zhao et al., 2021) and so the IAQ in those dwellings might be assumed to

be acceptable.

To quantitatively define Acceptable IAQ (AIAQ), reference concentrations

are required for the CoCs from the reference scenario (this is like the use

of archetypes). A reference scenario can be the Healthy Efficient New Gas

Home study (HENGH2020), described by Singer et al. (2020), that com-

prises a cohort of 70 Californian homes that comply with the mechanical

ventilation requirements of California’s building energy efficiency standards

(CalEnergy Code) (ASHRAE, 2022c; Commission, 2018). Thus, the con-

taminant concentrations in these homes reflect AIAQ defined by the current

CalEnergy Code. In this study, it is used as a reference scenario for the

concentrations of the CoCs. The harm budget is calculated by multiplying

the concentrations in these homes by their individual harm intensities (Sec-

tion 3.7). This sample may not be as large as is desirable but a cohort with

high statistical power where all dwellings comply with an IAQ standard

does not exist. This is the best available.

The HENGH2020 study is used as a reference for (median) concentrations

of PM2.5, formaldehyde, and nitrogen dioxide at 5, 23, and 9 µg/m3, respec-

tively (Singer et al., 2020). The logic behind using median concentration

for a CoC, rather than a higher percentile, aligns with ANSI/ASHRAE

62.2 defining requirements based on typical buildings without predeter-

mining allowable exceedances. Ozone and radon were not measured in

these dwellings and so guideline values of 40µg/m3 and 100Bq/m3 are

used as reference concentrations, respectively (Niculita-Hirzel, 2022). The

PM10−2.5 is not considered here because a guideline value does not exist.

A PM10−2.5 threshold could be inferred, but the goal here is to illustrate

the flexibility of the harm budget approach instead and not set new arbi-

trary thresholds that carry their own uncertainty. Furthermore, these three
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contaminants are likely to only contribute a small proportion of the total

harm. This is an imperfect compromise.

Homes complying with ASHRAE 62.2 in California exhibit a harm distri-

bution with a median of 600DALYs/105 person/year (GSD 1.2), rounded

to one significant figure. In this context, using one significant figure makes

sense because the reference concentrations are expected to vary. Conse-

quently, it will cause the output to fluctuate, ultimately leading to conver-

gence around the same order of magnitude. Since these dwellings meet the

existing ventilation standard, their central tendency harm logically repre-

sents an acceptable indoor air quality benchmark. The median harm in

62.2-compliant homes therefore anchors the proposed budget, aligning new

standards with current regulatory frameworks. Contaminants’ harm from

the typical median concentrations for dwellings given in Table 6.4 exceed

this budget by just under 4 times (Appendix A5.2 includes the conference

paper that first presented this assessment, which is updated to latest anal-

yses since).

Table 8.11: Dwellings’ Harm Budget,
DALYs/105 person/year.+

Contaminant Median GSD

PM2.5 300 1.2

Formaldehyde 100 2

Nitrogen dioxide 51 1.7

Radon 44 1.6

Ozone 54 1.9

Budget 580 1.2

Contaminants harm 2200 1.6

Exceeds 380%
+ Values to 2 Sig. Figs.

The harm budget assesses households conforming to the 62.2 standard by

calculating the resultant harm according to measured contaminant con-

centrations, yielding a distribution of harm for homes that comply with

the current 62.2 standard. The median of this distribution represents the

central tendency. Setting the harm budget equal to this median implies

equivalency as by definition half of dwellings meeting 62.2 will have a lower

harm and half will have higher harm. Anchoring to the median also avoids

predetermining an acceptable percentile of dwellings that may exceed the

harm benchmark. Ultimately the median provides a reasonable central
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harm level reflecting the performance of homes compliant with current

ventilation requirements.

Anchoring to the median harm level is expected to shift the distribution

of harm in homes towards central tendency compared to using an upper

percentile as the benchmark. Since harm follows a lognormal distribu-

tion, homes currently above the median will reduce harm to move closer

to the 50th percentile under a median-based budget. This contrasts with a

less protective outcome from choosing an upper percentile, like the 97.5th,

which would allow the distribution to remain more dispersed with more

homes exceeding that looser benchmark. Choosing a lower percentile will

be “more protective” but a 2.5th percentile will be mostly unrealistic.

A median-anchored benchmark compresses and shifts the lognormal harm

distribution leftwards versus an upper percentile target, cutting off the high

DALY (harm) half of that distribution and allowing (but not requiring) the

low-DALY part to use less ventilation. More homes clustered nearer the

median reflects improved health protection across a stock and population.

The harm budget approach used here is a proof-of-concept. It is likely that

concentrations, and hence the harm, in another cohort of dwellings com-

pliant with ASHRAE 62.2 could be higher or lower than those given here.

It is unknown how representative this cohort is of all other dwellings that

also conform to ASHRAE 62.2, but this is a starting point for evaluating

harm budgets, rather than a definitive solution. It is expected that the

magnitude of the budget will change over time as they are compared to

other (non-IAQ) hazards and as more houses are evaluated. The process

does show, however, several key factors that should be considered before

the harm budget approach can be implemented in standards.

8.3.1 Normalized harm budget

Transforming the harm budget from absolute to relative terms enhances its

relevance. This conversion involves expressing the absolute harm budget

as a unitless threshold of one (”1”). To achieve this, a weight is calcu-

lated for each contaminant as detailed in Section 3.7. The contaminants’

harm intensities (Table 5.13) are divided by a common scaling factor. The

specific common scaling factor is denoted by Equation 3.56 and equals

580DALYs/105 person/year. Table 8.12 shows the intermediary calcula-
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tions involving the normalized harm budget.

Table 8.12: Intermediary steps for calculating a normalized harm budget

CoCs Ci
a HIi

b Harmc Partial
weightd

Adjusted
partial
weightd

Common
scaling
factor
for 1c

Weight e

PM2.5 5 60 300 0.517 0.517 580 0.1

HCHO 23 4.3 100 0.172 0.172 580 0.0074

NO2 9 5.7 51 0.087 0.087 580 0.0098

O3 40 1.3 44 0.075 0.075 580 0.0022

Rn 100 0.44 54 0.093 0.093 580 0.00076

Harm Budget 580
a µg/m3; b DALY/µg/m3/105 person/year; c DALYs/105 person/year; d Unitless; e m3/µg

The following equation shows the normalized harm budget (nHB) for the

five CoCs considered:

nHB = WPM2.5CPM2.5 +WHCHOCHCHO

+WNO2CNO2 +WO3CO3 +WRnCRn ≤ 1 (8.1)

Where:

nHB : Normalized harm budget [-]

Acceptable IAQ : Less than or equal to 1

CPM2.5 : Median concentration of PM2.5 [µg/m3]

CHCHO : Median concentration of Formaldehyde [µg/m3]

CNO2 : Median concentration of Nitrogen Dioxide [µg/m3]

CO3 : Median concentration of Ozone [µg/m3]

CRn : Median concentration of Radon [Bq/m3]

WPM2.5 : PM2.5 weighting: 0.1 [m3/µg]

WHCHO : Formaldehyde weighting: 0.0074 [m3/µg]

WNO2 : Nitrogen Dioxide weighting: 0.0098 [m3/µg]

WO3 : Ozone weighting: 0.0022 [m3/µg]

WRn : Radon weighting: 0.00076 [m3/Bq]
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8.3.2 A connection to the ANSI/ASHRAE 62.2 stan-
dard

Expressing harm in DALYs enables a comparison against other common

hazards, better informing risk trade-offs. In November 2022, the ASHRAE

Standards Committee proposed adding a DALY-based path into Standard

62.2 on residential ventilation and IAQ. This attempt uses the representa-

tive concentrations (Table 6.4) and harm intensities (Table 5.13) from the

present work to quantify health effects. If adopted, it would represent a

major advancement for evidence-based IAQ management.

ASHRAE 62.2 compliance is required by California’s Title 24, from the

U.S. state building regulation, affecting over 300 million people. Integrating

health impact assessment is overdue for hazardous indoor pollutants, even

though it is routine for chemicals in the ambient air. The proposed DALY

path aligns indoor air with environmental-health best practice. This is

intended to address indoor air quality concerns beyond indoor CO2 levels

and stuffiness.

However, some considerations remain before fully implementing the harm

budget into ASHRAE 62.2. Limiting contaminants of concern to the most

harmful (PM2.5, formaldehyde, NO2) would simplify source control and en-

forcement. Radon is more impacted by buildings characteristics (such as

the depressurization of subfloors) and ozone is mainly an outdoor pollu-

tant but it can also be controlled by infiltration and ventilation. Different

ways of reducing CoCs were presented in Table 8.2. Figure 8.2 illustrates

the CoCs with a color scheme that highlights the aforementioned idea. It

combines PM2.5 and PM10−2.5 to show that PM10 accounts for 84% of the

harm.

The harm budget provides a template to progressively evolve guidelines

based on accumulating evidence, using health metrics to link exposures

to quantified impacts. While current knowledge has limitations, even

crude DALYs offer valuable new information versus arbitrary concentra-

tion thresholds alone. Overall, the pioneering adoption of health-based

equivalence principles in ventilation standards signifies important move-

ment toward fully performance and risk-driven guidelines.
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Figure 8.2: Colour scheme: Harm caused by contaminants of concern.
Median (bar) & GSD (error bar). Percentage contribution for total harm.

8.4 Contaminant ranking and prioritization

The DALY metric allows contaminants to be ranked by the harm they

cause and then prioritized. Other studies that ranked and prioritized air-

borne contaminants in dwellings used different qualitative or quantitative

methods.

Halios et al. (2022) identified a subset of high-priority VOCs based on

their adverse-effect endpoints and the number of studies reporting their

concentrations. The VOCs they prioritized were: trichloroethylene, tetra-

chloroethylene, 2-methylbutane, tetrachlorocarbon, benzene, ethylbenzene,

m + p-xylene, o-xylene, styrene, toluene, trimethylbenzene, acetone, ac-

etaldehyde, formaldehyde, naphthalene, α−pinene, and limonene. Sari-

giannis et al. (2011) used a combination of quantitative risk character-

ization metrics to prioritize ten major organic compounds, and highlight

benzene as the indoor contaminant of major concern, followed by formalde-

hyde, toluene, and xylenes. Azuma et al. (2016) ranked acrolein, nitrogen

dioxide, and benzene as the highest risk pollutants (from a list of 49 indoor

contaminants), utilizing the ratio of the contaminant threshold to its mea-

sured concentration (where a lower value signifies a higher level of health

concern).

These studies prioritized contaminants by interpreting risk using predefined

thresholds or chosen rules, whereas this research applied the DALY metric.
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Furthermore, they all follow a different prioritization method, whereas the

DALY provides a quantitative number that allows a direct comparison

between contaminants.

There is agreement with the three studies of Azuma et al. (2016); Halios

et al. (2022); Sarigiannis et al. (2011) in that formaldehyde and nitrogen

dioxide are CoCs. One study highlights that acrolein is important, but

this current study uses more up-to-date toxicology and epidemiology data

and finds that it is less important than previously thought. The three ref-

erences agree that benzene is a priority contaminant because it is highly

carcinogenic in humans. The harm intensity for benzene considers this

too, and when carcinogenic health effects are considered as DALYs, their

contribution to the total harm is negligible when compared to the other

contaminants (ranked the 17th most harmful contaminant in Table 7.1).

This indicates that the presence of benzene in dwellings is trivial at the

concentrations identified in this research (See Table 6.4). It may be neces-

sary to regulate the sources of carcinogens (35 of the 45 contaminants are

carcinogens) or their concentrations in air via IAQ standards if they are

expected to be high, under the premise that they induce harm.

8.5 Linear vs Log-Linear Modeling

The epidemiology-based approach to assessing air contaminants places sig-

nificant emphasis on the Concentration-Response (C-R) function, one of its

most critical yet uncertain parameters (Fantke et al., 2019). Various rel-

ative risk models have been proposed to estimate mortality due to PM2.5

exposure: the log-linear model, the Global Burden of Disease’s Integrated

Exposure-Response Model (GBD’s IER), and the Global Exposure Mor-

tality Model (GEMM) (Burnett and Cohen, 2020). Different outcomes

arise from each model, introducing uncertainty in the true magnitude of

PM2.5’s impact on mortality. Such extensive analysis remains absent for

other airborne contaminants.

In this research, a linear, no-lower-threshold, C-R model is utilized to assess

a range of contaminants for which epidemiological data are available. These

include acrolein (C3H4O), benzene (C6H6), mold, formaldehyde (HCHO),

nitrogen dioxide (NO2), ozone (O3), respirable particulate matter (PM10),

fine particulate matter (PM2.5), radon (Rn), and sulphur dioxide (SO2).

While a non-linear (frequently log-linear) C-R relationship could be applied
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across a broader range of ambient exposures, the assumption of linearity

is particularly appropriate for low-concentration regimes. This linearity is

corroborated by Life Cycle Impact Assessment (LCIA) studies of airborne

contaminants (Gronlund et al., 2015; Huijbregts et al., 2017; Van Zelm

et al., 2016), and further supported by chronic exposure assessments asso-

ciated with child asthma and HCHO (Lam et al., 2021), all-cause mortality

and NO2 (Henschel et al., 2013; Huangfu and Atkinson, 2020), mortal-

ity and O3 (with less certainty, (Agency, 2013)), all-cause mortality and

PM2.5(US-EPA, 2020b), lung cancer mortality and Rn (Gaskin et al., 2018),

and respiratory effects and SO2 (Johns and Linn, 2011).

The existing body of research on airborne contaminants in LCIA primar-

ily uses three effect models to determine the distance between the current

exposure state and the point of zero impact: marginal, average, and linear

effect models (Hauschild and Huijbregts, 2015; Heijungs, 2021). For the

purposes of this study, the theoretical minimal risk exposure level (TM-

REL) (Section 2.4.1) was set to zero for all studied contaminants. This ap-

proach aligns with the linear effect model. TMRELs greater than zero have

been proposed in previous research for various health outcomes (Burnett

and Cohen, 2020; Henschel et al., 2013; Turner et al., 2016), often based on

statistical considerations like the minimum or fifth percentile values in risk

assessments. However, no existing studies provide biological mechanisms

to explain why a certain level of pollution would have no effect.

The “epi-Harm” model accommodates both linear (Lin) and log-linear

(LogL) approaches, as demonstrated in Figure 8.3. Furthermore, Figure 8.4

outlines the C-R curve for PM10−2.5, obtained by subtracting values of other

PM fractions. The width of the x-axis represents the concentrations regime

for the contaminants. The upper limit of each x-axis was set as the 97.5th

percentile of the distribution of the concentration (Table 19).

Research on air pollution risk lacks definitive quantitative thresholds to

distinguish “low” from “high” concentrations of airborne contaminants.

Drawing upon the integrated exposure-response model for PM2.5, a range

of 30–50 µg/m3 is considered to signify high exposure (Burnett et al., 2014).

Although, the risk C-R plots of Burnett and Cohen (2020) also show flat-

tening of the curve at 100 or 300 µg/m3. This is influenced by each health

outcome considered.

A useful strategy for establishing concentration thresholds involves

analysing discrepancies between linear and non-linear exposure-response
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Figure 8.3: Comparison of harm from linear and log-linear C-R functions.
Median [solid lines] and 95%C.I. [dash lines]. (Black: Log-linear; Blue: Linear)
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Figure 8.4: Concentration – Harm plots for PM fractions. Median [solid
lines] and 95%C.I. [dash lines]. (Black: Log-linear; Blue: Linear).
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models in Figure 8.3. Instances where these models agree strongly could

denote a regime of low exposure. On the other hand, a divergence exceeding

a predetermined error margin could signify a transition to high-exposure

regimes where non-linear effects become significant. Therefore, the degree

of congruence between the models could serve as a data-driven criterion

for establishing thresholds for low and high concentrations. Figures 8.3

and 8.4 offer a qualitative estimation of the agreement between the two

concentration-response curves and the extent of the overestimation of harm

associated with the linear approach, particularly at higher concentrations.

In the assessment of agreement between Lin and LogL models for C-R

relationships, two error metrics are important: the absolute percentage er-

ror (APE) and the mean absolute percentage error (MAPE). Transitioning

from general assessment to a specific criterion, this study employs a MAPE

threshold of 10%—roughly equivalent to one standard deviation—to dis-

cern concentration ranges where the models are in better agreement. Here,

the log-linear model serves as the reference point because its C-R function

has an upper asymptote for high concentrations representing a saturation

effect.

Table 8.13 shows the MAPE values corresponding to the concentration

distribution of the contaminants in the epi-Harm approach. Formalde-

hyde and PM10 manifest the highest MAPEs, warranting further scrutiny.

Disparities between Lin and LogL are most apparent for Formaldehyde

and PM10, where the curve flattening in the LogL model causes a notable

divergence from the Lin model. These discrepancies suggest that the con-

centration ranges derived are suitable as thresholds for harm, particularly

when comparing the Lin model against the LogL counterpart.

Table 8.14 gives the APE when predicting harm at median contaminant

concentrations in residences, using both Lin and LogL models. For a major-

ity of the contaminants, the APE ranges between 0.77% and 12%, showing

alignment between the Lin and LogL models arround the 10%. However,

formaldehyde is an exception, demonstrating an APE of 21%. The high

APE for formaldehyde can be attributed to the large risk estimates as-

sociated with its related health outcomes—asthma and leukemia—which

diverge significantly from other contaminants. This discrepancy manifests

in the β term of the equation, leading to a flattened curve for formalde-

hyde. Therefore, while the Lin model provides estimates with minimal

deviation for most contaminants, caution is advised when applying it to
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Table 8.13: Comparison of Contaminant Concentration Ranges and Mean
Absolute Percentage Error (MAPE)

Contaminant Concentration distributiona,b MAPE (%)b

Acrolein (0 - 1.1) 4.5 (95%C.I. 1.8-10)

Benzene (0 - 3.4) 0.45 (95%C.I. 0.024-1.1)

Formaldehyde (0 - 34) 10 (95%C.I. 9.6-12)

Mold (0 - 240) 1 (95%C.I. 0.27-2.9)

Nitrogen dioxide (0 - 32) 1.7 (95%C.I. 0.73-2.8)

Ozone (0 - 28) 0.94 (95%C.I. 0.28-2.6)

PM10 (0 - 89) 9.1 (95%C.I. 8.2-9.6)

PM2.5 (0 - 37) 7.4 (95%C.I. 7.1-7.9)

Radon (0 - 130) 2.6 (95%C.I. 1.7-3.5)

Sulphur dioxide (0 - 5.4) 2 (95%C.I. 0.41-5.7)

PM10−2.5 (0 - 52) 25 (95%C.I. 18-35)
Values to 2 Sig. Figs.

a µg/m3; Mold in CFU/m3; Radon in Bq/m3

b Averaged over 10,000 sample sets

formaldehyde.

Consistent rankings of contaminants by their level of harm are generally

found in both Lin and LogL models (Table 8.14). However, some variations

arise; for instance, nitrogen dioxide ranks fourth in the Lin model but

ascends to third in the LogL model. PM10−2.5 is third and then forth,

respectively. These discrepancies underline the significance of the chosen

modeling approach in determining the perceived harm of contaminants,

with a particular sense of ambiguity surrounding PM10−2.5. The estimation

of harm for this particle size fraction takes into account the variance in PM

estimates. Furthermore, assessing its impact on all-cause mortality could

offer more definitive insights into its health implications.

Table 8.15 shows concentration thresholds corresponding to the concentra-

tion range within which the MAPE is anticipated to fall below 10%.

This research identifies concentration thresholds that ensure an average

MAPE of 10% or lower between linear and saturation models. For exam-

ple, when modelling PM10 concentrations in the range of 0 to 108 µg/m3,

both the linear and log-linear models yield a MAPE around 10%. The

accompanying 95% confidence intervals reflect the error variability.

Table 8.16 delineates the median concentrations at which the APE is ex-

pected for each contaminant of concern. These median concentrations mark

points of divergence between the linear and log-linear models, typically with
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Table 8.15: Appropriate concentration thresholds (µg/m3) for a linear
harm approach

Contaminant Concentration distributiona MAPE (%)b

Acrolein (0 - 2.7) 10 (95%C.I. 6-20)

Benzene (0 - 890) 10 (95%C.I. 9-10)

HCHO (0 - 33) 10 (95%C.I. 9-10)

Mold (0 - 3750) 10 (95%C.I. 8-10)

Nitrogen dioxide (0 - 225) 10 (95%C.I. 9-10)

Ozone (0 - 495) 10 (95%C.I. 9-10)

PM10 (0 - 108) 10 (95%C.I. 10-10)

PM2.5 (0 - 50) 10 (95%C.I. 9-10)

Radon (0 - 425) 9 (95%C.I. 8-10)

Sulphur dioxide (0 - 66) 10 (95%C.I. 6-10)

PM10−2.5 (0 - 25) 10 (95%C.I. 5-20)
a Mold in CFU/m3; Radon in Bq/m3

b 1 Sig. Figs.; Averaged over 10,000 sample sets

the linear model overestimating by about 10%. However, these overesti-

mations are within acceptable bounds, as they fall under the predefined

MAPE threshold of 10%.

Table 8.16: Median concentrations (µg/m3) for expected APE of 10%.

Contaminant Median Concentration (SD)

Acrolein 1.3 (0.3)

Benzene 430 (30)

Formaldehyde 17 (3)

Mold 1900* (200)

Nitrogen dioxide 110 (10)

Ozone 240 (5)

PM10 51 (3)

PM2.5 25 (1)

Radon 240** (20)

Sulphur dioxide 34 (5)

PM10−2.5 12 (3)
+ 2 Sig. Figs.
* Mold in CFU/m3

** Radon in Bq/m3

Table 8.16 indicates that an APE of approximately 10% occurs at a PM10

concentration of around 51 µg/m3 (95% CI: 48 − 54). This concentration

serves as the point of divergence between the linear and log-linear models.
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The same analysis applies to the rest of the contaminants.

To evaluate the error for the coarse fraction, the Harm-Ci curves are sub-

tracted, and the MAPE is calculated between the resultant curves. With

a concentration ratio of 2.4 between the fractions and equivalent x-axis

values, the MAPE for the 0 - 51.66 µg/m3 range is 24% (95% CI 22− 28).

The divergence between the linear and log-linear models becomes more

pronounced at higher concentration percentiles. For the coarse fraction,

the recommended concentration range for the linear model is 0 - 25 µg/m3,

which results in an MAPE of 10% (95% CI 5.0 − 10). An APE of 10% is

anticipated at 12 µg/m3(±3).

Lastly, the error in harm estimates between PM10 and PM2.5 concentrations

at the median level expected in dwellings is 33% (95% CI 26 − 42). This

error equates to assessing harm at a PM10−2.5 concentration of 37 µg/m3,

highlighting the potential overestimation of harm by the linear model com-

pared to the log-linear approach.

This section offers an understanding of harm caused by various contam-

inants, specifically following the epi-harm approach. PM2.5 consistently

emerges as the predominant driver of harm. A second tier of contaminants

includes the PM10−2.5, nitrogen dioxide, and formaldehyde, while a third

category comprises radon and ozone. These contaminants make up the

Contaminants of Concern (CoC).

For a more comprehensive view, it is crucial to employ the tox-harm ap-

proach, particularly for acrolein, formaldehyde, benzene, radon, and ozone.

This complementary method enriches the understanding of these contami-

nants’ impacts. Ultimately, minimizing concentration levels is a vital strat-

egy for reducing errors across both the epi-harm approach.

8.6 Application of harm approaches

8.6.1 Harm from exposure to PM2.5 from cooking
meals

Cooking is a primary contributor to fine particulate matter (particles with

a diameter ≤ 2.5µm) in households, accounting for up to two-thirds of

indoor emissions (Li et al., 2017). An increasing body of research, such as
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the study by O’Leary et al. (2019), is focusing on ventilation as a mitigation

strategy for PM2.5 emitted during cooking from degradation of the food

itself.

In England, the statutory Approved Document F (ADF) outlines ventila-

tion guidelines for dwellings (Government, 2010). However, the ADF does

not sufficiently address fine particulates generated by cooking. Moreover,

the lack of a performance verification mechanism in the ADF puts its actual

health benefits into question.

This section quantifies potential health benefits—measured in Disability-

Adjusted Life Years (DALYs)—resulting from the implementation of six

ventilation strategies prescribed in the ADF.

The analysis expands on prior work that provided a statistically repre-

sentative sample of English kitchens (O’Leary et al., 2019). This prior

study predicted PM2.5 concentrations for six different ventilation strate-

gies in existing English homes. Given that most of these strategies ex-

ceed recommended concentration thresholds, predicated on a 10% MAPE

in linear models, this assessment employs a log-linear epi-Harm approach.

Appendix A5.1 includes the conference paper that first presented this as-

sessment. This section updates that work, incorporating the most recent

analyses conducted post-conference.

Table 8.17: Ventilation Strategies (O’Leary et al., 2019)

Strategy Fan flow rate
(L/s)

Details

A 0 Infiltration only

B 13 Constant general extract ventilation
at the high rate from ADF

C 60 Intermittent general extract ventila-
tion just during cooking

D 60 Same as C but for an additional 10
minutes after cooking

E 30 Intermittent extract through a
cooker hood, CE=50%, just during
cooking

F 30 Same as E but for an additional 10
minutes after cooking

In a scenario relying solely on infiltration, the median [mean] DALYs ob-

served is 5,400DALYs/105 person/year [5,300] (GSD 1.5). When a 30 L/s
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cooker hood is used for the duration of cooking plus an additional 10 min-

utes reduces this number to 1,500DALYs/105 person/year [1,700] (GSD

1.8), averting a median of 2,900DALYs/105 person/year [3,500] (GSD 1.8)

(See Table 8.18). The transition from the worst to the best ventilation

scenario results in a median reduction of 54% (mean 66%).

Table 8.18: Averted DALYs for Various Ventilation Strategies,
DALYs/105 person/year+

Strategy Median Mean GSD

Strategy A 5400 5300 1.5

Strategy B 2700 2800 1.5

Strategy C 2600 2900 1.7

Strategy D 1300 1500 1.7

Strategy E 2200 2600 1.7

Strategy F 1500 1700 1.7

Averted DALYs, A to F 2900 3500 1.8
+ Values to 2 Sig. Figs.

The distribution of $value/DALY for very high HDI countries, with a mean

of $69,500/DALY (see Table 2.8), is used to calculate the cost per person

per year for installing a kitchen hood that exhausts to the outside. Averting

2,900DALYs/105 person/year provides a median [mean] value of $1,600
[$2,400] per person per year (GSD 2.5). This amount represents the annual

health-based monetary value of reducing PM2.5 emitted from cooking, from

the worst to the best ventilation scenario per person in a dwelling. If the

cost per person for installing and maintaining a kitchen hood that exhausts

to the outside is less than or comparable to the $2,400/person/year, the
intervention would be cost-effective.

The health-based monetary value of reducing PM2.5 in a dwelling must be

balanced against the additional energy used, the cost of energy, and any

societal cost of carbon associated with that energy (Jackson, 2017). These

aspects are not included in the current estimation and warrant further

investigation in future research.

The study by Rosenthal et al. (2018) explored health benefits from cleaner

cooking solutions across 40 countries with varied income levels following the

methodology of Pillarisetti et al. (2016). Switching to Liquefied Petroleum

Gas (LPG), employing advanced fans, or utilising local cookstoves led to

reduced mean exposures from 285 µg/m3to 35, 74, and 182 µg/m3, respec-
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tively. These changes corresponded to averted DALYs/105 person/year of

9, 000, 7, 000, and 1, 500.

Despite some methodological differences (PM2.5 from combustion vs PM2.5

tied to the meals), both their study and the current research underline

the importance of mitigating PM2.5 exposure through robust strategies,

applicable across diverse income settings.

However, this study has limitations. The PM2.5 concentrations are model-

derived averages across various kitchens, and the study assumes lifetime

exposure at these levels. Despite these constraints, the harm-based met-

rics provide a valuable tool for evaluating the cost-effectiveness of different

interventions.

Incorporating such health-focused metrics into guidelines could mark a

substantial advancement in indoor air quality research. These quantifi-

able health metrics should be the focal point of future studies, benefiting

stakeholders such as policymakers, researchers, and the general public by

providing actionable insights into effective mitigation strategies. The data

presented here for harm from cooking reaffirm that using local ventilation,

such as hoods, as the typical recommendation for a practical solution/de-

sign is very adequate to prevent harm.

8.6.2 Preliminary assessment of harm in office envi-
ronments

While this research focuses on residential settings, its methodologies and

harm intensity metrics are directly transferable to office environments, so

long as the concentrations are within the boundaries in Section 5.3.3. The

literature offers robust studies on IAQ in offices. Sérafin et al. (2021)

identify 71 priority contaminants (out of 342) based on hazard quotient and

classifications like carcinogenicity (a subjective compromise). However, a

gap exists in quantifying the actual harm—measured in Disability-Adjusted

Life Years (DALYs)—caused by these contaminants.

In an attempt to bridge this gap, this section adapts the epi-harm and tox-

harm approaches previously employed for residential settings. Chapter 5

already provides harm intensities (HIs) for 17 out of the 71 priority office

contaminants. For the remaining 54, the focus turns on those listed in the

USETox database (Fantke et al., 2017a). 27 contaminants appear in the
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USETox database, for which new HIs are proposed. Table 8.19 presents the

median and uncertainty for the derived HIi, as well as the specific diseases

contributing to the all-cause health effect estimate for each contaminant..

Table 8.19: Harm intensities for contaminants not included in Section 5.5
Highest to lowest median.+

CAS No contaminant mediana GSD approach disease

53-70-3 Dibenz[a,h]anthracene 150 6.5 Toxicology Lung cancer

50-32-8 Benzo[a]pyrene 140 6.5 Toxicology Stomach cancer

193-39-5 Indeno[c,d]pyrene 6.3 7 Toxicology Cancer average

207-08-9 Benzo[k]fluoranthene 6.2 8 Toxicology Cancer average

56-55-3 Benzo[a]anthracene 6.1 7.1 Toxicology Cancer average

205-99-2 Benzo[b]fluoranthene 6.1 7 Toxicology Cancer average

1024-57-3 Heptachlor epoxide B 4 7.1 Toxicology Liver cancer; Non-cancer
average

542-75-6 1,3 DCP 1.9 3.3 Toxicology Liver cancer; Non-cancer
average

76-44-8 Heptachlor 1.8 6.9 Toxicology Liver cancer; Non-cancer
average

57-74-9 Chlordane 1.7 6.9 Toxicology Liver cancer; Non-cancer
average

218-01-9 Chrysene 0.62 9.5 Toxicology Cancer average

118-74-1 HCB 0.54 6.4 Toxicology Liver cancer; Non-cancer
average

50-29-3 pp-DDT 0.2 8.3 Toxicology Liver cancer; Non-cancer
average

58-89-9 Lindane 0.17 6.7 Toxicology Liver cancer

72-55-9 pp-DDE 0.17 7 Toxicology Liver cancer

78-87-5 DCP 0.057 6.5 Toxicology Liver cancer; Non-cancer
average

127-18-4 Tetrachloroethylene 0.043 6.4 Toxicology Leukemia; Non-cancer av-
erage

115-96-8 TCEP 0.023 5.6 Toxicology Cancer average

67-66-3 Chloroform 0.018 6.4 Toxicology Liver cancer; Non-cancer
average

117-81-7 DEHP 0.0071 7.2 Toxicology Liver cancer; Non-cancer
average

1163-19-5 BDE 209 0.0056 8.4 Toxicology Liver cancer; Non-cancer
average

75-09-2 Dichloromethane 0.0056 5.5 Toxicology Breast cancer; Non-
cancer average

85-68-7 BBP 0.0042 5.4 Toxicology Pancreas cancer; Non-
cancer average

120-82-1 1,2,4-
Trichlorobenzene

0.00035 6.2 Toxicology Non-cancer average

80-05-7 Bisphenol A 0.00027 7.6 Toxicology Non-cancer average

110-80-5 2-Ethoxyethanol 0.00019 7.9 Toxicology Non-cancer average

84-74-2 Dibutyl phthalate 0.00006 6.4 Toxicology Non-cancer average
+ Values to 2 Sig. Figs.
a DALY/µg/m3/105 person/year

Utilising data from Sérafin et al. (2021), which offers a review of office

contaminant concentrations from 2000 to 2020, this study makes necessary

adjustments for the time individuals typically spend in office environments.

Based on prior research, it is assumed that individuals are present in offices

for 6 to 8 hours per day, amounting a quarter of a 24-hour day (Chan

et al., 2016; Louis and LAVERGE, 2022; Sun et al., 2023). The analysed
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concentrations comply with the 10%MAPE criteria. Given that the ratio of

PM2.5 to PM10 concentrations is 0.87, it is appropriate to use the previously

calculated harm intensity for PM10−2.5. This approach eliminates the risk

of obtaining negative harm values when subtracting PM10, a possibility

that, while mathematically feasible, is conceptually illogical.

Table 8.20 gives the estimated chronic harm (DALYs/105 person/year)

from exposure to the 44 contaminants, in descending order. PM2.5, sul-

phur dioxide, nitrogen dioxide, formaldehyde, PM10−2.5, and acrolein are

ranked highest with estimated median 250 (GSD 3.6), 34 (GSD 7.6), 30

(GSD 2.0), 15 (GSD 2.1), 1.7 (GSD 7.9), and 0.46 (GSD 3.9) respectively;

higher than all other contaminants by at least one order of magnitude. The

median for PM2.5 and HCHO appear coherent given they are prevalent in

offices; however, other less apparent contaminants such as SO2 and NO2

that appear here beg the question of what gives rise to their presence in

this environment, and warrant further investigation into their sources and

potential health impacts.

Summing the harm for the 44 contaminants at their representative concen-

trations in office gives a total median harm of 470DALYs/105 person/year

(GSD 4.4). PM2.5, SO2, NO2, formaldehyde, and PM10−2.5 account for

99.6% of total harm. Therefore, they can be preemptively considered as

priority contaminants in offices. Figure 8.5 visually illustrates the contribu-

tion of each contaminant’s median to the total, focusing on contributions

surpassing 2%. It indicates that the prioritization of office air contaminants

can be narrowed down to six main substances causing harm.

Figure 8.5: Median harm in offices treemap. Percentage contribution for
total median harm.
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Table 8.20: Contaminant harm in of-
fices, DALYs/105 person/year.+

Contaminant Median GSD

PM2.5 250 3.6

Sulphur dioxide 34 7.6

Nitrogen dioxide 30 2

Formaldehyde 15 2.1

PM10−2.5 1.7 7.9

Acrolein 0.46 4.1

Acetaldehyde 0.073 5.7

1,3 DCP 0.065 7.8

Carbon tetrachloride 0.045 7.1

Styrene 0.033 5.3

Benzene 0.027 2.6

1,3-Butadiene 0.011 4.1

Benzyl chloride 0.0058 17

Benzo[a]pyrene 0.0052 7.7

Tetrachloroethylene 0.0052 6.7

Ethanol 0.0047 9.7

1,2-Dichloropropane 0.0026 14

1,2-Dichloroethane 0.0024 5.5

Chloroform 0.0012 7.2

1,2,4-Trichlorobenzene 0.0012 7.5

Benzo[k]fluoranthene 0.00082 6.7

Benzo[b]fluoranthene 0.00079 7

Di-2-ethylhexyl phthalate 0.00063 7.7

Isoprene 0.00053 11

Benzo[a]anthracene 0.00043 6.3

Indeno[c,d]pyrene 0.00041 8.4

Trichloroethylene 0.00036 5.3

Benzyl butyl phthalate 0.00032 6.6

2-Methoxyethanol 0.00027 7.7

Methylene chloride 0.00023 9.8

Chrysene 0.00011 8.5

2-Ethoxyethanol 0.00009 7.8

TCEP 0.00003 5.8

Dibutyl phthalate 0.00001 6.5

Chlordane 0.00001 9.7

Heptachlor 0.00001 10

BDE 209 0.000004 7.4

Hexachlorobenzene 0.000004 7.3

Lindane 0.000003 10

Heptachlor epoxide B 0.000001 11

Dibenzo[a,h]anthracene 0.0000004 14

pp-DDT 0.0000001 13

Bisphenol A 0.00000003 6.7

pp-DDE 0.00000002 12
+ Values to 2 Sig. Figs.
a (Trans-1,3-dichloropropene Telone II, technical grade (with
1% pichlorohydrin))

b Tris(2-chloroethyl) phosphate
c (Decabromodiphenyl oxide), (Decabromophenyl ether)
d (c-1,2,3,4,5,6-Hexachlorocyclohexane)(2,2-(4,4’-
Dihydroxydiphenyl) propane)

e (2,2-(4,4’-Dihydroxydiphenyl) propane)

In the context of assessing harm from IAQ in offices, specific pollutants

consistently emerge as significant contributors. According to Chan et al.

225



8.6. APPLICATION OF HARM APPROACHES

(2016) the harm resulting from exposure to PM2.5 is an order of magni-

tude higher than those from Volatile Organic Compounds (VOCs). This

observation aligns with a study focused on U.S. offices by Sun et al. (2023)

which highlighted PM2.5 significantly exceeding that of formaldehyde, am-

monia, benzene, toluene, and xylene. Importantly, both studies draw on

methodologies developed by Logue et al. (2012).

These studies share a common theme: when PM2.5 and formaldehyde are

present, they typically act as the principal causes of harm. Moreover, PM2.5

tends to dominate, being an order of magnitude more impactful in terms

of harm than other pollutants.

This preliminary assessment lays the groundwork for future research op-

portunities. Subsequent work could aim to derive new Harm Intensities

for pollutants not covered by the USETox database. Additionally, expand-

ing the scope of this preliminary assessment beyond the list of priorities

outlined by Sérafin et al. (2021) to include the full range of 342 different

airborne contaminants. Ozone is present in offices but was absent from

the list of contaminants in offices in this preliminary assessment. This

is attributed to its exclusion from the priority list of 71 contaminants by

Sérafin et al. (2021), as it did not meet the inclusion criteria for the priority

designation. A harm-based prioritization might lead to a different result.

It is important to note the caveats highlighted by Sérafin et al. (2021),

which indicate that considerations such as the spatial and temporal cover-

age of the review of measurement campaigns in office buildings, the sam-

pling design, and the prevalence of emissions from office sources, can lead

to exclusion of contaminants from the 342 list. A closer look at this limi-

tations could serve to curate the list of substances and identify those that

are expected to be found in offices with more certainty, hence deriving the

Contaminants of Concern in Offices.

The continued relevance of Logue et al.’s models in current studies indi-

cates that the HIs developed here are valuable contributions to knowledge.

Specifically, the use of the HI for PM10−2.5 in this assessment affirms its

wider applicability and validates the decision to include it in this study.

In summary, this section has demonstrated the adaptability of the harm-

based methodology to quantifying health impacts in indoor environments

beyond residential settings. By replicating the process of deriving harm in-

tensities and harnessing crowd-sourced data to characterize uncertainty in
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office contaminant concentrations (leveraging insights from a comprehen-

sive systematic review of sampling methodologies in office environments),

estimated harm was calculated for this alternate context. This quantifica-

tion of harm will help address the present question of whether it is safer to

work at home or to spend time in the office. A quick calculation based on

the median harm in dwellings of 2,200DALYs/105 person/year (or 550 if 8

hours assumed) and the median harm in offices here of 470DALYs/105 per-

son/year (8 hours at the office) suggests that perhaps it is safer to work in

the office.

While assumptions were necessarily made regarding factors like exposure

time, the application to offices further evidences the flexibility of the harm

approach to provide health-based IAQ insights across locations, conceivably

applicable to any indoor space, from trains to space stations.

8.7 Emerging topics and new evidence

This section discusses evidence considered new, as it was published in the

very late stages of research for this thesis. These emerging topics and

recent findings provide additional context and insights that may impact

the understanding and implications of the primary research presented.

Particulate matter is a major driver of harm. Interest in quantifying the

health effects of smaller fractions, in relation to total or specific mortality,

is growing. Hu et al. (2022) presents health effects of PM1, and using their

results along with the methodology from this research, a chronic harm

intensity for PM1 could be proposed, albeit specifically for asthma. While

this may not cover all-cause mortality, it is still a valuable metric. On the

other hand, according to Marval and Tronville (2022), the health evidence

for ultrafine particles (UFP) is not yet sufficient to quantify a chronic harm

intensity. However, as research and interest continue to grow, it is likely

that such a harm metric can be quantified for these smaller PM fractions

in the near future.

Carbon monoxide (CO) warrants mention. Studies have examined non-

acute CO exposures in UK homes, focusing on hourly exposures rather than

cooking-related peaks (Croxford and Fairbrother, 2005; Croxford et al.,

2006; Croxford and Kynigou, 2005; Milner et al., 2006). Others have

study non-acute low-level CO exposure on neuropsychological/neurological
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symptoms (Croxford et al., 2008; Volans et al., 2006). Low-levels of CO

can go unnoticed and lead to long-term exposures (Holgate et al., 2020).

For sub-acute CO exposures, single-day lag studies offer insights

into short-term effects (Evangelopoulos et al., 2021; US-EPA, 2010b).

Bae and Kwon (2019) reviewed 27 air pollution studies in South Korea,

with 8 focusing on single-day lag effects of CO and mortality. Among 12

reported outcomes, CO exhibited higher relative risks compared to PM2.5

and other pollutants. These findings corroborate earlier evidence on the

health effects of short-term CO exposure and mortality (US-EPA, 2010b).

Further investigation into morbidity from non-acute CO exposures, indoors

or outdoors, is warranted (Bae and Kwon, 2019). Most studies reviewed by

Bae and Kwon (2019) focus on the short-term effects of air pollution, with

only three cohort studies examining long-term effects, and just one address-

ing carbon monoxide. It was a Korean cohort study that found a hazard

ratio of 1.72 (95% CI: 1.52 - 1.92) for every 0.25 ppm increase in chronic

CO exposure, indicating a 72% rise in all-cause mortality among healthy

individuals in Seoul, Korea (Bae and Kwon, 2019; Kim et al., 2017). Iden-

tifying the specific diseases linked to CO exposure-related mortality will

aid in deriving a chronic harm intensity for CO, a valuable addition to this

research.

In a recent study, Liu et al. (2023b) investigated the disease burden as-

sociated with specific indoor air pollutants (IAPs) in Chinese residences

from 2000 to 2017. This study evaluated annual exposure levels and

assessed risks through systematic reviews. Harm, measured in DALYs,

was determined using the population attributable fraction method (Sec-

tion 2.4, Equation 2.9). Table 8.21 presents a summary of the findings

from Liu et al. (2023b), alongside the results of the current research, with

contaminants ranked by median harm for comparability (note that using

the mean slightly alters the ranking order).

The total harm for the 44 contaminants at their representative concentra-

tions in dwellings, assessed in this research, results in a median harm of

2,200DALYs/105 person/year, representing approximately 7% of the total

GBD in 2019. In comparison, the ten IAPs considered for China caused

4,050DALYs/105 person/year, accounting for 15% of the total GBD in

China in 2010. A thorough comparison of the similarities and differences

between these studies is warranted for future analysis. Notably, carbon

monoxide is a contaminant that stands out and is discussed further.
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Table 8.21: Comparing results between China and current global approach.

Contaminant

Study
Ranking

China (2017) Current Global (2019)

Cia Harmb %c Cia Harmb %c China Current

PM2.5 55 3300 84% 26 1600 67% 1 1

CO 1000 180 4.7% NA 2 NA

Radon 59 88 2.3% 78 36 2% 3 5

NO2 6 63 1.7% 22 120 6% 4 3

Benzene 4 62 1.8% 2.2 0.15 <0.6% 5 16

SO2 5.3 58 1.5% 0.41 0.56 <0.6% 6 12

O3 13 58 1.5% 7.3 10 1% 7 6

HCHO 70 53 1.4% 28 120 6% 8 4

Toluene 5 20 <0.6% 13 0.013 <0.6% 9 34

p-DCB 0.24 8.50 <0.6% 1.9 0.024 <0.6% 10 32
Values to 2 Sig. Figs.

a µg/m3; Radon in Bq/m3

b in DALYs/105 person/year
c Percentage contribution to total harm

The harm from carbon monoxide in the study by Liu et al. (2023b) was

determined using an exposure-response relationship for cardiovascular dis-

eases mortality, which indicated a hazard ratio of 1.024 (95% CI: 1.011

to 1.038) for each 1 mg/m3 increase in average carbon monoxide concen-

trations on the present day and the previous day (lag 0–1). This implies

a significant increase in mortality of 2.4%. However, it’s crucial to note

that these findings are based on short-term exposure to ambient carbon

monoxide and its association with cardiovascular disease mortality. The

risk estimates are drawn from time-series studies examining same-day ef-

fects, focusing on daily cardiovascular mortality in relation to acute expo-

sure. This aligns with previous findings of mortality and short-term ex-

posure to CO (US-EPA, 2010b). It’s essential to highlight that the risk

estimate used by Liu et al. (2023b) differs from those applied to other

contaminants, as it’s not derived from long-term exposure-response rela-

tionships in cohort studies. Therefore the harm estimated should be in-

terpreted carefully, furthermore deriving a chronic harm intensity for CO

from this data is not feasible. Carbon monoxide can have synergistic effects

when combined to other substanses in the air, even at low concentrations

(Norris et al., 1986; Ramsden, 2021). This aspect is interesting to integrate

into the harm assessment in future works.

The annual mean concentration of carbon monoxide reported for residences

by Liu et al. (2023b) is lower than China’s current air quality standards for

carbon monoxide, set at 4 mg/m3 for a 24-hour period. France has estab-

lished a chronic 1-year ELV for long-term CO exposures at 30 mg/m3. As-
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suming a linear exposure-response function, this ELV would correspond to a

regulated harm of 5,400DALYs/105 person/year for chronic CO exposures.

Importantly, this regulated harm far exceeds that of other contaminants

with ELVs, as discussed in Section 8.2.

Some contaminants are still not well understood, known as emerging con-

taminants of concern. Emerging contaminants are defined as chemicals not

currently, or only recently, regulated, and about which concerns exist re-

garding their impact on human or ecological health (Salthammer, 2020).

PM1 and UFP fall into this category. Suggesting a minimum ventilation

rate to cover these emerging contaminants impacted by ventilation is cur-

rently outside the scope of this research. Inferring a ventilation rate or

which cleaning technologies are adequate to use requires a more in-depth

investigation (Mata et al., 2022).

8.8 Limitations and Future Developments

This work derives estimates of harm as the product of a harm intensity and

representative concentrations of airborne contaminants found in dwellings.

While providing valuable insights, the straightforward approach to estimat-

ing harm has limitations.

This analysis does not explicitly address how demographics, habits, and

regional differences may influence exposure variations. The focus was over-

all contaminant impacts, so these factors were accounted for implicitly

through uncertainties. Furthermore, studies adjusting for sub-populations

align with the generalized results. Current standards seldom tailor to spe-

cific groups. Nonetheless, further stratified analyses accounting for envi-

ronmental justice factors like race, ethnicity, gender, socioeconomic status,

and vulnerable (immune compromised) populations could be attempted.

Examining if air pollution exposure relates to social determinants, and the

potential for disproportionate impacts on vulnerable groups, would provide

valuable insights. Incorporating environmental justice considerations into

future research and policy-making could help develop targeted interven-

tions that reduce exposure disparities. By acknowledging the role of these

factors in shaping health outcomes, this study recognizes the need to better

understand variability across sub-populations most at risk.

The indoor contaminant concentrations primarily reflect Global North na-
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tions. The extensive compilation of 827 datasets may underrepresent some

countries. Caution is advised when comparing the results to specific re-

gions, as lifestyle and location discrepancies could lead to inaccuracies.

More fieldwork is imperative to reduce uncertainties, especially for scarcely

studied contaminants.

This work focused on a limited list of 45 contaminants commonly found in

dwellings, selected based on their known harmful effects and availability of

data. However, an important limitation is the omission of emerging con-

taminants like PM1 and ultrafine particles PM0.1, fungicides and pesticides,

flame retardants, endocrine disruptors such as phthalates, and the chronic

effects of long-term carbon monoxide exposures which have gained increas-

ing attention in research (Hu et al., 2022; Liu et al., 2023b, 2022; Marval

and Tronville, 2022; Page et al., 2023). These substances have the poten-

tial to significantly contribute to harm in indoor environments. Therefore,

future studies should expand the scope to include these emerging contam-

inants, enabling a more comprehensive assessment of harm. The list con-

tains several semi-VOCs (1,4-Dichlorobenzene, Hexachlorobutadiene, and

Naphthalene). It may not be so important to consider semi-VOCs in future

work for IAQ standards – not because they are unimportant -– but because

they are not always removed by ventilation. Increasing ventilation has only

a small impact on their airborne concentration because their net emission

generally increases as their airborne concentration decreases (Borsboom

et al., 2016; Parthasarathy et al., 2010). This makes estimating exposure

to them complicated (Liu et al., 2015) and so the mitigation solution is

source control rather than ventilation. Addressing emerging contaminants

by specifying a minimum ventilation rate falls beyond the scope of this

research (Mata et al., 2022).

The analysis assumes PM equitoxicity, where all particles are equally toxic

per unit mass inhaled. Emerging evidence suggests health effects can vary

by PM composition (US-EPA, 2020b) but more studies on the health im-

pacts of PM from different sources are needed before it is possible to deter-

mine exposure-response relationships (Xu et al., 2022). Accurately assess-

ing the health risks linked to PM exposure in indoor and outdoor environ-

ments poses a significant challenge. Existing methods for estimating PM

exposure do not offer separate chronic risk estimates for indoor and out-

door settings. Consequently, distinguishing between the health effects of

indoor versus outdoor PM exposure solely based on indoor PM concentra-

tions proves difficult. Hence, there’s a pressing need for enhanced methods
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to evaluate and quantify the health risks associated with indoor and out-

door PM exposure independently.(Sandoval Diez, 2022). For perspective,

the indoor PM2.5 harm intensity would need to be ≈11 times lower to be

equal to that of nitrogen dioxide, and would need to be 2,200 times lower

to be equal to that of acrolein, when it would cease to be a contaminant of

concern. Overall, PM size remains the most robust predictor of long-term

harm (National Academies of Sciences, 2022).

This analysis’ harm intensity methodology builds on LCIA models, with

dose-response factors from the USETox database anchored to ED50 values

(doses inducing 50% effect) (Section 3.13). Examining toxicity benchmarks

like EPA’s Integrated Risk Information System (IRIS) (U.S. Environmental

Protection Agency (EPA), 2023) and OEHHA (OEHHA, 2011) for current

research trends shows that cancer unit risks and slope factors now derive

from ED10 or LED10 - the 95% lower confidence limits on 10% effect

doses (California Environmental Protection Agency (CalEPA), 2009). This

aligns with evolving LCIA methodology prepared to transition to ED10 or

lower when reporting effecting median doses in toxicology research (Fantke

et al., 2021b). Deriving and adapting harm intensities based on dose-

response factors from ED10/LED10 might represent a change to the tox-

harm approach presented here. However, until LCIA databases are updated

to include dose-response factors based on ED10 or LED10, the precise

impact of this change on the harm metric remains difficult to define.

This analysis relies on an additive assumption when evaluating the com-

bined effects of indoor air pollutant mixtures (Section 2.2.2). While pro-

viding a useful harm estimate, additivity overlooks potential synergistic

or antagonistic interactions between contaminants. Assuming simple ad-

ditivity may underestimate or overestimate the true impact of complex

pollutant mixtures. Exploring synergistic and antagonistic mixtures re-

quires sophisticated modeling beyond this study’s scope. The additive ap-

proach, though limited, is widely employed for its practicality. Further

research should investigate pollutant interactions to give a more compre-

hensive understanding of mixture effects. By acknowledging additivity as a

simplification, this study recognizes the need for future work to capture the

intricacies of multi-pollutant impacts. Incorporating those dynamics could

provide greater accuracy in assessing overall harm from indoor exposures.

While focused on dwellings, harm intensities can be applied broadly to

other environments where concentration-response linearity is expected, or
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where toxicology research is the only source of C-R data. Linearity is

limited to low-moderate exposures. Extrapolations to high levels warrant

detailed exploration. Error quantification between linear and non-linear

approaches can be used to decide where a linear C-R function is ade-

quate. Gases may exhibit non-linear and non-monotonic concentration-

response curves, known as hormetic curves, resembling the shapes of U,

V, or J. Such curves suggest that the healthiest dose of endogenous vital

gases is never zero, lying between high toxicity and low deficiency ranges

(Calabrese and Baldwin, 2002). Further research is required to understand

these dynamics, particularly concerning air contaminants.

Future work can expand to include a hazard assessment that compares

the harm identified in Chapter 7, Section 7.1 to the harm associated with

complying with the Exposure Limit Values (ELVs) given in existing IAQ

standards and guidelines, for the full list of contaminants considered in

this work. This would show the relative protectiveness these standards

provide to the occupants of the buildings they regulate. This analysis would

provide valuable insights into whether the harm caused by the inhalation

of airborne contaminants in dwellings aligns with the acceptable levels set

by regulators and the wider public. A comparison will contribute to a

better understanding of the potential health risks and the importance of

adhering to standards and guidelines. In short, while ELVs exist within

standards, their effectiveness in providing protection from chronic harm

remains unclear.

Both the epidemiological and toxicological data that underpin the harm

intensities and the concentrations are linked to chronic effects and expo-

sures, and so it is not possible to consider acute health effects with them.

For some of the contaminants, like carbon monoxide, or reactive oxidizing

species including ozone and nitrogen dioxide, acute impacts from elevated

short-term exposures (this being classified as 24-h exposures, same-day, or

lag0) may be more important than the chronic harm calculated. For exam-

ple, a gas leak from a faulty stove can swiftly elevate CO levels in a kitchen,

leading to acute poisoning, causing symptoms like dizziness, nausea, and

loss of consciousness. One can estimate acute harm intensities using the

same methods proposed in this study, by adapting the data to align with

equivalent evidence from acute epidemiology and toxicology.

This analysis required assumptions and methodological decisions that in-

herently introduce limitations. For example, choosing distribution shapes,
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statistical measures, and data truncation approaches in MATLAB can im-

pact results. There is no set protocol for making these choices when com-

bining epidemiology, toxicology, life cycle assessment, and health risk re-

search. The interdisciplinary nature of this work meant navigating diverse

perspectives to determine suitable assumptions. While aiming to make the

best judgments based on current evidence, a degree of subjectivity is un-

avoidable without an established methodology. By acknowledging these

limitations, this research recognizes the need for continued methodologi-

cal refinements as multidisciplinary indoor air quality assessments evolve.

As protocols emerge through collective experience, uncertainties stemming

from flexible assumptions can be reduced. Nonetheless, this study repre-

sents an initial foray into blended research that highlights the potential of

bridging disciplines to enable more holistic harm evaluations.

This analysis relied solely on disability-adjusted life-years (DALYs) as the

metric of harm. However, other valid metrics exist, like Quality-Adjusted

Life Years (QALYs). While DALYs effectively capture disease burden,

QALYs could offer a complementary perspective by incorporating perceived

quality of life impairments. Exploring the use of QALYs in future indoor air

quality assessments could strengthen the evaluation of health-related qual-

ity of life impacts. By acknowledging the study’s exclusive use of DALYs,

the door remains open for future work to incorporate a multi-metric per-

spective when quantifying total harm. Both DALYs and QALYs provide a

standardized framework for comparing the impact of different health condi-

tions and interventions. Shifting from DALYs to QALYs for IAQ mitigation

may not significantly impact policy effectiveness. The choice between the

two metrics depends on practical considerations such as ease of application

within the healthcare system or country.

DALYs can be converted into a monetary value. This work used the 2016

USD monetary value of averted DALYs for very high HDI countries to esti-

mate the annual cost per person due to exposure to contaminants in homes

at different concentrations. However, this does not constitute a complete

cost-benefit analysis. It is necessary to explore the costs of interventions

and any potential offsets. Quantifying the cost-effectiveness of interven-

tions to reduce contaminant concentrations in dwellings based on thresh-

olds, such as GDPs per capita, should also be considered (Iino et al., 2022).

In considering evidence for harm estimates from different methodologies

and recent studies, findings suggest that mold and carbon monoxide could
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be deemed contaminants of concern in dwellings due to their significant

contribution to overall harm. The evidence regarding carbon monoxide

health effects is highly based on short-term exposures. The classification

of exposures as acute, sub-chronic, or chronic is subject to interpretation.

In health research, 24-hour exposures are typically classified as short-term

and therefore acute. However, this thesis focuses on long-term exposures

with chronic effects based on cohort studies. Comparing 24-hour exposures

to chronic exposures is akin to -comparing apples to oranges- illustrating

a comparison between two fundamentally different factors, rendering the

comparison inappropriate (See Table 8.10).

This research provides a comprehensive estimate of the total harm from

residential indoor air contaminants, using representative indoor concentra-

tion data of Global North countries, and globally-derived epidemiological

and toxicological data lacking geographic specificity. The results presented

here can be used to inform appropriate remediation by showing where the

greatest reduction in harm can be achieved. Cost-benefit analyses could be

used to show the interventions that give the greatest harm reductions for

the least capital outlay. Furthermore, the harm intensities can be used to

assess the harm from airborne contaminants measured in field surveys or

predicted by models in other non-residential environments.
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Chapter 9

Conclusions

A harm budget was conceived as a way to quantitatively determine accept-

able indoor air quality in dwellings, based on exposure to PM2.5, nitrogen

dioxide, formaldehyde, ozone, and radon, in compliant residences. The cur-

rent limit is around 600DALYs/105 person/year. This harm budget can

guide setting ventilation rates in standards and guidelines to ensure this

threshold is not exceeded. Three of these contaminants account for 80% of

all harm: PM2.5, formaldehyde, and nitrogen dioxide, furthermore, consid-

ering that control of PM2.5 also controls for PM10−2.5 the harm mitigation

could be up to 96%. ASHRAE is considering to add PM2.5, HCHO and

NO2 into its ANSI/ASHRAE Standard 62.2 for ventilation and acceptable

IAQ in residential buildings. Adopting this methodology could influence

millions of dwellings.

Integrating harm intensities with typical indoor concentrations reveals that

fine and coarse particulate matter (PM2.5, PM10−2.5), nitrogen dioxide,

formaldehyde, ozone, and radon emerge as top priorities based on their

harm. These contaminants, termed Contaminants of Concern, CoCs, col-

lectively account for over 99.5% of the total harm, DALYs/105 person-

/year, from typical exposures in dwellings. This identification serves mul-

tiple purposes: prioritizing them for removal and control, enabling targeted

guidelines and strategies; establishing an initial harm budget approach for

health-based indoor air quality standards; informing policies, codes, and

building practices for contaminant reduction source control over dilution;

focusing design, operation, and technology development on contaminants

causing the most harm; and raising awareness of these prevalent contami-

nants in dwellings.
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A metric, termed Harm Intensity, was developed to relate harm to con-

taminant exposure (DALY/µg/m3/person/year). Calculated for 45 indoor

air contaminants based on toxicology and/or epidemiology evidence, this

metric, where both types of evidence existed, showed reassuringly similar

results. Particles (PM2.5, PM10), hexavalent chromium, cadmium, nitrogen

dioxide, and formaldehyde exhibited the highest harm intensities, implying

that even low exposure levels may cause harm. The metric’s simplicity

and its applicability beyond dwellings make it a versatile tool for assessing

both indoor and outdoor air pollution scenarios. The Harm Intensity met-

ric plays a crucial role in proposing a normalized harm budget, which offers

a standardized approach to defining acceptable IAQ in dwellings. By pri-

oritizing mitigation efforts based on the severity of potential health risks,

resources can be allocated effectively.

Recent literature on residential indoor exposures for 45 common contam-

inants in dwellings was compiled, analyzed, and summarized. This com-

pilation adds to the knowledge of the prevalence and uncertainty of air-

borne contaminants in dwellings. Widely measured contaminants, espe-

cially volatile organic compounds and known carcinogens, contribute min-

imally to overall population harm, except for formaldehyde, when they are

present in homes at the median exposure values presented here.
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A1 For parameters deriving harm intensi-

ties

Further information for the beta parameter relevant for epidemiology-based

harm intensities and effect factors for exposure to indoor air contaminants.

Table 1: Keywords and Boolean operators when performing systematic
reviews on Risk estimates for deriving parameter beta parameters.

Input parame-
ter

Research ques-
tion that
guided the
systematic
review

keywords and
Boolean opera-
tors

Databases

Risk estimates
(beta parameter)

what (Criteria)-
pollutant C-R
functions out-
comes have been
developed. -
Human Health
Effects of Crite-
ria Pollutants

The following
keywords were
searched in ti-
tles, abstracts,
AND keywords:
((”Health” or
”Effects” OR
”concentration-
response” OR
”risk” OR ”rela-
tive risk”) AND
(partic*matter
AND air)) OR
(o?one OR air
OR O3) OR
(”Nitrogen diox-
ide” OR NO2
AND air) OR
(”Sulfur dioxide”
OR SO2 AND
air) OR (”carbon
monoxide” OR
”C.O.” AND
air); (”Health”
OR ”Effects” OR
”concentration-
response” OR
”risk” OR ”rela-
tive risk”).

AMED, ovid AS-
SIA, CINAHL,
Cochrane Li-
brary, EMBASE,
ovid SCI, Web
of Science,
Medline, ovid
Pubmed, ovid
PROSPERO,
PSYCINFO,
ovid Scopus, and
Google Scholar

a All 44 contaminants followed the same logic, with each one as a keyword.
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Table 2: Full statistic descriptors: Beta parameter estimates.

Contaminant central input median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Acrolein(asthma) 0.1408 0.1346 0.1406 0.0423 0.0756 0.2396 0.2941 1.3419 1.8008

Benzene(leukaemia) 0.0004 0.0004 0.0004 0.0001 0.0002 0.0008 0.3311 1.3924 1.9389

Formaldehyde(asthma) 0.0252 0.0197 0.0251 0.0195 0.0050 0.0757 0.6891 1.9918 3.9674

Formaldehyde(leukaemia) 0.0201 0.0125 0.0201 0.0266 0.0018 0.0857 1.0082 2.7406 7.5106

Formaldehyde(lung cancer) 0.0039 0.0024 0.0039 0.0048 0.0003 0.0172 0.9678 2.6321 6.9277

Mold(asthma) 0.0001 0.0001 0.0001 0.0001 0.0000 0.0004 0.7320 2.0792 4.3230

Nitrogen dioxide(AllCauseMort.) 0.0020 0.0017 0.0020 0.0011 0.0006 0.0047 0.5031 1.6539 2.7354

Ozone(AllCauseMort.) 0.0010 0.0008 0.0010 0.0007 0.0002 0.0029 0.6477 1.9111 3.6525

PM10(AllCauseMort.) 0.0039 0.0038 0.0039 0.0010 0.0023 0.0064 0.2625 1.3002 1.6904

PM2.5(AllCauseMort.) 0.0077 0.0076 0.0077 0.0010 0.0059 0.0098 0.1316 1.1407 1.3011

Radon(lung cancer) 0.0009 0.0008 0.0009 0.0005 0.0003 0.0023 0.5143 1.6725 2.7972

Sulphur dioxide(AllCauseMort.) 0.0058 0.0056 0.0058 0.0018 0.0031 0.0101 0.2992 1.3487 1.8190

Units in change/µg/m3; Radon in change/Bq/m3; Mold in change/CFU/m3.
Central input from systematic review. std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 3: Full statistic descriptors: Baseline disease incidence parameter estimates.

Contaminant central input median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Acrolein 63.000 15.505 62.972 215.932 0.560 427.241 1.596 4.932 24.321

Benzene 4.320 4.312 4.320 0.250 3.854 4.836 0.058 1.059 1.122

Formaldehyde(asthma) 8.000 1.925 7.694 27.175 0.074 50.622 1.613 5.017 25.165

Formaldehyde(leukaemia) 4.320 4.308 4.319 0.248 3.853 4.818 0.057 1.059 1.122

Formaldehyde(lungCancer) 26.400 26.346 26.410 1.421 23.726 29.342 0.054 1.055 1.114

Mold 504.280 496.984 504.055 83.795 359.445 687.029 0.165 1.180 1.391

Nitrogen dioxide 674.990 674.174 674.621 28.113 622.053 731.903 0.042 1.043 1.087

Ozone 674.990 675.029 674.986 28.453 620.525 731.054 0.042 1.043 1.088

PM10 674.990 674.172 674.671 27.731 622.078 731.537 0.041 1.042 1.086

PM2.5 674.990 674.448 674.886 28.309 621.299 732.788 0.042 1.043 1.087

Radon 26.400 26.367 26.404 1.448 23.655 29.371 0.055 1.056 1.116

Sulphur dioxide 674.990 674.456 674.897 27.958 620.924 730.721 0.041 1.042 1.086

Units in cases/105person/year.
Central input from burden of disease database or related reference. std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 4: Full statistic descriptors: Damage factors parameter estimates.

Disease central input median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Cancers

Breast cancer 10.7538 10.7488 10.7548 0.37782 10.0266 11.5182 0.03512 1.0357 1.0728

Leukemia 34.9954 34.6869 34.9371 4.3829 27.251 44.3771 0.12496 1.1331 1.2839

Liver Cancer 24.7071 24.672 24.6942 1.1132 22.5893 26.9835 0.045057 1.0461 1.0943

Lung cancer 21.1772 21.1795 21.1771 0.83435 19.5768 22.8182 0.039383 1.0402 1.082

Mouth and oroph cancer (oral) 15.5312 15.5219 15.5291 0.56447 14.4561 16.6791 0.036337 1.037 1.0754

Stomach cancer 19.2363 19.2154 19.2331 0.9276 17.4516 21.0941 0.048201 1.0494 1.1012

Cancers 10.6 10.581 10.598 0.56825 9.52484 11.7537 0.05358 1.055 1.1131

Non-Cancers

Cardiovascular diseases 7.0759 7.0745 7.0808 0.40235 6.33 7.9176 0.056776 1.0584 1.1203

Chronic respiratory diseases 1.3344 1.3308 1.3353 0.12432 1.1055 1.5975 0.092905 1.0974 1.2042

Asthma 0.58753 0.57574 0.58705 0.11937 0.38695 0.85562 0.20128 1.223 1.4956

Congenital birth defects 6.2689 6.1735 6.2629 1.0379 4.4983 8.5391 0.1646 1.1789 1.3899

Diabetes and kidney diseases 2.6893 2.6747 2.6904 0.24242 2.2422 3.1912 0.089923 1.0941 1.197

Digestive diseases 0.20113 0.2003 0.201 0.016943 0.17011 0.23651 0.084146 1.0878 1.1833

Mental disorders 0.33475 0.32709 0.33437 0.066691 0.22492 0.48336 0.19751 1.2184 1.4844

Musculoskeletal disorders 0.46057 0.45087 0.45988 0.093696 0.3022 0.66817 0.20167 1.2234 1.4968

Neurological disorders 0.11908 0.11252 0.11972 0.042945 0.057558 0.22216 0.34792 1.4161 2.0054

Urinary diseases and male infertility 0.017624 0.0175 0.017642 0.002113 0.013847 0.022096 0.11937 1.1268 1.2696

Non-Cancer Average na 2.047 2.0558 0.12782 1.829 2.3273 0.062114 1.0641 1.1323
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Units in DALY/case.
Central tendency input; std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 5: Full statistic descriptors: Damage factors for epidemiology related contaminants parameter estimates.

Contaminant central input median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Benzene 34.995 34.707 35.018 4.458 27.193 44.650 0.127 1.135 1.289

Formaldehyde(Addedeffects) NA 21.526 20.269 3.858 8.584 24.331 0.189 1.208 1.458

Mold 0.588 0.574 0.588 0.121 0.390 0.864 0.204 1.226 1.503

Nitrogen dioxide 4.850 4.818 4.858 0.632 3.747 6.214 0.130 1.138 1.296

Ozone 2.309 2.296 2.308 0.230 1.889 2.789 0.099 1.104 1.220

PM10 11.763 11.700 11.762 1.316 9.384 14.587 0.112 1.118 1.250

PM2.5 11.773 11.707 11.773 1.301 9.429 14.499 0.110 1.116 1.246

Radon 21.177 21.176 21.188 0.834 19.594 22.888 0.039 1.040 1.082

Sulphur dioxide 1.453 0.500 1.476 3.899 0.028 8.797 1.441 4.225 17.853

Units in change/µg/m3; Radon in change/Bq/m3; Mold in change/CFU/m3.
Central tendency. std. dev.: standard deviation; GSD: geometric standard deviation (and squared).

286



Table 6: Full statistic descriptors: Dose-response Factors for cancer, parameter estimates.

DRFc DRFc U. Factor Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

7.49E-03 4 Acetaldehyde 0.00426 0.00754 0.01134 0.00053 0.03398 1.08780 2.96769 8.80720

1.28E-01 1 Acrylonitrile 0.12795 0.12795 0.00009 0.12777 0.12814 0.00072 1.00072 1.00144

1.47E-02 1 Benzene 0.01468 0.01468 0.00001 0.01466 0.01470 0.00071 1.00071 1.00143

3.32E-02 8 Benzyl chloride 0.00958 0.03340 0.12707 0.00045 0.20837 1.65500 5.23283 27.38255

5.65E-02 1 1,3-butadiene 0.05645 0.05645 0.00004 0.05637 0.05653 0.00072 1.00072 1.00143

1.19E-03 7 2-Butoxyethanol 0.00042 0.00119 0.00297 0.00002 0.00694 1.40490 4.07518 16.60707

3.39E+00 47 Cadmium Cd(II) 0.16948 3.26186 26.50233 0.00129 24.26408 2.05060 7.77246 60.41116

1.08E-01 7 Carbon tetrachloride 0.03662 0.10429 0.26711 0.00214 0.63744 1.42230 4.14648 17.19327

2.26E+01 47 Chromium Cr(VI) 1.10430 23.58830 357.90100 0.00941 143.61180 2.33310 10.30980 106.29270

2.73E-01 5 Crotonaldehyde(trans) 0.12830 0.27659 0.51826 0.01131 1.47224 1.22740 3.41232 11.64392

7.25E-01 4 1,2-Dibromoethane 0.40706 0.72235 1.00417 0.04822 3.35468 1.03720 2.82140 7.96029

7.53E-03 7 1,4-Dichlorobenzene 0.00253 0.00746 0.01862 0.00014 0.04358 1.40650 4.08177 16.66088

1.42E-02 4 1,2-Dichloroethane 0.00791 0.01396 0.02034 0.00098 0.06335 1.06720 2.90730 8.45237

5.90E-02 7 1,1-Dichloroethene 0.01972 0.05907 0.15280 0.00108 0.36503 1.42840 4.17181 17.40403

1.26E-04 5 Ethanol 0.00006 0.00013 0.00024 0.00001 0.00067 1.21890 3.38331 11.44678

1.21E-03 8 2-Ethylhexanol 0.00036 0.00125 0.00413 0.00002 0.00798 1.57600 4.83576 23.38456

1.06 4 Formaldehyde 0.60531 1.06265 1.51093 0.07510 4.87904 1.05160 2.86215 8.19192

1.74E-02 5 Hexachlorobutadiene 0.00809 0.01734 0.03323 0.00072 0.09306 1.24170 3.46139 11.98119

6.74E-05 7 Hexane 0.00002 0.00007 0.00018 0.00000 0.00041 1.45770 4.29619 18.45722

7.45E-03 7 Isoprene 0.00255 0.00711 0.01800 0.00014 0.04235 1.41480 4.11572 16.93919

5.62E-03 5 Limonene (d-...) 0.00266 0.00565 0.01021 0.00022 0.02979 1.20360 3.33216 11.10329

3.86E-03 4 Methyl tert-butyl ether 0.00222 0.00391 0.00572 0.00028 0.01787 1.06970 2.91450 8.49433

1.86E-03 7 Methylene chloride 0.00064 0.00188 0.00509 0.00004 0.01079 1.45720 4.29385 18.43719

7.30E-02 4 Naphthalene 0.04156 0.07274 0.10021 0.00521 0.32903 1.03160 2.80542 7.87039

continue on the next page.... . .
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Table 6 – Continue

DRFc DRFc U. Factor Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

1.09 7 Ozone 0.37201 1.08060 2.88963 0.02018 6.59873 1.44850 4.25667 18.11928

Radon 0.05222 0.05234 0.00347 0.04597 0.05937 0.06615 1.06840 1.14150

4.92E-02 4 Styrene 0.02755 0.04915 0.07179 0.00345 0.22062 1.06870 2.91167 8.47784

5.33E-02 8 1,1,2,2-Tetrachloroethane 0.01521 0.05354 0.18105 0.00071 0.33441 1.58770 4.89225 23.93410

8.50E-03 7 Tetrachloroethene 0.00282 0.00852 0.02441 0.00016 0.05230 1.49000 4.43731 19.68975

3.71E-02 8 1,1,2-Trichloroethane 0.01084 0.03734 0.11317 0.00050 0.24487 1.52350 4.58807 21.05038

1.72E-03 4 Trichloroethylene 0.00098 0.00173 0.00256 0.00011 0.00800 1.07620 2.93340 8.60483

1.93E-01 4 Vinyl chloride 0.10802 0.19024 0.26082 0.01296 0.88090 1.02840 2.79670 7.82152

3.69E-04 5 Xylenes 0.00018 0.00036 0.00064 0.00002 0.00186 1.18860 3.28256 10.77521

Units in cases/kg; Radon in case/10−9Bq.
Central tendency. std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
DRFc, Central tendency descriptor in USETox database; DRc U. Factor, Uncertainty factor assigned to the DRFc in this research.

radon Dose conversion factor radon 14.1 mSv.m3/MBq.h; Radon DCFR equilibrium factor 0.4; fatality coefficient for lung cancer 0.0057 /Sv.
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Table 7: Full statistic descriptors: Dose-response Factors for non-cancer, parameter estimates.

DRFnonc DRFnonc U. Factor Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

3.85E-02 22 Acetaldehyde 0.0039323 0.0385927 0.2469739 6.40E-05 0.260965 1.933 6.91034 47.7528

59.7359 33 Acrolein 4.256 55.5008 427.7748 0.046744 390.8631 2.0251 7.57699 57.41073

0.3521 25 Acrylonitrile 0.033488 0.388135 4.60642 0.000491 2.373647 2.2259 9.26212 85.78691

3.72E-03 4 Benzene 0.0021152 0.00378439 0.005833584 0.000261 0.01776 1.1031 3.01338 9.08043

8.45E-02 22 1,3-butadiene 0.009012 0.0864091 0.9069341 0.000141 0.578801 2.1705 8.7625 76.78145

7.92E-03 7 2-Butoxyethanol 0.0026848 0.00799303 0.02309186 0.000143 0.049521 1.495 4.45927 19.88512

6.21E+00 11 Cadmium Cd(II) 1.3652 6.67961 36.34144 0.043138 44.60649 1.8496 6.35728 40.41502

2.64E-01 1 Carbon disulfide 0.26409 0.264093 0.000191061 0.26372 0.264468 0.000723 1.00072 1.001448

3.58E-01 24 Carbon tetrachloride 0.035204 0.33858 2.238382 0.000468 2.384126 1.9494 7.02439 49.34209

8.84E-03 84 Chloromethane 0.0002375 0.0122104 0.5719387 1.26E-06 0.042169 2.7738 16.0193 256.6195

2.89E+01 94 Chromium Cr(VI) 0.69766 24.2852 308.4409 0.003548 139.1844 2.256 9.54477 91.10262

4.71E-03 18 1,2-Dibromoethane 0.00062741 0.0049241 0.0380133 1.30E-05 0.031877 2.0259 7.58285 57.49964

2.23E-03 16 1,4-Dichlorobenzene 0.00033314 0.00217441 0.009566287 7.26E-06 0.015775 1.7359 5.67403 32.19464

9.45E-03 16 1,1-Dichloroethene 0.0014237 0.00968215 0.07361504 3.08E-05 0.062386 2.0185 7.52691 56.65443

0.00847 18 Formaldehyde 0.0010863 0.00826619 0.04267449 2.24E-05 0.057296 1.822 6.18422 38.24463

9.16E-03 18 Hexane 0.0011814 0.00923258 0.05868335 2.32E-05 0.063299 1.9296 6.88663 47.42569

1.97E-02 18 2-Methoxyethanol 0.0025842 0.0191262 0.1045645 5.02E-05 0.142475 1.8521 6.37341 40.62033

8.13E-02 4 Methyl methacrylate 0.046242 0.0812272 0.1228613 0.005331 0.374027 1.091 2.97719 8.863631

6.46E-04 16 Methyl tert-butyl ether 9.63E-05 0.00064885 0.003506652 2.03E-06 0.004477 1.8461 6.33507 40.1331

2.17E-02 18 Methylene chloride 0.0027915 0.0203504 0.1093967 5.59E-05 0.141061 1.8433 6.31739 39.90937

7.19E-02 33 Naphthalene 0.0050103 0.068126 0.490145 5.79E-05 0.473854 1.9914 7.32605 53.671

9.84E-03 16 Styrene 0.0014516 0.0100798 0.06756924 2.97E-05 0.06799 1.9563 7.07336 50.0324

3.23E-02 32 Tetrachloroethene 0.0023023 0.0342284 0.3668873 2.63E-05 0.215346 2.1801 8.84684 78.26662

3.64E-03 11 Toluene 0.00078595 0.00359392 0.01315967 2.63E-05 0.024718 1.6333 5.12089 26.22353

continue on the next page.... . .
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Table 7 – Continue

DRFnonc DRFnonc U. Factor Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

1.16E-01 32 1,1,2-Trichloroethane 0.0082904 0.123509 1.422728 1.02E-04 0.74931 2.2126 9.13933 83.52731

6.69E-02 16 Vinyl chloride 0.009813 0.0646127 0.3456248 0.000226 0.447873 1.8407 6.30105 39.70325

8.58E-03 22 Xylenes 0.00089767 0.00833245 0.05616547 1.50E-05 0.05611 1.9591 7.09292 50.30948

Units in cases/kg.
Central tendency. std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
DRFnonc, Central tendency descriptor in USETox database; DRFnonc U. Factor, Uncertainty factor assigned to the DRFnonc in this research.
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Table 8: Full statistic descriptors: Concentration-response factor parameter estimates.

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Acrolein 2.005 8.755 31.514 0.069 59.140 1.624 5.071 25.715

Benzene 0.002 0.002 0.001 0.001 0.003 0.337 1.401 1.963

Formaldehyde 0.230 0.395 1.039 0.054 1.653 1.439 4.218 17.787

Mold 0.048 0.063 0.056 0.011 0.210 0.756 2.129 4.533

Nitrogen dioxide 1.176 1.340 0.735 0.428 3.215 0.513 1.670 2.790

Ozone 0.545 0.671 0.481 0.155 1.921 0.644 1.905 3.629

PM10 2.556 2.649 0.720 1.512 4.313 0.267 1.306 1.705

PM2.5 5.141 5.194 0.731 3.906 6.762 0.140 1.150 1.323

Radon 0.021 0.024 0.013 0.008 0.059 0.515 1.674 2.804

Sulphur dioxide 3.752 3.923 1.201 2.080 6.724 0.299 1.349 1.820

Units in case/µg/m3; Radon in case/Bq/m3; Mold in case/CFU/m3.
std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 9: Full statistic descriptors: Epi-based Dose-response factor parameter estimates.

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Acrolein 3.7631 16.3573 64.4975 0.1290 109.6971 1.6752 5.3398 28.5133

Benzene 0.0033 0.0035 0.0012 0.0017 0.0064 0.3418 1.4075 1.9810

Formaldehyde 0.4299 0.7383 1.8932 0.1033 3.0576 1.4230 4.1495 17.2182

Mold 0.0878 0.1174 0.1034 0.0200 0.3911 0.7576 2.1332 4.5507

Nitrogen dioxide 2.1698 2.4788 1.3763 0.7831 5.9935 0.5184 1.6793 2.8200

Ozone 1.0126 1.2524 0.9106 0.2835 3.6277 0.6515 1.9183 3.6800

PM10 4.7411 4.9231 1.3856 2.7527 8.1524 0.2761 1.3180 1.7371

PM2.5 9.5430 9.6539 1.5017 7.0545 12.9064 0.1546 1.1672 1.3624

Radon 0.0396 0.0454 0.0254 0.0142 0.1107 0.5221 1.6855 2.8410

Sulphur dioxide 6.9644 7.2950 2.2926 3.8165 12.7043 0.3069 1.3592 1.8474

Units in cases/kg; Radon in case/10−9Bq.; Mold in case/10−9CFU.
std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 10: Full statistic descriptors: cancer-Effect factor parameter estimates.

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Acetaldehyde 0.0904 0.1603 0.2350 0.0112 0.7204 1.0710 2.9182 8.5160

Acrylonitrile 2.7070 2.7093 0.1057 2.5081 2.9238 0.0390 1.0398 1.0811

Benzene 0.5101 0.5137 0.0647 0.3975 0.6509 0.1255 1.1337 1.2852

Benzyl chloride 0.1888 0.6346 2.0587 0.0083 3.9580 1.5635 4.7753 22.8034

1,3-butadiene 0.5982 0.5991 0.0329 0.5371 0.6665 0.0549 1.0564 1.1160

2-Butoxyethanol 0.0101 0.0290 0.0715 0.0006 0.1762 1.3997 4.0541 16.4355

Cadmium Cd(II) 3.4554 86.2825 2273.0347 0.0297 414.8180 2.5581 12.9114 166.7041

Carbon tetrachloride 0.9213 2.7616 7.8600 0.0522 17.3735 1.4861 4.4197 19.5333

Chromium Cr(VI) 23.4009 407.0925 3322.9048 0.2010 2661.8407 2.0528 7.7897 60.6797

Crotonaldehyde(trans) 3.1136 6.7721 12.9016 0.2767 35.2537 1.2379 3.4484 11.8917

1,2-Dibromoethane 10.0141 17.8050 26.0673 1.2165 82.0460 1.0702 2.9159 8.5027

1,4-Dichlorobenzene 0.0276 0.0815 0.2299 0.0016 0.4849 1.4809 4.3968 19.3319

1,2-Dichloroethane 0.1533 0.2744 0.3912 0.0183 1.2625 1.0533 2.8670 8.2198

1,1-Dichloroethene 0.4276 1.2736 3.3275 0.0232 7.6757 1.4344 4.1970 17.6150

Ethanol 0.0015 0.0031 0.0057 0.0001 0.0156 1.2240 3.4008 11.5652

2-Ethylhexanol 0.0086 0.0290 0.0778 0.0004 0.1891 1.4508 4.2666 18.2035

Formaldehyde 20.9500 37.1315 54.9863 2.4480 168.1486 1.0775 2.9372 8.6273

Hexachlorobutadiene 0.0861 0.1872 0.4043 0.0077 0.9873 1.3170 3.7321 13.9282

Hexane 0.0002 0.0007 0.0026 0.0000 0.0044 1.5952 4.9295 24.2999

Isoprene 0.0269 0.0796 0.2144 0.0015 0.4900 1.4528 4.2752 18.2772

Limonene (d-...) 0.0283 0.0605 0.1267 0.0025 0.3056 1.2980 3.6619 13.4097

continue on the next page.... . .
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Table 10 – Continue

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Methyl tert-butyl ether 0.0739 0.1350 0.2064 0.0091 0.6258 1.0979 2.9979 8.9875

Methylene chloride 0.0067 0.0196 0.0542 0.0004 0.1187 1.4674 4.3378 18.8168

Naphthalene 0.8716 1.5521 2.2488 0.1082 6.9933 1.0636 2.8967 8.3906

Ozone 7.8759 24.2668 70.5159 0.4171 155.0903 1.4985 4.4748 20.0238

Radon 1.1044 1.1088 0.0838 0.9528 1.2854 0.0755 1.0784 1.1630

Styrene 0.3004 0.5265 0.7623 0.0376 2.4006 1.0631 2.8954 8.3833

1,1,2,2-Tetrachloroethane 0.3854 1.2853 3.6143 0.0178 8.3019 1.4788 4.3878 19.2530

Tetrachloroethene 0.1030 0.3058 0.7812 0.0056 1.8826 1.4208 4.1403 17.1424

1,1,2-Trichloroethane 0.2568 0.9423 2.9465 0.0117 5.8614 1.5419 4.6736 21.8427

Trichloroethylene 0.0103 0.0180 0.0248 0.0013 0.0814 1.0317 2.8059 7.8729

Vinyl chloride 2.7192 4.7582 6.6920 0.3378 21.9367 1.0446 2.8424 8.0790

Xylenes 0.0027 0.0058 0.0102 0.0002 0.0298 1.1865 3.2757 10.7302

Units in DALY/kg; Radon in DALY/10−9Bq.
std. dev.: standard deviation; GSD: geometric standard deviation (and squared).

294



Table 11: Full statistic descriptors: Noncancer-Effect factor parameter estimates.

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Acetaldehyde 0.0088 0.0776 0.4983 0.0001 0.5632 1.9350 6.9240 47.9414

Acrolein 2.4129 31.6291 221.0203 0.0249 211.7958 1.9770 7.2212 52.1461

Acrylonitrile 0.0676 0.7939 6.2338 0.0010 5.1373 2.0341 7.6457 58.4571

Benzene 0.0043 0.0076 0.0106 0.0005 0.0354 1.0402 2.8297 8.0070

1,3-butadiene 0.0178 0.1548 0.9061 0.0003 1.1668 1.8877 6.6041 43.6138

2-Butoxyethanol 0.0054 0.0166 0.0474 0.0003 0.0996 1.4897 4.4357 19.6755

Cadmium Cd(II) 2.7570 12.4412 46.0122 0.0865 84.0645 1.6390 5.1501 26.5232

Carbon disulfide 0.5396 0.5428 0.0597 0.4367 0.6692 0.1096 1.1158 1.2450

Carbon tetrachloride 0.0690 0.7194 4.1605 0.0009 4.8637 1.8813 6.5620 43.0597

Chloromethane 0.0005 0.0202 0.2919 0.0000 0.0979 2.3119 10.0935 101.8783

Chromium Cr(VI) 1.5306 65.1261 1017.1515 0.0072 323.3055 2.3454 10.4376 108.9431

1,2-Dibromoethane 0.0012 0.0094 0.0416 0.0000 0.0661 1.7418 5.7079 32.5795

1,4-Dichlorobenzene 0.0007 0.0047 0.0242 0.0000 0.0328 1.8240 6.1969 38.4015

1,1-Dichloroethene 0.0028 0.0192 0.1074 0.0001 0.1347 1.8650 6.4556 41.6751

Formaldehyde 0.0007 0.0047 0.0347 0.0000 0.0320 2.0079 7.4475 55.4657

Hexane 0.0024 0.0185 0.1167 0.0000 0.1242 1.9243 6.8505 46.9293

2-Methoxyethanol 0.0051 0.0405 0.2302 0.0001 0.2695 1.8725 6.5047 42.3116

Methyl methacrylate 0.0954 0.1675 0.2415 0.0114 0.7774 1.0604 2.8875 8.3376

Methyl tert-butyl ether 0.0002 0.0014 0.0075 0.0000 0.0097 1.8493 6.3554 40.3912

Methylene chloride 0.0059 0.0460 0.2546 0.0001 0.3086 1.8584 6.4135 41.1326

Naphthalene 0.0107 0.1440 1.2072 0.0001 1.0146 2.0656 7.8904 62.2588

continue on the next page.... . .
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Table 11 – Continue

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Styrene 0.0029 0.0193 0.1201 0.0001 0.1394 1.9196 6.8180 46.4857

Tetrachloroethene 0.0047 0.0643 0.4049 0.0001 0.4270 1.9249 6.8545 46.9838

Toluene 0.0016 0.0078 0.0314 0.0000 0.0533 1.6908 5.4236 29.4158

1,1,2-Trichloroethane 1.60E-02 0.219106 1.3840536 0.000193358 1.538362 1.9264 6.86506 47.12899

Vinyl chloride 0.0204 0.1383 1.0957 0.0005 0.9416 2.0384 7.6780 58.9510

Xylenes 0.0018 0.0179 0.1254 0.0000 0.1231 1.9777 7.2261 52.2161

Units in DALY/kg.
std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 12: Full statistic descriptors: Toxicology based -Effect factor parameter estimates.

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Chromium Cr(VI) 30.81490 681.49270 7266.25370 0.42247 3815.07890 2.17770 8.82558 77.89088

Formaldehyde 13.09560 59.99489 223.67009 0.42783 402.06424 1.64360 5.17357 26.76587

Cadmium Cd(II) 9.98833 125.68630 2568.63010 0.39010 568.99485 2.45700 11.67030 136.19530

1,2-Dibromoethane 6.17595 27.28766 132.33906 0.19712 162.67306 1.78870 5.98176 35.78149

Ozone 4.80513 37.85280 195.51772 0.08985 272.14289 1.82230 6.18592 38.26561

Acrolein 2.41291 31.62911 221.02030 0.02495 211.79579 1.97700 7.22122 52.14606

Acrylonitrile 2.12838 5.16782 13.39709 0.18683 28.96186 1.42960 4.17722 17.44916

Crotonaldehyde(trans) 1.99295 10.95723 58.78541 0.05393 76.83481 1.84230 6.31082 39.82640

Vinyl chloride 1.79271 7.78073 27.51052 0.08625 51.21929 1.61330 5.01943 25.19467

Carbon tetrachloride 0.96789 5.14770 28.30030 0.03904 32.95752 1.85500 6.39199 40.85754

Radon 0.68204 1.73190 3.65870 0.04759 9.89550 1.30310 3.68060 13.54690

Naphthalene 0.65574 2.63813 10.09834 0.03322 16.89286 1.65850 5.25143 27.57750

Carbon disulfide 0.53960 0.54280 0.05966 0.43666 0.66915 0.10958 1.11580 1.24502

1,3-butadiene 0.48167 1.11076 2.21956 0.04333 6.19380 1.26810 3.55402 12.63108

Benzene 0.32292 0.83312 1.95210 0.02752 4.65462 1.36760 3.92586 15.41234

1,1-Dichloroethene 0.28721 2.06462 12.50872 0.00920 13.71026 1.90520 6.72084 45.16965

1,1,2-Trichloroethane 0.27898 1.71873 8.26057 0.00935 11.78004 1.78390 5.95286 35.43658

1,1,2,2-Tetrachloroethane 0.24437 2.01903 10.58134 0.00413 13.89765 1.82990 6.23357 38.85739

Styrene 0.20685 0.88249 3.96259 0.00998 5.61152 1.74710 5.73772 32.92146

Benzyl chloride 0.11735 0.96877 5.58318 0.00198 6.73532 1.87950 6.55044 42.90825

Tetrachloroethene 0.10080 0.51200 1.90115 0.00397 3.52167 1.64130 5.16178 26.64400

continue on the next page.... . .
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Table 12 – Continue

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Acetaldehyde 0.09743 0.32593 0.99024 0.00578 2.07508 1.52490 4.59479 21.11208

1,2-Dichloroethane 0.09570 0.44054 2.05361 0.00302 2.86632 1.76740 5.85561 34.28812

Methyl methacrylate 0.09537 0.16750 0.24148 0.01141 0.77741 1.06040 2.88749 8.33761

Hexachlorobutadiene 0.05429 0.30344 2.20582 0.00141 2.04902 1.99650 7.36333 54.21862

Methyl tert-butyl ether 0.04768 0.21821 0.97092 0.00190 1.43479 1.74210 5.70919 32.59487

1,4-Dichlorobenzene 0.02191 0.13322 1.02680 0.00088 0.83272 2.02510 7.57706 57.41181

2-Butoxyethanol 0.01881 0.06134 0.20418 0.00154 0.37009 1.57840 4.84736 23.49689

Methylene chloride 0.01859 0.07526 0.28416 0.00090 0.48993 1.65070 5.21080 27.15248

Limonene (d-...) 0.01780 0.10053 0.47428 0.00048 0.66986 1.77390 5.89375 34.73627

Isoprene 0.01680 0.12391 0.78295 0.00033 0.79300 1.92660 6.86596 47.14143

Xylenes 0.00658 0.02720 0.13133 0.00034 0.16829 1.78640 5.96769 35.61329

Trichloroethylene 0.00640 0.03005 0.11951 0.00021 0.20215 1.68000 5.36535 28.78695

2-Ethylhexanol 0.00532 0.04657 0.28816 0.00008 0.31840 1.91600 6.79347 46.15122

2-Methoxyethanol 0.00513 0.04050 0.23024 0.00009 0.26950 1.87250 6.50474 42.31159

Hexane 0.00336 0.01977 0.11700 0.00013 0.12821 1.89320 6.64029 44.09347

Toluene 0.00162 0.00775 0.03143 0.00005 0.05331 1.69080 5.42363 29.41576

Ethanol 0.00091 0.00470 0.02333 0.00002 0.03195 1.80170 6.06020 36.72601

Chloromethane 0.00049 0.02021 0.29189 0.00000 0.09790 2.31190 10.09350 101.87830

Units in DALY/kg; Radon in DALY/10−9Bq.
std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 13: Full statistic descriptors: Epidemiology based -Effect factor parameter estimates.

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

PM2.5 111.588 113.745 21.832 77.095 162.196 0.190 1.210 1.463

PM10 55.324 57.790 17.619 30.800 98.979 0.298 1.347 1.815

Nitrogen dioxide 10.450 12.063 6.945 3.681 29.825 0.535 1.708 2.916

Formaldehyde 7.341 9.908 9.136 1.774 33.606 0.784 2.191 4.801

Sulphur dioxide 3.495 10.575 29.048 0.191 64.870 1.465 4.326 18.716

Ozone 2.325 2.877 2.110 0.641 8.379 0.656 1.927 3.714

Acrolein 2.148 9.380 33.111 0.072 62.252 1.612 5.015 25.149

Radon 0.841 0.963 0.540 0.300 2.345 0.523 1.687 2.844

Benzene 0.115 0.123 0.046 0.056 0.234 0.364 1.439 2.072

Mold 0.051 0.069 0.064 0.011 0.237 0.788 2.199 4.834

Units in DALY/kg; Radon in DALY/10−9Bq.
std. dev.: standard deviation; GSD: geometric standard deviation (and squared).

299



A2 For the Harm Intensity

300



Table 14: Full statistic descriptors: Toxicology-based cancer harm intensities parameter estimates.

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Acetaldehyde 0.04791 0.08606 0.12564 0.00607 0.41466 1.06840 2.91075 8.47245

Acrylonitrile 1.45827 1.46211 0.11283 1.25133 1.69710 0.07706 1.08010 1.16662

Benzene 0.27457 0.27708 0.03949 0.20806 0.36218 0.14181 1.15235 1.32792

Benzyl chloride 0.09979 0.34510 1.01712 0.00461 2.16262 1.50690 4.51273 20.36477

1,3-butadiene 0.32191 0.32327 0.02768 0.27202 0.38134 0.08547 1.08923 1.18642

2-Butoxyethanol 0.00545 0.01623 0.04587 0.00030 0.09828 1.48180 4.40086 19.36754

Cadmium Cd(II) 1.90159 43.67683 636.47372 0.01464 221.69377 2.31580 10.13310 102.67910

Carbon tetrachloride 0.47518 1.40320 3.33145 0.02871 8.60540 1.37570 3.95796 15.66543

Chromium Cr(VI) 12.66010 256.28800 2508.43890 0.11031 1576.33890 2.13840 8.48557 72.00486

Crotonaldehyde(trans) 1.69201 3.60895 6.48682 0.15407 19.15304 1.20100 3.32340 11.04502

1,2-Dibromoethane 5.32631 9.24707 12.53951 0.65341 41.66581 1.02150 2.77728 7.71331

1,4-Dichlorobenzene 0.01455 0.04240 0.11124 0.00077 0.25556 1.43690 4.20771 17.70486

1,2-Dichloroethane 0.08350 0.15061 0.22665 0.00986 0.70194 1.08770 2.96750 8.80607

1,1-Dichloroethene 0.23098 0.67467 1.69366 0.01332 4.02692 1.41000 4.09599 16.77717

Ethanol 0.00080 0.00166 0.00287 0.00007 0.00871 1.17770 3.24699 10.54295

2-Ethylhexanol 0.00464 0.01643 0.05652 0.00021 0.10452 1.59750 4.94086 24.41208

Formaldehyde 11.46000 20.52467 30.15667 1.31433 96.24940 1.07250 2.92259 8.54156

Hexachlorobutadiene 0.04700 0.10097 0.21568 0.00407 0.52678 1.31000 3.70628 13.73651

Hexane 0.00013 0.00039 0.00128 0.00001 0.00231 1.56600 4.78723 22.91757

Isoprene 0.01491 0.04268 0.10484 0.00086 0.26408 1.39670 4.04199 16.33767

Limonene (d-...) 0.01537 0.03250 0.05954 0.00140 0.16952 1.21320 3.36421 11.31788

continue on the next page.... . .
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Table 14 – Continue

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Methyl tert-butyl ether 0.04062 0.07091 0.10014 0.00495 0.31745 1.04720 2.84960 8.12020

Methylene chloride 0.00362 0.01104 0.04243 0.00021 0.06317 1.66090 5.26414 27.71113

Naphthalene 0.46633 0.84423 1.23811 0.05591 3.88764 1.07130 2.91913 8.52130

Ozone 4.19960 12.67740 33.75466 0.24147 79.55480 1.44590 4.24556 18.02476

Radon 0.59542 0.59865 0.06059 0.48943 0.72624 0.10095 1.10620 1.22370

Styrene 0.15964 0.28509 0.40698 0.01942 1.34539 1.05410 2.86946 8.23381

1,1,2,2-Tetrachloroethane 0.20398 0.70584 2.23775 0.00957 4.23556 1.55000 4.71152 22.19844

Tetrachloroethene 0.05328 0.15019 0.33208 0.00292 0.93250 1.33160 3.78698 14.34119

1,1,2-Trichloroethane 0.14336 0.51277 1.63086 0.00625 3.29441 1.55190 4.72038 22.28198

Trichloroethylene 0.00553 0.00972 0.01395 0.00069 0.04418 1.05750 2.87902 8.28877

Vinyl chloride 1.45196 2.60877 3.94849 0.17848 12.07642 1.09140 2.97842 8.87098

Xylenes 0.00147 0.00311 0.00574 0.00013 0.01596 1.21850 3.38203 11.43809

Units in DALY/µg/m3; Radon in DALY/Bq/m3.
std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 15: Full statistic descriptors: Toxicology-based Non-cancer harm intensities parameter estimates.

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Acetaldehyde 0.00454 0.04131 0.26820 0.00007 0.28061 1.94020 6.96046 48.44805

Acrolein 1.32570 18.04730 132.34340 0.01368 127.86230 2.00080 7.39502 54.68633

Acrylonitrile 0.03710 0.41146 3.17876 0.00054 2.74411 2.02630 7.58559 57.54125

Benzene 0.00230 0.00408 0.00589 0.00028 0.01826 1.06130 2.89025 8.35356

1,3-butadiene 0.00970 0.08646 0.47932 0.00015 0.62797 1.85940 6.41992 41.21540

2-Butoxyethanol 0.00289 0.00891 0.02419 0.00016 0.05533 1.45780 4.29662 18.46098

Cadmium Cd(II) 1.49070 7.03413 30.22840 0.04615 44.82216 1.72300 5.60134 31.37502

Carbon disulfide 0.29072 0.29315 0.03738 0.22705 0.37410 0.12701 1.13543 1.28920

Carbon tetrachloride 0.03810 0.35306 1.87020 0.00056 2.51596 1.83560 6.26877 39.29744

Chloromethane 0.00027 0.01146 0.27244 0.00000 0.05041 2.51780 12.40180 153.80520

Chromium Cr(VI) 0.81612 28.13390 329.13150 0.00368 164.66530 2.21950 9.20287 84.69278

1,2-Dibromoethane 0.00068 0.00496 0.02570 0.00001 0.03357 1.82430 6.19849 38.42128

1,4-Dichlorobenzene 0.00035 0.00225 0.00969 0.00001 0.01621 1.72420 5.60822 31.45216

1,1-Dichloroethene 0.00156 0.01041 0.06020 0.00003 0.07134 1.88130 6.56195 43.05917

Formaldehyde 0.00036 0.00277 0.01875 0.00001 0.01896 1.96120 7.10752 50.51680

Hexane 0.00133 0.01035 0.06963 0.00002 0.06855 1.95800 7.08480 50.19445

2-Methoxyethanol 0.00274 0.02216 0.15090 0.00005 0.14904 1.96410 7.12849 50.81541

Methyl methacrylate 0.05007 0.08861 0.12051 0.00602 0.41718 1.02330 2.78247 7.74216

Methyl tert-butyl ether 0.00010 0.00076 0.00560 0.00000 0.00523 2.00430 7.42071 55.06692

Methylene chloride 0.00310 0.02421 0.15958 0.00006 0.16101 1.94800 7.01441 49.20197

Naphthalene 0.00559 0.07272 0.53591 0.00006 0.48158 2.00320 7.41301 54.95273
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Table 15 – Continue

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Styrene 0.00164 0.01060 0.06703 0.00003 0.07293 1.92700 6.86884 47.18091

Tetrachloroethene 0.00254 0.03767 0.36535 0.00003 0.24320 2.13410 8.44957 71.39527

Toluene 0.00086 0.00400 0.01549 0.00003 0.02697 1.66500 5.28589 27.94060

1,1,2-Trichloroethane 0.00952 0.12345 1.17650 0.00010 0.85258 2.12600 8.38138 70.24747

Vinyl chloride 0.01067 0.07316 0.37267 0.00023 0.51181 1.81490 6.14057 37.70657

Xylenes 0.00101 0.00855 0.04167 0.00002 0.06524 1.79160 5.99915 35.98980

Units in DALY/µg/m3.
std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 16: Full statistic descriptors: Toxicology-based All-cause harm intensities parameter estimates (high to low median).

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Chromium Cr(VI) 16.63140 609.55040 25589.65740 0.23521 2032.42030 2.73400 15.39510 237.00790

Formaldehyde 7.05694 32.61758 131.23938 0.24163 214.40277 1.68650 5.40054 29.16586

Cadmium Cd(II) 5.31568 58.09412 628.67019 0.21512 318.37824 2.18440 8.88528 78.94826

1,2-Dibromoethane 3.37842 15.59755 72.34535 0.11405 98.68934 1.76470 5.83973 34.10239

Ozone 2.58899 19.53409 100.27429 0.05238 135.46198 1.81900 6.16566 38.01535

Acrolein 1.31476 17.39771 171.11318 0.01437 120.26726 2.14060 8.50472 72.33020

Acrylonitrile 1.16436 2.77264 6.97339 0.10141 15.74535 1.41120 4.10071 16.81580

Crotonaldehyde(trans) 1.06063 6.30593 43.60021 0.03003 40.11482 1.97180 7.18332 51.60011

Vinyl chloride 0.97893 4.15008 16.77101 0.04457 28.27544 1.68890 5.41368 29.30790

Carbon tetrachloride 0.51649 2.77542 19.57295 0.02167 17.17216 1.98160 7.25409 52.62177

Radon 0.37192 0.95081 1.99660 0.02423 5.48710 1.29930 3.66670 13.44440

Naphthalene 0.35546 1.41134 6.62482 0.01749 8.74299 1.77110 5.87757 34.54582

Carbon disulfide 0.29024 0.29265 0.03788 0.22485 0.37295 0.12888 1.13756 1.29404

1,3-butadiene 0.26602 0.61644 1.41793 0.02307 3.36221 1.35610 3.88118 15.06353

Benzene 0.17820 0.45689 1.29228 0.01458 2.61336 1.48230 4.40309 19.38724

1,1,2-Trichloroethane 0.15401 0.90947 4.02120 0.00552 6.27680 1.73860 5.68954 32.37081

1,1-Dichloroethene 0.15303 1.10426 5.56660 0.00501 7.80815 1.80940 6.10658 37.29035

1,1,2,2-Tetrachloroethane 0.13339 1.09424 5.69459 0.00222 7.92227 1.82620 6.21054 38.57076

Styrene 0.11090 0.44398 1.38001 0.00540 3.12074 1.53840 4.65706 21.68817

Benzyl chloride 0.06165 0.61493 11.41023 0.00105 3.63392 2.41750 11.21800 125.84450

Acetaldehyde 0.05286 0.17975 0.59236 0.00306 1.12255 1.57260 4.81938 23.22642

continue on the next page.... . .
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Table 16 – Continue

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Tetrachloroethene 0.05223 0.27792 1.43683 0.00196 1.79536 1.82280 6.18893 38.30280

1,2-Dichloroethane 0.05214 0.24310 0.97640 0.00161 1.61318 1.68550 5.39522 29.10843

Methyl methacrylate 0.05074 0.08828 0.12175 0.00626 0.39950 1.03220 2.80716 7.88012

Hexachlorobutadiene 0.03004 0.14890 0.49046 0.00080 1.08735 1.57240 4.81800 23.21310

Methyl tert-butyl ether 0.02567 0.10485 0.31878 0.00105 0.72778 1.52530 4.59674 21.12998

1,4-Dichlorobenzene 0.01162 0.07107 0.38610 0.00046 0.47316 1.84880 6.35223 40.35083

Methylene chloride 0.01004 0.04016 0.17203 0.00050 0.25347 1.72120 5.59130 31.26258

2-Butoxyethanol 0.01004 0.03706 0.38454 0.00081 0.19480 2.16530 8.71705 75.98704

Limonene (d-...) 0.00929 0.05123 0.29494 0.00025 0.34561 1.87900 6.54723 42.86625

Isoprene 0.00920 0.06832 0.45404 0.00017 0.46116 1.95200 7.04284 49.60160

Trichloroethylene 0.00352 0.01525 0.05615 0.00012 0.10802 1.63650 5.13701 26.38890

Xylenes 0.00343 0.01361 0.06886 0.00018 0.08303 1.81150 6.11945 37.44768

2-Ethylhexanol 0.00295 0.02730 0.26407 0.00005 0.17501 2.13290 8.43936 71.22282

2-Methoxyethanol 0.00279 0.02125 0.17212 0.00005 0.14195 2.04910 7.76065 60.22764

Hexane 0.00182 0.01240 0.12868 0.00007 0.07493 2.16550 8.71856 76.01328

Toluene 0.00087 0.00412 0.01673 0.00003 0.02750 1.69190 5.43000 29.48495

Ethanol 0.00050 0.00281 0.01300 0.00001 0.01949 1.76370 5.83377 34.03291

Chloromethane 0.00027 0.00989 0.15271 0.00000 0.05484 2.34080 10.38940 107.93870

Units in DALY/µg/m3; Radon in DALY/Bq/m3.
std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 17: Full statistic descriptors: Epidemiology-based All-cause harm intensities parameter estimates (high to low median).

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

PM2.5 60.181 61.154 11.004 42.382 85.337 0.179 1.195 1.429

PM10 29.800 31.112 9.216 16.906 52.668 0.290 1.336 1.786

NO2 5.639 6.480 3.689 1.997 15.862 0.530 1.699 2.885

Formaldehyde 3.995 5.314 4.747 0.986 17.677 0.766 2.151 4.627

SO2 1.900 5.782 17.048 0.101 35.054 1.507 4.514 20.373

O3 1.253 1.555 1.146 0.350 4.533 0.658 1.932 3.732

Acrolein 1.151 5.226 21.682 0.039 34.489 1.704 5.493 30.177

Benzene 0.062 0.066 0.025 0.031 0.125 0.359 1.432 2.051

Radon 0.452 0.517 0.288 0.163 1.256 0.520 1.682 2.830

Mold 0.027 0.037 0.034 0.006 0.127 0.779 2.179 4.748

Units in DALY/µg/m3. Moved to end because of units, Radon in DALY/Bq/m3; Mold in DALY/CFU/m3.
std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 18: Full statistic descriptors: Pooled harm intensities parameter estimates.

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Acrolein 1.207 3.173 7.552 0.081 18.557 1.377 3.964 15.711

Benzene 0.067 0.071 0.025 0.034 0.132 0.346 1.413 1.997

Formaldehyde 4.333 5.442 4.141 1.159 16.384 0.676 1.966 3.864

Ozone 1.347 1.635 1.127 0.401 4.558 0.623 1.865 3.479

Radon 0.442 0.496 0.255 0.170 1.145 0.485 1.624 2.637

Units in DALY/µg/m3. Radon in DALY/Bq/m3.
std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 19: Full statistic descriptors: Representative concentrations parameter estimates.

Contaminant central input median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

1,1,2,2-Tetrachloroethane 0.0880 0.0396 0.0888 0.1690 0.0035 0.4811 1.2375 3.4469 11.8811

1,1,2-Trichloroethane 0.3040 0.2832 0.3025 0.1157 0.1356 0.5800 0.3694 1.4469 2.0935

1,1-Dichloroethene 0.5120 0.4800 0.5141 0.2001 0.2295 0.9973 0.3755 1.4558 2.1193

1,2-Dibromoethane 0.0960 0.0183 0.0962 0.4761 0.0006 0.6731 1.7996 6.0470 36.5665

1,2-Dichloroethane 0.5300 0.5172 0.5304 0.1255 0.3229 0.8114 0.2334 1.2629 1.5948

1,3-Butadiene 0.4610 0.4261 0.4617 0.1915 0.1994 0.9368 0.3985 1.4895 2.2187

1,4-Dichlorobenzene 2.2010 1.9120 2.2170 1.3244 0.6506 5.6493 0.5524 1.7375 3.0188

2-Butoxyethanol 2.9540 2.7042 2.9400 1.2533 1.2258 6.0625 0.4086 1.5047 2.2642

2-Ethylhexanol 1.9600 1.6964 1.9444 1.0851 0.6043 4.6564 0.5207 1.6832 2.8332

2-Methoxyethanol 1.2700 0.0210 1.1391 22.6732 0.0001 5.6499 2.4463 11.5456 133.3019

Acetaldehyde 14.8820 12.8534 14.8921 8.5578 4.5810 37.0247 0.5342 1.7061 2.9106

Acrolein 0.6460 0.5962 0.6450 0.2662 0.2726 1.3040 0.3966 1.4867 2.2103

Acrylonitrile 0.7190 0.7120 0.7185 0.1084 0.5295 0.9481 0.1500 1.1618 1.3497

Benzene 2.3010 2.2318 2.3116 0.6640 1.2622 3.8701 0.2816 1.3252 1.7562

Benzyl chloride 0.5000 0.2235 0.4884 0.9000 0.0196 2.6546 1.2168 3.3763 11.3994

Mold 161.6570 155.5503 162.8233 48.6562 88.8014 279.6607 0.2925 1.3397 1.7949

Cadmium Cd(II) 0.0150 0.0108 0.0149 0.0143 0.0023 0.0524 0.8055 2.2378 5.0076

Carbon disulfide 0.3400 0.3062 0.3402 0.1641 0.1257 0.7543 0.4575 1.5802 2.4969

Carbon tetrachloride 0.5150 0.4997 0.5161 0.1294 0.3079 0.8119 0.2470 1.2802 1.6388

Chloromethane 1.6030 1.6004 1.6042 0.1070 1.4032 1.8216 0.0667 1.0689 1.1426

Chromium Cr(VI) 0.0060 0.0031 0.0060 0.0101 0.0003 0.0283 1.1662 3.2099 10.3036

continue on the next page.... . .

310



Table 19 – Continue

Contaminant central input median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Crotonaldehyde(trans) 0.7990 0.6548 0.8024 0.5716 0.1818 2.2579 0.6407 1.8977 3.6013

Ethanol 129.1630 113.0447 128.2706 67.9501 42.4494 300.4899 0.4973 1.6443 2.7039

Formaldehyde 28.0100 27.7114 28.0133 4.2563 20.7191 37.3662 0.1511 1.1631 1.3528

Hexachlorobutadiene 1.7000 1.2586 1.7080 1.5313 0.2773 5.6921 0.7680 2.1555 4.6463

Hexane 1.6570 1.4495 1.6466 0.9048 0.5283 3.9483 0.5137 1.6714 2.7935

Isoprene 6.4830 6.0498 6.5220 2.5929 2.8794 12.8958 0.3831 1.4668 2.1514

Limonene (d-...) 14.6110 12.0476 14.5980 9.9266 3.5967 40.9755 0.6165 1.8524 3.4315

Methyl methacrylate 0.2700 0.0818 0.2675 0.7362 0.0039 1.6758 1.4658 4.3309 18.7568

Methyl tert-butyl ether 4.3670 3.3276 4.3660 3.6685 0.7782 14.0864 0.7309 2.0769 4.3134

Methylene chloride 0.9080 0.6701 0.8968 0.7960 0.1430 3.0694 0.7622 2.1430 4.5923

Naphthalene 1.5410 21.7545 22.4973 6.0998 12.8204 36.5653 0.7919 2.2076 4.8737

NO2 22.4434 1.1218 1.5305 1.4294 0.2329 5.2045 0.2663 1.3052 1.7035

O3 10.0000 7.3307 9.9137 9.0617 1.6067 33.3032 0.7793 2.1800 4.7522

PM10 63.9810 62.1581 63.9823 15.5839 38.6281 98.9778 0.2401 1.2713 1.6163

PM2.5 26.6710 25.8732 26.7399 6.6139 16.1542 41.7495 0.2437 1.2759 1.6280

PM {10-2.5} 37.3100 35.0283 37.2891 13.3476 17.8080 69.7367 0.3472 1.4151 2.0026

Radon 82.5460 78.3758 82.4396 27.2825 41.3810 146.7515 0.3224 1.3804 1.9055

SO2 0.9694 0.4095 1.0052 2.4508 0.0324 5.4292 1.3921 4.0233 16.1866

Styrene 1.6250 1.5595 1.6248 0.4761 0.8932 2.7287 0.2870 1.3325 1.7755

Tetrachloroethene 0.8350 0.8273 0.8350 0.1125 0.6335 1.0696 0.1341 1.1435 1.3077

Toluene 13.2170 13.1458 13.2198 1.5552 10.4120 16.4652 0.1172 1.1244 1.2642

continue on the next page.... . .
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Table 19 – Continue

Contaminant central input median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Trichloroethylene 0.4560 0.4531 0.4560 0.0554 0.3573 0.5737 0.1212 1.1288 1.2742

Vinyl chloride 0.1570 0.0722 0.1575 0.2751 0.0060 0.8563 1.1826 3.2629 10.6462

Xylenes 7.0140 6.7636 7.0189 1.9784 3.8941 11.6460 0.2765 1.3185 1.7384

Units in µg/m3; Radon in Bq/m3; Mold in CFU/m3.
Central input from systematic review. std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 20: Full statistic descriptors: Contaminant harm parameter estimates.

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

PM10 1859.914100 1988.245600 749.759120 913.696400 3805.270700 0.364630 1.439990 2.073559

PM2.5 1562.641600 1627.793500 478.235400 890.041020 2742.582200 0.287730 1.333400 1.777963

PM10−2.5 130.990470 405.902560 1201.992600 6.909442 2483.530900 1.509700 4.525430 20.479550

Nitrogen dioxide 122.339800 144.949080 91.891819 38.983204 382.261170 0.581230 1.788240 3.197808

Formaldehyde 119.968300 152.310300 119.842660 30.915147 465.507780 0.694170 2.002050 4.008200

Radon 34.479887 40.835117 25.911619 11.018908 108.408030 0.581690 1.789050 3.200711

Ozone 9.964071 16.382066 21.363510 1.404446 70.250853 0.996740 2.709420 7.340974

Mold 3.987512 5.573023 5.419583 0.802471 19.840040 0.815850 2.261110 5.112602

Acrolein 0.733741 2.022111 5.038358 0.043747 12.007083 1.405400 4.077270 16.624100

Acrylonitrile 0.728215 2.002026 5.416812 0.044617 11.859194 1.455600 4.287000 18.378410

Acetaldehyde 0.675697 2.663785 9.593756 0.026518 17.294776 1.623900 5.072750 25.732780

Crotonaldehyde(trans) 0.585434 5.123343 43.848716 0.009940 34.023766 2.075400 7.968020 63.489390

Sulphur dioxide 0.562093 5.290360 46.360979 0.008830 35.041381 2.086600 8.057820 64.928520

Naphthalene 0.326069 2.174751 11.887111 0.007298 15.071894 1.852000 6.372720 40.611620

Styrene 0.213425 0.725620 2.345029 0.009878 4.594561 1.561200 4.764750 22.702860

Carbon tetrachloride 0.193993 1.409802 7.907280 0.003883 9.963069 1.865500 6.458940 41.717960

Benzene 0.147321 0.162858 0.076930 0.061343 0.354410 0.448790 1.566420 2.453681

Methyl tert-butyl ether 0.108496 0.462815 1.999251 0.003867 2.987925 1.725900 5.617370 31.554810

Limonene (d-...) 0.106361 0.773455 5.865916 0.002176 5.227442 2.017300 7.517680 56.515530

1,3-Butadiene 0.103939 0.282420 0.682083 0.006553 1.665103 1.386300 3.999900 15.999230

1,1-Dichloroethene 0.103621 0.569856 2.524787 0.002756 3.917388 1.739800 5.695940 32.443780

continue on the next page.... . .
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Table 20 – Continue

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Carbon disulfide 0.089169 0.099611 0.049610 0.035397 0.224746 0.470720 1.601140 2.563662

Vinyl chloride 0.070440 0.664721 5.215700 0.001159 4.436908 2.033800 7.642870 58.413450

Ethanol 0.067828 0.363727 1.873128 0.001868 2.444520 1.820700 6.176160 38.144950

1,2-Dibromoethane 0.061727 1.477942 21.923574 0.000444 8.739838 2.323400 10.210700 104.258500

Isoprene 0.061407 0.458402 3.053481 0.001219 3.052252 1.953200 7.051000 49.716570

Cadmium Cd(II) 0.058365 0.865319 9.897955 0.000611 5.491700 2.209400 9.110530 83.001700

1,1,2-Trichloroethane 0.056110 0.278840 1.325148 0.001713 1.846458 1.777800 5.916890 35.009570

Hexachlorobutadiene 0.054466 0.250386 1.082425 0.001773 1.681242 1.726300 5.619700 31.581070

Chromium Cr(VI) 0.044727 3.176749 51.504951 0.000135 14.888064 2.361200 10.604100 112.445900

Tetrachloroethene 0.043511 0.227447 1.015197 0.001225 1.548717 1.743800 5.719010 32.707030

1,2-Dichloroethane 0.030500 0.127100 0.478894 0.001073 0.828335 1.649600 5.204730 27.089250

1,4-Dichlorobenzene 0.024472 0.156173 0.816012 0.000560 1.071895 1.828400 6.223670 38.734050

Xylenes 0.017799 0.096274 0.492159 0.000500 0.647225 1.816800 6.152120 37.848600

Toluene 0.013020 0.054484 0.204585 0.000463 0.363469 1.647600 5.194640 26.984240

2-Butoxyethanol 0.009755 0.108177 0.748632 0.000130 0.743194 1.972200 7.186570 51.646760

1,1,2,2-Tetrachloroethane 0.008294 0.099411 1.061291 0.000106 0.634283 2.178200 8.830660 77.980580

Benzyl chloride 0.007507 0.294307 4.766121 0.000037 1.567481 2.360700 10.598900 112.336400

Methylene chloride 0.006071 0.035516 0.184326 0.000147 0.244792 1.824800 6.201520 38.458860

2-Ethylhexanol 0.004769 0.053727 0.450962 0.000064 0.362096 2.066200 7.894500 62.323080

Methyl methacrylate 0.004243 0.023810 0.135285 0.000111 0.160702 1.872200 6.502430 42.281570

Trichloroethylene 0.001815 0.006959 0.025219 0.000072 0.045352 1.627400 5.090840 25.916680

continue on the next page.... . .
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Table 20 – Continue

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

Hexane 0.001715 0.020425 0.274215 0.000022 0.133387 2.280300 9.779830 95.645140

Chloromethane 0.001026 0.016136 0.190478 0.000010 0.100615 2.223500 9.240030 85.378110

2-Methoxyethanol 0.000055 0.033267 3.197558 0.000000 0.054728 3.021800 20.528100 421.404700

Units in
DALYs/105 person/year[] std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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Table 21: Full statistic descriptors: Harm intensity for the coarse fraction of PM parameter estimates.

Contaminant median mean std. dev. 2.5ptile 97.5ptile sigma GSD GSD2

PM10−2.5 3.761 10.813 29.313 0.223 65.14 1.457 4.292 18.421

Units in DALY/kg; Radon in DALY/10−9Bq.
std. dev.: standard deviation; GSD: geometric standard deviation (and squared).
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A4.1 A preliminary assessment using DALYs to ex-
press chronic harm in dwellings

Logue et al. (2012) proposed methods using disability-adjusted life years

(DALYs) to estimate health impacts from indoor contaminants. The

Intake-Incidence DALY (IND) method combined concentration-response

and disease incidence. The Intake-DALY (ID) method used contaminant

effect factors.

However, limitations existed around outdated health data. This work

aimed to enhance quantification by: (i) leveraging the past decade’s epi-

demiology and toxicology research, (ii) incorporating current dose-response

factors via LCIA frameworks, (iii) meta-analyzing results across models.

Logue et al.’s derivations for damage factors and baseline incidences were

maintained, using systematic reviews and epidemiological data. A log-

linear concentration-response function related concentration to incidence.

Overall, this preliminary assessment still depended on effect factors (DA-

LY/kg intake) as the main metric linking exposure to harm.

Figure 1 summarizes pooled effect factors for 45 contaminants and Figure 2

presents harm results following the preliminary decisions made in the re-

search. The analysis underscores the prominence of PM2.5, which exhibits

the highest median DALYs per unit intake, signifying its significant poten-

tial for harm. PM2.5 is closely followed by PM10, formaldehyde, nitrogen

dioxide, radon, and ozone, each displaying substantial attributable DALYs.

Furthermore, contaminants like acrolein and sulphur dioxide fall within

the same order of magnitude range, whereas mold-related bioaerosols re-

tain their significance with over 0.5 DALYs per 100,000 exposed population

annually.
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Blue: Pooled from 3 estimates
Green: Pooled from 2 estimates
Black: from 1 estimate

Figure 1: Pooled effect factors. Highest to lowest median harm. Median &
GSD.
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Figure 2: Pooled harm. Highest to lowest median. Median & GSD.

Notably, the so-called criteria pollutants present the highest median

DALYs, underscoring their potential for harm. Epidemiological evi-

dence strongly suggests that these contaminants have the capacity to

cause adverse health effects, as corroborated by various health-based met-

rics (WHO, 2021). Additionally, contaminants like formaldehyde, radon,

acrolein, and mold also exhibit elevated harm values, making them note-

worthy considerations in the context of indoor air.
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Following is the conference paper that shows the work presented. This is

shown as an Appendix because the findings presented at this stage of the

research where superseded by the complete harm assessment of Chapter 7.
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1. ABSTRACT 
 

Common metrics used for assessing air quality are based on guidelines and/or standards for regulating 

concentrations that should not be exceeded over a period. Exceeding those values would represent problematic 

situations. A lack of agreement on appropriate norms or standards deem this approach sub-optimal. Moreover, this 

approach does not relate a proportion of exceedance to specific health outcomes. A need to develop health-centered 

IAQ metrics that can quantify burden of disease in terms of epidemiological evidence of population morbidity and 

mortality supported by the best knowledge of health effects, is pressing. This work proposes an approach that 

harnesses the advantages of using Disability Adjusted Life Years (DALYs) as a valuable metric to quantify and 

rank the burden of household air pollution, as a global perspective. Two methods were used to compute DALYs, 

one mainly based on incidence data and another mainly based on effect factors (i.e. DALYs per unit-intake of 

contaminant of interest). The methods are based on the following parameters: risk estimates, baseline incidence 

rates, damage factors, indoor air contaminant concentrations, human toxicological & epidemiological effect 

factors, dose-response factors, cancer-related variables and breathing rates. Systematic searches and reviews of 

peer-reviewed literature (including systematic reviews and meta analyses) were performed to find information on 

said input parameters. Meta-analysis was used to pooled and synthesize data from different studies. A Monte Carlo 

approach was used to model results in disability-adjusted life-years (DALYs) lost. Over 1000 articles were revised 

and overall ~200 unique sources were used as sources of data.  

Ten contaminants were accounted for with specific risk estimates and damage factors data, for which human 

epidemiological effect factors were derived. Representative concentrations of 45 contaminants were calculated. 

39 contaminants were accounted for human toxicological effect factors. Total pooled DALYs were estimated per 

100,000 exposed population with corresponding uncertainty intervals. Estimated population-averaged annual cost, 

in DALYs lost, of chronic air contaminant inhalation in dwellings indicate that the contaminants with highest 

median DALY loss estimates are PM10 and PM2.5 (magnitudes of 103); PMcoarse, formaldehyde, and NO2 could be 

found with magnitudes of 102; contaminants with magnitudes of 101 include radon and ozone, finally SO2 and 

acrolein would have magnitudes of 100; mould-related bioaerosols could be of interest as well. The updated 

strategies allowed for the quantification of contaminants and health outcomes that were not accounted for in 

previous works. Computed DALYs have lower uncertainty intervals than those previously proposed. The updated 

methodology presented in this study may be used to assess cumulative health impacts of indoor air contaminants. 
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1 INTRODUCTION 

 

Air pollution is one of the most serious health risks (WHO, 2021), and there now is enough 

scientific evidence to justify establishing and/or upgrading approaches for quantifying the 

health burden of (indoor)-air contaminants using current epidemiological and toxicological 

research. Common metrics used for assessing air quality are based on guidelines and/or 

standards for regulating concentrations that should not be exceeded over a period. Exceeding 

them would be problematic but the magnitude of doing so is unclear (Jones, 2017). This is 

because the approach does not relate a proportion of exceedance to specific health outcomes. 

Therefore, there is a pressing need to develop health-centered IAQ metrics that can quantify 

burden of disease in terms of epidemiological evidence of population morbidity and mortality 

supported by the best knowledge of health effects. Consequently, the Disability Adjusted Life 

Year (DALY) has been adopted worldwide in air pollution global burden of disease studies 

(Cohen et al., 2017). It was developed in the 1990s and is the sum of the years of life lost, and 

the time lived with a disability, attributable to some cause (Homedes, 1996). 

A methodology to estimate the population-average health effects attributable to the inhalation 

of selected air contaminants in U.S. residences was proposed in Logue et al. (2012) using 

disease incidence data and health-related effect factors, and accounting for output uncertainty. 

It uses the DALY metric by defining an Intake-Incidence DALY (IND) method and an Intake-

DALY (ID) method. Although the method proposed by Logue et al. (2012) is pioneering 

because it quantified DALY losses based on two distinct methods, the approach has limitations. 

Here we provide a way of strengthening the method, harnessing the advantages of using 

Disability Adjusted Life Years (DALYs) as a valuable metric to quantify and rank the burden 

of household air pollution, using a global perspective.  

 

2 METHODS 

 

Two methods were used to compute DALYs, one based on incidence data [IND-method], and 

another based on effect factors that use a DALY value per unit-of-mass-intake of the 

contaminant of interest [ID-method] (Logue et al., 2012).  

 

2.1. THE IND METHOD 

The IND method (Equation 1) uses an epidemiologically-based concentration-response 

function to quantify disease incidence, which, when combined with a damage factor (DF), 

yields an expected  DALY loss. 

 

𝐷𝐴𝐿𝑌 𝑙𝑜𝑠𝑠𝑒𝑠 =
𝜕𝐷𝐴𝐿𝑌𝑠

𝜕(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)𝑐𝑎𝑠𝑒
 × 𝜕(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)𝑐𝑎𝑠𝑒     (1) 

 

In the IND model, a damage factor is used to  represent the life-years adversely impacted  by 

each disease event, in DALY.(incidence)case-1. The DFIND is expressed for a specific 

contaminant h and disease k  as 

 
𝜕𝐷𝐴𝐿𝑌𝑠

𝜕(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)𝑐𝑎𝑠𝑒
= 𝐷𝐹𝐼𝑁𝐷 𝑘,ℎ =  𝐷𝑎𝑚𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟   (2) 

The second term on the right of Eq 1, the disease incidence, refers to the relationship between 

contaminant concentration (IAP), risk of disease (β), and baseline incidence (γ0); see Eq (3). 

This relationship is modeled using a log-linear concentration response function given by Eq. 

(3). As mortality is expected to have a greater impact on the global disease burden than 

morbidity, it is recommended that mortality data be used to represent disease incidence for most 

air pollution-related diseases (Cohen et al., 2017). 
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𝜕(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)𝑐𝑎𝑠𝑒 =  𝛾0𝑘,ℎ
× (1 − 𝑒−(𝛽𝑘,ℎ×𝐼𝐴𝑃ℎ)) × 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (3) 

where, 𝛾0𝑘,ℎ
 is the baseline incidence of disease k of contaminant h, and 𝐼𝐴𝑃ℎ is a statistic 

describing the concentration of contaminant h.  

Beta 𝛽𝑘,ℎ is an empirical parameter representing the estimated change in risk for a given change 

in contaminant concentration, ΔC, for disease k and contaminant h. This is expressed as 

𝛽𝑘,ℎ =
𝐿𝑛(𝑅𝑖𝑠𝑘 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)

𝛥𝐶
   (4) 

 

A breathing rate (BR, in m3.yr-1) combined with the 𝐼𝐴𝑃ℎ parameter (in unit-intake.m-3)1 is used 

to obtain an estimate of the human epidemiological effect factor (𝐸𝐹𝐼𝑁𝐷, in DALYs per unit-

intake of contaminant) via the IND method, as shown in Eq. (5) 

 

𝐸𝑓𝑓𝑒𝑐𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐸𝐹𝐼𝑁𝐷 𝑘,ℎ) =  
𝐷𝐴𝐿𝑌 𝑙𝑜𝑠𝑠𝑒𝑠

𝑖𝑛𝑡𝑎𝑘𝑒 
=

𝐷𝐴𝐿𝑌 𝑙𝑜𝑠𝑠𝑒𝑠

𝐵𝑅 ×𝐼𝐴𝑃ℎ 
  (5) 

2.2. THE ID METHOD 

The ID method (Eq. 6) quantifies DALYs as the product of effect factors (EFID), intakes, a 

cancer-related parameter (ADAF), and breathing rates (BR), involving Eq. (6) to (9). In this 

method, the EFID is the product of a dose–response factor (DRF, in case.kgintake
-1) and a damage 

factor (DFID, in DALY.(cancer or non-cancer)case)-1. 

 

𝐷𝐴𝐿𝑌 𝑙𝑜𝑠𝑠𝑒𝑠 =
𝜕𝐷𝐴𝐿𝑌𝑠

𝜕𝑖𝑛𝑡𝑎𝑘𝑒
× 𝜕𝑖𝑛𝑡𝑎𝑘𝑒  (6) 

 𝜕𝑖𝑛𝑡𝑎𝑘𝑒 = 𝐼𝐴𝑃ℎ × 𝐵𝑟𝑒𝑎𝑡𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 (7) 
𝜕𝐷𝐴𝐿𝑌𝑠

𝜕𝑖𝑛𝑡𝑎𝑘𝑒
= 𝐸𝑓𝑓𝑒𝑐𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐸𝐹𝐼𝐷 𝑗,ℎ) = 𝐷𝑅𝐹𝑗,ℎ × 𝐷𝐹𝐼𝐷(𝑐𝑎𝑛𝑐𝑒𝑟 𝑜𝑟 𝑛𝑜𝑛−𝑐𝑎𝑛𝑐𝑒𝑟)𝑗 (8) 

With 𝐷𝑅𝐹𝑗,ℎ = (
0.5

𝐸𝐷50𝑗,ℎ
) (8a)  

And 
𝜕𝐷𝐴𝐿𝑌𝑠

𝜕𝑖𝑛𝑡𝑎𝑘𝑒
= 𝐸𝐹𝐼𝐷 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑗 = (

𝜕𝐷𝐴𝐿𝑌𝑠𝑐𝑎𝑛𝑐𝑒𝑟

𝜕𝑖𝑛𝑡𝑎𝑘𝑒
× 𝐴𝐷𝐴𝐹) + (

𝜕𝐷𝐴𝐿𝑌𝑠𝑛𝑜𝑛−𝑐𝑎𝑛𝑐𝑒𝑟

𝜕𝑖𝑛𝑡𝑎𝑘𝑒
) (8b) 

or 

𝜕𝐷𝐴𝐿𝑌𝑠

𝜕𝑖𝑛𝑡𝑎𝑘𝑒
= 𝐸𝑓𝑓𝑒𝑐𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐸𝐹𝐼𝑁𝐷 𝑘,ℎ) = 𝐷𝑅𝐹𝑘,ℎ × 𝐷𝐹𝐼𝑁𝐷 𝑘,ℎ (9) 

With 𝐷𝑅𝐹𝑘,ℎ = (
𝐶𝑅𝐹𝑘,ℎ

𝐵𝑟𝑒𝑎𝑡𝑖𝑛𝑔 𝑅𝑎𝑡𝑒
) (9a) 

2.3. THE INPUT DATA 

Parameters described in Section 2, can have more than one available value or set of data; see 

Datasets in Table 1. Thus, pooling independent data points is the recommended strategy for 

data synthesis (Schmid et al., 2020).  

For the IND method, values of the parameters beta (β), baseline incidence (γ0), representative 

contaminant concentration (𝐼𝐴𝑃ℎ), and damage factor (DFIND) are obtained by combining 

systematic reviews with supplementary references. Baseline disease incidences are derived 

from epidemiological studies. 

For the ID method, damage factors, representing overall cancer or non-cancer effects should be 

based on the latest available data from the World Health Organization (WHO) and/or the Global 

Burden of Disease studies. The DRF takes as a point of departure either the ED50 (median 

effective dose) benchmark measure (see Eq. 8a) or concentration-response factors (CRF) (see 

Eq. 9a). The ED50 is the human-equivalent lifetime daily dose per person, related to inhalation 

(intake) of a substance that produces a specific effect (e.g carcinogenic or non-carcinogenic 

 
1 A unit-intake could be kg, Bq, or Colony Forming Units (CFU). 
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effects) in 50% of the population that takes that dose (Fantke et al., 2021) and CRFs are 

contaminant-associated mortality or morbidity rates per unit concentration of contaminant 

inhaled (Gronlund et al., 2015). ED50 based- DRF (ED50-DRF) for the contaminants of interest 

are extracted from Life Cycle Impact Assessment (LCIA) databases. CRF based- DRF (CRF-

DRF) are compute using the same epidemiological inputs as the IND method and can be derived 

following Fantke et al. (2019). When EFs are based on the ED50, they are referred to as human 

toxicological effect factors (Eq. 8) while those based on CRFs are called human 

epidemiological effect factors (Eq. 9). The ADAF parameter used for the estimation of cancer 

risks and the breathing rates representing the volume of air breathed indoors each year, are 

determined from relevant sources following a focused literature review.  

 

2.4. THE MODELLING 

Since each method will derive an estimate of DALY and EF (one estimate via IND method and 

two estimates via ID method, for a total of three theoretically possible independent DALY and 

EF estimations), we pooled the results from each independent method via meta-analysis to 

obtain pooled DALYs and pooled Effect Factors. To account for the uncertainty of the 

parameters, the Monte Carlo (MC) method is applied. First, a bootstrapping technique is applied 

to populate a synthetic database for each parameter and described using a probability 

distribution function (PDF). The PDF is then combined with the bootstrapped results to 

generate random samples of the inputs, which in turn are used to compute the three outputs: i) 

disease incidence, ii) effect factors and iii) DALYs. We repeated this process until the means 

of the results were normally distributed. All outputs are reported by their median and 95% 

confidence interval of its distribution, representing the range that contains 95% of the 

population values.  

 

Preliminary analysis of the input data showed that they can be well described by a lognormal 

distribution around its median. This type of distribution is widely used and accepted to 

adequately adjust for right-skewed data (Crow and Shimizu 1987). A MATLAB code was used 

to run the Monte Carlo simulations. All pooled estimates (meta-analysis) were computed with 

STATA 16.0's "metan" commands, using the DerSimonian and Laird (random effects) 

estimators (Harris et al., 2008).  

 

3 RESULTS 

 

Systematic searches and reviews of peer-reviewed literature (including systematic reviews and 

meta-analyses) were performed to extract information on the input parameters. Over 1000 

articles were identified and ~200 unique sources were used as sources of data. Tables 1 and 2 

provide descriptive statistics and recommended values for each input parameter for IND and 

ID model, respectively. Ten contaminants were accounted for with specific risk estimates and 

damage factors data:  Acrolein, Benzene, Mould-related bioaerosols, Formaldehyde, NO2, O3, 

PM10, PM2.5, Radon and SO2 (see Table 1). The methodology allowed for the identification, 

using the literature, of a single representative health outcome for each of the ten contaminants 

(see Table 1). The health outcome chosen to represent each contaminant is the most reported 

health impact associated with it, either for mortality or morbidity endpoints. 

Representative concentrations of 45 contaminants were calculated. They are all included 

because they have previously been identified as contaminants of interest in dwellings (Logue 

et al., 2011). Fig. 1 shows the representative mid-range concentrations, including a 95% CI and 

the magnitude of individual values (data sets) used to obtain them. Mid-range indoor 

concentrations for the contaminants are, in general, within the values reported by others 
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(Vardoulakis et al., 2020, Logue et al., 2011). With over 50 data sets, PM2.5, formaldehyde, 

Toluene, Benzene, and NO2 would be the contaminants with the most reported values. 

Table 1: Summary descriptive of the IND model inputs and disease incidence output for 

selected contaminants+. 

C
o

n
ta

m
in

a
n

t 
 

H
ea

lt
h

 o
u

tc
o

m
e
 

Beta parameter (β) Baseline incidence rate 

(γ0) 

Damage factor 

(DFIND) 

Annual disease 

incidences, per 

105 pop. 

Parameter values  

[Datasets]  {Main reference} 

A
cr

o
le

in
 

A
st

h
m

a 0.141 

(95%C.I.-0.082-0.200) 

[2] {Annesi et al. 

(2012)} 

0.001 

{Annesi et al. (2012)} 

0.588 

 (95%C.I.0.059-5.875) 

[1] {GBD (2019)} 

8.287 (95%C.I. 

3.577-18.729) 

H
C

H
O

 

A
d

d
ed

 e
ff

ec
ts

*
 

--* 

9.789 

 (95%C.I.4.249-

54.005) 

46.478 (95%C.I. 

9.607-1015.678) 

O
3
 

A
C

M
 0.001 

(95%C.I.0.000-0.002)  

[7] {WHO (2021)} 

0.008  

(95%C.I.0.004-0.016) 

{Crouse et al. (2015)} 

15.346 

 (95%C.I.6.856-

34.348) 

[3] {OS/RD)} 

1.305 (95%C.I. 

0.031-55.739) 

P
M

1
0
 

A
C

M
 0.004 

(95%C.I.0.003-0.006) 

[17] {WHO (2021)} 

0.013  

(95%C.I.0.007-0.026) 

{Fischer et al. (2015)} 

9.554 

 (95%C.I.2.528-

36.101) 

[3] {OS/RD)} 

349.077 (95%C.I. 

190.536-603.739) 

P
M

2
.5
 

 A
C

M
 

0.008 

(95%C.I.0.000-0.002)  

[25] {WHO (2021)} 

0.007  

(95%C.I.0.003-0.018) 

{Crouse et al. (2015)} 

15.303 

 (95%C.I.11.798-

19.850) 

[40] {OS/RD)} 

102.893 (95%C.I. 

24.256-433.625) 

ACM: All-Cause Mortality. LCM: Lung Cancer Mortality. HCHO: Formaldehyde. OD/SR: Own data/ systematic review. *added effects of 

epidemiological data from LCM, leukaemia and asthma. +Other contaminants not shown due to spacing issues and are available upon request. 

 
*Radon in Bq.m-3. **Bioaerosols in CFU.m-3 

Figure 1: Recommended representative concentrations for the 45 contaminants included in the 

analysis. In alphabetical order. Central estimate and 95% C.I. of distribution in black. Datasets in parenthesis 
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The annual incidence of disease for the ten indoor contaminants and selected typical health 

outcomes was calculated using Eq. (3) and data inputs are presented in Table 1. The highest 

disease incidences are found in PM10, PM2.5, and mould, with estimates exceeding magnitudes 

of 102. Because particle contaminants are based on all-cause mortality risk estimations, this is 

to be expected. Mould-bioaerosols have a high value because asthma morbidity in children 

accounts for a large portion of the illness burden.  

 

Table 1 presents the damage factors for the contaminants in the IND model and their 

corresponding number of datasets found. Our method for calculating this parameter yielded 

novel damage factors for a broader range of contaminants not presented before in related works 

(Fazli et al., 2018). Results are based on contaminant and health outcome-specific effects, 

which allows the information gaps on contaminant-related damage factors to be reduced. 

 

To account for updated information and variability of data for standard breathing rates (Phillips 

and Moya, 2013), we pool recommended values for long-term inhalation rates for adults aged 

16-81+ yrs (USEPA, 2011). For the ADAF parameter, the review of pertinent references 

indicates that the USEPA (2005) recommendations are still in use; see CalEPA (2009). The 

recommended estimate for the standard breathing rate is 14.80 m3.(pop.d)-1 (95%C.I.13.50-

16.20) and for the ADAF parameter is 1.6 (95%C.I.1-10). The USEtox database was used to 

extract ED50-DRFs (Fantke et al., 2017). The USEtox model is chosen because it is a widely 

used global scientific consensus model for characterising human toxicological consequences in 

LCIA. CRF-DRFs were calculated following Fantke et al. (2019). Regarding the DFID 

parameter, we use the latest results from the 2019 GBD study. Table 2 shows descriptive for 

ID model. 

Table 2: Summary descriptive of the ID model inputs, for selected contaminants+ 

C
o

n
ta

m
in

an
t 

ED50-DRFc ED50-

DRFnonc 

CRF-DRF DFIDc DFIDnonc 

From USEtox Database Own 

computation 

From GBD (2019) 

A
cr

o
le

in
 

NA 

59.74 (95%C.I. 

1.82-1963.49) 

{non-carcinogenic 

effects} 

25.15 (95%C.I. 

7.34-83.37) 
{Asthma} 

NA 
0.59 (95%C.I. 

0.44-0.77) 
{Asthma} 

H
C

H
O

 1.06 (95%C.I. 

0.27-4.25) 
{carcinogenic effects} 

0.01 (95%C.I. 

0.00-0.15) 
{non-carcinogenic 

effects} 

2.92 (95%C.I. 

0.52-63.65) 
{Added effects} 

41.77 (95%C.I. 

38.60-45.15) 
{added Leukaemia and 

lung cancer} 

0.59 (95%C.I. 

0.44-0.77) 
{Asthma} 

O
3
 

1.09 (95%C.I. 

0.16-7.60) 

{carcinogenic effects} 

NA 0.29 (95%C.I. 

0.00-18.70) 
{ACM} 

21.18 (95%C.I. 

20.06-22.36) 
{Lung Cancer} 

NA 

P
M

1
0
 

NA 

7.98 (95%C.I. 

3.21-18.91) 
{ACM} 

NA 

P
M

2
.5
 7.33 (95%C.I. 

1.58-33.75) 
{ACM} 

Note. Curly brackets represent {health outcome}. ACM: All-Cause Mortality. ED50-DRFc = carcinogenic Dose-Response Factor; ED50-

DRFnonc = non-carcinogenic Dose-Response Factor; CRF-DRF = concentration-response based Dose-Response Factor; DFIDc = ID model 

carcinogenic Damage Factor; DFIDnonc = ID model non-carcinogenic Damage Factor. HCHO = Formaldehyde. Added effects from LCM, 

leukaemia and asthma. OD/SR: Own data/ systematic review. NA= not applicable. GBD (2019):https://ghdx.healthdata.org/gbd-results-tool 
+Other contaminants not shown due to spacing issues and are available upon request. 
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Combined carcinogenic and non-carcinogenic (toxicological)-effect factors were computed for 

39 contaminants using Eq. (8b) whilst (epidemiological)-effect factors were computed for ten 

contaminants using Eq. (5) and Eq. (9). The results are pooled, giving 45 contaminants with 

effect factors. Results are shown in Fig. 2. PM2.5 has the highest pooled effect factor [1.1×102 

(95%C.I. 3.6×101-3.3×102)] (an order of magnitude higher than the other contaminants) 

indicating that this would be the contaminant with the highest chronic health impacts per kg 

inhaled in the exposed population, in dwellings. Other PMs are among the contaminants with 

the highest EFs, with chromium, NO2 and formaldehyde having all >101 effect factors. These 

results represent an update to the preeminent work on human-toxicological&epidemiological 

effect and damage factors of carcinogenic and noncarcinogenic chemicals for life cycle impact 

assessment presented by Fantke et al. (2019) and Huijbregts et al. (2005). The results given in 

Fig. 2 have narrower confidence intervals when compared with those of Huijbregts et al. (2005).  

 

Total pooled DALYs were estimated per 100,000 population with corresponding uncertainty 

intervals; see Fig. 3. Estimated population-averaged annual cost, in units of DALYs lost, of 

chronic air contaminant inhalation in dwellings, indicate that the contaminants with the highest 

median pooled DALY loss estimates are PM10 [1.9×103 (95%C.I. 4.4×102-8.7×103)] and PM2.5 

[1.5×103 (95%C.I. 5.3×102-4.4×103)]. PMcoarse, formaldehyde, NO2, radon and ozone have 

medians among 102-101. Acrolein and SO2 are within 100. Mould-related bioaerosols could still 

be of interest having >0.5 DALYs per 100.000 exposed population. The confidence intervals 

of the results indicate a lower uncertainty range than those presented by Logue et al. (2012). 

 
*Radon in DALY.(10-9Bq-intake)-1. **Bioaerosols in DALY.(10-9CFU-intake)-1 

Figure 2: Pooled effect factors. Highest to lowest DALY median. Central estimate and 95% C.I. of 

distribution in black. 

Contaminant with highest median DALYs include the so called criteria pollutants, which are 

defined as the indoor contaminants with the highest health impacts based on the DALY metric. 

There is sufficient epidemiological evidence that indicates PM10, PM2.5, NO2, O3 and SO2 have 

the potential to be associated with harm in humans, using other health based-metrics such as 

relative risks (WHO, 2021). Other airborne contaminants where health based-evidence exists 

to indicate that they are contaminants of interest in the indoor environment, having also elevated 

DALY values, include Formaldehyde (Golden, 2011), Radon (Pawel and Puskin, 2004), 

Acrolein (Ghilarducci and Tjeerdema, 1995) and mould (Heseltine and Rosen, 2009). 
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Figure 3: Pooled DALYs. Highest to lowest median. Central estimate and 95% C.I. of distribution in black.  

 

4 CONCLUSIONS 

PM2.5 have the highest median DALYs per unit intake (1.1×102 (95%C.I. 3.6×101-3.3×102)), 

being one order of magnitude above the rest of contaminants included in the analysis, indicating 

that higher harm is associated with fine PM. The highest absolute DALY medians were found 

for PM10 with 1.8×103 (95%C.I. 4×102 -9×103) and PM2.5 with 1.9×103 (95%C.I. 4.4×102-

8.7×103). PM10 is higher because it includes the burden associated with the PM2.5 fraction. 

Reporting representative indoor concentrations or disease incidence as the sole metrics to assign 

harm from exposure to contaminants, is rendered suboptimal. Computed DALYs have lower 

uncertainty intervals than those previously proposed. The updated methodology presented in 

this study may be used to assess cumulative health impacts of indoor air contaminants and 

contribute to the development of standards. 
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ABSTRACT: Emissions from cooking have been estimated to contribute to two-thirds of total fine particulate matter 
(particles with diameter ≤ 2.5μm, PM2.5) pollution in homes, so assessing PM2.5 emissions from cooking complete 
meals is a growing need of research. Furthermore, indoor exposure to PM2.5 has been associated with an increased 
risk of adverse health effects. Quantifying health effects can be performed using metrics based on health. Here, 
we use averted-Disability Adjusted Life Years, a performance-based health-centred metric, to investigate and 
quantify the tangible change in the burden of disease for mitigating exposure to PM2.5 pollution using ventilation 
strategies proposed by England’s statutory Approved Document F. The median [mean] annual DALYs for the worst 
ventilation scenario was found to be 6063 [7368] (95%CI: 1108 - 21788), which reduces to 1822 [2437] (95%C.I. 
364-8165) when using an exhaust system through a 30L/s cooker hood during cooking time plus 10 minutes (best 
ventilation scenario). Both estimations assumed exposure to PM2.5 from cooking occurs every day and all exposure 
represent the intake, and as such represent extreme cases. A change from worst to best scenario results in 3187 
[5016] (95%C.I. 499-20310) annual averted DALYs per 100,000 of exposed population. The focus should be made 
towards these health metrics, as wide information and data sources exist for computing them. Expected interested 
parties in these results include policymakers, scientists, and the public.  
KEYWORDS: DALYs, Cooking, Health, PM2.5 
 

1. INTRODUCTION 
Air pollution is a primary cause of morbidity and 

premature mortality worldwide. Current standards 
attempt to minimize exposure by specifying 
threshold average-concentrations. However, this 
does not necessarily indicate the impact on human 
health. To do this, methods can use reference values, 
risk or damage factors, and health centred metrics, 
such as DALYs or QALYs [1]. The DALY (disability-
adjusted life-years lost) metric was developed in the 
1990s, and corresponds to the years of life lost, and 
the time lived with a disability, attributable to some 
cause [2]. The DALYs for a disease is defined as the 
sum of the Years of Life Lost (YLL) due to premature 
mortality in the population and the Years Lost due to 
Disability (YLD) [2-4]. DALYs can be computed for any 
disease or cause of mortality over a lifetime, allowing 
for a comparison of causes and the prioritization 
tasks. The harm caused by chronic exposure to 
airborne contaminants can be quantified using 
DALYs [5]. 

Exposure to airborne contaminants primarily 
occurs indoors. Indoor air pollutants (IAPs) lead to a 
variety of diseases. Thus, a standard metric of harm 
is needed to prioritize mitigation methods and to 
compare IAPs. Logue et al. [6] proposed a method to 
quantify and compare health impacts (harm) from 
the inhalation of a subset of IAPs. They used 
available information on disease incidence and 

impacts for specific pollutant–disease combinations 
and data on the uncertainty in IAP concentrations 
measured in US dwellings. They showed that indoor 
exposure to fine particles (with diameter ≤2.5μm, 
PM2.5) causes more harm than any other 
contaminant, by an order of magnitude. For 2016, 
estimates of the joint effects of household (HAP) and 
ambient air pollution (AAP) indicated that, globally, 
7 million deaths were attributable to exposure to 
PM2.5, 4.2 million to AAP and 3.8 million to HAP [7]. 
Furthermore, in 2017, long-term exposure to PM2.5 
contributed to a burden of 83×106 disability-
adjusted life years (DALYs) globally; specifically, 
household air pollution contributed to 59×106 DALYs 
(2.4% of total DALYs) from ischemic heart disease, 
stroke, COPD, lower-respiratory infections, and type 
2 diabetes [8]. 

Cooking is a significant source of PM2.5 in 
dwellings [9] and can be removed from a space using 
ventilation [10]. England’s statutory Approved 
Document F (ADF) [11] prescribes three ventilation 
strategies to control the quality of air in a kitchen: (1) 
an intermittent ventilation rate of 30 l/s through a 
cooker/range hood; or (2) 60 l/s elsewhere; or (3) a 
continuous ventilation rate of 13 l/s. The provision of 
one of these strategies is obligatory in new 
dwellings, whereas it is only necessary to maintain 
an existing ventilation system when refurbishing any 
other dwelling. These ventilation rates were chosen 
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to remove moisture, with the further expectation 
that they will dilute NO2 and CO emitted by gas 
cooking. PM2.5 and other contaminants generated 
during cooking, were not considered. 

A cooker hood captures a proportion of all 
emitted contaminants and extracts them directly 
outside [10]. This has been shown to be the most 
effective kitchen ventilation strategy for minimising 
mean PM2.5 concentrations, especially when the fan 
is also run for 10 minutes after cooking finishes [10]. 
However, ADF does not require a performance 
verification mechanism for cooker hoods. Cooker 
hood capture efficiency (CE) is defined as the fraction 
of an emitted contaminant that is extracted before it 
mixes with room air [12]. The CE of a hood is a 
function of its airflow rate, installation height, hood 
capture volume, and the fraction of the stovetop 
covered by the hood [13,14]. An ASTM standard 
prescribes a steady-state test of CE [15,16]. CEs have 
not been measured in UK dwellings, but they have 
been found to vary between 12% [12] and 98% [13] 
elsewhere. ADF implicitly assumes a CE of 50%. 

To test the efficacy of ADF, it is important to 
investigate whether using a cooker hood makes a 
tangible difference to the health of the occupants of 
existing dwellings at a population scale. Therefore, to 
investigate the reduction in harm to the English 
population attributable to the installation of a 
cooker hood in a proportion of all domestic kitchens, 
this paper uses averted Disability Adjusted Life Years, 
a performance-based health-centred metric, to 
quantify the change in the burden of disease in a 
population. 
 

2. THEORY 
The US EPA’s National Ambient Air Quality 

Standard (NAAQS) defines six criteria pollutants1 as 
common contaminants that have an adverse effect 
on health and wellbeing, and they include particulate 
matter (PM). In response, an Intake-Incidence DALY 
method (IND) was defined to estimate chronic health 
impact for criteria pollutants [6]. The IND-method 
(eq. 1) uses epidemiology-based Concentration-
Response functions to quantify disease incidence 
rates that, combined with a damage factors (DF), 
yield the expected DALY losses. 
 

𝐷𝐴𝐿𝑌 𝑙𝑜𝑠𝑠𝑒𝑠 =
𝜕𝐷𝐴𝐿𝑌𝑠

𝜕(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)𝑐𝑎𝑠𝑒
 × 𝜕(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)𝑐𝑎𝑠𝑒     (1) 

 

A damage factor represents adversely affected 
life years per disease case, in DALYs.(case)-1. The DF 
for a contaminant h  and a specific disease k is 
represented by 
 

𝜕𝐷𝐴𝐿𝑌𝑠

𝜕(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)𝑐𝑎𝑠𝑒
= 𝐷𝐹𝑘,ℎ =  𝐷𝑎𝑚𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟.    (2) 

 
1https://www.epa.gov/criteria-air-pollutants. 

The disease incidence refers to a relationship 
between a contaminant concentration (IAP in eq. 3), 
a disease (β), and a baseline incidence rate (γ0). This 
relationship is modelled with a log-linear 
Concentration-Response function determined by eq. 
(3). It is expected that mortality will have a greater 
effect on the global burden of disease than morbidity 
and so, for most air pollution-related diseases [5], 
mortality data is recommended over morbidity data 
to represent the incidence of a disease. 

 
𝜕(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)𝑐𝑎𝑠𝑒 =  𝛾0𝑘,ℎ

× (1 − 𝑒−(𝛽𝑘,ℎ×𝐼𝐴𝑃ℎ)) × 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

(3) 

where, 𝛾0𝑘,ℎ
 is the baseline incidence rate of disease 

k for the contaminant h, and 𝐼𝐴𝑃ℎ is a statistic that 
describes the concentration of contaminant h. 𝛽𝑘,ℎ is 
an empirical parameter that denotes the change in a 
risk estimate for a given change in contaminant 
concentration, 𝛥𝐶, for the disease k and contaminant 
h. It is represented by 
 

𝛽
𝑘,ℎ

=
𝐿𝑛(𝑅𝑖𝑠𝑘 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)

𝛥𝐶
   (4) 

 
3. METHOD 

We followed the evaluation of ventilation 
scenarios presented by [10] for a statistically 
representative sample of English domestic kitchens. 
They considered a significant, but not extreme, 
emission profile where three meals were cooked per 
day: (1) breakfast that involves the toasting of bread; 
(2) lunch that involves the cooking one of four typical 
northern European meals using a gas 
hob/stove/burner; and (3) dinner that involves the 
cooking of another of the four typical meals. The 
duration of each cooking event and the emission 
rates were all uncertain, and so this was accounted 
for using a Monte Carlo (MC) approach. The varying 
geometry of kitchens was also accounted for by 
sampling volumes from the UK Government’s English 
Housing Survey [17], a statistically representative 
survey of the English Housing stock.  

To investigate the efficacy of ADF, we estimate 
the harm (DALYs) and benefits (averted DALYs) that 
occur when the six ventilation strategies, given in 
Table 1, are applied in all English kitchens. 
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Table 1:  
Ventilation strategies 
 

Strategy Fan flow 
rate (L/s) 

Details 

A 0 Infiltration only 

B 13 Constant general extract 
ventilation at the high rate from 
ADF 

C 60 Intermittent general extract 
ventilation just during cooking 

D 60 Same as C but for an additional 10 
minutes after cooking 

E 30 Intermittent extract through a 
cooker hood, CE=50%, just during 
cooking 

F 30 Same as E but for an additional 10 
minutes after cooking 

 
The concentrations for each of the six ventilation 

strategies (parameter IAPh in eq. 3) are predicted and 
reported as 24-hour mean average concentrations 
(μg/m3) for the existing stock of dwellings in English 
kitchens [10]. These values are also given 
probabilistically, so it is possible to sample from their 
distributions. Methods and outputs that describe the 
concentration analysis are given in [10]. 

For the other parameters described in Section 2, 
there will often be more than one available value or 
data set; see table 2. Combining or pooling 
independent data points is the recommended 
strategy for data synthesization [18] Values for the 
beta (β), baseline incidence (γ0), and damage factor 
(DF) parameters were obtained by combining global 
systematic reviews with complementary references. 
To be consistent with the recent literature, we use 
the WHO’s pooled estimate data that describes 
relative risks associating All-Cause mortality (ICD-10 
A00-R99) with PM2.5 [19]. The baseline incidence rate 
of diseases was mined from epidemiological studies 
presented by [19]. The damage factor values are 
derived from pooled values determined from a 
systematic review of the environmental burden of 
disease studies (conducted by the authors) for All-
Cause mortality and attributed to PM2.5. 

The number of DALYs associated with the intake 
of estimated exposure concentrations of PM2.5 for 
the six ventilation strategies were calculated using 
Equations 1-4. To compare between different 
ventilation scenarios, averted DALYs are calculated 
as the difference between the best and worst-case 
scenarios (difference between strategy A and 
strategy F).    

To account for the uncertainty of the parameters, 
a Monte Carlo (MC) approach was applied as follows. 
Firstly, a bootstrapping technique is applied to 
populate a synthetic database for each parameter, 
which are then described using probability 

distribution functions (PDFs). Then, the PDFs are 
combined with the bootstrapped results to generate 
random samples of inputs that, in turn, are used to 
calculate the DALYs and averted DALYs. The process 
is repeated until the results are normally distributed 
(convergence criterion). This technique results in a 
vector of DALY losses, and so it can be reported using 
a defined PDF, with its median and 95% confidence 
interval. 

A preliminary analysis of the input data showed 
that they can be well described by LogNormal 
distributions around their median. This type of 
distribution is widely used and accepted to fit right-
skewed data adequately [20].  

To visually represent the distributions of 
parameters, we use (violin)plots. The Monte Carlo 
analyses were carried out using MATLAB. All pooled 
estimates (meta-analysis) were performed using the 
“metan” commands from statistical software STATA 
16.0, which applies the DerSimonian and Laird 
(random effects) estimator for pooling estimates 
[22]. Graphs are plotted using MATLAB and R. 
 
4. RESULTS 

O'Leary [10] predicted median (mean) PM2.5 
concentrations to be 186 (250) µg/m3 (96%CI: 39-
867) for the worst scenario (Strategy A: infiltration 
only) and 31 µg/m3 (96%CI:14-81) for best (Strategy 
D: using extract through a cooker hood). These 
values represent exceedances of current WHO-
recommended thresholds for (indoor)-PM2.5-24h of 
15 µg/m3 [19]. This general exceedance of a 
recommended threshold was already highlighted by 
[10] however, the magnitude of the change in health 
impacts remains. Here, we have extended the 
analysis to quantify tangible health impacts (harm) 
associated with their kitchen exposures, assuming 
that the whole population is exposed. 

Table 2 provides descriptive statistics and 
recommended values for input parameters (See 
section 2). Table 3 summarises the estimated annual 
disease incidences and DALYs per 100,000 
population for the six strategies on ADF. Estimated 
mortality due to exposure to PM2.5 in the kitchen 
area is 3.5 times higher for strategy A than for 
strategy F, therefore, about a threefold reduction in 
expected mortality cases could be associated with 
that recommendation on ADF. Here, the chronic 
exposure-relevant PM2.5 concentrations from 
cooking scenarios was set 100% of the indoor 
concentration (total intake), assuming exposure 
occurs every day (all time exposure), therefore, our 
values must be interpreted as extreme, but possible 
cases. 
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Table 2:  
Summary descriptives of the model inputs for ALL-
Cause.Mortality, PM2.5. 
 

  
Central estimate 

(95% C.I.) 
Main 

reference 
Datasets 

Risk 

estimate 

1.08  

(95%C.I. 1.06-1.09) 

WHO 

(2021) 

25 

BetaA 

0.008 

(95%C.I.0.000-

0.002) 

𝛄0B 

0.007 

(95%C.I.0.004-

0.015) 

Crouse et 

al. (2015) 

1 

DFC 

15.303 

(95%C.I.11.798-

19.850) 

Own data/ 

syst. 

review 

40 

Note: all PDF assumed LogNormal (LogN) 
A Current global recommended approach [19]; B Consistent 
with [21,23,24];  C Consistent with [25]. 

 
 

Table 3: Summary Annual estimated disease 
incidences and DALYs, per 100,000 population, and 
averted DALYs between the best and worst-case 
scenarios. 

  Disease Incidence 
Median [mean] 

(95%C.I.) 

DALYs 
Median [mean] 

(95%C.I.) 

Strategy A 
406 [482] (95%C.I. 

76-1351) 
6063 [7368] (95%C.I. 

1108-21788) 

Strategy B 
214 [264] (95%C.I. 

57-778) 
3194 [4035] (95%C.I. 

814-12456) 

Strategy C 
209 [270] (95%C.I. 

39-866) 
3133 [4148] (95%C.I. 

563-13774) 

Strategy D 
107 [140] (95%C.I. 

23-458) 
1605 [2140] (95%C.I. 

331-7160) 

Strategy E 
178 [236] (95%C.I. 

31-784) 
2666 [3599] (95%C.I. 

444-12302) 

Strategy F 
121 [159] (95%C.I. 

25-511) 
1822 [2437] (95%C.I. 

364-8165) 

Averted 
DALYsA-F 

----- 
3187 [5016] (95%C.I. 

499-20310) 

 
Figure 1 shows the estimates and distributions 

for annual disease incidences (and corresponding 
distribution)  computed for each ventilation strategy, 
represented in log-scale on the y-axis. A visual 
decrease tendency can be noted from scenario A to 
scenario F, as expected. Figure 2 shows the 
quantified harm (and corresponding distribution) by 
different ventilation scenarios. The predicted 
median for annual DALYs per 100,000 of the exposed 
population of scenario A (infiltration only) is 6.1×103 
(95%C.I. 1.1-21.8×103). Although the lowest 
estimates for DALYs are associated with strategy D 
(60 L/s general extract), strategy F, which represents 
half that ventilation rate using cooker hoods, yields 

equivalent DALYs, around 1.8×103 (95% C.I. 0.4-
8.2×103). Regarding the PDFs of the disease 
incidences and DALYs (see Fig. 1 and 2, bottom), they 
show similar right-skewed distributions for the 
different scenarios. Data indicate that the disease 
incidence and DALYs can be described using log-
normal distributions; this detail gains importance 
when using incidence as an input for the Monte Carlo 
(MC) approach. Furthermore, it promotes using a 
median over a mean as the best estimate for a 
central tendency, for reporting, and discussing these 
health impact metrics.  

We quantified changes in health (as averted 
DALYs) due to interventions designed to lower the 
exposure to household air PM2.5 pollution, defined 
by the ventilation strategies on ADF (see Tables 1, 3 
and blue line in Fig. 2). The results suggest that half 
of the households (Med) could have approx. median 
53% (mean 68%) of reduced harm by implementing 
a 30 L/s cooker hood with 50% CA, and fan use for 
the cooking period plus 10 minutes (strategy F), 
compared to using infiltration only (strategy A) 
(averted median DALYs as 3.2×103, 95% CI:0.5-
20.3×103 annual DALYs per 100,000 of exposed 
population).  

Similar work by Rosenthal et al. [26] on the health 
benefits of implementing clean cooking technology 
for households in a study of 40 low and middle-
income countries, following the methodology for 
averted DALYs proposed by Pillarisetti et al. [27], 
found that a change from 285 μg/m3 to 35, 74, and 
182 μg/m3 of the mean exposures in the cooking area 
resulted from three strategies: changing to LPG, 
using an advanced fan, and implementing locally 
made cookstoves. These changes were estimated as 
9, 7, and 1.5 ×103 averted DALYs, respectively.  

Although both studies quantify the health 
benefits of applying cooking-related intervention 
strategies, two main differences are highlighted to 
fully interpret the comparability of results: (1) 
Rosenthal et al. [26] focus on PM2.5 from combustion 
sources used for cooking, whilst the present work 
dwells on PM2.5 associated with the meals, and (2) 
the underlying differences in the methodologies 
used for the quantification of DALYs. Nevertheless, 
these harm costs and benefits show the importance 
of setting intervention strategies and standards that 
aim to reduce exposure to PM2.5, including cooking 
activities, for high, middle and low-income countries.  
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Figure 1: 
 Annual Disease Incidence (in number of cases), per 
100,000 population. (Top) Central estimate and 95% C.I. in 
black; (Bottom) Violin plots for distribution and density of 
predicted data. The interquartile ranges and mean are 
shown at the core, while the exterior of the plot shows the 
data distribution. 

  
 

Figure 2:  
DALYs by ventilation strategy. (Top) Central estimate and 
95% C.I. of DALYs by ventilation strategies in black; Central 
estimate and 95% C.I. of averted DALYs between strategy 
A and F in blue. (Bottom) Violin plots for distribution and 
density of data. Interquartile ranges and means are shown 
at the core of the plots, while the exterior shows the data 
distribution. 

 

5. CONCLUSIONS 
Averted Disability Adjusted Life Years, related to 

disease incidence data, were used to compare 
ventilation strategies on England’s statutory 
Approved Document F for mitigating exposure to 
PM2.5 air pollution from cooking meals, on existing 
dwellings at a population scale. Our approach 
yielded a median annual DALYs per 100,000 of an 
exposed population of Strategy A (infiltration only) 
of 6.1×103 (95%C.I. 1.1-21.8×103), whereas 
instituting a 30 L/s extract through a cooker hood 
with 50% capture efficiency for the cooking period 
plus 10 minutes (Strategy F) lowered the harm to 
1.8×103 (95% C.I. 0.4-8.2×103), representing a 
median decrease by 53% (mean 64%). Health 
benefits are quantified as 3.2×103, 95% CI:0.5-
20.3×103 averted Disability Adjusted Life Years per 
100,000 of exposed population per year by 
implementing Strategy F over A. Therefore, using a 
cooker (has the potential to)-make a tangible 
difference to the health of the occupants. These 
numbers describe the burden from all-time 
exposure/intake of PM2.5 pollution from the cooking 
scenarios. 

A focus should be made towards health-based 
metrics, as wide information and data sources exist 
for computing them. Relying solely on threshold-
based approaches might lead to un-accounting the 
benefits on health burden associated with 
implementing a pollution reduction strategy, since 
this change would not be tangible in high (ambient- 
or indoor)- air pollution scenarios exceeding the 
chosen threshold. Expected interested parties in 
these results include policymakers, scientists, and 
the general public. 
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Abstract   
 

This paper used the Disability Adjusted Life Year to quantify and rank the harm from 
exposure to airborne contaminants in dwellings. The main results from this work 
identified PM2.5 as the most harmful contaminant, followed by coarse particulate 
matter, nitrogen dioxide, ozone, and formaldehyde. For this reason, they are now 
designated as Contaminants of Concern (CoC). The CoCs were used to formulate a 
harm budget approach, which sets an acceptable threshold for total harm caused by 
exposure to all CoCs. Policy makers can use the harm budget approach to determine 
acceptable harm in indoor environments. The ASHRAE 62.2 standard has proposed 
adding the harm budget, i.e. a harm-based procedure as an alternative compliance 
method, marking a significant shift in thinking and the use of evidence. 
Keywords Disability Adjusted Life Year (DALY), contaminants of concern, harm, 
harm intensity, effect factor, harm budget. 
 
1.0 Introduction   
Indoor air quality is often assessed on the basis of occupant perception and can be 
influenced by odours and various contaminants (1, 2). Other metrics include sub-
indices, exposure limit values, and rating systems, but they all have disadvantages 
(3). The ANSI/ASHRAE 62.2 (4) standard provides requirements for ventilation and 
acceptable indoor air quality for residential buildings. It is used by professionals and 
organisations involved in the design, construction, and operation of residential 
buildings and is mandated by programs, building codes, and regulations worldwide. 
Health and comfort are the main considerations of the standard (5). Policy makers 
must consider the potential health risks of indoor air contaminants, which is a leading 
contributor to the global burden of disease (6). Indoor contaminants should be 
identified and ranked based on the harm they cause and by the likelihood of their 
presence in indoor air. Health-centered metrics, such as the Disability-Adjusted Life-
Year (DALY), can be used to measure and rank the impact of indoor air 
contaminants on population morbidity and mortality (7). 

In the past, Air Pollution Health Risk Assessment (AP-HRA) tools (8) and Life Cycle 
Impact Assessment (LCIA) methodologies (9) have quantified the chronic health 
effects of airborne contaminants using the DALY metric. AP-HRAs quantify DALYs 
by relating observed changes in the disease incidence of a population to local 
changes in contaminant concentrations, whereas LCIAs apply Effect Factors (EF), 
which are the number of DALYs per unit of mass uptake of a contaminant. To 
increase understanding of the potential harm caused by indoor air contaminants, 
Logue et al. (10) proposed a methodology that combines disease incidence data and 
effect factors, accounting for input/output uncertainty. They introduced the Intake-
Incidence DALY (IND) method and the Intake-DALY (ID) method for estimating the 
population-average health costs caused by the chronic inhalation of several airborne 
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contaminants frequently found in US dwellings. The IND method is similar to AP-HRA 
tools, while the ID method is similar to the LCIA methodology. 

While the models of Logue et al. represented a significant advance, they have 
limitations. For example, the data used to describe contaminant concentrations, 
inhalation uptakes (rate of volume of inhaled air), risk estimates (fractional change in 
disease burden), disease incidence (number of cases of a disease per unit time), and 
damage factors (DALYs per disease incidence) were all specific to US dwellings. 
Additionally, the effect factors they used were originally proposed by Huijbregts et 
al.(11), which only accounted for uncertainty in some parameters. However, Logue et 
al. stated that alternative statistical approaches and new data might be used in the 
future to reduce the large uncertainties in these factors. Therefore, a method was 
followed to augment the approach of Logue et al. using the most up-to-date 
epidemiology and toxicology research published over the last decade. 

Assessing the harm caused by indoor air contaminants requires considering the 
concentration of the contaminant. Concentration is the primary measure because 
guidelines and standards often use threshold values based on concentrations (12, 
13). Moreover, particular scenarios can use reference concentrations. 

A harm budget is a way to determine an acceptable level of harm that a particular 
environmental factor can cause, such as airborne contaminants in buildings. The 
harm budget can be expressed and communicated to interested parties using the 
number of DALYs lost due attributable to exposure to an environmental factor. For 
example, in the context of indoor air quality and the ventilation in buildings, the 
adoption of a harm budget can be used to set standards or guidelines for acceptable 
concentrations of contaminants in indoor air based on their potential to cause harm to 
human health. The harm budget approach involves establishing a maximum 
acceptable level of harm, and then setting ventilation standards that are designed to 
ensure that the actual level of harm does not exceed this limit. By setting a harm 
budget, policymakers and regulators can help minimize the risk of physical harm from 
indoor air contaminants, while still allowing people to live indoors. 

The definition of acceptable IAQ in 62.2 is constant and has binary outcomes. A 
building either has acceptable IAQ or it does not. This paper aims to discuss a harm 
budget approach for defining the acceptability of indoor air quality and explore 
potential ways in which the ANSI/ASHRAE 62.2 standard can adopt this approach. 
The results of this study can potentially inform the development of health policies, 
building codes, and regulations, as well as the design and operation of residential 
buildings. 

2.0 Methods 
Two methods were used to compute DALYs, based on the approaches of Logue et 
al. (10), the AP-HRA tools (8), and the LCIA methodology (9). These methods were 
chosen because of their established reliability and relevance to the research 
questions being addressed. 

2.1 The IND-method 
The IND-method closely follows the methodology applied by AP-HRA tools and uses 
epidemiologically based Concentration-Response functions to quantify disease 
incidence rates (𝐼𝑘,𝑖, case/person/year) for a specific contaminant (𝑖) and health 

outcome (𝑘) for a population size (𝑁). The incidence rate is then combined with a 

damage factor (𝐷𝐹𝑘,𝑖, DALY/case), which is the quotient of the number of DALYs and 

the disease incidence rate, to estimate harm (in DALY/person/year). Note that the 
addition of individual health outcomes (𝑘) would result in an all-cause effect (𝐾). 
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 ℎ𝑎𝑟𝑚𝑖 =  ∑ 𝐷𝐹𝑘,𝑖 ⋅ 𝐼𝑘,𝑖

𝐾

𝑘=1

 (1) 

The second term on the right of equation (1), disease incidence, refers to the 
relationship between contaminant concentration (𝐶𝑖, usually in µg/m3), risk of disease 
(𝛽𝑘,𝑖, 1/µg/m3), and baseline incidence (𝛾0𝑘,𝑖

, case/person/year). This relationship is 

modeled using the log-linear concentration response function shown in Equation (2). 
It is generally recommended to use mortality data to represent disease incidence for 
most airborne contaminant-related diseases, as mortality is expected to have a 
greater impact on the global disease burden than morbidity (6). This approach allows 
the health impacts of indoor air contaminants to be quantified accurately using 
relevant epidemiological data and measures of the severity of diseases or injuries. 

 𝐼𝑘,𝑖 =  𝛾0𝑘,𝑖
  (1 − 𝑒−(𝛽𝑘,𝑖∙𝐶𝑖)) 𝑁 (2) 

The concentration of a contaminant (𝑖), represented by 𝐶𝑖, can be a dwelling 
representative or reference concentration. This variable is essential for assessing the 
harm caused by indoor air contaminants, as it determines the magnitude of exposure 
and the potential physical health impacts. The choice of concentration metrics 
depends on the research question and the available data. 

𝛽𝑘,𝑖 is an empirical parameter representing the estimated change in risk for a given 

change in contaminant concentration, ΔC, for a contaminant (𝑖) and a health outcome 
(𝑘). This parameter is expressed by 

 𝛽𝑘,𝑖 =
𝐿𝑛(𝑅)

𝛥𝐶𝑘,𝑖

 (3) 

where R is the relative risk, and ΔCi is the change in contaminant i concentration.  

The IND method is used to estimate the human epidemiological effect factor (𝐸𝐹𝑘,𝑖, 

DALY/kg). This method involves combining a breathing rate (BR, m3/person/year) 
with a concentration where 

 𝐸𝐹𝑘,𝑖 =  
ℎ𝑎𝑟𝑚𝑘,𝑖

𝐵𝑅 × 𝐶𝑖 
 (4) 

In this study, the IND-method was improved by following Life Cycle Impact 
Assessment methodologies. The resulting effect factor allows the calculation of the 
health impacts of indoor air contaminants based on the breathing rate and the human 
uptake of them. Furthermore, is important when assessing the acceptability of indoor 
air quality because it considers the concentration of the contaminants, which is 
already a metric used by many building codes and regulations. 

2.2 The ID-method 
The ID-method follows a LCIA methodology and the work of Huijbregts et al. (2005) 
and uses effect factors (𝐸𝐹𝑗,𝑖) and the uptake (𝑄𝑖) of a specific contaminant (𝑖) to 

estimate harm in DALYs lost, where 

 ℎ𝑎𝑟𝑚𝑖 =  ∑ 𝐸𝑗,𝑖 ⋅ 𝑄𝑖

𝐽

𝑗=1

 (5) 
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The uptake is a function of the breathing rate and the indoor air contaminant 
concentration. 

 𝑄𝑖 = 𝐶𝑖  ⋅ 𝐵𝑅 (6) 

The sum of 𝐸𝐹𝑗,𝑖 (where 𝑗 indicates carcinogenicity or non-carcinogenicity) is derived 

as 

 𝐸𝐹𝑖 =  (𝐸𝐹𝑐𝑎𝑛𝑐𝑒𝑟,𝑖 ⋅ 𝐴𝐷𝐴𝐹) + 𝐸𝐹𝑛𝑜𝑛𝑐𝑎𝑛𝑐𝑒𝑟,𝑖 (7) 

where 𝐴𝐷𝐴𝐹 is a cancer risk age-dependent adjustment factor.  

This study evolves the effect factors of Logue et al. by applying principles and 
insights from current approaches in LCIAs (9, 14). This updated approach allows for 
more accurate and nuanced assessments of the health impacts of indoor air 
contaminants a populations of people, as it uses a dose-response factor (𝐷𝑅𝐹𝑗,𝑖, 

case/kg) that indicates the change in morbidity and/or mortality per unit of mass 
uptake, and a damage factor (𝐷𝐹𝑘 ,DALY/case) that is solely representative of a 
disease and is unspecific to any particular contaminant 

 𝐸𝐹𝑗,𝑖 =  𝐷𝑅𝐹𝑗,𝑖 ⋅ 𝐷𝐹𝑘 (8) 

The dose-response factor is the quotient of a constant and the median effective 
dose, 𝐸𝐷50𝑗,𝑖. 

 𝐷𝑅𝐹𝑗,𝑖 =
0.5

𝐸𝐷50𝑗,𝑖
 (9) 

𝐸𝐷50𝑗,𝑖 is a measure of the human-equivalent daily dose received by a person over 

their lifetime that produces a specific effect in 50% of a population (15-17). The 
constant of 0.5 relates the inverse of the ED50 to the probability of developing a 
disease. For example, a default multiplier of 0.5 is used for human carcinogenic 
effects, which assumes a linear relationship between the dose and the probability of 
cancer. This assumption is currently used in LCIA research (18-22). 

2.3 The input data 
This study obtained values for the parameters used in the IND and ID methods by 
combining systematic reviews with supplementary references and pooling 
independent data points. This approach is recommended for data synthesis (23).  

For the IND method, the study gathered values for beta, baseline incidence, and 
damage factor through a combination of systematic reviews and the literature, 
compiling and reviewing risk estimates (6, 13, 24) and the USEPA Integrated 
Science Assessments and Global Burden of Disease studies. The baseline disease 
incidences are derived from epidemiological studies. 

For the ID method, damage factors representing overall cancer or non-cancer effects 
are based on the latest data from the World Health Organisation (WHO) and/or the 
Global Burden of Disease studies (25). The dose-response factor data for this study 
is extracted from the UNEP-SETAC consensus model for the evaluation of 
comparative toxicity, known as USEtox-2019 (18). The USEtox model is chosen for 
deriving DRFs because it is a widely used model with global scientific consensus and 
is the default model for screening for the toxicity of contaminants in Life Cycle 
Assessments (LCAs). In addition, this model has been validated by a range of 
studies (26-29). The Age-dependent adjustment factor (ADAF) parameter, used for 
the estimation of cancer risks, is reported in the literature for the estimation of cancer 
risks as i) a 10-fold ADAF exposures before 2 years of age, ii) a 3-fold ADAF for 
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exposures between 2 and <16 years of and iii) ADAF of unity for exposures after 
after 16 years of age. The breathing rates are determined from relevant sources 
through a literature review; 14.80 m3/person/day for adults 16-81+ years is used, 
accounting for updated information and data variability (30-33). 

The concentration parameter 𝐶𝑖 in the IND and ID methods depends on the desired 

output. This study considers two scenarios. In the first scenario, 𝐶𝑖 is based on 
representative concentrations of contaminants in dwellings derived from a systematic 
review of measurements (34-37). The aim of using representative concentrations for 
this scenario is to obtain the expected total harm in dwellings. This allows to rank 
contaminants based on their contribution to total harm and to identify which 
contaminants are of concern. The second scenario involves applying the IND and ID 
methods to the contaminants of concern identified in the first scenario using 
reference concentrations. In this case, 𝐶𝑖 can be based on the expected 
concentrations of contaminants in dwellings that meet a particular ventilation building 
standard (38-43) or on air-quality guidance levels (44). In the second scenario, the 
IND and ID methods use reference concentrations as inputs to estimate an 
acceptable harm budget; this is the maximum amount of harm considered acceptable 
based on these reference concentrations. 

2.4 The modeling 
The Monte Carlo (MC) method was applied to obtain an estimate of harm and effect 
factors that accounts for the uncertainty of the parameters. A bootstrapping 
technique was used to populate a synthetic database for each parameter and 
describe the resulting data using a probability distribution function (PDF). The PDF 
was then combined with the bootstrapped results to generate random samples of the 
inputs, which were used to compute the two outputs: i) effect factors (as DALY/kg) 
and ii) harm (as DALY/person/year). The process is repeated until the mean 
averages of the results were normally distributed. All outputs are reported by their 
median and 95% confidence interval (CI) of their distribution, representing the range 
that contains 95%CI of the population values. 

Preliminary analysis of the input data showed that it can be well described by a 
lognormal distribution around its median. This type of distribution is widely used and 
accepted for adequately adjusting for right-skewed data (45). A MATLAB code was 
used to run the Monte Carlo simulations and computed all pooled estimates (meta-
analysis) with STATA 17.0's "metan" commands using the DerSimonian and Laird 
(random effects) estimators (46-48). 

Each method derives an estimate of harm and effect factors (one estimate via the 
IND method and one via the ID method) and so the results are pooled from each 
independent method via a meta-analysis to obtain a single value that considers both 
the epidemiological and toxicological research. 

3.0 Results and Discussion 

3.1 Total harm 
The evaluation was limited to 45 contaminants and their representative 
concentrations because to they were previously identified as contaminants of interest 
in dwellings (10, 49). Figure 1 shows the representative mid-range concentrations of 
each contaminant, a 95% confidence interval, and the number of individual values 
used to compute them. Generally, the mid-range indoor concentrations fall within the 
values reported by others (34, 35). With over 50 data sets, PM2.5, formaldehyde, 
toluene, benzene, and nitrogen dioxide are the contaminants with the most reported 
values. 
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*Radon in Bq.m-3. **Bioaerosols in CFU.m-3 

Figure 1 –  Representative concentrations of the 45 contaminants analysed, in 
alphabetical order. Central estimate and 95% CI of distribution in black. The 
number of datasets in parentheses. 

For each of the 45 contaminants, epidemiological evidence was found for the beta 
parameter and the baseline incidences, and the damage factors for ten of them: 
acrolein (C3H4O), benzene (C6H6), bioaerosolsmold, formaldehyde (HCHO), nitrogen 
dioxide (NO2), ozone (O3), respirable particulate matter (PM10), fine particulate matter 
(PM2.5), Radon (Rn), and sulfur dioxide (SO2) (see Table 1 for a summary of the 
epidemiology evidence considered in this paper for selected contaminants). This 
study's methodology involved identifying a single representative health outcome for 
each of the ten contaminants. The health outcome chosen to represent each 
contaminant was the most reported health impact associated with it, either for 
mortality or morbidity endpoints. This was taken as the best estimate for all-causes. 
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Table 1 – Summary descriptive of epidemiology-based parameters+  
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 Beta parameter (β) Baseline incidence rate 

(γ0) 
Damage factor (DFIND) 

Parameter values  
[Datasets]  [Main reference] 

 C
3
H

4
O
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m
a

 

m
o
rb
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it
y
 

0.141 
(95%CI 0.082-0.200) 

[2] [(50)] 

0.001 
[(50)] 

0.588 
 (95%CI 0.059-5.875) 

[1] [GBD] 

N
O

2
 

A
ll 

c
a

u
s
e

 m
o
rt

a
lit

y
 

0.002 
(95%CI 0.001-0.004)  

[24] [(13)] 

0.013  
(95%CI 0.001-0.132) 

[(51)] 

17.034 
 (95%CI  8.589-29.727)  

[1] [OS/RD] 

 O
3
 0.001 

(95%CI 0.000-0.002)  
[7] [(13)] 

0.008  
(95%CI 0.004-0.016) 

[(52)] 

15.346 
 (95%CI 6.856-34.348) 

[3] {(53)} 

P
M

1
0
 0.004 

(95%CI 0.003-0.006) 
[17] [(13)] 

0.013  
(95%CI 0.012-0.015) 

[(51)] 

9.554 
 (95%CI 6.403-14.255) 

[3] [OS/RD] 

P
M

2
.5
 0.008 

(95%CI 0.000-0.002)  
[25] [(13)] 

0.007  
(95%CI 0.003-0.018) 

[(52)] 

14.954 
 (95%CI 11.627-19.233) 

[40] [OS/RD] 

The column of Health Outcome shows the best estimate for all-cause health outcome. OD/SR: Own 
data/ Systematic Review.  +Other contaminants not shown due to spacing issues and are available upon 
request. GBD :https://ghdx.healthdata.org/gbd-results-tool 

Table 1 presents the damage factors for the contaminants in the IND model and the 
corresponding number of datasets found is in brackets. These damage factors were 
calculated using a method that yielded damage factors for a broader range of 
contaminants not previously presented (54). The results are based on contaminant- 
and health outcome-specific effects, allowing for the reduction in information gaps on 
contaminant-related damage factors. 

Table 2 presents selected toxicology evidence for certain contaminants. The 95% 
confidence intervals shown for the dose-response factors are novel because the 
USEtox database does not provide measures of uncertainty for the DRFs. The 
damage factors represent an update those used by Huijbregts et al. (11) and are a 
new contribution to the field. 
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Table 2– Summary descriptive of toxicology-based parameters+  

C
o

n
ta

m
in

a
n

t DRFcancer DRFnon-cancer DFcancer DFnon-cancer 

From USEtox Database 
[health outcome] 

From GBD 
[health outcome] 

 C
3
H

4
O

 

NA 

59.74 (95%CI  
1.82-1963.49) 

[non-carcinogenic 
effects] 

NA 
0.59 (95%CI  0.44-

0.77) 
[Asthma] 

H
C

H
O

 

1.06 (95%CI  0.27-
4.25) 

[carcinogenic 
effects] 

0.01 (95%CI  
0.00-0.15) 

[non-carcinogenic 
effects] 

41.77 (95%CI  38.60-
45.15) 

[added Leukaemia 
and lung cancer] 

0.59 (95%CI  0.44-
0.77) 

[Asthma] 

 O
3
 

1.09 (95%CI  0.16-
7.60) [carcinogenic 

effects] 

NA 21.18 (95%CI  20.06-
22.36) 

[Lung Cancer] 

NA 

P
M

1
0
 

NA NA 

P
M

2
.5

S
 

Note. Health outcome in curly brackets is the best estimate of all-cause health outcome c = 
carcinogenic; nonc = non-carcinogenic. NA= not applicable. GBD: https://ghdx.healthdata.org/gbd-
results-tool +Other contaminants not shown due to spacing issues and are available upon request. 

 

Both toxicological and epidemiological data were available to derive harm and effect 
factors for five contaminants: C3H4O, C6H6, HCHO, O3, and Rn. Equation (7) was 
used to calculate the combined toxicological effect factors for carcinogenic and non-
carcinogenic contaminants for 39 contaminants, and Equation (4) was used to 
calculate the epidemiological effect factors for ten contaminants. Finally, results are 
pooled to give effect factors for all 45 contaminants. Figure 2 shows that PM2.5 has 
the highest effect factor [1.1·102 (95%CI 3.6·101-3.3·102)], indicating that it has the 
highest chronic health impacts per kg inhaled, an order of magnitude higher than all 
other contaminants. Other PMs also have high effect factors, as do chromium, 
nitrogen dioxide, and formaldehyde, which all have effect factors of >101. These 
results update the comprehensive work on human-toxicological and epidemiological 
effect and damage factors of carcinogenic and non-carcinogenic chemicals for life 
cycle impact assessment. The results have narrower confidence intervals compared 
to those of Huijbregts et al. (11). 
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Figure 2 – Effect factors. Highest to lowest magnitudes. Medians and 95%CI. 
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Figure 3 shows the total harm per 100,000 people, with corresponding 95%CI . The 
results of this study show that PM10 and PM2.5 are the contaminants with the highest 
median pooled DALY loss estimates, with values of 1.9·103 and 1.5·103, respectively. 
These values are accompanied by uncertainty intervals of 95%CI 4.4·102 - 8.7·103 
and 95%CI  5.3·102 - 4.4·103, respectively. Other contaminants with substantial 
median pooled DALY loss estimates include PMcoarse, formaldehyde, nitrogen 
dioxide, radon, and ozone, with values ranging from 101-103. Acrolein and sulfur 
dioxide have lower estimates of 101. It is worth noting that the confidence intervals for 
these results show a lower uncertainty range compared to those presented in 
previous research (10). 

Contaminants with the highest median DALYs include five of the six so-called criteria 
pollutants1: PM10, PM2.5, NO2, O3, and SO2. In addition to these criteria pollutants, 
other contaminants with elevated DALY values and evidence of health impacts in the 
indoor environment include formaldehyde (55), radon (56), acrolein (57), and mold 
(58). 

After running the ID and IND models and pooling the results, six major contaminants 
were identified: PM2.5 (particulate matter with a diameter less than 2.5 micrometers), 
PMcoarse (particulate matter with a diameter between 2.5 and 10 micrometers), HCHO 
(formaldehyde), NO2 (nitrogen dioxide), Rn (radon), and O3 (ozone). These six 
contaminants account for 99% of the total harm, so that they can be defined as 
contaminants of concern in dwellings.  

3.2 The harm budget 
To determine an acceptable level of harm, reference concentrations are required for 
the contaminants of concern. A study of 70 Californian homes was applied as a 
reference for PM2.5, HCHO, and NO2 concentration at 5, 23, and 9 µg/m3, 
respectively (38). All houses were detached and built between 2011 and 2017 and 
were found to comply with the mechanical ventilation requirements of California's 
building energy efficiency standards. Therfore, their contaminant concentrations can 
be used to reflect the total harm caused by air quality considered acceptable by the 
current Californian building energy efficiency standards. Accordingly, it is used to 
calculate the acceptable harm, or harm budget, for all homes so that the harm budget 
matches current complaince. The acceptability of this harm can be discussed in the 
future when it is compared against other activities that have a socially and politically 
acceptable level of harm using a risk analysis approach. 

The coarse fraction was assumed to be 40% of the PM10 (59). Unfortunately, no 
references were found for measurements of O3 and Rn in dwellings that comply with 
a ventilation standard, so guideline values were used as their reference 
concentrations at 40 µg/m3 and 100 Bq/ m3, respectively (44). It should be noted that 
these concentration guidelines are not based on real-life scenarios for buildings that 
comply with a given ventilation standard, and are sometimes established for 
statistical, health protection, or policy purposes. 

The ID and IND methods were then run again using these reference concentrations 
to estimate the resulting harm. In absolute terms, the harm budget estimate was 
calculated to be 1215 DALYs/105person/year, considered as the harm acceptable by 
the current standard. When comparing this budget to the total harm from typical 
concentrations in dwellings, shown in Figure 3 (~2500 DALYs/105person/year), it can 

 
1 The criteria pollutants is a group of six outdoor air contaminants that are regulated by the United States 

Environmental Protection Agency (EPA) due to their harmful effects on human health and the environment 13.

 Organization WH. WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, 

nitrogen dioxide, sulfur dioxide and carbon monoxide: World Health Organization; 2021. 
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be deduced that the harm budget limit might be exceeded in these dwellings by 
~200%. 

 

Figure 3 – Total Harm, as DALYs per 100,000 person-year. Highest to lowest 

magnitudes. Medians and 95%CI. 
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3.3 Recommendations for future work 
The authors used the DALY metric to estimate harm of all 45 contaminants and to 
identify six contaminants of concern, which are likely to comprise 99% of the total 
harm. However, to make the most of the harm budget approach and include it in 
relevant standards, several key aspects should be considered by interested parties: 

• The analysis was based on effect factors, which relate harm to uptake using 
measures of mass. However, in the built environment, concentrations are more 
relevant (12, 13) because they can be measured and because they are used by 
existing standards to regulate indoor air quality. Therefore, a new metric is 
required, termed a harm intensity, which represents the increase in DALYs due to 
chronic exposure to a specific concentration of a contaminant (expressed as 
DALY/µg/m3/year/person). 

• Limiting the contaminants of concern to two or three of the most harmful would be 
beneficial to make source control, remediation, and enforcement simpler. 

• Instead of using absolute terms, it would be useful to consider the harm budget in 
relative terms, using a unitless magnitude. 

3.4 A connection to the ASHRAE 62.2 standard 
In November 2022, the ASHRAE Standards Project Committee, responsible for 
maintaining ASHRAE Standard 62.2 - Ventilation and Indoor Air Quality for 
Residential Buildings, voted to release a proposal that adds an optional path based 
on the health effects of three of the six contaminants of concern identified here. The 
committee is using the work contained herein on representative concentrations and 
harm intensities as their fundamental scientific approach, but specific provisions are 
outside the scope of this paper. This represents the first attempt to use this 
approach, and to use the DALY metric, to quantify harm in dwellings in a regulatory 
environment. Other desition makers, such as the Chartered Institute of Building 
Services (CIBSE) might be interested in these findings when reviewing their 
ventilation and IAQ standards. 

4.0 Conclusions 
The study identified six airborne contaminants of concern in dwellings: PM2.5, 
PMcoarse, HCHO, NO2, Rn, and O3. These contaminants are found to contribute a total 
of 99% of the total harm from exposure to airborne contaminants in dwellings. The 
DALY metric was used to estimate the harm caused by these contaminants and 
determined the acceptable harm budget to be 1215 DALYs/105person/year. Typical 
dwellings exceed the acceptable harm budget by more than 200%. To optimize the 
harm budget approach and incorporate it into relevant standards, it is proposed to 
use a metric that directly relates harm to the concentration of indoor airborne 
contaminants, limiting the contaminants of concern to the most harmful, and using a 
relative harm budget. The ASHRAE Standards Project Committee has voted to 
release a proposal that adds an optional path for Ventilation and Indoor Air Quality 
compliance in Standard 62.2 based on the health effects from three contaminants 
using this harm approach. Policy makers can also use the harm budget approach to 
establish acceptable levels of harm in regulatory contexts and health policies. 
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