
From Voltage to Wiring:
Synaptic connectivity inference from neural voltage recordings

Tomas Fiers

Doctoral thesis

Supervisors: Mark Humphries & Matias Ison
Assessors: Rüdiger Thul & Dan Goodman

University of Nottingham
School of Psychology

January 2024

Corrected version as of June 5th, 2024



CONTENTS

Acknowledgements 2

Code availability 3

1 Introduction 4
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Recording neural activity . . . . . . . . . . . . . . . . . . 4
1.3 Voltage imaging . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Inferring wiring from activity . . . . . . . . . . . . . . . . 6
1.5 Voltage imaging in more detail . . . . . . . . . . . . . . 8
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Simulation details 12
2.1 The AdEx neuron . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Alternative neuron models . . . . . . . . . . . . . . . . . 15
2.3 The Izhikevich neuron . . . . . . . . . . . . . . . . . . . 16
2.4 Synapse model . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Model summary . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Input in the N-to-1 setup . . . . . . . . . . . . . . . . . 23
2.7 Spike ceiling . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Voltage imaging . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Software implementation . . . . . . . . . . . . . . . . . . 28

3 Spike-triggered averaging 29
3.1 Ceiling and clipping . . . . . . . . . . . . . . . . . . . . . 33
3.2 Window length . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Performance quantification . . . . . . . . . . . . . . . . . 35
3.4 Recording duration & noise . . . . . . . . . . . . . . . . 39
3.5 EI balance . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Computational cost of STA test . . . . . . . . . . . . . . 48
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Network model 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Connectivity structure . . . . . . . . . . . . . . . . . . . 51
4.3 External input . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 EI balance . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Subsampling . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Connection testing . . . . . . . . . . . . . . . . . . . . . 54
4.7 False positive detections . . . . . . . . . . . . . . . . . . 55
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 New connection inference methods 58
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 STA Template correlation . . . . . . . . . . . . . . . . . 59
5.3 Fitting a full STA model . . . . . . . . . . . . . . . . . . 61
5.4 Linear regression of the upstroke . . . . . . . . . . . . . 63
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Discussion 69
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 72

References 73

1



ACKNOWLEDGEMENTS

I want to thank the following people for their help in making this
thesis a reality.

For their expert guidance, and their patience and kindness, my
supervisors Mark and Matias.

And for their moral support in many different ways: Lucia, Steven,
Sara, Evelien, my siblings Pieter and Silke, my mom and dad, and
my friends in Holsbeek (Lies, Emily, Koen, Tim, Arnoud, Katia) and
in Nottingham (Frederica, Helen, Emily). Without them, this thesis
would have never been.

2



CODE AVAILABILITY
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in the digital version of this document, just click them. In the paper
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The Jupyter notebooks almost always rely on functions developed
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Chapter 1

Introduction

The first section here gives an overview of the idea of this thesis, and
its background. The second section delves a bit deeper into voltage
imaging technology.

1.1 Overview

Systems neuroscience studies the links between (1) an animal’s be-
haviour, (2) the activity of its neurons, and (3) how these neurons
are connected. Currently, only the first two can be observed simul-
taneously, using in vivo recordings of neural activity. Observing
the connections between neurons, on the other hand, requires imag-
ing brain slices, and thus killing the animal. In addition, such a
wire-tracing process is costly and time-consuming.

In this thesis, we aim to develop algorithms that infer the connections
between neurons based on recordings of their voltages, instead of
post-mortem imaging. We believe this is possible because the activity
of neurons is mainly determined by the connections between them,
and because recent advances in recording technology are yielding,
for the first time, the necessary quality of data to solve this problem.

Such an algorithm then allows for fast and cheap estimation of the
neural wiring in behaving animals, throughout their lifetime and
across experiments. This could allow systems neuroscientists −
whether they study e.g. memory, addiction, or movement disorders
− to find answers to their questions linking brain wiring and brain
(dys)function in a manner more straightforward than before.

1.2 Recording neural activity

There are currently two methods in popular use to record the activ-
ity of multiple individual neurons, in vivo: calcium imaging and
extracellular electrode recordings [CS15; SH09]. The strength of each
method is the weakness of the other. Both are performed through a
small, surgically created hole in the skull.

4



CHAPTER 1. INTRODUCTION 5

In calcium imaging, neurons are filled with a calcium indicator or
“dye” − a molecule that becomes fluorescent when calcium binds to
it. When a neuron sends an action potential (a “spike”), its cell body
is briefly flooded with calcium. A dyed neuron that has just sent a
spike thus becomes fluorescent for a short while. To record activity,
laser light is focused in a point and scanned across a volume of brain
tissue. Neurons that recently spiked will send light back, which
is captured to yield a three-dimensional movie of neural activity.
This allows scientists to observe large numbers of neurons − namely
all active neurons in the volume. An additional advantage is that
calcium indicators can be genetically targeted so that they only occur
in specific neuron types of interest, providing a focused view. A
major disadvantage however is that multiple spikes fired from a
neuron in rapid succession cannot be easily distinguished, as the
calcium effects of each spike are slow and combine non-linearly.

Extracellular electrode recordings on the other hand have a much
finer time resolution and every spike is individually distinguishable.
They work by inserting long, thin implants in the brain, that have
many electrodes exposed on their surface. Each electrode measures
the local electric field potential, and thereby picks up the spikes from
nearby neurons. The increased time resolution comes at the cost of
only sampling a small subset of the neurons in the areas of interest,
not knowing exactly where those neurons are, and not being able to
target neural subtypes specifically.

Calcium imaging thus provides good spatial information but has a
low temporal resolution, whereas extracellular electrode recordings
present the opposite trade-off: precise spike counts and timings, but
limited spatial information and sampling of neurons. Recently, a
recording technique is emerging that combines the advantages of
both.

1.3 Voltage imaging

Voltage imaging is very similar to calcium imaging: all or a geneti-
cally selected subset of neurons are made fluorescent, and these are
scanned with a focused laser, to yield three-dimensional movies of
neural activity [KS19]. The difference is that the indicator molecules
used in voltage imaging fluoresce in direct proportion to the mem-
brane potential of the cell, instead of its calcium concentration. This
then allows to directly observe the membrane potential of all neurons
of interest in the field of view (figure 1).

Although voltage imaging has existed for a long time, the recorded
signal has long been too weak to distinguish it from background
noise (unless animals with very large neurons are used, or the activ-
ity of many co-firing neurons is pooled together).1 In recent years 1 One reason for the relative noisiness

of voltage imaging is that the indicator
molecules are embedded in the cell mem-
brane, whereas in calcium imaging, the indi-
cator molecules float around the entire cell
volume. The dendrites and axons of a neu-
ron make up most of the cell’s surface area,
whereas the soma makes up most of its vol-
ume. Calcium indicators are thus much
more localized than voltage indicators.

however, multiple labs have been iteratively refining the voltage
indicator molecules. Together with the improvements in fluores-
cence imaging technology, driven by calcium imaging, this has made
voltage imaging now powerful enough to image multiple individual
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Figure 1: Voltage imaging.
Left: schematic of an example voltage indicator molecule embedded in
the cell membrane. Middle: the imaging setup and an example neuron
image. Right: an example voltage imaging trace and a simultaneous
intracellular electrode recording.
Adapted from [Vil+19; Abd+19].

neurons in vivo in common model animals. The signal-to-noise ratio
has improved to the point that not only individual spikes, but also
subthreshold voltage fluctuations can be observed.2 As explained 2 Section 1.5 further down expands further

on the current capabilities of voltage imag-
ing technology.

next, it is precisely this level of detail that we believe enables in vivo
connection mapping.

1.4 Inferring wiring from activity

The potential to infer the wiring from neural activity rests on the
basic link between the two (figure 2): an excitatory neuron that
sends a spike will slightly increase the voltage of all its downstream
neurons (this small increase is called the excitatory postsynaptic
potential, or EPSP). When a neuron has received enough spikes, its
voltage crosses a threshold, and it will send a spike itself. To estimate
neural wiring, the idea is then to invert this reasoning: if neuron B
often shows activity right after neuron A has fired, then neuron A is
likely to be connected to neuron B.

As both calcium imaging and extracellular electrode recordings
yield (at best) spike timing data only, existing activity-to-wiring
approaches have been based only on spike timing [MYD18; CMT18;
DF20], and not on more detailed measurements of neural activity.
The problem with this is that the correlation between two neurons
being connected and them spiking together close in time is quite
tenuous. For one, most neurons need to receive many spikes − each
of which can come from any of its hundreds to tens of thousands of
input neurons − before it fires a spike itself. Second, many neurons
have long time constants, meaning that a spike can influence spiking
in its receiving neurons up to hundreds of milliseconds later.

As a result, spike-based wiring inference methods require long
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Figure 2: The causal link between neural connectivity and activity.
On the left, a cartoon of a synaptic connection. The axon of presynaptic
neuron M (in blue) impinges on postsynaptic neuron N (in brown).
The electrode icons indicate that their membrane voltages are recorded
(shown on the right). A succesful spike in neuron M will elicit a small but
precisely-timed voltage bump in neuron N (the postsynaptic potential,
PSP). There is thus a causal relationship between 1) the existence of
a connection M → N and 2) both neurons’ membrane voltages. This
causal relationship (black arrow) is exploited to perform network inference
from voltage recordings (green arrow).
Drawings adapted from Purves et al.’s “Neuroscience” textbook, 6th edition,
2018.

recording durations to obtain some confidence on the wiring be-
tween even small numbers of neurons.3 During these long record- 3 E.g. in [Orl+17], one-hour long recordings

were used. This was long enough for a lot of
the spike-based methods to recover edges,
but not the directionality of connections.

ings, the connectivity may have already changed. And long record-
ings are not possible for fluorescence imaging, as dyes require recov-
ery after each recording session.

When we can observe the subthreshold increases in voltage occur-
ring directly after each spike however, we might be able to accurately
reconstruct connectivity from recordings on the timescale of individ-
ual in vivo experiments. The recent advances in voltage imaging
provide exactly this kind of data.
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1.5 Voltage imaging in more detail

What follows is a short literature review of the current capabilities
of voltage imaging technology. The main goal is to be able to build
simulations in this thesis relevant to reality.

Working principle

Voltage imaging is a type of fluorescence microscopy, itself a type of
light microscopy. A light source such as a laser or an LED shines on
the imaged object – such as a slice of brain tissue, a young transparent
zebrafish, or part of a mouse brain made accessible through a hole
in the skull. Most light passes through the sample of interest (brain
tissue is mostly transparent for the used wavelengths). However,
some parts of the sample ’reflect’ light back.

These reflecting parts are so called voltage indicator molecules. Such
molecules are introduced by the experimenter and gather sponta-
neously in cell membranes. The amount by which they reflect light
back depends on the voltage placed over them. By capturing the
reflected light from a sample, repeatedly over time, we thus get a
movie showing 1) where cell membranes are, and 2) how the volt-
ages over them change over time.

Physical detail
The above is a simplified description of the mechanics. This section
gives a slightly more detailed description of what happens.

The actual mechanism of light ’reflection’ is fluorescence, in which

Figure 3: Camera view in voltage imaging.
Fluorescent neurons visible through a cranial window. This is just one
imaging plane (i.e. there are more neurons visible above and below
this plane). Voltage imaging recordings are thus 3D videos of neural
membrane voltages. Scalebars 1 mm and 0.1 mm, respectively. Adapted
from [Abd+19; KS19].
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Figure 4: Left: More example VI traces, with different spike-signal-to-
noise ratios. Colours correspond to neurons with coloured numbers in
figure 3. Right: in-vivo imaging setups.
Adapted from [Abd+19; KS19].

molecules absorb a photon, hold on to it for about one nanosecond,
and then re-emit it again, at a longer wavelength. This process is
about a million times slower than ’true’ reflection (that is, photon
scattering), but still a million times faster than the timescales we
are interested in (milliseconds, corresponding to the duration of an
action potential) and at which we image (with movie frame rates of
500 - 1500 Hz) [VB12; Cox19].

Furthermore, a change in voltage does not necessarily lessen the
total fluorescence. Rather, the emission spectrum may shift. If you
however only look at a fixed narrow band of the emitted light (as
is done in fluorescence microscopy), the measured light will indeed
seem to decrease or increase on voltage changes. ’Instantaneous
reflection modulated by voltage’ is thus a sufficient mental model
for our purpose.

Genetic targeting
Since the late 90’s, cells have been coerced into creating (parts of)
indicator molecules themselves, by delivering transgenes into the
cell [SI97]. This has multiple advantages. Most importantly, it allows
the indicator molecules to be constrained to only certain cell types,
by placing the transgene under the control of promotors that are only
active in the cell type of interest. By doing so, scientists can avoid
labelling glial cells. This decreases the background signal. Going
further with the same principle, they can selectively label one type
of neuron (for example, only interneurons in one hippocampal area)
[Hoc+14].

Another advantage, also decreasing the background signal, is that in-
dicator molecules can be constrained to the membrane of only the cell
body, and not the membranes of dendrites and axon branches. This
is done by adding small cell-body-targeting signalling sequences to
the transgene.

System performance

The history of voltage imaging has mostly been the history of find-
ing better indicator molecules. Earlier versions (starting from their
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invention in the late 60’s) changed their reflectance only weakly and
slowly in response to a change in voltage. In addition, they were
toxic, disrupting the normal functioning of cells, or altogether de-
stroying them [SDC73; Zoc+00]. Modern indicators are no longer
toxic, and their voltage sensitivity and speed have improved sub-
stantially (by more than ten- and hundredfold, respectively) [Mil16;
TW18].

Fidelity
Current voltage indicators can have sub-millisecond time constants,
meaning they can replicate the shape of an action potential as well
as an electrode recording. During an action potential in a brain slice,
the measured fluorescence of current voltage indicators increases
by 30% (± about 20%)4 [Pia+19; Ada+19] relative to baseline. In 4 Round brackets in this section indicate a

rough indication of variation between ex-
perimental setups. See this spreadsheet for
concrete data from some representative VI
studies.

live, head-fixed mice, this fluorescence increase is about 8% (± 2%)
[Abd+19; Vil+19].

More important is the change in brightness with respect to noise.
For voltage imaging, a signal-to-noise ratio (SNR) is often defined
as the height of the fluorescence signal during an action potential,
divided by the standard deviation of the baseline fluorescence sig-
nal.5 The action-potential-SNR is around 30 (± 7) in brain slices 5 Note that such a definition is not compat-

ible with the standard definition of SNR,
where the denominator is most often the
squared standard deviation of noise, and
the numerator is the averaged squared
value of all samples, of some denoised ‘sig-
nal’ time series.

[Ada+19; Pia+19], and around 10 (± 3) in live, head-fixed mice
[Abd+19; Vil+19].

There has been no quantification yet of how well voltage indicators
track subthreshold voltages. Estimating visually from published fig-
ures however, the correspondence between simultaneous electrode
and optical recordings is substantial, and seems good enough to
calculate with, even in recordings from live animals.

Yield
The number of simultaneously voltage-imaged neurons in live mice
varies between 4 and 46 in the latest studies (with frame rates of
mostly 500 Hz) [Ada+19; Vil+19; Abd+19; Pia+19].

For comparison, calcium imaging yields between 200 and 1000 neu-
rons at a frame rate of 30 Hz, and up to 10,000 at 2 Hz [Pac+17].
These higher yields come of course at the cost of less information per
neuron: voltage imaging tracks subthreshold voltages and detects
nearly all spikes, while calcium imaging, especially at such frame
rates, yields only spike detections, imprecise both in time and in
number.

The number of simultaneously imaged neurons is in any case bound
to increase for both modalities, as microscopic scanning systems get
faster.

Voltage imaging can only be performed in relatively short continuous
bouts: the same mechanism that makes the molecules fluorescent –
namely, excitation on impact of a photon – also makes the molecules
more chemically reactive, making them spontaneously break down
(’photobleach’) in reaction with their environment. The total fraction

https://docs.google.com/spreadsheets/d/1W9Y3az4i1xdvahpdyqtsTG8F81LXK2T6wzRgsXHN3z0/edit
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of not-yet photobleached indicator molecules decays exponentially
– and so do the fluorescence and the spike SNR. The time constant
of this decay (i.e. duration after which SNR has decreased by 63%)
is around 10 ± 5 minutes [Pia+19; Abd+19]. Most voltage imaging
sessions are therefore not longer than this.

Cells replace broken indicator molecules relatively fast however,
and experiments have shown that imaged photobleached cells show
complete recovery after two days. Even shorter intervals between
imaging sessions might be possible.

Because modern indicator molecules are not toxic, cells can be inter-
mittently imaged over long periods – one study followed the same
neurons in vivo over more than a month.

1.6 Conclusion

In this first chapter, we described voltage imaging technology, and
introduced the idea to use the recordings it generates to reconstruct
neural connectivity.

Our aim in this thesis is to test whether this idea is feasible in prin-
ciple: can we perform network inference from voltage signals? To
test this, we will work with simulated data: We’ll generate neural
activity from a known connectivity, and develop and test different
connection detection methods on this simulated data.

Chapter 2 describes the simulation: the choices we make for the
used neuron model, synapse model, inputs, ..; and their parameters.
Having set up our test environment, chapter 3 introduces the first
and simplest connection detection method, and different ways to
evaluate its performance. Up to that point, only a simplified network
is used (where N Poisson inputs impinge upon a single simulated
neuron). Chapter 4 expands the test to a full recurrent network of
simulated neurons. Finally, in chapter 5, we introduce and evaluate
three new methods for network inference based on voltage signals.
Chapter 6 concludes the thesis with an overview of possible future
research directions and a summary of our findings.



Chapter 2

Simulation details

In this chapter, we decribe our experimental setup: the neuron model
we simulate, its inputs, and how we simulate voltage imaging.

2.1 The AdEx neuron

We choose to simulate the ‘AdEx’ point neuron model, or the ‘adap-
tive exponential integrate-and-fire’ neuron [BG05], with conductance-
based synaptic currents. The AdEx neuron is a leaky-integrate-and-
fire (LIF) neuron model, with two additions. First, the full upstroke
of each spike is simulated, as an exponential runoff. Second, an extra
dynamic variable is added: the adaptation current. This current
allows the simulation of many non-linear effects of real neurons, like
spike-rate adaptation, intermittent bursting, after-hyperpolarization,
postinhibitory rebound, resonance, bistability, class 2 excitability1, 1 Class 1 excitable neurons can fire repeti-

tively at arbitrarily slow rates. Class 2 neu-
rons cannot; they have a minimum firing
rate (r). In other words, their graph of fir-
ing rate versus input current ("f − I" curve)
discontinuously jumps up from 0 Hz to r at
some threshold input.
As we will see later (in figure 15), the pa-
rameters we use for our AdEx model make
it class 1 excitable.

and more.

The AdEx model consists of two differential equations (1 and 2), and
a discontinuous update after a spike is generated (3). One equation
simulates the membrane voltage V , and one the adaptation current
w:

C
dV

dt
= −gL(V − EL) + gL∆T exp

(
V − VT

∆T

)
− Isyn − w (1)

τw
dw

dt
= a(V − EL)− w (2)

Parameters are described in table 1.

The first term of equation (1) is the restorative force pulling the
voltage back to the resting (or leak) potential EL. The second, expo-
nential term is what generates the spike upstrokes. It is practically
zero over most of the sub-threshold regime, and only becomes large
(and then very large) near the firing threshold. (This firing threshold
is characterised further on).

Isyn is the synaptic current, explained in section 2.4. We use the sign
convention of inter alia Dayan & Abbott2 where membrane currents 2 [DA01], ch. 5.3, p. 162

12



CHAPTER 2. SIMULATION DETAILS 13

are defined as positive when positive charges flow out of the cell. I.e.
a positive Isyn decreases the membrane voltage (itself defined as the
electric potential inside minus outside the cell).

The adaptation current w decays exponentially to zero on its own
(−w in equation (2)), and is influenced by voltage deviations from
equilibrium: for a > 0, w acts on V in the opposite direction of the
deviation, and for a < 0, w acts in the same direction. Izhikevich
calls the former a resonant current, and the latter an amplifying one.3 3 [Izh07], section 5.2.4. Note the different

notation used; see the translation in table 2.

Name Description Value

V Membrane voltage (in mV)

w Adaptation current (in pA)

C Membrane capacitance 104 pF

gL Input / leak conductance 4.3 nS

EL Resting / leak potential −65 mV

∆T Threshold slope factor 0.8 mV

VT Location of minimum of dV
dt −52 mV

τw Time constant of adaptation current 88 ms

a Sensitivity of adaptation current to V −0.8 nS

θ Spike definition threshold 40 mV

Vr Reset voltage after spike −53 mV

b Adaptation current bump after spike 65 pA

Table 1: Quantities and parameters
of the AdEx neuron, equations (1)
to (3). Values are from a model fit
to a cortical regular spiking (RS) neu-
ron, from [Nau+08]. By defining the
location of dV

dt ’s minimum, VT also co-
determines the location of the firing
threshold.

Figure 5: A linear-plus-exponential
model (red) fit to data from a cor-
tical pyramidal neuron (black), from
[Bad+08]

In this chapter, we will analyse dV
dt as a function of V , i.e. analyse it as

a dynamical system: will the voltage increase or decrease at the cur-
rent voltage? For conciseness in later analysis, we call this function
F (V ). I.e. F (V ) = dV

dt = the right-hand-side of equation (1) here,
scaled by 1/C. We’ll mostly analyse F in the absence of synaptic and
adaptation currents, i.e. for Isyn and w both zero. Figure 5 shows
the F (V ) curve for an AdEx neuron fit to a real neuron. Figure 7
compares the F (V ) curve of an AdEx neuron with that of another
two-dimensional neuron model, the Izhikevich neuron.

In addition to the two differential equations, the AdEx model also
consists of an instantaneous reset condition. When the membrane
voltage V reaches a certain threshold θ, a spike is recorded, V is reset,
and w is increased:

if V > θ then: V ← Vr (3)
w ← w + b

This bump of the adaptation current is what provides the spike rate
adaptation: the more spikes the neuron has recently fired, the higher
the adaptation current w and the more it drives down the voltage
(equation (1)), away from the firing threshold.
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For a full description of the different firing patterns that the AdEx
neuron can exhibit, for different parameter values (i.e, a characterisa-
tion of its bifurcations), see [Nau+08], “Firing Patterns in the Adap-
tive Exponential Integrate-and-Fire Model”. For an even fuller de-
scription, including a derivation of two-dimensional neuron models
from higher-dimensional, Hodgkin-Huxley-like models, see Eugene
Izhikevich’s book, Dynamical Systems in Neuroscience: The Geometry
of Excitability and Bursting [Izh07].

In terms of parameter choice, we choose to simulate a cortical regular
spiking (RS) neuron, i.e. a ‘standard’ excitatory neuron that does
not display e.g. bursting or fast-spiking behaviour. We take our
parameter values from [Nau+08]4, where they fitted an AdEx model 4 Section 6, and Table 1, row 3
to recordings from real cortical RS neurons injected with different
step currents. Parameter values are listed in table 1.

Examples of the signals V and w that this model generates are given
later, in figure 13 and figure 16.

Analysis

Further on, we will compare the AdEx neuron with another neu-
ron model, the Izhikevich neuron. We will do this by comparing
their fixed points, taking inspiration from the dynamical systems
approach as used in e.g. [Str94] and [Izh07].

Where are the fixed points of the dynamical system dV
dt = F (V )?

I.e, where is F = 0? Like other neuron models, there are two fixed
points: a stable one at the leak potential EL, and an unstable one at
the instantaneous firing threshold (which we’ll call ET ).

We see in equation (1) (for Isyn = 0 and w = 0) that the leak potential
EL is, numerically speaking (though not strictly mathematically),
indeed a fixed point: at realistic parameter values, the exponential
term is negligibly small at V = EL.5 The second fixed point has no 5 For the parameter values of table 1 e.g, the

exponential term in F (V = EL) works out
to 3× 10−19 mV/ms. The machine epsilon
for 64-bit floating point numbers in Julia e.g.
is 2× 10−16.

Figure 6: The Lambert W functions
for real numbers.

straightforward expression. The exact solutions for F ’s roots need
the so called Lambert W or ‘product logarithm’ functions W0 and
W−1 (see figure 6). The roots are found at:

V = EL −∆TWk

(
− exp

(
EL − VT

∆T

))
, (4)

where k = 0 gives the resting potential, and k = −1 the instanta-
neous firing threshold.6 For our cortical RS neuron, this gives us an

6 Here too we see that the true resting po-
tential is almost identical to EL: W0 passes
through zero, and its argument is ≈ 0, be-
cause the exponential’s argument is nega-
tive. For W−1 however, figure 6 shows that
the second term is not negligible around 0.

instantaneous threshold of ET = −49.6 mV.

Also of interest – especially when comparing with the Izhikevich
neuron later – is the slope of AdEx’s F (V ), i.e. its derivative with
respect to V :

dF

dV
=

d

dV

(
−gL(V − EL) + gL∆T exp

(
V − VT

∆T

))
= −gL + gL exp

(
V − VT

∆T

)
(5)
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This derivative is zero at V = VT . I.e, unlike what is suggested by the
‘T ’ subscript, and the name ‘effective threshold potential’ given to it
in the AdEx literature [BG05; Nau+08], VT is not the instantaneous
threshold potential (it is not a zero of F ), but rather the minimum of
F (it is the zero of dF

dV ).

From equation (5), we also calculate the slope of F at its two roots.
At V = EL, the slope (also known as the leak or input conductance
here) is −gL, plus a negligibly small exponential term. The negative
sign shows that this is a stable fixed point: in a linearization of F
around this point, at voltages below the resting potential, F (i.e. dV

dt )
is positive and thus V will increase. At voltages above EL, F is
negative and V will decrease. Small deviations on either side of the
resting potential will thus decay back to this resting potential.

At the firing threshold V = ET (i.e. the second solution to equa-
tion (4)), the slope is:

gL

(
exp

(
ET − VT

∆T

)
− 1

)
, (6)

which is positive (as ET > VT ), indicating that this is an unstable
fixed point: a small deviation of the voltage above ET will blow up
to infinity (i.e, a spike is generated).

2.2 Alternative neuron models

Why did we choose the AdEx model to simulate neuron voltages?
In short, because it strikes a good balance between realism and com-
plexity. We briefly consider here two alternative neuron models: the
simple leaky-integrate-and-fire (LIF) neuron, and the more complex
Hodgkin-Huxley (HH) neuron. In the next section, we go into more
depth on a third alternative, the very similar Izhikevich neuron.

A simpler model than AdEx would be the well-known LIF neuron:

C
dV

dt
= −gL(V − EL)− Isyn

if V > θ, then: V ← Vr

As is apparent from comparing this with equations (1) and (3), the
AdEx model is an extension of the LIF model. The LIF neuron lacks
a simulation of the upstroke of spikes (the exponential term in equa-
tion (1)), and the slower time-scale adaptation current (equation (2)),
which allows the simulation of many qualitatively different real
neuron types.

Would this thesis have been very different had we used LIF neurons
instead? Probably not, though it might depend on the mean voltage
level of the simulated neuron: if it is well below the firing threshold,
both LIF and AdEx are linear (the exponential term is negligible),
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Figure 7: Neuron models as dynamical
systems: a comparison of the F (V )
curves of the Izhikevich and AdEx neu-
rons. ‘Experimental’ is an AdEx neu-
ron fit to a cortical pyramidal neu-
ron (using data from [Bad+08]). The
Izhikevich neuron’s parameters were
chosen to match the fixed points and
the leak conductance. Arrows indi-
cate whether the voltage will increase
or decrease (1D flow field). → • ←
is a stable fixed point (resting poten-
tial),← o→ is an unstable fixed point
(spike threshold). V̇ ≡ dV

dt .

and they behave quasi identically. When a spike is generated in the
AdEx model, the exponential feedback makes the upstroke very fast,
and thus not many timesteps in the simulation are spent on it, versus
the linear regime.

On the other hand, when the neuron would continuously teeter just
below its firing threshold, the LIF and AdEx models do not behave
similarly. LIF’s F (V ) curve is still fully linear, while AdEx’s is not,
and AdEx will behave more like a real neuron – see figure 5.

Another well-known alternative neuron model is the class of Hodgkin-
Huxley (HH)-like neurons. These models simulate the full trajectory
of a spike: both its upstroke and its downstroke. Unfortunately they
also have many free parameters. They also take a bit longer to simu-
late, being higher dimensional (having more differential equations),
and containing many more exponential terms, which take the brunt
of the time when numerically evaluating a differential expression.

2.3 The Izhikevich neuron

Another alternative neuron model is the Izhikevich neuron, which is
exceedingly similar to the AdEx neuron. These are the Izhikevich
equations, using the same symbols as used before (in equations (1)
to (3)):

C
dV

dt
= k(V − EL)(V − ET )− Isyn − w (7)

τw
dw

dt
= a(V − EL)− w (8)

if V > θ, then: (9)
V ← Vr

w ← w +∆w

We have introduced two new parameters not present in the AdEx
equations: the steepness of the parabola, k; and ET , the instanta-
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neous firing threshold (the firing threshold in the absence of any
synaptic or adaptation currents).

The only difference with AdEx is in equation (7), where the F (V )
curve is not made by a linear plus exponential term, as in AdEx; but
rather by a quadratic (a parabola). Its two zeros (the fixed points)
are readily apparent, as EL and ET .

Correspondences with AdEx

In Izhikevich’s book7, different names are used for the same quanti- 7 [Izh07], section 5.2.4, equations 5.7 & 5.8
ties:

C
dv

dt
= k(v − vr)(v − vt)− u+ I (10)

du

dt
= a(b(v − vr)− u) (11)

if v > vpeak, then: (12)

v ← c

u← u+ d

Table 2 compares both notation conventions.

AdEx Izh Description Units

V v Membrane voltage V

w u Adaptation current A

τw 1/a Time constant of adaptation current s

EL vr Resting / leak potential V

Vr c Reset voltage after spike V

a b Sensitivity of adapt. current to V S

b d Adaptation current bump after spike A

Table 2: Translating between
Izhikevich and AdEx. Different sym-
bols used for the same quantities, in
[BG05] and in most of this thesis
(‘AdEx’), and in [Izh07] (‘Izh’). Mem-
brane capacitance C (in farad) is the
same in both notations.

Beside these straightforward correspondences, there are some pa-
rameters in either model that have no direct equivalent in the other:
k and vt in Izhikevich, and gL, ∆T , and VT in AdEx. For those, we’ll
look at the shape of Izhikevich’s F (V ), as we’ve done for the AdEx
neuron before.

First, the AdEx parameter gL. This is the input conductance, a.k.a.
the leak conductance, and the slope of F (V ) around the leak poten-
tial. We can find this same conductance for the Izhikevich neuron
by taking the derivative with respect to v of the right hand side of
equation (10), at w = 0, Isyn = 0, and v = vr. We find:

d

dv
(k(v − vr)(v − vt))

∣∣∣
v=vr

= k(vr − vt) (13)

(this value is negative: the leak potential is a stable fixed point. This
corresponds to equation (1), where we find ‘−gL’). Thus, our first
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nontrivial correspondence:

gL = k(vt − vr) (14)

We’ve seen that VT is the minimum of AdEx’s F . The minimum of
Izhikevich’s F is easily found as the average of the parabola’s two
zeros. I.e, VT corresponds to (vr + vt)/2.

Finally, ∆T co-determines the slope of AdEx’s F at the firing thresh-
old (equation (6)). Given that Izhikevich’s F is a parabola, with
slopes equal in magnitude at both roots, we already know the firing
threshold slope: it is the same as the leak conductance, equation (14).
Here, the AdEx model is more expressive than Izhikevich’s: the slope
of dV

dt at the firing threshold can be independently tweaked from the
leak conductance; in Izhikevich these two are clung together by the
form of the quadratic equation.

Comparison with AdEx

The Izhikevich and AdEx models are very similar. Their phase
spaces are topologically identical: the adaptive current equation is
identical (up to a renaming of the variables); and the F (V )-graph
has the same shape, with two fixed points: a stable fixed point at
the resting potential, and an unstable one at the firing threshold
(figure 7).

They differ in the exact shape: Izhikevich’s F (V ) is a parabola, while
AdEx is the more realistic ‘linear subthreshold, and then transition-
ing to an exponential’ (see figures 5 and 7). As a result, Izhikevich
neurons have an unrealistically slow spike upstroke, examples of
which can be seen in figure 8.

A second issue is Izhikevich’s subthreshold nonlinearity. The ef-
fects of this can be seen in figure 9. Positive input currents produce
stronger responses than equally large negative input currents. This is
explained by the quadratic dV

dt shape: positive deviations are attenu-
ated less, and negative deviations more, than a linear neuron would.
Real and AdEx neurons do not suffer this assymetry (figure 5).

This nonlinearity is not visible for small voltage deviations, which is
what the postsynaptic potentials we are interested in in this thesis
tend to be. There is however an effect of the neuron’s average
voltage: if this voltage is constantly on the higher side, then inputs –
both negative and positive – will cause larger responses than if the
median voltage was lower.
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Figure 8: Two neuron models behave differently for (near) identical
parameters and input.
The AdEx neuron’s parameters are from [Nau+08], for a cortical regular spiking
neuron. The Izhikevich neuron’s parameters are copied from the AdEx neuron
wherever they correspond directly. The other parameters are chosen so both
models have the same resting and threshold potentials, and the same leak
conductance, using the correspondences found earlier in this section. Both
models receive EI-balanced synaptic input from 6500 Poisson spike trains
with lognormal firing rates. The AdEx neuron was given stronger inputs
(∆gexc = 12.2 pS) than the Izhikevich neuron (∆gexc = 4 pS), so as to obtain
the same number of output spikes. (In both cases, ∆ginh = 4 ∆gexc). For more
details, see 2023-06-23__Vm_traces_AdEx_Izh__Brian.

Figure 9: The nonlinear response of Izhikevich neurons to sub-
threshold input currents.
Adaptation currents are negligibly small for both models in this test
scenario. Source: 2021-12-08__biology_vs_Izh_subhtr

https://tfiers.github.io/phd/nb/2023-06-23__Vm_traces_AdEx_Izh__Brian.html
https://tfiers.github.io/phd/nb/2021-12-08__biology_vs_Izh_subhtr.html
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2.4 Synapse model

One as of yet unexplained term in our neuron model, equation (1),
is the synaptic current Isyn. This is the following sum over all input
synapses i of the neuron:

Isyn(t) =
∑
i

gi(t) (V (t)− Ei) , (15)

where V is the global membrane voltage of the neuron, Ei is the
reversal potential of that synapse, and gi is the local synaptic con-
ductance, which is modulated by presynaptic spikes.

For an excitatory synapse, Ei > V (t), making gi(t) (V (t)− Ei) nega-
tive, increasing the membrane voltage according to the sign conven-
tion for Isyn in equation (1).

We simulate the synaptic conductances gi as exponentially decaying
signals (with time constant τg), and bump them up instantaneously
on arrival of a presynaptic spike:

dgi
dt

= −gi/τg (16)

On incoming presynaptic spike:
gi ← gi +∆gi (17) 0      60 ms

0

1 nS

Figure 10: Example synaptic conduc-
tance trace g1(t), with a single incom-
ing spike at t = 20 ms.

0      60 ms
0

1 nS

Figure 11: Another example trace
g2(t), with spikes at t = 10 ms and
30 ms, and a smaller ∆g.

Note that these are not the so called alpha-synapses. Those have
two terms (and corresponding time constants) in their differential
equation (instead of one, as in equation (16)): they also have an ex-
ponential rise, instead of just an exponential decay. (For an infinitely
fast rise though, these models are of course the same). Simulating a
full alpha synapse might increase the realism of our voltage traces,
for a small simulation cost. We did not try this however. Foremost
because alpha synapses fit to real data often have very fast rise times
that are almost indistinguishable from instantaneous jumps.

For efficiency, we give all our excitatory synapses the same reversal
potential, Eexc. Idem for the inhibitory synapses, with Einh. This al-
lows us to factor the synaptic current sum (equation (15)) as follows:

Isyn(t) = (V (t)− Eexc)
∑
exc i

gi(t) + (V (t)− Einh)
∑
inh i

gi(t) (18)

The sums of conductance signals gi(t) can also be simplified. Say
that the values of gi at t = 0 are Gi. The solution to equation (16) (at
least in the time until a new presynaptic spike arrives) is then

gi(t) = Gi e
−t/τg (19)
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With this, and when all synapses have the same time constant τg, the
two sums in equation (18) can be factored as follows:8 8 This is only valid in the time before any

new spikes arrive. But the ‘summability’
still holds after a new spike. To see this, the
given reasoning can be repeated, but simply
with different values for the Gi (all decayed
by an amount e−tspike/τg , and one increased
by a bump ∆gi), and then redefining tspike

to be t = 0.

∑
i

gi(t) =
∑
i

(
Gi e

−t/τg
)
=

(∑
i

Gi

)
e−t/τg (20)

This means that we need to only keep track of two conductance
signals: gexc and ginh, each the sum of all excitatory or all inhibitory
synaptic conductances.

0      60 ms
0

1 nS

Figure 12: A third synaptic conduc-
tance trace g3(t), with three input
spikes at the same times and strengths
as in figures 10 and 11. This signal
is simulated independently, but turns
out to be equal to the sum of the two
others: g3(t) ≡ g1(t) + g2(t).

Our synaptic current sum then becomes simply:

Isyn(t) = gexc(t) · (V (t)− Eexc) + ginh(t) · (V (t)− Einh), (21)

and we only need to simulate two differential equations, instead of
one for every synapse:

dgexc

dt
= −gexc/τg (22)

dginh

dt
= −ginh/τg,

where on arrival of a spike at synapse i either gexc or ginh is instan-
taneously increased by a value ∆gi, depending on whether that
synapse is excitatory or inhibitory.

We choose an excitatory reversal potential of Eexc = 0 mV, an in-
hibitory one of Einh = −80 mV, and a time constant for the synaptic
conductance decay of τg = 7 ms. These values are rather arbitrary,
but in line with other simulation studies (e.g. [Bre+07]).
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2.5 Model summary

Combining equations (1) to (3) with equations (21) and (22), our com-
plete AdEx point neuron with conductance-based synaptic current
is:

C
dV

dt
= −gL(V − EL) + gL∆T exp

(
V − VT

∆T

)
−gexc(V − Eexc)− ginh(V − Einh)︸ ︷︷ ︸

−Isyn

− w

τw
dw

dt
= a(V − EL)− w

τg
dgexc

dt
= −gexc

τg
dginh

dt
= −ginh

Excitatory input spike

Inhibitory input spike

0
20
40
60 pS

Synaptic conductances

gexc
ginh

-1
0
1 pA

Synaptic current, Isyn

-65.04

-65

-64.96 mV
Membrane voltage, V

0 50 100     150 ms
-10
0
10 fA

Adaptation current, w

Figure 13: Impulse response of
the conductance-based AdEx neu-
ron. Overlay of two independent sim-
ulations, each using a single spike arriv-
ing at t = 10 ms, with synaptic weight
of either ∆gexc = 14 pS, or ∆ginh =
56 pS. Parameters as in table 1, with
Eexc = 0 mV, Einh = −80 mV and τg =
7 ms. For the inhibitory impulse response,
gexc(t) ≡ 0, and for the excitatory im-
pulse response, ginh(t) ≡ 0 (neither is
shown). More details at 2023-09-05__
Inhibitory_impulse_response_PSP.

When V > θ: V ← Vr

w ← w + b

On input spike at..
exc. synapse i: gexc ← gexc +∆gi

inh. synapse j: ginh ← ginh +∆gj

We solve these equations numerically using first-order (Euler) inte-
gration, with a timestep ∆t of 0.1 ms. This timestep is sufficiently
small with respect to the different time constants in the model9. See

9 τg = 7 ms,
τw = 88 ms,
C/gL = 24.2 ms.

section 2.9 below for more details on the numeric implementation.

Figure 13 shows the impulse response of this model, using a single
spike, coming from either an excitatory or an inhibitory input neu-
ron. The PSP bump is visible in the second panel from the bottom
(‘membrane voltage, V ’). Note its tiny size, of about 0.04 mV. Our
task will be to detect this tiny signal, in a sea of voltage imaging
noise and PSP bumps of other input neurons.

Note also that, even though the inhibitory input is four times as
strong as the excitatory one, its synaptic current and PSP bumps are
not larger. (In fact, they are a smidge smaller). This is due to the fact
that the neuron’s resting potential (at −65 mV) lies closer to the in
inhibitory reversal potential (Einh = −80 mV) than the excitatory
one (Eexc = 0 mV), making the the inhibitory term of the synaptic
current Isyn weaker than the excitatory term (equation (21)).

https://tfiers.github.io/phd/nb/2023-09-05__Inhibitory_impulse_response_PSP.html
https://tfiers.github.io/phd/nb/2023-09-05__Inhibitory_impulse_response_PSP.html
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Figure 14: Input spike trains are given log-normally distributed
firing rates.
The distribution used in our simulations is shown in bold. It has mean
µx = 4 Hz and variance of the underlying Gaussian σ2 = 0.6. The two
light distributions are from the literature. Note that the Roxin et al.
distribution is slightly more heavy tailed than this study’s: it has both
more low firing and more high firing neurons.

2.6 Input in the N-to-1 setup

In our simplest experimental setup, we simulate just one AdEx
neuron. Its input is provided by an array of N Poisson neurons, i.e.
they each generate spike trains according to a Poisson process.10 We 10 This is both a simple and relatively accu-

rate model of real cortical pyramidal firing
statistics: the time between two spikes is al-
most completely independent of preceding
inter-spike intervals [SK93].

call this the ‘N-to-1’ setup.

Log-normal Poisson spiketrains

The inter-event intervals of a Poisson process follow an exponential
distribution. We use that fact to generate spike trains: we draw sam-
ples from Exp(λ) (with λ the desired firing rate), and cumulatively
sum up these intervals to obtain spike times. This is done until we
have reached the desired input train duration.

The firing rates of real neurons often follow a long-tailed distribu-
tion: most neurons do not fire much at all, while a few fire a lot
[MB13; HDZ08; Sha+07]. We recapitulate this in the firing rates λ
of our Poisson input neurons, by drawing them from a log-normal
distribution. We look to the literature for realistic parameters for this
distribution, namely to the modelling paper of Roxin et al. [Rox+11],
and the experimental sources it cites [HDZ08; OCo+10].

Log-normal distributions are usually parametrized with µ and σ: the
location and scale of the underlying normal distribution, i.e. after
log-transforming the input domain. In the above sources however,
the mean µx of the data distribution itself is given. We can find µ, if
σ is known, as µ = ln(µx)− σ2/2.

Roxin et al. use a mean rate µx of 5 Hz and a variance of the loga-
rithm of the rate σ2 = 1.04 in their figure 2. Hromádka et al. [HDZ08]
recorded neurons in the auditory cortex of awake rats during acous-
tic stimulation. They find a mean firing rate µx of 6.2 Hz and a
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median of 2.4 Hz; no numeric variances are given. O’Connor et al.
[OCo+10] recorded neurons in the barrel (whisker) cortex of behav-
ing mice. Ensembled over all layers of the cortex they recorded from,
they report µx = 7.4 Hz, σx = 12.6 Hz, a median of 1.5 Hz, and
an interquartile range of 9.5 Hz. This corresponds to a Gaussian
variance of σ2 = ln(1 + σ2

x/µ
2
x) = 0.30. The Roxin and O’Connor

distributions are also shown in figure 14.

Given these data, we choose our parameters µ and σ so that the
distribution lies roughly halfway – on a logarithmic scale – between
O’Connor’s and Roxin’s, while making sure our firing rates are
rather low than high: as our idea for connection inference rests on
the number of spikes that can be used to calculate spike-triggered
averages (see chapter 3), we don’t want to overestimate the number
of available input spikes and obtain overly optimistic results.

Our log-normal distribution has a median of 2.96 Hz, very close to
Roxin’s 2.97 Hz. O’Connor’s has 6.4 Hz, which is markedly different
from the median of 1.5 Hz they reported (hinting that their data
distribution might not be log-normal).

Synaptic weights

We choose to simulate EI-balanced input, where we simulate four
times as many excitatory as inhibitory input spiketrains; but with
the inhibitory inputs four times as strong as the excitatory inputs.

I.e. if our total number of input spiketrains is N = 6500, we have
Nexc = 5200 excitatory inputs, and Ninh = 1300 inhibitory inputs.
In the N-to-1-setup, we give every input of the same type the same
synaptic weight. I.e. in the model summary (section 2.5), ∀i : ∆gi =
∆gexc and ∀j : ∆gj = ∆ginh. If we would thus choose ∆gexc = 10 pS,
then, for 4:1 EI-balanced input, ∆ginh would be 40 pS.

-65

-60

-55

-50
Median Vm (mV)

0 10 20 30
gexc (pS)

0

5

10

15
Output firing rate (Hz)

Figure 15: Activity level of the out-
put neuron in the N-to-1 setup, for
increasing input strength ∆gexc.
With N = 6500 EI-balanced inputs, and
∆ginh = 4 ·∆gexc.
The blue line is the average over 10 differ-
ent simulations (black dots), each with a
different random seed for the input spike
train generation.
Increasing input first heightens the volt-
age level without increasing the firing
rate, and later heightens the firing rate
without increasing the voltage level fur-
ther.
Vm = membrane voltage V .
Source: 2023-08-05__AdEx_Nto1_we_
sweep.

To choose a value ∆gexc for the excitatory input strength, we look at
the desired output firing rate of our one simulated neuron. We want
it to spike at a realistic, average rate. Thus, we try for it to have the
same output firing rate as the mean input firing rate: µx = 4 Hz. This
rate is achieved by testing a range of different input drives ∆gexc:
see figure 15. For N = 6500 inputs, we find an average output firing
rate of 4.0 Hz at ∆gexc = 15 pS (and thus ∆ginh = 60 pS).

Two asides on figure 15. First, from the bottom panel, we see that
the AdEx model, with parameters for a cortical RS (regular spiking)
neuron, is a so called ‘Type I’ neuron:11 the firing rate can be made

11 https://neuronaldynamics.epfl.ch/o
nline/Ch4.S4.html

arbitrarily low, and there is no discontinuous jump from 0 Hz to
some minimum firing rate.

Second, why does the output activity level increase for increasing
excitatory input, if the inhibitory input becomes stronger by the
same amount? The answer lies in the synaptic reversal potentials,
which are Eexc = 0 mV and Einh = −80 mV. The median membrane
voltage (top panel in figure 15), at about −60 mV, lies closer to the

https://tfiers.github.io/phd/nb/2023-08-05__AdEx_Nto1_we_sweep.html
https://tfiers.github.io/phd/nb/2023-08-05__AdEx_Nto1_we_sweep.html
https://neuronaldynamics.epfl.ch/online/Ch4.S4.html
https://neuronaldynamics.epfl.ch/online/Ch4.S4.html
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Figure 16: Signals generated by
the neuron model, for 6500 EI-
balanced input spiketrains.
Example extract from the signal traces of
the conductance-based AdEx neuron. N-
to-1 setup, with ∆gexc = 15 pS, and Pois-
son inputs with lognormally distributed
firing rates. Neuron parameters for a cor-
tical regular spiking neuron.
Note that the synaptic current signal
−Isyn is very similar to the difference
of the excitatory and inhibitory synaptic
conductances, as long as the membrane
voltage V does not vary too much; on a
spike (here at t ≈ 680 ms), Isyn spikes as
well.
Also note that the neuron spikes at a time
when the inhibitory input randomly falls
below the excitatory input, for a certain
time. Spikes are ’fluctuation driven’ in
this input regime.
ge ≡ gexc and gi ≡ ginh.
The V and −Isyn signals are cut-off by
the plot boundaries at the spike time.
Source: 2023-07-26__AdEx_Nto1_we_I_
syn.

inhibitory reversal potential than the excitatory potential, making
the inhibitory term of the synaptic current Isyn weaker than the
excitatory term (equation (21)).

The fact that this EI-balanced input leads to a net-excitatory effect
can also be seen in figure 16: the signal gexc−ginh hovers around zero,
but the signal Isyn — even though it has largely the same shape — is
nowhere near zero.

Later, we will compare the performance of a connection-detection
algorithm across different numbers of inputs N . We choose the
approximately evenly log-spaced sequence

N ∈ [10, 20, 45, 100, 200, 400, 800, 1600, 3200, 6500].

For each of these N , we want the output firing rate to be the same,
namely 4 Hz. To find the synaptic strengths ∆gexc that accomplish
this, we perform an iterative search.12 As an initial guess, it would 12 We use SciPy’s root_scalar function,

which uses ‘Brent’s method’, which is
like bisection but has faster convergence.
We seed the algorithm with the bracket
[w0/4, w0 · 4], where w0 is the initial linear
guess for ∆gexc. In about 8 iterations, we
come within 0.01 Hz of the desired 4 Hz.

make sense for the required input strength to scale inversely pro-
portional to the number of inputs. We find however that there is
a slight deviation from this linear expectation (figure 17): the less
inputs, the less strong each input should be to reach the same output

https://tfiers.github.io/phd/nb/2023-07-26__AdEx_Nto1_we_I_syn.html
https://tfiers.github.io/phd/nb/2023-07-26__AdEx_Nto1_we_I_syn.html
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Figure 17: Finding the right input
strength in the N-to-1 setup, for
different numbers of inputs N .
∆gexc is the synaptic conductance increase
per incoming spike from an excitatory input.
For each N , the right ∆gexc value — namely
the one for which the output neuron fires at
4 Hz – was found using an iterative search
procedure. For every ∆gexc value evaluated,
ten different 10-second simulations were run
(each with a different random seed for the
input spiketrain generation). The average
output firing rate of these ten simulations
was taken, and compared with the goal firing
rate of 4 Hz. ∆gexc was then adjusted un-
til the simulated firing rate was sufficiently
close. In every case, ∆ginh was four times
∆gexc. Source: 2023-08-05__AdEx_Nto1_
we_sweep.

firing rate, compared to a linear extrapolation from our finding of
∆gexc = 15 pS for N = 6500. E.g. the linear expectation for N = 10
would be ∆gexc = 9.75 nS (= 15 pS · 6500/10), but we find we need
only ∆gexc = 2.83 nS to reach an output firing rate of 4 Hz.

2.7 Spike ceiling

Our neuron model (section 2.5) consists of 1) a set of continuous
differential equations, and 2) a discontinuous, instantaneous jump
(namely whenever the membrane voltage V crosses the spike-definition
threshold θ). Because we simulate our model using a discrete and
finite timestep, this discontinuity introduces variability in the height
of our spikes: the simulated voltage will never exactly equal the
threshold θ in a given timestep, but will be either somewhere below
it (where it will become the simulated spike height), or above it (in
which case a spike is defined and the voltage is reset). This variabil-
ity, or jitter, in the height of spikes can be seen in figure 18 (orange
trace).

Real neurons generally do not show such variability: their spike
heights are quite consistent (remarkably so). To make our simu-
lated voltage traces look more realistic, we set the voltage to a fixed
height at spike events. We call this modification "spike ceiling". It is
illustrated in figure 18 (blue trace).

This spike ceiling is a common technique. In Izhikevich’s book for
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[zoomed in on 1st spike][zoomed in on 1st spike]

Unmodified sim
With ceiled spikes

Figure 18: Example voltage trace, be-
fore (orange) and after (blue) spikes
are ceiled.
Source: 2023-09-05__ceil_spikes.

https://tfiers.github.io/phd/nb/2023-08-05__AdEx_Nto1_we_sweep.html
https://tfiers.github.io/phd/nb/2023-08-05__AdEx_Nto1_we_sweep.html
https://tfiers.github.io/phd/nb/2023-09-05__ceil_spikes.html
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example, the same technique is applied (there it is called "spike
padding"): see listing 1. There is one difference however. Izhike-
vich’s code pads the spikes during the simulation, and overwrites
the spike height of the previous timestep, before the threshold cross-
ing. We ceil our spikes after the simulation has fully run. We ceil
the voltage one timestep later than Izhikevich: after the threshold
crossing; i.e. the timestep where the voltage was previously reset
to Vr. This difference in approach is merely a personal aesthetic
preference, and was not found to yield any difference in network
inference performance in an informal test.

The act of spike ceiling in itself does have an effect on network
inference performance. This is shown later, in section 3.1.

1 for i = 1:n-1 % forward Euler method
2 v(i+1) = v(i)+ tau *(k*(v(i)-vr )*(v(i)-vt)-u(i)+I(i))/C;
3 u(i+1) = u(i)+ tau*a*(b*(v(i)-vr)-u(i));
4 if v(i+1) >= vpeak % a spike is fired!
5 v(i) = vpeak; % padding the spike amplitude
6 v(i+1) = c; % membrane voltage reset
7 u(i+1) = u(i+1)+d; % recovery variable update
8 end;
9 end;

Listing 1: Matlab code simulating the Izhikevich neuron. Lines pertinent
to spike ceiling/padding are highlighted. Source: Eugene Izhikevich’s 2007
book, Dynamical Systems in Neuroscience: The Geometry of Excitability
and Bursting, section 8.4.1 ("Simple Model of Choice"), p. 274 ([Izh07]).

2.8 Voltage imaging

The signals detected by a light microscope in a voltage imaging setup
are not the same as the real membrane voltage traces of which they
are a reflection.
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Figure 19: Simulated voltage trace
(same as in figure 8, right), without
and with ‘voltage imaging’ (VI) noise
added (σnoise = 10.5 mV).

We model this lossy transformation by simply adding Gaussian noise
to our simulated membrane voltage.13 As in the voltage imaging

13 Adding noise with a fixed variance each
timestep makes the power of the added
noise dependent on the chosen timestep.
In this study we do not vary the timestep,
but if we did, we would have to account for
this when choosing the noise variance.

literature, we quantify the amount of this noise by a ‘spike-SNR’
measure (spike signal-to-noise ratio). This is defined as the height of
an average spike relative to the standard deviation of the noise:

spike-SNR =
spike height

σnoise
(23)

In other words, if we call our output signal y, and with Vi the voltage
samples resulting from the numeric integration of equation (1), we
have:

yi = Vi + εi (24)

εi ∼ N (0, σnoise)



CHAPTER 2. SIMULATION DETAILS 28

A typical but conservative level of noise in voltage imaging record-
ings has a spike-SNR of 10. If we take as spike height the spike
detection threshold minus the leak potential (θ−EL, see table 1), we
obtain a σnoise of 10.5 mV.

A more realistic model of the voltage imaging-transformation would
also incorporate the exponential decay over time of the SNR (with a
time constant of about 10 minutes), and the short-term ’smearing in
time’ of voltage indicators.14 The latter could be done by passing the 14 See e.g. the example voltage imaging trace

in figure 1: the sharp and high peaks of the
electric signal are diluted in time through
the low-pass filtering effect of the voltage
indicator. See also the ‘kinetics’ column in
the spreadsheet with genetically-encoded
voltage indicator (GEVI) characteristics: the
listed durations are the time constants of bi-
exponential functions fit to the responses of
the voltage indicator molecules to a rectan-
gular voltage pulse.

voltage signal through a linear filter with some non-instantaneous
impulse response.

2.9 Software implementation

To numerically simulate the model described in this chapter, differ-
ent software implementations have been used throughout the PhD.
Initially, a custom simulator was written in Python, with numerically
expensive parts of the code accelerated using the Numba just-in-time
compiler [LPS15]. Later on, we switched to a custom simulator writ-
ten in Julia [Bez+17].15 Finally, we also implemented our model in 15 A slideshow introducing Julia and how it

compares to Python and Matplotlib can be
found here.

Brian [SBG19]. After a comparison of compilation and runtimes of
the Brian and Julia implementations (table 3), we decided to use the
software written in Julia.16↓

Software Language Model Time (seconds)

Compilation Simulation

Brian2 Cython + Python full 61 11

merged 86 11

C++ full 15 6.5

merged 18 0.35

own Julia full 0.68 0.036

Table 3: Time taken to simulate 10
seconds of the N-to-1 experiment
with N = 6500 Poisson inputs, and one
conductance-based AdEx neuron. In
the ‘merged’ models, only 200 Poisson
spiketrains are independently simulated
(instead of all 6500, as in the ‘full’
model). All other inputs are replaced
by two single Poisson inputs (one
excitatory and one inhibitory), with
an equivalent effect. (That is, we use
Brian’s ‘PoissonInput’).
For details, see 2023-07-10__AdEx_Nto1_

Brian_speedtest (Cython), 2023-08-02_

_speedtest_brian_standalone_AdEx_

Nto1 (C++), and 2023-08-09__Poisson_

cquantile_upperbound (Julia).

16 The Julia implementation is considerably faster than the implementation in ‘stan-
dalone’ Brian, which uses C++ and should thus be comparable in speed. This might
be due to me not using Brian optimally, or to the fact that Brian is a general purpose
spiking neural network simulator with much more capabilities; and our software
was written specifically for the N-to-1 AdEx problem.

https://docs.google.com/spreadsheets/d/1W9Y3az4i1xdvahpdyqtsTG8F81LXK2T6wzRgsXHN3z0/edit
https://tomasfiers.net/posts/julia-for-scientists/
https://brian2.readthedocs.io/en/stable/user/input.html#efficient-poisson-inputs-via-poissoninput
https://tfiers.github.io/phd/nb/2023-07-10__AdEx_Nto1_Brian_speedtest.html
https://tfiers.github.io/phd/nb/2023-07-10__AdEx_Nto1_Brian_speedtest.html
https://tfiers.github.io/phd/nb/2023-08-02__speedtest_brian_standalone_AdEx_Nto1.html
https://tfiers.github.io/phd/nb/2023-08-02__speedtest_brian_standalone_AdEx_Nto1.html
https://tfiers.github.io/phd/nb/2023-08-02__speedtest_brian_standalone_AdEx_Nto1.html
https://tfiers.github.io/phd/nb/2023-08-09__Poisson_cquantile_upperbound.html
https://tfiers.github.io/phd/nb/2023-08-09__Poisson_cquantile_upperbound.html


Chapter 3

Spike-triggered averaging

As shown in figure 2, our idea for connection inference rests on the
causal link ‘presynaptic spike’→ ‘postsynaptic voltage bump’. I.e.
we want to know for which neuron pairs a spike in one is reliably
followed by such a bump in the other. The problem is that these
bumps (the postsynaptic potentials or PSPs) are minute, and are
easily drowned out by (1) other PSPs, (2) postsynaptic spikes, and
(3) voltage imaging noise.

So, as is often done in neuroscience, we take the average over many
instantiations, so as to hopefully find a signal in the noise. Specifi-
cally, we take spike-triggered averages, or STAs, of neurons’ voltage
traces. If there is a connection from a neuron ‘M’ to a neuron ‘N’,
then an STA of neuron N’s voltage imaging signal, based on neuron
M’s spikes, would hopefully show the PSP.

And indeed, when we construct a few such STAs, we do see some-
thing resembling a PSP bump: figure 20. We also find that the higher
the firing rate of the presynaptic neuron, the cleaner the PSP-like
shape is. This is of course because there are more presynaptic spikes
and thus more windows to average over, which decreases the noise
on the result. Finally, we see that inhibitory inputs result in down-
wards bumps in their STA, and excitatory inputs in upwards bumps.

Note that in this chapter – and the next one – we only look at the so
called N-to-1 case (figure 21), where we simulate the voltage of one
neuron, impinged on by N independent Poisson spiketrains. This is
done for simplicity; it is only in the "Networks" chapter later on that
we look at full networks, were inputs might be correlated with one
another.

To use spike-triggered-averages as an actual connection test, we look
specifically at the height of an STA, and compare it to a distribution
of STA heights that we’d expect were the two neurons not connected.
This is illustrated and explained in more detail in figure 22. This so
called ’shuffle’ test yields the proportion p of how many shuffled
(random) spiketrains yield an STA with a larger height than the real
STA. In a following section (Performance quantification), we’ll use

29
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 Using the fastest spiking input, 
98 Hz  | 59k spikes | exc
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 and other fast spikers.

98 Hz  | 59k spikes | exc
15 Hz  |  9k spikes | exc
36 Hz  | 22k spikes | inh
8.9 Hz |  5k spikes | inh
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Time after presynaptic spike (ms)
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 and input with median spikerate.
98 Hz  | 59k spikes | exc
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 and slowest spiking input.
98 Hz  | 59k spikes | exc
0.2 Hz | 123 spikes | exc

Some spike-triggered averages (STAs) of membrane voltage V

Figure 20: Example STAs in the 10’ simulation with 6500 inputs.
Note that every panel has a different y-axis (voltage) scale. The STA of
the most active input is repeated in every panel (in faded blue), to allow
a visual scale comparison nonetheless.
The inset legends indicate with how many presynaptic spikes the STA
was calculated, and whether the input was an excitatory or inhibitory
one.
The top right panel shows STAs of the 1st and 100th fastest spiking
inputs, both within the excitatory inputs (blue shades), and within the
inhibitory inputs (orange shades).
Source: 2023-09-13__Clippin_and_Ceilin.

https://tfiers.github.io/phd/nb/2023-09-13__Clippin_and_Ceilin.html
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Figure 21: The ‘N-to-1’ problem.
Left: A neuron N (orange circle), and the spike trains of other neurons
in the network (blue). Some of these other neurons impinge directly
on N (black arrows), while others are not (directly) connected (dashed
gray lines). Given only neuron N ’s voltage signal and the other neurons’
spiketrains, we want to detect the direct inputs, while rejecting the not-
directly-connected spiketrains.
Right: The simulated membrane voltage of the impinged-upon neuron
(orange), and the same signal with Gaussian noise added, to simulate a
voltage imaging signal (blue). Underneath the plot, one of the possible
input spiketrains, time-aligned to the voltage signal. This alignment is
used later to extract spike-triggered windows from the voltage signal.

this number (as t = 1− p) to make predictions and compare them to
the ground truth.
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Figure 22: A simple connection test: STA height with shuffle
control.
The spikes of a possible input neuron are aligned to the voltage trace of
the neuron of interest N , as in figure 21. For every such spike, a 100-ms
long window is cut out of the voltage of N . The average of all these
windows is called the spike-triggered average (STA).
Left: Two example STAs of neuron N ’s membrane voltage: one for
an actually connected input neuron, M (top, orange); and one for a
non-input neuron (below, gray). Given an STA signal x, we will use its
height h = max(x)−min(x) (also known as ‘peak-to-peak’ or ‘ptp’) to
test whether two neurons are connected.
Right: An STA of N ’s membrane voltage using a shuffled version of
M ’s spike times (which is made by randomly permuting the inter-spike-
intervals of M). This ‘shuffled STA height’ provides a control for the STA
height connection test statistic: "what do we expect the STA height to be
if there is no connection M→N". By calculating different such shuffles,
we obtain a null-distribution for the STA height test statistic. And by
comparing the real STA height to this distribution, we can calculate a
p-value. Here, the real STA is larger than all shuffle controls, of which
there are 100. So p < 0.01, and at α = 0.05, we conclude there is indeed
a connection M→N .
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3.1 Ceiling and clipping

As explained in section 2.7, we modify our simulated voltage trace
so that spikes have a consistent height. This modification has an
effect on STAs, as is illustrated in figure 23: the blue trace is the
signal without spike ceiling, the orange one with spike ceiling. Their
corresponding STAs are shown on the right. Note that the orange
STA (made with ceiled spikes) is much noisier than the blue STA
(from the unmodified voltage trace).

This suggests a relatively easy intervention to drasticaly de-noise
STAs, and presumably increase their effectiveness for network infer-
ence: namely to remove the spikes from the signal.

We tried this ’spike clipping’ and it indeed drastically denoised
the STA; see the green signal and STA in figure 23. We show that
this decreased noise in the STA does indeed lead to an increase in
network inference performance, by running a connection detection
test without and with this spike clipping. The results are shown in
figure 24: detection performance increases from an AUC of 0.56 for
the non-clipped voltage trace, to an AUC of 0.79 for the voltage trace
with clipped spikes.
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Spike-triggered average (STA) of V  (mV)

Figure 23: Example voltage traces and corresponding STAs, where
the only difference is the height of spikes. In blue, the unmodified
simulated voltage trace. In orange, the same, but with ceiled spikes (as
in section 2.7). In green, the same as orange, but with the spikes clipped
again after the ceiling (as explained in this section).
Source: 2023-09-13__Clippin_and_Ceilin.

https://tfiers.github.io/phd/nb/2023-09-13__Clippin_and_Ceilin.html
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Figure 24: Connection detection per-
formance for the three ways of han-
dling spikes shown in figure 23: not
modifying them; ceiling them; and
clipping them. The area-under-the-
curve or AUC measure is explained in
the next section.
Source: 2023-09-13__Clippin_and_

Ceilin.

3.2 Window length

We can freely choose the length of the windows that are cut from the
postsynaptic voltage signal when computing an STA. In previous
STA figures e.g, we chose 100 ms. This parameter is an important
choice: a longer window linearly increases the computation time
of the connection inference algorithm; and we find that window
length choise strongly influences detection performance, as shown
in figure 25.

Why does the shorter window length (20 ms versus 100 ms) lead to
such a strong increase in detection performance? One reason is the
heuristic we use to determine if a detected connection is excitatory
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C 100 ms window
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Chance level

Figure 25: Connection detection
performance of the STA method,
for two different STA window
lengths. Area under the ROC-curve,
AdEx neuron, 10 minute recording, no
voltage imaging noise, 5 different ran-
dom seeds for input spiketrain genera-
tion (gray dots; larger dots are their
means). All N inputs are tested (in-
stead of just the highest firing ones),
in addition to N random unconnected
spiketrains.
Source: 2024-05-29__STA-winlength.

https://tfiers.github.io/phd/nb/2023-09-13__Clippin_and_Ceilin.html
https://tfiers.github.io/phd/nb/2023-09-13__Clippin_and_Ceilin.html
https://tfiers.github.io/phd/nb/2024-05-29__STA-winlength.html
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or inhibitory: the STA is referenced to its starting value and is then
integrated. I.e. the area below the starting value is subtracted from
the area above. If the result is positive, we say the connection is
excitatory, and inhibitory otherwise. This heuristic works well in
the low N (number of inputs) case. But for higher N , an interesting
phenomenon happens: the broad downwards bump happening after
the EPSP1 becomes larger than the positive bump of the EPSP itself; 1 This is what we model with the Gaussian

‘dip’ in section 5.3.see the top-left panel of figure 20 for an example. This defeats the
heuristic, and makes us classify excitatory connections as inhibitory
and vice-versa.2 2 This is the reason that in an earlier version

of this thesis, the template-based detection
method of section 5.2 had a performance
lower than chance level for high N : inputs
were detected correctly as connected, but
with the wrong polarity.
Changing to a lower window length has
also drastically increased the performance
of the simple STA-based method, to a point
where it is almost as good as our newly de-
veloped methods (figures 53 and 56); in the
previous version of this thesis, the differ-
ence in performance was much larger.

Changing to a shorter window length restores the heuristic’s useful-
ness (in addition to decreasing computation time by a factor of four).
A question that we did not yet explore is whether a longer window,
but with a smarter polarity-heuristic, could perform better still.

3.3 Performance quantification

It is not easy to express in a single number how good a network
inference algorithm is. Depending on what you find important
as a user, different measures make more sense than others. This
section looks at some measures to quantify the performance of our
algorithms, and discusses the merits and disadvantages of each.

All the algorithms that we look at in this and the following chapter
eventually output a single number per tested neuron pair (A, B):
"How strongly do I believe there is a connection A→B?". (And: "Is
that connection excitatory or inhibitory?": the sign of the number).
We will call this connected-ness number "t".

To get actual predictions out of the algorithm, we must apply a
threshold θ to these measures. If |t| > θ, we classify the pair as
connected, and as unconnected otherwise. For the detected pairs,
we classify them as excitatory if t is positive, and inhibitory if it is
negative.

Note that we use the same threshold for both excitatory and in-
hibitory connections. We could in fact use a different threshold – and
we briefly look at this in figure 30 – but for simplicity, we apply the
same threshold for both types of connection.

Each threshold chosen yields a different tradeoff between recall
and precision (figure 26). At low thresholds, we can detect more
connections ("true positives"); but we will also detect more non-
inputs as being connected (false positives). This also lowers our
precision.
Some definitions:

• True positive rate (TPR), aka recall, sensitivity, and power:
out of all true connections tested, how many did we correctly
classify?
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Figure 26: Lower detection thresholds increase both true and false
positives. On the right, true positive rates are plotted against the false
positive rate, to obtain the so called receiver operating characteric or
ROC curve. As the FPR increases more or less linearly with the decrasing
detection threshold, both graphs look very similar. Source: 2023-09-13__

Clippin_and_Ceilin.

• False positive rate (FPR): out of all distractors we added to
our test (randomly generated spiketrains), how many did we
wrongly classify as an actual input?

• Precision, aka positive predictive value (PPV): out of all the
neuron pairs that we classified as connected, how many are
actually connected?

There are more measures that quantify the performance of a binary
classifier at a given threshold than those three (such as negative
predictive value, false discovery rate, false omission rate, ...).3 But
recall, FPR, and precision are commonly used ones. 3 We do not actually perform binary classi-

fication: there are three classes (excitatory,
inhibitory, unconnected). But it is not pure
ternary (multiclass) classification either: we
first classify as connected or not, and then
(for the connected ones only), as excitatory
or inhibitory. We could thus call it some
kind of nested binary classification.

Note that true positive rate (TPR) and precision are similar, in that
they both count correct classifications. (They both have the number
of true positives in their numerator). But recall (TPR) looks at the
number of true positives from the point of view of the ground truth
(how many did we find), and precision looks at it from the perspec-
tive of the experimenter (out of what this algorithm gives us, how
much is correct?).

False positive rate and precision are also similar, in that they both
measure the number of false positives. One advantage of using
FPR over precision though, is that FPR does not depend on the
number of distractors (unconnected spiketrains) that we add to our
tests.4 Whereas we can arbitrarily increase precision by including 4 Besides that, the more distractors we test,

the more accurate our estimate of the FPR
will be.

less unconnected trains in our test – up to the limit of 100% precision,
when we do not add any distractors and all tested trains are actually
connected.

https://tfiers.github.io/phd/nb/2023-09-13__Clippin_and_Ceilin.html
https://tfiers.github.io/phd/nb/2023-09-13__Clippin_and_Ceilin.html
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Figure 27: Lower detection thresholds trade-off higher recall for
lower precision.
The Fβ scores interpolate between the two measures. F→∞ is recall,
F→0 is precision. The black circles on the F -curves indicate their maxima.
Different trade-offs between precision and recall (different β-values) thus
dictate different optimal detection thresholds.

In our tests, we choose the number of unconnected trains rather arbi-
trarily. (For example, when we test 100 excitatory and 100 inhibitory
inputs, we also generate and test 100 unconnected spiketrains). A
better way to choose this number of distractors might be to esti-
mate what a realistic fraction of unconnected neurons would be in
a typical voltage imaging experiment. Given some patch of brain
tissue and one of the neurons in it, how many of the other recorded
neurons in that patch will be connected to it? This is an interesting
research question – and it is likely that answers can be found in the
literature – but we do not explore it here.

In figure 26, we have looked at TPR and FPR, both as a function of
the detection threshold and as a function of each other. In figures 27
to 29, we look at TPR (recall) and precision, again as a function of
the detection threshold and as a function of each other.

Because recall and precision both increase for ’better’ detectors, we
might combine them into one measure. This is what the F -scores do:
they are the harmonic mean of recall and precision, with recall and
precision weighted differently depending on a parameter β. The Fβ

score attaches β times as much weight to precision P as to recall R:

Fβ =
(1 + β2) · P ·R
β2 · P +R

(25)

For β = 1, precision and recall are weighted equally. The F1-score is
also the most widely used of the F -scores.

When we plot recall against precision, we get the so called PR-curves,
shown in figure 28 for both excitatory and inhibitory inputs together,
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Figure 28: Precision plotted against
recall for the STA-test in the N=6500
inputs, 10-minute-recording experi-
ment. Black dots indicate where three
different Fβ-scores reach their respec-
tive maximum values.
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Figure 29: Same as in figure 28, but
with excitatory and inhibitory inputs
analysed separately. Note that we can
detect more inhibitory inputs than ex-
citatory inputs for the same precision
value (or for the same false positive
rate, as shown in figure 26).

and in figure 29 for both types separately.

Different thresholds yield different Fβ-scores; but there is one thresh-
old where your chosen F -score is maximal. This max F1-score is a
good candidate for the single "how good is this detector" measure
we were looking for. We specifically choose F1 as it weighs precision
and recall equally (and we have no a-priori reason to prefer any one
over the other), and because it is the most frequently used.

Another common single measure to quantify a classifier’s perfor-
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Detection threshold
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100%

Recall for exc inputs (TPR )
Recall for inh inputs (TPR )
Precision for exc inputs (PPV )
Precision for inh inputs (PPV )
F1 for exc inputs (F1, e)
F1 for inh inputs (F1, i)

Figure 30: Excitatory and inhibitory
inputs reach max F1 at different
thresholds.
But for simplicity, whenever we use
max F1 to evaluate a classifier, we
will use only one threshold for both
types of inputs, which will be a com-
promise between these two thresholds.

0 0.2 0.4 0.6 0.8 1

0.2 0.25 0.3 0.35
Area under ROC curve (AUC)

Performance of random connection classifier Figure 31: Randomly classifying
connections yields a chance level
AUC < 0.5.
300 random test results, and their
performance as connection detector,
quantified as area under their ROC
curves. Solid black line is the mean,
dashed line is the median.
In every of the 300 simulations, every
connection (100 exc, 100 inh, and
100 unconnecteds) was assigned a
random ‘t-value’ uniformly between
−1 and 1; and then the classification
threshold was swept over these
t-values.
Source: 2023-09-20__STA_conntest_

for_diff_recording_quality_n_

durations.

mance is the area under its ROC-curve, or AUC, already shown in
figure 26. A disadvantage of the AUC is that it is less interpretable as
a number than the max F1 score (which immediately gives a rough
idea of how many true connections you’ll detect, and how many
of your detections are correct). A disadvantage of the max F1 score
is that it uses the precision, which, as discussed above, is rather
arbitrary in our setup. AUC does not suffer this problem: the FPR is
independent of how many distractors are added to the test.

To make the AUC scores somewhat more interpretable, we compare
them to the AUC of a random classifier: a detector that classifies
possible connections randomly. For simple binary classification,
this results in an AUC of 0.5. But because we have three classes
(unconnected, excitatory, and inhibitory), the random AUC will be
lower. We simulated such random classifiers to find the chance-level
AUC (figure 31), which turns out to be about 0.252.

3.4 Recording duration & noise

In this section we look at how longer or less noisy voltage imaging
recordings improve connection inference. In figure 32, the signal-to-

https://tfiers.github.io/phd/nb/2023-09-20__STA_conntest_for_diff_recording_quality_n_durations.html
https://tfiers.github.io/phd/nb/2023-09-20__STA_conntest_for_diff_recording_quality_n_durations.html
https://tfiers.github.io/phd/nb/2023-09-20__STA_conntest_for_diff_recording_quality_n_durations.html
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Connection detection performance of STA test Figure 32: Performance drops to
chance level for noisier signals.
All simulations were 10 minutes long.
Signal-to-noise (SNR) values on the
x-axis are approximately (but not
exactly) log-spaced. An SNR of ‘∞’
corresponds to no noise (i.e. the
voltage signal straight out of the
simulation, without any noise added).
For every SNR value, five different
simulations were run (gray dots), each
with a different RNG seed for input
firing rate and spiketrain generation.
The mean performances of these
five simulations are plotted with
larger dots and are line-connected.
Only the 100 highest-firing excitatory
and inhibitory inputs were tested.
An additional 100 unconnected
spiketrains were generated and tested,
with similar firing rates as those 200
high-firing real inputs.
AUC chance level determined as in
figure 31.
Source: 2023-09-20__STA_conntest_

for_diff_recording_quality_n_

durations.

noise ratio (SNR) is varied, and in figure 33, we vary the recording
duration.

As might be expected, noisier and/or shorter recordings decrease
detection performance, down to chance level in the limit (namely: for
noise levels almost as high as the spikes; and for recordings shorter
than a minute). As to recording duration, interestingly, we do not yet
see any flattening off of the detection performance curve for longer
recording duratoins, up to the durations that we simulated (up to 1
hour).

For a concrete example of what a neuroscientist might expect from
the STA-based connection test, we find that for a 10-minute record-
ing with an SNR of 40 (which are more or less realistic for voltage
imaging), the maximum F1-score – for the 200-highest firing inputs,
and an additionally tested 100 unconnected spiketrains – is about
65%.

I.e, in the N-to-1 setup with 6500 inputs, for the 200 highest-firing
of those inputs, we detect approximately 130 of them as being con-
nected (±65% recall). And of the spiketrains that we detect as inputs,
about 65% are correctly classified (±65% precision). I.e. 35% of them
are either excitatory connections classified as inhibitory and vice-
versa; or they are random unconnected spiketrains classified as real
inputs.

https://tfiers.github.io/phd/nb/2023-09-20__STA_conntest_for_diff_recording_quality_n_durations.html
https://tfiers.github.io/phd/nb/2023-09-20__STA_conntest_for_diff_recording_quality_n_durations.html
https://tfiers.github.io/phd/nb/2023-09-20__STA_conntest_for_diff_recording_quality_n_durations.html
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Connection detection performance of STA test Figure 33: Longer recordings allow
more accurate connection infer-
ence.
All simulations had a voltage imaging
noise level (spike-SNR) of 40.
The simulation (‘recording’) durations
are on a logarithmic axis. (The first
two data points are at 10 and 30 sec-
onds; the last one is at 1 hour).
For more, see figure 32’s caption.

The area under the TPR/FPR-curve (AUC) for this recording dura-
tion and quality is about 0.50 (compared to the chance level of 0.25 –
see figure 31).

3.5 EI balance

In the rest of this thesis, we choose to have a fixed EI-balance (4:1 ex-
citatory to inhibitory neurons, with inhibitory neurons 4× stronger)
and fixed excitatory and inhibitory reversal potentials. In this sec-
tion however, we investigate these parameters, and wonder whether
changing them has any effect on network inference performance.

Figure 34: STA performance for
different N .
10-minute 4:1 EI-balanced simula-
tions using the Izhikevich neuron.
16 simulations per condition, for
different random number generator
seeds. Source: 2022-05-02__STA_mean_

vs_peak-to-peak.

Note: The results in this section were obtained before we switched to
using an AdEx neuron model. They still use the Izhikevich neuron
model (but with comparable parameters – which were calculated
using the correspondences found in section 2.3). Second, in the rest
of this chapter, we use a high number N of input spiketrains (6500 in
total). In this section however, we use just 27 input spiketrains.5 As

5 Part of the reason for this initially lower
number of spiketrains is that we still
used our simulator written in Python
and Numba here, which was slower than
our later Julia simulator. We also still
connection-tested all inputs, and not just
the highest firing (or a random subset). This
made iterating with high N prohibitively
slow.

might be expected, using a lower number of inputs makes connection
inference much easier, as can be seen in figure 34 (note that here,
we test all input spiketrains, and not just the highest firing ones as
before. This gives a lower overall performance).

In the first subsection below, inhibitory and excitatory connections

https://tfiers.github.io/phd/nb/2022-05-02__STA_mean_vs_peak-to-peak.html
https://tfiers.github.io/phd/nb/2022-05-02__STA_mean_vs_peak-to-peak.html
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are equally strong (∆gexc = ∆ginh). In the second subsection, the
strength of inhibitory connections is varied.

Influence of inhibitory reversal potential

Connections are still detected by spike-triggered averaging (STA)
and testing the STA height of a spike train against the STA height
of shuffled versions of the train – both for excitatory and inhibitory
inputs. Performance of this algorithm is shown in figure 35, for
varying proportions of inhibitory versus excitatory inputs, and for
two different inhibitory synaptic reversal potentials.

We find that we can reliably detect the inhibitory as well as the exci-
tatory connections – but only when the inhibitory reversal potential
lies below the neuron’s resting potential, or when there are no or
very few excitatory inputs.

Figure 36 shows why this is: when the neuron is spiking, the reversal
potential Einh = −50 mV lies around the neuron’s median voltage
(which is −50.5 mV for pinh = 0.1, and which we’ll call vrest here).6 6 Note that this is not the "resting potential"

parameter vr of the Izhikevich simulation,
which is −60 mV.

Any inhibitory spike will thus not have any influence on the total
synaptic current and hence the neuron’s voltage. This is reflected in
a flat STA, and hence, undetactable inhibitory connections.

When the inhibitory reversal potential lies below this median voltage
however, an inhibitory STA is visible even when the neuron spikes.
Similarly, when the neuron does not spike, its median voltage is
lower than Einh, and an upwards inhibitory STA is visible.

We can thus conclude that, for connections to be detectable via the
STA test, their synaptic reversal potential may not lie too close to the
neuron’s median voltage.

In real neurons, the reversal potential of inhibitory inputs lies below
the neuron’s median membrane voltage. We thus set Einh to−65 mV
in the rest of this section. This is the approximate reversal potential
of Cl−, the ion for which GABAA channels – the main inhibitory
receptor – are permeable [DA01; Kan+13].

Different synaptic conductances

The synaptic conductance bump ∆gsyn is now split into two different
values: ∆gexc and ∆ginh, for excitatory and inhibitory connections
respectively. ∆gexc is fixed at 0.4 nS. This value is chosen so that
the output neuron has a realistic firing rate (less than one spike per
second, but more than zero). ∆ginh is varied to be different multiples
of this.

The ratio of inputs of either type is fixed at the physiological value
of 4:1 excitatory:inhibitory, i.e. pinh = 0.2. The fraction of connected
inputs pconnected is set to 0.7. All other simulation parameters stay
the same.
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Figure 35: STA detects inhibitory connections, but only when
Einh < vrest or when there are no excitatory inputs.
Connection detection performance of spike-triggered averaging at varying
proportions of inhibitory inputs, and for two different inhibitory synaptic
reversal potentials Einh. Top: Performance at a fixed detection threshold
of p < 0.05 (where p is the proportion of shuffled spike trains with
an STA larger than the real spike train). Plotted are the true positive
rates (separately for excitatory and inhibitory connections) and the false
positive rate. Bottom: Performance over all detection thresholds, as area
under the ROC curve. As TPR is calculated separately for excitatory and
inhibitory connections, there are also two ROC curves. For each condition,
the simulation is run six times, each time with a different random number
generator seed. The semi-transparent circles are individual simulations.
The thick lines average over the seeds.
Source: 2021-09-16__vary_E_vs_I.

https://tfiers.github.io/phd/nb/2021-09-16__vary_E_vs_I.html
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Figure 36: The inhibitory STA is flat when the reversal potential is
close to the neuron’s median voltage.
Excerpts from the Izhikevich simulation output (top row), and spike
triggered averages of the voltage imaging signal (bottom two rows). The
top voltage traces are shown without any VI noise for clarity. The actual
STA’s are in fact calculated on the noisy VI signal. Note that the y-axis
extents of the STA’s differ between columns (but are consistent within
one).
Source: 2021-09-16__vary_E_vs_I.

We find that the STA method can detect connections when ∆ginh
is at least as strong as ∆gexc (figure 37). This is straightforwardly
explained by larger synaptic conductances causing larger PSP’s, and
thus larger STA’s (figure 38).

More connections versus stronger connections

In the previous two subsections, we varied either the proportion of
inhibitory inputs pinh, or the inhibitory synaptic conductance ∆ginh.
Here, we vary both simultaneously.

We fix the number of excitatory inputs Nexc to be 24, and set the
number of inhibitory inputs Ninh to be a (sub)multiple of that. (Note
that this changes the total number of inputs, which was fixed at 30
up until now). The synaptic conductance bump per excitatory spike
∆gexc is fixed at 0.4 nS as in the previous subsection, and ∆ginh is set
to a multiple of that.

https://tfiers.github.io/phd/nb/2021-09-16__vary_E_vs_I.html
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Figure 37: STA detects inhibitory connections for most conductance
ratios, and with or without output spikes.
Legend as in figure 35, but now with twenty simulations per condition,
instead of six. Note that at a p-value threshold of 0.05 (bottom left
panel), we expect to see a false positive ratio of 0.05, as can indeed be
seen for most conductance ratios. With lower thresholds, we can decrease
this FPR without decreasing recall, as evidenced by the AUC scores ≈ 1.
Source: 2021-11-05__vary_syncond_ratio.

The multiples are chosen so that on the diagonal of figure 39, the
ratio of inputs is the inverse of the ratio of connection strengths:
∆ginh/∆gexc = 4 is matched with Ninh/Nexc = 1/4, etc.

We find that the spike triggered averaging method can detect both
excitatory and inhibitory connections, over the entire parameter grid
– except, as found in the previous subsection, for weak inhibitory
connections. In cortex, inhibitory connections are generally stronger
than excitatory connections, so we should not find ourselves in this
regime. Note also that we can detect incoming connections even
when the neuron does not spike at all. This is a major advantage of
voltage based connection detection versus spike-to-spike connection
detection.

Focusing on the diagonal of figure 39 (highlighted in figure 40), we
notice that, notwithstanding the balancing, the firing rate increases
for stronger but fewer connections. The reason is shown in figure 41:

https://tfiers.github.io/phd/nb/2021-11-05__vary_syncond_ratio.html
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Figure 38: STA height increases with synaptic conductance.
Orange lines indicate the neuron’s median voltage over the entire recording
duration.
Source: 2021-11-05__vary_syncond_ratio.

Figure 39: STA detects connections for weak or strong, sparse or
dense inhibition.
Output firing rate (left) and connection detection performance (center
and right) for different amounts and strengths of inhibitory inputs. Every
cell is the mean of 6 simulations.
Source: 2021-11-11__vary_both_inh_strength_and_proportion.

https://tfiers.github.io/phd/nb/2021-11-05__vary_syncond_ratio.html
https://tfiers.github.io/phd/nb/2021-11-11__vary_both_inh_strength_and_proportion.html
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Figure 40: Firing rate increases with stronger (but fewer) inhibitory
inputs.
Excerpt of figure 39 along the diagonal (but with 20 simulations per
condition rather than 6). Dots are individual simulations , lines are their
means.
Source: 2021-11-11__vary_both_inh_strength_and_proportion.

in these balanced regimes, the neuron can only fire when the inhi-
bition is temporarily low enough for the excitation to overcome it,
and make the neuron spike. When there are fewer inhibitory inputs,
there will be more and longer such inhibition gaps (even though
when there is inhibition, it is stronger, making the mean inhibition
equal, as shown figure 41 right). This nonlinear phenomenon is
typical in spiking simulations. In a mean-field model, where only
firing rates are simulated, this would not occur.

Looking at individual columns or rows of figure 39, we find that
the firing rate gently decreases above the diagonal, but below the
diagonal it falls sharply to zero. This is again a consequence of
simulating spikes: increasing the net excitation changes nothing
about a zero firing rate, until the firing threshold is reached, above
which net excitation and firing rate do change in lockstep.

Finally, we explain the high spread / multimodality in the firing rates
of figure 40. At the beginning of each simulation, when determining
the number of input spike trains of each type (connected or not
connected; excitatory or inhibitory), stochastic rounding is used.
Say that there are 3 inhibitory inputs (i.e. 1/8th of the 24 excitatory
inputs, as on the far right of figure 40). With our current connection
probability pconnected of 0.7, we should have 0.7× 3 = 2.1 connected
inhibitory inputs. With stochastic rounding, in 90% of simulations
there will be 2 connected inhibitory inputs, and in 10% of simulations
there will be 3. Those 10% simulations with 3 inhibitory connections
are responsible for the cluster at the bottom right of the firing rate
graph of figure 40.

https://tfiers.github.io/phd/nb/2021-11-11__vary_both_inh_strength_and_proportion.html
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Figure 41: The neuron spikes during gaps in inhibitory input.
Excerpts from the membrane potential (left) and the total synaptic
conductance of all inhibitory inputs (right) of two simulations. In the
blue simulation, inhibitory inputs are 8 times as strong as excitatory
inputs, but there are 1/8th times as many. In the orange simulation,
the inhibitory inputs are as strong and as numerous as the excitatory
inputs. Horizontal lines are means of the conductances over the entire
simulation duration. Note the blue conductance gap around t = 10.4
seconds, allowing a spike.
Source: 2021-11-11__vary_both_inh_strength_and_proportion.

3.6 Computational cost of STA test

The brunt of the time in using the STA as a connection test is in actu-
ally calculating these STAs – and the STAs of the shuffled versions
of the tested spiketrains.

Table 4 lists different parameters that determine how long a connec-
tion test takes to run.

The chosen inputs to test (300 high firing trains) have a median firing
rate of 16 Hz. I.e. at a simulation duration of 10 seconds, there
are about 160 presynaptic spikes per tested connection. There are
101 times that many STAs to calculate per connection: once for the
real spiketrain, and a 100 times for shuffles of it. For a 10 second
simulation, there are thus about 16k STAs to calculate per connection.
For 10 minutes: 967k STAs. For 1 hour: 5.8M STAs.

The computation time of the STA-based test thus scales linearly with
the voltage imaging recording duration. We find that testing 300
possible spiketrain inputs to one neuron takes about one-fifth of the
time of the recording (figure 42): about 2 minutes of computation
time for a 10-minute recording.

https://tfiers.github.io/phd/nb/2021-11-11__vary_both_inh_strength_and_proportion.html
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Factor Description Value Unit

Npost
Number of analyzed voltage signals
(number of postsynaptic neurons)

1 voltage signals

Npre
Number of tested spiketrains (possible
presynaptic neurons) per ‘post’ neuron

300 spiketrains

Nconn = Npost ·Npre Number of connections tested 300 connections

T Duration of simulation or recording 10 minutes

λ Firing rate of presynaptic neuron 16 spikes / second

Nw = T · λ Number of windows per tested conn. 9600 windows

Tw Window length 20 ms

∆t Timestep of simulation or recording 0.1 ms

fs = 1/∆t Sample rate 10 samples / ms

M = Tw · fs Number of samples per window 200 samples

Table 4: Factors in how long a connection test takes to run.
The listed values are ones typically used in this thesis.
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with 100 shuffle-STAs per tested connection
Time taken to test 300 connections using STAs Figure 42: Test time scales linearly

with voltage signal duration.
Simulation timestep (’sample time’)
of 0.1 ms. STA length of 20 ms; i.e.
200 samples.
Black dots are the means over five
simulations per duration. Compute
times for individual simulations are
plotted with gray dots; but the
variation is so small that these gray
dots are hidden behind the black
means. Gray dashed line is the
y = x identity. Source: 2023-09-20_

_STA_conntest_for_diff_recording_

quality_n_durations.

https://tfiers.github.io/phd/nb/2023-09-20__STA_conntest_for_diff_recording_quality_n_durations.html
https://tfiers.github.io/phd/nb/2023-09-20__STA_conntest_for_diff_recording_quality_n_durations.html
https://tfiers.github.io/phd/nb/2023-09-20__STA_conntest_for_diff_recording_quality_n_durations.html
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3.7 Conclusion

Using spike-triggered-averages of the postsynaptic voltage is an
obvious way to look for post-synaptic potential bumps, and to thus
detect neuron connections.

In this chapter we have found that this STA method indeed does
significantly better than chance at detecting conections, under real-
istic conditions (6500 EI-balanced inputs to one neuron, 10-minute
recording, voltage imagaing SNR of 40). Of the highest firing inputs
(100 excitatory, 100 inhibitory), we detect about 65%, at a precision
level where 65% of our detections are correct. The AUC is about
0.50.

This is significantly better than chance (AUC at chance level is 0.252),
but there is a lot of room for improvement. In a later chapter (chap-
ter 5), we will look for improved connection detection methods. But
first, we take another look at our test setup.

In this chapter, only one neuron’s voltage was simulated, while
being stimulated by N independent Poisson spiketrains. Real neural
networks are often more recurrent and less feedforward than this,
and different inputs to the same neuron can be correlated. This
is why, in the next chapter, we simulate the voltages of multiple
neurons, connected to each other in a fully recurrent neural network.
In particular, we want to test the problem of indirect connections
that are detected as direct connections – a well-known problem in
the spike-to-spike connection inference literature [Orl+17; DF20].



Chapter 4

Network model

4.1 Introduction

In the previous experiments, only one neuron’s voltage was simu-
lated. The inputs were Poisson spike trains. In the next experiments,
we simulate the voltages of a full network of neurons, which are re-
currently connected to each other. The goal is to investigate the effect
on network inference of potentially correlated inputs and indirect
connections.

4.2 Connectivity structure
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Figure 44: A selected neuron is
reachable in at most three hops.
Shortest path lengths from every other
neuron in the network.
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Figure 45: Every neuron is
reachable in at most three
hops. Shortest path lengths cal-
culated using the Floyd-Warshall
algorithm. Source: 2022-07-14__

Unconnected-but-detected.html.

We choose the simple and common ‘fully random’ connectivity rule,1

1 Other common choices for connectivity
structure are scale-free networks, and ‘local’
networks.

where any neuron has a connection to another with a uniform ran-
dom probability (we choose pconn = 0.04). After generating an
adjacency matrix this way (A = rand(N, N) .≤ 0.04, where rand
draws from ∼ U [0, 1]), we remove autapses. We choose the number
of neurons N = 1000.

A property of fully random networks is that they are strongly in-
terconnected. In our network, any neuron is reachable from any
other in at most three steps (three synapses); most are reachable in
just two. This is exemplified in figure 43 and figure 44: one selected
neuron (neuron ‘1’ here) is reachable in two hops from more than
700 of the 1000 total neurons in the network. And when we compute
the shortest path between every possible neuron pair, we find a very
similar distribution (figure 45).

4.3 External input

As we no longer have Poisson spike trains providing input to our
neurons, we need another way of bootstrapping activity in the net-
work.
Instead of external spikes, each neuron is provided with external
input by adding Gaussian noise to its membrane voltage. Every time
step (∆t = 0.1 ms), a sample drawn from a normal distribution with
mean −0.5 pA and σ = 5 pA is added to the membrane current. (As

51

https://tfiers.github.io/phd/nb/2022-07-14__Unconnected-but-detected.html.html
https://tfiers.github.io/phd/nb/2022-07-14__Unconnected-but-detected.html.html
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Figure 43: A neuron is reachable in two hops from most other
neurons. Selected neurons and connections in our random network. Left
shows the direct inputs to one of the neurons. Right additionally shows
the direct inputs to these inputs. This subnetwork already contains more
than 700 of the 1000 total neurons in the network.
Excitatory neurons in green, inhibitory in red. The tangle in the middle
consists of neurons that synapse onto multiple of the direct inputs of our
selected neuron.
Visualization using the ‘Gephi’ software, with the ‘Yifan-Hu’ layout
algorithm, and default parameters otherwise. Source: 2022-08-29__

Visualizing_subnets.

membrane current is by convention negative, this corresponds to an
on-average positive influence on membrane voltage).
Like in the first footnote in section 2.8, this way of adding noise
makes the noise power dependent on the timestep. A more princi-
pled approach to injecting noise would be to replace our ODE for the
neuron voltage (equation (1)) by a stochastic differential equation
(SDE); though we did not explore this here.

4.4 EI balance

Similar to the N-to-1 experiments, we make 1 out of 5 neurons
inhibitory. As before, this is done by setting the synaptic reversal
potential at the outputs of inhibitory neurons to −80 mV (instead
of the 0 mV for excitatory neurons). To make sure that each neuron
receives a balanced mix of excitation and inhibition, and given that
there are 4:1 excitatory to inhibitory neurons, we make excitatory
neurons 4x weaker: their synaptic strength (∆g, the instantaneous
increase in postsynaptic conductance g on spike arrival) is 4x as
small as that of inhibitory neurons.2 2 Note that this is only an “EI-balance” at the

population level: the input to individual
neurons will not be exactly balanced and
randomly have more excitatory or more in-
hibitory input.

https://tfiers.github.io/phd/nb/2022-08-29__Visualizing_subnets.html
https://tfiers.github.io/phd/nb/2022-08-29__Visualizing_subnets.html
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Figure 46: Firing rates in the network with ‘1144’ weights.
Left: rasterplot showing all spikes in the first 10 seconds of the simulation.
Right: histogram of firing rates.
Source: 2022-07-01__g_EI.

Figure 47: Firing rates in the network with ‘Roxin2011’ weights.
See figure 46.

Figure 46 shows results of the network simulation as spiketrains and
firing rate distributions, using the described synaptic weights rule
(inhibitory synapses 4× stronger than excitatory ones). We find that
the resulting firing rate distribution is fairly symmetrical, and that
excitatory and inhibitory neurons have very similar firing rates.

In real neural networks however, inhibitory neurons often have
higher firing rates than their excitatory neighbours. In addition, real
firing rate distributions are often heavy-tailed and not symmetrical,
as we saw back in section 2.6. So, to coax more realistic firing rate
distributions out of our network, we looked at the previously men-
tioned modelling paper of Roxin et al, “On the Distribution of Firing
Rates in Networks of Cortical Neurons”, [Rox+11].3 In this paper 3 This paper seeks to explain how heavy-

tailed firing rate distributions emerge in
randomly connected spiking neural net-
works. We wanted to emulate the simula-
tions in this work, to obtain a heavy-tailed
firing rate distribution.

different synaptic weights are used than the ones described above.
Normalizing excitatory-to-excitatory (E→E) connections to 1, Roxin
et al’s synaptic weights are:

https://tfiers.github.io/phd/nb/2022-07-01__g_EI.html
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E→E: 1
E→I: 18 (instead of 1)
I→E: 36 (instead of 4)
I→I: 31 (instead of 4)

We will call these weights ‘Roxin2011’. The naive, ‘balancing’ weights
used in figure 46, we will call ‘1144’.

Simulating a network with the ‘Roxin2011’ weights indeed increases
the firing rates of inhibitory neurons with respect to those of ex-
citatory neurons (figure 47). The two firing rate distributions are
however both as symmetrical as before.4 4 When collating the two firing rate distribu-

tions from both neuron types, the resulting
single distribution is heavy-tailed, and even
vaguely looks log-normal (but it is not). In
[Rox+11], similar-looking, collated firing
rate distributions are shown, and are called
lognormal (but this is never quantified in
the paper).

This imbalance between E→E and E→I synapses is not that rare:
another modelling paper that also investigated EI-balance, [SC21],
has the following synaptic weights. If our original weights are
[1, 1, 4, 4], then Sadeh and Clopath’s weights are [1, k, k, k], with k =
4 (in their "strong E-I coupling regime").

In the results that follow, we use both ‘1144’ and the ‘Roxin2011’
synaptic weights.

Finally, we also looked at drawing synaptic weights from a distri-
bution (specifically, a lognormal one) instead of setting all weights
of one type to be equal. This did not change the symmetry of the
resulting firing rate distributions, so we did not pursue this further.

4.5 Subsampling

We simulate all 1000 neurons’ voltages, but, to save memory and
disk space, do not record all these traces.5 In most experiments here, 5 For a 10-minute simulation with a timestep

of 0.1 ms, one voltage trace takes 48 MB (at
64 bit per sample). Our 1000 neurons thus
take 48 GB – and that is just for one simula-
tion (one set of parameters).
We do record the spike trains of all neurons.
Saving just spike times takes considerably
less space: a neuron spiking at 10 Hz for 10
minutes emits 6000 spikes, which, at 64 bit
per timestamp, takes just 48 kB.
In other words, at a 0.1 ms sample rate, a
spike train occupies about 1000× less mem-
ory than the corresponding voltage trace.

we recorded the voltage traces of 40 excitatory and 10 inhibitory
neurons (5% of all neurons).

Additionally, when performing connection tests on the inputs of
a recorded neuron, we do not test the spiketrains of all 999 other
neurons. Instead, we test only a (biased) sample of the possible
inputs, to save processing time. This sample is constructed as follows.
We test all the a-priori known true direct inputs – both excitatory and
inhibitory – and add a random sample of 40 not-directly-connected
neurons.

On average, each neuron has ± 32 excitatory inputs and ± 8 inhibitory
inputs. This means that, from the 1000 × 1000 possible connections,
we only test about 4000, or 0.4%.6 6 Calculation behind these numbers:

- 1000 neurons × 80% excitatory × 4% prob-
ability of an input connection = 32 excita-
tory inputs on average.
- 50 ‘post’ neurons (40 excitatory and 10
inhibitory voltage-recorded neurons) × 80
‘pre’ neurons (±40 connected + 40 uncon-
nected) = 4000 tested connections.
- To be precise, instead of 1000 × 1000, there
are rather 10002 − 1000 possible connec-
tions, as we would not test for autapses.

4.6 Connection testing

We tested connections using the STA height (or ‘peak-to-peak’) test.
In the chronology of the PhD, the more advanced methods presented
in the previous chapter were developed only after the network tests
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Figure 48: Performance of the STA ‘peak-to-peak’ connection test
in the random network. 10 minute recording, with ‘1144’ weights.
Each dot is the true positive rate for one ‘post’ neuron. The gray dotted
line indicates the p-value threshold α of 0.05.
Source: 2022-09-01__1144_weights.

in this chapter were done. Applying the newer methods to the full
network (and not just the N-to-1 setup) is a topic for further work.

Figure 48 shows the performance of using the STA height as con-
nection test in the network. The detection rates (one for each tested
‘post’ neuron and ‘pre’ neuron type) are shown at a fixed detection
threshold α of 0.05. That is, a connection was classified as real if its
STA was larger than 95 of its 100 ‘control’ STAs, which where made
by randomly shuffling the presynaptic spiketrains.7 7 A spiketrain is shuffled by taking its inter-

spike-intervals (ISIs), randomly shuffling
those, and reconstructing a new spiketrain
from the resulting shuffled ISIs.

Detection rates are broken down per type of both the presynaptic
and postsynaptic neuron (excitatory or inhibitory). We find that
inhibitory inputs are significantly easier to detect (independent of
the type of the postsynaptic neuron). This is due to the synaptic
weight of inhibitory inputs – and thus their PSPs – being 4× stronger
than those of excitatory inputs.

The most interesting category in figure 48 are the ‘Unconnected’
detection rates (i.e. the false positive rates, FPRs), which are almost
all higher than the detection threshold α. In theory, the FPR should
equal the detection threshold α; and indeed this is what we roughly
found in the N-to-1 experiments with STA-height shuffle test.8 In the 8 This is true almost by definition of the

shuffle test: an unconnected spiketrain in
the N-to-1 experiment has randomly gen-
erated spiketimes. Shuffling this random
spiketrain creates more random spiketrains.
Looking at the distribution of STA heights
of these random spiketrains, the chance that
the ‘real’ STA (of the unconnected spike-
train) is in the top-α fraction of STA heights
– and that thus, it would be wrongly classi-
fied as a true input, i.e. a false positive – is
exactly α.

network, we thus detect unconnected inputs – or to be more precise:
not-directly-connected inputs – at a rate higher than chance. This
deserves more scrutiny, which we do in the next section.

4.7 False positive detections

As a summary of the above: when we test unconnected spiketrains
as inputs to some neuron in the network, we falsely classify them as
connected at a higher rate than would be expected if these spiketrains

https://tfiers.github.io/phd/nb/2022-09-01__1144_weights.html
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Figure 49: Characterizing what is different about false positive
inputs.
All tested unconnected inputs to a selected target neuron in the network,
with inputs correctly classfied as not-connected in orange, and the false
positives in blue. Source: 2022-07-14__Unconnected-but-detected.

were fully random. So, they have a stronger-than-random STA. Or in
other words, their spikes seem to have some influence on the target
neuron’s voltage, even though they are not direct inputs to it. In this
section, we examine what is special about these false positive input
neurons.

First, we found that all false positives (i.e. all not-directly-connected
inputs that were nonetheless classified as connected) had a shortest
path to the target neuron that consisted of only one in-between
neuron. However, as we saw in figure 45, this is not that special in
this highly-interconnected random network.

But maybe there are more such length-2 paths between the input neu-
ron and the target neuron? We indeed found that this was the case
when examining one target neuron and all its tested unconnected
inputs. In figure 49 (left), the blue distribution (number of length-2
paths to the target neuron, for false positive inputs) is higher than
the orange distribution (same, but for true negatives).

Next, we looked at the type of in-between neurons on the shortest
path. We found that for the false positive inputs, the in-between
neuron was more likely to be inhibory (figure 49, right). This makes
sense, as inhibitory inputs are stronger (they are also detected at a
higher rate, as seen in figure 48).

Finally, we looked at the firing rate of the in-between neurons (fig-
ure 50). For false positives inputs, the in-between neurons were
more active than for true negatives.

In summary, we have some evidence (though it should be tested
more thoroughly) that our higher-than-expected false positive rate is
due to indirect inputs: neurons that synapse onto direct inputs. False
positives synapse onto more such direct inputs, and those direct
inputs have a stronger influence on the target neuron: a higher firing

https://tfiers.github.io/phd/nb/2022-07-14__Unconnected-but-detected.html
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Figure 50: False positives synapse
onto high-firing direct inputs.
See figure 49.

rate, and more likely to be inhibitory.

Further work could adapt our network topology to be more sparse,
so that indirect connections are much rarer, and their effect easier to
study.

4.8 Conclusion

In this chapter, we extended the N-to-1 testing setup to a full network
of simulated neurons. We found that the STA height method could
still detect connections. However, unlike in the N-to-1 setup – with
its fully independent inputs – in the network, the false positive rate
exceeded the detection threshold α. We hypothesized that this is due
to indirect connections being detected as direct inputs, and found
some preliminary evidence that that is indeed the case.

Figure 51: Average STA of
all true excitatory connections to
recorded neurons in the network.
Source: 2022-09-09__Conntest_with_

template_matching.

One of the avenues pursued during the investigation of the indirect
connections, was to plot their STA and compare it to the ‘ideal’
STA9. This ideal STA (figure 51) was made by using the ground truth

9 The hypothesis was that we would see a
voltage bump twice as late as for direct con-
nections, i.e. indicating a disynaptic connec-
tion. This investigation was inconclusive,
but it did give us ideas for new connection
detection methods.

connectivity and averaging all the STAs of the true direct connections.
This clean STA gave us the idea to (1) model this shape, and use this
model as some sort of ‘prior’ for a stronger connection test; and (2)
use it as a template to correlate STAs with. This led us to the new
connection tests discussed in the next chapter.

https://tfiers.github.io/phd/nb/2022-09-09__Conntest_with_template_matching.html
https://tfiers.github.io/phd/nb/2022-09-09__Conntest_with_template_matching.html


Chapter 5

New connection inference
methods

5.1 Introduction

This chapter introduces three new methods to detect synaptic con-
nections from voltage signals.

The first two methods are still based on the STA (spike-triggered
average), as in chapter 3. And, also as before, they still use shuffled
presynaptic spiketrains1 to provide a null-distribution for the test 1 A note on terminology: when we write

‘presynaptic’ or ‘postsynaptic’ in this thesis,
we often mean the neuron that we are test-
ing as a possible presynaptic / postsynaptic
connection.

statistic

The difference is in how the STA is used. In chapter 3 we used the
height of the STA (‘peak-to-peak’, ptp) as a test statistic.
The first new method here instead correlates the STA with some
template of what the STA of a true connection would look like, to
calculate a test statistic.
The second method fits an idealized function to the STA, and uses
the goodness-of-fit as a test statistic.

The third method steps away entirely from the STA, and instead uses
the data of the different spike-triggered windows directly, without
averaging them together in an STA.

As the focus was on comparing these new methods with each other
and with the first STA test, we tested them in the N-to-1 setup. A
further investigating could also test them on the fully recurrent
network, to compare their effectiveness against indirect connections.

58
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Figure 52: Correlating the STA with a template. Left: An example
STA, and the template it will be correlated with to calculate the connec-
tion test statistic.
Right: Two possible STA templates: in blue, the average of the STAs
of many true excitatory connections (namely of 50 neurons – part of a
1000-neuron recurrent network – that all had their voltage recorded; and
all their excitatory inputs). In orange, the average STA of the excitatory
connections detected with a strict ‘peak-to-peak’ test.

5.2 STA Template correlation

The idea behind this connection test is as follows: the more our
actual STA looks like some idealized, ‘clean’ STA, the more likely the
connection exists. We quantify this ‘looking like’ here by a simple
Pearson correlation.

The question then remains what to correlate our real STA with. An
ideal template to correlate with would be the average STA of all true
connections in the network.2 The knowledge of these connections 2 Specifically, either all excitatory connec-

tions, or all inhibitory connections. When
correlating some connection’s STA with an
’excitatory’ (upwards) template, the sign of
the correlation tells us whether the connec-
tion is excitatory (+) or inhibitory (−).

is of course not available a-priori (it is what we are trying to infer).
But it turns out we can obtain a signal that is very close to this ideal
template with a two-step approach.

In the first step, we use the previous test statistic (peak-to-peak
height of the STA); but with a stricter p-value threshold (a higher
α). This gives us a sample of true connections with few false posi-
tives (but with many missed connections). The STAs of these found
connections are then averaged, to obtain an estimate for the STA
template. We find that this template matches the ideal template
closely (see figure 52, right).

In the second step, we correlate this found template with the STAs of
all possible connections (and with their shuffle-control counterparts).
The correlation values values are then used as test statistic, with the
original α = 0.05 threshold.

We find that this correlation-based test statistic outperforms the
simple peak-to-peak measure (figure 53).
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Figure 53: Correlation outperforms STA height as connection test.
Compare also with figure 56.
AdEx neuron, 10-minute recording, no voltage imaging noise, 5 different
seeds (blue dots). All N inputs are tested (instead of just the highest
firing ones), in addition to N random unconnected spiketrains. AUC
chance level is at 0.252 (as in figure 31).
Source: 2024-05-26__Fix_template-based_method.

https://tfiers.github.io/phd/nb/2024-05-26__Fix_template-based_method.html
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5.3 Fitting a full STA model

Instead of a data-driven approach for the ‘ideal’ STA shape, for this
method we manually design a function (a 7-parameter function that
we’ll call f ), which we will fit to the actual STAs.

0 10

0

0.37

t e−t

t

Figure 54: A simple PSP model.

One part of this STA model function is shaped like a postsynaptic
potential bump (PSP, figure 54). It is the impulse response of two lin-
ear integrators placed in series. Or, in other words, the convolution
of two ‘step-and-decay’ functions.3, 4↓ It is the postsynaptic potential

3 ‘Step-and-exponential-decay’: u(t) · e−t/τ ,
with u(t) the Heaviside step function 1t≥0.

in the simplest linear neuron model (dvdt · τm = −v + I) where the
synaptic current I is also linear (dIdt · τs = −I + s).5

5 τs and τm are the synaptic and membrane
time constants, and s(t) =

∑
i δ(t − ti) is

the train of input spikes i.
Solving for v and with a single input spike at t = 0, we have, for
t ≥ 0:

PSP(t) =

{
t e−t/τm τm = τs
τmτs
τm−τs

(
e−t/τm − e−t/τs

)
τm ̸= τs

(26)

We find that this function approximates the shape of the simulated
postsynaptic potential in our actual neuron model well – even though
our neuron model is not so linear.6 6 Our model for the membrane potential

has a component (the adaptation current
u) whose differential equation recurrently
depends on v. Additionally, the synap-
tic currents Ij are conductance-based, mean-
ing that they also recurrently depend on
v: Ij = gj (v − Ej) (with Ej the reversal
potential at synapse j, and the synaptic con-
ductance gj a linear integrator of the input
spike train sj(t):
dgj
dt

· τs,j = −gj + sj).

But even though equation (26) models our simulated PSPs well, it
does not resemble our STAs7; see for example the average STAs in

7 This falsifies our initial implicit hypothesis
that STAs are merely noisy reflections of
PSPs.

figure 52. First, the bump in the STA does not occur immediately
after the presynaptic neuron’s spike. This is due to the simulated
axonal transmission delay, and it is easily replicated in the model
by shifting the PSP function in time. But more interestingly, the STA
shows a sort of ‘dip’, where it dives below baseline just after the PSP
bump, and flares up again at the ends (a downwards slant in the
initial delay period, and an upwards slant at the end of the STA).8

8 Figure 36 from chapter 3 gives a clue to the
reason for this dip: when there are no post-
stynaptic spikes (second and fourth column
in figure 36), there is also no dip visible
in the STAs (second and third rows). This
dip thus seems related to these postsynaptic
spikes, maybe enhancing the PSP right be-
fore and during the spike, and suppressing
it right after (when the voltage is reset).

The phenomena of the delay and the ‘dip’ thus differentiate an STA
from a PSP. We find empirically that the dip can be parsimonously
modelled by subtracting a broad Gaussian curve from the PSP: see
figure 55, right.9

9 Note that in figure 55, we fit an inhibitory
STA, and the model componentes are thus
inverted: the delayed PSP bump (blue) is
downwards, and the Gaussian ‘dip’ (or-
ange) is upwards.

Our model f is thus the difference of a delayed version of equa-
tion (26), and a Gaussian curve. The result is scaled by some factor α,
to match the size of the specific STA that is being fit. α can be nega-
tive, to model inhibitory connections; f is then flipped upside-down,
as in figure 55.

The model function thus has seven parameters: the PSP’s delay, τm,
and τs; the Gaussian’s location, width, and relative height wrt. the
PSP; and the final scaling α. All parameters, except for the Gaus-
sian’s, have a ready biophysical interpration.10 10 Namely: α is proportional to the connec-

tion strength, and indicates excitation (+)
or inhibition (−). The PSP’s delay, τm, and
τs are estimates of the axonal transmission
delay and the synaptic and membrane time
constants.

4 In computational neuroscience, this function is sometimes called the ‘alpha func-
tion’ or ‘alpha synapse’. Synapse, because the double integrator model can be used
to model synaptic conductance (g), with then a fast rise τ1 (modelling neurotrans-
mitter release), and a slower decay τ2 (modelling its dissipation). The synaptic
conductance model in our simulation is simpler: the ‘rise’ is instant, i.e. we only
have exponential decay.
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Figure 55: Fitting a parametric model to the STA. Left: the model
f (orange) fit to the STA of an example inhibitory connection from a
network simulation (blue). Both signals are z-scored. The components
of the orange model function are shown on the Right: the delayed simple
PSP model (blue) and the Gaussian ‘dip’ (orange).

We fit the model function to individual STAs using nonlinear least-
squares optimization; more specifically using the Levenberg-Marquardt
algorithm.11 To make the fitted functions well-behaved and looking 11 This is the standard method for nonlinear

least-squares optimization. For example, in
MATLAB’s lsqcurvefit function, it is the
default algorithm when the number of func-
tions (in our case, 1) exceeds the number of
datapoints (in our case, 1000: 100 ms of sig-
nal post-spike, at ∆t = 0.1 ms).
We used the Levenberg-Marquardt imple-
mentation of the Julia package LsqFit.jl.

like actual STAs, we had to limit the creative freedom of the opti-
mization algorithm, by enforcing box constraints on the parameters.

The final test statistic is the mean squared error (MSE) between
z-scored versions of the fitted function and the STA. The normaliza-
tion by z-scoring is necessary to be able to compare goodness of fit
between STAs with different ranges12

12 Most importantly between a real STA and
its shuffled versions. Because those shuf-
fled STAs have a smaller range, they will
have a lower MSE, even though the fit is
visually clearly worse.

In comparison with the previous two methods (STA height and STA
template correlation), this model-fitting approach did not perform
significantly better than STA height, and it was clearly worse than
template correlation.

The model-fitting is also very computationally expensive: iteratively
fitting a nonlinear function to an STA takes much longer than simply
calculating a Pearson correlation between two STA signals.

For these two reasons, we have not performed an extensive perfor-
mance evaluation of this method, as we have done for the previous
and following methods (figures 53 and 56 respectively).

One advantage of this model-fitting method over the other methods
though, is that most of the fitted parameters have a ready biophysical
explanation: connection strength, transmission delay, and synaptic
and membrane time constants.

https://github.com/JuliaNLSolvers/LsqFit.jl
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5.4 Linear regression of the upstroke

All previous methods are STA-based, i.e. different windows are
cut from the postsynaptic voltage signal – one window for every
presynaptic spike – and these are averaged into one signal, which is
then used for further analysis. The method described in this section
does not use STAs. We still construct the spike-triggered windows,
but we do not average them. Instead, we use them to construct a
gigantic data matrix for use in a linear regression.

Every single timepoint on the x-axis (in relative time after the presy-
naptic spike) will correspond to multiple voltage values on the y-axis;
namely one for every window. Whereas for an STA, every timepoint
on the x-axis corresponds to just a single y-value (the average volt-
age).

Why a linear regression? As we saw with the STAs in previous sec-
tions, they do not look like a line. But their first part, the "upstroke",
might be approximated by one.

Let’s number our spike-triggered windows 1, 2, .., N (for a presynap-
tic spiketrain with N spikes), and let’s number the voltage values
in window i as [yi,1, yi,2, .., yi,M ] (for a window length of M samples
long).13 We will then perform the following linear regression: 13 This window length M is an important

parameter. The window must be approx-
imately as long as the upstroke of the
STA/PSP: not longer (so that the shape is
too complex to be fit by a line), nor shorter
(so that there would not be enough data for
a proper fit).

y = X β + ε (27)



y1,1

y1,2
...

y1,M

y2,1

y2,2
...
...

yN,M



=



1 1

1 2
...

...

1 M

1 1

1 2
...

...
...

...

1 M



[
β0

β1

]
+



ε1,1

ε1,2
...

ε1,M

ε2,1

ε2,2
...
...

εN,M



(28)

I.e. we will regress voltage-after-spike against time-after-spike.
Note that the noise term here is not just modelling the Gaussian
noise we explicitly add ourselves (i.e. the voltage imaging noise);
but rather everything that is not the increase in the poststynaptic
voltage due to a presynaptic spike. This is mainly the effects of other
presynaptic neurons, and postsynaptic spikes.

If we assume additive Gaussian noise, i.e.

εi,j ∼ N (0, σ2) (29)

then the maximum-likelihood estimate β̂ of the regression param-
eters β is obtained through minimizing the mean squared error
(MSE)14 between our observed voltage values y and the fitted line 14 https://statproofbook.github.io/P/

slr-mle

https://statproofbook.github.io/P/slr-mle
https://statproofbook.github.io/P/slr-mle
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ŷ = Xβ̂:
β̂ = argmin

β
||y −Xβ||22. (30)

Our linear regression problem has become standard ordinary least
squares (OLS) regression, for which a closed-form solution exists:
the so-called normal equations,

β̂ = (XTX)−1XTy (31)

As is standard practice and for numerical stability ("don’t explicitly
invert a matrix if not needed"), we instead find the optimal intercept
(β̂0) and slope (β̂1) of our linear fit using QR-factorization, via Julia’s
left-division operator: β̂ = X \ y.

From this linear fit we thus obtain a slope β̂1. To use our regression
as a connection test, we will perform a hypothesis test on this slope.
The null hypothesis is that this slope is zero (H0 : β̂ = 0): the voltage
of the tested neuron does not react to spikes of the other tested
neuron, and on average it stays flat.

If the slope β1 really were 0, then we would expect the fitted slope
β̂1 to be distributed normally around 0, as follows:15 15 https://gregorygundersen.com/blog/

2021/09/09/ols-hypothesis-testing/

β̂1 ∼ N (0, σ2[Q]2,2) (32)

where σ2 is the variance of the sampling noise (equation (29)), and
[Q]2,2 is the second diagonal element of the ’cofactor matrix’ Q,16 16 The indices are off by one (β̂1 vs [Q]2,2), be-

cause the intercept in linear regression is
conventionally called β0, and so we start
numbering the elements of β from 0; but
we number the elements of other vectors/-
matrices from 1.

which is the inverse of the Gram matrix XTX :

Q = (XTX)−1 (33)

We do not know what the sampling noise σ2 is, but we have a
maximum-likelihood estimate σ̂2 for it,17 namely the mean squared 17 https://statproofbook.github.io/P/

slr-mleerror (MSE) of the fit:

σ̂2 =
1

n
||y −Xβ̂||22 (34)

(where n = M ·N is the number of datapoints).

Our final test statistic t to determine whether there is a connection
from neuron A to neuron B is then the slope of the fit (of B’s voltage
after neuron A’s spikes), normalized by how noisy the parameter fit
is:

t = β̂1/σ̂β̂1
(35)

where σ̂β̂1
is the standard error of the slope (equation (32) with

equation (34)):

σ̂β̂1
=
√

σ̂2[Q]2,2 (36)

Unlike in equation (32), t is no longer strictly normally distributed.18 18 Instead, it follows a Student’s t-
distribution, with n − p degrees of
freedom, where n = M · N is the number
of datapoints, and p = 2 is the number of
parameters of the regression (β0 and β1).

But when the number of datapoints is quite large, as is the case here,
the t-distribution becomes practically normal, and our test statistic t

https://gregorygundersen.com/blog/2021/09/09/ols-hypothesis-testing/
https://gregorygundersen.com/blog/2021/09/09/ols-hypothesis-testing/
https://statproofbook.github.io/P/slr-mle
https://statproofbook.github.io/P/slr-mle
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Figure 56: Line fit outperforms STA height as connection test.
AdEx neuron, 10-minute recording, no voltage imaging noise, 5 different
seeds (blue dots). All N inputs are tested (instead of just the highest
firing ones), in addition to N random unconnected spiketrains. AUC
chance level is at 0.252 (as in figure 31).
Source: 2024-05-26__Fix_template-based_method.

will very closely follow the standard normal distribution under the
null hypothesis ("the slope is zero").

We can (and do) use this t-value as-is in our connection test, i.e. as
the test statistic over which the detection threshold is swept.

Additionally, if our assumptions (linear data-generating process,
additive Gaussian noise) would be correct,19 we could also assign 19 They are not. As one example, consider

postsynaptic spikes as one of the sources
of noise on the PSP: they are assymetrical
(spikes are always upwards, never down-
wards). Figure 57 shows that the residuals
of a linear regression of an example connec-
tion are not symmetric.

an actual probability (a p-value) to observing slopes as extreme
as observed. Because t follows the standard normal distribution
under the null-hypothesis, and with ϕ(x) the cumulative probability
function of this distribution, we have: p = 2 ϕ(−|t|): the probability
that a sample smaller than −|t| or larger than |t| is drawn.

As seen in figure 57, our assumption of additive Gaussian noise ε on
the regression does not seem valid. But our goal for this regression
was not to build a statistical model of the STA, but rather to use the fit
as a tool for connection detection, something at which it empirically
succeeds, notwithstanding the violated statistical assumptions.

Figure 56 shows the performance of the described linear regression
method, for different number of inputs N , and compared to the STA
height method. We find a perfect performance (AUC of 1) for up
to 400 inputs. After that, the AUC starts to drop, but it stays much
higher than the STA height method. At the realistic number of inputs
N = 6500, the linear fit’s AUC is still at 0.5, while the STA height
method performs at chance level (≈ 0.25)

https://tfiers.github.io/phd/nb/2024-05-26__Fix_template-based_method.html
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Figure 57: Residuals of an example regression.
Linear regression of pooled windows of the voltage of an AdEx neuron with
6500 inputs simulated for 10 minutees, for its highest-firing excitatory
input; each presynaptic spike correponds to a 10 ms window. Left:
Residuals over time. Right: Residuals marginalized over time; vertical
black line indicates both the mean (−5.9× 10−12 mV) and the median
(0.1 mV).
The residuals seem to be homoskedastic, but are not symmetrically
distributed.
Source: 2024-05-29__Residuals-linefit.

Relationship to fitting the STA

For this last method, we emphasized that it does not operate on
the STA, but instead uses the individual windows directly. But an
analysis of the normal equations (equation (31)) reveals that fitting a
line to all the individual windows pooled together is actually very
similar to fitting a line to their average, the STA.

The linear regression on the STA has the following response vector
y and design matrix X :

y = X β + ε (37)

1

N


y1,1 + y2,1 + . . .+ yN,1

y1,2 + y2,2 + . . .+ yN,2

...

y1,M + y2,M + . . .+ yN,M

 =


1 1

1 2
...

...

1 M


[
β0

β1

]
+


ε1

ε2
...

εM

 (38)

We see that the previous design matrix X consists of N stacked
repetitions of the design matrix X here.

We can show that both regressions have the same solution for their
normal equations, i.e. that

β̂ = (XTX)−1XTy

= β̂ = (X
T
X)−1X

T
y

(39)

https://tfiers.github.io/phd/nb/2024-05-29__Residuals-linefit.html
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As an example, working out the second element of XTy, we find:

[XTy]2 = [1 2 . . .M ] · y1 + [1 2 . . .M ] · y2 + . . .+ [1 2 . . .M ] · yN

= [1 2 . . .M ] · (y1 + y2 + . . .+ yN )

= [1 2 . . .M ] ·Ny

= N · [XT
y]2 (40)

(where · is the inner or dot product, and yi = [yi,1 yi,2 . . . yi,M ]).

The same is true for the first element of XTy (just with [1 1 . . . 1]
instead of [1 2 . . . M ]), so that

XTy = N ·XT
y (41)

A similar argument can be made for each of the four elements of the
Gram matrix, and we find that XTX = N ·XT

X .
That makes the cofactor matrix:

(XTX)−1 =
1

N
(X

T
X)−1 (42)

Taking together equations (41) and (42), we indeed find the exact
same solutions β̂ for the line fit (equation (39)), whether regressing
all individual windows, or their average.

Even though the fitted slope β̂1 is the same, there is a difference in
its standard error (equation (36)), and thus also in the test statistic t
we’d use as a connection test (equation (35)).
We can write the standard error on the slope in the first regression
(on all the individual windows) as follows:20 20 where c is shorthand for

√[
Q
]
2,2

/M .

σ̂β̂1
=

1

N
c ||y −Xβ̂||2 (43)

=
1√
N

c

√√√√ M∑
j=1

1

N

N∑
i=1

(
yi,j − (β̂0 + β̂1 · j)

)2
(44)

For the regression of the STA, we have:

σ̂
β̂1

= c ||y −Xβ̂||2 (45)

= c

√√√√√ M∑
j=1

((
1

N

N∑
i=1

yi,j

)
− (β̂0 + β̂1 · j)

)2

(46)

In other words, the standard error of the STA regression uses the
squared error between the fitted line and the average measured
voltage, whereas for the regression on all windows, we use the
average of the squared errors between the fitted line and all of the
individual measured voltages in one timepoint.

These last equations show the advantage of regression with individ-
ual windows, versus regressing the STA: the more windows are used
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(higher N ) – i.e. the more presynaptic spikes this possible connection
has – the lower the standard error on the fitted slope will be, and the
higher the test statistic t = β̂1/σ̂β̂1

. This is thanks to the scaling by
1/
√
N in equation (44), which is absent in equation (46).

This is a quantification of a heuristic that could go something like:
“the more ‘presynaptic’ spikes there are, the more certain we can say
there is or isn’t a connection here”.21 And when using just the STA, 21 E.g, if two possible connections would

have the same fitted slope for their spike-
triggered voltages, but one of them has
more presynaptic spikes, then that connec-
tion would have a higher test statistic, and
would be favoured when classifying the
connections.

the knowledge of how many windows were used to calculate it is
lost.

Two notes here: first, as the fitted parameters β are the same when
regressing either all windows or the STA, we could just use the STA
for fitting, and then manually add a correction factor 1/

√
N to the

test statistic t. This is interesting computationally, as you then don’t
have to construct the very long design matrix X and response vector
y.
Second, one could argue the standard error of the STA regression
does already account for the number of windows used: the more
windows are averaged together, the less the STA will be noisy and
the more it will look like a straight line (at its upstroke portion at
least); and the lower the standard error will be. Under this view, an
additional correction factor in the test statistic to explicitly account
for the number of windows / presynaptic spikes, is not necessary.

5.5 Conclusion

In this chapter we wondered whether we could improve upon the
most obvious voltage-based connection detection method (namely
measuring the height of the STA). We developed and tested three
new methods. We found that two of them – template correlation and
linear regression of the upstroke – indeed performed significantly
better as a connection test. The third method we developed (fitting
a parametric model to the STA shape) did not perform better as a
connection test, but it does provide a method to estimate biophysical
parameters of a connection.



Chapter 6

Discussion

We have developed and tested three new methods for voltage-based
connection inference. In the process, we set-up a simulation and
performance evaluation pipeline, both in a simplified ‘N-to-1’ setup,
and a full network simulation.

We find that two of our new methods (template-based correlation,
and linear regression of the upstroke), outperform the simplest
voltage-based test, namely measuring the height of the spike-triggered
average.

6.1 Future work

Possible extensions to this thesis fall in three categories: how the
network inference methods are tested and evaluated; comparing
them with existing methods, and improving on our methods.

Improving the test setup

Most importantly, our methods should be tested on real data, and
not only simulated data. The problem is knowing the ground-truth
connectivity: the connectomes of e.g. mice are unknown and vary
from animal-to-animal (and over time). A starting point is to first test
on simpler organisms, where the connectivity is known and constant.
An example is the stomatogastric ganglion in decapods, whose con-
nectivity and activity patterns are well characterized. (Though the
neural activity is very oscillatory, which might (1) not be representa-
tive of circuits in general, and (2) might confuse network inference
algorithms).

But before moving to real data, there is a lot more realism that could
be added to our simulation, both on the neural side as the voltage
imaging side.

For voltage imaging, as mentioned before we could simulate pho-
tobleaching over time by exponentially decreasing the SNR, and
we could simulate the varying time-resolutions of different voltage
sensors by convolving the voltage signal with e.g. a subtle low pass

69
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filter. Another difficulty that fluorescence imaging poses is light
scattering. Photons emitted by one neuron do not all go straight to
the microscope sensor, but can bounce off other neurons and inter-
mediate tissue, thus appearing to come from the wrong source. In
the Neural Connectomics Challenge (which we introduce in the next
section), this was simulated by spatially embedding the simulated
neurons, and mixing the signals emitted by each neuron by a fraction
of the signals emitted by neighbouring neurons.

On the neural side, many straightforward additions are possible. We
have simulated only one neuron type, with fixed parameters (namely
the cortical regular spiking neuron). Instead, we could (1) pick
neuron parameters so the dynamical system bifurcates to another
neuron type (bursting, accelerating, transient spiking, . . .) [Nau+08],
and/or (2) draw neuron model parameters from distributions.
An important aspect that we have kept fixed up to now is the input
firing rate distribution. It would be informative to quantify the effect
of different distribution types and parameter values on connection
inference performance, and especially on bias towards higher-firing
inputs.

Some neural phenomena that we have not yet modelled but that are
likely to also have an effect on connection inference are (1) short-term
synaptic plasticity, (2) global bursting (a bit more on that in the next
section), and (3) oscillations.

On the network side, we only used the simple uniform random
connectivity. But the effect on inference of other (and more realistic)
topologies such as scale-free networks should be explored too.

As far as the evaluation of methods goes, a path we did not pursue is
to predict and evaluate synaptic strengths, and not just the existence
(yes/no) and polarity (excitatory/inhibitory) of a synaptic connec-
tion. This is not often done in network inference studies, but is not
unheard of [Zha+17]. One way could be to quantify how similar the
real and the predicted connectivity strenght matrices are.

Existing network inference methods

There is a vast literature on spike-to-spike (i.e. purely event-based)
network inference methods. A lot of these methods are based on
information-theoretic measures, such as mutual information and
‘transfer entropy’ between two spiketrains. In practice, this boils
down to counting bit-patterns: spiketrains are binned in time, as
e.g. [0, 0, 0, 1, 0, 1, 0, 0, . . .]. Two such spiketrains are then overlaid
(possibly shifted in time relative to one another), and the patterns
that the bits of both form around each spike are gathered and tallied
up. (For example: ([0, 1, 0], [0, 0, 1]), for a window length of one
bin before and one bin after the spike). If one of these patterns is
more common than random (i.e. the distribution of patterns has low
entropy), then one spiketrain might be connected to another.

These methods generally don’t work very well [DF20], and are very



CHAPTER 6. DISCUSSION 71

data-intensive (the number of possible bit-patterns increases expo-
nentially the longer your windows are). In 2014, a competition
was held on spike-based network inference: the Neural Connec-
tomics Challenge or NCC [Guy+14; Orl+17]1. The contestants using 1 https://connectomics.chalearn.org.
information-theoretic measures like transfer entropy did not rank
high. The winning team used ‘partial correlation’ (PC) between
binned spiketrains [Sut+17]. PC quantified the association between
two spiketrains after the influence of all other spiketrains was re-
moved. The PCs could be efficiently calculated by inverting the
correlation matrix between the spiketrains (to obtain the ‘precision’
matrix). Trying this method on our data is a straightforward next
step.

What all the winning teams had in common was that they reduced
the influence of network-wide activity bursts: in the given simulated
data, the network would often explode with activity, where more
or less all neurons fire simultaneously. These moments give little
information on connectivity, and filtering them out improved their
algorithms’ performance. Our simulations did not contain global
bursts, but their influence on our voltage-based methods should
certainly be tested.

Because our voltage-based methods have more information and
operate on the principle of the directly-spike-triggered PSP2, we 2 Post-synaptic potential
assumed we would be less plagued by the problem of indirect con-
nections, from which spikes-only methods often suffer. But as we
saw in chapter 4, we have an excess of false positives, likely due to
such indirect connections. A direct comparison with spike-based
methods would thus be fruitful to gauge how much it helps to have
access to voltage data.

There is one published paper that we know off that also explic-
itly researches voltage-based network inference: Zhang et al. 2017,
[Zha+17]. Their method is called “spike-triggered regression”, which
at first sight sounds similar to the linear regression of the upstroke
in spike-triggered windows that we do. But whereas we regress
voltage against time-after-spike, they regress voltage against its own
history (i.e. an autoregressive voltage model), and binned spike-
trains of other neurons. The regresssion coefficients of these other
spiketrains on the ‘post’ neuron’s voltage are used for the connection
test. Implementing Zhang et al.’s method and testing it on our data
would be instructive.

New network inference methods

A deep-learning based network inference approach might be fea-
sible, because we have sheer-infinite training data: we can gener-
ate and simulate as many different neuronal networks as needed.
This would fall under the ‘simulation-based inference’ (SBI) nomer
[CBL20]. While SBI techniques have been applied in neuroscience
[Gon+20], they have to our knowledge not yet been used to recon-
struct connectivity.

https://connectomics.chalearn.org
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6.2 Conclusion

In this thesis, we set out to answer the question: "Is it feasible, in
principle, to perform network inference from neural voltage sig-
nals?". We have tested this idea with simulated data, and developed
three new voltage-based connection detection methods. We also
extensively tested a simple existing algorithm – namely measuring
the height of the spike-triggered average (STA), which is a reflection
of the postsynaptic potential – under varying excitatory-inhibitory
(EI) conditions, and both in a simplified ‘N-to-1’ setup, and in a fully
recurrent network.

We find that voltage-based network inference seems feasible to a
limited extent, under realistic voltage imaging conditions (6500 EI-
balanced inputs to one neuron, 10-minute recording, voltage imaging
SNR of 40): the simple algorithm performs considerably better than
chance.

Two of our newly developed inference methods perform better than
the simple algorithm. Our best-performing algorithm correlates
STAs with a ‘template’, which is obtained through a first pass of the
simple algorithm. This detection method reaches an AUC value of
0.53 for 6500 inputs (chance level AUC: 0.25). At a false positive rate
of 5%, we detect 33% of the neuron’s inhibitory inputs, and 13% of
its excitatory inputs.

In absolute terms, this performance is not stellar. But we must
note the high number of inputs that we used here (up to 6500).
Studies of spikes-only connection-detection methods typically only
test networks with about 100 inputs per neuron [Ito+11; Guy+14].
Our methods have near perfect detection performance for up to 400
inputs per neuron.

We conclude that voltage-based network inference seems useful
for (1) inferring simple networks (low number of inputs per neu-
ron), and (2) finding the high-firing connections in more complex
networks.
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