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Abstract

The need for large quantities of high quality training data is one of the overarching

problems facing the Computer Vision and Deep Learning research community.

The need to seek versatile, scalable solutions to this problem is imperative as

neural networks become involved with almost every aspect of the modern world.

The topic of this thesis is training neural networks with Synthetic Data, one of

the most promising solutions to the problem of data scarcity.

In this thesis I focus these attempts on plant phenotyping tasks, an important field

of interest within Computer Vision concerned with the automatic measurement of

the physical features of different plants. This thesis presents a number of Synthetic

Datasets created with deep learning in mind, and then details a number of novel

techniques for leveraging these datasets when working on phenotyping problems,

focusing on domain adaptation, style transfer and network fine-tuning.

I present a heatmap guidance extension for style transfer, and a clustering ap-

proach to deep learning training to improve generalisation on diverse target

datasets. Then my work on 3D reconstruction is presented, where domain adapta-

tion is performed simultaneously with training a volumetric regression network,

allowing for an unsupervised domain adaptation approach using an unlabeled

train set. I present a series of experiments comparing Synthetic Data and fine-

tuning approach between CNN and Transformer based architectures. Finally I

look at Diffusion Models, a new form of generative neural network that promises

to be the future of synthetic data generation.
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Chapter 1

Introduction

1.1 General Introduction

This thesis presents a collection of research projects that focus on using Synthetic

Data to solve the data shortage problem in machine learning. Focusing on the

domain of plant phenotyping, the acquisition of complex plant traits from images,

this body of work aims to investigate the impact of Synthetic Data on training

deep learning models, and the importance of domain adaptation for tackling the

domain gap problem this presents. Subsequently this work aims to investigate

how emergent deep learning techniques are able to improve or leverage the use

of synthetic data for training.

Tremendous progress has been made in the past decade in deep learning archi-

tectures, allowing for complex neural network models to be deployed in industry

and real world fields across a variety of use cases. Today, industry application of

deep learning to many fields relies on sufficient data being available to train state

of the art models for the often niche applications for which AI can be effective.

Plant phenotyping is one of many examples of this, as it has been shown to be

a strong candidate for deep learning solutions while being especially difficult to

collect data for (due to diverse crop types and importance of high image quality)

and to annotate (due to small details carrying significance, and the expert knowl-

edge needed for manual annotation). The work presented in this thesis looks at
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synthetic data as one solution to data scarcity in this area.

1.2 The Problem

Machine learning acquires its name from its underlying principle that a computer,

given sufficient experience, can learn to solve a given problem. In practice, this

means showing a computer a large volume of already-completed problems and

comparing the machines prediction to the known solution, with the computer

learning from the difference between the two. In Computer Vision, dataset sizes

often start in the low thousands of images, going up to many million for the most

challenging problems, and often containing extremely complex solutions.

Dataset size is extremely important to ensure good training of a neural network.

Large models contain a large number of parameters that have random initial

values that must be optimised during training. This large number of parameters

allow the network to learn complex mappings between inputs and outputs, even

when our input space is very large. However, for this very reason, large networks

are often capable of overfitting to a small training dataset, a fail state where

the network learns the solutions to its specific training inputs, rather than a

generalized mapping from the input to output spaces.

As a result this creates a tremendous barrier for entry to anyone wanting to

use machine learning, as almost any computer vision project must start with the

collection on hundreds to thousands of images that must then be hand annotated.

In complex cases such as panoptic segmentation (identifying the class and instance

of every pixel within an image) this would mean drawing potentially hundreds

of polygons around every single object in an entire image, an expensive process

that is also prone to human error and bias.

Synthetic Data, created for the purpose of training deep neural networks is the

focus of this PhD thesis, an approach that presents many challenges that this

thesis seeks to address. Creating high quality synthetic data, with annotations

is itself technically challenging, and a number of different possible solutions have

been presented, using both conventional and machine learning technologies. As
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we explore in greater depth in this thesis, using synthetic data alone as training

inputs for deep learning will yield poor results when tested on real images due

to the domain shift problem. Synthetic images can have very different low level

features from the real data it seeks to imitate, and as such a model fails to make

predictions on real images that come from a different data distribution to that

on which it was trained. Overcoming this hurdle is the main technical challenge

addressed in this thesis.

1.3 Motivation

This research is motivated by a desire to help solve the data scarcity problem in

Machine Learning, by helping to provide better ways of training neural networks

via the use of different forms of synthetic data of Synthetic training data. By doing

so we hope to make machine learning more affordable, efficient, and accessible, so

that more people can use this powerful technology in the future. It is common in

deep learning applications for a significant cost to be associated with the collection

and annotation of data, not only financially but also in terms of time taken. The

annotation of the ImageNet [26] dataset alone is estimated to have taken around

20 years collectively, assuming an image could be annotated every minute. The

work carried out in this thesis was prompted by our desire to reduce these costs,

as with the correct hardware we believe that image generation and annotation

can be achieved in ten seconds or less, which would produce a five fold decrease in

cost at the very least. In doing so make deep learning approaches to phenotyping

more accessible by lowering this barrier for entry, allowing for a wider range of

applications and uses.

The technical challenge in making synthetic data a viable solution to data scarcity

comes from solving a set of problems that encompass the pipeline of using artificial

data: data generation, domain adaptation, and training. The work in chapters 4

through 7 addresses these challenges by presenting multiple potential solutions to

all three, and is motivated by the desire to make novel contributions and provide

experimental data that can allow those in industry to make better synthetic data

in future.
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Our focus on Plant Phenotyping is based on our motivation to focus on an area

with significant impact; as the use of deep learning in agriculture has significant

implication for issues of global food security, as well as the impact of the climate

crisis on agriculture in developing countries [63]. The main uses of automated

plant phenotyping include crop monitoring (understanding the health of crops

in a field to improve yields and detect stresses to plant growth such as disease),

and analysis of new plants and pesticides, allowing for the development of more

robust species for future use. In both cases, plant phenotyping is an important tool

in agricultural settings, with a significant potential impact as well. The unique

nature of plants provides many unique challenges not found in other domains,

and research is needed to examine and solve domain specific challenges in a

number of Computer Vision tasks. This thesis is motivated in part by the desire

to explore and solve these domain specific aspects of synthetic data as it applies

to phenotyping.

1.3.1 Research Questions

With these motivations in mind we set out a number of research questions we

will seek to answer in the course of this thesis:

• What are the best methods for producing Synthetic Data? What are the

pros and cons of these methods when compared against their alternatives?

What specific considerations have to be made when producing synthetic

data for plant phenotyping tasks?

• Do all types of Synthetic Data cause the domain shift problem? What are

the best methods of overcoming or mitigating this problem to get better

performance at downstream tasks?

• For what Computer Vision Problems can synthetic data be used? What

are the advantages and limitations in each, considering factors such as cost,

accessibility, and performance?
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1.3.2 Objectives

Here we additionally outline our overall objectives for this thesis that will guide

our work to addressing our stated research questions.

• The primary objective of this thesis is to develop pipelines for synthetic data

generation and use using a range of state-of-the-art, and novel techniques.

• Secondly this thesis will contribute to the research discourse surrounding

the use of synthetic data for deep learning training, focusing on core prob-

lems of interest such as domain adaptation and generalization.

• Our third overall objective is to expand the role of generative AI, for the

purpose of generating synthetic training data. This includes better use of

cutting edge technology, as well as a focus on more complex computer vision

challenges.

1.4 Contributions

1. We develop a novel clustering approach to domain adaption of synthetic

datasets when using a diverse target dataset. By using our method we

demonstrate that object detection scores can be improved compared to

conventional source/target style transfer.

2. We present a low-cost domain adaptation guidance mechanism using heat

map regression to improve domain adaptation when focusing on object

detection. Use of this technique will allow other researchers working with

domain adaptation to make the most out of limited training data, reducing

costs while improving performance.

3. This thesis presents an integrated domain adaptation, volumetric regres-

sion network that allows for unsupervised 3D reconstruction. This novel

approach to 3D reconstruction is versatile enough to allow a deep learn-

ing model to be trained for any 3D target object(s), without the need to

laboriously capture a large training dataset, as would otherwise be needed.

4. We design and run a series of experiments evaluating the effectiveness of
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synthetic data and domain adaptation on Transformer architectures, com-

paring the impact of these methods against CNN based methods.

5. We present an investigation into the use of diffusion models for generating

synthetic training data for deep learning neural networks, giving useful data

to other researchers about how effectively diffusion generated images can

generalize to real images when used as training data.

6. We develop a novel method of generating synthetic data for instance seg-

mentation, including both images and annotation masks using conventional

diffusion architecture. This approach stands to allow for other researchers to

generate large amounts of instance segmentation data much more cheaply

than with conventional hand annotation.

7. We present a collection of synthetic datasets for plant phenotyping problems

that were used to train the networks for the experiments presented, in

addition we include the pipelines used to create some of our handcrafted

synthetic datasets as well as links to Github repositories where our code

can be found.

1.5 Overview of thesis

This thesis is organised into the following chapters:

Chapter 2: A background of the key themes and areas of Computer Science this

thesis focuses on.

A description of Synthetic Data in Machine Learning is presented giving details

on the aspects of the field relevant to this thesis. Then Plant Phenotyping is fully

introduced as an application area for computer vision, along with a taxonomy

of Plant Phenotyping problems and brief overview of current techniques and

research.

Chapter 3: A literature review of key ideas this thesis aims to build upon.

First this chapter looks at state-of-the-art and current developments in Computer
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Vision, looking in detail at research surrounding the different problems we look

at in this thesis. A broad overview CNN and Transformer based computer vision

is then discussed, covering the current state of the computer vision field and

the impact of new Transformer architectures. We then include a breakdown of

Domain Adaptation especially where it concerns Synthetic to Real Style Transfer

and other forms of Unsupervised Domain Adaptation. Finally we discuss other

research into synthetic data, covering current idea on best practice in the creation

of new datasets and their uses.

Chapter 4: Domain Adaptation for wheat head detection

In chapter 4, two novel methods for improving wheat head detection performance

are evaluated. As well as presenting our created datasets, our clustering approach

is shown to improve a networks performance when generalizing onto a diverse test

dataset. This work makes up part of our 2021 paper titled Domain Adaptation of

Synthetic Images for Wheat Head Detection and includes our synthetic datasets

of wheat images.

Chapter 5: Unsupervised Domain Adaptation for Volumetric Regression of

Fruit:

A novel method of 3D reconstruction is presented for the unsupervised domain

adaptation problem. Focusing on 3D reconstruction of fruit as a phenotyping

problem, we present a method of predicting high precision 3D models from a

single 2D image. We present our dataset and the results of our experiments used

for our 2021 paper Unsupervised Domain Adaptation for Volumetric Regression

of Fruit.

Chapter 6: Use of Synthetic Data in CNN and Transformer based architectures.

Here a series of experiments is presented using Synthetic Data and domain adap-

tation for plant phenotyping tasks, where we present our finding using the current

state of the art Transformer models and examine the relevance of Synthetic Data

in the context of the ongoing competition between CNN and Transformer based

model.

Chapter 7: Use of diffusion models for synthetic data generation.
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Here we investigate diffusion models, and the ability to apply their impressive

generative capability to the create of new data for training other neural networks.

We present and evaluate a number of different methods for generating image-label

pairs using current diffusion models.

Chapter 8: Finally a discussion of the work presented in this thesis with a

summary of our findings and conclusions to be drawn from our research. We end

with a number of suggestions for future work building on the ideas presented in

the previous chapters.

1.5.1 Publications and Engagement

During the completion of this PhD, I have made a number of publications some

of which overlap with the projects presented in later chapters. Additional en-

gagement with the research community has been achieved through presenting a

number of talks and attending conferences and workshops. A complete list of each

of these is included below.

Publications

• Domain Adaptation of Synthetic Images for Wheat Head Detection.A paper

containing the work shown in chapter 4, published in 2021.

• GANana: Unsupervised Domain Adaptation for Volumetric Regression of

Fruit. A paper containing the work shown in chapter 5, published in 2021.

• Unlocking Comparative Plant Scoring with Siamese Neural Networks and

Pairwise Pseudo Labelling. A paper completed working with industry spon-

sor Syngenta and published in the CVPPA workshop at ICCV.

Talks and Presentations

• Creating and Using Synthetic Data for Plant Phenotyping Problems. A

presentation given to the Syngenta Computer Vision and Deep Learning

Tech Meeting during 2023.

• Diffusion-based Synthesis of Training Data for Neural Networks. A talk

given at the UK Plant Phenomics 2023 Town Hall and Conference in 2023
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based on an accepted extended abstract of the same name.

• Unlocking Comparative Plant Scoring with Siamese Neural Networks and

Pairwise Pseudo Labelling. Paper talk and poster session at CVPPA 2023

workshop at ICCV 2023 in Paris.
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Chapter 2

Background

2.1 Introduction

This thesis draws upon a number of different core research areas, plant phenotyp-

ing, Synthetic Data, Domain adaptation, and more broadly, Machine Learning

and Computer Vision. In this chapter we provide some further context on each

of these areas.

This chapter contains 4 sections: Section 2.2 gives context on deep learning ap-

proaches, as well as the current state of the art, focusing on the core problems we

focus on in this thesis. A comparison and discussion of Convolutional Neural Net-

works and Transformer architectures is also included. In section 2.3 a discussion

of Synthetic data in deep learning is included, looking at its use in a variety of

applications. Then in section 2.4 the domain gap problem is considered, and the

use of domain adaptation in literature is reviewed. Finally, section 2.5 gives an

overview of plant phenotyping. The wide variety of different problems computer

vision is often applied to are described here, and the importance of deep learning

research and Computer Vision for plant science and agriculture.

2.2 Deep Learning

In the past decade deep learning has emerged to become the dominant machine

learning system at the heart of a wide range of different computer science fields
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across industry and research. This has been especially true in Computer Vision

where Convolutional Neural Networks have completely eclipsed traditional meth-

ods, creating a new paradigm of solutions to image processing problems.

Deep learning evolved from multi-layer perceptron models, an early form of neural

network [39]. MLPs are large networks of neurons connected by weights in a series

of layers, each triggered by an activation function. By feeding data into the first

layer as an input, and designing the final layer to produce a meaningful output,

MLPs are able to perform a number of tasks, from regressing a value to classifying

the input into one of a number of categories.

Modern deep learning models are generally large neural networks containing mil-

lions of learnable parameters across many hidden internal layers. When we train

a model, we aim to optimise it for a task using examples with known solutions,

a training set of labeled data. For any sample of our training data we can use

backpropagation [96] and gradient descent to adjust the parameters of the neu-

ral network to produce an output as close as possible to the known solution. To

do this we perform a forward pass, passing our input through the network. The

output of this forward pass is then compared against the true results, known as

the ground truth, using a loss function which calculates the degree to which the

output is correct or incorrect.

By iterating this process a large number of times we can train neural networks

that are able to accurately make predictions about previously unseen examples.

This fundamental challenge of machine learning is called generalization, the abil-

ity of a model to perform well on unseen data. It is common for a network trained

for too long, or on train dataset that is too small to become extremely good at

making predictions for the training data, while being extremely poor at gener-

alizing. We refer to this problem as overfitting, and a network that fails in this

way can be seen as not learning to solve the desired problem, but instead simply

learning the solutions to one small subset of inputs.
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2.2.1 Convolutional Neural Networks

In Computer Vision we face additional problems when applying a machine learn-

ing approach to images. Unlike other forms of data, which may have tens or

hundreds of inputs, a small 256x256 image already has over fifty thousand indi-

vidual pixels, each often containing 3 or more channels. Even in 2023, with the

most powerful hardware, it is impossible for a neural network to compute the

relationship between so many inputs and make sense of them. Indeed, even if this

were possible it would be incredibly wasteful (many of the relationships between

individual pixels would have no significant meaning), and make scaling to high

resolution images incredibly challenging.

1 0 0 3 3 2 3

2 1 0 1 1 1 1

2 0 1 2 2 2 2

3 2 1 1 0 0 2

2 3 3 0 1 0 3

2 3 1 0 0 1 4

3 3 1 1 2 3 1

1 0 0

0 1 0

0 0 1

3 2 3 6 6

3 3 2 3 5

7 1 3 2 5

7 5 1 3 4

6 5 5 3 3

Input

Kernel

Output

Figure 2.1: Convolutions act as a sliding window passing across a grid of pixels.
For each position of the kernel or filter, we are able to calculate an output for a
cell in our output. By constructing or learning specific values for the kernel, we
can identify different features of an image that is then captured in the output.

To make images compatible with neural networks, a tool from conventional image

processing was borrowed [61]. This was the convolution matrix or kernel, a small

matrix that passes over the image as a sliding window shown in figure 2.1. De-

pending on its values a kernel can perform a number of operation on the image,

identifying useful features and outputting a transformed version as output. We

can intuit that pixels that are close together spatially are likely to be related to

one another, allowing convolutions with small receptive fields to extract infor-

mation from small regions of images while shrinking the spatial resolution. By

making the handful of parameters of a kernel (size, stride, padding, etc) learnable

parameters of a neural network, we allow the model to identify features of interest

during training, as well as reducing the computational cost of running the model.
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CNNs stack learned convolutional layers together, with pooling layers, reducing

the spatial resolution further and activation layers, which discard unneeded in-

formation, in order to reduce the spacial resolution to a usable size. Afterwards

networks are designed with their desired output in mind, often with a number of

fully connected layers. This may conclude with a number of outputs correspond-

ing to confidence values of each class, or a more complex nature of bounding

boxes and class labels.

2.2.2 The Importance of Data

Outside of network design, two of the fundamental factors in the effectiveness

of deep learning have been computational power, and availability of good data.

Recent increases in computational power have made large neural networks viable,

however the need for large training sets has increased with the growing scope

of applications for CNNs. Effective datasets require not just sufficient size, but

also quality and diversity, among a range of other factors. In the late 2000s, a

number of large, high quality datasets appropriate for training neural networks

became available [27], enabling much greater research into complex computer

vision neural network design.

Many of these datasets however, are either general purpose datasets like Imagenet,

or datasets for a narrow set of applications, such as face recognition or street

view images for autonomous vehicles. While this allows CNNs to demonstrate

remarkable performance in research papers, applying them across diverse and

highly specialised fields becomes difficult as for each problem new training data

will need to be collected and manually labelled.

2.3 Synthetic Data

Artificial means of increasing dataset size are common in Computer Vision. Data

augmentation refers to modifying a training set to inflate its size by transforming

images in a number of ways to increase variety. Data Synthesis expands this idea

by generating entirely new images that have the same or similar distribution as

our intended target domain.
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Generating data this way has a number of advantages:

• Dataset size. Datasets collected manually have a finite size, and are con-

strained by cost, time and other limitations. Once a dataset is collected it

is often very difficult to collect additional data from the same distribution,

as elements such as lighting, camera and other environmental factors may

have changed outside the control of the user. Synthetic datasets generated

automatically can be scaled extremely easily, and while there is a theo-

retical limit to the amount of variety that can be generated, this is often

orders of magnitude higher than what we can expect from real datasets. A

dataset generated this way can have a theoretically limitless size. By artifi-

cially increasing the size of our training datasets we can help to reduce the

overfitting problem that is common in deep learning problems.

• Automatic Labelling. For computer vision problems manually labelling

images can be extremely expensive and time consuming. This especially true

where labelling requires expert knowledge, for example in biological fields,

such as medical imaging or plant phenotyping. Additionally more complex

computer vision tasks such as panoptic segmentation can take substantially

more time to manually annotate than classification or detection problems,

but are usually about as easy to annotate automatically, and have almost

no additional cost.

• Error Reduction. By removing the humans from the image labelling

process, we avoid the issue of human errors. Even for simple problems we

can expect humans tasked with labelling large number of images to make

mistakes. For problems such as segmentation, detection and counting, it is

also possible for there to be ambiguity in an image that can make human

labelling unreliable.

• Reuse of assets. Digital assets have a lot of reusability, and after incurring

a one time cost to develop a dataset, generation of new images can be done

at no extra cost. This often makes generating synthetic data cheaper than

collecting real data from scratch. For 3D rendering, video game assets can

often be used to generate training data due to its inherent realism and

high fidelity as seen in the GTA5 dataset [90] being used for self driving
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cars. Similarly for synthetic data generated either by GANs or compositing,

images from a number of sources can be repurposed to create new data for

training.

2.3.1 Challenges

Using synthetic data in training has a number of challenges that must be over-

come for them to be effective. A highly realistic dataset of synthetic images can

not simply be applied to a neural network if we expect the network to generalize

well onto unseen real images. This is known as domain shift, a problem caused by

two datasets being from different data distributions and preventing generalization

between the two. In more general cases domain shift could be a significant differ-

ence in image content, such as different modalities of medical scans of the same

organ (such as MRI and CT scans) [55], or even more overtly different subject

matter such as images of cats vs dogs. In many cases the domain gap between two

sets of images could be of no relevance, or even imperceivable to a human, such

as two sets of images collected with different cameras, or with different lighting

conditions, yet this is enough to completely fool a neural network.

With this in mind it is understandable that synthetic data can at best be seen

as imperfect data, however synthetic data has other challenges that must be

overcome to make it effective training data for neural networks. For any given

problem, a process for image synthesis must be developed, we demonstrate a

few such methods in chapters 4, 5 and 7, however in all cases that process must

be designed to not only maximise image quality but also variety. Just as it is

common for real datasets to contain data bias, it is also likely that an image

generation pipeline will have biases built into it, and minimising these must be

a key consideration during generation. In addition, it is likely that real datasets

will contain anomalous results that cannot be predicted or modelled synthetically.

Outliers such as these will need to be identified or mitigated at some point in the

pipeline else will have a detrimental effect on downstream performance.

It is also important to consider the computational and human cost of generating

Synthetic Data. In many cases this is considered to be of minimal concern, but

22



since doing so often requires to collaboration of domain experts, 3D artists or

experts in generative models, there is often a much larger up front cost to develop

a new dataset that is only recouped by the ability to generate extremely large

numbers of new samples. Generating thousands of images is almost always faster

and cheaper than manual collection and annotation in a research or large scale

industry setting, but the reliance on expensive technology and expert domain

knowledge presents challenges in making synthetic data widely available.

Finally, while synthetic datasets have proven their effectiveness in academic lit-

erature and in industry, there still exists very little research into benchmarking

different synthetic datasets. Until effective ways of testing the effectiveness of

synthetic datasets are developed it remains challenging to fully evaluate any in-

dividual dataset or approach to image synthesis.

2.4 Domain Adaptation

Domain adaptation is a field of machine learning that has developed from transfer

learning. Transfer learning is the commonly used approach of retraining networks

on new training data in order to improve performance either on different test

data or when constrained by limited data or computational power. The goal of

transfer learning is to leverage the knowledge the network gained on the original

problem for a new problem. Domain adaptation extends this idea, aiming to train

a network on a source domain that is capable of performing well on another target

domain from a different, but related distribution.

2.4.1 Definition

Formally for any machine learning problem we have a distribution D of label-

value pairs from input and output spaces X and Y respectively. In supervised

machine learning our objective it to learn a mapping from a point in X to a point

in Y using a sample of known pairs in our training set taken from D that can

perform well on unseen samples that are also from D.

In domain adaptation we consider two different but related distributions DS and

DT . Here our goal is to learn a mapping from points in X to points in Y using
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samples of DS so as to minimize error when predicting outputs for samples from

DT .

Generally speaking the target domain is assumed to be related to the source do-

main, while often being significantly different in one or more ways. In research

different datasets of the same subject matter are used to show the effectiveness

of domain adaptation. A common example of this is written character datasets

such as MNIST, USPS, and SVHN, which can be used to verify a models ability

to generalise across domains. Due to domain shift, a neural network trained on

just one of these datasets would perform unfavourably when tested on the oth-

ers compared to unseen examples from the train sets domain. Effective use of

domain adaptation suggests that there are transferable features between the two

domains that the network can learn however, which we hope to leverage when

training models in this way.

Domain adaptation methods generally assume that the shift needed to align the

two domains will primarily happen in the latent space of a deep neural network.

Pixel space features including basic shapes such as edges and corners that are

captured by the first few layers of a network will generally be consistent across

domains. When performing domain adaptation it is common to freeze these early

layers or reduce the learning rate of the network so the latent shift can be learned

by the network without losing the knowledge learned from the source domain.

2.4.2 Taxonomy

Domain adaptation problems are varied, and make up a broad taxonomy of re-

lated problems. We often build a taxonomy based on presence of labels for our

target dataset.

• Supervised Domain Adaptation. Cases where we have labels for both

our source and target data. This case is the most similar to Transfer Learn-

ing.

• Semi-Supervised Domain Adaptation. Cases where we have labels for
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all images in our source dataset, and a partially labelled target dataset. In

some cases this could be as few as a single labelled image for our target,

however the total number of images in our target dataset could be very

large.

• Unsupervised Domain Adaptation. Cases where we only have labels

for our source dataset and our target dataset is completely unlabelled [38].

This is often considered the most useful form of domain adaptation as, if

successful, it will best enable us to leverage the huge quantity of unlabelled

images that already exist, and makes it cheaper and easier to create new

dataset for machine learning.

In addition to this we can also consider cases of homogeneous vs heterogeneous

domain adaptation, considering cases where the two domains do or do not share

their feature space, i.e. XS ̸= XT or YS ̸= YT . Additionally we also consider

the cases of domain adaptation where we use intermediary domains between

our target and source, called Multi-step Domain Adaptation, versus the more

traditional one-step approach we see in most literature.

2.5 Plant Phenotyping in Computer Vision

In Computer Vision, plant phenotyping is described as the area concerned with

the acquisition of complex plant traits via observations, usually performed by

hand by a domain expert. In a computer vision context, digital plant pheno-

typing specifically refers to the automatic acquisition of traits from images and

is the primary understanding of the term plant phenotyping used in this thesis.

Automating the process of measuring phenotypic traits in plants has many impor-

tant applications and is important in closing the phenotype-genotype gap whereby

the ability to record measurable characteristics in plants has lagged behind the

mapping and profiling of a plant’s genome. Many of the use-cases for phenotyp-

ing technology comes from the development of new plant breeds for agriculture,

as well as the automation of crop monitoring. While domain experts are often

still better able to analyse phenotypic traits than computer vision techniques,

automating this process allows phenotyping to be scaled up to many millions of
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images enabling the processing of many more plants.

2.5.1 Motivations

Advances in digital plant phenotyping technology will help improve sustainability

in global agriculture in coming years. Tools for plant phenotyping will play an

important role in coming decades at meeting the food needs of the earths growing

population; expected to peak at nearly 11 billion people by the end of the century.

This increased pressure comes at the same time as rising global temperatures, and

the climate crisis leading to pressures on farmers as yields are often put at risk

by the changing environmental conditions.

Precision agriculture and plant breeding, enabled by phenotyping will be impor-

tant at mitigating the effects of climate change on global agriculture, and the

impact it will play on crop yields. Even small changes in temperature can have

severe effects on farmers by reducing their ability to grow crops while extreme

weather conditions like draughts become more common. These kinds of mea-

surements can aid in crop monitoring by detecting stresses to plants, measuring

growth and even predicting future problems before they present themselves fully.

Beyond this, digital phenotyping also can be used in the process of plant breeding

through the discovery of robust genotypes as well as the development of argo-

chemical products and related technology.

2.5.2 Review of Plant Phenotyping Problems

There have been a number of taxonomies of plant phenotyping problems pre-

sented, most notably those from Ubbens et al [109] and Choudhury et al [23], as

well as comprehensive reviews of image analysis of plants [73]. Choudhury’s dis-

tinction between Structural, Physiological and, Temporal phenotyping problems

are the most relevant to current research, where a majority of research activity

focuses on structural phenotyping, including the work done in this thesis.

Structural Phenotyping

Measuring many of the most fundamental features of a plant, including holistic

features such as height and width, individual plant components such as leaves [29]
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and organs, as well as non-geometric features such as weight. Many of the prob-

lems in this area of phenotyping are directly analogous to common Computer

Vision problems such as detection and segmentation. Additional examples of

structural phenotyping include, calculating plant biomass, leaf volume and cur-

vature prediction, and segmentation of individual plant components.

A lot of research in the area of structural phenotyping [23], including our own

presented in chapter 5, are concerned with 3D phenotyping. Due to the difficulty

of dealing with the complex nature of plants, attempts to capture 3D informa-

tion about their structure from one or multiple angles can often make predicting

different structural traits easier. Similarly plant phenotyping often is done using

RGB-LiDAR (RGBL) cameras, where LiDAR is used to capture depth informa-

tion in addition to color channels which can make 3D reconstruction easier.

Physiological Phenotyping

Looking for features generally related to the health of the plant. Plants can be af-

fected by any number of stresses (negative external circumstances) which present

in different ways that normally take expert knowledge to detect and identify. In

many ways this kind of phenotyping could be the most important for ensuring

food security, as being able to protect crops from stresses caused by the climate

crisis is essential. Problems in physiological phenotyping can often take the form

of detection [37], classification and regression though they are less generalised

problems than is found in structural phenotyping.

Being able to use Computer Vision to monitor physiological phenotype of different

plants helps agricultural scientists better understand different plants resistance

to droughts, heatwaves and other abiotic stresses that threaten crop yields in

a changing world. In addition to this is other forms of plant stresses caused by

plant diseases, insects and other biological hazards are also important to be able

to identify and detect using computer vision. Quick response to plant disease

can often prevent the loss of huge yields, and automated detection is an essential

technology to ensure food security.
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Temporal Phenotyping

Temporal phenotyping generally looks at time phenotypic plant traits over time,

an extremely important part of agricultural research where temporal effects are

always of interest to biologists. Despite this importance, temporal phenotyping

is perhaps the least common form of phenotyping in the context of computer

vision research output. The most common areas of study relate to plant growth

rates [3], and the ability to make predictions based on currently observable pheno-

typing information. Often this work is combined with other forms of phenotyping,

taking a number of measures of the same plant over time and then combining

the structural or physiological phenotyping discussed above with the time scale

information to gain insight into the temporal variation of specific phenotypes [22].

Some of the temporal elements that are of interest to researchers relate to discrete

events such as time to germinate, time between new leaves and time to flower.

Other elements of growth to be measures are more continuous and relate to growth

of individual components, such as leaf length or plant height as seen in structural

tasks, while others might relate to the progression of physiological traits, such as

stress propagation over time.

Unfortunately, of the three types of phenotyping problem there is by far the least

available computer vision datasets for temporal problems, making this a much

harder area of study to work in than the other areas. Furthermore as problems

in this area are less analogous to generic computer vision problems, temporal

phenotyping is considered a much more niche area of research leading to a smaller

amount of research interest in temporal problems.
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Chapter 3

A Review of the Application of

Synthetic Data and Deep

Learning to Plant Phenotyping

Problems

In this section we provide a comprehensive literature review of all state of the art

research that relates to our own work presented in subsequent chapters. Follow-

ing on from section 2.2 we cover the most recent advances in Computer Vision

problems and new deep learning technologies. We then continue this with an

overview of other literature looking at solutions using Synthetic data, with some

focus given to other research looking at Plant Phenotyping. Each experimental

chapter of this thesis also includes an additional analysis of related work, as seen

in sections 4.3, 5.4, 6.2, and 7.5

3.1 Deep Learning and Computer Vision

Computer Vision is the broad field of AI related to learning to analyse visual

information such as pictures and videos. Computer Vision lends itself to a wide

range of domains and applications, and as we discuss below is an area of substan-
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tial interest to the research community.

3.1.1 Object Detection in Computer Vision

Object detection is one of the most common computer vision problems. Detection

is commonly defined as combining localisation, where bounding boxes must be

drawn around instances of objects within an image, with classification where

classes are assigned to one or more objects within an image. Neural networks

designed for object detection are therefore tasked with predicting and classifying

bounding boxes for all objects in a scene from a predefined set of classes. This

problem presents a number of challenges for computer scientists, such as dealing

with very large number of objects or separating different instances of objects

that occlude each other. For machine learning models an additional problem

is the variable length outputs, as the number of bounding boxes will vary by

input. Different approaches to solving these problems have been suggested often

assuming an upper bound for the number of objects in an image and detecting

objects up to that limit.

Region proposal algorithms are found in the R-CNN family of neural networks.

Originally regions were extracted using selective search algorithm [42], using

feature-based approaches to predict boxes that may be of interest. Any regions

detected this way can then be used as inputs to a classification CNN, The net-

work then only has to classify those containing the desired object and make minor

adjustments where necessary. This can be improved upon by using a feature map

extractor prior to region proposal to predict regions in the image that are thought

to potentially contain an object [41]. This method allows for efficiency gains by

proposing regions in a much smaller feature space, rather than passing full res-

olution regions into a CNN. The current state of the art models are completely

CNN based, using a region proposal network to predict bounding boxes more

quickly[88]. Using an extension of this approach instance segmentation can also

be performed, as we only need to find the pixels related to the object inside each

box to perform instance segmentation across the entire image [44].

The other most commonly used CNN approach to object detection is the YOLO
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(’You only look once’) approach, originally crafted as a means to achieve real time

object detection, and currently on its 7th version [113] (although the continuity

between later versions is indirect). As the name suggests, YOLO makes only

one pass to detect all objects in the entire image, making it extremely efficient in

addition to it demonstrating state-of-the-art accuracy. YOLO treats the image as

a grid of cells, and makes a number of predictions about all boxes simultaneously,

with each cell considering objects whose center is contained within it. In two

concurrent branches, YOLO predicts a series of likely objects from each grid cell

with associated confidences, while also predicting a most likely class for each

tile. YOLO based models use a system of anchors to predict bounding boxes. In

object detection anchors are a set of predefined bounding box dimensions based

on the known information about the target class (for example that humans are

generally much taller than they are wide), and this allows the network to only

have to predict offsets for these predetermined anchors. In our experiments we use

the popular YOLOv5 Pytorch implementation [33] which was the most popular

model in 2022 at the time our experiments were completed.

3.1.2 Transformers for Computer Vision

First proposed in 2017 by Vaswani et al [112], the Transformer is a neural net-

work architecture related to Sequence-to-Sequence models that has come to be

one of the most popular paradigms in machine learning research. The underlying

design principle of a transformer model is the attention mechanism, whereby the

model is able to give greater emphasis to the most relevant parts of the input

when computing the output. While a full discussion of Transformer architecture

is beyond the scope of this thesis, we will briefly discuss the general model archi-

tecture as well as its intuition.

Sequence-to-sequence models have been a popular basis for Language models for

some time, with both Recurrent Neural Networks (RNNs) [95] and later, Long

short-term memory (LSTM) [47] models having existed for many years, treating

an input string as a chain of inputs, and sharing information between succes-
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sive elements. Recurrent Neural Networks are an encoder-decoder model used for

sequence-to-sequence translation, first encoding each element of the input in turn

and then decoding a prediction of each element of output. This approach to se-

quence processing is effective, but has two major downsides. Firstly the vanishing

or exploding gradient problem means that long sequences become impossible to

process, as gradients may tend to zero or infinity through sufficiently long inputs,

though this problem is somewhat mitigated by LSTM blocks. Secondly, because

of the heavily serialised design of the network, they are inefficient to train on

modern hardware that relies of parallelisation for efficiency.

The Transformer model presented by Vaswani et al [112] in 2017, resolves these is-

sues and produces substantial improvements in performance and efficiency. Trans-

former models work by treating each word as a vectorised token, in some pre-

determined embedding space, and then combining these vectors with a further

positional embedding based on its position in the sequence. These tokens are

then passed through a self-attention layer, which calculates the relationship be-

tween every pair of element elements, intuitively this calculates how relevant is

each individual token to every other token. This is followed with a fully connected

layer, which combined with the self attention layer makes up each attention block.

Multiple attention blocks after often stacked to make up the encoder, while the

decoder is similarly a stack of blocks containing attention and fully connected

layers. Decoder blocks then also contain a masked attention block, that hides

part of the label during training, enabling the network to solve the sequential

problem in parallel, which results in improved computational efficiency.

The idea of global attention-style mechanisms for Computer Vision were first in-

troduced in 2018 by Wang et al [115], followed in 2020 when Dosovitskiy et al first

presented their visual transformer (ViT) [31] adapting the transformer architec-

ture for image processing and replacing word tokens with image patches, demon-

strating state of the art performance in image classification. ViT is presented as

an alternative to CNN models and discards many of their inductive biases, most

importantly replacing the CNNs focus on locality with the transformers global at-

tention. It is worth noting however that ViT achieved its impressive results using
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a substantially more expensive training regime than its CNN based competition,

having been trained on a private dataset of 300 million images, rather than the

more conventional ImageNet dataset that contains only one million images.

Speculation that Transformer architectures could replace CNNs to become the

dominant design pattern in Computer Vision has been a common part of Com-

puter Vision literature in recent years. The distinction between the two has how-

ever become increasingly blurred as some models implement convolutions within

Vision Transformers, while other Transformer models such as the Swin Trans-

former [67] take inspiration from CNNs by including hierarchical feature maps

and shifting patch windows between layers. Most commonly convolutions are used

as part of the embedding process, and then convolutions have also been incorpo-

rated in the Attention blocks themselves [119]. Since 2020 we have seen a large

number of different Transformer models presented in academic literature, expand-

ing to more common computer vision tasks including detection and segmentation,

as well as to other areas of machine learning research.

DETR [17] is one such transformer model of particular interest as it was the first

significant attempt to apply transformers to object detection problems. Unlike

Yolo and RCNN-based models, DETR approaches detection as a direct set pre-

diction problem, having a fixed size set of predictions, meaning it does not need

to use non-maximal suppression to remove numerous overlapping predictions. In-

stead, unwanted predictions found in the image are given null labels, with real

predictions given a class label instead. In additon, DETR is an example of model

that uses a ResNet CNN as a layer preceding tokenisation, encoding the image

into a feature space rather than giving the transformer raw pixel data.

3.1.3 Generative Computer Vision Models

Generative Adversarial Networks

Using deep learning models to generate new information has become an area of

great interest in recent years, with its first major peak in 2014 with the introduc-

tion of Generative Adversarial Networks, or GANs. The first GAN was produced

in 2014 by Goodfellow et al [43], and has subsequently been iterated on many
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times.

The GAN framework for image generation conceptualises the task as training

a model to learn a distribution, from which it can then generate new samples

within that distribution from an input random noise. This generative model is

then paired with a discriminator, a type of classifier, which learns to identify

between real images from that distribution, and images generated by the rival

generator. As the discriminator learns to distinguish between real and fake images,

it forces the generator to produce increasingly realistic images in order to fool the

discriminator. When trained together the generator is eventually able to produce

images that are able to fool not only the discriminator but also humans, creating

images that are photo realistic, or otherwise match the distribution of the training

set.

Generative models have improved a great deal over the years. Goodfellow’s model

was quickly iterated upon with cGAN by Mehdi Mirza et al. the same year [74];

cGAN or conditional GAN introduces the idea of an input token that gives control

over the input, a common feature of many modern GANs. A further significant

contributions was DCGAN by Radford et al [86] that significantly improved the

ability of GANs to produce high resolution, photo-realistic images, and became

the basis for many future GAN papers. Then in 2017 Martin Arjovsky et al

introduced their Wasserstein GAN [6], which uses a Wasserstein distance function

to calculate the distance between the generated and target distribution, allowing

for better training and more high quality samples.

Adversarial models have also become a core feature in style-transfer models,

where an image from one domain is transformed to match another domain, often

called the source and target domain respectively. Target domains are normally

represented by another image set or singular image that contains the desired

characteristics. These kinds of models are of particular interest to this thesis and

form the basis of some of our work in domain adaptation.
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Image-to-Image GANs

Important to our work is the idea of Image-to-image GANs, models concerned

with modifying or changing an Image rather than generating new samples from

noise. Many such models are designed to be used for Style Transfer, a computer

vision problem concerned with modifying the appearance of images. Originally

emerging from the earlier Texture Transfer problem, seen in earlier papers such

as Efros at al [32], Style Transfer considers each image to be made up of content,

and style and the goal of a style transfer model is to learn a transformation that

changes the style of an image while preserving the content. A popular example of

Style Transfer is taking photographs and transforming them to match the style

of popular artists, a more complex transformation than texture and only made

realistically possible with modern deep learning approaches.

Given a dataset of paired images of the same content in different styles this prob-

lem is conceptually straight-forward and could be easily framed as a supervised

Computer vision problem, however datasets of paired images are unlikely to ex-

ist for many styles increasing the challenge. The earliest uses of CNNs for style

transfer includes work by Gatys et al [40], who attempt to separate content and

style reconstructions, which can then be recombined in different combinations

to generate new images. Also in 2016 Johnson et al [56] improve this by using

separate perceptual loss functions for style and content to enforce high quality

style transfer.

In 2017 many GAN based approaches to style transfer emerged, many of which fo-

cused on solving problems that were not possible with standard CNN approaches.

Introduced by Zhu et al [123], CycleGAN is perhaps one of the most popular

Image-to-image generative frameworks that still sees use today. Intuitively, Cy-

cleGAN is based on the idea that by forcing changes made by the generator to be

reversible, we ensure that content is preserved even when style is changed. Using

two pairs of Generators and Discriminators, CycleGAN learns both a forward and

backwards transformation between the two styles, meaning that an image can be

restored to its original style. The same year Pix2Pix by Isola et al [50] presented a

wide range of image-to-image problems, including style transfer but also looking
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at a range of other image-to-image tasks such as inpainting, colourisation and

harmonization (making elements of a composite image consistent with the rest

of the image). Both CycleGAN and Pix2Pix helped popularise image-to-image

GANs in the years after their development, and CycleGAN in particular can used

to improve the realism of synthetic data, and is used in chapters 4 and 5.

Diffusion Models

First introduced in 2015, diffusion models are another form of generative model

that allow us to create synthetic images using a machine learning model. The

idea behind this model is to create a forward process that iteratively destroys

information through diffusion and then train a model to undo the steps in that

process and restore information. First demonstrated in Sohl-Dickstein et al [101]

in 2015, generating images based on the CIFAR-10 dataset, diffusion models

potential was not fully recognised at the time, and was overshadowed by the

much larger interest in GANs. This approach to image generation was revisited

in 2020 in [46], where the diffusion model was more fully formalised and high

quality images were first produced giving diffusion much more attention.

Diffusion models can be summarised as follows. Starting from an image from our

training set we define a forward diffusion process as a Markov chain, where in

each step we add Gaussian noise to our sample. Each time step in the chain is

an increasingly noisy image, with the final step being an image that has been

completely destroyed leaving only Gaussian noise remaining. A deep learning

model is then used to learn a backwards process, where it removes noise from

the image in steps. For each reverse step of the chain, given an image at time

step t, the model predicts the Gaussian noise added during the forward process

at time step t-1. By subtracting the predicted noise from the image at t, we

can get an estimate for the image at t-1. In practice we can train a model by

giving it a training image with all the noise added up to step t and predicting

either the total noise or the original image. We can then sample new images from

diffusion models by taking pure Gaussian noise and inputting it into our model

and predicting the image for t=0 where all the noise in removed and a complete

image remains.
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During 2021, a number of papers released demonstrating different setups for

diffusion models with [28] improving the fidelity of generated images at higher

resolution and GLIDE [78] introducing text to image generation to the diffusion

process, which has now become the hallmark of diffusion-based image generation.

GLIDE uses two methods to guide the model using text captions, first Contrastive

Language-Image Pretraining guidance, introduced by Radford et al [85], uses a

pair of encoders for images and captions, using a contrastive cross-entropy loss to

encourage high dot products for matching pairs, and low products for mismatched

pairs. In order to function, the CLIP model was trained on images with added

noise to better function in the reverse process. Secondly, GLIDE implements

Classifier-free Guidance in which the model receives an image paired with both a

caption and with an empty or null input sequence. Then the goal is to maximise

the difference between the two during training, which causes the strength of the

caption to be magnified, leveraging the models own knowledge of the caption.

More recently in 2022, as well as achieving mainstream attention, diffusion mod-

els have seen a large number of major new contributions [87] [98]. Stable Diffu-

sion [91] tackled the problem of the high computational cost of training diffusion

models, by shifting the diffusion process described above to take place in a lower

dimensional latent space. Their Latent Diffusion Model or LDM separates the

learning process from the pixel space, which allows the model to run with a

smaller number of parameters, improving efficiency while still boasting state-of-

the-art performance. 2022 also saw the publication of Cold Diffusion by Bansal et

al [9], which also made a number of significant contributions. The paper showed

that similar performance could be made with other mechanisms of degradation

being used in place of Gaussian noise, including a number of deterministic trans-

forms, using different transforms can allow for the model to learn a wider range

of patterns and better model the underlying distribution of the training data.

Overall despite its recent emergence to the forefront of AI research, it is likely

that diffusion models will remain a significant feature of generative computer

vision work for some years, and will be highly relevant to the focus of this thesis.

Our own work using diffusion to generate training data can be found in chapter
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7.

3.2 Domain Adaptation

As discussed in section 2.4, domain adaptation is an area of research concerned

with allowing neural networks to perform well on different domains to the one

they were originally, or primarily, trained on. As Domain Adaptation is a large

area of research, we limit the scope of this literature review to the use of domain

adaptation for images and Computer Vision problems.

Since Domain Adaptation seeks to align the two domains, for Image based prob-

lems we can take two general approaches. Firstly, if we assume a model has some

kind of encoder-decoder architecture, we can train an encoder to align its rep-

resentation of domain invariant features, allowing the decoder to perform down-

stream tasks on this invariant representation. Alternatively we can align images

in the Pixel Space, modifying the source image to match the appearance of the

target domain through style transfer. Both Liu et al [66] and de Melo et al [25]

present good evaluations of the wide range of different approaches to domain

adaptation popular in current literature.

3.2.1 Latent Space Alignment

Domain Divergence Measures. Different distance functions can be used to

measure the discrepancy between different latent spaces. By using a shared fea-

ture extractor on both domains, we can then use a distance function such as

maximum mean discrepancy to learn the network domain invariant features such

as the location of key points within the image. One such example of this ap-

proach is Long et Al [68], who apply MMD to their Joint Adaptation Network,

to enforce similarity between the latent distribution of their source and target do-

mains. Simlarly Sun and Saenko introduce their CORAL loss [104] in their 2016

paper Deep CORAL, which extends previous work [103] on domain adaptation

to a deep learning space.

Adversarial Feature Alignment. Adversarial training can also be used to

38



achieve latent space alignment. In 2015, Ganin et al [38] presented their model

DANN highlighting that domain adaptation relies on a model learning domain

invariant features, and enforcing this using an additional domain classifier that

is trained adversarially, enforcing a similar feature distribution across domains.

In 2019 Hsu et al [48] also present an adversarial approach, this time using an

intermediate domain between source and target (in this case using a synthetic

dataset to adapt between the KITTI roads and Cityscapes datasets), allowing for

a progressive adaptation.

3.2.2 Style Transfer

Domain style transfer is a method of domain adaptation that often applies when

two distributions of images are spatially similar; common examples include dif-

ferent medical imaging modalities different datasets of the same content. Using

this method we take our two input spaces XS and XT and attempt to use a style

transfer technique to transform XS into a new distribution X ′
S which is consid-

ered to be closer to the target XT . We are then able to train our task network on

this transformed version of the source dataset.

CycleGAN is perhaps the most well known of the style transfer GANs presented

in recent years. First presented by Zhu et al [123], their model enabling high

quality unpaired image-to-image style transfer has been the starting point for an

extremely large body of research, including some of the work presented in this

thesis. Though CycleGAN was not originally presented as a model for domain

adaptation, we can see examples of it being adapted to be used for this purpose

such as by Apple in their work on eye tracking [100], using CycleGAN to con-

vert Synthetic Images to the Real domain. Similarly Mueller et al also uses an

extended CycleGAN for their model GANHands [75], which adds an additional

segmentation loss, to the CycleGAN model to enforce pixel perfect style transfer,

to create realistic training data from synthetic hands. In plant phenotyping a

similar approach was presented by Barth et al [10], who also used CycleGAN for

image segmentation using a Synthetic training dataset, this time for the segmen-

tation of fruit and stems of pepper plants. In 2020, Park et al present their model
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CUTNet [81], which uses a Contrastive, patch-based loss to create a generalized

accuracy enhancing effect, similar effect to the segmentation seen in GANHands.

Each of these examples is extremely relevant to our own work in chapters 4, 5

and 6.

3.3 Synthetic Data

In the literature there has been interest in Synthetic Data across a variety of

fields since before machine learning had even been established. Early attempts

at Synthetic data stemmed from Data Augmentation, the process of inflating a

training datasets overall size by applying transformations such as flips, rotations

and colour distortions to create new instances based on genuine images from the

original set. As time has gone on Synthetic Data has become a large part of Deep

Learning Vision for the many advantages discussed in section 2.3.

3.3.1 Datasets and Uses

Prior to 2014, virtually all Synthetic datasets of objects were either composites

of real data or 3D renders, using video games or other graphical rendering ap-

plications (though both approach with still remains popular today). Examples of

3D renders like ShapeNet [18] or more recently the Falling Things dataset [107]

are examples of large datasets of 3D models of objects with accompanying labels

that allow the data to be used for deep learning. A common approach to using

synthetic data involves combining synthetic and real images, often superimposing

artificial elements onto real backgrounds [45], an effect which can be enhanced

through image harmonization.

More recently there have also been interest in using video games and video game

engines to generate synthetic data. GTA V [114] [90], in particular has been used

to create a number of annotated datasets for different purposes, chosen for its high

level of realism and the ability to exploit its rendering engine to produce pixel

level segmentation masks of incredibly detailed scenes. Indeed outdoor scenes are

one of the most popular applications for synthetic data [90] [16] [93], along with

indoor scenes with the primary applications being use for self-driving vehicles
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and SLAM (simultaneous localization and mapping).

3.3.2 Realism

It is difficult to apply a specific metric to the quality individual synthetic datasets,

making it hard to evaluate the impact of different approaches to creation of

datasets. The domain shift problem is an established fact of working with syn-

thetic data, however the degree to which photo-realism plays a part in this is much

debated. Works such as Mayer et al [69] speculate that photo-realism is less im-

portant than low level features of realism, such as camera artifacts, which can

be more easily simulated on synthetically generated imagery. Abu et al presents

some similar findings [2], using a number of different camera effects on images

from the virtual KITTI dataset, and showing this increases the ability of models

trained on it to generalize back onto real images.

3.3.3 Best Practice

With the development of increasingly detailed and photo-realistic synthetic data,

there has been much research into its effectiveness as training data in recent

research. Indeed there still remains debate around the best practices around its

use, with many approaches using a combination of real and synthetic data, either

in combination as seen in [11] or at different stages of training. Nowruzi et al [79]

uses the popular approach of first training on synthetic data before finetuning on

a smaller dataset of real images. This fine tuning approach has been shown to be

an effective method of training, often emphasising that a large synthetic dataset

of moderate realism is able to learn the network a wider variety of content, while

low level realism can then be learned from the real images, gaining the advantages

of both. Where this multi-stage training regime is used, common practice is to

freeze weights of early layers of a network, as seen in [45], allowing network

training to focus on learning deep, domain invariant features.
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3.4 Deep Learning in Plant Phenotyping

Research into improving digital phenotyping is carried out with a goal of enabling

the automation of agricultural processes that are currently manually performed or

unfeasible. In the experimental chapters of this thesis we make use of the different

deep learning technologies described in this chapter for a range of phenotyping

tasks. Synthetic data takes this even further improving the efficiency and acces-

sibility of the AI technologies in themselves and aiding the implementation of

computer vision technology.
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Chapter 4

Improving Plant Organ

Counting via Domain

Adaptation

Counting crops from aerial photographs has become an area of serious interest for

the Plant Phenotyping community in recent years. Neural networks have reached

a point where the ability to detect, segment and measure very small plant compo-

nents at volume is now possible, while technology such as drone operated cameras

have made it much easier to capture huge amounts of image data quickly and

easily. While this kind of performance is now attainable, it is a sterling example

of a problem that is incredibly expensive to produce training data for, with each

image containing potentially hundreds of components (leaves, stem, flowers, fruit

are common examples) that needs individually segmenting.

In this work we present an annotated Synthetic Dataset designed for the ob-

ject detection of wheat heads, we base our design on the popular Global Wheat

Head Dataset or GWHD [24], a multi-institutional project consisting of anno-

tated datasets of top-down wheat images. The 2020 dataset we use contains 4700

images from different countries annotated with wheat head bounding boxes, dif-

ferent versions of the dataset are intended for use in research as a means to
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improve performance on challenging phenotyping tasks such as detection of in-

dividual wheat spikes. The outline for our dataset creation pipeline and use is

shown in figure 4.1. We describe a pair of novel approaches to improving per-

formance on object detection via domain adaptation which we demonstrate on

our own synthetic dataset. First we introduce a guidance system for pixel-level

domain adaptation, seeking to improve how content is maintained during style

transfer. Secondly we use a clustering approach to control data synthesis, allow-

ing for a more accurate domain adaptation when targeting a diverse distribution

as seen in the GWHD.

Blender 
Generated 

Images

As Training 
DataCycleGan 

Enhanced 
Images

Real Images

CycleGAN Task 
Network

As Source 
Domain

As Target 
Domain

Figure 4.1: Here we show the intended pipeline for Synthetic data generation and
improvement used in this chapter. This general overall outline is extended in this
chapter as well as chapters 5 and 6.

4.1 Motivation

For this work we have a number of specific motivations.

Firstly, we are motivated by significance of solving the wheat head counting

problem, and by improving the large scale automation of crop monitoring more

generally. We hope that in the future it will be possible to use these techniques

to gain accurate information on the health and yield of crops using only image

data and machine learning models, giving useful data to both farmers and plant

scientists. Advancements in agricultural AI of this type will likely in future lead

to more automated farms, which will enable better monitoring of crops at cheaper

costs.
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Secondly, the specific dataset we are targeting is the GWHD, a dataset of nearly

5000 images containing individual annotations of nearly 200,000 individual wheat

heads. By the standards of plant phenotyping datasets, this is already fairly gen-

erous, as many datasets consist of much fewer images. Despite the advantage of

its size, the dataset contains a number of different subsets gathered from differ-

ent institutions across multiple countries. Different subsets will see differences in

wheat appearance caused by different climate and growing conditions, as well as

differences in image appearance caused by different camera and image capture

setup and hardware choices. This large diversity of images makes this training set

extremely good for producing models that will generalize well, but also making

the test set a challenging target for models aiming to perform well on diverse

targets. By being able to demonstrate good performance on the GWHD test set

using only or primarily synthetic data, we would be able to greatly reduce the

future cost of building similar datasets for similar problems, either by requiring

only unlabeled real images and relying on domain adaptation, or by reducing or

eliminating their need entirely.

More generally, as there are a wide variety of different crop species even consid-

ering just variations of wheat. We are motivated to develop a pipeline of building

synthetic plant datasets that allow for data of different species to be built flex-

ibly and with reusability as a core consideration. If successful we hope that our

approach to data synthesis would allow for new datasets to be created merely by

switching our key assets, which could be produced cheaply.

4.2 Challenges

This project faces a number of challenges related first to the overall problem of

wheat head counting, a non-trivial challenge in Plant Phenotyping, and second

to the specific task of using domain adaptation on synthetic data. Here we break

down these challenges and discuss both key obstacles and some considerations in

overcoming them.
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4.2.1 Wheat Head Counting

Here we list challenges specific to the task of individual detection of large number

of wheat heads in an image.

• Detection of many small objects. Wheat head detection is more chal-

lenging than other object detection tasks such as detecting leaves or fruit

as the individual wheat heads are extremely numerous and small in size.

Many object detection networks have inductive biases that tend towards

less numerous and larger objects, and this can make problems such as this

harder to solve.

• Occlusion. Due to the density of wheat heads in any given images, with

most of the dataset containing more than fifty wheat heads, it is extremely

likely that each image will contain numerous cases of occlusion between

wheat heads.

• Diverse datasets. The Global Wheat Head challenge attempts to reflect

the wide range of wheat species, growth stages, and environments that

exist across the world, as such the dataset contains images from 12 different

countries and institutions. Because of this, we can expect it to be challenging

to achieve good performance across all subsets of our test dataset.

Figure 4.2: Examples of images from the Global Wheat Head Counting Dataset
used in this chapter, highlighting the high level if diversity and challenge presented
by wheat head counting.

4.2.2 Domain Adaptation

Here we list challenges specific to domain adaptation, specifically in the case of

synthetic to real style transfer in the case of the GWHD.
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• Content Preservation. During style transfer it is common for the content

of the image to become distorted, causing the image to become misaligned

from the annotations. Here we present a guidance system designed to reduce

distortion and preserve this alignment.

• Image Diversity. As described above, the GWHD was created with di-

versity in mind; however style transfer networks often perform best with

largely homogeneous datasets. In cases such as this, it is common for the

network to simply devolve to producing images that are either an average

of images in the target dataset, or mostly resembling the most common

subset.

• Image Resolution. As style transfer models are often extremely large

neural networks, often with multiple sub-networks, performing style trans-

fer on high resolution images often can be hamstrung by limitations in

available hardware. This is especially challenging for tasks such as detec-

tion of segmentation of small objects where high resolution is crucial to

ensure accuracy.

In this chapter we present our novel approaches to domain adaption with a focus

on overcoming the challenges of content preservation and image diversity, in

order to work within computational constraints with some flexibility we downscale

images for our experiments as described below.

4.3 Related Work

Synthetic data has been identified as a useful tool for plant phenotyping tasks in

a number of other works. Two papers by Ward et al [118] [117], demonstrate a

3D modelled synthetic dataset of arabidopsis plants that does not use augmen-

tations. This idea is then extended by Giuffrida et al, who present Arigan [110],

a conditional-GAN approach to generating Arabidopsis plant images. Zhu et al.

go further by constructing new segmentation masks synthetically using a com-

positing technique, and then generating matching images used a conditional-GAN

using the masks as input [124].
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Plant modelling tools have been leveraged for the creation of synthetic data in a

number of works. Lindenmayer systems [65], developed first in 1968 are one such

method, that can be used to create organic structures through iterative rules

and become popular in the 1990 book Algorithmic Beauty of Plants [84]. We see

use of L-systems in a range of works in both biology and science [20] [62] [108],

and select this approach for our own 3D modelling. Another popular method is

Functional Structural Plant Model (FSPM), which also allows synthetic plants

to be created digitally. FSPM has been used in research to allow the accurate

modelling of wheat [14] [34], Tomato plants [111] and other crops in a range of

different research contexts.

Domain adaptation has in recent years been applied to different plant related

domains. In 2020 Ayalew et al used a Domain Adversarial neural network to

perform domain adaptation between different datasets of the same species [7] for

object counting. Looking at using a single source dataset for both wheat and

arabidopsis respectively they then targeted two different target datasets for each

plant, demonstrating the methods viability.

More recently, our work bears some similarity to Najafian et al’s work also on the

GWHD [76]. Rather than a generative deep learning approach, instead a number

of conventional Computer vision techniques were applied to synthetic images

created using compositing to create realistic synthetic data for pre-training a

network, after which the network would be fine tuned on a dataset more specific

to the downstream task. Since the publication of our work we have also seen Mei

et al demonstrate a similar domain adaptation strategy on rosette plants, using

a density map for leaf counting [71].

4.4 Materials and Methods

In this section we describe our synthetic dataset and our pipeline for generating

such images, our domain adaptation network, and the experiments we conducted.
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4.4.1 Network Selection

For all our experiments we selected Detectron 2 as our task network. Detectron

2 is an implementation of Faster RCNN described in chapter 3, and was selected

for its state of the art performance in object detection as well as its ability to

perform well on large numbers of small objects. Additionally good support for

custom datasets allows us to easily train the model with our synthetic images.

4.4.2 Synthetic Data Creation

To perform domain adaptation we created a pipeline to create synthetic images

that would allow us to supplement the existing GWHC dataset of real images

used for our experiments. By using 3D rendering we aim to create images that

are as close as possible to the images in our target dataset to use as training

samples. To achieve this, our pipeline uses Blender [15], a 3D graphics tool used

for creating and rendering 3D scenes for a wide range of applications. Blender is

especially useful for the creation of Synthetic data for deep learning as it has a

number of features that we can use when creating our images:

• Python scripting. Blender supports full scripting using the Python

programming language, allowing for automated scripting of both the ran-

domised scene generation that creates each new arrangement of wheat as

well as our rendering pipelines which generates each image and bounding

box annotations.

• Render and lighting settings. Support for different rendering engines,

as well as control over lighting and shader settings allows for a high level

of control over realism when designing scenes through the tuning of a wide

variety of parameters. For example using the Cycles rendering engine gives

us a high degree of control over the shadows or reflections in our rendered

scenes.

• Plugin Support. Support for additional plugins allow for additional fea-

tures to be easily added, which can make automated scene design easier.

• GPU Acceleration. As this project requires the rendering of many tens of

thousands of images, GPU accelerated rendering allows the creation of large
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datasets in days rather than weeks, even when rendering at high resolutions.

Since the same compute resources are also used for training our neural

network, this allows for an efficient reuse of expensive hardware.

Our goal is to use Blender to randomly generate new 3D models of scenes con-

taining a large number of wheat heads similar to those images from our target

dataset, creating a good artificial base that will allow for as accurate style-transfer

as possible. As shown in other work on style transfer, more realistic performance

is generally achieved when the source images have a strong resemblance to their

target [123]; and we make a number of design decisions in our 3D model based

on this insight. To this end we create a pipeline for generating new scenes auto-

matically using a Python script which we can then render and, at the same time,

capture ground truth data for from the randomised scene.

Figure 4.3: Wheat head models generated in Blender, before the effects of lighting
have been applied by the rendering engine.

To create an instance of our scene, we generate a set number of wheat crops,

consisting of an automatically generated stem cylinder and a hand crafted wheat

ear asset that is a connected on top to create the finished look of each plant.

We choose not to also add leaves to each wheat crop as these are not needed for

wheat head detection, and will be added later during style transfer.

Each wheat stem was created using a custom Python extension that implements

Lindenmayer Systems (L-systems), where natural looking structures can be gen-
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erated via expansion rules defined as a string [83].

L-Systems

L-systems are a model for generating structures using a defined set of rules,

that can be iterated over to create an increasingly complex structure. Below we

include a simple representation of Lindenmayer’s original L-system for modelling

the growth of algae, which contains a starting axiom and two variables, each with

an expansion rule. These variables can then be represented as plant components

such as roots, stems, leaves and wheat heads to generate complex models of

plants in 3D environments such as Blender. In order to generate a variety of

different plants for our scenes, we can expand this concept by introducing non-

deterministic rules into our L-systems, allowing different instances to grow in

different arrangements.

v a r i a b l e s : A B

constant s : none

axiom : A

ru l e s : (A −> AB) , (B −> A)

which produces :

n = 0 : A

n = 1 : AB

n = 2 : ABA

n = 3 : ABAAB

n = 4 : ABAABABA

Though the structures for wheat crops are extremely simple, generating them

this way gives us a great deal of control over their structure. By using L-systems

in this way, it also makes our pipeline extremely versatile and leaves open the

possibility to use out pipeline for more complex plants.

For each scene we generate a randomly determined wind speed and direction. The

rules used to generate the L-system for each stem in a given image will be mod-
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ified based on these values causing the wheat stem for each plant to tilt in the

direction of the wind, in proportion to the simulated wind speed. As such while

every crop will be slightly randomised the overall scene is able to consistently

model the strong bending due to wind force common in images of wheat fields,

matching the effect of the wind seen in real images from the GWHD.

Scene Generation and Capture

For each image we generate a target number of wheat plants, between 10 and

60, as this is the approximate range of values represented in our target dataset.

Unlike the real GWHD we include the same number of images for all wheat head

counts, by doing this we hope will help the network perform better on outlier

test images with very few wheat heads in them which are poorly represented

in the real train data. The generated wheat plants are positioned in a uniform

random distribution above a background image of soil, then our python script

adds addition hand-crafted 3D models of foliage, which are also randomly scaled,

rotated, and positioned in the frame to match the composition of the real target

images. Our scene also contains three different lighting sources positioned around

the wheat, which we move and adjust the brightness of as part of our scene gen-

eration pipeline. When the scene is rendered this will allow for realistic lighting

and shadows to be applied, aiming to simulate the challenging extreme ranges of

contrast, brightness and exposure seen in real images from the GWHD. Finally

we render the scene as viewed from a Blender Camera object, positioned above

the scene. All images were captured in 1024x1024 resolution; the high resolution

was chosen as it is the same resolution as images from the global wheat head

dataset (GWHD) and will make style transfer easier by matching the resolution

with our synthetic renders. In addition it is unlikely an object detection network

will be able to detect individual small objects like wheat heads in a lower reso-

lution image. We show an example of the scene in blender in figure 4.4, showing

the camera positioned above a typical scene.

Image rendering was done using an NVIDIA Titan GPU using the Cycles render

52



engine, which is generally considered to be the most realistic of the rendering

engines packaged within Blender, albeit at a high computational cost. Each image

and label can be captured and the ground truth recorded in under 5 seconds on

average, with the greatest overhead actually being the creation and deletion of

each scene rather than the image Rendering. Without GPU support however the

render time would be much greater and result in nearly 30 seconds per image.

We do note that some variation does occur during rendering depending on the

number of wheat heads in an image, with render time increases as we increase the

number of wheat heads in each generated scene during data generation. Overall

we can produce in excess of fifteen thousand image-label pairs per day after our

scene model has been created. Even with the time taken to both learn Blender

to a sufficient level, and create the scene taken into account, it is likely that the

time and cost associated with creating this synthetic data is a fraction of that

taken to collect the same quantity of real data. Additionally, we hope that our 3D

scene and script created would be reusable, reducing the cost of creating future

datasets.

Figure 4.4: An image of our blender setup, showing synthetic wheat heads dis-
persed among foliage and the camera used to capture each image positioned
above the scene. Scripts for scene generation and l-systems can be found at
github.com/zanehartley/zhlsystems.
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4.4.3 Generating Ground Truths

For each image we were required to create accurate ground truth labels showing

bounding boxes for each ear of wheat. In order to do this we used Blender’s cam-

era data combined with the world coordinates for each wheat head to calculate

the coordinates of a bounding box encompassing the entire wheat head using

maths based on a pinhole camera model. Details of the camera model needed

are available within the blender camera settings. We extract the values of the

bounding box within the camera frame and exported these to a CSV file for each

image which can then be used as annotations for our image. Our complete syn-

thetic dataset SI contains over 5000 new images with over 100,000 new wheat

head annotations stored as csv data to be used in training for our experiments.

Finally to create additional labels for our heatmap support we used OpenCV [51]

to create Gaussian heatmaps for each image. Gaussian heatmaps were chosen as

they are a common representation for similar problems, and could be simultane-

ously predicted during domain adaptation. To create these heatmaps we used the

extracted bounding box values by first taking the center points of each bounding

box and then adding a small circle of noise for each wheat head. This created a

set of labels SH; this process was repeated to create heatmaps for the real world

training images RH used as our target domain which are supplied with bounding

box labels. We explain the use of these heatmaps in section 4.4.7.

4.4.4 Use of CycleGAN

Our goal is to create new images that can be used for training our network

by transforming our synthetic images to the real domain and thus mitigate the

domain shift problem. We aim to perform style transfer on our images using

an extended CycleGAN model, an adversarial neural network used for changing

the domain of images that we discuss in section 3.1.3 which we treat as one

unified real domain dataset. Popular examples of domain transfers performed

using CycleGAN include horses-to-zebras, apples-to-oranges and photo-to-art,

often using specific artists styles.
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Figure 4.5: Our CycleGAN model with Gaussian heatmap support; this process
is repeated for each cluster extracted from our target dataset (represented by the
four layers in the figure), producing multiple outputs for each input synthetic
image.

4.4.5 CycleGAN Structure

As described in chapter 3, CycleGAN uses 4 separate networks working together

consisting of two of the conventional generator-discriminator pairs we are famil-

iar with in usual GANs. Each generator takes an input image from one of the

two domains, and outputs the transformed image in the other domain, with one

network going from domain A to B and vice versa. CycleGAN’s name is derived

from this structure; an image can be passed from one generator and into the

other, making a cycle going from domain A to B and back to A. For example this

might be Horse to Zebra to Horse. This is important as it verifies that the original

image can always be restored from the transformed version, which ensures that

the network does not destroy content information during style transfer.

In order to enforce high quality style transfer the CycleGAN model contains a

number of loss functions.

• Discriminator Loss. A discriminator evaluates an image either from the

target dataset or the output of its corresponding generator, attempting to

determine the authenticity of the image. For each real or synthetic image

the network will predict a probability of the image being real. This is a

sigmoid cross entropy loss that we seek to minimize, meaning we aim to
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make the discriminator better at correctly assigning high probabilities of

it being real to real images and low probabilities to synthetic images. This

loss is fundamentally the same as that we see in most conventional GAN

models.

• Cycle Consistency Loss. An image from the source domain is passed

through the source-to-target generator, followed by a backwards pass through

the target-to-source generator. This output is then compared against the

original source image using an L1 loss, which is then back propagated

through both generators. This loss is perhaps the most important con-

tribution from CycleGAN, ensuring that content is preserved during style

change, by making the effect of each generator reversible. The same pro-

cess takes place simultaneously in the other direction, going from target to

source domain and back.

• Identity Loss. An image from the source domain is passed through the

target to source generator, the output is then compared against the original

using an L1 loss. As the image is already in the source domain we want to

encourage the generator to leave the image unchanged. This means that el-

ements of the image that already match the target domain (for example the

background) will remain unchanged whereas known objects will be trans-

formed, though this is less relevant in our case as all of our image represents

our source (synthetic) domain.

4.4.6 Problems with CycleGAN

CycleGAN is generally well regarded as one of the first high quality style trans-

fer GANs and performs well on many of these domain transfer tasks. But for

synthetic-to-real domain transfer for use in creating training data, CycleGAN

exhibits a number of problems that we seek to address in this chapter.

Firstly, while CycleGAN excels at re-texturing objects to their new domains, of-

ten we can observe some distortion around the edges of objects, especially where

the difference between domains is greater, or with smaller details. This is espe-
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cially a problem where we are attempting to style transfer training data, as this

distortion can cause a misalignment between image and labels. As the different

ears of wheat captured in the GWHD are varied in appearance, it is common for

this distortion to occur around wheat heads often causing this misalignment.

Secondly we observe that when target datasets are especially varied, the source-

to-target generator fails to generate a wide range of images that reflect that

diversity in the images it creates. The generator instead learns to generate either

an average of all the target domains, or to instead simply favour the most com-

mon subset of the target domain.

4.4.7 Extending CycleGAN with heatmap support

To solve the first problem of distortion and content shift we adapt a CycleGAN

model as shown in figure 4.5 to predict Gaussian heatmaps of wheat head loca-

tions from the output of both the real to synthetic and synthetic to real generators.

By doing this we aim to preserve the locations and geometry of wheat ears in im-

ages transformed by the generators, as wheat heads added or removed will create

inaccuracy in the predicted heatmaps. To do this we extend the architecture with

two lightweight UNets that predict heatmaps for the outputs of each generator.

Our CycleGAN is set up with default parameters for training, and our synthetic

dataset and the training split of the GWHC dataset are used as source and target

domains respectively. All images are resized to 400x400 due to the high VRAM

constraints of combining CycleGAN with additional models as support, making

style transfer in the images full 1024x1024 impossible with 12GB VRAM GPUs

such as NVIDIA Titans. Additionally, for all experiments we perform, all train-

ing images and testing images are resized to 400x400 to be consistent with GAN

output images.

For each iteration, our model receives a source image SIi and a target image RIi

and transforms each to the other’s domain, synthetic and real respectively. The
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predicted heatmaps are compared against SHi and RHi and we apply a binary cross

entropy loss to simultaneously train each UNet and enforce accurate translation

of the wheat heads by the generator. An example of both the input and output

images along with ground truth and the predicted heatmap can be seen in figure

4.6 After training our model we produce dataset H where all images from S have

been converted by the synthetic and real generator. We also produce data C

where we use an unmodified CycleGAN as a baseline to compare our extended

model against.

Synthetic Input Ground Truth Heatmap Output Image Predicted Heatmap

Figure 4.6: Examples of our Heatmap Supported pipeline, showing input im-
age and groundtruth paired with a corresponding output and predicted gaussian
heatmap. High similarity between ground truth and predicted labels indicates
wheat head location has been preserved during augmentation.

4.4.8 Feature-Based Clustering to Improve Diversity of Gener-

ated Images

Using CycleGAN to convert images to the real domain using our real wheat head

image dataset presents problems due to the heterogeneity of the images present

in our target domain. Rather than producing images that represent the diverse

range of images in the GWHC dataset, the generator instead learns a translation

to an average wheat image representation. This is a problem we want to avoid as

the average image is not a meaningful representation of real life.

To counter this, we apply a preprocessing step of splitting our dataset into distinct

visual appearance clusters to be trained as separate targets for our generator. To

do with we use a pretrained InceptionV3 feature extractor to obtain a feature

vector from each image in R. We then apply K-means clustering to group the im-

ages into clusters of similar images. We select a value of k=4 to achieve the best

compromise between maximising the number of clusters, while ensuring enough

images are present in each set to make CycleGAN viable. Increasing the value of

k may lead to more diversity in the data produced, however while we can eas-
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ily change this value a higher number of clusters means we must run additional

models which is more computationally expensive and may lead to poorer results

due to the smaller size of individual clusters. Visual inspection confirms that each

cluster appears visually similar to other images in the same group. In our case

k=4 makes sense due to the four main appearance modes in the dataset; examples

of each modes can been seen in figure 4.7.

For our experiments we trained four of our extended CycleGAN models using each

cluster as a target respectively, testing this methodology both with and without

heatmap support. Each model was then used to generate a real representation

for each image in our synthetic dataset, in doing so creating four style-transferred

images for each synthetic image and quadrupling the amount of data available for

training Detectron. By combining these four sets of augmented images we create

our final dataset K which we use to obtain our final scores.

4.4.9 Experiments

We conduct a series of experiments to evaluate the ability of our synthetic data to

improve the object detection model by supplementing our original real dataset.

We then conduct additional experiments to evaluate the impacts of both our

heatmap and clustering approaches described previously by comparing models

trained with and without each of these techniques.

(1) Real Only. Here we establish a baseline performance achieved by using

only the real data from our training split R of the GWHC dataset, containing

over 3000 images. For all our tests all images have been resized to 400x400 for

consistency. We expect this set to perform well as it is already diverse and highly

representative of the test split.

(2) Synthetic and Real. We evaluate the performance gain combining our

synthetic dataset S with the real training data R - but without GAN modifica-

tion. Synthetic data has been leveraged to improve performance in a number of

other domains however we hypothesise that it is unlikely to have a major impact
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Original Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 4.7: Examples of 4 images produced from a single synthetic image for our
Heatmap Supported 4 clusters experiment. Each cluster represents a different
broad category of images from R, these subsets may be grouped by wheat species
and growth stage, time of day or other factors in how the image was captured.
Here we can see that cluster 2 in particular produces more hallucinated wheat
heads than the other datasets, and this is most pronounced when using synthetic
data with a lower number of plants.

Dataset R Dataset S Dataset C Dataset H Dataset K

Figure 4.8: Images from all dataset listed in section 4.4.9. R is used in experiments
1, 2, 5, and 7, S is used in experiment 2, C is used in experiment 3, H is used in
experiment 4 and 5, and K is used in experiments 6 and 7.

on performance due to the substantial domain shift between synthetic and real

images.

(3) CycleGAN. Here we evaluate the performance achieved using images from

C which have been augmented by an unmodifed CycleGAN, as our training set.

We perform this experiment to verify that our support network improves scores

against a suitable comparison. Due to cases where the CycleGAN either removes
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true wheat heads or incorrectly adds new ones (hallucinating heads where there

should be none) to the image, we hypothesis that this network will perform

poorly as the network will receive penalty for predicting what appears as true

wheat heads but there is no label in the annotation data.

(4) Heatmap Supported, No Real. We evaluate the performance when De-

tectron is trained using only images in H, generated by our CycleGAN with

Gaussian regression support. We hypothesise that this network will outperform

experiment three as a result of our heatmap support, but it is unlikely to perform

as experiments that include real images.

(5) Heatmap Supported and Real. Here we combine H with the real im-

ages from R. We expect this to boost performance on the network a great deal

compared with experiment 4 because of the inclusion of images from the target

domain.

(6) Heatmap Supported 4 Clusters, No Real. As described in section

4.4.8, we create 4 subsets of the original training set to create converted datasets

for each of the 4 targets using our extended model. We combine these four datasets

into a combined set K. We expect this network to perform well even when real

images are not used to train detection due to images in K being a close likeness

to images in our test set.

(7) Heatmap Supported 4 Clusters and Real. Finally we combine K with

R. We expect this model to perform the best of all the experiments listed as it

combines all the advances of our approach plus real image data.

4.4.10 Training

Our CycleGAN with heatmap support models were run using standard Cycle-

GAN settings as found at https://github.com/junyanz/pytorch-CycleGAN-and-

pix2pix. Both generators are extended with an additional model to predict Gaus-

sian heatmaps of wheat head locations, both of which share their Adam optimis-

ers and learning rates of 2e − 4 with their respective generator. These models
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were each trained for 100 epochs after which GAN training performance began

to degrade, which was verified empirically.

Our experiments were performed with an unmodified Detectron 2 using standard

settings, trained on NVIDIA GTX Titan X (Pascal) GPUs for 60 epochs.

4.5 Results

In this section we show the images produced by our domain adaptation models as

well as presenting the results of the experiments described above. We compare our

results against a baseline achieved using only real image in our training dataset.

For our evaluation we use Mean Intersect Over Union (IoU) which scores the

average overlap between predicted and ground truth bounding boxes, as well as

Mean Euclidian Distance which measures the average distance between bounding

box centers.

4.5.1 Domain Adaption Results

In figure 5.2 we compare augmentation between a conventional CycleGAN and

our extended model. We see that visually the images produced by both mod-

els look very different. The conventional CycleGAN image being more saturated

than images produced by the supported network, though it is likely more imper-

ceivable changes are being made by the generator that are difficult to identify by

eye. We also observe that Detectron makes more predictions for the image pro-

duced by the unchanged CycleGAN model and as shown in table 4.1 this leads

to worse overall performance because of a large number of false positives. It is

difficult to infer exactly why this is due to the black-box nature of deep learning

models, and a thorough analysis into AI explainability is beyond the scope of

this thesis. Overall we see a small positive performance increase thanks to our

support network component (seen in the differences between experiments 3 and

4), but the impact was a less important contribution to our overall result than

we originally expected. This may be due to the unmodified CycleGAN proving

more effective at maintaining geometry than we had initially hypothesized.
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Synthetic (a)

CycleGAN (b)

Heatmap Supported CycleGAN (c)

Figure 4.9: Comparison of synthetic images (a) augmented with unmodified Cy-
cleGAN model (b) and CycleGAN with heatmap support (c). Images in column
C demonstrate a realistic colour and higher contrast between wheat heads and
background. We observe that for the image from column B (dataset C) more
predictions are made, leading to a lower accuracy.
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Experiment Mean IoU ± SD Mean Euclidean Distance

(1) Real Only 0.8262 ± 0.07 13.9079
(2) Synthetic and Real 0.8568 ± 0.06 10.7702

(3) CycleGAN, No Real 0.5625 ± 0.35 16.9433
(4) HM Support, No Real 0.5987 ± 0.33 12.7729
(5) HM Support and Real 0.8497 ± 0.06 11.1276

(6) HM Support 4 Clusters, No Real 0.6622 ± 0.30 14.7164
(7) HM Support 4 Clusters and Real 0.8642 ± 0.06 10.5617

Table 4.1: Results of the experiments described in section 4.4.9, showing results
for Mean IoU (higher is better) and Mean Euclidian Distance (lower is better)
reported for test split of 100 GWHC images. The best scores in both metric were
achieved by experiment 7 which has been highlighted.

Figure 4.7 shows an output example of our CycleGANs used to create dataset K

for experiments 6 & 7 along with an input image. Here we can see examples of how

a single synthetic image from our source domain can be transformed to a number

of different domains each matching a subset of the overall real target domain.

In all cases wheat heads appearing in the synthetic image, and by extension

their annotations, have had locations maintained well, and appear realistic while

maintaining their geometry. Some additional wheat heads are observed to be

hallucinated especially in cluster 4, due to that dataset containing a larger number

of wheat heads overall but this is less so than we would expect to see using a

conventional CycleGAN.

4.5.2 Wheat Detection

For each of our experiments we evaluate our results using both Mean IoU of

bounding boxes, and mean Euclidean Distance between center points of the boxes.

We report results of all our experiments in table 4.1. In experiment 1, the baseline

achieved by training Detectron with only R performed well, as expected. Experi-

ment 2 exceeded our expectations by increasing the baseline score, suggesting the

synthetic data we have created did a good job at imitating the target domain and

this had a less substantial domain shift problem than would be expected from

most synthetic datasets.

In experiments 3, 4 and 6 we compare the performances achieved by C, H, and

K before introducing images from R. We observe that the heatmap supported
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Figure 4.10: A boxplot visualisation of data for each of our Mean IoU scores.

network offers a small improvement over an unmodified CycleGAN, and that our

clustering approach leads to a much larger improvement.

Finally in experiments 5 & 7 we compare scores achieved when we add the real

images from R to H and K respectively. Surprisingly experiment 5 shows only a

small improvement, not even beating our results from experiment 2 using unal-

tered synthetic data. Experiment 7 got our highest scores in most metrics, beating

our baseline by nearly 5%.

In figure 4.10 we show further data on the results of our experiments. Here we

see that each experiment without real images during training has much higher

numbers of outliers, where individual data points are outside the trend of the

results as a whole. Some of the images included in our test set have very small

numbers of wheat heads, and poor performance on these images may have in-

creased the spread of the data in these cases. We also observe that experiments

2, 5 and 7 (which include real data during training) all have very low standard

deviations shown in table 4.1 in addition to their very high scores overall, indi-

cating that most data points are close together and suggesting our model has a

consistent performance across the entire dataset,. This suggests consistently high

performance of the proposed approach across all test instances.
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4.6 Discussion

4.6.1 Analysis of Results

In our results we see that the difference between experiments 2 and 5 is within

one standard deviation, with experiment 2 (using unmodified synthetic images)

achieving good scores in both Mean IoU and Euclidean Distance. We hypothe-

size that with heatmap support alone there is still some loss of accuracy, which

we expect might be caused by domain adaptation failures. It is, however, likely

that the strong performance of S in experiment 2 indicates that we have suc-

ceeded in producing a high quality synthetic wheat dataset well suited to use as

a foundation for further enhancements.

We observe that in experiments 6 and 7 the addition of our clustering approach

produces the best scores in both metrics. Experiment 6 is noteworthy for hav-

ing the best score achieved for any method that did not use real images at all,

suggesting that an unsupervised adaptation of our methodology might be viable

(we present an unsupervised domain adaptation approach in chapter 5). Similarly

experiment 7 achieving improvements over all other methods shows the efficacy

of our overall approach.

A further take home message is just how much benefit adding real images has,

versus synthetic alone (experiment 4 vs. 5; experiment 6 vs. 7). Performance im-

provements of as much as 20% can be found by combining real images into the

set. This highlights the value of any labelled real images that can be added to

the train set.

As discussed in section 4.4.7, for all the experiments presented in table 4.1 we used

a confidence threshold of 0.7 for all predictions (meaning only predicted boxes

that score 0.7 or higher with a ground truth bounding box will be counted as

a true positive). During additional experimentation we observed that for experi-

ments 4 and 6, where no real images were used higher scores could be increased

by lowering the confidence threshold to 0.4, although this would produce much

66



lower scores for all experiments where real images from R are included in the

train set. As images from these networks were never exposed to any real images

during training, it is likely that it has lower confidence of any predictions made on

our test set, and as such the high 0.7 threshold causes some correct predictions to

be discarded. However, it is clear that optimising this per experiment, although

feasible for a particular real world problem, would not be considered fair, so was

kept constant for the results in Table 1.

4.6.2 Future Work

The method presented in this chapter is well suited to being applied to other de-

tection tasks especially where data availability is a limitation. Especially in fields

like plant phenotyping where data for different crop varieties is often unavailable,

we believe our method could be applied to detection of disease foci, or necrosis

as well as detection and counting of a range of plant parts and organs, such as

stems, sticks, internodes, leaves or fruit.

Additionally the pipeline we present in this chapter for generating 3D scenes in

Blender could be easily extended for further use in other plant phenotyping tasks,

and potentially packaged as a Blender plugin, allow for the development of new

datasets of Synthetic plants. One such example is weed detection in fields, such as

in the the phenobench benchmark, where synthetic data could both suppliment

real data and reduce cost of annotating such a large dataset. Additionally our

pipeline also includes code generating segmentation masks in addition of bound-

ing boxes for object detection, a much more expensive task to produce handmade

annotations for.

4.7 Conclusion

In this chapter we have presented a new approach to improving scores on Wheat

Head Detection using a supported CycleGAN and a novel clustering method that

allows us to increase the quantity of our training data while also increasing diver-

sity in our data produced by domain adaptation. Our results show our methodol-
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ogy improves scores when tested on unseen images from the GWHC dataset com-

pared to a baseline score set by real images from the same dataset. Our method is

also highly generalizable and could be easily adapted to work on other plant phe-

notyping problems especially where smaller quantities of training data are avail-

able for example additions to the synthetic pipeline could allow for the detection

of weeds or other dangers to crops, or our pipeline could generate additional anno-

tations like segmentation labels. By supplementing and replacing real data with

synthetic image as seen in this chapter we are able to reduce to human cost in col-

lecting and annotating real world data; an approach that is increasingly effective

at larger scale, especially due to the reusability to synthetic assets and pipelines.

To facilitate other researchers to make use of and extend our work we provide

code for synthetic scene generation at github.com/zanehartley/zhlsystems and

code for our extended CycleGAN at github.com/zanehartley/CycleGaussian.
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Chapter 5

Leveraging Domain

Adaptation for Unsupervised

3D Reconstruction of Fruits

Chapter 2 demonstrated that synthetic data created in a 3D rendering program

can be used as valuable additional training data for Computer Vision phenotyp-

ing problems. We show that applying style transfer to synthetic images using real

analogous images as a target dataset can allow us to improve scores, and supple-

ment real data where dataset size is limited. This chapter extends these previous

ideas focusing on the more challenging task of 3D reconstruction, and moving

from semi-supervised domain adaptation to a fully unsupervised approach, sub-

stantially increasing the challenge and significance of the task.

5.1 Introduction

3D reconstruction is the core Computer Vision task of capturing the shape of

objects in 3 dimensional space; and in recent years it has been used in agricul-

ture and plant sciences for a range of applications. Extraction of 3D phenotype,

structural and morphological traits can be useful to biologists, but 3D modelling

of plant organs also has many applications as part of a pipeline for other down-

stream phenotyping tasks. Plant organs, such as leaves, roots and fruit are some
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of the most prominent targets for 3D phenotyping. As described in section 2.5,

automatic inspection of crops can be useful in predicting yields. For fruits in

particular 3D structure can also be used to assess market class, where exterior

traits such as shape, size and outer quality are extremely important. These kinds

of tasks have historically been performed manually at time of harvest, which has

drawbacks of cost as well as introducing inconsistency. For other targets, such as

leaves or entire plants, 3D reconstruction can be used to assess stages of growth

more accurately than the 2D alternatives. For downstream tasks, we can use 3D

information about plant structure to aid in other common tasks such as plant

organ counting, e.g. counting number of fruits on a single crop.

In this chapter, we will attempt to answer the following research questions.

1. Can synthetic data be used to train a CNN for more complex tasks, such as

3D reconstruction? And what level of performance can be achieved using

this method?

2. Are we able to extend an existing style transfer network so as to perform

unsupervised domain-adaptation using our synthetic dataset at the same

time as 3D reconstruction?

3. To what extent is building a 3D dataset for Unsupervised Domain Adapta-

tion cheaper and easier than it would be to collect real 3D training samples?

And consequently, how realistic is synthetic data as a replacement for real

data in this kind of problem?

To this end we design and implement a Convectional Neural network that per-

forms simultaneous domain adaptation and 3D reconstruction from a single im-

age. We demonstrate the efficacy of our approach on bananas, chosen because

they present a challenging variety of both 3D shape as well as colour and texture

- for example, they are asymmetric, and exhibit bruising and other unique textu-

ral features. While 3D reconstruction of entire plants is also an area of interest,

this is much less feasible to perform from a single image due to the greater level

of occlusion presented. There is good availability of representative 3D models
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and photographs of bananas that may be used to produce synthetic and real

datasets, aiding our domain adaptation approach that exploits both real and

simulated data.

5.2 Motivation

Accurate 3D reconstruction of fruit is a task with a wide range of downstream

applications that allow us to extract a number of important traits from individual

specimen. Automated harvesting using robotics is an area of significant interest [5]

and requires precise understanding of the 3D structure so as to allow robots to

interact with each individual fruit without causing damage. 3D reconstruction

can also be used as part of a pipeline for estimating biomass and yield, as volume

is closely linked with the mass of a fruit, vegetable or crop. This is extremely

important as non-invasive biomass estimation is a core challenge of automated

agricultural monitoring.

Analysis of fruit structure and form is also an important component in Grading,

the process by which a fruit can be classified based on quality. A numeric value

is often given to each specimen, and this value is extremely important for sort-

ing as grade often affects price and marketability. Factors that contribute to a

fruits grade include shape and size as well as color and presence of defects, and

there is a history of Computer Vision being used as part of this process. In most

cases where computer vision has already replaced human graders, a variety of 2D

approaches have been presented allowing for a limited level of analysis, often to

be used as only one part of a multi-stage grading pipeline that will still contain

humans as well and thus remain expensive and time consuming.

In the past 5 years we have seen an increasing number of 3D reconstruction ap-

proaches presented [94] [8] [54], however in most cases we see either multi-view

approaches, or the implementation of additional sensors, usually to capture depth

information. As a result of this most of these approaches are expensive and time

consuming, usually because of their complex setups which also makes them less

easily implementable outside of an experimental setting.
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Having identified both the value of 3D reconstruction of fruit and also the lim-

itations of current approaches, we were motivated to improve on this approach

by utilizing recent advances in deep learning for 3D reconstruction. While 3D

reconstruction is not a primary focus of this thesis, we were also motivated to

apply a synthetic data approach to a problem that is this complex, as 3D com-

puter vision problems are generally considered much more challenging and face

additional problems that make them more difficult to solve.

We select bananas as

5.3 Challenges

3D reconstruction is perhaps one of the most challenging reconstruction problems,

especially in a monocular setting where we are limited to a single input image.

In this section we consider some of the challenges this work seeks to tackle.

• Range of angles. 3D reconstruction can often be performed most easily

when the camera and target are fixed, often with the target against a known

background. In our work we aim to overcome this limitation, allowing for

images to be taken from a range of angles and distances. We aim to represent

a wide range of angles and distances from the camera in our synthetic data,

which we hypothesise will teach the network to perform well on real images

with a similary range of camera positions.

• Computational cost. Neural networks working with 3D data face sig-

nificant constraints caused by the large spacial dimensions of the volumes

being used. Network design for this kind of problem is heavily constrained,

especially without leading to especially long training times and bottlenecks,

however this often comes at the cost of resolution and accuracy.

• Generating diverse data. Unlike in chapter 4, where we were solving

an object detection problem, for a 3D reconstruction problem we need to

be able to produce a range of training samples that contain different 3D

representations. This is more challenging than object detection as in that
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problem simply positioning wheat ears in different positions in the frame

was enough to produce added variety, which would be insufficient in the

case of 3D reconstruction.

5.4 Previous Work

3D reconstruction is a fundamental Computer Vision problem with a wide range

of applications and approaches. 3D reconstruction is in many settings done using

some combination of lasers, as seen in Dornbusch [30], time of flight cameras

as seen in Kazmi et al [57] or other sensors, with specialised technology being

the most reliable way to perform extremely accurate reconstruction even today.

The challenge for computer vision researchers is to look for approaches that use

only conventional RGB cameras. It has been common for 3D reconstruction to

be achieved using a variety of techniques broadly classified as photogrammetry,

and even more recently by deep learning. In this section, we look at some of the

approaches used in academic literature, specifically for plants and fruit.

5.4.1 Photogrammetry

Photogrammetry is, in the context of 3D Reconstruction, the approach of com-

bining a large number of images from multiple views of an object. Often this

is done by finding correspondences between the images; these correspondences

will generally be determined by various kinds of image features, and using these

known correspondences to combine the data from the images into a 3D represen-

tation. Zhang et al [122] in 2008 use this approach to reconstruct corn plants,

using a pipeline identifying leaf boundaries, followed by a reconstruction step that

assembles the edges detected in each image using a stereo vision intersection al-

gorithm. More recently Rose et al [94] reconstruct tomato plants using structure

from motion data using a multi-view stereo camera setup. Ayob et al [8], also

use a multi-view photogrammetry system, with the aim of performing accurate

volume estimation of chilli plants. What all of these methods have in common

is the triple cost of setup cost, time to capture each instance, and complexity,

making the systems impractical to use in most agriculture settings.
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Working with smaller objects such as fruit or individual plant organs present

additional challenges. In Jadhav et al [54] they use 3D reconstruction as part of a

pipeline for estimating volume and maturity of different fruits, placing individual

fruit on a calibration checkerboard and capturing a number of images to collate

into a volumetric representation. Even as recently as 2022, Feldmann et al [36]

reconstruct a range of fruits using a setup comprising a piece of fruit on a rotating

platform against a well calibrated background. While these photogrammetry ap-

proaches have improved over time, they still struggle to overcome the challenges

that are intrinsic to their multi-view design.

5.4.2 Monocular

As discussed before, many approaches to fruit reconstruction involves multiple

viewing angles, with much of the challenge being involved in the composition

of the data from these images into a volume. Looking more broadly at 3D re-

construction research, most of the 2D approaches that are more common are

preferred in part because they can be performed with a single camera overlook-

ing a single known background which can be a point of consistency or even be

used for calibration.

The 3D Reconstruction method used in this project was originally presented by

Jackson et al in two papers, one on human face [52] and another on human body

3D reconstruction [53]. These papers present Volumetric Regression Networks as a

method for performing accurate reconstruction in an end-to-end fashion, and the

approach was more flexible than other popular approaches. Similar to depth-map

regression, they model the problem as a mapping of a 2D plane to a 3D volume,

including an estimation of the occluded reverse side of the object. These works

use a number of different architecture designs based on encoder-decoder CNNs for

semantic segmentation, most notably the skip connections used for reconstructing

spacial resolution from UNet [92] and the stacked hourglass structure presented

in Newell et al [77].
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5.5 Materials and Methods

In this section we describe our approach to the problem of generating 3D volumes

via unsupervised domain adaptation; in particular, how we crafted our datasets

and designed the architecture of our model. In addition we describe the experi-

ments we conducted in order to test the efficacy of our proposed architecture.

5.5.1 Training Dataset

To train our model we utilised two different datasets. The first is a collection of

25,000 images of synthetic bananas created in Blender [15], and the second is an

image dataset of real bananas of a similar size. Together these datasets represent

our labelled source dataset and our unlabelled target dataset for unsupervised

domain adaptation.

For our synthetic dataset we capture image data by rendering images of over 5

master 3D banana models from freely-available online sources [1]. Each model

was chosen for its perceived realism, with more importance given to 3D geome-

try than to texture (as texture will be modified by style transfer during domain

adaptation), with some consideration given to adding as much variety as possible

into the dataset. Examples of these can be seen in figure 5.1.

In Blender these 5 models were then modified by scaling randomly along each

axis to between 60 and 100 percent of their original size, followed by random

in-plane rotation to create 5000 variations of each. We used the original provided

textures for all captures of each master Banana, however we adjusted the bright-

ness of the light source between 0.5 and 1.5 times our default value, as well as

adjusting some values of specular reflection to increase image variety. Renderings

were captured of the augmented models, along with the random transformation

parameters used. The corresponding meshes were then used to create 3D vol-

umes under the same transformations, and were saved into an HDF5 file [106]

for input into PyTorch. For each rendering, a randomly selected image from the

Common Objects in Context (COCO) dataset [64] was used as a background
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Figure 5.1: Image shown being captured in Blender. Here we see examples of
six 3D banana models used to create our synthetic dataset (the top left model
was later discarded due to lack of realism causing poor domain adaptation). As
described above, these models were chosen to represent a diverse selection of
different possible shapes of Banana and thus provide a good base for domain
adaptation.

image, increasing variety in the training set and encouraging the generator to ig-

nore the background. Augmentation and rendering was performed automatically

in Blender, with volumetric ground truth produced in python.

Our second dataset, consisting of real images, is a collection drawn from three

sources. First, images were taken from a dataset [70] originally used for ripeness

classification networks. Second, the Top Indian Fruits dataset, contains many im-

ages of bananas in various states of ripeness and health [82]; from this we selected

only the examples of healthy bananas and discarded the associated per-image

ripeness and quality labels. Finally, we collected additional images ourselves, al-

lowing us to add images with more variations in lighting and angle. To further

increase the variety in our dataset, these images were also augmented with scal-

ing, flips and rotations to generate 25, 000 different examples.

While overall our synthetic dataset was quite time consuming to create, (espe-

cially including the voxelisation process described below) we note that the cre-
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Figure 5.2: Examples of real images taken from Top Indian Fruit [82], Fayoum’s
ripeness dataset [70], and our own dataset of real bananas.

ation of real 3D datasets of image-label pairs are incredibly expensive and almost

exclusively reserved for high interest subjects such as people and vehicles. While

we are able to produce thousands of training instances with a single 3D model

by deforming the model, creating a real dataset would have taken thousands of

real bananas, making it practically infeasible. Additionally, to reuse our pipeline

for other objects we would only need to collect or commission another handful of

3D models of the intended subject, whereas for any new subject matter an entire

new set of real objects would need to be procured. As a result it is likely that

potentially hundreds of hours could be saved from dataset creation alone by using

our method, especially in the case of larger objects that would take significantly

longer to capture with 3D scanning hardware.

5.5.2 Voxelisation Procedure

The rendering process in Blender saves the applied rotation and projection matrix

with each banana rendering. In order to bring the 3D model into alignment with

the rendered image such that it may be accurately voxelised, we first apply the

rotation transformation, followed by projection transformation. Doing this will

ensure that the voxel representation for each banana will align with the image.

The projection matrix destroys depth information in the Z axis with respect to

the image plane, meaning we need to recalculate the distance of the banana from

the camera so we can position the voxel representation correctly in 3D space. We
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Figure 5.3: Image shown being captured in Blender. Here we see a 3D model of a
banana being captured against a background of a random coco image having been
transformed by translations, scale and rotations. A light source positioned behind
the camera is directed at the banana adding realistic lighting to the rendered
image.

recover this by using the standard deviation of the 2D axes, before and after the

projection step, as a scaling factor for the Z axis. The standard deviation of x and

y is used because it is invariant to any translation which may have been applied

during projection. More concretely, where M and Mproj are the unprojected and

projected meshes respectively, of x, y, z coordinates,

Mproj,z =
Mz

2

(
std(Mproj,x)

std(Mx)
+

std(Mproj,y)

std(My)

)
. (5.1)

Voxelisation is performed by tracing rays through each plane, x, y and z to pro-

duce three intermediate volumes. These are combined into a single 3D volume by

finding all voxels that intersect at least two of the intermediate volumes. This ap-

proach reduces artefacts but is slightly slower than performing voxelisation from

a single plane1. Our final volumes have a resolution of 256 × 256 × 128. Higher

depth resolution is unnecessary in this problem domain due to bananas generally

being relatively flat in a one dimension, assuming they are laid on a flat surface.

1We use Adam Aitkenhead’s implementation, available here http://uk.mathworks.com/

matlabcentral/fileexchange/27390-mesh-voxelisation
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5.5.3 Volumetric Regression Network

For our 3D reconstruction we use a Volumetric Regression Network to map our

2D images to 3D volumes. We evaluated a number of models for this task, includ-

ing U-Net [92] and stacked hourglass models shown in [53] by using three small

sections of our synthetic dataset as a training, validation and test sets respec-

tively, and testing the ability of each network to perform volumetric regression on

the simpler supervised learning task without the domain shift problem. Testing

showed that a modified U-Net implementation achieved the best performance in

3D reconstruction, while using fewer parameters than the stacked hourglass. We

use standard spatial convolutions throughout the network, and reconfigure the

U-Net to use three down-sampling layers followed by three up-sampling layers,

with skip connections between layers of the same spacial resolution. Comparing

this loss against the true volume of the synthetic image gives us our Volumetric

Loss, for which we selected a Binary Cross Entropy (BCE) implementation as for

each voxel in 3D space the a value of either zero or one must be predicted by the

network.

Figure 5.4: The proposed Volumetrically Consistent CycleGAN (VCC) using our
real Banana dataset as a target.

5.5.4 Volumetrically Consistent CycleGAN

It has been shown that CNNs trained on purely synthetic data do not gener-

alise well onto real images [118], however large performance increases can be

achieved by including a small fraction of real training data [118]. Unsupervised

domain adaptation approaches take this one step further, requiring only labels

for our synthetic set; indeed our approach implements this idea by requiring only
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labeled synthetic data supplemented with different datasets of unlabeled real pho-

tographs as input. Our goal is to train our end-to-end network to produce a 3D

reconstruction of objects from the images in the real domain. We extend a Cy-

cleGAN implementation [123] with our VRN in a similar fashion as that shown

in chapter 4. Our model, shown in Figure 5.4 performs unpaired image-to-image

translation between real and synthetic images.

Our novel addition here is our combination of our VRN that performs 3D recon-

struction on the output of the synthetic-to-real generator with CycleGAN as a

domain adaptation network. While the structure of CycleGAN remains the same,

we extend the model with our Volumetric Regression Network such that the out-

put is the synthetic to real generator is input to the VRN. As a result of this

architecture the Volumetric loss is applied first to the generator, which ensures

that the 3D structure of the object is preserved when changing the domain of

the image and additionally the U-Net. This Volumetric Consistency Loss (VC

loss) loss is given a weighting of 1.0, relative to all CycleGAN weights which were

determined by the original authors of CycleGAN. This value was determined em-

pirically, though further fine tuning may improve time taken for convergence.

Due to the number of parameters of a high resolution CycleGAN model running

concurrently with our 3D VRN on the same GPU, our model faces significant

challenges in regards to VRAM. Because of the large number of parameters and

size of the data, we took a number of steps to streamline our model. Firstly, as

mentioned above this was one of the considerations that caused us to choose a

U-Net model rather than a stacked hourglass model that would have required a

much larger number of parameters. Secondly, we reduced the number of layers

in our U-Net from 4 down to 3, reducing the number of parameters and memory

usage. Finally we reduced the resolution in the z dimension (depth) from 256 to

128, removing any training examples that would now intersect the edge of the

bounded space. We make the assumption that for all reasonable test cases, the

bananas will be lying flat and thus likely to be satisfied by this constraint due to
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their geometry.

5.5.5 Experiments

(1) VRN Trained with Synthetic Data Only. Here we establish a baseline

in terms of performance i.e. what level of performance we can achieve on real

images when trained only on synthetic renders. Synthetic images have been suc-

cessfully leveraged in many domains, but the domain gap between synthetic and

real images often leads to poor generalisation.

(2) VRN Trained on CycleGAN Images. We evaluate the performance of

the VRN on real images, when synthetic training images have first been refined

to look more realistic. CycleGAN is trained to translate the synthetic images into

the target domain of real images which are then used to train our VRN as carried

out in experiment 1.

(3) GANana VRN. GANana combines the VRN and CycleGAN in a single

model, shown in figure 5.4, that can be trained end to end. Images are refined

by the CycleGAN at the same time as our VRN is trained to extract a 3D

volume. The approach taken by GANana ensures that refined images preserve

the high level structural features necessary for volumetric reconstruction while

simultaneously closing the domain gap between the two sets of images.

(4) GANana VRN using PASCAL VOC. In this experiment we use the

same architecture from experiment 3, but replace our real banana dataset de-

scribed in Section 5.5.1 with unlabelled images from the PASCAL VOC dataset.

We hypothesised that a larger and more diverse range of images from the real

domain may compensate for using images that do not match the particular sub-

ject of our source domain; and if so, reduce the need to build a domain-specific

dataset.

(5) Ganana VRN using Gaussian Noise. For this negative test we replace

our target domain dataset with random noise. We hypothesise that this will force
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our generator to transform our image almost entirely into noise, maintaining only

the high level features needed to regress the banana. By excluding images from

the target domain we prevent the model from performing domain adaptation, and

any improvement on our baseline score can be attributed to augmentation. Unlike

our previous experiments, in this example, losses from the VRN and CycleGAN

will, we hypothesise, be sufficiently opposed to each other such that it will be

impossible to produce good results.

(6) Ganana VRN using Synthetic Target. In our final experiments we

train on pairs of identical images from our synthetic dataset as both the source

and target domain. By keeping the source and target domain the same, CycleGAN

is no longer encouraged to transform input images, as any transformation made

by the generator can only make each image differ from the target. Instead we

hypothesise that it will apply subtle augmentations to each image, improving

robustness of our VRN while being prevented from significantly altering the high

level features of each image. Increased variability of the input data means the

VRN in our model must be more resilient to augmentations produced by the

generator, which may enable it to perform well on images in our target domain.

In this sense we can consider the goals of our the CycleGAN and VRN to be

better aligned, which we believe will improve performance.

5.5.6 Testing Dataset

In order to test our method, we built our own test dataset comprising 15 real

banana models with associated 3D ground truth. Images were captured using the

photogrammetry app Qlone, run on an Android phone [35]. For each model, a

banana was placed on a calibration base and images were captured from numer-

ous angles. The banana was then flipped onto a different side and the process

was repeated to improve accuracy on the unseen surface. Figure 5.5 shows this

process. The app combines the two meshes to generate a single 3D model of the

banana for import into Blender, where any elements remaining errors such as

reconstructed background could be removed manually. The process described in

Section 5.5.2 was used to convert each model into a volume for use as ground
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Figure 5.5: Demonstration of capturing instances for our test dataset through
the Qlone photogrammetry mobile app. Bananas placed on the calibration mat
would be captured from all angles, before being flipped and the reverse side then
captured using the same method.

truth. Finally each model was paired with a single top-down image of the banana

it was generated from, which would then make up each test image-volume pair.

Each example took an average of 15 minutes to successfully capture, demonstrat-

ing the difficulty in feasibly collecting enough samples to create a suitable size

dataset for training a VRN with real image-volume pairs, as has been demon-

strated in previous works [53].

5.5.7 Training

Our network was trained in an end-to-end fashion using Adam optimizer [58], a

learning rate of 2e−4 and default parameters for all CycleGAN models used in

the architecture. We trained the model using a batch size of eight, and trained

on eight NVIDIA Titan X (Pascal) graphics cards for 10 epochs until the model

converged. Due to the large size of volumetric tensors, significant bottlenecks

do occur in our training pipeline as a result of data loading, and more complex

transforms. With this in mind we perform limited online augmentations to both
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images and volumes, including flips and 90 and 180 degree rotations, as these can

be performed with the least computational cost, while also ensuring our network

generalises well onto a wide range of test image examples. In order to decrease

training time when loading our training data, we saved our dataset in HDF5

format, allowing it to be directly loaded as a PyTorch Tensor.

5.6 Results

Here we present the results of the experiments conducted to evaluate the effec-

tiveness of the model described in Section 5.5.

5.6.1 Qualitative Results

We show the input with corresponding output, from the four experiments, in

Figures 5.6 and 5.8. VRN trained on only synthetic images (experiment 1) fails

almost completely when presented with a real image. GANana succeeds in ex-

periments, (3), (4) and (6), with only the addition of unlabelled target images.

The background images in Figure 5.6 (b) and (c) are from the original images,

but in (d), (e), (f) and (g) the 2D image output from the synth-to-real generator

component is used as a background, which gives an idea of how the generator

transforms input images depending on the target dataset used in each experiment.

These images demonstrate that the volumetric consistency prevents distortions to

the original object’s shape, and that the main difference from the transformation

appears to be colour tone.

In Figure 5.7 we show the output of the generator both with (c) and (d), and

without (b), the proposed volumetric consistency loss. CycleGAN is known to

have a number of failure cases, especially where the two training domains are not

sufficiently similar [123] and we see an example of this in experiment 2. Without

the volumetric consistency loss, the model degenerates to creating very similar

images that do not retain their structure, hardly resembling a banana at all; and

as such we have not included it in our numerical results in Table 5.1. This fail

state is consistent with what is observed in [75], where CycleGAN is unable to

preserve geometry when transforming an image from the synthetic to real domain,
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and Muller et al are able to improve augmentation by using a 2D segmentation

network to provide a support loss in order to generate images for hand tracking.

We speculate that 3D renders and photographs of real bananas are not sufficiently

similar for CycleGAN to produce good results; it is a strength of our model

that it performs well even where these higher-level differences between our two

datasets exist. As evidence of this we observe the GANana-enhanced images

exhibit contrast and brightness changes that better match images from the target

domain (observed in figure 5.7). As such CycleGANs learned transformations are

more pronounced on images which differ more significantly from those in the

target set, while appearing less extreme on more similar images as we observe in

figure 5.7.

5.6.2 Quantitative Results

For each experiment, we compute both Volumetric Intersection over Union (VIoU),

as well as Root Square Mean Error (RSME). To compute both metrics, we ac-

counted for scale using the length, width and depth of each banana, before apply-

ing the Iterative Closest Point [12] (ICP) algorithm. This procedure was repeated

three times for each sample, which we found to produce adequate alignment to

obtain the best mapping between reconstruction and ground truth and avoid

simple translation and rotation errors. ICP was needed as the scans produced

by the Qlone app were scaled differently to the predicted 3D volume and not

aligned with the individual photo. Our results are therefore presented after ICP

alignment. This may bias the performance slightly, but the same procedure was

used for all experiments for consistency.

Table 5.1: Volumetric IoU and RMSE reported on our collected dataset of real
bananas.

Method 2D IoU VIoU RMSE

(1) VRN (Synth. Training) 41.74% 17.52% 7.59
(3) GANana (Bananas) 92.36% 76.37% 1.68
(4) GANana (VOC) 91.88% 76.60% 1.65
(5) GANana (Noise) 44.65% 33.04% 7.64
(6) GANana (Synth to Synth) 92.29% 73.62% 2.07

We present our numerical results in Table 5.1. The baseline VRN trained with

synthetic data (1) performed very poorly on real images. This is likely due to the
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domain gap between real and synthetic images causing poor generalization be-

tween images which may on first impressions appear visually similar. Conversely,

in experiments 3 and 4, using our volumetrically-consistent GAN, we are able

to improve performance substantially, and both experiments achieve our highest

VIoU scores. As predicted, experiment 5 shows a marked decrease in performance

compared to our other experiments using our architecture especially in 2D IoU,

but still outperforms our baseline score, despite images being almost completely

indistinguishable from noise. Experiment 6, however, performs well and has scores

that are comparable to experiments 3 and 4 and significantly above the baseline.

This is an interesting and significant result, as these scores are achieved when

testing on real images despite being trained with only synthetic images, and does

not require a dataset of even general real images as a target.

5.6.3 Segmentation

Here we demonstrate that our method is capable of performing 2D segmentation.

By taking the sum of the produced volumes through the Z axis, we predict a

segmentation mask, to enable comparison with a silhouette from the source 2D

image. We hand annotated foreground and background pixels for images in our

testing dataset. In the second column of Table 5.1 we show Intersection over

Union score, demonstrating that our method is also effective at training for 2D

segmentation through domain adaptation, as well as measuring shape error as

viewed from directly above.

5.6.4 Method Performance

Methods working with volumetric structures have a reputation for either being

slow or inefficient. The volumes themselves are often large and can be difficult to

work with. However, binary volumes which have large contiguous blocks of data

(such as ours), are highly compressible. Our 256× 256× 128 volumes are stored

as one byte per voxel, thus requiring 8MB of memory per volume. However, on

disk with LZ4 compression, they consume only 70KB to 90KB with minimal

computational cost. Our architecture contains no 3D (Volumetric) convolutions,

and instead uses only 2D (Spatial) convolutions, which are highly optimised to
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run on the GPU. Inference through our model takes 253ms on a single NVIDIA

Titan X (Pascal). This is then followed by an additional 124ms to extract the

surface from this volume (allocated a single core on an Intel Xeon E5-2698 v3

system, average for 1000 runs).

We believe that for many applications, the ability to create a 3D model in under

400ms from a single image is practical. Further improvements are likely possible

to our pipeline, such as improved architecture though will require greater of

computer resources to successfully implement.

5.7 Discussion

In this section we present analysis of our results and the effectiveness of our

methodology as demonstrated by our experimentation. We also talk about some

possible limitations of our method and possible improvements or additions that

could be made to our pipeline.

5.7.1 Analysis of results

The difference in performance between experiments 3 and 4 are sufficiently small

such that both results can be considered practically equivalent, and in both cases

show good performance in both 2D and 3D scenarios. It is interesting to note

that domain-specific target images are not shown to lead to substantial perfor-

mance increases, and shows the broader applicability of our architecture into

other domains, such as medical scans, or street scenes. Experiment 3 produces

the highest score for 2D IoU, suggesting that using real bananas as our target do-

main encourages the generator to best maintain the outline of the banana during

transformation. Experiment 4 shows that targeting PASCAL VOC with the GAN

achieves comparable results in terms of VIoU and RMSE, compared to using our

real banana dataset. This is significant as it demonstrates that our method is

effective even if large datasets of the particular subject matter are unavailable.

We believe this demonstrates our method’s potential to work in other domains.

In experiment 5 the VRN is still able to extract a reasonable likeness to the true

volume, suggesting that structural information must still exist in the noise images
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in order allow reconstruction of the volume via the VRN. In figure 5.8 however,

we see that as the VRN is trained on images which have been passed through the

CycleGAN with noise as a target, the loss of the VRN encourages preservation

of high level features that enable the regression of the volumetric structure.

Experiment 6 performs well given it is trained exclusively on synthetic images,

however we believe that the performance benefit obtained by using a real target

dataset as seen in experiments 3 and 4 is worth the small additional cost of curat-

ing a selection of real images, particularly when they can be easily sampled from

existing datasets. Aside from transforming images from one domain to another,

it is conceivable that CycleGAN is simply performing image augmentation, thus

treating the task as a domain generalisation problem and forcing our VRN to be

robust to variation. The fact that experiment 6 performs comparably to experi-

ments 3 and 4 without using images from the target domain would support this

hypothesis.

5.7.2 Limitations and Failure States

In Figure 5.6, we see that in our results for experiment 5 there are a number of

fail cases, where background pixels are interpreted as part of the volume by the

VRN, and this leads to even poorer performance for 2D results shown in figure

5.8. These kinds of false positive results are not observed in other experiments or

even the baseline; we hypothesise that this is caused by the noise target domain

having no distinction between foreground and background pixels for the network

to learn.

Although in our other experiments our Ganana VRN models performed well

on our test dataset, it is likely our approach has limitations in its effectiveness

that may lead to failure states. Because our training is based on automatically

generated synthetic data it makes it more likely that failure states will emerge

when images sufficiently different from the training set are tested. An example

observed during testing was a failure state when the banana is not well centered

in the frame, as they are in our synthetic models.

Similarly, although controlled-light phenotyping tasks are common, in other phe-
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notyping tasks it is possible for extreme lighting situations to present a challenge.

However, while our testing was carried out with controlled lighting, it is likely

our networks will be more resilient to these kinds of changes as CycleGAN has

the potential to improve the VRN’s ability to generalise onto more varied images.

We also note that in the context of detecting defects in fruit, imperfections could

appear on the reverse side of a piece of fruit. As such it is likely that in this context

the model would have to be applied to each side of the fruit being scanned,

though this would still be preferable to photogrammetry which requires many

more images as well as calibration, or LIDAR which would be more expensive.

5.7.3 Future Work

In our work we focus on accurate 3D reconstruction of fruit using a methodology

that has not yet been applied in a real-world phenotyping pipeline; as such we do

not go as far as to calibrate our images to real-world units. In a future extension

of this work, we believe that by capturing images using a well-calibrated capture

environment, it would be possible to estimate both volume and mass of fruit using

an extension of our proposed setup. The flexibility shown by our model would

allow it to be used for a wide range of tasks in an agricultural setting, such as

the capture of entire plants, as well as downstream tasks like monitoring growth.

5.8 Conclusion

We have presented our methodology for using a VRN trained on augmented syn-

thetic data to address the problem of estimating accurate 3D models from a single

view. These models, trained on a fruit dataset, provide detailed 3D reconstruc-

tions of the target object, ideally suited to downstream phenotyping tasks. Our

results are obtained with a smaller data and annotation cost than conventional

deep learning models by approaching the task as an unsupervised domain adap-

tation problem. As such our approach provides full reconstruction of the target

object without the need for any manually annotated real-world images. We in-

troduce a Volumetrically Consistent CycleGAN, in which a CycleGAN is used

to transform an image from a labelled synthetic domain into an unlabelled real
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domain, while a volumetric regression network learns to reconstruct objects mod-

els in 3D. These networks are trained end-to-end, improving performance over a

modular design. We have shown a significant improvement in volumetric segmen-

tation scores and RMSE versus alternative approaches. Our approach performs

well against ground truth generated using multi-image photogrammetry software,

and demonstrates our model’s ability to generate accurate reconstructions.

This accurate reconstruction of 3D models of plants is important in the push

for automated size and quality control, as well as other phenotyping tasks such

as informing biological modelling applications. Common hardware-based tech-

niques such as LiDAR are costly and time consuming, unsuitable for very high-

throughput pipelines. Our method is fast ( <0.5 secs per image), accurate, re-

quires no human interaction once trained, and works using a single RGB camera.

We expect that the method concept will generalise to a wide range of other ob-

jects, including other fruit, vegetables and plant organs such as leaves. We pro-

vide code for our Volumetrically Consistent CycleGAN architecture at https://

github.com/zanehartley/Ganana_Unsupervised_Domain_Adaptation_For_3D_

Reconstruction that will enable future researchers to make use of the pipeline

we have presented in this chapter. To apply this technique to new domains, the

production of appropriate synthetic models is required, combined with sample

images from the real domain. Our software pipeline, dataset and network will be

made available online, to facilitate researchers training 3D reconstruction models

in a variety of domains.
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Figure 5.6: Example outputs of our experiments for Volumetric Regression show-
ing ground truths (b), Synthetic training (c), and then our Ganana models with
different target datasets (d), (e), (f), and (g). Each volume is shown as a 3D
model hovering above the image it was extracted from.
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(a) Input (b) CycleGAN (c) GANana (d) Synth2Synth
Enhanced Enhanced Enhanced

Figure 5.7: Output from Synthetic to Real generator from standard Cyclegan (b),
Ganana with volumetric support (c) and CycleGan with Synthetic as Target (d).

(a) (b) (c) (d) (e) (f) (g)
Input GT VRN Synth Bananas VOC Noise Synth to Synth

(expt 1) (expt 3) (expt 4) (expt 5) (expt 6)

Figure 5.8: Outputs of our experiments for 2D Segmentation showing ground
truth segmentation masks (b), Synthetic training (c) and our Ganana models
(d), (e), (f), and (g).
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Chapter 6

Investigating the impact of

synthetic data on Transformer

and CNN models.

In the previous two chapters this thesis has focused on applying Synthetic data to

plant phenotyping problems using state of the art Convolution Neural Networks.

Our own work makes novel contributions to an emerging field championing Syn-

thetic data for training CNNs, including new methods and applications for this

approach. In this chapter we directly continue our work from chapter 4, this time

looking at the impact of synthetic and style transfered data in the context of the

emerging field of Transformer neural network architectures.

6.1 Introduction

Transformers are a new type of machine learning architecture first introduced for

natural language processing. Very recently they have become a point of interest

for the Computer Vision community with attention mechanisms being applied

to images allowing networks to make decisions with global context, compared

to the local approach of CNNs. Today transformers are a fast moving area of

research, with an open debate about the future role of transformers and CNNs in

Computer Vision research. In this chapter we aim to apply the domain adaptation
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of synthetic data approach to image transformers, comparing their impact with

the current state of the art in CNN object detection models.

6.1.1 Motivation and Aims

As discussed in some detail in section 3.1.2 Transformer models have shown them-

selves to be capable of state of the art performance when applied to some of the

most challenging computer vision tasks. In order to achieve many of their most

impressive results Transformers have proven to be extremely data hungry, even by

machine learning standards. Indeed in [31] ViT is trained using JFT-300M [105]

a private dataset of over 300 million images and over a billion individual labels.

Since datasets of this size are not widely available, reproducing these state of the

art results is not easily possible, and engineers hoping to apply these new models

to a similar level of success need access to extremely large new datasets. In light

of this, our approach of using synthetic data augmented using a synthetic-to-real

style change network is especially relevant to this new field of research.

Furthermore in this chapter we continue our work from chapter 4 on wheat head

detection. Transformers have been proposed as a better way to design networks

for challenging computer vision tasks, object detection being on of the most

prominently targeted. We are motivated therefore to instigate the effectiveness

of new Transformer models on a core plant phenotyping problem such as wheat

head counting.

6.2 Background

We covered Transformers in some detail in section 3.1.2, but will give a short recap

here as well as some more specific related work. Transformers were originally

introduced by Vaswani et al [112] in 2017 as a type of language model used

for Natural Language Programming, introducing the core concept of a global

Attention mechanism. Attention blocks allow the network to learn the strength

and importance of the relationships between different parts of their input, be

that language or images. Multiple attention heads (parallel attention mechanisms
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Real Image/Label Diffusion Image/Label

Figure 6.1: Examples detections from the GWHD, showing true positives in green,
false positives in blue, and false negatives are shown in red.

that allow for multiple relations to be captured allow many different relations to

be captured simultaneously, and by stacking many attention blocks it allows

for complex relations to be considered. This approach also emphasises non-local

features, as attention is captured on a global scale [31].

Despite some earlier non-local CNN models such as that presented by Wang et

al[115], the Visual Tranformer was first introduced in 2020 by Dosovitskiy et

al [31] which replaced the word embeddings from language models with patch

embeddings that allowed the models to be redesigned for images.

DETR or the detection transformer is an object detection transformer introduced

in 2020 by Carion et al [17], adapting earlier models such as ViT to predict bound-

ing boxes for classes of interest within an image. DETR makes use of the output
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sequence from earlier transformers as predictions for a series of predicted objects,

labeled with a class and position. Since the network cannot know beforehand how

many instances will exist in a given image, the sequence length will be an upper

bound of the number of objects we might expect to predict. For each object de-

tected a token from the output sequence will be given its class and location, and

for unneeded tokens a null class is assigned to them to show they do not refer to

an object.

6.3 Material and Methods

In this section we discuss our choices of networks used for our experiments, in-

cluding both our choice of Transformer architecture, and state of the art CNN

models to compare it against. We then also describe improvements made to our

synthetic dataset over that demonstrated in chapter 4, along with our decision

to simplify our domain adaptation approach for this chapter.

6.3.1 Models Selected

In order to best evaluate Transformers in the context of both synthetic data,

and plant phenotyping, we select the task of object detection to base our exper-

iments on. Object detection is one of the most popular tasks in the digital plant

phenotyping space, with a range of different applications, from the detection of

individual plant components, up to segmenting crops from aerial photography.

For our analyses we select one popular detection Transformer along with two dif-

ferent state-of-the-art CNN models with different advantages and disadvantages.

We justify our selection of each model below.

YOLOv5 is the most widely used version of the YOLO object detection fam-

ily [33]. Using a system of anchors to predict all bounding boxes for an image

in a single pass, YOLO models are considered benchmarks for both accuracy as

well as speed at test time. Many systems that require real time detection use

YOLO networks for this reason. YOLO is generally considered to be the best

architecture for dealing with detection of occluded objects, which is a common

96



occurrence on the wheat head counting problem.

Faster-RCNN is a detection model from the RCNN family of architectures [89].

Relying on a region proposal network to predict boxes, and is one of the most

widely used detection models due to its implementation in Facebook’s Detectron

2 deep learning package. RCNN based models are generally considered the most

accurate models for object detection, especially for detecting smaller objects, as

is the case for detecting wheat heads; however this is generally considered at the

cost of efficiency, as the model is slower to run that YOLO models.

DETR is a visual transformer for object detection introduced in 2020 [17]. The

models design attemps a more streamlined and intuitive approach to object de-

tection. Rather than using anchors or region proposal networks, DETR directly

predicts the locations of objects and assigns category labels to them simultane-

ously. During training a bipartite matching algorithm [59] is used to pair each

prediction with its most likely label to enable training. DETR has demonstrated

state-of-the-art performance on a number of object detection benchmarks, and

its design makes it good for problems with a highly variable number of objects

to detect, as is the case in our wheat head counting challenge.

6.3.2 Dataset Creation

We create a synthetic dataset for our experiments similar to those described in

chapter 4. For this set of experiments we make a number of improvements to

improve the quality of the data created, as well as using an off the shelf style

transfer model called CUTnet (explained fulling in section 6.3.3) to create our

domain shifted synthetic dataset. Below we list the changes made to our synthetic

data generation pipeline from chapter 4, including justification for the changes

made.

• Background Images. In order to improve the quality of our synthetic

data, when rendering our image in Blender we introduce empty background
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Figure 6.2: Our upgraded wheat scene being captured in Blender. Here we see
our addition of a second wheat head model as well as improved foliage. On the
right hand side we show our use of Blenders advanced scripting engine, allowing
us to generate scenes such as the one shown automatically.

images from the GWHD training set [24] to act as background plates, re-

placing the generic ground images used as background plates in our pre-

vious version of our model. Images from the training set were filtered for

images that contain no wheat heads of their own, and the set was further

filtered manually to remove images containing unwanted content or that

were otherwise inappropriate for this use. This left us with a set of images

containing no wheat heads but that represented a cross section of the back-

grounds present in wheat images in the dataset. Since CycleGAN models

are trained to leave the target domain unchanged during style-transfer, this

should encourage the model to ignore the background and focus style trans-

fer on the foreground content.

• Wheat head diversity. In order to add additional diversity we included

an additional wheat head model in Blender, which was used at random

alongside the original 3D model. The two models used were selected to rep-

resent ears that have both prominent and shorter awns (the spiky protuber-

ances that extend from the ear). As the GWHD is sourced from a number of

institutions, different subsets of the dataset have different lengths of awn, so

we make this inclusion so as to be more Representative of the target dataset.

• Improved bounding boxes. During early testing, we observed the model’s
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tendency to predict oversized boxes for wheat heads, which may have been

caused by our Blender data. When capturing the bounding box data, the

recorded dimensions include the smallest box that completely encapsulates

the widest dimensions of our wheat ear models, often leading to oversized

bounding boxes. To fix this inaccuracy, we adjusted the capturing mecha-

nism for bounding boxes to only encapsulate the wheat head itself, and not

the surrounding awns (sometimes alternatively called the beard), as this is

how bounding boxes are applied in the GHWD and should lead to improved

accuracy.

We continued to use the same L-system approach to generating wheat stems

giving them lean and direction to emulate a wind direction as seen in chapter

4. The rest of our pipeline is the same as described in section 4.4.2, including

rendering settings, which continue to capture all images in 1024x1024 resolution.

Using our adjusted design, we again generated over 10,000 images with bounding

box information to create our training data. For the images generated, we cre-

ated a uniform spread of images with a range of ten through sixty wheat heads,

excluding any wheat heads that were generated out of frame.

6.3.3 CUTnet style transfer

Similar to previous models, we use a style transfer network to improve the ap-

pearance of our synthetic images. For this series of experiments we replace our

own modified CycleGAN networks from chapter 4 with another popular model

with a similar design idea. CUTnet[81] (contrastive unpaired translation net) is a

model that expands on the CycleGAN approach, attempting to improve the con-

sistency of information during style transfer. To this end the model introduces a

patch wise contrastive learning mechanism shown in figure 6.3. This technique ex-

tends a regular CycleGAN by dividing the generator outputs into patches, where

a random output patch from the transformed image is compared against a series

of patches from the original image, including the patch from the corresponding

position. Since the matching patch has the same content, we would expect it to
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be relatively the most similar to the output patch, compared to others from the

input. The addition of a contrastive loss therefore aims to enforce a high similarity

with the matching patch, while simultaneously aiming for a low similarity with

all other patches. The result of this is that we can expect to see a more highly

enforced preservation of content during style transfer, achieving a similar effect

to that we achieved in chapter 4, without the need for an additional network,

though figure 6.3 does still show evidence of the hallucination of addition wheat

heads as we previously experienced, showing that this method is still imperfect.

Since all experiments were conducted using the CUTnet enhanced datasets, ref-

erences to Synthetic data in our experiments refers exclusively to these enhanced

images, and not to the RAW synthetic images generated in Blender.

Figure 6.3: CUTnet improves upon CycleGAN by trying to minimise the distance
between corresponding patches, while maximising the distance between the target
patch Z and the negative patches.

6.4 Experiments

6.4.1 Comparing Transformers to State-of-the-art CNNs

For our experiments we initialise our three selected models, Faster RCNN, YOLOv5

and DETR, with their respective default hyper-parameter setups for our specific

experiments. It is likely that each model could achieve better performance with

hyper-parameter tuning, but we choose to leave each model in their default state
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wherever possible to minimise any bias caused by advantageous tuning. We then

run a series of experiments to compare the impact of using a training regime using

synthetic data on each of our models. We use a conventional training regime for

incorporating synthetic data, using our large synthetic dataset for a pretraining

phase, followed by a finetuning phase on our real data from the Global Wheat

Head Dataset.

We compare scores between our synthetic enhanced training regime against a

baseline using only real data using the recently released private test set, not

available during the the work completed in chapter 4, which allows a more thor-

ough evaluation. We calculate Average Precision 50 and 75, meaning that a 50

and 75 percent IoU is required by each prediction to be registered as a true posi-

tive, refered to as IoU50 and IoU75 respectively. We also calculate Mean Average

Precision (MaP) where each subset of the test set has a score calculated sepa-

rately and the mean of all subsets is taken accounting for the differences in size

of each dataset.

6.4.2 Testing Transformers with small training sets

Subsequently we analyse the impact of synthetic data more deeply by running

additional experiments where we limit the quantity of real data used in the fine

tuning process. In many real world scenarios, very limited real data will be avail-

able for training neural networks. We model this here by running tests using the

full 3290 real images, 1000 real images selected at random, and 100 real images

also selected randomly. By doing this we hope to be able to better analyse the

impact of synthetic data in cases where it plays a more significant role in the

training of our networks.

For experiments using limited sets of real data, random subsets were created,

with the smaller subsest being included within the larger subsets for consistency.

For the second set of experiments, the same subsets were used to produce a style-
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transferred train set with CUTnet, followed by finetuning with the same real

images.

6.4.3 Evaluation Metrics

For our experiments we select three different metrics for evaluation, MaP, AP50

and AP75. MaP (which could also be considered MaP50), is a metric that first

finds the mean accuracy of each subset of the target dataset using IoU50, and

then calculates the average of these. By calculating the accuracy this way, equal

weighting is given to each subset, meaning that larger subsets are weighted equally

with smaller ones. This is especially important as we can observe that many of the

most challenging subsets of the GHWD are substantially smaller than the larger,

easier ones. A high MaP score would indicate that a network performs relatively

well on these more challenging datasets. Our second metrics AP50 and AP75

instead calculate the average accuracy over all images in the dataset, regardless

of subset. These two metrics differ by their IoU threshold, with AP50 requiring

a 50 percent intersection to confirm a match between a prediction and ground

truth and AP75 requiring 75 percent IoU to consider a match. As such we can

expect the networks to perform much more poorly on the AP75, but their relative

scores will give an indication of each network’s ability to detect the boundaries

of each wheat head with a high degree of accuracy.

6.5 Results and Discussion

Network Experiment MaP AP50 AP75

Faster RCNN
(1) Real Only 0.504 0.624 0.204
(2) Finetuning w/ CUTnet Data 0.459 0.620 0.312

YOLOv5
(3) Real Only 0.561 0.669 0.322
(4) Finetuning w/ CUTnet Data 0.570 0.675 0.323

DETR
(5) Real Only 0.512 0.537 0.178
(6) Finetuning w/ CUTnet Data 0.539 0.579 0.209

Table 6.1: Results of the experiments described in Section 6.4. Here we compare
results of our method on three state of the art object detection models. Faster-
RCNN and YOLOv5 are both CNN based architectures whereas DETR is a
transformer based model.

In table 6.1 we show that under standard conditions, DETR is outperformed

by both CNN based architectures when applied to the Global Wheat Challenge.
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Network Experiment MaP AP50 AP75

Real Images Only
(1) 100 Real Images 0.327 0.374 0.104
(2) 1000 Real Images 0.428 0.486 0.167
(3) 3290 Real Images 0.512 0.537 0.178

CUTnet with
Real Target &
Finetuning

(4) 100 Real Targets 0.375 0.412 0.116
(5) 1000 Real Targets 0.487 0.516 1.170
(6) 3290 Real Targets 0.539 0.579 0.209

Table 6.2: Results of the experiments described in Section 6.4 using limited quan-
tities of real images on DETR. We compare the impact of our synthetic data in
the case of training with limited quantities of real data to both perform our style
transfer and to finetune our network.

However we do see that pre-training on Synthetic data has the most significant

impact on the performance of DETR compared the other other networks, with

Faster RCNN having no improvement at all from pretraining. We do note that

our experiments with DETR have the best MaP score relative to their AP50 and

AP75 scores, being only 0.025 points between MaP and AP50. As MaP scores

have a weighted average of all subsets, the smaller and more challenging subsets

of GWHD gain a larger relative weighting. We can infer from DETRs scores that

it is likely performing best on the most difficult subsets of the dataset, and not

having its MaP scored diminished as a result.

In table 6.2 we show a set of experiments using limited amounts of the GHWD

for both style transfer and for finetuning our tast model. In this case, we perform

all our analyses on DETR, using the 3 scenarios: the full dataset of 3290 im-

ages, along with subsets of 1000, and 100 images. As we hypothesised, using the

maximum number of real images in combination with our synthetic data gives

the best possible results with a MaP score of 5.39, a small improvement over the

same test using real images only.

6.5.1 Analysis of Results

In our experiments we show that DETR does not demonstrate a significant de-

parture from other state of the art models for this particular challenge. We see

that while DETR does yield better results than Faster RCNN, this is not by a

substantial margin, and moreover it is outperformed in all metrics by YOLOv5,
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despite YOLO being expected to be the least appropriate model for this particular

challenge based on its known weakness on tasks with small objects.

We also see no strong indication that transformer models are significantly suited

to wheat head counting, or use of synthetic data in general. Contrary to our

hypothesis, DETR performs better than expected even with a limited training

set of 100 real images when compared to our experiments with much greater

numbers of images.

It is also worth acknowledging that contrary to our expectations, YOLO out-

performed Faster-RCNN by a margin of more than 5 percentage point for both

MaP experiments. We hypothesise that while YOLO based models are conven-

tionally poorer at problems involving a large number of small objects than a

region proposal model, some of the more recent advancements in YOLOv5 such

as its Feature Pyramid Network allows it to perform better on objects of more

extreme scales.

A more significant observation is that the application of our synthetic data pro-

vides only modest improvements over real data only. From the results shown in

table 6.2 we see about a five percentage point improvement gained from adding

synthetic data in the case of one hundred real, down to 2.5 percent gain with the

full real dataset.

We also see more meaningful gains in performance with the increase of real images

than we do from the injection of synthetic images. This might have a number of

causes, but we hypothesise that the style transfer with low number of real images

is much poorer, leading to little improvement. Improvements seen from having

higher quality style-transferred images are likely thus significant because they

coincide with a larger number of real images being used during training.

6.6 Conclusion

In this chapter we have presented our experimental finding using transformers

on an upgraded synthetic dataset for the Global Wheat Challenge we saw in
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chapter 4. We find that a state of the art transformer model does not outperform

a comparable state of the art CNN model. We also performed additional tests

by constraining our real training set and find that in cases where training data

is especially limited we are able to supplement our training regime with our

synthetic data and achieve a greater performance, though this was less than

our original hypothesis. Overall we find that at present Transformers are not

an obvious replacement for CNN based architectures, although considering their

relative infancy they hold a great deal of promise for the future. With further

development of transformer models, it is possible that much greater performance

could be achieved in a number of Computer vision tasks due to the advantages

of their global attention mechanisms over currently popular architectures.
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Chapter 7

Diffusion for Synthesis of

Training Data

In chapters 4, 5 and, 6 we have so far demonstrated how synthetic data can be

created for training CNNs using a combination of 3D rendering and GANs to

create artificial images. In this chapter we consider diffusion models as a new

method for generating synthetic images with their corresponding annotations,

exploring this as a possible new method of generating photo realistic images that

can be used to train neural networks with a significantly reduced domain gap. A

number of different approaches to generating high quality synthetic images and

corresponding semantic and instance segmentation masks is presented.

7.1 Introduction

Generative Diffusion Neural Networks are the major new paradigm in image syn-

thesis. Reaching mainstream attention in 2021 and 2022 with the widespread

uses[21] of a number of popular models such as Stable Diffusion[91] and Mid-

journey, much attention has been given to the useful work these diffusion models

could potentially be put to. While much of the discussion revolves around using

diffusion to generate artistic works and the related ethics of the technology, for

researchers in Machine Learning these models present a perhaps even greater op-

portunity, allowing us to generate training images to suit whatever problems we
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are trying to solve. As described in section 3.1.3, diffusion approaches to image

generation are a fairly recent area of research, and is likely to become a major area

of interest in future years. Figure 7.1 shows an outline of our intended approach,

leveraging a small number of real training images to generate a large number of

highly realistic samples.

In this chapter we adapt current diffusion architectures to generate not just new

images, but also matching ground truth labels for semantic and instance segmen-

tation. We first present some preliminary experiments using diffusion to generate

data for semantic segmentation, along with experiments to test its efficacy. We

describe a number of potential approaches to generating image-label pairs for

instance segmentation, along with their advantages and problems, and generate

our own dataset using our preferred method containing over 20,000 images. We

then experiment on our custom dataset comparing its performance at instance

segmentation in a number of settings, including its ability to generalize onto dif-

ferent but similar datasets. We focus our work on the instance segmentation of

leaves on rosette plants, such as arabidopsis, tobacco and spinach.

7.2 Motivation

For this work we were motivated by the incredible opportunities presented by

generative diffusion networks. Compared to the need to hand craft Synthetic Data

as shown in our previous work, diffusion models have demonstrated their ability

to generate new examples having trained on relatively small datasets compared

to GAN models (either for image generation or style transfer), and without the

manual creation of digital scenes used for 3D rendering. Instead many diffusion

models use text prompts to guide an images content and style, giving more flexible

controls to the user, and allowing images to be fine tuned to specific requirements

such as may be the case in designing training data.

Images generated by diffusion models are generally compared favourably with

even the highest quality of GANs, and we hypothesise in this chapter that diffu-

sion generated images will have a much smaller domain shift than other synthetic

107



images making it appropriate for creating training data as a result. If this hy-

pothesis is found to be even partially correct, we anticipate that a much smaller

domain gap between diffusion based images and the real images they target will

lead to a reduced need to deal with the complexities and limitations of domain

adaptation.

Our choice of rosette plants as a target is based on a number of factors. Leaf

counting and segmentation is often used to help calculate yield, growth stage and

biomass of plants, meaning that it is an important part of many phenotyping

pipelines for core downstream tasks. Due to a high volume of academic interest,

there are already a large number of popular datasets already available for leaf

segmentation, including CVPPP and Komatsuna, giving us a number of differ-

ent datasets to work with for both our training and evaluation. Additional use

of these datasets can be made when evaluating the ability of such a model to

generalize onto similar unseen plants for example applying a model trained on

arabidopsis to tobacco images.

While the problem of instance segmentation of leaves is not trivial, it is considered

to be solved to a high degree in a supervised deep learning context [13]. We

can assume that given sufficient high quality data, a state of the art machine

learning model would perform extremely well on this task. By choosing a task

with these characteristics we hope that we are best able to isolate the impact

of our diffusion model on the problem, which we believe makes our results as

meaningful as possible.

Few Real 
Reference 

Images

As Training 
DataMany Diffusion 

Generated 
Images

Denoising 
Diffusion

Task 
Network

As Training
Data

Figure 7.1: Here we show the intended pipeline using diffusion to create synthetic
training data. Crucially a small number of real images can be used to train a
diffusion model that can then generate theoretically infinite new sample images.
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7.3 Aims

Our aim for this work is to use a diffusion model to generate image label pairs

that we can use to train a CNN. As with our previous approaches to generating

data with Blender, we must first be able to simultaneously generate our labels

with our images, for this we explore a few approaches to this, focusing on the

tasks of semantic and instance segmentation.

In this work we aim to answer the following research questions:

• Can current diffusion models be used to generate image-label pairs? What

are the limitations and strengths of data generated this way?

• Which Computer Vision problems are possible to solve using current diffu-

sion model architectures? Specifically is this an effective method for gener-

ating instance segmentation masks?

• To what extent does the domain shift problem occur between images gen-

erated by a diffusion model and those used to train it?

7.4 Background

Our experiments focus on different types of segmentation of the leaves of rosette

plants. Semantic and Instance segmentation are two of the most popular com-

puter vision tasks, and have been the focus of research for a number of years.

In semantic segmentation we aim to assign a semantic class to every pixel in the

image a class prediction. Often these classes will be one for each object of interest

and then a background class for everything else. For cases with only a single class

(as in our own experiments) this can also be thought of as foreground-background

segmentation. Instance segmentation is a related form of the image segmentation

problem in which we seek to separately label different instances of the same class,

correctly identifying boundaries where one or more instance of the same object

occlude each other.
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A1 A2 A3 A4

Figure 7.2: Example images from the CVPPA Leaf Segmentation Dataset, com-
prised of subsets A1, A2, A3 and A4. Subsets A1, 2 and 4 contain examples of
Arabidopsis, while subset A3 contains tobacco plants. All four sets show a col-
lection of plants at a range of different growth stages.

We use the Computer Vision Problems in Plant Phenotyping (CVPPP) leaf seg-

mentation dataset for our training images as well as the associated challenge for

some of our evaluations. The CVPPP leaf segmentation challenge shown in figure

7.2 is an online competition for segmenting individual leaves from arabidopsis and

tobacco plants [72] from top down images of plants in different growth stages.

The challenge originally took place in 2017, extending the earlier leaf counting

challenge which used the same image set. The dataset contains a set of train-

ing images divided into 4 different subsets, with the smallest subset containing

27 images, and the largest containing 624 images, with subsets A1, A2 and A4

containing arabidopsis plants, and subset A3 containing high resolution photos

of tobacco plants. Each image is paired with a set of annotations including a

binary mask showing pixels containing leaves in white and the background in

black, and an RGB mask, showing each individual leaf in a unique RGB color on

a black background. We also use images from the Komatsuna datasets as part
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of our evaluation which contain addition images and labels of Arabidopsis and

Komatsuna (spinach) plants respectively.

7.5 Related Work

At present there are only a handful of research papers [4] using diffusion models

as a source of synthetic training data, most likely reflecting how recent the tech-

nology is. While there is much interest in using diffusion for generating training

data for other neural networks, at present most research interest is currently fo-

cused on improving the quality of generated images, or improving the ways that

image generation can be controlled.

Constrained diffusion models are of course very common, with the most common

constraints being in the form of text prompts. One possible approach to generat-

ing synthetic data would be to using the annotation as a constraint from which

to generate an image.

Some examples of research into generating training images images this way with

text prompts include work by Andreas Stöckl [102] looking at generating images

in Stable Diffusion for classes from the ILSVRC [97]. While this example shows

encouraging results for the future us of diffusion generated models, non-geometric

prompts such as text prompts are only appropriate for classification tasks and

are not easily adjusted to more complex tasks.

Extending this annotation first approach to detection, can be seen in Xie et

al [121] and is reminiscent of GAN based approaches such as Pix2Pix [50]. Xie’s

diffusion model is designed to embedd specific pieces of semantic information

from their prompt to bounding boxes within the overall image allowing them to

create images that will align with object detection masks that are used as inputs.

Composer by Huang et al is a more general constrained model allowing control

over image synthesis using 8 different components including shape, semantics,

style and palette [49].

These approaches unfortunately face the limitation that for every new image we
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hope to generate for a training set, we must first somehow construct a new an-

notation to use as input. While for problems such as object detection this could

be done automatically, by simply generating random bounding boxes, it becomes

more complex for problems such as segmentation where pixel perfect masks must

be provided and domain knowledge may be needed to maintain realism. To this

end we focus our research on the approach of simultaneous image and label gen-

eration.

Some specific research into generating images with semantic masks in the past

year include Wu et al [120] who use the cross attention maps between prompts and

the generated image to extract semantic masks from generated images. Finally

Park et al [80] uses a similar approach to our method shown below, focusing

on generating semantic segmentation masks of faces concurrently with image

generation.

This chapter focuses on leaf segmentation of rosette plants, a challenge attempted

by a number of other methods for generating synthetic data have already been

highlighted in previous chapters [118] [117] [110]. Since the CVPPP dataset is

rather small (especially the A3 Tobacco subset), this challenge is especially sus-

ceptible to the overfitting problem that we have discussed previously, however

there is a broad range of different approaches to this challenge that we will now

consider.

The CVPPP leaf counting and segmentation challenge has been thoroughly ex-

plored by the three conventional approaches to synthetic data generation, com-

positing, 3D modelling, and GANs. Both [99] and [60] use compositing methods

(sometimes also called collage), using real leaves from the provided train dataset,

and recombining them to produce new images. This approach is effective in gen-

erating new images with accurate segmentation labels, but it is limited, and both

papers attempt a number of additional augmentations to create greater training

variety from their images. [118], [117] and, [108] all use 3D rendering approaches,

for both the counting and segmentation problem. Since these works do not makes
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use of any kind of domain adaptation ( [117] instead opting for a domain gener-

alization strategy), these synthetic datasets have very limited generalization onto

real test images. Finally [110] presents Arigan, a conditional GAN for generat-

ing synthetic images for leaf counting. While this model shows some success, the

images overall are quite low quality and less than a hundred generated images

were selected as good enough to use for training purposes.

7.6 Semantic Segmentation

In this section we discuss our experiments, focusing on semantic segmentation of

arabidopsis leaves. For many purposes, semantic segmentation can still be a use-

ful plant phenotyping tool, especially for estimating biomass, as number of plant

pixels can be an extremely good proxy for the total amount of plant matter.

Though our eventual intention is to extend our approach to instance segmen-

tation we begin with semantic segmentation, as it is a much simpler challenge

conceptually, and is easier to generate labels for under most usual circumstances.

7.6.1 Image Generation

We investigate the ability of diffusion models to generate image-mask pairs by

extending the model to generate four channel images and concatenating our train-

ing images with their matching segmentation masks to create a four layer image

RGB-M (mask). We then extend our Diffusion model (an implementation of [46])

to generate new samples based on a 4 channel input that the model would then

be trained on. Functionally this extra channel is no different to the three colour

channels of the image, and could similarly be done with a depth or transparency

channel as would be more common for 4 channel images. Examples of images

used for training and our generated output can be seen in figure 7.3.

We train our diffusion model on the CVPPP A4 dataset for 100 epochs by which

time the model is able to produce highly realistic output images. We then generate

a dataset of 10,000 synthetic images, extracting the 4th channel as a separate

binary mask which we then use as our label, examples of our image and labels

can be seen in figure 7.3.
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Real Image/Label Diffusion Image/Label

Figure 7.3: Examples samples from our diffusion model showing comparison
against real image label pair for the CVPPA dataset.

7.6.2 Experiments

In order to test the effectiveness of this approach, we conduct a set of experiments

evaluating our network’s ability to generate useful training images with accurate

masks. To test our data we train a DeeplabV3 model [19] four times, on the real

A4 dataset, on our Synthetic dataset, on another Synthetic dataset from Ward et

al [116] (referred to here as CSIRO) and finally on a mix of the two trained first

on the diffusion generated data and then fine tuned on the real set. We then test

these datasets on all four CVPPP subsets as well as the Komatsuna datasets.

7.6.3 Results

Our results shown in table 7.1 show mixed results. Our real dataset performs well

in datasets A2, A3, and A4 but very poorly in A1. In contrast to this we see that
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CVPPA CSIRO Diffusion (Ours)

Figure 7.4: Comparison of real, CSIRO and diffusion images used in our experi-
ments.

both synthetic datasets (CSIRO and our diffusion dataset) perform well in A1,

with CSIRO outperforming the other datasets. Directly comparing diffusion data

to CSIRO’s 3D rendered synthetic data, we see that both approaches perform

similarly, diffusion outperforming CSIRO by small margins on datasets A2, A3

and A4. Overall we see that diffusion images perform roughy as well as comparable

synthetic data for this task, and demonstrate a capability to generalize to different

levels onto datasets other than that which it was generated from.

In the next section we hope to extend this work by looking at whether we can

extend this task to that of instance segmentation, presenting the first published

work to apply diffusion models in this way. We choose to extend our work to

instance segmentation due to generating instance masks being more novel, and the
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Training Dataset Test Set (IoU)
A1 A2 A3 A4*

(1) Real Only 0.188 0.457 0.512 0.708

(2) CSIRO 0.718 0.364 0.421 0.637
(3) Diffusion Only 0.605 0.381 0.459 0.691
(4) Real & Diffusion 0.195 0.390 0.397 0.708

Table 7.1: Results of experiments on semantic segmentation using diffusion gen-
erated images with highest scores in bold. For these experiments we generate a
synthetic dataset using images from CVPPP A4 as our training data, and then
test it on other subsets of the dataset.

greater value implicit in using synthetic data for instance segmentation training,

caused by the increased costs of annotating instance masks and greater challenge

relative to semantic segmentation.

7.7 Instance Segmentation

In this section we continue our development of generating image-label pairs on

the more challenging task of instance segmentation. Instance segmentation has

many advantages over semantic segmentation, allowing for analysis of individual

components (be that fruit, leaves, etc), and a direct means of counting, which

can be useful as part of a phenotyping pipeline. Instance segmentation is both

a more challenging computer vision problem to solve, but also creates a greater

challenge for generating masks, as each instance needs a separate label and can-

not be encoded in a binary mask in the same way as semantic masks. Here we

describe a collection of different approaches to label generation as well as some

experiments we conduct to compare our synthetic data to real data and other

synthetic datasets.

7.7.1 Training Dataset

To train our model, we aim to build a new dataset of synthetic images along

with instance segmentation masks using a diffusion model. We test a number of

different approaches to image generation looking at their impact on the quality

of images created and the effectiveness of each approach to generating masks.
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Figure 7.5: Examples images from the CVPPA leaf segmentation dataset along
with their RGB masks.

As shown in section 7.6, the task of semantic segmentation is fairly straight for-

ward as there is only one class for the leaves and a second class for the background.

This allows us to use a binary mask for the segmentation mask and combine this

with the original image to create a four channel image for the diffusion model

to learn. For instance segmentation we encounter a more challenging problem, as

we need to encode instance segmentation information in such a way as to be able

to generate samples using our diffusion model. Many deep learning approaches

to instance segmentation today store information in JSON or similar formats

which could not be easily output using our diffusion method without significant

modifications. In particular, the unknown number of total labels make it more

challenging as the mask must be a much more flexible format.

To solve this problem we use the images from the CVPPP training set along

with their instance segmentation labels, which are encoded as RGB masks, with

different colour values assigned to each leaf instance, and black assigned to the

background, we show examples of this in figure 7.5. To generate our images, we

continue our approach from our preliminary set of semantic segmentation experi-

ments, using a modified version of the original denoising diffusion model presented
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in [46]. Our approach to image generation is again to generate image-mask pairs

simultaneously, treating the combined image and mask as a large multi-channel

image that can be separated to isolate both the image and the mask to use for

network training afterwards.

We attempt a number of different methods to generate instance segmentation

masks using this framework which we describe below, outlining their advantages

and disadvantages.

Generating RGB Masks

Our initial approach is a direct extension of our approach in 7.6, and involves

generating RGB segmentation masks for image, with the background coloured

in black and each leaf instance given its own RGB color. During training of the

diffusion network the 3 channel image was concatenated with the 3 channel mask

and the network was configured for 6 channel diffusion.

After training we generate 10,000 samples from our trained model, we show ex-

amples of the output in figure 7.6. As can be observed by inspection the images

generated are very good, although some failure cases do occur. In the case of the

generated masks we observe that even the masks corresponding to higher qual-

ity images exhibit problems. Masks can be seen to have edges blurred with the

background and with each other. In many cases each individual leaf was made

up of a number of regions of marginally different colors. Because of the blurring

and noise present in the generated masks, we found it was not possible to extract

the appropriate mask without applying significant image post-processing, a task

that was made more difficult by the high level of variation across all our samples.

Furthermore, we observed than the quality of the image samples produced by the

model was lower, and trained slower than the 4 channel model used for seman-

tic segmentation. We hypothesise that the diffusion model performs increasingly

poorly as you increase the number of channels.
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(a) RGB Masks

(b) Greyscale Masks

(c) Outline Masks

Figure 7.6: Examples samples from our diffusion models for the methods of gen-
erating segmentation masks. Method (a) shows our attempt to directly generate
RGB masks in the format originally shown in our training data. Method (b)
shows labels generated as greyscales, with values ordered from top to bottom by
intensity. Method (c) shows our final approach, where labels are generated as
outlines and then flood filled.
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Generating Greyscale Masks

Having identified these limitations to using diffusion to generate masks in this

way we made a number of additional attempts to generate instance segmentation

masks using a diffusion model. For our next attempt we reduced the mask to a

single grayscale channel with a different value for each leaf, counting up sequen-

tially from 0 with leaves labelled from the top to the bottom of the image. We

hypothesised that by reducing the number of channels, and labelling the leaves in

a more meaningful way rather than the random approach taken with the original

RGB masks that this would help the network to generate higher quality images

as well as keeping mask accuracy good enough to be usable as training data.

As before, we generate 10,000 samples (also shown in figure 7.6) and find that

while image quality does improve, we still observe too low quality mask generation

to make good training data. Here we observe that rather than generating unique

greyscale values for each leaf, a gradient is generated across the entire mask with-

out clear borders between instances. We hypothesise that diffusion models as they

are currently designed do not lend themselves to this kind of mask generation,

due to losses being low for pixels of different instances sharing the same intensity.

While we consider potential solutions to this problem in section 7.11.2, we instead

focus the rest of this work on our chosen mask representation presented below.

Generating Outline Masks

Finally, we attempt a more complex multi-step process combining the diffusion

process with a post processing step. Having observed that we get much better

performance from our semantic model generating binary masks we attempt con-

vert our RGB masks to a binary representation using an outline based approach

to mask generation. We hypothesise that by creating a binary representation of

the instance segmentation mask that we can then restore to the full RGB format,

that we can create high quality image-mask pairs using diffusion without com-

promising on mask correspondence.
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With this in mind we create a rgb to binary conversion for masks from our train-

ing set using a Sobel edge detector on the provided RGB instance segmentation

masks followed by a binary filter to create a black and white outline. We continue

this approach by using a dilation of the detected edges, to discourage breaks in

the outlines generated by our denoising diffusion model. We generate a training

set of images using this approach and for each one extract the outlined based

mask. To restore the instance segmentation masks from the binary, we reverse

this transformation using first a flood fill, detecting regions from the outlines and

filling them with unique RGB colors. We then remove extremely large and small

regions, based on the intuition that very large regions will be filled in segments

of the background, and extremely small regions will be gaps between leaf edges

and remove any other small artefacts using noise removal techniques restoring an

accurate representation of the RBG mask for each image. Examples of this are

again shown in figure 7.6.

To complete this process we attempt to remove samples from the generated set

that are easily detectable fail cases, for example those with an extremely large or

small number of leaves. Any images that are removed can then simply be replaced

by generating additional samples until a complete dataset of 20,000 images has

been created. Overall roughly half of all images generated are identified as fail

cases and removed, from which 20,000 images were then selected at random to

make our final train set.

7.8 Experiments

We conduct a series of experiments testing our diffusion datasets for both segmen-

tation accuracy and generalisation across different datasets. For all experiments

each diffusion model is trained for 200 epochs on an NVIDIA A6000 GPU, at

which point we empirically determined that no further increase in image quality.

Since the goal of our work is to produce a synthetic dataset that is a suitable

replacement for collecting large real dataset, the goal of these experiments is to
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(a) Synthetic Image (b) Synthetic Outline (c) Synthetic RGB Mask

Figure 7.7: Examples from our diffusion model showing high quality samples
produced after identified failure cases have been filtered out of the dataset.
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verify first whether our synthetic dataset performs comparably with real dataset,

and secondly the compare their performance with synthetic datasets generated

with more conventional means.

7.8.1 Bounding Box Detection Experiment

In this experiment, we test our results against the unused CVPPA splits for the

task of bounding box detection. For our test we compare the results of training

Faster-RCNN with three datasets:

• (1) The 100 real images from the CVPPA A4 dataset used to create our

synthetic data.

• (2) The CSIRO Synthetic Data created with 3D modelling of 10,000 3D

rendered plants [116].

• (3) Our diffusion generated dataset of 20,000 images.

The test sets used are each of other splits from the CVPPA dataset, as well as

the unused images from the A4 split that were not used during training.

7.8.2 Instance Segmentation Experiment

In this test, we test our results against the unused CVPPA splits for the task of

instance segmentation. We use the same datasets as for bounding box detection

using their instance segmentation masks instead of bounding boxes. This time

the model used is Mask-RCNN, set up with default hyper parameters.

7.9 Qualitative Results

We present a series of images generated from each of our diffusion networks in

figure 7.7, along with their corresponding annotation outline. In this section we

provide some general analysis of the quality of the images produced.

7.9.1 Image Quality

From our samples presented we can see that the diffusion models are able to

produce a wide variety of plausible new images most of which are largely in-
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distinguishable from real images to the human eye. Importantly we see that the

network is able to produce images of both small and larger plants, reflecting some

of the diversity in the training data.

7.9.2 Annotation Quality

Looking at our annotation outlines presented in figure 7.7, we observe that a

majority of the annotations are high quality and have a good correspondence

with the leaves in the matching image. Conversely we can see that a number of

annotations do suffer from not forming a complete boundary for each leaf such as

those seen in column (c) in figure 7.8. Due to our flood filling method of creating

RGB segmentation masks these instances will lead to poor quality labels for the

image. The most common problem caused by this is missing labels, where one or

more of the leaves present in the image will not have a mask in the annotation.

7.9.3 Failure Case Detection

Here we show a selection of images generated by our diffusion models that rep-

resent failure cases. Because these failure cases happen at the image generation

phase and are intermittent, we have the opportunity to automatically remove

offending images from the dataset prior to training our segmentation models. By

generating a much larger number of images than we intend to use for our down-

stream task, we can ensure that our final dataset remains our desired size while

maximizing for training image quality.

In column (a) of figure 7.8, we can see that there are examples of images gener-

ated where the model generates an empty pot without any plant in it at all. We

estimate that depending on the experiment, this occurs on average in approxi-

mately 10 percent of all images generated. Fortunately of all the failure cases we

present, this case is extremely easy to remove from the pool of images as in each

of these cases the accompanying mask that is generated is also blank, making

them the easiest to filter out automatically.
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(a) Missing Plant (b) Distorted Leaves (c) Outline Gaps

Figure 7.8: Examples samples from our diffusion model showing different failure
cases we observe.

We also observe cases where the model generates images where the leaves of the

arabidopsis plant shown have become merged together such as those in column

(b) of figure 7.8. This is most common when training on the A4 subset of the

CVPPP due to the large number of leaves in the older plants, due to the acclusion

between different leaves.

We also show failure cases where our outline annotation strategy fails to generate

complete outlines for the leaves in the image in column (c) of figure 7.8. We find

that failure cases such as these vary greatly depending on the image set we train

our model on, specifically performing worst on CVPPP subset A4, which contains

most of the largest plant and subsequently the images most dense with leaves and

featuring a lot of occlusion. In some cases, these images can be identified after
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performing our flood filling phase. By detecting the largest regions in each image

and removing images for which that region is larger than a predefined threshold,

we are able to identify images where the flood fill has spilled outside the bounds

of an individual leaf and remove them from the dataset.

7.10 Quantitative Results

We show results for our experiments in tables 7.2 and 7.3. Here we see that our

diffusion generated dataset does not perform as well at detection and instance

segmentation as we saw with semantic segmentation in section 7.6. In the case

of bounding box detection, we see that neither synthetic dataset (experiments 2

and 3) are able to perform as well as the real dataset, with the CSIRO dataset

outperforming our dataset, especially for A2.

Our instance segmentation experiments similarly show that synthetic data is

unable to match the real data in terms of performance. We do see that unlike for

the previous experiment, in the case of instance segmentation, diffusion generated

images perform much better than the 3D model plants in the CSIRO dataset. Our

best results for instance segmentation are seen in datasets A2 and A4 where we

score 30 percent IoU for our diffusion dataset, suggesting that while our method

shows some promise further work is needed to achieve top level performance.

Training Dataset Test Set (IoU)
A1 A2 A3 A4*

(1) Real Only 0.48 0.46 0.41 0.64
(2) CSIRO 0.13 0.40 0.23 0.20
(3) Diffusion Only 0.06 0.12 0.21 0.22

Table 7.2: Results of experiments on bounding box detection using diffusion gen-
erated images. For these experiments we generate a synthetic dataset using images
from CVPPP A4 as our training data, and then test it on other subsets of the
dataset.

7.11 Discussion

Overall the results presented demonstrate significant progress in the development

of a synthetic data pipeline using diffusion generative models, but a failure for
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Training Dataset Test Set (IoU)
A1 A2 A3 A4*

(1) Real Only 0.56 0.48 0.40 0.63
(2) CSIRO 0.01 0.07 0.07 0.07
(3) Diffusion Only 0.13 0.33 0.21 0.33

Table 7.3: Results of experiments on instance segmentation using diffusion gener-
ated images. For these experiments we generate a synthetic dataset using images
from CVPPP A4 as our training data, and then test it on other subsets of the
dataset.

these results to translate into good quantitative performance in its current form.

In this section we highlight a selection of important takeaways from our results

presented above.

Diffusion Generalizes to real data without domain adaptation. From

our high results (most significantly in our semantic segmentation experiments in

section 7.6), we can conclude that the domain gap between diffusion generated

and real images is extremely small, and does not require domain adaptation or

harmonization to make effective training data.

Diffusion generated data is as effective at generating training data

training data as 3D modelling. Our diffusion data generally performs com-

paratively or better than the 3D modelled plants in the CSIRO dataset we test

against. While 3D modelling has many advantages over our diffusion approach,

such as a greater level of control, this is promising as it suggests that the qual-

ity of the images generated by diffusion are competitive with those from the 3D

models, and indicates they may be a suitable replacement for industry use with

further development. We hypothesis that the artificial appearance of the CSIRO

plants is the main reason for their poor performance, preventing the CNN from

generalizing onto real images.

Creation and alignment of labels is the main challenge for creating

synthetic data with diffusion. We hypothesise that the significant drop in

performance between our semantic and instance segmentation performance is

mostly caused by image artifacts and missing leaves in our labels. If annotations

with perfect correspondence could be created it is likely they would achieve higher
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scores in our detection and instance segmentation experiments.

Diffusion represents a low human cost for dataset production. While

generation of our diffusion dataset still requires the collection and annotation of

a small number of real images, we believe this still represents a lower human cost

than creation of a domain specific 3D scene, and this gap is likely to widen with

more complex plants. Similarly, despite having the same cost as the real images,

our diffusion based approach still allows for the generation of very large datasets

as theoretically infinite samples can be generated from the trained model.

7.11.1 Comparison to other data generation methods

As a major focus of this chapter has been on the current effectiveness of diffusion

models for generating synthetic data, it is important to compare this approach

to data generation against other methods of data generation, including those we

show in this thesis.

Synthetic data generally has a high upfront cost, associated with the creation of

tools of neural network models needed for its generation, and these costs then

remain low during data generation. This infers advantages when the upfront cost

is low and the quantity of data required is high. Diffusion models differ from

3D modelling approaches as they still require some initial real data in order to

train the initial model. By keeping our initial input data limited to 100 images,

we hope to show that this initial cost to create this dataset would be low for

other researchers seeking to reuse this pipeline, and hopefully thus make diffusion

preferable to 3D modelling as a method of 3D data generation.

7.11.2 Future Work

The work presented in this chapter illustrates the current challenges and limi-

tations of current diffusion models to generate synthetic data. Here we consider

how we perceive this research could be continued in the next few years to enable

diffusion models to be effective for data generation.
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Improved Label Correspondence As highlighted by our work, one of the main

challenges we face is achieving a high level of correspondence between the image

and label. We believe that diffusion models that have been explicitly designed for

simultaneous generation of images and labels will likely be needed to achieve the

highest performance when generating annotated synthetic data. We also believe

that an additional loss function designed to ensure coherence between image and

label would help to ensure accuracy in label generation. Due to the fast moving

nature of this field of research, and the increasing commercial interest in synthetic

data, we believe that these kinds of advancements that fully leverage diffusion

will emerge in the next 5 years, in which time we will also see better advances in

photo realism and constraining image generation through a variety of modalities.

Mask to image generation As discussed in section 7.5, much of the current

research into diffusion networks looks at different forms of constraints that allows

the user to control the output of the image. We believe that a mask first ap-

proach to synthetic data generation has some advantages over our approach, and

is another exciting area for further research. We hypothesise that a pipeline using

two models, one generating a mask from noise, and then a second diffusion model

generating the image from the mask could be an effective approach to ensuring

high quality labels and images.

7.12 Conclusion

In this chapter we have investigated diffusion as a potential next approach to

state of the art synthetic data generation. We have focused on a range of segmen-

tation problems, and explored the challenges related to generating high quality

image-label pairs for these problems.

Our results presented showed some success in generating synthetic data for both

semantic and instance segmentation, illustrating that it promises to be a serious

contender to 3D modelling as an approach to data generation in future. Both

approaches to Synthetic Data have a high upfront cost, in developing the initial
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model, followed by an ability to produce large quantities of data cheaply after-

wards. One advantage of Diffusion models is their potential to be extremely flexi-

ble, as we see with general purpose models such as DALL-E and Stable-Diffusion,

which might make them more useful in the long term a means of generating new

datasets.

In addition to our promising results, we also highlight the main challenges that

need to be overcome in future work to fully enable diffusion to be best utilized

to generate training data for use in industry and other research.

Overall we have presented a significant contribution to investigating a major

application of diffusion technology. The approach using outlines we present in this

work has been made available on github, at https://github.com/zanehartley/

Cold_Diffusion_for_Synthetic_Data to enable other researchers to extend or

reuse the method for other tasks. We believe that with future research discussed

in section 7.11.2 and in chapter 5.8 which expands upon the ideas in this chapter,

that diffusion will become the most efficient and high performing method of

producing synthetic data.
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Chapter 8

Conclusions and Future Work

8.1 Contributions

In this thesis we have contributed a set of important approaches to using syn-

thetic data for deep learning, as well as a number of useful datasets and pipelines

that can be replicated with the provided code. We also present experimental re-

sults, looking at areas of current and emerging interest, such as transformers and

diffusion model.

Chapter 4 contributes our first synthetic dataset and its GAN-enhanced ver-

sion, containing over 5000 synthetic images, and over 20,000 GAN-enhanced im-

ages respectively. This is a useful contribution as it significantly supplements the

GWHD, one of the most popular plant phenotyping dataset used in research,

with our results also highlighting the high impact of small numbers of real im-

ages when included in otherwise synthetic training datasets. We also make two

novel contributions to synthetic training pipelines. Our novel clustering approach

to domain adaptation is a versatile contribution, and is extremely practical for

a wide variety of problems that use domain adaptation such as those that aim

to reduce the domain gap for synthetic data. Our heatmap guidance addition to

CycleGAN is another useful contribution; while there are a number of attempts

to improve CycleGANs consistency for domain adaptation, our method demon-
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strates good performance while having limited computational cost.

In chapter 5 we introduce one of our major contributions, our Volumetrically

Consistent CycleGAN , which enables the accurate prediction of a 3D volume of

a fruit from a single 2D image. This network is, to our knowledge, the first unsu-

pervised 3D reconstruction network. This is a very important contribution, as it

massively reduces the cost of performing 3D reconstruction using deep learning.

The ability to perform more complex tasks using synthetic data is also a crucial

achievement as at the moment it is mostly limited to the more common problems

such as detection or segmentation in other literature.

Chapter 6 makes a number of experimental contributions. While transformers

have become popular in recent years, we presented some of the first results of

using synthetic data comparing their impact on transformer vs state of the art

CNNs for plant phenotyping. We also contribute our experimental results on use

of limited real data for domain adaptation and its effect on performance, espe-

cially with data-hungry transformers. Overall our results showed no significant

advantage to using synthetic data in Transformers compared to CNNs, instead

showing that state of the art CNNs outperform a current state of the art Trans-

former model at the task of object detection when trained with our data.

Finally in chapter 7 we contribute our technique for generating synthetic data

with annotations using diffusion models, the first we are aware of in academic

literature. In addition to presenting our approach to data generation, we also

show a range of experimental results looking at both the realism and accuracy

of the images and annotations generated as well as their effectiveness at training

state of the art deep learning models. The work generating instance segmentation

results here is a very important contribution as diffusion models are likely to be

one of the best ways to generate synthetic data in future, and work looking at

the simultaneous generation of annotations for Computer Vision tasks will be

extremely important. Overall our results are promising, showing extremely good
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qualitative performance of our diffusion network at producing both images and

corresponding masks. Our quantitative results for semantic segmentation are also

quite good, however for the more challenging task of instance segmentation we

are unable to achieve performance comparable to real images, suggesting further

work is needed to improve image and label quality.

Collectively these contributions fulfill the objectives stated in chapter 1, and rep-

resent an opportunity for savings in cost and time for biologists working in plant

sciences and agriculture through the production of our data creation pipelines.

Through our publications and outreach we have made numerous and varied con-

tributions to the current discourse surrounding the use of synthetic data for digital

plant phenotyping including sharing this work with both computer and plant sci-

entists. Finally through our continued work with generative diffusion models we

have made great strides in harnessing the newest state of the art AI technologies

for this important field of research.

8.2 Future Work

As shown in this thesis, Synthetic Data is likely to play a large role in machine

learning in the future, and as generative AI continues to be a significant area of

research we can expect the generation of synthetic training data to be of a great

deal in interest in future years. In this section we will discuss some potential

future areas of research that show a great deal of promise in the coming decade.

8.2.1 Benchmarking and Analysis of Synthetic Data

Most research into using synthetic data current seeks to establish the effective-

ness of their specific dataset or methodology. At present there is a lack of re-

search into analysing and benchmarking synthetic data, and little understanding

of best-practice regarding its creation and use. While many papers compare a new

synthetic dataset to a real data equivalent, there are no papers to our knowledge

that compare a number of different synthetic datasets to assess what makes them

better or worse as training data.

133



8.2.2 Further applications in Agriculture

For each of the individual works in this thesis we have attempted to design our

methodology to be adaptable to additional problems and not rely on domain

specific elements of the tasks we solve. As a result a core piece of additional

work would be to apply the synthetic data pipelines from chapters 4, 5 and 7

to create Synthetic Data of some of the thousands of other plant species used in

research today. Future research into improving these pipelines also needs to be

done with consideration for the wide range of different downstream applications,

and so must continue this domain invariant approach. By widening the range of

different datasets available, and making tools for creation easier to use, we hope

to widen adoption by different parts of the phenotyping community will be made

easier, allowing the these technologies to have the greatest possible impact.

8.2.3 Generalised Unsupervised 3D Reconstruction

In Chapter 5, we demonstrate a method of unsupervised domain adaptation for

3D reconstruction to great effect. The results presented are, however, constrained

by a number of factors we describe in more depth in the chapter, most impor-

tantly that of computational resource, and because of these factors, the scope

of this work was limited, most prominently in the reduction in spacial resolu-

tion of our targeted objects. We believe that the approach presented is extremely

promising, and given even recent advancements in more powerful GPU hardware,

the opportunity of using our architecture for 3D reconstruction of more complex

objects is much more realistic. Future work could focus on using synthetic train-

ing data for a wider range of target objects, as well as refining our architecture

to improve performance and training efficiency.

8.2.4 Diffusion for General Annotations

As shown in Chapter 7, diffusion models are an effective way of producing training

data for computer vision problems. However, as we previously described there is

currently no research demonstrating the specific use of diffusion models designed
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with the production of image label pairs in mind. While most extant research,

including our own, currently focuses on making use of current diffusion models

using creative approaches, in the future we expect models to be designed with

duel image-label outputs to be designed specifically for this task. As prompt-based

image generators like Dalle-2 have shown incredible promise in recent years, it is

also possible that generating specifically designed synthetic data using prompts

could replace our current approach of expanding small train sets by generating

new samples as shown in our own work.

8.2.5 Further Unsupervised or Semi-supervised approaches

As shown in our work in chapter 5, approaches to synthetic data that allow us to

bypass collecting real data are the gold standard in creating deep learning train-

ing data, as it most completely removes the associated cost. One of the biggest

limitations of our other works, and indeed most of the synthetic data related

works shown in the literature is that it still relies on real data for either fine-

tuning, or to act as a target domain. Future work should focus on removing this

limitation as much as possible, especially in regards to diffusion models that have

already shown themselves to be effective at style transfer with regards to photo

realism. It is possible in the future that approaches like ours in chapter 4, will

not need a real dataset and can simply rely on the diffusion models understand

of photorealism to achieve high quality domain adaptation.

8.2.6 Improving acceptance of synthetic data among end users

In addition to making further technical advances in the technology used for the

production of synthetic data, further work must also be completed towards im-

proving the rate of acceptance of these technologies especially among biologists.

Development of general purpose tools for dataset creation in particular will bet-

ter enable domain experts to utilise synthetic data without technical expertise.

In addition to development of better tools, a greater emphasis on knowledge and

data sharing and interdisciplinary collaboration is also needed to better enable

the technology showcased in this thesis to make the greatest possible impact.
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8.3 Summary

In this work we have presented and evaluated a number of different ways of pro-

ducing and applying synthetic data to plant phenotyping problems with Com-

puter vision. In doing so we have demonstrated the effectiveness of this approach

to training machine learning models and shown that this area of research is a

promising area for future research. In our work we have shown that 3D rendering

synthetic data is an effective ways of producing data that works well on a wide

range of problems, and that diffusion shows potential with further research to

eventually surpass it. We showed that for problems that need expensive train-

ing data, such as 3D reconstruction and object detection with a large number

of objects, that we can produce our own synthetic data much more cheaply and

quickly, and in a way that allows our pipelines to be extremely reusable for future

projects. We have then shown that synthetic data can then be effectively supple-

mented, either by using a small target set of real data, or (using Unsupervised

Domain Adaptation) using only real images, without the need to create expensive

annotations.

Continuing this research in the coming years we hope to see significant progress in

the development of synthetic data, as well as wider use of the technology through-

out industry. Specifically within the agricultural world the widespread adoption

of synthetic data to improve plant analysis and efficiency will aid food security

and sustainability throughout the climate crisis. More broadly the capability of

deep learning will continue to improve, and with it the need for higher qualities

and quantities of data.
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