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Abstract

Debris flows represent a prevalent natural hazard, posing a significant threat to com-

munities and infrastructure located in mountainous regions susceptible to intense pre-

cipitation events worldwide. Furthermore, the escalating impacts of climate change are

poised to intensify both the frequency and severity of these events. The dynamics of

debris flows, in contrast to other geophysical granular flows, exhibit heightened com-

plexity owing to substantial fluid volumes and a broad spectrum of particle sizes present

within the flow. The diverse composition of debris flows gives rise to highly heteroge-

neous flow states, wherein many contributing mechanisms, notably the interplay be-

tween the granular and fluid phases, remain inadequately understood within the wider

scientific community. Consequently, there persists a lack of consensus on the optimal

approach to incorporate the influence of grain-fluid interactions into numerical mod-

els which are essential for predicting debris flow behaviour and formulating effective

mitigation strategies.

This study aims to shed light on grain-fluid interactions within debris flows through

a programme of physical scaling analysis complemented by two numerical approaches,

inspired by the classical granular column collapse experiment. Focus was given to

the just-saturated case, where granular pores were filled with fluid up to the column’s

free surface. Crucially, a geotechnical centrifuge controlled the stress state within the

granular-fluid flow, enabling experiments across a wide parameter space, including

cases where force balances matched those in geophysical flows. The study’s param-

eter space considered variables such as gravitational acceleration, inertial particle size,

fluid viscosity, and the contribution of fine granular material, with different concentra-

tions of fine kaolin clay particles suspended within the fluid phase. High-speed imaging

and basal fluid pressure measurements were used to quantify characteristic acceleration

stage flow outcomes as functions of dimensionless parameters defined from the initial

column configuration.

The results from the physical experiments formed a substantial dataset applicable

for calibrating or validating numerical models. Two numerical modelling schemes, a

continuum-continuum (shallow water) approach, which was implemented within Mat-
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lab, and a discrete-continuum (Discrete Element Method-Lattice Boltzmann Method)

approach, were used to replicate the observed behaviour from the experiments and gain

further insights into the nature of the grain-fluid interactions. The latter model was then

employed to investigate how the dynamics of the column collapses were influenced by

the rotation of the geotechnical centrifuge, focusing on the effects of centrifugal and

Coriolis accelerations. Key takeaways include the development of a design criterion

based on the log of the ratio of the centrifuge’s radius and the height of the mounted

model. It was found that when this ratio exceeds 4, it can be assumed that the centrifuge

model is subjected to a constant gravitational field, where the influence of horizontal

centrifugal and Coriolis accelerations are negligible.

This study emphasises that although complex experimental setups and numerical

models are necessary to replicate the flow conditions observed in natural debris flows,

simplicity is crucial for gaining insight into the specific mechanisms and processes that

drive their dynamics.
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quantities

Ap [ ] 5 Constant used for pressure signal pro-

cessing

b [L] C Basal surface level

B [ ] 5, 6 Dimensionless group controlling the

family of curves

Bp [ ] 5 Normalised pressure gradient threshold

Bo [ ] 3, 4, 5, 6, B Column-scale Bond number

Bok [ ] 4 Grain-scale Bond number

c, c [LT−1] 6 Mesoscopic fluid velocity vector and

scalar quantities

C [ ] 3 Temperature constant used by Taka-

mura et al. (2012)
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CB [ ] 2 Bulk sediment concentration

Cdd [ML−3T−1] C Darcy drag coefficient

Cf [ ] C Chézy drag coefficient

Cg [ ] 3 Glycerol mass concentration

Ck [ ] 4, A Mass concentration of fines

Cr [ ] 5 Constant for the ‘rainfall’ scheme

Ca [ ] 3, 4, 5, 6, B Column-scale Capillary number

Cak [ ] 4 Grain-scale Capillary number

dk [L] 4 Reference length scale for kaolin clay

particles

dp [L] 2, 3, 4, 5, 6, B, C Coarse grain diameter

D [L] 6 Characteristic DEM particle diameter

Dv,L [ ] B Scale factor

E [ML−1T−2] 5 Elastic bulk modulus

f [ ] 6 LBM density function

f1 [LT−1] 3, 4 Unknown function

f2 [ ] 3, 4 Unknown function

f3 [ ] 3, 4 Unknown function

fc [T−1] 3, 5 Cutoff frequency

fd [MLT−2] 6 Inter-phase drag force

f eq [ ] 6 LBM density function at equilibrium

f [ML−2T−2] C Remaining interphase body force

fB [ML−2T−2] C Buoyancy force contribution

F b [L] C Function of the basal surface

Fc [MLT−2] B Weight of the steel mass

Fm [MLT−2] B Weight of the steel cylinder

Fn, Ft [MLT−2] 6 Surface normal and tangential contact

forces

Fr [MLT−2] B Resultant force of the lifting system

F v [L] C Function of the v phase surface

Frm,L [ ] 4 Maximum flow front Froude number

evaluated at um

Frv,L [ ] 3, 6 Maximum v phase front Froude number

evaluated at uv,m
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g [LT−2] 2, 3, 4, 6, A, C Earth’s constant of gravitational accel-

eration

g [LT−1] 6, C Gravitational acceleration vector

G [LT−2] 3, 4, 5, A, B Gravitational acceleration applied to

the model

h0 [L] 3, 4, 5, 6, A, B Initial column height

hc [L] A Height difference between the capillary

rise and depression

hv [L] 5, C v phase flow height

hv,0 [L] 5 Initial v phase height

hv,1 [L] 5 Initial v phase height of the reduced col-

umn configuration

H [L] 5, C Characteristic flow depth scale

I [ ] C Unit tensor

k [L2] 2, 5, C Granular phase permeability

k0 [ ] 3 Temperature constant used by Taka-

mura et al. (2012)

k1-k5 [ ] 3, 4 Constants in equation for Q

kact/pass [ ] C Lateral earth pressure coefficient

kn, kt [MT−2] 6 Surface normal and tangential contact

stiffnesses

K [LT−1] 5 Hydraulic conductivity

L [L] C Characteristic flow length scale

Lc [L] 6 Base length of centrifuge model

mp [M] 6 Mass of a particle

Mc [M] B Mass of the steel cylinder

Mg [M] 3 Mass of glycerol

Mm [M] B Mass of the mass used to lift up the steel

cylinder

Mp [M] 3 Mass of granular material

Mr [ML2T−2] 6 Torque opposing particle rotation

Mw [M] 3 Mass of water

n [ ] 6 Number of sectors used to obtain the av-

erage phase front position

XXIV



Notation
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nc [ ] 6 Particle coordination number

np [ ] 2, 6 Number of grains

nw [ ] A Number of interrogation windows

n [ ] C Upward pointing v phase surface nor-

mal vector

N [ ] 2, 3, 4, 6, B Constant reflective of the elevated grav-

itational acceleration

NBag [ ] 2 Bagnold number

NDar [ ] 2 Darcy number

NSav [ ] 2 Savage number

pf [ML−1T−2] 6, C Fluid pressure within the mixture

P [ML−1T−2] 3, 5, A, B Basal fluid pressure at the centre of the

column

P0 [ML−1T−2] 5 Basal fluid prior to collapse initiation

for the ‘rainfall’ scheme simulations

PF [ML−1T−2] 3 Residual basal fluid pressure

Pp [ ] 6 Percentage of grains

P
[0,1]
p [ ] 6 Percentage of grains with a coordina-

tion number of 0 or 1

Ṗ [ML−1T−3] 3 Basal fluid pressure gradient at the cen-

tre of the column

Ṗm [ML−1T−3] 3 Basal fluid pressure gradient over the

first significant pressure drop at the cen-

tre of the column

Ṗ ∗ [ ] 3 The ratio between Ṗ and the equivalent

hydrostatic pressure gradient down the

initial height of the column

Ṗ ∗
m [ ] 3 The ratio between Ṗm and the equiva-

lent hydrostatic pressure gradient down

the initial height of the column

P ∗ [ ] 5 Normalised basal fluid pressure

P ∗
F [ ] 3 Normalised residual basal fluid pres-

sure
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Symbol Dimensions Chapter Description

P ∗
r [ ] 5 Averaged initial value of the reduced

normalised pressure signal

P [ML−1T−2] 5 Hydrostatic pressure of the column

prior to collapse

qv [LT−1] 5 Phase-specific volume flux per unit

area

Q [ ] 3, 4 Quantities of interest

r [L] 5, A, C Radial spatial dimension

r0 [L] 3, 4, 5, 6 Radius of the column prior to collapse

initiation

rc [L] A Radius of the capillary

rf,0 [L] 3 Initial fluid phase front position

rv [L] 3, 5, 6, A, B Instantaneous v phase front position

rv,F [L] 3 Final v phase front position

r∗ [ ] 3, 4, B System size

r∗v [ ] 5, 6, B Normalised v phase runout length

rc [L] 6 Coordinate direction aligned with the

gravity vector

Rc [L] 6 Distance from the centre of the cen-

trifuge

Re [ ] 3 Reynolds number

RMSEN [ ] 3, 4, 6 Normalised root mean square error

sv [L] C Surface level of the v phase

S [ ] C Arbitrary scaler quantity

Sv [L2T−2] C Summation of the O(1) v phase source

terms

St [ ] 3 Stokes number

t [T] 3, 4, 5, 6, B, C Time

tcol [T] 3 Cylinder lifting time scale

tgap [T] B Time required for the gap between the

column and the horizontal plane to

equal the inertial grain diameter

t∗gap [ ] B t∗gap normalised by tI
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Symbol Dimensions Chapter Description

tm [T] 4 Time after collapse initiation at which

the maximum front velocity is achieved

tmeet [T] B Time at which point the free surface of

the collapsing mixture is in line with the

bottom of the steel cylinder

tv,m [T] 3 Time after collapse initiation at which

the maximum v phase front velocity is

achieved

tv,ff [T] 5 Time related to the free-fall of the col-

umn v phase

tF [T] 3, 5 Time at the end of the recorded collapse

period

tI [T] 3, B Inertial column timescale

t∗L [ ] 3, 4, 5, 6, B Ratio between t and a characteristic in-

ertial timescale
√

L/G

t∗m,L [ ] 4 Dimensionless time at which the max-

imum flow front Froude number is

achieved

t∗meet [ ] B tmeet normalised by tI

t∗v,L [ ] 3 Dimensionless time at which the

maximum v phase Froude number is

achieved

T [K] 3 Fluid phase temperature

Tc [ML−2T−2] 2 Particle collision stress

Tfq [ML−2T−2] 2 Viscous shear stress

TT [ML−2T−2] 2 Turbulent mixing stress

u [LT−1] 4 Flow front velocity

um [LT−1] 4 Maximum flow front velocity

uv [LT−1] 3, 5, 6 v phase front velocity

uv,m [LT−1] 3, 6 Maximum v phase front velocity

uv, wv [LT−1] C v phase down and perpendicular slope

velocities

u [LT−1] 6 Arbitrary velocity vector

uv [LT−1] C v phase velocity vector
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Symbol Dimensions Chapter Description

u∗ [LT−1] 5 Viscous velocity scale

u∗
v,L [ ] 3, 5, 6 uv normalised by

√
LG

u∗
L [ ] 4 u normalised by

√
LG

ūv, w̄v [LT−1] 5, C Depth averaged v phase down and per-

pendicular slope velocities

ūv [LT−1] C Depth averaged v phase velocity vector

U [LT−1] C Characteristic downslope speed

V [ML2T−3I−1] A Voltage output

V0 [ML2T−3I−1] A Voltage intercept

Vv [L3] 2, 3 Volume of the v phase

x, y, z [L] 6, A, C Planes of the Cartesian reference do-

main

xd, yd, zd [L] 6 Length of the simulation domain in the

three directions

z0, z1 [L] C Arbitrary surfaces

Greek script

Symbol Dimensions Chapter Description

α, β, γ [ ] 3, 4, B Constants in equation forQ

αn, αt [ ] 6 Surface normal and tangen-

tial damping coefficients

αv [ ] 6 Proportion of the column’s

free-fall velocity attained

by the v phase

βv [ML−2T−2] C Interaction force exerted on

the v phase by the other

γ̇ [T−1] 2, 4, A Shear rate

γ∗ [ ] 5, 6, C Grain-fluid density ratio

∆f [L] 6 Fluid mesh size

∆r [L] 5 Cell width

∆t [T] 5 Time interval

ε [ ] C Flow aspect ratio
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ζ [L] 6 Elongation of a tangential

spring

ζs [ ] C Angle of inclination

η0 [ML−1T−1] 3 Viscosity constant

ηf [ML−1T−1] 2, 3, 4, 5, 6, A, B, C Fluid dynamic viscosity

ηw [ML−1T−1] 6 Water dynamic viscosity

η∗f [ ] 6 Normalised fluid dynamic

viscosity

θ [ ] A Angle axis

κ [L2] C Non-conservative flux term

µb [ ] 5, C Basal friction coefficient

µr [ ] 6 Rolling friction coefficient

of the particles

µrest [ ] 6 Coefficient of restitution

µs [ ] 6 Static friction coefficient of

particles

µs,w [ ] 6 Particle-wall friction coef-

ficient

ξ [L] 6 Particle overlap

ρ [ML−3] 3, 4, 5, 6, A Effective density of the

granular-fluid column

ρf [ML−3] 2, 3, 4, 5, 6, A, C Fluid density

ρg [ML−3] 3 Glycerol density

ρk [ML−3] A Kaolin density

ρp [ML−3] 2, 3, 4, 5, 6, C Particle density

ρw [ML−3] 3, A Water density

ρ∗ [ ] 3, 4, B Relative granular fluid den-

sity ratio accounting for ac-

celeration scale buoyancy

σf [MT−2] 3, 4, A Fluid surface tension

σg [MT−2] 3 Glycerol surface tension

σw [MT−2] 3 Water surface tension

σ′
p,xx, σ

′
p,zz, σ

′
p,xy [ML−1T−2] C Effective granular stress

components
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σv [ML−1T−2] C v phase symmetric stress

tensor

σ′
p [ML−1T−2] C Effective granular stress

tensor

τ [T] 6 Relaxation timescale over

which collisions occur

τf,xx, τf,zz, τf,xy [ML−1T−2] C Deviatoric fluid stress com-

ponents

τf [ML−1T−2] C Deviatoric fluid stress ten-

sor

φ [ ] 2 Friction angle of the granu-

lar phase

φc [ ] 3, 5, C Critical solid volume frac-

tion

φv [ ] 2, 3, 4, 5, 6, C Phase volume fraction

ω0 [ ] 6 Domain only accounting

for the curvature of the ac-

celeration field

ω+ [ ] 6 Full rotational domain with

Coriolis accelerations act-

ing in the ‘upstream’ direc-

tion

ω− [ ] 6 Full rotational domain with

Coriolis accelerations act-

ing in the ‘downstream’ di-

rection

ω, ω [T−1] 3, 6 Centrifuge rotational veloc-

ity vector and scalar quanti-

ties
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Chapter 1

Introduction

1.1 Motivation

Debris flows, a subset of gravity-driven slope hazards, are a serious concern in moun-

tainous regions across the world (Jakob et al., 2005). These catastrophic events are

typically triggered by intense rainfall (e.g. Redshaw et al., 2019; Rodolfo et al., 2016)

or permafrost thaw (e.g. Allen et al., 2016; Sati, 2022), leading to the rapid movement

of substantial volumes of water, soil, rocks, and organic matter. Like other geophysical

flows, the substantial threat they pose to both communities and infrastructure situated in

mountainous regions worldwide has prompted intensive scientific investigation of their

complex dynamics.

The danger posed by debris flows emanates from their high fluid content, enabling

them to achieve remarkable velocities and travel great distances. This particular char-

acteristic complicates the prediction of their course and the implementation of diversion

strategies. While debris flows are a global phenomenon, the impact of these landslide-

style events exhibits notable disparities, intricately linked to variables like economic de-

velopment, population growth, and the local interplay of climate and topography (Petley,

2012) (Figure 1.1). Among vulnerable European countries, Italy’s geological composi-

tion, topographic features, and the surge in population density render it notably suscep-

tible to debris flows. This vulnerability is highlighted by multiple catastrophic events

within Italy over the past five decades (e.g. Bandis et al., 1999; Costa, 1991; Crosta and

Dal Negro, 2003; Guzzetti, 2000), including a series of rainfall-triggered landslides in

Southern Italy’s Campania region in May 1998, which claimed 167 lives (Guadagno

et al., 2011). This tragic event spurred the establishment of comprehensive landslide

inventories at both regional and national levels (Trigila and Iadanza, 2008), as well as

the development of an early warning system based on critical rainfall thresholds (Rossi

et al., 2012).

In stark contrast, developing countries contend with exacerbated challenges due to

extreme precipitation and burgeoning populations in previously uninhabited mountain-
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Figure 1.1: (a) Number of rainfall-triggered fatal landslide events from 2004 to 2017 by

country (data obtained from the Global Fatal Landslide Database (GLFD) (Froude and

Petley, 2018)). (b) Gross national income per capita (USD) by country (World Bank,

2023).

ous areas. In these regions, effective strategies for landslide mitigation are often lack-

ing. Apoignant example occurred inVenezuela in 1999, where a devastating debris flow

resulted in tens of thousands of fatalities (García-Martínez and López, 2005). Further-

more, 70% of landslide-related fatalities in 2007 occurred inAsia (Petley, 2008), further

highlighting the gravity of the situation. As climate change amplifies the occurrence of

severe weather events, the frequency and magnitude of such mass movements are antic-

ipated to surge even further (Gariano and Guzzetti, 2016). Consequently, understanding

the intricate behaviour of debris flows and formulating effective mitigation strategies to

counter their destructive potential is becoming increasingly important.

Despite persistent efforts, the compositional intricacies of debris flows continue to

elude complete understanding. The high fluid volume fraction and elevated relative den-

sity of the grains results in the forces developed in both phases significantly contributing
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to the dynamics of the mass movement (Iverson, 1997). The granular phase may also

comprise a wide range of particle sizes (Kesseler et al., 2018), which, due to the interac-

tion with the fluid phase, leads to complexity at both the grain- and macro-flow scales

and the formation of ubiquitous debris flow features such as: a ‘dry coarse head and fine

watery tail architecture’ (Johnson et al., 2012), lateral levees, and finger-like structures.

Laboratory scale experimental models can be employed to replicate particular mech-

anisms, or rheological conditions, observed in natural debris flow behaviour and study

them in isolation. Among the various experimental setups explored, dam break sce-

narios, particularly column collapse tests, have emerged as an optimal approach for

investigating the dynamics of unsteady flow motion.

The underlying concept is that, once these features are comprehensively understood,

they can be articulated mathematically and integrated into scalable numerical models

capable of predicting natural debris flow behaviour. However, the utility of experimen-

tal findings is constrained by scale effects influenced by geometry and force balance

dynamics. In natural flows, gravity and inertial forces predominantly govern these pro-

cesses. Contrastingly, at the laboratory scale, the size of the experiment and the relative

impact of other forces, such as viscosity and surface tension due to the incorporation of

a fluid phase, can attenuate gravity’s role as the prime driver of the flow (Iverson, 2003).

In recent years, Geotechnical centrifuge modelling has emerged as a potential tech-

nique to artificially enhance the influence of gravity within these model flows, allowing

for the exploration of flow behaviour across an otherwise unattainable parameter space.

1.2 Aims and objectives

The primary aim of this project is to investigate the mechanisms governing fluid-grain

interactions in experimental debris flows and their scalability with gravity. This outcome

can be achieved through the completion of the following objectives:

• To develop a centrifuge model configuration of the classic axisymmetric granular

column collapse experiment. This model will allow for an in-depth exploration

of the dynamics characterising fluid-grain interactions across a wide parameter

space. These parameters include gravitational acceleration, fluid viscosity, and

particle size distribution, encompassing both particle size and grading.

• To quantify the variations in fluid-grain interaction dynamics across the parameter

space through the analysis of images and fluid pressure signals in order to discern
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the dynamic processes that dictate flow outcomes.

• To develop a scalable mathematical framework that captures the observed be-

haviours.

• To explore the effects of the centrifugal acceleration field on collapse dynamics.

By systematically addressing these objectives, this research aims to advance our funda-

mental understanding of how experimental debris flow models can be used to explore

the mechanics of their natural scale counterparts, ultimately contributing to a broader

comprehension of natural processes.

1.3 Outline

The material in this thesis will be presented as follows: Chapter 2 provides an overview

of the state-of-the-art research on debris flows. The chapter focuses on key aspects,

such as debris flow classification, analysis of the flow’s heterogeneous structure and

complex mechanisms, limitations of common experimental modelling configurations,

and a summary of the two most prevalent numerical modelling approaches for natural

granular-laden flows.

Chapters 3-6 are self-contained research articles that collectively form the core

of this work, focusing on the experimental and numerical modelling of a simplified

granular-fluid flow configuration. Chapter 3 delves into the analysis of a series of

just-saturated granular column collapse experiments conducted inside a geotechnical

centrifuge (https://doi.org/10.1007/s10035-023-01326-x). The primary em-

phasis lies in studying fluid-grain interaction and characterising the phase front of the

collapse.

Building on the concepts of Chapter 3, Chapter 4 investigates the same experimental

configuration with a non-Newtonian fluid phase composed of kaolin clay particles sus-

pended in water (https://doi.org/10.1051/e3sconf/202341501030). This chap-
ter explores how the concentration of fines affects phase front behaviour by analysing

the same quantities of interest used in characterising the Newtonian collapse case’s ac-

celeration phase.

In Chapter 5, the focus shifts from experimental modelling to the development of a

two-phase shallow-watermodel (https://doi.org/10.1007/s10035-023-01391-2).
This model is utilised to simulate the physical experiments conducted in Chapter 3, with

special attention given to fluid-grain interactions.
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Chapter 6 concludes the results chapters, where the DEM-LBMmethod is employed

to examine the influence of centrifugal accelerations and the Coriolis effect on the dy-

namics of experimental particle-laden flows inside a geotechnical centrifuge (https:
//doi.org/10.1007/s10035-024-01408-4). The analysis begins by reproducing

the Newtonian column collapse experiments discussed in Chapter 3. Subsequently, a

parameter space analysis is performed by varying the centrifuge radius and angular ve-

locity.

Chapter 7 provides the research project’s comprehensive conclusions and offers in-

sights into potential future research emanating from this study. The concluding remarks

highlight the significance of the findings and discuss avenues for further exploration.

Finally, the remaining chapters consist of appendices detailing: the image and signal

analysis techniques employed throughout the physical modelling (Appendix A); insight

into the complexities of conducting these physical collapses at elevated accelerations

(Appendix B); the derivation of the two-phase shallow-water model used in Chapter 5

based on the principles of mixture theory (Appendix C); and the introduction of a pla-

nar experimental configuration that was proposed to further understand granular-fluid

interactions in debris flows (Appendix D).
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Chapter 2

Debris flows: From natural

phenomena to laboratory and

numerical representations

2.1 Debris flow classification

Due to their inherent complexity, achieving a widely accepted phenomenological de-

scription of debris flows has been a more recent advancement compared to other types

of natural hazards. Based on the Varnes landslide classification system (Varnes, 1958)

and other seminal works (e.g. Hungr et al., 2002; Hutchinson, 1997; Jakob et al., 2005),

Hungr et al. (2014) proposed an updated classification encompassing various landslide

related phenomena. This classification effectively segregated these mass movements

into 32 distinct categories, based on factors such as the movement type, characteris-

tics of the transported materials, water content, and the mass movement’s characteristic

velocity.

Within the framework of this classification, debris flows are defined as a ‘very rapid

to extremely rapid surging flow of saturated debris in a steep channel’ (Hungr et al.,

2014). Here, the term ‘flow’ denotes that gravitational forces primarily drive the mass

movement, while ‘saturated’ indicates that the voids within the granular matrix are filled

with interstitial pore fluid.

While this qualitative delineation is valuable for classification, it fails to encapsu-

late the diverse array of rheological behaviours observable in debris flows. To address

this, adopting a classification approach centred on the mechanical behaviour of the flow

through dimensional analysis proves advantageous. This strategy led Iverson (1997)

to identify three dimensionless parameters that not only differentiate debris flows from

other landslide-like mass movements, but also allow for the sub-classification of debris

flows.

The first parameter, termed the Savage number NSav, characterises the relative sig-
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nificance of flow resistance resulting from particle collisions as opposed to resistance

due to frictional contacts (i.e. Coulomb friction)

NSav =
γ̇2ρpdp

np(ρp − ρf )g tanφ
, (2.1)

where γ̇ represents the characteristic shear rate of the flow, ρp and ρf are the densities of

the solid and fluid phases, dp is the diameter of the solid phase grains, np is the number of

grains, g is gravitational acceleration, and φ is the friction angle for the granular phase.

(a)

(b)

Figure 2.1: (a) Iverson’s (1997) classification scheme for debris flows (adapted from

Iverson, 1997). (b) Takahashi’s (2007) natural particle-fluid flow classification scheme

(adapted from Leonardi, 2015).
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The second parameter, known as the Bagnold numberNBag (Bagnold, 1954), quanti-

fies the relative impact of inertial grain stresses and viscous shear stresses on the flow’s

rheology

NBag =
CB

1− CB

ρpd
2
pγ̇

ηf
, (2.2)

where CB is the bulk sediment concentration and ηf is the dynamic viscosity of the

fluid. The final parameter, the Darcy number NDar, characterises the extent to which

grain interactions are mediated by the pressure of the interstitial pore fluid

NDar =
ηf

Cρpγ̇k
, (2.3)

where k denotes the hydraulic permeability of the granular phase.

Thus, Iverson (1997) proposed that natural debris flow behaviour could be differ-

entiated from other mass movements by the parameter space constraints: Nsav . 0.1,

0.2 . NBag . 400 and NDar & 5000, within which Nsav, NBag and NDar could vary

(Figure 2.1a). It is worth noting that this restricted parameter space may not be applica-

ble to experimental debris flow configurations (see Section 2.3).

Takahashi (2007) proposed an alternative classification system (Figure 2.1b) that,

similar to Iverson’s (1997) approach, considered the relative contributions of three

stresses namely, particle collision stress Tc, viscous shear stress Tfq and turbulent mix-

ing stress TT , to flow dynamics. Additionally, Takahashi’s (2007) system incorporates

the coarse particle concentration, referred to as the solid volume fraction φp

φp =
Vp

Vp + Vf

, (2.4)

where Vp and Vf denote the volumes of the granular and fluid phases, respectively. The

inclusion of φp as a dimension allows for the consideration of the flow water content.

Low φp values correspond to mud flows, while sufficiently large φp values indicate

negligible fluid content (i.e. a rockslide). Takahashi (2007) proposed that debris flows

fall within a φp range of 0.2 to 0.5. The lower limit of this range corresponds to a

highNSav value, as Coulomb friction does not significantly contribute to the total stress

T . Increasing φp results in greater frictional resistance and Nsav . 0.1, which aligns

with the debris flow mechanics classification outlined by Iverson (1997). Within this

φp range, the ratio of Tc, Tfq and TT to T further influences the rheological behaviour

of the flow.
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While the mechanical classification of debris flows provides valuable insights into

their theoretical dynamics, its applicability to debris flow prediction and mitigation is

constrained due to its omission of the total mass of flowing material, a crucial parame-

ter when forecasting flow mobility and inundation areas (e.g. Chae et al., 2017; Rick-

enmann, 1999). This limitation exists alongside the consideration that the composition

and, consequently, the rheology of debris flows evolve both spatially and temporally

(Iverson, 2003).

2.2 Evolution of natural flows

A naturally triggering debris flow unfolds in three principal stages: initiation, trans-

portation, and deposition (Figure 2.2). This section sequentially delves into each phase,

elucidating on distinctive aspects of debris flow dynamics that hold paramount signifi-

cance from a scientific perspective.

Figure 2.2: Aerial photograph of the Daniao tribe debris flow that occurred in Taiwan in

2009 (photograph taken from Tsai et al., 2011). The zones corresponding to each phase

of debris flow motion are highlighted.
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2.2.1 Initiation

Debris flows commonly materialise when a previously stationary mass of unconsoli-

dated granular material, such as soil, attains a critical state, prompting movement down

a steep incline (Iverson, 1997). The driver for failure arises from an increasing wa-

ter content that undermines the material’s stability by diminishing the normal effective

stress exerted upon it. Typically, the inflow of water stems from abrupt, intense rain-

fall events (García-Martínez and López, 2005). Additionally, instances occur where

water infiltration results from permafrost thawing or glacier melt (e.g. Chiarle et al.,

2007; Sattler et al., 2011). These failure mechanisms have undergone comprehensive

examination within the framework of slope stability analysis, leveraging methodolo-

gies commonly utilised within the discipline of Civil Engineering (Duncan et al., 2014;

Fang et al., 2022). Consequently, parameters encompassing the slope’s geometric and

geomorphological attributes, coupled with the static and temporal loading conditions

imposed upon it, have emerged as critical factors when determining its stability. It is

important to acknowledge that the mechanisms described above represent general trig-

gers for debris flows on steep slopes; however, it’s worth noting that factors such as

climate, topography, and lithology can play a substantial role in dictating the precise

locations where debris flow initiation occurs (Brayshaw and Hassan, 2009).

2.2.2 Transportation

2.2.2.1 Surge front architecture

Debris flows, once initiated, exhibit distinctive transport patterns, often involving a se-

ries of surges. These surges represent episodic movements, with the initial surge being

the most substantial, followed by subsequent smaller ones (Iverson, 1997; McCoy et

al., 2010). The transported material spans a wide range of sizes, from fine sediments,

such as silts and clays, to larger boulders and organic elements like timber (Turnbull

et al., 2015). Although surges can develop in more uniform flows, where the granular

phase primarily comprises fine particles, as in Takahashi’s (2007) definition of turbulent

mud flows, our focus here pertains to the more common scenario of surges transporting

granular material with diverse particle sizes.

Surge waves within debris flows typically exhibit a distinct architecture (Figure 2.3).

The leading portion, the dense, dry granular ‘head’, contains the highest concentration of

coarse materials and achieves the greatest flow depth (Hungr, 2000). This is followed by
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Figure 2.3: Schematic showing the typical distributions of particle size and fluid con-

centration (blue gradient) within a debris flow surge (inspired by Pierson, 1986).

a progressively more fluidised and shallower ‘tail’. While Takahashi (1981) attributed

this phenomenon to Bagnold’s (1954) theory of dispersive pressure, other studies have

reproduced this behaviour through the concepts of kinetic sieving and squeeze expulsion

(e.g. Johnson et al., 2012; Savage and Lun, 1988; Vallance et al., 2000). In mixtures of

polydispersed grains subjected to shear forces, smaller grains tend to settle into spaces

created by the movement of larger grains, leading to a downward migration. This pro-

cess results in a size-dependent inverse grading throughout the flow depth, as larger

particles are pushed towards the flow’s surface due to constrictions in the flow-parallel

direction. As the flow’s velocity at the free surface is larger than the average velocity

of the flow, the larger particles are able to migrate to the head of the flow. The presence

of larger pore spaces between the boulders at the head of the flow enables easy fluid

drainage, causing the head to become dry and its behaviour to be dominated by granular

friction (Iverson, 1997).

2.2.2.2 Heterogeneous pore pressure distributions

The architecture of debris flows, as observed through field observations (e.g. Berti et

al., 1999) and large-scale experiments (e.g. Major and Iverson, 1999), highlights the

spatial and temporal variability in particle concentration. This variability is compounded

by the broad spectrum of particle sizes present in field-scale flows, leading to varying

porosities within the granular material across both space and time (Iverson et al., 2010b).

Consequently, the distribution of pore fluid and, therefore, pore pressure within the flow

becomes heterogeneous and strongly coupled to local flow dynamics.

A key mechanism shaping debris flow behaviour involves the generation of excess

pore pressure, defined as the deviation of pore pressure from the expected hydrostatic
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pressure for a given location and time within the flow (Kaitna et al., 2016). Shear zones

within the flow trigger relative movements among particles, leading to either the dilation

(increased inter-grain spacing) or contraction (decreased spacing) of the pore space.

These shear-induced movements yield local pore pressure gradients, causing interstitial

fluid to be expelled or drawn into the spaces opened or closed by the shear motion, thus

altering the basal fluid pressure at that specific location (Iverson et al., 2000).

The continuous interplay of dilations and contractions, particularly in the more liq-

uefied regions of debris flows, can sustain positive excess pore pressures over extended

periods. Large-scale flume tests (e.g. Major and Iverson, 1999) and field observations

(e.g. McArdell et al., 2007) have demonstrated that this time scale can vary from hours

to days, spanning from flow initiation to post-depositional consolidation. This pro-

longed high pore-pressure retention significantly contributes to the enhanced mobility

of granular-fluid flows compared to dry granular flows. Elevated basal pore pressures

lead to reduced friction between the flow body and its basal boundary by decreasing

basal normal stress (Huggel et al., 2005), effectively lubricating the bulk flow’s motion.

An in-depth laboratory investigation by Kaitna et al. (2016), involving rotating drum

experiments, uncovered a further layer of complexity within the pore-pressure feedback

loop. These findings corroborated Iverson’s (2015) research and highlighted that the

grain size distribution of the solid-phase granular material substantially influences the

flow’s capacity to maintain elevated pore pressures. The rate at which coarser material

from the flow’s front is overridden and recirculated into the bulk dictates the speed

of pore space contraction within the liquefied flow regions, thus affecting the rate of

pore pressure reduction. By increasing the proportion of finer material that remains

suspended within the flow, effectively increasing the density of the interstitial fluid,

the settling of coarser particles is curtailed, prolonging their suspension within the flow

and restraining pore pressure dissipation. The grain size distribution, specifically the

inclusion of a high percentage of fine granular material, has also been found to play a

significant role in material erosion, entrainment and deposition processes (e.g. de Haas

et al., 2015; Roelofs et al., 2022).

2.2.3 Deposition

Within the transportation zone, it has been observed that material carried by the flow can

be deposited through the development of lateral levees (Iverson, 2014; Johnson et al.,

2012). However, the deceleration and cessation of motion of the bulk flow primarily re-
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sults from the distinct changes in topography between the transportation and deposition

zones. Specifically, the diminishing slope angle and the topography no longer providing

the necessary lateral confinement essential for the containment of the flow (Delannay

et al., 2017; García-Martínez and López, 2005). Consequently, this lack of confinement

allows the flow to disperse laterally and diminish in height, eventually reaching a critical

threshold that curtails its sustained momentum.

In the context of hazard assessment and risk mitigation, understanding the final

runout distance of the flow and the geometry of the primary deposition area, commonly

known as the alluvial fan, is of utmost importance. To this end, it is common to utilise

geometric, volumetric and material data from previous mass movement events to cal-

ibrate empirical scaling relations that are capable of predicting these significant flow

characteristics (Rickenmann, 1999). However, it is important to recognise the suscepti-

bility of these techniques to uncertainties stemming from the approximation of material

properties (see Section 2.3.1), the volume of flowing material, and the meteorological

conditions during the event.

Analysis of the stages of debris flow motion highlights the complex interplay of spa-

tial and temporal dynamics, revealing the heterogeneous nature of debris flow behaviour.

Local flow characteristics are profoundly influenced by the specific composition of the

flow in a given region. Moreover, this analysis highlights the multi-scale nature of

the mechanisms governing debris flow dynamics, operating across multiple length and

time scales. Hence, while classification schemes based on flow mechanics (discussed

in Section 2.1) offer valuable insights, their limitations become evident in the context of

temporal and spatial variations. Classifications that hold true for certain locations within

the flow at specific moments might not remain applicable to all points throughout the

entire duration of the mass movement event. This intricate variability highlights the

need for a comprehensive understanding of the underlying processes that dictate debris

flow behaviour. Most pertinently, the interaction between the granular and fluid phases.

2.3 Field measurements and physical modelling

2.3.1 Field measurements and large-scale testing

Themost intuitive approach to understand debris flowmechanics is through the observa-

tion of naturally triggered events (McArdell, 2016). Field measurements obtained from

such events play a pivotal role in the validation of research conducted at smaller scales
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Figure 2.4: Oblique view of the Illgraben catchment as well as the location of the main

monitoring locations within the active catchment and along the main flown channel

(image taken from Google Earth).

(as elaborated in Section 2.3.3) and provide valuable data for empirical and statistical

studies, especially concerning flow runout and volume estimation (Rickenmann, 1999).

However, acquiring field measurements from naturally occurring debris flows presents

significant challenges. Two primary factors hinder this process:

1. Unpredictable initiation: Debris flows are typically triggered by short, heavy

downpours, making the initiation of these events unpredictable.

2. Safety concerns: The inherent danger posed by debris flows limits researchers’

ability to approach and gather data during these events.

To address these challenges, researchers often deploy unmanned measurement equip-

ment within catchment areas before an event occurs. Therefore, the choice of catchment

is critical, as it should provide recordable mass movement events at a sufficiently high

frequency.

One notable catchment that has been extensively studied is the Illgraben catchment

in South-west Switzerland (Figure 2.4). Since the opening of the observation station in

2000, this catchment has recorded 75 individual debris flow events (accurate as of 2019)

(Hirschberg et al., 2019). In addition to monitoring rainfall within the catchment using

a network of rain gauges, various monitoring locations within the active catchment and

along the basin’s channel are equipped with instruments to measure essential parameters
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such as flow depth, flow velocity, basal normal and tangential forces (e.g. McArdell et

al., 2007), flow erosion and deposition (Berger et al., 2011; de Haas et al., 2023), and

other variations in flow and bed geometry (e.g. Spielmann et al., 2023).

Despite the valuable insights provided by monitored research catchments like Ill-

graben, they are not without limitations. A significant constraint is that information ob-

tained from naturally occurring debris flows is often constrained by the lack of data on

initial and boundary conditions of the mass movement (Iverson et al., 2010b). Further-

more, material parameters derived from the final flow morphology are typically poorly

constrained. Thus, interpreting the data recorded from such events is typically a two

stage processes, requiring assumptions to be made about the flow’s composition before

its behaviour can be understood. This is often done by back-calculating the dynamics

of an event using a numerical tool where material and boundary input parameters are

systematically varied to reproduce the observed flow outcomes (see Section 2.4).

Figure 2.5: Photograph of the USGS debris flow flume during a test (photograph taken

from George and Iverson, 2014).

To address the limitations of field measurements, researchers often conduct dynam-

ically similar studies at large-scale flume testing facilities. Such facilities, like those

at the US Geological Survey (USGS) in the USA (95 meters long and 2 meters wide)

(e.g. Iverson et al., 2010b; Johnson et al., 2012) or the Kadoorie Center in Hong Kong

(28 meters long and 2 meters wide) (Lam et al., 2022; Lam and Wong, 2021), offer

15



Chapter 2: Debris flows: From natural phenomena to laboratory and numerical

representations

the opportunity to study various aspects of debris flow behaviour and their interaction

with potential mitigation structures. However, it’s important to note that these facili-

ties are limited in number due to the substantial financial backing and space required

for their construction. Furthermore, the preparation of a single test in these facilities is

time-consuming, making the acquisition of repeatable results for verification relatively

uncommon.

2.3.2 Laboratory-scale experimental configurations

In contrast to large-scale testing, laboratory experiments offer a distinct advantage in

the study of granular-fluid flows. This advantage lies in the ability to exert precise con-

trol over all parameters governing the flow and the boundary conditions throughout the

duration of the mass movement. This level of control offers the invaluable benefit of

generating highly repeatable datasets (Iverson, 2003). Such experiments play a pivotal

role not only in the calibration and validation of numerical models used for predicting

granular-fluid flow behaviour (e.g. Berzi and Jenkins, 2008; Ceccato et al., 2020; Meng

et al., 2022) (see Section 2.4 for further details), but also in advancing our comprehen-

sion of intricate flow characteristics.

Laboratory experiments serve as a means to distil specific aspects of natural debris

flow behaviour into simplified physical models. This abstraction facilitates parametric

studies aimed at understanding the influence of various parameters on the mechanisms

under investigation (MiDi, 2004). The ability to isolate andmanipulate these parameters

enables researchers to gain insight into the nuanced controls governing granular-fluid

flows.

Forterre and Pouliquen (2008) categorised most steady-state experimental configu-

rations used to investigate particle-laden flow behaviour into six general configurations

(Figure 2.6). While their focus was on dry granular material, these configurations are

also applicable to granular flows containing an interstitial fluid. In all six cases, either

volume- or pressure-controlled conditions are imposed to simplify the stress-state of the

test material.

The first three experimental configurations, the plane shear (Figure 2.6a), the annular

shear (Figure 2.6b), and the vertical silo (Figure 2.6c), analyse the response of the gran-

ular material to an imposed shear stress (e.g. Contreras and Davies, 2000; Coussot et al.,

1998; Iverson et al., 2010a; Major and Pierson, 1992). The plane and annular shear ex-

periments work by shearing the granular material between two surfaces, one static and
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Figure 2.6: Typical experimental configurations for the study of steady dense granular

flows (taken from Forterre and Pouliquen, 2008). (a) plane shear, (b) annular shear,

(c) vertical silo, (d) inclined plane, (e) heap flow, and (f) rotating drum. Black arrows

indicate the forces applied to the system while red arrows highlight the typical shape of

the subsequent flow’s velocity profile.

one driving the material’s deformation, in order to assess variations in the material’s

behaviour under different loading and shearing conditions. Similar assessments of ma-

terial properties from in-situ samples are also performed using triaxial shear test config-

urations (e.g. Gabet and Mudd, 2006; Hu et al., 2016). The vertical silo configuration

(Figure 2.6c) is primarily relevant to granular flow in industrial processes, investigating

how the dynamics of the collapsing material are controlled by the geometry of the open-

ing through which the material exits and the mass of the material contained within the

structure (e.g. Dorbolo et al., 2013; Orpe and Kudrolli, 2007; Pacheco-Martinez et al.,

2008).

The remaining three configurations are primarily used to analyse the dynamics

of flowing mass movements demonstrating steady flow characteristics. The heap
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flow configuration (Figure 2.6e), is used to study the temporal release and evolution

of avalanches arising from the accumulation of granular material (Fan et al., 2017;

Lemieux and Durian, 2000). The rotating drum configuration (Figure 2.6f) allows re-

searchers to investigate the kinematics of granular flows under steady-state conditions,

where the forces driving (predominantly gravity) and retarding (i.e. basal friction)

the flow are approximately equal. Such investigations are useful for understanding

flow mechanisms that contribute to flow dynamics over prolonged timescales, such as

segregation (e.g. Gray, 2001; Kaitna et al., 2016; Turnbull, 2011).

Finally, the inclined plane configuration (Figure 2.6d) is of particular relevance to de-

bris flow research. Much like the large-scale testing facilities discussed in Section 2.3.1,

it involves allowing a predetermined quantity of granular material to freely move down

an inclined slope where parameters like the roughness of the bed and the lateral con-

finement of the flow can be adjusted. This configuration can be adapted to investigate

unsteady granular motion which, as discussed in Section 2.2, is the behaviour observed

over the duration of a natural mass movement. Flow dynamics can then be tracked and

analysed throughout the flow’s duration. The specific configuration pertinent to the cur-

rent research, the dam-break over a horizontal plane (e.g. Lajeunesse et al., 2004; Lube

et al., 2004; Trepanier and Franklin, 2010; Warnett et al., 2014), will be described in

Chapter 3.

2.3.3 Scaling

In order to draw meaningful comparisons between laboratory-scale experiments and

large-scale events, it is imperative to consider appropriate scaling laws, as emphasized

by previous research (e.g. Heller, 2011; Iverson and Denlinger, 2001). As stated by

Heller (2011), an experimental model can only achieve complete mechanical similarity

to a natural (i.e. prototype) event by meeting the following criteria:

1. Geometric similarity: ensuring that the physical dimensions of the model’s ge-

ometry are proportional to those of the prototype event. For the analysis of free-

surface flows, parameters such as channel width, length, and angle of inclination

assume significance.

2. Kinematic similarity: In addition to achieving geometric similarity, kinematic

similarity demands that the model faithfully replicates the patterns of motion ob-

served in the prototype flow. This involves maintaining consistent ratios of time,
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velocity, acceleration, and discharge (particularly relevant for fluid phenomena)

between the model and the prototype (Heller, 2011).

3. Dynamic similarity: In addition to the previous two conditions, dynamic similar-

ity necessitates that the force ratios (see Section 2.1 for examples) in the prototype

are identically reproduced in the model.

Failure to meet all three criteria results in experimental flows that exhibit scale ef-

fects. Achieving complete mechanical similarity with a laboratory model is typically

not possible. As such, experimentalists try to achieve partial similarity but the selected

scaling laws are dependent on the processes being investigated. For example, to miti-

gate the influence of scale effects on flow dynamics, some experimental studies, often

conducted using typical flume or chute configurations, employ Froude similarity scaling

(e.g. Choi et al., 2015; Kesseler et al., 2018; Scheidl et al., 2013). Froude scaling aims to

match the ratio of inertial and gravitational forces within both the model and prototype

flows (Heller, 2011). While valuable, Froude scaling has limitations when applied to

modelling debris flows, primarily due to the inherent complexity of such flows.

Small-scale models frequently struggle to achieve dynamic similarity with their pro-

totype flows, primarily due to the scale-dependence of certain forces contributing to

flow dynamics. Notably, laboratory-scale debris flows tend to overemphasise the con-

tributions of fluid viscosity and particle collisions to bulk shear resistance while under-

representing the effects of pore pressure diffusion, as compared to their influence on

natural flows (Cabrera and Wu, 2017; Iverson, 2015). Furthermore, the simplification

of natural flows’often well-graded grain size distribution to a monodispersed mixture in

small-scale experiments can overlook vital mechanisms that affect flow behaviour over

smaller length and time scales (Sanvitale and Bowman, 2017). Conversely, including

smaller particle sizes in small-scale experiments with a fluid phase can lead to an over-

statement of surface tension effects relative to gravitational forces at the macro-flow

scale (Iverson, 2003; Iverson, 2015).

2.3.4 Centrifuge testing

As discussed previously, gravity plays a pivotal role in governing the behaviour of gran-

ular flows, serving as the primary driving force. To attain dynamic similarity between

an experimental model and a prototype flow, one potential approach is to manipulate

the acceleration field applied to the model. This can be accomplished through the utili-

sation of a geotechnical centrifuge (Taylor, 1995). By rotating a laboratory-scale model
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at a given angular velocity at the end of a centrifuge arm, a centripetal acceleration is

imposed on the model. When this centripetal acceleration exceeds Earth’s gravity by a

scaling factor N , it augments the self-weight of the material within the model, thereby

enabling precise control over the gravitational effects in the model (Cabrera and Wu,

2017). By adopting principles of geometric similarity and constructing an experimental

model scaled down by a factor of N compared to the prototype scenario, it is possible

to derive valuable scaling laws that establish relationships between parameters in the

model and those in the prototype (refer to Table 2.1).

Table 2.1: Centrifuge model scaling relationships most relevant to granular mass flows

(Garnier et al., 2007).

Parameter
Scaling factor

(model/prototype)
Pressure, stress 1

Strain 1

Density 1

Length 1/N
Gravity N
Time (inertial) 1/N
Force 1/N2

Velocitya 1

Frequency N
Kinetic energy (free-fall) N3

Acceleration N
Stiffness 1/N

Centrifugemodelling is a well-established technique in the field of Civil Engineering,

widely employed to investigate various geotechnical problems, including the behaviour

of soils under different levels of saturation (e.g. Caicedo and Thorel, 2014; Mirshekari

and Ghayoomi, 2017), static and dynamic soil-structure interactions (e.g. Marshall et

al., 2012; Stewart and McCartney, 2014), and issues related to soil stability and im-

provement (e.g. Liu et al., 2023; Zhang et al., 2001a). As evidence of its significance,

over 100 such facilities have been established worldwide. A selection of these facilities

are shown in Figure 2.7, delineating their maximum allowable acceleration and model

payload capacities. The centrifuge facility at the University of Nottingham lies in the

middle of the distribution, with the capacity to spin a 335 kg payload at a centripetal

acceleration equivalent to 150g.

Recently, centrifuge modelling has found applications in the study of geophysical
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Figure 2.7: Maximum allowable acceleration against the allowable model payload for

a selection of centrifuge facilities around the world. The allowable testing range of

the University of Nottingham’s geotechnical beam centrifuge is confined by the green

dashed line (adapted from Idinger, 2016 and Cabrera, 2016).

flow behaviour. This application primarily centres on the exploration of pressure-

dependent mechanisms that influence flow behaviour. Initial studies focused on scaling

the flow kinematics of simple dry granular flow configurations (e.g. Brucks et al., 2007;

Vallejo et al., 2006). More recent fundamental research has delved into specific aspects

of geophysical flow behaviour, such as bed erosion and entrainment (Bowman et al.,

2010) and particle breakage (Bowman and Take, 2015; Bowman et al., 2012). Addi-

tionally, the examination of flow-structure interaction has gained prominence (e.g. Ng

et al., 2018; Song et al., 2019), given its direct relevance to disaster mitigation.

While centrifuge modelling has proved invaluable in advancing our understanding of

geophysical flows, several areas still require further investigation and improvement. A

critical challenge, similar to the one faced by laboratory-scale experiments, pertains to

accurately scaling flows to replicate natural observations. While matching the Froude

number and elevating the g-level can achieve similarity in macro-scale flow character-

istics, particle size and size distributions remain influential regulators of flow dynamics

(Cui et al., 2018; Jiang et al., 2015). Consequently, some researchers have proposed the

need to scale particle size when designing centrifuge experiments (Song, 2016; Turnbull

et al., 2015). Moreover, the study of grain-fluid interactions within saturated flows un-
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der elevated gravitational fields represents a relatively unexplored area (Cabrera et al.,

2018; Song et al., 2019). This stems from the complex nature of pore fluid lubrication

and drag mechanisms, which operate across a multitude of scales (Huang and Zhang,

2022). The effects of centrifuge configuration on debris flow experiments are discussed

in Chapters 3, 5 and 6.

2.4 Numerical modelling

In the context of geophysical flow research, laboratory-scale physical experiments serve

as invaluable tools for isolating and exploring the fundamental mechanisms governing

flow behaviour. However, the insights derived from these experiments remain con-

strained in their utility unless we can establish meaningful connections to geophysical-

scale flows. Consequently, it becomes imperative to express these physical mechanisms

in mathematical terms and construct numerical models capable of capturing the dynamic

evolution of flow states over time. These numerical models not only serve a pivotal

role in predicting geophysical flow behaviour but, once calibrated and validated, extend

their utility to the exploration of parameter spaces that are challenging to access through

physical experimentation (Cabrera et al., 2020).

Within the domain of granular-laden flow prediction, two main categories of models

have gained prominence: the continuum approach and the continuum-discrete approach.

The following section provides an overview of these two approaches, highlighting their

respective strengths and limitations.

2.4.1 The continuum approach using shallow-water equations

2.4.1.1 Dry granular flows

The continuum approach is used throughout the field of fluid mechanics (Batra, 2006).

It works on the assumption that local flow properties, such as density, granular tem-

perature, and velocity, change gradually and continuously throughout the flow. Conse-

quently, we can treat the constituents of the flow, such as grains, as part of a continuous

medium.

Notably, Savage and Hutter (1989) built upon the pioneering work of Savage (Sav-

age, 1984, 1979), developing what is now regarded as the foundational framework for

modelling dry granular flows within this continuum approach. Using differential equa-

tions to describe mass and momentum conservation of the system, their model describes
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the motion of a finite mass of granular material down an inclined plane, mirroring the

classic shallow-water equations but in a granular context (Vreugdenhil, 1994). Like

these other models, Savage and Hutter’s (1989) formulation assumes a shallow-flow

condition, where the flow depth is considerably smaller than the flow’s length, and the

flow’s velocity profile is known and remains uniform throughout the flow (Pudasaini

and Hutter, 2007). To account for granular basal frictional resistance, they employ the

Mohr-Coulomb friction criterion (Labuz and Zang, 2012), wherein frictional resistance

is directly proportional to the applied normal pressure with a constant friction coeffi-

cient.

Subsequent models have expanded upon Savage and Hutter’s (1989) foundation to

accommodate more intricate bed geometries (e.g. Gray et al., 1999; Greve and Hutter,

1993; Hutter and Koch, 1991; Pudasaini and Hutter, 2003) and the lateral spreading of

the flow (e.g. Greve et al., 1994; Hutter et al., 1993), thereby capturing a wider range of

granular flow dynamics.

2.4.1.2 Single phase debris flow models

For continuum models to be utilised in predicting the dynamics of debris flows, it is

essential to incorporate a fluid phase into the framework. The simplest approach is to

treat the granular material and the fluid as a single, combined phase that exhibits a non-

Newtonian constitutive relationship (Delannay et al., 2017). While the specific form of

the non-Newtonian rheology may vary, most models introduce rigid flow behaviour at

low shear strain rates by including a yield stress term (Iverson, 1997). They also incor-

porate a rate-dependent component that augments the viscosity of the yielded material

typically following either a linear (i.e. a Bingham, 1922 fluid), a shear thickening (i.e. a

Bagnold, 1954 fluid) or a shear thinning (i.e. a viscous plastic fluid (Coussot, 2017;

Herschel and Bulkley, 1926)) relationship.

Generally, dilatant shear thickening rheology models prove more adept at replicat-

ing flows with lower particle concentrations since they can account for particle-particle

interactions. Takahashi (1981) proposed a model based on the collisional regime de-

scribed by Bagnold (1954), which successfully reproduced coarser heads and inversely-

graded deposits observed in field-scale debris flows. However, the effectiveness of

this modelling approach heavily relies on access to hard-to-obtain calibration data from

field-scale flows for accurately representing the non-Newtonian flow rheology (Iverson,

2003).

In an effort to mitigate this, many models (e.g. Frank et al., 2017; Graf andMcArdell,
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2009; Hussin et al., 2012) have employed the Voellmy fluid rheology, where the

Voellmy-Salm friction relation (Salm, 1993) accounts for the basal friction contri-

butions of the two phases as separate terms. This approach makes these models far

more amenable to calibration based on previous events. Nevertheless, as previously

discussed, many distinct features of debris flow behaviour stem from spatial and tempo-

ral variations in the flow’s composition, which cannot be fully captured when treating

the flow as a single phase.

2.4.1.3 Two-phase debris flow models

More recent studies (e.g. Berzi and Jenkins, 2008; Bouchut et al., 2017; Iverson, 1997;

Iverson and Denlinger, 2001; Iverson and George, 2014; Kowalski and McElwaine,

2013; Meng et al., 2022; Pitman and Le, 2005) have attempted to improve the efficacy

of the continuum approach by treating the grains and the fluid as two separate contin-

uum phases. These methods emanate from the concept of continuum mixture theory

(Morland, 1992) and describe the two phases using phase specific mass and momentum

equations that are coupled through a phase interaction term, typically expressed as a

function of the solid phase volume fraction φp at each location within the flow. A de-

tailed discussion on the evolution and development of two-phase shallow water models

is presented in Chapter 5.

Notably, several successful two-phase shallow water models, such as RAMMS (e.g.

Cesca and D’Agostino, 2008; Christen et al., 2010; Frank et al., 2017) and LaharFlow

(e.g. Bautista et al., 2023; Tierz et al., 2017), have emerged as tools for studying

geophysical-scale flow events over complex terrains. These models enable the extrac-

tion of critical flow characteristics, including flow paths, bulk velocities, and pressure

profiles. Consequently, by systematically varying model parameters and calibrating

them against observed natural flows in the region of interest, researchers can utilise

these simulations to develop regional-scale hazard assessments (e.g. Frey et al., 2018;

Schneider et al., 2014). Performing such studies, however, should be approached with

caution due to the complexity of the flow being modelled, juxtaposed with the simplic-

ity of the underlying assumptions in such models. This dynamic can result in numerous

combinations of input parameters yielding nearly identical flow outputs.

However, to conduct simulations at the full geophysical scale, certain simplifying

assumptions are necessary to manage model complexity. Typically, the granular phase

is treated as consisting of a single coarse particle size, with the influence of finer granular

material integrated into the dynamics of the fluid phase through the adoption of a non-

24



Chapter 2: Debris flows: From natural phenomena to laboratory and numerical

representations

Newtonian constitutive law, such as the Voellmy-Salm relation discussed earlier. While

these assumptions facilitate modelling, they come with limitations. Specifically, they

make it challenging to incorporate the effects of a wide particle size distribution on flow

dynamics, particularly issues related to flow segregation and the formation of surge

fronts (Hutter et al., 2005). Moreover, the accuracy of these models remains dependent

on calibration data derived from past events, resembling the situation encountered in

single-phase models.

Nonetheless, these limitations are more manageable when modelling smaller-scale

experimental flows, where flow properties can be constrained and accurately deter-

mined. In recent years, notable progress has been made in this direction. For instance,

Meng et al. (2022) successfully replicated the granular surge front architecture observed

in the classic flume experiments conducted by Davies (Davies, 1988, 1990). The real

challenge in this type of modelling lies in developing a framework that is applicable

both at the geophysical and laboratory scales while minimising the impact of simplify-

ing assumptions, particularly those related to the interaction of different grain sizes and

the fluid.

2.4.2 The continuum-discrete approach

2.4.2.1 The Discrete Element Method

With the continuing advancement in computer processing power and the growing avail-

ability of high-performance computing resources, the discretisation of the granular

phase in granular mass movement modelling has gained substantial popularity and fea-

sibility within the academic research community. The Discrete Element Method (DEM)

was first used to model contacting granular bodies by Cundall and Strack (1979) where

every body is described as a Lagrangian point whose degrees of freedom are regulated

by Newton’s equation of motion (Leonardi, 2015).

Due to the refinement and extension of the approach over the years since its concep-

tion, DEM is now used to study granular mass movement problems encountered at both

the geophysical (e.g. Shiu et al., 2023; Zou et al., 2017) and experimental (e.g. Kesseler

et al., 2020; Teufelsbauer et al., 2009; Valentino et al., 2008) scales.

2.4.2.2 Coupling DEM with a fluid phase

In the analysis of granular-fluid flows, researchers have developed coupling strategies

that enable interaction between the granular DEM phase and a fluid solver capable of
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modelling a three-dimensional fluid phase. The choice of fluid solver depends on the

required precision of modelling fluid-particle interactions, with higher precision often

accompanied by increased computational costs (for more details, see Leonardi, 2015).

Instead of analytical modelling (e.g. Herrmann et al., 2007) or using an adaptive fluid

mesh (e.g. Zhong et al., 2016), a commonly accepted compromise in this field involves

utilising a fluid scheme that also models the fluid as a field of Lagrangian points, sim-

plifying the coupling with the DEM solver.

Among the fluid schemes using Lagrangian descriptions, variations in complexity

exist. For example, the Material Point Method (MPM) (Pracht, 1975; Więckowski,

2004) employs a hybrid Lagrangian-Euler description, which, while beneficial for cap-

turing large deformations, can introduce computational costs and reduce accuracy at

finer length scales. Smoothed-Particle Hydrodynamics (SPH) offers a relatively sim-

plified Lagrangian approach, modelling the fluid as discrete particles with associated

material (density) and kinematic (velocity) properties (Robinson et al., 2014). The

Lattice-Boltzmann Method (LBM) stands out as the third and most widely used ap-

proach, solving the Boltzmann equation over a lattice or grid composed of fluid points

using particle distribution functions (He and Luo, 1997). LBM’s popularity in model-

ing debris flows stems from its ability to handle complex geometries, making it suitable

for flows over natural topographies, and its ease of parallelisation for handling large

particulate systems. Recent publications have conducted detailed comparisons of these

solvers (e.g. Ceccato et al., 2020; Han and Cundall, 2011; Pereira et al., 2012). In this

study, a coupled DEM-LBM model, initially developed by Leonardi et al. (2014), will

be summarised and applied in Chapter 6.

2.4.2.3 Comparing the continuum-discrete approach to other modelling types

In contrast to representing the granular phase as a continuum, the discrete approach of-

fers a distinct advantage by directly accounting for particle-particle interactions. This

capability becomes particularly crucial when addressing scenarios involving flows of

varying grain sizes and examining flow-structure interaction problems, such as the de-

sign of mitigation structures (e.g. Law et al., 2015; Leonardi et al., 2016; Salciarini et al.,

2010). However, these interactions models tend to be derived from simplistic linear or

Hertzian contact models which are not necessarily well-validated for more complex in-

teraction scenarios, like when a pore fluid is present, which are common in geophysical

flows.

Recent research efforts (e.g. Pasqua et al., 2022, 2023) have explored the fusion of
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the twomodelling strategies, combining the computational efficiency of depth-averaged

schemes with the added complexity of a fluid-coupled DEM solver. This approach is

especially relevant for modelling large flows over complex topographies with a focus

on the flow’s interaction with structures at realistic velocities. In this progressive mod-

elling approach, depth-averaged schemes initially track the flow from initiation across

the terrain, transitioning into a full three-dimensional representation using DEM-LBM

to more accurately depict the interaction between the flow and mitigation structures.

Coupled DEM models offer several advantages over physical experimental mod-

elling, primarily in conducting large parameter space studies for simple experimental

configurations efficiently (Zhang et al., 2001b). Researchers have complete control over

material parameters for granular and fluid phases, as well as the external force condi-

tions imposed on them. This flexibility is particularly useful for studying the influence

of external accelerations on geotechnical centrifuge experimental configurations (Cabr-

era and Leonardi, 2022), a topic to be discussed further in Chapter 6.

Furthermore, the continuum-discrete modelling approach allows for tracking micro-

scale flow parameters, including inter-particle contact forces, individual particle veloc-

ities, and the evolution of granular force chains (Zhou et al., 2003), which can be chal-

lenging to measure or visualise in physical experiments. This additional information

from continuum-discrete numerical modelling provides micro-mechanical insights into

complex systems, aiding in the understanding of key flow dynamics.

However, accurate replication of real-world phenomena using the continuum-discrete

approach still relies heavily on material parameter calibration. The discrete represen-

tation of granular particles introduces additional complexity, making large-scale flow

dynamics and model stability highly sensitive to granular material parameters, particu-

larly particle stiffness and restitution coefficients (Zhang et al., 2001b).

Moreover, for computational efficiency, simplifications to the flow description are

necessary. This includes assumptions about the size distribution and shape of granular

particles, as well as limiting the number of simulated particles. Simulating flows with

particles that vary significantly in size or shape can significantly increase runtime and

lead to instabilities in the collision laws governing grain interactions (Thornton, 2015).

While most simulations assume spherical particle shapes for efficiency, recent studies

have explored incorporating particle shape into DEM simulations (e.g. de Bono and

McDowell, 2016; Ji et al., 2020; Tolomeo and McDowell, 2023).

Perhaps most pertinently, the interaction between the granular and fluid phases must

be explicitly described in the model, typically achieved through a Darcy-style drag
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law. However, a consensus on the most appropriate interaction model remains scenario-

dependent and has not yet been universally established (as discussed in Chapter 5).

2.5 Summary

Debris flows, a subset of geophysical mass movements, exhibit complex behaviours that

vary spatially and temporally. Qualitative and quantitative classification systems offer

valuable insights into debris flow dynamics, but they capture only a snapshot in time

and fail to account for the evolving behaviour seen in natural flows. These disparities

are closely linked to local flow composition, specifically the particle size distribution

and the solid volume fraction. To gain a comprehensive understanding of macro-scale

behaviour, it is imperative to comprehend how local variations in composition influence

flow behaviour, particularly the interaction between fluid and granular phases.

While investigating naturally triggered events at a local scale (i.e. specified locations

of interest) seems intuitive, challenges related to obtaining suitable research catchments

and deriving flow material parameters have led to the development of controlled re-

search environments. Large-scale experimental facilities offer control over flow states

but are limited by substantial financial constraints. In contrast, small-scale experimen-

tal setups enable cost-effective and precise testing. As such, the dam-break scenario has

emerged as a particularly valuable configuration for studying flow dynamics.

Nevertheless, laboratory-scale experiments often struggle to replicate the intricate

force balances observed at the geophysical scale. The transition between fluid and

granular phase interactions across scales remains poorly understood. Geotechnical cen-

trifuge modelling has recently emerged as a possible technique to approximate geophys-

ical force balances in laboratory models by augmenting the applied gravitational field. It

also offers a means to conduct parameter space analyses of granular-fluid flow dynamics

as scales shift between the laboratory and geophysical realms.

In recent years, numerical models have emerged as powerful tools for predicting

geophysical flow behaviour and exploring localised flow dynamics. Two-phase shallow

water models and continuum-discrete approaches have gained prominence, each with

complementary strengths and weaknesses. However, both modelling strategies suffer

from a lack of consensus regarding the most appropriate method for modelling fluid-

granular phase interactions. Achieving such a consensus is crucial for enhancing the

effectiveness of these numerical models.
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Inertial effects in just-saturated

axisymmetric column collapses

Abstract

*This work introduces a scaling analysis of sub-aerial axisymmetric column collapses of

glass beads and Newtonian glycerol-water solutions mimicking some of the behaviours

of debris flows. The beads were in a size range where their inertia partly decouples their

collapse behaviour from the water column. Experiments explored a range of viscous,

surface tension and particle inertia effects through systematic variation of particle size

and fluid viscosity. Crucially a geotechnical centrifuge was used to access elevated ef-

fective gravitational accelerations driving the collapse, allowing field-scale viscous and

surface tension effects to be replicated. Temporal pore pressure and runout front posi-

tion evolution data was extracted using a pressure transducer and high speed imaging,

respectively. A least-squares fitted scale analysis demonstrated that all characteristic di-

mensionless quantities of the acceleration phase could be described as a function of the

column-scale Bond number Bo, the Capillary number Ca, the system size r∗, and the

grain-fluid density ratio ρ∗. This analysis demonstrated that collapses as characterised

by pore pressure evolution and front positions were controlled by the ratio of Bo/Ca.

This indicates that grain-scale surface tension effects are negligible in such inertial col-

umn collapses where they may dominate laboratory-scale granular-fluid flow behaviour

where geometric similarity between grain and system size is preserved.

3.1 Introduction

Debris flows are a subset of gravity-driven slope hazards comprising a mixture of grains

(rocks, soils) and water. The high fluid volume fraction and elevated relative density of

the grains results in the forces developed in both phases significantly contributing to the

*Webb, W., Heron, C., and Turnbull, B. (2023b). Inertial effects in just-saturated axisymmetric col-

umn collapses. Granular Matter. 25(2):40.
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dynamics of themass movement (Iverson, 1997). The granular phasemay also comprise

a wide range of particle sizes (Kesseler et al., 2018), leading to complexity at both the

grain- and macro-flow scales. With debris flows representing a significant geophysical

hazard across the world (Forterre and Pouliquen, 2008), gaining an understanding of

the roles of these different components in controlling outcomes may help to effectively

model and mitigate their destructive potential.

Information from naturally occurring debris flows is typically limited by the fact that

initial and boundary conditions of the mass movement are generally unknown and mate-

rial parameters obtained from the final flowmorphology are poorly constrained (Iverson

et al., 2010b). In contrast, laboratory experiments offer a way to control all character-

istics of the flow and contacting boundaries for the duration of the mass movement.

Hence, data resulting from laboratory-scale flow experiments is repeatable and can be

used to understand the influence of individual parameters on the flow’s behaviour.

One experimental configuration that has received significant attention, because it

replicates the unsteady nature of many geophysical flows, is the collapse of a granular

step (Lube et al., 2004). Generally performed on a granular column with an axisymmet-

ric (Lajeunesse et al., 2004; Lube et al., 2004) or quasi-two-dimensional (Lajeunesse et

al., 2005) geometry, the column is suddenly released from its initial configuration and

collapses until it reaches a stationary final deposit. While dry (Lajeunesse et al., 2004,

2005; Lube et al., 2004; Warnett et al., 2014), fully-submerged (Bougouin and Lacaze,

2018) and wetted (Artoni et al., 2013) granular material have all been used, fewer stud-

ies have investigated a situation more reminiscent of debris flows where the column is

filled with fluid to a comparable depth to that of the granular material, which we term

fully saturated.

The high travel speeds of full scale debris flows mean that even small particles ex-

hibit inertial behaviour where the interaction between grain and fluid can be complex

(Kesseler et al., 2018). Dimensional analysis of a simple granular-fluid system suggests

that the effects of surface tension are small compared to gravitational forces and fluid

viscosity at the macro-scale of geophysical flows (Iverson, 2015). However, it has been

found that the flow regime of a collapsing fluid-saturated granular column is primar-

ily determined by the degree of capillary effects between the granular phase and the

interstitial fluid due to surface tension (Bougouin et al., 2019).

However, as implied by the laboratory experiments, surface tension undoubtedly con-

tributes to granular-scale flow mechanics, particularly at the flow’s surface, and it re-

mains possible that these processes can control mechanisms such as the build-up and
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reduction of pore fluid pressure through capillary forces affecting macro-scale flow out-

comes (Rondon et al., 2011). Several studies (e.g. Kaitna et al., 2016; McArdell et al.,

2007) have shown that the inclusion of high concentrations of fine granular material,

like clays and silts, enhance the development of excess pore pressures which reduces the

frictional resistance exerted on the bulk flow by the terrain bed. Coupled with the small

number of physical studies investigating this phenomenon, the fact that recent numerical

models (e.g. Bouchut et al., 2017; Iverson and George, 2014; Kowalski andMcElwaine,

2013) have not reached a consensus on the most appropriate way to tractably model the

mechanisms driving spatio-temporal variations in the grain size distribution suggests

that we do not comprehensively understand the mechanisms at play or how their influ-

ence scales. Given the comparative micro-scale over which the interactions between the

granular fines and the interstitial fluid occur, provided that a sufficient concentration of

granular fines is present in the flow, it seems reasonable to suggest that surface tension

may play a role in the development of these excess pore pressures and, hence, influence

the macro-scale behaviour of the flow.

One way to try and replicate the stress-dependent processes present in natural scale

flows within a laboratory model is to utilise a physical modelling method commonly

used in the field of Geotechnical Engineering called centrifuge modelling. By spin-

ning a laboratory-scale model on an arm, the centripetal acceleration from the rotation

becomes an effective gravitational acceleration. Thus, the effects of gravity on large

‘prototype’ structures can be replicated at a small physical scale through enhancing the

effective gravitational acceleration (Taylor, 1995). The laboratory model is submitted to

the required gravitational acceleration in order to replicate the stress profile within the

modelled prototype scenario. The stress-similarity is achieved by attaching the model to

the end of a centrifuge beam and submitting it to an elevated gravitational acceleration

G which is N times larger than Earth’s gravity g (Milne et al., 2012).

In the past two decades, there have been a number of significant works where cen-

trifuge modelling has been used to physically investigate the scaling of the kinematic

processes driving granular flows (e.g. Bowman et al., 2012; Brucks et al., 2007; Vallejo

et al., 2006). More recently, the focus has shifted to the design of granular flow miti-

gation structures and the impact forces developed by the flow-structure collision (e.g.

Ng et al., 2018; Zhang and Huang, 2022). However, the added complexity of a fluid

phase has meant that the use of centrifuge modelling to study debris flows, to date, has

been quite limited mainly focusing on debris flow initiation (Milne et al., 2012) and

propagation (Bowman et al., 2010).
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The current study aims to provide a platform to investigate the role of micro-scale

surface tension effects on macro-scale debris flow behaviour by first characterising the

collapse response of grain-fluid mixtures with inertial grains by performing axisymmet-

ric fluid-saturated granular column collapse tests using a geotechnical centrifuge. The

use of the centrifuge allows a parameter space of particle size, surface tension and fluid

viscosity to be explored in regimes where the grains are inertial and surface tension

effects should have little influence on macro-scale flow outcomes.

3.2 Dimensional analysis

The initial geometry of an axisymmetric, fluid saturated, granular column collapse (Fig-

ure 3.1), can be described by two parameters; the initial height of the shared free-surface

of the granular-fluid mixture h0, and the radius of the column prior to collapse initiation

r0. Assuming that the granular phase is comprised of identical spherical particles situ-

ated in a homogeneous packing, the granular phase of the column can be characterised

by the particle diameter dp, the particle density ρp, and the mean solid volume fraction

of the column φp. Similarly, a Newtonian fluid phase can be characterised by the fluid

density ρf , the fluid dynamic viscosity ηf , and the fluid surface tension σf . While the

initial system is fully saturated, as the collapse progresses, it is possible to obtain flow

regions where the depth of the fluid phase is different to that of the granular phase. This

can lead to the degree of saturation, the porosity of the granular media, and the surface

tension of the fluid phase to significantly influence collapse dynamics.

The current analysis is interested in analysing the evolution of the phase front ve-

locities uv, where subscript v can refer to the fluid f or particle p phases, and the basal

Figure 3.1: Schematic of the initial configuration of a just saturated granular column

collapse.
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fluid pressure gradient at the centre of the column Ṗ with time t throughout the duration

of the column collapse. A promising place to start to understand this complex system

is by utilising Buckingham’s Π theorem (Buckingham, 1914) to systematically identify

dimensionless variables, termed Π groups, that provide a homogeneous solution to the

physical relationships between key geometric and material parameters, and measured

test data. Assuming a constant of gravitational acceleration G = Ng, where N is a

constant and g is Earth’s constant of gravitational acceleration, it is hypothesised that a

relationship between uv and the other defined variables can be postulated as

uv = f1(h0, r0, dp, ρp, ρf , t, Ṗ , σf , ηf , G, φp), (3.1)

where f1 is an unknown function. The primary difference between Equation (3.1) and

other relationships used in previous analyses to describe simplified debris flow motion

(e.g. Iverson, 1997, 2015), is the inclusion of fluid surface tension as a parameter. In

contrast to previous analyses, we include fluid surface tension here as a controlling pa-

rameter to understand how, in a regime where particle inertia can dilate the granular

phase, micro-scale interactions in the pore space may influence macro-scale outcomes.

Temporarily excluding φp as it is a dimensionless quantity, the other 11 variables

within Equation (3.1) are derived from combinations of three fundamental physical di-

mensions: mass, length, and time. Hence, Buckingham’s Π theorem dictates that the

variables can be connected by 11 − 3 = 8 independent dimensionless Π groups. Fol-

lowing a previously described mathematical process (Iverson, 2015), and using dp, ρf

and G as our initial reference parameters, Equation (3.1) can be rewritten as

uv√
GL

=

f2

(
h0

r0
,
r0
dp

,
(ρp − ρf )N

ρf
,

t√
L/G

,
Ṗ

ρf
√
G3h0

,
ρGh0dp

σf

,
ηf
√
Gh0

3

σfdp
, φp

)
, (3.2)

where f2 is an unknown function, L is a characteristic length scale and ρ is the effective

density of the granular-fluid column calculated as ρ = φpρp + (1 − φp)ρf . The char-

acteristic length scale L has been intentionally left arbitrary allowing us to explore this

dimensionless space over both the column and grain scales (see Section 3.6).

The left-hand side of Equation (3.2) takes the form of a phase Froude number u∗v,L

where again, the subscript v refers to the phase of interest and subscript L refers to

the characteristic length scale. u∗v,L compares the influence of inertial and gravitational
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forces at the phase flow front over the length scale of interest. The right-hand side

is comprised of eight dimensionless groups that are used to determine u∗v,L. The first

parameter is the column aspect ratio a0 which has been shown to be the dominant pa-

rameter in the scale analysis of dry granular column collapses. The second parameter

was defined as the system size (Warnett et al., 2014) r∗ and was shown to have some

influence on the evolution of the dry collapse case. The third parameter is the relative

granular-fluid density ratio accounting for acceleration-scale buoyancy ρ∗. When N =

1, ρ∗ reduces to the simple mass ratio found in traditional fluid-granular flow scale anal-

yses (e.g. Iverson, 1997). Whereas, when N > 1, the enhanced gravitational field acts

on the difference in densities, normalised as a reference density, as a buoyancy. The

fourth parameter, t∗L, is the ratio between t and a characteristic inertial timescale
√
L/G

where, again, L refers to the characteristic length scale of interest. The fifth parame-

ter, Ṗ ∗, is the ratio between Ṗ and the equivalent hydrostatic pressure gradient down

the initial height of the column. The sixth parameter is the column Bond number Bo

and is defined as the ratio between the inertial forces at the column scale that drive the

collapse of the column and the capillary forces at the grain scale induced by deforma-

tion of the fluid-air interface. Its influence over the collapse regime of a fluid-saturated

granular material under Earth’s gravitational acceleration has already been highlighted

(Bougouin et al., 2019). The seventh parameter is known as the Capillary number Ca

and relates the viscous forces within the fluid at the column scale to surface tension ef-

fects at the grain scale. The final parameter is φp which remains unchanged since it is

already dimensionless. The inclusion of both Bo and Ca as Π groups of interest is cru-

cial for ensuring that macro-scale inertial and viscous forces are scaled appropriately in

relation to grain-scale surface tension effects in order to obtain a granular phase whose

behaviour is primarily governed by particle inertia. Here, we use centrifugemodelling to

extend the accessible model parameter space for a simple axisymmetric, fluid-saturated,

column collapse configuration. Hence, we are able to perform a multi-scale analysis of

the problem by varying G rather than adapting the physical size of the experimental

configuration.

It is important to note that the solution to Equation (3.2) is not unique. The resultingΠ

groups could have been recast into alternative forms. In particular, Ca could be replaced

by other previously studied dimensionless quantities like the Stokes St (characteristic

particle timescale against characteristic fluid timescale) or Reynolds Re (inertial forces

against viscous forces in the fluid) numbers. Ca was determined as the most useful

parameter out of this group given that the influence of surface tension has been shown
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to vary with scale (Iverson, 2015).

Crucially, four of the dimensionless groups within Equation (3.2) contain N or G

suggesting that the behaviour of the analysed system is highly scale dependent. Hence,

to sufficiently determine the contributions of these dimensionless groups to collapse be-

haviour, a multi-scale analysis would be required. Given that the size of an experimental

configuration is often limited in a laboratory setting, this type of analysis is unworkable

with most laboratory-scale granular-flow test configurations.

3.3 Model apparatus

Experiments were conducted using the University of Nottingham’s GT50/1.7 geotech-

nical beam centrifuge. The centrifuge has a platform radius of 2m and is attached to a

swinging platform capable of supporting a payload size of up to 0.9m high, 0.6m cir-

cumferential and 0.8m wide (Ellis et al., 2006). The machine is capable of applying a

maximum centripetal acceleration of 150g to a payload up to 335 kg in mass.

Within a wind-proof strong box, a steel cylinder with an inner radius r0 = 54mmwas

positioned in the centre of a 490mm by 485mm flat plexiglass sheet (Figure 3.2). A

foam o-ring was fixed to the base of the steel cylinder allowing a seal to form between

the cylinder and the plexiglass when downward pressure was applied to the cylinder.

The cylinder was held in a fixed position by two steel rods that were screwed into the

top of the column and tightly pressed against a forked steel plate.

Throughout testing, the cylinder was filled to an initial height h0 = 50mm of both

grains and fluid, creating a just-saturated column with a0 = 0.93. Several previous

studies have investigated the effects of varying a0 in both the axisymmetric (Lajeunesse

et al., 2004; Lube et al., 2004; Warnett et al., 2014) and quasi-two-dimensional (La-

jeunesse et al., 2005; Thompson and Huppert, 2007) collapse. So here, we focus on

column configurations where a0 ≈ 1, matching a number of reviewed geophysical col-

lapse events (Legros, 2002). A12V LED lightsheet was installed beneath the plexiglass

sheet, which acted as a diffuser, creating even back-lighting of the test surface.

The fluid-saturated granular column was comprised of spherical soda lime glass

beads and an interstitial fluid consisting of a miscible glycerol-water mixture. Table 3.1

details the range of values used for all test parameters of interest. The tested centrifuge

rotational speeds were selected such that the tested values ofN relative to the centrifuge

cradle were 1, 5, 15 and 30. These values were then adjusted so that they were relative

to a height of 2
3
h0 above the horizontal plane to account for variations in centrifugal ac-
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Figure 3.2: Schematic of experimental setup.

celeration across the height of the column. Higher rotational speeds were not explored

as the resolution of the recorded videos were limited by the frame rates of the cameras.

Table 3.2 provides a summary of the parameter space obtained across testing for the

dimensionless groups from Equation (3.2) calculable from the geometric and material

property information given in Table 3.1. Given that the Bond number is always signifi-

cantly larger than unity while the tested Capillary numbers cover a range of magnitudes

smaller and larger than unity, it is evident that the parameter space explored by the cur-

rent experiments includes flow states that are largely dominated by gravitational forces

at the column-scale while the relative influence of surface tension at the grain-scale and

viscous forces at the column-scale vary depending on the geometry of the initial column

and test material properties.

It should be noted that previous studies (Cabrera and Estrada, 2019; Warnett et al.,

2014) have concluded that axisymmetric column collapse experiments conducted over

the specified range of r∗ are highly susceptible to grain-size effects which can signifi-

cantly influence the mobility and duration of the collapses. However, by not adhering

to the geometric reality of the natural scale, we are able to ensure that the behaviour of

the spherical particles is primarily governed by their inertia. As such, the current study

complements previous work by focusing on a collapse regime where the influence of

particle inertia is promoted instead of grain scale.
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Table 3.1: Summary of experimental test parameters.

Experimental

parameters
Symbol Definition Range

Initial column

height
h0 50mm

Initial column

radius
r0 54mm

Centrifuge

rotational speed
ω [0, 47, 82, 116] rpm

Gravitational

scale factora
N [1, 4.6, 14, 28.1]

Temperature of

fluid phase
T 20± 2 ◦C

Particle diameter dp [2, 4, 6, 8]mm

Particle density ρp 2642± 27.4 kgm−3

Mean solid

volume fractionb
φp Mp/(πr

2
0h0ρp) 0.61± 0.01

Glycerol mass

concentration
Cg Mg/(Mg +Mw) [0, 0.1, 0.52, 0.69, 0.77]

Water densityb ρw 1000 kgm−3

Glycerol densityc ρg 1260 kgm−3

Fluid mixture

density
ρf Cgρg + (1− Cg)ρw 1000 - 1201 kgm−3

Fluid mixture

viscosityd
ηf η0

[
1−Cg/C

1−(k0C−1)Cg/C

](−2.5C)/(2−k0C)

1 – 52.1 cP

Water surface

tensionc
σw 72.5mNm−1

Glycerol surface

tensionc
σg 63.4mNm−1

Fluid mixture

surface tension
σf Cgσg + (1− Cg)σw 65.5 – 72.5mNm−1

a Calculated using an effective radius of 1.87m between the centrifuge’s axis of rotation and
2
3h0 from the base of the column to account for variations in centrifugal acceleration across

the height of the column
b Formula used by Warnett et al. (2014)
c Obtained from Lide (2004) for a temperature of 20 ◦C
d Equation (11) from Takamura et al. (2012) where η0 = 1 cP (i.e. the viscosity of water at

20 ◦C), constant C = 1.2 and k0 = −0.012(T + 273.15) + 4.74
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Table 3.2: Summary of the dimensionless parameter space calculable from the geomet-

ric and material property information in Table 3.1.

Dimensionless variables Range

a0 0.93

r∗ 6.75 – 27.0

ρ∗ 1.63 – 35.0

Bo 26.6 – 3480

Ca 0.06 – 45.2

3.3.1 Test procedure

The fully-saturated granular column was prepared after the model was loaded onto the

centrifuge. A predefined mass of granular material Mp was poured into the tube which

had been previously filled by a predefined volume of interstitial fluid Vf where the re-

spective mass of water Mw and glycerol Mg used was defined by the glycerol mass

concentration required for that test. The column was compacted from the top using a

steel rod until the desired initial column height h0 = 50mm was achieved, and the

surface of the fluid was level with the top of the grains. The repeatability of this prepa-

ration method is demonstrated by the small range of φp values achieved across all tests

as stated in Table 3.2. While the achieved packing fractions suggest that the column

packing configuration can be described as a poured random packing (Dullien, 2012),

we follow the logic of previous authors (e.g. Iverson and George, 2014; Rondon et al.,

2011) by assuming that the granular column is initially in a dense configuration as φp

is greater than the critical solid volume fraction φc = 0.6 which is generally used as a

criteria to assess whether a granular flow is going to contract or dilate.

Prior to initiating collapse, the centrifuge with the experiment mounted on it was spun

up to a speed submitting the model to an enhanced gravitational acceleration G = Ng

where g = 9.81m s−2. Once spun up, a weighted pulley system was triggered by an

air-powered actuator to lift the cylinder and initiate the collapse of the fully-saturated

granular column over the horizontal test plane. From analysis of the raw basal pressure

data and the high-speed camera footage, the time scale for the cylinder to be lifted up to a

height of h0, tcol, can be approximately calculated as tcol ≈ 2.5
√

h0/(Ng). This equates

to a mean release velocity that obeys Sarlin et al.’s (2021) criterion for a release process

that has no influence on the dynamics of a quasi-two-dimensional collapse consisting of

dry spherical glass beads. Li et al. (2022) suggested that a lower release velocity may

be satisfactory to achieve this effect for wetted granular material given the potential
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build-up of cohesive forces between adjacent grains. Further investigation is required

to confirm this theory and extend it to the fully saturated regime, as well as consider-

ing other collapse geometries like the axisymmetric case. However, we deem the dry

criterion to be sufficient for the current study.

3.3.2 Front measurement

*Lifting the steel cylinder initiated the collapse of the fluid-saturated granular column.

The temporal evolution of the collapse was recorded by two Go-Pro cameras at a resolu-

tion of 1080×1920 pixels and an acquisition rate of 240 frames per second. The images

were first treated for fisheye distortion effects (Scaramuzza and Siegwart, 2007). The

experimental spatial domainwithin the images is then calibrated using blackmarkers po-

sitioned around the edge of the lightsheet. The markers are used within the digital image

correlation (DIC) scheme developed by Blaber et al. (2015) to produce an orthonormal

image plane. Radial distance values could be taken from the post-processed images at

a spatial resolution of 0.5mm. The upstream and downstream directions, which refers

to whether the flow is propagating with (upstream) or against (downstream) the relative

motion of the centrifuge, of the collapse are recorded on separate cameras to improve

image resolution. This also allows for the contributions of Coriolis acceleration and

the Eötvös effect†† to be considered (Taylor, 1995) with respect to the upstream and

downstream directions of motion as shown in Figure 3.2.

Figure 3.3 shows the collapse evolution of two test cases, both with dp = 8mm, at

N = 1 [(a)-(e)] and N = 14 [(f)-(j)] from the downstream direction. Amulti-threshold

image analysis scheme was developed to create masks of the individual fluid and parti-

cle phases for each image frame. These calibrated masks were then used to obtain the

averaged instantaneous front positions, rf and rp, and the final front positions, rf,F and

rp,F , of the fluid and particle phases, respectively. Tracking the phase fronts separately

was necessary in order to evaluate how variations in the chosen parameter space affected

phase front interactions.

For tests that remained within the measurement domain [(a)-(e)], rf,F and rp,F are

defined as the position of the phase fronts when the collapsing material ceases to move,

which is formalised as an average fluid front velocity less than 2.4× 10−3ms−1

(0.01mm per frame). However, for tests at elevated G, N > 1, [(f)-(j)] the propagation

*See Appendix A.1.3 for further details on test image processing
††See Chapter 6 for the definitions and a detailed analysis of the influence of Coriolis accelerations

and the Eötvös effect on collapse dynamics
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Figure 3.3: Snapshots of the collapse sequence downstream of centrifuge motion for

two columns, both with dp = 8mm, with gravitational acceleration coefficient N = 1

[(a)-(e)] andN = 14 [(f)-(j)]. The averaged radial position of the fluid (red) and particle

(white) phase fronts, where the top left of each image is the point of origin, are shown.

of the two phases extended beyond the measurement area. In these cases, rf and rp were

taken as the average radial distance of the respective phase fronts from the final image

frame, where the entirety of both phase fronts remained inside the measurement area.

3.3.3 Pore pressure measurement

**The evolution of basal fluid pressure under the centre of the granular columnwasmea-

sured with a miniature pressure transducer (PT) which was covered by a sheet of filter

paper. The sensor had a pressure range of 200 kPa and recorded data at a frequency of

125 kHz. Measurement accuracy was found to be ± 0.1 kPa by calculating the average

reading error when supplying a known pressure to the transducer. Figure 3.4 provides

an example of the filtering strategies implemented to clean the signal for a collapse test

where dp = 2mm, N = 4.6 and Cg = 0. From the data, a number of different effects

can be seen. In particular, the large spike in pressure located around 0.16− 0.17 s after

collapse initiation is a result of the vibrations across the runout surface emanating from

the weight used to lift the steel column colliding with the actuator located at the bot-

tom of its housing. Given that signal noise comprised a number of identifiable elements

such as this vibration, Fourier transformations of the signal were used to define a cutoff

frequency fc for a low-pass filtering scheme.

**See Appendix A.2.2 for further details on pressure sensor calibration
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Figure 3.4: Time evolution of basal fluid pressure at the centre of the column, P , for

dp = 2mm,N = 4.61, andCg = 0. The column collapse was initiated at time t = 0. The

raw signal, the reconstructed signals filtered with fc = 1000Hz, and fc = 100Hz are

all shown. The inset shows the magnified initial pressure evolution of the test demon-

strating how well the reconstructed signal with fc = 1000Hz captures the early pressure

drop and recovery.

The overall trend of the signal, highlighted in yellow in Figure 3.4, from collapse ini-

tiation through to runout completion, was approximated using a fourth-order low-pass

digital Butterworth filter with fc = 100Hz within the Matlab (2020) signal processing

toolbox. Pressure changes relating to column dilation occurring over the first few mil-

liseconds of the collapse were also of interest and were captured using a higher cutoff

frequency equal to fc = 1000Hz. The inset of Figure 3.4 demonstrates the filtering

schemes ability to capture the significant pressure drop and recovery at the onset of

collapse. Pore pressure measurements were only considered for tests where N > 1 to

ensure that the noise of the signal was less significant than the total drop in pressure.

Pressure measurements were also not recorded for tests undertaken at N = 28.1.

3.4 Column mobility

The influence of particle size d and gravitational acceleration N on the temporal evo-

lution of the collapse front was investigated by examining the temporal evolution of rf

from time t = 0 until the time where rf,F is achieved tF . Figure 3.5 presents the evolu-

tion of the difference between the instantaneous fluid phase front position and the initial

fluid phase front position rf,0 normalised by the initial fluid phase front position, known

as the normalised fluid runout length, (rf − rf,0)/rf,0 for particle diameters dp = 2mm,
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Figure 3.5: Temporal evolution of the normalised fluid runout length (rf − rf,0)/rf,0 in
time t for varying particle sizes dp and values of N downstream of centrifuge motion.

Collapses of a grain-free fluid phase dp = 0 at all values of N are also shown.

dp = 4mm, dp = 6mm, and dp = 8mm, atN = 1,N = 4.61 andN = 14, downstream

of centrifuge motion. Figure 3.5 also includes data from a set of experiments where the

column had no grains, just the fluid phase, illustrating the limiting case (i.e. dp = 0mm)

for each N . The selected tests have a constant ηf at each value of N with ηf/ηw = [ 1,

6.7, 21.5 ] for N = 1, N = 4.61 and N = 14.

Tests at N = 1 appear to follow the three distinct collapse stages described by pre-

vious authors (Lajeunesse et al., 2004; Lube et al., 2004; Warnett et al., 2014). On

initiation, the flow front initially accelerates to reach a state of quasi-steady flow. In the

runout phase, the flow retards until movement ceases and the final deposit is formed

where r = rf,F . The time at which r = rf,F , tF , for these test cases increases with grain

size dp, similar to the relationship found by Bougouin et al. (2019). That study reasoned

that the capillary forces between grains, whose magnitude is controlled by the level of

surface tension between the interstitial fluid and the ambient air, was the key contribu-

tor to this phenomena. Larger capillary forces are present within granular mixtures with

smaller pore spaces, an allegory of particle size, which restricts the mobility of grains

and results in a lower tF value. Even though the particle sizes used in the current study

are at the top end of the particle sizes used by Bougouin et al. (2019), suggesting that

the current regime is primarily controlled by inertial forces, the influence of surface ten-
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Figure 3.6: Temporal evolution of the normalised distance between the phase fronts

(rf −rp)/rf against normalised time t/tF for all particle sizes dp at varyingN upstream

(a) and downstream (b) of centrifuge motion.

sion is still identifiable in this runout stage. This may result from a number of factors

including; fluid seepage scaling more strongly with N than grain scale inertia (Cabrera

and Leonardi, 2022; Cabrera et al., 2016), the high free surface energy of plexiglass

which increases its wettability and aids the propagation of a fluid film across its surface

(Blajan et al., 2013) and, particle clustering that can lead to localised capillary effects

which reduces the speed of the granular phase.

In contrast, for N > 1, tF primarily decreases with increasing pore space. This

trend tends towards the edge case of the collapse of the singular fluid phase. Similarly

to the case of N = 1, the retardation present in the temporal evolution of the tests

containing a granular phase is due to surface tension giving rise to capillary forces which

reduces flow mobility. Crucially, by comparing to the edge case, it is evident that the

level of retardation reduces with increasingN , suggesting that the influence of capillary

forces on the temporal evolution of the collapse reduces with increased scale. This

result is reassuring as the macro-scale behaviour of geophysical-scale debris flows are

predominantly controlled by gravitational and viscous forces (Iverson, 2015).

Given that the interaction between the granular and fluid phases has been shown to

significantly affect flow mobility, it is logical to consider the temporal evolution of both

constitutive phases through their relative positions to one another. Figure 3.6 shows
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the evolution of the normalised distance between the fluid and granular phase fronts

(rf − rp)/rf with normalised time t/tF for particle diameters dp = 2mm, dp = 4mm,

dp = 6mm, and dp = 8mm, at N = 1, N = 4.61, N = 14 and N = 28.1 for the

upstream and downstream propagation directions. Similarly to Figure 3.5, tests have

been selected so all tests conducted at the same N use interstitial fluids with the same

viscosity. ηf/ηw = 44.8 for the tests conducted at N = 28.1.

Initially, all collapses exhibited a drainage phase where the fluid front accelerates

away from the granularmaterial. For a given value ofN , themaximumdistance between

the two phase fronts increases with pore space as the space for the fluid to exit the

granular structure increases while the influence of capillary effects reduce. For a given

value of dp, the maximum relative distance increases with N until N = 14. Increasing

N to 28.1 sees a reduction in the maximum relative distance possibly resulting from the

reduced impact of solid-fluid interactions as the flow becomes dominated by inertia.

Figure 3.6 also shows how the granular front’s ability to catch up to the fluid front

varies with dp andN . The two fronts were considered to be approximately aligned when

the normalised relative distance was less than 0.05. For all tests conducted with N =

1, the granular front was able to completely catch up to the fluid front by the end of

the runout phase. The granular front did not overtake the fluid fronts over the duration

of these tests which is likely due to the significant impact that surface tension has on

laboratory-scale granular-fluid flows.

For a given dp > 2mm andN > 1, the final separation between the two phase fronts

reduced with increasing N . For collapses propagating in the downstream direction,

the granular front was even able to overtake the fluid front for N = 28.1. It is clear

that the enhanced gravitational acceleration field is supplying more kinetic energy to

the granular phase which allows it to catch up to the fluid front. Hence, the separation

between the two phase fronts reduces when a larger acceleration field (N ) is applied.

Figure 3.6 also shows the influence of the Coriolis acceleration†† on the mobility

of the flow. During the initial stages of the post-collapse propagation, the maximum

separation between the two phase fronts for each test was generally greater for the col-

lapsing section propagating in the downstream direction. This was somewhat expected

as the Coriolis acceleration†† will promote the drainage and subsequent propagation of

the fluid away from the centre of the test area in the downstream direction while imped-

ing it in the upstream direction. Similarly, during the latter stages of recorded motion,

††See Chapter 6 for the definitions and a detailed analysis of the influence of Coriolis accelerations

and the Eötvös effect on collapse dynamics
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the ability of the granular front to catch up to the fluid front, resulting in a lower final

separation, also increased when aided by the Coriolis acceleration††. Similar effects

have been noted in recent numerical works (Cabrera et al., 2020; Leonardi et al., 2021)

where the density of the flow is highly dependent on the flow propagation direction rel-

ative to centrifuge motion. Naturally, the magnitude of these effects increased with N ,

as the magnitude of the Coriolis acceleration†† also increases with N .

While the influence of the Coriolis acceleration†† does vary with particle size, it only

appears to have a significant affect on flow dynamics when the collapses containing

smaller particle sizes (i.e. dp = 2mm) enter a ‘creep-like’ flow regime where, in the

downstream direction, the fluid front is again able to accelerate away from the granular

front. Whereas, for the larger particle sizes, the Coriolis acceleration†† only further

propagates the reduction of (rf − rp)/rf with normalised time. Similarly, the influence

of the Eötvös effect†† appeared to be negligible on flow dynamics prior to the creep phase

which is likely due to the fact that natural scale particle inertia has been preserved. Given

that the current study focuses on debris flowmechanics, which are best replicated within

the experiment prior to the flow entering a monolayer (i.e. the initial acceleration phase),

we have deemed the asymmetry induced by the Coriolis acceleration and the Eötvös

effect†† to be negligible for the particular collapse period of interest (see Section 3.6).

3.5 Fluid pressure evolution

As well as having a dominant effect on the possible separation between the two phase

fronts, the drainage phase of the collapse is key to the reduction of pore pressure from the

initially static column configuration. Figure 3.7 details the evolution of the normalised

basal fluid pressure at the centre of the column P with time t for particle diameters,

dp = 2mm, dp = 4mm, dp = 6mm, and dp = 8mm, at (a) N = 4.61, and (b) N =

14, respectively. Again, tests have been selected that have a shared ηf value for every

value of N . In this case, the time-frame shown has been restricted to the first 0.5 s of

each collapse at which point the residual normalised pressure is referred to as P ∗
F .

At the beginning of each test conducted at both N = 4.61 and N = 14, P ≈ ρfGh0

which illustrates that pressures within the column are hydrostatic prior to the collapse.

Upon release, the height of fluid above the pressure sensor reduces throughout the col-

lapse as the granular-fluid mixture propagates out away from the column centre. This

††See Chapter 6 for the definitions and a detailed analysis of the influence of Coriolis accelerations

and the Eötvös effect on collapse dynamics
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Figure 3.7: Temporal evolution of the dimensionless basal fluid pressure at the centre

of the column P/ρfGh0, filtered using fc = 100Hz with time t for all particle sizes dp
at (a)N = 4.61 and (b)N = 14. (c) Basal fluid pressure at the centre of the column P ,

filtered at fc = 1000Hz, against t/tI immediately after the release of the column.

results in a progressive reduction of P until P = PF .

The influence of dp on the temporal evolution of P can be illustrated through its

influence of P ∗
F . For a given N , P ∗

F increases with decreasing dp and P ∗
F for particle

sizes dp = 6mm and dp = 8mm is approximately equal to 0 kPa where no fluid remains

above the PT. This demonstrates the reduced influence of the granular phase on P ∗
F as dp

increases. It can be reasoned that the increased pore space improves the fluid’s ability to

displace from the centre of the measurement domain over the test duration. Conversely,

a smaller pore space limits the fluid’s ability to exit the granular material which itself

has reduced mobility due to capillary effects. A similar particle size dependency has

been observed in the case of post-depositional seepage in natural scale debris flows

(e.g. Major and Iverson, 1999). The influence of d also appears to slightly increase with

N .

Figure 3.7c focuses on another characteristic feature of the evolution of P , which

is the reduction and recovery of basal pore pressure observed over the inertial column

timescale tI =
√

h0/G immediately after collapse initiation. While the magnitude of

this initial pressure reduction increases withN , the more interesting variation is largely

controlled by dp with the magnitude of the pressure drop generally increasing as dp de-
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creases for a given N . This effect is more pronounced when N = 14. The recovery of

this initial pressure reduction also appears to reduce as N increases. As this variation

in pressure reduction occurs immediately after the release of the column, it is likely to

be the result of initial particle rearrangement. It has been found previously that the crit-

ical solid volume fraction for spherical grains φc ≈ 0.57 (Rondon et al., 2011). This

suggests that all tests in the current study were conducted with dense granular packings

which means that, upon the onset of the collapse, the granular structure must initiate its

displacement by first dilating. This allows the interstitial pore fluid to move into the

additional pore space created by the dilation which, based on the pore pressure feed-

back loop described by Iverson et al. (2000), causes a reduction in basal fluid pressure.

Rondon et al. (2011) demonstrated the presence of the pore pressure feedback loop for

a quasi-two-dimensional fully-submerged granular column collapse configuration ex-

posed to the acceleration field of Earth’s gravity. The study was carried out using only

a singular particle size ten times smaller than the smallest particle used in the current

work. A submerged collapse would not experience any influence from surface tension

so any differences in behaviour based on particle size would emanate from viscous in-

teractions between the fluid and the grains. In the current configuration, capillary forces

arising from the presence of surface tension will cause a further reduction in P .

3.6 Scale analysis

As collapse dynamics clearly depend on N , dimensionless parameters used previously

in the literature, a0 and φp, are not enough to characterise the phenomena governing the

behaviour of the fluid-saturated granular column collapse in the current test configu-

ration. The observed interplay between the fluid and particle fronts also suggests that

the viscous nature of the interstitial fluid must also be recognised to explain these flow

states.

To characterise the acceleration phase of each collapse, themaximumvelocities of the

two phase fronts uf,m and up,m, and the time after collapse initiation that these maximum

velocities were achieved tf,m and tp,m, were evaluated. A linear approximation of the

pressure gradient over the first significant pressure drop at the centre of the column, Ṗm,

was recorded as indicative of the pore pressure response in the early collapse stages.

Using these terms, Equation (3.2) can be rewritten into the following form
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Figure 3.8: Ṗ ∗
m normalised by D = (ρ∗)β(r∗)γ against Bo/Ca for all particle sizes dp

at N = 4.61 (triangle) and N = 14 (star). The black line indicates the power law fit

provided in Equation (3.4) using the exponents found in Table 3.3.
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Figure 3.9: Frv,L normalised by D = (ρ∗)β(r∗)γ against Bo/Ca for all particle sizes dp
at all N . (a) v = f and L = dp, (b) v = f and L = h0, (c) v = p, and L = dp and (d)
v = p and L = h0. The black line indicates the power law fit provided in Equation (3.4)

using the exponents found in Table 3.3. Error bars signify the absolute measurement

error of the independent variable. In this case, these bars are very small.

48



Chapter 3: Inertial effects in just-saturated axisymmetric column collapses

101 102 103 104

	�



		


	

t
∗ f,
d
p
/D

���

101 102 103 104

	�



		


	


t
∗ f,
h
0
/D

��� N= 

N= ��

N= 

N= ���


101 102 103 104

Bo/Ca


	�



		


	


t
∗ p
,d

p
/D

���

101 102 103 104

Bo/Ca


	�



		


	


t
∗ p
,h

0
/D

���

�  � �

dp�����

Figure 3.10: t∗v,L normalised by D = (ρ∗)β(r∗)γ against Bo/Ca for all particle sizes dp
at all N . (a) v = f and L = dp, (b) v = f and L = h0, (c) v = p, and L = dp and (d)
v = p and L = h0. The black line indicates the power law fit provided in Equation (3.4)

using the exponents found in Table 3.3. Error bars signify the absolute measurement

error of the independent variable.
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√
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ηf
√

Gh0
3

σfdp

)
,

(3.3)

where f3 is an unknown function and, again, the subscript v refers to the phase of inter-

est. Noting that φp remained approximately constant throughout the experiments, this

parameter was disregarded from all further analyses. Thus eight dimensionless groups

are defined: Frv,L, a0, r
∗, ρ∗, t∗v,L, Ṗ

∗
m, Bo and Ca, where subscript L is equal to dp or

h0 depending on the characteristic length scale of interest.

Values of Frv,L and t∗v,L were obtained for each test by averaging the upstream and

downstream values of uv,m and tv,m, respectively. This had the added benefit of limiting

the contributions of Coriolis acceleration and the Eötvös effect†† on the scale analysis.

The significance of each parameter in Equation (3.3) was tested through the implemen-

tation of a non-linear regression scheme with a weighting that favoured power-law fits

††See Chapter 6 for the definitions and a detailed analysis of the influence of Coriolis accelerations

and the Eötvös effect on collapse dynamics
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Table 3.3: Summary of exponents used to fit Equation (3.4) for all characteristic dimen-

sionless quantities of interest. The normalised root mean squared error RMSEN of each

fit is also detailed.

Q α β γ RMSEN

Frf,dp -0.04 0.07 0.30 0.15

Frf,h0 -0.02 0.08 -0.25 0.27

Frp,dp -0.04 0.04 0.34 0.13

Frp,h0 -0.04 0.04 -0.16 0.31

tf,dp
∗ 0.07 0.18 0.54 0.09

tf,h0
∗ 0.07 0.18 0.04 0.16

tp,dp
∗ 0.10 0.16 0.50 0.13

tp,h0
∗ 0.13 0.13 -0.03 0.17

Ṗ ∗ 0.27 -0.46 0.80 0.26

that minimised the degrees of freedom to reasonably portray the data set. Given that we

do not have an a priori understanding of the combined and relative influence of each Π

group within the dimensionless parameter space, a generalised power-law fit provides a

reasonable starting point for this process. The outcome is that all measured quantities,

meaning Ṗ ∗
m, Frv,L and t∗v,L, appear to be independent of each other for all phases and

scales. Figures 3.8, 3.9 and 3.10 show the finalised fits for Ṗ ∗, Frv,L and tv,L
∗ against

Bo/Ca, respectively. The low measurement error for the majority of points in Figs 3.8

and 3.9 further highlights theminimal influence that the Coriolis acceleration†† had over

the collapse period of interest. In the case of Ṗ ∗
m, the absolute measurement error for

each data point lies within each respective marker. It is important to note that this error

differs from the fluctuations in pressure gradient throughout the signal which is signifi-

cantly larger. The variation of all measured quantities of interest Q can be described by

the following relation

Q =

(
Bo

Ca

)α

(ρ∗)β(r∗)γ, (3.4)

where α, β and γ are constants that are summarised in Table 3.3. Equation (3.4) demon-

strates that the selected characteristic quantities associated with the initial acceleration

phases of the granular and fluid flow fronts and the initial post-collapse pressure gra-

dient can be reasonably well predicted by a simplistic power law model consisting of

three dimensionless parameters.

††See Chapter 6 for the definitions and a detailed analysis of the influence of Coriolis accelerations

and the Eötvös effect on collapse dynamics
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3.6.1 Quantification of scaling parameter influence

Equation (3.4) provides significant insight into the factors governing the behaviour of

these characteristic flow states. The relative influence of each parameter on the right-

hand side of Equation (3.4) on the mobility of the granular and fluid phases is investi-

gated further in Figure 3.11 where each parameter to the power of its exponent is plotted

against itself for all variations of Frv,L and t∗v,L.

Considering Bo/Ca as a single parameter within Equation (3.4) means that the fits of

Q are decoupled from the influence of surface tension at the grain-scale. Instead, it is the

balance of column-scale gravitational and viscous forces that influence flow behaviour.

While the influence of surface tension at varying levels of N was discussed previously,

the relatively large particle sizes used has allowed all cases of Q to be surface tension

independent at all scales. Figure 3.11a shows that (Bo/Ca)α decreases as Bo/Ca in-

creases for all cases of Frv,L. Given that column collapses are gravity-driven processes,

the rate at which gravitational forces increase will dominate the rate at which inertial

forces increase for all phases and scales. This means that column mobility, and there-

fore t∗v,L, increases as gravitational force contributions increase with respect to viscous

effects.

Figure 3.11b demonstrates that (ρ∗)β increases with ρ∗ in all cases. According to

Bougouin and Lacaze (2018), the range of ρp/ρf values used categorises the observed

flow states into the inertial regimewhere inertial fluid forces have a significant impact on

flow behaviour. However, the influence of particle inertia still dominates, which causes

β to vary depending on the phase of the flow. Generally, the magnitude of β is greater
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for the particle phase for both quantities of interest at both the column- and granular-

scales. It would be interesting to achieve higher values of ρ∗ by either reducing ρf or

increasing ρp and see how flow states where fluid inertial effects are no longer important

(i.e. the free-fall regime) scale with Equation (3.4).

Warnett et al. (2014) found that increasing r∗ increased the mobility of the collapse

in the dry case. In the current study, Figure 3.11c shows that the influence of r∗ is

predominantly dependent on the scale of interest. Generally, increasing r∗ reduced the

mobility of the column at the column-scale while increasing it at the grain-scale with

respect to velocity and collapse duration. This outcome is logical as r∗ is a ratio between

the column- and grain-scales. Previously, this effect was found to saturate when r∗ ≈
107, a value that is significantly higher than what is covered by the parameter space

of the current study. As r∗ was varied by changing the particle size, we are unable

to determine whether r0, and other parameters defining the column geometry, have a

significant impact on the evolution of the flow as N increases.

3.7 Discussion

The wide particle size distribution in debris flows coupled with comparatively high fluid

volume fraction leads to macro-scale flow features that can originate from micro-scale

processes. This makes similitude between laboratory experiments and geophysical-

scale movement events particularly difficult. For example, surface tension can not be

important in the geophysical flow when considering overall flow scale, but becomes im-

portant in a laboratory prototype with reduced geometric scale. This means that the true

role of surface tension through fines in the geophysical flow may actually be masked by

these scaling artefacts in the laboratory. This research attempts to evaluate laboratory

flows where the particles are inertial, in an attempt to isolate the response of those grains

as differentiated from fine grains in a debris flow.

To mimic debris flows, we used a just-saturated granular column collapse config-

uration, consisting of glass grains in a size range where their inertia was significant,

facilitated by using a geotechnical centrifuge. Grain size, gravitational acceleration and

fluid viscosity were systematically varied to analyse their influence on the front evolu-

tion of grain and fluid phases alongside the basal pore pressure.

The drainage phase, where the fluid front accelerates away from the granular front,

was found to be accentuated by both increasing the granular pore space and, increas-

ing the level of gravitational acceleration up until N = 14. Larger tested values of N
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resulted in collapse dynamics becoming less dependent on grain-fluid interactions and

particle inertia dominating the dynamics of the granular phase. Without enhanced grav-

itational acceleration, just-saturated granular columns evolved in a similar way to pre-

vious experiments (dry, underwater, saturated); comprising acceleration, quasi-steady

and retardation phases. The duration of these runout events primarily decreased with

particle size as larger capillary forces, which limit grain mobility, developed within the

granular materials with smaller pore spaces. In contrast, the collapse duration of tests

exposed to elevated levels of gravitational acceleration decreased with both increasing

pore space and increasing N for a given particle size. The latter showing that the influ-

ence of capillary forces on the evolution of the collapse reduces with increased scale.

Analysis of the temporal evolution of the basal pore pressure at the centre of the

column also highlighted the major influence of pore space as N increases, particularly

during the initial drainage phase post-collapse initiation. The magnitude of the initial

pressure drop increases with decreasing particle size at a given level of elevated grav-

itational acceleration. Similarly to the conclusions of previous authors (Iverson et al.,

2000; Rondon et al., 2011), this pore size dependent pressure drop is surmised to em-

anate from the pore-pressure feedback loop for a dense granular configuration. The

presence of capillary forces within the just-saturated column configuration caused the

pore pressure to drop further when the particle size was smaller.

Buckingham’sΠ theorem was used to postulate a relationship between 11 fundamen-

tal test variables that characterise the acceleration phase of each column collapse using

8 independent dimensionless Π groups. A non-linear regression scheme was used to

evaluate the influence of each parameter and found that all measured quantities of in-

terest, specifically, Ṗ ∗
m, Frv,L and t∗v,L, are independent of each other at all scales and

are well described by Q = (Bo/Ca)α(ρ∗)β(r∗)γ where α, β and γ are dependent on

Q. Crucially, the inclusion of both Bo and Ca within a single parameter means that all

quantities of interest are decoupled from grain-scale surface tension effects and it is the

balance of column-scale gravitational and viscous forces that govern acceleration phase

collapse behaviour as seen in natural-scale debris flows with a granular phase including

inertial particles.

The current study has been effective in highlighting the collapse response of grain-

fluidmixtures with inertial grains. This provides a start point for exploring separately the

role of fines, where their effect may be negligible on the inertial/flow scale, but which

may nevertheless control processes within the much smaller pore spaces. This work

is timely given the findings of Kaitna et al. (2016) highlighting the importance of fine
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granular material to the maintenance of excess pore pressures in steady-state granular-

fluid flows. Developing a large dataset of unsteady granular-fluid flow experiments,

where the impact of including fine granular material can be quantified, will be crucial

to the development of a more mechanically precise pore pressure evolution model.

3.8 Supplementary content

The raw video files for all completed tests are available at https://doi.org/10.
17639/nott.7277.
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Chapter 4

Fines-controlled drainage in

just-saturated, inertial column

collapses

Abstract

*The wide particle size distributions, over several orders of magnitude, observed in de-

bris flows leads to a diverse range of rheological behaviours controlling flow outcomes.

This study explores the influence of different scale grains by conducting subaerial, fully

saturated granular column collapse experiments with extreme, bimodal particle size dis-

tributions. The primary particles were of a size where their behaviour was controlled

by their inertia while a suspension of kaolin clay particles within the fluid phase acts

at spatial scales smaller than the pore space between the primary particles. The use of

a geotechnical centrifuge allowed for the systematic variation of gravitational acceler-

ation, inertial particle size and the degree of kaolin fines. Characteristic velocity- and

time-scales of the acceleration phase of the collapse were quantified using high-speed

cameras. Comparing tests containing fines to equivalent collapses with a glycerol solu-

tion mimicking the enhanced viscosity but not the particle behaviour of the fines, it was

found that all characteristic dynamic quantities were dependent on the degree of fines,

the system size, the grain fluid-density ratio and the column– and grain-scale Bond and

Capillary numbers. We introduce a fine-scale Capillary number showing that, although

surface tension effects at the column scale are negligible, fines do control the movement

of fluid through the pore spaces.

*Webb, W., Heron, C., and Turnbull, B. (2023a). Fines-controlled drainage in just-saturated, inertial

column collapses. E3S Web of Conferences. 415:01030.
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4.1 Introduction

The influence of a wide particle size distribution on the dynamics and outcomes of nat-

urally occurring debris flows is still disputed. Field studies (e.g. McArdell et al., 2007)

and large-scale testing (e.g. Johnson et al., 2012) have shown that events containing

high quantities of fine granular material, like clays and silts, often achieve increased

mobility through the development of significant excess pore pressures which reduce the

frictional energy losses between the bulk flow and the terrain bed.

Recent two-phase shallow water models (Bouchut et al., 2017; Iverson and George,

2014; Kowalski and McElwaine, 2013) have attempted to capture the temporal and spa-

tial variation of the grain size distribution by modelling aspects of unsteady debris flow

behaviour. However, there is still no consensus on the most appropriate, computation-

ally efficient way to implement this complexity. This suggests that a more refined under-

standing of the mechanisms controlling grain-scale flow dynamics is required to allow

conclusions to be made on what physical processes are most influential on global flow

outcomes. Given the small length and time scales associated with these effects, it seems

pertinent to analyse them further by conducting laboratory-scale experiments where it

is possible to fully control the initial and boundary conditions of the flow (Iverson et al.,

2010b). A notable study (Kaitna et al., 2016) utilised a drum centrifuge configuration

to evaluate the influence of the particle size distribution on steady-state flow dynamics.

They found that mixtures that contained higher percentages of fine granular material ex-

hibited more significant and prolonged excess pore pressures which reduced bulk flow

resistance. While this is encouraging, further parametric investigations are required to

quantitatively evaluate the influence of the inclusion of fines on flow dynamics and

understand the mechanisms at play.

A recent study (Webb et al., 2023b)† attempted to isolate the influence of inertial

grains on flow dynamics over a wide parameter space by conducting g-elevated, fluid-

saturated granular column collapse experiments where water-glycerol mixtures were

used as a pseudo-fluid. The current study attempts to build on this work and introduce

an extreme bimodal grain size distribution by using a fluid phase comprised of kaolin

clay particles and water. As such, by varying gravitational acceleration, the coarse grain

diameter and the percentage of fines, the influence of the fine length- and time-scales on

acceleration phase collapse dynamics is evaluated and compared within the previously

established parameter space.

†Webb et al. (2023b) is shown in Chapter 3
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4.2 Methodology

4.2.1 Experimental setup

The experiment (see Figure 4.1) consists of rapidly releasing a granular-fluid mixture,

which is initially accommodated within a partially filled steel cylinder, over a horizontal

plane where it is allowed to spread under the influence of a prescribed gravitational

accelerationG. By spinning the apparatus at the end of a geotechnical beam centrifuge,

the collapse can occur at an elevated gravitational acceleration G = Ng where N is

dependent on the effective radius and rotational speed of the model, and g = 9.81m

s−2.

The current study focused on the collapse of fluid saturated granular columns with

an initial height h0 = 50mm and a column radius r0 = 54mm. The granular phase

was comprised of soda lime glass spheres with a density ρp = 2642±27.4 kgm−3 and

a mean packing fraction φp = 0.61±0.01. The fluid phase consisted of kaolin clay

particles suspended in water. Tests were conducted over a wide parameter space by

varying G = [9.81, 45.22, 137.64, 275.45]m s−2, the coarse grain diameter dp = [4,

8]mm, and the degree of fines suspended within the fluid by mass Ck = [0.1, 0.2].

Assuming a characteristic collapse strain rate γ̇ =
√
G/h0, the density, viscosity and

surface tension of the fluid phase was varied between ρf = [1165, 1330] kgm−3, ηf =

[7.65, 108.30] cP, and σf = [92.59, 98.96]mNm−1, respectively. The evolution of the

collapsing mixture was recorded by two Go-Pro cameras and the temporal evolution of

the collapse front was obtained through the image analysis procedure detailed in Webb

et al. (2023b)†.

4.2.2 Dimensional analysis

Buckingham’sΠ theorem (Buckingham, 1914) can be used to examine how different test

parameters may impact the propagation of the collapse. As such, a relationship between

the flow front velocity u at time t with the collapse test parameters can be hypothesised

as

u = f1 (h0, r0, dp, ρp, φp, Ck, dk, ρf , ηf , σf , t, G) , (4.1)

where f1 is an unknown function and dk is a reference length scale for the kaolin clay

particles taken as 5µm. The theorem then states that the 11 dimensional quantities in

†Webb et al. (2023b) is shown in Chapter 3
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Figure 4.1: Schematic of the initial column configuration prior to collapse initiation.

Equation (4.1), which are functions of mass, length and time scales, can be interrelated

by 8 dimensionless Π-groups. Following the methodology described in Iverson (2015),

Equation (4.1) can be transformed into the following form

u√
GL

= f2

(
φp, Ck,

r0
dp

,
t√

LG−1
,
(ρp − ρf )N

ρf
,
ρGdph0

σf

,
ρGdpdk

σf

,

ηf
√

Gh3
0

σfdp
,
ηf
√
Gd3p

σfdk

)
, (4.2)

where f2 is an unknown function, L is the characteristic length scale of interest and ρ is

the granular-fluid mixture effective density ρ = φpρp + (1− φp) ρf . The parameter on

the left-hand side of Equation (4.2) is the flow front Froude number u∗
L which is the ratio

of inertial and gravitational forces over a characteristic length scale L. The first two

parameters on the right-hand side of Equation (4.2) are the dimensionless parameters

φp and Ck which remain unchanged from Equation (4.1). The third parameter, r∗ is

the ratio between r0 and dp. The fourth parameter, t∗L, compares t against the length

scale dependent characteristic inertial timescale
√
LG−1. The fifth parameter is the

relative granular-fluid density ratio accounting for acceleration-scale buoyancy effects

ρ∗. The sixth and seventh parameters are referred to as the column- and grain-scale

Bond numbers, Bo and Bok, respectively. The first parameter quantifies the relative

influence of inertial forces at the column scale against capillary forces at the grain scale

while the latter is an analogous quantity relating grain scale inertial forces to kaolin

scale capillary effects. The final two parameters are scale-relative Capillary numbers.

The first relates column scale viscous forces to grain scale capillary effects Ca while
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the second compares grain scale viscous forces to kaolin scale capillary effects Cak. As

stated in Iverson (2015), given that Π groups can be recast through multiplication, the

dimensionless parameter set in Equation (4.2) is not a unique solution to Equation (4.1).

This set was deemed suitable as it has significant overlap with the dimensionless set

used in the previous scale analysis study (Webb et al., 2023b)†. The included force ratio

terms also allow for comparison across all three length scales of interest (h0, dp and dk)

which is critical in interpreting the contribution of the fine particulate to flow dynamics

throughout the acceleration phase.

4.3 Results and discussion

The acceleration phase of each collapse was characterised by the maximum velocity

of the flow front um, and the time elapsed between collapse initiation and the instance

where um was achieved tm. The two camera angles allowed averaged values of the

two quantities to be taken which reduces the impact of external forces resulting from

centrifuge modelling like the Coriolis force††.

Given that φp remains approximately constant across all tests, Equation (4.2) can be

simplified as follows

Frm,L = f3
(
Ck, r

∗, t∗m,L, ρ
∗,Bo,Bok,Ca,Cak

)
, (4.3)

where Frm,L and t∗m,L are equivalent to FrL and t∗L evaluated at um and tm, respectively.

The characteristic length scales of interest L are dp and h0 meaning that there are four

quantities of interest Q related to the acceleration phase of the collapse; Frm,dp , Frm,h0 ,

t∗m,dp
, and t∗m,h0

.

To evaluate the effect of the inclusion of fines on the acceleration phase, a single

dataset containing the quantities collected from the current study and the same quantities

published in Webb et al. (2023b)† for the Newtonian fluid test cases, where Ck = 0,

and Bok and Cak values are not considered, was developed. The influence of every

parameter in Equation (4.3) was then evaluated using a non-linear regression scheme

and, as was found for the Newtonian fluid dataset, the measured quantities of interest

can be described by empirical power law fits that are independent of the other quantities

†Webb et al. (2023b) is shown in Chapter 3
††See Chapter 6 for the definitions and a detailed analysis of the influence of Coriolis accelerations

and the Eötvös effect on collapse dynamics
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Table 4.1: Summary of exponents for Equation (4.4) for allQ along with the normalised

root mean squared error RMSEN of each fit.

Frm,dp Frm,h0 t∗m,dp
t∗m,h0

k1 -0.04 -0.04 0.09 0.11

k2 0.07 0.15 -0.48 -0.63

k3 0.18 0.27 -0.40 -0.55

k4 0.10 0.11 0.22 0.23

k5 0.30 -0.19 -0.48 -0.07

RMSEN 0.14 0.19 0.11 0.10

of interest. For the current combined dataset, this relationship is defined as

Q =

(
Bo

Ca

)k1 (Bok

Cak

)k2Ck

(Cak)
k3Ck (ρ∗)k4 (r∗)k5 , (4.4)

where k1–k5 are constants summarised in Table 4.1. Figure 4.2 details the finalised fits

for each Q. The structure of Equation (4.4) allows Newtonian- and non-Newtonian-

fluid tests to be fitted to the same power law as terms that include parameters associated

with the kaolin-scale can be neglected as Ck = 0.

Equation (4.4) is very similar in structure to the empirical fit found for Q in the case

of the purely Newtonian fluid dataset

Q =

(
Bo

Ca

)α

(ρ∗)β (r∗)γ , (4.5)

where α, β, and γ are constants. It is reassuring to see that the general trend and, the

coefficients of the terms that are independent of kaolin-scale phenomena (i.e. k1, k4 and

k5), are largely comparable in both magnitude and sign for Equation (4.4) and Equa-

tion (4.5) for all Q. The normalised root mean squared error RMSEN has also reduced

for every Q.

The most significant outcome from this study is the appearance of the Cak term in

Equation (4.4). This suggests that the inclusion of fine granular material results in all

acceleration phase quantities of interest being dependent on surface-tension effects em-

anating from the kaolin-scale. In contrast, as demonstrated by Equation (4.5), surface

tension effects were not pertinent to the behaviour of the Newtonian fluid test case.

The relative importance of each force ratio term in Equation (4.4) associated with

the grain- and kaolin-length scales can be quantified by comparing their magnitude

and sign to the magnitude and sign of (Bo/Ca)k1 . Figure 4.3 shows the plots of
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Figure 4.2: (a) Frm,dp , (b) Frm,h0 , (c) t∗m,dp
, and (d) t∗m,h0

normalised by D =(
Bok
Cak

)k2Ck

(Cak)
k3Ck (ρ∗)k4 (r∗)k5 against Bo/Ca for all values of Ck. The black line

defines the power law fit described by Equation (4.4) using the exponents provided in

Table 4.1. Error bars define the absolute error of the independent variable.

Figure 4.3: Comparison of the force ratio influence for Frm,L and t∗m,L for all values of

Ck and L.
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(Bok/Cak)
Ckk2 (Bo/Ca)−k1 , (Cak)

Ckk3 (Bo/Ca)−k1 and (Bok/Cak)
Ckk3 (Bok/Cak)

−Ckk2

against Bo/Ca for Frm,L and t∗m,L. The figure shows that for Frm,L and t∗m,L, the trend

for both characteristic length scales is similar for all values of Ck.

The relative influence of grain- and kaolin-scale phenomena increases with Bo/Ca

for Frm,L while the influence of both scales reduces with Bo/Ca for t∗m,L. More signifi-

cantly, Figure 4.3b suggests that kaolin-scale surface tension effects are more influential

to Frm,d and Frm,h0 than the driving forces at the column scale. Furthermore, Figure 4.3c

shows that for Frm,L, kaolin-scale phenomena are more influential than grain-scale phe-

nomena while Figure 4.3f shows that for t∗m,L, grain-scale phenomena are more influen-

tial than kaolin-scale phenomena. Logically, these effects are exaggerated by increasing

Ck.

4.4 Conclusions and further work

A series of fully saturated, axisymmetric granular column collapse experiments using a

fluid phase comprised of kaolin particles suspended in water were conducted to inves-

tigate the effects of a bimodal grain size distribution on acceleration phase drainage

behaviour. The use of a geotechnical centrifuge allowed for a wide test parameter

space where gravitational acceleration, inertial grain diameter, and the percentage of

fines within the fluid phase could be varied during testing. A dimensionless param-

eter space consisting of 8 parameters, obtained using Buckingham’s Π theorem, was

postulated to characterise acceleration phase collapse dynamics. The data gathered

from the current series of tests was combined with the Newtonian fluid tests from a

previous study and a non-linear, least squares fitting analysis was undertaken to in-

vestigate the influence of each dimensionless parameter on the four measured quan-

tities of interest Q: Frm,d, Frm,h0 , t
∗
m,d, and t∗m,h0

. As was found for the Newtonian

fluid test cases, all values of Q scaled independently of each other and scaled with

Q =
(
Bo
Ca

)k1 (Bok
Cak

)k2Ck

(Cak)
k3Ck (ρ∗)k4 (r∗)k5 where k1–k5 are constants dependent on

Q. Unlike the Newtonian fluid test case, the inclusion of kaolin particles appears to

couple allQ with kaolin-scale surface tension effects which, for the range of the Bo/Ca

values tested, was more influential to Frm,d and Frm,h0 than column-scale inertial and

viscous forces. Future work involves considering the influence of a bimodal grain size

distribution on the maintenance of excess pore pressures by conducting similar analyses

for the reduction of fluid pressure at the base of the column over the duration of the

collapse.
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Continuum modelling of a

just-saturated inertial column collapse:

Capturing fluid-particle interaction

Abstract

*This work presents a simple two-phase flow model to analyse a series of axisymmet-

ric granular column collapse tests conducted under elevated gravitational accelerations.

These columns were prepared with a just-saturated condition, where the granular pores

were filled with a Newtonian fluid up to the column’s free surface. In this configuration,

unlike the fully submerged case, air-water-grain contact angles may be important to flow

dynamics. The interaction between a Newtonian fluid phase and a monodispersed iner-

tial particle phase was captured by an inter-phase interaction term that considers the drag

between the two phases as a function of the particle phase porosity. While this exper-

imental setup has broad applications in understanding various industrial processes and

natural phenomena, the focus of this study is on its relevance to predicting the motion

of debris flows. Debris flows are challenging to model due to their temporally evolving

composition, which can lead to the development of complex numerical models that be-

come intractable. The developed numerical scheme in this study reasonably reproduces

the particle-size and gravitational acceleration dependencies observed within the exper-

imental runout and basal fluid pressure reduction data. However, discrepancies between

the model and physical experiments primarily arise from the assumption of modelling

the granular phase as a continuum, which becomes less appropriate as particle size in-

creases.

*Webb, W., Turnbull, B., and Johnson, C. G. (2024a). Continuum modelling of a just-saturated

inertial column collapse: Capturing fluid-particle interaction. Granular Matter. 26(1):21.
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5.1 Introduction

Granular-fluid flows have emerged as a prominent area of scientific inquiry, owing to

their extensive prevalence in both industrial and natural contexts (Warnett et al., 2014).

In this current study, our research focuses on a subset of natural granular mass move-

ments that fall under the classification of gravity-driven landslides (Jakob et al., 2005).

Notably, we direct our attention towards one specific type known as debris flows, which

pose significant threats to communities and infrastructure situated in mountainous re-

gions worldwide (Delannay et al., 2017). Particularly in developing countries, popula-

tion exposure to such hazards is on the rise (Nadim et al., 2006). Despite past scientific

attention, the increasing frequency and intensity of flow triggering events, such as peri-

ods of high rainfall intensity (e.g. Redshaw et al., 2019; Rodolfo et al., 2016), melting of

glaciers and permafrost (e.g. Allen et al., 2016; Sati, 2022) and, production of wildfires

(e.g. Grimsley et al., 2016; Oakley et al., 2018), occurring near urban areas, make it im-

perative to gain a deeper understanding of the underlying mechanics governing debris

flow behaviour.

Numerical modelling plays a vital role in the prediction and formulation of effec-

tive mitigation strategies for debris flows. The complex nature of debris flows, with

comparatively high fluid volume fractions (Pierson, 2005) and wide particle size distri-

butions (Turnbull et al., 2015), presents challenges not present in other gravity-driven

mass movements. As a result, both the fluid and solid phases, as well as their inter-phase

interaction, significantly influence macro-scale flow behaviour (Iverson, 1997). To de-

velopmodels that can approximate field-scale flow conditions, it is necessary to adopt an

idealised flow rheology. This simplification enables the formulation of tractable models

that can yield valuable insights into debris flow dynamics.

Debris flows havemost commonly beenmodelled as a single, homogeneous granular-

fluid (e.g. Takahashi, 1981; Takebayashi and Fujita, 2020). Another approach is to treat

the fluid and granular material as separate continuum phases coupled by a phase in-

teraction term (e.g. Berzi and Jenkins, 2008; Iverson, 1997; Iverson and Denlinger,

2001). To simplify computations, depth averaged equations are commonly used to de-

scribe the conservation relations of the phases and the bulk flow. These equations were

originally derived under the assumption of a homogeneous density profile (Savage and

Hutter, 1989). However, this approach overlooks the fact that the solid volume fraction

varies spatially and temporally, which contributes to the diverse range of rheological

behaviours observed in mass movement events, including the development of excess
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pore pressures (Iverson, 2003). Field observations (e.g. McArdell et al., 2007; McCoy

et al., 2010) and large-scale testing (e.g. Johnson et al., 2012) have well-documented

this fact.

More recent models have sought to increase the complexity in which the two phases

can be modelled separately. Some models (e.g. Iverson and George, 2014; Pitman and

Le, 2005) describe how the interactions between the granular and fluid phases alter flow

dynamics. Iverson and George (2014) do this through the generation and dissipation of

excess pore pressures, while maintaining a heterogeneous flow profile by not allowing

the two phases to separate. Kowalski andMcElwaine (2013) described each phase using

separate mass equations but a single momentum equation. Gray and Kokelaar (2010)

achieved separation between two phases in a similar way but focussed on particle size

segregation by considering two granular phases of differing particle size instead. Further

phase separation has been achieved in other models (e.g. Bouchut et al., 2017; Meng et

al., 2022) by describing each phase with its own mass and momentum equation.

While these recent models represent a significant improvement over earlier efforts,

the diversity ofmodelling strategies discussed demonstrates that there is no consensus on

the most appropriate way to efficiently model these two-phase flows, and that different

approaches can inform us about different aspects of a flow. Additionally, these models

only account for debris flows with uniform particle sizes. However, as stated by Iverson

(1997), and more recently demonstrated experimentally, many aspects of macro-scale

flow behaviour, such as flow mobility (de Haas et al., 2015), bed erosion (Roelofs et

al., 2022), and the accumulation and dissipation of excess pore pressures (Kaitna et

al., 2016), are highly dependent on the grain size distribution of the flow, particularly

the amount of fine, silt, and clay material present. Consequently, current numerical

methods do not allow the micro-scale effects from the inclusion of fine granular material

to influence macro-scale flow behaviour.

One possible approach to incorporate micro-scale effects is to include them in the

interphase interaction term so that they can impact the pore-scale. In this study, we aim

to explore the potential of this method by examining the extent to which micro-scale

effects can be accurately reproduced in the macro-scale flow behaviour of a simplified

experimental flow.

In particular, the unsteady collapse of a granular column has been a widely utilised

test configuration in the last two decades to examine how the column’s initial geometry

and composition influence its dynamics (e.g. Bougouin and Lacaze, 2018; Cabrera and

Estrada, 2019; Lajeunesse et al., 2004; Lube et al., 2004; Thompson andHuppert, 2007).
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For the case of a dry granular collapse, where many controlling parameters exhibit scale-

invariance, scaling relationships from laboratory-scale experiments have been linked to

geophysical granular flows (Delannay et al., 2017). However, the inclusion of a fluid

phase within the granular mixture introduces a stress-dependent grain-fluid interaction

(Iverson, 2015), causing the force ratios in laboratory-scale experiments to deviate from

those in large-scale geophysical flows (Heller, 2011). Achieving dynamic similarity in

the crucial pore pressure control processes of the flow can be attained by artificially in-

creasing the effective gravitational acceleration through centrifugation, as demonstrated

by Webb et al. (2023b)† in their study of axisymmetric fluid-saturated granular column

collapses.

5.2 Experimental configuration

Webb et al. (2023b)† performed experiments using the experimental setup illustrated in

Figure 5.1, which was attached to the arm of a geotechnical beam centrifuge. The ex-

periments involved the rapid release of a granular-fluid mixture consisting of monodis-

persed spherical glass beads and a Newtonian water-glycerol mixture that was initially

confined within a partially filled steel cylinder. It is worth noting that, while a polydis-

persed granular composition would have more accurately represented the composition

of geophysical flows, the chosen simplification offers advantages in terms of analysing

and comparing the experimental data. Furthermore, this simplification substantially

reduces the complexity of the numerical model employed in attempts to replicate the

collapse behaviour.

The mixture was just-saturated and allowed to spread on a horizontal plane under the

influence of a prescribed gravitational acceleration G governed by the rotation rate of

the centrifuge. The radius of the steel cylinder r0 and the initial height of both the gran-

ular and fluid phases hv,0, where v = p, f corresponds to the particle and fluid phases,

respectively, were equal and held constant (i.e. hp,0 = hf,0 = h0). This resulted in a col-

umn aspect ratio a0 = h0/r0 ≈ 0.93 while the particle size dp, gravitational acceleration

G, and fluid viscosity ηf were varied systematically to explore a wide parameter space.

ηf was held constant for each test conducted at a given G, making the study primarily

focused on the influence of dp and g on collapse dynamics.

The study conducted by Webb et al. (2023b)† recorded the entire evolution of each

collapse within the measurement area using two high-speed cameras. Snapshots at dif-

†Webb et al. (2023b) is shown in Chapter 3
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Figure 5.1: The axisymmetric collapse apparatus used by Webb et al. (2023b)†.

Figure 5.2: Snapshots of the collapse sequence downstream of centrifuge motion for

two columns, both with dp = 8mm, with (a)-(e) G = 9.81m s−2 and (f)-(j) G =
137.64m s−2 fromWebb et al. (2023b)†. The averaged radial position of the fluid (red)

and particle (white) phase fronts are shown.
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ferent times t from two recorded collapses are depicted in Figure 5.2, where the end

of the recorded collapse period is denoted as tF (see Webb et al., 2023b† for details).

A multi-threshold image analysis scheme was employed to track the average radial po-

sition of both the fluid and granular fronts throughout each collapse. Furthermore, a

pressure transducer placed at the centre of the steel cylinder below the column allowed

the authors to record the evolution of the basal fluid pressure at this location.

The objective of this study is to develop a numerical model that can reproduce the

dp- andG-dependent behaviour observed in these granular-fluid mixture collapses. The

model’s accuracy will be evaluated by comparing predicted time series of runout, ve-

locity, and basal fluid pressure with the experimental data. To simplify the analysis,

all radial experimental quantities discussed will be presented as the average of upstream

and downstream values. This approach is adopted due to the minimal variation observed

in the collapse behaviour between the two directions, attributable to the Coriolis accel-

erations and the Eötvös effect†† commonly encountered in centrifuge modelling (Taylor,

1995).

5.3 Modelling

5.3.1 Depth averaged equations

*Aschematic representation of the numerical model used to replicate the flow dynamics

observed in the experiments is illustrated in Figure 5.3. The model depicts the motion

of distinct granular and fluid continuum phases with specific densities ρv, where, again,

v = p, f corresponds to the particle and fluid phases, respectively, spreading across a

horizontal plane. The model takes into account the separate influences of gravitational

and basal drag forces on the behaviour of the two phases, while their motion is tightly

coupled through a phase interaction term.

Like many previous studies on gravity-driven multiphase flows (e.g. Bouchut et al.,

2017; Kowalski and McElwaine, 2013; Meng et al., 2022), the current work will sim-

plify the system of equations by depth averaging the flow to improve computational

efficiency. This assumption is based on the following premises: (i) for the particle

sizes considered, surface tension effects of the fluid can be disregarded (Webb et al.,

†Webb et al. (2023b) is shown in Chapter 3
††See Chapter 6 for the definitions and a detailed analysis of the influence of Coriolis accelerations

and the Eötvös effect on collapse dynamics
*See Appendix C for a derivation of the model from continuum mixture theory
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Figure 5.3: Sketch of a 2-D slice of an undersaturated granular collapse modelled as

two coupled continuum phases.

2023b)†; (ii) the generation of excess pore pressures is eliminated through the exclusion

of fine materials from the granular phase (Kaitna et al., 2016) and the small scale of the

modelled flow (Iverson, 2015); and (iii) the shallow depth of the flow results in negli-

gible accelerations perpendicular to the main direction of motion. The validity of the

last assumption will be discussed in Section 5.3.4, given the initial configuration of the

granular-fluid mixture before the collapse.

Given the simplicity of the experimental flow, and in the interest of computational

efficiency, it was deemed reasonable to model the motion of the flow in an axisymmetric

coordinates system by only considering one lateral spatial dimension r and the vertical

spatial dimension z. The nature of the experiment being modelled, and the range of

particle sizes used, allows for the further assumption of an always exactly saturated or

undersaturated granular phase (i.e. hf ≤ hp). By employing the conversion process

outlined in Appendix C, the original unified system of equations proposed by Meng

et al. (2022) is transformed into a revised set of equations. These constitute a system

of depth-averaged mass and momentum conservation equations describing the evolu-

tion of the phase thickness hv(r, t) and the depth-averaged phase velocity ūv(r, t) in an

undersaturated granular flow

∂thp + ∂r(hpūp) = −hpūp

r
, (5.1)

∂thf + ∂r(hf ūf ) = −hf ūf

r
, (5.2)

†Webb et al. (2023b) is shown in Chapter 3

69



Chapter 5: Continuum modelling of a just-saturated inertial column collapse:

Capturing fluid-particle interaction
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+
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min(hf , hp)(ūp − ūf ), (5.4)

for the particle and fluid phases, respectively, where φv is the phase volume fraction

which is assumed to be constant for both phases and obey the relation φf = 1− φp. G

is the gravitational acceleration acting parallel to the z-direction, µb is the basal friction

coefficient, γ∗ is the density ratio between the two phases such that γ∗ = ρf/ρp, and k

is the permeability of the granular phase where k = (φ3
fd

2
p)/(180φ

2
p) as defined by Car-

man’s equation (Pailha and Pouliquen, 2009) which has been shown to agree well with

studies investigating the dynamics of sediments and bed-load transport (Goharzadeh

et al., 2005; Ouriemi et al., 2009). The influence of particle size on the dynamics is

incorporated within the permeability term.

Consistent with previous studies (e.g. Bouchut et al., 2017; Meng et al., 2022), we

assume that φp corresponds to a critical solid volume fraction φc, which we take to be

the average solid volume fraction of the granular material before collapse. Accordingly,

we set φp = φc = 0.61 and φf = (1 − φc) = 0.39. While acknowledging that the as-

sumption of a constant φv is not valid during the later stages of the collapse (as depicted

in Figure 5.2), it serves as a reasonable simplification for the initial acceleration phase

when the column is predominantly undergoing free-fall. To further improve computa-

tional efficiency, we approximate the ūp/|ūp| term in Equation (5.3) with tanh(ūp/u
∗),

where u∗ = 10−3ms−1 is a velocity scale below which the granular friction is approxi-

mated as viscous. Finally, we set µb to 0.8 where we discuss the rationale for this value

in Section 5.3.4.

5.3.2 Behaviour of the model in limiting cases

The model can be reduced to the familiar case of a singular granular phase by taking

hf = 0. On the other hand, if the limit hp = 0 is applied, we obtain a similar solution

describing the motion of a singular fluid phase. However, since φf = 1−φp and φp is a

constant, the volume of fluid per unit azimuthal angle predicted by the model would be

inexact. Hence, for flow cases where both phases are present, regions of the flow that

are comprised of only the fluid phase will be volumetrically incorrect. We can avoid this
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issue for the case of a purely fluid column collapse by setting φf = 1 as in Section 5.3.4.

In the case of a two-phase system, given that the interaction force between the phases

remains finite, as k → 0, ūp → ūf for all t. This implies that for the initial configuration

of the physical experiments conducted by Webb et al. (2023b)†, which corresponds to

a granular material that is just saturated, it is possible to say that hp = hf = h(r, t).

Therefore, by multiplying the mass and momentum continuity equations of each phase

by their respective densities, ρv, and then summing the results, the model reduces to the

equations of motion for a single phase.

Another interesting limiting case is when we consider the drainage of the fluid phase

out of a low permeability static granular phase by setting ūp = 0 and assuming k is small.

The resulting model describes the motion of a slow fluid whose momentum depends

only on the fluid pressure gradient and the phase interaction force. This system can be

written as follows

∂t(hf ) + ∂r(hf ūf ) = 0, (5.5)

∂r

(
1

2
Gh2

f

)
=

ηfφf

ρfk
hf (−ūf ). (5.6)

Rearranging Equation (5.6) for ūf and substituting the result into Equation (5.5), we

reassuringly recover the vector form of the Dupuit-Boussinesq aquifer flow relation

(e.g. Guérin et al., 2014)

φf∂t(hf ) =
1

2
G
ρfk

ηf
∇2(h2

f ) =
K

2
∇2(h2

f ), (5.7)

where K = (Gρfk)/ηf is the hydraulic conductivity of the granular phase.

5.3.3 Numerical method

The spatial discretisation of Equations (5.1)–(5.4) was carried out using the second-

order central-upwind scheme developed by Kurganov and Petrova (2007) for solving

the Saint-Venant system of equations. A 0.5m test domain was discretised into 1000

cells, resulting in a cell width ∆r = 5× 10−4m. Given that the column expands into

regions where no grains are initially present, it was important to ensure that the model

was positivity preserving, i.e., capable of handling the transition between cases where

hv 6= 0 and hv = 0 (Bouchut et al., 2017). To achieve this, the more sophisticated

cell boundary depth correction algorithm of Chertock et al. (2015) was employed. An

†Webb et al. (2023b) is shown in Chapter 3
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explicit second-order Runge-Kutta method was implemented to discretise the system in

time. To ensure the stability of the scheme, a CFLnumber of 0.2 was used. The system’s

phase data was stored at time intervals ∆t = 1× 10−3 s.

5.3.4 Regularisation of vertical velocity components

To begin to assess the validity of the model, we start by conducting a comparison with

the experimental findings for a single fluid phase only collapse (i.e. φf = 1 and φp = 0).

For the numerical model, we define the instantaneous phase front position rv(t) as the

largest radial distance where hv(r, t) > 0.1mmwhile the definition for the experimental

case remains the same as inWebb et al. (2023b)†. Similarly, we introduce the normalised

phase runout length r∗v , defined as the normalised difference between the instantaneous

position of the phase front and the initial column radius (rv − r0)/r0.

A comparison of the numerical and experimental temporal evolution of r∗f for purely

fluid columns across all tested values of G is visualised in Figure 5.4. In the experi-

mental case, the visibility of the collapsing column is initially obstructed by the steel

cylinder used to construct it, causing a delay between the release of the column and

the captured motion of the phase fronts in the camera footage. To address this issue,

the numerical evolution of r∗f has been shifted to align with the experimental signal by

setting the r∗f at t = 0 for the numerical signal to the r∗f for the experimental signal at

t = 0 for each respective collapse test. This alignment approach was compared against

the manual determination of the cylinder’s release time by analysing the collapse im-

ages. The comparison indicated that both methods yielded similar results in terms of the

magnitude of the temporal offset. However, unlike the fitting approach, manually iden-

tifying the release time of the column was prone to human error, which could introduce

significant variations in the magnitude of the temporal offset. This was more of an issue

for the higher G tests where the duration of the collapses are relatively short compared

to the frequency of image capture, which remained constant and, therefore, independent

of the applied gravitational force.

It is evident from Figure 5.4 that the velocity of the fluid phase front in the numerical

model is significantly higher than that observed in the corresponding experimental data

at all values of G. This is to be expected since the initial configuration of the fluid

columns does not meet the shallow depth assumption crucial to the model’s derivation,

namely a0 � 1 does not hold, and Equations (5.3) and (5.4) do not incorporate terms

†Webb et al. (2023b) is shown in Chapter 3
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Figure 5.4: Comparison of the numerical and experimental temporal evolution of the

normalised average fluid runout length r∗f with time t for purely fluid column collapses

for all values of G.

accounting for the vertical acceleration of the two phases or their subsequent dissipation

upon impact with the horizontal plane (Larrieu et al., 2006). We note that, if a Chézy

style basal drag term were added for the fluid phase, it would decelerate the simulated

fluid phase front, whereas the experimental fluid fronts accelerate over the spreading

distances considered.

In order to address this issue, we implemented the mass ‘raining’scheme as described

in Larrieu et al. (2006). Originally designed for a singular granular phase, the scheme

divides the flow into two distinct components. The first component consists of a shal-

low layer of material that spreads horizontally, with a height smaller than that of the

experimental column being simulated. The second component, known as the ‘rain’,

is gradually introduced to the flow over a specific duration equivalent to the free-fall

of the column. By incrementally adding mass, the injected potential energy into the

modelled system is significantly reduced compared to the potential energy of the com-

plete column. Consequently, the effects of energy dissipation during the collapse can be

mimicked in the model.

In our study, we extend the application of this scheme to both the granular and fluid

phases. The adjusted initial configuration of each phase, denoted as v = p, f , can be

characterised by its initial radius r0, and initial height hv,1 = Crr0. Thus, the progressive
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supply of mass to the flowing material in each phase is quantified using a phase-specific

volume flux per unit area

qv(r, t) =

Gt for 0 ≤ r ≤ r0,

0 for r > r0,
(5.8)

up to a time related to the free-fall of the specific column phase tv,ff =
√

2(hv,0 − hv,1)/G.

Accordingly, the mass conservation Equations (5.1) and (5.2) become

∂thp + ∂r(hpūp) = −hpūp

r
+ qp, (5.9)

∂thf + ∂r(hf ūf ) = −hf ūf

r
+ qf . (5.10)

for the fluid and particle phases, respectively. Following Larrieu et al. (2006), no source

term was added to the momentum equations, as it is assumed that the mass is added with

no horizontal momentum (i.e. in a state of free-fall).

A comparison between the temporal evolution of r∗f for purely fluid columns at all

tested values of G for both numerical models and the experimental data is shown in

Figure 5.5. For the numerical model utilising Larrieu et al.’s (2006)mass rainfall scheme

(i.e. mass conservation Equations 5.9 and 5.10), the value of Cr has been varied.

As in Figure 5.4, the numerical evolution of r∗f has been offset from the experimental

signal to ensure that r∗f at t = 0 for both signals is equal for each respective collapse test.

Firstly, The temporal evolution of r∗f by the numerical model employing the mass rain-

fall scheme matches the results of the original scheme when Cr = 0.93 (see Figure 5.5).

This is because, when Cr = a0, hv,0 = hv,1 resulting in no mass being added to the

initial system as tv,ff = 0. It is also shown that adjusting the phase mass conservation

equations significantly improves the agreement between the model and experiments re-

gardless of the value of Cr. To ensure consistency, a Cr value of 0.05 is used from this

point on as it provides the best compromise for simulating tests at all G levels. Larrieu

et al. (2006) found that using Cr ≤ a0 had no effect on the long-term spreading dy-

namics of the collapse. Therefore, the range of Cr values considered here only affects

short-term spreading dynamics.

Finally, we adopt the assumption that µb = 0.8 based on the coefficient determined

by Larrieu et al. (2006) who used it to reproduce the runout scaling laws proposed in

previous works (Lube et al., 2005, 2004) for a dry axisymmetric granular column col-
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Figure 5.5: Comparison of the two numerical schemes, the original and the one now

utilising the mass introduction scheme of Larrieu et al. (2006), and experimental tem-

poral evolution of the normalised average fluid runout length r∗f with time t for purely
fluid column collapses with varying values of Cr for (a) G = 9.81m s−2, (b) G =
45.22m s−2, (c) G = 137.64m s−2 and (d) G = 275.45m s−2.

lapse (where φf = 0 and φp = 1). This coefficient is notably high and may be attributed

to the lack of consideration of interior flow dissipation mechanisms in shallow water

models.

5.4 Calibration assessment

5.4.1 Runout

After tuning the model parameters using purely fluid collapse test data, we proceed

to evaluate the model’s ability to describe the collapse of granular-fluid mixtures by

comparing the temporal evolution of r∗f and r∗p with experimental results for all values

of dp and G.

By considering the pre-collapsed column configuration, we can characterise themod-

elled system using both dimensionless parameters, γ∗ and a0, and three dimensional

parameters, G, h0 and ηf/(ρd
2
p), where ρ represents the effective column density ρ =
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φpρp + φfρf (Webb et al., 2023b)†. These dimensional parameters can be combined to

yield another dimensionless group, denoted as B = (Gd4pρ
2)/(h0η

2
f ), which is anal-

ogous to the square of the ratio of the column Bond Bo and Capillary Ca numbers

(Bo/Ca)2. Webb et al. (2023b)† found Bo/Ca to be a key parameter in the prediction of

the maximum phase front velocity.

Considering that a0 remains constant and γ∗ exhibits onlyminor variations of approx-

imately 8% across the parameter space under investigation, we plot the runout evolution

of the numerical simulations in dimensionless r∗v − t∗h0
space. Here, t∗h0

represents the

ratio between t and the characteristic column inertial timescale
√
h0/G. This approach

yields a family of curves primarily determined by the value of B (Figure 5.6). Specif-

ically, when B � 1, it corresponds to tightly coupled grains and fluid, wherein the

collapse is governed by drag forces. On the other hand, when B � 1 it indicates nearly

independent behaviour between the grains and fluid phases.

To ensure consistency, we have, again, offset the numerical time signal from the

experimental time signal. Both the fluid and particle phases have been offset by the

same time period, such that their r∗f values are equal at t∗h0
= 0. This strategy enables

the numerical fluid and particle runout time series to remain in phase.

The overall evolution of a collapsing mixture, previously reported by Webb et al.

(2023b)† and many other authors (e.g. Leonardi et al., 2021; Ng et al., 2018), is success-

fully replicated in the model (Figure 5.6). The collapse consists of acceleration, quasi-

steady, and retardation stages, with the duration of each stage primarily controlled byG,

with each stage duration decreasing asG increases. The simulations also partially repro-

duce the particle-size-dependent (i.e. pore space dependent) behaviour observed in the

experiments. Specifically, the model incorporates a permeability-dependent interaction

term in Equations (5.3) and (5.4) to exhibit the effects of granular capillarity, resulting

in the fluid phase front of a collapse containing a coarser particle phase (i.e. larger dp)

achieving higher peak velocities and separating itself further from the particle phase

front (Webb et al., 2023b)†.

The runout distances predicted by the model for both phases overestimate those mea-

sured experimentally for every test case. However, it is evident that, for a given G, the

performance of the model improves as dp decreases. Given that the volume of the granu-

lar phase is constant across all of the experiments, this is likely due to the collapses with

a granular phase consisting of smaller particles, containing more particles. Hence, it is

more appropriate to model the granular phase as a continuum. Moreover, the model’s

†Webb et al. (2023b) is shown in Chapter 3
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Figure 5.6: Comparison of the numerical and experimental temporal evolution of the

normalised phase runout length r∗v with normalised time t∗h0
for collapses containing a

particle phase at (a) G = 9.81m s−2, (b) G = 45.22m s−2, (c) G = 137.64m s−2 and

(d) G = 275.45m s−2.

prediction of the final runout and the temporal evolution of the particle phase improves

as G increases. This is because capillary interaction between particles becomes less

significant as the particle inertia increases with G (Iverson, 2015). We do not model

capillary interactions, hence model and experiment become more closely matched at

higher G.

The omission of capillary forces likely contributes to the significant overestimation

of the separation between the phase fronts during the collapse. To address this effect,

it would be worthwhile to explore the incorporation of the Capillary number Ca into

the phase interaction term, as a means to consider the influence of grain-scale surface

tension effects (Webb et al., 2023b)†. However, investigating this aspect is beyond the

scope of the present study.

Additionally, the assumption of a constant fluid velocity profile with flow depth

(i.e. plug flow), and the omission of a fluid drag term, does not consider the increased

viscous stress imposed on the fluid by the horizontal plane as the fluid depth reduces, re-

sulting in a more turbulent flow (Batchelor, 2000), which is the case during a significant

portion of the collapse spreading stage. Nevertheless, the reduction in the separation

†Webb et al. (2023b) is shown in Chapter 3
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between the two phases as G increases is encouraging, suggesting that particle inertial

(i.e. dp) effects become less dominant with increased scale, given that the macro-scale

dynamics of geophysical-scale debris flow behaviour are primarily driven by gravita-

tional and viscous forces (Iverson, 1997).

5.4.2 Velocity

In this section, we compare the temporal evolution of the phase front velocity uv for

both the experimental and numerical test cases. The normalised phase front velocity

u∗
v,h0

= uv/
√
h0g is presented against t∗h0

for all collapses containing a particle phase

and all values of g in Figure 5.7 where, again, the numerical simulation for each test has

been offset from the experimental data in the time domain. As discussed in Section 5.4.1,

Figure 5.7 demonstrates that the experimental evolution of both phases throughout the

collapses, for all values of dp andG, comprises three distinct stages of motion, including

a steady state. In contrast, the simulated collapse fronts never appear to reach a steady

state of motion. Similar to the temporal evolution of r∗v , the peak velocities of the phase

fronts observed in the experiments were lower than those predicted by the simulations

for all test cases. Although the simulations reasonably modelled the time after collapse

initiation when these peak velocities occur, they tended to be faster than those observed

in the experiments. We attribute the discrepancies between the simulation and experi-

mental results for the temporal evolution of u∗
v,h0

primarily to the continuum modelling

assumption and the resulting transfer and dissipation of granular momentum, particu-

larly for larger particle sizes.

Analysing the collapses in u∗
v,h0

− t∗h0
space further highlights the interference of

the steel column on the acceleration stage of the experimental collapses. A particle

size-dependent lag, where the granular phase front begins to move, was observed for

all values of G, and the magnitude of the lag increased with dp. This result is due to

the larger particle sizes being trapped by the rising column for longer since the speed

at which the column is lifted is proportional to G. The lifting speed of the column

was designed to comply with Sarlin et al.’s (2021) criterion, which defines a threshold

lift velocity that prevents the release mechanism from influencing the dynamics of a

collapsing dry granular phase. Contrary to the suggestion of Li et al. (2022), we found

that this criterion cannot be lowered for a granular material in the initially just-saturated

condition. Although increasing the mass of the counterweight used to lift the column

could have achieved greater column lifting speeds, it would likely have an adverse effect
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Figure 5.7: Comparison of the numerical and experimental evolution of the normalised

phase front velocity u∗
v,h0

with normalised time t∗h0
where (a)-(d) v = f and (e)-(h) v = p

for collapses containing a particle phase at G = 9.81m s−2 [(a), (e)], G = 45.22m s−2

[(b), (f)], G = 137.64m s−2 [(c), (g)] and G = 275.45m s−2 [(d), (h)].

on the release of the granular material due to the increased viscous stresses induced

between the inner walls of the cylinder and the saturated granular mixture. This effect

is discussed in detail in Section 5.5.1.

Since the particle phase is initially held stationary by the rising column, the initial

discharge of the fluid phase is highly dependent on the capillarity of the granular phase

(i.e. dp). Hence, the peak value of u∗
f,h0

during the acceleration stage increases with

dp at all values of G. As found by Webb et al. (2023b)†, the dependency on dp is not

as prominent at G = 9.81m s−2 as surface tension effects have a large influence on

the initial fluid front velocity at low G. The influence of dp increases as G increases

to 45.22m s−2 and begins to reduce for subsequent increases in G as gravitational and

viscous forces begin to dominate flow dynamics.

†Webb et al. (2023b) is shown in Chapter 3
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5.5 Fluid pressure

With the model parameters calibrated to best match the experimental runout data, we

will use these settings to predict the evolution of basal fluid pressure at the column’s

centre and compare it to the corresponding observations from the physical experiments.

5.5.1 Experimental pressure signal reduction

Upon collapse initiation, the significant acceleration of the steel cylinder relative to the

initial motion of the collapsing mixture induces viscous shear stresses between the two

surfaces that are capable of partially lifting the collapse material. This causes the fluid

pressure being applied to the pressure sensor at the base of the column P to drop and

subsequently rise when the weight of the collapsing material overcomes the viscous

shear stresses impeding its downward motion. This experimental discrepancy appears

to have no influence on the pressure variation observed during the initial dilation of col-

lapsing material containing a granular phase, which was investigated previously (Webb

et al., 2023b)†, as it occurs after the pressure spike associated with the dilative motion of

the collapsing mixture and over a much longer timescale. The duration of this effect is

largely dependent on the column composition. For purely fluid collapses, the column’s

influence dissipates t ≈
√
h0/G after collapse initiation. However, for collapses con-

taining a granular phase, the effect is prolonged, and increases with decreasing dp, due

to the capillary action introduced by the presence of a granular matrix.

As these complexities are not indicative of an initially unconstrained collapse, and

would not be replicated within the numerical model, the pressure time series for each

test was reduced to remove these effects by only considering pressure data after which

the collapsing mixture had lost contact with the steel column. This also limits the con-

tribution of the flow’s vertical acceleration on the pressure measurement. As was the

case in Webb et al. (2023b)†, only pressure data from the collapses undertaken at G =

45.22m s−2 and G = 137.64m s−2 were considered, as pressure measurements were

not recorded for tests undertaken at G = 275.45m s−2 and the pressure signals for tests

where G = 9.81m s−2 had significant signal-to-noise ratios. Unfortunately, the sensor

was damaged during the test with dp = 2mm and G = 137.64m s−2, and therefore had

to be removed from the dataset.

In line with the previous work, a fourth-order low-pass Butterworth filter with a cut-

†Webb et al. (2023b) is shown in Chapter 3
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off frequency fc = 100Hz was employed to filter the pressure signal for each test.

To determine the time at which the mixture no longer made contact with the steel col-

umn, multiple steps were taken. First, the pressure time series was normalised with

respect to the hydrostatic pressure of the column before collapse P = ρfGhf,0 to obtain

P ∗ = P/P . Next, a surrogate signal was constructed that only included the data points

corresponding to the last time when the signal was roughly equal to a constantAp, where

Ap ranged from 0.001 to 0.99 in increments of 0.001. Consequently, the surrogate sig-

nal decreased between each data point and did not increase with time. By using a lower

threshold value of Ap = 0.3, the largest difference in time between consecutive points

in the surrogate signal was identified as the time during which the column lifting effects

were significant. As a result, the start of the reduced signal was set as the first data

point after this prolonged time difference. Finally, the endpoint of the reduced signal

was identified as the start of the longest concurrent subsequence during which the di-

mensionless pressure gradient P ∗/t∗h0
, remained below the selected threshold gradient

Bp = 0.1.

The normalised reduced pressure data was fitted to a three-parameter exponential

curve

P ∗ = ap exp (−bpt
∗
h0
) + cp, (5.11)

where ap, bp, and cp are constants. This fitting procedure enables a trend to be extrapo-

lated, which is useful for directly comparing the pressure time series of different collapse

tests (see Figure 5.8). As the reduced signal began at an average normalised pressure of

P ∗
r = 0.45± 0.03, we consider pressure trends up to P ∗ = 0.5. Given the satisfactory

representation of the experimental data by the exponential fit, we henceforth refer to the

fitted trend as the experimental data.

5.5.2 Numerical pressure signal reduction

Since the numerical model assumes shallow-water conditions, the basal fluid pressure

at the centre of the column during the simulated collapse tests is determined by the

equation P = ρfGhf |r=r0/2. The utilisation of Larrieu et al.’s (2006) mass ‘raining’

scheme results in the basal fluid pressure prior to collapse initiation P0 = CrP . During

the collapse tests, the injection of fluid phase mass into the system causes P to increase

gradually until it reaches a value of approximately 0.8P at t = tf,ff before dissipating

as expected for an unconstrained collapse. To enable a direct comparison between the

model predictions and experimental findings, we only analysed the basal fluid pressure
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Figure 5.8: The raw and fitted experimental temporal evolution of the reduced dimen-

sionless basal fluid pressure at the centre of the column P ∗ with time t at (a) G =
45.22m s−2 and (b) G = 137.64m s−2.

data from each simulation starting from the time when P = 0.5P for the final time.

5.5.3 Definition of pressure reduction

Before comparing the numerical and experimental pressure time series, it is crucial to

understand the constraints imposed by the data collection process on our analysis. Typi-

cally, the dissipation of fluid pressure is considered from a Lagrangian reference frame,

where the time series records the evolution of pressure for a fixed ‘packet’ of the flow

during collapse (Batchelor, 2000). This approach allows you to analyse how internal

flow deformations, such as particle suspension and no suspension within the fluid phase,

promote the generation or dissipation of non-hydrostatic pore pressures (Iverson, 2005).

However, in practical scenarios, recording pressure data from a Lagrangian reference

frame is often unfeasible. Previous studies have addressed such challenges in natural

flows by measuring the fluid pressure at a fixed location in the flow (Eulerian reference

frame) and the height of the flow’s free surface passing over that pointH (e.g. McArdell

et al., 2007). By comparing the recorded pressure with the theoretical pressures of com-

plete granular phase suspension (ρGH) and sedimentation (ρfGH), an estimation of the

amount of suspended granular material within the flow can be made.
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In our study, the evolution of flow height cannot be determined from the test images,

which prevents the consideration of excess pore pressures at the measurement location.

However, we can assess the influence of excess pore pressures within the reduced pres-

sure signal by calculating the timescale of slope-normal diffusion of excess pore-fluid

pressure (ηfH
2)/(kE), where E is the elastic bulk modulus of the solid-fluid mixture,

which is approximated asE = 107 Pa (Iverson, 2015). For our tests, the timescale values

range from 10−5 – 10−3 s, which is at least two orders of magnitude smaller than the time

at which the reduced pressure signal begins (approximately 0.08 s and 0.05 s after col-

lapse initiation for tests at gravitational accelerations of 45.22m s−2 and 137.64m s−2,

respectively). Therefore, it is reasonable to assume that all excess pore pressures have

dissipated before the reduced pressure signal is captured. Consequently, the remaining

fluid pressure component within the reduced signal can be assumed to be hydrostatic

and dependent only on the height of fluid above the sensor location.

Based on these assumptions, and as described by the numerical model, the temporal

evolution of the reduced pressure signal corresponds to the spreading of fluid away

from the centre of the column. Thus, when referring to pressure reduction, we mean the

reduction in hydrostatic pressure in the Eulerian reference frame due to the spreading of

the fluid phase away from the pressure sensor.

5.5.4 Comparison of pressure reduction

The temporal evolution of the reduced normalised basal fluid pressure at the centre of

the column P ∗, obtained from the physical experiments, is shown in Figure 5.9. The

figure indicates that, in general, for a given G, the rate of pressure reduction increases

with increasing pore space (i.e. increasing dp). Collapse tests that involve only a fluid

phase, corresponding to an infinite pore space (or dp = 0mm), act as an upper bound

for the experiments that contain a granular phase.

The collapses involving 8mm particles may experience a lower rate of pressure re-

duction due to the column release mechanism. As shown in Figure 5.7, a substantial

amount of fluid drained out of the granular skeleton while it was restrained by the col-

umn. This would lead to a higher initial pressure drop, resulting in a slower rate of

reduction over the duration of the pressure signal under consideration.

In contrast, the residual value of P ∗ at t = 0.25 s also exhibits a dependence on dp

but, increases as dp decreases. This trend is likely attributable to the smaller pore spaces

and increased capillary forces, which make it more difficult for the fluid to escape from

83



Chapter 5: Continuum modelling of a just-saturated inertial column collapse:

Capturing fluid-particle interaction

� ���� ���� ���� ���� ����
t��	�

����

�

���

���

��


���

���

��

P
∗

G����	−2�
����� �
���

� �  � �

dp�����

Figure 5.9: Experimental temporal evolution of the reduced dimensionless basal fluid

pressure at the centre of the column P ∗ with time t for varying dp and G.

the granular phase, resulting in higher residual fluid pressures at the collapse centre.

Conversely, for tests involving larger particle sizes (i.e. 6 and 8mm), the residual pres-

sure at the centre of the column approached 0, which was also the case for the pure fluid

collapses.

Encouragingly, the patterns observed in the evolution of P ∗ with t, as depicted in

Figure 5.10, through the numerical model, display similar correlations with G and dp.

The incorporation of a dp-dependent interaction term leads to an increase in the rate

of pressure reduction with increasing dp, for a given G. Although the model forecasts

residual pressures at t = 0.25 s that grow with decreasing dp, they do not approach 0 for

larger particle sizes. Additionally, in all scenarios, the residual pressure is overestimated

by the model, likely due to the assumption of a continuous granular phase, which results

in an overestimation of the magnitude of the interaction term and the selection of a high

µb value, which was necessary to reduce the phase front velocities.

Comparison of the numerical simulations to the experimental results by constraining

G, as shown in Figure 5.11, demonstrates that in all cases, similar to the temporal evo-

lution of u∗
v,h0

, the predicted rate of pressure reduction by the model is higher than that

observed in the experiments. It is probable that this inconsistency is mainly due to the

assumption of a hydrostatic pressure distribution and neglecting the vertical accelera-
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Figure 5.10: Simulated temporal evolution of the reduced dimensionless basal fluid

pressure at the centre of the column P ∗ with time t for varying dp and G.

tions experienced by both constituent phases during the initial collapse of the column,

which would increase the force and subsequently the pressure, applied to the horizontal

plane located at the basal surface.

In order to evaluate the pressure scaling relations predicted by the model, it is essen-

tial to compare the experimental and numerical results in P ∗ − t∗h0
space, as illustrated

in Figure 5.12. As the only source of momentum transfer for the fluid phase is via its

interaction with the granular phase, it is reassuring to observe that the experimental and

numerical curves for the purely fluid collapses (i.e. dp = 0mm) conducted at different

G levels approximately collapse onto single curves, respectively. This reaffirms that,

within the tested parameter range, the reduction of basal fluid pressure during fluid col-

umn collapses is predominantly determined by the magnitude of G, while particle size

effects play a secondary role.

Additionally, analysing the data in P ∗ − t∗h0
space shows that for a specific particle

size, the pressure reduction curve’s gradient for the experimental data increases with

increasingG, which is the opposite of the trend predicted by the numerical model. This

opposing scaling in P ∗− t∗h0
space implies that the interaction term utilised in the model

does not reflect the observed scaling behaviour for basal fluid pressure reduction, em-

phasising the need for further investigation of the underlying mechanisms at play.
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Figure 5.11: Numerical and experimental temporal evolution of the reduced dimension-

less basal fluid pressure at the centre of the column P ∗ with time t for varying dp at (a)
G = 45.22m s−2 and (b) G = 137.64m s−2.
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Figure 5.12: (a) Numerical and (b) experimental temporal evolution of the reduced

dimensionless basal fluid pressure at the centre of the column P ∗ with normalised time

t∗h0
for varying dp and G = 45.22m s−2 and 137.64m s−2.
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5.6 Discussion

The dynamic complexity of debris flows, in part, arising from their spatially and tem-

porally evolving composition, results in significant challenges when modelling these

phenomena. As such, numerical models that attempt to capture the diversity of flow

behaviours observed in field-scale flows can become intractable (Turnbull et al., 2015)

and, therefore, unsuitable for the development of effective hazard mitigation strategies.

Hence, obtaining a greater understanding of the interaction between the fluid and granu-

lar phases constituting the flow is crucial to developing appropriate modelling assump-

tions that lead to cost-effective predictive methodologies.

In the present study, a two-phase depth averaged model was proposed to capture the

essential grain-fluid interaction processes observed during the fluid-saturated granular

column collapse experiments conducted byWebb et al. (2023b)† using elevatedG-levels

to reflect the grain inertia in large-scale events. The grain-fluid interaction force consists

of a Darcy-drag style relation where the drag between the two phases is a function of

the granular phase permeability as described by Carman’s equation. The axisymmetric

geometry of the experimental setup was taken advantage of by developing a system

of equations that could be expressed in a conservative form using a polar coordinates

system. The individual system of equations for both the fluid and granular phases can

be recovered as limit cases of the two-phase system.

Numerical simulations of the experiments were undertaken with the model where

its spatial and temporal discretisation were carried out using a second-order central-

upwind scheme (Kurganov and Petrova, 2007) and an explicit second-order Runge-

Kutta method, respectively.

From initially comparing the numerical and experimental runout results of collapses

consisting of a singular fluid phase, it was evident that the numerical model was sig-

nificantly overestimating the initial acceleration of the fluid front. This was due to the

initial configuration of the columns not adhering to the depth averaged assumption that

was critical to the model’s derivation. This was counteracted by employing the mass

‘raining’ scheme of Larrieu et al. (2006) to incrementally introduce phase mass into the

system, thus, eliminating the overestimation of vertical accelerations.

The ability of the tuned model was then tested by assessing how well it replicated

the temporal evolution of both the granular and fluid phase fronts for a series of just-

saturated granular column collapse tests where both dp and G were varied. While the

†Webb et al. (2023b) is shown in Chapter 3
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model could successfully replicate the acceleration, quasi-steady and retardation stages

of motion expected for an unsteady mass movement, the runout out distances predicted

by the model overestimate those measured experimentally for every test case. The

model’s performance improved with decreasing dp which is a key indication that this

discrepancy largely emanates from the modelling assumption of a continuum granular

phase. Moreover, it is important to acknowledge that this continuum approximation is-

sue may extend to field-scale scenarios as well, as debris flows often transport boulders

with diameters comparable to the flow depth. However, the model does predict a reduc-

tion in phase separation for a given dp as G increases, illustrating that particle inertial

effects become less dominant with increased scale.

Similarly, when comparing numerical and experimental temporal evolutions of the

phase front velocity, it was hypothesised that the continuum assumption was responsible

for the model overestimating the peak phase velocities. Analysing the collapse in u∗
v,h0

−
t∗h0

space also highlighted a particle-size dependent lag in the experimental data that

was the result of interference from the steel column. Crucially, the initial discharge of

the fluid phase was found to be heavily dependent on the permeability of the granular

phase. While the influence of dp on this effect increases to G = 45.22m s−2, it reduces

thereafter as macro-scale gravitational and viscous forces become dominant.

In order to directly compare the experimental and numerical basal fluid pressure time

series, both had to undergo a reduction process to eliminate the influence of the steel

column being lifted and the implementation of the mass ‘raining’ scheme, respectively.

Comparing the datasets in P ∗− t space clearly showed that the model was able to repli-

cate the strong dp and G dependencies exhibited within the experimental hydrostatic

pressure reduction curves. Specifically, for a given G, the rate of pressure reduction

increases with dp, while, for a given dp, the rate of pressure reduction increases with G.

Discrepancies in the magnitude of the pressure reduction rate and the residual basal

fluid pressures between the model and the experimental findings can again be reasoned

to emanate from the assumption of a continuum granular phase and interference from

the steel column. Additionally, analysing the trends in P ∗ − t∗h0
space revealed that

the numerical dimensionless pressure reduction curves decreased with increasing G,

which opposes the trend observed in the experimental data. Thus, it can be determined

that, while the chosen inter-phase interaction term allows the model to replicate the

mechanisms governing the phase interaction at the grain-scale, it does not quite obtain

the scaling behaviour observed experimentally.

Future extensions of the model would be focussed on incorporating the effects of
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polydispersed granular phases, meaning inertial and sub-inertial granular material, on

macro-scale flow behaviour by altering the inter-phase interaction term. Webb et al.

(2023a)‡ explored the influence of different grain scales by conducting the same col-

umn collapse experiments as Webb et al. (2023b)†, but with a particle phase consisting

primarily of inertial grains while kaolin clay particles were suspended within the fluid

phase. A scale analysis of the collapse runouts found that the quantities used to char-

acterise the phase runout were highly dependent on the degree of fines, as well as di-

mensionless quantities that characterised the column- and inertial grain-scales. Further

testing is required to obtain basal fluid pressure evolution collapse data before the model

can be extended.

5.7 Supplementary content

The raw video files for all completed tests are available at https://doi.org/10.
17639/nott.7277.

‡Webb et al. (2023a) is shown in Chapter 4
†Webb et al. (2023b) is shown in Chapter 3
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Chapter 6

Performance and limits of a

geotechnical centrifuge: DEM-LBM

simulations of saturated granular

column collapse

Abstract

*This study investigates the dynamics of granular flows in geotechnical centrifuge mod-

els, focusing on the effects of centrifugal and Coriolis accelerations. While conventional

laboratory-scale investigations often rely on Froude scaling, geotechnical centrifuge

modelling offers a unique advantage in incorporating stress-dependent processes that

fundamentally shape flow rheology and dynamics. Using the Discrete Element Method

(DEM) and the Lattice-Boltzmann Method (LBM), we simulate the collapse of a just-

saturated granular column within a rotating reference frame. The model’s accuracy is

validated against expected trends and physical experiments, demonstrating its strong

performance in replicating idealised collapse behaviour. Acceleration effects on both

macro- and grain-scale dynamics are examined through phase front and coordination

number analysis, providing insight on how centrifugal and Coriolis accelerations in-

fluence flow structure and mobility. This work enhances our understanding of granular

flow dynamics in geotechnical centrifugemodels by introducing an interstitial pore fluid

and considering multiple factors that influence flow behaviour over a wide parameter

space.

*Webb, W., Turnbull, B., and Leonardi, A. (2024b). Performance and limits of a geotechnical cen-

trifuge: DEM-LBM simulations of saturated granular column collapse. Granular Matter. 26(2):32.
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6.1 Introduction

Centrifuge modelling is a well-established technique in the field of civil engineering,

widely employed to investigate common soil stability and soil-structure interaction

problems (Schofield, 1980). By rotating a laboratory-scale model at a given angular

velocity at the end of a centrifuge arm (Figure 6.1), a centripetal acceleration is imposed

on the model. When this centripetal acceleration exceeds Earth’s gravity by a scaling

factorN , it augments the self-weight of the material within the model, thereby enabling

precise control over the gravitational effects in the model (Cabrera and Wu, 2017).

Recently, the technique has been used to simulate the conditions prevalent in geophysi-

cal granular mass movements such as landslides and debris flows (e.g. Bowman et al.,

2010; Cabrera and Wu, 2017; Vallejo et al., 2006).

In contrast to traditional laboratory-scale studies of large granular mass movements,

which usually rely on Froude scaling to determine the velocity scale (e.g. Delannay et

al., 2017; Kesseler et al., 2018; Turnbull et al., 2015), geotechnical centrifuge modelling

offers a unique advantage. This advantage lies in its ability to incorporate stress-related

processes that play a critical role in determining the flow’s behaviour and, consequently,

the overall dynamics in real-world scenarios (Brucks et al., 2007; Iverson, 2015). This

becomes especially important when examining how the flow interacts with potential

mitigation structures (e.g. Huang and Zhang, 2022; Ng et al., 2018; Song et al., 2018;

Zhang and Huang, 2022). Stress-dependent mechanisms also significantly affect the

dynamics of partially or fully saturated granular flows. For instance, phenomena such

as surface tension effects caused by capillary bridges between adjacent grains (Bougouin

et al., 2019), or at the surface of the flow itself, can have a significant impact on flow

behaviour in laboratory experiments, even though they are relatively minor compared

to gravitational forces in natural mass movements (Webb et al., 2023b)†. Moreover, in

addition to the flow’s particle size distribution, the magnitude of the confining stress at

a specific point within the flow greatly influences the buildup and dissipation of excess

pore pressures. As previously observed, these pressures can significantly affect flow

mobility and dynamics (Kaitna et al., 2016; McArdell et al., 2007; Rondon et al., 2011).

Consider a simplified scenario of a centrifuge test as depicted in Figure 6.2, where

there are three particles in contact with a horizontal surface (i.e. the base of a centrifuge

model) of length Lc that is being spun at a rotational velocity ω and at distance of Rc

†Webb et al. (2023b) is shown in Chapter 3
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Figure 6.1: Schematic of the column collapse experimental configuration loaded on to

the geotechnical centrifuge.

from the centre of the centrifuge. The Cartesian reference frame xz remains aligned with

the horizontal surface and, therefore, spins together with the model. While the central

particle remains stationary, the two outer particles move away from the centreline of

the model at velocity u. The particle acceleration field can be expressed as the sum of

centrifugal acceleration acf and the Coriolis acceleration aco

a = acf + aco = −ω × (ω × rc)− 2ω × u, (6.1)

where rc is the coordinate direction aligned with the gravity vector. The direction and

magnitude of rc depend on the position of the objects, in this case, the particles, relative

to the centrifuge’s axis of rotation. It is important to note that, for completeness, we

should consider the external acceleration vector, gravity g, in Equation (6.1). However,

ifω is sufficiently large, its effects are often considered negligible (Cabrera et al., 2020).

As described in Equation (6.1), acf consistently acts away from the centre of rotation

and parallel to rc, while the direction of aco depends on both the direction of u and ω.

To simplify matters, a is often approximated as an equivalent increased gravity (Taylor,

1995)

a ≡ ω2Rc ≡ Ng, (6.2)
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Figure 6.2: Schematic of the acceleration forces acting upon particles in the rotating

frame of reference of a geotechnical centrifuge experiment.

where g is Earth’s gravitational acceleration and N serves as a scale factor. Both acf

and aco can impose non-vertical accelerations on the particles, thereby influencing their

horizontal velocity. In the case of acf , this is know as the Eötvös effect. In smaller

geotechnical centrifuges, where Rc ≈ 2m and Lc ≈ 0.8m, the magnitude of the hor-

izontal component of acf can equate to 20% of the presumed increased gravitational

acceleration calculated from Equation (6.2). While this may have a negligible effect

when modelling typical civil engineering applications, it complicates the translation of

experimental observations from centrifuge models of granular mass movements, which

are inherently more dynamic processes, to natural flows.

To conduct a comprehensive experimental study investigating the impact of centrifu-

gal and Coriolis accelerations on granular flow dynamics, one would need to use mul-

tiple centrifuges of varying sizes, considering the dependency on Rc. Therefore, such a

study is well-suited for numerical modelling which offers the potential to significantly

expand the parameter space of physical experiments. Furthermore, such simulations can

serve as effective tools for scaling up our insights from laboratory-scale experiments to

these larger geophysical phenomena.

Recent investigations have utilised the Discrete Element Method (DEM) to explore

the effects of centrifugal and Coriolis accelerations on both steady (Cabrera et al., 2020;

Leonardi et al., 2021) and unsteady (Zhang and Huang, 2022; Zhang et al., 2023) dry

granular flow configurations. Numerical modelling not only facilitates the study of acf

when varying Rc but also allows for the independent examination of the effects of acf

and aco. While these studies represent significant progress in understanding the mech-

anisms and scaling of centrifuge modelling effects, additional complexities, such as the

presence of an interstitial pore fluid, need to be considered.

The study aims to enhance our understanding by employing numerical modelling to
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examine a just-saturated granular column collapse configuration within a geotechnical

centrifuge. Two recent experimental studies (Webb et al., 2023a,b)‡† have provided

valuable insights into the system, with a strong focus on grain-fluid interaction and its

influence on macro-scale flow features. By utilising the Lattice-Boltzmann Method

(LBM) to model the fluid phase and coupling it with DEM, this study initially seeks to

replicate the flow states observed in these physical experiments. Subsequently, the study

investigates the influences of centrifugal and Coriolis accelerations on both grain-scale

and macro-scale flow dynamics.

6.2 Fluid-saturated granular column collapse

The current research aims to explore the impact of centrifuge modelling on granular-

fluid flows by focusing on the dynamics of a simple axisymmetric, just-saturated gran-

ular column collapse (see Figure 6.1). Although this configuration has been extensively

studied under normal laboratory conditions (i.e. g = 9.81m s−2) (e.g. Lai et al., 2017;

Lajeunesse et al., 2004; Li et al., 2022; Lube et al., 2004; Trepanier and Franklin, 2010),

recent investigations (Webb et al., 2023a,b)‡† have also examined its dynamics within

a geotechnical centrifuge. However, these studies primarily focused on grain-fluid in-

teraction and did not thoroughly investigate the contributions of varying centrifugal and

Coriolis accelerations to the collapse dynamics.

To bridge this knowledge gap, we conducted experiments using the same collapse

configuration system as in the aforementioned studies, in order to provide empirical

data to compare against the numerical model presented in this work (see Sections 6.3

and 6.4). The collapse of the granular column was initiated using a modified classical

weighted-pulley system, designed for hands-free operation within the University of Not-

tingham’s GT50/1.7 geotechnical beam centrifuge (Ellis et al., 2006 for details). The

evolution of the collapses were recorded using two high speed cameras and image pro-

cessing was used to extract the location of both phase fronts throughout the duration of

the experiment (see Figure 6.3). A full description of the physical system and image

analysis can be found in Webb et al. (2023b)†.

Given, that the flow spreads axisymmetrically, specifically, sections of the flow travel

‘upstream’ and ‘downstream’ of centrifuge motion (Webb et al., 2023b)†, this exper-

imental configuration provides an ideal test case for comprehending the role of cen-

‡Webb et al. (2023a) is shown in Chapter 4
†Webb et al. (2023b) is shown in Chapter 3
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Figure 6.3: Example of the phase front extraction technique used during the exper-

imental image analysis (available at http://doi.org/10.17639/nott.7277). The

raw (dashed) and averaged (line) radial positions of the fluid (green) and granular (red)

phase fronts are shown.

trifugal and Coriolis accelerations in influencing the behaviour of dynamic flows. By

using experimental comparison to assess the numerical model, we aim to gain valuable

insights into the mechanics of granular-fluid flows in a geotechnical centrifuge setting

that would be unachievable from experimental testing alone.

6.3 The LBM-DEM framework

The numerical tool chosen for the current work was used previously by Cabrera et al.

(2020) and Leonardi et al. (2021) to investigate the behaviour and modelling effects of

a granular flow down a rough incline within a geotechnical centrifuge. The code is an

extension of the original work by Leonardi et al. (2014) which has been modified and

extensively used for the study of laboratory- and large-scale fluid-granular flow mech-

anisms (e.g. Leonardi et al., 2019; Leonardi et al., 2015; Marchelli et al., 2020), and

even saturated granular column collapses (Ceccato et al., 2020). The code employs a

compound approach to modelling complex granular-fluid systems known as the DEM-

LBM method. This method has gained popularity in the last two decades, and can be

now considered a standard approach for the simulation of particle-driven flow (Feng and

Michaelides, 2004; Han et al., 2007; Han and Cundall, 2013; Xiong et al., 2014). The

behaviour of the granular and fluid phases are simulated using independent numerical

schemes but are coupled together by imposing phase interaction forces. Further addi-

tional forces, accounting for the external forces imposed on an object within a rotating
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domain, are also accounted for.

The code solves the collisions of particle pairs within the flow using a standard Dis-

crete Element Method (DEM) approach. A linear spring-dashpot model is used to de-

termine the surface-normal Fn and tangential Ft contact forces through their respective

contact stiffness, kn and kt, and damping, αn and αt, coefficients. Fn is defined as a

function of the overlap ξ between the two colliding bodies

Fn = knξ + 2αn

√
knm

dξ

dt
, (6.3)

while the magnitude of Ft is regulated by a Coulomb friction relation

Ft = max

(
µsFn, ktζ + 2αt

√
ktmp

dζ

dt

)
, (6.4)

where mp is the grain mass, µs is the static friction coefficient of the particles, and ζ

is the elongation of a tangential spring that represents elastic tangential deformations.

There are analogous relations for particle-wall interactions where µs is substituted for

the particle-wall friction coefficient µs,w.

To ensure that it was possible for the completely spherical particles to form into the

stable heaps on the flat surface that were observed in previous experiments (see Ceccato

et al., 2020; Marchelli et al., 2020), an additional torque which opposes the rotational

motion of the particlesMr was also implemented

Mr = µrFn
dp
2
, (6.5)

where µr is the rolling friction coefficient of the particles and dp is the particle diameter.

It should be noted that, for collisions between particles that differ in size, mp and dp

should be exchanged for effective values that are representative of the collision (see

Marchelli et al., 2020).

The dynamics of the fluid phase are described using the Lattice Boltzmann method

(LBM) which is formulated from kinetic theory at the mesoscopic scale (Leonardi et al.,

2014). Fluid advection is expressed using a density function f(x, c, t), that describes

the probability of finding fluid molecules at a location x, with microscopic velocity c

at time t. f is discretised in space by considering a finite number of advection direc-

tions i across a regularly spaced lattice, such that fi(x, t) = f(x, ci, t) where ci is the

direction dependent weighted lattice velocity for a given fluid cell. The current work

uses the D3Q19 lattice configuration, which delineates the lattice into 19 advection di-
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rections across 3 dimensions. Also due to the lattice symmetry, it is possible to recover

the incompressible Navier-Stokes equations and, hence, obtain the macroscopic fluid

density ρf , velocity uf , and pressure pf at each location x and for all values of t as

follows

ρf =
∑
i

fi, uf =
∑
i

fici/ρ, pf = c2s · ρf , (6.6)

where c2s = 1/3. The streaming and collisional behaviour of the fluid particles is

captured using the Bhatnagar-Gross-Krook (BGK) (Wolf-Gladrow, 1995) approach for

modelling a kinetic gas

(δt + uf · ∇)f = −f − f eq

τ
, (6.7)

where τ is the relaxation timescale over which collisions occur and f eq is the value of the

probability density function at equilibrium for a given macroscopic velocity (for more

details, see Leonardi et al., 2014). This recovery links the macroscopic viscosity of the

fluid ηf to the mesoscopic collision operator as follows

ηf =
τ − 1/2

3
. (6.8)

Thus, viscosity can be set by the user by altering the timescale by which the distribution

function is relaxed towards thermodynamic equilibrium (Succi, 2001). Following the

work of Leonardi et al. (2014), the evolution of the fluid free surface is updated using

Janßen and Krafczyk’s (Janßen and Krafczyk, 2011) volume-of-fluid method, with a

full-slip boundary condition, to improve computational efficiency.

The two phases are coupled through the exchange of a drag force fd, which is cal-

culated as the integral of all the drag contributions between individual fluid points in-

teracting with each granular particle, using the immersed-boundary method (Švec et al.,

2012). As such, the fluid mesh size ∆f must be smaller than the characteristic DEM

particle diameter D. It should be noted that this stipulation on the lattice spacing also

implies that the fluid pressure is effectively resolved at the pore scale (Ceccato et al.,

2020), down to the precision offered by the lattice spacing itself.

The work of Leonardi et al. (2021) has been extended so that both the fluid and gran-

ular phases can be submitted to an elevated gravitational acceleration field as would be

imposed to a model while being spun on a geotechnical centrifuge. This is achieved by

imposing bothacf andaco on each phase as external forces. Within the LBM framework,

the acceleration applied to the fluid phase, which is a function of space, is computed

based on the centroid of every lattice node. acf and aco can be imposed independently
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so that it is possible to investigate the influence of each on collapse dynamics separately.

In order to model the contacts of colliding grains, the time-step required by the DEM

is generally smaller than the time step required for the LBM. Hence, the schemes are

staggered so that multiple DEM time steps are run for every LBM time steps. While

a complete explanation of the DEM-LBM scheme is out of the scope of the current

work, where we have only detailed its most significant components, a comprehensive

explanation of the method can be found in Leonardi et al. (2015).

6.4 Simulation methodology

6.4.1 Simulation parameter space

Similar to the approach taken by Webb et al. (2023b)† in their image analysis, our sim-

ulations utilise the axisymmetric nature of the experiment. By modelling only a quarter

of the column (see Figure 6.4), we significantly reduce computational time for each

simulation.

The initial configuration of the granular-fluid column is characterised by two param-

eters: the initial column height h0 and radius r0. As was the case for the two previous

studies (Webb et al., 2023a,b)‡†, we set h0 = 50mm and r0 = 54mm for each phase,

resulting in a column aspect ratio of a0 = h0/r0 = 0.93. The granular phase comprises

monodispersed particles with a mean diameterD = 8×10−3m (±10% to prevent crys-

tallisation within the initial configuration (Leonardi et al., 2021)) and a particle density

ρp = 2650 kgm−3. This is the largest size used in the two previous studies and was

selected as it minimises surface tension effects when in contact with a thin film of fluid

(Webb et al., 2023b)† (see Section 6.5.2 for further discussion). Moreover, the number

of particles np that have to be modelled ensures computational efficiency, with np =

261, corresponding to an initial mean solid volume fraction φp = 0.61. The parameters

for modelling the particles using the DEM scheme are summarised in Table 6.1. Using

the real stiffness of the grains would result in unreasonably long simulation times. Since

the collapse dynamics of interest are not influenced by particle deformability (Roux and

Combe, 2002), the linear contact stiffness kn has been instead calibrated so that the

particles are sufficiently rigid to make elastic deformations negligible.

The three Newtonian fluids used in this study are miscible glycerol-water mixtures,

†Webb et al. (2023b) is shown in Chapter 3
‡Webb et al. (2023a) is shown in Chapter 4
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Figure 6.4: Schematic of the simulation domain during a column collapse containing

261 particles. The frictional boundaries are shown as grey planes and the insets highlight

the direction of the centrifugal and Coriolis accelerations acting on a particle for the

defined rotational reference frame.

characterised by two parameters: the ratio between the fluid mixture viscosity ηf and the

viscosity of water ηw denoted by η∗f = [50, 100, 150], and the density of the fluidmixture

ρf = [1203.8, 1219.7, 1227.5] kgm−3, respectively. The viscosity of the fluids were

required to be significantly higher than those used previously by Webb et al. (2023b)†

as ηf is directly related to the relaxation time, and, therefore, the stability of the fluid

in the LBM scheme (Leonardi et al., 2014). Further details about the preparation of the

physical experiments can be found in Webb et al. (2023b)†.

The final model considerations are those dictating the relative contribution of cen-

trifugal and Coriolis accelerations to collapse dynamics. Following Cabrera et al.’s

(2020) approach, we consider the following three external forcing cases

(i) A constant acceleration field a = Ng where the far field condition Rc � h0 is

†Webb et al. (2023b) is shown in Chapter 3
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Table 6.1: Summary of DEM simulation parameters.

Model parameter Range

np 261

D (m) 0.008

ρp (kgm
−3) 2650

kn (Nm−1) 106

kt (Nm−1) 2
7
kn

µrest 0.77a

αn 0.08b

αt 0.5

µs 0.5c

µs,w 0.079d

µr µs,w
a See Yang and Hunt (2006).
b See Equation (3) from Hu et al. (2010).
c Obtained using the fixed cone test (Henein, 1980).
dObtained using the tilting table test for singular grains (Henein, 1980).

assumed, notated as Ng.

(ii) A rotating domain that only accounts for the curvature of the acceleration field

arising from the centrifugal acceleration (i.e. a = acf ), notated as ω
0.

(iii) A complete acceleration field for a rotational domain (i.e. a = acf + aco) where

contributions of the Coriolis effect in the downstream and upstream direction,

notated as ω− and ω+, respectively, will be considered independently.

To understand how acf and aco can influence collapse dynamics, we explore the param-

eter space for N = [5, 8, 10, 12, 15] and log(Rc/h0) = [2, 3, 3.7, 4, 5, 6, 7], where

log(Rc/h0) = 3.7 corresponds to the dimensions of the previously conducted physical

collapses (Webb et al., 2023b)†.

6.4.2 Simulation geometry

The simulation domain is depicted as a rectangular box (Figure 6.4) bounded by static

frictional walls in the x, y, and z planes. It is characterised by three length parameters

[xd, yd, zd] = [0.2, 0.2, 0.07]m while the lattice spacing for the fluid phase ∆f =

2 × 10−3m. Notably, during the column construction process, some adjustments are

made to the domain, which will be discussed in Section 6.4.3.

†Webb et al. (2023b) is shown in Chapter 3
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Themodelled centrifuge is positioned above the column, with its rotation axis located

outside the simulation domain. For simplicity, we define the radius of the centrifuge Rc

as the distance between the axis of rotation and the horizontal plane over which the

collapsing material will spread. For the simulations considering the forcing case of the

full rotational domain (i.e. a = acf + aco), the collapse will be simulated twice so that

the flow can be considered in both the ω+ and ω− directions.

6.4.3 Column construction

The dynamics of granular column collapses in both dry and wet conditions are signif-

icantly affected by the initial configuration of the column (e.g. Rondon et al., 2011).

Therefore, it is crucial to closely replicate the physical procedure used in the experi-

ments for the numerical simulations. In this study, we employ a two-step procedure to

mimic the experimental conditions.

First, particles are poured into a quarter-cylinder container with a radius of r0, under

a constant natural gravitational field (a = g) and allowed to settle. To ensure free-fall

settling, zd was increased to 6m during the settling simulations.

The column is then consolidated under the acceleration field that will be prescribed

for the collapse simulation and allowed to consolidate. It was found that initially pour-

ing the particles into the container under the influence of an elevated acceleration field

resulted in a much looser column. Additionally, when the prescribed acceleration field

considers a rotating domain (external forcing cases (ii) or (iii)), particles near the top of

the column, being less constrained, tended to favour the container edge toward which the

fictitious forces pushed them, resulting in an uneven free surface. Hence, this two-stage

settling procedure was implemented to limit these effects.

6.4.4 Front and signal processing

An assessment of the model’s validity was performed by analysing the evolution of the

averaged phase front positions rv where subscript v = p, f for the particle and fluid

phases, respectively. For the numerical simulations, rv was obtained using a two-step

procedure. At each saved time-step, the Cartesian domain was divided into n concentric

sectors originating from the collapse centre (Figure 6.5f). Here, n = 50 sectors were

utilised for the fluid phase, and n = 16 for the particle phase. The value of n was

required to be significantly lower for the granular phase due to it being comprised of far

less particles than the fluid phase. The furthest fluid and granular point in each sector
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Figure 6.5: Extraction of the fluid [(a)-(c)] and particle [(d)-(f)] phase fronts for a sim-

ulated collapse moving downstream of centrifuge motion where a = acf + aco, Rc =
2m, N = 5, and η∗f = 150 at t = 0 [(a),(d)], 0.1 [(b),(e)] and 0.35 s [(c),(f)]. rv (blue),
the particle and fluid points making up the phase front (green edge) and the particle and

fluid points removed from the phase front (yellow edge) are all shown. An example of

the concentric sectors (grey) splitting up the domain is displayed in (f).
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Figure 6.6: Comparison of the raw and filtered phase velocity uv and radial position rv
(insets), where (a) v = p and (b) v = f for a simulated collapse moving upstream of

centrifuge motion where a = acf + aco, Rc = 2.7m, N = 5, and η∗f = 100.
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were then identified as part of the phase front. Before averaging the radial distance of

these points to obtain rv, points with a radial distance from the origin larger than the

90th percentile of the chosen points were excluded, thereby eliminating points that had

escaped from the phase front. While this makes no substantial difference for the fluid

phase, removing these points in the case of the granular phase is crucial. For the particle

phase, the radius of the particle is also considered when calculating the position of the

front. An example of this procedure is shown in Figure 6.5.

The resulting averaged phase front signal underwent a noise reduction process.

Firstly, it was assumed that rv monotonically increases with time, allowing the removal

of signal sections where rv decreased. Secondly, analysis of the phase front velocity,

uv = ∆rv/∆t, against time (Figure 6.6) revealed distinct spikes caused by significant

fluctuations in phase front position. These spikes were removed by identifying all peaks

in the signal and discarding those with a prominence exceeding 0.001. Notably, filtering

was carried out in dimensionless space (see Section 6.5 for further details), facilitating

the use of the same prominence value for all simulations, regardless of N . While this

processing strategy is not without limitations, unlike methods based on moving aver-

age signal reduction, it preserves the magnitude and relative temporal evolution of the

signal, resulting in minimal changes to rv (see insets of Figure 6.6).

6.5 Model verification

6.5.1 Family of curves

We begin to evaluate the model’s performance by investigating its ability to reproduce

expected behavioural trends under variations in N and ηf . The interaction between the

two phases will be discussed in Section 6.5.2.

The evolution of rv for a set of simulations conducted using the forcing case a = Ng

at a constant log(Rc/h0) = 3.7 and varying N and η∗f are presented in Figure 6.7a. Re-

assuringly, all simulations demonstrate the three sequential stages of motion that are

characteristic of an unsteady collapse: acceleration, quasi-steady motion and retarda-

tion.

The model also demonstrates consistent adherence to the expected trends as we in-

dependently vary N and η∗f . Specifically, we observe that rv propagates faster as N in-

creases while its speed of propagation decreases with increasing η∗f . Furthermore, with

increasing N , the separation between simulations for a given N reduces, particularly
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Figure 6.7: Temporal evolution of the fluid and granular phase fronts in (a) dimen-

sional and (b) γ∗-weighted dimensionless space for a series of simulation conducted

with log(Rc/h0) = 3.7 and a = Ng.

during the acceleration and quasi-steady stages of motion. This observation implies that

the influence of flow inertia increases with N which is consistent with previous find-

ings reported by Webb et al. (2023b)† and fundamental scaling principles (e.g. Iverson,

1997).

Following the approach of Webb et al. (2024a)‖, the anticipated behaviour of the

numerically modelled just-saturated column configuration can be characterised using

three dimensionless parameters: a0, the fluid-grain density ratio γ∗ = ρf/ρp and B =

(NgD4ρ2)/(h0η
2
f ). Here ρ represents the effective column density, defined as ρ =

φpρp + (1− φp)ρf .

The parameter B, analogous to the square of the ratio of the column Bond and

Capillary numbers (Bo/Ca)2 (Webb et al., 2024a)‖, quantifies the relative influence of

column-scale inertial and viscous forces on collapse dynamics (Webb et al., 2023b)†.

Since a0 is held constant, we plot the evolution of the phase radial position in dimen-

sionless density-weighted γ∗r∗v-t
∗
h0

space (Figure 6.7b), where r∗v = (rv − r0)/r0 and

t∗h0
= t/

√
h0/(Ng). This transformation results in, approximately, a family of curves

dependent on B, with increasing B indicating a higher relative influence of column-

scale inertia, leading to the faster propagation of r∗vγ
∗. Encouragingly, a similar result

was obtained previously when modelling the collapses using a two-phase shallow water

model (Webb et al., 2024a)‖.

†Webb et al. (2023b) is shown in Chapter 3
‖Webb et al. (2024a) is shown in Chapter 5
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Table 6.2: Summary of experimental test parameters.

Test No. log(Rc/h0) N η∗f
1 3.7 5 50

2 3.7 5 100

3 3.7 5 150

4 3.7 15 100

6.5.2 Comparison with physical experiments

In this section, we further evaluate the performance of the numerical model in replicating

the expected dynamics of fluid-saturated granular column collapses. We compare the

simulation results with data obtained from four physical experiments (see Table 6.2). As

such, the simulations are conducted with log(Rc/h0) = 3.7, and they are subjected to

a complete rotational domain forcing case (a = acf + aco). For each test, we perform

two simulations to consider both the ω− and ω+ forcing cases. The analysis is carried

out in r∗v-t
∗
h0

(Figure 6.8) and u∗
v,h0

-t∗h0
(Figure 6.9) space, where u∗

v,h0
represents the

dimensionless phase front velocity u∗
v,h0

= uv/
√
h0Ng where

√
h0Ng is akin to a scaled

characteristic flow velocity equivalent to the local wave speed of the flow (Gray and

Edwards, 2014). Hence, u∗
v,h0

is equivalent to a temporally evolving, phase specific

Froude number (Gray et al., 2003).

Overall, the model captures many of the experimental observations effectively. In

particular, it predicts well the time after release of the phase peak velocity, and achieves

runout distances comparable to the physical experiments. However, there are two main

sources of discrepancies between the simulations and the physical experiments, as dis-

cussed in detail by Webb et al. (2024a)‖ and summarised below.

6.5.2.1 Experimental-model discrepancies

The first source of discrepancy, referred to as ‘experimental-model discrepancies’, orig-

inates from the process of lifting the cylindrical steel casing to initiate the granular-fluid

column collapse. The presence of the casing causes a delay between collapse initiation

and a noticeable change in r∗v (Figure 6.8) because the camera’s view of the collapsing

column is initially obstructed. Additionally, the initial value of r∗v is larger than r0 due

to the casing’s thickness. The release mechanism also leads to a lag between the initial

runout of the granular and fluid phases. The relatively large particle size of the granu-

‖Webb et al. (2024a) is shown in Chapter 5
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(a) N = 5 and η∗f = 50, (b) N = 5 and η∗f = 100, (c) N = 5 and η∗f = 150, and (d)

N = 15 and η∗f = 100.
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with dimensionless time t∗h0
of four column collapses
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(d) N = 15 and η∗f = 100.
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lar phase causes particles to be trapped until the casing displaces far enough to release

them, while the fluid can seep out from under the casing. This inter-phase lag increases

with decreasing η∗f due to easier fluid permeation through the granular skeleton and in-

creases with increasing N due to the growing pressure gradient. Moreover, during the

lifting process, the acceleration applied to the casing, relative to the collapsing mixture,

induces viscous shear stresses, partially lifting the granular-fluid column with the cas-

ing. As a result, the initial gravitational potential energy, and, therefore, the peak phase

velocity uv,m, Frv,h0 in dimensionless space (Figure 6.9), of the physical collapses are

larger than the model’s predictions. This discrepancy also increases with increasing N .

Furthermore, the delayed collapse of the granular phase may result in it behaving more

like a dry material, leading to increased mobility and a larger Frv,h0 .

6.5.2.2 Model simplification discrepancies

The second source of discrepancy, termed ‘model simplification discrepancies’, arises

from the simplifications made in the model. Firstly, the model does not consider fluid

turbulence, which becomes significant when the fluid height during the horizontal

spreading phase reduces to less than a particle diameter. At such small flow heights,

fluid turbulence increases due to the increased shear rate imposed on the fluid by the

horizontal surface over which it flows (Batchelor, 2000). Consequently, the model un-

derestimates the reduction in phase front velocity after Frv,h0 is achieved, resulting in a

more gradual retardation compared to the physical experiments (Figure 6.9). This effect

is more pronounced for tests using higher viscosity fluids, potentially contributing to

the overestimation of residual flow runout in simulations conducted atN = 5. Although

Smagorinsky’s turbulence model has been implemented in LBM schemes to account for

fine-scale turbulence contributions to macro-scale flow dynamics (e.g. Ceccato et al.,

2020; Feng et al., 2010), its omission in our study was deemed appropriate given our

focus on the acceleration phase and peak flow behaviour, simplifying the model and

avoiding calibration of additional parameters. Furthermore, the complexity of poten-

tial boundary layer effects and the energy cascade assumption made by the turbulence

model raise uncertainties regarding its suitability.

Secondly, the model employs a Darcy-drag style phase interaction term, simplifying

the actual interaction occurring in the physical experiments. Notably, the model ne-

glects surface tension, a potentially significant force contribution, which plays a vital

role in the macro-scale flow dynamics of laboratory-scale and low N centrifuge tests

(e.g. Bougouin et al., 2019; Iverson, 2015; Rondon et al., 2011; Webb et al., 2023b)†.
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Surface tension effects can alter flow dynamics in two primary ways. Firstly, during the

horizontal spreading phase, capillary bridges can form between contacting or closely

situated particles, limiting the granular phase’s ability to surpass the fluid phase front

(Webb et al., 2023b)† (Figure 6.8). In contrast, in numerical simulations, particles can

accelerate freely away from the fluid front if their inertia overcomes the inter-phase

drag and, for the forcing case ω+, the fictitious retardation due to the rotating reference

frame. Secondly, surface tension effects may contribute to the larger separation between

downstream and upstream flow fronts observed in the physical experiments during the

retardation phase (Figure 6.8). The extent of surface tension’s influence on decelerat-

ing the flow would be greater for the ω+ forcing case, where acf already slows down

the flow, and more particles are likely to be in contact due to the higher flow density

(Leonardi et al., 2021) (see Section 6.6.1).

In conclusion, the numerical model reasonably demonstrates the idealised behaviour

of a fluid-saturated granular column collapse within a centrifuge, particularly during

the acceleration phase. Although certain discrepancies arise from experimental condi-

tions and model simplifications, we have provided a qualitative understanding of these

sources and their effects. The model’s capability in replicating fundamental dynamics

and yielding reasonable results underlines its applicability in studying these complex

collapse phenomena.

6.6 Implications of centrifuge modelling

With the validation of the model complete, the current section investigates the influence

of centrifuge modelling on flow dynamics.

6.6.1 Coordination number

Before looking at how the acceleration field affects macro-scale flow dynamics, it is

important to understand its contribution to dynamics at the grain-scale. Thus, we begin

by looking at the temporal evolution of the granular matrix. Specifically, we look at

how the distribution of the particle coordination number nc (i.e. the number of particles

in contact with a particle) evolves as a function of the percentage of grains Pp, where Pp

is the ratio between the number of particles with the same nc value and np. Figure 6.10

shows the distribution of nc at varying values of t∗h0
throughout the collapse, with a

†Webb et al. (2023b) is shown in Chapter 3
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Figure 6.10: Evolution of the coordination number nc as a function of the percentage

of grains Pp for a series of collapse simulations with a = Ng where N = [5,15],

log(Rc/h0) = 3.7, and (a) η∗f = 50 and (b) η∗f = 150.

particular focus on the acceleration stage (i.e. t∗h0
< 3), for a series of collapses where

N = [5, 15], log(Rc/h0) = 3.7 and η∗f = [50, 150] exposed to an acceleration field a =

Ng. Reassuringly, the mean value of nc is initially relatively high for all simulations

and decreases as the collapsing material accelerates. nc = 3 acts as a pivotal point where

the Pp value remains relatively constant throughout the collapse, especially when η∗f =

150. Independently increasing both N and η∗f appears to reduce phase separation. This

insight is particularly highlighted by the lower Pp values at nc = [0,1] at each value of

t∗h0
. In the case of N , this behaviour is partially attributed to the column construction

process (see Section 6.4.3), which results in denser initial column configurations as N

increases, as indicated by the peak nc values at t
∗
h0

= 0.1.

Our primary focus is on phase front dynamics. Therefore, the temporal variation in

Pp values for lower nc values is of particular interest, as these particles are likely to

contribute to or interact with the granular phase front. As such, it seems worthwhile

to analyse how the three different forcing cases contribute to the number of particles

with low nc values. We capture these variations by plotting the cumulative Pp value

of particles where nc = [0,1], defined as P
[0,1]
p , against t∗h0

for the three forcing cases

(Figure 6.11), where the full rotational domain case considers Coriolis accelerations in

both the upstream (ω+) and downstream (ω−) directions, forN = [5, 15], log(Rc/h0) =

109



Chapter 6: Performance and limits of a geotechnical centrifuge: DEM-LBM

simulations of saturated granular column collapse

� � � 	 
 � �  �
t ∗h0

�

��


�

��

P
[0
,1

]
p

���
�

���

� � � 	 
 � �  �
t ∗h0

�

��


�

�� ���

N

�
��

Ng ω0 ω − ω +

Figure 6.11: Temporal evolution of the cumulative particle percentage Pp of particles

where the particle coordination number nc = [0,1], defined as P
[0,1]
p . The parameter

space considered includes simulations where N = [5,15], log(Rc/h0) = 3.7, and when

the dimensionless fluid viscosity η∗f is equal to (a) 50 or (b) 150.

3.7 and η∗f = [50, 150].

Despite the highly unsteady nature of granularmatrix compactness, discernible trends

emerge within the data. As observed in Figure 6.11, generally, P
[0,1]
p increases through-

out the acceleration stage until reaching a peak value at t∗h0
≈ 3.5 aligning well with

the time at which uv = uv,m for the collapses discussed in Section 6.5.2. Subsequently,

P
[0,1]
p stabilises at a residual value as the collapse decelerates. The peak and residual

P
[0,1]
p magnitudes are sensitive to the fluid viscosity, decreasing with increasing η∗f . This

outcome is fairly logical as the fluid phase interacts with the granular phase through drag

meaning that a more viscous fluid would have more control over the behaviour of the

granular phase and less particles would ‘escape’ from the bulk. Within the physical

experiments, the formation of capillary bridges due to the presence of surface tension

would further maintain granular phase connectivity.

Figure 6.11 also shows the influence of the forcing case on the evolving structure

of the granular matrix. While P
[0,1]
p values for the differing cases are initially close,

they begin to spread during the acceleration stage. Among simulations with the sameN

and η∗f , the simulations conducted with the forcing cases ω0 and ω− typically achieved

larger P
[0,1]
p values than the simulations conducted with the forcing cases a = Ng and

ω+. This is reassuring given that when a = Ng there is no horizontal acceleration

component driving the collapse and while there is a horizontal acceleration component

driving the collapse for ω+, aco is acting in a direction such that it promotes flow den-

sification (Leonardi et al., 2021). Opposing statements can be made for the former two
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forcing cases. This finding is in agreement with the work of Zhang et al. (2023) who

stated that the variation in particle coordination number was the main mechanism that

allowed Coriolis accelerations to contribute to flow dynamics. For simulations where

η∗f = 50, this trend continues to be the case during the collapse retardation stage while

the trend becomes less clear when η∗f = 150. Independently varying N does not appear

to make a significant difference to the behaviour described previously in this section.

6.6.2 N scaling

In this section, we explore how macro-scale flow behaviour scales with N . We do this

by using the maximum phase front velocity uv,m as a simplistic indicator of acceleration

stage phase front characteristics (Webb et al., 2023b)†. We examine the uv,m-N rela-

tionship through a series of simulations, wherein we systematically vary the parameters

η∗f , log(Rc/h0), and the applied forcing case. The resulting uv,m-N space is illustrated

in Figure 6.12.

A noteworthy observation from Figure 6.12 is evident when considering the forcing

case where a = Ng. The relationship between uv,m and N can be expressed by the

equation

uv,m = αv

√
h0Ng, (6.9)

where αv is a constant influenced by η∗f and the phase of interest (i.e. whether v = p

or v = f ). This constant characterises the proportion of the column’s free-fall velocity

that is attained by the phase front of interest. Thus, a lower αv value suggests that the

v phase is experiencing significant confinement from the other phase and the external

forcing conditions. In contrast, an αv value closer to 1 suggests that the phase is trav-

elling close to its free-fall velocity. The extension of this scaling to the other forcing

cases is discussed in Section 6.6.3. Given that h0 and g are constants within our ex-

perimental configuration, Equation (6.9) simplifies to reveal that uv,m scales with
√
N .

This outcome aligns with the theoretical velocity scaling relation for a centrifuge model

exposed to a constant gravitational field. The adequacy of these scaling fits, and those

later shown in Section 6.6.3, is also corroborated by their low values of normalised root

mean square error RMSEN.

Furthermore, analysing the αv values, as deduced from granular-scale dynamics (as

discussed in Section 6.6.1), demonstrates that higher fluid viscosities generally lead to

decreased mobility of both granular and fluid phases, resulting in lower values of Frv,h0 .

†Webb et al. (2023b) is shown in Chapter 3
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Figure 6.12: Maximum [(a)-(c)] fluid and [(d)-(e)] particle phase front velocities, uf,m

and up,m, respectively, against N for [(a), (d)] η∗f = 50, [(b), (e)] η∗f = 100, and [(c),

(e)] η∗f = 150. The fitted trend line (black) corresponding to uv,m = αv

√
h0Ng is also

shown for the forcing case a = Ng in each subplot.

Interestingly, for cases with η∗f = [100, 150], we observe up,m > uf,m, indicating that

the granular phase advances ahead of the fluid phase. However, as discussed in Sec-

tion 6.5.2, the influence of surface tension makes this behaviour improbable for physical

collapses at the laboratory scale.

While the impact of the forcing case and log(Rc/h0) will be elucidated in Sec-

tion 6.6.3, it is important to highlight that within the uv,m-N space, forcing cases

involving horizontal accelerations (ω0, ω− and ω+) manifest a shift in αv. The magni-

tude and direction of this shift are contingent on the specific forcing case and the value

of log(Rc/h0). Logically, uv,m values associated with simulations subjected to partially

or fully rotational domain forcing cases approach the values observed for a = Ng as

log(Rc/h0) increases and the relative magnitude of the horizontal acceleration compo-

nent diminishes. Additionally, it is observed that this shift is comparatively smaller for

the fluid phase compared to the granular phase because the fluid is not frictional and,

hence, there is no feedback effect between velocity and pressure (see Section 6.6.3 for

further discussion).
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6.6.3 Influence of centrifuge radius

In this section, we delve into an investigation of the influence exerted by the cen-

trifuge’s size, relative to the model’s dimensions, on the dynamics of collapse. Our

focus remains on the characteristic quantity of interest uv,m while introducing the vari-

able log(Rc/h0) as a pertinent factor. However, rather than examining this relationship

within the uv,m-log(Rc/h0) space, where two independent parameters (N and η∗f ) re-

main, we opt for a more streamlined approach. We introduce αv-log(Rc/h0) as our new

parameter space, where αv is computed using the same methodology outlined in Sec-

tion 6.6.2 but encompasses all simulated scenarios (refer to Figure 6.13). Consequently,

the parameter αv renders the analysis independent of the parameter N .

Our decision to employ the αv-log(Rc/h0) space as the basis for data exploration is

fortified by the statistical properties of our findings. Specifically, the mean and standard

deviation of the RMSEN values, characterising the fits to Equation (6.9), are determined

to be 0.1 and 0.05, respectively, suggesting that the parameter reduction method is re-

liable. It is crucial to emphasise that the adoption of αv as a surrogate for uv,m only

facilitates a clearer visualisation of the data. Hence, the trends discussed subsequently

throughout this section persist when the data is examined within the uv,m-log(Rc/h0)

space for each distinct value of N .

Reiterating the outcomes derived from the preceding sections, Figure 6.13 demon-

strates the increase in collapse mobility, where αv serves as an analogous measure, with

decreasing η∗f for a given forcing case and log(Rc/h0) value. More notably, the ex-

amination of data within the αv-log(Rc/h0) space highlights the influence of the hor-

izontal acceleration component on phase mobility. Firstly, for given values of η∗f and

log(Rc/h0), αv generally decreases with the relative magnitude of the horizontal accel-

eration component which is defined by the forcing case. Thus, the forcing, ω− (associ-

ated with Coriolis-induced flow expansion), ω0 (lacking Coriolis acceleration contribu-

tion), andω+ (promoting flow densification), achieve descendingαv values. Areduction

in log(Rc/h0) not only enlarges the separation between αv values corresponding to dis-

tinct forcing cases but also shifts the average αv value of these three forcing cases away

from the αv value obtained when a = Ng, a case where centrifuge-induced horizontal

accelerations are absent. This result aligns with expectations, as reducing log(Rc/h0)

also increases the relative magnitude of the horizontal acceleration component. Addi-

tionally, Figure 6.13 suggests that the contribution of horizontal accelerations becomes

nearly negligible when log(Rc/h0) > 4, making it suitable to assume a = Ng. This
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Figure 6.13: (a) αp and (b) αf against log(Rc/h0) for all conducted collapse simula-

tions. The mean and standard deviation of the RMSEN values characterising the fits to

Equation (6.9) for the combined dataset are 0.1 and 0.05, respectively.

finding is consistent with the observations of Cabrera et al. (2020), who established the

validity of this assumption when log(Rc/h0) > 3.9 for a dry flow travelling down a

rough inclined surface.

The less intuitive aspect is the reduced sensitivity of the fluid phase to a decrease

in log(Rc/h0). While αf generally increases for the forcing cases ω0, ω− and ω+ as

log(Rc/h0) decreases, the rate of increase is notably less pronounced than that of αp.

We posit that this disparity arises from the fact that the fluid is not frictional. Thus, the

influence of the Coriolis force on fluid dynamics is weaker in comparison to the granu-

lar phase when the confining pressure (a) is varied. This discrepancy may also partially

result from the specific conditions prevailing at the juncture of maximum flow veloc-

ity, where αv is defined. At this critical stage of collapse, it is likely that the particles

comprising the particle phase front are predominantly positioned ahead of or in direct

contact with the fluid phase front. Consequently, the interplay and consequent drag

between the particle phase front and the fluid phase become minimal. In contrast, the

fluid phase front continues to engage with numerous particles behind the particle phase

front. Consequently, at lower values of log(Rc/h0), αp assumes significantly larger val-

ues than αf , primarily attributable to the reduced interaction between the phases along

the granular phase front. Further numerical and experimental work would need to be

undertaken to truly understand the mechanisms at play. It seems particularly pertinent

to assess the influence of the Coriolis acceleration on completely dry and fluid only

collapses to remove the additional complexity of the interplay between the phases.
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6.7 Conclusions and further work

In this study, we utilised the DEM-LBM numerical framework to simulate the collapse

behaviour of a just-saturated granular column. The model working volume was defined

within a rotating frame of reference to replicate the experimental conditions found in a

geotechnical centrifuge. By focusing on just-saturated collapses, our research aimed to

understand how centrifuge conditions impact granules and pore fluid differently. The

primary advantage of a numerical approach is its ability to explore a parameter space that

would be impractical in physical experiments. Specifically, we examined the effects of

both centrifugal and Coriolis accelerations on flow dynamics by separately considering

their contributions and varying the centrifuge radius Rc. We also systematically varied

the fluid viscosity ηf and the gravitational scaling factorN , which are more typical test

variables.

The validation of the numerical model consisted of a two-stage approach. Firstly,

by ensuring that the predicted temporal evolution of key parameters, including phase

front runout rv and velocity uv, conformed to expected trends dictated by variations

in N and ηf . Secondly, by comparing the numerical predictions to physical collapse

experiments. The model exhibited a high degree of accuracy in capturing the complex

behaviours observed during the granular column collapse. Discrepancies between the

model’s predictions and experimental data could be attributed to specific experimental

conditions, such as the lifting of the cylindrical casing during column release, as well

as the simplifications inherent in the model’s treatment of fluid-grain and fluid-surface

interactions. Despite these limitations, the model reasonably reproduced the idealised

behaviour of a fluid-saturated granular column collapse within a centrifuge, particularly

during the acceleration phase.

The remainder of the study aimed to understand how acceleration field conditions

contribute to collapse dynamics. Its effects on the flow grain-scale behaviour were ex-

amined by analysing the temporal evolution of the coordination number nc. Specifically,

the evolution of the number of particles with nc ≤ 1, which are those more likely to in-

teract with the granular phase front. While increasing the fluid viscosity was found to

reduce flow dilation, as found in previous studies (Leonardi et al., 2021; Zhang et al.,

2023), both the centrifugal acceleration and the Coriolis acceleration significantly in-

fluenced the evolution of the granular matrix.

At the macro-scale, the maximum phase front velocity uv,m was used to characterise

acceleration stage phase front dynamics. Under constant acceleration conditions, ne-
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glecting centrifugal and Coriolis accelerations, uv,m scaled with
√
N and αv which is

a phase-specific constant dependent on fluid viscosity. This relationship matches the

theoretical velocity scaling relation for a centrifuge model exposed to a constant gravi-

tational field.

Based on the assumption that this relationship holds for all forcing cases, the contri-

butions ofRc were investigated by utilising the αv-log(Rc/h0) parameter space, making

it independent ofN . It was found that both the centrifugal and Coriolis accelerations had

a significant impact on flow mobility, with centrifugal acceleration’s influence increas-

ing as Rc decreased, resulting in a more pronounced curvature effect. Depending on its

direction, Coriolis acceleration either expanded or densified the flow. Moreover, it was

found that when log(Rc/h0) > 4, the contribution of horizontal accelerations become

almost negligible which is consistent with the findings of Cabrera et al. (2020). Hence,

at log(Rc/h0) values greater than 4, it is suitable to assume a constant acceleration field

(i.e. a = Ng). As such, with regards to the design of centrifuge experiments, this could

be considered a safe value for considering the Coriolis acceleration to be negligible.

To enhance our comprehension of this subject, forthcoming research should priori-

tise the investigation of the Coriolis acceleration’s influence on both dry and fluid-only

collapses in order to better appreciate the dynamics of the fluid-saturated case, partic-

ularly with regards to particle settlement and consolidation. Furthermore, it would be

beneficial to explore the influence of a rotating domain on granular flows that con-

tain non-Newtonian interstitial fluids. Additionally, the study of surface tension effects

within the phase coupling term holds potential for a deeper understanding of granular

flow behaviour in more intricate scenarios.
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7.1 Conclusions

Thework described in this thesis aimed to explore the underlyingmechanisms governing

interactions between fluids and granular materials in experimental granular-fluid flows.

Special attention was given to assessing the applicability of these findings to larger scale

geophysical flows, such as debris flows. Considering the substantial hazards associated

with debris flows, the project not only conducted physical experiments to deepen our

comprehension of grain-fluid dynamics but also integrated these new insights into scal-

able mathematical models. These models, if incorporated into more complex schemes,

have the potential to serve the dual purpose of enhancing our ability to predict debris

flow behaviour and developing strategies to mitigate their impact.

In an effort to examine grain-fluid interactions in isolation from the intricate dynam-

ics of debris flows, a simplified laboratory-scale experiment involving the collapse of

an axisymmetric granular column was conducted. To explore how the dynamics of the

phase interaction varied with scale, a geotechnical centrifuge was employed to artifi-

cially elevate the gravitational acceleration acting on the model. Variations in grav-

itational acceleration, particle size, and fluid viscosity were introduced to investigate

collapse dynamics within a parameter space where the inertia of the model grains (glass

beads) was significant. Throughout the experiments, the initial column saturation level

was maintained at a just-saturated level, and the initial mean packing fraction was held

at 0.61 (i.e. a close-packed column). The evolution of the collapse fronts were recorded

using two high-speed cameras, while the basal fluid pressure at the centre of the column

was monitored using a pressure sensor. A repository containing all collected runout

data associated with the experiments conducted as part of this project is available at

https://doi.org/10.5281/zenodo.10912850.
The initial part of the experimental investigation concentrated on the behaviour of

column mixtures composed of uniform-sized inertial particles and Newtonian fluids

of varying viscosity. Analysis of the collected image and pressure data revealed that
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two main factors significantly influenced the interaction between the granular and fluid

phases, as well as macro-scale flow dynamics. These key factors were the size of the

granular pore spaces (an analogue for particle size) and the strength of the gravitational

acceleration applied to the model. The size of the granular pore spaces emerged as the

primary determinant of flowmobility at a given gravitational acceleration. This was due

to the size of the porous network within the granular structure, in conjunction with fluid

viscosity, predominantly governing the fluid’s ability to permeate through the granular

medium. Conversely, an increase in gravitational acceleration caused a shift in the dy-

namics, reducing the influence of grain-fluid interactions and instead emphasising the

role of particle inertia. This shift resulted from a reduction in the impact of capillary

forces between wet grains, which typically dominate flow dynamics at lower levels of

gravitational acceleration such as those found in traditional laboratory experiments.

The application of Buckingham’s (1914) Π theorem and a non-linear regression

scheme revealed a simple power-law connection between three dimensionless param-

eters that characterise the initial state of the fluid-granular column which can predict

several measured quantities of interest that characterise the acceleration phase of the

collapsing mixtures. The main finding of this analysis is that, within the examined pa-

rameter space, all quantities of interest can be predicted independently from grain-scale

surface tension effects. Instead, it is the balance of column-scale gravitational and vis-

cous forces that govern acceleration phase collapse behaviour as seen in natural-scale

debris flows with a granular phase including inertial particles.

The second stage of experimental testing involved conducting similar column col-

lapse experiments with a non-Newtonian fluid, consisting of fine kaolin clay particles

suspended in water. The concentration of these fines varied between 10% and 20% by

mass. The purpose of introducing fine granular particles into the mixture was to extend

the findings from the previous experiments with Newtonian fluids and explore how an

extreme bimodal grain size distribution influenced the interaction between grains and the

non-Newtonian fluid within an analogous parameter space. In this set of experiments,

due to potential damage to the fluid pressure sensor caused by the fines, the analysis

relied solely on image data.

By combining the data from both Newtonian and non-Newtonian fluid experiments

and applying Buckingham’s (1914) Π theorem, along with a least-squares fitting anal-

ysis, a power law relationship between the measured quantities of interest and five di-

mensionless parameters representing the initial column configuration was established.

These additional dimensionless parameters were introduced to account for the presence
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of the fine grains in the fluid phase, incorporating a fine grain length-scale and the fines

concentration. This analysis revealed that, within the tested parameter range, the in-

clusion of kaolin clay particles in the fluid led to the measured variables of interest

becoming coupled with micro-scale surface tension effects, a phenomenon that could

be disregarded when dealing with a Newtonian fluid.

Having gained valuable insights from the physical experiments on the mechanisms

governing grain-fluid interactions and macro-scale flow dynamics, the next step was

to translate these findings into mathematical descriptions. To achieve this, a two-phase

depth-averaged continuummodel was developed, building upon the work of Meng et al.

(2022), and implemented within Matlab (2020), in an effort to replicate the behaviour

observed in Newtonian fluid experiments and gain a deeper understanding of collapse

dynamics.

Drawing inspiration from the insights presented in previous chapters, the interaction

between the grain and fluid phases was characterised using a Darcy-drag style relation-

ship, heavily dependent on the permeability of the granular phase (i.e. the pore space

size). Notably, the model diverged from other two-phase models by incorporating Lar-

rieu et al.’s (2006) mass ‘raining’ scheme, which allows for phase mass to be gradually

introduced into the system. This approach was necessary as the initial configuration of

the granular columns did not conform to the depth-averaged assumption, a fundamen-

tal requirement for the model’s derivation, resulting in a significant overestimation of

vertical accelerations.

Once calibrated, the model effectively reproduced the overall dynamics of an un-

steady collapse. However, treating the granular phase as a continuous medium led to

an overestimation of flow runout distances and peak velocities, especially when con-

sidering larger particle sizes where the applicability of the continuum assumption is

limited. Further analysis of the experimental data also revealed that interference from

the column lifting mechanism contributed to some of the temporal disparities between

the experimental and numerical runout and pressure signals.

Overall, the model successfully captured the relationship between macro-scale flow

outcomes and variations in granular matrix pore space (i.e. particle size), especially re-

garding the temporal evolution of the basal fluid pressure. It also replicated the reduction

in the influence of phase interaction on runout dynamics as the gravitational acceleration

increased. However, the model did not fully reproduce the observed scaling behaviour

in the case of the basal fluid pressure reduction. Therefore, further work is required to

refine and improve our understanding of these phenomena.
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With an improved understanding of the scaling behaviour of fluid-grain interactions,

the latter part of this research project delves into exploring the impact of geotechnical

centrifuge modelling on collapse dynamics. This exploration is particularly relevant as

geotechnical centrifuge modelling remains relatively underutilised in the field of granu-

lar flow research. To undertake this investigation, we employed a numerical framework

known as DEM-LBM, which combines discrete and continuum modelling approaches.

This framework was used to simulate the collapse of a just-saturated granular column

within the rotating reference frame of a geotechnical centrifuge.

This modelling approach extends the work originally presented by Leonardi et al.

(2021), enabling the simulation of both the fluid and granular phases subjected to an el-

evated gravitational field, akin to the conditions found within a geotechnical centrifuge.

Utilising numerical simulations provided the advantage of exploring a parameter space

that would be impractical to investigate through physical experiments. Specifically,

we systematically varied factors such as the gravitational scaling factor, fluid viscosity,

and the radius of the modelled centrifuge. The last of which, could only be physically

tested by conducting experiments with multiple centrifuges. Additionally, this approach

allowed for the independent examination of the influence of centrifugal and Coriolis ac-

celerations on collapse dynamics.

Initially, the model was validated against experimental data, accounting for discrep-

ancies arising from specific experimental conditions and simplifications in the model’s

representation of fluid-grain interactions. It was found that the model reasonably repro-

duced the idealised behaviour of a collapsing fluid-saturated granular column within a

centrifuge, particularly during the acceleration phase.

Subsequently, the study shifted its focus to the contribution of centrifugal and Cori-

olis accelerations to the dynamics of collapse. This was investigated at the grain-scale

primarily through the temporal evolution of the average particle contacts, known as the

coordination number. Asignificant discovery was made in that increasing fluid viscosity

reduced the overall dilation of the granular phase. Moreover, both the centrifugal accel-

eration and the direction of Coriolis acceleration significantly influenced the structure

of the granular matrix.

At the larger flow-scale, themodel was able to capture the expected centrifuge scaling

relationship of the flow front velocity. This relationship demonstrates that the maximum

phase front velocity is proportional to the column’s free-fall velocity when centrifugal

and Coriolis accelerations are not considered. Assuming that this scaling holds for all

forcing cases, the study concluded by investigating the centrifuge’s impact on the dy-

120



Chapter 7: Conclusions

namics of the collapse front as a function of its radius. Key takeaways include the

significant influence of both centrifugal and Coriolis accelerations on flow mobility and

the growing prominence of the centrifugal acceleration at smaller centrifuge radii due to

increased effective curvature. Furthermore, in alignment with Cabrera et al. (2020), the

model identified a limiting centrifuge radius ratio, log(Rc/h0) > 4, beyond which the

horizontal effects of centrifugal and Coriolis accelerations become negligible. Conse-

quently, conducting centrifuge experiments with a radius surpassing this limiting value

allows for the assumption that the centrifuge model is subjected to a constant gravita-

tional field, a concept pivotal for more effective model design.

7.2 Future work

From this research project, a combination of physical and numerical modelling forms a

robust foundation for delving into the influence of grain-fluid interactions on the macro-

scale behaviour of fluidised granular flows. This was achieved by employing simplified

laboratory-scale experiments that were designed to mimic specific aspects of geophys-

ical flow behaviour, particularly the stress-dependent nature of grain-fluid interactions.

The following section explores potential avenues for further research, aiming to enhance

the existing study and broaden its applicability to a wider contexts.

In the context of the experimental modelling carried out in this research, several im-

portant parameters affecting collapse dynamics were examined. However, it is impor-

tant to note that the range of parameters tested was relatively limited, primarily focusing

on a granular column that was just saturated, had an aspect ratio close to one, consisted

mainly of inertial particles, and utilised a fluid where the variation in its rheological

properties was limited. Expanding the scope of these parameters would significantly

enhance our comprehension of grain-fluid interactions in granular-fluid flows. Some

specific conditions worth exploring include:

1. The degree of granular material saturation and its impact on particle collisions.

2. The behaviour of granular materials with non-inertial particle sizes (e.g. sand),

especially how their dynamics scale within the stress-elevated environment of a

geotechnical centrifuge.

3. Granular-fluid mixtures containing a higher concentration of fine granular mate-

rial (e.g. kaolin concentrations exceeding 50%) with a specific focus on the con-

centration dependent variations in pore fluid pressure reduction behaviour.
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In terms of the collapse analysis process, image data was primarily utilised to exam-

ine configuration-dependent changes in macro-scale collapse dynamics by analysing the

evolution of the individual phase fronts over time. Additionally, analysing the collapse

evolution at the grain-scale, focusing on the motion of individual particles throughout

the collapse using techniques such as Particle Image Velocimetry (PIV) (e.g. Capart and

Young, 1998; Dalziel et al., 2007; White et al., 2003) or Voronoï based imaging (e.g.

Capart et al., 2002), would be highly beneficial. However, such imaging techniques

may suffer from the high speed nature of the experiments given that, in the current ex-

perimental configuration, image capture is limited to 240 frames per second. As such,

it may be difficult to track individual particles between frames given the significant dis-

tance that they can travel at higher g-levels. Utilising a camera with an increased frame

rate would be extremely beneficial if this extension to the project was to be considered.

Furthermore, to continue the development of the two numerical models used in the

project, creating a new experimental setup that allows for the examination of a similar

parameter and problem space without the influence of the lifting mechanism affecting

flow behaviour could be considered. Thus, a proposed development of a new inclined

planar collapse configuration is discussed in Appendix D.

Enhancements to the two-phase shallow water model could significantly improve its

ability in modelling the granular phase and its interactions with the fluid phase. Cur-

rently, the model assumes a constant solid volume fraction φp for the granular phase

in both space and time. While this assumption simplifies computational processes, it

deviates from the true nature of granular flows. To address this, it is recommended to

introduce an additional differential equation that accounts for the spatial and temporal

variations in φp. Iverson and George (2014) achieved this by considering how the dila-

tion and contraction of the pore space emanates from the divergence of granular velocity

through the flow depth.

Another aspect to consider is the inclusion of a secondary fine granular phase sus-

pended within the fluid, similar to the scenario discussed in Chapter 4. This could be

accomplished by adjusting the inter-phase interaction term in the model. However, to

calibrate such a model, additional experimental data would be necessary. Given that the

interaction term requires further investigation due to its incomplete scaling description

of experimental results for the Newtonian fluid test case, dedicating time and effort to

this endeavour would be worthwhile.

Similarly, enhancing the DEM-LBM scheme’s efficacy involves refining its mod-

elling assumptions to better align with the behaviour real-world experimental flows. A
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crucial enhancement would entail incorporating surface tension effects into the phase

coupling term, offering insight into granular-fluid flow behaviour in more intricate sce-

narios, such as polydispersed granular mixtures where particle size can be a significant

factor. Notably, Leonardi’s (2015) scheme already accommodates non-Newtonian fluid

rheologies, complementing further experimental research exploring the impact of fluid

rheology on collapse dynamics.

In the context of analysis, the DEM-LBMmodel, initially used solely for runout data

analysis, could provide further benefit through the extraction of basal fluid pressure data.

This has the potential to shed light on how the investigated parameter space influences

the mechanisms governing pressure reduction within the flow.

The model could also be utilised in trying to further understand the effects of con-

ducting granular-fluid flow experiments using a geotechnical centrifuge. A focused ex-

amination of friction’s role in a material’s behaviour, particularly the distinct behaviour

of granular and fluid phases under Coriolis accelerations at small centrifuge radii, is

recommended. In order to better appreciate the dynamics of the fluid saturated case, it

would be pertinent to conduct an investigation that concentrated on collapsing columns

comprised of a single granular or fluid phase.

Finally, considering the limitations of physical laboratory experiments in capturing

the dynamics of granular-fluid flows across a multitude of scales, it is challenging to

directly obtain pore-scale data. Given the significant impact that excess fluid pressures

can have on macro-scale flow dynamics, the DEM-LBM model emerges as an ideal

numerical scheme for investigating grain collision dynamics at the pore-scale. This

exploration holds the potential to solidify our understanding of the mechanisms leading

to excess pore pressure generation which are still an area of great debate in the field of

geophysical flow research.
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Appendix A

Experimental image, pressure and

non-Newtonian fluid data processing

This Appendix details the image and pressure data processing techniques used for the

physical column collapse experiments undertaken in this work. The experimental pro-

cedures followed to acquire the fluid parameters of the non-Newtonian fluid mixtures

used in Chapter 4 will also be briefly discussed. The goal of this Appendix is to provide

further insight and lessons learnt into the data extraction processes that were used during

the project that is potentially missing from the papers presented in previous chapters.

A.1 Image data processing

A.1.1 Image capture

The temporal evolution of the collapses was recorded by two GoPro Hero 8 Black cam-

eras at a resolution of 1080× 1920 pixels and at an acquisition rate of 240 frames per

second. The cameras were mounted approximately 0.4m above the plexiglass to a cam-

era rig that was separately fixed to the centrifuge cradle to increase camera stability.

The cameras were controlled by a computer, connected overWi-Fi, through the Camera

Controller application developed by Meyer (2021). All apparatus components that were

located within the view of the two cameras were coated in a matte black paint to limit

lens glare emanating from reflected light emitted from the lightsheet.

A.1.2 Distortion removal

The GoPro Hero 8 is equipped with a wide angle fish-eye lens which introduces ex-

treme lens distortion into each test image. The Matlab (2020) Computer Vision Toolbox

camera calibration application, which employs the fish-eye camera model calibration al-

gorithm presented by Scaramuzza and Siegwart (2007), was used to undistort the lines
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(a) (b)

Figure A.1: (a) Distorted test image. (b) Undistorted test image where the omnidirec-

tional fish-eye camera model calibration algorithm described by Scaramuzza and Sieg-

wart (2007) has been applied through the use of the Matlab (2020) Computer Vision

Toolbox camera calibration application. The black markers which were used as control

points to transform the image can be seen at the edge of both images.

of perspective in every test image. Briefly, the onmidirectional camera calibration al-

gorithm initially calculates the intrinsic camera parameters, comprised of mapping co-

efficients, the location of the distortion centre and a 2 × 2 stretch matrix, from a set of

calibration images of a target object, a planar checkerboard pattern in this case, where

the location and orientation of the target object is altered from image to image. Along

with the camera extrinsic parameters that relate a world coordinate system to a camera-

relative coordinate system through a 3×1 rotation matrix and a 3×1 translation matrix,

the intrinsic parameters are used to convert the distorted image to an undistorted image

where lines of perspective now appear straight. A typical result from the distortion re-

moval process is shown in Figure A.1. While the images remain 1080× 1920 pixels in

size, the distortion removal process has resulted in the production of black, or ’dead’,

pixels arching above and below the test area.

A.1.3 Image transformation

While obtaining the fixed point coordinates for the control points is straightforward

(see Figure A.1), background vibrations from the movement of the centrifuge and the

release of the steel tube, which initiates the granular column collapse, causes the cam-

eras to shake. This leads to the moving point coordinates of the control points, which are

the pixel coordinates of the control points within the test image, to differ from frame to

frame. Hence, the moving point coordinates must be obtained for every image captured

throughout the duration of the test. The initial moving point coordinates of the control

points are selected by the user from the first test image. The movement of the selected

coordinates within the remaining test images are then tracked by an open source 2D
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FigureA.2: Typical transformed test image where 1 pixel within the image is equivalent

to 0.5mm in the object plane.

Digital Image Correlation (DIC) software Ncorr (Blaber et al., 2015). The DIC algo-

rithm uses image processing techniques to calculate displacements within interrogation

windows, which are small regions of interest, between successive test images. In this

case, the software has been modified to track the evolution of nw interrogation windows

which are 32 × 32 pixels in size and centred on the nw visible control point locations

initially selected by the user within the test image. The relative displacements of these

control points are tracked across each test frame which allows the pixel coordinate loca-

tion of each corner to be calculated for all test images. The sub-pixel accuracy of Ncorr

has been shown to compare favourably to other commercially available DIC softwares

and Finite Element Models (e.g. Harilal and Ramji, 2014) which provides great confi-

dence in the validity of the image transformation as both the moving point coordinates

and the fixed point coordinates can be measured to a high level of accuracy.

From preliminary testing, the relative displacement of a moving control point is gen-

erally less than 5 pixels in the vertical and horizontal coordinate directions relative to an

image’s pixel coordinate system. This suggests that the size of the interrogation window

selected to track the lightsheet corners is sufficient.

The relative vertical and horizontal displacements for a given test image are then

added to the original moving point coordinates to obtain the moving point coordinates

for that test image. During the transformation, a scale factor of 2 is applied meaning

that 1 pixel within the transformed image is equivalent to 0.5mm in the object plane
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which is equivalent to the approximate spatial resolution of the original distorted test

image. This allows morphological flow information to be extracted directly from the

transformed images, an example of which is shown in Figure A.2, at any stage through-

out the evolution of the collapse.

A.1.4 Image masking

Even though the camera shutter speed and aperture settings were set to minimise vari-

ations in the background light intensity provided by the lightsheet, variations near the

source of the light and along the evolving flow front could still be observed. To limit

the effects of this noise during image analysis, while maintaining the structure of the

flow, the test images were masked, where all background pixels were set to a grey scale

pixel intensity of 0 (black), following a common segmentation approach based on in-

tensity thresholding. Whilst other segmentation techniques, based on texture (e.g. Ilea

and Whelan, 2011) or clustering (e.g. Yuheng and Hao, 2017) methods exist, threshold

by intensity segmentation was used due to the significant colour contrast between the

background lightsheet and the foreground flow.

(a) (b) (c)

(d) (e)

Figure A.3: Visual representation of the image masking process. (a) Original cropped

test image. (b) Grey scale cropped test image (pixel intensities within the grey scale

integer range of 0 and 255). (c) Binary test image (pixel intensities within the binary

integer range of 0 and 1). (d) Mask of test image. (e) Original test image with the mask

applied.

To simplify later image analyses, the steel test tube was completely removed from the

majority of test frames by initially cropping the transformed test images and removing

the image pixels found in the upper 45% of pixel rows (Figure A.3a). The in-built

Matlab (2020) function ‘rgb2gray’ was used to set the image colour map to grey scale
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where all pixels within the image were assigned a grey scale intensity value ranging

from 0 (black) to 255 (white) (Figure A.3b). Matlab’s Image Processing Toolbox was

then used to design a threshold segmentation scheme, consisting of image binarisation,

hole filling and region removal stages.

The image binarisation stage was carried out using a grey scale threshold where grey

scale image pixels with an intensity lower than this value are included within the bi-

nary image foreground (pixel intensity of 1), and those with a greater intensity value

are included within the binary image background (pixel intensity of 0) (Figure A.3c).

Through the evaluation of test image histograms, it was deemed that image contrast

enhancement, typically achieved using the adaptive histogram equalisation technique

CLAHE (Zuiderveld, 1994), was not required prior to thresholding due to the extreme

levels of contrast already present between the fluid, the particles and the lightsheet in

the original grey scale images. Otsu’s method (Otsu, 1979), which can be used to ob-

tain the appropriate grey scale threshold of an image, was also disregarded as it was

deemed more appropriate to binarise all images using a singular threshold value given

the consistent lighting conditions produced by the diffused light system.

The resulting binary test images often showed, as seen by the small regions of black

within the white mass in Figure A.3c, that the threshold segmentation incorrectly char-

acterised parts of the image foreground as being a part of the image background. Small

regions of white pixels within the black background of the binary image could also oc-

cur due to small droplets of interstitial fluid resulting from spray during the release of

the steel column. This was corrected by setting pixel regions smaller than the area of the

particle size being tested that were initially characterised as foreground to background

regions. This version of the binary image, displayed in Figure A.3d, was then used to

mask the original RGB test image (Figure A.3e). The entire masking process has been

visually summarised in Figure A.3. For the case of the official experiments, where matte

beads that were either red or yellow in colour were used, an analogous process was fol-

lowed to obtain a mask of the image that only considered the granular phase front. In

this case, instead of using rgb2gray to create the grey scale image, the blue colour chan-

nel of the original image was used instead. Since the fluid phase was dyed blue, this

created extreme contrast between the two phases within the grey scale image.
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A.1.5 Data extraction

With the shape of the two phase fronts captured by independent masks, the final task

is to obtain an average distance measurement between the edge of the two phases (i.e.

the edge of the two masks) and the central position of the original column which has

been referred to in the previous chapters as rv. This was achieved by taking the masks

of the two phases for each test image and converting them to a polar coordinates system

with respect to the radius from the column centre r and the angle θ, where the x and

y directions of the Cartesian image reference frame can be defined in a polar reference

frame as follows

x = r cos θ, (A.1)

y = r sin θ. (A.2)

Dividing the θ domain into 1000 subdomains, the phase front edge could then be ac-

quired from the image masks by extracting the material point that was furthest from the

column centre for each value of θ (Figure A.4b). Hence, the value of rv for the test image

was then defined as the average distance from the column centre of phase v across the

θ domain (Figure A.4c). The phase front extraction process has been described visually

in Figure A.4.

Figure A.4: Visual representation of the data extraction process used to obtain the av-

erage phase front radius of each test image. (a) Original transformed and cropped test

image. (b) Masks of the fluid (top) and granular (bottom) phases transformed to the

polar reference frame where the red markers represent the extracted phase front posi-

tion for each θ subdomain. (c) Example of the final phase front extracted from the test

image (available at http://doi.org/10.17639/nott.7277). The raw (dashed) and

averaged (line) radial positions of the fluid (green) and granular (red) phase fronts are

shown.
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A.2 Fluid pressure data processing

A.2.1 Pressure measurement acquisition

The evolution of basal fluid pressure beneath the centre of the granular columnwasmon-

itored using a Honeywell miniature pressure sensor (Model 24PCDFA6G), positioned

approximately 1mm into the plexiglass surface (refer to Figure A.5). This sensor had

a pressure range of 200 kPa, and its measurement accuracy, determined by calculat-

ing the average reading error when applying a known pressure to the sensor, was within

± 0.1 kPa. The sensor was directly linked to a junction box, which transmitted data to an

NI 9205 Data Acquisition (DAQ) module at a sampling rate of 125 kHz. Subsequently,

the data was relayed to the CompactRIO system situated near the centrifuge’s axis of

rotation, which then transferred it to an external computer for subsequent analysis.

The sensor operates by converting the deformation of a flexible diaphragm into an

electrical voltage output, which can be calibrated to obtain the applied pressure (as de-

tailed in Section A.2.2). It’s important to note that the diaphragms’ dynamic behaviour

can be highly sensitive to chemical changes, highlighting the need to maintain their

cleanliness. When Newtonian fluids were used, a simple post-test rinse with water suf-

ficed to uphold the sensor’s integrity.

However, in the experiments conducted in Chapter 4, where fine kaolin clay parti-

cles were suspended within the fluid phase, additional protective measures were nec-

essary to prevent the kaolin clay from adhering to the diaphragm and altering its de-

formation characteristics. Various strategies were explored, employing filter paper as a

semi-permeable barrier to cover the sensor opening, while still allowing accurate pres-

sure readings. While this approach succeeded at lower gravitational levels, higher fluid

pressures and faster particle velocities frequently led to the filter paper tearing around

the sensor opening, enabling clay particles to enter the sensor. Several sensors were ren-

dered inoperable as a consequence, leading to the decision, as discussed in Chapter 4, not

to collect fluid pressure data for the non-Newtonian fluid experiments. Consequently,

for future projects aiming to measure fluid pressure in fluids containing a suspension

of fine particles, it is recommended to employ pressure sensors that can accommodate

porous stones inserted into them. These stones can act as a barrier to prevent fine parti-

cles from infiltrating the sensor. Numerous manufacturers offer these stones in varying

porosity grades, allowing the system to be configured based on the size of the fine par-

ticles present.
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FigureA.5: Schematic detailing the key components of the pressure acquisition system.

A.2.2 Instrument calibration

This section outlines the general procedure employed to calibrate the pressure sensors

utilised in the experiments. Given that calibration occurred onmultiple occasions during

the project, such as when a sensor required replacement due to damage or to verify that

its calibration parameters had not drifted over time, I am going to refrain from presenting

specific calibration data.

The calibration of the pressure sensor involved a two-step process. Initially, the aim

was to transform the voltage output V from the sensor into a pressure value P equiv-

alent to the hydrostatic pressure exerted by the fluid column directly above the sensor.

This phase of the calibration took place under Earth’s gravity using a simple standpipe

arrangement (refer to Figure A.6). This setup enabled systematic variation of the fluid

level hw up to a height of 3m, equivalent to a hydrostatic pressureP = ρwghw of 30 kPa,

considerably higher than the fluid pressure encountered during centrifuge testing. Util-

ising this data, you could establish a linear relationship between the pressure sensor’s

voltage output V and the externally supplied hydrostatic pressure P , described by the

following expression

V = V0 + aV P, (A.3)
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where V0 represents the y-intercept, and aV signifies the linear gradient.

Figure A.6: Experimental standpipe configuration for pressure sensor calibration in

Earth’s Gravity. A two-way valve is employed to regulate the fluid level above the

pressure sensor, enabling conversion into equivalent hydrostatic pressure. To ensure

complete air bubble removal from the standpipe prior to calibration, both the sensor and

the short section of tubing below the two-way valve are saturated with water before in-

creasing the fluid level.

The second stage of calibration accounted for the pressure sensor’s behaviour within

the elevated acceleration field of the centrifuge. Exposure to the heightened accelera-

tion field alone, considering that the diaphragm’s axis of deformation is perpendicular

to the centrifugal acceleration’s line of action (see Figure 3.2), was adequate to deform

the sensor’s diaphragm and record a change in voltage output. Consequently, calibration

flights were conducted, with the sensor positioned in the experimental apparatus, mim-

icking its placement during official tests and subjected to various, systematic G levels.

This process aimed to determine the voltage output associated with the natural defor-

mation of the diaphragm at test-specific G levels. These flights were executed without

constructing a fluid column on top of the sensor, but the sensor’s opening was filled

with water to maintain the diaphragm’s saturation, as it would be under standard test

conditions. Subsequently, the voltage output corresponding to the natural diaphragm

deformation under elevated acceleration could be subtracted from the signal output of

the column collapse experiments. This ensured that a pressure reading of 0 kPa in the
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signal aligned with the scenario where no fluid column extended above the sensor’s

opening. For a comprehensive description of this pressure sensor calibration method,

the reader is referred to Cabrera (2016).

A.3 Obtaining non-Newtonian fluid material parame-

ters

This section provides an overview of the techniques employed to determine the material

parameters of the non-Newtonian fluids used in the experimental testing discussed in

Chapter 4. The focus is on fluids comprising kaolin clay particles suspended in water.

The key parameters of interest are fluid density ρf , viscosity ηf , and surface tension σf .

A.3.1 Density

The calculation of ρf is straightforward and akin to determining the average column

density ρ as discussed in previous chapters. ρf is obtained as a weighted average of the

mass densities of the water and kaolin clay phases defined as

ρf = Ckρk + (1− Ck)ρw, (A.4)

where Ck is the mass concentration of kaolin clay suspended in water, and ρk and ρw

are the densities of kaolin clay and water, respectively.

A.3.2 Viscosity

As the kaolin-water suspension is non-Newtonian, with shear-rate dependent viscosity,

a representative value for viscosity ηf was required for the scaling analysis. A charac-

teristic shear rate γ̇ was defined relative to the expected free-fall velocity of the column

γ̇ =
√

G/h0. (A.5)

ABrookfield viscometer was used tomeasure the viscosity at various shear rates ranging

between 0.46 s−1 and 92.6 s−1 which are typical shear rates in the drainage and runout

phases of the collapses. Power law functions relating ηf and γ̇ were then fitted for each

test fluid, providing representative viscosity values corresponding to the gravitational

acceleration used in each test. Figure A.7 shows the data collected from the Brookfield
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viscometer tests, and the subsequent power law fits, for the two non-Newtonian fluids

used in Chapter 4 where Ck = [0.1,0.2].
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Figure A.7: Data from the Brookfield viscometer tests for the two non-Newtonian fluid

suspension used in Chapter 4 showing fluid viscosity ηf against shear rate γ̇. The power
law lines of best fit for each kaolin concentration are also shown.

A.3.3 Surface tension

The surface tension of the non-Newtonian fluids were determined using the classic cap-

illary rise method, based on the equilibrium of forces acting on a capillary tube liquid

column (Dole, 1951; Richards and Carver, 1921). A Tensiometer from Duran Wheaton

Kimble was employed for this purpose. The surface tension of the fluid was calculated

using the height difference between the capillary rise and depression hc, introduced by

applying negative and positive pressures within the apparatus

σf =
1

2
hcrcρfg, (A.6)

where rc is the radius of the capillary. Calibrations to g based on latitude, longitude,

and altitude coordinates of the test location were also conducted. Calculation of the

surface tension for each non-Newtonian fluid used throughout Chapter 4 was repeated

five times to ensure a sufficient level of accuracy for the scaling analysis.
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Collapse complexities

The following Appendix details a set of experiments aimed at investigating peculiar

trends observed in the initial stages of pressure signals, as mentioned in Chapters 5 and

6. The pressure complexity will first be highlighted before discussing the methodology

followed to investigate its cause. The methodology as to how this complexity was dealt

with when analysing the pressure signals was summarised previously in Section 5.5.1.

TheAppendix then goes on to investigate how these newfound insights might impact the

conclusions drawn in Chapter 3. Specifically, those concerning the evolution of phase

front separation and the scaling relation described by Equation (3.4).

B.1 Understanding the mechanisms controlling the de-

lay in column release

Figure B.1 displays the unfiltered pressure signal P against t∗h0
for the collapse of a col-

umn filled with only water atG = 45.22m s−2. In theory, the collapse of an unconfined

fluid column should yield a hyperbolic pressure dissipation curve, corresponding to the

gradual loss of hydrostatic pressure over time. However, in our experiments, prior to

the anticipated smooth dissipation curve, there is an initial drop in pressure, followed

by a subsequent increase, ending at t∗h0
≈ 1. This phenomenon has been consistently

observed in terms of magnitude and timescale, suggesting that the experimental setup

exerts external forces on the collapsing mixture.

This behaviour was first investigated by analysing the force balance of the column

lifting mechanism under an elevated gravitational acceleration (as illustrated in Fig-

ure B.2). Assuming a frictionless pulley system and that the mass of the steel cylinder

Mc is always less than themass of the steel mass used to lift the columnMm, the resultant

force of the system Fr is given by

Fr = Fm − Fc, (B.1)
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Figure B.1: Evolution of the raw basal fluid pressure signal with t∗h0
for a water only

collapse atG = 45.22m s−2. The dotted lines align with the times at which theminimum

and maximum pressure of the pressure dip occur.

where Fm = GMm and Fc = GMc are the weights of the steel mass and the steel

cylinder, respectively. Consequently, the resultant acceleration of the system ar can be

calculated as

ar =
Fr

Mm +Mc

. (B.2)

Considering that the free surface of the collapsing mixture accelerates towards the hor-

izontal plane with an acceleration of G, the time at which point the free surface of the

collapsing mixture is in line with the bottom of the steel cylinder tmeet can be determined

as

tmeet =

√
h0

G+ ar
. (B.3)

For the collapse scenario shown in Figure B.1, where h0 = 50mm, Mm = 3.6 kg and

Mc = 0.92 kg, tmeet = 0.0263 s. Nondimensionalising tmeet by tI yields t
∗
meet = 0.79.

This theoretical value of the instance where the collapsing mixture is no longer in con-

tact with the steel cylinder, is a good approximation of when the dip in pressure in the

experiment reaches its minimum at t∗h0
≈ 0.73. The maximum of the subsequent rise

in pressure occurs just after t∗h0
= 1 which is when the free surface of an unconfined

column would be expected to collide with the horizontal plane.
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Based on a detailed analysis of collapse images and pressure data, we formulated

a qualitative hypothesis for this mechanism. Upon collapse initiation, the significant

acceleration of the steel cylinder relative to the initial motion of the collapsing column

induces viscous shear stresses between the two surfaces that are capable of partially

lifting the collapsematerial. This results in a reduction in pressure applied to the pressure

sensor, reaching a minimum at t∗h0
≈ t∗meet when the column is theoretically no longer in

contact with the cylinder. The subsequent rise in pressure is attributed to the dynamic

pressure generated by the lifted material impacting the horizontal plane, ceasing at t∗h0
≈

1 when the free surface of the collapsing material collides with the horizontal plane.

Figure B.2: Schematic of the force balance during the column lifting process.

To validate this hypothesised mechanism and gain a deeper understanding of this

effect, a series of purely fluid column collapse experiments were conducted where ηf ,

h0, Mm, G, the roughness of the cylinder and, the ability for air to enter the top of the

cylinder were all varied. Table B.1 summarises these experiments, while the unfiltered

pressure signals from these tests are presented in Figure B.3 in t∗h0
-P space where test

w05005H has been used as a reference case in each subplot.

Figure B.3a demonstrates that both the roughness of the internal cylinder wall and

the fluid viscosity have little influence on the magnitude and timescale of the dip and

rise effect. Even in the case of Test g05005H, which uses the most viscous fluid used

throughout all centrifuge testing, the timing of the peak of the rise is only offset by

approximately 0.25tI from the w05005H which uses a fluid phase of water. Hence, for

the range of viscosities studied, the shear stress between the fluid and the steel cylinder

appears significant enough to lift a proportion of the collapsing column as the steel
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Table B.1: Summary of the experiments performed to better understand the influence

of the column lifting mechanism.

Test ID h0 (mm) ηf (cP) G (m s−2) Mm (kg) Notes

w05005H 50 1.0 45.2 3.6

g05005H 50 156.8 45.2 3.6

w05005L 50 1.0 45.2 2.6

w10005L 100 1.0 45.2 2.6

w05005H1 50 1.0 45.2 3.6 Air inflow reduced by half.

w05005H2 50 1.0 45.2 3.6 No air inflow.

w05005HSP 50 1.0 45.2 3.6 Cylinder interior lined

with 240 grit sandpaper.

g05014H 50 15.7 137.4 3.6

cylinder accelerates away from the horizontal plane.

Figure B.3b illustrates the impact that varyingG has on this behaviour. IncreasingG

by a factor of three results in a proportional increase in pressure difference between the

maximum and minimum pressures of the dip. The duration of the dip appears to scale

with tI .

Figure B.3c presents a subset of experiments aimed at investigating whether the phe-

nomenon is due to suctions induced by insufficient air volume displacing the collapsing

material as the cylinder is lifted. The results indicate that covering one of the holes at

the top of the cylinder leads to no change in behaviour, implying that the effect persists

even when air flow into the top of the cylinder is reduced by half. Completely sealing

the top of the cylinder induced significant suctions between the cylinder wall and the

collapse material, causing the entire column to be lifted and negative pressures to be

induced. Therefore, it was concluded that the level of air flow into the top of the tube

was not the primary source of the lifting behaviour.

Figure B.3d explores the influence of cylinder lifting speed and the initial height of

the column. Reducing the lifting speed of the column by decreasing the mass of the

steel mass results in a pressure dip of similar magnitude to the reference test w05005H,

with t∗meet shifted by approximately 0.41. This is likely due to the fact that, at collapse

initiation, the gap between the bottom edge of the rising column and the horizontal

plane over which the collapse spreads widens more slowly. Consequently, the rate of

fluid discharge from the centre of the column is reduced because the rising column can

interfere with the motion of the fluid for a longer duration.
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Figure B.3: Evolution of the raw basal fluid pressure P signals with t∗h0
for the different

experiments performed to investigate the influence of the column lifting mechanism.

The effects of (a) column roughness and viscosity, (b) gravitational acceleration, (c) the

entry of air into the column, and (d) the mass of the steel mass used to lift the column

were all considered.

Conversely, increasing the initial height of the column, alongwith a lighter steelmass,

results in an increase in pressure variation proportional to the increase in surface area and

a shift in t∗meet by approximately 0.07. In this case, the reduced discharge rate due to the

slower column release speed is mostly compensated for by the increased pressure head

of the taller column, leading to a reduction in the offset. The increased contact area

results in greater viscous effects between the collapse material and the column wall,

causing more fluid to be lifted along with the column and a larger reduction in pressure

during the early stages.

B.2 Quantifying the delay of the granular column re-

lease

The issues concerning the column lifting mechanism emerged later in the project, par-

ticularly during the numerical modelling phases outlined in Chapters 5 and 6. Conse-

quently, it becomes essential to evaluate its implications on the findings drawn from the
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Table B.2: Summary of tgap values across the examined G-dp parameter space. t∗gap
values for each inertial particle size are also shown.

G (m s−2)
tgap (s)

dp = 2mm dp = 4mm dp = 6mm dp = 8mm

9.81 0.026 0.037 0.045 0.052

45.22 0.012 0.017 0.021 0.024

137.64 0.007 0.010 0.012 0.014

275.45 0.005 0.007 0.009 0.010

t∗gap 0.367 0.519 0.636 0.735

physical experiments detailed in Chapters 3 and 4. One crucial aspect to consider is the

time delay between the initiation of collapse, where the fluid phase begins to flow from

the column, and the onset of lateral motion in the granular material. Calculating the time

required for the gap between the column and the horizontal plane to equal the inertial

grain diameter, denoted as tgap, proves to be a logical step.

Utilising Equation (B.2), with given parameters Mm = 3.6 kg, Mc = 0.92 kg, and

ar = 0.593G, and considering the initial rest state of the cylinder, we can express the

time taken for the column to raise by a distance S as follows:

S =
1

2
art

2. (B.4)

By rearranging Equation (B.4) for t and substituting the inertial particle height dp for S,

tgap can be determined. Asummary of relevant tgap values across the examined parameter

space is presented in Table B.2. Intuitively, tgap is a function of bothG and dp, increasing

linearly with the square root of both variables. Hence, defining a dimensionless version

of tgap, denoted as t
∗
gap, by normalising it by the inertial timescale of the collapse

√
h0/G

proves useful. As shown in Table B.2, t∗gap is solely dependent on dp and, again, increases

linearly with the square root of the variable.

B.3 Influence of the column releasemechanismonphase

front separation

Given that the release mechanism results in a delay in the release of the granular phase,

it is imperative to reassess prior conclusions concerning phase separation evolution. As

discussed in Section 3.4, Figure 3.6 depicted the variation in the temporal evolution

of phase front separation due to variations in dp and G. A modified version of this
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Figure B.4: Temporal evolution of the normalised distance between the phase fronts

(rf − rp)/rf against normalised time t∗h0
for all particle sizes dp at (a) G = 9.81m s−2,

(b) G = 45.22m s−2, (c) G = 137.64m s−2, and (d) G = 275.45m s−2 upstream of

centrifuge motion.

figure, represented as Figure B.4, presents (rf − rp)/rf plotted against t
∗
h0
, allowing for

the identification of reference times corresponding to the points where the column has

ascended by one and three particle diameters, denoted as t∗h0
= t∗gap and t∗h0

=
√
3t∗gap,

respectively.

Figure B.4 reveals that in all collapse tests, a significant portion of phase separation

occurs prior to time t∗h0
= t∗gap, while the maximum phase separation is attained closer

to time t∗h0
=

√
3t∗gap. Thus, the initial increase in phase separation can be attributed

to the granular phase being restrained by the rising column during the initial collapse

stages. Consequently, this initial phase separation is influenced by the column lifting

mechanisms and accounts for the observed variations dependent on G and dp. It is

noteworthy that with a maximum value of 1.3 for
√
3t∗gap within the tested parameter

range, the confinement of the granular phase spans only a small fraction of the total

collapse duration (approximately 15% in the most extreme cases).

Therefore, the assertions made in Chapter 3 concerning the dependence on G and dp

during the stage of collapse where the granular phase begins to converge with the fluid

phase remain pertinent. Future investigations should prioritise exploring the impact of

column release velocity on phase separation dynamics. Specifically, emphasis should
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be placed on understanding its influence on the time of maximum phase separation at-

tainment, which in the present scenario occurs at approximately t∗h0
=

√
3t∗gap.

B.4 Influence of the column releasemechanismon runout

scalings
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Figure B.5: Temporal evolution of the normalised fluid runout length r∗f , scaled byDf,L,

where (a) L = h0, and (b) L = dp, with timescale t∗h0
, for varying particle sizes dp and

values of N downstream of centrifuge motion.

To validate the scaling relations found through the dimensional analysis and param-

eter space reduction outlined in Chapter 3 (specifically represented by Equation 3.4),

it is important to reinterpret the evolution of the phase front runout in a dimensionless

framework, as implied by these scaling relations. The evolving parameter of interest

for this assessment is the normalised phase front runout r∗v divided by the scaling fac-

tor Dv,L = (Bo/Ca)α(ρ∗)β(r∗)γ , where the exponents α, β, and γ correspond to those

stated in Table 3.3 for the pertinent quantity of interest, Frv,L. For instance, in the case

where v = f and L = h0, the exponents [α, β, γ] = [ -0.02, 0.08, -0.25].

To achieve a dimensionless representation, the temporal domain is once again nor-

malised by employing t∗h0
. Consequently, Figures B.5 and B.6 depict the temporal pro-

gression of the scaled phase front runout in r∗vDv,L-t
∗
h0

space for the fluid (v = f ) and
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Figure B.6: Temporal evolution of the normalised particle runout length r∗p, scaled by

Dp,L, where [(a), (b)] L = h0, and [(c), (d)] L = dp, with timescales t∗h0
[(a), (c)], and

t∗h0
−

√
2t∗gap [(b), (d)], for varying particle sizes dp and values of N downstream of

centrifuge motion.

granular (v = p) phases, respectively. For the evolution of the fluid phase fronts , scal-

ing the system by Df,h0 (Figure B.5a) results in a reasonably good collapse of the test

curves during the early stages of the collapse. This is somewhat expected as the scal-

ing is derived from the peak velocity of the phase front. However, deviations become

apparent during the deceleration phases of the collapse, where capillary effects become

more significant, as discussed in Chapter 3.

Figure B.5b, where the system is scaled byDf,dp , exhibits a more pronounced spread

at the early stages of the collapse, but the general trends observed in Figure B.5a persist.

Notably, tests conducted with a granular phase comprised of 2mm particles show the

greatest deviation during the early collapse stages. Consequently, the scaling relation,

predicated on the assumption of negligible surface tension effects, begins to falter for

these smaller particle sizes.

Similar conclusions can be made from the scaled runout behaviour of the granular

phase front (Figures B.6a and B.6c), where the collapse is generally satisfactory during

the acceleration phase but demonstrates increasing deviation as the flows decelerate.

However, unlike the scaled fluid phase fronts, a significant temporal lag is present be-

tween the experiments, largely dependent on particle size. This lag likely stems from
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the release delay of the granular material due to the column lifting mechanism.

To address this, Figures B.6b and B.6c apply a temporal shift to the collapses equiva-

lent to
√
2t∗gap, representing the time taken for a gap equivalent to two particle diameters

to open up between the horizontal runout plane and the base of the column. The shift,

especially evident in Figure B.6, results in a better collapse of the test curves, suggesting

that the scaling relations do not adequately account for the release delay of the granular

material, which is an effect arising from the experimental configuration.

Overall, the scaling relations demonstrate a significant degree of data collapse during

the initial stages of the flow, which is promising given that the scaling was derived from

the peak velocity of the phase front. However, as the flows decelerate and the influence

of capillary effects between the granular and fluid phases becomes more pronounced,

the scaling relations begin to break down. Although the scaling relations overlook the

release delay of the granular phase, it appears that this can be rectified by adjusting the

collapse by a timescale of
√
2t∗gap. Further investigations are warranted to optimise this

temporal shift and understand its variation with column lifting speed.
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Appendix C

Shallow water model derivation

The following Appendix outlines the derivation of the two-phase shallow water model

employed in Chapter 5 to replicate the experiments on fluid-saturated column collapses

outlined in Chapter 3. Beginning with the basics of continuum mixture theory, it ex-

plains the steps taken to formulate a mathematical representation of an undersaturated

two-phase granular mixture, moving within a axisymmetric coordinate framework. This

derivation leads renders a system of equations, which are refined in Chapter 5 to effec-

tively simulate high-g collapse scenarios.

C.1 Governing equations

In order to replicate the flow dynamics observed in the experiments detailed in Chap-

ter 3, the theoretical model will describe the grains and the fluid as two continuum

phases with constant specific densities ρv, where v = p, f for the granular and fluid

phases, respectively.

Continuum mixture theory (Morland, 1992) will provide the framework to describe

the equations governing the behaviour of each phase. The theory is based on the idea

that both phases occupy each spatial point within the flow concurrently, where the vol-

umetric proportion of each phase is described by its volume fraction φv. Hence, under

the assumption of a fully saturated granular phase,

φp + φf = 1. (C.1)

As such, the mass continuity equations for the granular and fluid phases are

∂t(ρpφp) +∇ · (ρpφpup) = 0, (C.2)

∂t(ρfφf ) +∇ · (ρfφfuf ) = 0, (C.3)
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and the respective momentum continuity equations are

ρpφp[∂t(up) + (up ·∇)up] = −∇ · σp + ρpφpg + βp, (C.4)

ρfφf [∂t(uf ) + (uf ·∇)uf ] = −∇ · σf + ρfφfg + βf , (C.5)

where uv and σv are the velocities and the symmetric stress tensors for each phase.

Gravitational acceleration vector is denoted as g whileβv is the interaction force exerted

on the v phase by the other. Newton’s third law implies that βp + βf = 0 resulting in

no mass being transferred between the two phases.

Following the work of de Boer and Ehlers (1990) andMeng et al. (2022), the granular

stress tensor is defined as

σp = φppfI + σ′
p, (C.6)

where I is the unit tensor, pf is the fluid pressure within the mixture and σ′
p is the effec-

tive granular stress which only considers the contribution of inter-particle contact forces

(Terzaghi, 1943). The fluid stress tensor can also be decomposed into two components

σf = φfpfI − τf , (C.7)

where τf is the deviatoric stress tensor for the fluid. Given the rheological behaviour

of the fluids used within the experiments, it is assumed that τf can be described by a

Newtonian fluid rheology.

τf = φfηf [∇uf + (∇uf )
T ], (C.8)

where ηf is the constant dynamic viscosity of the fluid phase and T is the transpose.

Typically, as in Bouchut et al. (2015), the interaction terms, βf and βp, can be de-

constructed into two components

βf = −βp = fB + f = −φf∇pf + f , (C.9)

where fB is the contribution of the buoyancy force −φf∇pf and f is the remaining

interphase body force consisting of the contributions from the drag force, virtual mass

force and lift force (Phan et al., 2022). Following the derivation of Meng et al. (2022),

the −φf∇pf term will be amalgamated with the partial fluid pressure gradient term

−∇(φfpf ) term which arises when Equation (C.7) is substituted into Equation (C.5)

confirming that the dynamics of the fluid is governed by the pore water pressure gradient
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−φf∇pf which is in accordance with Darcy’s law (Morland, 1992).

As was done by Bouchut et al. (2016), it is assumed that f can be well approximated

as an interphase Darcy drag force resulting from the relative motion of the two phases

f = Cdd(up − uf ), (C.10)

with the drag coefficient Cdd taking the form of that described by Pailha and Pouliquen

(2009) and Iverson and George (2014)

Cdd = ηf
φ2
f

k
, (C.11)

where the permeability of the granular phase k is described using Carman’s formula for

a packing of monodispersed spheres with diameter dp

k =
φ3
fd

2
p

180φ2
p

. (C.12)

Substituting Equations (C.6), (C.7) and (C.9) into Equations (C.4) and (C.5), the mo-

mentum conservation equations for both phases can be rewritten as

ρpφp[∂t(up) + (up ·∇)up] = −∇ · σ′
p − φp∇pf + ρpφpg + Cdd(uf − up), (C.13)

ρfφf [∂t(uf ) + (uf ·∇)uf ] = ∇ · τf − φf∇pf + ρfφfg + Cdd(up − uf ), (C.14)

for a fully saturated mixture. Equation (C.14) reduces to the Navier-Stokes equation for

a pure Newtonian fluid when φf = 1 and assuming that the interaction force between

the two phases is 0. Similarly, Equation (C.13) can take the form of a momentum conti-

nuity equation for a dry granular material by setting φf = 0 and assuming that both the

buoyancy force and the interaction force are 0.

C.2 Boundary conditions

For the purposes of generality, consider that the two-phase flow being modelled ad-

vances down a slope with an angle of inclination ζs (see Figure C.1). We also define a

two-dimensional Cartesian coordinates system, Oxz, where the x-axis is directed down

the slope and the z-axis is directed upwards. It is straightforward to describe this model
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Figure C.1: Sketch of a 2-D slice of an undersaturated granular flow travelling down an

incline modelled as two coupled continuum phases.

in three dimensions by adding another coordinate directed across the slope y, but for

simplicity, the current model will only consider the two former dimensions. Hence,

the phase velocity uv can be broken down into components pointing down the slope

and perpendicular to the slope such that uv = [uv, wv]. Similarly, σ′
p, τf and g can

also be deconstructed into components relative to the defined Cartesian axis such that

σ′
p = [σ′

p,xx, σ
′
p,zz, σ

′
p,xz], τf = [τf,xx, τf,zz, τf,xz] and g = [g sin ζs, g cos ζs] where g is

the magnitude of the gravitational acceleration parallel to the z-axis, respectively. As

done by Iverson and Denlinger (2001), a local right-handed sign convention is adopted

to define the acting direction of the stress and velocity components where the normal

stress components (i.e. σ′
p,xx, σ

′
p,zz, τf,xx and τf,zz) are positive in compression.

The granular and fluid surfaces can be defined by the functions F p(x, z, t) = z −
sp(x, t) and F f (x, z, t) = z − sf (x, t), respectively, while the basal surface is charac-

terised by F b(x, z, t) = z − b(x). Hence, the upward pointing normal vector for each

surface nv = ∇F v/|∇F v| with v = p, f, b. Given that both the granular and fluid

phases are constrained by the kinematic condition F v(x, t) = 0 at each of their respec-

tive free surfaces, we can expand these conditions to their component form as follows

∂t(s
p) + up∂x(sp)− wp = 0, z = sp(x, t). (C.15)

∂t(s
f ) + uf∂x(sf )− wf = 0, z = sf (x, t). (C.16)

Similarly, as the model does not consider the erosion of the slope, meaning that F b(x) =
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0, we can also define the following conditions at the basal surface

∂t(b) + up∂x(b)− wp = 0, z = b(x). (C.17)

∂t(b) + uf∂x(b)− wf = 0, z = b(x). (C.18)

For the purposes of simplifying the model, it is assumed that the granular phase is al-

ways either exactly saturated or undersaturated. This is deemed a reasonable assumption

given the relatively large diameters of the particles used to experimentally model the

granular phase even though it is likely to be violated by many model solutions. Hence,

sf ≤ sp is always true meaning that in the undersaturated regime, the position of the

interface between dry and saturated granular material is located at sf . Given that the po-

sition of sf varies spatially and temporally, the volume fraction of the material crossing

sf would change suddenly. For example, the volume fraction of the fluid jumps from

φf = 0 above sf to φf = 1 − φp below sf . As such, we use the mass jump condition

presented by Chadwick (1999) to express this behaviour at the interface

[[ρpφp(∂t(s
f ) + up∂x(s

f )− wp)]] = 0, z = sf (x, t), (C.19)

where [[ ]] are jump brackets that designate the variation of the enclosed quantity either

side of the discontinuity.

We also assume that both phases are not subjected to external stresses at their free

surfaces in either the downslope or slope normal directions

−σ′
p,xx∂x(s

p) + σ′
p,xz = 0, z = sp(x, t). (C.20)

−σ′
p,xz∂x(s

p) + σ′
p,zz = 0, z = sp(x, t). (C.21)

φfpf∂x(s
f )− τf,xx∂x(s

f ) + τf,xz = 0, z = sf (x, t). (C.22)

−φfpf − τf,xz∂x(s
f ) + τf,zz = 0, z = sf (x, t). (C.23)

Based on the findings of the large-scale chute tests of Iverson (2003), the tangential

movement of the granular phase will be constrained by a Coulomb-style basal friction

boundary condition in both the downslope and slope normal directions

−σ′
p,xx∂x(b) + σ′

p,xz = −(nb · σ′
pn

b)

[
ub
p

|ub
p|
µb|∇F b|+ ∂x(b)

]
, z = b(x). (C.24)
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−σ′
p,xz∂x(b) + σ′

p,zz = −(nb · σ′
pn

b)

[
wb

p

|ub
p|
µb|∇F b| − 1

]
, z = b(x). (C.25)

where µb is the basal friction coefficient. Similarly, the basal friction boundary condi-

tions for the fluid phase will be modelled utilising the Chézy formula (Chaudhry, 2008).

−τf,xx∂x(b) + τf,xz + [φfp
b
f + (nb · σfn

b)]∂x(b) = ρfCf ūf |ūf ||∇F b|, z = b(x).

(C.26)

−τf,xz∂x(b)+τf,zz−[φfp
b
f+(nb ·σfn

b)] = ρfCf w̄f |ūf ||∇F b|, z = b(x). (C.27)

where Cf is the Chézy drag coefficient which accounts for turbulent friction along the

horizontal plane, ūf is the depth averaged fluid velocity and ūf and w̄f are the x and z

components of the depth averaged fluid velocity, respectively.

C.3 Scaling the system

It is typical for natural scale debris flows to have a characteristic flow depth H that

is significantly smaller than their characteristic length L such that their aspect ratio

ε = H/L � 1 (Iverson, 1997). This assumption allows for the development of a more

computationally efficient model consisting of a depth averaged system of equations, in-

dependent of the slope-normal z-direction. To develop this model, it is beneficial to

scale the mass and momentum conservation equations to assess the comparative influ-

ence of each term on the motion of the flow. To do this, we follow the logic of Meng et

al. (2017) and assume that the downslope speed of both phases U =
√
gH where L and

H are the characteristic length scales of the x and z axes, respectively. This suggests

that the slope-normal phase velocities can be scaled by εU . Hence, the characteristic

timescale of the mass movement is assumed to be t = L/
√
gH while the granular and

fluid stresses are scaled by the expected lithostatic pressure ρpgH and the Newtonian

fluid rheology defined in Equation (C.8), respectively. We also assume that Cdd scales

with ρf
√

g/H . The full set of scalings for the governing equations and boundary con-

ditions are as follows

(x, z, sf , sp, b, dp) = L(x̂, εẑ, εŝf , εŝp, εb̂, εd̂p), t = L/
√
gHt̂,

(uv, wv, |uv|) =
√
gH(ûv, εŵv, |ûv|), Cdd = ρf

√
g/HĈdd,

(σ′
xx, σ

′
zz, σ

′
xz) = ρpgH(σ̂′

xx, σ̂
′
zz, σ̂

′
xz),

(pf , τf,xx, τf,zz, τf,xz) = ρfgH(p̂f , ετ̂f,xx, ετ̂f,zz, τ̂f,xz),


(C.28)
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where the hatted variables are dimensionless. Applying the scalings in Equation (C.28)

to Equation (C.2) and Equation (C.13), and removing the common factors, the dimen-

sionless mass and momentum equations for the granular phase are

∂t̂(φp) + ∂x̂(φpûp) + ∂ẑ(φpŵp) = 0, (C.29)

ε[∂t̂(φpûp) + ∂x̂(φpûpûp) + ∂ẑ(φpûpŵp)] = −ε∂x̂(σ̂
′
p,xx)− ∂ẑ(σ̂

′
p,xz)− εγ∗∂x̂(φpp̂f )

+ φp sin ζs + γ∗Ĉdd(ûf − ûp), (C.30)

ε2[∂t̂(φpŵp) + ∂x̂(φpûpŵp) + ∂ẑ(φpŵpŵp)] = −ε∂x̂(σ̂
′
p,xz)− ∂ẑ(σ̂

′
p,zz)− γ∗∂ẑ(φpp̂f )

− φp cos ζs + εγ∗Ĉdd(ŵf − ŵp), (C.31)

where γ∗ is the density ratio between the two phases such that γ∗ = ρf/ρp. Similarly,

applying the scalings in Equation (C.28) to Equation (C.3) and Equation (C.14), and

again removing the common factors, the dimensionless mass and momentum equations

for the fluid phase are

∂t̂(φf ) + ∂x̂(φf ûf ) + ∂ẑ(φf ŵf ) = 0, (C.32)

ε[∂t̂(φf ûf ) + ∂x̂(φf ûf ûf ) + ∂ẑ(φf ûf ŵf )] = ε2∂x̂(τ̂f,xx) + ∂ẑ(τ̂f,xz)− ε∂x̂(φf p̂f )

+ φf sin ζs + Ĉdd(ûp − ûf ), (C.33)

ε2[∂t̂(φf ŵf ) + ∂x̂(φf ûf ŵf ) + ∂ẑ(φf ŵf ŵf )] = ε∂x̂(τ̂f,xz) + ε∂ẑ(τ̂f,zz)− ∂ẑ(φf p̂f )

− φf cos ζs + εĈdd(ŵp − ŵf ). (C.34)

While the scaling process suggests that any term of O(ε) or higher is negligible and

could be discarded, as discussed by Savage and Hutter (1989), removing the longitu-

dinal stress components from the x-direction momentum equations would result in an

oversimplified model that is incapable of simulating debris flow motion. Hence, O(ε)

or higher order terms are only removed from the momentum balances in the z-direction.
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C.4 Depth integration

C.4.1 Mass continuity equations

In order to formulate a depth averaged system, each equation has to be integrated up

to the relevant phase’s respective flow height hv using Leibniz’s rule (Flanders, 1973)

which allows the order of the differentiation and integration operations to be inter-

changed as follows∫ z0+z1

z0

∂x(S) dz = ∂x

(∫ z0+z1

z0

S dz

)
− S|z0+z1∂x(z0 + z1) + S|z0∂x(z0), (C.35)

where z0 and z1 are arbitrary surfaces dependent on z and S is an arbitrary scaler quan-

tity. To further simplify the complexity of the modelled flow, as done by many previous

authors (e.g. Iverson, 1997; Iverson and Denlinger, 2001; Meng et al., 2022, 2017), we

assume that

φp = φc, (C.36)

where φc is a constant in space and time. While this has been shown to be a reasonable

assumption in debris flows whose behaviour are dominated by granular inertia (Iverson

and Denlinger, 2001; Meng et al., 2022), as is the case with the current experimen-

tal configuration, this approximation inherently assumes a hydrostatic pressure profile.

Hence, the model does not consider the influence of excess pore pressures that can arise

from the partial, or full, suspension of the granular phase (Kaitna et al., 2016). As such,

a spatially and temporally dependent closure equation for φp may need to be consid-

ered if the particle size distribution of the debris flow is expected to contain significant

amounts of fine granular material (see Iverson and George, 2014; Kowalski and McEl-

waine, 2013; Pitman and Le, 2005). As it is assumed that the flow is always fully or

undersaturated, φf can be described by

φf =

1− φc, z ∈ [b, sf ],

0, z ∈ [sf , sp].
(C.37)

By integrating Equation (C.29) and noting that φp is a constant, we can obtain the depth

averaged mass conservation equation for the granular phase

∂t̂(φpĥp) + ∂x̂(φphp ˆ̄up) + [[φp(∂t̂(ŝ
f ) + ûp∂x̂(ŝ

f )− ŵp)]] = 0, (C.38)
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where the [[φp(∂t̂(ŝ
f ) + ûp∂x̂(ŝ

f ) − ŵp)]] describes the difference in the value of the

bracketed quantity between ŝp and the granular-fluid interface in the undersaturated

regime at ŝf . Using Equation (C.19) to account for [[φp(∂t̂(ŝ
f ) + ûp∂x̂(ŝ

f )− ŵp)]] and

rewriting φp using Equation (C.36), we can rewrite the depth averaged mass continuity

equation for the granular phase as

∂t̂(ĥp) + ∂x̂(ĥp ˆ̄up) = 0. (C.39)

Without needing to consider an interfacial surface when integrating up to the fluid free

surface, simply integrating Equation (C.32) and applying Equation (C.37) leads to the

following dimensionless mass continuity equation for the fluid phase

∂t̂(ĥf ) + ∂x̂(ĥf ˆ̄uf ) = 0. (C.40)

C.4.2 Normal components of the momentum continuity equations

By only considering the fluid saturated region of the flow, notice that by applying the

limit ε → 0 to Equation (C.34), it can be shown that the fluid is hydrostatic

∂ẑ(p̂f ) = − cos ζs. (C.41)

Due to the scaling, velocities in the z-momentum equations cancel, which is a key result

of the thin/shallow-water flow approximation (Savage and Hutter, 1989). Integrating

Equation (C.41) and imposing the free surface boundary condition in Equation (C.23)

to leading order accuracy, we obtain

p̂f = cos ζs (ŝ
f − ẑ), ẑ ∈ [b̂, ŝf ]. (C.42)

As such, the dimensionless fluid pressure at the basal surface is

p̂f |b̂= cos ζs ĥf , ẑ = b̂. (C.43)

Hence, the depth averaged fluid pressure is

ˆ̄pf =
1

ĥf

∫ ŝf

b̂

p̂f dẑ =
1

2
cos ζs ĥf . (C.44)
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Writing Equation (C.31) to leading order accuracy, the z-momentum balance for the

saturated granular material reduces to

∂ẑ(σ̂
′
p,zz) = −φc cos ζs − γ∗φc∂ẑ(pf ). (C.45)

A similar equation for the dry granular material can be developed given that the contri-

butions of fluid phase would vanish

∂ẑ(σ̂
′
p,zz) = −φc cos ζs. (C.46)

Following the logic of Meng et al. (2022), by assuming a continuous velocity profile

with depth, there will be no jump in granular effective normal stress across the inter-

facial surface. Hence, integrating Equations (C.45) and (C.46), imposing the relevant

boundary conditions at the free surfaces and applying Equation (C.41), we obtain

σ̂′
p,zz =

φc cos ζs (ŝ
p − ẑ)− γ∗φc cos ζs (ŝ

f − ẑ), ẑ ∈ [b̂, ŝf ],

φc cos ζs (ŝ
p − ẑ), ẑ ∈ [ŝf , ŝp].

(C.47)

The dimensionless granular normal stress at the basal surface is

σ̂′
p,zz(b̂) = φc cos ζs (ĥp − γ∗ĥf ), ẑ = b̂. (C.48)

Therefore, the slope normal granular stress is defined as the buoyancy adjusted overbur-

den stress of the granular material (Pitman and Le, 2005). The depth averaged granular

stress can then be calculated as

ˆ̄σ′
p,zz =

1

ĥp

(∫ ŝf

b̂

σ̂′
p,zz dẑ +

∫ ŝp

ŝf
σ̂′
p,zz dẑ

)
=

1

2
φc cos ζs ĥp

1− γ∗

(
ĥf

ĥp

)2
 .

(C.49)

C.4.3 Horizontal components of the granular momentum continu-

ity equations

Following the process of many previous authors, we can relate the downslope normal

stress ¯̂σp,xx to the slope-normal normal stress ¯̂σp,zz using a lateral Earth pressure coeffi-
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cient kact/pass which can be derived from Coulomb theory

¯̂σ′
p,xx = kact/pass ¯̂σ

′
p,zz, (C.50)

where the value of kact/pass is dependent on whether the material is contracting

(kact/pass > 1) or dilating (kact/pass < 1). However, we, like previous authors (e.g.

Iverson and Denlinger, 2001), choose to assume a statically indeterminate stress state

by taking kact/pass to be equal to unity, implying that

¯̂σ′
p,xx = ¯̂σ′

p,zz =
1

2
φc cos ζs ĥp

1− γ∗

(
ĥf

ĥp

)2
 . (C.51)

As such, using Equations (C.25) and (C.48), the dimensionless effective granular normal

stress at the basal surface can be written as

nb · σ̂′
pn

b = σ̂′
p,zz(b̂) = φc cos ζs ĥp

(
1− γ∗ ĥf

ĥp

)
, ẑ = b̂. (C.52)

Hence, using the scaling relations in Equation (C.28), a dimensionless version of Equa-

tion (C.24) can be written as

− σ̂p,xx(b̂)
′∂x̂(b̂) + σ̂′

p,xz(b̂) =

− φc cos ζs ĥp

(
1− γ∗ ĥf

ĥp

)(
ûb
p

|ûb
p|
µb + ε∂x̂(b̂)

)
, ẑ = b̂, (C.53)

where, for simplicity, it is assumed that ûb
p/|ûb

p| ≈ ˆ̄up/|ˆ̄up| (e.g. Pudasaini, 2012). Given
that φp is a constant, The left-hand side of Equation (C.30) can be rewritten as

LHS = ε[∂t̂(φcûp) + ∂x̂(φcûpûp) + ∂ẑ(φcûpŵp)]. (C.54)

Again, by dividing the integration across the depth of the granular material into two

components, based on the location of the interfacial surface, using Leibniz’s rule to in-

terchange the order of integration and differentiation operations and applying the kine-

matic boundary conditions for the granular phase at the basal (Equation C.17) and gran-
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ular surfaces (Equation C.15),∫ ŝp

b̂

LHSdẑ =

∫ ŝf

b̂

LHSdẑ +

∫ ŝp

ŝf
LHSdẑ

= ε∂t̂(ĥpφc ˆ̄up) + ε∂x̂(ĥpφc(ûp)2)

+ ε[[φcûp

(
∂t̂(ŝ

f ) + ûp∂x̂(ŝ
f )− ŵp

)
]],

(C.55)

where, similar to Equation (C.38), the term in the jump brackets is equal to 0 provided

that the flow velocity profile is continuous across its depth. To simplify the convective

term in the momentum equations further, we assume that

(ûv)2 =
1

ĥv

∫ ŝv

b̂

(ûv)
2 dẑ = (ˆ̄uv)

2, (C.56)

where v = f, p depending on the phase of interest. It should be noted that, given that we

are assuming a simplistic plug flow velocity profile, we have omitted the shape factor

from Equation (C.56).

Given that φp is a constant, the right-hand side of Equation (C.30) can also be rewrit-

ten

RHS = −ε∂x̂(σ̂
′
p,xx)− ∂ẑ(σ̂

′
p,xz)− εγ∗∂x̂(φcp̂f ) + φc sin ζs + γ∗Ĉdd(ûf − ûp). (C.57)

Similarly, using Leibniz’s rule to help integrate across the whole flow depth, noting that

the influence of the buoyancy and interphase drag forces are only felt below the fluid

free surface, and simplifying the result using Equations (C.15), (C.17) and (C.20)

∫ ŝp

b̂

RHSdẑ =

∫ ŝf

b̂

RHSdẑ +

∫ ŝp

ŝf
RHSdẑ

= ĥpφc sin ζs − ε∂x̂(ĥp ˆ̄σ
′
p,xx)− εγ∗∂x̂(ĥfφc ˆ̄pf )− [[εσ̂′

p,xx∂x̂(ŝ
f )− σ̂′

p,xz]]

− εγ∗φcp̂f (b̂)∂x̂(b̂)− [εσ̂′
p,xx(b̂)∂x̂(b̂)− σ̂′

p,xz(b̂)] +

∫ ŝf

b̂

γ∗Ĉdd(ûf − ûp) dẑ,

(C.58)

where again, the quantity in the jump bracket is zero provided that the depth profile of

the effective granular stress is smooth. For convenience, the interphase coupling term
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will be approximated as∫ ŝf

b̂

γ∗Ĉdd(ûf − ûp) dẑ = γ∗Ĉddmin(ĥf , ĥp)(ˆ̄uf − ˆ̄up). (C.59)

While the model does assume that the granular phase is never oversaturated, this may

not be the case for all numerical solutions. Hence, the inclusion of the min function is

worthwhile. By equating Equations (C.56) and (C.58), the depth averaged downslope

momentum conservation equation for the granular phase is

ε[∂t̂(ĥpφc ˆ̄up) + ∂x̂(ĥpφc ˆ̄u
2
p)] = −ε∂x̂(ĥp ˆ̄σ

′
p,xx)− εγ∗∂x̂(ĥfφc ˆ̄pf )

+ ĥpφc sin ζs − εγ∗φcp̂f (b̂)∂x̂(b̂)− [εσ̂′
p,xx(b̂)∂x̂(b̂)− σ̂′

p,xz(b̂)]

+ γ∗Ĉddmin(ĥf , ĥp)(ˆ̄uf − ˆ̄up). (C.60)

By, substituting Equations (C.43), (C.44), (C.51) and (C.53) into Equation (C.60) and

simplifying, we can obtain the following

ε

[
∂t̂(ĥpφc ˆ̄up) + ∂x̂

(
ĥpφc ˆ̄u

2
p +

1

2
φc cos ζs ĥ

2
p

)]
=

ĥpφc sin ζs︸ ︷︷ ︸
Gravity

−µb

ˆ̄up

|ˆ̄up|
ĥpφc cos ζs

(
1− γ∗ ĥf

ĥp

)
︸ ︷︷ ︸

Basal friction

+ γ∗Ĉddmin(ĥf , ĥp)(ˆ̄uf − ˆ̄up)︸ ︷︷ ︸
Darcy drag

− εφc cos ζs ĥp∂x̂(b̂)︸ ︷︷ ︸
Topography

, (C.61)

where the gravity, basal friction and darcy drag terms are allO(1) individually, but their

sum is O(ε). Hence, Equation (C.61) can be rewritten to leading order accuracy as

∂t̂(ĥpφc ˆ̄up) + ∂x̂

(
ĥpφc ˆ̄u

2
p +

1

2
φc cos ζs ĥ

2
p

)
= Ŝp, (C.62)

where Ŝp is the summation of the O(1) source terms such that

εŜp = ĥpφc sin ζs − µb

ˆ̄up

|ˆ̄up|
ĥpφc cos ζs

(
1− γ∗ ĥf

ĥp

)
+ γ∗Ĉddmin(ĥf , ĥp)(ˆ̄uf − ˆ̄up).

(C.63)
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C.4.4 Horizontal components of the fluid momentum continuity

equations

Using Equation (C.27) and the scaling relations in Equation (C.28), the dimensionless

fluid normal stress at the basal surface to O(1) accuracy is

(nb · σ̂fn
b) = −φf p̂

b
f , ẑ = b̂. (C.64)

Therefore, a dimensionless version of Equation (C.26) can be rewritten as

−ε2τ̂f,xx(b̂)∂x̂(b̂) + τ̂f,xz(b̂) = Cf ˆ̄uf |ˆ̄uf |. (C.65)

As was the case for the granular phase, the fluid downslope momentum equation needs

to be integrated across the full phase depth. Given that φf is also a constant, the left-hand

side of Equation (C.33) becomes

LHSf = ε{∂t̂[(1− φc)ûf ] + ∂x̂[(1− φc)ûf ûf ] + ∂ẑ[(1− φc)ûf ŵf ]}. (C.66)

As it is assumed that the granular phase is never oversaturated, this process is simplified

as there is no interfacial surface to consider. Again, using Leibniz’s rule to swap the

order of the integration and differentiation operations, applying the kinematic boundary

conditions associated with the fluid phase (Equations C.16 and C.18) and simplifying

the result using Equation (C.56)∫ ŝf

b̂

LHSf dẑ = ε{∂t̂[ĥf (1− φc)ˆ̄uf ] + ∂x̂[ĥf (1− φc)ˆ̄uf
2
]}. (C.67)

Similarly, the right-hand side of Equation (C.33) can also be rewritten

RHSf = ε2∂x̂(τ̂f,xx)+∂ẑ(τ̂f,xz)−ε∂x̂[(1−φc)p̂f ]+(1−φc) sin ζs+Ĉdd(ûp−ûf ). (C.68)

This can be integrated again using Leibniz’s rule and simplified using Equations (C.16),

(C.18) and (C.22)

∫ ŝf

b̂

RHSf dẑ = ĥf (1− φc) sin ζs + ε2∂x̂(ĥf ˆ̄τf,xx)− ε∂x̂[ĥf (1− φc)ˆ̄pf ]

− ε(1− φc)p̂f |b̂∂x̂(b̂) + (ε2τf,xx|b̂∂x̂(b̂)− τ̂f,xz|b̂) +
∫ ŝf

b̂

Ĉdd(ûp − ûf ) dz. (C.69)
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By equating Equations (C.67) and (C.69), rearranging and substituting in Equations (C.43),

(C.44), (C.59) and (C.65) we obtain the depth averaged downslope momentum conser-

vation equation for the fluid phase

ε

{
∂t̂[ĥf (1− φc)ˆ̄uf ] + ∂x̂

[
ĥf (1− φc)ˆ̄uf

2
+

1

2
(1− φc) cos ζs ĥ

2
f

]}
=

ĥf (1− φc) sin ζs︸ ︷︷ ︸
Gravity

−Cf ˆ̄uf |ˆ̄uf |︸ ︷︷ ︸
Chézy drag

+ Ĉddmin(ĥf , ĥp)(ˆ̄up − ˆ̄uf )︸ ︷︷ ︸
Darcy drag

− ε(1− φc) cos ζs ĥf∂x̂(b̂)︸ ︷︷ ︸
Topography

+ ε2∂x̂(ĥf τ̂f,xx)︸ ︷︷ ︸
Viscous effects

, (C.70)

where again the gravity, basal friction and darcy drag terms are allO(1) individually, but

their sum isO(ε). Hence, Equation (C.70) can be rewritten to leading order accuracy as

∂t̂[ĥf (1− φc)ˆ̄uf ] + ∂x̂

[
ĥf (1− φc)ˆ̄uf

2
+

1

2
(1− φc) cos ζs ĥ

2
f

]
= Ŝf , (C.71)

where Ŝf is the summation of the O(1) source terms such that

εŜf = ĥf (1− φc) sin ζs − Cf ˆ̄uf |ˆ̄uf |+ Ĉddmin(ĥf , ĥp)(ˆ̄up − ˆ̄uf ). (C.72)

Note that, with the chosen scaling, the viscous term in Equation (C.70) - the only re-

maining dependence on the horizontal fluid pressure gradient - is of O(ε2), and is thus

negligible compared with the grain-fluid interaction term. Hence, in our model, the hor-

izontal force balance is dominated by Darcy-type drag between fluid and grains rather

than classical fluid forces that would drive the equivalent single-phase flow.

C.4.5 Depth averaged dimensional system of equations

By discounting the normal component of each phase’s momentum continuity equation,

a reduced system of equations describing the motion of the depth averaged two-phase

flow can be dimensionalised by applying the scalings below

x = Lx̂, (hv, s
v, b) = H(ĥv, ŝ

v, b̂), t = L/
√
gHt̂,

uv =
√
gHûv, Sv = (gH2/L)Ŝv, Cdd = ρf

√
g/HĈdd,

 (C.73)
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to Equations (C.39), (C.40), (C.62) and (C.71) and obtain

∂t(hp) + ∂x(hpūp) = 0, (C.74)

∂t(hf ) + ∂x(hf ūf ) = 0, (C.75)

∂t(hpūp) + ∂x

(
hpū

2
p +

1

2
g cos ζs h

2
p

)
=

g sin ζs hp − µb
ūp

|ūp|
ghp cos ζs

(
1− γ∗hf

hp

)
+

Cdd

ρpφc

min(hf , hp)(ūf − ūp), (C.76)

∂t(hf ūf ) + ∂x

(
hf ū

2
f +

1

2
g cos ζs h

2
f

)
=

g sin ζs hf −
Cf ūf |ūf |
(1− φc)

+
Cdd

ρf (1− φc)
min(hf , hp)(ūp − ūf ). (C.77)

To leading order accuracy, this system is analogous to the one developed by Meng et al.

(2022) when it has been simplified to only consider an undersaturated flow case.

C.5 Application to fluid-saturated granular column col-

lapse

As our granular-fluid mixture spreads across a horizontal plane (see Figure C.2), we set

ζs to 0. Additionally, we assume that fluid basal drag arising from fluid turbulence is

negligible by setting Cf = 0. This simplification is computationally advantageous, as

the fluid basal friction term can become numerically challenging when approximating

ūf as the ratio between fluid discharge and hf (Chertock et al., 2015).

Considering the experimental configuration, it is also advantageous to transform

the system of Equations (C.74)–(C.77) from a Cartesian to an axisymmetric reference

frame. This transformation eliminates the dependence on the polar angle (Alcrudo and

Garcia-Navarro, 1993), making the results applicable to flows without lateral bound-

aries, such as the case of axisymmetric collapses where the flow expands over an open

slope, forming a fan. Utilising polar coordinates, we can express each non-conservative

flux term κ as the summation of a conservative flux term and a source term
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Figure C.2: Sketch of a 2-D slice of an undersaturated granular collapse modelled as

two coupled continuum phases.

1

r
∂r[κ(r, t)r] = ∂r[κ(r, t)] +

1

r
κ(r, t), (C.78)

where r is the radial spatial dimension. Then, the system of Equations (C.74)–(C.77)

can be expressed in the following conservative form

∂thp + ∂r(hpūp) = −hpūp

r
, (C.79)

∂thf + ∂r(hf ūf ) = −hf ūf

r
, (C.80)

∂t(hpūp) + ∂r

(
hpū

2
p +

1

2
gh2

p

)
=

−
hpū

2
p

r
− µb

ūp

|ūp|
ghp

(
1− γ∗hf

hp

)
+

ηfφ
2
f

ρpφpk
min(hf , hp)(ūf − ūp), (C.81)

∂t(hf ūf ) + ∂r

(
hf ū

2
f +

1

2
gh2

f

)
= −

hf ū
2
f

r
+

ηfφf

ρfk
min(hf , hp)(ūp − ūf ). (C.82)

The use of a conservative approach offers several advantages. Firstly, it ensures the

accurate preservation of mass and momentum conservation across phase interfaces, en-

abling the correct representation of jump conditions (Meng et al., 2022). Secondly, from

a numerical perspective, employing the conservative formulation proves beneficial, fa-

cilitating more efficient and accurate solutions of the system (Kurganov and Tadmor,

2000). The resulting system of Equations (C.79)–(C.82) allows us to predict the be-
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haviour of the system in terms of conservative quantities such as hv and hvuv for each

phase, respectively.

C.6 Implementation

The described computational frameworkwas instantiatedwithinMatlab (2020), wherein

the spatial discretisation of Equations (C.79)–(C.82) was executed utilising the second-

order central-upwind scheme developed byKurganov and Petrova (2007) for solving the

Saint-Venant system of equations. An explicit second-order Runge-Kutta method was

employed for the temporal discretisation of the system. The application of this mod-

elling methodology was demonstrated through its utilisation in analysing the collapse

of granular-fluid columns subjected to elevated gravitational elevation, as explored in

Chapter 5 of this thesis.
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Appendix D

Design of a 2D sloped prototype

D.1 Introduction

This chapter details the development of a second physical centrifuge model, specifically

designed to further investigate the the effects of polydispersity and fluid rheology on

granular-fluid flow dynamics. The chapter begins by outlining the key objectives guid-

ing the experimental investigation, followed by an in-depth discussion of the design and

methodology underpinning the experimental apparatus. A comprehensive examination

of the envisaged parameter space for the study is then presented, along with an eval-

uation of the strengths and limitations inherent in the chosen approach. The chapter

then concludes by outlining the reasons why the model has yet to be used for extensive

testing.

D.2 Modelling objectives

The experimental investigations discussed in this thesis have yielded valuable insights

into the impact of grain-fluid interactions on the dynamics of granular-fluid flows. How-

ever, it should be acknowledged that the explored parameter space, as outlined in Chap-

ter 7, remains somewhat constrained. Existing evidence suggests a discernible grain

size dependence in the evolution of excess pore pressure in geophysical flows (e.g. Mc-

Coy et al., 2010). To address this limitation, it would be pertinent to conduct additional

centrifuge model experiments that encompass a broader range of particle sizes. This

can be achieved by incorporating both a polydispersed inertial particle phase and higher

concentrations of kaolin clay suspended within the fluid phase.

Expanding the parameter space not only enhances the comprehensiveness of the study

but also offers an opportunity to refine the shallow water model introduced in Chap-

ter 5. Ideally, the new experimental configuration should closely align with the geo-

metric characteristics of geophysical flows, such as the movement of a granular mixture

down an inclined slope. Such a configuration would allow the study focus more on the
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dynamics of the flow rather than its runout, as was the case for the axisymmetric con-

figuration. Simultaneously, it should facilitate a straightforward definition of the initial

geometry of the granular-fluid mixture.

In contrast to the axisymmetric configuration, the new experimental apparatus should

feature a flow release mechanism that minimally influences the subsequent flow dy-

namics. Additionally, careful consideration should be given to mitigating the influence

of the Coriolis acceleration direction on flow behaviour. This is crucial for ensuring

that the experimental setup can replicate flow conditions consistently, regardless of the

radius of the geotechnical centrifuge. In summary, the proposed experiments aim to

broaden the scope of the current research, refining both the experimental design and

model configuration for a more comprehensive understanding of granular-fluid interac-

tions in geophysical flows.

D.3 Model apparatus

In this section, we present a comprehensive description of the newly developed experi-

mental apparatus designed for studying unsteady granular-fluid flows down a slope (see

Figure D.1). The apparatus is housed within a windproof strong box and can be mounted

on to the University of Nottingham’s GT50/1.7 geotechnical beam centrifuge, enabling

control over the stress-state within the granular-fluid flow.

The orientation of the model can be adjusted to direct the flow towards, away from,

or perpendicular to the centrifuge’s direction of travel. This adjustment provides control

over the Coriolis acceleration’s impact on the flow, allowing the user to dictate whether

the Coriolis acceleration acts to contract, dilate, or exhibit little volumetric influence on

the flow, respectively.

The apparatus, inspired by the work of Cabrera and Wu (2017), consists of two ma-

jor components within the strong box. The first component is the storage vessel (see

Figure D.2), capable of holding a maximum material volume of 8.23×10−4m3. Bolted

to the strong box’s lid, this vessel releases the granular-fluid mixture through a trap

door, operated by a release mechanism similar to that used in the axisymmetric column

collapse.

The watertight trap door, initially secured by tensioning a steel rod against a forked

piece of steel, opens upon triggering an air-powered actuator. A steel wire threaded

through the rod allows control over the trap door’s opening angle, facilitating a precise

and repeatable release. The granular mixture then enters a U-shaped channel and travels
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down a 600mm long slope inclined at 27.5◦ (see Figure D.3).

Figure D.1: Schematic of the planar collapse configuration at different angles.

The slope, 100mm in width (equivalent to 12.5 diameters of the largest inertial par-

ticle size), is comprised of smooth sidewalls and a roughened base covered with 4mm

diameter glass spheres. At the slope’s lower end, a container captures and stores the

granular mixture.

To observe the flowingmixture, twoGo-Pro cameras are fixed to the slope’s top plate,

approximately 115mm above the surface. Positioned parallel to the slope, these cam-

eras capture the flow’s evolution, facilitating subsequent image correction and analysis.

Illumination is provided by two 12V lightsheets installed into the sidewalls, ensuring

uniform lighting diffused behind protective plexiglass sheets.

Basal fluid pressure measurements are obtained at two locations using pore pressure

transducers capable of recording pressures up to 20 kPa with an accuracy of±20 Pa at a

frequency of 1000Hz. The transducers are strategically mounted with their diaphragm’s

axis of deformation perpendicular to the centrifugal field’s line of action.

To protect the pressure transducers from damage due to fine kaolin clay particles

within the granular mixture, porous discs are mounted above the transducers. These
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Figure D.2: Schematic (left) and image (right) of the storage vessel where the inset

shows a close up view of the tension rod, steel fork, and steel wire.

discs, with sufficient porosity to prevent clay particles passing through them, are fully

saturated under vacuum conditions before installation. To maintain saturation during

centrifuge spin-up, a rainfall nozzle drizzles water down the slope, ceasing before test

initiation. During spin-up the fluid is allowed to drain out of the experimental configura-

tion through an outflow pipe located on the side of the collection container and dumped

towards the centrifuge’s axis of rotation. Closing the outflow pipe with a solenoid valve

prior to the test initiation retains particles and fluid, including fine clays, within the

container.

Additionally, two point lasers attached to the slope’s top plate record the height of

the flow passing below them at a frequency of 1000Hz. This addition is crucial for

obtaining flow height information, which was unavailable in the previous experimental

configuration. The lasers are strategically positioned close to the basal fluid pressure

measurement locations, avoiding placing the lasers over the porous stones that could

distort laser readings due to refraction. This positioning enables the evaluation of excess

pore fluid pressures by approximating hydrostatic fluid pressure using flow height and,
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Figure D.3: Schematic (left) and plan view image (right) of the slope and data acquisi-

tion systems.

subsequently subtracting this value from the total fluid pressure obtained from the basal

fluid pressure sensors (e.g. Kaitna et al., 2016).

D.4 Parameter space of interest

While the available parameter space for such an investigation is large, as discussed in

Section D.1, the primary objective of this study is to enhance our comprehension of

the impact of grain-fluid interactions on geophysical flow dynamics. Consequently, the

focus should be centred on key variables, namely the particle size distribution of the

granular phase, the viscosity of the fluid phase, and the saturation level of the initial

configuration.

Among these variables, the primary emphasis lies on variations in the particle size

distribution. Preliminary considerations involve a comparative analysis of flow be-

haviours between monodispersed inertial particle sizes and polydispersed inertial par-

ticle sizes. This entails a significant variation in both the concentration and grading

of the granular compositions. Additionally, the aim is to explore the influence of fine

kaolin particles within the flow composition, with effective kaolin concentrations reach-
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ing up to approximately 50% by mass. This approach draws inspiration from the work

of Kaitna et al. (2016), who investigated into the role of particle size distribution in the

dynamics of steady-state granular-fluid flows.

While a scale analysis akin to the one conducted for the axisymmetric collapse exper-

iments would be beneficial, especially by varying the effective gravitational acceleration

imposed on the model by the centrifuge, the majority of tests within the study would aim

to replicate geophysically similar stress states. This choice allows the study to focus on

understanding the mechanisms behind excess pore pressure generation observed in nat-

ural debris flows.

D.5 Design limitations

While the proposed investigation has the potential to achieve the objectives outlined in

Section D.2, the usability of the obtained data is constrained by an incomplete under-

standing of how centrifuge modelling influences the scaling of grain-fluid interactions

(see Chapter 6). There is a possibility that the model’s behaviour may deviate from

real-world observations.

As discussed in Section 7.2, further numerical modelling is deemed essential to com-

prehensively understand how the centrifuge modelling environment impacts the be-

haviour of our laboratory-scale models. Only through such an understanding can we

fully appreciate how to relate observations from our experiments to the behaviour ob-

served in geophysical flows and better replicate this behaviour within the models used

to predict them.

D.6 Reasons for non-execution

As of the submission date of this thesis, the planar setup has been constructed, but a

detailed testing regimen has yet to commence. The primary impediment to this delay is

unforeseen complications during the construction and preliminary testing phases, pre-

venting the extensive testing required for the scheduled analysis in the final months of

my PhD. Consequently, an agreement was reached between myself and my supervisors

to redirect my time and effort towards developing research articles focusing on the two

modelling approaches detailed in Chapters 5 and 6. However, the apparatus is now in a

state where preliminary testing can resume, and final adjustments to the model can be

made.

168



References

Alcrudo, F. and Garcia-Navarro, P. (1993). A high-resolution Godunov-type scheme in

finite volumes for the 2D shallow-water equations. International Journal for Numer-

ical Methods in Fluids. 16(6):489–505.

Allen, S. K., Rastner, P., Arora, M., Huggel, C., and Stoffel, M. (2016). Lake outburst

and debris flow disaster at Kedarnath, June 2013: Hydrometeorological triggering

and topographic predisposition. Landslides. 13(6):1479–1491.

Artoni, R., Santomaso, A. C., Gabrieli, F., Tono, D., and Cola, S. (2013). Collapse of

quasi-two-dimensional wet granular columns. Physical Review E. 87(3):032205.

Bagnold, R. A. (1954). Experiments on a gravity-free fispersion of large dolid dpheres

in a Newtonian fluid under shear. Proceedings of the Royal Society of London. Series

A, Mathematical and Physical Sciences. 225(1160):49–63.

Bandis, S., Delmonaco, G., Dutto, F., Margottini, C., Mortara, G., Serafini, S., and Troc-

ciola, A. (1999). Landslides and precipitation: the event of 4–6th November 1994 in

the Piemonte region, North Italy.Floods and Landslides: Integrated Risk Assessment.

Springer:315–326.

Batchelor, G. K. (2000). An Introduction to Fluid Dynamics. Cambridge Mathematical

Library. Cambridge: Cambridge University Press.

Batra, R. C. (2006). Elements of Continuum Mechanics. Aiaa.

Bautista, M. L. P., Delos Reyes, P. J., Santos, E. R. U., Gaurino, W.A., Olfindo, V. S. V.,

Rivera, D. A. V., Dizon, M. P., Maximo, R. P. R., Ativo, S. C. J., Degones, M. F.,

Cabaluna, S. B., Babon, L. G. O., Bautista, B. C., Jenkins, S. F., and Solidum, R. U.

(2023). Quantitative impact assessment of the 2019 tropical cyclone Kammuri la-

hars: Mayon volcano, Philippines. International Journal of Disaster Risk Reduction.

94:103779.

Berger, C., McArdell, B., and Schlunegger, F. (2011). Direct measurement of channel

erosion by debris flows, Illgraben, Switzerland. Journal of Geophysical Research:

Earth Surface. 116(F1).

Berti, M., Genevois, R., Simoni, A., and Tecca, P. R. (1999). Field observations of a

debris flow event in the Dolomites. Geomorphology. 29(3):265–274.

169



REFERENCES

Berzi, D. and Jenkins, J. T. (2008). A theoretical analysis of free-surface flows of satu-

rated granular–liquid mixtures. Journal of Fluid Mechanics. 608:393–410.

Bingham, E. (1922). Fluidity and Plasticity. McGraw-Hill Book Company:462.

Blaber, J., Adair, B., and Antoniou, A. (2015). Ncorr: Open-Source 2D Digital Image

Correlation Matlab Software. Experimental Mechanics. 55(6):1105–1122.

Blajan, M., Umeda, A., and Shimizu, K. (2013). Surface treatment of glass by mi-

croplasma. IEEE Transactions on Industry Applications. 49(2):714–720.

Bouchut, F., Fernández-Nieto, E. D., Koné, E. H., Mangeney, A., and Narbona-Reina,

G. (2017). A two-phase solid-fluid model for dense granular flows including dila-

tancy effects: comparison with submarine granular collapse experiments. EPJ Web

of Conferences. 140:09039.

Bouchut, F., Fernandez-Nieto, E. D., Mangeney, A., and Narbona-Reina, G. (2015). A

two-phase shallow debris flow model with energy balance. ESAIM: Mathematical

Modelling and Numerical Analysis. 49(1):101–140.

Bouchut, F., Fernández-Nieto, E. D., Mangeney, A., and Narbona-Reina, G. (2016). A

two-phase two-layer model for fluidized granular flows with dilatancy effects. Jour-

nal of Fluid Mechanics. 801:166–221.

Bougouin,A. and Lacaze, L. (2018). Granular collapse in a fluid: Different flow regimes

for an initially dense-packing. Physical Review Fluids. 3(6):064305.

Bougouin,A., Lacaze, L., and Bonometti, T. (2019). Collapse of a liquid-saturated gran-

ular column on a horizontal plane. Physical Review Fluids. 4(12):124306.

Bowman, E. T., Laue, J., Imre, B., and Springman, S. M. (2010). Experimental mod-

elling of debris flow behaviour using a geotechnical centrifuge. Canadian Geotech-

nical Journal. 47(7):742–762.

Bowman, E. T. and Take, W. A. (2015). The runout of chalk cliff collapses in England

and France—case studies and physical model experiments. Landslides. 12(2):225–

239.

Bowman, E., Take,W., Rait, K., and Hann, C. (2012). Physical models of rock avalanche

spreading behaviour with dynamic fragmentation. Canadian Geotechnical Journal.

49(4):460–476.

Brayshaw, D. and Hassan, M. A. (2009). Debris flow initiation and sediment recharge

in gullies. Geomorphology. 109(3-4):122–131.

Brucks, A., Arndt, T., Ottino, J. M., and Lueptow, R. M. (2007). Behavior of flowing

granular materials under variable g. Physical Review E. 75(3):032301.

170



REFERENCES

Buckingham, E. (1914). On physically similar systems; illustrations of the use of di-

mensional equations. Physical Review. 4(4):345.

Cabrera, M. (2016). Experimental modelling of granular flows in rotating frames. PhD

thesis. University of Natural Resources and Life Sciences, Vienna.

Cabrera, M. and Leonardi,A. (2022). On the scaling principles of kinematic processes in

a centrifugal acceleration field. Proc. of the 10th International Conference on Phys-

ical Modelling in Geotechnics.

Cabrera, M., Mathews, J., and Wu, W. (2016). Granular flows in the centrifuge. Pro-

ceedings of the 3rd European Conference on PhysicalModelling in Geotechnics (EU-

ROFUGE 2016).

Cabrera, M. and Estrada, N. (2019). Granular column collapse: Analysis of grain-size

effects. Physical Review E. 99(1):012905.

Cabrera, M., Kailey, P., Bowman, E. T., and Wu, W. (2018). Effects of viscosity in

granular flows simulated in a centrifugal acceleration field. Physical Modelling in

Geotechnics, Volume 2. CRC Press:1075–1080.

Cabrera, M. A., Leonardi, A., and Peng, C. (2020). Granular flow simulation in a cen-

trifugal acceleration field. Géotechnique. 70(10):894–905.

Cabrera, M.A. andWu,W. (2017). Experimental modelling of free-surface dry granular

flows under a centrifugal acceleration field. Granular Matter. 19(4).

Caicedo, B. and Thorel, L. (2014). Centrifuge modelling of unsaturated soils. Journal

of Geo-Engineering Sciences. 2(1-2):83–103.

Capart, H. and Young, D. (1998). Formation of a jump by the dam-break wave over a

granular bed. Journal of Fluid Mechanics. 372:165–187.

Capart, H., Young, D., and Zech, Y. (2002). Voronoï imaging methods for the measure-

ment of granular flows. Experiments in Fluids. 32(1):121–135.

Ceccato, F., Leonardi, A., Girardi, V., Simonini, P., and Pirulli, M. (2020). Numerical

and experimental investigation of saturated granular column collapse in air. Soils and

Foundations. 60(3):683–696.

Cesca, M. and D’Agostino, V. (2008). Comparison between FLO-2D and RAMMS in

debris-flow modelling: a case study in the Dolomites. WIT Transactions on Engi-

neering Sciences. 60:197–206.

Chadwick, P. (1999). Continuum Mechanics: Concise Theory and Problems. Courier

Corporation.

171



REFERENCES

Chae, B.-G., Park, H.-J., Catani, F., Simoni, A., and Berti, M. (2017). Landslide predic-

tion, monitoring and early warning: a concise review of state-of-the-art.Geosciences

Journal. 21:1033–1070.

Chaudhry, M. H. (2008). Open-Channel Flow. Vol. 523. Springer.

Chertock, A., Cui, S., Kurganov, A., and Wu, T. (2015). Well-balanced positivity pre-

serving central-upwind scheme for the shallow water system with friction terms. In-

ternational Journal for Numerical Methods in Fluids. 78(6):355–383.

Chiarle, M., Iannotti, S., Mortara, G., and Deline, P. (2007). Recent debris flow oc-

currences associated with glaciers in the Alps. Global and Planetary Change. 56(1-

2):123–136.

Choi, C. E., Au-Yeung, S., Ng, C. W. W., and Song, D. (2015). Flume investigation

of landslide granular debris and water runup mechanisms. Géotechnique Letters.

5(1):28–32.

Christen, M., Kowalski, J., and Bartelt, P. (2010). RAMMS: Numerical simulation of

dense snow avalanches in three-dimensional terrain. Cold Regions Science and Tech-

nology. 63(1-2):1–14.

Contreras, S. M. and Davies, T. R. (2000). Coarse-grained debris-flows: hysteresis and

time-dependent rheology. Journal of Hydraulic Engineering. 126(12):938–941.

Costa, J. E. (1991). Nature, mechanics, and mitigation of the Val Pola landslide, Valtel-

lina, Italy, 1987-1988. Zeitschrift für Geomorphologie. 35(1):15–38.

Coussot, P. (2017). Mudflow Rheology and Dynamics. Routledge.

Coussot, P., Laigle, D., Arattano, M., Deganutti, A., and Marchi, L. (1998). Direct de-

termination of rheological characteristics of debris flow. Journal of Hydraulic Engi-

neering. 124(8):865–868.

Crosta, G. and Dal Negro, P. (2003). Observations and modelling of soil slip-debris flow

initiation processes in pyroclastic deposits: the Sarno 1998 event. Natural Hazards

and Earth System Sciences. 3(1/2):53–69.

Cui, Y., Choi, C. E., Liu, L. H. D., and Ng, C. W. W. (2018). Effects of particle

size of mono-disperse granular flows impacting a rigid barrier. Natural Hazards.

91(3):1179–1201.

Cundall, P. A. and Strack, O. D. (1979). A discrete numerical model for granular assem-

blies. Géotechnique. 29(1):47–65.

Dalziel, S. B., Carr, M., Sveen, J. K., and Davies, P. A. (2007). Simultaneous synthetic

schlieren and PIV measurements for internal solitary waves. Measurement Science

and Technology. 18(3):533.

172



REFERENCES

Davies, T. R. (1988). Debris flow surges: a laboratory investigation. Mitteilungen der

Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie an der Eidgenossischen

Technischen Hochschule Zurich. 96.

Davies, T. R. (1990). Debris-flow surges—experimental simulation. Journal of Hydrol-

ogy (New Zealand). 29(1):18–46.

de Boer, R. and Ehlers, W. (1990). The development of the concept of effective stresses.

Acta Mechanica. 83(1):77–92.

de Bono, J. P. andMcDowell, G. R. (2016). Investigating the effects of particle shape on

normal compression and overconsolidation using DEM. Granular Matter. 18(3):55.

de Haas, T., Braat, L., Leuven, J. R. F. W., Lokhorst, I. R., and Kleinhans, M. G. (2015).

Effects of debris flow composition on runout, depositional mechanisms, and deposit

morphology in laboratory experiments. Journal of Geophysical Research: Earth Sur-

face. 120(9):1949–1972.

de Haas, T., McArdell, B., Nijland, W., Åberg, A., Hirschberg, J., Jong, S. de, and

Huguenin, P. (2023). Factors controlling bed and bank erosion in the Illgraben (CH).

E3S Web of Conf. 415:01004.

Delannay, R., Valance, A., Mangeney, A., Roche, O., and Richard, P. (2017). Granular

and particle-laden flows: From laboratory experiments to field observations. Journal

of Physics D-Applied Physics. 50(5):053001.

Dole, M. (1951). Surface tension measurements. Physical Methods in Chemical Analy-

sis. 2:305–332.

Dorbolo, S., Maquet, L., Brandenbourger, M., Ludewig, F., Lumay, G., Caps, H., Van-

dewalle, N., Rondia, S., Mélard, M., and Loon, J. van (2013). Influence of the gravity

on the discharge of a silo. Granular Matter. 15:263–273.

Dullien, F. A. (2012). Porous Media: Fluid Transport and Pore Structure. San Diego,

California: Academic press.

Duncan, J. M., Wright, S. G., and Brandon, T. L. (2014). Soil Strength and Slope Stabil-

ity. John Wiley & Sons.

Ellis, E., Cox, C., Yu, H., Ainsworth, A., and Baker, N. (2006). A new geotechnical cen-

trifuge at the University of Nottingham, UK. 6th International Conference of Physi-

cal Modelling in Geotechnics: ICPMG. 6:129–133.

Fan, Y., Jacob, K. V., Freireich, B., and Lueptow, R. M. (2017). Segregation of granular

materials in bounded heap flow: A review. Powder Technology. 312:67–88.

173



REFERENCES

Fang, K., Tang, H., Li, C., Su, X., An, P., and Sun, S. (2022). Centrifuge modelling

of landslides and landslide hazard mitigation: A review. Geoscience Frontiers.

14(1):101493.

Feng, Y. T., Han, K., and Owen, D. R. J. (2010). Combined three-dimensional lattice

Boltzmann method and discrete element method for modelling fluid–particle inter-

actions with experimental assessment. International Journal for Numerical Methods

in Engineering. 81(2):229–245.

Feng, Z.-G. and Michaelides, E. E. (2004). The immersed boundary-lattice Boltzmann

method for solving fluid–particles interaction problems. Journal of Computational

Physics. 195(2):602–628.

Flanders, H. (1973). Differentiation under the integral sign. The AmericanMathematical

Monthly. 80(6):615–627.

Forterre, Y. and Pouliquen, O. (2008). Flows of dense granular media. Annual Review

of Fluid Mechanics. 40(1):1–24.

Frank, F., McArdell, B. W., Oggier, N., Baer, P., Christen, M., and Vieli, A. (2017).

Debris-flowmodeling at Meretschibach and Bondasca catchments, Switzerland: sen-

sitivity testing of field-data-based entrainment model. Natural Hazards and Earth

System Sciences. 17(5):801–815.

Frey, H., Huggel, C., Chisolm, R. E., Baer, P., McArdell, B., Cochachin, A., and Por-

tocarrero, C. (2018). Multi-source glacial lake outburst flood hazard assessment and

mapping for Huaraz, Cordillera Blanca, Peru. Frontiers in Earth Science. 6:210.

Froude, M. J. and Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to

2016. Natural Hazards and Earth System Sciences. 18(8):2161–2181.

Gabet, E. J. and Mudd, S. M. (2006). The mobilization of debris flows from shallow

landslides. Geomorphology. 74(1-4):207–218.

García-Martínez, R. and López, J. L. (2005). Debris flows of December 1999 in

Venezuela. Debris-Flow Hazards and Related Phenomena. Berlin, Heidelberg:

Springer Berlin Heidelberg:519–538.

Gariano, S. L. and Guzzetti, F. (2016). Landslides in a changing climate. Earth-Science

Reviews. 162:227–252.

Garnier, J., Gaudin, C., Springman, S. M., Culligan, P., Goodings, D., Konig, D., Kutter,

B., Phillips, R., Randolph, M., and Thorel, L. (2007). Catalogue of scaling laws and

similitude questions in geotechnical centrifuge modelling. International Journal of

Physical Modelling in Geotechnics. 7(3):01–23.

174



REFERENCES

George, D. L. and Iverson, R. M. (2014). A depth-averaged debris-flow model that in-

cludes the effects of evolving dilatancy. II. Numerical predictions and experimental

tests. Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences. 470(2170):20130820.

Goharzadeh, A., Khalili, A., and Jørgensen, B. B. (2005). Transition layer thickness at

a fluid-porous interface. Physics of Fluids. 17(5):057102.

Graf, C. and McArdell, B. W. (2009). Debris-flow monitoring and debris-flow runout

modelling before and after construction of mitigation measures: an example from an

instable zone in the Southern Swiss Alps. La géomorphologie alpine: entre patri-

moine et contrainte. Actes du colloque de la Société Suisse de Géomorphologie:3–

5.

Gray, J. M. N. T. and Kokelaar, B. P. (2010). Large particle segregation, transport and

accumulation in granular free-surface flows. Journal of Fluid Mechanics. 652:105–

137.

Gray, J. and Edwards, A. (2014). A depth-averaged-rheology for shallow granular free-

surface flows. Journal of Fluid Mechanics. 755:503–534.

Gray, J., Tai, Y.-C., and Noelle, S. (2003). Shock waves, dead zones and particle-free

regions in rapid granular free-surface flows. Journal of Fluid Mechanics. 491:161–

181.

Gray, J.,Wieland,M., andHutter, K. (1999). Gravity-driven free surface flow of granular

avalanches over complex basal topography. Proceedings of the Royal Society of Lon-

don. Series A: Mathematical, Physical and Engineering Sciences. 455(1985):1841–

1874.

Gray, J. M. N. T. (2001). Granular flow in partially filled slowly rotating drums. Journal

of Fluid Mechanics. 441:1–29.

Greve, R. and Hutter, K. (1993). Motion of a granular avalanche in a convex and con-

cave curved chute: experiments and theoretical predictions. Philosophical Transac-

tions of the Royal Society of London. Series A: Physical and Engineering Sciences.

342(1666):573–600.

Greve, R., Koch, T., and Hutter, K. (1994). Unconfined flow of granular avalanches

along a partly curved surface. I. Theory. Proceedings of the Royal Society of London.

Series A: Mathematical and Physical Sciences. 445(1924):399–413.

Grimsley, K. J., Rathburn, S. L., Friedman, J. M., and Mangano, J. F. (2016). Debris

Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO. En-

vironmental Management. 58(1):76–92.

175



REFERENCES

Guadagno, F., Revellino, P., and Grelle, G. (2011). The 1998 Sarno landslides: Con-

flicting interpretations of a natural event. International Conference on Debris-Flow

Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings.

Guérin,A., Devauchelle, O., and Lajeunesse, E. (2014). Response of a laboratory aquifer

to rainfall. Journal of Fluid Mechanics. 759.

Guzzetti, F. (2000). Landslide fatalities and the evaluation of landslide risk in Italy.

Engineering Geology. 58(2):89–107.

Han, K., Feng,Y., and Owen, D. (2007). Coupled lattice Boltzmann and discrete element

modelling of fluid–particle interaction problems. Computers & Structures. 85(11-

14):1080–1088.

Han, Y. and Cundall, P. A. (2011). Lattice Boltzmann modeling of pore‐scale fluid flow

through idealized porousmedia. International Journal for NumericalMethods in Flu-

ids. 67(11):1720–1734.

Han, Y. and Cundall, P. A. (2013). LBM–DEM modeling of fluid–solid interaction in

porous media. International Journal for Numerical and Analytical Methods in Ge-

omechanics. 37(10):1391–1407.

Harilal, R. and Ramji, M. (2014). Adaptation of Open Source 2D DIC Software Ncorr

for SolidMechanicsApplications. 9th International Symposium onAdvanced Science

and Technology in Experimental Mechanics.

He, X. and Luo, L.-S. (1997). Theory of the lattice Boltzmann method: From the Boltz-

mann equation to the lattice Boltzmann equation. Physical Review E. 56(6):6811.

Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of

Hydraulic Research. 49(3):293–306.

Henein, H. (1980). Bed behavior in rotary cylinders with applications to rotary kilns.

PhD thesis. University of British Columbia, Canada.

Herrmann, H. J., Andrade, J. S., Araújo, A. D., and Almeida, M. (2007). Particles in

fluids. The European Physical Journal Special Topics. 143:181–189.

Herschel, W. H. and Bulkley, R. (1926). Consistency measurements of rubber-benzene

solutions. Kolloid-Zeitschrift. 39(4):291–300.

Hirschberg, J., McArdell, B. W., Badoux, A., and Molnar, P. (2019). Analysis of rainfall

and runoff for debris flows at the Illgraben catchment, Switzerland. Association of

Environmental and Engineering Geologists; special publication 28.

Hu, G., Hu, Z., Jian, B., Liu, L., andWan, H. (2010). On the determination of the damp-

ing voefficient of non-linear spring-dashpot system to model Hertz contact for simu-

176



REFERENCES

lation by Discrete Element Method. 2010 WASE International Conference on Infor-

mation Engineering. 3:295–298.

Hu, W., Dong, X., Xu, Q., Wang, G., Van Asch, T., and Hicher, P. (2016). Initiation

processes for run-off generated debris flows in the Wenchuan earthquake area of

China. Geomorphology. 253:468–477.

Huang, Y. and Zhang, B. (2022). Review on key issues in centrifuge modeling of flow-

structure interaction. European Journal of Environmental and Civil Engineering.

26(6):2354–2370.

Huggel, C., Zgraggen-Oswald, S., Haeberli, W., Kääb, A., Polkvoj, A., Galushkin, I.,

and Evans, S. G. (2005). The 2002 rock/ice avalanche at Kolka/Karmadon, Russian

Caucasus:Assessment of extraordinary avalanche formation and mobility, and appli-

cation of QuickBird satellite imagery. Natural Hazards and Earth System Sciences.

5(2):173–187.

Hungr, O., Evans, S., Bovis,M., andHutchinson, J. (2002).Areview of the classification

of landslides of the flow type (vol 7, pg 225, 2001). Environmental & Engineering

Geoscience. 8(1).

Hungr, O. (2000). Analysis of debris flow surges using the theory of uniformly pro-

gressive flow. Earth Surface Processes and Landforms: The Journal of the British

Geomorphological Research Group. 25(5):483–495.

Hungr, O., Leroueil, S., and Picarelli, L. (2014). The Varnes classification of landslide

types, an update. Landslides. 11:167–194.

Hussin, H., Quan Luna, B., Van Westen, C., Christen, M., Malet, J.-P., and Van Asch,

T. W. (2012). Parameterization of a numerical 2-D debris flow model with entrain-

ment:A case study of the Faucon catchment, Southern FrenchAlps. Natural Hazards

and Earth System Sciences. 12(10):3075–3090.

Hutchinson, J. (1997). Mass movement. Encyclopedia of Earth Science. Berlin, Heidel-

berg: Springer Berlin Heidelberg:688–696.

Hutter, K. and Koch, T. (1991). Motion of a granular avalanche in an exponentially

curved chute: Experiments and theoretical predictions. Philosophical Transac-

tions of the Royal Society of London. Series A: Physical and Engineering Sciences.

334(1633):93–138.

Hutter, K., Siegel, M., Savage, S., and Nohguchi, Y. (1993). Two-dimensional spread-

ing of a granular avalanche down an inclined plane Part I. theory. Acta Mechanica.

100:37–68.

177



REFERENCES

Hutter, K., Wang, Y., and Pudasaini, S. P. (2005). The Savage–Hutter avalanche model:

How far can it be pushed? Philosophical Transactions of the Royal Society A: Math-

ematical, Physical and Engineering Sciences. 363(1832):1507–1528.

Idinger, G. (2016). Experimental study of failure initiation in partially saturated slopes.

PhD thesis. Universität für Bodenkultur, Wien.

Ilea, D. E. and Whelan, P. F. (2011). Image segmentation based on the integration of

colour–texture descriptors—A review. Pattern Recognition. 44(10-11):2479–2501.

Iverson, N. R., Mann, J. E., and Iverson, R. M. (2010a). Effects of soil aggregates on

debris-flow mobilization: Results from ring-shear experiments. Engineering Geol-

ogy. 114(1-2):84–92.

Iverson, R. M. (2003). The debris-flow rheology myth. Debris-Flow Hazards Mitiga-

tion: Mechanics, Prediction, and Assessment:303–314.

Iverson, R. M., Reid, M. E., Iverson, N. R., LaHusen, R. G., Logan, M., Mann, J. E.,

and Brien, D. L. (2000). Acute Sensitivity of Landslide Rates to Initial Soil Porosity.

Science. 290(5491):513–516.

Iverson, R. M. (2014). Debris flows: Behaviour and hazard assessment.Geology Today.

30(1):15–20.

Iverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics. 35(3):245–

296.

Iverson, R. M. (2005). Regulation of landslide motion by dilatancy and pore pressure

feedback. Journal of Geophysical Research: Earth Surface. 110(F2).

Iverson, R. M. (2015). Scaling and design of landslide and debris-flow experiments.

Geomorphology. 244:12.

Iverson, R. M. and Denlinger, R. P. (2001). Flow of variably fluidized granular masses

across three-dimensional terrain: 1. Coulombmixture theory. Journal of Geophysical

Research: Solid Earth. 106(B1):537–552.

Iverson, R. M. and George, D. L. (2014). A depth-averaged debris-flow model that in-

cludes the effects of evolving dilatancy. I. Physical basis. Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences. 470(2170):20130819.

Iverson, R. M., Logan, M., LaHusen, R. G., and Berti, M. (2010b). The perfect debris

flow? Aggregated results from 28 large-scale experiments. Journal of Geophysical

Research. 115(F3):F03005.

Jakob, M., Hungr, O., and Jakob, D. M. (2005). Debris-Flow Hazards and Related Phe-

nomena. Vol. 739. Springer.

178



REFERENCES

Janßen, C. and Krafczyk, M. (2011). Free surface flow simulations on GPGPUs using

the LBM. Computers & Mathematics with Applications. 61(12):3549–3563.

Ji, S., Wang, S., and Zhou, Z. (2020). Influence of particle shape on mixing rate in rotat-

ing drums based on super-quadric DEM simulations. Advanced Powder Technology.

31(8):3540–3550.

Jiang, Y.-J., Zhao, Y., Towhata, I., and Liu, D.-X. (2015). Influence of particle charac-

teristics on impact event of dry granular flow. Powder Technology. 270:53–67.

Johnson, C. G., Kokelaar, B. P., Iverson, R. M., Logan, M., LaHusen, R. G., and Gray,

J. M. N. T. (2012). Grain-size segregation and levee formation in geophysical mass

flows. Journal of Geophysical Research: Earth Surface. 117(F1):n/a–n/a.

Kaitna, R., Palucis, M. C., Yohannes, B., Hill, K. M., and Dietrich,W. E. (2016). Effects

of coarse grain size distribution and fine particle content on pore fluid pressure and

shear behavior in experimental debris flows. Journal of Geophysical Research: Earth

Surface. 121(2):415–441.

Kesseler, M., Heller, V., and Turnbull, B. (2018). A laboratory-numerical approach for

modelling scale effects in dry granular slides. Landslides. 15(11):2145–2159.

Kesseler, M., Heller, V., and Turnbull, B. (2020). Grain Reynolds number scale effects

in dry granular slides. Journal of Geophysical Research: Earth Surface. 125(1).

Kowalski, J. andMcElwaine, J. N. (2013). Shallow two-component gravity-driven flows

with vertical variation. Journal of Fluid Mechanics. 714:434–462.

Kurganov, A. and Petrova, G. (2007). A second-order well-balanced positivity preserv-

ing central-upwind scheme for the Saint-Venant system. Communications in Mathe-

matical Sciences. 5(1):133–160.

Kurganov, A. and Tadmor, E. (2000). New high-resolution central schemes for nonlin-

ear conservation laws and convection–diffusion equations. Journal of Computational

Physics. 160(1):241–282.

Labuz, J. F. and Zang,A. (2012). Mohr–Coulomb failure criterion. Rock Mechanics and

Rock Engineering. 45(6):975–979.

Lai, Z., Vallejo, L. E., Zhou, W., Ma, G., Espitia, J. M., Caicedo, B., and Chang, X.

(2017). Collapse of granular columns with fractal particle size distribution: Impli-

cations for understanding the role of small particles in granular flows. Geophysical

Research Letters. 44(24):12, 181–12, 189.

Lajeunesse, E., Mangeney-Castelnau, A., and Vilotte, J. P. (2004). Spreading of a gran-

ular mass on a horizontal plane. Physics of Fluids. 16(7):2371–2381.

179



REFERENCES

Lajeunesse, E., Monnier, J. B., and Homsy, G. M. (2005). Granular slumping on a hor-

izontal surface. Physics of Fluids. 17(10):103302.

Lam, H. W., Sze, E., Wong, E. K. L., Poudyal, S., Ng, C., Chan, S., and Choi, C. E.

(2022). Study of dynamic debris impact load on flexible debris-resisting barriers

and the dynamic pressure coefficient.Canadian Geotechnical Journal. 59(12):2102–

2118.

Lam, H. W. and Wong, A. L. (2021). Experimental and numerical study of dynamic

soil debris impact load on reinforced concrete debris-resisting barriers. Landslides.

18(3):955–966.

Larrieu, E., Staron, L., and Hinch, E. J. (2006). Raining into shallow water as a descrip-

tion of the collapse of a column of grains. Journal of Fluid Mechanics. 554(-1):259.

Law, R. P. H., Choi, C. E., and Ng, C. W. W. (2015). Discrete-element investigation of

influence of granular debris flow baffles on rigid barrier impact. Canadian Geotech-

nical Journal. 53(1):179–185.

Legros, F. (2002). The mobility of long-runout landslides. Engineering Geology. 63(3-

4):301–331.

Lemieux, P.-A. and Durian, D. J. (2000). From avalanches to fluid flow: A continuous

picture of grain dynamics down a heap. Physical Review Letters. 85(20):4273.

Leonardi, A., Cabrera, M. A., and Pirulli, M. (2021). Coriolis-induced instabilities in

centrifuge modeling of granular flow. Granular Matter. 23(2):52.

Leonardi, A., Goodwin, S. R., and Pirulli, M. (2019). The force exerted by granular

flows on slit dams. Acta Geotechnica. 14(6):1949–1963.

Leonardi, A. (2015). Numerical simulation of debris flow and interaction between flow

and obstacle via DEM. PhD thesis. ETH Zurich, Zurich.

Leonardi, A., Cabrera, M., Wittel, F. K., Kaitna, R., Mendoza, M., Wu, W., and Her-

rmann, H. J. (2015). Granular-front formation in free-surface flow of concentrated

suspensions. Physical Review E. 92(5):052204.

Leonardi, A., Wittel, F. K., Mendoza, M., Vetter, R., and Herrmann, H. J. (2016). Parti-

cle–fluid–structure interaction for debris flow impact on flexible barriers. Computer

Aided Civil and Infrastructure Engineering. 31(5):323–333.

Leonardi, A., Wittel, F. K., Mendoza, M., and Herrmann, H. J. (2014). Coupled DEM-

LBM method for the free-surface simulation of heterogeneous suspensions. Compu-

tational Particle Mechanics. 1(1):3–13.

Li, P.,Wang, D., and Niu, Z. (2022). Unchannelized collapse of wet granular columns in

the pendular state: Dynamics and morphology scaling. Physical Review Fluids. 7(8).

180



REFERENCES

Lide, D. R. (2004). CRC Handbook of Chemistry and Physics. Vol. 85. Boca Raton,

Florida: CRC press.

Liu, H., Luo, Q., El Naggar, M. H., Zhang, L., and Wang, T. (2023). Centrifuge mod-

eling of stability of embankment on soft soil improved by rigid columns. Journal of

Geotechnical and Geoenvironmental Engineering. 149(9):04023069.

Lube, G., Huppert, H. E., Sparks, R. S. J., and Freundt, A. (2005). Collapses of two-

dimensional granular columns. Physical Review E. 72(4).

Lube, G., Huppert, H. E., Sparks, R. S. J., and Hallworth, M. A. (2004). Axisymmetric

collapses of granular columns. Journal of Fluid Mechanics. 508:175–199.

Major, J. J. and Pierson, T. C. (1992). Debris flow rheology: Experimental analysis of

fine‐grained slurries. Water Resources Research. 28(3):841–857.

Major, J. J. and Iverson, R. M. (1999). Debris-flow deposition: Effects of pore-fluid

pressure and friction concentrated at flow margins. Geological Society of America

Bulletin. 111(10):1424–1434.

Marchelli, M., Leonardi, A., Pirulli, M., and Scavia, C. (2020). On the efficiency of

slit-check dams in retaining granular flows. Géotechnique. 70(3):226–237.

Marshall, A., Farrell, R., Klar, A., and Mair, R. (2012). Tunnels in sands: The effect of

size, depth and volume loss on greenfield displacements. Géotechnique. 62(5):385–

399.

Matlab (2020). version 9.8.0.1451342 (R2020a). Natick, Massachusetts: The Math-

Works Inc.

McArdell, B. W. (2016). Field measurements of forces in debris flows at the Illgraben:

Implications for channel-bed erosion. International Journal of Erosion Control En-

gineering. 9(4):194–198.

McArdell, B. W., Bartelt, P., and Kowalski, J. (2007). Field observations of basal forces

and fluid pore pressure in a debris flow. Geophysical Research Letters. 34(7).

McCoy, S.W., Kean, J.W., Coe, J.A., Staley, D.M.,Wasklewicz, T.A., andTucker, G. E.

(2010). Evolution of a natural debris flow: In situ measurements of flow dynamics,

video imagery, and terrestrial laser scanning. Geology. 38(8):735–738.

Meng, X., Johnson, C. G., and Gray, J. M. N. T. (2022). Formation of dry granular fronts

and watery tails in debris flows. Journal of Fluid Mechanics. 943.

Meng, X., Wang, Y., Wang, C., and Fischer, J.-T. (2017). Modeling of unsaturated gran-

ular flows by a two-layer approach. Acta Geotechnica. 12(3):677–701.

Meyer, H. (2021). Camera Controller for Action Cameras. MobWheel.com.

181



REFERENCES

MiDi, G. (2004). On dense granular flows. The European Physical Journal E. 14:341–

365.

Milne, F. D., Brown, M. J., Knappett, J. A., and Davies, M. C. R. (2012). Centrifuge

modelling of hillslope debris flow initiation. CATENA. 92:162–171.

Mirshekari, M. and Ghayoomi, M. (2017). Centrifuge tests to assess seismic site re-

sponse of partially saturated sand layers. Soil Dynamics and Earthquake Engineer-

ing. 94:254–265.

Morland, L. W. (1992). Flow of viscous fluids through a porous deformable matrix.

Surveys in Geophysics. 13(3):209–268.

Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., and Jaedicke, C. (2006). Global land-

slide and avalanche hotspots. Landslides. 3(2):159–173.

Ng, C. W.W., Choi, C. E., Koo, R., Goodwin, S., Song, D., and Kwan, J. S. (2018). Dry

granular flow interaction with dual-barrier systems. Géotechnique. 68(5):386–399.

Oakley, N. S., Cannon, F., Munroe, R., Lancaster, J. T., Gomberg, D., and Ralph, F. M.

(2018). Brief communication: Meteorological and climatological conditions associ-

ated with the 9 January 2018 post-fire debris flows in Montecito and Carpinteria,

California, USA. Natural Hazards and Earth System Sciences. 18(11):3037–3043.

Orpe, A. V. and Kudrolli, A. (2007). Velocity correlations in dense granular flows ob-

served with internal imaging. Physical Review Letters. 98(23):238001.

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE

Transactions on Systems, Man, and Cybernetics. 9(1):62–66.

Ouriemi, M., Aussillous, P., and Guazzelli, E. (2009). Sediment dynamics. Part 1. Bed-

load transport by laminar shearing flows. Journal of Fluid Mechanics. 636:295–319.

Pacheco-Martinez, H., Van Gerner, H. J., and Ruiz-Suárez, J. (2008). Storage and dis-

charge of a granular fluid. Physical Review E. 77(2):021303.

Pailha, M. and Pouliquen, O. (2009). A two-phase flow description of the initiation of

underwater granular avalanches. Journal of Fluid Mechanics. 633:115–135.

Pasqua, A., Leonardi, A., and Pirulli, M. (2022). Coupling Depth-Averaged and 3D nu-

merical models for the simulation of granular flows. Computers and Geotechnics.

149:104879.

Pasqua, A., Leonardi, A., and Pirulli, M. (2023). Coupling Depth-Averaged and 3D nu-

merical models to study debris flow: Saint-Vincent event. E3S Web of Conferences.

415. EDP Sciences:02015.

182



REFERENCES

Pereira, G. G., Dupuy, P. M., Cleary, P. W., and Delaney, G. W. (2012). Comparison of

permeability of model porous media between SPH and LB. Progress in Computa-

tional Fluid Dynamics, an International Journal. 12(2-3):176–186.

Petley, D. (2012). Global patterns of loss of life from landslides. Geology. 40(10):927–

930.

Petley, D. (2008). The global occurrence of fatal landslides in 2007. Geophysical Re-

search Abstracts. 10:3.

Phan, Q. T., Bui, H. H., and Nguyen, G. D. (2022). Modeling submerged granular flow

across multiple regimes using the Eulerian–Eulerian approach with shear-induced

volumetric behavior. Physics of Fluids. 34(6):063308.

Pierson, T. (1986). Flow behavior of channelized debris flows, Mount St. Helens,Wash-

ington. 16th Annual Binghamton Symposium. Hillslope Processes: Allen and Unwin,

Winchester, Mass:269–296.

Pierson, T. C. (2005).Distinguishing between debris flows and floods from field evidence

in small watersheds. Report 2327-6932. US Geological Survey.

Pitman, E. B. and Le, L. (2005). A Two-Fluid Model for Avalanche and Debris Flows.

Philosophical Transactions: Mathematical, Physical and Engineering Sciences.

363(1832):1573–1601.

Pracht, W. E. (1975). Calculating three-dimensional fluid flows at all speeds with an

Eulerian-Lagrangian computingmesh. Journal of Computational Physics. 17(2):132–

159.

Pudasaini, S. P. and Hutter, K. (2003). Rapid shear flows of dry granular masses down

curved and twisted channels. Journal of Fluid Mechanics. 495:193–208.

Pudasaini, S. P. and Hutter, K. (2007). Avalanche Dynamics: Dynamics of Rapid Flows

of Dense Granular Avalanches. Springer Science & Business Media.

Pudasaini, S. P. (2012). A general two-phase debris flow model. Journal of Geophysical

Research: Earth Surface. 117(F3):n/a–n/a.

Redshaw, P., Boon, D., Campbell, G., Willis, M., Mattai, J., Free, M., Jordan, C., Kemp,

S. J., Morley, A., and Thomas, M. (2019). The 2017 Regent Landslide, Freetown

Peninsula, Sierra Leone. Quarterly Journal of Engineering Geology and Hydrogeol-

ogy. 52(4):435–444.

Richards, T. W. and Carver, E. K. (1921). A critical study of the capillary rise method

of determining surface tension, with data for water, benzene, toluene, chloroform,

carbon tetrachloride, ether and dimethyl aniline. Journal of the American Chemical

Society. 43(4):827–847.

183



REFERENCES

Rickenmann, D. (1999). Empirical relationships for debris flows. Natural Hazards.

19:47–77.

Robinson, M., Ramaioli, M., and Luding, S. (2014). Fluid–particle flow simulations

using two-way-coupled mesoscale SPH–DEM and validation. International Journal

of Multiphase Flow. 59:121–134.

Rodolfo, K. S., Lagmay, A. M. F., Eco, R. C., Herrero, T. M. L., Mendoza, J. E., Min-

imo, L. G., and Santiago, J. T. (2016). The December 2012 Mayo River debris flow

triggered by Super Typhoon Bopha in Mindanao, Philippines: Lessons learned and

questions raised. Natural Hazards and Earth System Sciences. 16(12):2683–2695.

Roelofs, L., Colucci, P., and Haas, T. (2022). How debris‐flow composition affects bed

erosion quantity and mechanisms: An experimental assessment. Earth Surface Pro-

cesses and Landforms.

Rondon, L., Pouliquen, O., and Aussillous, P. (2011). Granular collapse in a fluid: Role

of the initial volume fraction. Physics of Fluids. 23(7):073301.

Rossi, M., Peruccacci, S., Brunetti, M., Marchesini, I., Luciani, S., Ardizzone, F., Bal-

ducci, V., Bianchi, C., Cardinali, M., and Fiorucci, F. (2012). SANF: National warn-

ing system for rainfall-induced landslides in Italy. Landslide and Engineered Slopes.

Protecting Society through Improved Understanding. Vol. 2:1895–1899.

Roux, J.-N. and Combe, G. (2002). Quasistatic rheology and the origins of strain.

Comptes Rendus Physique. 3(2):131–140.

Salciarini, D., Tamagnini, C., and Conversini, P. (2010). Discrete element modeling of

debris-avalanche impact on earthfill barriers. Physics and Chemistry of the Earth,

Parts A/B/C. 35(3):172–181.

Salm, B. (1993). Flow, flow transition and runout distances of flowing avalanches. An-

nals of Glaciology. 18:221–226.

Sanvitale, N. and Bowman, E. T. (2017). Visualization of dominant stress-transfer mech-

anisms in experimental debris flows of different particle-size distribution. Canadian

Geotechnical Journal. 54(2):258–269.

Sarlin, W., Morize, C., Sauret, A., and Gondret, P. (2021). Collapse dynamics of dry

granular columns: From free-fall to quasistatic flow. Physical Review E. 104(6).

Sati, V. P. (2022). Glacier bursts-triggered debris flow and flash flood in Rishi andDhauli

Ganga valleys: A study on its causes and consequences. Natural Hazards Research.

2(1):33–40.

184



REFERENCES

Sattler, K., Keiler, M., Zischg, A., and Schrott, L. (2011). On the connection between

debris flow activity and permafrost degradation: A case study from the Schnalstal,

South Tyrolean Alps, Italy. Permafrost and Periglacial Processes. 22(3):254–265.

Savage, S. B. and Hutter, K. (1989). The motion of a finite mass of granular material

down a rough incline. Journal of Fluid Mechanics. 199:177–215.

Savage, S. and Lun, C. (1988). Particle size segregation in inclined chute flow of dry

cohesionless granular solids. Journal of Fluid Mechanics. 189:311–335.

Savage, S. B. (1984). The mechanics of rapid granular flows. Advances in Applied Me-

chanics. 24:289–366.

Savage, S. B. (1979). Gravity flow of cohesionless granular materials in chutes and

channels. Journal of Fluid Mechanics. 92(1):53–96.

Scaramuzza, D. and Siegwart, R. (2007). A new method and toolbox for easily calibrat-

ing omnidirectional cameras. International Conference on Computer Vision Systems:

Proceedings.

Scheidl, C., Chiari, M., Kaitna, R., Müllegger, M., Krawtschuk, A., Zimmermann, T.,

and Proske, D. (2013). Analysing debris-flow impact models, based on a small scale

modelling approach. Surveys in Geophysics. 34:121–140.

Schneider, D., Huggel, C., Cochachin, A., Guillén, S., and García, J. (2014). Mapping

hazards from glacier lake outburst floods based on modelling of process cascades at

Lake 513, Carhuaz, Peru. Advances in Geosciences. 35:145–155.

Schofield, A. N. (1980). Cambridge geotechnical centrifuge operations. Geotechnique.

30(3):227–268.

Shiu,W.-J., Lee, C.-F., Chiu, C.-C.,Weng, M.-C., Yang, C.-M., Chao,W.-A., Liu, C.-Y.,

Lin, C.-H., Huang, W.-K., and Group, G. W. (2023). Analyzing landslide-induced

debris flow and flow-bridge interaction by using a hybrid model of depth-averaged

model and discrete element method. Landslides. 20(2):331–349.

Song, D., Choi, C. E., Ng, C. W. W., and Zhou, G. G. D. (2018). Geophysical flows

impacting a flexible barrier: Effects of solid-fluid interaction. Landslides. 15(1):99–

110.

Song, D.-r., Zhou, G. G. D., Choi, C. E., and Zheng, Y. (2019). Debris flow impact on

flexible barrier: effects of debris-barrier stiffness and flow aspect ratio. Journal of

Mountain Science. 16(7):1629–1645.

Song, D. (2016). Mechanisms of debris flow impact on rigid and flexible barriers. PhD

thesis. The Hong Kong University of Science and Technology, Hong Kong.

185



REFERENCES

Spielmann, R., Aaron, J., and McArdell, B. W. (2023). Inferring spatial variations in

velocity profiles and bed geometry of natural debris flows based on discharge es-

timates from high-frequency 3D LiDAR point clouds; Illgraben, Switzerland. E3S

Web of Conf. 415:01024.

Stewart, M.A. and McCartney, J. S. (2014). Centrifuge modeling of soil-structure inter-

action in energy foundations. Journal of Geotechnical and Geoenvironmental Engi-

neering. 140(4):04013044.

Succi, S. (2001). The lattice Boltzmann equation: For fluid dynamics and beyond. Ox-

ford university press.

Švec, O., Skoček, J., Stang, H., Geiker, M. R., and Roussel, N. (2012). Free surface

flow of a suspension of rigid particles in a non-Newtonian fluid: A lattice Boltzmann

approach. Journal of Non-Newtonian Fluid Mechanics. 179-180:32–42.

Takahashi, T. (1981). Debris Flow. Annual Review of Fluid Mechanics. 13(1):57–77.

Takahashi, T. (2007).Debris flow: Mechanics, Prediction and Countermeasures. Taylor

& Francis.

Takamura, K., Fischer, H., and Morrow, N. R. (2012). Physical properties of aqueous

glycerol solutions. Journal of Petroleum Science and Engineering. 98-99:50–60.

Takebayashi, H. and Fujita, M. (2020). Numerical simulation of a debris flow on the

basis of a two-dimensional continuum body model. Geosciences. 10(2):45.

Taylor, R. N. (1995). Geotechnical Centrifuge Technology. New York: Blackie Aca-

demic & Professional.

Terzaghi, K. (1943). Theoretical Soil Mechanics. Vol. 314. John Wiley and Sons Inc.

Teufelsbauer, H., Wang, Y., Chiou, M. C., and Wu, W. (2009). Flow–obstacle interac-

tion in rapid granular avalanches: DEM simulation and comparison with experiment.

Granular Matter. 11:209–220.

Thompson, E. L. and Huppert, H. E. (2007). Granular column collapses: Further exper-

imental results. Journal of Fluid Mechanics. 575:177–186.

Thornton, C. (2015). Granular dynamics, contact mechanics and particle system simu-

lations. A DEM study. Particle Technology Series. 24.

Tierz, P., Woodhouse, M. J., Phillips, J. C., Sandri, L., Selva, J., Marzocchi, W., and

Odbert, H.M. (2017).A framework for probabilistic multi-hazard assessment of rain-

triggered lahars using Bayesian belief networks. Frontiers in Earth Science. 5:73.

Tolomeo, M. and McDowell, G. R. (2023). DEM study of an “avatar” railway ballast

with real particle shape, fabric and contact mechanics. Granular Matter. 25(2):32.

186



REFERENCES

Trepanier, M. and Franklin, S. V. (2010). Column collapse of granular rods. Physical

Review E. 82(1):011308.

Trigila, A. and Iadanza, C. (2008). Landslides in Italy. Report. Italian National Institute

for Environmental Protection and Research (ISPRA).

Tsai, M., Hsu, Y.-C., Li, H., Shu, H., and Liu, K.-F. (2011). Application of simulation

technique on debris flow hazard zone delineation: A case study in the Daniao tribe,

Eastern Taiwan. Natural Hazards and Earth System Sciences. 11:3053–3062.

Turnbull, B. (2011). Scaling laws for melting ice avalanches. Physical Review Letters.

107(25):258001.

Turnbull, B., Bowman, E. T., and McElwaine, J. N. (2015). Debris flows: Experiments

and modelling. Comptes Rendus Physique. 16(1):86–96.

Valentino, R., Barla, G., and Montrasio, L. (2008). Experimental analysis and microme-

chanical modelling of dry granular flow and impacts in laboratory flume tests. Rock

Mechanics and Rock Engineering. 41:153–177.

Vallance, J., Savage, S., Rosato, A., and Blackmore, D. (2000). Particle segregation in

granular flows down chutes, IUTAM Symposium on Segregation in Granular Mate-

rials. Ed. by A. Rosato and D. Blackmore:31–52.

Vallejo, L., Estrada, N., Taboada, A., Caicedo, B., and Silva, J. (2006). Numerical and

physical modeling of granular flow. Physical Modelling in Geotechnics. Proceed-

ings of the Sixth International Conference on Physical Modelling in Geotechnics,

6th ICPMG. 6.

Varnes, D. J. (1958). Landslide types and processes. Landslides and engineering prac-

tice. 24:20–47.

Vreugdenhil, C. B. (1994). Numerical Methods for Shallow-Water Flow. Vol. 13.

Springer Science & Business Media.

Warnett, J., Denissenko, P., Thomas, P., Kiraci, E., and Williams, M. (2014). Scalings

of axisymmetric granular column collapse. Granular Matter. 16(1):115–124.

Webb, W., Heron, C., and Turnbull, B. (2023a). Fines-controlled drainage in just-

saturated, inertial column collapses. E3S Web of Conferences. 415:01030.

Webb,W., Heron, C., and Turnbull, B. (2023b). Inertial effects in just-saturated axisym-

metric column collapses. Granular Matter. 25(2):40.

Webb, W., Turnbull, B., and Johnson, C. G. (2024a). Continuum modelling of a just-

saturated inertial column collapse: Capturing fluid-particle interaction. Granular

Matter. 26(1):21.

187



REFERENCES

Webb,W., Turnbull, B., and Leonardi, A. (2024b). Performance and limits of a geotech-

nical centrifuge: DEM-LBM simulations of saturated granular column collapse.

Granular Matter. 26(2):32.

White, D. J., Take, W. A., and Bolton, M. D. (2003). Soil deformation measure-

ment using particle image velocimetry (PIV) and photogrammetry. Géotechnique.

53(7):619–631.

Więckowski, Z. (2004). The material point method in large strain engineering problems.

Computer Methods in Applied Mechanics and Engineering. 193(39):4417–4438.

Wolf-Gladrow, D. (1995). A lattice Boltzmann equation for diffusion. Journal of Statis-

tical Physics. 79:1023–1032.

World Bank (2023). The World Bank data. Data retrieved from World Development

Indicators, https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?
view=chart.

Xiong, Q., Madadi-Kandjani, E., and Lorenzini, G. (2014). A LBM–DEM solver for

fast discrete particle simulation of particle–fluid flows. Continuum Mechanics and

Thermodynamics. 26:907–917.

Yang, F. L. and Hunt, M. L. (2006). Dynamics of particle-particle collisions in a viscous

liquid. Physics of Fluids. 18(12):121506.

Yuheng, S. and Hao,Y. (2017). Image segmentation algorithms overview. arXiv preprint

arXiv:1707.02051.

Zhang, B. and Huang, Y. (2022). Impact behavior of superspeed granular flow: Insights

from centrifuge modeling and DEM simulation. Engineering Geology. 299.

Zhang, B., Li,W., Pu, J., Bi,Y., and Huang,Y. (2023). Dilative and compressive Coriolis

effect on granular impact behavior based on centrifuge modeling and DEM simula-

tion. Engineering Geology. 323:107232.

Zhang, J., Pu, J., Zhang, M., and Qiu, T. (2001a). Model tests by centrifuge of soil nail

reinforcements. Journal of Testing and Evaluation. 29(4):315–328.

Zhang, Z., Liu, L., Yuan, Y., and Yu, A. (2001b). A simulation study of the effects of

dynamic variables on the packing of spheres. Powder Technology. 116(1):23–32.

Zhong, W., Yu, A., Liu, X., Tong, Z., and Zhang, H. (2016). DEM/CFD-DEM mod-

elling of non-spherical particulate systems: Theoretical developments and applica-

tions. Powder Technology. 302:108–152.

Zhou, Y., Xu, B., Zou, R., Yu, A., and Zulli, P. (2003). Stress distribution in a sandpile

formed on a deflected base. Advanced Powder Technology. 14(4):401–410.

188

https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?view=chart
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?view=chart


REFERENCES

Zou, Z., Tang, H., Xiong, C., Su, A., and Criss, R. E. (2017). Kinetic characteristics of

debris flows as exemplified by field investigations and discrete element simulation

of the catastrophic Jiweishan rockslide, China. Geomorphology. 295:1–15.

Zuiderveld, K. (1994). Contrast Limited Adaptive Histogram Equalization. Graphics

Gems. IV:474–485.

189


	Introduction
	Motivation
	Aims and objectives
	Outline

	Debris flows: From natural phenomena to laboratory and numerical representations
	Debris flow classification
	Evolution of natural flows
	Initiation
	Transportation
	Surge front architecture
	Heterogeneous pore pressure distributions

	Deposition

	Field measurements and physical modelling
	Field measurements and large-scale testing
	Laboratory-scale experimental configurations
	Scaling
	Centrifuge testing

	Numerical modelling
	The continuum approach using shallow-water equations
	Dry granular flows
	Single phase debris flow models
	Two-phase debris flow models

	The continuum-discrete approach
	The Discrete Element Method
	Coupling DEM with a fluid phase
	Comparing the continuum-discrete approach to other modelling types


	Summary

	Inertial effects in just-saturated axisymmetric column collapses
	Introduction
	Dimensional analysis
	Model apparatus
	Test procedure
	Front measurement
	Pore pressure measurement

	Column mobility
	Fluid pressure evolution
	Scale analysis
	Quantification of scaling parameter influence

	Discussion
	Supplementary content

	Fines-controlled drainage in just-saturated, inertial column collapses
	Introduction
	Methodology
	Experimental setup
	Dimensional analysis

	Results and discussion
	Conclusions and further work

	Continuum modelling of a just-saturated inertial column collapse: Capturing fluid-particle interaction
	Introduction
	Experimental configuration
	Modelling
	Depth averaged equations
	Behaviour of the model in limiting cases
	Numerical method
	Regularisation of vertical velocity components

	Calibration assessment
	Runout
	Velocity

	Fluid pressure
	Experimental pressure signal reduction
	Numerical pressure signal reduction
	Definition of pressure reduction
	Comparison of pressure reduction

	Discussion
	Supplementary content

	Performance and limits of a geotechnical centrifuge: DEM-LBM simulations of saturated granular column collapse
	Introduction
	Fluid-saturated granular column collapse
	The LBM-DEM framework
	Simulation methodology
	Simulation parameter space
	Simulation geometry
	Column construction
	Front and signal processing

	Model verification
	Family of curves
	Comparison with physical experiments
	Experimental-model discrepancies
	Model simplification discrepancies


	Implications of centrifuge modelling
	Coordination number
	N scaling
	Influence of centrifuge radius

	Conclusions and further work

	Conclusions
	Conclusions
	Future work

	Experimental image, pressure and non-Newtonian fluid data processing
	Image data processing
	Image capture
	Distortion removal
	Image transformation
	Image masking
	Data extraction

	Fluid pressure data processing
	Pressure measurement acquisition
	Instrument calibration

	Obtaining non-Newtonian fluid material parameters
	Density
	Viscosity
	Surface tension


	Collapse complexities
	Understanding the mechanisms controlling the delay in column release
	Quantifying the delay of the granular column release
	Influence of the column release mechanism on phase front separation
	Influence of the column release mechanism on runout scalings

	Shallow water model derivation
	Governing equations
	Boundary conditions
	Scaling the system
	Depth integration
	Mass continuity equations
	Normal components of the momentum continuity equations
	Horizontal components of the granular momentum continuity equations
	Horizontal components of the fluid momentum continuity equations
	Depth averaged dimensional system of equations

	Application to fluid-saturated granular column collapse
	Implementation

	Design of a 2D sloped prototype
	Introduction
	Modelling objectives
	Model apparatus
	Parameter space of interest
	Design limitations
	Reasons for non-execution

	References

