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Abstract

Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technology that
presents attractive advantages such as a good compromise between temporal resolution, spatial
resolution, and portability. Thanks to its properties and relative robustness to motion, it is often
used in naturalistic settings and one of its key domains of application is the study of working
memory and mental workload. However fNIRS is less popular and tested than other technologies
such as electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) which
can nowadays be used in a clinical context. As such, there is no real consensus yet in the research
community as to how fNIRS data should be used and analysed. While efforts to establish best
practices with fNIRS have been published, there are still no community standards for using
machine learning with fNIRS data. Moreover, the lack of open source benchmarks and standard
expectations for reporting means that published works often claim high generalisation capabilities,
but with poor methodology practices or reporting with missing details. These issues make it
hard to evaluate the performance of models when it comes to choosing them for brain-computer
interface (BCI) applications.

In this thesis, we present the creation of an open-source benchmarking framework called
BenchNIRS to establish a best practice machine learning methodology to develop, evaluate, and
compare models for classification from fNIRS data, using open-access datasets from the literature.
This framework makes the implementation of a robust machine learning methodology for fNIRS
much simpler and less time-consuming.

We demonstrate the utility of the framework by presenting a benchmarking of 6 baseline
machine learning models (linear discriminant analysis (LDA), support vector machine (SVM),
k-nearest neighbours (kNN), artificial neural network (ANN), convolutional neural network (CNN)
and long short-term memory (LSTM)) on 5 open-access datasets and investigate the influence of
different factors on the classification performance. Those benchmarks set a solid basis for future
comparisons of machine learning approaches for fNIRS classification and reveal that most models
have lower performances than expected when evaluating them in an unbiased way.

We then go on to use the framework in a specific challenging use case, the classification of
mental workload, and demonstrate how it is used to develop machine learning models tailored
to a specific task or dataset. We show that models using as inputs longer durations of fNIRS
recordings did not necessarily predict n-back levels better and that the classification from fNIRS
data on this task is relatively challenging, despite the tailoring of deep learning models to specific
device configurations being promising.

Finally, we go beyond supervised learning and extend the framework to study how unlabelled
segments of the data can be used to improve classification. This leads us to perform transfer
learning with a self-supervised representation learning pretext task and study to what extent
it can be useful to fNIRS data classification. We explore the use of opposite hemoglobin type
reconstruction as a pretext task and extend the framework to support the exploration of more
pretext tasks for transfer learning in the future.
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Chapter 1

Introduction

1.1 Introduction of the topic

"The ability to monitor, continuously and noninvasively, oxygen sufficiency and circulatory
parameters holds promise for a number of applications" – there was the statement made by Frans
F. Jobsis in 1977 in a paper that introduced to the world a new neuroimaging technique that
would be called functional near-infrared spectroscopy (fNIRS) [82]. It came to complement a
range of existing non-invasive methods to measure brain activity such as electroencephalography
(EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI).
fNIRS has gained interest in the neuroscience community lately thanks to its portability, relative
tolerance to motion artefacts, and overall ease of use in real-life conditions, especially for the
study of mental workload. With the emergence of machine learning, and one of its now most
popular sub-disciplines called deep learning, applied to a whole range of disciplines in the last
decade, it is only natural to see it applied to fNIRS data too. However, machine learning with
fNIRS, and more specifically deep learning with fNIRS, is still currently in its infancy and more
research is needed to mature its uses and methods.

We saw machine learning develop tremendously in some fields of application such as computer
vision and natural language processing, which have actually contributed to advancing the theory of
those techniques quite significantly. This has been in great part made possible by the exponential
development of modern computing capabilities which have enabled the blooming of deep learning.
It enabled to process larger and larger datasets, naturally aggregated with our society’s growing
digitalisation.

However, neuroimaging data has its complexities and is found in a much more limited quantity,
because as opposed to computer vision and natural language processing for which data can
be uploaded and annotated easily with everyday life devices, neuroimaging data can only be
collected with rather pricey and often inconvenient equipment, that may require specific expertise
to be used. Furthermore, neuroimaging data can be a sensitive type of data to share since it is
subconsciously generated and can in some cases be considered as health data. The limited access
to data and complexity of pattern recognition is especially true for fNIRS data, and this is why
machine learning with fNIRS remains full of challenges.

In this thesis, we will explore machine learning with fNIRS, its standards and best practices,
its benchmarks on popular tasks, and its novel approaches, under the prism of mental workload
as a key domain of application with fNIRS, and more specifically by having in mind concrete
applications to mental workload assessment with brain-computer interface (BCI)s.

1.2 Functional near-infrared spectroscopy

Near-infrared spectroscopy (NIRS) is a technology that was first described by Frans F. Jobsis
in 1977 [48, 82]. In this paper, Jobsis explains that near-infrared light can be used to monitor
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oxyhemoglobin in situ, in a continuous way. Hemoglobin is a protein responsible for transporting
oxygen in the blood, generally found in two most common forms: oxyhemoglobin when oxygen is
bound to the heme part of the molecule and deoxyhemoglobin when it is not. Those two forms
are called chromophores because they absorb light. Jobsis shows that light of wavelengths in
near-infrared between 700 and 1300 nm is effectively transmitted through biological materials.
Thanks to the modified Beer-Lambert law introduced by Delpy et al. in 1988 [44], it is possible to
link the amount of absorbed and scattered light in the biological material to the concentrations
in oxy- and deoxyhemoglobin. In the end, thanks to fNIRS it is possible to measure variations of
oxygenation in the different areas of the brain, which is very interesting to study brain activity.
We will describe more thoroughly how fNIRS leverages the interaction of light with biological
tissue to measure changes in oxy- and deoxyhemoglobin in Section 2.1.

An fNIRS device is typically composed of a set of what is called optodes, some of them being
emitters (also called sources) and others detectors (Figure 1.1). The light path is described as
curved because of diffusion and light is attenuated between the emitter and the detector [145]. By
measuring the difference of light intensity between the detector and the source, it is then possible
to deduce the concentration in chromophores in between thanks to the modified Beer-Lambert
law [44]. The emitter-detector distance is typically 3 cm in adults and enables to measurement of
hemoglobin concentrations up to 1.5 cm deep [24, 119, 151]. We call the brain within this depth
range the neocortex.

Figure 1.1: Principle of fNIRS (Source: Kumar et al., 2007)

In order to measure 2 chromophores, it is required to use at least two different wavelengths in
near-infrared. Efforts have been made to find the best combination in order to separate those
two chromophores better [17]. It appears that one should be less than 765 nm and one greater
than 830 nm [16].

Multiple types of fNIRS exist but the most popular is continuous wave spectroscopy which
enables the measurement of oxy- and deoxyhemoglobin changes in a continuous fashion by using
light emitted at a constant intensity [22, 150]. This is to differentiate from the less common
frequency domain fNIRS emitting frequency-modulated light and time domain fNIRS emitting
short pulses of light, which are both usually less affordable.
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fNIRS is an interesting tool because concentrations in oxy- and deoxyhemoglobin reflect oxygen
consumption in the brain and changes in cerebral blood flow elicited by neuronal activation
[135, 150]. This hemodynamic response is referred to as neurovascular coupling [43]. Neurovascular
coupling can be evoked by a stimulus or a task, but can also be spontaneous, related to the resting-
state brain activity [150]. A parallel is often drawn between the hemodynamic response with
fNIRS and the blood oxygenation level-dependent (BOLD) response which is a well-established
concept in fMRI [26, 159]. Thanks to studies with both fNIRS and fMRI it has been shown that
the BOLD response in fMRI is indeed well correlated with measures of oxy- and deoxyhemoglobin
with fNIRS [37, 76, 151, 160].

1.3 Brain-computer interfaces

Neuroimaging data, and in our case fNIRS data, can be used in different ways and for different
purposes in research. We can describe two main approaches which are data analysis, and BCI.
They can be decomposed into different steps, described in Figure 1.2, some of them being shared
by the two approaches.

One can simply perform offline analysis of brain data recordings acquired beforehand by
neuroimaging, which is very common in cognitive neuroscience research for example. This
typically involves steps including signal acquisition, signal processing, feature extraction, and then
statistical inference in order to test a hypothesis, for example comparing brain signals between
different experimental conditions (sequence 1., 2., 3., 4. in Figure 1.2).

On the other hand, neuroimaging data can be interpreted in real-time (online) and used as an
input modality of a computer program to perform an action or simply provide feedback: this
forms a BCI [32]. It typically involves steps including signal processing of a subject’s real-time
neuroimaging data, feature extraction, and inference based most commonly on classification. This
inference can then simply be used for the purpose of having direct feedback on the brain activity:
this is called neurofeedback (sequence 1., 2., 3., 4., 6. in Figure 1.2). Alternatively, it can also
be used to execute an action, for example, controlling a computer user interface or an assistive
device (eg. wheelchair or prosthesis); the subject can observe their actions, which therefore also
provides feedback (sequence 1., 2., 3., 4., 5., 6. in Figure 1.2).

We can distinguish multiple types of BCI [180]: active BCIs are systems in which the users
intentionally attempt to control their brain activity to be interpreted by the interface; reactive
BCIs represent interfaces in which the interpreted brain activity is evoked and in response to an
event presented to the users; passive BCIs are systems in which the brain activity interpreted by
the system is not voluntarily controlled by the users.

Figure 1.2: Neuroimaging data analysis and BCI diagram
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In this thesis, we will mainly be interested in some of the steps of the BCI pipeline: signal
processing, feature extraction, and more extensively, inference using classification.

Different algorithms can be used for the classification of fNIRS data, but machine learning
is by far the most widespread method [119]. Indeed, machine learning models can be trained
on pre-recorded data, in order to then be used for online classification of real-time data in the
context of a BCI.

1.4 Application to mental workload

Mental workload, often called cognitive load, is a concept described in 1991 by Eggemeier et al.
[46] with the following definition: "Mental workload refers to the portion of operator information
processing capacity or resources that is actually required to meet system demands". Put simply, it
can be described as the amount of mental resources used when performing a task. This concept
is highly related to attention and working memory which represents the short-term memory that
can be used and processed immediately to perform a task.

Mental workload is very popular in the context of ergonomics and human factors, and with
digital technologies taking more and more space in our lives it is also very interesting in the
context of human-computer interaction (HCI).

Cognitive load can be a stake of safety in a context where error cannot be accepted. Indeed
having a high mental workload can lead to committing mistakes on a task at hand that can
potentially be dramatic in the case of safety-critical environments. This is what Young et al.
explain with the concept of workload redlines [175], describing the fact that too high or too low
mental workload can be problematic.

1.5 Problem statement and research questions

Seeing the importance of mental workload assessment, we can understand why classifying
mental workload in real-time can be important, and for this purpose, fNIRS BCIs could be
a solution, if deployed in a responsible way. However, while such systems are emerging, they
are currently not ready for deployment in real-life scenarios due to their lack of reliability, and
algorithms need to be improved in order to make fNIRS BCIs better. This is a challenge in
itself, but furthermore, the complexity and variety of methods for evaluating the performance of
fNIRS BCI algorithms make it hard to build on existing research. We therefore ask the following
research questions that this thesis will aim at answering in its following chapters:

• RQ1 : How can we make the rigorous development, evaluation, and comparison of machine
learning approaches for task classification from fNIRS simpler for researchers? → Chapter
3 (and validated Chapters 4, 5, and 6)

• RQ2 : What are the benchmarks of popular machine learning models on various tasks from
open access fNIRS datasets? → Chapter 4

• RQ3 : Across these benchmarks, what factors influence the machine learning classification
accuracy? → Chapter 4

• RQ4 : How do machine learning approaches tailored to a specific mental workload task
compare to baseline benchmarks? → Chapter 5

• RQ5 : How can using unlabelled segments of the fNIRS recordings help with classification?
→ Chapter 6

Answering these research questions will facilitate machine learning with fNIRS for researchers
in the field, by making the development of such techniques simpler and less time-consuming. It
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will also enable establishing objective benchmarks of machine learning models for fNIRS BCI
applications with insights regarding factors that could influence their performance. Finally, it
will shed light on new machine learning directions for fNIRS applications.

1.6 Summary of the contributions

In answering the research questions, this thesis made contributions that can be divided into
two main parts.

The first set of contributions is a framework for machine learning with fNIRS called BenchNIRS.
This framework is an open-source Python software and enables to:

• load open-access fNIRS datasets from the community;

• process fNIRS signal with state-of-the-art methods;

• extract features;

• use a state-of-the-art machine learning methodology to develop new machine learning models
including training, optimisation, evaluation, and comparison of models for classification
from fNIRS data;

• produce clear visualisations for monitoring training and presenting results.

BenchNIRS enables the use of different approaches and paradigms. This includes the ability to
use both supervised and self-supervised learning and to perform transfer learning. It also gives the
ability to study different influencing factors on the performance of the machine learning models
(time window length, number of training examples, sliding window) with different generalisation
goals (subject-independent or subject-specific). It comes with 6 machine learning models pre-
implemented, including linear discriminant analysis (LDA), support-vector classifier (SVC),
k-nearest neighbours (kNN), artificial neural network (ANN), convolutional neural network (CNN)
and long short-term memory (LSTM), and provides example scripts for the evaluation of machine
learning models with statistical analysis. This framework of more than 3,500 lines of code enables
simplified machine learning for fNIRS and makes it much less time-consuming to develop new
models by enabling the implementation of a whole pipeline in a dozen lines of code. It makes
machine learning accessible for fNIRS researchers with little machine learning experience, and
makes fNIRS accessible for machine learning researchers with little fNIRS experience, bridging
the gap between those two advanced and technical fields. This set of contributions is introduced
in Chapters 3 and 6, and validated in Chapters 4, 5 adn 6.

The second set of contributions consists of providing benchmarks of different machine learning
approaches for classification from fNIRS on various tasks. This includes:

• the evaluation of various baseline machine learning models including LDA, SVC, kNN,
ANN, CNN and LSTM;

• the evaluation of the influence of different factors on the machine learning performance
including the size of the time window, the number of training examples, and the use of a
sliding window.

• the evaluation of the influence of different generalisation goals including subject-independent
classification and subject-specific classification;

• the evaluation of the tailoring of machine learning models on specific mental workload tasks
and datasets;

• the evaluation of different machine learning paradigms including supervised learning, self-
supervised learning, and transfer learning.
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This contributes to giving a starting point for comparison of many different machine learning
approaches with fNIRS. It also provides indications as to what models and approaches are best
suited to different use cases, which is useful when it comes to choosing an algorithm for a specific
BCI application. This set of contributions is presented in Chapter 4, 5 and 6.

1.7 Publications

1.7.1 Preamble to the thesis

• Conference article: "Exploring machine learning approaches for classifying mental workload
using fNIRS data from HCI tasks". J Benerradi, HA Maior, A Marinescu, J Clos, ML
Wilson. Proceedings of the Halfway to the Future Symposium 2019. November 2019.

1.7.2 Main publications

• Extended abstract and talk: "Benchmarking framework for machine learning with fNIRS".
J Benerradi, J Clos, A Landowska, MF Valstar, ML Wilson. Neuroergonomics conference.
September 2021.

• Journal article (edited into Chapters 3 and 4): "Benchmarking framework for machine
learning classification from fNIRS data". J Benerradi, J Clos, A Landowska, MF Valstar,
ML Wilson. Frontiers in Neuroergonomics. March 2023.

• Poster (best poster award at fNIRS UK 2023): "BenchNIRS: benchmarking framework for
machine learning with fNIRS". J Benerradi, J Clos, A Landowska, MF Valstar, ML Wilson.
fNIRS UK 2023. September 2023.

1.7.3 Software contributions

• BenchNIRS1 (featured on the OpenfNIRS website2)

• NIRSimple3

• MNE contributions4

1https://gitlab.com/HanBnrd/benchnirs
2https://openfnirs.org/software/
3https://github.com/HanBnrd/NIRSimple
4https://github.com/mne-tools/mne-python/pulls?q=is%3Apr+author%3AHanBnrd
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Chapter 2

Literature Review

In this chapter, we will explain in detail key scientific concepts that are the building blocks of
this thesis, interested in machine learning for fNIRS BCIs through the scope of applications in
mental workload assessment, and draw a picture of the related literature around it.

We will more specifically dive into the science behind fNIRS and its signal processing; we will
define key concepts related to mental workload, its elicitation, measurement, and influence on
physiology; and finally, we will take a tour of machine learning, its applications for making BCIs
and its limitations.

2.1 Functional near-infrared spectroscopy

2.1.1 Pre-processing

fNIRS relies on the interpretation of the attenuation of light emitted by the sources in brain
tissue. This is measured with the detectors for each source-detector pair called channel. What
we call pre-processing with fNIRS consists in converting the light intensities measured with the
detectors into a spatio-temporal evolution of oxyhaemoglobin (HbO) and deoxyhaemoglobin
(HbR).

As the light emitted by a source diffuses in all directions, if every source was emitting at the
same time, it would be hard to identify which source is received by each detector to constitute
the source-detector channels. Therefore, one of the simplest methods used with continuous wave
fNIRS hardware consists in flashing the sources one at a time (or in small groups), so that based
on the moment at which each detector receives light, it is possible to retrace which source is
received by detectors and then obtain the light attenuation for each channel specifically. This
principle is called time-multiplexing [176].

The light attenuation is expressed with the optical density, sometimes also called absorbance,
given by the following formula:

OD = log10(
I0
I

) (2.1)

With:
- OD the optical density (dimensionless);
- I0 the incident optical intensity;
- I the transmitted optical density.

When light goes through an absorbing medium containing chromophores, we know thanks
to the original Beer-Lambert law that the optical density is proportional to the pathlength of
the light in the medium and the concentration in chromophores (Figure 2.1), according to the
following formula:

OD = ε× l × C (2.2)
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With:
- OD the optical density (dimensionless);
- ε the molar extinction coefficient in mol−1.L.cm−1;
- l the pathlength of the light in the medium in cm;
- C the concentration of the chromophore in mol.L−1.

The coefficient of proportionality is called the extinction coefficient ε. It depends on the
wavelength of the light that goes through the medium and is specific to each chromophore.
Indeed, each chromophore has a different absorption spectrum, which corresponds to the amount
of attenuation depending on the wavelength. Those absorption spectra are usually measured
empirically for each chromophore and can be found in the literature. For example, HbO and HbR
absorb light differently and each has specific tables of extinction coefficients [36, 139, 172, 183].
The most popular extinction coefficient dataset for fNIRS is the one from Wray et al., 1988 [172].

Figure 2.1: Path of the light in a cuvette for which the Beer-Lambert law can be applied simply
(Source: commons.wikimedia.org).

The Beer-Lambert law is very useful in controlled settings, however, biological tissues are
complex and present different layers of varying density and refractive indices leading to scattering.
The brain is therefore both an absorbing medium due to the presence of chromophores and a
scattering medium due to irregularities and layers with different properties. This is why the
modified Beer-Lambert law was proposed by Delpy et al. in 1988 [44] to estimate chromophore
concentrations with fNIRS. It introduces a new coefficient called the differential pathlength
factor which depends on the wavelength to account for the scattering of the light in the brain.
The modified Beer-Lambert law is also described with a geometry factor that accounts for the
geometry of the measurement [75]. The path of the light in the brain can be seen in Figure 2.2.
We then have the following formula:

OD = log10(
I0
I

) = ε× d×DPF × C +G (2.3)

With:
- OD the optical density (dimensionless);
- I0 the incident optical intensity;
- I the transmitted optical density;
- ε the molar extinction coefficient in mol−1.L.cm−1;
- d the distance between the source and the detector in cm;
- DPF the differential pathlength factor (dimensionless);
- C the concentration of the chromophore in mol.L−1;
- G the geometry factor (dimensionless).
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Figure 2.2: Path of the light in the brain with fNIRS for which we can apply the modified
Beer-Lambert law (Source: newmanbrain.com).

However, the geometry factor is not measurable with fNIRS. This is why we get concentration
changes out of fNIRS measurements, which are usually the difference between measurement
at time t and a reference measurement, which can be the average intensity over the whole
measurements or can be recorded on a dedicated baseline. This can be archived because G is
constant over time during an fNIRS recording. By using this method, we do not need G anymore,
and as a consequence, I0 the incident intensity is not necessary as well. We therefore obtain the
following formula:

∆OD = ODt −ODref = log10(
Iref
It

) = ε× d×DPF ×∆C (2.4)

With:
- ∆OD the optical density change (dimensionless);
- ODt the optical density at time t (dimensionless);
- ODref the reference optical density (dimensionless);
- It the transmitted optical intensity at time t;
- Iref the reference transmitted optical density (averaged on a baseline period for example);
- ε the molar extinction coefficient in mol−1.L.cm−1;
- d the distance between the source and the detector in cm;
- DPF the differential pathlength factor (dimensionless);
- ∆C the concentration change of the chromophore in mol.L−1.

This previous equation is the one that describes the relation between the optical density
change and the concentration change for one chromophore. The human blood however contains 4
major chromophores that absorb light in the near-infrared: oxyhemoglobin, deoxyhemoglobin,
oxymyoglobin and deoxymyoglobin; but myoglobin is mostly present in muscles so it can be
neglected in the brain. With the 2 chromophores detected in the brain, we need to account for the
optical density change due to HbO and the optical density change due to HbR. It is then required
to use 2 different wavelengths to obtain a system of 2 equations with 2 unknown variables, which
can be solved easily with matrix operations. The system of equations is solved the following way:{

∆ODλ1 = εHbO,λ1 × d×DPFλ1 ×∆CHbO + εHbR,λ1 × d×DPFλ1 ×∆CHbR

∆ODλ2 = εHbO,λ2 × d×DPFλ2 ×∆CHbO + εHbR,λ2 × d×DPFλ2 ×∆CHbR
(2.5)

∆ODλ1

∆ODλ2

 =

εHbO,λ1 × d×DPFλ1 εHbR,λ1 × d×DPFλ1
εHbO,λ2 × d×DPFλ2 εHbR,λ2 × d×DPFλ2

 .
∆CHbO

∆CHbR

 (2.6)
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∆CHbO

∆CHbR

 =

εHbO,λ1 × d×DPFλ1 εHbR,λ1 × d×DPFλ1
εHbO,λ2 × d×DPFλ2 εHbR,λ2 × d×DPFλ2

−1 .
∆ODλ1

∆ODλ2

 (2.7)

With:
- λ1 and λ2 two different wavelengths;
- HbO and HbR the oxyhemoglobin and deoxyhemoglobin respectively.

2.1.2 Sources of noise

Even though fNIRS is a useful technology to measure brain activity, it has some weaknesses
as every neuroimaging technology and the quality of signals measured can be affected by dif-
ferent kinds of noise. Sources of noise can be sorted into three categories: instrumental noise,
experimental noise, and physiological noise [119].

Instrumental noise is related to the hardware characteristics. It usually originates from the
environment, for example with external light, and tends to cause high-frequency constant noise.
It can also originate from the gradual movement of the optodes on the scalp in which case it
tends to appear as low-frequency drifts [42].

A significant source of experimental noise is due to the subject’s movement called motion
artefacts. More specifically this usually comes from the movement of optodes relative to the skin
or hair. This can happen for example because of head motion. This type of noise appears in the
signals in the form of high-frequency spikes or baseline shifts due to rapid movements, but also
low-frequency artefacts due to slower head movements for example [78].

Finally, we have the physiological noise originating from different global systemic and local
regulatory processes which is often the most prominent source of noise with fNIRS. It corresponds
mostly to the heart pulsation around 1 to 1.5 Hz, the respiration around 0.2 to 0.5 Hz, and
Mayer waves related to arterial blood pressure around 0.1 Hz, which all affect the sensitivity to
functional neuronal signals of interest [89, 119], since fNIRS measures blood oxygenation changes
regardless of their cause.

Other than those three types of noise, other factors can also affect the quality of signals, such
as skin tones and hair types which may result in light being absorbed differently, so are important
to keep in mind [91].

2.1.3 Comparison to other neuroimaging technologies

fNIRS is a very interesting technology as it has the advantage of monitoring both HbO and
HbR while fMRI can only measure the BOLD response which focuses on HbR [136]. This allows
for more information about oxygen consumption in the neocortex.

fNIRS has a relatively good temporal resolution, of the order of 5 seconds [39], better than
fMRI, and can then be suitable for use in real-time, even though this temporal resolution is lower
than EEG [122]. Even if fNIRS devices can have high sampling frequencies, often around 25 Hz,
the limitation comes from the hemodynamic response itself which takes time to appear after
neuronal activation (delay of 1-2 seconds and temporal width of 4-6 seconds [26]).

The spatial resolution is also good, even though it is lower than in fMRI. It is for example
better than the spatial resolution of EEG [122].

Moreover, even if motion artefacts remain a source of noise in fNIRS, it is quite tolerant to
those compared to other neuroimaging techniques such as EEG [122].

The physical properties of fNIRS make it possible to manufacture portable devices that can
be wireless thanks to Bluetooth for example (Figure 2.3) unlike fMRI.
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Figure 2.3: Portable Bluetooth fNIRS device (Brite from Artinis) (Source: artinis.com).

The spatial and temporal resolutions make it a tool of choice to study processes such as
mental workload [106], especially in the prefrontal cortex (PFC) [102], and this is why many
portable devices focus on this specific brain area such as the OctaMon or Brite (Figure 2.3) from
Artinis, the fNIRS300 from Biopac and many others.

2.2 fNIRS signal processing

The fNIRS data collected are time series, and it is required to process the signal in order to
extract meaningful information from it. For the most part, it consists in removing the different
forms of noise in order to extract a better brain response and have the best signal-to-noise ratio.

2.2.1 Filters

One of the most common techniques is filtering. It consists in removing ranges of frequencies
that are known not to correspond to any relevant signal for brain activity. Filters can be classified
into different categories based on what they achieve. We have high pass filters which remove
frequencies below a threshold, low pass filters which remove frequencies above a threshold, and
band pass filters which are a combination of the two. Bandpass filter enable to only keep frequencies
between two threshold frequencies called cutoff frequencies. By doing so, only frequencies in this
range called passband remain. We call stopband the frequencies outside of this passband. Finally,
another category is the notch filter which only removes one frequency. This type of filter is often
used to remove electrical noise which is typically of a specific frequency, constant over time.

The strength of attenuation of a filter in the stopband, also called gain, can be modified
thanks to the order of the filter. The higher the order, the higher the gain, and thus the stronger
the attenuation in the stopband.

Different methods exist to perform those filters but one of the most common is the Butterworth
filter [134]. It has the advantage of not distorting the signal in the bandpass.

The Butterworth filter is defined by its transfer function H which depends on the frequency
at a given order and cutoff frequency [25] according to the following formula:

|Hn(jω)| = 1√
1 + (ω/ωc)2n

(2.8)
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With:
- Hn the transfer function of the filter of order n;
- ω the angular frequency in rad.s−1, ω = 2πf with f the frequency in Hz;
- ωc the angular cutoff frequency in rad.s−1, ωc = 2πfc with fc the frequency in Hz.

A bode diagram enables us to visualise the gain depending on the angular frequency for this
Butterworth filter as shown in Figure 2.4.

Figure 2.4: Bode plot of a lowpass filter of order 4 with an angular cutoff frequency of 100
rad.s−1 (Source: docs.scipy.org).

Bandpass filters are very useful when it comes to removing physiological noise. Indeed, as
the hemodynamic response has a frequency of around 0.1 Hz, it can be interesting to keep a
frequency range around it and remove everything else. This enables the removal of heart rate
and respiration artefacts when cutoff frequencies are for example 0.01 and 0.5 Hz, which is the
most popular filter found in the literature [134]. It also enables the removal of slow drifts with
low frequency. Unfortunately, this cannot remove Mayer waves which are right in the frequency
range of the hemodynamic response.

2.2.2 Motion artefact correction

Correlation based signal improvement

When interested in addressing motion artefacts more specifically, an interesting technique
is the correlation based signal improvement (CBSI) [38]. It takes advantage of the fact that
measurements of HbO and HbR are usually negatively correlated in the absence of head motion.
It generates corrected artificial HbO and HbR signals smoothing out motion artefacts based on
negative correlation which improves the signal-to-noise ratio. The system of equations to obtain
the corrected HbO and HbR is the following:{

x0 = 1
2(x− αy)

y0 = − 1
αx0

(2.9)

With:
- x and y respectively the measured HbO and HbR concentration changes;
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- x0 and y0 respectively the corrected HbO and HbR;
- α the ratio of the standard deviation in HbO and HbR on a chosen window.

This approach can be very interesting, especially for real-time applications when applied with
a sliding window of around 30 seconds.

Temporal derivative distribution repair

Another technique often used in order to remove motion artefact is the temporal derivative
distribution repair (TDDR) [49]. Assuming that fluctuations related to motion artefact are large
and infrequent as opposed to the rest of the contributions to signal fluctuations (hemodynamic
response reflecting brain activity and other hemodynamic activity related to systemic regulations),
this approach consists in correcting the signal by reducing the weights of abnormally large
fluctuations. It does so by computing the temporal derivative of the signal (representing the
speed of change of the signal amplitude), to then correct it with a weighting function, placing
lower weight on larger deviations, defined as follows:

wt =

{
(1− d2t )2 if |dt| < 1

0 otherwise
(2.10)

With:
- wt the weighting function (function of time t);
- dt the scaled residual at time t (scaled difference between the weighted mean of the fluctuations
and the observed value).

With this technique, it is possible to attenuate relatively well the signal’s spikes and baseline
shifts, which cannot otherwise be corrected with standard filtering techniques.

Deep learning

Recent advances in deep learning have shed light on new approaches for motion artefact
removal. For example, Gao et al. [55] propose an approach using a denoising autoencoder neural
network model in order to reconstruct clean fNIRS signals from noisy data. This model was
trained with simulated data on a regression problem consisting in reconstructing a clean signal
from the signal to which artificial noise has been added. This trained model can then be used on
experimental data in order to remove real motion artefacts.

2.2.3 Short separation channels

More recently, a technique that has gained interest is the regression with short separation
channels (Figure 2.5). Indeed, normally the separation between the emitter and the detector
is around 3 cm to access concentration changes in the neocortex. The shorter the distance the
shallower it measures. This principle is used with short channels: we measure concentration
changes in shallower structures that we know do not represent brain activity, namely the scalp.
The activity in the scalp contains all the systemic noise which is not interesting when it comes to
measuring brain activity. Therefore, we can remove this systemic noise by regressing the short
separation channel measurements to the long separation channel measurements. Only remains the
concentration changes related to the brain activity. This technique of short separation channels
works very well but requires having those specific channels on the fNIRS device which is not
always the case, especially for old equipment.
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Figure 2.5: Short separation channels (Source: Rupawala et al., 2018).

2.3 Mental workload

2.3.1 Tasks eliciting mental workload

Multiple tasks have been developed to elicit mental workload and are used extensively in
neuropsychology experiments for this purpose.

n-back

n-back is probably one of the most popular tasks to elicit mental workload and has been used
in many neuropsychology studies [125]. It consists in presenting a sequence of stimuli, which
can be images or sounds, and the task for the subject is to indicate when the stimulus currently
presented (target) is the same as the one presented n stimuli before. When n increases, the
difficulty increases, and levels usually range between n = 1 and n = 3 during experiments. The
n-back task can use various types of stimuli such as visual or auditory stimuli and can use verbal
stimuli such as letters or words or nonverbal stimuli such as shapes, faces, or pictures. Some
studies consist in monitoring the identity of the stimulus whereas others consist in monitoring
the location of it. An example of numerical 2-back is presented in Figure 2.6.

Mental arithmetic

The second task often used consists in doing arithmetic calculations mentally. This can be
additions, subtractions, multiplications, or divisions. A task that is commonly used is backward
counting with subtraction of a specific number every time [67, 107, 119].

Word generation

Finally, another popular task to elicit mental workload is word generation [67, 155]. This
consists in thinking of words beginning with a given letter as fast as possible.

2.3.2 Measuring mental workload

Measuring mental workload can be done by multiple means. Some of the most popular are
subjective questionnaires while other measures are more objective.
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Figure 2.6: Example of numerical n-back task (2-back).

NASA Task Load Index

The NASA task load index (NASA-TLX) is a questionnaire developed by NASA for subjective
assessment of the perceived workload [63]. It assesses multiple characteristics: mental demand,
physical demand, temporal demand, performance, effort, and frustration. Each of these category
is evaluated on a scale by subjects. This questionnaire is usually answered after the tasks. An
example can be seen in Figure 2.7.

Figure 2.7: NASA-TLX questionnaire (Source: humansystems.arc.nasa.gov).
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Instantaneous self-assessment

Another way to measure mental workload is the instantaneous self-assessment (ISA) technique.
It has been developed by NATS in order to assess the mental workload of air traffic controllers
[83]. With this method, subjects report regularly their mental workload level on a pre-established
scale from 1 to 5. The meanings of each rating can be found in Figure 2.8. Those ratings are
usually given verbally by subjects while they perform a task.

Figure 2.8: ISA workload categories (Source: Kirwan et al., 1997).

Physiological measures

Methods such as the NASA-TLX or the ISA however have some bias because they are actually
subjective. Indeed, even if the questions and criteria are pre-established, they are answered by
subjects based on their perception of their mental workload which can sometimes be different
from their actual mental workload. This is why a lot of effort in the scientific community has been
made lately to find objective measures of mental workload, and physiological measurements are
interesting for this purpose as they are for the most part hardly controllable intentionally. Brain
activity especially stands out as a strong candidate among those physiological measurements as it
enables the measurement of mental workload directly at the source.

Physiology can also enable researchers to measure the mental workload passively without
any action from the subject that could distract them from the task. For example ISA creates
the additional task of reporting the mental workload to the original task which can impact
performance as Tattersall and Foord show [161]. More precisely, the fact of asking participants
while they perform a task can increase their mental workload [131]. Also, adding mental workload
reporting as a secondary task could lead to adaptive strategy changes to the main task which is
not what one would want to study subjects’ response to that main task [33].

2.3.3 Influence of mental workload on physiology

Physiology can be affected by changes in mental workload in different ways.

Pupil diameter

First of all, pupil diameter has been shown to be an interesting physiological measurement
related to mental workload. In a constantly lit environment, pupil dilatation or constriction has
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been observed in response to changes in mental workload. A review paper by Beatty gives insight
into research studying the link between mental workload and pupil diameter [9]. Iqbal et al. for
example show that pupil diameter correlates positively with the cognitive load [77]: when the load
increases pupil dilatation can be observed and conversely, when it decreases pupil constriction
can be observed. Another work by Marinescu et al. shows a strong correlation between the ISA
scores used to evaluate mental workload and the pupil diameter [109].

Facial skin temperature

Another interesting physiological modality related to mental workload is facial skin tempera-
ture. In addition to pupil diameter Marinescu et al. show that facial temperature is correlated
to the ISA rating and NASA-TLX score [109]. Pinti et al. also show that measurements from
functional infrared thermal imaging are modulated by cognitive tasks [133]. More precisely, Or
and Duffy show that the nose temperature has an important correlation with mental workload
[124]: a nose temperature drop is observed with high mental workload.

Heart rate and respiratory rate

Researchers in the field of mental workload have also shown that heart rate is an interest-
ing physiological measurement related to mental workload. For example, when subjects were
performing air traffic control tasks, Tattersall and Foord showed that the ISA was correlated to
heart rate variability [161]. Also, the respiratory rate has also been investigated and is shown to
be related to the mental workload [109] as well.

Electrodermal activity

Electrodermal activity (EDA) also known as skin conductance or galvanic skin response is yet
another interesting physiological parameter of the body related to mental workload. Interesting
research by Shi et al. shows that EDA is related to cognitive load [152]. Indeed, in their study,
galvanic skin response increases as cognitive load increases. Another study by Foy and Chapman
on drivers’ mental workload highlights that skin conductance was affected by the road type and
increased with increasing mental workload.

Brain activity

The physiological measurement that probably makes the most sense in the case of mental
workload is brain activity. Indeed, in response to an increase in mental workload demand, the
brain has to solicit its resources in order to adapt to it.

Many functional neuroimaging techniques exist in order to study brain activity. Some of them
focus on the electromagnetic properties of the brain activity such as EEG and MEG while others
focus on blood oxygenation such as fMRI, and fNIRS as we have seen in 2.1.1. Neuroimaging
techniques can also be invasive, in the way that they require a surgical procedure to be used, or
non-invasive, most of the time with measurement on the scalp.

Recently fNIRS is a type of neuroimaging that has gained interest in order to study mental
workload. Indeed, it has been shown that brain activity measured with fNIRS correlates with the
difficulty of working memory tasks such as n-back [171]. Authors such as Peck et al. or Maior et
al. also observe for example a negative correlation between the concentration in HbR and results
from the NASA-TLX on working memory tasks [107, 127].
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Figure 2.9: Prefrontal cortex of the brain (Source: Beardsley, 1997).

Research in the neuroscience of mental workload provides evidence that a key area of the brain
to study this kind of activity is the PFC (Figure 2.9). Molteni et al. show a brain oxygenation
increase in the frontal brain with a working memory load increase, and furthermore, the activity
is lateralised [114]. Nozawa et al. show for example that the left PFC is associated with spatial
memory while the right PFC is associated with verbal working memory [123]. Indeed it is shown
that different types of tasks to elicit mental workload activate different areas in the PFC. For
example, Hoshi et al. show that activation of the ventrolateral PFC happens during n-back
working memory tasks, while random number generation activates the PFC differently [72]. They
conclude by saying that the PFC is the central executive of working memory. Causse et al. show
that besides being observed in laboratory tasks, changes in the PFC in response to mental effort
are also observed in ecological settings [29].

2.3.4 Mental workload assessment from physiological data

In opposition to just being observed in response to various tasks, physiology can be used as
a way to assess mental workload. This process usually relies on machine learning, in which a
labelled dataset is recorded to train a classifier that could predict mental workload in real-time.
The dataset is usually labelled using task difficulty or level, or the subjective ratings of mental
workload made by the subjects as seen in 2.3.2.

Assessment from physiological indicators

Most of the physiological indicators linked to mental workload described previously in 2.3.3
can potentially be used to assess mental workload.

For example, Fridman et al. [52] used pupil diameter in order to predict mental workload
in driving settings. They use a deep learning approach with camera recordings. It enables the
detection of the pupil within the frame and obtaining the pupil diameter which can then be used
to predict the mental workload of drivers.

We also find cases where the facial skin temperature is used to infer mental workload for
example with the work of Or and Duffy [124]. It would then be possible to asses mental workload
with an infrared thermal imaging camera.
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Haapalainen et al. were able to distinguish between low and high levels of cognitive load
thanks to electrocardiogram median absolute deviation and median heat flux measurements [62].
The tasks on which they predict cognitive load are based on visual perception and cognitive speed
which are relevant to assess ubiquitous computing systems and divided attention.

However it is not always easy to be sure that those physiological indicators are directly related
to mental workload, and each of the following modalities has some disadvantages. Indeed other
factors can influence the pupil diameter such as the ambient lighting conditions which are required
to be constant if one wants to have a good indication of mental workload. In the same way, heart
and respiration rate, facial skin temperature, or EDA can be modified with physical activity,
regardless of any mental workload change. Other confounding factors can also enter into play, for
example, research by Nickel and Nachreiner show that heart rate variability may not be a good
indicator of cognitive load but rather an indicator of time pressure [121].

It is then more relevant to measure the mental workload right from where it originates, namely
the brain. Those reasons make brain measurements more suited for mental workload assessment
as they can measure the process at the source.

Brain-computer interfaces

Neuroimaging techniques can be used to measure brain activity in areas of the brain that are
known to be related to mental workload, namely the PFC. Using neuroimaging as a way to have
feedback is called neurofeedback, and this is one type of BCI as seen in 1.3.

Due to their good temporal resolution and portability, EEG and fNIRS are devices of choice
for BCIs with a short response time.

Work has been done with EEG to work towards the creation of neurofeedback interfaces on
mental workload. For example, Lan et al. show that it is possible to classify cognitive load offline
thanks to EEG brain recordings [92]. After a feature extraction based on frequency analysis,
they were able to classify levels of cognitive load on n-back working memory tasks with Gaussian
mixture models or kNN. Appriou et al. tried to achieve classification on the same kind of tasks
from EEG by comparing different models such as common spatial pattern (CSP), Riemannian
geometry, and a shallow CNN [5].

Even though EEG is the most popular brain imaging technique for BCIs, one does not
necessarily need such a high temporal resolution (which can be of the order of milliseconds with
EEG) in cases where making inferences with a slight delay (a couple of seconds) can still be
suitable. In this context, research into continuous wave fNIRS is increasing due to its greater
tolerance to user’s motion compared to EEG [122] which signals are often hardly recoverable in
the presence of body and head movements. This is especially useful when working in naturalistic
settings or with infants for example. Furthermore, fNIRS is characterised by a lower temporal
resolution but is capable of higher spatial resolution than EEG [122], and the frequencies of
interest with fNIRS (hemodynamic response under 1 Hz) are usually lower than the ones studied
with EEG [32, 141]. FNIRS still faces challenges to be used reliably in real-life conditions, but
more and more experiments are working towards this goal [132], with some studies focusing for
instance on walking [167] and climbing [28]. FNIRS can be used for active BCIs consisting of
prolonged and sustained brain activity for example, but is currently mostly used for passive BCIs
[180, 181] due to the 1 to 2 seconds delay in cerebral blood flow and a peak response 4 to 6
seconds after a stimulus [26].

A lot of tasks have been used in lab settings in order to advance BCI research. The first
category falls under the active BCI umbrella, where the user actively attempts to control an
application through purposeful thought [32]. Researchers often use motor tasks for this purpose,
where finger tapping is most commonly used in fNIRS research [38, 156]. Research can also
involve motor imagery [129], which consists of imagining a movement without actually performing
it. Indeed, motor imagery has been shown to elicit similar brain activity to motor execution [112].

For passive BCIs, which are not used to voluntarily control an application, fNIRS data is used
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to monitor and classify a user’s mental state while they perform a task [32]. A range of mental
workload tasks have been used to train such passive BCIs [10, 57, 66, 107]. One of the most
popular is the n-back task, which involves remembering the recurrence of regularly presented
stimuli [3, 95, 169]. A second task used to elicit mental workload is the word generation task,
where subjects are asked to give as many words starting with a designated letter as possible
[47, 70]. Finally, mental arithmetic tasks are often used, in which subjects are asked to solve
simple mathematics operations such as additions, subtractions, multiplications, and divisions
[70, 174]. Those different tasks have been described in more detail in 2.3.1.

Finally, it is worth mentioning that some researchers also looked at combining multiple
modalities to build more reliable interfaces. For instance, work has been done to investigate
hybrid fNIRS-EEG BCIs for mental workload classification [3, 146].

Use cases and applications

Examples of applications in terms of mental workload assessment are various. Such interfaces
can be useful to evaluate HCI [56, 106, 158]. It can be used to evaluate how friendly or stressful
a computer interface is. For example, Zijlstra et al., Bailey et al. or Cutrell et al. show how
disruptive interruptions are when someone is performing a task [6, 40, 182]. We can use them to
give a neurofeedback to subjects performing computer tasks. For example, Maior et al. built a
BCI for real-time neurofeedback during computer-based tasks [108]. Those BCIs can be used to
adapt tasks to the subject response, for example in a learning context with piano in their case
[178]. Afergan et al. also used fNIRS to optimise workload during unmanned aerial vehicle path
planning tasks [2].

Such interfaces are also useful to detect mental overload, especially in safety-critical environ-
ments. This is studied for example with flight crews by Ccakir et al. with fNIRS [27]. In a similar
fashion, Laxmisan et al. have studied cognitive overload to prevent medical errors [94]. This can
be also done for driver’s safety since low or high mental workload leads to imperfect perception,
insufficient attention, and inadequate information processing [21]. Therefore, cognitive load has
been studied with fNIRS in studies about driving by Unni et al., Le et al., or Foy et al. for
example [51, 95, 163]. Finally, passive BCIs can be used in neurorehabilitation to evaluate and
adapt the quality of the therapy to the patient [93].

2.4 Machine learning with fNIRS

2.4.1 Machine learning

Machine learning is a subfield of artificial intelligence dedicated to computer algorithms that
learn from data, without hardcoded rules [23, 59]. As defined by Mitchell [113]: "A computer
program is said to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with experience E". The
performance is usually measured with a loss function (error function) which can be for instance
logistic loss (cross-entropy loss), hinge loss, or mean squared error.

The most common way of doing machine learning is with supervised learning. It consists in
first collecting multiple input examples of data that are annotated with associated target outputs.
The algorithm is then trained to predict the target outputs from the input examples alone. In
machine learning, we call example a "collection of features that have been quantitatively measured
from some object or event that we want the machine learning system to process" [59].

In the case of classification which is a type of machine learning task, the target outputs
are discrete class labels, that the machine learning algorithm tries to predict: it will classify
the examples. This is to be distinguished from other types of machine learning tasks such as
regression for example in which the target outputs are continuous.
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Many machine learning algorithms have been proposed in the literature, and some classification
algorithms are very popular on a wide range of problems. For example:

• logistic regression can be used for classification [23]; it uses a sigmoid function with maximum
likelihood estimation to output the probability of a predictor variable belonging to one of
the classes;

• LDA, introduced by Fisher in 1936 [50], can be used as a classification algorithm by learning
a linear decision surface to separate data into different classes [34];

• support vector machine (SVM), introduced by Bosser et al. in 1992 [18], can be used as a
classifier by learning a hyperplane able to separate the data with a maximal margin with
respect to data points of each class [64]; they can use a linear decision surface to separate
the data (Figure 2.10), but also use kernel methods such as radial basis functions to learn a
nonlinear function or decision boundary.

Figure 2.10: Example of linear SVM with two classes, showing the decision boundary and
support vectors (Source: scikit-learn.org).

2.4.2 Deep learning

Deep learning is a subset of machine learning based on ANN [59]. ANNs are inspired by the
brain and are composed of neurons connected to each other with different weights [110]. One of
the most basic neural network architectures is called the multilayer perceptron (Figure 2.11). It
enables the transformation of an input, fed to the input layer, into output by modifying it in
hidden layers thanks to the different weights of the neuron connections.
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Figure 2.11: Simple multilayer perceptron artificial neural network.

More specifically, each neuron (also known as perceptron) is a multiple-input single-output
parametric non-linear function. The output is defined as follows:

h = a(

n∑
i=1

wixi + b) = a(w>x+ b) (2.11)

With:
- h the output;
- x = [x1, . . . , xi, . . . , xn] the inputs from the previous layer;
- w = [w1, . . . , wi, . . . , wn] the weights;
- b the bias;
- a the non-linear activation function.

One of the most common activation functions is sigmoid (Figure 2.12):

a(x) =
1

1 + exp(−x)
(2.12)

Another one is the rectified linear unit (ReLU) activation function (Figure 2.12):

a(x) = max(0, a) (2.13)

28



Figure 2.12: Activation functions (sigmoid on the left, rectified linear unit on the right)

In most cases, the weights are initialised randomly and are updated during the training of the
neural network to better predict the output. More precisely, when training it, we use a set of
inputs with known target outputs. Each input is fed one by one and the neural network predicts
an output by transforming it thanks to the current values of its weights. The more different the
predicted output is from the target output, the more the weights are modified in order to have a
predicted output closer to the target. This modification of the weights is performed thanks to
an algorithm called backpropagation which propagates the gradient of the error on the output
backward to the neural network weights, from the output layer to the input layer all the way
through the hidden layers. For training, the whole training data is usually fed multiple times into
the model to update the weights of the model. An epoch consists in feeding the whole dataset to
the model once, therefore a typical training will usually be performed on multiple epochs.

Building upon this concept of neural networks, more advanced models have been developed.
We can describe for example the CNN [96], a neural network to which convolutional layers
have been added. Those convolutions use kernels (filters) sliding along the axes of the input to
transform it in a space-invariant way into a feature map, which enables the reduction of the input
dimensionality. These types of models are very popular with images.

Another extension of neural networks is the recurrent neural network (RNN) [144]. They take
advantage of recurrence to allow new inputs of a sequence to be treated in the context of previous
inputs of that sequence: an input xt at time t is fed into the neuron, outputting ht, ht being fed
back into that neuron along with the input xt+1, and so on. Such architecture is very popular
with text, for example with a sequence of words: each word can be treated with the context of
the previous word of the sequence.

2.4.3 Hyperparameters

As opposed to parameters that are internal to a model and are updated by the learning
algorithm itself, hyperparameters are external to the model and rather control or influence
the learning [12, 23, 59]. Each model will have its specific set of hyperparameters to control
the learning, some models having none while others having more than 10. Hyperparameters
can be discrete, this is the case for example of the type of kernel for SVMs or the choice of
activation function for neural networks, while others are continuous, this is the case for example
of the regularisation parameter for SVMs or the learning rate for neural networks. These
hyperparameters can potentially have a high impact on how well a machine learning model will
predict outputs [137]. They can be set manually or tuned by an algorithm.
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2.4.4 Performance evaluation of machine learning models

Evaluating the performance of a machine learning model is evaluating its generalisation
capabilities: how well does the model make predictions with data it has not seen during training?

With supervised learning, in practice when a dataset has been annotated, it is split into
different parts [23, 59]. First of all, one part is held out for reporting the performance: this is
the test set. It will only be used after the model has been trained and hyperparameters selected.
The remaining data is split further in order to leave out another part: the validation set. This
validation set is used for hyperparameter selection. The finally remaining data is then used for
actually training the model: this is the training set. This process is described in Figure 2.13.

Figure 2.13: Training, validation, and test sets.

Performance can be assessed with different metrics. For classification, the most common ways
of evaluating a model are with one or many of the following metrics:

• accuracy (number of correct predictions out of the total number of predictions);

• precision (number of correct predictions of a class out of the number of predictions of that
class);

• recall (number of correct predictions of a class out of the number of expected predictions of
that class);

• area under the receiver operating characteristic (ROC) curve (relation between recall and
false positive rate).

Each of those metrics can be more or less useful depending on different factors such as the balance
of classes or preferences on the type of error (eg. false positives are preferable compared to false
negatives).

Hyperparameter selection is performed by training the model on the training set with different
hyperparameter values that will be assessed on the validation set, the goal being to select the
combination of hyperparameters yielding the best performance on the validation set. Multiple
strategies for doing so are possible, some of the approaches are:

• grid search consists in testing exhaustively all combinations of specified hyperparameter
values;

• random search instead tests a random set of combinations of hyperparameters;

• Bayesian optimisation consists in building a probability model to evaluate promising
hyperparameter combinations.
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Once the best combination has been selected, the model is then usually re-trained on the training
and validation sets, to finally be evaluated on the test set that was not used until then.

This process is done because selecting hyperparameters is a process that requires knowledge
of the outputs, therefore, if the hyperparameter selection was done on the test set intended
for reporting the final performance, the results would not reflect the generalisation capabilities,
namely the performance on unseen data. Indeed machine learning models can have a tendency
to overfit, which means that they will predict very well data it has seen during training while
predicting very poorly data they have never seen. We can see that this would not be very useful.

The splitting of the dataset can be done with different methods. A common one is to randomly
split the data between training, validation, and test sets. This can be done in a stratified way,
which means that the random split is made by preserving the percentage of samples for each class
in each set as the initial distribution. However, in the case of small datasets, this technique is not
optimal because the randomness can result in the extraction of a set poorly representative of
the whole dataset. This is why in those cases cross-validation will be preferred, which consists
in repeating the splitting multiple times with different subsets or splits of the original dataset.
In practice, the most common approach to this is k-fold cross-validation in which the partition
of the dataset is formed by splitting it into k non-overlapping subsets [59]. If this process is
performed for leaving out both test and validation sets, it is called double cross-validation (nested
cross-validation) [12]: using an outer loop cross-validation to evaluate the final performance on
left out test sets and an inner loop cross-validation inside each outer loop split’s remaining set in
order to select hyper-parameters on left out validation sets for that outer split. This process is
described in Figure 2.14.

Figure 2.14: Example of inner 5-fold cross-validation.

2.4.5 Machine learning for fNIRS brain-computer interfaces

Ultimately, a BCI can be seen as a real-time classifier of brain data. In the vast majority
of cases, this classifier is a supervised machine learning algorithm. Many traditional machine
learning approaches have been used to classify fNIRS data in the context of different tasks and
applications. For instance, Herff et al. [67] used LDA to classify mental tasks describing results of
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71%, 70%, and 62% accuracy on mental arithmetic, word generation, and mental rotation tasks
respectively against rest. Hong et al. [71] used LDA to classify between mental arithmetic, left-
and right-hand motor imagery and obtained an average classification accuracy of 75.6%. Nazeer
et al. [120] also used LDA with features extracted using vector-based phase analysis on finger
tapping tasks presenting classification accuracies of 98.7% and 85.4% with 2 classes (left-hand,
right-hand) and 3 classes (left-hand, right-hand, rest) respectively. Shin et al. [153] also used
SVM for classifying mental arithmetic against baseline and obtained performances around 77%
with eyes opened and around 75% with eyes closed. Other traditional machine learning models
such as kNN have been also used, for example, to classify 3 different mental workload levels on
n-back tasks and reached accuracies up to 52.08% [85].

Deep learning has also been used extensively with fNIRS data to classify activity during tasks
[45]. For example, Chan et al. [30] used an ANN and reported an accuracy of 63.0% for the
classification of mental signing against rest. Trakoolwilaiwan et al. [162] compared an ANN
and a CNN to classify between left-, right-hand finger tapping and rest and report accuracies of
89.35% and 92.68% respectively. Yoo et al. [174] used a LSTM model for classification between
mental arithmetic, mental counting, and puzzle solving, and reported accuracies up to 83.3%.
Deep learning can be performed on raw data, which has the advantage of not relying on the
subjectivity of feature extraction, contrary to some other traditional machine learning approaches
that require it because of their difficulty in learning complex patterns.

The classification performances reported are extremely high and would suggest that this
research is ready for technology transfer by industry, however, in some cases limitations in
the methodology used for evaluation make that such results are an overestimation of the true
performance on unseen data.

2.4.6 Machine learning crisis

While machine learning is a very useful tool, it can often be quite challenging to implement
and evaluate models for researchers with limited experience. Furthermore, small mistakes in the
implementation can lead to fundamentally flawed evaluations of the generalisation capabilities of
models. This is amplified by the popularity and rapid development of machine learning, which
often makes it hard to keep up to date with the latest methodology particularities, and results in
potentially serious issues in published work. This has been shown by Kapoor and Narayanan
[84] who did a meta-review of review papers pointing out flaws in applied machine learning to
different scientific fields. They highlight the extent of machine learning issues including leakage,
meaning that the evaluation data is not truly unseen data, and reproducibility issues, meaning
that not enough details are available to replicate an existing work.

In order to address these issues they provide a taxonomy of issues divided in three main
categories:

• missing training and test set separation (therefore potentially evaluating models on the
training set);

• using illegitimate features (that should not be available when performing the generalisation
task);

• having a test set not drawn from the distribution of interest (leading to poor ecological
validity).

More specifically we can notice that leakage issues are found in various fields, including for
example BCI research and neuroimaging in psychiatric research, in which many pitfalls can be
found as reported in literature review papers [118, 170].

In addition to complexities related to machine learning itself, fNIRS data can also be challenging
to fully comprehend. Indeed, there is still a lack of overall consensus in the fNIRS community
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when it comes to collecting, processing, analysing, and reporting results. Some significant work
however has been done in the past couple of years. Pinti et al. [134] did an extensive review
of study design, processing, and statistical inference techniques used in the field and provided
recommendations related to the method and reporting of fNIRS data pipelines. More recently,
work by Yucel et al. [176] regrouping some of the most influential fNIRS researchers published a
detailed paper about best practices for all things fNIRS, including the different types of fNIRS
technologies, experiment design, pre-processing, signal processing, data analysis, modelling, and
most importantly reporting, with a list of clear definitions for commonly used terms in fNIRS
research. Such work currently has a significant impact on the improvement of standards for fNIRS
research. However, the field is still lacking established best practices when it comes to machine
learning methods applied to fNIRS. This can be highlighted by some apparent limitations of
existing publications, as highlighted by a review done by Huang et al. [73].In an attempt to
produce a benchmarking on a mental workload dataset, they noted the challenges of replicating
existing work that could claim state-of-the-art performances.

All this helps us grasp the extent of issues around machine learning for fNIRS. This is the
starting point for the subsequent research conducted in the context of this thesis and presented in
the following chapters, in which we explore machine learning and its practices, more specifically
for BCIs and mental workload assessment applications.
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A journey of a thousand miles begins with a single step.

– Lao Tzu



Chapter 3

BenchNIRS : a benchmarking
framework for fNIRS classification

• RQ1 : How can we make the rigorous development, evaluation, and comparison of machine
learning approaches for task classification from fNIRS simpler for researchers?

3.1 Motivations

Many research fields, including computer vision and natural language processing, benefit
from strong standards, with state-of-the-art models, and established ways to benchmark machine
learning on common datasets [90, 97, 105]. For relatively new areas of application, like the
classification of fNIRS data, however, our community still lacks clear standards and approaches
to compare and recognise significant advances in performance. Some tools are emerging in other
related fields; for example, MOABB [79] enables the benchmarking of EEG-based BCIs, however,
this software focuses on EEG paradigms which cannot be applied to fNIRS, and has limited
support for implementing new machine learning (and especially deep learning) models.

The lack of machine learning standards in fNIRS more specifically creates a large discrepancy
in how machine learning is applied to fNIRS, and how the methodology and results are reported in
fNIRS papers, and this makes it hard to draw clear conclusions as to whether some approaches are
really better than others. Notably, fNIRS machine learning papers sometimes fall foul of common
mistakes, and the way that methods and results are presented is often missing critical information
to make them reproducible. These problems are exacerbated by the fact that the field lacks
commonly recognised open-access datasets for machine learning benchmarking, even though this
journey is going in the right direction with the more frequent publication of open-access datasets
and a will to gather them in a single place1. Moreover, the lack of code-sharing practices, which
would enable inspection by others and improve reproducibility, is another issue that ultimately
slows the progress of our field.

The same way the fNIRS community is going towards more established practices for signal
processing [134, 147] and reporting [176], we aim in this research to provide a community resource
specifically for machine learning in the context of fNIRS BCI applications. The work described in
this chapter enables researchers to: 1) reuse the implementation of a robust machine learning
framework methodology on common open-access fNIRS datasets in an open-source code repository;
2) share the implementation of fNIRS machine learning approaches such that they can be inspected
and validated by others; 3) apply new machine learning approaches easily on multiple common
open-access fNIRS datasets such that they can be compared to baseline implementations as well
as recent contributions; 4) contribute to a community best practice checklist of expectations for
both decisions made during implementation and analysis, and for reporting detail in papers.

1https://openfnirs.org/data/
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Since in-depth comparisons of signal processing pipelines have already been conducted in
the literature [134, 147], we will use as a starting point a signal processing pipeline based on
those recommended best practices as a default pipeline and focus on the comparison of machine
learning algorithms with a robust methodology. More specifically, we describe the implementation
of a provided range of predefined baseline machine learning algorithms on a specific set of public
datasets, which will later be used to present the results of such a multi-algorithm multi-dataset
benchmarking comparison in Chapter 4. Finally, we present a recommendation checklist for
researchers who are implementing machine learning approaches for classification from fNIRS data.

Further, we consider this work as a call to action, towards helping the community establish,
from the variety of unstandardised approaches that have been published so far, consolidated best
practices for identifying advances in our community. We list our initial recommended practices in
this chapter, but we invite community members to contribute to a growing working document of
best practices in a provided online repository2.

3.1.1 Limitations of the current literature regarding machine learning for
fNIRS

Recent work has produced strong examples for recommending best practices for processing
fNIRS data [134], and considerations regarding the reporting of works with fNIRS [176]. In this
trend, we highlight issues specific to machine learning classification with fNIRS data.

Machine learning approaches, while popular, often suffer from flaws in many existing publi-
cations across various domains of applications [84], including in the domain of BCIs [118]. In
reviewing the literature of machine learning applied to fNIRS, it is common to see limitations
that can be categorised into 2 types3. The first type regards the methodology, including potential
mistakes, flaws, and lack of rigour. Common issues with published research include:

• not taking into consideration the experimental design when selecting instances to classify;
this includes for example using resting periods for return to baseline in the same way as
intentionally designed control baseline tasks, leading to a lack of ecological validity;

• randomly selecting hyperparameters without justification and not performing hyperparame-
ter tuning, leading to a lack of robustness;

• optimising the model’s hyperparameters using the test set (also called overfitting to the
hyperparameters), leading to an overestimation of the performance;

• testing classifiers with data already seen during training and neglecting the potential overlap
between the different sets (training, validation, test), this includes for example issues related
to sliding windows with overlapping, leading also to an overestimation of performance;

• not using cross-validation or permutation testing to validate results, leading to a lack of
robustness on small datasets;

• not performing a statistical analysis to compare results, leading to a lack of scientific validity;

• not handling class imbalance (for example as a result of the study design or the trial
rejection), potentially leading to a misinterpretation of the results.

This first type of limitation is however difficult to highlight with certainty in most cases, this
being related to the second type of limitation which is the reporting of works using machine
learning with fNIRS. This makes the reproducibility of previous works often impossible, which
is even more problematic when the data and/or the code are not available. Those limitations
include:

2https://gitlab.com/HanBnrd/benchnirs/-/blob/main/CHECKLIST.md
3We choose not to call out specific papers and authors, but rather highlight things that researchers should look

out for.
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• not explaining what data is used as input of the classifier;

• not providing enough details regarding the machine learning models, including for example
the hyperparameters or the architecture;

• not describing the split between training, validation, and test sets, and how many input
examples are used (we call example an instance used as one input of a machine learning
model [59]);

• not referring results to the number of classes or chance level.

All those issues often make it hard to be confident when critically evaluating machine learning
papers with fNIRS, especially when it comes to reporting state-of-the-art results because they are
not reproducible in most cases. Indeed, it may very well be the case that most of the variance
across existing fNIRS machine learning publications is explained by methodology differences
rather than actual model performance differences.

As a result, in this chapter, we will be interested in the following research question:

• RQ1 : How can we make the rigorous development, evaluation, and comparison of machine
learning approaches for task classification from fNIRS simpler for researchers?

In order to answer this question, we will here show how we created a tool to use a robust
methodology for evaluating machine learning models for fNIRS in a reproducible way and
presenting a true representation of performance on unseen data. That methodology relies on
best practices from both the machine learning and fNIRS fields, and has been encapsulated
into a Python-based framework called BenchNIRS with an application programming interface
(API) enabling to implement easily all the steps to perform machine learning with fNIRS data on
standard benchmarking open-access datasets, but also on any given fNIRS dataset. The following
content of this chapter is a description of the framework’s development, implementation, and
usage.

3.2 BenchNIRS framework

BenchNIRS is a Python 3 open-source framework that has been designed for facilitating
machine learning with fNIRS. For this purpose, it enables to load open-access fNIRS datasets,
perform pre-processing, signal processing and feature extraction on fNIRS data, extract labelled
segments of the data, and perform machine learning with training, optimisation, and evaluation
of models.

3.2.1 Open-access fNIRS data loading

The framework was designed to support loading multiple open-access datasets by default.
Indeed, BenchNIRS provides a function to load any of 5 open-access fNIRS datasets: n-back tasks
from [66], n-back tasks from [155], word generation tasks from [155], mental arithmetic tasks
from [154] and motor execution tasks from [7]. The focus was put here on mental workload tasks
as it is an important domain of application for fNIRS as we saw in Chapter 2, but one dataset
with a motor task was also used for comparison purposes. They were also chosen based on the
characteristic of having at least a sampling frequency of 10 Hz as recommended by Yücel et al.
[176] so that optode-scalp coupling can be assessed confidently (assuming a theoretical maximum
heart rate of 220 pulsations per minute, so 3.67 Hz, it requires a minimum sampling frequency of
7.34 Hz as per the Nyquist-Shannon sampling theorem, rounded up to 10 Hz for good measure).
All the datasets used are openly accessible and have been produced as part of previous studies by
researchers of the fNIRS community. Appropriate ethical approvals were attained as stated in
the datasets’ dedicated papers, and participants gave written informed consent. Following up is a
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description of the datasets based on their related publications, Table 3.1 summarises the size of
each dataset and the different task conditions.

n-back task from Herff et al. 2014

This dataset consists of n-back tasks performed by 10 healthy participants. The experiment
consisted, for each participant, of 10 epochs of each 1-back, 2-back, and 3-back; each epoch
containing 3± 1 targets. Each epoch consisted of 5 seconds of instruction, 44 seconds of n-back
with a letter every 2 seconds displayed for 500 ms, and a 15-second rest period. The data was
recorded with an OxyMon Mark III from Artinis Medical Systems, with wavelengths of 765 and
856 nm and a sampling rate of 25 Hz. It is composed of 4 sources and 4 detectors on the PFC,
resulting in 8 channels of HbO and 8 channels of HbR, with a source-detector distance of 35 mm.
More details can be found in [66]. This dataset has been used for classification between 1-back,
2-back, and 3-back.

n-back task from Shin et al. 2018

This dataset consists of n-back tasks performed by 26 healthy participants. The experiment
consisted, for each participant, of 9 epochs (divided into 3 sessions) of each 0-back, 2-back, and
3-back. Each epoch consisted of 2 seconds of instructions, 40 seconds of task, and 20 seconds
of rest period. A random digit was given every 2 seconds displayed for 0.5 seconds and the
targets appeared with a 30% chance. The data was recorded with a NIRScout from NIRx Medical
Technologies, with wavelengths of 760 and 850 nm and a sampling rate of 10 Hz. It is composed
of 16 sources and 16 detectors placed around the frontal, motor, parietal and occipital areas,
resulting in 36 channels of HbO and 36 channels of HbR, with a source-detector distance of 30
mm. More details can be found in [155]. This dataset has been used for classification between
0-back, 2-back, and 3-back.

Word generation task from Shin et al. 2018

This dataset consists of word generation tasks performed by the same 26 healthy participants
as the previous dataset. The experiment consisted, for each participant, of 30 epochs (divided
into 3 sessions) of each word generation and baseline task. Each epoch consisted of a 2-second
instruction showing an initial single letter for word generation or the fixation cross for baseline, a
10-second task period with a fixation cross, and a 13- to 15-second rest period also with a fixation
cross. The hardware settings were the same as the previous dataset. More details can be found
in [155]. This dataset has been used for classification between baseline task and word generation.

Mental arithmetic task from Shin et al. 2016

This dataset consists of mental arithmetic tasks performed by 29 healthy participants. The
experiment consisted, for each participant, of 30 epochs (divided into 3 sessions) of each mental
arithmetic and baseline task. Each epoch displayed the subtraction for 2 seconds, had a 10-second
task period with a fixation cross, and a 15- to 17-second rest period also with a fixation cross.
The data was recorded with a NIRScout from NIRx Medical Technologies, with a sampling rate
of 10 Hz. It is composed of 14 sources and 16 detectors placed around the frontal, motor, and
visual areas, resulting in 36 channels at 760 nm and 36 channels at 850 nm, with a source-detector
distance of 30 mm. More details can be found in [154]. This dataset has been used for classification
between baseline task and mental arithmetic.
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Motor execution task from Bak et al. 2019

This dataset consists of finger and foot-tapping tasks performed by 30 healthy participants.
The experiment consisted, for each participant, of 25 epochs of each right-hand finger tapping,
left-hand finger tapping, and foot tapping. Each epoch contained a 2-second introduction, 10
seconds of actual task, and a 17- to 19-second rest period. The finger tapping was performed at 2
Hz and the foot tapping at 1 Hz. The data was recorded with a LIGHTNIRS from Shimadzu,
with a sampling rate of 13.3 Hz. It is composed of 8 sources and 8 detectors around the motor
cortex, resulting in 20 channels of HbO and 20 channels of HbR, with a source-detector distance
of 30 mm. More details can be found in [7]. This dataset has been used for classification between
right-hand finger tapping, left-hand finger tapping, and foot tapping.

Table 3.1: Information about the datasets including the different conditions, number of subjects
and total number of blocs across all subjects, for each dataset. The total number of epochs is
calculated as: number of subjects x number of conditions x number of epochs per condition.

Dataset Conditions N subjects Total number of epochs

Herff et al. 2014 1-back; 2-back; 3-back 10 300

Shin et al. 2018 0-back; 2-back; 3-back 26 702

Shin et al. 2018 baseline; word generation 26 1560

Shin et al. 2016 baseline; mental arithmetic 29 1740

Bak et al. 2019 right hand; left hand; foot 30 2250

3.2.2 Pre-processing of fNIRS data

In addition to loading fNIRS data from the open-access datasets, the software enables to
pre-process it. This consists in converting the raw data measured by fNIRS (voltage of the
measured light intensity data for each channel) into physiologically interpretable data, namely
HbO and HbR concentration changes, using the modified Beer-Lambert law (MBLL).

Datasets from [66], [155], and [7] already provided HbO and HbR concentration change data
while the dataset from [154] provided light intensity data. This is why data from [154] was
automatically converted in BenchNIRS into optical density changes, relative to the average on the
whole measurements for each channel. Then the MBLL [44] was applied to obtain changes in HbO
and HbR. The [172] molar extinction coefficient table was used and the differential pathlength
factor (DPF)s set to 6.0, as those are the most common in the literature and various fNIRS
software. As per [154], the source-detector distances used were 3 cm.

This pre-processing relies on NIRSimple4, a Python library developed in the context of this
thesis and created for easily pre-processing fNIRS data, following the equations described in 2.1.1.
It provides functions to convert light intensity fNIRS data or optical density fNIRS data into
optical density changes relative to a reference or to the average across the whole measurement, and
then to obtain concentration changes in hemoglobin (HbO and HbR), with a choice of different
molar extinction coefficients datasets that can work for fNIRS brain recordings collected on
adult or infants found in the literature [36, 139, 172, 183]. For each channel, the source-detector
distance can be specified with different units, as well as the DPF and wavelengths that are used
to match the extinction coefficients.

NIRSimple answers to the lack of a library to convert raw light intensity into concentration
changes in Python. It has the advantage of working with any type of format as long as it can

4https://github.com/HanBnrd/NIRSimple
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be opened with Python, and offers a wide choice of molar extinction coefficients, with all the
most popular in the fNIRS community. It was important to develop such a tool in Python as this
language becomes more and more popular thanks to its ease of use for machine learning, which is
the focus of this thesis. Finally, NIRSimple integrates well with the MNE Python open-source
library [60] which is one of the most popular for signal processing in neuroscience, with more
than 200 contributors. NIRSimple is made available on PyPI5 and its documentation can be
found online6 and in the appendices.

3.2.3 Signal processing of fNIRS data

Following up, BenchNIRS enables to perform signal processing on the fNIRS data with
state-of-the-art methods. This is done relying on MNE-Python [61]. The HbO and HbR changes
can be processed with TDDR [49] to correct motion artefacts. A bandpass, lowpass, or highpass
infinite impulse response (IIR) Butterworth filter can also be applied, with adjustable order and
cutoff frequencies. A bandpass filter of order 4 with cutoff frequencies of 0.01 and 0.5 Hz is
recommended with the supported datasets to remove instrumental noise and noise related to
heartbeat and slow drifts [119], without clashing with the experimental design of those datasets
that can be loaded automatically with BenchNIRS (task durations ranging from 10 to 44 seconds
resulting in task frequencies from 1/44 = 0.02 Hz to 1/10 = 0.1 Hz).

The original channels can be used, or they can be averaged by region of interest [119, 138] to
end up with a left-hemisphere average and right-hemisphere average for each HbO and HbR in
the appropriate brain area depending on the tasks of the supported datasets:

• mental workload tasks such as n-back, mental arithmetic, and word generation have been
shown to elicit brain activity in the PFC so the hemisphere averages can be performed in
that area for the mental workload task datasets [54, 119];

• motor execution has been shown to elicit brain activity in the motor cortex so the hemisphere
averages can be performed in that area for the motor execution task dataset [14, 119].

This can be useful for having inputs of the same shape between datasets, as will be used in
Chapter 4.

5https://pypi.org/project/nirsimple/
6https://hanbnrd.github.io/NIRSimple/
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Figure 3.1: Maps of the regions of interest as circled in the red areas. Top: n-back dataset from
Herff et al. 2014, fNIRS channels are represented by black lines with CH labels, each region of
interest was an averaging of 4 channels. Bottom: n-back and word generation datasets from Shin
et al. 2018, fNIRS channels are represented by red dots, each region of interest was an averaging

of 7 channels.

41



Figure 3.2: Maps of the regions of interest as circled in the red areas. Top: mental arithmetic
dataset from Shin et al. 2016, fNIRS channels are represented by black lines between red

(sources) and green (receptor) squares, each region of interest was an averaging of 4 channels.
Bottom: motor execution dataset from Bak et al. 2019, fNIRS channels are represented by yellow

squares, each region of interest was an averaging of 10 channels.

This results in a total of 4 regions of interest for each dataset. A detail of the regions of interest
for each dataset can be found in Figures 3.1 and 3.2. This region of interest averaging is useful to
have the same resulting number of channels for each dataset for the purpose of comparison and
benchmarking between datasets, since different fNIRS devices with different number of optodes
are used. Because this action was quite fastidious to achieve with MNE-Python initially, a
contribution has been made to the library in order to simplify the API for combining channels by
region of interest7.

BenchNIRS then enables the epoching (extraction of segments of interest) of data based on
7https://github.com/mne-tools/mne-python/pull/8014
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markers specific to each dataset (onset triggers and task duration), and a baseline correction can
be performed such that the average on the baseline prior to each task is null for each channel
or region of interest of each type. This baseline duration can be adjusted, though the duration
as initially designed for each dataset is indicated in the documentation; this would typically be
the duration of the instruction segments just prior to each task’s onset trigger. The epochs are
down-sampled to 10 Hz so that every dataset ends up with the same sampling frequency and to
reduce computing demand for the following machine learning execution.

This signal processing relies on the open-source MNE-Python library [60] to return an MNE
Epochs object8 from which the data can be extracted as a matrix with three dimensions: the
number of epochs, the number of channels, and the number of timepoints.

3.2.4 Data conditioning for machine learning

Following up, BenchNIRS provides a function to condition data for machine learning to fit a
variety of approaches. This function crops out the baseline prior to the task used for correction,
and enables to use epochs with full task duration, epochs with cropped task duration, or epochs
split with a sliding window. The duration to which the epochs can be cropped can be adjusted,
for example to select only the first seconds of the task. If used, the length of the sliding window
for splitting the epochs into smaller segments can also be adjusted, which is useful to create more
examples from a limited number of epochs. Finally, the data in M is converted into µM.

This function can be used not only with the supported datasets described in 3.2.1, but also
with any dataset as long as the data is formatted as an MNE Epochs object9. It will in the end
return an array with all the examples of conditioned fNIRS data, with the matching labels and
the matching subject indices.

3.2.5 Feature extraction

Optionally, temporal features can be extracted with the API and used as input of machine
learning models. The features that can be extracted here are 3 of the most popular in the fNIRS
literature [119]:

• the mean of each channel or region of interest of each hemoglobin type across time for each
example;

• the standard deviation of each channel or region of interest of each hemoglobin type across
time for each example;

• the slope of the linear regression of each channel or region of interest of each hemoglobin
type across time for each example.

3.2.6 Machine learning

The core of BenchNIRS is to provide functions to train, optimise and evaluate machine
learning models for classification from fNIRS data.

Nested cross-validation is implemented [12]: evaluation is performed on the outer 5-fold
cross-validation and the inner 3-fold cross-validation is used for hyperparameter selection (fine
tuning) if any. A list of hyperparameters to be evaluated and selected with grid search can be
provided. For each iteration of the outer cross-validation, after having selected hyperparameters,
the model is re-trained with the best set of hyperparameters on the training and validation sets,
to be evaluated on the test set; the maximum number of epochs for deep learning models can be
specified and early stopping is performed using 20% randomly left out to avoid overfitting. This

8https://mne.tools/stable/generated/mne.Epochs.html
9https://mne.tools/stable/generated/mne.Epochs.html

43

https://mne.tools/stable/generated/mne.Epochs.html
https://mne.tools/stable/generated/mne.Epochs.html


consists in stopping deep learning training before the maximum number of epochs of if the loss
on the 20% left out increased (non-strictly) for 5 consecutive epochs.

The data can optionally be normalised with min-max scaling, by computing minimums and
maximums on the training and validation sets only (so excluding the test set for an unbiased
normalisation) for each iteration of the outer cross-validation. The random state can be fixed so
that the results are easily reproducible. The cross-validation splits are saved along with deep
learning model weight, in order to later on load the trained models.

One can use this methodology with a subject-independent approach (unseen subject classi-
fication) where a group k-fold nested cross-validation will be performed, or a subject-specific
approach where a stratified k-fold nested cross-validation (without shuffling to leave the test set
out in order to address temporal leakage). The training set size can also be reduced to study the
influence of its size.

Metrics including accuracy, precision, recall, and F1 score can be produced. Graphs are
plotted and saved as images (with a colour-blind palette for accessibility) including training graphs
(accuracy and loss), confusion matrices, as well as bar plots and graphs with 95% confidence
intervals for overall result comparisons (examples are shown in Chapter 4).

While this machine learning methodology can be used easily with any deep learning model
implemented using classes from the PyTorch library [126], the implementation of default models
is also provided in BenchNIRS as benchmarking examples on the supported datasets, including
LDA, SVC, kNN, ANN, CNN and LSTM. Following up is a description of those models.

Traditional machine learning

Firstly, 3 traditional machine learning models are implemented:

• LDA [34] classifiers learn a linear decision surface to split the data into different classes.
They have the advantage of not having any hyperparameter to tune and a low computational
cost. The LDA model implemented here uses features extracted from the signals as described
in 3.2.5.

• SVM [64] classifiers or SVCs aim to find a hyperplane able to separate the data with
maximal margin with respect to data points of each class. A SVC with a linear kernel
or linear SVC uses a linear decision surface similarly to the LDA with the difference of
it being fitted with margin maximisation. It uses a regularisation hyperparameter that
needs to be tuned. The linear SVC implemented here also uses the features extracted from
the signals. The regularisation parameter can be optimised following the hyperparameter
selection procedure described previously. The maximum number of iterations is set to
250,000 in order to guarantee convergence.

• kNN [4] is a non-parametric classification algorithm using the closest k points from the
training data in order to make a prediction on the class. Here, we use a majority vote with
those labelled k points. The kNN classifier implemented here also uses features extracted
from the signals, and the algorithm uses a uniform weighting of the k nearest neighbours
meaning that each point is weighted equally in the voting. The number of neighbours k is a
hyperparameter of the algorithm that can be tuned according to the same procedure as the
other models described previously.

BenchNIRS relies on Scikit-learn [128] for the implementation of those traditional machine
learning models.

Deep learning

Secondly, 3 deep-learning models are implemented:

44



• ANNs [110] are the simplest type of neural network. Neural networks are composed of units
called artificial neurons arranged into layers, whose outputs are computed by a non-linear
function of the weighted sum of its inputs from the previous layer. This process happens
until the last layer, where a probability distribution for the classes is computed, enabling to
get a prediction. The ANN implemented here uses temporal features extracted from the
signals as well, and works on data with region of interest averaging as described in 3.2.3.
Hence, the input layer is composed of 12 neurons, followed by 2 fully connected layers of
respectively 8 and 4 neurons, finished by an output layer of 2 or 3 neurons depending on
the number of classes for the dataset. It uses rectified linear unit (ReLU) as the activation
functions for the hidden layers and a cross-entropy loss. The Adam optimiser was used
due to its good and reliable performance across many deep learning problems [149]. It is
an optimiser based on adaptive estimates of lower-order moments [88]. The learning rate
and mini-batch size can be optimised following the hyperparameter selection procedure
described previously.

• CNNs [96] are an extension of neural networks to which convolutional and pooling layers have
been added. They use kernels sliding along the input dimensions so that it is transformed
in a space-invariant way, in an attempt to simplify complex patterns by learning how to
extract features. A CNN is typically composed of convolutional layers followed by standard
neural network layers. The CNN implemented here works on 100-timepoint inputs (10
seconds of 10 Hz data) with region of interest averaging, and therefore does not use any
temporal feature extraction. It is composed of 2 one-dimensional convolutional layers across
the time axis: the first one with 4 input channels and 4 output channels, a kernel size
of 10 (one-dimension kernel), and a stride of 2; the second one with 4 input channels
and 4 output channels, a kernel size of 5 (one-dimension kernel) and a stride of 2. Each
convolutional layer is followed by a one-dimensional max pooling across the time axis with
a kernel size of 2. Those convolutions and max poolings are followed by 2 fully connected
layers of 20 and 10 neurons respectively, followed to finish with by an output layer of 2 or 3
neurons depending on the number of classes for the dataset. It uses rectified linear unit
(ReLU) as the activation functions for the hidden layers, Adam as the optimiser, and a
cross-entropy loss. The learning rate and mini-batch size can be optimised following the
procedure described previously.

• LSTM neural networks [69] belong to the family of RNNs. RNNs [144] can be seen as
simple neural networks allowing new inputs of a sequence to be treated in the context of
previous inputs of that sequence. LSTMs are an extension of that using a memory cell in
order to learn longer-term dependencies. They are useful compared to RNNs as they allow
to overcome the vanishing gradient problem. The LSTM implemented here uses the signal
processed data without feature extraction as well, also with region of interest averaging.
It uses one LSTM recurring unit with an input size of 80 (each input being arranged as a
sequence of elements of 20 timepoints (2 seconds of 10 Hz data) on 4 regions of interest) and
a hidden size of 36. It is then followed by a fully connected layer of 16 neurons, followed
to finish with by an output layer of 2 or 3 neurons depending on the number of classes of
the dataset. The model uses rectified linear unit (ReLU) as the activation functions for
each hidden layer except the LSTM unit using hyperbolic tangent (tanh), Adam as the
optimiser, and a cross-entropy loss function. Again, the learning rate and the mini-batch
size can be optimised following the same procedure described previously.

BenchNIRS relies on PyTorch [126] for the implementation of those deep learning models.
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Figure 3.3: Screenshot of the online documentation of a BenchNIRS function.

3.2.7 Documentation, installation and use case

Docstring (special text used in source code to provide documentation) is present in the code
which enables support to have documentation right within integrated development environments.
The framework also benefits from an extended documentation that can be accessed online10. A
screenshot of that documentation is presented in Figure 3.3. All the functions described previously
are detailed along with their different parameters and outputs. This extended documentation
also has installation instructions (with requirements), a recommendation checklist (detailed in
3.3.1) and use case examples demonstrating for instance how the framework can be used to train,
fine-tune and evaluate a CNN model for task classification on the 5 supported datasets. The
documentation of BenchNIRS can be found in the appendices of this thesis.

Instructions on how to install the framework and download the open-access datasets sup-
ported by it are also found in the documentation. The full framework including examples and
recommendations can be downloaded from GitLab, or the package containing the core functions
described previously can be directly installed using pip with a simple command:

To sum up, we use two different terms to define BenchNIRS : framework and software package.
The software package contains the Python 3 functions (with their docstring) for loading the
datasets, performing pre-processing, signal processing, feature extraction, and machine learning
and can be downloaded and installed with all the requirements from PyPI using pip11 with the
following command:

pip install benchnirs
10https://hanbnrd.gitlab.io/benchnirs/
11https://pypi.org/project/benchnirs/
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Meanwhile, the framework includes the software package but also the extended documentation,
example scripts, and the recommendation checklist for machine learning with fNIRS. It also
contains some examples of statistical analysis to compare results to chance level and to compare
models to each other. It is in the form of an online Git repository and can be downloaded from
GitLab12.

In practice, BenchNIRS can be used in different use cases:

• It can be used when a user wants to use a default provided model with an open-access
dataset supported by the framework, for example to reproduce benchmarks. This can be
done in a couple of lines of Python 3 code:

import benchnirs as bn
epochs = bn.load_dataset(’shin_2018_nb ’)
data = bn.process_epochs(epochs[’0-back’, ’2-back’, ’3-back’])
results = bn.deep_learn(*data , ’ann’)
print(results)

• However, BenchNIRS is mainly provided as a tool to facilitate the development of new
machine learning models. As such, users can develop their own deep learning model classes
with PyTorch, and use the framework to train those models for classification on any of the
5 supported datasets. An example of such practice, after defining a PyTorch model class
called my_model would be the following lines of code:

import benchnirs as bn
epochs = bn.load_dataset(’herff_2014_nb ’)
data = bn.process_epochs(epochs[’1-back’, ’2-back’, ’3-back’])
results = bn.deep_learn(*data , my_model)
print(results)

• Finally, the framework can also be used to develop new machine learning models on other
datasets, as long as they can be loaded as MNE Epochs objects. This can be done (assuming
the user defined a PyTorch model class my_model and a dataset Epochs variable my_epochs)
with the following lines of code:

import benchnirs as bn
data = bn.process_epochs(my_epochs)
results = bn.deep_learn(*data , my_model)
print(results)

3.2.8 Development

BenchNIRS was designed as a collaborative Git repository right from the beginning. It is
available in open source on GitLab13 under the GNU General Public License v3+. Improvements
were made iteratively following a Git workflow for continuous delivery, where the main branch of
the project is always in a working state, and improvements are made through feature branches that
are merged to the main branch after ensuring everything still works as expected. Before merging,
each of the improvements is detailed in a changelog to inform the users of changes between
versions. The development follows Python’s PEP 8 conventions to produce a high-quality and
easily maintainable code, documented following the NumPy Python Style Docstring14. Automatic
pipelines facilitate continuous integration and continuous delivery by automatically building the
online documentation using Sphinx15 and automatically publishing the software package on the
PyPI16 software repository for easy installation by the users using pip.

12https://gitlab.com/HanBnrd/benchnirs
13https://gitlab.com/HanBnrd/benchnirs
14https://numpydoc.readthedocs.io/en/latest/format.html
15https://www.sphinx-doc.org/en/master/
16https://pypi.org/project/benchnirs/
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3.3 Discussion

3.3.1 Best practices for machine learning with fNIRS

The development of BenchNIRS made us reflect on best practices for machine learning
specifically applied to fNIRS, which resulted in the proposition of a set of recommendations.

First and foremost, we would like to encourage fNIRS machine learning researchers to follow
fNIRS specific guidelines already described in important previous work for signal processing
with [134] and [147], but also best practices for publications with [176]. Further to these, to
complement our answer to RQ1 and in line with other fields of application [115], we provide
recommendations that we believe important when using machine learning for classification from
fNIRS data, based upon the practice of making our framework. Some of these recommendations
have become standard processes in machine learning, but aspects are often missed in recent
machine learning papers within the fNIRS community.

The first recommendations are methodology-related which we list as the following checklist:

• Is the classification goal adequate with regards to the experimental design of the dataset
(for example to avoid using return to baseline as control baseline epochs or to avoid bias
related to order effect)?

• Has nested cross-validation (also called double cross-validation) been used, with the outer
cross-validation (leaving out the test sets) for evaluation and the inner cross-validation
(leaving out the validation sets) for the optimisation of models?

• Have the hyperparameters been optimised on validation sets and with what method (eg.
grid search, random search, etc.)?

• Have test sets been used for evaluation and nothing else (no optimisation should be performed
with the test set)?

• Have the training, validation, and test sets been created in accordance with what the model
is hypothesised to generalise (eg. unseen subject, unseen session, etc.), using group k-fold
cross-validation if necessary?

• Has it been ensured that test data was not included when performing normalisation?

• Has it been ensured that there was no overlap between training, validation, and test sets,
especially when using a sliding window for the extraction of epochs?

• If in the presence of class imbalance, has it been taken into account with the use of
appropriate metrics (eg. F1 score)?

• Has a statistical analysis been performed to demonstrate the significance of the results
compared to chance level and other models?

Where relevant, these points have been implemented in our framework and we therefore
encourage researchers to use it for time-saving and reproducibility purposes.

The second recommendations are related to the reporting which we list as the following
checklist:

• Has the data used as input for the classifier and its shape been described?

• Has the number of input examples in the dataset been stated?

• Have the details related to the cross-validation implementation and whether it involves data
shuffling been provided?

48



• Have the details of each model used including the architecture of the model and every
hyperparameter been provided?

• Has it been described which hyperparameters have been optimised and how?

• Have the number of classes and chance level clearly been stated?

• Have all the information related to the statistical analysis of the results, including the name
of the tests, the verification of their assumptions and the p-values, been provided?

Finally, we invite researchers to have a look at guidance from the machine learning community
regarding reproducibility17 and research code publication18.

We make this list of recommendations available in the framework as a checklist19, and hope
this can act as a starting point for the community to contribute to a more exhaustive checklist
for the field of machine learning applied to fNIRS.

3.3.2 Community contributions

To give concrete material to answer RQ1, the framework developed here, including the
list of recommendations from machine learning with fNIRS is made available as an online Git
repository20.

The repository is open to community contribution in order to improve the recommendation
checklist, add support for new open-access datasets, improve the implementation of the machine
learning methodology and add support for new machine learning approaches, or improve the
production of results and figures. Guidance on how to contribute can be found on the repository
page.

Furthermore, we encourage researchers to use the framework if they wish to compare the
results obtained with their machine learning models on the datasets supported by BenchNIRS
with the proposed methodology.

3.4 Summary

This work has introduced an open-source framework called BenchNIRS for machine learning
with fNIRS. It enables to train, optimise and evaluate machine learning models for classification
from fNIRS data, and more specifically to perform the benchmarking of machine learning with
fNIRS enabling researchers to robustly validate classification results on 5 open-access datasets
published by the community.

We invite the fNIRS community to use the framework when performing classification with
their own machine learning models for a convenient evaluation on open-access data. We welcome
contributions to extend and strengthen the guidelines that we propose as well as the implementation
of the machine learning methodology.

17https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
18https://github.com/paperswithcode/releasing-research-code
19https://gitlab.com/HanBnrd/benchnirs/-/blob/main/CHECKLIST.md
20https://gitlab.com/HanBnrd/benchnirs
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Chapter 4

Benchmarks and influencing factors for
fNIRS classification

• RQ2 : What are the benchmarks of popular machine learning models on various tasks from
open access fNIRS datasets?

• RQ3 : Across these benchmarks, what factors influence the machine learning classification
accuracy?

– RQ3a: What is the influence of the number of examples used for training machine
learning models on classification accuracy?

– RQ3b: What is the influence of the time window length of inputs on classification
accuracy?

– RQ3c: What is the influence of using a sliding window on classification accuracy as
opposed to using epochs starting at the beginning of each task?

– RQ3d : What is the influence of using a subject-specific approach (classification of
data within subjects) on classification accuracy as opposed to a subject-independent
approach (classification of data from unseen subjects)?

4.1 Introduction

Directly following up on the work done in Chapter 3, we here take BenchNIRS in a concrete
use case, to provide along with it a benchmarking of popular machine learning models for the
classification of fNIRS data on 5 open-access datasets.

We therefore ask the following research question:

• RQ2 : What are the benchmarks of popular machine learning models on various tasks from
open access fNIRS datasets?

However, this question cannot be answered by itself without considering the huge variety of
approaches and settings when performing machine learning with fNIRS.

First, the datasets used by different researchers can vary greatly in size, and consequently
in the number of examples for each of the classes. On the OpenfNIRS website1, we can for
example find open-access datasets with fNIRS recordings ranging from 7 to 43 subjects [58, 177].
It is argued that the dataset size can influence the performance of machine learning and more
specifically deep learning models [59], so we can ask ourselves what is the actual impact of this
dataset size in the context of fNIRS data.

1https://openfnirs.org/data/
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Also, some authors will prefer a subject-specific approach while others prefer a subject-
independent approach. For example, Hennrich et al. [65] or Trakoolwilaiwan et al. [162]
used subject-specific approaches, while Lim et al. [98] or Liu et al. [101] investigated subject-
independent approaches.

Furthermore, the duration of data segments used as inputs of models and the way they are
extracted can also vary depending on the task, study design decisions, and constraints. For
example, Herff et al. studied window durations ranging from 5 to 40 seconds [66], while Zafar et
al. used different window durations spanning from 1 to 5 seconds at different placements after
the onset trigger [179], and Shin et al. used a 3-second sliding window[153].

This is why an important point to complement benchmarking is to study the influence of
those different factors on the classification performance.

Therefore, we ask the subsequent research question:

• RQ3 : Across these benchmarks, what factors influence the machine learning classification
accuracy?

More specifically, as we delve into the specifics of what influences classification accuracy, we
ask:

• RQ3a: What is the influence of the number of examples used for training machine learning
models on classification accuracy?

• RQ3b: What is the influence of the time window length of inputs on classification accuracy?

• RQ3c: What is the influence of using a sliding window on classification accuracy as opposed
to using epochs starting at the beginning of each task?

• RQ3d : What is the influence of using a subject-specific approach (classification of data
within subjects) on classification accuracy as opposed to a subject-independent approach
(classification of data from unseen subjects)?

In this chapter, we will then present the methodology and results of all those benchmarks,
made using the BenchNIRS framework.

4.2 Methods

We evaluated 6 machine learning models (LDA, SVC, kNN, ANN, CNN and LSTM) on the
5 open-access datasets supported BenchNIRS (two n-back datasets, a word generation dataset,
a mental arithmetic dataset, and a motor execution dataset) in a multi-model multi-dataset
benchmarking. Each dataset was analysed separately, and statistical tests were performed (using
SciPy [166]) to answer the different research questions stated in the introduction, with a threshold
of significance set at 5% for all of them. All the methods described below have been implemented,
relying on BenchNIRS, and are made available in open source along with the framework on
GitLab2.

4.2.1 Data

The 5 open-access fNIRS datasets that can be loaded with BenchNIRS were used for this
multi-dataset multi-model comparison, for which more information can be found in Chapter 3.

The first one is the dataset of n-back task collected by Herff et al. [66], containing 3 classes:
1-, 2-, and 3-back. It was composed of recordings of 10 subjects for a total of 100 examples per
class.

2https://gitlab.com/HanBnrd/benchnirs
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The second dataset is from Shin et al. who recorded also n-back tasks [155], with 3 classes:
0-, 2-, and 3-back. It was recorded on 26 subjects for a total of 234 examples per class.

The third is word generation data collected by Shin et al. during the same study as the n-back
one [155]. It was composed of data of 2 classes: word generation, and baseline; for a total of 780
examples per class recorded on the same 26 subjects as the n-back study.

The fourth dataset collected by Shin et al. was composed of data from a mental arithmetic
task [154], composed of 2 classes: mental arithmetic, and baseline. Recordings from 29 subjects
resulted in a total of 870 examples per class.

Finally, the fifth dataset of motor execution tasks was collected by Bak et al. [7], composed
of 3 classes: right hand, left hand, and foot tapping. This was recorded on 30 subjects with a
total of 750 examples per class.

4.2.2 Signal processing and feature extraction

All those datasets were processed with the same pipeline using BenchNIRS.
The data was first converted into HbO and HbR for the dataset that only provided light

intensity data, namely the dataset of mental arithmetic tasks from Shin et al. [153]. This was
done by converting into optical density changes relative to the average on the whole measurements
for each channel, and then applying the MBLL [44] with the molar extinction coefficient table
from [172] and a DPF of 6.0.

TDDR [49] was then applied on all the datasets to remove motion artefacts, followed by a
Butterworth IIR bandpass filtering of fourth order with cutoff frequencies of 0.01 and 0.5 Hz.

Then, the channels were averaged by regions of interest, one per hemisphere, for the purpose
of comparison (to have the same number of channels for each dataset) following Figures 3.1 and
3.2 as described in Chapter 3, and the data was downsampled to 10 Hz for every dataset.

Epoching was performed using the task onset triggers and with a baseline correction using 2
seconds prior to the task onset, corresponding to the shortest duration of instruction amongst
the datasets from [155] and [7] for a fair comparison, meaning that longer durations would be
cropped down to 2 seconds.

Finally, every epoch of every dataset was cropped down to the shortest epoch duration
available of 10 seconds from the onset triggers ([155], [154] and [7]), so that examples would have
the same shape across all the datasets.

In the end, the shape of each example was 4x100, representing HbO and HbR in each
hemisphere multiplied by 100 timepoints (10 seconds of 10 Hz signals). This is what was used as
input for the CNN and LSTM models.

Temporal features have been extracted and used as input for 4 of the 6 models tested here:
the LDA, SVM, kNN, and ANN. This was not done for the CNN to let it extract features from
raw data and the LSTM to let it learn temporal dependencies from the raw data. The features
extracted here are 3 of the most popular in the fNIRS literature [119]:

• the mean for each region of interest of each type across time;

• the standard deviation for each region of interest of each type across time;

• the slope of the linear regression for each region of interest of each type across time.

So for the LDA, SVC, kNN and ANN models, one input consisted of the mean, standard deviation
and slope of the linear regression for each hemisphere and each chromophore simultaneously,
resulting in a shape of 4x3 per example.

4.2.3 Machine learning

6 supervised machine learning models were compared on all the datasets, this includes 3
traditional machine learning models and 3 deep learning models. Those models were the default
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models provided along with the framework and more details about them can be found in Chapter
3. They are summarised here thereafter.

For the traditional machine learning, the following models were evaluated:

• LDA

• SVC with linear kernel

• kNN with uniform weighting

For deep learning, the following models, described in Chapter 3 with more details, were
evaluated:

• ANN

• CNN

• LSTM

Nested cross-validation was used as implemented in the framework for hyperparameter selection
and evaluation of the models.

The hyperparameters optimised for the traditional machine learning approaches were the
regularisation parameter for the SVC and k the number of nearest neighbours for the kNN. For
the deep learning approaches, the learning rate and the mini-batch size were optimised, as those
parameters are known to influence models the most [12]. The optimisation was done within the
following ranges using grid search following common machine learning practice [12, 128]:

• the regularisation parameter’s values tested were 0.001, 0.01, 0.1 and 1;

• the values of k (number of nearest neighbours) tested were the integers from 1 to 9;

• the learning rate’s values tested were 1× 10−5, 1× 10−4, 1× 10−3, 1× 10−2, 1× 10−1;

• the mini-batch sizes tested were 4, 8, 16, 32 and 64.

All those models were trained on the CPU (Intel Xeon E5 v3 processor) as GPUs did not
provide much time advantage in this case (small dataset sizes, time series data).

4.2.4 Subject-independent approach

The first approach evaluated is the subject-independent approach, in which the generalisation
goal consists in classifying the task’s condition (class) from fNIRS data on unseen subjects.

For the nested cross-validation, the outer cross-validation consisted of a group 5-fold cross-
validation to leave the test set out, such that the same subject’s data cannot end up in both the
training and validation set and the test set. This outer cross-validation was used to evaluate the
different machine learning models for each dataset. This was made so that the results reflect the
performance of a classifier of data from unseen subjects. The inner cross-validation consisted
of another group 3-fold cross-validation to separate training and validation sets. This inner
cross-validation was used for hyperparameter selection, choosing hyperparameters based on the
accuracy on the validation set (accuracy was chosen since the classes of every dataset were
perfectly balanced).

In addition to that, early stopping was performed for the deep learning models to avoid
overfitting. This early stopping was done after the best hyperparameters were selected and the
model was retrained on the whole training and validation sets except 20% randomly left out
to perform this early stopping. This consisted in stopping deep learning training before the
maximum number of epochs of 100 if the loss on the 20% left out increased (non-strictly) for 5
consecutive epochs.

Overall, the parts of the method that could be affected by the random seed were:
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• the shuffling of the training and validation set (this has an influence on the models with
hyperparameter optimisation);

• the selection of the 20% validation set used for early stopping;

• the weight initialisation of the deep learning models.

Regarding the results, the accuracies on each of the 5 outer folds were averaged to determine
the overall accuracy for each model of each dataset. This metric was used for reference rather
than others such as F1 score because of its simplicity and the perfect class balance of each dataset
(no epoch rejection was performed).

For each model and each dataset, a one-tailed t-test was used (using the accuracy values on
each outer fold) to determine whether its accuracy was greater than chance level if the distribution
of the accuracies of the model on the outer folds followed a normal distribution as tested with a
Shapiro test; otherwise, a one-tailed Wilcoxon test was used.

Next, a statistical analysis was run with the accuracy values on each outer fold to compare
models to each other within each dataset. For this purpose a one-way analysis of variance
(ANOVA) test was performed if the normality and the homoscedasticity were not excluded with
Shapiro tests and a Bartlett test respectively, otherwise, a non-parametric Kruskal–Wallis test was
used. If an effect of the model was identified, one-tailed paired t-tests with Bonferroni correction
were used to compare each model against the others.

In addition to those results, a confusion matrix was produced for each model of each dataset,
comparing the predictions made across all the outer folds against the true class labels (those can
be found in the appendices).

4.2.5 Influence of the number of training examples (subject-independent ap-
proach)

In addition to comparing the different models, the influence of the training set size was also
studied with this subject-independent approach. For that purpose, after leaving out the test set,
a proportion of the training and validation set was discarded using the BenchNIRS API. This
way we studied variations from 0 to 50% discarded of the training data by stride of 10% for every
dataset. The same procedure was then applied in terms of validation and hyperparameter search.

The correlation between the training set proportion used and the accuracy was studied with
a Pearson’s correlation test for each model of each dataset if the assumption of normality was
verified as per a Shapiro test, otherwise, a Spearman test was used.

4.2.6 Influence of the time window length (subject-independent approach)

The influence of the time window length was also studied with the subject-independent
approach. We compared here epochs of 2, 3, 4, 5, 6, 7, 8, 9, and 10 seconds from the onset trigger
marking the start of each task. Again, the same procedure of validation and hyperparameter
search was used.

The same way as before, correlations between the window length and the accuracy were
studied with a Pearson’s correlation test for each model of each dataset if the assumption of
normality was verified as per a Shapiro test, otherwise a Spearman’s correlation test was used.

This approach enabled the comparison of the 4 models using feature extraction: LDA, SVC,
kNN, and ANN. This is because comparing the models using the data without feature extraction
would have required changing the architecture of those models for each window length which
would have added too many variables in the comparison.
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4.2.7 Subject-independent approach with sliding window

Furthermore, the same procedure as the subject-independent approach was used but with a
2-second sliding window on the 10-second epochs instead of the 10 seconds at once. No overlapping
was used between the different time windows in this case, so it was equivalent to splitting each
10-second epoch into five smaller 2-second epochs, multiplying the total number of epochs by
five. Therefore, it enabled us to build models making each inference from only 2 seconds worth of
fNIRS signal.

This approach enabled the comparison of the 4 models using feature extraction: LDA, SVC,
kNN, and ANN. This is because comparing the models using the data without feature extraction
would have required changing the architecture of those models compared to the initial approach.

4.2.8 Subject-specific approach

Finally, we studied a subject-specific approach, in which the generalisation goal was to
classify the task’s condition from fNIRS data on an unseen part of the recording for each subject
individually. This consisted in training, optimising, and evaluating each of the classifiers on each
subject of each dataset individually. Therefore, the same procedure as the subject-independent
approach was used but with each participant of each dataset individually. The only difference was
that the outer and inner cross-validations consisted of stratified 5-fold and 3-fold cross-validations
respectively instead of group k-fold, such that the class distribution remained balanced in the
training, validation, and test sets.

4.3 Results

4.3.1 Subject-independent approach

The models are first compared to each other with the maximum number of training examples
available and the maximum time window length of 10 seconds, which took 29 hours and 7 minutes
to run with the configuration described previously.

The results for each dataset can be found in Figure 4.1 and Table 4.1.

Figure 4.1: Accuracies of the models on each dataset with the subject-independent approach,
models are all using HbO and HbR simultaneously (95% confidence intervals related to the

variability on the 5-fold outer cross-validation are displayed).
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Table 4.1: Accuracies of the models on each dataset with the subject-independent approach,
models are all using HbO and HbR simultaneously. Fields marked with an asterisk indicate an
accuracy significantly greater than chance level at a 5% threshold, the standard deviation on the
5-fold outer cross-validation is in parenthesis.

Dataset Chance level LDA SVC kNN ANN CNN LSTM

Herff 2014 0.333 0.407 * 0.350 0.377 0.273 0.367 0.340

n-back (0.049) (0.038) (0.083) (0.033) (0.038) (0.049)

Shin 2018 0.333 0.389 * 0.350 0.316 0.325 0.393 * 0.344

n-back (0.026) (0.029) (0.026) (0.026) (0.049) (0.021)

Shin 2018 0.500 0.596 * 0.570 * 0.516 0.562 * 0.587 * 0.584 *

word generation (0.026) (0.026) (0.027) (0.028) (0.013) (0.008)

Shin 2016 0.500 0.591 * 0.576 * 0.545 * 0.579 * 0.602 * 0.592 *

mental arithmetic (0.035) (0.021) (0.022) (0.033) (0.026) (0.030)

Bak 2019 0.333 0.518 * 0.494 * 0.407 * 0.467 * 0.477 * 0.511 *

motor execution (0.068) (0.048) (0.019) (0.030) (0.059) (0.033)

On the n-back tasks from Herff et al. 2014 and Shin et al. 2018 the accuracy was found
significantly higher than chance level (33.3%) with the LDA with p-values of 0.020 and 0.006
respectively, reaching with 3 classes 40.7% and 38.9% respectively. For the Shin et al. 2018
dataset of n-back tasks the CNN accuracy of 39.3% was also found significantly higher than
chance level with a p-value of 0.037.

For the Shin et al. 2018 dataset of word generation tasks, significant differences compared to
chance level (50%) were found for the LDA, SVC, ANN, CNN and LSTM with p-values of 0.001,
0.031, 0.005, <0.001 and <0.001 respectively. For those models, the accuracy ranges from 57.0 to
59.6% for traditional machine learning and from 56.2 to 58.7% for deep learning. A Wilcoxon
test was used to test the significance on the SVC due to the non-normality of the distribution as
measured with a Shapiro test.

For the Shin et al. 2016 dataset of mental arithmetic tasks, significant differences compared
to chance level (50%) were found for all the models with p-values ranging from 0.001 to 0.004. A
Wilcoxon test was used here to test the significance on the kNN due to the non-normality of the
distribution as measured with a Shapiro test. The accuracies range from 54.5 to 59.1% for the
machine learning models and from 57.9 to 60.2% for the deep learning models.

Finally, for the Bak et al. 2019 dataset of motor execution tasks, significant differences
compared to chance level (33.3%) were also found for all the models implemented with p-values
up to 0.004. The accuracies range from 40.7 to 51.8% for the machine learning models and from
46.7 to 51.1% for the deep learning models.

A statistical influence of the model on the accuracy was found for each dataset except the
Shin et al. 2016 dataset of mental arithmetic tasks (Kruskal-Wallis tests were used for the Shin
et al. 2018 dataset of word generation and the Shin et al. 2016 dataset of mental arithmetic
because of non-normality). More specifically with pairwise t-tests, on the Shin et al. 2018 dataset
of n-back tasks, the accuracy of the LDA was found significantly greater than the accuracy of the
kNN. On the Shin et al. 2018 dataset of word generation tasks, the LDA and CNN accuracies
were found significantly greater than the kNN. Finally, on the Bak et al. 2019 dataset of motor
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execution tasks, the LSTM accuracy was found significantly greater than the kNN and ANN
accuracies.

A detail of the hyperparameters selected with grid search for each iteration of the outer cross-
validation can be found in the supplementary materials, as well as the results of the statistical
tests.

4.3.2 Influence of the number of training examples (subject-independent ap-
proach)

The correlation between the number of training examples and the classification accuracy is
shown, for each dataset and each model, in Table 4.2. This took 93 hours and 15 minutes to run.

Only two significant correlations were found with a threshold of 5%. The kNN on the Herff et
al. dataset of n-back tasks was negatively influenced by an increase in training examples with a
p-value of 0.039 and a correlation coefficient of -0.378. The other one was with the CNN on the
Bak et al. 2019 dataset of motor execution tasks where the accuracy was positively influenced by
the number of training examples with a p-value of 0.033 and a correlation coefficient of 0.390.

Table 4.2: Correlation coefficients of the relationship between accuracy and number of training
examples. Fields marked with an asterisk indicate a significant correlation at a 5% threshold.

Dataset LDA SVC kNN ANN CNN LSTM

Herff 2014 n-back 0.111 0.181 -0.378 * -0.340 0.043 -0.342

Shin 2018 n-back 0.087 0.026 0.083 -0.333 0.317 0.160

Shin 2018 word generation 0.148 -0.206 -0.080 -0.035 0.243 0.007

Shin 2016 mental arithmetic -0.102 -0.120 0.128 -0.268 -0.123 -0.008

Bak 2019 motor execution 0.120 0.059 0.265 0.143 0.390 * 0.187

4.3.3 Influence of the time window length (subject-independent approach)

The influence of the time window length used as input of the models on the classification
accuracy of the LDA, SVC, kNN, and ANN can be seen in Figure 4.2. This took 38 hours and 41
minutes to run.

For the Herff et al. 2014 dataset of n-back tasks, a significant positive correlation was found
for the LDA (p-value of 0.004) with a correlation coefficient of 0.417 and a negative correlation
for the ANN (p-value <0.001) with a correlation coefficient of -0.513.

For the Shin et al. 2018 dataset of n-back tasks, a significant negative correlation was found
for the kNN with a correlation coefficient of -0.319 (p-value of 0.033).

For the Shin et al. 2018 dataset of word generation tasks, significant positive correlations
were found for the LDA, SVC, and ANN with p-values inferior or equal to 0.001. The correlation
coefficients are 0.732, 0.585, and 0.462 respectively. Spearman tests were used for the LDA and
the SVC because of the non-normality of distributions.

For the Shin et al. 2018 dataset of mental arithmetic tasks, significant positive correlations
were found for the LDA, SVC, kNN and ANN with p-values inferior to 0.001. The correlation
coefficients are 0.510, 0.665, 0.504, and 0.646 respectively.

For the Bak et al. 2019 dataset of motor execution tasks, significant positive correlations
were found for the LDA, SVC, kNN and ANN with all p-values inferior to 0.001. The correlation
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coefficients are 0.803, 0.788, 0.618, and 0.836 respectively. A Spearman test was used for the
LDA because of the non-normality of the distribution.

Figure 4.2: Accuracy with respect to the time window length. The bands represent the 95%
confidence interval related to the variability on the 5-fold outer cross-validation. Legend entries

marked with an asterisk indicate a significant correlation at a 5% threshold.

4.3.4 Subject-independent approach with sliding window

The results with the subject-independent approach using a 2 seconds sliding time window for
the LDA, SVC, kNN and ANN can be found in Figure 4.3 and in Tables 4.3. This took 22 hours
and 19 minutes to run.
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Figure 4.3: Accuracies of the models on each dataset with the subject-independent approach
using a 2-second sliding time window, models are all using HbO and HbR simultaneously (95%
confidence intervals related to the variability on the 5-fold outer cross-validation are displayed).

Table 4.3: Accuracies of the models on each dataset with the subject-independent approach
using a 2-second sliding time window, models are all using HbO and HbR simultaneously. Fields
marked with an asterisk indicate an accuracy significantly greater than chance level at a 5%
threshold, the standard deviation on the 5-fold outer cross-validation is in parenthesis.

Dataset Chance level LDA SVC kNN ANN

Herff 2014 0.333 0.385 * 0.329 0.346 0.336

n-back (0.014) (0.040) (0.020) (0.028)

Shin 2018 0.333 0.360 * 0.354 0.337 0.356

n-back (0.014) (0.021) (0.013) (0.023)

Shin 2018 0.500 0.568 * 0.555 * 0.517 * 0.558 *

word generation (0.016) (0.019) (0.008) (0.017)

Shin 2016 0.500 0.564 * 0.569 * 0.517 * 0.564 *

mental arithmetic (0.036) (0.028) (0.011) (0.024)

Bak 2019 0.333 0.427 * 0.426 * 0.376 * 0.417 *

motor execution (0.024) (0.023) (0.009) (0.019)

For the n-back task datasets from Herff et al. 2014 and Shin et al. 2018, the accuracy was
found significantly greater chance level (33.3%) for the LDA with p-values of 0.001 and 0.010
respectively, corresponding to accuracies of 38.5 and 36.0% respectively with 3 classes.

For the Shin et al. 2018 dataset of word generation tasks, significant differences compared to
chance level (50%) were found for the LDA, SVC, kNN and the ANN with p-values up to 0.008.
The accuracies range from 51.7 to 56.8% with 2 classes.

For the Shin et al. 2016 dataset of mental arithmetic tasks, significant differences compared
to chance level (50%) were found for the LDA, SVC, kNN and ANN with p-values ranging from
0.003 to 0.02 and accuracies ranging from 51.7 to 56.9% with 2 classes.
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For the Bak et al. 2019 dataset of motor execution tasks, significant differences compared to
chance level (33.3%) were found also for the LDA, SVC, kNN and ANN with p-values inferior to
0.001. The accuracies range from 37.6% with the kNN to 42.7% with the LDA.

A significant influence of the model on the classification accuracy was found for all the datasets
except the Shin et al. 2018 dataset of n-back tasks. More specifically with pairwise t-tests, on
the Herff et al. dataset of n-back tasks, the accuracy of the LDA was found significantly greater
than the accuracy of the kNN. On the Shin et al. 2018 dataset of word generation tasks, the
LDA accuracy was found significantly greater than all the other models with sliding window, and
the kNN accuracy was found significantly lower than the SVC and ANN accuracies. Finally, on
the Bak et al. 2019 dataset of motor execution tasks, the kNN accuracy was found significantly
lower than all the other models with sliding window.

A detail of the hyperparameters selected with grid search for each iteration of the outer
cross-validation can be found in the supplementary materials as well as the results of the statistical
tests.

4.3.5 Subject-specific approach

The results with the subject-specific approach which took 24 hours and 58 minutes to run
can be found in Table 4.4.

Table 4.4: Accuracies of the models on each dataset with the subject-specific approach, models
are all using HbO and HbR simultaneously. The number of participants out of the total number
of participants of each dataset having an accuracy significantly greater than chance level at a 5%
threshold is presented in brackets for each model. The standard deviation on participants is in
parenthesis.

Dataset Chance LDA SVC kNN ANN CNN LSTM

Herff 2014 0.333 0.353[1/10] 0.350[1/10] 0.350[4/10] 0.373[2/10] 0.353[0/10] 0.360[2/10]

n-back (0.099) (0.065) (0.128) (0.076) (0.034) (0.099)

Shin 2018 0.333 0.360[3/26] 0.319[3/26] 0.329[0/26] 0.343[2/26] 0.317[0/26] 0.356[1/26]

n-back (0.103) (0.099) (0.095) (0.065) (0.049) (0.083)

Shin 2018 0.500 0.588[7/26] 0.562[6/26] 0.546[4/26] 0.562[8/26] 0.554[8/26] 0.549[6/26]

word generation (0.090) (0.099) (0.068) (0.088) (0.089) (0.076)

Shin 2016 0.500 0.633[16/29] 0.594[12/29] 0.563[10/29] 0.585[10/29] 0.601[8/29] 0.608[10/29]

mental arithmetic (0.107) (0.104) (0.080) (0.087) (0.099) (0.092)

Bak 2019 0.333 0.513[18/30] 0.444[14/30] 0.380[7/30] 0.387[6/30] 0.402[8/30] 0.446[15/30]

motor execution (0.140) (0.100) (0.084) (0.078) (0.073) (0.107)

The detailed statistical analysis for each subject can be found in the supplementary materials.
The general trend however follows the one of the subject-independent approach, with more results
significantly different from chance level with the dataset from Bak et al. 2019 of motor execution
tasks and the dataset from Shin et al. 2016 of mental arithmetic. Moreover, the results are very
subject dependant which is also shown by the high values of standard deviation as seen in Table
4.4.
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4.4 Discussion

4.4.1 Subject-independent approach (RQ2 )

Regarding the benchmarks of popular machine learning models on the 5 datasets, the first
thing that the results show is that the performances are rather low overall (and typically lower
than reported in some published works), which can be explained in multiple ways. First of all,
the methodology prevents any kind of optimisation of the hyperparameters on the test set, which
makes the results representative of what would happen with actual unseen data in the case of a
real-life BCI application. Secondly, the models evaluated in this work present largely optimised
baseline models that can be used in comparison for future machine learning developments and
new datasets. More complex deep learning architectures, for example, could eventually help
improve the performance. Also, the signal processing and the extraction of features have not been
the focus of this work, and using approaches more personalised to each case would likely lead
to better results for that case. Furthermore, most of the datasets found that meet our criteria
are comparatively small, and research with more examples could be beneficial as we discuss in
the following subsection, especially for the deep learning models. We hope that researchers will
contribute both more advanced models and larger datasets to this benchmarking framework, as
part of a shared community drive towards making clear advances.

Another finding is that the performances appear different with the type of task dataset.
Indeed the performances on the Bak et al. 2019 dataset of motor execution tasks are higher than
on the other datasets with 3 classes (Herff et al. 2014 and Shin et al. 2018 datasets of n-back
tasks). An explanation could lie in the nature of the tasks: the brain activity elicited by motor
execution is easier to highlight than the brain activity elicited by mental workload tasks which
rely on higher-level brain processes [54]. We also see that the datasets with 2 classes of word
generation (Shin et al. 2018) and mental arithmetic (Shin et al. 2016) also have classification
accuracies generally greater than chance level, which may be explained by the fact that both are
task detection datasets (baseline vs. task) as opposed to classifying the level of a task as done
with the n-back datasets.

It also appears that the variability with different test sets can sometimes be quite high for
some models and some datasets, which could mean that it is more difficult to perform classification
on some unseen subjects compared to others, probably in cases where their data looks different
than the one from participants in the training set.

Regardless, one of the outcomes is that in most cases the kNN seems to underperform compared
to other models, while the other traditional machine learning models with feature extraction,
especially the LDA, do not perform worse than deep learning methods using raw data (CNN
and LSTM). Traditional machine learning models (LDA and SVC) then remain a relevant choice
especially because of their low computational complexity. This goes in the same direction as
other works such as [65] showing that deep learning methods achieve comparable accuracies to
conventional methods.

4.4.2 Influence of training set size on subject-independent approach (RQ3a)

Only 2 significant correlations of the accuracy to the percentage of training examples have
been found out of the 30 tested in total, which is quite low. Those are a negative correlation with
a kNN model and a positive correlation with a CNN model. This positive correlation goes with
the tendency of deep learning models to perform better with bigger datasets, however in our case,
it has only been highlighted with one deep learning model on the motor execution dataset from
Bak et al. 2019. Even though this dataset is amongst those with the most examples with 750 per
class in total (leading in the training set to 600 examples per class with 100% and 300 per class
with the minimum studied here of 50% of training data), this trend is not shown with the biggest
dataset containing 870 examples per class (mental arithmetic from Shin et al. 2016). It is likely
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that even with 100% of the training data, the training sets remain very small for all the datasets,
especially for classification with deep learning. Indeed with 3 classes, the number of trainable
parameters is 155, 491, and 17635 for the ANN, CNN and LSTM respectively (150, 480 and 17618
respectively with 2 classes) which is to relate to the total number of examples in the datasets
between 300 and 2250. The influence of the dataset size would be interesting to study further
with bigger fNIRS datasets to see if there is really a clear effect with deep learning models.

4.4.3 Influence of window length on subject-independent approach (RQ3b)

Based on the results, it appears that overall the length of the time window used as input for
classification does have an influence on the performance of models using feature extraction, as
the correlations show.

Each of our correlations is positive except for 2 negative correlations which were found on the
n-back datasets. Those negative correlations are however hard to interpret with certainty since
the accuracy on those n-back tasks remains very low overall and in most cases is not significantly
higher than chance level as seen with the subject-independent approach with 10-second epochs.
Also, precautions should be taken for short time windows on n-back tasks because they do not
enable to express the whole difficulty of the task since a new stimulus is presented every 2 seconds
from the beginning of the task and n stimuli are required to reach the actual task demand with
n-back.

All other correlations were positive, for most of the models with which the classification
accuracy was significantly greater than chance level, which makes us believe that a bigger time
window actually benefits classification accuracy. This is especially striking for the Bak et al. 2019
dataset of motor execution tasks as seen in Figure 4.2. This benefit of longer time windows is
likely explained by the duration of the hemodynamic response, being around 4 to 6 seconds [26],
making shorter time windows too small to capture relevant changes.

4.4.4 Subject-independent approach with sliding window (RQ3c)

Using a sliding approach has two main advantages. First, it enables us to multiply the number
of examples that can be used as input for the classifiers. Secondly, it enables us to make a
prediction on the class every 2 seconds which can be useful in the context of a BCI.

With the models using feature extraction, the accuracies using a 2-second sliding window
are found significantly greater than chance level in the same cases as the subject-independent
approach with non-sliding 10-second epochs. Here again, the kNN seems to underperform in
most cases compared to other models. For all the models tested here with sliding window, results
appear overall slightly lower than those with the 10-second epochs, even though the performances
are higher than those obtained with a non-sliding window of 2 seconds which are around chance
level. It may be possible that the decrease in performance observed with smaller time windows
as described previously is compensated by the increase in training examples. Also, even though
previous work has shown potential at classifying fNIRS data using short time windows from the
task trigger onset, hence focusing on the initial dip part of the hemodynamic response [87, 179], it
may be possible that later segments are more useful to discriminate between conditions. Further
studies would need to be conducted to compare different centring of shorter time windows as an
extension of RQ3b and RQ3c. Regardless, such sliding window approaches remain relevant for
BCI applications when it is desired to have predictions made regularly in real time.

4.4.5 Subject-specific approach (RQ3d)

The results highlight a very high variability across subjects, and the average results are not
much different from the subject-independent approach. This subject-specific approach, though,
seems to produce relatively high results on the Shin et al. 2016 dataset of mental arithmetic
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tasks. It also appears that the LDA model with feature extraction performs quite well on most of
the datasets.

Figure 4.4: Accuracy for the subject-specific approach on the dataset from Bak et al. 2019 of
motor execution tasks (95% confidence intervals related to the variability on the subjects are

displayed)

It is interesting to note that for the dataset enabling the best model performances, while we
had deep learning models performing the best with the subject-independent approach, in the
subject-specific approach traditional machine learning models appear to perform the best (Figure
4.4). This could be related to the number of examples in each case and could be supporting
evidence that we notice deep learning performing best with more data, and traditional machine
learning performing best with small amounts of data.

These results with our methodology however remain low compared to what can be found in
existing literature. Indeed, most of the papers that have proposed a classification using machine
learning on the same datasets we used are using a subject-specific approach. For example, [66]
reached slightly higher accuracies on their n-back dataset with a LDA using the slope on each
channel and on a slightly longer time window (15 seconds) than our experiments, with 44.0% on
average with 10-fold cross-validation (meaning more training data than 5-fold) compared to 35.3%
with our baselines. [154] with shrinkage LDA using average and slope for each channel on 3 seconds
moving windows reached 80.7% with HbR and 83.6% with HbO with 5-fold cross-validation on
their mental arithmetic dataset, compared to 63.3% with our baselines. [7] with linear SVC using
the average for each channel on 5 seconds moving time windows reached an average accuracy of
70.4% on their motor execution dataset, compared to 44.4% in our results. Finally, compared
to our results around chance level with a CNN using temporal convolutions, [146] reached an
accuracy of 82% on average on the Shin et al. 2018 dataset of n-back tasks with a CNN using
spatial convolutions, however, they did not describe how the dataset was split into training,
validation and test sets. All those existing results show the difficulty of comparison when lacking
standardised methodology, also when some methods cannot be applied to other datasets due to
constraints from the experimental design (eg. length of time windows, number of channels). We
hope that BenchNIRS will allow future work with notably high accuracy to now more easily
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demonstrate their advances for improved performance in a comparable way, and more easily check
against common mistakes.

Another point of discussion is that the results of the subject-specific approach do not,
unfortunately, give the opportunity to draw higher-level conclusions, as every subject only took
part in one session in all the datasets, making it impossible to determine whether the results are
related to session-specific factors or subject specific factors.

Finally, it should be noted that such subject-specific models are hardly usable in the context
of a real-life BCI, especially if they require model training on each session. Indeed, in the case
where the results are obtained with a 5-fold outer cross-validation, it means that the model
requires 80% of the data for training, meaning that the majority of the time would be dedicated
to calibrating the BCI with the subject rather than using it. This is also why our work mainly
focuses on subject-independent approaches which can be applied more easily in real-life BCI
settings. Also, this relates to why the data is not normalised with a min-max feature scaling
or standard score: computing those on the whole dataset would bias the results on the test set
(because test data would have been seen already to normalise) and is not possible in real time,
and computing those with the mean or min-max computed on the training set only could shift
the distribution of the test set if it is very different from the training set (if the mean or min-max
are quite different on the test set than the training set).

4.4.6 Limitations and next steps

Our work provides novel insights into factors influencing the performance of machine learning
classifiers using fNIRS data, in the hope of helping readers look for the model that would best
suit their needs. This is however an entry point into the benchmarking of machine learning for
fNIRS. Therefore, some limitations remain for future work to address.

First of all, there are limitations due to the datasets used in this framework. Most of the
datasets contain a limited amount of data which is critical for the performance of some machine
learning models, especially those having a lot of parameters. Datasets with more subjects could
be added to the framework in the future, such as [73], however, the lower sampling frequency of
this dataset in particular would have required downsampling all the other datasets for comparing
results rigorously. Another point is that none of the datasets have used an fNIRS device with
short-separation channels, which limits the extent of noise removal that can be performed. Indeed,
having such short-separation channels for each dataset would have helped remove artefacts due to
superficial hemodynamics reflecting systemic physiological changes [20, 148]. Also, the datasets
were based on recordings from participants who took part in only one session, which limits
the conclusions that can be drawn when it comes to studying participant or session specificity.
Those constraints come with the limited availability of open access fNIRS datasets, and future
work would consist of extending the framework to other newly published open-access datasets
addressing those issues. Indeed, we welcome dataset contributions (see Chapter 3).

Secondly, the performance of our models may be limited by the compromises that had to
be made for the sake of comparison between datasets with different experimental designs and
different equipment. For example, we had to accommodate for the sampling frequency (which is
why downsampling has been performed), the number of channels (which is why region of interest
averaging has been performed), and epoch duration (which is why epoch cropping was performed).

Also, the work is also potentially limited by the signal processing and feature extraction used.
The signal processing selected in our framework follows a recommended approach with TDDR
and bandpass filtering to remove signal noise. This choice was made because the comparison of
signal processing is not the focus here and has been studied in other published works such as
[134] and [19]. However, the benchmarking could be extended by involving different and more
advanced signal processing techniques. Indeed, approaches more tailored to each task would be
more efficient at removing signal noise for that dataset, but a classic approach was used here
for comparison. Similar remarks can be made regarding the feature extraction. Further, as the
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datasets involved devices with different numbers of channels, we needed to average the channels in
regions of interest for the sake of comparability of models, but more work could be done regarding
the spatiality of the brain activity.

Finally, each of the machine learning models used in our study could have been developed and
tweaked in different ways. We decided to implement common baseline models to act as a starting
point for benchmarking, however, more complex models could be implemented. For example
here, shrinkage LDA could be compared to standard LDA. Also, the architectures of the deep
learning models have been chosen keeping into consideration the input data dimensions and the
number of training examples, but they could be more extensively optimised, and finding optimal
architectures could be a matter of future work. This could include, for example, architectures
valuing more the spatiality of signals. Similarly, different kernels could be tested for the SVC
for example. Our work, however, means that is now possible to implement such more advanced
models in future work, using our framework, and for them to be validated robustly with the
recommended checklist of methodological steps.

4.5 Summary

The BenchNIRS framework is used to perform the analysis on 5 open-access datasets of 6
baseline machine learning models: LDA, SVC, kNN, ANN, CNN and LSTM. We also used Bench-
NIRS to produce results with different approaches: subject-independent, subject-independent
with a sliding window, and subject-specific. Further, we studied the influence of the training set
size as well as the time window length (from 2 to 10 seconds) on the model performances.

To our knowledge, this multi-model multi-dataset benchmarking with the study of multiple
influencing factors is the first of its kind for fNIRS, and the scale of it is thus far unrivalled,
providing a large variety of objective insights for machine learning with fNIRS.

Where most published research has studied specific models applied to specific datasets, we
show with our initial benchmarks that no baseline model (traditional machine learning or deep
learning) statistically stands out consistently compared to others when applied across datasets
except the LDA, hence remaining a strong choice despite its simplicity. Furthermore, we found
no consistent influence of the training size on the classification accuracy. Finally, our results show
that when models using common feature extraction techniques (mean, standard deviation, slope)
perform greater than chance level, they benefit from longer time windows.

We hereby validate the usability of BenchNIRS (RQ1 ) for the purpose of evaluating and
comparing different machine learning approaches with fNIRS data. We invite the fNIRS community
to use the framework when performing classification with their own machine learning models for
a convenient comparison to our initial baseline results.
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Chapter 5

Tailored supervised machine learning

• RQ4 : How do machine learning approaches tailored to a specific mental workload task
compare to baseline benchmarks?

– RQ4a: What are the benchmarks of baseline machine learning models tailored for
n-back tasks?

– RQ4b: How does increasing further the time window duration of the examples influence
the models’ performances?

– RQ4c: How can tailoring a supervised deep learning classification model to a specific
n-back dataset improve its performance?

5.1 Task-tailored baselines

5.1.1 Motivations

After having produced results for some baseline models, designed to work on all datasets in
Chapter 4, we described how those baseline benchmarks were limited by some choices that had
to be made to limit the number of variables in the comparison of models on all the datasets.

More specifically in this section we will be interested in overcoming a first limitation which
involved the epoch duration. For the purpose of comparison of the models on all the datasets,
in Chapter 4 we had to crop the epoch duration to only 10 seconds as it was the shortest block
duration of all the datsets, however some datasets had quite longer block duration, such as the
n-back tasks [66, 155]. This was a limitation as we saw also that the time duration of examples
did influence the performance of models and that it was positively correlated with accuracy,
except the n-back datasets, which we suspected being related to the low performance of the
models on those tasks. Here we also want to question whether the fact that the epochs of those
tasks were the most reduced could have also affected this correlation and overall the results of
machine learning models. This is the first reason why here we will use this specific n-back task to
re-run the baseline benchmarks with longer epoch duration.

Another reason for using this task is that it is, as we described in Chapter 2, one of the
most common tasks used when studying mental workload in experimental settings, especially for
neuropsychology studies [125]. This makes it a good toy task for applications for mental workload
assessment with fNIRS BCIs. n-back task level classification from fNIRS signals at a reliable level
remains a difficult achievement as we saw before (Chapter 4), however this is a very interesting
challenge for the future of fNIRS in passive BCIs for mental workload assessment [10].

Here we will put the focus on performing task classification on unseen subject, as discussed in
Chapter 4, for investigating the simplest case close to realistic BCI applications: subject-specific
approaches as studied before require too much calibration (training) data proportionally to the
session duration to be usable in practice. This use case also, as opposed to sliding windows, relies
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on an established neuroscientific basis, namely capturing the hemodynamic response function
(HRF) on block design tasks [103, 176].

For this section, we will therefore ask the following research question:

• RQ4 : How do machine learning approaches tailored to a specific mental workload task
compare to baseline benchmarks?

More specifically we decompose here this into 2 sub-questions:

• RQ4a: What are the benchmarks of baseline machine learning models tailored for n-back
tasks?

• RQ4b: How does increasing further the time window duration of the examples influence the
models’ performances?

To answer those questions, we will first use the BenchNIRS framework to present results of
baseline models on the n-back task datasets (from Herff et al. published in 2014 [66] and Shin
et al. published in 2018 [155]). Secondly, we will use it to also present extended results of the
influence of time window duration on the longer n-back task blocs.

5.1.2 Methods

We use here a similar methodology to evaluate the same models as the initial benchmarks
(LDA SVC, kNN, ANN, CNN and LSTM) but adapted for n-back tasks specifically, meaning
that we use longer epoch duration.

Datasets

The 2 n-back open access datasets supported by BenchNIRS were used for this investigation:
the one from Herff et al. [66] and the one from Shin et al. [155] described previously in Chapter
3. The n-back dataset from Herff et al. 2014 was collected with a device of 8 channels for each
wavelength, and comported of 3 classes with 100 examples each in total: 1-back, 2-back and
3-back; while the n-back dataset from Shin et al. 2018 was collected with a device of 36 channels
for each wavelength and was also composed of 3 classes with 234 examples each in total: 0-back,
2-back and 3-back.

fNIRS processing and feature extraction

The HbO and HbR data for the 2 datasets were processed similarly to Chapter 4, using
BenchNIRS. This included TDDR motion artefact correction, bandpass filtering with cutoff
frequencies of 0.01 and 0.5 Hz, and region of interest averaging by hemisphere to end up with
processed HbO and HbR for left and right PFC (process illustrated in Figure 3.1). BenchNIRS
also enabled to extract epochs using the onset triggers up with an epoch duration of 40 seconds
(shortest task duration, from [66, 155] having a task duration of 44 sec). The 2 seconds prior to
each trigger onset were used for baseline correction, and the data was downsampled to 10 Hz to
then be converted into µM. This resulted in each example having a shape of 4x400.

Feature were extracted following the methodology described in the initial benchmarks for the
traditional machine learning models (LDA SVC and kNN) and also the ANN. Those extracted
features were the mean, standard deviation and slope of linear regression across time for each
region of interest.

Machine learning models and methodology

The same baseline models as before were used for evaluation: LDA SVC, kNN, ANN, CNN
and LSTM. The only differences being for 2 of the models:
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• for the LSTM, instead of having the input arranged as a sequence of 5 elements of 2 sec,
they were arranged as a sequence of 22 elements of 2 sec;

• the CNN, using signal processed data without feature extraction, was composed of 2 one-
dimensional convolutional layers across the time axis: the first one with 4 input channels
and 4 output channels, a kernel size of 10 (one dimension kernel) and a stride of 2; the
second one with 4 input channels and 4 output channels, a kernel size of 5 (one dimension
kernel) and a stride of 2. The first convolutional layer was followed by a one-dimensional
max pooling across the time axis with a kernel size of 2, and the second convolutional
layer was followed by the same max pooling but with a kernel size of 4 instead. Those
convolutions and max poolings were followed by 2 fully connected layers of 44 and 24
neurons respectively, followed to finish with by an output layer of 3 neurons, matching the
number of classes for the dataset. All the activation functions of the hidden layers were
rectified linear units (ReLU), the loss function and optimiser were cross-entropy loss and
Adam respectively.

The models were evaluated on each dataset separately. BenchNIRS was used to perform
a nested group k-fold cross-validation, with 5 outer folds (extraction of test sets) and 3 inner
folds (extraction of validation sets), in order to split the dataset without mixing subjects. The
validation sets were used for hyperparameter optimisation while the test sets were used for
evaluation of the models. The goal was to evaluate the generalisation capabilities of the models
at task classification from fNIRS data on unseen subjects, following the same approach as the
subject-independent approach described in Chapter 4.

The optimisation of hyperparameters was done within the following ranges [12] with grid
search using BenchNIRS [11]:

• the SVC’s regularisation parameter values tested were 0.001, 0.01, 0.1 and 1;

• the values of k (number of nearest neighbours) tested were the integers from 1 to 9;

• the learning rate’s values tested for the deep learning models were 1× 10−5, 1× 10−4,
1× 10−3, 1× 10−2, 1× 10−1;

• the mini-batch sizes tested for the deep learning models were 4, 8, 16, 32 and 64.

After the best set of hyperparameters was found the model was retrained on the whole training
and validation set, and early stopping was performed for the deep learning models leaving out
randomly 20% for a new validation set used to stop training before the maximum number of
epochs of 100 if the loss on it was increasing for 5 consecutive epochs.

Statistics were computed in order to compare the accuracy of each model (metric selected
because classes were balanced for each dataset) on the test sets to chance level. This involved a
one-tailed t-test to determine whether the accuracy was greater than chance level if the distribution
of the accuracies of the model on the test sets followed a normal distribution as tested with a
Shapiro test; otherwise a one-tailed Wilcoxon test was used.

A confusion matrix was produced for each model of each n-back dataset, comparing the
predictions made across all the outer folds against the true class labels (those can be found in the
appendices).

Moreover, new models with 40-second epochs implemented here were also compared to the old
models with 10-second epochs presented in Chapter 4 for the two n-back datasets. This was done
using one-tailed t-tests if normality and homogeneity of variances were verified using Shapiro and
Bartlett tests, otherwise a one-tailed Mann-Whitney U was used.

In a second part, the influence of epoch duration was studied like before and we compared
durations of 5, 10, 15, 20, 25, 30, 35 and 40 seconds from the trigger onset. For each duration
tested, the methodology was the same as described previously. Correlation of the model accuracy
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Figure 5.1: Accuracies of the models on the n-back datasets with the subject-independent
approach (95% confidence intervals related to the variability on the 5-fold outer cross-validation

are displayed).

to the duration was studied with Pearson’s correlation test for each model of each dataset if the
assumption of normality was verified as per a Shapiro test, otherwise a Spearman’s correlation
test was used. This study on the influence of epoch duration was performed on the LDA SVC,
kNN, ANN, and LSTM. The CNN was not included in this analysis since its architecture depends
on the input data shape which would be different for each epoch duration.

The threshold of significance was set at 5% for every statistical analysis. The implementation
of this machine learning experiment can be found in the supplementary materials.

5.1.3 Results

Subject-independent approach

First, we can see the accuracy of each model on the n-back datasets for an extended epoch
duration of 40 seconds (instead of 10 seconds in the initial baseline benchmarks) in Figure 5.1
and Table 5.1. We see once again that the performance is around the chance level of 33.3%.

Table 5.1: Accuracies of the models on the n-back datasets with the subject-independent approach.
Fields marked with an asterisk indicate an accuracy significantly greater than chance level at a
5% threshold, the standard deviation on the 5-fold outer cross-validation is in parenthesis. A
dagger mark signifies a significant increase in accuracy compared to the initial baseline model
while a double dagger mark signifies a significant decrease.

Dataset Chance level LDA SVC kNN ANN CNN LSTM

Herff 2014 0.333 0.373 0.313 0.327 0.333† 0.313‡ 0.310

n-back (0.075) (0.034) (0.040) (0.011) (0.029) (0.056)

Shin 2018 0.333 0.401* 0.345 0.310 0.318 0.347 0.345

n-back (0.040) (0.017) (0.031) (0.036) (0.029) (0.034)

More specifically, on the n-back dataset from Herff et al. 2014, none of the models performed
significantly better than chance level. For the n-back dataset from Shin et al. 2018, we see that
only the LDA, with an accuracy of 40.1% performed significantly better than chance, with a
p-value of 0.014.
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Figure 5.2: Accuracy with respect to the time window length. The bands represent the 95%
confidence interval related to the variability on the 5-fold outer cross-validation. Legend entries

marked with an asterisk indicate a significant correlation at a 5% threshold.

When comparing those new models using 40-second epochs to the original baseline models
using 10-second epochs, we do not have any significant difference for the Shin et al. 2018 n-back
dataset. Indeed, the original LDA also had an accuracy significantly greater than chance level
then. But, while the original CNN performed significantly better than chance level initially, in
this new experiment with 40-second epochs it does not anymore, however this decrease of accuracy
between the new and original models is not significant. We only observe significant differences
between the original and new models on the Herff et al. 2014 n-back dataset, where the new
ANN with an accuracy of 33.3% performs better than the original one (p-value of 0.004) which
had an accuracy of 27.3%, however this is hard to interpret reliably since this accuracy is actually
lower than chance level. Also, the new CNN with an accuracy of 31.3% performed worse than
the initial one (p-value of 0.028) which had an accuracy of 36.7%. Again, this is hard to interpret
since none of them had an accuracy significantly greater than chance level.

A detail of the hyperparameter selection with grid search and the results of the statistical
tests run for comparisons can be found in the supplementary materials.

Influence of window size

Then, the influence of the window size or epoch duration used as input of the machine learning
models was studied from 5 to 40 seconds. The results are presented in Figure 5.2. Once again,
we can see that the results are close to chance level, regardless of the window size. Statistical
tests found correlations between accuracy and window size only on the Herff et al. 2014 n-back
dataset. On that dataset, we found a negative correlation with a p-value of 0.04953 for the SVC
(correlation coefficient of -0.313) and for the kNN with a p-value of 0.0245 (correlation coefficient
of -0.355). Spearman tests were used for those two correlations because of the non-normality of
the distribution. Those negative correlation coefficients mean that the accuracy was actually
decreased when the time window size increased.

This is in line with the findings with the subject-independent approach that indicate that
increasing from 10 to 40 seconds the window did not necessarily enable improvements. Here we
see that increasing the window size actually appears to be detrimental to n-back level classification
performance.
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5.2 Dataset-tailored model

5.2.1 Motivations

A second limitation that we will be interested in overcoming here was the fact that the
datasets were recorded with different fNIRS devices and that region of interest averaging had
to be performed in order to end up with the same number of channels for each dataset. Even
though this process can be useful in cases where optodes are not precisely positioned and can
also help mitigate the effect of a noisy channel, this process is not ideal as it reduces the spatial
resolution of the data.

So after having investigated in Section 5.1 the tailoring of baseline models to a specific task,
n-back, we here aim to go slightly further and focus on one model without region of interest
averaging of channels on one dataset. We here design the architecture of a model specifically for
that dataset’s task and acquisition device.

Following up on Section 5.1, we will here still be interested in n-back tasks for the motivations
listed previously, but will more specifically use only one dataset: the dataset of n-back tasks from
Shin et al. [155], and the goal will be to design a CNN with an architecture tailored for this
dataset.

This combination of dataset with model is selected for multiple reasons. First, we showed in
previous work [10] that deep learning had the potential to classify mental workload tasks from
portable fNIRS devices, and those types of models also have the highest degree of customisation,
compared to traditional machine learning, as their architecture can be adapted. Secondly, the
CNN model was the only deep learning model that had an accuracy significantly higher than
chance level in the initial benchmarks, with 39.3% accuracy for 3 classes. Thirdly, this type of
model benefits from using data with less feature extraction (region of interest averaging can be
considered as feature extraction), as convolutions enable to extract features within the model.
Furthermore, the dataset chosen is the one with the most examples per class, which usually
benefits deep learning models.

Similarly to before, we will here still be interested in task classification from fNIRS data on
unseen subjects.

We will therefore here continue the investigation in the the overall research question for this
chapter:

• RQ4 : How do machine learning approaches tailored to a specific mental workload task
compare to baseline benchmarks?

More specifically, in this section we will be interested in:

• RQ4c: How can tailoring a supervised deep learning classification model to a specific n-back
dataset improve its performance?

This investigation will act as a further validation of BenchNIRS (RQ1 ) and present a concrete
use case for the framework. It will tell us how the framework can be used to help the investigation
of new deep learning architectures on a specific task.

5.2.2 Methods

Dataset

For the purpose of this dataset-tailored model implementation, the dataset of n-back tasks
from Shin et al. was used [155]. This dataset has been described previously and more information
can be found about it in Chapter 3. This dataset used a NIRScout device from NIRx Medical
Technologies, with wavelengths of 760 and 850 nm and a sampling rate of 10 Hz. From its
16 sources and 16 detectors resulting in 36 channels, 16 channels around the PFC were used
for each HbO and HbR (Figure 5.3), with a source-detector distance of 30 mm. Only those
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Figure 5.3: 16 fNIRS channels (red dots) selected for the dataset-tailored investigation on the
n-back task from Shin et al. 2018, located in the red frame area around Fp1, Fp2, AFz, AFF5h,

aAFF6h, F1 and F2 .

channels in PFC were selected as this is the region of interest described to reflect the type of
brain activity elicited by working memory and mental workload tasks such as n-back [54, 119].
As described before, the tasks consisted in 0-back, 2-back and 3-back, with 234 examples per
class (26 participants in total).

fNIRS processing and feature extraction

The signals are processed similarly to Section 5.1 using BenchNIRS : TDDR, bandpass filtering
(0.01-0.5 Hz) and conversion into µM. Epoch duration was 40 seconds from the trigger onset, like
before, which is the total duration of the task on the n-back dataset from Shin et al. 2018, and 2
seconds before the trigger onset were used for baseline correction. However, the 16 channels for
each chromophore are not averaged by regions of interest, in order to adapt the model specifically
for this optode configuration. No further features were extracted from the signals, so the shape of
each input example was 32x400, representing 16 channels of HbO and 16 channels of HbR by 400
timepoints (40 seconds of 10 Hz signals).

Deep learning model and methodology

The model used here is a CNN (Figure 5.4) that was composed of 2 one-dimensional convolu-
tional layers across the time axis: the first one with 32 input channels and 12 output channels,
a kernel size of 16 (one dimension kernel) and a stride of 4; the second one with 12 input
channels and 4 output channels, a kernel size of 8 (one dimension kernel) and a stride of 3. Each
convolutional layer is followed by a one-dimensional max pooling across the time axis with a
kernel size of 2. Those convolutions and max poolings were followed by 3 fully connected layers of
28, 16 and 8 neurons respectively, the second and third followed by a 20% dropout. Finally, there
is an output layer of 3 neurons, matching the number of classes for the dataset. All the hidden
layers activation functions were rectified linear units (ReLU), and we used the Adam optimiser
with a cross-entropy loss function. The architecture proposed here has been implemented with
PyTorch [126].
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Figure 5.4: CNN architecture.

Figure 5.5: Training and validation graphs of the dataset-tailored CNN (cross-entropy loss on the
left and accuracy on the right).

The same nested group k-fold cross-validation from BenchNIRS was used for optimisation of
hyperparameters and model evaluation of the generalisation capabilities on data from unseen
subjects.

The input data was normalised per channel with min-max scaling using minimums and
maximums on the training and validation sets.

Hyperparameter optimisation was performed on the validation sets with grid search in the
following ranges [12]:

• the learning rate’s values tested for the deep learning models were 1× 10−5, 1× 10−4,
1× 10−3, 1× 10−2, 1× 10−1;

• the mini-batch sizes tested for the deep learning models were 4, 8, 16, 32 and 64.

Validation sets were also used to select the model architecture thanks to the training graphs,
by attempting to have all the validation losses the lowest possible.

After fine-tuning the model to select the best set of hyperparameters, it was retrained with
early stopping similar to Section 5.1: 20% of validation set randomly left out, 100 epochs
maximum, and patience on the validation loss of 5 epochs. Training graphs can be seen in Figure
5.5.

We ran a one-tailed t-test or one-tailed Wilcoxon test (depending on the normality of
distribution of the accuracies on the test sets) to determine whether the model had an accuracy
significantly greater than chance level (accuracy was the selected metric since classes were perfectly
balanced).
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Figure 5.6: Grand average of the epochs of each n-back condition for HbO and HbR. The bands
represent the 95% confidence interval related to the variability on the epochs of each condition.

Finally, we compared the performance of the dataset-tailored CNN also to the task-tailored
CNN and LDA (only model performing significantly better than chance level) implemented in
Section 5.1, and to the initial subject-independent baseline CNN for the same dataset. This
was done using one-tailed t-tests if normality and homogeneity of variances were verified using
Shapiro and Bartlett tests, otherwise a one-tailed Mann-Whitney U was used.

The implementation of this machine learning experiment can be found in the supplementary
materials.

5.2.3 Results

To have an idea of the signal shape for each condition, we visualised the grand average of
the epochs with all channels averaged for each condition in Figure 5.6. We see here that the
2-back condition specifically seems to present a stronger hemodynamic response pattern in HbO
compared to the 2 other conditions (0-back and 3-back). We also see from the confidence intervals
that the variability between the different epochs of each condition is quite important.

The CNN model working with inputs of 32 channels and 400 timepoints ended up with an
accuracy of 39.9% on average on the 5 outer fold left-out test sets of the cross-validation with
a standard deviation of 5.5%. This was significantly greater than chance level (33.3% with 3
classes) with a p-value of 0.037. The confusion matrix is presented in Figure 5.7, where we can
see that the most accurately predicted class is 2-back. The hyperparameter optimisation led to a
learning rate of 0.01 being selected for each iteration of the outer 5-fold cross-validation and a
min-batch size of 8 selected once, 32 selected twice, and 64 selected twice.

When then went on to compare this new CNN tailored to the Shin et al. 2018 n-back dataset
to previous models using region of interest averaging:

• the task-tailored LDA from Section 5.1 which reached an accuracy of 40.1%;

• the task-tailored CNN from Section 5.1 reaching an accuracy of 34.7%;

• the CNN baseline from Chapter 4 which reached an accuracy of 39.3%.
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Figure 5.7: Confusion matrix of the CNN tailored to the Shin et al. 2018 dataset of n-back tasks.
Classes labelled 0, 1 and 2 represent 0-, 2-, and 3-back respectively.

No significant differences have been found at a 5% threshold, however at a 10% threshold the
new dataset-tailored model was found to have greater accuracy than the CNN implemented in
Section 5.1 with a p-value of 0.067; indeed that previous model was not significantly better than
chance level with an accuracy of 34.7%.

5.3 Discussion

The aim of this chapter was to investigate to what extent tailoring the machine learning
models to specific tasks and datasets could affect their performance, and more specifically on the
application to n-back level multi-class classification (RQ4 ). It is important to note that while we
previously trained the models for each dataset individually, no specific tailoring to one dataset or
another was performed. Here the point was to reflect on each task and dataset characteristics in
order to adapt the architecture of the models to each specific case, as opposed to just having
generic data extraction and model architectures that fit the initial purpose of providing baseline
benchmarks on a lot of different datasets.

First of all, when it comes to adapting the baseline models developed for the initial benchmarks
to n-back tasks (RQ4a), using here the longer epoch durations available (40 seconds as opposed
to 10 seconds in the initial benchmarks), we see that improvements are not highlighted. Indeed
when taking all the models tested, we ended up having fewer models performing significantly
greater than chance level. Again the LDA model remains an interesting choice, because of its
simplicity of implementation, and because it is in this case the only model having an evaluation
accuracy significantly greater than chance level. We could think that the increased dimensionality
of data may have affected negatively the performance, however the dataset-tailored CNN model
implemented after the task-tailored baseline used inputs with higher dimensionality and did
not suffer from such limitations, presenting performances similar to the initial baseline CNN on
10-second epochs. We can then suspect that patterns in the data useful for a separation between
classes may be more pronounced earlier in the task block. This is in line with the fact that the
first seconds of a task translate into an activation following an HRF with a peak 4 to 6 seconds
after the beginning of the stimulus [26], and that long blocks could make the differentiation of
HRFs harder [74].

Furthermore, while investigations from Herff et al. [66] indicated that a longer time window
helped increase classification performance, we did not find such a pattern in our investigations
(RQ4b), quite the opposite in fact. This influence was in most cases not significant and in some
cases actually detrimental. This may be related to the fact that in their investigations, they
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did not have the same number of examples in the training set with their different time windows
due to their sliding window approach, indeed appeared from our investigations in Chapter 4
that a sliding window approach provided an advantage compared to a non-sliding window of
the same length, even though limited by the short segment duration. Also, they were interested
in within-subject classification as opposed to an unseen subject classification here. It is to be
noted that the present findings are coherent with what was found in Chapter 4 where the n-back
datasets were the only datasets having negative correlations between window size and accuracy,
so this phenomenon may be related to the task itself.

The second experiment consisted in building a deep learning model tailored to a specific
dataset, meaning that this dataset was adapted to the fNIRS device used for data acquisition
(RQ4c). Though the results did not provide significant improvements compared to previous
models, its performance was on par with the best classification performances on that specific
dataset. This shows us that the higher dimensionality was not limiting in this case, despite the
relatively small dataset (702 examples), and that convolutions may have helped extracting useful
features for classification.

When diving into the results with the help of the confusion matrix and grand average produced
with BenchNIRS, we could however see the root of the issue in this classification task. Indeed,
the model had difficulties classifying 0- and 3-back with our models, while the classification of
2-back was more reliable as seen in Figure 5.7. We can suspect that 0- and 3-back responses
had a similar brain response because they both did not challenge subjects at their best working
memory potential: 0-back because the task is too easy, and 3-back because the task is too hard
such that subjects may have given up on trying. Indeed, we see in Figure 5.6 that the brain
activation is similar for 0- and 3-back. This is supported by Vermeij et al. [165], where lower
brain activation for 3-back compared to 2-back is observed, similarly to what we could see in
Figure 5.6. They suggested that the task demand could exceed the working memory capacities of
subjects. Since subjects, do not necessarily respond the same to different task levels, we could
then think in future work of data collection of improved ways to label epochs, for example using a
combination of different objective labelling methods such as both task difficulty and performance
[111], or a combination of objective and subjective measures such as ISA [83].

5.4 Summary

Once again we demonstrated the utility of BenchNIRS to perform the analysis of 6 baseline
machine learning models (LDA, SVC, kNN, ANN, CNN and LSTM) specifically for n-back tasks,
first with a subject-independent approach (unseen subject classification), and then investigating
the influence of the time window size on model performances at classification from fNIRS data on
unseen subjects. The results are similar to previous findings with the original baseline benchmarks,
highlighting once more how challenging classification from fNIRS data is, and specifically on
n-back tasks. Using longer durations of epochs did not help improve performances, and was
actually in some cases detrimental to the classification accuracy. This is an indication that the
first seconds of a task may be crucial for differentiating n-back levels while the later segments do
not help.

Furthermore, BenchNIRS was also used to develop a deep learning model (CNN) specifically
for one dataset (continuing the validation of RQ1 ). We showed that tailoring this model to
the fNIRS device appeared to provide improvement compared to simply using region of interest
averaging.
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Chapter 6

Exploring transfer learning for fNIRS
classification

• RQ5 : How can using unlabelled segments of the fNIRS recordings help with classification?

6.1 Motivations

In this chapter, which will be the last of experimentation, we will be interested in an
overarching limitation that followed us throughout our journey, namely the limited size of the
available datasets. This is indeed a potentially significant issue for training machine learning
models for classification from fNIRS data especially for deep learning models [59].

A first and obvious solution would be to collect larger fNIRS datasets, however, the field
is limited by human and time resources for such enterprises: collecting large datasets requires
scientists to spend a lot of time doing data acquisition. Furthermore, fNIRS is far from being
prevalent in the industry. All this results in datasets being often of limited size and not always
available in open access. For instance, the OpenfNIRS website comports as of 2023 only 14
datasets 1, the 3 biggest datasets comporting recordings from only 43, 24 and 18 subjects.

Another option could be to perform some kind of data augmentation. Such methods have
been employed with some success with fNIRS data [116, 117], however here instead of creating
artificial data, we will investigate how to make the most out of the real data at disposition.
Indeed, in datasets such as the ones we have used so far, segments of the data are annotated
with labels that are used for machine learning classification of tasks. However, during the data
recording, there might be some cases where data acquisition is not interrupted between tasks,
which makes a lot of data in between those annotated segments available. Despite not being
labelled, this data remains physiologically relevant: we can assume that the fNIRS device is still
properly positioned, hence still recording brain activity. One way to take advantage of these
segments is to use them in self-supervised representation learning.

But first, let us take a few steps back and define what we are talking about. In machine
learning, we can distinguish different types of learning [23]. Supervised learning is a way of doing
machine learning in which each data input has a known output target which is used for training a
model, this is what we have used so far for classification in which each input has a label or class.
In opposition we have unsupervised learning, in which inputs do not have a known output; in the
case of classification for example, each input would be unlabelled because the class to which it
belongs is unknown. In between, we have semi-supervised learning, in which the training data is
composed of both labelled and unlabelled data.

A way of doing unsupervised learning is with self-supervised learning [81]. In this case, we
use the inputs themselves in order to inform the learning process. For example, a part of the

1https://openfnirs.org/data/
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data can be used to learn a representation of itself (this is the principle of autoencoders [59]) or
to learn another part of the data. In practice, this type of learning is often used in the context
of a pretext task, which will be used to learn a representation of the data in an unsupervised
fashion. This pretext task can for example consist in contrastive learning where the aim is to
predict whether two inputs are of the same type or not, or in learning spatial or temporal context
by splitting the input data into segments and aiming at predicting the segments’ temporal or
spatial positions. After this representation is learnt, it is used as input for a downstream task,
for example a supervised classification task. This is called transfer learning, since the knowledge
learnt in the pretext task is then transferred to the downstream task.

While here we will be interested in knowledge transfer using a self-supervised task to take
advantage of unlabelled data, transfer learning can also be used for example by pretraining a
model on a dataset and using it on another target dataset after fine-tuning for a classification
task. This type of approach has been used before for example with EEG on many occasions for
BCI applications [173]. It has also been used for fNIRS, where for example Khalil et al. applied
transfer knowledge from data of some subjects to others with a CNN [86], which enabled to
improve performance and reduce model training time. Dalhoumi et al. [41] also used graph-based
transfer learning with fNIRS to transfer knowledge learned on some subjects to a new subject.
This type of transfer learning is great when we are interested in an approach halfway between
subject-specific and subject-independent: pretraining can be done on prerecorded subjects, and
fine-tuning is done on the target subject in order to reduce calibration time of a BCI.

Here we are focusing on subject-independent approaches with no calibration time at all: this
is true unseen subject classification. Transfer learning in that case has been proposed before with
self-supervised pretext tasks as we have described before for classification from neuroimaging
data and can be found in the literature. For example, with EEG Jiang et al. [80] managed to
improve the classification accuracy of their models at sleep staging using contrastive learning
for a self-supervised pretext task. Banville et al. [8] used, also with EEG, a self-supervised
temporal contrastive pretext task, which improved their performance at a sleep scoring task
compared to supervised learning. For fNIRS more specifically, Wang et al. [168] for example used
a self-supervised pretext task similar to Banville et al. [8] learning temporal context (relative
positioning) prior to supervised classification of working memory load, which enabled higher
performance compared to supervised approaches alone (SVM and CNN). Also, Ho et al. [68] and
Lui et al. [100] used a pretext reconstruction task implementing autoencoders in order to extract
features for a downstream mental workload classification task. Such approaches have potential,
however, their foundations are only weakly relying on literature knowledge specific to fNIRS and
its properties.

In this chapter, we will aim at introducing further knowledge related to the fNIRS properties
to design the pretext task: the relationship between HbO and HbR data. Indeed it is now common
knowledge that whenever there is brain activation in response to a stimulation, fNIRS signals
follow a HRF[26, 99, 176]. Moreover, it is also known that HbO and HbR have a relationship
during brain activation which is often described as somewhat negatively correlated [38, 159]. We
will therefore use here a pretext task which will consist in the reconstruction of a channel type
from the other: reconstructing HbR channels from HbO and vice versa. For this purpose, we will
follow up on investigations in Chapter 5. Still focusing on the Shin et al. n-back dataset [155] for
reasons stated previously (n-back task as a basis for mental workload estimation, dataset with
this task with the largest dataset), we will investigate transfer learning, again using as a basis a
CNN type model (more flexibility with deep learning, only model with better performance than
chance in initial benchmarking). This will also help make the comparison of our transfer learning
approach to previous results more controlled.

This transfer learning approach will be evaluated for task classification from fNIRS data on
unseen subjects once again, and this will help us answer the following research questions:

• RQ5 : How can using unlabelled segments of the fNIRS recordings help with classification?
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6.2 Methods

6.2.1 Dataset and signal processing

Once again we here used the same signal processing as in Chapter 5 using BenchNIRS [11].
The fNIRS data from the dataset of n-back tasks collected by Shin et al. and published in 2018
[155] was loaded with a sampling rate of 10 Hz. 16 channels for HbO and 16 for HbR from the
PFC with a source-detector distance of 30 mm were extracted following Figure 5.3. The motion
artefacts were corrected using TDDR and the signal was bandpass filtered (0.01-0.5 Hz). Finally,
data was converted into µM.

The epochs from the 26 subjects were extracted for 0-, 2-, and 3-back (234 examples per class)
with a duration of 40 seconds from the trigger onset, and using 2 seconds prior to this trigger
onset for baseline correction. In addition to that, the signal in between the first and last triggers
was scanned in order to extract all possible remaining segments of 42s in the data, resulting in an
extra 104 unlabelled epochs that were also corrected based on the 2 first seconds of each segment
which were later cropped out. This extraction of extra unlabelled epochs is done because the
brain scanner was worn during the entire recording, so we would expect that the signals are of a
similar quality as the labelled epochs. No feature extraction was performed so, like before, this
resulted in inputs (or examples) of shape 32x400, for which channels are sorted by chromophore
types and separated into 2 parts of shape 16x400 each (one part for HbO and one for HbR).

6.2.2 Pretext task: self-supervised representation learning

Figure 6.1: Diagram of the concept of representation learning for the pretext task: reconstruction
of HbR from HbO, and reconstruction of HbO from HbR.

The pretext task consisted of a self-supervised reconstruction task for representation learning.
The goal was to reconstruct HbR from HbO, HbO from HbR. For this purpose, one convolutional
encoder-decoder (CED) was implemented for each chromophore type, of which a concept diagram
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Figure 6.2: CED architecture.

can be found in 6.1. This regression task aims at compressing the information contained in data
from a chromophore type with an encoder in such a way that it is possible to decompress it
into the other chromophore with a decoder. This process was done for each chromophore with
each of the CED. This enabled us to only keep the most useful information in each sample with
knowledge of the other matching chromophore, and reduce the dimensionality of the input for
the downstream supervised task following up. This acted as feature extraction. To achieve this,
each CED had the shape of an hourglass: starting from the initial input size (16x400), reducing
it to obtain an encoded version (1x16), and then increasing it back and trying to predict the
other chromophore signal (size of 16x400). By training the CEDs on this pretext task, the neural
networks learned how to compress the data information of each chromophore in such a way that it
contained knowledge about the other chromophore type. As this task consisted of predicting one
part of the input from the other part, it did not require any labels, and could then be performed
on the full fNIRS recordings including the unlabelled segments.

The architecture of the CED can be found in figure 6.2. First, input data was normalised per
channel with min-max scaling using minimums and maximums on the training and validation
sets. Each of the two CED (for each chromophore type) was composed of two one-dimensional
convolutional layers across the time axis: the first one with 16 input channels and 8 output
channels, a kernel size of 15 (one-dimension kernel) and a stride of 5; the second one with 8 input
channels and 8 output channels, a kernel size of 12 (one dimension kernel), a stride of 6 and
batch normalisation. The resulting matrix was then flattened into a vector which was fed to the
fully connected layers of 96, 56 and 16 neurons respectively to result into the encoded version of
the data. The decoder followed up with fully connected layers of 56 and 96 neurons followed by
a reshaping into a matrix. This was fed into 2 one-dimensional transpose convolutional layers
symmetrical to the convolutional layers of the encoder: the first one with 8 input channels and
8 output channels, a kernel size of 12 (one dimension kernel) and a stride of 6; the second one
with 16 input channels and 8 output channels, a kernel size of 15 (one dimension kernel) and a
stride of 5, reconstructing the data into the output. All the hidden layers activation functions
were rectified linear units (ReLU), and we used the Adam optimiser with a mean squared error
loss function. The architecture proposed here has been implemented with PyTorch [126].

BenchNIRS [11] was used for a nested group k-fold cross-validation (5-fold for the outer
cross-validation and 3-fold for the inner cross-validation) enabling optimisation of hyperparameters
and model evaluation of the generalisation capabilities on data from unseen subjects. Input
normalisation was performed per channel with min-max scaling using minimums and maximums
on the training and validation sets.

Hyperparameter optimisation was performed using BenchNIRS on the validation sets with
grid search in the same ranges as Chapter 5 [12]:
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• learning rate: 1× 10−5, 1× 10−4, 1× 10−3, 1× 10−2, 1× 10−1;

• mini-batch size: 4, 8, 16, 32 and 64.

The validation sets were used to select the model architecture thanks to the training graphs,
aiming at a minimal validation mean squared error.

After fine-tuning the model to select the best set of hyperparameters, it was retrained with
early stopping similar to the previous section: 20% of validation set randomly left out, 500 epochs
maximum, and patience on the validation loss of 5 epochs.

6.2.3 Transfer learning to the downstream task: supervised classification

Figure 6.3: Diagram of the concept of transfer learning from the pretext task to the downstream
task.

After a regression problem with the pretext task, the downstream task consisted of the initial
supervised classification problem of predicting n-back level. This was done with only the labelled
epochs. So, after training on the pretext task, the encoder part of the CED was extracted for
both HbO to HbR and HbR to HbO. Those two encoders encoded channels for each chromophore,
and classification layers were connected to them, such that the outputs of the CED encoders were
concatenated and used as input for the classification layers. This process is described in figure
6.3. This means that the resulting overall downstream task model used the whole 32x400 shape
data as input to output the class, namely the n-back level (0-, 2-, or 3-back).

The architecture of the model for the downstream task can be found in Figure 6.4. For the
downstream task, the connected classification layers used after concatenation of the outputs of the
encoders were composed of three fully connected layers: one of 32 neurons and one of 16 neurons
with ReLU activation, and the last layer of 3 neurons matching the 3 classes. The cross-entropy
loss function was used with the Adam optimiser. For the training on the downstream task,
the encoders extracted from the pretext task had all their weights frozen, such that only the
classification layer weights were updated here.
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Figure 6.4: Full transfer model architecture.
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Figure 6.5: Training and validation graphs of the transfer learning approach with both labelled
and unlabelled data (cross-entropy loss on the left and accuracy on the right).

Figure 6.6: Training and validation graphs of the control transfer learning approach with only
labelled data (cross-entropy loss on the left and accuracy on the right).

Nested group k-fold cross-validation (5-fold for the outer cross-validation and 3-fold for
the inner cross-validation) was once more performed with BenchNIRS [11] for hyperparameter
optimisation and model evaluation on data from unseen subjects.

Once again, hyperparameter optimisation was performed on the validation sets with grid
search in the following ranges [12]::

• the learning rate’s values tested for the deep learning models were 1× 10−5, 1× 10−4,
1× 10−3, 1× 10−2, 1× 10−1;

• the mini-batch sizes tested for the deep learning models were 4, 8, 16, 32, and 64.

The best model architecture was selected using the training graphs, by attempting to have
the lowest validation losses possible.

Early stopping was performed for the retrained model the same way as for the pretext task:
with 500 epochs maximum and patience of 5 epochs.

6.2.4 Statistics

In order to study the real benefits of using unlabelled segments, two experiments were
conducted: first, training the pretext task and downstream task with only labelled segments,
which acted as a transfer learning control (training graphs in Figure 6.6); second, training the
pretext task with labelled and unlabelled segments, and the downstream task with labelled
segments (training graphs in Figure 6.5).

The accuracy of those two trained transfer learning models was compared to chance level
using a one-tailed t-test or one-tailed Wilcoxon test (depending on the normality of distribution
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of the accuracy on the test sets). Furthermore, we compared the accuracy of the transfer learning
approach using both labelled and unlabelled segments to the control transfer learning approach
and to the dataset-tailored supervised CNN implemented in Chapter 5 because it was using
inputs with the same shape. This was done with one-tailed t-tests or one-tailed Mann-Whitney U
(depending on normality and homogeneity of variances verified using Shapiro and Bartlett tests).

6.2.5 Framework extension

All the methods were implemented using BenchNIRS. While for the supervised functions,
the original library could be used, some new functions have been specifically implemented for
self-supervised representation learning.

First of all, this included the implementation in the loading function of a scanning mechanism
that would extract all the segments of sufficient length between the labelled epochs.

This included also a new parameter in the data processing function to enable sorting of the
channels by chromophore type, which was useful to split the inputs and feed channels from each
chromophore to separate representation learning models.

Finally, this included the addition of functions to train regression models (as opposed to
only classification initially), and the creation of a new function for implementing the transfer
learning approach with nested cross-validation that works with PyTorch models implemented in
a modular way. The function takes as arguments 3 model architectures: the encoder architecture,
the decoder architecture, and the downstream classifier architecture. It enables the training and
hyperparameter tuning of one encoder-decoder model for each chromophore on the pretext task,
the extraction of the trained encoders and the transfer to the downstream task for a supervised
training with frozen encoder weights, also with fine-tuning. Training graphs for both the pretext
task and the downstream task are plotted as well as confusion matrices of the classification
evaluation. The model weights and cross-validation configuration are also saved.

The new version of the framework, including the updated library functions and the transfer
learning main scrips, is available in the supplementary materials, and the extended documentation
is found in the appendices.

6.3 Results

The evaluation on the test sets showed an average accuracy of 34.8% for the transfer learning
approach using both labelled and unlabelled data (chance level at 33.3%), and an average accuracy
of 33.1% for the control transfer learning approach using only labelled data. These results can be
found in Table 6.1. Neither the control transfer learning approach using only labelled segments,
nor the transfer learning approach using both labelled and unlabelled data showed accuracy to
be significantly greater than chance level (33.3%) at a 5% threshold.

Table 6.1: Evaluation of the transfer learning approach.

Model Accuracy

Transfer (labelled & unlabelled) 0.348 (0.030)%

Transfer (labelled only) 0.331 (0.005)%

Dataset-tailored CNN 0.399 (0.055)%

It appears that the proposed transfer learning approach using the unlabelled segments has
improved accuracy at classifying n-back levels compared to the control transfer learning approach
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with only labelled segments, however no significant difference has been shown by a Mann-Whitney
U test with a significance level of 5% (p-value = 0.173).

However, it appears that the transfer learning implemented here did now help improve the
accuracy compared to the dataset-tailored CNN implemented in Chapter 5. It would even appear
that the performance is lower, however, no significance has been shown with a Mann-Whitney U
test (p-value = 0.098).

6.4 Discussion

In this chapter, we explored the use of unlabelled data for the purpose of classification from
fNIRS data (RQ5 ). We developed an approach using knowledge of the fNIRS properties, namely
the known relation between HbO and HbR, to learn a representation in an attempt to improve
classification performance through transfer learning.

We saw already in Chapter 5 that n-back classification from fNIRS data was a challenge, even
when attempting to tailor a model specifically for the task. Such a goal is made difficult because
of many limitations, including for example the limited dataset size, but also noisy data and high
variability between subjects as highlighted in Figure 5.6 with the large confidence interval bands
and also observed in the literature [123].

With our hypothesis that such an approach would improve the performance, the results are
unfortunately not very conclusive, with no significant improvement of the classification accuracy
in comparison to fully supervised machine learning approaches.

This can be due to the limited augmentation effect of using unlabelled data, indeed when
using both labelled and unlabelled data, the unlabelled segments represented only around 13% of
the data. However, we could have assumed that learning a representation from the data properties
would have been useful regardless. This was unfortunately not the case here.

It is difficult to draw conclusions however, since it is impossible to say with certainty whether
the poor results are due to the choice of pretext task, the model type, the model architecture, the
data quality or the too-challenging nature of the classification task. Further investigations could
be conducted with different options in future work, which is why the framework is open to the
community.

It is safe to say however that collecting larger fNIRS n-back dataset would help improve
classification with machine learning, or at the very least help have a better understanding of how
the brain response is influenced by the various difficulty levels of that task. Furthermore, future
work could focus on improving data quality before the pretext task, for example by removing
segments for which the relationship between HbO and HbR is too affected by motion artefact
despite the correction performed by TDDR.

It could be interesting to explore further assumption-based pretext tasks for transfer learning.
While here we have designed a pretext task with some domain knowledge, namely the underlying
relation between HbO and HbR, further knowledge could be put into the design of such pretext
tasks. For example, it could be interesting to use domain knowledge about the HRF for a pretext
task. This could be for example using contrastive learning to determine whether the raw signal
can or cannot be modelled accurately by a HRF, or using as pretext a reconstruction task of
the denoised signals inspired by the autoencoder approach from Gao et al. [55]. Finally, such
knowledge-based transfer learning approaches could be combined to domain adaptation [104]
from one dataset to another, in order to leverage the combined dataset sizes and eventually also
improve generalisation capabilities.

Given the success of such approaches in other fields like computer vision, transfer learning
using unsupervised learning has potential, but further investigations are required to prove its full
potential.
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6.5 Summary

In this chapter, BenchNIRS has been extended in order to investigate the interest of transfer
learning (further validation of RQ1 ). More specifically, a self-supervised reconstruction pretext
task was used to learn a representation of the data incorporating the relation between the two
chromophore types HbO and HbR. Knowledge was then transferred to the n-back classification
downstream task. This transfer learning approach however did not perform better than supervised
learning models, but different pretext tasks introducing domain knowledge could be explored in
future work.
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Chapter 7

Discussion

Recap of the research questions:

• RQ1 : How can we make the rigorous development, evaluation, and comparison of machine
learning approaches for task classification from fNIRS simpler for researchers?

• RQ2 : What are the benchmarks of popular machine learning models on various tasks from
open access fNIRS datasets?

• RQ3 : Across these benchmarks, what factors influence the machine learning classification
accuracy?

• RQ4 : How do machine learning approaches tailored to a specific mental workload task
compare to baseline benchmarks?

• RQ5 : How can we take advantage of unlabelled data in fNIRS classification?

7.1 Discussion on the findings

7.1.1 Making machine learning with fNIRS more rigorous and simpler (RQ1 )

We saw in Chapter 3 how this thesis contributes to making the development, evaluation, and
comparison of machine learning models simpler and more rigorous by creating a framework under
the form of a software library. This library has key elements that make it more accessible to
fNIRS researchers.

First of all, the library is in Python language, which is very high-level and one of the most
easily readable programming languages, with a syntax very close to plain English. It benefits
from a prodigious community, and has applications, therefore support, in a plethora of scientific
fields. This makes it easy for users and contributors to understand and proofread the code, which
also contributes to the framework’s robustness. More specifically, Python has extensive machine
learning and neurophysiology communities which enables the framework to rely on excellent and
widely used libraries such as Scikit-learn1 and PyTorch2, as well as MNE3.

Secondly, the library benefits from extensive documentation with a high level of detail. Its
style is inspired by the established NumPy Python Style Docstring4. This is to make it look
familiar for people used to this kind of standardised documentation, but also to make it easily
compiled and rendered on a dedicated documentation website generated with Sphinx5. This
documentation also comports an example use case of how to use the library for developing new

1https://scikit-learn.org/stable/
2https://pytorch.org/
3https://mne.tools/stable/index.html
4https://numpydoc.readthedocs.io/en/latest/format.html
5https://www.sphinx-doc.org/en/master/
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machine learning models, and scripts used for running the benchmarks are also made available.
Instructions on how to install it easily using pip as it is hosted on PyPI6.

Finally, the code has been written to high standards in order to make it easily readable by
contributors and the code base has been made as modular as possible to enable easy modifications
of the different functions for improvements by external contributors.

7.1.2 Benchmarking machine learning models (RQ2 )

With the second research question, we were interested in Chapter 4 in presenting results of task
prediction from fNIRS data on unseen subjects with 6 baseline models that are popular in BCI.
We saw that results were quite different depending on the task: motor execution classification
as expected yielded better results than mental tasks, especially compared to n-back for which
classifying more reliably than chance level was a challenge. Another takeaway was that deep
learning models did not necessarily outperform traditional machine learning models. Overall,
performance with this methodology reflecting truly unseen data was found quite lower than in
previous work.

We may then ask ourselves the following question: why is it challenging to reach a performance
as high as the existing literature? It appears that the optimisation of hyperparameters on the test
set may unfortunately be a very widespread flaw and source of bias in applied machine learning
overall and fNIRS machine learning is therefore not an exception to that. Work by Kapoor &
Narayanan [84] reports these issues, and alerts on how widespread they are. The significance of
their work gave them the distinction of being named amongst the list of The 100 Most Influential
People in AI by Time under the Thinkers category 7.

This type of issue can have regrettable consequences on the fNIRS machine learning community,
first of all, because in the long run it can devalue claims in the field, but also because serious
researchers may feel discouraged when facing published overstating claims, while being in the
incapacity to replicate results themselves. This can also lead work from serious researchers to not
being published because allegedly not having groundbreaking enough results to claim novelty.

It should then be emphasised that using a validation set for optimisation is crucial for reflecting
unbiased generalisation capabilities of models. One may ask why are we using a validation set for
selecting hyperparameters and not models. This is because all the different model performances
are planned to be reported from the start of the research, while for hyperparameters, often only
the best are reported. In the end, it remains important to consider machine learning as any other
data analysis tool. The methodology and what will be reported should be defined rigorously
before running any analysis or training any models. It is important to clearly say what models
will be tested, with which hyperparameter range, and to report thoroughly all those results in
manuscripts, since cherry-picking those reported results is a source of bias, will not represent
performance on truly unseen data, and will be misleading for the readers. It is to be noted also
that the architecture of a model should only be selected by evaluating on the validation set, either
by direct metrics or by looking at training graph curves. Selecting the best architecture based on
the test set and only reporting results with the best one will lead to a similar bias to optimisation
of hyperparameters on the test set.

To make these concepts clearer we will here illustrate with a hypothetical practical case of
how machine learning can be done with poor practices. In this example, the fictional case aims
at showing the performance of an LSTM at predicting n-back task levels, using a dataset with
labelled examples of 3 different task levels.

• In a first case, data is not split into different resulting in the whole dataset being the
training set, and training performance is reported. This is very flawed and would absolutely

6https://pypi.org/project/benchnirs/
7https://time.com/collection/time100-ai/#thinkers
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not represent generalisations capabilities of a model. Let us call this type of issue erroneous
evaluation.

• In a second case, a learning rate and a batch size are defined beforehand (or for example
using the default hyperparameters from a software), and only those results are reported.
As it was planned before investigations, this is not a flawed methodology per se. However
the choice of those specific hyperparameters can be questioned, so could be the choice of
not optimising them. This may make the results not reflect the best performance possible
of that specific model. Let us call this type of issue genuine unoptimised.

• In a third case, different learning rates and batch sizes are investigated without methods at
random, the best combination is selected by looking at performance on the test set. This is
a clear case of flawed methodology leading to biased results. The reason for that is twofold.
First, hyperparameters are selected at random, which can be questioned. Second, the test
set is used to make an informed decision about hyperparameter selection, which is source of
bias and a flawed methodology. Let us call this type of issue misoptimised leakage, which is
probably the most widespread type of malpractice in machine learning for fNIRS.

• In a forth case, learning rates and batch sizes are investigated with grid search method, but
the best combination is selected by looking at the performance on the test set. The test set
is used to make an informed decision about hyperparameter selection, which is source of
bias and a flawed methodology. Let us call this type of issue optimised leakage.

• In a fifth case, examples are segmented using a sliding time window with overlapping, and
this process is performed on the whole dataset (including test set) in one go. This approach
would result in having some overlapping data points both in the left-out test set as well
as the rest of the data, making that test data already seen in the training data, which
introduces bias. Let us call this type of issue overlapping leakage.

• In a sixth case, min-max scaling normalisation is applied to the data to have all examples
between 0 and 1, and this process is performed using maximums and minimums on the
whole dataset (including test set). This is source of bias and does not reflect prediction
capabilities on unseen data since the test data has been seen to compute the minimums
and maximums. Let us call this type of issue normalisation leakage.

• In a seventh case, the whole methodology is robust and done according to recommendations
in Chapter 3, except that classes are imbalanced due to trial rejection. If most examples
end up belonging to a specific class, a dummy classifier classifying this class all the time
would appear to have high performance as measured by accuracy, however, it would in fact
be a poor classifier as measured by more relevant metrics. Let us call this type of issue
misleading metrics. Note that to spot this type of issue, it is required to have the number
of examples per class after potential trial rejection (because trial rejection may introduce
imbalance on an initially balanced dataset).

• In a final case, the methodology is robust except that results are not statistically compared
to chance level or state of the art. Claiming any difference of that model with this lack of
statistics would be misleading as it could only result from a random effect. Let us call this
type of issue unbacked claims.

In practice, it is often very challenging to determine what type of issue a paper may present
when not enough details are provided to make the reader confident that the methodology is
correct at presenting the best possible results (optimised) on unseen data. Hence, if there is
suspicion of any flawed methodology being used, or not enough details to ensure it is not flawed,
such results should not be trusted.
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Finally, it should be noted that randomness can also enter into play when it comes to the
model performance, especially for deep learning models which usually use a random state to
initialise the weights. The choice of the random state can then lead to outliers that can perform
much better or much worse than the average[130]. This is why comparing results with statistical
tests is crucial, and evaluating multiple times with different random states is a good practice.

7.1.3 Studying influencing factors (RQ3 )

For the third research question, we studied also in Chapter 4 the influence of different factors
on the classification performance as reflected by the accuracy (since classes were balanced).

More specifically, we saw that the time window of each example used as input of the machine
learning models had an influence, and that in most cases, the longer the time window the better
the performance.

We saw that the size of the training as little influence on the performance of the models, even
though we suspected that the overall maximum available size of the dataset was anyway too
small to observe such differences.

We also investigated the use of short sliding windows, which is closer to real-life scenarios,
and discovered that the performance was lower than with full time windows but higher than
non-sliding short windows. We presume that the performance loss due to the shorter time window
may be compensated by the larger amount of data resulting from this method.

Finally, we studied different generalisation goals: predicting task from fNIRS data for unseen
subject, as opposed to subject-specific task classification from fNIRS signals (prediction on unseen
examples from the same subject as the training). We saw that subject-specific classification could
provide an advantage for classification, but such scenarios were not reflecting the reality of BCI
applications because the way of evaluating them meant that a BCI based on such approach would
require more calibration than actual usage, since there is a lack of evidence that subject-specific
approaches can hold their performance across multiple sessions. However, in the case where
such approaches were used anyway, one thing to keep in mind would be the training time of the
models that would matter in this case since it would have to be done for each new subject after
collecting some initial data for calibration. The training time would then be the time to wait
between calibration and usage of the BCI, hence traditional machine learning approaches would
be a much more cost-efficient choice, especially given the limited performance difference between
them and deep learning.

It overall appeared evident once again that the performance was highly dependent on the
dataset and task. Multi-class classification was indeed more challenging than binary classification,
but specifically, the classification of mental tasks seemed hard compared to motor tasks regardless
of modifying different factors (training set size, window size, approach). This would make sense
when considering the more complex underlying brain processes involved in mental tasks. The
one factor that stood out was the window length, for which longer windows seem to give a
real advantage on some tasks that initially were classified decently such as the motor execution.
However, increasing the window size did not provide much improvement on mental workload
tasks. This would be an element to support the fact that the current machine learning models
are limited at classifying such high-level mental processes reliably better than chance.

Another point that is worth mentioning is that machine learning issues such as temporal
leakage can appear more on some specific approaches, such as the sliding window approach
which classify back to back segments. For example, two successive inputs in that case may be
highly related, and should those two successive segments end up in different sets, for example
training and test sets, the evaluation of the model’s generalisation capabilities would likely be
overoptimistic. In our experiments, this was not an issue since group k-fold cross-validation was
performed to extract the test sets, therefore making the test sets composed of completely different
recordings and subjects from the training and validation sets. However, this is a phenomenon
to keep in mind when evaluating models with sliding windows in a within-session configuration,
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splitting the same recording between the different sets. This bias risk is less present in other
approaches using extracted epochs from the trigger onsets as the different inputs to the models
have no direct temporal continuity between each other.

7.1.4 Tailoring machine learning to tasks and datasets (RQ4 )

The fourth research question, addressed in Chapter 5, was interested in studying how machine
learning models could be tailored to a specific mental workload task and to what extent this could
influence performance. This was done since it was found in Chapter 4 that model performance
was very dependent on the task at hand and the dataset.

We saw that using a longer time window, capturing the full mental workload task, did not
necessarily help improve the performance of machine learning models.

In complement of the analysis done for RQ3 for which we were limited to 10 seconds time
windows but saw that the increase of the time window from 2 seconds to 10 seconds was correlated
to an improvement of the classification performance and all the datasets except the n-back tasks,
we studied with RQ4 correlation on the n-back tasks with even longer time windows up to 40
seconds. However, this positive correlation was still not observed, even with those longer time
windows. This could be task-specific, as n-back tasks indeed require a lot of attention and focus
from the participants which can be challenging, this could result in subjects’ brain responses
being affected by that attention level in addition to the task difficulty, making it difficult to
predict reliable information related to task difficulty from the fNIRS data. In order to determine
if this lack of correlation beyond 10 seconds for n-back is task-dependent, it could be interesting
in future dataset recordings to have longer epochs for example on a motor execution task to see if
the correlation of model classification accuracy still correlates to the window size. This would
enable us to determine whether reaching a certain window size can become detrimental.

Furthermore, we saw that using all fNIRS channels as input of a deep learning model provided
a slight advantage compared to averaging them by regions of interest, proving that higher
dimensional inputs can be relevant for classification with deep learning models, especially in
the case of models enabling feature extraction like CNNs. It is known that the more input
features a deep learning model has, the more chance it has to overfit [59], including overfitting
to the hyperparameters if no validation set is used. This highlights the importance of a robust
methodology for evaluating machine learning models, even more when the input data has high
dimensionality, hence the usefulness of BenchNIRS in this case. The example of the development
of the CNN on the Shin et al. 2018 n-back dataset in Chapter 5 is indeed yet another validation
of the BenchNIRS framework and a concrete use case of how it can be useful for researchers
to investigate new models. We here used an open-access dataset supported by BenchNIRS,
however, the framework would also work with private datasets, given that they can be loaded
as MNE objects. The framework is here to greatly facilitate the loading and processing of the
supported datasets enabling to use of a one-liner Python code for this purpose, but the feature
extraction, machine learning methodology, and visualisation can be used for any data loaded in
the appropriate format. This results in the framework being relevant for the development of new
machine learning models on new datasets.

All these investigations overall reflect however a lasting difficulty to classify n-back levels from
fNIRS data, since after all the investigations trying to vary the window size and the number of
channels used as inputs in RQ4, and the different approaches in RQ3, we still did not manage to
classify reliably between the different levels of n-back from the fNIRS signals. We can conclude
that BCIs aiming at classifying mental workload on even more naturalistic and complex tasks
still have a long way to go.
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7.1.5 Using unlabelled data with transfer learning (RQ5 )

Finally, the fifth research question had us focus on the use of unlabelled data with transfer
learning. We used a self-supervised pretext task to learn a representation with knowledge on the
relationship between HbO and HbR, and then transfer learning for supervised n-back classification.

While the pretext task used domain knowledge about fNIRS properties that were relevant to
modelling the relationship between the two chromophore types, this transfer learning approach did
not overall enable improvement in the classification of n-back levels compared to fully supervised
approaches. This approach was however used as an exploration of unsupervised learning for
taking advantage of the significant amount of unlabelled segments in fNIRS recordings in general.

Even though transfer learning, in this case, did not enable performance improvement for n-back
classification, transfer learning with pretext representation learning has been proven useful in
many fields, primarily computer vision. It can enable improving the performance on a downstream
task but also help develop more explainable artificial intelligence (AI) by understanding what the
early layers of the model, coming from the pretext task, are achieving.

It is important to keep in mind however that such transfer models can be more time-consuming
to train compared to the supervised machine learning approaches since two different machine
learning tasks are required. Therefore, they may not be very appropriate for use in the context of
within-session classification for BCI, since training is required just before using the system.

7.2 Implications

7.2.1 Making machine learning with fNIRS more rigorous and simpler (RQ1 )

Answering the first research question led us to build an open source Python software framework
for machine learning with fNIRS data, which enables to:

• load and process easily 5 open access datasets of fNIRS recordings;

• perform feature extraction and region of interest averaging;

• prepare fNIRS data with labels for classification;

• use baseline traditional machine learning and deep learning models;

• optimise and evaluate new machine learning models with a state-of-the-art methodology on
the open access datasets or new datasets;

• visualise training and evaluation with graphs and other figures;

• compute different metrics for model evaluation that best suit each specific case;

• compute statistics to compare machine learning models, to chance level and to each other;

• vary different factors including signal processing, feature extraction, training set size, window
size or sliding window to study the influence on performance.

This framework makes machine learning more accessible for researchers with little machine
learning expertise, since it implements the whole methodology preventing flaws and bias, and
provides model examples. It also enables making fNIRS more accessible for machine learning
specialists with little fNIRS expertise, since it implements state-of-the-art fNIRS pipelines to
avoid pitfalls related to the specifics of this neuroimaging technique.

The framework enables researchers using it to save enormous amounts of time when doing
machine learning classification with fNIRS, by removing the workload of the data loading, data
processing, feature extraction, machine learning methodology, and model evaluation, so that they
can focus on one thing: developing novel machine learning models for fNIRS. Of course, despite
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machine learning being the point of the pipeline targeted by this framework, it still enables to
use various state-of-the-art signal processing techniques and feature extraction methods to the
researchers’ liking. This is because the quality of the data used as input of machine learning
models can be a crucial point for performance, and also that some processing techniques can work
better than others in combination with specific machine learning approaches, the basic example
being using raw data as opposed to features.

A key implication of the BenchNIRS framework is that it enables benchmarking, on shared
datasets, state-of-the-art machine learning models that may have initially been developed on
restricted datasets. This enables to validate whether claims on a dataset still hold on various
open-access datasets.

Furthermore, BenchNIRS enables comparisons of models and influencing factors on different
datasets, which gives insight into the best approaches to choose for one’s specific case. This
is useful to enable an informed decision for example for BCI implementation, or automatic
classification from fNIRS data in general. We see that this is useful both for academic research
but also for use in industry.

A final implication is that it makes machine learning with fNIRS more replicable and more
robust at reflecting performance on unseen data. It prevents researchers from making mistakes
by adding layers of error catching at the different steps of the pipeline, in a similar way to the
Swiss cheese model [142]. This enables to drive the field forward, such that researchers can be
confident that advances are validated and trustworthy.

7.2.2 Benchmarking machine learning models and studying influencing fac-
tors (RQ2 & RQ3 )

In a following part, we provided benchmarks of baseline machine learning models and influ-
encing factors on the classification performance.

This is very useful first of all to validate the usefulness of the framework, by using it to
evaluate models with different approaches. This showcases the capabilities of the framework and
its different use cases.

Those benchmarks give a starting point for the comparison of models that will encourage
researchers to compare more approaches to each other with the same machine learning methodology.
This will enable the field to move forward with a solid basis for comparison.

Furthermore, implications are also with regard to the findings themselves, where those machine
learning benchmarks had difficulties reaching high performances. Indeed, machine learning is no
magical bullet, here to tackle easily all problems with fNIRS. Our findings give indications that
classification from fNIRS data is a challenging task, and that it is not ready for reliable industry
and commercial applications just yet. It requires a lot more work in investigating what factors
are key to machine learning success with fNIRS.

The performance of models proved to be very dependent on the task and dataset at hand,
giving important insight that the is no one model to solve all problems, and that the choice
should be guided by the task and problem to solve.

However, our findings give early insights into the influence of some factors on classification
performance. For example, traditional machine learning and specifically LDA was a decent choice
when one wants a simple model that works decently. This is a useful indication for researchers
trying to use simple methods for BCI. Also, on some tasks using longer time windows provided a
real advantage. Such findings could instruct the study design of future works to maximise the
benefits of machine learning for classification from fNIRS data.

7.2.3 Tailoring machine learning to tasks and datasets (RQ4 )

In answering the fourth research question, we saw that increasing the window size of the inputs
of the machine learning models did not necessarily enable an improvement in performance, even
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though we were using the whole epochs. This implies that more information is not necessarily
beneficial to machine learning classification from fNIRS data. Indeed this gives insight that data
selection and feature extraction are quite useful for extracting meaningful information for pattern
recognition.

Further investigations with a deep learning model enabling automatic feature extraction on a
specific dataset, tailored to the recording device, did enable a decent classification performance
compared to the other results. This strengthens the previous findings that each dataset is different
and that tailoring a model specifically for a dataset does have its importance.

However, the limited performances on n-back tasks reveal that this task is challenging to
classify from fNIRS data alone, possibly because of the difficulty of the task affecting participants’
attention or because participants respond differently to those different levels. This implies that
results and inferences on such tasks should be taken with caution, and that a complementary
way of labelling segments could eventually be used to determine how people are reacting to those
different levels of difficulty.

The findings could open the door to alternative ways of improving machine learning per-
formance besides optimising model type or architecture. By taking a step back from machine
learning models, it could be interesting to focus also on dataset and labelling quality.

7.2.4 Using unlabelled data with transfer learning (RQ5 )

For the fifth research question, we explored transfer learning using a self-supervised learning
reconstruction pretext task prior to the n-back classification downstream task. This was made to
use unlabelled data that is present in every fNIRS recording.

Despite rather inconclusive results in our initial investigations in terms of performance, this
could pave the way to exploring more unsupervised pretext tasks. The pretext task used in
Chapter 6, reconstructing one chromophore from the other, is one way to introduce domain
knowledge into machine learning for classification from fNIRS data so that the model can learn a
meaningful representation of it. However, it would be very interesting to study further other tasks
to introduce domain knowledge in the learning process, in order for machine learning models
to learn a more meaningful representation of the data that encompasses higher-level features
reflecting more advanced patterns in the signals. This could even be an opportunity to learn
fNIRS representation on many other datasets in an unsupervised way, to then transfer knowledge
to a specific downstream task.

7.3 Limitations of the framework

Overall we see the value of BenchNIRS in many different cases to explore different machine
learning paradigms and approaches. However, it still has some limitations.

First of all, the goal was to focus on the machine learning part of the pipeline. For this purpose,
standard state-of-the-art fNIRS processing pipelines have been implemented in the framework,
however, more techniques could be added in order to suit the different ways to approach fNIRS
data processing in the community, such as more traditional machine learning models like shrinkage
LDA [53] or hidden Markov models [140], and more deep learning models like gated recurrent
units [31] or transformers [164].

Second, the focus was put on deep learning more specifically, and despite supporting some
traditional machine learning models as seen in the various benchmarks, the framework is not
currently capable of supporting new models that are not based on neural networks. It would be
interesting to study the needs of the community with that regard to determine if the framework
should be more flexible with traditional machine learning approaches, or whether it is in fact
better to just implement more of the most common traditional machine learning approaches
directly into the framework.
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Also, the approach to hyperparameter optimisation has been to use grid search for thorough
testing of all the combinations in order to select the best. This could potentially be quite
time-consuming and other search approaches could be used to save time such as random search
[13] or Bayesian optimisation [157]. Furthermore, it is to be noted that instead of using grid
search for learning rate fine-tuning, one can use a learning rate scheduler in order to adapt this
hyperparameter throughout the epochs. For this kind of design decision on the methodology, it is
hard to settle on whether the framework should give the choice to users regarding what machine
learning methodology to use, which could result in different methodologies being used making
the comparisons more difficult, as opposed to deciding on a specific standard methodology, which
makes the comparison easier but could restrict exploration of novel approaches.

Finally, a limitation of the framework is that it is currently a Python repository which requires
some technical knowledge of this programming language, and even though it can be considered
as a language relatively easy to learn and use as opposed to other ones, it is still not evident to
anyone. Efforts were made in that direction by organising workshops for teaching Python for
fNIRS, however, more work needs to be done to make it a popular choice in comparison to other
tools benefiting from graphical interfaces that can be used without any programming background.

While the BenchNIRS framework has initially been created in the context of this thesis, it is
designed to be open to community contributions. The goal is that the community makes it its
own in order to develop it in the direction it wishes and to suit the needs of most people.

7.4 Future work

We will here suggest future directions for the work done in this thesis which we divide into
three categories: short-term for up to 1 year into the future, medium-term for up to 3 years into
the future, and long-term for the 10-year outlook.

7.4.1 Short-term

Immediate goals would consist of advertising the framework to start building a user base.
This would enable to proof test it and collect feedback from users in order to address immediate
limitations that could arise. Besides that, another objective would be to advertise the checklist
of recommendations for machine learning with fNIRS and have more people contribute to it to
improve it and make it more accessible for any fNIRS researcher. This initiates the effort towards
establishing community standards for machine learning with fNIRS. This could be complemented
by a short article attempting to describe all the ways machine learning can be flawed and produce
biased results with fNIRS data.

Finally, another half would be dedicated to continuing the explorations in transfer learning
with different pretext tasks, and publish a comparison of those to supervised machine learning
approaches as initiated in Chapter 6. This work would demonstrate further the usefulness of the
framework for the implementation of novel machine learning with fNIRS and provide insights
into unsupervised learning, little used with fNIRS.

7.4.2 Medium-term

Next, within a 3-year period, the goals would be to continue promoting machine learning
standards in the fNIRS community and the BenchNIRS framework. The aim would be from an
initial user base to establish a contributor base that would drive the machine learning for fNIRS
towards properly established standards, and would help to have the community make BenchNIRS
its own by contributing to it and improving it to the community’s needs.

The goal for BenchNIRS would be first to improve the documentation with more examples and
guided tutorials, in order to make the framework more accessible. This could include tutorials on
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how to use the framework with private datasets. Also, more example models could be implemented
such as transformers [164].

Another aspect would also consist of improving the framework by adding support for more
datasets, mainly from the OpenfNIRS website’s repository, in order to be able to test models on
more tasks more easily. In complement to that, the loading of any BIDS dataset with SNIRF
files would also be simplified.

Different hyperparameter optimisation algorithms would be supported in addition to grid
search, and learning rate scheduling would be added as well.

Furthermore, while BenchNIRS currently focuses on machine learning classification. This was
initially done because of the discrete nature of labelling in most datasets. However, regression is
interesting too, and enables to have more fine-grained predictions. Support for regression would
then be made easier to fit every researcher’s needs.

Also, BenchNIRS currently only supports PyTorch [126] for deep learning, so support for
TensorFlow [1], the other popular deep learning library would be added.

Finally, a graphical interface would be added in order to make the framework accessible for
researchers with limited programming backgrounds.

7.4.3 Long-term

To finish, on a 10-year time period, the objective would be to have BenchNIRS recognised as
an established standard for machine learning with fNIRS amongst the community.

Furthermore, a machine learning fNIRS challenge competition would be organised similarly to
other challenges like the First Passive Brain-Computer Interface Competition on Cross-Session
Workload Estimation [143].

Finally, BenchNIRS could become a software suite enabling to help with all the steps of
machine learning with fNIRS, from dataset formatting, to machine learning investigations, to
model deployment for BCI applications.

7.5 Future directions

Now, when it comes to the future of the field of machine learning with fNIRS, this thesis
could lead to a couple of directions.

First, I can see this thesis’ work as a useful starting point for establishing a consensus in the
community on best practices for machine learning with fNIRS. This could go in the direction of
more collaborations between researchers all over the world to agree on a set of best practices that
would complement the existing ones. This would lower the barrier of entry for fNIRS researchers
wanting to start using machine learning in their research. This direction could be summarised by
the following research question:

• First RQ : What are the community best practices for machine learning with fNIRS?

Second, I could imagine the framework being used to facilitate the explorations in machine
learning for fNIRS classification, which will enable faster and easier transfer of the most recent
trends in fundamental machine learning to the fNIRS field. This could ultimately make the
neuroimaging field a more significant innovator in fundamental machine learning research as
opposed to just being a late adopter of the techniques for its applications. As the interest
from the general public in neurotechnologies for everyday life is growing, with more and more
neurotechnology companies, this is also a fantastic opportunity to responsibly gather more data
with the hope of improving pattern recognition and machine learning for BCIs. This could be
summarised into the following research question:

• Second RQ : How does reducing the delay between the publication of novel theoretical
machine learning models and their adoption in the fNIRS field impact innovation within
the field?
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Finally, I believe that alternative approaches to supervised learning will become more popular
in the community. Some explorations have been started in the thesis by investigating opposite
hemoglobin type reconstruction for transfer learning. However, the playground is left open with
this thesis’ work and I believe such approaches are only at their early stages in the field of fNIRS.
Making machine learning more accessible through a framework and better standards will enable
talented experts of subfields of fNIRS to get started with confidence with machine learning,
injecting their innovation into the algorithms which may in the end disrupt the world of fNIRS
BCIs. This could be turned into the following research question:

• Third RQ : How does making machine learning more accessible to fNIRS researchers impact
innovation in BCIs?

While those three research questions are relatively open, they could shape a long-term vision
for machine learning with fNIRS research.
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Chapter 8

Conclusions

8.1 Summary of the contributions

To sum up, the contributions of this thesis can be divided into two main parts.
A first core contribution is a framework for machine learning with fNIRS called BenchNIRS.

This framework is an open-source Python software and enables to:

• load open-access fNIRS datasets from the community;

• process fNIRS signal with state-of-the-art methods;

• extract features;

• use a state-of-the-art machine learning methodology to develop new machine learning models
including training, optimisation, evaluation, and comparison of models for classification
from fNIRS data;

• produce clear visualisations for monitoring training and presenting results.

BenchNIRS enables the use of different approaches and paradigms. This includes the ability to
use both supervised and self-supervised learning and to perform transfer learning. It also gives the
ability to study different influencing factors on the performance of the machine learning models
(time window length, number of training examples, sliding window) with different generalisation
goals (subject-independent or subject-specific). It comes with 6 machine learning models pre-
implemented, including LDA, SVC, kNN, ANN, CNN and LSTM, and provides example scripts
for the evaluation of machine learning models with statistical analysis. This framework of more
than 3,500 lines of code enables to simplify machine learning for fNIRS and makes it much less
time-consuming to develop new models by enabling the implementation of a whole pipeline in
a dozen lines of code. It makes machine learning accessible for fNIRS researchers with little
machine learning experience, and makes fNIRS accessible for machine learning researchers with
little fNIRS experience, bridging the gap between those two advanced and technical fields.

The second core contribution consists of providing benchmarks of different machine learning
approaches for classification from fNIRS on various tasks. This includes:

• the evaluation of various baseline machine learning models including LDA, SVC, kNN,
ANN, CNN and LSTM;

• the evaluation of the influence of different factors on the machine learning performance
including the size of the time window, the number of training examples, and the use of a
sliding window.

• the evaluation of the influence of different generalisation goals including subject-independent
classification and subject-specific classification;
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• the evaluation of the tailoring of machine learning models on specific tasks and datasets;

• the evaluation of different machine learning paradigms including supervised learning, self-
supervised learning, and transfer learning.

This contributes to giving a starting point for comparison of many different machine learning
approaches with fNIRS. It also provides indications as to what models and approaches are best
suited for each case, which is useful when it comes to choosing an algorithm for BCI application.

8.2 Summary of the findings

8.2.1 Building a framework for machine learning with fNIRS

In answering RQ1 we built an open-source Python framework for facilitating research in
machine learning with fNIRS. We described the development in multiple steps, first with the
signal processing library NIRSimple, second with the initial BenchNIRS framework enabling the
comparison of different supervised machine learning classification approaches with fNIRS data
which was validated by using it to produce benchmarks, third by extending it to self-supervised
representation learning and transfer learning which was validated with a deep learning example
on a n-back dataset. We saw throughout the thesis how this framework was used to make the
comparison more accessible by providing an easy-to-use API, and examples with baseline machine
learning comparisons, all available in open source online1, and open to contributions from the
community for improvements and moving towards more robust and standardised machine learning
for fNIRS.

8.2.2 Benchmarking machine learning models and studying influencing fac-
tors

The BenchNIRS framework was used to answer RQ2 (benchmarks of baseline machine learning
models for classification with fNIRS) and RQ3 (factors influencing the performance of machine
learning with fNIRS).

In analysing 6 baseline machine learning models (LDA, SVC, kNN, ANN, CNN and LSTM),
we found that none of them consistently stood out at task classification from fNIRS data except
the LDA, which despite being simple was reliably classifying task with an accuracy significantly
better than chance on all the datasets and was outperforming significantly other models in many
cases.

We then studied the influence of different factors on the models’ performances. We saw
that at the scale of the datasets studied, the number of training examples did not influence the
classification accuracy of models. We found that most models that had a classification accuracy
significantly greater than chance level increased their accuracy as the time window length increased.
Also, we saw that using a small sliding window did not improve performance compared to using
longer non-sliding windows. Finally, we found that, as expected, subject-specific classification
enabled to classify more reliably tasks from fNIRS data compared to unseen subject classification,
though this approach has practical limitations for BCI applications.

All in all, all those benchmarks highlighted that with the robust methodology provided by
BenchNIRS ensuring unbiased evaluation, results were consequently lower than some of the
existing literature, indicating that more research is required in order to make fNIRS BCIs more
reliable.

1https://gitlab.com/HanBnrd/benchnirs
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8.2.3 Tailoring machine learning to tasks and datasets

RQ4 had us interested in tailoring machine learning models to n-back tasks, and also more
specifically one dataset. Once again, the usefulness of BenchNIRS was highlighted for that study
and enabled the production of further results with baseline machine learning models.

We highlighted that extending further the window length from 10 seconds to 40 seconds did
not help improve the classification accuracy of the tested models. Furthermore, no correlations of
the model accuracy to the window length were found in this new study on n-back tasks.

Furthermore, we developed a deep learning CNN model specifically for one of the n-back
datasets and adapted its architecture to the task duration and the fNIRS device at hand. This
appeared to have the potential to improve the accuracy of the model compared to a similar
architecture using region of interest averaging. However, it did not improve the performance
compared to the best initial baseline models using only 10-second time windows.

We concluded that n-back classification remains a challenging goal, and suggest ways this
challenge could be overcome, for example by using different ways to label the data.

8.2.4 Using unlabelled data with transfer learning

The final findings were related to the use of unlabelled segments of the data in order to
perform representation learning and transfer learning.

While we explored here an interesting concept with pretext tasks to learn knowledge then
transferred to a downstream classification task, we did not observe an improved classification
accuracy with this approach compared to initial supervised baseline machine learning models.

We took those insights to then suggest future work tracks aiming at performing more
knowledge-based machine learning with fNIRS, and that could benefit from using unlabelled
segments of fNIRS recordings that can usually be found in a non-negligible amount in typical
datasets. Such domain knowledge-based machine learning could be performed by taking advantage
of the complex properties of the fNIRS data measuring both HbO and HbR, but also of the
hemodynamic specificities of the brain responses.

8.3 Closing remarks

To conclude this work with a few words, I wanted to share some overall thoughts about
machine learning for fNIRS.

8.3.1 How to choose the best machine learning model for fNIRS?

First, some considerations about identifying the best-performing machine learning model for
fNIRS data classification. This remains a challenging task. Despite this thesis bringing elements
to the table for answering this question, the main answer appears to be: first of all, classifying
tasks from fNIRS data is difficult, and classifying higher-level cognitive states or processes would
surely be even more difficult. Nonetheless, some hints are given in this work. Traditional machine
learning should not be ashamed, as some of its models often perform better than more advanced
deep learning approaches. More specifically LDA with carefully chosen features, despite being
very simple in its implementation, optimisation, and computing power demand, kept surprising us
by almost always beating other models. This highlights the great importance of expert knowledge
when doing machine learning with fNIRS, as the extraction of relevant features can play a key
role in the successful implementation of models. Another highlight in the deep learning category
would be CNN, with a rather efficient way to extract features automatically, enabling to work on
fNIRS data without manual feature extraction. It however appears to me that further research
should be conducted with such models in order to address evident issues of small dataset sizes.
Furthermore, we have seen that differences between different models are far from huge, so I then
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want to emphasise the fact that there is most likely no model that is reliably better than others at
classifying fNIRS data, and that existing claims of models outperforming others may be explained
rather by the optimisation and the discovery of the sweet spot when it comes to adapting the
architecture to a task or a dataset.

Beyond identifying the best performing model for classification from fNIRS data, some thought
should also be put into what model is best suited in a specific case. First of all, models perform
differently depending on the task at hand, and the dataset. Secondly, other constraints could
affect the choice of a model for an application. Indeed, considerations like computing demand,
development, and implementation time, should also come into play. For example, developing and
optimising deep learning models can be tedious and time-consuming, in addition to requiring
consequent computing resources to train. If furthermore, the performance of models depends on
each specific use case, someone wanting to develop quick algorithms performing decently may
well be interested in traditional machine learning approaches.

8.3.2 How to make machine learning with fNIRS better?

Now, a question with an optimistic future in mind: how do we make machine learning with
fNIRS better? Here again, this work provides elements to help achieve that goal.

First of all, in my opinion, it starts by setting a solid basis, validating that basis, and
reproducing it. Only then can we build up. This needs to be also supported by more research
into the explainability of machine learning, to uncover the reasons why some approaches work
better than others. Second, it continues with the community gathering, sharing, and helping each
other in an honest but non-judgemental way. Only then can ideas stem and develop. Finally,
I believe it is achieved with explorations in order to find better machine learning approaches,
better paradigms, and better ideas. The framework produced in this work is designed to have
researchers spend less time on the steps that need to be done in order to produce reliable research,
and redirect that time and energy to what in my opinion matters most: exploring. Not just
exploring machine learning only, or fNIRS only, but both in a symbiotic relationship in order
to make those two scientific tools work best for each other. And while this framework provides
guidance for the development of machine learning with fNIRS it is bound to be collaborative,
open to contributions to extend it and make it more flexible to other validated approaches, in
order for it to not limit innovation.
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 / NIRSimple / preprocessing module

preprocessing module

The preprocessing module contains func�ons to preprocess fNIRS signals.

Converts intensi�es into op�cal density changes. Changes are rela�ve to the

average intensity or a reference intensity for each channel.

Op�cal density from light intensity: OD = log10(I_0/I_t)

Op�cal density changes rela�ve to average transmi�ed intensity: delta_OD =

log10(I_0/I_t) - log10(I_0/I_average) delta_OD = -log10(I_t/I_average)

Parameters: • intensi�es (array) – numpy array of absolute intensi�es,

must have the correct shape (channels, data points).

• refs (list of floats) – List of reference intensi�es to use

instead of averages, length must be equal to the number of

channels.

Returns: delta_od – numpy array of op�cal density changes, rela�ve to

average intensi�es or a reference for each channel, of shape

(channels, data points).

Return type: array

Apply the modified Beer-Lambert law (from Delpy et al., 1988) to op�cal density

changes in order to obtain concentra�on changes in oxygenated hemoglobin

(HbO) and deoxygenated hemoglobin (HbR).

Modified Beer-Lambert law: Dod_wl = e_HbO_wl*Dc_HbO*l*DPF_wl +

e_HbR_wl*Dc_HbR*l*DPF_wl

With two different wavelengths we obtain a set of linear equa�ons solved

with matrices: [[Dod_1] = [[e_HbO_1*l*DPF_1, e_HbR_1*l*DPF_1] .

[[Dc_HbO] [Dod_2]] [e_HbO_2*l*DPF_2, e_HbR_2*l*DPF_2]] [Dc_HbR]]

Equivalent to: [[Dc_HbO] = [[e_HbO_1, e_HbR_1] -1 . [[Dod_1/(l*DPF_1)]

[DC_HbR]] [e_HbO_2, e_HbR_2]] [Dod_2/(l*DPF_2)]]

preprocessing.intensities_to_od_changes(intensi�es, refs=None)

preprocessing.mbll(delta_od, ch_names, ch_wls, ch_dpfs, ch_distances, unit, table='wray')
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Parameters: • delta_od (array) – numpy array of op�cal density changes,

rela�ve to average intensi�es for each channel, of shape

(channels, data points).

• ch_names (list of strings) – List of channel names.

• ch_wls (list of integers) – List of channel wavelengths (in nm).

• ch_dpfs (list of floats) – List of channel differen�al

pathlength factors (DPF) (also called par�al pathlengths

factors (PPF)).

• ch_distances (list of floats) – List of channel source-detector

distances.

• unit (string) – Unit for ch_distances (‘cm’ or ‘mm’).

• table (string) – Table to use as molar ex�nc�on coefficients.

‘wray’: data from S. Wray et al., 1988 ‘cope’: data from M.

Cope, 1991 ‘gratzer’: data from W.B. Gratzer and K. Kollias

compiled by S. Prahl ‘moaveni’: data from M.K. Moaveni and

J.M. Schmi� compiled by S. Prahl ‘takatani’: data from S.

Takatani and M.D. Graham compiled by S. Prahl

Returns:
• delta_c (array) – numpy array of hemoglobin concentra�on

changes in [moles/liter] or [M] for each channel, of shape

(channels, data points).

• new_ch_names (list of strings) – New list of channel names.

• new_ch_types (list of strings) – New list of channel types

(‘hbo’ for oxygenated hemoglobin and ‘hbr’ for

deoxygenated hemoglobin).

Convert op�cal densi�es into op�cal density changes, rela�ve to the average

op�cal density or a reference op�cal density for each channel.

Op�cal density changes rela�ve to average op�cal density: delta_OD = OD -

OD_average

Parameters: • op�cal_densi�es (array) – numpy array of op�cal densi�es,

must have the correct shape (channels, data points).

• refs (list of floats) – List of reference op�cal densi�es to use

instead of averages, length must be equal to the number of

channels.

Returns: delta_od – numpy array of op�cal density changes, rela�ve to

average op�cal densi�es or a reference for each channel, of

shape (channels, data points).

Return type: array

preprocessing.od_to_od_changes(op�cal_densi�es, refs=None)
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 / NIRSimple / processing module

processing module

The processing module contains func�ons to process fNIRS signals.

Apply correla�on based signal improvement (from Cui at al., 2010) to hemoglobin

concentra�on changes.

Correla�on based signal improvement (CBSI): x_0 = (1/2)*(x-alpha*x) y_0 =

-(1/alpha)*x_0

Parameters: • delta_c (array) – numpy array of hemoglobin concentra�on

changes in [moles/liter] or [M] for each channel, of shape

(channels, data points).

• ch_names (list of strings) – List of channel names.

• ch_types (list of strings) – List of channel types (‘hbo’ for

oxygenated hemoglobin and ‘hbr’ for deoxygenated

hemoglobin).

Returns:
• delta_c_0 (array) – numpy array of corrected ac�va�on

signals in [moles/liter] or [M] for each channel, of shape

(channels, data points).

• new_ch_names (list of strings) – New list of channel names.

• new_ch_types (list of strings) – New list of channel types

(‘hbo’ for oxygenated hemoglobin and ‘hbr’ for

deoxygenated hemoglobin).

processing.cbsi(delta_c, ch_names, ch_types)
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B BenchNIRS documentation (Chapter 3 and 6)
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 / BenchNIRS / load module

load module

Load and filter one of the open access dataset.

Parameters: • dataset (string) – Dataset to load. 'herff_2014_nb'  for

n-back from Herff et al., 2014 (epoch interval: -5 to 44

seconds). 'shin_2018_nb'  for n-back from Shin et al., 2018

(epoch interval: -2 to 40 seconds). 'shin_2018_wg'  for word

genera�on from Shin et al., 2018 (epoch interval: -2 to 10

seconds). 'shin_2016_ma'  for mental arithme�c from Shin et

al., 2016 (epoch interval: -2 to 10 seconds). 'bak_2019_me'

for motor execu�on from Bak et al., 2019 (epoch interval:

-2 to 10 seconds).

• path (string | None) – Path of the dataset selected with the

dataset  parameter. Defaults to None  to use the default

path.

• bandpass (list of floats | None) – Cutoff frequencies of the

bandpass Bu�erworth filter. Defaults to None  for no

filtering.

• order (integer) – Order of the bandpass Bu�erworth filter.

• tddr (boolean) – Whether to apply temporal deriva�ve

distribu�on repair.

• baseline (None or tuple of length 2) – The �me interval to

apply baseline correc�on. If None  do not apply it. If a tuple

(a, b)  the interval is between a  and b  (in seconds). If a

is None  the beginning of the data is used and if b  is None

then b  is set to the end of the interval. If (None, None)  all

the �me interval is used. Correc�on is applied by

compu�ng mean of the baseline period and subtrac�ng it

from the data. The baseline (a, b)  includes both

endpoints, i.e. all �mepoints t  such that a <= t <= b .

• roi_sides (boolean) – Whether to average channels by side.

Returns: epochs – MNE epochs of filtered data with associated labels,

downsampled to 10 Hz for comparison purposes. Subject IDs

are contained in the metadata  property.

load.load_dataset(dataset, path=None, bandpass=None, order=4, tddr=False, baseline=
(None, 0), roi_sides=False)
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Return type: MNE Epochs object
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 / BenchNIRS / process module

process module

Perform processing on epochs including baseline cropping, bad epoch removal,

label extrac�on and unit conversion.

Parameters: • mne_epochs (MNE Epochs object) – MNE epochs of filtered

data with associated labels. Subject IDs are contained in the

metadata  property.

• tmax (float | None) – End �me of selec�on in seconds.

Defaults to None  to keep the ini�al end �me.

• tslide (float | None) – Size of the sliding window in seconds.

Will crop the epochs if tmax  is not a mul�ple of tslide .

Defaults to None  for no window sliding.

• sort (boolean) – Whether to sort channels by type (all HbO,

all HbR). Defaults to False  for no sor�ng.

• reject_criteria (list of floats | None) – List of the 2 peak-to-

peak rejec�on thresholds for HbO and HbR channels

respec�vely in uM. Defaults to None  for no rejec�on.

Returns:
• nirs (array of shape (n_epochs, n_channels, n_�mes)) –

Processed NIRS data in uM.

• labels (array of integer) – List of labels.

• groups (array of integer) – List of subject ID matching the

epochs.

process.process_epochs(mne_epochs, tmax=None, tslide=None, sort=False,
reject_criteria=None)
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 / BenchNIRS / learn module

learn module

Perform nested k-fold cross-valida�on for a deep learning model. Produces loss

graph, accuracy graph and confusion matrice. This is made with early stopping

(with a valida�on set of 20 %) once the model has been fine tuned on the inner

loop of the nested k-fold cross-valida�on. The number of classes is deduced from

the number of unique labels.

learn.deep_learn(nirs, labels, groups, model_class, features=None, normalize=False,
batch_sizes=[4, 8, 16, 32, 64], lrs=[1e-05, 0.0001, 0.001, 0.01, 0.1], max_epoch=100,
random_state=None, output_folder='./outputs')
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Parameters: • nirs (array of shape (n_epochs, n_channels, n_�mes)) –

Processed NIRS data.

• labels (array of integers) – List of labels matching the NIRS

data.

• groups (array of integers | None) – List of subject ID matching

the epochs to perfrom a group k-fold cross-valida�on. If

None , performs a stra�fied k-fold cross-valida�on instead.

• model_class (string | PyTorch nn.Module class) – The PyTorch

model class to use. If a string, can be either 'ann' , 'cnn'  or

'lstm' . If a PyTorch nn.Module  class, the __init__()

method must accept the number of classes as a parameter,

and this needs to be the number of output neurons.

• features (list of strings | None) – List of features to extract.

The list can include 'mean'  for the mean along the �me

axis, 'std'  for standard devia�on along the �me axis and

'slope'  for the slope of the linear regression along the �me

axis. Defaults to None  for no feature extra�on and using the

raw data.

• normalize (boolean) – Whether to normalize data before

feeding to the model with min-max scaling based on the

train set for each itera�on of the outer cross-valida�on.

Defaults to False  for no normaliza�on.

• batch_sizes (list of integers) – List of batch sizes to test for

op�miza�on.

• lrs (list of floats) – List of learning rates to test for

op�miza�on.

• max_epoch (integer) – Maximum number of epochs possible

for training. Defaults to 100 .

• random_state (integer | None) – Controls the shuffling

applied to data and random model ini�aliza�on. Pass an

integer for reproducible output across mul�ple func�on

calls. Defaults to None  for not se�ng the seed.

• output_folder (string) – Path to the directory into which the

figures will be saved. Defaults to './outputs' .
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Returns:
• accuracies (list of floats) – List of accuracies on the test sets

(one for each itera�on of the outer cross-valida�on).

• all_hps (list of tuples) – List of hyperparameters (one tuple

for each itera�on of the outer cross-valida�on). Each tuple

will be (batch size, learning rate).

• addi�onal_metrics (list of tuples) – List of tuples of metrics

composed of (precision, recall, F1 score) on the outer cross-

valida�on (one tuple for each itera�on of the outer cross-

valida�on). This uses the precision_recall_fscore_support

func�on from scikit-learn with average='weighted' , y_true

and y_pred  being the true and the predic�ons on the

specific itera�on of the outer cross-valida�on.

Perform nested k-fold cross-valida�on for a deep transfer learning model.

Produces loss graphs, accuracy graph and confusion matrice. This is made with

early stopping (with a valida�on set of 20 %) once the model has been fine tuned

on the inner loop of the nested k-fold cross-valida�on. The number of classes is

deduced from the number of unique labels.

learn.deep_transfer_learn(nirs, labels, groups, enc_class, dec_class, model_class,
features=None, normalize=False, batch_sizes=[4, 8, 16, 32, 64], lrs=[1e-05, 0.0001, 0.001,
0.01, 0.1], max_epoch=100, random_state=None, output_folder='./outputs')
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Parameters: • nirs (array of shape (n_epochs, n_channels, n_�mes)) –

Processed NIRS data.

• labels (array of integers) – List of labels matching the NIRS

data. Must include values 8 for all the unlabeled segments

this should be performed by process_epochs.

• groups (array of integers | None) – List of subject ID matching

the epochs to perfrom a group k-fold cross-valida�on. If

None , performs a stra�fied k-fold cross-valida�on instead.

• enc_class (PyTorch nn.Module class) – The PyTorch encoder

class to use for each Hb channel type.

• dec_class (PyTorch nn.Module class) – The PyTorch decoder

class to use for each Hb channel type.

• model_class (PyTorch nn.Module class) – The PyTorch

classifier class to use for the overall classifica�on containing

the Hb encoders. The __init__()  method must accept the

number of classes, an encoder for HbO and an encoder for

HbR as parameters. The number of classes needs to be the

number of output neurons.

• features (list of strings | None) – List of features to extract.

The list can include 'mean'  for the mean along the �me

axis, 'std'  for standard devia�on along the �me axis and

'slope'  for the slope of the linear regression along the �me

axis. Defaults to None  for no feature extra�on and using the

raw data.

• normalize (boolean) – Whether to normalize data before

feeding to the model with min-max scaling based on the

train set for each itera�on of the outer cross-valida�on.

Defaults to False  for no normaliza�on.

• batch_sizes (list of integers) – List of batch sizes to test for

op�miza�on.

• lrs (list of floats) – List of learning rates to test for

op�miza�on.

• max_epoch (integer) – Maximum number of epochs possible

for training. Defaults to 100 .

• random_state (integer | None) – Controls the shuffling

applied to data and random model ini�aliza�on. Pass an

integer for reproducible output across mul�ple func�on

calls. Defaults to None  for not se�ng the seed.

• output_folder (string) – Path to the directory into which the

figures will be saved. Defaults to './outputs' .
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Returns:
• accuracies (list of floats) – List of accuracies for the overall

classifier on the test sets (one for each itera�on of the outer

cross-valida�on).

• all_hps (list of tuples) – List of hyperparameters for the

overall classifier (one tuple for each itera�on of the outer

cross-valida�on). Each tuple will be (batch size, learning rate).

• addi�onal_metrics (list of tuples) – List of tuples of metrics

composed of (precision, recall, F1 score) on the outer cross-

valida�on (one tuple for each itera�on of the outer cross-

valida�on). This uses the precision_recall_fscore_support

func�on from scikit-learn with average='weighted' , y_true

and y_pred  being the true and the predic�ons on the

specific itera�on of the outer cross-valida�on.

Perform nested k-fold cross-valida�on for standard machine learning models

producing metrics and confusion matrices. The models include linear discriminant

analysis (LDA), support vector classifier (SVC) with grid search for the

regulariza�on parameter (inner cross-valida�on), and k-nearest neighbors (kNN)

with grid search for the number of neighbors (inner cross-valida�on).

learn.machine_learn(nirs, labels, groups, model, features, normalize=False,
random_state=None, output_folder='./outputs')
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Parameters: • nirs (array of shape (n_epochs, n_channels, n_�mes)) –

Processed NIRS data.

• labels (array of integers) – List of labels matching the NIRS

data.

• groups (array of integers | None) – List of subject ID matching

the epochs to perfrom a group k-fold cross-valida�on. If

None , performs a stra�fied k-fold cross-valida�on instead.

• model (string) – Standard machine learning to use. Either

'lda'  for a linear discriminant analysis, 'svc'  for a linear

support vector classifier or 'knn'  for a k-nearest neighbors

classifier.

• features (list of strings) – List of features to extract. The list

can include 'mean'  for the mean along the �me axis, 'std'

for standard devia�on along the �me axis and 'slope'  for

the slope of the linear regression along the �me axis.

• normalize (boolean) – Whether to normalize data before

feeding to the model with min-max scaling based on the

train set for each itera�on of the outer cross-valida�on.

Defaults to False  for no normaliza�on.

• random_state (integer | None) – Controls the shuffling

applied to data. Pass an integer for reproducible output

across mul�ple func�on calls. Defaults to None  for not

se�ng the seed.

• output_folder (string) – Path to the directory into which the

figures will be saved. Defaults to './outputs' .

Returns:
• accuracies (list of floats) – List of accuracies on the test sets

(one for each itera�on of the outer cross-valida�on).

• all_hps (list of floats | list of None) – List of regulariza�on

parameters for the SVC or a list of None for the LDA (one

for each itera�on of the outer cross-valida�on).

• addi�onal_metrics (list of tuples) – List of tuples of metrics

composed of (precision, recall, F1 score) on the outer cross-

valida�on (one tuple for each itera�on of the outer cross-

valida�on). This uses the precision_recall_fscore_support

func�on from scikit-learn with average='weighted' , y_true

and y_pred  being the true and the predic�ons on the

specific itera�on of the outer cross-valida�on.
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 / BenchNIRS / viz module

viz module

Perform processing and visualiza�on on epochs. Processing includes baseline

cropping and bad epoch removal.

Parameters: • mne_epochs (MNE Epochs object) – MNE epochs of filtered

data with associated labels. Subject IDs are contained in the

metadata  property.

• reject_criteria (list of floats | None) – List of the 2 peak-to-

peak rejec�on thresholds for HbO and HbR channels

respec�vely in uM. Defaults to None  for no rejec�on.

viz.epochs_viz(mne_epochs, reject_criteria=None)
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C Confusion matrices (Chapter 4)
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Figure 1: Confusion matrices for the subject-independent approach on the Herff et al. 2014
dataset of n-back tasks. Classes 0, 1 and 2 are 1-, 2- and 3-back respectively.

Figure 2: Confusion matrices for the subject-independent approach on the Shin et al. 2018
dataset of n-back tasks. Classes 0, 1 and 2 are 0-, 2- and 3-back respectively.
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Figure 3: Confusion matrices for the subject-independent approach on the Shin et al. 2018 dataset
of word generation tasks. Classes 0 and 1 are baseline task and word generation respectively.

Figure 4: Confusion matrices for the subject-independent approach on the Shin et al. 2016 dataset
of mental arithmetic tasks. Classes 0 and 1 are baseline task and mental arithmetic respectively.
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Figure 5: Confusion matrices for the subject-independent approach on the Bak et al. 2019 dataset
of motor execution tasks. Classes 0, 1 and 2 are right hand finger tapping, left hand finger tapping
and foot tapping respectively.
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D Confusion matrices (Chapter 5)
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Figure 6: Confusion matrices for the n-back tailored subject-independent approach on the Herff
et al. 2014 dataset of n-back tasks. Classes 0, 1 and 2 are 1-, 2- and 3-back respectively.

Figure 7: Confusion matrices for the n-back tailored subject-independent approach on the Shin
et al. 2018 dataset of n-back tasks. Classes 0, 1 and 2 are 0-, 2- and 3-back respectively.
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