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Abstract 

Faces present a vast array of information, from invariable 

features such as identity, to variable features such as expression, 

speech and pose. Humans have an incredible capability of recognising 

faces (familiar faces at least) and interpreting facial actions, even 

across changes in view. While there has been an explosion of research 

into developing artificial neural networks for many aspects of face 

processing, some of which seem to predict neural responses quite well, 

the current work focuses on face processing through simpler linear 

projection spaces. These linear projection spaces are formal 

instantiations of ‘face space’, built using principal component analysis 

(PCA). The concept of ‘face space’ (Valentine, 1991) has been a highly 

influential account of how faces might be represented in the brain. In 

particular, recent research supports the presence of a face space in the 

macaque brain in the form of a linear projection space, referred to as 

‘axis coding’ in which individual faces can be coded as linear sum of 

orthogonal features. Here, these linear projection spaces are used for 

two streams of investigation.  

Firstly, we assessed the neurovascular response to hyper-

caricatured faces in an fMRI study. Based on the assumption that faces 

further from average should project more strongly onto components in 

the linear space, we hypothesised that they should elicit a stronger 

response. Contrary to our expectations, we found little evidence for this 

in the fusiform face area (FFA) and face-selective cortex more 

generally, although the response pattern did become more consistent 
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for caricatured faces in the FFA. We then explored the response to 

these caricatured faces in cortex typically associated with object 

processing. Interestingly, both the average response magnitude and 

response pattern consistency increased to these stimuli as caricaturing 

increased. At the current time it is unclear if this response allows some 

functional benefit for processing caricatured faces, or whether it simply 

reflects similarities in the low- and mid-level properties to certain 

objects. If the response is functional, then hyper-caricaturing could pave 

a route to improving face processing in individuals with prosopagnosia if 

technologies can be developed to automatically caricature faces in real-

time. 

The second line of work addressed these linear projection 

spaces in the context of achieving view-invariance, specifically in the 

domain of facial motion and expression. How humans create view-

invariant representations is still of interest, despite much research, 

however little work has focused on creating view-invariant 

representations outside of identity recognition. Likewise, there has been 

much research into face space and view-invariance separately, yet 

there is little evidence for how different views may be represented within 

a face space framework, and how motion might also be incorporated.  

Automatic face analysis systems mostly deal with pose by either 

aligning to a canonical frontal view or by using separate view-specific 

models. There is inconclusive evidence that the brain possesses an 

internal 3D model for ‘frontalising’ faces, therefore here we investigate 
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how changes in view might be processed in a unified multi-view face 

space based on using a few prototypical 2D views. We investigate the 

functionality and biological plausibility of five identity-specific faces 

spaces, created using PCA, that allow for different views to be 

reconstructed from single-view video inputs of actors speaking. The 

most promising of these models first builds a separate orthogonal space 

for each viewpoint. The relationships between the components in 

neighbouring views are learned, and then reconstructions across views 

are made using a cascade of projection, transformation, and 

reconstruction. These reconstructions are then collated and used to 

build a multi-view space, which can reconstruct motion well across all 

learned views. 

This provides initial insight into how a biologically plausible, view-

invariant system for facial motion processing might be represented in 

the brain. Moreover, it also has the capacity to improve view-

transformations in automatic lip-reading software. 
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Chapter 1 Introduction 

1.1 Outline 

The face is a highly informative piece of biological hardware, 

able to convey identity, expression, speech, age, gender and more. For 

familiar faces at least, humans have a remarkable capability for 

processing these factors under a huge range of visual variation. The 

complexity of this task is perhaps evidenced by face learning in humans 

taking >30 years to optimise (Germine et al., 2011).  

It is estimated that on average, individuals have some degree of 

familiarity with circa 5000 faces (Jenkins et al., 2018), which means 

learning both the between-identity and within-identity variation for all of 

these faces. 

Two of the major sources of within-identity variation come from 

changes in viewpoint and changes in dynamic expression such as 

during speech. Despite much research into face processing, there is still 

much to learn in the context of view-invariance and facial motion, 

particularly with respect to the concept of ‘face space’ (Valentine, 1991; 

Valentine et al., 2016). 

Face space has been highly influential in both investigating 

neural representations in humans and non-human primates as well as 

in automatic face recognition systems. While it has seen utility in 

various aspects of face processing, relatively little research has 

addressed how face space can represent either different viewpoints or 
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facial motion. Even less work has addressed view-invariant 

representations of facial motion.  

Here we aim to address this gap in understanding. In this 

introduction, we will first outline what face space is and provide some 

examples of its uses. Then we will discuss what happens when face 

space is taken to the extreme through caricaturing. Subsequently, the 

discussion will turn to the problem of achieving view-invariance, drawing 

on the importance of facial motion, as well as evidence and 

mechanisms in macaques, humans and computational models. 

1.2 Face space representations 

1.2.1 Overview of face space representations 

The theoretical account of face space (Valentine, 1991; 

Valentine et al., 2016) posits that faces sit within a multidimensional 

space. The origin represents the average of the faces we have 

encountered, and individual faces are represented either as exemplars 

at particular locations in the space, or as directions in the space. This 

latter explanation has been termed norm- or prototype-based encoding, 

with faces being processed relative to the origin.  

The dimensions of this theoretical space can be combinations of 

shape and texture that are more abstract than the qualitative labels one 

might apply to discrete changes in single features. The closer to the 

origin a given face is on each dimension, the more average the features 

are. An identity’s distinctiveness can be described by the direction in the 
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space or the distance from average. If the dimensions are ordered 

hierarchically based on the prevalence of each dimension within our 

experience then more distinctive faces should be coded by the least 

prevalent dimensions (Hancock et al., 1996), and thus direction can 

detail distinctiveness. As faces are more densely clustered around the 

centre, those further from average should also appear more distinctive 

(Valentine et al., 2016). Although, paradoxically, very average faces are 

also atypical as few faces lie perfectly at the centre of face space on all 

possible dimensions (Burton & Vokey, 1998). 

Norm-based coding is often described in terms of two opponent 

pools of neurons, with one pool firing maximally for one end of the 

dimension, the other maximally for the opposite end. The norm is coded 

by the overlap between the two opponent pools. This simple ‘ratio 

model’ was first outlined by Sutherland (1961), in the case of the motion 

aftereffect, and is described in detail by Susilo and colleagues (Susilo, 

McKone, & Edwards, 2010). In particular, Susilo and colleagues 

addressed whether the opponent codes have linear or non-linear 

response functions. To summarise, they suggested both are present. 

In various, but not all, aspects of human face processing there is 

much behavioural evidence to support opponent, norm-based 

processing over exemplar coding using adaptation procedures. In 

adaptation procedures, the presence of an aftereffect infers some 

change to neural responses to the adapted stimulus, but only neurons 

sensitive to properties in that stimulus should be adapted. Adaptation in 
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opponent coding should elicit an aftereffect in an opponent fashion. 

Opponent aftereffects have been observed for many aspects of faces 

such as race, gender and emotion (Skinner & Benton, 2012; Webster et 

al., 2004) and identity (Jiang et al., 2006, 2007; Leopold et al., 2001; 

Rhodes & Jeffery, 2006), however, as noted by Zhao et al (2011) 

opponent aftereffects can occur with multi-channel, exemplar coding.  

Furthermore, aftereffects should selectively occur on the axis 

passing through the origin, corresponding to two opponent pools, and 

not affect stimuli orthogonal to that axis. This has been supported by 

evidence of larger identity aftereffects for stimuli which sit on the 

opposite sides of the origin (Leopold et al., 2001; Rhodes & Jeffery, 

2006). The same has also been seen in the context of an expression 

space (R. Cook et al., 2011), where the dimensions of the space reflect 

changes in expression rather than in identity (e.g., Calder et al., 2001; 

R. Cook et al., 2011).  

Smaller adaptation effects were also seen to stimuli not on the 

axis that passes through the origin, (e.g., Rhodes & Jeffery, 2006), 

which has been taken as evidence that adaptation effects the entirety of 

face space (Valentine et al., 2016) and could support exemplar coding. 

Yet, exemplar coding would predict equal aftereffects in any direction, 

orthogonal to the axis passing through the origin or not. The smaller 

effects may therefore be due to lower-level adaptation, or it could be 

that the stimuli did not sit exactly on an orthogonal plane, resulting in a 

slight adaptation effect.  
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Opponent coding would also predict that the aftereffect when 

viewing a neutral stimulus would increase with increasing adaptor 

strength. This has been observed, for instance with adaptation to facial 

expression (Skinner & Benton, 2012), and configural changes such as 

eye and mouth height (Robbins et al., 2007; Susilo, McKone, & 

Edwards, 2010). In contrast, a decline in the strength of the aftereffect 

would be predicted for exemplar-based coding once the adaptor 

strength is sufficiently distant from the norm, although this has been 

observed in a study on gender aftereffects (C. Zhao et al., 2011). 

McKone et al (2014) found interesting identity aftereffects. Identity 

adaptation aftereffects increased with increasing adaptor strength while 

in the range of natural variability, dropped slightly outside of this range, 

but then remained constant with no further decline. While the 

explanation for the small decrease in aftereffect is unclear, the lack of a 

further decrease is better explained by norm-based coding.  

At the time when the study came out, an exemplar-based model, 

‘Face-Space-R’ (Lewis, 2004) seemed to account best for various 

aspects of human face processing including distinctiveness, 

caricaturing and familiarity. However, the exemplar-based code does 

not explain many of the more recent findings. For instance, the 

decrease in discriminability between faces that are caricatured along 

the axis passing through the origin compared to changes in an 

orthogonal axis (Ross et al., 2010), highlighting the importance of 

direction relative to the norm over distance. Likewise, it does not explain 

the sustained or even increased adaptation aftereffect to stimuli distant 
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from average, even past the realm of natural variability (McKone et al., 

2014; Skinner & Benton, 2012; Susilo, McKone, & Edwards, 2010) nor 

the sustained fMRI response to caricatured faces (Carlin & 

Kriegeskorte, 2017; Loffler et al., 2005). The ramp-tuning of neural firing 

rates to stimuli of increasing distance from average in macaques 

(Chang & Tsao, 2017; Koyano et al., 2021; Leopold et al., 2006) is also 

not well explained by exemplar coding. These latter findings will be 

discussed in greater detail shortly. 

As well as revealing evidence of norm-based or exemplar 

coding, adaptation studies also reveal both dissociations and overlap in 

the neural coding of different facial properties, suggesting either 

separate or shared representations. For example, aftereffects transfer 

across changes in identity but are weaker than same identity 

aftereffects (Fox & Barton, 2007; Skinner & Benton, 2012). This 

indicates both identity-independent and identity-dependent 

representations of expression, or a substantial cross-communication 

between identity and expression representations. Similarly, identity 

aftereffects can transfer across changes in view, but the amount of 

transfer varies with familiarity with the test face (Jiang et al., 2007). 

1.2.2 PCA as a linear face space 

Principal components analysis (PCA), a technique used 

commonly for dimensionality reduction, is often used for making 

computational models of face space. A more comprehensive 

description is provided in Chapter 2, but in summary it is a method for 
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determining the most prevalent and correlated sources of variation in a 

dataset and describing them with orthogonal components. These 

components are hierarchically ordered based on the amount of variance 

they explain. As such, components which explain only a small amount 

of variance can be discarded. When applied to datasets of faces, the 

spaces returned are an example of a face space, with the average 

representation at the centre, and dimensions extending from that which 

encode combinations of features and/or textures. 

While less suitable when learning millions of faces (Taigman et 

al., 2014), PCA might be suitable for representing 5000 familiar faces 

(Jenkins et al., 2018). PCA-based models have been used for facial 

expression recognition (Calder et al., 2001), identity processing 

(Andrews et al., 2023; Burton et al., 1999; Turk & Pentland, 1991), and 

have recently revealed that only a few components are crucial for 

identity recognition (Andrews et al., 2023). They have been used in 

models capturing within-identity variation (Aishwarya & Marcus, 2010; 

Beridze, 2021; Burton et al., 2011, 2016; Cowe, 2003; Shan et al., 

2003) and can help explain aspects of human perception such as 

distinctiveness ratings and distinctions between hit rates and false 

alarms (Hancock et al., 1996), perceptual similarity ratings (Somai & 

Hancock, 2022) and the facial inversion effect (McCleery et al., 2008). 

Distinctive familiar faces are also recognised faster in PCA-based 

computational models than less distinctive faces, which are recognised 

slower by humans (Burton et al., 1999). PCA-based models also 

provide computational mechanisms behind expression processing in 
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the amygdala and posterior superior temporal sulcus (Ahs et al., 2014; 

Said et al., 2010). As will be described later, there is also good 

evidence that neurons in macaques respond in comparable ways to 

PCA components, with neural responses corresponding to linear 

projections onto orthogonal axes of change (Chang et al., 2021; Chang 

& Tsao, 2017). Evidence for PCA-like representations have also been 

supported in lower-level vision (Hancock et al., 1992), with PCA of 

natural images extracting components similar in appearance to the bar 

and edge detectors used in early visual cortex (e.g. Burr et al., 1989).  

PCA-based face spaces have also seen utility in forensic 

applications. For instance, EvoFIT (Frowd et al., 2004; Hancock, 2000) 

is a generative method for reconstructing portraits of suspects through 

evolving the weights on shape and texture components. The witness is 

presented with several images generated from a Gaussian distribution 

within the space, and rate how similar each is to the perpetrator. The 

system then alters the weights based on the similarity ratings, 

presenting a new array of images until the witness is satisfied. EvoFIT 

has been used extensively within the UK police force and overseas 

leading to many successful convictions (Frowd et al., 2019). 

An advantage of how PCA holistically extracts correlated 

changes is its impressive capacity for reconstructing the whole face 

from only part of the image (Berisha et al., 2010; Turk & Pentland, 

1991). From their computational model, Berisha et al (2010) found the 

eye and mouth regions the most informative for reconstructing the 
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whole face and the remarkable reconstruction accuracies indicate these 

regions contain sufficient cues to the global configuration. The 

importance of these regions is consistent with behavioural evidence 

(Ince et al., 2016; Royer et al., 2016, 2018) and these diagnostic 

features have also been identified by Abudarham and colleagues 

(Abudarham et al., 2019; Abudarham & Yovel, 2016, 2020) for both 

unfamiliar face matching and familiar face recognition by humans and a 

Deep Neural Network (DNN). Moreover, the eyes have been found to 

be important in the N170 electrophysiological response during face 

detection (Ince et al., 2016), as measured using 

electroencephalography (EEG). 

The recovery of missing areas of an image using the auto-

associative memory of PCA (Valentin et al., 1994) has also recently 

been used to recover videos of the face from vocal tract MRI scans and 

vice versa (Scholes et al., 2020) and dynamic actions in one viewpoint 

from another (Beridze, 2021). These models take related but 

independent sources, such as the vocal tract scan and the video, and 

concatenate them prior to performing PCA. The analysis learns the 

correlated changes across both sources allowing one source to be 

recovered from the other. These models will be discussed more in 

Chapter 4, as the work in this chapter tries to build on the model 

created by Beridze (2021) to make it more biologically plausible. 

The recovery of missing information using PCA might also 

explain why one of the core face-selective areas, the fusiform face area 
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(FFA, Kanwisher et al., 1997), shows both holistic and parts-based 

processing (Harris & Aguirre, 2010). The dimensions in PCA spaces, or 

face space more generally, can incorporate both global and more local 

changes. If the FFA holds a face space representation (as suggested 

by Carlin & Kriegeskorte, 2017; Loffler et al., 2005), then these 

dimensions could explain why the FFA showed adaptation effects 

consistent with both holistic processing and part-based processing 

when the top and bottom halves of the face were aligned and 

misaligned respectively. Forcing parts-based processing using 

misaligned face halves could prompt the recovery of the full face as 

seen in PCA models (Berisha et al., 2010; Turk & Pentland, 1991).  

Rather than humans having a single face space representation, 

some research suggests different spaces are required for different 

groups. For instance, for different races (Armann et al., 2011; Jaquet et 

al., 2008) and different genders (Baudouin & Gallay, 2006; Griffin et al., 

2011; Little et al., 2012). Griffin and colleagues (2011) made separate 

PCA spaces for male and female faces, and found that projecting an 

exemplar into the other gender’s PCA space allowed them to 

reconstruct an opposite-gender face showing ‘family resemblance’. 

However, they then found adaptation aftereffects transferred across 

genders, suggesting a shared neural population. It is possible that 

different ‘categories’ (e.g. genders) are encoded as clusters within this 

shared representation, each with a local, category-specific norm akin to 

suggestions of how identity is pooled (Abudarham et al., 2019), allowing 

both gender-specific and cross-gender aftereffects. However, Little et al 
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(2012) found no transfer of aftereffects across genders and Baudouin 

and Gallay (2006) showed mixed-gender morphs were rated as more 

distinctive than single-gender morphs, despite being closer to the global 

norm, suggesting they are processed relative to gender-specific norms 

rather than a global norm. Nevertheless, the use of local norms within a 

global space was somewhat the inspiration for the second PCA model 

created in Chapter 4 trying to achieve view invariance. 

PCA-based spaces of facial motion are also gaining some 

traction (Beridze, 2021; Cowe, 2003; Nagle et al., 2013; Scholes et al., 

2020; D. M. Watson & Johnston, 2022). Watson and Johnston (2022) 

for instance recently provided useful PCA-based methods for further 

investigating the spatiotemporal dynamics of motion using second-order 

PCAs. The first PCA analysis is performed across a series of frames for 

a given actor, with the frames containing both texture and shape 

deviations from a reference template. This forms an expression space 

(e.g., Calder et al., 2001; R. Cook et al., 2011) with the average facial 

expression at the origin. The frames for each repeat of a given 

sentence are then projected back into the space providing trajectories 

of loadings on the components. The loading trajectories across multiple 

repeats are then entered into a second PCA. This method allows one to 

manipulate and (anti)caricature the motion relative to the average 

trajectory for that sentence. Extracting regularities in facial motion (Furl 

et al., 2020; D. M. Watson & Johnston, 2022) within a face space 

representation might explain why perceptual grouping occurs for facial 
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features that move synchronously (R. Cook et al., 2015; Johnston et al., 

2021). 

Overall, PCA has proved a powerful tool in creating 

computerised linear face space representations, however, one area that 

has seen little attention is that of view-invariance. Our work in Chapter 4 

therefore aims to expand the PCA-based methods used by Beridze 

(2021) for learning and mapping facial motion across changes in 

viewpoint.  

1.2.3 The role of experience on face space representations 

The structure of human face space is thought to be optimised 

through experience (Short et al., 2011; Valentine et al., 2016; Webster 

& MacLeod, 2011), changing from infancy to adulthood (Hills et al., 

2010; Short et al., 2011), but even in adulthood it remains flexible. For 

instance, Webster et al (2004) showed time spent in the US influenced 

the boundary in a morphed continuum where Japanese participants 

could distinguish Caucasian and Japanese faces.  

Research suggests both similarities and differences in the face 

space representations in young children compared to those in adults. 

The distortions required to elicit certain adaptation aftereffects are 

larger in children (aged 5 and 8 years old) than in adults suggesting that 

their face space representation is less refined but is qualitatively similar 

(Short et al., 2011). Yet, unlike adults, Caucasian 5-year-olds had not 

fully developed a separate norm for Chinese faces (Short et al., 2011). 
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Furthermore, compared to faces with vertically aligned eyes, the 

aftereffect for faces with unnaturally misaligned eyes is just as strong in 

young children (ages 6-12 years) yet is much weaker in adults and 

adolescents (Hills et al., 2010).  

The restructuring of human face space is thought to operate 

through adaptation. It has been suggested that the effects of adaptation 

reflect the updating of the average or norm through perceptual 

experience. This has been suggested in the contexts of identity 

(Rhodes & Jeffery, 2006), ethnicity, gender and expression (Webster et 

al., 2004), with adaptation leading to a shift in what appears average. 

The effect of adaptation can last for hours or days, even for familiar 

faces (Carbon & Ditye, 2012). This re-centring has also been supported 

by face-selective neurons in the macaque showing increased activity to 

novel faces with exposure, alongside concurrent changes in responses 

to familiar faces (Rolls et al., 1989). 

A face space representation optimised through experience has 

the potential to explain why face-selective areas such as the occipital 

face area (OFA, Halgren et al., 1999; Puce et al., 1996) and the 

fusiform face area (FFA, Kanwisher et al., 1997) that are sensitive to 

lower-level visual information (Ramon et al., 2010; Weibert & Andrews, 

2016; Yue et al., 2011), respond more to familiar than unfamiliar faces 

(Eger et al., 2005; Ewbank & Andrews, 2008) and why feedforward 

processing is faster for personally familiar faces than famous faces 

(Karimi-Rouzbahani et al., 2021). Familiarity does not appear to 
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influence identity adaptation in the FFA (Weibert et al., 2016) 

suggesting the benefit of familiarity is not due to top-down influences of 

social attention but instead an optimised representation for familiar 

faces, even if sensitive to low-level image properties. That said, there is 

evidence that identity aftereffects only show when the adapting face is 

recognised (Laurence & Hole, 2012), indicating some reliance on top-

down input and perhaps that facial identity aftereffects do not stem from 

the FFA. 

The effect of familiarity on the transfer of aftereffects across 

views (Jiang et al., 2007) also suggests that face space representations 

for achieving view-invariance evolve over experience with individuals, 

not just faces as a general object class. 

1.2.4 Neuroimaging evidence of face space representations 

There is plenty of evidence to suggest a norm-based face space 

from adaptation in behavioural studies, and that PCA-style analyses 

might provide a route to making such representations, however, 

neuroimaging evidence for a face space representation and its cortical 

locus in humans in less clear.  

The FFA, a patch of cortex sitting on the fusiform gyrus that 

preferentially responds to faces (Kanwisher et al., 1997), is thought to 

be a cortical locus of face space (Carlin & Kriegeskorte, 2017; Loffler et 

al., 2005), although not all evidence supports this (eg., Baseler et al., 

2016; Davies-Thompson et al., 2013; Weibert et al., 2016).  
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Loffler et al (2005) firstly showed that the BOLD response (blood 

oxygenation level dependency) in the FFA increased as the distance 

increased between a synthetic face stimulus and the average stimulus. 

This followed an S-shaped tuning curve plateauing at a certain distance 

from average, but not decreasing, thus supporting norm-based coding 

over exemplar coding. In experiment 2 this increase was only significant 

when the origin (the average face) lay on the span of the plane being 

manipulated. I.e., modulating dimension 1 with all other dimensions set 

to 0, rather than varying dimension 1 with dimension 2 at a non-zero 

value (in this case, 9%). In this offset condition they showed adaptation 

to the same degree as presenting the same image repeatedly, showing 

the FFA adapted to the presence of component 2, further highlighting 

the importance of the origin. Experiment 3 showed a stronger release 

from adaptation to tangential changes in direction within the space 

compared to radial changes in the distance of the stimulus from the 

average. This suggests that different neurons in the FFA code different 

directions relative to the average rather than different distances, 

consistent with an opponent code. 

A comparison of different computational models also showed 

that responses in the FFA to faces of varying distance from average 

were best explained by a norm-based account with S-shaped tuning 

curves rather than exemplar coding (Carlin & Kriegeskorte, 2017). That 

said, performance was similar in a model comprised of Gabor filters of 

varying sizes, orientations, positions, and spatial frequencies which did 

not explicitly code the direction or distance in face space. 
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In contrast to the aforementioned studies, others have shown no 

adaptation across multiple different frontal images of the same 

individuals within either the OFA or FFA compared to images of 

different people (Davies-Thompson et al., 2013; Weibert et al., 2016) 

suggesting against a face space representation. Theoretically, even 

with some variability in the components loaded onto caused by within-

identity variation, there should be common components that all same-

identity images loaded onto, causing neurons sensitive to that 

dimension to adapt, however this was not seen.  

Baseler and colleagues (2016) also assessed changes in BOLD 

responses with identity adaptation, finding a stronger release from 

adaptation in OFA and FFA for changes influencing the shape and size 

of the face and its features non-linearly compared to linearly. This 

finding was interpreted as the OFA and FFA being involved in spatial 

alignment/normalisation prior to subsequent recognition.  

Part of the problem with interpreting neural representations in 

humans comes from the limitations in methods. In humans, methods 

are generally limited to magneto/electroencephalography (M/EEG) and 

functional magnetic resonance imaging (fMRI). MEG and EEG have 

excellent temporal resolution but are more limited in spatial resolution. 

In contrast, fMRI has a better spatial resolution but is still generally 

limited to cubic voxels a few mm wide in each direction. It also 

measures changes in blood oxygenation as a (slow) proxy for neural 

activity. This limitation means that it is impossible to deduce exactly 
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what each neuron is coding. Whilst invasive, single unit recordings 

(SUR) allow the responses of single neurons to be measured, and as 

such have revealed many interesting properties about face 

representations in macaques. 

Recently, convincing evidence for face space representations 

has been found using SUR in the macaque face patch system (Chang 

et al., 2021; Chang & Tsao, 2017; Koyano et al., 2021). Chang and 

Tsao (2017) found neurons responding to combinations of shape and 

texture information, with linearly increasing firing rates to stimuli 

increasing in the neurons preferred dimension or ‘axis’ of change. 

Crucially for an opponent account of face space, neural responses were 

unperturbed by changes in orthogonal axes despite significant 

variations in appearance. This shows that rather than processing 

unique identities, the face processing system can describe faces as a 

linear projection onto orthogonal dimensions. Identity is then reflected in 

the relative weightings on the dimensions, consistent with prior 

suggestions from human studies (Ross et al., 2010). 

Previous work by Leopold and colleagues (2006) also showed 

similar findings of ramp based tuning, in addition to evidence of V-

shaped coding. In V-shaped coding neural responses were minimal at 

the average face and increased either side. This evidence was not 

consistent with the work by Chang and Tsao (2017) but more recent 

work has shed light on this discrepancy. Koyano and colleagues (2021) 

found that early neural responses (~100ms) showed ramp tuning as 
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found by Chang and Tsao (2017), but later responses (~200ms) 

showed a down-regulation of more average faces. They interpreted this 

finding as reflecting lateral inhibition to the average, whereby the 

intermediate response of many neurons to the average stimulus 

(compared to a few to a non-average stimulus) causes dynamic 

suppression of the response to average stimuli. This down-regulation 

appeared as a ‘V’ superimposed on the ramp response function and 

could explain the V-shaped coding seen by Leopold and colleagues 

(2006). 

This dynamic suppression of the average did not result from 

short-term adaptation and was present from the first trials in the block 

(Koyano et al., 2021). This shows that the average is naturally 

dynamically suppressed to maintain the representation of the norm-

based face space. 

The work by Chang and Tsao (2017) also suggests that the more 

posterior regions ML (middle lateral) and MF (middle fundus) are more 

dependent on shape features and the more anterior AL (anterior lateral) 

and AM (anterior medial) on non-shape features. Combined with 

previous reports of view-independence in AL and AM (Meyers et al., 

2015) this suggests that surface information might either be more 

important than shape in forming a view-invariant representation, or, that 

by AM, shape is sufficiently aligned such that a single view-invariant 

representation of texture is left. In computation models, including 

textural information improves estimations of 3D shape from 2D images 
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(Feng et al., 2018), but at a cost of increased time. In macaques, it may 

be the case that surface cues also aid 3D representations for view-

invariance, but the significantly increased computational costs cast 

doubt on whether surface cues are used in this way. 

Although face space is often thought to be specific to faces, it 

appears that faces are more broadly represented within an object 

space, situated in the animate, ‘stubby’ quadrant of the identified 2D 

(animate/inanimate and stubby/spiky) object space (Bao et al., 2020), 

although many aspects of this space remain unknown at this current 

time (Bao et al., 2020). 

1.2.5 Caricaturing in face space 

Despite no prior natural experience with caricatures, such as 

those drawn by artists at the beach, we are remarkably good at 

recognising people, or at least seeing a resemblance, from caricatures. 

This demonstrates the perceptual system can, in this instance at least, 

extrapolate out from the range of natural variability. And, as already 

discussed, neural responses (Carlin & Kriegeskorte, 2017; Loffler et al., 

2005) and adaptation aftereffects (McKone et al., 2014; Susilo, 

McKone, & Edwards, 2010) are sustained and even increased to 

caricatured faces (although see C. Zhao et al., 2011).  

Caricaturing is essentially a continuum between being closer to 

(anti-caricaturing) or further away from (caricaturing) an average face 

relative to the veridical face. These variations can be made artificially, 
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such as in the instance of artistic interpretations, whereby the difference 

between the face and the average face is artificially exaggerated to a 

large degree. In face space or PCA space, caricaturing can simply be 

performed by manipulating the loadings on the components. 

Caricaturing can also be performed on the spatiotemporal dynamics of 

facial motion (Furl et al., 2020; D. M. Watson & Johnston, 2022) rather 

than just structural changes underlying identity or expression. 

Both exemplar and norm-based coding predict a behavioural 

advantage for caricatures, either from increased distances from other 

exemplars, or from increased distance from the average. This is 

supported through evidence that caricaturing line drawings and 

photographs enhances recognition (Kaufmann & Schweinberger, 2012; 

Mauro & Kubovy, 1992; Rhodes et al., 1987; Schulz et al., 2012), whilst 

anti-caricaturing (making the stimuli more average) leads to longer 

reaction times (Rhodes et al., 1987; Schulz et al., 2012). Caricaturing 

during learning also improves recognition of veridical faces (Rodríguez 

et al., 2009) suggesting it helps create representations for new faces. 

However, when matching unfamiliar faces, while modest caricaturing 

can be beneficial, caricaturing too much can be detrimental (McIntyre et 

al., 2013). 

Caricaturing can also alter the stored representation of familiar 

faces. Adapting to extreme configural distortions shifted the perception 

of ‘veridical’ towards the distorted image even after only one 

presentation (Carbon & Leder, 2005). For clarity, Carbon and Leder 
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explicitly state that their stimuli were not caricatured, as in their 

description caricaturing exaggerates distinctive features, however this 

thesis considers caricaturing to be any extrapolation from the norm, 

including configural changes. 

 The effect of caricaturing and distance from average has also 

been seen in neuroimaging studies, with increased neural responses to 

faces that are further from the average as measured using SUR in 

macaques (Leopold et al., 2006) and fMRI in human FFA (Loffler et al., 

2005), even to profile silhouettes (Davidenko et al., 2012). Likewise, 

caricaturing exemplars form the norm also increases the EEG 

amplitude of the face-selective N170 and N250 event-related potentials 

(ERPs, Kaufmann & Schweinberger, 2012; Schulz et al., 2012). These 

findings are more consistent with norm-based coding rather than 

exemplar coding, which would predict a more uniform, if not a reduced 

response to faces that are further from the average. That said, other 

neural responses such as the P200, decreased with eccentricity (Schulz 

et al., 2012), indicating some neural processes encode averageness 

and typicality. This is perhaps unlikely to reflect dynamic suppression of 

responses to the average face (Koyano et al., 2021), which too would 

elicit smaller responses to non-average faces. Research suggests that 

an increased P200 amplitude indicates increased stimulus-directed 

attention (Bourisly & Shuaib, 2018; Picton & Hillyard, 1974) and that 

repetition suppression causes a decrease in the P200 (Freunberger et 

al., 2007), both of which are incongruent with active suppression of 

more average faces causing higher P200 ERPs. 
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Because caricatures are generally easily recognisable, and 

because of evidence of increasing neural response with increasing 

caricature level to relatively natural stimuli, we wanted to assess how 

the BOLD response would vary if face space was taken to the extreme. 

An experiment addressing this is detailed in Chapter 3, assessing the 

BOLD response to faces caricatured beyond the realm of natural 

variability. 

1.2.6 Identity-general and identity-specific spaces 

The initial idea of face space considered an ‘identity-general’ 

space, in which all identities are entered into a single space, but as has 

been discussed above, within-identity image variation is substantial. 

One source of within-identity variation is facial expressions, and explicit 

‘expression spaces’ have been made to describe changes in expression 

(Calder et al., 2001; R. Cook et al., 2011). Given the large degree of 

variability across ages, genders, ethnicities and expressions, one of the 

highly debated topics of face space is how compartmentalised it is. In 

the context of identity and within-person variability, how far are identity 

and expression separated? And are all instances of a given person 

represented in an identity-general space or are there separate, identity-

specific spaces for familiar individuals and if so, how?  

Two such theoretical possibilities for dealing with within-identity 

variation in an identity-general space are discussed by Abudarham and 

colleagues (2019). The first is the Perceptual Single-Prototype Model, in 

which only the learned average representation of an identity sits within 
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the space as a single point. This is consistent with the Average Face 

Model proposed by Jenkins and Burton (2011). The average 

representation becomes very stable once ~20 images have been 

learned, even if a few images of a different person are included. PCA 

models constructed from the averages across exemplar images also 

perform better in nearest neighbour recognition than those made using 

the images themselves (Burton et al., 2005). 

Observers, including 3-month old infants (de Haan et al., 2001), 

naturally extract averages (Davis et al., 2021; Kramer et al., 2015; 

Neumann et al., 2018; Robson et al., 2018) even for dynamic faces (B. 

Chen & Zhou, 2018), thus the Perceptual Single-Prototype Model may 

be plausible. It is also consistent with some behavioural evidence that 

averages are recognised more easily than individual exemplar images 

(Bruce et al., 2002; Burton et al., 2005). Despite this evidence, 

averages are unlikely to be the only representation stored of a given 

individual. The average face does not reflect the best likeness of an 

individual (Balas et al., 2023; Ritchie et al., 2018) and other research 

shows that averages are recognised slower than exemplar images 

(Ritchie et al., 2018). Averaging also tells one nothing about how that 

identity’s appearance varies as a function of pose, expression or 

lighting (Burton et al., 2016). Finally, ensemble encoding occurs for 

inverted faces and other race faces (Davis et al., 2021) suggesting it is 

a general property of visual perception rather than being face specific. 

Therefore, even if an average is extracted and represented in an 
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identity-general space, it is unlikely to be the only representation of a 

given individual. 

The other model discussed by Abudarham and colleagues 

(2019) is the Conceptual Multiple Sub-Prototype Model in which images 

of a given identity are clustered together in face space, tied together 

using conceptual information. This is consistent with evidence that 

learning conceptual information improves face learning in humans (L. 

Schwartz & Yovel, 2016; Tanaka & Pierce, 2009; Yovel et al., 2012). It 

is also more commensurable with arguments highlighting the 

importance of variability (Burton, 2013; Burton et al., 2011) as well as 

evidence showing that variability is important for face learning (Murphy 

et al., 2015; Ritchie & Burton, 2017), more so than the average of an 

ensemble (Mondloch et al., 2023). 

Glyn Cowe (2003) showed how different identities and the within-

identity variation caused by expression could be incorporated within a 

single identity-general space based on opponent, norm-based coding. 

After aligning numerous identities to a standard shape, Cowe created a 

PCA-based representation using images of several identities taken over 

multiple expressions. The first dimensions coded appearance and 

shape changes important for identity. The next subset of dimensions 

coded rigid rotations of the head. Subsequent dimensions primarily 

coded non-rigid deformations caused by speech and were more 

individualistic and idiosyncratic. 
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More recently, the representations surrounding familiar faces 

have been described as ‘islands of expertise’ that sit within identity-

general space (Hancock, 2021), but in a manner based on the Face-

Space-R model of exemplar coding (Lewis, 2004) rather than norm-

based coding. This theoretical model highlights the encoding of within-

person variation of familiar individuals and is similar to the Conceptual 

Multiple Sub-Prototype Model (Abudarham et al., 2019) with familiar 

faces being clustered within an identity-general space. The ‘islands of 

expertise’ hypothesis (Hancock, 2021) also highlights why we 

experience seeing resemblance between novel and familiar people. 

Due to shared visual properties, the projections of the novel individual 

land within the vicinity of the known person’s ‘island’. The semantic 

knowledge of this resemblance then forms part of the code for the new 

person, with participants better at recognising novel individuals the 

more they resembled someone they already knew (Hancock, 2021). In 

contrast, novel faces who share no resemblance to known individuals 

are lost at sea, other than the approximate longitudes and latitudes 

given by the common dimensions. 

In contrast to a single, identity-general space, identity-specific 

spaces are essentially the islands of expertise (Hancock, 2021), but 

where each island is coded by its own set of dimensions, not based on 

a set of common components. Each space captures the within-person 

variability during speech, changes in pose and other variable viewing 

conditions of a single familiar individual. They are essentially an 

expansion of person-specific expression spaces (Calder et al., 2001; R. 
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Cook et al., 2011). An early implementation of identity-specific spaces 

was by Shan and colleagues (2003) who made separate eigenface 

models (Turk & Pentland, 1991) for each individual, referring to each 

space as a face-specific subspace. Identity was determined by which 

space an image could be best reconstructed from. The same approach 

was also taken by Aishwarya and Marcus (2010) in their ‘multiple 

eigenface subspace’ model.  

Both models (Aishwarya & Marcus, 2010; Shan et al., 2003) 

capture and explain idiosyncratic variation although both are limited in 

their methods. Other than aligning the images based on the eyes and 

mouth, shape was not normalised resulting in blurry, superimposed 

eigenfaces and reconstructions. In contrast, Cowe (2003), Nagle and 

colleagues (2013) and Burton and colleagues (2011, 2016) explicitly 

extracted and normalised shape information allowing the within-identity 

variation of rigid and non-rigid motion to be more clearly captured and 

expressed. In the models of shape parameters, Burton and colleagues 

(2011, 2016) consistently found that the first few dimensions reflect rigid 

head motion, such as changes in view and size, while subsequent 

dimensions encoded non-rigid motion such as expressions. Shape 

parameters are explained more in Chapter 2. 

The separate spaces created by Burton and colleagues (2011, 

2016) allow for the representation of idiosyncratic information that would 

be lost in the less prevalent components of an identity-general space. 

As proof of the extent of idiosyncratic variability, they projected novel 
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images into spaces corresponding to the same or different identities. 

Reconstructions were worse when projected into different identity’s 

spaces rather than their own, regardless of whether the texture or 

shape space was used. This highlighted how different information is 

captured across identities. 

Whether identity-specific spaces are nested within an identity-

general space has yet to be determined. It may even be possible for 

there to be parallel, non-nested spaces. Previous computer vision 

applications (Aishwarya & Marcus, 2010; Shan et al., 2003) have 

described the spaces as distinct, and recognition the process of 

projecting into all spaces and establishing which provides the best 

reconstructions. Their methods were based solely on computational 

goals whereas Burton and colleagues’ (2016) were driven by 

understanding human behaviour, yet they too argued for separate, 

identity-specific spaces.  

There are limitations of a system solely containing separate 

spaces. To recognise a face, it would either need to be projected into all 

spaces simultaneously, which would be quicker but have much higher 

short-term cognitive demands, or sequentially which would decrease 

short-term cognitive demands but dramatically increase the time taken. 

Moreover, having solely separate spaces also does not allow the 

transfer of aftereffects across identities (Fox & Barton, 2007; Skinner & 

Benton, 2012). 
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Theoretically, nesting identity-specific spaces within an identity-

general space, i.e., as regions of the identity-general space with 

common axes (e.g., Hancock, 2021), would allow faster recognition as 

the common axes would direct the search to only the relevant ‘islands’. 

Rather than nesting the identity-specific spaces within the identity-

general space, it may be possible to have two separate systems. Once 

candidate matches in the identity-general space have been established 

the input can be directed to the appropriate identity-specific spaces. 

The identity-general space may only need to represent a single 

template of each individual, as in the Perceptual Single Prototype Model 

(Abudarham et al., 2019), providing a cursory method for narrowing the 

search of which identity-specific spaces (if there are similar looking 

individuals) to project into. As these identity-specific representations 

evolve with experience, the identity’s template in the identity-general 

space can be updated.  

1.2.7 Face space representations of facial motion 

As highlighted above, facial motion is one of the major causes of 

within-person variability, through both rigid transformations from turning 

one’s head to non-rigid deformations around the eyes and mouth during 

speech. Systems for identity and gender recognition for instance need 

to be invariant to changes induced by motion. At the same time, speech 

and expression processing need to be sensitive to facial motion. How 

facial motion is represented in face space is therefore important for 

understanding how these two systems can function, and whether they 

require completely discrete systems or whether they overlap. 
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While face space applications are more limited in the context of 

facial motion, this area is gaining more interest. An early example is of 

course expression spaces (Calder et al., 2001) which explain the 

deviations of facial expressions from an average, neutral face. Cook 

and colleagues (2011) subsequently showed that expressions in these 

spaces are processed in a two-pool opponent manner.  

In their PCA-based computational models, Cowe (2003) and 

Nagle and colleagues (2013) showed how expressions could be 

mapped across different identities using separate identity-specific 

spaces, again considering the expressions relative to an average, 

neutral position. Similarly, Beridze (2021) has begun to show how facial 

motion can be mapped across different viewpoints within a face space 

framework. These studies will be explained in further detail in Chapter 2 

and Chapter 4. 

In these expression spaces, dynamic sequences can also be 

considered as a trajectory through the space, with a timeseries of 

loadings onto the components. Not only can manipulations be made 

relative to the average, static stimulus, but they can also be made 

relative to the average dynamic trajectory for a given action. In a 

functional imaging study, Furl and colleagues (2020) varied and 

caricatured the displacement, speed and timing of dynamic expressions 

around their average trajectory. Caricatured movements were rated as 

more convincing, were more easily recognised, and increased the 

BOLD responses in the core face-selective regions compared to anti-
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caricatured movements (Furl et al., 2020). As caricaturing was 

performed relative to the average dynamic sequence for the expression, 

the caricatures could express more or less motion relative to the 

action’s norm. The increased response to caricatures therefore did not 

solely reflect the amount of motion or the magnitude of the 

displacement. This therefore poses questions about whether dynamic 

faces are processed within a single expression space, and if so whether 

they use a form of exemplar coding, or whether separate spaces for 

each known utterance or action are required. This further complicates 

the question raised by Dobs and colleagues (2018) as to how many 

dimensions are needed to fully encode the space of facial motion. 

Although non-rigid facial motion, such as speech and expression, 

is separable from the rigid rotations that govern the observed viewpoint, 

and can be distinct from identity, it is important to consider how these 

factors interact and how they may be jointly coded within face space. As 

will be described in due course, motion provides cues to identity and 

aids view-invariant representations.  

1.2.8 Viewpoint 

Despite much research into view-invariance and face space 

separately, it is still not clear how view-invariance is achieved in such a 

representation, regardless of whether face space is nested or non-

nested, or whether identity-general or identity-specific representations 

are present.  
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The identity adaptation supporting a norm-based face space 

partially transfers across views and the amount of transfer increases 

with familiarity (Jiang et al., 2007), indicating that different views share a 

neural response, and that familiarity helps establish this shared neural 

population. Nevertheless, it is not clear whether this supports a face 

space model containing a 3D representation or a few face space 

representations specialised for a few 2D prototypical views that are 

neuronally connected.  

As the topic of achieving view-invariance is considerable, the 

next section will cover it in detail. It will describe the problem of view-

invariance, current evidence for it in humans, macaques and computer 

vision systems, how facial motion effects view-invariance and what 

evidence there is currently for either 2D or 3D representations. 

1.3 Achieving view-invariance 

1.3.1 The problem of view-invariance  

While there is not yet a sufficient explanation of how view-

invariance is achieved in face space, either in the human brain or 

computational models, a substantial amount of research has been 

conducted on view-invariance. Here we aim to review findings from 

humans, macaques and computational models to highlight the 

challenges of view-invariance and gain insight into how it might be 

achieved and where in the brain.  
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Despite very impressive performance at familiar face processing, 

humans are much worse at processing unfamiliar faces (Jenkins et al., 

2011; Ritchie et al., 2020), especially when variability between images 

is high (Sandford & Ritchie, 2021). This includes tasks that do not 

require explicit identity processing, such as orientation or gender 

discrimination tasks (Balas et al., 2007). The problem of unfamiliar face 

processing stems from the difficulties of dissociating within-identity 

variability (e.g., changes in pose, expression, lighting and occlusion) 

from between-identity variation (Jenkins et al., 2011). Pose can be 

especially detrimental due to the changes in the shape, illumination, 

and the occlusion of features such as of the far eye following rotation to 

a profile view.  

When dealing with an unfamiliar face, representations are far 

from view-invariant (Bruce, 1982; Etchells et al., 2017; H. Hill et al., 

1997; Longmore et al., 2008). When unfamiliar faces are learned from 

one view, the subsequent recognition shows a decreasing trend in 

performance as a function of angular distance (Etchells et al., 2017; 

Longmore et al., 2008), as does matching to a frontal view (Caharel et 

al., 2015). Learning multiple viewpoints improves recognition, but there 

is inconsistent evidence whether this aids recognition of novel 

intermediate views (Etchells et al., 2017; Longmore et al., 2008, 2015; 

L. Schwartz & Yovel, 2016), although this discrepancy possibly stems 

from the inclusion or exclusion of external features (Longmore et al., 

2015).  
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Changes in viewpoint are encompassed by three axes of 

rotations; yaw, pitch, and roll, which can be caused for example by, 

shaking, nodding, and tilting the head respectively. The different 

rotations impact unfamiliar face processing to different degrees, with 

rotations in roll being less detrimental than changes in yaw, which in 

turn are less detrimental than changes in pitch (Favelle et al., 2007, 

2011; Favelle & Palmisano, 2018; Van der Linde & Watson, 2010). 

Different rotations also tap into different processing mechanisms, with 

there being no interaction between changes in roll and changes in yaw 

(Van der Linde & Watson, 2010) including when fully inverted (180o roll, 

Favelle et al., 2017). The benefit for yaw rotations over pitch possibly 

stems from to ability to use symmetry for some changes in yaw (Favelle 

et al., 2017). 

With increasing familiarity, view-invariance is developed. 

Recognition over views is much better for familiar faces than unfamiliar 

faces (Bruce, 1982; H. Hill et al., 1997) and figural aftereffects transfer 

more strongly over viewpoint with increased familiarity (Jiang et al., 

2007). However, how view-invariance is achieved is yet to be fully 

established. Theoretically, learning within-identity variation could 

provide information on metrics that are invariant to changes in the face, 

such as distances between certain features (Burton et al., 2015). 

However, stretching images of familiar faces has no effect on 

recognition (Burton et al., 2015) and participants are no better at 

stretching or contracting familiar faces back to the right aspect ratio 

than unfamiliar faces (Sandford & Burton, 2014), arguing against 
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learning specific invariant metrics for familiar faces. Furthermore, inter-

feature distances inevitably change with viewing angle. The metrics 

might be processed in 3D rather than 2D, but even then, the results of 

Sandford and Burton and Burton and colleagues suggest these metrics 

are not reliable.  

How view-invariance is developed, how it interacts with identity 

and other factors such as facial motion, and how it fits with a face space 

framework has yet to be fully discovered. 

1.3.2 The role of motion 

Early theoretical models of face processing originally separated 

dynamic aspects of faces from invariant ones, such as expression 

versus identity (e.g., Haxby et al., 2000) and these processes seem to 

be separated in the cortex. However, there is a body of evidence 

showing that facial dynamics impact the perception of other factors, 

such as identity processing and view-invariance. Elaborating on how 

facial motion interacts with identity processing and face space is 

therefore of much importance.  

In general, facial motion in humans is thought to be primarily 

processed in the posterior, mid and anterior clusters of the STS (Haxby 

et al., 2000; Pitcher et al., 2011, 2014; Polosecki et al., 2013; H. Zhang 

et al., 2020) and in the right inferior frontal gyrus (Nikel et al., 2022; 

Pitcher et al., 2011) whereas identity processing is thought to reside 

more in ventral regions such as the FFA (Haxby et al., 2000).  
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More anterior regions of STS become more selective for facial 

motion over either body or object motion (Pitcher et al., 2011; H. Zhang 

et al., 2020) and to non-rigid deformations over rigid motion (H. Zhang 

et al., 2020). The aSTS may therefore play a crucial role in expression 

and speech perception. That said, there is still evidence that rigid 

motion (leftward versus rightward changes in yaw) can be decoded in 

the aSTS (Carlin et al., 2012). 

The representation of dynamic facial stimuli in the STS is also 

consistent with evidence showing that an individual with acquired 

prosopagnosia was selectively impaired on recognising static but not 

dynamic facial expressions (Richoz et al., 2015). Her lesion covered the 

right inferior occipital gyrus (the location of the OFA) but spared the 

STS. The STS has also recently been suggested to form part of the 

third, previously undefined visual pathway solely for processing 

dynamic social signals from the face and body (Pitcher & Ungerleider, 

2021). 

While obviously important for speech and expressions, facial 

motion also interacts with other factors such as identity. Evidence 

shows motion: is sufficient for identity and gender judgements (Girges 

et al., 2015; H. Hill & Johnston, 2001), aids the learning and recognition 

of unfamiliar faces (Lander & Davies, 2007; see review by Lander & 

Pitcher, 2017) and can improve recognition when images are visually 

degraded (Knight & Johnston, 1997; Lander & Bruce, 2000; also see 

O’Toole et al., 2002) or when form is ‘unreliable’ (Dobs et al., 2017). 
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Even in the presence of identity-specific form, motion of another can 

bias perception of identity (Knappmeyer et al., 2003). Although, not all 

results show a consistent advantage for motion, particularly if the 

expression changes between learning and test (Christie & Bruce, 1998).  

There are currently three main, complementary theories of how 

motion improves recognition and some theories have even suggested it 

aids view-invariance (Lander & Butcher, 2015; Lander & Pitcher, 2017; 

O’Toole et al., 2002). They suggest that motion provides supplementary 

information about identity through idiosyncratic movements 

(Supplementary Information Hypothesis), that it enhances the structural 

representation of the face (Representation Enhancement Hypothesis) 

or that it provides no useful information per se but instead directs social 

attention to the face which in turn benefits identity processing (Social 

Signals Hypothesis). The second of these theories could contribute to 

achieving view-invariance through enhancing flexible structural 

representations. As noted by Furl and colleagues (2017), physical 

structure is important for identity, but it also constrains the physical 

range of facial motion and thus the perception of structure from motion.  

In support of the Supplementary Information Hypothesis, Lander 

and Davies (2007) only found a benefit of learning faces in motion when 

they were presented in motion both at learning and at test. They 

therefore argued that their results demonstrate recognition through 

learning “characteristic motion signatures”, an idea initially proposed by 

Knight and Johnston (1997), rather than aiding recognition from 
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structure. Supporting this, Lander and Chuang (2005) only found a 

benefit for facial motion for faces whose motion was rated as being 

distinctive. 

While Lander and Davies (2007) found no behavioural benefit of 

learning motion on subsequently static faces, other results have found 

such an advantage in old/new recognition (Butcher et al., 2011; Pike et 

al., 1997), matching without memory (Thornton & Kourtzi, 2002) and in 

a visual search paradigm (Pilz et al., 2006). These results are 

consistent with the Representation Enhancement Hypothesis, although 

they can also be explained by the Social Signals Hypothesis.  

One route to achieving view-invariance through rigid facial 

motion is the close temporal proximity between different views (Wallis, 

1996, 2002; Wallis & Bülthoff, 2001). Wallis (2002) showed that when 

images of different identities were presented in an apparent smooth 

transition across views (one identity per view), it was then harder to 

recognise these individuals as different identities. This relied on the 

smooth temporal association between plausible neighbouring 

viewpoints; the effect was abolished when the viewpoints were 

presented in a random order. Recognition of objects is also easier when 

the presented view continues the previously observed sequence of 

rotation, compared to a view rotated in the opposite direction from the 

starting view (Vuong & Tarr, n.d.). For faces and objects we therefore 

build an invariant representation by learning instances closely related in 
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time, and prime the representation of the view we predict will be seen 

next. 

There is mixed behavioural evidence over which type of motion 

benefits identity recognition the most. Hill and Johnston (2001) 

observed an advantage of non-rigid motion for gender judgements but 

an advantage for rigid motion for identity, whereas Lander and Chuang 

(2005) observed an advantage for non-rigid motion on identity 

judgements. Separating non-rigid motion into semantic groups, Lander 

and Chuang (2005) saw comparable advantages for both 

communicative and expressive non-rigid motion, yet Dobs et al (2016) 

found an advantage for communicative action, regardless of whether 

expressive actions were within or outside of social contexts.  

The coherence and meaning of motion is also important. The 

dependence on the natural ordering and temporal dynamics of frames 

(Dobs et al., 2014; Lander & Bruce, 2000) and the benefit of rigid 

motion compared to either single or multiple static images (Pike et al., 

1997 but see Mileva & Burton, 2019) suggests the role of motion 

transcends the benefit of simply having more visuospatial information in 

a video. The use of non-rigid motion increases with familiarity and 

idiosyncratic motion is thought to be represented in the posterior 

superior temporal sulcus (O’Toole et al., 2002), which has been shown 

to be sensitive to identity (Ramon et al., 2010; Sliwinska et al., 2019). 

The integration of motion and identity, perhaps through idiosyncratic 

actions, may occur in the pSTS, although, aSTS which shows a higher 
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level of selectivity to non-rigid deformations is likely another candidate 

(H. Zhang et al., 2020).  

There is little evidence as to whether non-rigid or rigid motion 

aids view-invariance. In their second experiment on matching facial 

motion across views, Watson et al (2005) found that extrapolating 

across viewpoints was as effective as interpolating viewpoints from non-

rigid motion. Sample stimuli were presented at either 15o and 45o or 45o 

and 75o, with test stimuli then presented at 30o or 60o. When rigid 

motion was added, participants were worse at extrapolating from more 

frontal views to more profile views. This indicates that non-rigid motion 

is processed in a more view-invariant manner, whereas rigid motion is 

more view-dependent. Non-rigid motion of course is independent of 

view, while an animation performing rigid motion may be confounded by 

essentially a wider change in rigid motion through changing the 

viewpoint. It remains to be seen how rigid and non-rigid motion aid 

view-invariance for identity recognition. 

Recent research has further contested the separation of variable 

and invariant aspects, leading to the suggestion of the Integrated 

Representation of Identity and Expression Hypothesis (E. Schwartz, 

O’Nell, et al., 2023). Schwartz and colleagues showed that deep 

convolutional neural networks (DCNNs) trained to recognise either 

facial expressions or identity were able to distinguish the other 

category, despite not being trained on it (E. Schwartz, Alreja, et al., 

2023; E. Schwartz, O’Nell, et al., 2023). Performance increased in 
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higher levels of both DCNNs even though the features used became 

more segregated, suggesting they separated but retained information 

about the untrained variation. Furthermore, the DCNNs did not differ in 

how well their responses to stimuli (varying in identity and expression) 

correlated with neural responses within lateral and ventral regions. The 

DCNN trained to recognise identity was slightly more correlated with 

both regions than the DCNN trained on expressions.  

The retention of task irrelevant information has also been 

observed in other models trained on identity recognition, for example 

ResNet101 retained both expression and viewpoint information (Colón 

et al., 2021) and VGG-Face retained “hallmarks of human expression 

recognition” (L. Zhou et al., 2022). Overall, this work shows that ventral 

and lateral regions of the brain may be more functionally similar than 

initially predicted when processing dynamic and invariant information. 

Rhodes et al (2015) also showed that identity and expression 

information can be coded by common dimensions in face space, 

supporting the more identity-specific dynamic components reported by 

Cowe (2003) and further highlighting that identity and expression may 

not be as easily separated as prior work suggests. 

While the response in the ventral cortical regions, such as the 

OFA and FFA to dynamic faces was not consistently decreased 

following theta burst stimulation to the rpSTS (Pitcher et al., 2014, 

2017), the resting state connectivity between these regions was 

reduced (Handwerker et al., 2020), suggesting that these regions might 
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also functionally interact. Moreover, attention to identity has been found 

to increase decoding of identity both in ventral and dorsal regions 

(Dobs, Schultz, et al., 2018) and sensitivity to expression has often 

been observed in the FFA (see review by Bernstein & Yovel, 2015), 

further highlighting overlap in function. 

Although motion improves face matching in patients with 

congenital prosopagnosia (face blindness) it does not improve 

recognition relying on memory, suggesting that longer-term 

representations of motion are harder to encode than short-term 

representations (Longmore & Tree, 2013). 

To summarise, non-rigid facial actions are crucial for visual 

speech and expression processing, yet also contribute to identity 

processing and possibly achieving view-invariance. Moreover, recent 

research suggests that areas thought to process either identity or 

expression may represent both. Thus, it seems fruitful to understand 

how identity and motion are represented together in face space.  

1.3.3 View-invariance in the macaque face processing system 

The macaque visual system has provided incredible insight into 

how the human brain might function due to structural and functional 

similarities (Pinsk et al., 2009; Tsao et al., 2008), and through the ability 

to record directly from the cortical surface using SUR. Face-selective 

cells in macaques are predominantly clustered into a network of 

discrete patches running down the upper and lower banks and fundus 
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of the posterior, middle, and anterior STS (Baylis et al., 1987; Freiwald 

& Tsao, 2010; Perrett et al., 1988; Pinsk et al., 2005, 2009; Tsao, 2006; 

Tsao et al., 2003). 

Early research into view-(in)dependence revealed neurons 

preferentially tuned to different prototypical views, including frontal (0o), 

profile (±90o), back, upwards and downwards tilted views, with fewer 

specifically tuned to ¾ views (e.g., 45o) and even fewer to intermediate 

views (22.5o Perrett et al., 1991). View-selective neurons are seen in 

partially overlapping clusters (Perrett et al., 1988) with neighbouring 

views occupying neighbouring regions of cortex (G. Wang et al., 1996, 

1998). Some other neurons show invariance to mirror views (Desimone 

et al., 1984; Perrett et al., 1991) and others to all views (Perrett et al., 

1988, 1991). It was argued these cells are hierarchically organised from 

view-dependence to view-independence (Gross & Sergent, 1992). Even 

view-selective neurons however show large tuning widths, responding 

to a broad range of views (Perrett et al., 1991). 

Understanding the preference for prototypical views is important 

for uncovering how faces are processed and has practical implications 

for advancing face processing software. Given that faces are observed 

from all viewpoints it is likely that this prototypical preference paired with 

broad tuning profiles is computationally sufficient (or perhaps optimal) 

for constructing a view-invariant representation. As will be discussed in 

the following section and in Chapter 6, there is currently limited 

evidence for which views are preferentially processed in humans. 
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Returning to view-invariance in macaques, recent evidence using 

multi-voxel pattern analysis suggests more posterior areas, MF and ML 

(‘middle fundus’ and ‘middle lateral’, Pinsk et al., 2009; Tsao et al., 

2008) encode identity with respect to view. In contrast, more anterior 

regions AL and AM (‘anterior lateral’ and ‘anterior medial’, Pinsk et al., 

2009; Tsao et al., 2008) encode identity in a more view-independent 

manner (Meyers et al., 2015), with AL generalising across mirror views 

(Freiwald & Tsao, 2010).  

Adaptation techniques however have also indicated view-

invariance in both area AF (‘anterior fundus’) and MF (Taubert et al., 

2020). View-invariance in AF is not surprising given the invariance in 

AM and AL, yet invariance in MF is at odds with prior research (Meyers 

et al., 2015). This discrepancy may be due to the task, with view-

dependence during identity processing (Meyers et al., 2015) but view-

invariance during expression processing (Taubert et al., 2020). This 

would be compatible with evidence in humans that non-rigid facial 

motion is processed in a view-invariant manner (T. Watson et al., 2005). 

Surprisingly, recent research suggests neurons in AM and AF 

are sensitive to local features such as the mouth and eyes rather than 

the global configuration (Waidmann et al., 2022). As the authors 

discussed, this was surprising given that the general assumption that 

neurons in more anterior areas are more holistic, but it is consistent with 

suggestions that configural processing is less important than once 

thought (Burton et al., 2015; Sandford & Burton, 2014). It also raises 
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questions as to whether preferences for certain axes in the study by 

Chang and Tsao (2017) can be explained by local featural rather than 

holistic changes within dimensions. Finally, given the view-invariance in 

AM and AF, it suggests that local features might provide the best route 

to view-invariance.  

1.3.4 View-invariance in the human face processing system 

Like the macaque face processing system, the human face 

processing system comprises a system of interconnected regions. 

These include, but are not limited to, the occipital face area (OFA, 

Halgren et al., 1999; Puce et al., 1996) sitting on the lateral occipital 

cortex, the fusiform face area (FFA, Kanwisher et al., 1997) sitting on 

the fusiform gyrus, the posterior superior temporal sulcus (pSTS, Morris 

et al., 1996, 1998), the anterior temporal lobe (ATL, Rajimehr et al., 

2009) and the inferior frontal gyrus (IFG, Vignal et al., 2000). Although, 

not all face-selective neurons are housed within these clusters (Schrouff 

et al., 2020).  

As in macaques, the human visual system moves from a view-

dependent to a view-independent representation along the posterior-

anterior axis of the temporal lobe. There is generally evidence that the 

OFA, FFA and pSTS process faces in a more view-dependent manner 

(Ewbank & Andrews, 2008; Fang et al., 2007; Guntupalli et al., 2017; 

Natu et al., 2010; Pourtois et al., 2005). Yet, some view-generalisation 

has been observed in the OFA (Anzellotti et al., 2014), FFA (Anzellotti 

et al., 2014; Ewbank & Andrews, 2008; Guntupalli et al., 2017; Ramírez 
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et al., 2014) and the pSTS (Natu et al., 2010). An intermediate level of 

view-invariance has been observed in the right ATL (Anzellotti et al., 

2014; Guntupalli et al., 2017) and full view-invariance within the left 

middle temporal and left inferior frontal cortex (Pourtois et al., 2005) and 

in the right inferior frontal face area within the right IFG (Guntupalli et 

al., 2017). A moderate amount of view-invariance (at least up to +/- 20o 

in yaw) during gaze processing has also been found in the anterior STS 

(Carlin et al., 2011). 

Ramírez (2018), however, noted that the evidence of view-

invariant identity discrimination in the FFA and ATL (Guntupalli et al., 

2017) could be confounded by gender, as the identities contained two 

male and two female faces. Thus, it may be gender that is processed 

across views, not identity. In the 2018 paper, Ramírez argues that it is 

unknown whether most regions of the human face processing network 

represent faces in a view-invariant manner. 

The intermediate view-invariance observed in the FFA might 

reflect the use of mirror-symmetry. There is some evidence to support 

this (Flack et al., 2019; Rogers & Andrews, 2022), however Ramírez 

and colleagues (2014) found that the FFA is sensitive to angular 

distance but not mirror-symmetry, suggesting view-dependence. In 

contrast, Anzellotti and colleagues (2014) found that identity can be 

classified in both the FFA and the OFA across views even when mirror-

views are excluded, suggesting view-invariance that transcends mirror-

symmetry. Yet, Weibert and Andrews (2016) found that the response 
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pattern in the FFA was best explained by viewpoint than by identity, 

suggesting that the representation is not view-invariant. Furthermore, 

the response patterns could be explained by modulations in low-level 

image properties between changes in view and identity (Weibert & 

Andrews, 2016).  

Evidence of view-invariance in the fusiform gyrus, possibly within 

the FFA has also been seen with EEG and the results indicate view-

invariance for new faces is developed rapidly (Zimmermann & Eimer, 

2013). The N250r component, thought to emerge from the fusiform 

gyrus (Schweinberger et al., 2002), occurs for repeated presentations of 

a single identity and reportedly reflects matches being made between a 

new image and face memory, therefore reflecting recognition of 

repeated identities (Schweinberger & Burton, 2003). Zimmermann and 

Eimer (2013) found this N250r deflection extended across changes in 

view after only a relatively short amount of training (~25 x 200ms 

exposures to each viewpoint) to an unfamiliar identity. This suggests 

view-invariant representations are constructed rapidly and that view-

invariance is developed in the fusiform gyrus. Zimmermann and Eimer 

only tested with frontal and ~35o views, both of which were present 

during learning. Caharel and colleagues (2015) found present, but 

generally weaker N250r deflections even over large changes in view, 

suggesting a larger degree of view-invariance, but not a fully view-

invariant representation. 
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Although the FFA is typically referred to as one region, there is 

evidence from both recordings from electrodes placed on the cortical 

surface (Schrouff et al., 2020) and from fMRI (Weiner et al., 2014) that 

there are two patches, referred to as the posterior fusiform (pFUS/FFA-

1) and middle fusiform (mFUS/FFA-2). Grill-Spector and colleagues 

(2017) suggest that more research should investigate the functional 

differences in viewpoint processing between these regions. 

Problematically, detection of view-invariance varies with analysis, 

for example view-invariance was found in the FFA and ATL using multi-

voxel pattern analyses in pre-defined regions of interest (ROIs) but not 

in unconstrained searchlight analyses (Guntupalli et al., 2017). 

Moreover, Ramírez (2018) showed that when angular distance is used 

rather than Euclidean distance to compare response patterns, the FFA 

does not show sensitivity to mirror views and instead shows sensitivity 

to angular distance. 

Over human and macaque face processing systems, it is clear 

that there are responses to faces that are view-invariant, but, how and 

where this view-invariance is achieved is still not fully understood. One 

way to explore the potential options of how view-invariance might be 

achieved is looking at computational models and artificial neural 

networks.  



University of Nottingham  Chapter 1 

48 

1.3.5 View-invariance in computational models of face processing 

In recent years performance of automatic face recognition 

systems has improved so much that they now reach, and exceed, 

human level performance (Hancock et al., 2020; also see review by 

Phillips et al., 2018). They use a variety of methods for achieving view-

invariance (see Ding & Tao, 2016), and while achieving view-invariance 

has come a long way over the last few decades, it still remains a 

stumbling block (Ding & Tao, 2016). Here, a few of these methods are 

introduced.  

One overarching method that the work in Chapter 4 draws from 

is to transform faces to a canonical view, often frontal, prior to analysis. 

This is often referred to as ‘frontalisation.’ Initial attempts tried image-

based warping, however this was unsuccessful over large rotations, 

resulting in unnatural distortions (Berg & Belhumeur, 2012; Chai et al., 

2003). Rather than using landmarks or image segments, Beymer and 

Poggio (1995) transformed a novel face image to a ‘virtual view’ using 

optic flow fields. Firstly, optic flow fields were calculated to estimate the 

pixelwise displacements across viewpoints of a set of ‘prototype’ faces. 

These learnt displacement fields could then be applied to a novel 

image. Again, however, unnatural distortions were present in the 

reconstructions rotated ±30o in yaw and ±20o in pitch.  

More recent methods include a cascade regression procedure 

(Y. Wang et al., 2022) using a series of regressions to predict the shape 

of the frontal view from an arbitrary pose, rather than a single step. The 
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output is combined with that of an active appearance model (AAM) 

trained on frontal views, producing an accurate reconstruction and 

minimising the effect of self-occlusion from profile poses. Together they 

allow the capture and translation of facial expressions across views. 

While using a series of regressions, the model still translates directly 

from any view to frontal, whereas an alternative method would be to 

cascade around neighbouring viewpoints. The realisation of occluded 

features across neighbouring viewpoints might allow for a better 

transformation across views. 

Other options use a 3D model, for instance to aid with viewpoint 

estimation and landmarking for improving the efficacy of 2D warping 

(Taigman et al., 2014) or for rotating the face on a 3D model. The 

shape and/or texture can be rendered into 3D, such as by rendering the 

texture onto a 3D model morphed to the 2D image shape (A. Asthana et 

al., 2011), or morphing the 2D image to the 3D model shape (Hassner 

et al., 2015). These models can incorporate occlusion detection and 

extort mirror-symmetry to ‘fill’ occluded regions, although the model by 

Asthana and colleagues was still only effective up to ~45o changes in 

yaw and 30o changes in pitch. Researchers have noted however that 

3D representations come with additional storage demands and inferring 

the 3D structure from a 2D image is an ill-posed problem (Zhu et al., 

2013), thus a 2D-based system seems advantageous. If trying to 

recapitulate human processing, humans are only exposed to one view 

at a time, and so a 3D representation might be more challenging to 

build than from the 3D laser scans often used. 
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Such 3D models include for example the 3D Morphable Model 

(3DMM Blanz & Vetter, 1999) which comprises shape and texture 

spaces established from PCA analyses of 200 laser scans while actors 

produced different facial expressions. Blanz et al (2002) showed that 

novels views could be reconstructed from a single image, by first 

determining the linear combination of texture and shape components 

that best reconstruct the image. Without frontalising, identity can be 

determined by finding which identity in a gallery set has the closest 

matching shape and texture features to the test stimulus (Blanz et al., 

2002). 

Rather than calculating the parameters of a 3D morphable 

model, Jackson and colleagues (2017) showed that it was possible to 

learn 3D volumetric structure by training a CNN with 2D images and 3D 

laser scans. The model learned through regression how to predict the 

3D structure from the 2D image and could thus reconstruct the 3D 

shape of images under varying poses and expressions. However, the 

model struggled to estimate 3D structure from profile images.  

The fact that Jackson and colleagues’ (2017) model could 

capture expressions is beneficial, as other methods often lose the 

dynamic properties. For example, Zhu and colleagues (2014b) reduced 

the within-person variation caused by different poses through 

frontalisation, but in doing so lost much of the non-rigid deformations. 

This would hinder view-invariant expression and speech perception and 

possibly even the perception of identity from motion (e.g., H. Hill & 
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Johnston, 2001). However, Jackson et al (2017) were only able to 

capture expressions well when there was a tight spatial correspondence 

between the images used for training and the 3D volumes. 

Instead of trying to warp images across views, an alternative 

view-transformation method is to learn, and then map across, separate 

view-specific representations (Beridze, 2021; Lan et al., 2012). In their 

first model, Beridze made a PCA space for each viewpoint. Vectors 

describing the difference between individual frames and the average 

image for that viewpoint were calculated, and then projected into the 

other views’ spaces. Beridze could reconstruct motion across small 

changes in view well, but not larger changes. In the first of our models, 

we attempt to map across larger changes in view through a cascading 

procedure of projecting and reconstructing frames across neighbouring 

views. 

In a subsequent model, Beridze (2021) concatenated videos 

together, captured simultaneously from multiple viewpoints. PCA was 

performed on these multi-view vectors resulting in components 

containing information about all viewpoints, nested in distinct portions or 

‘slots’ of the vectors. By projecting a single view onto the multi-view 

components Beridze was able to reconstruct non-rigid deformations 

across the remaining views. The model focused on identity-specific 

spaces for mapping facial motion across views, but it could be 

expanded to incorporate multiple identities using methods outlined by 

Cowe (2003). Our work in Chapter 4 expands on Beridze’s model to 
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better mimic human processing by removing the necessity for the model 

to ‘see’ multiple views at once. 

Rather than projecting vectors directly across different views or 

creating multi-view vectors, Lan and colleagues (2012) instead used 

regression to learn how features in one viewpoint could predict the 

features in another, and so could reconstruct actions across wide 

changes in viewpoint. Their work solely focused on the mouth due to 

their interest being in automatic lip-reading software. Their method 

again required simultaneously recorded videos across wide viewing 

angles in order to establish the mapping from, say, profile to frontal. 

Cross-view transformations are common, but are not the only 

method for dealing with different viewpoints. As an example, other 

models instead opted for separate, view-specific representations 

without mapping across views, aligning images to one of a few 

prototypical 2D view templates (An et al., 2019; Pentland et al., 1994). 

This avoids problems with warping and frontalising, but requires a 

suitable set of template images, a suitable number of template views, 

and sometimes separate processing systems for each view that require 

distinct features. This can be more computationally demanding than 

having a single view that all inputs are transformed too. In the context of 

automatic lip reading software, Lan and colleagues (2012) suggest it is 

less computationally demanding to rotate the lips to a canonical view 

rather than having separate view-specific systems.  
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An alternative approach is to identify ‘identity preserving’ features 

that minimise pose-dependency. These models use pose-robust feature 

extraction to, for example, sample smaller regions around the eyes, 

mouth and nose to use as features (D. Chen et al., 2013). As they are 

cropped to a small area they are less effected by viewpoint than more 

holistic methods such as the eigenface method (Sirovich & Kirby, 1987; 

Turk & Pentland, 1991). Chen and colleagues (2013) showed that 

recognition increased with increasing number of landmarks used and 

with multiple scales of sampling around said landmarks. Cao et al 

(2010) showed that recognition can be improved by weighting the 

features based on which features contribute the most to the given pose. 

The recent discovery that the more view-invariant (Meyers et al., 2015) 

AM and AF neurons in macaques are more sensitive to local features 

than holistic representations (Waidmann et al., 2022) provides support 

for these models. 

 Extraction of these features has also been effectively combined 

with a reconstruction layer that can reconstruct any face in a canonical 

pose, such as frontal (Zhu et al., 2013), or a parallel representation of 

viewpoint that allows reconstruction under any view (Zhu et al., 2014a). 

Furthermore, DR-GAN (Tran et al., 2017) combines the use of both 

identity-preserving features and viewpoint transformations, and a d-

CNN (X. Yin & Liu, 2018) combines view-invariant representations with 

view-specific representations, with both studies improving recognition 

over using a single method. 
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Interestingly, pose-invariance in neural networks can also 

develop spontaneously without explicit instruction about 3D shape. A 

modified version (H. Lee et al., 2020) of a deep artificial neural network 

(AlexNet, Krizhevsky et al., 2017) was trained on object categorisation 

whilst minimising a proxy for the spatial distance between coactivated 

units, simulating reduced wiring distance between coactivated neurons. 

Despite not being provided with explicit information about 3D structure 

this model showed an increase in view-invariance in higher layers. It 

also shared other properties of inferotemporal cortex such as clusters of 

face units. Abuhdarham et al (2021) revealed a similar hierarchical 

transition from view-dependence to view-invariance in a different DCNN 

trained on faces, including revealing intermediate mirror-symmetric 

responses that prior models such as VGG-16 have failed to show 

(Yildirim et al., 2020). 

Although DCNNs achieve remarkable performance and show 

striking similarities to the neural representations in the brain 

(Abudarham et al., 2021; H. Lee et al., 2020; Yamins et al., 2014; 

Yildirim et al., 2020), they too are self-learning computers, learning to 

classify the visual input based on experience and, crucially, based on 

limited tasks such as solely on identity recognition. Thus, it can 

sometimes be difficult to take these models and learn something about 

the computations in the brain, although there are instances when these 

models lead to interesting discoveries (e.g., Bao et al., 2020).  
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Furthermore, these networks make non-human like errors, such 

as mistaking identities of different genders and races (Hancock et al., 

2020), casting doubt on their applicability to human face processing. 

Likewise, they can become too invariant to certain properties. VGG-

Face (Parkhi et al., 2015) for instance is overly invariant to illumination 

compared to face-selective neurons in macaques (Chang et al., 2021). 

In fact, recent work suggests a simple active appearance model can 

better predict neural responses than many DNNs (Chang et al., 2021), 

with the exception being a model training on general object 

classification. 

Overall, a common problem for computational models is 

translating over a large change in pose or expression, and many lose 

information about expression in favour of a more rigorous alignment for 

recognition. Given that facial motion aids recognition and view-

invariance (Furl et al., 2020; H. Hill & Johnston, 2001; Knappmeyer et 

al., 2003; Lander & Bruce, 2000), we continue to build on the multiple 

appearance model described by Beridze (2021) and colleagues in 

Chapter 4 to allow the mapping of non-rigid deformations across 

changes in view. Our work develops this model to improve biological 

plausibility and provide a potential mechanism by which the brain might 

achieve view-invariance. 

1.3.6 2D versus 3D representation 

In 2000, Hancock and colleagues highlighted that advancing 

computer technologies would allow the importance of 3D information to 
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be explored, and posed the unanswered question of “How important are 

motion and 3-D information in face identification?” (Hancock et al., 

2000). It is evident that view-invariance in humans is developed over 

time (Gliga & Dehaene-Lambertz, 2007; Ichikawa et al., 2019), yet, over 

20 years later it is still unknown whether view-invariance is achieved 

with 2D or 3D representations. In computer systems, both 2D and 3D 

methods have been adopted, but it is not clear which the brain utilises.  

Hill and colleagues (1997) argued for the necessity of a 3D 

representation, however evidence from novel object recognition favours 

2D (H. H. Bülthoff & Edelman, 1992), with recognition being worse for 

novel views outside the range of previously learned views. Similar 

results have also been found with faces (W. Chen & Liu, 2009; H. Hill et 

al., 1997; Y. Lee et al., 2006; Liu et al., 2009; Schwaninger et al., 2007) 

with the ability to recognise a novel face diminishing with increasing 

angle between learned and test views, supporting a 2D interpolation 

account, at least for unfamiliar faces.  

This effect is particularly prominent for changes in pitch after 

learning changes in yaw (Schwaninger et al., 2007), which although 

perhaps less encountered frequently than changes in yaw, should still 

be recognisable with a 3D representation. Likewise, although 

recognition across changes in yaw was improved by the rigid motion of 

either passively viewing, or to a greater extent, actively exploring 

avatars in a virtual reality (VR) environment, recognition across 

changes in pitch was still poor (I. Bülthoff et al., 2019). These faces 
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were unfamiliar to the participants however, so it may take time to learn 

the 3D representation, either as a unique 3D model or as a deviation 

relative to a single template.  

Further evidence for a 2D system comes from behavioural 

evidence for categorical representations of view, with 0o and 6.7o and 

then 13.3o and 20o being grouped together (Y. Lee et al., 2006) 

suggesting grouped, view-tuned representations that are not well 

explained by a 3D representation. 

The fact that the brain can be tricked into thinking different 

identities are one when temporally associated across smooth transitions 

in view (Wallis, 2002; Wallis & Bülthoff, 2001) further supports a 2D 

interpolation account of face processing, at least for unfamiliar faces. If 

based on a 3D representation, then it should not be possible to group 

different identities together that have different facial structures. 

Further behavioural evidence against a 3D representation comes 

from adaptation aftereffects, showing that opponent viewpoint 

aftereffects for discriminating which direction a frontal view is facing 

peak at adaptors 20-30o from frontal (J. Chen et al., 2010). If faces are 

represented solely with a 3D model, then the aftereffect should not 

differ across viewpoint. 

In contrast, other evidence suggests a 3D representation. For 

instance, Jiang and colleagues (2009) found that learning from two 

viewpoints resulted in a more illumination-invariant representation than 
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learning from one view. The interpretation was that learning from 

multiple views increases the ability to represent 3D structure, 

independent of illumination. This increased illumination invariance is not 

well accounted for by 2D interpolation.  

Zhao and colleagues (2016) reported some additional evidence 

in favour of 3D processing, showing that in the composite face effect (A. 

W. Young et al., 1987), removing 3D cues by reducing faces to line 

drawings abolishes holistic face processing. Holistic face processing 

during the composite face effect is evidenced by two faces fusing into a 

Gestalt when the top half of one face is horizontally aligned with the 

bottom half of another. Zhao and colleagues therefore argued that the 

3D information in the texture and shading is essential for holistic 

processing. Whereas the 3D cues might be essential for holistic 

processing, the configuration of familiar faces can be distorted 

somewhat through stretching without any effect on recognition (Hole et 

al., 2002, see also Burton et al., 2015). 

The composite face effect is reduced, however, by rigid rotations 

in yaw during the learning phase in which the motion retains the 

temporal sequence and fluidity (Xiao et al., 2012), suggesting that rigid 

motion might induce more part-based processing. This is consistent 

with evidence that holistic processing of unfamiliar faces is disrupted by 

changes in view (Carbon & Leder, 2006). It is also consistent with 

featural processing by AM and AF neurons in macaques (Waidmann et 

al., 2022), but conflicts with evidence that configural information is used 
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more across view than featural information (Schwaninger et al., 2007), 

although both can be used reasonably effectively. But, the conditions 

were vastly different; the ‘configuration only’ condition consisted of 

blurred greyscale images and the ‘feature only’ condition consisting of a 

spatially segregated and scrambled face, so it is hard to directly 

compare the contribution of each. 

Given that faces are nearly always in motion, the dependence on 

features (Xiao et al., 2012) could argue against the use of a single 3D 

internal model, although recent replications have failed to find this effect 

of motion unless presented over a large rotation from -90o to +90o (Y. 

Zhou et al., 2021). That said, Zhou and colleagues (2021) also found a 

reduced composite face effect when the viewpoint differed across the 

learning and test images compared to when presented from the same 

view or array of views as during learning. This discrepancy suggests 

holistic processing involves view-specific template matching rather than 

a 3D model. There was still evidence of holistic processing across 

views, however the authors described this as an activation and 

comparison of view-specific representations rather than using a 3D 

representation (Y. Zhou et al., 2021), consistent with the view-

interpolation account. 

It is plausible that representations are computed as a set of view-

specific 3D representations rather than being integrated into one 3D 

Gestalt. One might refer to this as 2.5D processing, wherein the 3D 

representation is restricted to the specific viewpoint (Marr, 1982, as 
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cited by H. Hill & Bruce, 1993), much like pin art toys where pushing 

your hand onto a board of pins recreates the shape on the other side. 

Such a representation has previously been used in DCNNs that 

ultimately achieve view-invariance (e.g., Yildirim et al., 2020) and other 

models have been created solely to recognise faces with 2.5D 

representations (Chong et al., 2019). Two and half dimensional 

processing has also been used to explain the inversion from a concave 

face mask to a convex face percept in the hollow face illusion (H. Hill & 

Bruce, 1993). 

Troje and Kersten (1999) made a similar suggestion after finding 

that humans recognise profile images of themselves much slower than 

frontal. They suggested that object-centred representations might 

operate within the limited range of the input. In other words, an identity-

specific 2.5D representation spanning all seen views, rather than either 

a full 3D or view-based model. If an identity-general 3D representation 

was present, one would expect that between the wide exposure to other 

faces, including siblings, and high familiarity with frontal and ¾ views of 

one’s own face, we would have sufficient experience to efficiently apply 

and rotate a 3D representation for our own face. Instead, this 2.5D 

model blurs the lines between viewer-centred and object-centred 

representations, yet storing multiple, view-specific 2.5D representations 

is likely more computationally expensive than a single 2.5D or 3D 

model. It is possible of course that the brain uses both 2/2.5D template 

matching and 3D rotation systems, and that the increase in reaction 

times to one’s own profile (Troje & Kersten, 1999) could be attributed to 



University of Nottingham  Chapter 1 

61 

moving from faster template matching procedures to slower 3D 

representations. However, this implies familiar faces are predominantly 

processed using view-based matching, raising the question of why a 3D 

representation would be necessary.  

There is also little behavioural evidence whether stereoscopic 

viewing, which enhances the perception of 3D structure (e.g., see 

McIntire et al., 2012), aids view-invariant recognition. As binocular 

vision is necessary for stereopsis, individuals who are monocularly blind 

from an early age have the potential to provide useful insight. 

Monocularly blind patients are slower at responding to featural and 

configural changes than controls and show impaired holistic processing 

(Kelly et al., 2012) suggesting that view-invariance may also be 

affected, but we have not yet seen any direct evidence for this. The use 

of symmetry is thought to be a stepping stone to view-invariance (e.g., 

Flack et al., 2019; Meyers et al., 2015; Rogers & Andrews, 2022) and 

while patients who are congenitally blind in one eye are slower at 

detecting symmetry in patterns, they match controls in accuracy 

(Cattaneo et al., 2014).  

The depth perception lost through stereopsis in these individuals 

is thought to be compensated through the use of optic flow through 

voluntary head movements (Gao, Huang, et al., 2023; Gao, Liu, et al., 

2023), which might allow the generation of a 3D representation. On the 

other hand, 2D processing does not necessarily require depth 

perception when learning view-based representations, so even without 



University of Nottingham  Chapter 1 

62 

any compensatory strategies it should be relatively unaffected by 

monocular blindness. 

In addition to some behavioural deficits, patients with early 

monocular enucleation also show reduced responses to faces in 

bilateral OFA and left FFA, but not in the right FFA (Kelly et al., 2019). It 

would be beneficial to also assess whether responses are modulated in 

the more view-invariant, anterior regions or whether responses to 

dynamic stimuli differ in, say, the pSTS. Evidently, face processing is 

somewhat disrupted in monocularly blind individuals, but it remains 

unknown if and how view-invariance is affected. 

In binocularly sighted individuals, stereoscopic stimuli can be 

presented artificially by presenting images of slightly different 

viewpoints to each eye, mimicking stereopsis in natural viewing and 

creating apparent 3D structure. While recognition accuracy is improved 

during stereoscopic viewing (Chelnokova & Laeng, 2011; Eng et al., 

2017), Eng and colleagues (2017) found marginally but not significantly 

reduced RTs whereas Chelnokova and Laeng (2011) found significantly 

increased RTs suggesting that while possible, 3D representations might 

come at a computational cost. Accuracy for inverted stimuli, however, 

was not increased for 3D over 2D stimuli, suggesting that the benefit for 

upright faces viewed stereoscopically could not simply be explained by 

the presence of additional depth information and instead that 3D 

representations tap into face-selective processes. Despite this, three 

quarter-frontal matching was marginally better than frontal-frontal but 
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did not interact with 2D vs 3D viewing (Chelnokova & Laeng, 2011) so it 

is unclear whether 3D viewing actually aids recognition across views. 

Likewise, for familiar individuals there is conflicting evidence whether 

processes rely more on 3D structure (see Blauch & Behrmann, 2019) or 

surface properties that could be extracted from 2D representations 

(Russell & Sinha, 2007). Afterall, the neural responses in anterior face 

patches in macaques are more sensitive to texture and surface 

properties than shape (Chang & Tsao, 2017). Recent technological 

advancements, particularly in VR, should allow more elaboration on the 

2D/2.5D/3D representation discussion, although the results thus far are 

not conclusive (see Burt & Crewther, 2020). 

Stereoscopic viewing during fMRI has been found to increase the 

BOLD response in the OFA, but not the FFA (Deligiannis et al., 2023) 

suggesting that the OFA might represent faces in a 3D manner. 

However, the non-significant effect in the FFA leaves outstanding 

questions. Does the FFA process faces in 3D? If so, why was there no 

significant effect of stereoscopic viewing? Is it possible that the FFA is 

so efficient at estimating 3D structure that it can do so from 2D displays 

as easily as stereoscopic displays? Or does the FFA collapse 

information into 2D view-dependent representations? As noted by the 

authors, more work should be done on stereoscopic viewing during 

fMRI to elaborate on their findings.  

An illusion that is stronger when not using stereopsis is the 

hollow face illusion. When first seeing the hollow face illusion (Gregory, 
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1973, as cited by H. Hill & Bruce, 1993) one likely assumes that a 3D 

representation must be present. In this illusion, the perceived depth of a 

concave mask inverts eliciting a convex percept that follows you around 

the room. From observation, it appears that the illusion must indicate a 

single 3D representation. Yet, studies investigating influences on this 

illusion suggest this likely is not the case.  

Firstly, the illusion appears at a shorter distance when viewing 

monocularly compared to binocularly (H. Hill & Bruce, 1993), showing 

that the illusion is driven by cues available within a 2D view, such as 

shape-from-shading and an assumption of convexity. It can only be 

overridden by binocular depth cues to a limited degree, however, as the 

illusion still holds at further distances. The assumption of convexity 

seems to be more selective for naturally observed faces; upright masks 

are falsely perceived as being convex more than inverted masks (H. Hill 

& Bruce, 1993), as are naturally textured and coloured stimuli compared 

to grey stimuli (H. Hill & Johnston, 2007). The emergence of the illusion 

is also dependent on the lighting condition (H. Hill & Johnston, 2007) 

indicating that both upright faces and appropriate lighting angles are 

important. Overall, the dependence on orientation, texture and lighting 

speaks against a full 3D representation of faces, in favour perhaps of 

2.5D representations that are more dependent on viewing conditions 

(H. Hill & Bruce, 1993). 

Although not sufficient for object recognition, evidence from 

individuals with object recognition impairments suggests the dorsal 
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visual route holds a coarse description of 3D object shape (Freud et al., 

2017). Both controls and patients exhibited increased fMRI responses 

in dorsal regions to shapes with impossible 3D structure. A coarse 

description of 3D facial structure might also exist. Although, it raises the 

question of whether the 3D representation is used for view estimation or 

view-invariance, or whether it simply signals unlikely stimuli given prior 

experience. Given the cross-talk between ventral and dorsal regions in 

object processing (Freud et al., 2017), it is possible that dorsal regions 

might communicate with ventral face-selective regions for faces that are 

more implausible. 

Perhaps some unexpected evidence for a 3D representation 

comes from results showing that the FFA also responds to the haptic 

exploration of 3D-printed faces in the congenitally blind (Murty et al., 

2020) and in seeing participants trained on haptic exploration (Kilgour et 

al., 2005). During haptic exploration it would be possible to discriminate 

viewpoint but having view-dependent receptors does not seem 

appropriate for this form of sensory input, instead a mental 3D 

representation seems more plausible. Kilgour and colleagues (2005) 

only found increased activation in the left FFA for faces over control 

objects during haptic exploration and suggested this was due to the 

necessity to process features sequentially, as the left FFA has been 

argued to process face parts (Rossion et al., 2000). However, these 

participants were only trained on haptic exploration for a relatively short 

time. Congenitally blind patients in contrast, who have more experience, 

showed face-selective responses in the right FFA (Murty et al., 2020). 
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As the right FFA is thought to process faces holistically (Harris & 

Aguirre, 2010; Rossion et al., 2000) the results may indicate the 

construction of a whole-head 3D representation. Of course, between 

the lack of visual surface cues and the ability to use proprioception, 

haptic exploration might motivate and allow for more 3D structural 

representations in, what may inherently be, a 2D visual system. 

Interestingly, the temporal dynamics of object view-invariance in 

macaque IT depends on the object’s 3D structure and how its 

projections onto the retina change with view. Neurons are faster to 

respond in a view-invariant manner to objects that do not change much 

in aspect ratio compared to those that do (Murty & Arun, 2015). This 

poses a challenge for a 3D representation of objects unless all objects 

are processed with respect to one spherical template, which seems 

maladaptive given the variety of object structures in nature. Faces 

overall do not change much in aspect ratio as a function of yaw, but, as 

noted by Favelle and colleagues (2017), the aspect ratios of individual 

features can change substantially. Some such features, such as the 

nose, also provide volumetric information and receive greater levels of 

attention under stereoscopic viewing than 2D viewing (Chelnokova & 

Laeng, 2011), although other volumetric cues that do not change much 

in aspect ratio such also the cheek also receive more attention. 

Research showing a behavioural advantage for specific views 

might also provide insight as to whether 2D or 3D representations are 

used. Despite faces being viewed from almost every angle, there is 
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behavioural evidence for a ¾ view advantage (Marotta et al., 2002; 

O’Toole et al., 1998; Troje & Bülthoff, 1996; Van der Linde & Watson, 

2010) suggesting this might be one of the canonical views that the brain 

represents if processing faces in a 2D view-based manner. In contrast 

some studies have shown no advantage for ¾ over frontal views 

(Carbon & Leder, 2006; Favelle & Palmisano, 2018) and others a frontal 

view advantage (Favelle et al., 2017; H. Hill et al., 1997) suggesting that 

frontal views might too be one of these preferentially represented views, 

consistent with SUR studies in macaques (Perrett et al., 1991). 

Interestingly, Van der Linde and Watson (2010) showed the ¾ view 

advantage at both learning and test when participants had to recognise 

identities across changes in view, but a frontal view advantage when 

faces were seen at the same view in learning and in test. Therefore, the 

¾ view might be especially informative for achieving view-invariance. 

The ¾ bias could be due to the visibility of transformation points for 

performing mirror-symmetric computations, that ¾ views provide the 

most information about 3D shape or that they might contain the most 

diagnostic information about identity (H. Hill et al., 1997; Marotta et al., 

2002; Troje & Bülthoff, 1996). Ramírez et al (2014) found a larger FFA 

response to frontal faces over both ¾ and profile faces, although this 

could reflect template matching procedures whereas more anterior 

regions might be more sensitive to ¾ views for achieving view-

invariance. 

While frontal and ¾ views have been compared relative to each 

other, few studies have systematically compared them to intermediate 



University of Nottingham  Chapter 1 

68 

views (e.g., 22.5o) to shed light on whether these views are 

preferentially represented. Chapter 6 therefore describes a study we 

conducted assessing whether some views are preferentially 

represented over others. 

Overall, it remains unclear whether faces are processed via one 

3D model or via multiple view-specific 2/2.5D representations. From the 

evidence presented above it seems more likely that a view-based 

interpolation account of face processing is used, rather than a 3D 

representation. This is particularly suggested by the evidence that the 

brain can be tricked into thinking multiple different identities are one 

when presented in quick succession and when presented as a smooth 

transition across views (Wallis, 2002; Wallis & Bülthoff, 2001). A coarse 

description of 3D shape is likely present, and depth cues can be used, 

however the results overall suggest a 2D or 2.5D view-based system 

rather than a 3D system. 

Rather than investigating behavioural and cortical responses to 

find evidence for or against 3D representations, we focused on whether 

it was feasible to create a 2D view-based model in a biologically 

plausible manner. This PCA-based, multi-view face space model, which 

builds on the work by Beridze (2021), might give some insight into 

whether a 2D view-based system is possible in humans. 
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Chapter 2 An overview of PCA 

2.1 Preface 

As outlined in the previous chapter, principal component analysis 

(PCA) has often been used for constructing computational models of 

face space, among many other computer applications. In this chapter, 

we provide more detail on the underlying mathematics, how it can be 

used to create face spaces, and how images can be recovered from it. 

2.2 Performing PCA 

PCA was first developed over 100 years ago by Karl Pearson 

(1901) as a method for fitting lines and planes to data. The technique is 

a data-driven method taking high dimensional data and returning a new 

set of orthogonal basis vectors that are a linear combination of the initial 

dimensions. The new dimensions try to fit the data as closely as 

possible and are ordered based on the amount of variance they explain. 

Dimensions coding only a small proportion of the variance can be 

ignored, hence PCA is often used for dimensionality reduction. Because 

PCA is guided by the covariance in the data and not on external 

predictions it is excellent for exploratory analyses. 

One of the assumptions of PCA is that the data is zero/mean-

centred. For a matrix 𝑋, the mean vector �̅� is first calculated and 

removed. �̅� will have as many features as is in the data. The orientation 

of 𝑋 seems to vary depending on the usage, but for the implementation 

of PCA discussed below (singular value decomposition) it has 𝑛 
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columns which reflect different samples and 𝑚 rows which reflect 

different features, e.g., pixels in a vectorised image.  

The process of PCA can be thought of iteratively. The first 

dimension should explain the highest possible amount of covariation in 

the data. The orientation of this line is calculated in a similar way to 

linear regression by minimising the sum of squared distances to the 

line, but not directly. The calculation can also be performed with 

projection. The projection of a data point (𝑎) onto a line (𝑏) is the point 

at which a line drawn from 𝑎 intersects 𝑏 at 90o. The aim is to find the 

line of best fit that maximises the sum of squared distances (∑𝑑2) 

between the intersection points and the origin (𝑑 in Figure 2.1a), and in 

doing so minimises the distances between the data points and the line. 

Note that this line can be at any orientation but must pass through the 

origin. Figure 2.1a shows an example of this, where vector 𝑖1 is 

iteratively rotated 𝑛 times until ∑𝑑2 is maximised. The next component 

can be calculated by performing the same series of calculations, but 

with the constraint that the vector must be orthogonal to the prior 

component(s). One method is to subtract out the previous dimensions 

and calculate the next that best fits the residual data. 

The eigenvectors or singular vectors are simply the new 

dimensions, normalised to have unit length (a length of 1, Figure 2.1b). 

Each eigenvector is a linear combination of the original feature 

dimensions, with each element in the vector expressing the relative 

contribution of each original feature. I.e., principal component (PC) 1 =
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 𝛽1𝑎 + 𝛽2𝑏 + 𝛽3𝑐 where 𝑎, 𝑏 and 𝑐 are the original dimensions or 

features and 𝛽1, 𝛽2 and 𝛽3 describe the weights. In this sense it can be 

thought of as a rotation relative to the original dimensions. 

The eigenvalue and singular value for an eigenvector can be 

calculated as (∑𝑑2) (𝑛 − 1) ⁄  and √(∑𝑑2) respectively. The 

eigenvalues are a measure of variation, and thus the percentage of 

variance explained by each component can be calculated. Say we have 

three components, PCs 1, 2 and 3, and the eigenvalues are 31, 12 and 

8. The total variance is 51. The variance explained by PC 1 is 60.8% 

(31/51 x 100).  

Once the explained variance of later (often called higher) 

components drops below a threshold, be it arbitrary or based on the 

other components, the subsequent components can be ignored. For 

example, in our multi-view PCA models, 𝑛 components are retained 

such that 𝑛 ≥ 100 and a minimum of 90% of the variance is explained. 

Other methods for example plot the variance explained in a scree plot, 

which often reveal a sharp initial decrease in the variance explained, 

followed by a plateau. There may be a deflection point at which this 

plateau occurs, which is used as the cutoff. 

Calculating PCA by hand is obviously going to be time-

consuming and is not feasible for most datasets, and the same is true 

even for a computer when doing an iterative search. Instead, 

mathematical and computational solutions exist. One such way is 
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through singular value decomposition (SVD). While the process for how 

SVD is calculated is beyond the scope of this thesis, some of the main 

points of interest are highlighted. There are many webpages, books and 

YouTube videos that can explain PCA and SVD in more detail, such as 

“Data-driven Science and Engineering: Machine Learning, Dynamic 

Systems and Control” (Brunton & Kutz, 2022) or the associated 

YouTube videos by Professor Steven Brunton. 

SVD is generally written in the form 𝑋 = 𝑈𝛴𝑉𝑇, and the MATLAB 

implementation is simply `[U,S,V] = svd(X);`. 𝑋 is the original data matrix. 

𝑈 is the matrix of eigenvectors that we might refer to as eigenfaces, 

eigenframes (EFs) or principal components (PCs), in our context. It has 

a column for each component and a row for each element or feature. 

The number of components is generally truncated, either to the 

specified number or to the number of the columns in the input matrix. 

This is because it cannot have more linearly independent columns than 

there are samples. 𝛴 is the diagonal matrix of singular values, and this 

too is generally truncated. 𝑉 is another matrix of eigenvectors, but these 

explain how to combine the eigenvectors in 𝑈 to recreate the vectors in 

𝑋, once scaled by 𝛴. Each row in 𝑉 explains how to combine the 

columns of 𝑈 to make one frame or image. 

In relation to Figure 2.1a and b, 𝑈 describes the rotation of the 

components in relation to the original features. For example, the original 

features in Figure 2.1 might be the values for the first 2 pixels in an 

image. 𝑈 therefore describes the weighted combinations of pixels 1 and 
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2 needed to make unit vectors in the direction of each column of 𝑈. In 

Figure 2.1b the solid, shorter red arrows depict the first two columns of 

𝑈. Note that the values within a component reflect one polarity, e.g., the 

arrow pointing up and right from the origin in Figure 2.1b. To invert the 

polarity and therefore the direction of the arrow relative to the origin, the 

components are multiplied by -1.  

 𝛴 then defines a stretch. Each column in 𝑈 is scaled by its 

diagonal element in 𝛴. Because 𝛴 is a diagonal matrix, this can simply 

be computed with matrix multiplication. Finally, 𝑉𝑇 describes another 

rotation detailing how to transform from the scaled components in 𝑈 

back to the original data. The principle is the same as for 𝑈. The matrix 

𝑉 has a column for each component in 𝑈 and a row for each image. It 

describes what ratio of the scaled components are needed to 

reconstruct each image.  

Essentially, 𝑈 describes the rotation to make the new basis 

vectors, 𝛴 indicates how much of the variance each component 

explains and stretches 𝑈, and 𝑉 describes how to rotate the new 

stretched dimensions back to the original data. 

One additional consideration to note is how SVD relates to 

covariance matrices of 𝑋. Although rarely used due to the complexity of 

the task when working with lots of elements, the principle and the 

outcome is essentially the same. 
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Figure 2.1. PCA space and projection. 

(A) Calculation of PC1. A cloud of data points (green dots) against the 

original dimensions (black horizontal and vertical lines). Rotation of an 

initial estimate for PC1 (orange, 𝑖1) to its final position (red, 𝑖𝑛), such 

that the ∑𝑑2across all data points is maximised. The orientation of 

these lines describes the eigenvector, the length of vector is 

proportional to the eigen and singular values. (B) The first and second 

components (PCs), also known as eigenvectors or in our case 

eigenframes (𝐸𝐹). Solid arrows are scaled to be unit vectors. The grey 

box outlines the field of view for C. (C) Projecting the new data point, in 

our case a deviation vector, 𝐷 (blue diamond/line) onto the 

components, alongside equations showing how the vector 𝐸𝐹𝐷 is 

calculated. (D) Example of a vector in 3D space projected onto a 2D 

hyperplane and its dimensions. 

Firstly, we know the equation for SVD, but how do we find out 

the values for 𝑈, 𝛴 and 𝑉? To find the solution for 𝑉 we first need to 

cancel out 𝑈, and vice versa to find the solution for 𝑈. As it happens, 𝑈 

and 𝑉 are orthogonal matrices of unit length, so 𝑈𝑇𝑈 and 𝑉𝑇𝑉 are both 
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equal to an identity matrix (a square matrix of zeros with ones down the 

diagonal), which cancel out within the following equations. Now, the 

transpose of 𝑋 (referred to as 𝑋𝑇) equals 𝑉𝛴𝑇𝑈𝑇 , so 𝑈 or 𝑉 can be 

cancelled out by multiplying 𝑋 by 𝑋𝑇  depending on which way around 

the multiplication occurs. 𝑋𝑇𝑋 is the covariance matrix of the columns of 

𝑋. Each element is the inner product between the two columns of 𝑋, 𝑋𝑖 

and 𝑋𝑗 where 𝑖 and 𝑗 refer to the row and column in the covariance 

matrix respectively. Expanding we have, 𝑋𝑇𝑋 =  𝑉𝛴𝑇𝑈𝑇𝑈𝛴𝑉𝑇 . As 𝑈𝑇𝑈 is 

an identity matrix this term cancels out and because 𝛴 is a diagonal 

matrix it multiplied by itself is 𝛴2, ⸫ 𝑋𝑇𝑋 =  𝑉𝛴2𝑉𝑇. The solution for 𝑉 is 

the eigendecomposition of the covariance matrix for the columns of 𝑋. 

To find 𝑈, both sides of the equation are instead right-multiplied 

by 𝑋𝑇  which is now the covariance matrix of the rows of 𝑋. 𝑋𝑋𝑇 =

 𝑈𝛴𝑉𝑇𝑉𝛴𝑈𝑇 . Again, 𝑉𝑇𝑉 cancels out so the equation can be reduced to 

𝑋𝑋𝑇 =  𝑈𝛴𝑇𝑈𝑇 . 𝑈 can therefore be determined through the 

eigendecomposition of the covariance matrix for the rows of the 𝑋 

(𝑋𝑋𝑇). The eigenvalues 𝛴 will be the same for both the 

eigendecomposition of 𝑋𝑇𝑋 and 𝑋𝑋𝑇. The reason for not performing this 

calculation directly is because the covariance matrix (𝑋𝑋𝑇) will have as 

many rows and columns as 𝑋 has rows. In some of our uses below, 𝑋 

has over 400,000 rows. MATLAB would need over 1TB of memory just 

to hold the corresponding covariance matrix of type ‘double’. 

While we won’t go into the details of how the calculation works, 

the important part is that the calculation is an approximation for the 
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above. This is important because the covariance matrix multiplies 

everything by itself down the diagonal, so all numbers down the 

diagonal are positive, irrespective of the sign of the polarity of the data. 

As a result, the ‘negative’ and ‘positive’ directions of the components 

are arbitrarily labelled, they are simply opposing deviations away from 

the mean. 

2.3 Projecting into the PCA space 

After performing PCA on dataset 𝑋, the next task is to assess 

how new data relates to our newly defined components. This is done 

through projection. A depiction of both PCA calculation and vector 

projection can be seen in Figure 2.1. Mathematically, projection finds 

the point on a vector (𝐸𝐹) that minimises the distance between vector 𝐷 

and vector 𝐸𝐹. Visually, this forms a right-angle triangle (Figure 2.1c). 

To project a vector 𝑉 into the space, the mean vector (�̅�) from 

the PCA construction is first subtracted to give a deviation vector (𝐷). 𝐷 

is then projected onto the eigenvectors using inner products (also 

known as dot products or scalar products). This provides one projection 

loading per input vector and eigenvector. 

The full equation for the projection of a vector 𝑎 onto a vector 𝑏 

(𝑃𝑟𝑜𝑗𝑏𝑎) can be summarised by equation (2.1). In this equation, the 

output is a vector in the direction of 𝑏 which is 
𝑎∙𝑏

|𝑏|2
𝑥 the length of 𝑏, 

where 
𝑎∙𝑏

|𝑏|2
 is a scalar. The final version of the equation shows how it 

would be written as a matrix operation, where ꞌ is the transpose. 
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𝑃𝑟𝑜𝑗𝑏𝑎 =  
𝑎 ∙ 𝑏

|𝑏|2
𝑏 =  

𝑎 ∙ 𝑏

𝑏 ∙ 𝑏
𝑏 =  

𝑎′𝑏

𝑏′𝑏
𝑏 (2.1) 

In the context of our deviation vectors and eigenframes, 𝑎 = 𝐷 

and 𝑏 = 𝐸𝐹. 𝑃𝑟𝑜𝑗𝐸𝐹𝐷 returns the vector 𝐸𝐹𝐷 in Figure 2.1c. 𝐸𝐹𝐷 is in the 

direction of 𝐸𝐹 but is 
𝐷∙𝐸𝐹

|𝐸𝐹|2
𝑥 the magnitude. In this case, 

𝐷∙𝐸𝐹

|𝐸𝐹|2
 is the 

loading of 𝐷 onto 𝐸𝐹.  

The magnitude of this loading is calculated by the inner product 

of 𝐷 and 𝐸𝐹, divided by the squared length of 𝐸𝐹, which is the inner 

product between 𝐸𝐹 and itself. The inner product is simply the sum of 

the element-wise products. See equation (2.2) where 𝑒 is the number of 

elements in the vectors. 

𝐷 ∙ 𝐸𝐹 =  ∑ (𝐷𝑖𝐸𝐹𝑖)
𝑒
𝑖=1          |𝐸𝐹|2 = ∑ (𝐸𝐹𝑖)

2𝑒
𝑖=1        (2.2) 

Often, PCA uses singular value decomposition (SVD), which 

returns normalised eigenvectors. These vectors have a length of 1 (i.e., 

are unit vectors) and so the denominator in the projection equation is 1, 

and thus can be ignored (when |𝐸𝐹| = 1, 𝐷 ∙ 𝐸𝐹 =  
𝐷∙𝐸𝐹

|𝐸𝐹|2
 ).  

The equation for projecting multiple frames onto a given 

component 𝐸𝐹𝑖 is provided in equation (2.3), where 𝑖 is the component 

number, 𝑛 is the number of frames, and 𝑒 is the number of elements in 

the vector. The resulting output, 𝐿, is an 𝑛 𝑥 1 column vector of loadings. 

When projecting onto multiple components, the outputs can be 

concatenated to provide a single 𝑛 𝑥 𝑝 matrix where 𝑝 is the number of 
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components. Again, if the vectors in 𝐸𝐹 are unit vectors then the 

denominator can be omitted.  

𝐿 =   
𝐹𝑖

𝐸𝐹𝑖∙𝐸𝐹𝑖
     𝑤ℎ𝑒𝑟𝑒 𝐹𝑖 =  [

𝐷1,1 ⋯ 𝐷1,𝑛

⋮ ⋱ ⋮
𝐷e,1 ⋯ 𝐷𝑒,𝑛

]

′

[

𝐸𝐹1,𝑖

⋮
𝐸𝐹𝑒,𝑖

]   (2.3) 

In MATLAB the above can be calculated for all components 

simultaneously using element-wise division in the following:  

`(D’*EF)./diag(EF’*EF)` 

At this stage we have constructed a PCA space and calculated 

the loadings of a new set of data, or videos frames on the components. 

When scaled by 𝛴, the matrix 𝑉 in SVD is a matrix of loadings. The next 

stage, often of interest, is reconstructing an estimate of the input. 

2.4 Reconstructing from the PCA space 

A good way to assess the quality of the information stored in a 

PCA space is to reconstruct a vector, image or video projected into the 

space. If the space satisfactorily encodes data contained in the input 

vector then it should be able to reconstruct it well.  

A given frame or vector (𝐷) can be reconstructed by first 

projecting it into the space (𝐸𝐹) as in the previous section. The loadings 

are then used to scale each component and for each input vector the 

scaled components are then summed. This gives a reconstructed 

deviation vector (𝐷𝑟). Finally, the mean vector �̅� is added. Each 

reconstruction is essentially a weighted sum of the components + �̅�. 

The resulting vector can then be reshaped or warped back to an image. 
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Equation (2.4) describes how to reconstruct 𝐷𝑟 from 𝐷, where 𝑒 is the 

number of elements in the vectors and components, and 𝑝 is the 

number of components. 𝐷𝑟  is a column vector. 

𝐷𝑟 =  [

𝐸𝐹1,1 ⋯ 𝐸𝐹1,𝑝

⋮ ⋱ ⋮
𝐸𝐹𝑒,1 ⋯ 𝐸𝐹𝑒,𝑝

] [

𝐿1

⋮
𝐿𝑝

]  =   ∑(𝐿𝑖 ∗

𝑝

𝑖=1

𝐸𝐹𝑖)  (2.4) 

To reconstruct multiple images, a matrix of loadings is used 

instead of a vector of loadings, as equation (2.5). In 𝐿 there is a row for 

each component and a column for each frame. Note that this is 

transposed relative to the output of the projection process. 𝐷𝑟  is 

an 𝑒 𝑥 𝑛 matrix. Again, �̅� is added to the reconstructed vectors. 

𝐷𝑟 = [

𝐸𝐹1,1 ⋯ 𝐸𝐹1,𝑝

⋮ ⋱ ⋮
𝐸𝐹𝑒,1 ⋯ 𝐸𝐹𝑒,𝑝

] [

𝐿1,1 ⋯ 𝐿1,𝑛

⋮ ⋱ ⋮
𝐿𝑝,1 ⋯ 𝐿𝑝,𝑛

]  (2.5) 

This reconstruction procedure can be used with loadings 

calculated using full vectors, or it could be performed with partial 

vectors. In this case, the portion of interest is retained and the 

unwanted portions of the input vector are replaced with zeros. Because 

the full components contain information other than in the portion of 

interest, it acts as an auto-associative memory and allows, for example, 

the whole face to be recovered from part of the face (Berisha et al., 

2010; Turk & Pentland, 1991) or indeed for different modalities to be 

recovered from each other (Scholes et al., 2020).  
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2.5 Face space representations 

As outlined in Chapter 1, PCA is a popular choice for making 

computerised versions of face space, but there are many possible 

options for making such a space. Here we will outline just a couple of 

methods that are most directly relevant for the multi-view PCA work 

described later. 

Early PCA-based spaces simply used vectorised images as 

inputs to the space (Sirovich & Kirby, 1987; Turk & Pentland, 1991). 

The eigenvectors returned describe deviations in the pixel intensities 

(see Fig 2 on page 75 of Turk and Pentland). An image could be 

reconstructed by projecting it onto the eigenvectors and calculating a 

weighted sum of the eigenvectors based on the loading of the 

projection. While this method worked, it resulted in substantial issues 

with superimposition. By using raw images, the PCA was agnostic to 

any spatial differences caused by movement or differences in face 

shape. As a result, changes say in the width of the face were simply 

encoded by superimposing wider cheeks over the images rather than 

directly changing the shape of the face.  

More sophisticated methods separate out shape and texture 

information which allow for changes in shape. These active appearance 

models (AAM, Cootes et al., 2001; Edwards et al., 1998) first align the 

shapes of the faces to give a ‘shape free’ (or rather shape normalised) 

texture map (or appearance). For instance, Burton and colleagues 

(2016) placed 82 landmarks onto various images of near-frontal faces, 
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which were then used to warp the shape of each input image to and an 

average template. The locations of the landmarks prior to warping are 

also stored. This provides two descriptors for each image: one 

describes the texture (RGB values) once spatially aligned to the 

template, and the other describes the spatial properties of the face prior 

to warping. In this case the spatial properties are encoded by two 

vectors: one containing the horizontal locations of the landmarks, and 

one the vertical locations. This pipeline has since been incorporated 

into the freely available InterFace software (Kramer et al., 2017), written 

in MATLAB. Both of the shape information and the texture information 

can then be reshaped into vectors. Often, these shape and texture 

vectors are entered into separate PCA analyses (Andrews et al., 2023; 

Burton et al., 2016; Chang & Tsao, 2017). Reconstructions are then 

made by summing the weighted components in each space and then 

warping the summed texture vector by the shape in the summed shape 

vector. Even just by normalising face shape, Burton and colleagues 

(1999) found a 12% increase in their model’s recognition accuracy 

compared to simply aligning images by eye position. 

While separating shape and texture into separate spaces can be 

helpful, it is not always necessary. One reason for separating them is 

that the vectors have different units and therefore the magnitudes differ. 

If combined, PCA can be biased in its estimates of the major sources of 

variation to the modality that has the greater variance in magnitude. 

Despite this, many studies have concatenated shape and texture 

deviations (Beridze, 2021; Cowe, 2003; Nagle et al., 2013; Scholes et 
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al., 2020; D. M. Watson & Johnston, 2022). Whilst a valid concern, it is 

also not one that appears to have dramatically affected our multi-view 

PCA work. We would likely see slightly different components if 

shape/motion and texture were separated, but the reconstructions seem 

accurate and seem to vary in both. The necessity to separate them may 

depend on the variability in the images. In our work the videos were 

captured in controlled conditions and factors such as lighting did not 

vary, so there was no need to separate out shape changes from say the 

effect of illumination. Separating texture and shape would have also led 

to additional complexity given that we were trying to combine motion 

across multiple viewpoints. Furthermore, combining shape and texture 

allows covariations between texture and shape to be extracted.  

To establish the shape features, many options are available. As 

described above, one could use a relatively small number of landmarks 

either placed manually or automatically using software such as 

OpenFace (Baltrusaitis et al., 2018). Alternatively, one could use 

warping methods that are agnostic to facial landmarks, such as the 

Multi-channel Gradient Model (McGM, Johnston et al., 1992, 1999). The 

McGM provides a much denser description of changes in shape, output 

as pair of warp fields each with a value for every pixel in the image. One 

outlines horizontal spatial information, the other vertical. More 

information about the McGM is provided in Chapter 4. 

Once the shapes have been aligned through landmarking, 

warping or otherwise, the interesting applications of PCA can begin, 
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such as passing information between spaces and learning covariations 

across different datasets. Below we have expanded on some of the 

uses mentioned in Chapter 1. 

Firstly, PCA can be used to learn the covariations across 

different datasets and modalities. For instance, Scholes et al (2020) 

learned how the external appearance of the face covaried with the 

internal structure of the vocal tract. Participants read out sentences in a 

recording studio, and separately during an MRI scan. Scholes et al then 

concatenated vectorised versions of the video frames with vectorised 

MR slices of the vocal tract. Both contained X/Y warp fields and texture 

deviations of the frames relative to the modality’s average. By 

concatenating the vectors that described these different modalities and 

entering the combined matrix into a single PCA they were able to 

assess how external changes in the face correlated with internal 

changes in the vocal tract. These covariations were captured in the 

components and thus the auto-associative memory of PCA allowed 

Scholes and colleagues to reconstruct the appearance of the vocal tract 

from the external image of the face and vice versa. The approach is 

equivalent to that used by Beridze (2021) to reconstruct facial motion 

across different views and is also the approach we use to expand 

Beridze’s work in Chapter 4.  

Information can also be mapped between separate spaces 

(Cowe, 2003; Griffin et al., 2011; Nagle et al., 2013). Griffin and 

colleagues constructed two PCA spaces, one for female and one for 
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male faces. They then took an image of a male face, say, and 

calculated the deviation from the average male image. The deviation 

vector was then projected into both spaces, simply calculating the inner 

product between the vector and the components. The weighted sums of 

the components were calculated and the average image for each 

gender added. These reconstructed images shared familial 

resemblance as the deviation vector loaded onto components 

expressing a similar change in the female space. These need not be 

the numerically corresponding components. If PCs 1, 3 and 6 were 

heavily loaded onto in the male space it would not have to be these 

components that were loaded onto in the female space.  

Similar methods were used by Cowe (2003) and Nagle and 

colleagues (2013) to map facial expressions and motion across different 

identities. Identity-specific spaces were first made by performing PCA 

on multiple vectorised images for each identity, with each input vector 

again containing X/Y warp fields and RGB texture information. In this 

case the origin was the mean facial representation for the given identity, 

and the components and deviation vectors coded changes in 

expression. A deviation vector for given frame for one person could be 

projected into their space and into the spaces of others, loading heavily 

onto components containing similar information and thus reconstructing 

similar expressions. 

In all cases (Cowe, 2003; Griffin et al., 2011; Nagle et al., 2013), 

however, there are limits to what can be reconstructed. Information can 
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only be reconstructed if it was on the span of information included in the 

training set. In the example in Figure 2.1d, the PCA space only spans 

two dimensions, and so any information the test vector might have 

about a third dimension is lost. In the case of face spaces, males vary in 

the presence and appearance of facial hair and so this will be coded in 

at least one component. The female space is much less likely to have 

any such experience, and so no components would represent facial 

hair. The reconstruction of a bearded individual from the female space 

will no longer have a beard. Likewise, expressions can only be 

reconstructed if similar expressions have been seen in both identities, 

or if they can be created through a combination of other expressions.  

As will be discussed more in Chapter 4, the fidelity of 

reconstruction also depends on the spatial correspondence when 

mapping between spaces. The cross-space reconstructions described 

(Cowe, 2003; Griffin et al., 2011; Nagle et al., 2013) work because the 

faces are all frontal and have sufficient spatial overlap through an affine 

transformation to align the positions of the eyes and the mouth.  

As well as reconstructing best approximations of input images 

one can also manipulate the weights of the loadings to change the 

appearance of a face. Once the loadings of an input face on the 

components are known, they can be increased or decreased to 

caricature or anti-caricature respectively. They can, for example, also 

be multiplied by -1 to make an anti-face (e.g., Blanz et al., 2000; 

Leopold et al., 2001), or -0.5 to make an anti-caricatured anti-face. 
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Similarly, appearance can be manipulated by changing the direction of 

an image in face space through changing the relative loadings on the 

components, or indeed certain components can be removed entirely. 

For example, by selectively ignoring components when making the 

reconstructions, Andrews and colleagues (2023) found a narrow band 

of components crucial for recognition.  

As discussed in the previous chapter, the orthogonality of PCA is 

particularly interesting in light of recent evidence in macaques showing 

that neural responses in the face patch AM are unaltered by changes 

orthogonal to the information the neuron preferentially responds to 

(Chang & Tsao, 2017). This ambivalence to orthogonal axes allows 

face processing to occur as a linear projection as in PCA.  

The next chapter will explore what happens and how face- and 

object-selective areas of the brain respond when loadings on the 

components in a face space are scaled beyond the realm of natural 

plausibility.  
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Chapter 3 fMRI evidence that hyper-

caricatured faces activate object-selective 

cortex 

3.1 Preface 

This chapter contains the published manuscript for an fMRI study 

we conducted looking at the BOLD response to faces over varying 

caricature level. Other than matching the format to the rest of the thesis, 

the manuscript has not been altered. There is therefore substantial 

overlap between in the introduction for this chapter and the main 

introduction. The paper has been published in Frontiers in Psychology 

and can be found here: https://doi.org/10.3389/fpsyg.2022.1035524.  

3.2 Abstract 

Many brain imaging studies have looked at the cortical 

responses to object categories and faces. A popular way to manipulate 

face stimuli is by using a "face space”, a high dimensional 

representation of individual face images, with the average face located 

at the origin. However, how the brain responds to faces that deviate 

substantially from average has not been much explored. Increasing the 

distance from the average (leading to increased caricaturing) could 

increase neural responses in face-selective regions, an idea supported 

by results from non-human primates. Here, we used a face space 

based on principal component analysis (PCA) to generate faces ranging 

from average to heavily caricatured. Using functional magnetic 

resonance imaging (fMRI), we first independently defined face-, object- 

and scene-selective areas with a localiser scan and then measured 

https://doi.org/10.3389/fpsyg.2022.1035524
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responses to parametrically caricatured faces. We also included 

conditions in which the images of faces were inverted. Interestingly in 

the right fusiform face area (FFA), we found that the patterns of fMRI 

response were more consistent as caricaturing increased. However, we 

found no consistent effect of either caricature level or facial inversion on 

the average fMRI response in the FFA or face-selective regions more 

broadly. In contrast, object-selective regions showed an increase in 

both the consistency of response pattern and the average fMRI 

response with increasing caricature level. This shows that caricatured 

faces recruit processing from regions typically defined as object-

selective, possibly through enhancing low-level properties that are 

characteristic of objects.  

3.3 Introduction 

In regular social interactions, we may encounter hundreds of 

faces every day. Most human observers can rapidly recognise the 

identity (Ramon et al., 2011), process the emotion (Leppänen & 

Hietanen, 2004), or form an impression of a person or their intentions 

(Bar et al., 2006; C. A. M. Sutherland et al., 2013; Willis & Todorov, 

2006) from visual information alone.  

It is estimated that humans know on average around 5000 faces 

(Jenkins et al., 2018) but despite much research, it is largely unknown 

how we encode all those familiar faces, in addition to all unfamiliar 

ones. Face space (Valentine, 1991; Valentine et al., 2016), an 

influential account of face representation, has been widely used to 
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study the neural representation of faces in humans (Carlin & 

Kriegeskorte, 2017; Loffler et al., 2005) and non-human primates 

(Chang & Tsao, 2017; Leopold et al., 2006). The idea has also found 

application in automatic face recognition systems (Deng et al., 2014; 

Sirovich & Kirby, 1987; Turk & Pentland, 1991; Zhu et al., 2013). 

Caricatured face images that deviate substantially from average, 

including artistic caricatures, evidently amplify characteristic features of 

faces. But it is unclear if and how face space is represented in the brain 

and what the exact neural representation of faces distant from the 

average face might be.  

In face space, a multidimensional space with a representation of 

an average face at the origin, individual face exemplars are thought of 

as points (at a certain distance and direction with respect to the origin). 

The dimensions of this space could be derived from discrete, 

descriptive changes in the shape or position of features (e.g., the 

distance between the eyes or the width of the mouth). Alternatively, the 

dimensions may reflect more abstract and global descriptors of shape 

and texture.  

In a face space representation, individual identities correspond to 

a given direction relative to the origin. The distance from the origin 

indicates how different a particular face is from the average. Faces 

whose representation is located a greater distance from the average 

are expected to generate stronger responses from the population of 

neurons sensitive to the given identity’s facial properties. This idea of 
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"norm-based” coding, coding relative to the average or norm, has 

received strong supporting evidence (e.g., see Anderson & Wilson, 

2005; Chang & Tsao, 2017; Jiang et al., 2006, 2007; Leopold et al., 

2001; Little et al., 2012; Rhodes & Jeffery, 2006; Webster & MacLeod, 

2011). Neurons representing facial information could form a basis to 

span this space, rather than being tuned to a particular identity. The 

projections of a face onto a set of basis neurons may code the different 

identities (Chang & Tsao, 2017) in terms of the relative firing rates of 

this population of neurons.  

The neural basis of norm-based coding has recently been 

clarified by new research in macaques (Koyano et al., 2021). Rhodes 

and Jeffery (2006) proposed that norm-based coding was based on two 

opponent channels with the average face activating each equally. The 

opponent channels can be associated with ‘axis coding’ that shows 

monotonic ramp-tuning through the norm in single-cell recordings 

(Chang & Tsao, 2017). Norm-based coding also gives rise to V-shaped 

coding (e.g., Freiwald & Hosoya, 2021) whereby there is a minimum 

response to the norm relative to more peripheral faces, regardless of 

direction. V-shaped coding was first demonstrated at a single cell level 

and at a population level by Leopold and colleagues (2006). Recently, 

evidence has shown that both mechanisms are present in the same set 

of individual neurons, with axis coding occurring approximately 100ms 

before V-shaped coding (Koyano et al., 2021). However, the V-shape 

was driven by a decrease in the firing rate to average faces, likely from 

lateral inhibition resulting from synchronous firing across the population 
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to the average face (Koyano et al., 2021). While axis coding supports 

the initial coding of the neuron, V-shaped responses reflect a 

consequence of many neurons firing to the average face in synchrony. 

Chang and Tsao (2017) show that rather than responding to 

specific identities, neurons in areas ML/MF of the macaque temporal 

lobe (middle lateral/middle fundus) and the more anterior AM (anterior 

medial) responded to combinations of shape and texture information. 

Firing rates increased linearly with the magnitude of a face’s projection 

onto the neuron’s preferred dimension or ‘axis’ of change, but only in 

the preferred direction of change; face stimuli along the same axis but 

on the opposite side of the mean decreased the neuron’s firing rate. 

Variations in facial appearance orthogonal to a neuron’s preferred 

dimension, however, did not change its firing rates. This invariance to 

changes along orthogonal axes may explain the lack of an aftereffect to 

faces that lie on a different trajectory from the adapting stimulus 

(Anderson & Wilson, 2005; Leopold et al., 2001; Rhodes & Jeffery, 

2006). From a theoretical standpoint, it allows face processing to be 

based on a highly efficient calculation (linear projection), requiring 

relatively few neurons to encode a very high-dimensional face space. 

Interestingly, it has also been found that faces activate a more broadly-

based representation within an object space. Recent work has shown 

that faces may be situated in the animate, ‘stubby’ quadrant of the 

identified 2D (animate/inanimate and stubby/spiky) space, although 

many aspects of this representation remain unknown (Bao et al., 2020).  
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Because faces are more densely clustered around the mean, 

those further from average should appear more distinctive (Valentine et 

al., 2016). This idea is supported by evidence showing that caricatures 

are rated as more distinctive than their veridical face or anti-caricature 

(K. Lee et al., 2000). If the dimensions are ordered in terms of the 

amount of facial variance they encode, then more distinctive faces may 

also load more onto less prevalent dimensions of variation, in which 

case direction in the space may also reflect distinctiveness (Hancock et 

al., 1996). The direction and distinctiveness in face space not only 

impacts recognition, but also the first impression that is attributed to that 

face (Olivola et al., 2014; Over & Cook, 2018), and can indicate poor 

childhood health or genetic disorders (Babovic-Vuksanovic et al., 2012; 

Dolci et al., 2021; Gad et al., 2008; Rhodes et al., 2001).  

Faces can also be made artificially more distinctive through 

caricaturing. Caricatures, versions of “veridical” face images that can be 

derived from extrapolations in face space, enhance behavioural 

performance over veridical faces, suggesting they may elicit stronger 

responses in the brain. Caricaturing line drawings and photographs 

enhances recognition (Kaufmann & Schweinberger, 2012; K. Lee et al., 

2000; Mauro & Kubovy, 1992; Rhodes et al., 1987; Schulz et al., 2012), 

whilst anti-caricaturing (making the stimuli more average) leads to 

longer reaction times (Rhodes et al., 1987; Schulz et al., 2012) and 

reduced identification accuracy (K. Lee et al., 2000). Interestingly, 

caricaturing even improves recognition accuracy in deep convolutional 

neural networks (M. Q. Hill et al., 2019). Subsequent recognition of 
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veridical faces is enhanced by caricaturing during encoding (Rodríguez 

et al., 2009), suggesting that exaggerating the features or configuration 

can help create representations for new faces. Furthermore, adapting to 

caricatures makes veridical images appear more average (Carbon & 

Leder, 2005), consistent with the idea that the subset of neurons 

processing caricatured faces are the same as for their veridical 

versions. Caricaturing exemplars from the norm also increases the EEG 

amplitude of the face-selective N170 and N250 ERP responses 

(Kaufmann & Schweinberger, 2012; Schulz et al., 2012), although other 

neural responses such as the P200, decreased with distance from 

average (Schulz et al., 2012), suggesting that some neural processes 

may encode averageness and typicality.  

Studies investigating distance from average on the neural 

response have adopted a variety of methods making direct comparison 

difficult (Carlin & Kriegeskorte, 2017; Chang & Tsao, 2017; Davidenko 

et al., 2012; Leopold et al., 2006; Loffler et al., 2005; McKone et al., 

2014; Susilo, McKone, & Edwards, 2010). Chang and Tsao (2017) 

found near-linear increases with increasing distance through the 

average in macaques using single unit recordings, as has prior 

research (Leopold et al., 2006, which included moderately caricatured 

faces). Likewise, some behavioural work in humans using adaptation 

has found that the strength of the aftereffect caused by adapting to 

faces with varying eye and mouth height increased linearly, even 

outside the range of natural variability (Susilo, McKone, & Edwards, 

2010). Other research suggests that the strength of identity aftereffects 
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following adaptation increases linearly, but then is slightly reduced but 

constant past the ‘naturalness boundary’ (McKone et al., 2014). Results 

from functional magnetic resonance imaging (fMRI) studies have found 

saturating responses to stimuli at a certain distance from average 

(Carlin & Kriegeskorte, 2017; Loffler et al., 2005). The faces in these 

studies did not extend far past the range of natural plausibility.  

Electrical brain stimulation of the fusiform face area (FFA, 

Kanwisher et al., 1997) produces metamorphosis of viewed faces 

(Parvizi et al., 2012), suggesting that hyperactivity in the FFA delivers 

the perception of a caricatured face and thus may represent distance in 

face space. The perceived change in shape is consistent with 

suggestions that the FFA is homologous to the area ML in macaques 

(Tsao et al., 2003, 2008, note the 2003 paper refers to area ML as 

macaque area pSTS) given that this region shows greater sensitivity to 

shape over texture (Chang & Tsao, 2017). There is debate, however, 

over exact homology between human and macaque face processing 

systems (Rossion & Taubert, 2019; Yovel & Freiwald, 2013). 

Hyper-caricatures, images that appear distorted beyond the 

range of natural appearance, can be generated by extrapolating in face 

space. In a face space constructed by principal components analysis 

(PCA), using weights much larger than those corresponding to typical 

faces shifts the representation further from the mean (see Figure 3.1). 

This allows the generation of a parametrically controlled set of realistic 

and hyper-caricatured faces that can be used as stimuli for brain 
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imaging. Specifically, we wanted to explore how the blood-oxygen 

dependent (BOLD) fMRI signal changes in face-selective cortex, 

including the FFA, with stimuli at various distances from average in face 

space and with concomitant changes in perceived naturalness. 

 
Figure 3.1. Caricaturing in face space. 

(A) An illustration of the three major axes of a principal component face 

space constructed from images of male faces. The origin in this space 

corresponds to the average face. Principal components (PC1 red, PC2 

green, PC3 blue) are ordered by variance explained in the underlying 

data. (B) Example images created by modulating each of the principal 

components independently. Positive and negative deviations from the 

origin result in opposing changes in reconstructed images, increasingly 

caricatured with larger distances from the origin (average face, centre). 
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We hypothesised that there would be an increase in the BOLD 

response amplitude in the FFA and other face-selective areas with 

increases in caricature level. To summarise the experimental design, 

participants first undertook a behavioural session in which they 

identified the point along different directions in the PCA space where 

the face stimuli switch from appearing natural to caricatured. The 

caricature level of stimuli for the fMRI session were then chosen to 

straddle those perceptual boundaries: some stimuli appeared closer to 

average and natural, whilst others appeared hyper-caricatured. Stimuli 

were presented in an event-related design to avoid adaptation to a 

specific axis (Davidenko et al., 2012; Loffler et al., 2005). Inverted 

(upside down) stimuli were also presented to identify low-level effects of 

increased caricaturing (Davidenko et al., 2012). Inverted faces contain 

the same low-level properties as their upright counterparts, but have 

been shown to decrease the fMRI response in face-selective areas 

(James et al., 2013; Nasr & Tootell, 2012; Yovel & Kanwisher, 2004, 

2005). We therefore considered that the effect of caricature level might 

be greater for upright faces than inverted faces.  

Our results show that in the right fusiform face area (FFA), the 

patterns of fMRI response were more consistent as caricaturing 

increased. However, we found no consistent effect of either caricature 

level or facial inversion on the average fMRI response in the FFA or 

face-selective regions more widely. Therefore, we also explored the 

response in object and scene-selective areas. In contrast to face-

selective regions, object-selective regions showed an increase in both 
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the consistency of response pattern as well as average fMRI response 

with increasing caricature level.  

3.4 Materials and methods 

3.4.1 Participants 

Nine healthy, neurologically intact volunteers with normal or 

corrected-to-normal vision were recruited for this study. Participants 

were aged between 22 and 36 years old (mean = 27 years, 6 months, 

SD = 4 years, 1 month). Three were female, six were male. No other 

demographic details were collected. The sample was a mix of 

postgraduate research students and staff from the School of 

Psychology at the University of Nottingham, recruited through a mix of 

convenience and snowball sampling. All participants gave fully informed 

consent and were screened for any MRI contraindicators before taking 

part in the experiment. The study was approved by the School’s ethics 

committee.  

3.4.2 Apparatus 

The experiment was built in MATLAB version 9.5 (R2018b) using 

the Psychophysics Toolbox extensions (Psychtoolbox-3 version 3.0.17, 

Brainard, 1997; Kleiner, 2007; Pelli, 1997). The behavioural experiment 

was run on a 13” MacBook Pro (1,280 x 800 pixels). Participants 

responded solely through moving and clicking the mouse. Viewing 

distance was approximately 60cm. For the MRI experiment, stimuli 

were presented on a 32”, 1,920 × 1,080 pixels BOLDscreen32 (CRS 

Ltd., Rochester, Kent) with a refresh rate of 120Hz at the back of the 
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bore through a mirror mounted on the head coil. Viewing distance was 

approximately 120cm.  

3.4.3 Stimuli 

Stimuli were made using two separate PCA spaces, one derived 

from 50 images of female faces and another from 50 male faces. The 

input images were all aligned using the positions of the eyes and then 

warped to the average of the faces using the Multi-channel Gradient 

Model (Johnston et al., 1992, 1999), providing shape-free textures as 

well as the x and y warp information to convert the texture of the face 

back to the individual’s facial shape. The x-y warp fields were appended 

to the shape-free textures and PCA was performed on these full warp-

texture vectors using a procedure described by Nagle and colleagues 

(2013). The PCA extracts texture and shape covariations and maps 

these commonalities into an orthogonal space. Face images can be 

reconstructed by taking the texture for a given position of the PCA 

space, and spatially displacing the pixels by the distances contained in 

the corresponding x-y warp fields (see Supplementary Figure 3.1). 

Reconstructed stimuli were 100 pixels wide by 120 pixels high. In the 

MRI experiment, the stimuli were feathered into the RGB background 

around the edges. 

To create the stimulus set for the experiment, the first 5 

components in each of the PCA spaces were manipulated. The PCA 

returns eigenvectors of unit length. It also returns values of how the 

input images load onto each of the components. The components in our 
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space were scaled by 1 standard deviation (SD) of the loadings, such 

that moving 1 ‘unit’ along a given component reflected a change of 1 

standard deviation of the loadings of the input set on that component.  

3.4.4 Behavioural task 

To establish the caricature levels at which faces turned from 

natural (physically plausible) to unnatural (physically implausible), we 

performed a behavioural experiment outside the scanner. This also 

helped to familiarise participants with the stimuli.  

Stimuli scaled the first five components of each gender’s PCA 

space in both the positive and negative directions (20 possible stimulus 

directions: 2 gender * 5 PCs * 2 directions), with each unique trial type 

presented 6 times in a random order - 120 trials in total. Stimuli were 

presented centrally on a grey background at half the screen height 

(approximately 11.2o of visual angle).  

Using a method of adjustment, participants identified the 

transition points to unnatural stimuli by moving a mouse. Stimuli were 

dynamically updated at a caricature level controlled by the horizontal 

position of the mouse. A red dot on a scale bar served as a visual cue. 

Before each trial, an animation showed the full range of possible 

caricaturing for that trial (see Supplementary Figure 3.2a, for 

demonstration videos see Supplementary Materials). Participants 

confirmed their choice with a mouse click and the next trials started 

after a 1000ms inter-stimulus interval. Because some components lead 
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to distortions faster than others, the caricaturing applied to the stimuli 

was based on some pilot results from 5 independent participants (see 

Supplementary Table 3.1). Randomly varying the maximal amount of 

caricaturing on each trial prevented the slider’s position being used to 

indicate the boundary for the given component.  

No fixation cross was presented so participants could freely 

explore the faces, and there was no time limit. Breaks were provided 

every 40 trials. On average participants took approximately 30 minutes 

to complete the experiment. 

 For each participant, the average naturalness boundary for each 

component was calculated by taking the mean transition point across 

the 6 repetitions. The value of this position on the scale translated to the 

number of standard deviations (in terms of the loadings of the input set 

onto the PCA space) from the origin of the space. The results of the first 

7 participants were used to scale the stimuli for the MRI experiment 

(see Supplementary Figure 3.3 and Supplementary Table 3.2). Results 

of all participants can be seen in Supplementary Table 3.3. 

3.4.5 MRI study 

3.4.5.1 Localiser and caricature scans 

The fMRI study consisted of two sets of scans. To find cortical 

regions responding to various categories of stimuli, we ran a standard 

functional localiser experiment using a randomised block design. We 



University of Nottingham  Chapter 3 

101 

also ran a set of event-related scans in which individual images of test 

stimuli were presented (“caricature scans”). 

In the functional localiser, images of faces, scenes and objects 

were presented in a block design. Each block consisted of 8 images 

from one category. Face stimuli included photographs of 24 different 

identities (12 male, 12 female) taken at frontal pose, and 45o rotated in 

yaw in either direction. Not all views of each identity were presented. 

Images of scenes included both natural and manmade scenes, 

including pictures of buildings, both from the inside and outside. Objects 

included both manmade and natural objects. Faces and objects were 

presented on greyscale masks to occupy the same space as the scene 

stimuli (see Supplementary Figure 3.4). All stimuli were presented 

centrally and extended to approximately +/- 8º of visual angle. Each 

stimulus was presented for 1s with no ISI, with 8 s between blocks 

giving an 8s ON, 8s OFF sequence. The experiment began and ended 

with 8s OFF. During the localiser a simple attention task was used: a 

black fixation cross was presented centrally throughout which 130 times 

within a scan turned red for 50 ms and participants had to respond by 

pressing any button on the button box. Any response within 1.5s was 

classed as a hit. Each run of the functional localiser took 6min and 32s. 
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Figure 3.2. Caricatured stimuli used and outline of the fMRI 

experiment. 

(A) Example images corresponding to the five scaling levels used in the 

MRI experiment. First column of images: stimuli that are 1 standard 

deviation (SD) closer to the average face. Second column: group-

averaged naturalness boundary for a given component (0SD). Other 

columns: images corresponding to +1, + 3 and +6SD away from 

average. Stimuli were presented on colour masks (Gaussian noise on 

each R, G, B channel, with mean and standard deviation derived from 

the face stimuli). (B) Timings for trials in the event-related caricature 

scan. The experiment started and ended with 8 s of fixation 

(dynamically changing coloured masks only). Stimuli were presented 

for 1s, followed by a variable inter-stimulus interval of 3, 5 or 7s. To 

control for attention, participants had to report colour changes of the 

fixation cross (black to red), which occurred randomly 42 times within 

each run. The background colour mask changed dynamically every 

second.  

During the caricature scan participants were presented with 

stimuli created by modulating the first three components of the male 

PCA space from the behavioural study. Using the averaged naturalness 

boundaries from the behavioural experiment, participants were shown 

faces that corresponded to the mean (across participants) naturalness 

boundary (0SDs), one SD (across participant responses) closer to the 
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average face (-1SD), or one, three or six SDs further away from the 

average (see Figure 3.2a). 

In each run, participants were presented with 5 caricature levels 

for each component (the average naturalness boundary plus -1, 0, +1, 

+3, and +6SDs). Picture plane inverted images of the most (+6SDs) and 

least caricatured (-1SD) face stimuli were also presented. This provided 

21 unique stimuli per run (15 upright and 6 inverted) which were 

repeated 3 times each in a run. The experiment started with 8s of rest. 

Subsequently stimuli were presented for 1s with a variable ISI of either 

3, 5, or 7s, with equal numbers of each ISI duration across each run. 

Trial timings can be seen in Figure 3.2b. The order of stimuli and ISI 

durations was pseudorandomised across runs. To ensure all runs were 

the same duration, the final stimulus of each run was always followed 

by the remaining ISI and a further 8 s of rest (minimum of 11s in total) to 

allow for the lag in the haemodynamic response. Each run lasted 6min 

and 34s. As in the localiser scan, participants responded when the 

centrally presented fixation cross turned red. This occurred 42 times 

during the run. 

3.4.5.2 Data acquisition 

For the localiser, functional data were acquired across 2 block-

design runs, each lasting 392s (196 volumes), one at the start of the 

scanning session and one at the end. Caricature scans were acquired 

across 3 event-related runs (4 for one participant), each lasting 394s 

(197 volumes). 
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Data were acquired on a 3T MRI scanner (Phillips Achieva) at 

the Sir Peter Mansfield Imaging Centre at the University of Nottingham 

using a standard 32 channel head coil. Functional (BOLD) images were 

acquired with 2D gradient echo EPI sequence (multiband 2, SENSE r = 

1). Parameters were TR/TE 2000ms/32ms, FA 77º. There were 34 axial 

slices; voxel size was 2.4 x 2.4 x 3mm, 80 x 80 voxels per slice. High-

resolution T1 MPRAGE structural images were obtained with the 

following parameters: TR/TE 8.1 ms/3.7 ms, 1 mm isotropic voxels, 256 

x 256 voxels, FOV = 256 x 256 mm, 160 sagittal slices.  

3.4.5.3 Data analysis 

We used a combination of tools to analyse fMRI data: mrTools 

(Gardner et al., 2018) and custom MATLAB code, as well as FreeSurfer 

(Fischl, 2012) for cortical segmentation and anatomically defined 

regions of interest and FSL (Jenkinson et al., 2012) for spatial 

smoothing and mask dilation. Analyses were performed in individual 

participant space.  

3.4.5.4 Anatomically restricting the analyses 

We focused our analysis on the occipito-temporal cortex, 

bilaterally, including the FFA, the OFA (occipital face area, Halgren et 

al., 1999; Puce et al., 1996) and pSTS (posterior superior temporal 

sulcus, Morris et al., 1996, 1998). We defined larger anatomical ROIs 

from FreeSurfer parcellations to span the majority of the occipito-

temporal cortex, spanning both hemispheres (combining 

‘lateraloccipital’, ‘fusiform’, ‘inferiortemporal’, ‘middletemporal’, 
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‘superiortemporal’, ‘bankssts’, ‘supramarginal’ and ‘inferiorparietal’ ROIs 

from the Deskian/Killiany atlas). ROIs were created by converting the 

parcellation labels into volumetric masks (FreeSurfer: 

mri_annotaion2label and mri_label2vol) and dilated using a single pass 

of a 3-voxel box kernel to fill any holes (fslmaths). 

3.4.5.5 Pre-processing 

The caricature and localiser scans were first motion corrected 

within and between scans in mrTools (Gardner et al., 2018) using the 

mean volume of the second caricature scan (mid-point of the scanning 

session) as a reference frame. Motion correction used linear 

interpolation and drift correction was applied. The motion corrected 

functional runs were then spatially aligned to the participants’ 

anatomical scans. The localiser data was spatially smoothed (3D 

Gaussian, FWHM 5mm). For the caricature data, voxelwise data was 

extracted from the face, object, and scene-selective ROIs. For the 

univariate analysis and multivariate pattern analysis on the data no 

spatial smoothing was applied. 

For both the localiser and caricature scans, data were converted 

to percentage signal change by subtracting the mean intensity for each 

voxel across the scan, and dividing by the mean ([x-mean]/mean), 

temporally high-pass filtered (cut-off 0.01 Hz) and, for the univariate 

analysis, concatenated over scans, taking care to keep track to the 

transition points between scans. This allowed for the GLM analysis to 
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be reframed in block matrices, requiring only one GLM per set of 

localiser and caricature scans.  

3.4.5.6 Defining the FFA and face-selective, object-selective, and 

scene-selective voxels 

To define participant-specific functional ROIs, we used a GLM 

approach and restricted the analysis to the anatomical ROI described 

above. Analyses were performed in individual scan space. The 3 

explanatory variables (EVs) were faces, objects and scenes, specified 

by 8s ON boxcar regressors convolved with a double gamma 

haemodynamic response function (HRF). To define face-selective areas 

responses to face blocks were compared to blocks of objects and 

scenes (faces > objects + scenes). Voxels that responded significantly 

more to faces over objects and scenes were defined as face-selective. 

Corresponding contrasts then defined object-selective (objects > faces 

+ scenes) and scene-selective areas (scenes > faces + objects). We 

used family-wise error (FWE) correction to account for multiple 

comparisons. 

The functional ROIs were then defined on flat map 

representations of the corresponding statistical maps. A cluster 

corresponding to the FFA was present in each participant bilaterally (for 

details see Supplementary Table 3.4), however, in some participants, 

the boundaries were less clear, and even with family-wise error 

correction extended further along the fusiform gyrus and even into the 

neighbouring sulcus. In these cases, the FFA was defined as one 
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contiguous cluster within a region restricted anatomically to the fusiform 

gyrus (from a FreeSurfer parcellation, FFA definition in each participant 

can be seen in Supplementary Figure 3.5). The pattern of response 

elsewhere however was more variable. Therefore, rather than trying to 

identify spatially consistent ROIs across participants, we simply 

allocated voxels to the 3 categories ‘face-selective’, ‘object-selective’ 

and ‘scene-selective’ based on the contrasts above. Face-selective 

voxels included the FFA. Voxels that responded significantly to more 

than one contrast were removed, such that each ROI only contained 

voxels that exclusively appeared for that contrast. Functional ROIs from 

one participant can be seen in Figure 3.3b-d.  

3.4.5.7 Univariate analysis 

To assess the effect of caricature level in the FFA, and face-, 

object- and scene-selective areas, we first used a deconvolution 

analysis (e.g., see Besle et al., 2013; Gardner et al., 2005). This 

provided an estimate of the event-related BOLD response for each of 

the 7 stimulus types (5 caricature levels, upright images; 2 inverted 

images). From these event-related responses (see Figure 3.3e), we 

calculated an index of the response amplitude of the first 5 TRs after 

stimulus onset, by first normalising to the level at stimulus onset (the 

first TR) and then obtaining the mean signed deviation (MSD) across 

the subsequent four TRs. 
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Figure 3.3. Defining face, object, and scene-selective regions and 

event-related fMRI responses in right FFA. 

(A) Posterior view of left and right inflated cortical hemispheres. 

Camera symbol indicates the view in panels B-D. Light grey, gyri; dark 

grey sulci. Regions in colour, Freesurfer parcellations used to form the 

bilateral occipitotemporal ROI, including lateral occipital (blue), fusiform 

gyrus (yellow), inferior temporal (pink), middle temporal (brown), bank 

of the superior temporal sulcus (dark green), inferior parietal (purple) 

and supramarginal gyrus (light green). (B) Face-selective regions in 

one participant based on the contrast faces > objects + scenes from the 

localiser scans (FFA, fusiform face area). Object-selective (C) and 

scene-selective (D) voxels defined using the contrasts objects > faces + 

scenes, and scenes > faces + objects, respectively. The colour bars in 

B-D show the Z-statistic for the contrast, thresholded at Z > 1.64 

(corresponding to p < .05, with FWE correction). Maps show the voxels 

exclusively defined by these contrasts, with any overlap removed. (E) 

Response amplitude in the right FFA across participants from stimulus 

onset as a function of time for the five different levels of caricaturing 

(upright only) from the deconvolution analysis. Y values show the beta-

coefficients from the deconvolution, normalized to t=0. Thin lines show 

the average timeseries for each participant. Thick lines show the group 

average, smoothed over time (for display purposes only). Shaded areas 

show ±1 SEM across participants. Solid grey line shows Y=0. Colour 

represents the caricature level. 

3.4.5.8 Multivariate pattern analysis 

To look at patterns of response across the regions of interest, we 

also performed a correlation-based multivariate pattern analysis 

(MVPA). We compared the correlations in response patterns (beta 

values) between all 5 caricature levels of upright stimuli. The analysis 
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was performed on the left and right FFA, left and right face-selective 

cortex, and left and right object-selective cortex. 

The β values were obtained for each caricature scan repeat 

separately using a GLM similar to that described above, but assuming a 

canonical haemodynamic response function (double gamma). There 

were 5 explanatory variables (one for each upright caricature condition). 

The two additional conditions (inverted stimuli) were included as 

nuisance regressors. For each region of interest in the analysis, we 

then calculated the correlations of the β coefficient maps across 

regressors (avoiding within-scan comparisons). We then applied 

Fisher’s transform to convert from correlation, r, to Z and averaged 

these Z-values across scans for each participant separately. 

3.5 Results 

The average fMRI response in the FFA, as well as face-selective 

voxels overall, did not show a consistent change with either caricature 

level or inversion, as assessed by univariate analysis and ANOVA. 

Interestingly, however, in the right fusiform face area (FFA), we found 

that the patterns of fMRI response were more consistent as caricaturing 

increased as assessed by multivariate pattern analysis (MVPA). In 

contrast, object-selective regions showed an increase in both average 

fMRI response with increasing caricature level (univariate analysis), and 

the consistency of response pattern (MVPA).  
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3.5.1 Univariate analyses 

To assess the effects of caricature level and inversion in the FFA 

we performed two separate within-subjects ANOVAs, one to assess the 

effect of caricature level and orientation using the least and most 

caricatured faces, and one to assess the effect of caricature level using 

all 5 caricature levels of upright stimuli. The first was a 2 x 2 x 2 ANOVA 

with hemisphere (left, right), stimulus orientation (upright, inverted) and 

caricature level (-1SD, +6SD), the second a 2 x 5 ANOVA with 

hemisphere (left, right) and caricature level (all 5 levels of upright 

caricature). ANOVAs were performed using IBM SPSS Statistics 

version 25. 

To investigate the response amplitudes in the face-, object- and 

scene-selective voxels we performed the same two ANOVAs as for the 

FFA but including ROI as an additional independent variable with 3 

levels (face-selective, object-selective, and scene-selective). 

3.5.1.1 Caricature level in the FFA. 

The event-related response profiles showed a clear trial-locked 

response to the 5 caricature levels across all regions. Figure 3.3e 

shows the average deconvolution timeseries for the right FFA across 

subjects (thick lines), as well as traces for individual participants (thin 

lines). 
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Figure 3.4. Response amplitudes in the right FFA for different 

stimulus conditions. 

(A) Average response amplitude in the left (red/pink) and right 

(orange/yellow) FFA to the most (+6SD) and least (-1SD) caricatured 

faces in both the upright and inverted conditions. (B) Average response 

amplitudes in the left (red) and right (orange) FFA to each of the five 

caricature conditions for the upright stimuli only. Bars are grouped 

according to deviations from the average naturalness boundary (-1SD, 

closer to the average face; +6SD is highly caricatured). Y axes show 

the response amplitude index, measured by offsetting the β coefficients 

from the deconvolution analysis by t0, and averaging t1-4. Error bars 

show ±1SEM across participants.  

When assessing caricature level (-1SD, +6SD), including both 

upright and inverted stimuli, there was no main effect of caricature level 

(F(1,8) = 3.08, p = .117, ηp
2 = .28), but there was a significant interaction 

between hemisphere and caricature level (F(1,8) = 5.86, p = .042, 
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ηp
2 = .42). The interaction was driven by a stronger increase in the 

response amplitude in the right FFA than the left FFA (t(8) = 2.42, 

p = .042) to an increase in caricature level (Figure 3.4a), although the 

effect of caricature level in the right FFA was marginal (F(1,8) = 5.18, 

p = .052, ηp
2 = .39). 

We found no interaction between hemisphere and caricature 

level when we assessed all 5 levels of the upright stimuli (F(4,32) = 

1.59, p = .200, ηp
2 = .17, Figure 3.4b), nor a main effect of caricature 

level (F(4,32) = 1.99, p = .119, ηp
2 = .20).  

3.5.1.2 Caricature level in face, object and scene-selective regions. 

We also compared responses across face-selective regions 

more generally, as well as in object- and scene-selective regions (see 

Supplementary Table 3.5 for details). The data are shown in Figure 3.5. 

We found no significant main effect of caricature level when 

assessing the effect of caricature level (extremes) and inversion (Figure 

3.5a), but there was a significant interaction with ROI (F(2,16) = 6.08, 

p = .011, ηp
2 = .43). This interaction showed the effect of caricature level 

was only present in the object-selective cortex, with the object-selective 

cortex increasing in response amplitude with an increase in caricature 

level (t(8) = 2.49, p = .038). 
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Figure 3.5. Response amplitudes to caricatured faces in face-, 

object- and scene-selective voxels. 

(A) Average response amplitudes for least (-1SD) and most (+6SD) 

caricatured stimuli. Data are grouped by image orientation (upright, 

inverted) and region of interest (face-, object-, and scene-selective 

voxels across hemispheres). (B) Average response amplitude to the 5 

levels of caricatured, upright faces in face-selective (red), object-

selective (blue) and scene-selective (green) voxels. As there was no 

interaction with hemisphere the response amplitudes are averaged 

across hemispheres. Y axes show the response amplitude index, 

measured by offsetting the β coefficients from the deconvolution 

analysis by t0, and averaging t1-4. Error bars show ±1SEM of the 

between-subjects variance. 

When assessing all 5 levels of upright caricature, there was a 

main effect of caricature level (F(4,32) = 3.17, p = .027, ηp
2 = .28) driven 

by a general increase in response amplitude as a function of caricature 

level, which was particularly prominent for highly caricatured (+6SD) 

faces. The ANOVA showed there to be a positive linear trend between 
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response amplitude and caricature level (F(1,8) = 16.83, p = .003, 

ηp
2 = .68). Highly caricatured faces (+6SD) elicited a stronger response 

than -1SD (t(8) = 4.83, p = .001), 0SD (t(8) = 2.47, p = .039) and +1SD 

(t(8) = 3.22, p = .012) caricatures, although only the first of these 

survived Bonferroni-correction (a = .005). 

Although the interaction did not reach significance (F(8,64) = 

1.96, p = .066, ηp
2 = .20), the overall effect was primarily driven by 

object-selective regions. The data in Figure 3.5b shows a constant 

response across caricature level in face-selective and scene-selective 

areas, but an increase in the response amplitude with increasing 

caricature level in the object-selective areas. To support this, separate 

ANOVAs for each ROI revealed that in the face-selective and scene-

selective regions there was no effect of hemisphere, caricature, nor any 

interaction. In the object-selective regions there was no main effect of 

hemisphere nor interaction, but there was a significant effect of the 

caricature condition (F(4,32) = 4.76, p = .004, ηp
2 = .37) paired with a 

positive linear effect (F(1,8) = 26.69, p = .001, ηp
2 = .77). Highly 

caricatured faces (+6SD) again elicited a stronger response over -1SD 

(t(8) = 5.31, p = .001), 0SD (t(8) = 2.82, p = .023) and +1SD faces 

(t(8) = 3.97, p = .004). The difference between +6SD and 0SD was not 

significant when correcting for multiple comparisons (a = .005). 

Interestingly faces on the naturalness boundary (0SD) also elicited a 

greater response than the most average (-1SD) faces (t(8) = 2.58, 

p = .032). 
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3.5.1.3 Effects of ROI, orientation, and hemisphere. 

We found that there was a decrease in response amplitude from 

face, to object, to scene-selective cortex in response to our face stimuli. 

Main effects of ROI were significant when assessing the response to 

upright and inverted, -1SD and +6SD caricatured stimuli (F(1.27,10.12) 

= 9.63, p = .008, ηp
2 = .55, Greenhouse-Geisser correction applied) and 

when assessing all 5 levels of upright stimuli (F(2,16) = 9.95, p = .002, 

ηp
2 = .55). All pairwise comparisons were significant prior to correction 

(all p < .046) with the difference between face and scene-selective 

regions surviving correction (a = .017) in both analyses (both p < .012). 

We found no main effects of, nor interactions with, orientation in 

any of our ROIs, and there were also no significant main effects of 

hemisphere. Generally, there was a greater response amplitude in the 

right hemisphere ROIs, which was most notable in the FFA when 

assessing the response to all five upright caricature levels (F(1,8) = 

4.96, p = .057, ηp
2 = .38). 
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Figure 3.6. MVPA results. 

Plots showing the Fisher’s Z for the correlation coefficients between β 

maps corresponding to the 5 upright levels of caricature from the MVPA 

analysis in the left FFA (A), the left face-selective voxels (B), left object-

selective voxels (C), the right FFA (D), right face-selective voxels (E), 

and the right object-selective voxels (F). The diagonal reflects the 

average correlations between the response patterns to stimuli of the 

same caricature level, while the off-diagonal reflects correlations 

between different caricature levels. Only between-scan correlations 

were assessed. Values in bold and underlined were significantly greater 

than 0 at a group level, measured using one-sample t-tests (Bonferroni-

corrected a = .003̇). Font colour for display purposes only. 

3.5.2 Multivariate pattern analysis 

The results of the correlation analysis can be seen in Figure 3.6. 

In each ROI, we tested whether there was a significant positive 

correlation in the response patterns for each pair of caricature levels. 

Significance was assessed using one-sample t-tests to test if the group-



University of Nottingham  Chapter 3 

118 

level Z-value was significantly greater than 0 (Bonferroni-corrected 

a = .003̇) and is indicated by bold, underlined values in Figure 6. We 

then assessed how the response patterns varied as a function of 

caricature level using a one-way within-subjects ANOVA with the 5 

levels of ‘same’ caricature correlations (i.e., the diagonals in Figure 3.6) 

as the independent variable. 

3.5.2.1 Caricature level in the FFA 

In the right FFA, the correlation coefficient (converted to Fisher’s 

Z) increased as a function of caricature level (Figure 3.6d), supported 

by a significant positive linear trend (F(1,8) = 7. 60, p = .025, ηp
2= .49), 

indicating increasing consistency in the patterns of responses between 

stimulus categories including highly caricatured faces. In the left FFA, 

many of the correlations were significant at a group level, but the overall 

increase with caricature level, as seen in the right FFA, was not. 

3.5.2.2 Caricature level in face and object-selective cortex 

When looking at the consistency of response patterns in face 

and object-selective regions more broadly, we found that only object-

selective regions bilaterally showed an increase in consistency with 

caricature level. Right face-selective regions were sensitive to 

caricature level, but the change in response pattern was less clear. 

In the left face-selective regions there was no significant effect of 

caricature level on the correlations. In the right face-selective cortex 

there was a significant main effect of caricature level (F(4,32) = 5.06, 
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p = .003, ηp
2 = .39) however the response profile was less clear than in 

the right FFA.  

In both the left and the right object-selective regions there was a 

positive linear trend in the correlation to same caricature level trials as a 

function of caricature level (left: F(1,8) = 21.91, p = .002, ηp
2 = .73; right: 

F(1,8) = 10.09, p = .013, ηp
2 = .56). At the group level however, no       

Z-values were greater than 0 in the left object-selective cortex. In the 

right hemisphere only correlations between +3SD and +3SD stimuli and 

+3SD and +6SD stimuli were significant. 

3.6 Discussion 

We investigated the effect of caricaturing on the fMRI response 

in visual areas defined by preference to faces, objects, and scenes. 

Based on evidence of ramp coding in single cell recordings in 

macaques (Chang & Tsao, 2017; Leopold et al., 2006) to face stimuli of 

increasing distance from the mean face in the neuron’s preferred 

direction of change, we reasoned that there may be an increase in the 

response amplitude of the FFA with increasing caricature level, even 

when faces appeared heavily distorted. 

Surprisingly, we found no clear change in the average response 

amplitude in the FFA, or face-selective cortex more broadly, with 

increasing caricature level. In contrast, we found an increase in 

response in object-selective cortex, particularly for highly caricatured 
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faces. There was no significant change in response in scene-selective 

areas. 

An increase in the consistency of the response pattern in object-

selective cortex was also observed with increasing caricature level, 

measured using MVPA. Caricaturing therefore both enhanced the 

average response, and the consistency in which the stimuli were 

processed within object-selective cortex. How or why caricatured faces 

activate object-selective cortex is unclear. 

The results seen in object-selective regions may result from 

changes to low-level or even mid-level properties that vary with 

caricature level, rather than a response to caricatured faces per se or 

the assignment of hyper-caricatured faces to a separate object class 

other than faces. Higher-level visual regions, including the FFA (Weibert 

et al., 2018), are sensitive to the lower-level image properties that are 

characteristic of different categories of objects (see Andrews et al., 

2015). Caricaturing may have therefore emphasised particular low or 

mid-level properties that object-selective neurons are tuned to, such as 

certain shapes or curvatures that distinguish animate faces, bodies and 

animals from inanimate objects (Yetter et al., 2021; Yue et al., 2020; 

Zachariou et al., 2018) or changes in bilateral symmetry (Bona et al., 

2015). The areas defined as object-selective responded more to objects 

than faces and scenes despite many voxels responding to all three 

categories (see Supplementary Figure 3.6) so the changes with 

caricature level may have generated stimulus properties that are more 
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characteristic of generic objects than faces. The changes in our stimuli, 

including changes in texture, colour (Lafer-Sousa et al., 2016), shape, 

curvature (Yetter et al., 2021; Yue et al., 2020) and external contours, 

as well as higher-level changes, may have caused a shift in object-

space (Bao et al., 2020). 

Regardless of the exact mechanism for why or how caricatures 

activate object-selective cortex, it is evident that object-selective cortex 

is sensitive to caricature level, raising the possibility of its involvement in 

the perceptual evaluation of faces. To our knowledge, these are the first 

findings that show that caricatured faces elicit increased responses in 

regions typically involved in processing objects. These findings can 

potentially have important implications for understanding how we might 

form impressions from or recognise more distinctive faces. Although the 

faces in our experiment were artificially caricatured, faces in the real 

world can be naturally distinctive too, for example a number of (often 

genetic) disorders give rise to naturally distinctive faces (Babovic-

Vuksanovic et al., 2012; Dolci et al., 2021; Gad et al., 2008). Our 

findings therefore raise a number of questions as to whether, and if so 

how, object-selective cortex contributes to our social evaluation of 

faces. 

Returning to face-selective cortex, we initially found evidence 

that our most caricatured faces elicited a stronger response in the right 

FFA (but not left) compared to our least caricatured faces when we 

included both upright and inverted stimuli. This interaction between 
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hemispheres is potentially consistent with the idea of a greater 

involvement of the right FFA in face perception, for example, electrical 

brain stimulation only impacts perception of faces when applied to the 

right FFA and not the left (Rangarajan et al., 2014). 

We found no evidence of an effect of caricature level in face-

selective cortex however when we assessed for a graded change in 

response amplitude across the complete range of caricature levels; 

there was no effect of hemisphere, caricature level nor an interaction, in 

either the FFA, specifically, or face-selective regions more widely. This 

may reflect a plateau in the BOLD response (Carlin & Kriegeskorte, 

2017; Loffler et al., 2005; McKone et al., 2014). Since most of the 

stimuli were ‘caricatured’ to some degree the results could reflect 

response saturation; even the least caricatured stimuli could be 

identified as a particular individual. Alternatively, since Chang and Tsao 

(2017) report ramp-like tuned cells which increase their firing along an 

axis passing through the mean face, increasing caricature level may 

increase the firing of some cells while reducing the firing of others, 

leading to no net increase in the response across the population within 

a voxel. 

Interestingly, the multivariate pattern of response in the right FFA 

became more consistent with increasing caricature level. This suggests 

a pattern of systematic increases and decreases in response rate 

across a population of cells. For the right face-selective regions more 

broadly, the change in spatial consistency was less clear, with slightly 
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increased consistency for more caricatured faces, but decreased spatial 

consistency for intermediate caricatures. In the left hemisphere there 

was no effect of caricature level, consistent with the functional 

differences in the left and right FFA. The increase in spatial consistency 

in the absence of an average increase in the fMRI response in the right 

FFA is particularly interesting since stimuli at the same caricature level 

could vary substantially in terms of their low-level properties, given that 

different PCA components were modulated. Despite these low-level 

differences, which became more pronounced as caricaturing increased, 

the response pattern became significantly more consistent. This 

indicates that the increase in the overall consistency of the pattern was 

maintained regardless of any variation in the individual patterns 

themselves. Likewise, the general increase in consistency appeared to 

hold regardless of whether we compared the response patterns 

between the same caricature level, or different caricature levels. This 

suggests that different levels of caricature are processed by the same 

set of voxels, and is consistent with the idea that voxel-wise responses 

scale with varying distances from the average in a face space. 

Our analysis of inversion showed no effect of orientation nor 

interaction with it. The lack of effect of orientation is at odds with some 

prior research showing an inversion effect in FFA (James et al., 2013; 

Nasr & Tootell, 2012; Yovel & Kanwisher, 2004, 2005), but is in line with 

other findings in literature suggesting that the inversion effect is weak 

(Gilaie-Dotan et al., 2010) or even absent (e.g., see Aguirre et al., 1999; 

Epstein et al., 2006; Haxby et al., 1999). The initial evidence of an effect 
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of caricature level alongside a lack of inversion effect potentially 

suggests that the FFA is sensitive to changes in low-level properties, 

consistent with prior evidence (Weibert et al., 2018) and that this may 

not be specific to upright faces. 

To conclude, in the FFA and face-selective areas more 

generally, we found no substantive effect of caricature level on the 

average response amplitude, although we did find evidence that the 

right FFA is sensitive to caricature level using MVPA, with the 

consistency of the response pattern increasing with caricature level. In 

contrast, we found a significant increase in both the response pattern 

consistency and the average response amplitude in object-selective 

cortex to increasing caricature level. This suggests that caricatured 

faces might recruit cortex typically defined as object-selective, 

potentially because they share more low-level features with objects. 

This may have implications for understanding how distinctive faces 

might be processed, both in terms of recognition and forming 

impressions. 

3.7 Supplementary materials 

3.7.1 Supplementary videos 

Supplementary videos can be found using the link below:  

https://www.dropbox.com/scl/fo/kaqognq18e0a5vira9syo/h?rlkey=m0k5

mrhvglk69rpjdy92lk5ha&dl=0 

https://www.dropbox.com/scl/fo/kaqognq18e0a5vira9syo/h?rlkey=m0k5mrhvglk69rpjdy92lk5ha&dl=0
https://www.dropbox.com/scl/fo/kaqognq18e0a5vira9syo/h?rlkey=m0k5mrhvglk69rpjdy92lk5ha&dl=0
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Within the Supplementary Materials folder, navigate to 

‘Supplementary_Videos/Chapter_3_fMRI_study’. This folder contains 

videos of the first three components of the male space. There is also a 

Word document to provide information about the videos. 

3.7.2 Supplementary figures 

 
Supplementary Figure 3.1. Creating stimuli by adding deviation 

vectors to the origin of face space.  

Stimuli were created by adding texture and shape deviations to the 

image corresponding to the origin of the PCA-based face space. The 

texture deviation stores how much of each RGB channel is to be 

added to the average face for each pixel. Note that for easier 

visualisation the RGB changes have been exaggerated here. The x-y 

warp fields contain the horizontal (x) and vertical (y) pixel 

displacements necessary to distort the average face shape. Lighter 

areas show leftward and upward displacements, while darker areas 

show rightward and downward displacements. 
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Supplementary Figure 3.2. Depiction of behavioural experiment.  

Trial timings (A) showing an inter-trial interval of 1 second, followed by 

the demonstration video lasting 1.5s, followed by a 1s inter-stimulus 

interval before the appearance of the manipulable stimulus. The 

demonstration video starts with a close to average face that becomes 

heavily caricatured and then returns to average. (B) The manipulable 

stimulus is presented until response and can be manipulated by the 

participant to appear more or less average by moving the mouse left to 

right respectively. When the participant has found the boundary 

between natural/physically plausible and unnatural/physically 

implausible the participant responds by clicking either key on the 

mouse.  
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Supplementary Figure 3.3. Group average naturalness 

boundaries.  

Stimuli representing the average transition point for the first seven 

participants between natural, physically plausible and unnatural, 

physically implausible. Rows, two directions (sign) in PCA space for 

each gender. Columns, five principal components scaled according to 

the transition points. Numbers, average transition point in terms of the 

number of standard deviations in PCA space (with respect to the input 

data) along the given component. Numbers in parentheses, the 

between-subjects standard deviation from the behavioural results.  
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Supplementary Figure 3.4. Example stimuli for the localiser scan. 

Example stimuli for the localiser scan showing faces, objects, 

manmade scenes and natural scenes. Manmade and natural scenes 

formed one block type encompassing scenes as a whole.  
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Supplementary Figure 3.5. Defining the FFA in all participants.  

The two leftmost images depict the current view, with images taken 

from underneath the ventral surface. The left and right image of each 

pair show the left and right hemispheres respectively. The images S1-

S9 show the FFA definition in each participant (the region surrounded 

by the black border). The statistical maps show the face-selective 

regions defined by the contrast faces > objects + scenes that survived 

FWE correction. Maps show the z-values of the contrasts.  
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Supplementary Figure 3.6. Violin plots showing the distribution of 

responses to faces, objects and scenes. 

Violin plots to show the distribution of responses to faces (red), objects 

(blue) and scenes (green) compared to baseline (t-value of the 

contrast). (A-C) The responses in the face-selective, object-selective 

and scene-selective voxels of the left temporal cortex. (D-F) The 

responses in the right temporal cortex. Above the zero-line show 

greater responses to the stimuli than baseline, beneath show inhibited 

responses to the stimuli compared to baseline. ROIs were defined by 

contrasting the response between different stimulus classes, e.g., 

face-selective was defined as voxels responding significantly more to 

faces than objects and scenes. Voxels that responded significantly in 

more than one of these contrasts were excluded. 
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3.7.3 Supplementary tables 

 
Supplementary Table 3.1. Pilot data: Average naturalness 

boundaries across each stimulus type (between subject SDs). 

Pilot data for the behavioural study, showing the group (n=5) average 

naturalness boundary (between-subjects SD) for the 5 PC components 

for male and female spaces, in both the positive and negative 

directions. These values were rounded to 0.d.p and used to scale the 

stimuli in the main experiment. Stimuli in the main experiment started 

at 0.3x the boundaries in the table, and scaled to a random value 

between 1.3x and 1.6x the boundaries. 

 
Supplementary Table 3.2. Average naturalness boundaries across 

the different components for the first 7 participants. 

Values shows the means and between-subjects standard deviations of 

the point at which the first seven participants indicated the face sits on 

the boundary between natural and physically plausible and unnatural 

and physically implausible. The units are the number of standard 

deviations of the loadings of the input set back to into the PCA space 

from the average face. Note that these are the results from the first 7 

participants as these were the results used to generate the stimuli for 

the MRI experiment. 
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Supplementary Table 3.4. Volumes (mm3) and the number of 

voxels within the left and right FFA. 

Bold indicates the hemisphere in which the FFA is larger within each 

participant. The FFA was defined by presenting voxels that survived 

FWE correction for faces > objects + scenes on a flat map, and then 

hand-drawing an ROI around contiguous voxels within the fusiform 

gyrus. 
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Supplementary Table 3.5. Number of voxels within face-, object- 

and scene-selective regions. 

The number of voxels defined as face-, object- and scene-selective 

within the occipitotemporal anatomical ROI defined by the contrasts: 

faces > objects + scenes; objects > faces + scenes; scenes > faces + 

objects. Only voxels that survived FWE correction were included. The 

average shows the mean number of voxels along with the standard 

deviation (SD). 

 

Excel files of the supplementary tables can also be found in the 

Supplementary Materials folder. 



University of Nottingham  Chapter 4 

135 

Chapter 4 A multi-view PCA space for 

representing and reconstructing dynamic 

expressions across views 

4.1 Preface 

The previous chapter assessed one aspect of face space as a 

linear projection machine by investigating the fMRI response as faces 

varied in caricature level relative to the origin of an identity-general 

space. The current chapter addresses a different aspect, addressing 

how view-invariance for facial motion might be achieved and detailing a 

bio-inspired model that can represent and reconstruct facial motion 

across changes in view. 

4.2 Introduction 

Given the evidence of view-invariant cortical responses (e.g., 

Chang & Tsao, 2017; Freiwald & Tsao, 2010; Meyers et al., 2015) and 

the behavioural evidence that adaptation aftereffects transfer across 

views (Jiang et al., 2006, 2007) it is clear that faces are not processed 

solely in a view-specific manner (although see Benton et al., 2006; 

Jeffery et al., 2006). Many strategies for achieving view-invariance exist 

in computational models, despite still being a stumbling block (Ding & 

Tao, 2016), but how the brain achieves view-invariance is not yet 

established. Humans might be able to mentally rotate faces (O’Toole et 

al., 1998), however it is unknown whether or how the brain performs a 

‘frontalisation’ procedure, either consciously or automatically, or if it 

holds a 3D or a series of 2D representations. The aim of this chapter is 

not to formulate a conclusive answer about what method the brain 
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takes. Instead, this chapter expands on a current 2D, view-based model 

(Beridze, 2021) to assess if a biologically plausible mechanism can be 

achieved for learning and reconstructing facial motion across 

viewpoints. Motion provides a large source of within-person variation 

and cues to identity (e.g., H. Hill & Johnston, 2001; Knight & Johnston, 

1997), so uncovering how motion might be integrated across views can 

enhance our understanding of expression, speech and identity 

perception and lead to technological advances such as in automatic 

speech-reading and face recognition systems.  

The multiple appearance model created by Beridze (2021) is a 

PCA-based, simple linear space and projection mechanism. Given that 

a simple linear projection model (Chang & Tsao, 2017), like PCA, can 

account for neural responses better than numerous neural networks 

(Chang et al., 2021) and given inconclusive evidence for a 3D 

representation, the current work focused on expanding the 2D, view-

based methods of Beridze.  

In the first model, Beridze (2021) created separate view-specific 

spaces and tried to map deviation vectors from one space to another, 

akin to how Cowe (2003) and Nagle et al (2013) mapped expressions 

across different identities and how Griffin et al (2011) created familial 

resemblance across genders. This technique is discussed more in the 

description of our first two models, but to summarise the model only 

worked well for small viewpoint changes.  
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The subsequent method by Beridze concatenated multiple 

viewpoints of simultaneously recorded videos together prior to 

performing PCA, creating a ‘multiple appearance model’. By projecting 

one viewpoint onto the components Beridze was able to reconstruct the 

expression in the other viewpoints, even over large rotations. However, 

whilst a good starting point, the model was not biologically plausible as 

it required simultaneous exposure to multiple views. Model 3 of our 

work attempts to replicate this model and subsequently Models 4 and 5 

aimed to improve the biological plausibility of the methods. 

As mentioned, retaining expression information and non-rigid 

motion can also benefit automatic speech-reading systems. With recent 

advances in technology, wearable lip-reading technologies are 

becoming closer to reality. As with recognition, these systems can work 

in various ways, such as learning to lip-read in each view separately 

(Isobe et al., 2021) or combining all views into one large corpus to learn 

(Chung & Zisserman, 2017; Isobe et al., 2021). Alternatively, one could 

learn to lip-read in one viewpoint, reducing computational costs, and 

transform all inputs to that viewpoint (Lan et al., 2012), akin to the 

frontalisation procedures discussed in Chapter 1.3.5. Lan and 

colleagues (2012) found that lip-reading is best at ~30o from frontal for 

both humans and computer lip-reading systems so devised a view-

transformation model to rotate the mouth region, presented in any view, 

to 30o.  
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Although automatic lip-reading is not the focus, the current work 

utilises and expands on some the methods used by Lan and colleagues 

(2012) and thus may benefit view-transformations for automatic lip-

reading. Firstly, Lan and colleagues (2012) cropped to the mouth where 

our work utilises the whole face. Extraoral regions can enhance the 

accuracy of automatic visual speech recognition software (Y. Zhang et 

al., 2020) and vocal tract structure during speech correlates with some 

extraoral regions (Scholes et al., 2020) suggesting that other facial 

regions contribute to effective speech-reading. Scholes and colleagues’ 

actors maintained a fairly neutral expression, but emotional expressions 

convey additional information about speech content (Shirakata & 

Saitoh, 2020). The current work also differs from that of Lan and 

colleagues by striving to achieve biological plausibility and avoiding the 

need to record from distal views simultaneously (e.g., frontal and 

profile).  

Here, five models are outlined, varying in structure and 

expanding on the methods of Beridze (2021) and Lan and colleagues 

(2012), culminating with a two-step model of view-invariant motion 

processing (Model 5). Model 5 was the most biologically plausible, while 

still accurately reconstructing facial motion across views. 

To preface any confusion, the term ‘multi-view’ is used differently 

here compared to previous works. In previous models, such as multi-

view subspace models, there are separate representations for each 

viewpoint which are brought into correspondence, for example, by 
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maximising the canonical correlation between loadings on the features 

across different views (Li et al., 2009; Rupnik & Shawe-Taylor, 2010). 

The resulting features are considered view-invariant by reflecting 

corresponding changes in multiple views. In the current work, the term 

‘multi-view’ primarily refers to vectors or components containing multiple 

viewpoints as separate sections of the vector (e.g., a 20-element vector 

with a different view every 5 elements). 

4.3 Methods 

4.3.1 Video capture and preprocessing 

4.3.1.1 Video capture  

The videos used were acquired for a previous study (Scholes et 

al., 2020). All 9 actors gave prior consent for their videos to be used. An 

overview of the video capture is reported here (for more details see 

Scholes et al., 2020). Videos were simultaneously acquired from 0o 

(frontal), 22.5o, 45o (3/4 view), 67.5o and 90o (profile) from the left side 

of the actor’s face, from the actor’s perspective. Video capture used 5 

Grasshopper GRAS-03K2C (FireWire) cameras (PointGrey), placed on 

a bespoke semicircular camera rig, captured at 30 fps in RGB 24-bit px 

format, at a resolution of 640 x 480. During video capture, actors 

repeated 10 sentences 20 times (see Table 4.1), obtained from the 

Speech Intelligibility in Noise Database (Kalikow et al., 1977). 
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Table 4.1. Sentences repeated by the actors. 

The 10 sentences used by Scholes and colleagues (2020), sourced 

from the Speech Intelligibility in Noise Database (Kalikow et al., 1977). 

4.3.1.2 Cropping and alignment  

The videos were first cropped to a square and downscaled to 

128 x 128 pixels. The crop was a fixed position approximately centred 

on the face, allowing natural, rigid motion across the frames. Facial 

form was normalised to the shape of a reference frame for each view. 

This used the same procedure as prior studies (Beridze, 2021; Cowe, 

2003; Nagle et al., 2013; D. M. Watson & Johnston, 2022). For each 

actor a reference frame was chosen exhibiting a neutral expression but 

with the lips parted revealing the teeth. The remainder of the frames 

were warped to the reference frame (which was then removed) using 

the Multi-channel Gradient Model (Johnston et al., 1992; 1999). The 

same frame number was used for each of the simultaneously recorded 

views.  

Warping to the reference frame is comparable to the alignment 

methods used in automatic face recognition systems (e.g., Craw, 1992; 

Hassner et al., 2015) and the shape-normalisation used by Burton and 
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colleagues (2016). Simpler alignment methods, such as matching eye 

and mouth positions are straightforward, but lead to blurring effects 

where faces and features of different shapes and sizes are 

superimposed onto one another (Aishwarya & Marcus, 2010), for 

example the mouth when in motion. More complex procedures, such as 

using the McGM, or normalising the shape using a greater number of 

facial landmarks (Burton et al., 2016; Kramer et al., 2017), reduce the 

superimposition problem and provide shape and motion information that 

can be utilised. 

Manually placing landmarks on each image allows precision but 

is highly impractical for videos longer than a few seconds. One could 

use automatic landmarking software such as OpenFace (Baltrusaitis et 

al., 2018) but, such software works best with frontal images with no 

occlusion; as noted by Wu and Ji (2019) one of the major challenges to 

automatically detecting landmarks is large rotations from frontal – a 

problem we have encountered with OpenFace. 

The effect of occlusion can be seen for instance in the Multiview 

Active Shape Modes outlined by Milborrow et al (2013). The software 

erroneously assumed that one eye was occluded through a rotation in 

pose causing it to estimate the face was pointing in the opposite 

direction and thus the estimates of the landmarks were spatially flipped 

compared to their actual locations. The eye was occluded by hair. 
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Landmarking software can also struggle with the intricacies of 

asymmetric motion. From our own experience, OpenFace assumes the 

lips move somewhat symmetrically, and as such fails to properly 

capture asymmetric movement. 

In contrast, the McGM is a biologically inspired gradient based 

motion estimation algorithm that is agnostic to facial landmarks. It also 

provides a much denser description of shape, with a value for each 

pixel rather than a value for each landmark. A short summary is outlined 

by Nagle and colleagues (2013). Because the McGM is not based on 

landmarking, it does not have some of the same constraints, although 

there are still issues with occlusion if the occluding object only 

transiently comes into view, such as a hand itching a nose. The McGM 

performs the alignment unsupervised, provided there is not too much 

variation between the frames and the template. 

The alignment provides a warp vector field with two, 128 x 128 

components for each frame, one for horizontal (X) translations and one 

for vertical (Y) that move the pixels in the aligned frames back to their 

original locations. The outputs were therefore each 128 x 128 x 5 

(Xwarp + Ywarp + RGB) x N where N is the number of frames minus 

the reference frame (see Figure 4.1a).  
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Figure 4.1. Warping and vectorisation. 

(A) Depiction of warping, showing how to reconstruct a given frame 

from mu, the RGB texture and XY shape deviations. In X and Y, lighter 

regions show leftwards and upwards deviations respectively, darker 

regions show rightwards and downwards deviations. Arrows show the 

direction and magnitude of the pixel displacement. (B) Vectorisation of 

a single frame and concatenation of multiple frames. In both plots, the 

colours of the RGB fields have been exaggerated for display purposes 

only. 

The X and Y components are essentially horizontal/vertical 

deviations embedded in a mesh grid (see the function meshgrid in 

MATLAB). The mesh tells the reconstruction script how to interpolate 

one image to make another. In a perfect mesh grid, all pixels in a new 

image are extracted from their original positions, so the image stays the 
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same. To induce a pixel displacement, say in X, values are either 

increased or decreased to induce a leftward or rightward shift 

respectively. For a leftward shift, you need to pull the pixels from the 

right in the original image. 

Following warping, frames were vectorised, with each vector 

containing 81,920 elements (128 x 128 x 5). The first 32,778 contained 

the shape (warp) values, the remaining 49,152 contained the texture 

(RGB) values (see Figure 4.1b). Each view’s matrix was therefore 

81,920 x N. 

4.3.1.3 Detecting and correcting frame asynchrony 

For the models to be accurate the cameras needed to record in 

perfect synchrony. Unfortunately, they did not, with two recording 

marginally faster than the others. During recording of ~20,000 frames, 

two views would end ~4 frames ahead. Whilst a miniscule discrepancy 

in frame rate, even 2 frames can be the difference between the mouth 

being closed and nearly fully open.  

Frame rate discrepancies and dropped frames first needed 

identifying in the absence of frame-by-frame timestamps. Over the 

frames for each view, the vertical position of a landmark (landmark 56) 

on the left side of the lower lip (from the actor’s perspective) was 

tracked using OpenFace 2 (Baltrusaitis et al., 2018). This was one of 

the most dynamic landmarks that could be tracked in all views. 
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To assess for dropped frames or differences in frame rate, the 

vertical positions in views 2-5 were compared to view 1 (0o) using a 

sliding window. A sliding window of 100 frames was passed along the 

videos (step = 1). At each step the correlation in the y-positions across 

the window was calculated between each view (views 2-5) and 0o, with 

offsets of -5 to +5 frames introduced. For each step, the offset with the 

highest correlation coefficient was determined, providing an index of 

how (a)synchronous the view was from frontal. Synchronous videos 

should have the highest correlation with no offset throughout.  

These offsets were plotted over the duration of the videos. A 

linear drift was visible, typically for views 2 and 5 whereby the frames 

would start in, but then drift out of, synchrony with 0o. During this drift 

there were extended periods where the highest correlation alternated 

between two offsets, before settling on the second. This suggested 

asynchrony by a fraction of a frame, leading to uncertainty in the most 

correlated offset. In contrast, frame drops were shown by a more 

sudden change. Visual inspection of sudden movements such as blinks 

across the views confirmed a small discrepancy in the frame rate rather 

than many dropped frames, other than one dropped frame in one 

camera for one actor. Sudden movements were assessed at the start of 

the videos, the end, and around the transition points between offsets.  

Frame rate discrepancies were resolved by interpolating the 

desired number of frames from view-specific PCA spaces. For each 

view, a separate PCA space was made using all frames. The frames 
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were projected into the space and the loadings onto each component 

calculated. The loading trajectories were then interpolated using 

MATLAB’s interp1 function with spline interpolation. For example, if 

view 1 had 20,000 frames, and view 2 ended 4 frames ahead, 20,000 

frames were interpolated from the loading trajectory between frames 1 

and 19,996 in view 2’s space. This allowed fractional discrepancies to 

be corrected. Here the PCA spaces only retained ≥100 components 

and ≥90% of the variance, so some data loss is possible through this 

method, but this can also, beneficially, remove some noise prior to 

making the multi-view space. 

Some frames were also removed due to excessive head 

movements that caused artefacts in the warping, such as dropping the 

head substantially, or where the face was obscured by the hand. These 

were omitted when making the separate view spaces, included when 

calculating loading trajectories to avoid discontinuities in the 

interpolation, and were then removed afterwards. Once the frames had 

been synchronised, the PCA models were created. 

4.3.2 Projection and scaling 

Often, principal components are unit vectors, however this was 

not always the case here. In some such cases, we used the full 

equation for projection, but in others we ignored the denominator. In 

other words, we took the inner product between the deviation vector 𝐷 

and component 𝐸𝐹 and did not divide that by the squared length of 𝐸𝐹. 
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In some models eigenframes contained 5 viewpoints and the aim 

was to reconstruct all views from a single view. We therefore projected 

only one viewpoint into the space. One strategy for this was to retain 

the whole eigenframe and replace undesired parts of the input vector 

with zeros as in equation (4.1), where 𝑒 is the number of elements in 

the original multi-view vector, 𝐷, and 𝑝𝐷𝑣 is the partial vector for the 

view 𝑣 where the rest of the vector is replaced with zeros. Here, view 2 

of 5 is isolated. 

𝒑𝑫𝒗 = [∅𝟏 ⋯∅𝒆

𝟓
, 𝑫(

𝒆

𝟓
)+𝟏 ⋯𝑫𝟐(

𝒆

𝟓
), ∅𝟐(

𝒆

𝟓
)+𝟏 ⋯∅𝒆]  (4.1) 

This strategy has been used previously (Beridze, 2021; Scholes 

et al., 2020), but there are two reasons why truncating 𝐷 (𝑡𝐷𝑣) and 𝐸𝐹 

(𝑡𝐸𝐹𝑣) to the input view may be a better strategy. The first is minimising 

computational demands. It is less demanding to project the 81,920 

elements for a single view (𝑡𝐷𝑣) onto 81,920 elements of the truncated 

components (𝑡𝐸𝐹𝑣), than all 409,600 elements in 𝑝𝐷𝑣 onto all elements 

of 𝐸𝐹. As the full components are unit vectors the inner product of 𝑡𝐷𝑣 ∙

𝑡𝐸𝐹𝑣 is equivalent to 
𝑝𝐷𝑣∙𝐸𝐹

|𝐸𝐹|2
. 

The second reason regards scaling. Both Beridze (2021) and 

Scholes et al (2020) found that the inner product loadings from partial 

projection (padding the input with zeros) were much lower than when 

projecting in the full vectors. This is due to using fewer elements to 

calculate the inner product. An alternative option would be to truncate 

the vectors and eigenframes and perform the full projection calculation. 

𝑡𝐸𝐹𝑣 is no longer a unit vector, so the projection can then be calculated 



University of Nottingham  Chapter 4 

148 

as the magnitude of 𝑡𝐷𝑣 ∙ 𝑡𝐸𝐹𝑣 relative to the magnitude of |𝑡𝐸𝐹𝑣|
2. As 

outlined shortly, this method is more stable across changes in vector 

magnitude and so might provide a method for scaling the loadings. 

As we refer to these methods of projection frequently, it is first 

worth outlining some terms to summarise these methods. When only 

the inner product between 𝐷 and 𝐸𝐹 (or 𝑡𝐷𝑣 and 𝑡𝐸𝐹𝑣) is calculated, this 

is referred to as the inner product loading (𝐿𝑖𝑝). It is not scaled relative 

to the length of the vector being projected onto. When the denominator 

is included and 𝑡𝐷𝑣 ∙ 𝑡𝐸𝐹𝑣 is divided by |𝑡𝐸𝐹𝑣|
2, this is referred to as the 

relative loading (𝐿𝑟𝑒𝑙), as it is the magnitude of the projection relative to 

the magnitude of the vector being projected onto. When the vector 

being projected onto is of unit length, 𝐿𝑟𝑒𝑙 =  𝐿𝑖𝑝.  

The relative loading will be the same regardless of the magnitude 

of the vectors, so long as the angle between the vectors and the ratio of 

the magnitudes are kept constant. In contrast, the inner product loading 

will vary. As an example, consider two vectors, 𝑎 (a new frame) which is 

4:23 and 𝑏 (a component) which is 1:20. For this example, both are 2-

view vectors. View 1’s loadings can be calculated by projecting the first 

10 elements of 𝑎 onto the first 10 elements of 𝑏. The same can then be 

calculated for view 2 with the last 10 elements. The inner product and 

relative loadings are outlined in Table 4.2. The relative loading is the 

relative magnitude of the projection of 𝑎 onto 𝑏 and is therefore much 

more stable to variation in the magnitudes of the vectors. As a result, 

the relative loading is explored as a method for scaling the loadings in 

the multi-view PCA models. 
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Table 4.2. Example comparison of inner product and relative 

loadings. 

Example showing how the relative loading of a projection is less 

susceptible to differences in magnitude within a vector compared to 

the inner product loading. 

4.3.3 Measuring reconstruction accuracy 

Multiple ways to quantify reconstruction accuracy exist, each with 

their own advantages and disadvantages. Broadly, quantification can be 

split into the feature being measured and the measure used. The 

feature options are image-level, deviation-vector-level, and single space 

loadings. The measure options considered here are the sum of squared 

error (SSE) or Euclidean distance (ED, = √SSE), and the correlation 

coefficient (Pearson’s r or Fisher’s Z transform). Generally, for 

comparing models, reconstruction accuracy was averaged across 

frames, providing one value per input and reconstructed view per actor. 

These were often averaged across view providing one value per model 

for frames used in training and for frames in the test set, with a separate 

value for single-view and multi-view inputs (whether a single view was 
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projected into the space or all views simultaneously). The average of 

the single-view inputs was then compared across models using 

ANOVAs and t-tests. 

The conversion from Pearson’s r to Fisher’s Z allowed 

parametric comparisons by transforming the data to fit a normal 

distribution, however in doing so correlation coefficients of ±1, or close 

enough to 1 with rounding errors, resulted in infinite values. If ignored, 

then reconstruction accuracy would appear worse than it was. To 

mitigate this, infinite z-values were replaced with ±9.557, corresponding 

to a Pearson’s r of 1-1x10-8. 

4.3.3.1 Image-level statistics 

For image-level (or pixelwise) statistics, each reconstructed 

frame was vectorised, and compared to a vectorised version of the 

actual frame by calculating the correlation or ED between them. This 

was performed for each frame, and each input and reconstructed view, 

separately.  

There are some limitations of using correlation here. Firstly, 

small spatial translations of the reconstructions, e.g., the whole head 

being shifted slightly leftwards, can result in a decrease in the 

reconstruction accuracy despite being otherwise accurate. Secondly, as 

discussed by Scholes et al (2020), invariant background pixels inflate 

the correlation coefficient. Thirdly, correlation is not sensitive to global, 

uniform changes in magnitude, but this can be beneficial as uniform 
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changes on all pixel intensities have no specific effect on the face. 

Nevertheless, a direct comparison between models based on the 

correlation is still informative.  

The ED, in contrast, is sensitive to changes in pixel magnitude, 

and so provides another measure of reconstruction accuracy. It is less 

sensitive to the background pixels, and can be compared across 

models, but the result is relatively arbitrary. What value constitutes a 

‘good’ reconstruction? Zero is perfect, but what is the upper limit for 

acceptable reconstructions? Nevertheless, it too is informative for 

comparing models. 

4.3.3.2 Deviation-vector similarity 

To circumnavigate some of the issues of using pixelwise 

comparisons, deviation vectors can be compared using the same 

measures as above. Because the textures should be spatially aligned in 

the deviation vectors, the correlation between the texture portions of the 

vectors should be less affected by spatial translations, even if present in 

the reconstructed image.  

If the spatial translation is caused by an over-estimation of the 

warping, then this might also not contribute much to the correlation 

coefficient if there is a global change in the magnitude rather than the 

pattern. As with the pixelwise comparisons however, the background 

pixels in the deviation can also artificially inflate the correlation 

coefficient. In contrast, ED would again be less sensitive to the 
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background pixels, but would be sensitive to any over or 

underestimations of the pixel displacements and texture values. 

4.3.3.3 Single view/separate space loadings 

An alternative approach, similar to the one used by Scholes et al 

(2020) is to compare actual and reconstructed frames within a PCA 

space. Scholes and colleagues projected one modality into their 

combined video and MR slice space and reconstructed the other. They 

then projected the full, joint-modality reconstruction back into the space, 

alongside the veridical joint-modality vector, and compared the loadings 

between the projections. Here, the equivalent would be comparing 

reconstructed and actual multi-view vectors in a multi-view space, 

however, not all the models have a multi-view space. Instead, 

reconstructions and actual frames were split by view, and projected into 

separate spaces for each view.  

These loadings can again be compared with correlation and ED. 

A benefit of using the separate space loadings is that the result is no 

longer inflated by the background pixels. Note, however, that the first 

layer of Model 5 is comprised of these separate spaces. Therefore, the 

loadings of the actual frames and the reconstructed frames of the same 

view are identical, so same-view reconstructions are ignored for 

statistical comparison. This problem does not apply to cross-view 

reconstructions, and does not apply when looking at the second, multi-

view layer.  
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4.4 Model 1 - “Daisy chain” model 

4.4.1 Model aim and overview 

This first model aimed to test whether mapping deviation vectors 

across neighbouring views’ spaces would provide an alternative method 

over directly projecting across large rotations in yaw (Beridze, 2021). As 

with previous view-based methods (Pentland et al., 1994), Beridze first 

constructed a separate space for each viewpoint. Using the same 

procedure as previous work (Cowe, 2003; Griffin et al., 2011; Nagle et 

al., 2013), Beridze projected deviation vectors in image space from one 

view directly into another’s space, reconstructing similar views well but 

struggling more with larger rotations. This model instead only projected 

deviation vectors into neighbouring views’ spaces. It subsequently 

reconstructed the deviation vectors in those views before projected 

them into the next space, and so forth.  

One might consider the possibility of projecting a frame from one 

view into its own space and directly transferring the loadings to other 

spaces. Unfortunately, it is not that simple. Because the different 

viewpoints have access to different information about changes in 

texture and motion, the components can vary across different spaces 

both in their ordering and in their content. For instance, PC1 for a profile 

space might reflect the head leaning forwards and backwards, whereas 

in a frontal space it might reflect the head moving side to side. The 

components might also combine different movements and textures 

across the different viewpoints, so no single component in one space 

might perfectly reflect the action of a component in another. As a result, 
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one cannot simply map the loading of PC1 for frontal onto PC1 for 

profile as it may represent a different action. One would therefore need 

to work out the correspondence between components across the views, 

an idea returned to in Model 5. Previous methods (Cowe, 2003; Griffin 

et al., 2011; Nagle et al., 2013) circumnavigated this problem by 

working within image space, meaning the correspondence between the 

spaces did not need calculating and the axes of the spaces did not 

need to be oriented in the same direction. This worked because the 

faces were all frontal and were spatially aligned with a simple affine 

transformation. Raised eyebrows in one space for example spatially 

matched raised eyebrows in another, loading onto corresponding 

components. 

The problem with mapping deviation vectors across larger 

changes in view is the spatial misalignment of features. As deviation 

vectors are based in image space, the spatial position of features, such 

as the mouth, varies within the vectors for different views, and this 

difference becomes more prominent for larger rotations. Hence, 

reconstructions across larger rotations were worse despite Beridze’s 

attempts to align the views by centrally positioning the features. In the 

current work the views were coarsely spatially aligned, with internal 

features approximately central along the x-axis. We did not perform 

more rigorous alignment partly to highlight the spatial sensitivity of this 

method. Also, there is the theoretical problem of which features to align; 

even in the best case it is not possible to perfectly align both eyes and 

the mouth at the same time. Rigid head motion also separates features 
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across views; a forward movement will not change horizontal eye 

position at 0o but will at 22.5o.  

In the current model, instead of directly projecting across large 

changes in view, a cascading “daisy chain” approach along the views 

was developed. For instance, frontal (0o) frames were projected into the 

neighbouring view’s space (22.5o) where the spatial overlap should be 

the most consistent, and the frames (and deviation vectors) were 

reconstructed from this space. They were reconstructed by calculating 

the loadings of the frontal deviation vectors onto the components at 

22.5o, scaling the components by the loadings and then adding the 

average representation for the 22.5o view. The reconstructed deviation 

vectors were then projected into the next view (45o) and so forth until all 

views were reconstructed. 

To preface the results, we showed how susceptible the model is 

to changes in spatial arrangement when deviation vectors are directly 

projected from one space to another. If the alignment issue can be 

resolved, then this has the potential to be a biologically plausible model. 
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Figure 4.2. Depiction of Model 1. 

Depiction of the ‘Daisy chain’ model (A) and how to reconstruct frames 

across views (B). (A) Videos (red boxes) are first warped using the 

McGM to a template frame, each X/Y + RGB image is then vectorised. 

Purple boxes represent the matrices of warped frames, each with 𝑛 

columns, each represented a frame, and 81,920 rows, depicting the 

X/Y warp fields and the RGB texture maps. (B) Reconstructions across 

views are made by first reconstructing in the input view and then 

projecting the reconstructed deviation vectors into the neighbouring 

view and cascading the process along. 

4.4.2 Model construction 

An outline of the model is presented in Figure 4.2a. The model 

was piloted with one actor. As in the previous works (e.g., Beridze, 

2021; Pentland et al., 1994), a separate PCA space was made for each 

view. To create the PCA spaces the first half (𝑛) of the frames were 

used for training, with the remainder stored for testing. For each view, 

the mean vector (�̅�𝑣 where 𝑣 denotes the view) was subtracted from the 

frames creating a matrix of deviation vectors (𝐷𝑣), each containing 

81,920 x 𝑛 elements. For each view, PCA was performed on 𝐷𝑣 using 
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SVD, returning a matrix of 𝑃 components where 𝑃 ≥100, explaining 

≥90% of the variance in 𝐷𝑣. 

4.4.3 Reconstructing frames across views 

An outline of how to reconstruct frames across views is provided 

in Figure 4.2b. Reconstructions were first made in the input view’s 

space. The frames were projected into the space and loadings on the 

components calculated. Deviation vectors were then reconstructed as 

weighted sums of the components using the loadings.  

The reconstructed deviation vectors were then projected into the 

neighbouring spaces. For example, input view 3’s reconstructed 

deviation vectors were projected into, and reconstructed from, the 

spaces for views 2 and 4. Those reconstructions were then projected 

into the spaces for views 1 and 5 respectively.  

Once the daisy chain process was complete, the average vector 

(�̅�𝑣) for each view was added to the deviation vectors and the result 

transformed back into 128 x 128 x 3 (RGB) images using the X and Y 

warp fields to de-warp the frames. The warping removes (but stores) 

the rigid and non-rigid head movement, and therefore de-warping adds 

the motion back in. 

4.4.4 Results and discussion 

Reconstructions made using the daisy chain model can be seen 

in Figure 4.3 and in the supplementary videos. Same-view 

reconstructions are good, yet cross-view reconstructions are more 
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variable due to spatial misalignment when moving across neighbouring 

views. In the example in Figure 4.3, reconstructing frontal or 22.5o 

frames from each other works well, as does 67.5o from 45o, as the 

features overlap more, yet reconstructing 45o from 22.5o does not due 

to a slight spatial misalignment of the features. For instance, the mouth 

at 45o is slightly further toward the left of the frame than at 22.5o. 

 

Figure 4.3. Example reconstructions using the daisy chain model. 

The top row shows the actual frames. The subsequent rows show the 

reconstructions made using the view bounded by the red box as the 

input view. 
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Figure 4.4. The effect of spatial position on reconstruction 

accuracy.  

Demonstration of how reconstruction accuracy varies with the spatial 

overlap between the input vectors and the PCA components. In each 

set the central images show the spatial overlap between the left and 

right images when no spatial offset is introduced (top) and when the left 

view is horizontally offset by 30 pixels (bottom). The r-values show the 

average loading similarity between projecting the deviation vectors from 

the left view into the right view’s space, compared to the projecting in 

the right view without any spatial manipulation. For example, in the left 

set, it is the loading similarity between projecting the reconstructed 

deviation vectors from view 1 into view 2’s space, compared to 

projecting in view 2’s deviation vectors. 

To assess this problem further, reconstruction accuracy was 

assessed when a spatial shuffle was introduced (see supplementary 

videos), mimicking the effect of cropping the frames to different regions 

during preprocessing. In between the input and neighbouring views, the 

horizontal and vertical position of the face was manipulated by moving 

the input view in increments of 10 pixels horizontally and vertically. The 

loading similarity (Pearson’s r) was compared between the cross-view 

reconstructions and same-view reconstructions. For example, the 

loading similarity in view 2’s spaces when a) view 2 was the input view 

and b) when view 1 was the input view and the deviation vectors were 
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projected into view 2’s space. As shown in Figure 4.4, the correlation 

coefficient is heavily dependent on the spatial overlap. 

This problem of spatial position can be seen further by 

exaggerating the loadings after projecting across views. An example is 

when the mouth in one view overlaps with the cheek in another. The 

PCA spaces can only reconstruct information present during training, so 

cannot reconstruct teeth in the wrong place. However, the inner product 

is higher for components where the area of the cheek matching the 

position of the teeth is lighter, such as when less in shadow, compared 

to components where the cheek is darker. 

We placed the internal features roughly within the centre of the 

image but did not align the features further across views unlike Beridze 

(2021). Such alignment would improve the reconstruction accuracy as 

demonstrated when a spatial shuffle was introduced. However, as 

already described, this will not give the perfect amount of overlap in the 

best case and motion can also separate features across views. 

An element also not yet included in this model which we aim to 

incorporate, is view-invariant components. These components must 

contain information about all 5 views to behave in a view-invariant 

manner and stand a chance of mimicking view-invariant neurons 

(Chang & Tsao, 2017; Freiwald & Tsao, 2010; Meyers et al., 2015). 

In summary, this model shows some promise, but is ultimately 

too sensitive to the spatial overlap between the deviation vectors and 
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the PCA components. It also does not sufficiently recapitulate view-

invariance seen in the brain. 

4.5 Model 2 – Single slot model 

4.5.1 Model aim and overview 

The aim of the previous model was to build separate, view-

specific spaces and perform cross-view reconstructions by projecting 

deviation vectors across neighbouring spaces. One limitation was the 

absence of any view-invariant units. The aim of Model 2 was to explore 

the possibility of a single, view-invariant space with overlapping 

representations for the different views. Figure 4.5 shows a summary of 

the model.  

Griffin and colleagues (2011) made separate spaces for male 

and female faces, but observed adaptation aftereffects that transferred 

across genders, suggesting a shared neural population. This raises the 

possibility of genders being represented as clusters within one space, 

allowing for local gender-specific means as well as the transfer of 

aftereffects across genders. The transfer of adaptation aftereffects for 

familiar faces across views also suggests a shared neural population 

(Jiang et al., 2007). Therefore, rather than creating separate spaces for 

each view, requiring separate neural populations, all views were 

entered into one PCA. Separate views were then treated as separate 

clusters around view-specific means within the space. 
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As will be discussed, later models created a single space but 

separated views into different ‘slots’, with each input vector consisting of 

5 unique portions, one for each view. Instead, this ‘single slot’ model 

treated different views as different timepoints. The model then learned 

how the separate views were clustered in the space, and identified 

local, view-specific means, allowing for both norm-based 

representations within views and cross-view adaptation aftereffects 

(Jiang et al., 2007, 2009). 

This model is loosely similar to the Multiview subspace models 

reviewed by Ding and Tao (2016) in that we hoped to house the 

separate views within a common space. The difference is that the 

models discussed by Ding and Tao had separate spaces for each view 

which were, for instance, rotated using canonical correlation analysis so 

that the dimensions overlapped sufficiently to count as a common 

space. Instead, we were trying to find and use local clusters for each 

view within a pre-existing common space.  

We were sceptical about this model, both expecting there to be 

and indeed finding superimposition of features in incorrect places, such 

as teeth superimposed onto the cheek when a profile view is 

reconstructed from frontal. But, formally proving that methods do not 

work can be as helpful as proving that others do.  
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4.5.2 Model construction 

As with Model 1, the PCA space was created using the first half 

(𝑛) of the frames for one actor. The views were concatenated together 

such that each view occupied a different portion of ‘time,’ as if seeing 

one view and then the next, creating one 81,920 x 5𝑛 matrix (𝑋). 

Although, the temporal sequence is immaterial for PCA, each vector is 

just a sample. For mean centring the matrix, averaging across all 

frames in 𝑋 would result in a morph of all 5 views (�̅�), and super-

subtraction of features in the wrong place in different views when �̅� is 

subtracted. To avoid this, view-specific averages (�̅�𝑣) were subtracted 

prior to concatenating the views. Zero-centring each view meant the 

concatenated matrix was also zero-centred. PCA was then performed 

on this matrix. 

4.5.3 Identifying view-centres 

To learn where each view sits in the space, the loadings (𝐿) of 

the training frames onto the components/eigenframes for each view 

were calculated. The average loading on each eigenframe was 

calculated for each view separately to determine the positions of the 

view-centres, or local means (see Figure 4.5b) 
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Figure 4.5. Depiction of Model 2 

(A) An outline of the single slot model. Each box depicts a matrix. The 

purple boxes depict the warped frames. Within each purple box there 

are 𝑛 frames, each represented by a column containing 81,920 rows, 

containing the X/Y warp fields and the RGB texture maps. The matrices 

for the different views were concatenated in time, giving an 81,920 x 5𝑛 

matrix. PCA was then performed on this matrix. (B) An illustration of the 

method for calculating view-centres and reconstructing across views. 

Each colour represents a different view. Triangles represent the 

loadings of individual training frames on PCs 1 and 2. Circles represent 

the view-centres, determined by averaging the loadings of the triangles. 

The blue diamond represents the loadings of a test frame. The relative 

difference from the view-centre is calculated (the arrow) and added to 

the other view-centres (other diamonds) to reconstruct across views. 

This does not depict actual data. 

4.5.4 Reconstructing frames across views 

For reconstructing frames across views, we used methods 

conceptually similar to those of Griffin et al (2011), in that we could 

describe different views relative to one larger space, and therefore map 

a difference vector from one local mean to another. However, as 

discussed with the previous model, deviation vectors calculated in 
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image space are not compatible across views. Therefore, difference 

vectors for cross-view reconstructions were calculated in terms of the 

relative difference between the loadings in the space for individual 

frames and the view-centres.  

To reconstruct a frame from one view in another view, the mean 

vector (�̅�𝑣) for the input view was subtracted from the frame giving a 

deviation vector (𝐷𝑣), which was projected into the space. This provided 

loadings relative to the origin (𝐿). To determine the position relative to 

this vector’s view-centre, the loadings of the view-centre (𝐿𝑣𝑐) were 

subtracted from 𝐿, giving a difference vector (𝑑). To reconstruct across 

views, 𝑑 was added to the other view-centres (see Figure 4.5b). For 

each view, the eigenframes were scaled by these new loadings and 

summed giving a deviation vector for each view, to which the mean 

vector (�̅�𝑣) was added. This vector was then de-warped and reshaped 

back into a 128 x 128 x 3 (RGB) image.  

4.5.5  Results and discussion 

The aim of this model was to create a single space with the hope 

to create view-invariant units. This model captured some changes 

across views (see Figure 4.6) however, it was possible to see unnatural 

distortions and the problem of cross-view superimposition was still 

evident, so this model is also not suitable. For example, see the 

superimposition of the mouth on the cheek in Figure 4.6 and in the 

supplementary videos. 
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Figure 4.6. Reconstructions from Model 2 

The top row shows the original frame for each view. The subsequent 

rows show the reconstructions for each view made from projecting the 

view bounded by the red box into the PCA space. As can be seen, 

these reconstructions suffer from the superimposition of different 

images, such as the teeth appearing on the cheeks. 

The components did not capture correlated movements across 

views well, so other than large global movements, they tended to be 

quite view-specific. They also contained unnatural distortions and 

superimposed features. This can be seen in Figure 4.7 and in the 

supplementary videos. Note how in PC5 the actions differ across the 

views and the teeth are superimposed onto the cheek in more profile 

views. 
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Figure 4.7. Example components of single-slot model. 

Depictions of principal components 1 (left) and 5 (right) of the single-

slot space for one actor. In each set the middle row represents the local 

mean for each view. The top and bottom rows represent scaling the 

components by +3SD and -3SD respectively, where SD is the standard 

deviation of the loadings of the training set on the components. 

4.6 Model 3 – Multi-view, simultaneous entry 

4.6.1 Model aim and overview 

In Model 2, all views were entered within a single ‘slot’. Model 3 

instead tried to recreate the multi-slot approach from Beridze’s (2021) 

multiple appearance model, where each view has its own slot (own set 

of pixels, see Figure 4.8). As with the previous models, it assumes 

view-detection has already occurred and thus inputs could be fed into 

the correct slot. The same approach was taken by Scholes et al (2020) 

who concatenated videos with MR slices of the vocal tract such that 

each ‘timepoint’ contained two modalities. 
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Figure 4.8. Depiction of Model 3 

(A) Outline of the multi-view simultaneous entry model. Vectorised 

versions of the frames were concatenated such that each frame 

contained information about all 5 views, before performing PCA on the 

multi-view matrix. (B) Concatenation of 15 vectorised frames across the 

5 views, showing the X and Y warp fields (lilac, cyan) and RGB 

textures. Each individual box represents a column vector with 16,384 

rows (128 x 128). (C) Example component from PCA. Purple (middle) 

represents the origin. Red (top) and blue (bottom) show the 

reconstructed multi-view images from a positive and equidistant 

negative position along PC1 respectively. 

4.6.2 Model construction 

See Figure 4.8a for a summary of the model. Whereas in Model 

2, the different views were concatenated such that they occupied 

different periods of ‘time’, here they were concatenated together such 

that each ‘timepoint’ contained all five views, creating one 409,600 x 𝑛 

matrix (matrix 𝑋, see Figure 4.8b). Because the videos were captured 

simultaneously, each view expressed the same action within a given 

frame. Figure 4.8c shows an example of PC1 for one actor. This model 

was created and tested for each of the 9 actors. 
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The first half (𝑛) of the frames were used for training. The mean 

multi-view vector (�̅�) was subtracted from the concatenated frames 

giving a zero-centred deviation matrix 𝐷. This is outlined in equation 

(4.2) where the first subscript element is the view and the second the 

frame, where 𝑛 is the number of frames. For simplicity, 𝑥, 𝑦, 𝑟, 𝑔, and 𝑏 

each represent a column vector containing all 16,384 (128 x 128) image 

elements for that channel. As the inputs were multi-view vectors, the 

eigenframes returned by PCA contained information about all five 

views.  

𝑋 =  

[
 
 
 
 
 
 
 
 
 
 
𝑥1,1 𝑥1,2

𝑦1,1 𝑦1,2

𝑟1,1

𝑔1,1

𝑏1,1

𝑟1,2

𝑔1,2

𝑏1,2

⋯

𝑥1,𝑛

𝑦1,𝑛

𝑟1,𝑛

𝑔1,𝑛

𝑏1,𝑛

⋮ ⋱ ⋮
𝑥5,1 𝑥5,2

𝑦5,1 𝑦5,2

𝑟5,1

𝑔5,1

𝑏5,1

𝑟5,2

𝑔5,2

𝑏5,2

⋯

𝑥5,𝑛

𝑦5,𝑛

𝑟5,𝑛

𝑔
5,𝑛

𝑏5,𝑛 ]
 
 
 
 
 
 
 
 
 
 

    �̅� =  

[
 
 
 
 
 
 
 
 
 
 
�̅�1

�̅�1

�̅�1
�̅�1

�̅�1

⋮
�̅�5

�̅�5

�̅�5
�̅�5

�̅�5]
 
 
 
 
 
 
 
 
 
 

    𝐷 = 𝑋 − �̅� 

𝑒. 𝑔. , 𝑤ℎ𝑒𝑟𝑒  �̅�1 =
1

𝑛
∑ 𝑥1,𝑗

𝑛

𝑗=1

 

(4.2) 

4.6.3 Reconstructing frames across views 

As each view had its own slot it was not necessary to identify 

view-centres. To reconstruct frames the mean vector (�̅�) was 

subtracted to transform the multi-view images into multi-view deviation 

vectors (𝐷). For reasons that will become clearer later, the 

reconstruction process began by projecting the full multi-view vectors 
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into the PCA space. This provided loadings (𝐿) of each full multi-view 

vector onto each component.  

 
Figure 4.9. Projecting single- and multi-view frames into the multi-

view PCA space. 

(A) Projecting the full multi-view vector and the single view vector into 

the multi-view PCA space. (B) Depiction showing how all views are 

retained and projected onto each other in the multi-view projection (top) 

and how the input frames and components are truncated to the input 

view in the single-view projection (bottom). Images rather than 

deviation vectors are shown for illustration purposes only. 

To reconstruct a frame for all views, the eigenframes were 

scaled by the frame’s multi-view loadings, summed, and the mean 

multi-view vector �̅� added. The resulting vector was then separated by 

view and de-warped back into a set of 5 images. Projecting the multi-

view vectors into the PCA space acted as a baseline due to creating the 

most accurate reconstructions possible using projection alone. 
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The same procedure was performed for single views. Deviation 

vectors and eigenframes were first truncated to the input view. Initially, 

inner product loadings were calculated between the truncated vectors; 

as outlined in section 4.3.2, the outcome is the same as replacing other 

views’ elements with zeros (Beridze, 2021; Scholes et al., 2020). The 

loadings scaled the complete, multi-view eigenframes to make the 

reconstructions. A summary of projecting both the full multi-view and 

single-view vectors into the PCA space can be seen in Figure 4.9.  

4.6.4 Scaling 

For single-view inputs, the inner product loadings (see section 

4.3.2) result in some transfer of expression across views, but the 

movements are very muted. This was also observed by Beridze (2021) 

and, to a lesser extent, by Scholes et al (2020). Less muting in Scholes 

and colleagues’ model is likely because they were projecting onto ~½ of 

the vector whereas we and Beridze had 5 and 6 viewpoints, thus were 

projecting onto a fifth and a sixth of the vectors respectively. An 

example of this problem is demonstrated in section 4.3.2. 

A few options were considered for scaling single-view loadings, 

however, as outlined later, there is more to the problem than just 

scaling. Option 1 is no scaling (𝐿𝑥). Option 2 multiplied all loadings by a 

uniform scaling factor of 5 (5𝐿𝑥) due to projecting onto approximately 

1/5th of the eigenframes. As the multi-view inputs provided accurate 

reconstructions the subsequent options utilised the multi-view loadings, 

with a similar procedure to Beridze (2021). We could have determined 
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scaling factors from the single and multi-view loadings on a frame-by-

frame basis, e.g., using equation (4.3), however the aim was to 

reconstruct one view from another and eventually eliminate the use of 

the multi-view vectors. Therefore, we wanted to establish reliable 

scaling factors for each component that could be used for new frames.  

In equation (4.3), 𝐿𝑚𝑢𝑙𝑡𝑖−𝑣𝑖𝑒𝑤  is the loading from projecting a 

multi-view vector in the space and 𝐿𝑠𝑖𝑛𝑔𝑙𝑒−𝑣𝑖𝑒𝑤  from a truncated, single-

view vector. 𝜆 is the resultant scaling factor. 

λ =
𝐿𝑚𝑢𝑙𝑡𝑖−𝑣𝑖𝑒𝑤

𝐿𝑠𝑖𝑛𝑔𝑙𝑒−𝑣𝑖𝑒𝑤
 (4.3) 

Initially, to determine consistent scaling factors a series of 

permutations were run on the frames used for training, similar in 

approach to Beridze (2021). In each of 100 permutations, all 5 single-

view vectors and the multi-view vectors for 100 random frames were 

projected into the space. Small sets of frames were used to prevent 

overfitting. For each component and view, a linear least squares (LLS) 

regression (using 𝐿𝑦 =  𝛽1𝐿𝑥 +  𝛽0) was performed to predict the multi-

view loadings (𝐿𝑦) from the single-view loadings (𝐿𝑥, see Figure 4.10). 

This provided a scaling factor (𝛽1) and a translation factor (𝛽0), which 

were remarkably stable across permutations (see Figure 4.11). 

Therefore, option 3 multiplied the single-view loadings by the median 

scaling factor for each component for the given view (𝛽1𝐿𝑥). Option 4 

also added the median translation factors (𝛽1𝐿𝑥 +  𝛽0). 
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Figure 4.10. Loadings of the single-view and multi-view vectors on 

PC1 for 50 frames. 

Loadings on PC1 of the single-view vectors (solid coloured line) and the 

full multi-view vector (solid black line) for 50 frames within one 

permutation. The dashed coloured lines show the predicted multi-view 

loadings (𝐿𝑦) from the single-view loadings (𝐿𝑥) scaled using 𝐿𝑦 =

 𝛽1𝐿𝑥 +  𝛽0. Each plot outlines the values for 𝛽1 and 𝛽0 from the LLS 

regression from one permutation. Plots are for one actor. 

In general, the scaling factors decreased non-linearly with 

increasing component number (see Figure 4.11) perhaps expectedly 

given the hierarchical ordering of the components. Nevertheless, it 

predicted that a uniform 5𝑥 scaling factor would overscale most 

loadings. As the scaling factors decreased exponentially, option 5 

scaled the loadings using the predicted values from exponential curve 

fits (𝑒𝐿𝑥). On each permutation an exponential curve with 3 free 

parameters was fit to the 𝛽1 scaling factors using MATLAB’s nlinfit 

function. The parameter coefficients were averaged over the 

permutations producing an average curve for each view (see Figure 

4.11). 
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A simpler method for identifying scaling factors was also 

assessed (option 6, 𝜆𝐿𝑥). All training frames were projected back into 

the multi-view space, and the median simple scaling factors (𝜆) were 

calculated by dividing the multi-view loadings by the single-view 

loadings, as in equation (4.3). 

The eventual aim was to ascertain appropriate scaling without 

projecting the full multi-view frame back into the PCA space, as this 

reduced biological plausibility. The multi-view inputs and components 

are constrained by the correlated facial structure across the views. This 

constraint means it should be possible to determine consistent scaling 

factors for each component without projecting in multi-view vectors. 

This is where the relative loadings (see section 4.3.2) come in. When 

split by view, the truncated components are no longer unit vectors and 

their lengths differ. As shown in section 4.3.2, assuming the views are 

correlated, the relative loadings are more stable against truncation and 

to differences in magnitude across the views compared to inner product 

loadings. Therefore, option 7 (𝐿𝑟𝑒𝑙) used the relative loadings, by 

dividing the inner products between 𝑡𝐷𝑣 and 𝑡𝐸𝐹𝑣 by the squared length 

of the truncated component.  



University of Nottingham  Chapter 4 

175 

 
Figure 4.11. Average scaling and translation factors determined 

over 100 permutations. 

(A) Average scaling factor (top panel) and translation factor (middle 

panel) across 100 permutations of LLS regression for each PC showing 

all views. Average simple scaling factor (bottom panel) from dividing 

multi-view loadings by the single-view loadings. (B) The average 

scaling factors from LLS separated by view. Solid coloured lines = 

median, coloured area = 95% range of the average across 

permutations. Dashed black line = the average exponential curve fit. 

The data has been smoothed for display purposes. 
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4.6.5 Comparing scaling methods 

To compare different scaling methods, reconstruction accuracy 

was measured and averaged across training frames for each input and 

reconstructed view for the single-view inputs (25 values) and each 

reconstructed view for the multi-view inputs (5 values). The average 

across the single-view input values was then calculated providing an 

overall accuracy measurement per actor per scaling method. Two, one-

way within-subjects ANOVAs were performed at the group level (across 

actors) to compare the loading similarities across the 7 scaling options, 

one using the average Z-value for each actor as the dependent variable 

and the other the ED. Individual scaling methods were then compared 

with post hoc t-tests. 

4.6.6 Results 

4.6.6.1 Principal components 

Example components can be seen in Figure 4.12, Figure 4.13 

and the supplementary videos. For this, the training frames were 

projected back onto the components, and the components were scaled 

by ±3 standard deviations of the loadings. This shows several 

interesting findings. Firstly, components generally show corresponding 

changes in all 5 views (Figure 4.12). Secondly, they contain 

combinations of rigid and non-rigid motion. Thirdly, they often differ 

across actors (Figure 4.13). 
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Figure 4.12. Example multi-view components in Model 3. 

Depictions of PCs 1 (top) and 5 (bottom) of the multi-view space for two 

actors. In each set the middle row represents the origin of the multi-

view space. The top and bottom rows represent scaling the 

components by +3SD and -3SD respectively, where SD is the standard 

deviation of the loadings of the training set on the components. 
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Figure 4.13. Example components across actors in Model 3. 

Depictions of PCs 1 to 5 of the multi-view space for four actors, 

showing the front view only. In each of the 4 sets, the middle row 

represents the origin of the multi-view space. The top and bottom rows 

represent scaling the components by +3SD and -3SD respectively, 

where SD is the standard deviation of the loadings of the training set on 

the components. 

4.6.6.2 Reconstructions 

Reconstruction accuracy was good for reconstructions made 

from multi-view inputs. As noted above, reconstructions from the single-

view inputs without any scaling were muted. For some scaling options, 

reconstruction accuracy was substantially improved, with visually 

accurate reconstructions. 
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Figure 4.14. Example reconstructions from Model 3 with scaling. 

Top row shows the veridical frames. Second row (bounded by the blue 

box) shows the reconstructions made from projecting the multi-view 

vector into the PCA space. Subsequent rows show the reconstructions 

made by projecting the single-view vectors (for the views bounded by 

the red boxes) into the PCA space. This example shows the 

reconstructions made using the median scaling and translation factors 

(𝛽1𝐿𝑥 +  𝛽0). 

See supplementary materials for example reconstruction videos 

as well as Figure 4.14 for one such frame using the median scaling and 

translation factors (scaling option 3). The average reconstruction 

accuracy for this model for one participant, separated by input and 
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reconstructed view, is shown in Figure 4.15. Figure 4.16 and Figure 

4.17 show a comparison of the scaling methods. 

 
Figure 4.15. Mean loading similarity for one actor, separated by 

input and reconstructed views. 

The mean reconstruction accuracy for each input x reconstruction view 

across all training frames for one actor when ‘𝛽1𝐿𝑥 +  𝛽0’ scaling is 

applied. The heatmaps show the ED (A) and the Z (B) of the loading 

similarity. 1:5 = the full multi-view vector. 

4.6.6.2.1 Loading similarity: Z 

There was a significant main effect of scaling method 

(F(1.20, 9.61) = 114.84, p < .001, ηp
2 = 0.93, Greenhouse-Geisser 

correction applied). The Z-values for no scaling and uniform 5𝑥 scaling 

were identical, which was expected as a uniform scaling factor should 

change the magnitude but not the direction of the projection into the 

separate view space. As such, post-hoc comparisons did not separate 

these options. The results using the LLS scaling factor and both scaling 

and translation factors were also so incredibly similar (likely because 

the median translation factor was close to 0) that post hoc comparisons 
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only included the model using both scaling and translation factors. The 

Bonferroni corrected alpha for these post hoc comparisons was 

therefore α = .005. 

 
Figure caption on next page 
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Figure 4.16. Comparison of scaling methods. 

(A) Mean reconstruction accuracy (ED – left, Z – right, deviation vector 

similarity – top, image-level similarity – middle, loading similarity - 

bottom) across actors for each scaling method. ‘𝐿𝑥’ = no scaling. ‘5𝐿𝑥’ = 

uniform 5𝑥 scaling. ‘𝛽1𝐿𝑥’ = applying the average scaling factor from 

the LLS regression. ‘𝛽1𝐿𝑥 +  𝛽0’ = applying the average scaling and 

translation factors from LLS. ‘𝑒𝐿𝑥’ = applying the exponential scaling. 

‘𝜆𝐿𝑥’ = applying the simple scaling factor, not from the permutations. 

‘𝐿𝑟𝑒𝑙’ = using the relative loadings rather than just the inner products 

between the truncated input vectors and eigenframes. Error bars show 

± 1 SEM of the within-subject mean. (B) The loading similarity 

separated by view for each scaling method, showing the mean ED (top) 

and Z (bottom) across actors. In all heatmaps, brighter colours reflect 

better reconstruction accuracy. 

In the post hoc comparisons, compared to no scaling (mean = 

0.969, SD = 0.055), applying the median scaling and translation factors 

determined through LLS (mean = 1.265, SD = 0.094) significantly 

increased the loading similarity Z-value (t(8) = 10.60, p < .001, 

95% CI = [0.232, 0.361]). Applying the median exponential curve fit also 

increased the loading similarity (mean = 1.205, SD = 0.087) compared 

to no scaling (t(8) = 10.08, p < .001, 95% CI = [0.182, 0.290]), however 

was still significantly worse than using the median scaling and 

translation factors (t(8) = -4.97, p = .001, 95% CI = [-0.088, -0.032]). 

Using the median simple scaling factor (mean = 1.262, SD = 

0.093) was significantly better than no scaling (t(8) = 10.80, p < .001, 

95% CI = [0.231, 0.356]) and exponential scaling (t(8) = 4.74, p = .001, 

95% CI = [0.029, 0.085]) and did not differ significantly from applying 
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scaling and translation factors from LLS (t(8) = -2.03, p = .077, 95% CI 

= [-0.006, 0.000]). 

 
Figure caption on next page 
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Figure 4.17. Sample reconstructions using different scaling 

methods. 

Sample reconstruction of an untrained frame using view 2 (bounded by 

red box) as the input view. ‘𝐿𝑥’ = no scaling. ‘5𝐿𝑥’ = uniform 5𝑥 scaling. 

‘𝛽1𝐿𝑥’ = applying the average scaling factor from the LLS regression. 

‘𝛽1𝐿𝑥 +  𝛽0’ = applying the average scaling and translation factors 

from the LLS regression. ‘𝑒𝐿𝑥’ = applying the exponential scaling. ‘𝜆𝐿𝑥’ 

= applying the simple scaling factor, not from the permutations. ‘𝐿𝑟𝑒𝑙’ = 

using the relative loadings rather than just the inner products between 

the truncated input vectors and eigenframes. 

Surprisingly, using the relative loadings (mean = 0.944, SD = 

0.056) rather than inner product loadings was worse than all scaling 

methods, including no scaling, although this did not survive correction 

(t(8) = -3.64, p = .007, 95% CI = [-0.040, -0.009]). This will be returned 

to later. 

4.6.6.2.2 Loading similarity: ED 

For Euclidean distance, there was a main effect of scaling 

method (F(1.47, 11.75) = 70.36, p < .001, ηp
2 = 0.90, Greenhouse-

Geisser correction applied). The values for no scaling and uniform 5𝑥 

scaling were now different, as expected. The scaling and scaling and 

translation options from LLS were again remarkably similar, and so only 

the comparisons using both factors are reported (α = .0033).  

Compared to no scaling (mean = 479.74, SD = 95.45), applying 

a 5𝑥 scaling factor (mean = 550.70, SD = 131.68) increased the ED in 

the loading similarity (t(8) = 4.41, p = .002, 95% CI = [33.84, 108.09]) 

indicating worse reconstructions. In contrast, applying the scaling and 
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translation factors from LLS (mean = 313.92, SD = 62.77) decreased 

the ED, providing better reconstructions compared to no scaling (t(8) = -

9.51, p < .001, 95% CI = [-206.04, -125.59]). Using the exponential 

curve fit (mean = 347.95, SD = 70.39) decreased the ED compared to 

no scaling (t(8) = -7.59, p < .001, 95% CI = [-171.85, -91.73]), but was 

marginally worse after Bonferroni correction than applying scaling and 

translation factors (t(8) = 4.26, p = .003, 95% CI = [15.59, 52.46]). 

Applying the simple scaling factor (mean = 315.10, SD = 63.22) 

also decreased the ED compared to no scaling (t(8) = -9.59, p < .001, 

95% CI = [-204.22, -125.06]) and applying exponential scaling, but only 

prior to correction (t(8) = -3.52, p = .008, 95% CI = [-62.19, -12.98]). The 

ED was slightly but not significantly larger compared to applying the 

scaling and translation factors from LLS following correction (t(8) = 3.57, 

p = .007, 95% CI = [0.42, 1.94]). 

Using the relative loadings (mean = 568.97, SD = 139.17) was 

again worse than no scaling (t(8) = 4.09, p = .003, 95% CI = [38.97, 

139.50]). 

There was little visible difference between reconstructions made 

using the exponential curve fits, both scaling and translation options 

from LLS or the median simple scaling factor, thus any could be used to 

visually improve reconstructions.  
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4.6.6.3 Generalising to new frames 

The previous subsection used the trained frames to establish if 

scaling worked sufficiently. Here we assessed if scaling would 

generalise to new frames and whether any options overfit the training 

data, e.g., if the exponential fit generalises better than the median 

scaling factors. For this comparison, only the following conditions were 

included: no scaling (𝐿𝑥), exponential fit from LLS (𝑒𝐿𝑥), scaling and 

translation factors from LLS (𝛽1𝐿𝑥 +  𝛽0) and simple scaling factors 

from the single set (𝜆𝐿𝑥). Two, 2 x 4 ANOVAs were conducted to 

compare frame set (trained, untrained) and the 4 scaling methods on 

the ED and Fisher’s Z of the loading similarity. 

Z: As expected, there was a main effect of scaling method 

(F(1.22, 9.72) = 74.28, p < .001, ηp
2 = 0.90, Greenhouse-Geisser 

correction applied). Neither the effect of frame set, nor the interaction 

were significant. 

ED: Again, there was a main effect of scaling method (F(1.49, 11.95) 

= 80.94, p < .001, ηp
2 = 0.91, Greenhouse-Geisser correction applied). 

There was also a main effect of frame set (F(1, 8) = 19.16, p = .002, 

ηp
2 = 0.71), with higher ED for untrained frames (mean = 545.48, SD = 

58.25) than trained frames (mean = 364.18, SD = 23.38). The 

interaction was not significant. 

A visual inspection of the loadings in the multi-view space 

showed they were generally higher for untrained than trained frames. 
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Despite being quantitatively worse, reconstructions of untrained frames 

were still visibly accurate. Indeed, the reconstructions presented within 

the figures are from untrained frames. The lack of an interaction 

showed all scaling options generalised to new frames comparably. 

4.6.6.4 Follow-up analyses on relative loadings 

Reconstructions using relative loadings were, contrary to 

expectations, worse than those using inner product loadings, so we 

investigated why. Assuming two vectors are correlated, the larger the 

magnitude of the vector being projected onto, the larger the inner 

product. As the truncated components vary in length by view, it seemed 

intuitive that the lengths might inform how to scale the inner products. 

As such, it seemed intuitive that using the relative loadings (
𝑡𝐷𝑣∙𝑡𝐸𝐹𝑣

|𝑡𝐸𝐹𝑣|2
), 

would provide suitable scaling compared to simply using the inner 

product (𝑡𝐷𝑣 ∙ 𝑡𝐸𝐹𝑣).  

Further inspection, however, shows the relative loadings are 

fairly accurate for the first few components, but decrease in suitability 

as component number increases. As shown in Figure 4.18, simple 

scaling factors calculated by dividing the multi-view loadings by the 

relative loadings are now close to 1 for early components, showing that 

the first few components need little scaling. 
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Figure 4.18. Scaling factors using relative loadings against the 

correlation between single- and multi-view loadings. 

The median simple scaling factor (coloured lines) and inter-quartile 

range (IQR, shaded areas) across all training frames between the 

single view relative loadings and the multi-view loadings, separated by 

views. Scaling factors are plotted against the correlation coefficient (r) 

between the single and multi-view loadings across all training frames 

for each component (black lines). This data has not been smoothed. 

We then tested the assumption that single-view and multi-view 

loadings were correlated; a necessary assumption for scaling to work 

appropriately. Across all training frames the correlation between the 

single-view and multi-view loadings was calculated, for each component 

and view separately. Note that the correlation coefficients are identical 
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regardless of whether inner product or relative loadings are used. 

These correlation coefficients were plotted against the simple scaling 

factors for the relative loadings (Figure 4.18), which conveniently sit 

within a similar numerical range making for easier visual comparison.  

As can be seen in Figure 4.18, the patterns of the correlation 

coefficients and the average simple scaling factors are remarkably 

similar across components. Indeed, performing a Pearson’s correlation 

between these traces showed a highly significant, positive relationship 

for all views and actors (all r > 0.92, p < .001). This shows that, in 

general, as the component number increases the correspondence 

between the single-view and multi-view loadings decreases. This 

decreasing correspondence is reflected in the required scaling factors. 

The relative lengths of the truncated components across views do not 

become more variable as the component number increases, suggesting 

instead the motion and textures in the truncated components become 

less and less correlated across views. Despite this, it was not clear from 

observing videos of the components that the actions differed across the 

views even in higher components. 

One approach might be to use relative loadings but only include 

early components. Figure 4.19 shows how the reconstruction accuracy 

for one actor changes as a function of either adding more components 

(red) or removing early components (blue). It shows that reconstruction 

accuracy decreases rapidly as early components are removed and that 

it peaks when using the first 17 components. Figure 4.20 shows the 

reconstruction using the first 17 components. 
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Figure 4.19. Reconstruction accuracy using the relative loadings 

as a function of the number of components. 

Euclidean distance (top row) and Fisher’s Z (bottom row) for the 

deviation vector similarity (left), frame similarity (middle) and loading 

similarity (right) as a function of the number of components using the 

relative loadings. Lines show the mean reconstruction accuracy for one 

actor as a function of either increasing (red) or decreasing (blue) the 

number of components. Increasing components include PCs 1 to X, 

decreasing include PCs X to 100. Mean (line) and ±1SD (shaded 

areas) averaged across all frames and all viewpoints used in training. 

Combinations of components tested are marked by ticks on the x-axis. 
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Figure 4.20. Reconstructions using relative loadings. 

Reconstructions of an untrained frame using relative loadings, using 

the first 100 components (left) and only the first 17 components (right). 

The red box outlines the input view for each row of reconstructions. 

To test if using only early components improved the 

reconstructions, the first 𝑐 components (where 𝑐 ≤ 20) were selected 

for each actor separately to provide the best reconstruction accuracy. 

This varied substantially across actors, peaking at the first 5 

components for one actor and the first 20 for another. Using the first 𝑐 

components significantly lowered the ED of the loading similarity (mean 

= 407.02, SD = 101.34) and increased the Z-value (mean = 1.063, SD = 

0.099) compared to using relative loadings with all components (ED: 

mean = 568.97, SD = 139.17, t(8) = -6.62, p < .001, 95% CI = [-218.38, 

-105.53]; Z: mean = 0.944, SD = 0.056, t(8) = 4.52, p = .002, 95% CI = 

[0.058, 0.179]) and compared to using inner product loadings with no 

scaling, prior to Bonferroni correction (ED: mean =479.74, SD = 95.45, 
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t(8) = -2.78, p = .024, 95% CI = [-133.07, -12.37]; Z: mean = 0.969, SD 

= 0.055, t(8) = 3.31, p = .011, 95% CI = [0.029, 0.160]). Bonferroni-

corrected α = .008. The reconstructions were still significantly worse 

than using the median scaling and translation factors (𝛽1𝐿𝑥 +  𝛽0) from 

the linear least squares scaling (ED: mean =313.92, SD = 62.77, t(8) = 

5.05, p = .001, 95% CI = [50.51, 135.68]; Z: mean = 1.265, SD = 0.094, 

t(8) = -18.12, p < .001, 95% CI = [-0.228, -0.176]). 

Despite cropping the number of components to obtain the 

maximum reconstruction accuracy when using the relative loadings, the 

reconstructions were still inferior to those made by scaling the inner 

product loadings.  

4.6.7 Discussion 

Here we aimed to recreate the multiple appearance subspace 

model created by Beridze (2021). As well as recreating the methods, 

we explored additional options for scaling the reconstructions. Model 3 

provided visibly accurate cross-view reconstructions when scaled using 

the exponential curve fit, the median scaling and optionally translation 

factors from LLS, and the median simple scaling factor when using the 

inner products. Quantitatively, the best reconstructions used the scaling 

factors from LLS permutations, narrowly followed by the median simple 

scaling factors taken over all frames. Unlike Models 1 & 2, Model 3 did 

not result in any unwanted superimpositions or suffer from any 

problems of projecting features in the wrong spatial location. 
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The model could reconstruct facial motion across views, but the 

methods were not biologically plausible. In many instances the model 

was exposed to multiple views concurrently. One such instance is in the 

projection of the multi-view frames back into the space for determining 

scaling factors. While the scaling factor curves loosely reflected the 

decrease in variance explained by each component, they could not be 

fully explained by the variance as the plotted scaling factor curves 

would be smoother and identical across views.  

By splitting the components by view it was possible to determine 

if the required scaling factors were in some way related to the lengths of 

the truncated components. However, reconstructions using the relative 

loadings, which scaled the inner products by the squared length of the 

truncated vectors, were poor even when the number of components 

was specifically cropped to produce the best reconstruction accuracy. 

Exploring the correlation between the single-view and multi-view 

loadings revealed that the views become less and less correlated with 

each other as the component number increased. The high similarity of 

the pattern of correlation coefficients across components compared to 

the required scaling factors suggests that the scaling factors are a 

product of this decreasing correspondence. As a result, the scaling 

factors subsequently downregulate the loadings in higher components. 

Overall, we managed to replicate the findings by Beridze (2021) 

showing that facial motion could be reconstructed across views, but 
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again showing the necessity to scale the otherwise muted 

reconstructions. Models 4 and 5 expand on this model to enhance the 

biological plausibility and overcome methodological limitations, paving 

the way to understanding how a face space account might allow for 

translations across view. 

4.7 Model 4 – Multi-view paired entry model 

4.7.1 Model aim and overview 

Model 3 was able to reconstruct motion across views well once 

scaling was established. Model 4 aimed to build a similar multi-view 

space, but without being exposed to all 5 views simultaneously. Based 

on the assumption of broad tuning curves (Perrett et al., 1991), a single 

view likely activates at least 2 sets of neighbouring view-tuned neurons. 

Therefore, we only concatenated frames for neighbouring views. If the 

head then turns, we remove the first view, keep the second, and add a 

third, providing overlap between viewpoints. This can be visualised in 

Figure 4.21. 
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Figure 4.21. Depiction of Model 4. 

The multi-view paired entry model. Vectorised versions of the frames 

are concatenated across views in neighbouring pairs, with the 

remaining views filled with zeros, before performing PCA on this multi-

view matrix. 

4.7.2 Model construction 

As with Model 2 (the single slot model), the mean for each view 

(�̅�𝑣) was subtracted prior to concatenation. The current model however 

followed the multi-slot design of Model 3. Deviation vectors for two 

neighbouring views were concatenated, with the rest of the vector filled 

with zeros. The matrix 𝑋 was therefore of size 409,600 x 4𝑛. Different 

pairs would realistically be seen at different times, but for piloting, the 

same set of 𝑛 frames were reused for each pair. PCA was performed on 

𝑋, with the hope that through the overlap, correlated changes across all 

5 views would be learned. 

4.7.3  Reconstructing frames across views 

Reconstructing frames across views used the same methods as 

Model 3, although, less time was invested in scaling because of flaws 

discovered. In some components, actions were reversed for some 
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views. For instance, in some views the head leaned forwards for 

positive loadings and backwards for negative, while in others the action 

was reversed, leaning backwards for positive loadings. The polarity in 

general is arbitrary, with opposing directions simply reflecting opposite 

changes from the mean, but one would have hoped the directions of 

actions would be consistent within components.  

To attempt to fix the polarity inversion, a chain of comparisons 

was performed, starting with views 1-2, then 2-3, and so forth. In each 

comparison, frames for both views were projected onto their respective 

truncated components. Where the sign of the loadings was flipped 

between views, those components in the second view were multiplied 

by -1. This should have corrected the polarity across views and the 

direction of actions should then have matched. As shown in the results 

this was not the case, and more issues were present. 



University of Nottingham  Chapter 4 

197 

 

Figure 4.22. Example reconstructions from the multi-view, paired 

entry model.  

Top row shows the veridical frames. Second row (bounded by the blue 

box) shows the reconstructions made from the multi-view input. 

Subsequent rows show the reconstructions made by projecting the 

single-view vectors (for the views bounded by the red boxes) into the 

space. These reconstructions were made using the inner product. 
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Figure 4.23. Comparison of Models 3 and 4. 

(A&B) The mean Euclidean distance (A) and Fisher’s Z (B) of the 

loading similarity for reconstructions from the multi-view inputs for 

Model 3 (blue) and Model 4 (red) for one actor, separated by 

reconstructed view. Error bars show ±1SD across all trained frames. 

(C&D) The mean Euclidean distance (C) and Fisher’s Z (D) separated 

by both input and reconstructed view. The top row in each heatmap 

shows the reconstructions from the multi-view inputs, the subsequent 

rows the single-view inputs. 

4.7.4 Results and discussion 

In Model 3, reconstructions from multi-view inputs were better 

than from single-view inputs, providing a baseline of what was 

achievable and providing loadings that could help determine scaling 

factors. Here, however, reconstructions from multi-view inputs were 

inaccurate and often caricatured (see Figure 4.22). Figure 4.23 shows 

that the average reconstruction accuracy (separate space loading 

similarity) for multi-view inputs was substantially worse than in Model 3. 
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These reconstructions no longer provide a good baseline, nor can the 

loadings be used for scaling. 

 
Figure 4.24. Mixed component in Model 4. 

Depiction a positive (top) and negative (bottom) loading on PC10, and 

the origin (middle). Views 1 and 4 show the same action. Views 2 and 3 

show the same action but in the opposite direction. View 5 shows a 

slightly different movement as the lip separation does not change. 

Inspecting the components using videos that sinusoidally scaled 

through the origin and along both polarities revealed three problems at 

least. Problem 1: within components the amount of motion differed 

across views, with the actions in some views (e.g., ¾) extending further 

than others (e.g., frontal). Problem 2: inverted actions were still present, 

despite loadings being of the same polarity. Problem 3: more 

problematically, actions did not always perfectly match across views, 

irrespective of polarity. PC10 (Figure 4.24) of one actor demonstrates 

this. Views 1 and 4 show the same action, which is the same but 

reversed in views 2 and 3. View 5 shows some similarities in overall 

head motion, but the lip separation does not change. This sort of 

discrepancy may be present in Model 3, explaining the decreasing 
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correlation between single-view and multi-view loadings as component 

number increased, although, as already noted we did not see any 

obvious discrepancies like this.  

These problems mean the multi-view loadings are a 

conglomerate of inconsistencies, accumulating in inaccurate and often 

caricatured reconstructions. For single-view inputs, same-view 

reconstructions were surprisingly good, likely from loading most onto 

components more heavily biased to that view. Between differences in 

the magnitudes of actions within the truncated components, and 

differences in the actions themselves, the resulting reconstructions 

were more accurate for the input view, but less accurate for other views.  

To summarise, Model 4 was theoretically more biologically 

plausible than Model 3 while having view-invariant units. However, 

reconstructions from multi-view inputs were worse due to an even 

greater lack of correspondence between the separate views within the 

components.  

4.8 Model 5 – Two-step multi-view face space model 

4.8.1 Model aim and overview 

This final, two-step model accumulates many of the ideas 

discussed previously. Of the models created, this model provides the 

best reconstruction accuracy whilst being the most biologically plausible 

and can account for more observations in the known hierarchy of face 

processing.  
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4.8.2 Model construction 

An outline can be seen in Figure 4.25. The model comprises two 

steps: step 1 forms separate spaces for each view, which are then used 

to create the multi-view space in step 2. 

4.8.2.1 Step 1: 

 Separate PCA spaces were made for each view (example 

components can be seen in the results section). This followed the same 

procedure as Model 1, with the assumption of a view-dependent layer 

containing separate populations of neurons for each view.  

Rather than projecting deviation vectors across the spaces, we 

instead learned how components in the different spaces were 

associated. This is a similar idea to the canonical correlation models 

described by Ding and Tao (2016), without explicitly aligning the 

separate spaces into one common subspace. Instead, we stored each 

space separately, alongside transformation matrices detailing how to 

move between them. There are many forms that these transformation 

matrices could take, such as correlation, projection, or regression 

matrices.  
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Figure 4.25. Depiction of Model 5. 

Depiction of two-step model construction. (A) An overview of the steps, 

showing separate, view specific PCA spaces in Layer 1, and the multi-

view space in Layer 2. (B) The cascade reconstruction process to 

recover multi-view images from single-view inputs across the separate 

spaces. This process uses matrixes of regression coefficients (green) 

for predicting the loadings in one view’s space from those of another. 

(C) Projecting both the recovered single-view (SV) vectors and multi-

view (MV) vectors into the multi-view space of Layer 2. Multi-view 

loadings are used for scaling reconstructions. 

A similar approach was used by Lan et al (2012) and Lucey et al 

(2007) who transformed the appearance of the mouth across views for 
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automatic lip-reading systems. They created feature vectors, similar to 

our PCA components, containing information regarding shape and 

texture deviations. These features were similar over views so they could 

map from one view’s space to another directly, but to improve the 

mapping they used ridge regression to calculate transformation 

matrices. The features in one view (𝑌) could be predicted those in 

another (𝑋) using 𝑌 =  𝑇𝑋 where the transformation matrix 𝑇 is a matrix 

of 𝛽 coefficients. The calculation of 𝑇, however, involves computing the 

covariance between 𝑋 and 𝑌. This only works because of the close 

spatial correspondence of the features across views due to being 

restricted to the mouth. With full faces and larger spatial differences, 

this method becomes less suitable, as discussed in Model 1. 

Rather than using the components of two neighbouring spaces (𝑖 

and 𝑗) as the features for regression, we instead used the loadings of 

frames onto the components. Multiple linear regression (MLR) was also 

used instead of ridge regression. Ridge regression was used previously 

(Lan et al., 2012; Lucey et al., 2007), possibly due to being suitable 

when features are collinear, however because PCA components are 

orthogonal, the features cannot be collinear and loadings on the 

components should not be either. We also did not map directly from 

profile to frontal (as in Lan et al., 2012; Lucey et al., 2007), instead 

learning the transformation matrices between neighbouring views only, 

based on the same assumptions as for Model 4. Like Model 1, 

reconstructions were made through a cascading procedure across 

neighbouring views. 
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We projected frames for two neighbouring views into their 

respective spaces and calculated the loadings onto the components. As 

the frames were synchronised across views, we could then learn how 

the loadings in one space related to loadings in another. For instance, 

the loadings on PC1 in one space may relate to, and therefore be 

predicted by, the loadings on PCs 2 and 3 in the neighbouring space. 

For a given view’s space (𝑗), we therefore used MLR to learn the 𝛽 

coefficients necessary to predict the loadings on each component from 

the loadings on all components in the neighbouring space (𝑖). For this, 

the loadings on each of the components in 𝑖 were entered as the 

predictor variables, and the loadings for one component in 𝑗 were 

entered as the response variable. This was repeated for every 

component in 𝑗, and then the process was reversed to predict the 

loadings on the components in 𝑖 from the loadings in 𝑗. 

To reconstruct frames across views, the loadings in one view (𝐿𝑗) 

were then predicted from the loadings in another (𝐿𝑖) using equation 

(4.4). In this equation, 𝐿𝑖 is a 𝑛 𝑥 𝑝𝑖 matrix of loadings where 𝑛 is the 

number of frames and 𝑝𝑖 is the number of components in 𝑖. 𝛽0 is a 

1 𝑥 𝑝𝑗 row vector containing a constant for each component in 𝑗, where 

𝑝𝑖 is the number of components. 𝛽𝑖𝑗 is a 𝑝𝑖  𝑥 𝑝𝑗 transformation matrix for 

transforming the loadings in 𝐿𝑖 into 𝐿𝑗. 𝐿𝑗 is a 𝑛 𝑥 𝑝𝑗  matrix of the 

predicted loadings onto 𝑗. The components could then be scaled by the 

loadings and the frames reconstructed. 
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𝐿𝑗 =  𝛽0 + 𝐿𝑖𝐵𝑖𝑗 (4.4) 

To reconstruct non-neighbouring views, the process was 

cascaded along. As an example, from the loadings in view 2’s space 

(the input view), the loadings in the neighbouring views (1 and 3) were 

estimated and the frames reconstructed. View 3’s estimated loadings 

were then used to estimate view 4 and in turn view 5. This can be seen 

in Figure 4.25.  

Regression is not the only method for making transformation 

matrices. Correlation matrices could be used, but from trialling both 

methods, regression creates more accurate reconstructions. This is 

noticeable across large rotations, although not strikingly obvious. 

Because correlation coefficients are limited to ±1, the loadings can only 

stay the same or decrease when transformed across spaces, muting 

the motion. Due to its predictive nature, and not being capped at ±1, 

regression provides a better alternative. 

At this point, the frames could be reconstructed remarkably well 

(see results). As a system, layer/step 1 is view-invariant, but at this 

stage no single unit is view-invariant. Therefore, step 2 formed a multi-

view space as in Model 3.  

4.8.2.2 Step 2.  

The second step integrated information across views to build a 

multi-view matrix which was then orthogonalized using PCA forming the 
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multi-view space. It is possible to create this multi-view layer directly 

from the separate spaces, however here we used the cross-view 

reconstructions, as if learning through visual input.  

Deviation vectors for the training frames were projected back into 

their respective spaces. The cascade of reconstructions for other views 

were then calculated and concatenated into multi-view vectors, with 

each view used as a separate input. This generated a 409,600 x 5𝑛 

matrix where 𝑛 is the number of frames. PCA was then performed to 

create the multi-view space. 

When generating the reconstructions to form the multi-view 

space non-significant predictors were ignored. The transformation 

matrices can be thought of as synapses between neurons in different 

spaces, or even separate neurons connecting two populations. In either 

case, if two components do not coactivate often, the connection will be 

pruned, if ever formed. To mimic this, if any component in one view did 

not significantly predict loadings on a component in another, then the 

coefficient for those components was replaced with 0. There is no 

computational benefit to this in matrix multiplication, but it symbolises 

one less synapse and fewer neural computations.  

There was a significant decrease across all measures of 

reconstruction accuracy when non-significant predictors were ignored, 

but the difference was often negligible. For instance, when comparing 

loading similarity (ignoring same-view reconstructions) the average ED 
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was 220.53 (SD = 45.58) without thresholding, and 220.90 (SD = 45.69) 

when restricted to only significant predictors - a difference significant at 

group-level (t(8) = 7.88, p < .001, 95% CI = [-0.48, -0.26]). The 

correlation coefficients (Fisher’s Z) were on average 1.635 (SD = 0.129) 

and 1.633 (SD = 0.129) respectively (t(8) = 13.40, p < .001, 95% CI = 

[0.001, 0.002]). While significant, the neurocomputational benefit 

arguably outweighs the negligible difference. There are also no clear 

visible differences in the reconstructions, therefore non-significant 

predictor variables were ignored. 

One could reduce the number of components in the separate 

spaces before making the multi-view layer, say to the first 15 as these 

seem to be crucial for image reconstruction (see Figure 4.26). However, 

as the reconstruction accuracy of the layer 1 continued to increase with 

additional components, albeit only slightly, all components were 

retained to maximise the accuracy of the multi-view layer.  
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Figure 4.26. Reconstruction accuracy with increasing 

components in the first layer of the separate space model. 

Euclidean distance (top row) and Fisher’s Z (bottom row) for the 

deviation vector similarity (left column), frame similarity (middle 

column) and loading similarity (right column). Lines show the mean 

reconstruction accuracy for each input 𝑥 reconstructed view for one 

participant as a function of either increasing (red) or decreasing (blue) 

the number of components. Increasing components include PCs 1 to 

X, decreasing components include PCs X to 100. Mean and SD 

(shaded areas) for same-view reconstructions (dashed line) and cross-

view reconstructions (solid line), averaged across all training frames. 

The spaces used for measuring reconstruction accuracy contained all 

100 components, hence, when all PCs were included, the loading 

similarity Z-value was inevitably infinite for same view-reconstructions. 

Infinite values were replaced with 9.557. Not all possible combination 

of components were tested. Combinations tested are marked by ticks 

on the x-axis. 
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The model now contains a 2-layer hierarchy of spaces. The first, 

view-dependent layer comprises of separate spaces for each view. The 

second, view-invariant layer comprises a multi-view space where each 

component has information about all five views.  

4.8.3 Reconstructing frames across views 

There were multiple options for reconstructing frames across 

views. One was using the separate spaces and transformation 

matrices, ignoring the second, multi-view layer. Alternatively, the first 

layer could be skipped, and the frames directly projected into the 

second layer. Given the move from view-dependence to view-

independence (Freiwald & Tsao, 2010; Meyers et al., 2015), the option 

best imitating neural processes was to perform a two-step 

reconstruction process. First, frames for a given view were projected 

into the corresponding space in layer 1, and deviation vectors 

reconstructed in that view only. The reconstructed deviation vectors 

were then projected into the multi-view space as in Model 3 and the 

remaining views reconstructed.  

4.8.4 Scaling 

Projecting into the multi-view layer incurred the same problems 

as in Model 3, with muted reconstructions and therefore the necessity to 

scale the loadings. The model aimed to improve bio-plausibility, so a 

modified strategy was adopted. Rather than using all 5 veridical views 

as the multi-view input for determining the required scaling factors, the 

cross-view reconstructions from layer 1 were used instead. For 
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instance, all views were reconstructed from view 2 through the 

cascading process, the multi-view reconstructions were then projected 

into the multi-view space providing a unique comparison and scaling 

factors for view 2.  

Here, no permutations were run, the median simple scaling 

factor (𝜆) and the exponential fit of 𝜆 (𝑒𝜆) was calculated from all trained 

frames in one batch. Figure 4.27 shows a comparison of 𝜆 derived this 

way compared to using the veridical multi-view vectors for one actor. 

 

Figure 4.27 Comparison of scaling factors from veridical and 

reconstructed multi-view vectors. 

The required simple scaling factors (𝜆) for the first 100 components 

using the veridical multi-view vectors (A) and the multi-view 

reconstructions made from transforming the loadings across spaces in 

layer 1 of Model 5 (B). The solid red line shows the median scaling 

factor across all training frames for view 1 of one actor. The shaded 

area shows the inter-quartile range. The black dotted line shows the 

exponential fit for the data. The median scaling factors are remarkably 

similar. 

 



University of Nottingham  Chapter 4 

211 

4.8.5 Results  

4.8.5.1 Layer 1  

4.8.5.1.1 Principal components 

 
Figure 4.28. Example components in Layer 1 of Model 5. 

PCs 1 (top) and 5 (bottom) in the separate, single-view spaces for two 

actors in the layer 1 of Model 5. In each set the middle row represents 

the origin of the given view’s space. Top and bottom rows represent 

scaling the components by +3SD and -3SD respectively, where SD is 

the standard deviation of the loadings of the training set on the 

components. The different colour for view 3 for the actor on the right is 

from the auto white balancing from video capture. 

Visualising the components (see Figure 4.28 and the 

supplementary videos) showed that the actions do not necessarily 

match across different views. As noted for Model 1, this was expected 

because different viewpoints have access to different spatial and 

textural information. For example, PC5 for the actor on the right in 

Figure 4.28 is primarily driven by gaze in view 1’s space, and an 

orofacial change from “eee” to an “ooo” action in view 3. Due to the auto 
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white balancing of the cameras, view 3 for that actor captured whiter 

images with cooler colours. However, this is not a major concern here, 

as the PCA components and deviation vectors are both coded as 

deviations from average, so most of this colour difference will be 

subtracted out with the average. 

4.8.5.1.2 Reconstructions 

The fidelity of the first layer was assessed as the accuracy 

translates to that of the second, multi-view layer. The reconstructions of 

this cascading process of projection, transformation and reconstruction 

looked remarkably good (see Figure 4.29 and supplementary videos). 

They did not require any scaling yet were visibly the best 

reconstructions from any model, including the second layer of this 

model. 

Ignoring same-view reconstructions, the loading similarly was 

better in these reconstructions than those made using 𝛽1𝐿𝑥 +  𝛽0 in 

Model 3. They had a significantly higher Z-value (Model 5 layer 1: mean 

= 1.633, SD = 0.129; Model 3: mean = 1.189, SD = 0.105; t(8) = 23.68, 

p < .001, 95% CI = [0.400, 0.487]) and a significantly lower ED (Model 5 

layer 1: mean = 220.90, SD = 45.69; Model 3: mean = 332.18, SD = 

68.55; t(8) = -11.67, p < .001, 95% CI = [-133.27, -89.30]). 

The reconstructions were also better than those using the 

second layer of the current model, even after scaling was applied to the 

second layer. The loading similarity Z-value was significantly higher 
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(layer 1: mean = 1.633, SD = 0.129; layer 2: mean = 1.202, SD = 0.104; 

t(8) = 21.64, p < .001, 95% CI = [0.385, 0.477]) and the ED significantly 

lower (layer 1: mean = 220.90, SD = 45.69; layer 2: mean = 329.39, SD 

= 67.87; t(8) = -11.43, p < .001, 95% CI = [-130.39, -86.61]).  

 

Figure 4.29. Example reconstructions from the first, view-

dependent layer of the two-step model. 

Top row shows the veridical frames. Each subsequent row shows the 

cascade of reconstructions made using the view bounded by the red 

box as the input. Note that there are no multi-view reconstructions 

when assessing the first layer of the two-step model. The first 100 

components of each space were used. 
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4.8.5.2 Layer 2 

4.8.5.2.1 Principal components 

Example components for layer 2 can be seen in Figure 4.30 and 

Figure 4.31. Reassuringly, they depict the same actions as in Model 3 

(see section 4.6.6.1). This further demonstrates that the transformations 

in layer 1 sufficiently captured the correspondence across views for 

such comparable multi-view components to emerge. 

 
Figure 4.30. Example components in Layer 2 of Model 5. 

PCs 1 (top) and 5 (bottom) in the multi-view space for two actors in 

layer 2 of Model 5. In each set the middle row represents the origin of 

the multi-view space. The top and bottom rows represent scaling the 

components by +3SD and -3SD respectively, where SD is the standard 

deviation of the loadings of the training set on the components. 
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Figure 4.31. Example components across actors in Layer 2 of 

Model 5. 

The first 5 PCs of the multi-view space of layer 2 for four actors, 

showing the front view only. In each of the 4 sets, the middle row 

represents the origin of the multi-view space. Top and bottom rows 

represent scaling the components by +3SD and -3SD respectively. 

4.8.5.2.2 Reconstructions 

As expected, reconstructions made from the combined space 

using the inner product loadings and no scaling were severely muted 

(Figure 4.32). They were no better than the unscaled reconstructions 

from Model 3 (loading similarity ED: Model 3: mean = 479.74, SD = 

95.45; Model 5: 480.04, SD = 95.21; t(8) = 1.61, p = .147, 95% CI = 

[-0.13, 0.73]; loading similarity Z: Model 3: mean = 0.969, SD = 0.055; 

Model 5: 0.969, SD = 0.065; t(8) = 0.00, p = .997, 95% CI = [-0.015, 

0.015]). 
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Figure 4.32. Example reconstructions from the second, view-

independent layer of the two-step model, using inner products 

and no scaling.  

Top row shows the veridical frames. Second row (bounded by the blue 

box) shows reconstructions made from the multi-view input. Each 

subsequent row shows the reconstructions made by projecting the view 

bounded by the red box into its respective space in layer 1, then 

projecting the reconstructed deviation vectors into the multi-view layer 

and reconstructing all other views. In these reconstructions, only the 

first 100 components of each space were used. As can be seen, the 

multi-view reconstructions are accurate, while single-view 

reconstructions are muted. 
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Figure 4.33. Example reconstructions from the second, view-

independent layer of the two-step model, using inner products 

and simple scaling factors. 

Top row shows the veridical frames. Second row (bounded by the blue 

box) shows the reconstructions made from projecting the multi-view 

vector into the PCA space. Each subsequent row shows the 

reconstructions made by projecting the view bounded by the red box 

into its respective space in layer 1, then projecting the reconstructed 

deviation vectors into the multi-view layer and reconstructing all other 

views. Only the first 100 components of each space were used, scaled 

by the simple scaling factors calculated using cascade reconstructions. 

Reconstructions made using the simple scaling factors (𝜆), were 

substantially improved (see Figure 4.33). Movement was slightly muted 
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across large changes in view but was sufficiently dynamic for reading 

speech. For trained frames, there was a significant main effect of 

scaling (no scaling, simple scaling (𝜆), the exponential fit of 𝜆 (𝑒𝜆), and 

using relative rather than inner product loadings) on the loading 

similarity Z-value (F(1.41, 11.26) = 152.69, p < .001, ηp
2 = 0.95, 

Greenhouse-Geisser correction applied) and ED 

(F(1.74, 13.89) = 75.74, p < .001, ηp
2 = 0.90, Greenhouse-Geisser 

correction applied). Applying the exponential fit (Z: mean = 1.221, SD = 

0.087, ED: mean = 338.97, SD = 68.66) significantly improved the 

reconstruction accuracy compared to no scaling (Z: mean = 0.969, SD 

= 0.065, t(8) = 11.94, p < .001, 95% CI = [0.203, 0.300], ED: mean = 

480.04, SD = 95.21, t(8) = -8.61, p < .001, 95% CI = [-178.85, -103.30]). 

Applying the simple scaling factor (Z: mean = 1.278, SD = 0.093, ED: 

mean = 310.68, SD = 62.58) improved reconstruction accuracy 

compared to both no scaling (Z: t(8) = 12.25, p < .001, 95% CI = [0.251, 

0.367], ED: t(8) = -9.81, p < .001, 95% CI = [-209.17, -129.55]) and 

exponential scaling (Z: t(8) = 4.82, p = .001, 95% CI = [0.030, 0.084], 

ED: t(8) = -4.12, p = .003, 95% CI = [-44.14, -12.44]). A comparison of 

scaling options is presented in Figure 4.34. 
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Figure caption on next page 
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Figure 4.34. Comparison of scaling methods in the two-step 

model. 

(A) Mean reconstruction accuracy (ED – left, Z – right, deviation vector 

similarity – top, image-level similarity – middle, loading similarity - 

bottom) across actors for each scaling method. ‘𝐿𝑥’ = no scaling. ‘𝜆𝐿𝑥’ 

= applying simple scaling factors. ‘𝑒𝜆𝐿𝑥’ = applying exponential scaling. 

‘𝐿𝑟𝑒𝑙’ = using relative rather than inner product loadings with either all 

100 PCs or the best 𝑐 PCs. Error bars show ±1 SEM of the within-

subject mean. (B) Loading similarity separated by view for each scaling 

method, showing the mean ED (top) and Z (bottom) across actors. In 

all heatmaps, brighter colours reflect better reconstruction accuracy. 

What is surprising given the additional steps, but reassuring, is 

that the reconstructions were slightly but significantly more accurate on 

average than from Model 3 using 𝛽1𝐿𝑥 +  𝛽0. For trained frames, the 

ED of the loading similarity was smaller (Model 5: mean = 310.67, SD = 

62.58, Model 3: mean = 313.92, SD = 62.77, t(8) = -5.80, p < .001, 95% 

CI = [-4.54, -1.96]) and the Z was larger (Model 5: mean = 1.278, SD = 

0.093, Model 3: mean = 1.265, SD = 0.094, t(8) = 6.49, p < .001, 95% 

CI = [0.008, 0.017]). These effects were also seen for untrained frames 

(ED: t(8) = -2.59, p = .032, 95% CI = [-10.39, -0.61]), Z: t(8) = 3.10, 

p = .015, 95% CI = [0.004, 0.026]), although neither result for untrained 

frames survived Bonferroni correction (α = .0125). Of course, the more 

complicated reconstructions in Model 5 may not always be better for 

different actors or videos captured under different circumstances. 

Nevertheless, it is reassuring that this model can make visibly accurate 

reconstructions as good as with the best scaling method in Model 3, 

despite additional steps to increase biological plausibility. 
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To further support the use of reconstructions from layer 1 for 

determining 𝜆𝐿𝑥 scaling, we compared reconstruction accuracy to 

frames scaled using the veridical multi-view inputs. The accuracy was 

marginally worse when scaled using the cascade reconstructions, but 

the difference was negligible. The loading similarity Z-value was 

fractionally worse for cascade scaling (mean = 1.278, SD = 0.093) than 

veridical scaling (mean = 1.280, SD = 0.093, t(8) = -3.49, p = .008, 95% 

CI = [-0.003, -0.001]). The ED was not significantly different (veridical: 

mean = 310.41, SD = 62.42, cascade: 310.68, SD = 62.58, t(8) = 2.19, 

p = .060, 95% CI = [-0.01, 0.54]). Despite additional steps, the method 

was still effective.  

The use of relative loadings rather than inner product loadings 

was also assessed, revealing the same problems as Model 3. 

Reconstructed motion was more visible than when using inner product 

loadings without scaling but was often caricatured as were the textures 

(Figure 4.35). Using relative loadings (Z: mean = 0.943, SD = 0.065, 

ED: mean = 558.02, SD = 132.08) rather than inner product loadings (Z: 

mean = 0.969, SD = 0.065, ED: mean = 480.04, SD = 95.21) with all 

100 PCs resulted in worse reconstructions (Z: t(8) = -3.04, p = .016, 

95% CI = [-0.046, -0.006]), ED: t(8) = 3.99, p = .004, 95% CI = [32.87, 

123.09]). 

The detrimental effect of using the relative loadings was again 

lessened if the spaces were cropped to the first 𝑐 components (see 

Figure 4.34), with 𝑐 determined separately for each actor to provide the 



University of Nottingham  Chapter 4 

222 

best reconstruction accuracy within the first 20 components. The 

loading similarity (ED: mean = 390.70, SD = 88.89, Z: mean = 1.089, 

SD = 0.099) was improved over using all PCs (ED: t(8) -7.73, p < .001, 

95% CI = [-217.22, -117.42], Z: t(8) 6.69, p < .001, 95% CI = [0.096, 

0.196]) or using the inner product with no scaling (ED: t(8) -4.32, 

p = .003, 95% CI = [-137.08, -41.60], Z: t(8) 5.04, p = .001, 95% CI = 

[0.065, 0.175]). However, the reconstructions were still worse than 

using inner product loadings and simple scaling factors (ED: t(8) 6.94, 

p < .001, 95% CI = [53.45, 106.61], Z: t(8) -19.89, p < .001, 95% CI = 

[-0.211, -0.167]). Figure 4.36 shows an example using only the first 13 

components of the multi-view space, showing the same frame (not used 

for training) as in figures Figure 4.29, Figure 4.32, Figure 4.33 and 

Figure 4.35. The correlation between the single-view loadings and the 

multi-view loadings also decreased with increasing component number. 

Using the relative loadings was therefore somewhat effective, but only 

for the first 𝑐 components where the correlation between the single-view 

and multi-view loadings is highest. 
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Figure 4.35. Reconstructions from the second, view-independent 

layer of the two-step model, using relative loadings for the first 

100 components.  

Top row shows the veridical frames. Second row (bounded by the blue 

box) shows the reconstructions made from the multi-view inputs. Each 

subsequent row shows the reconstructions made by projecting the view 

bounded by the red box into its respective space in layer 1, then 

projecting the reconstructed deviation vectors into the multi-view layer 

and reconstructing all other views. The multi-view reconstructions are 

accurate, while reconstructions from single-view inputs are slightly 

caricatured and, in some cases, distorted, e.g., see bottom row. 
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Figure 4.36. Example reconstructions from the second, view-

independent layer of the two-step model, using relative loadings 

and only the first 13 components.  

Top row shows the veridical frames. Second row (bounded by the blue 

box) shows the reconstructions made from the multi-view input. Each 

subsequent row shows the reconstructions made by projecting the view 

bounded by the red box into its respective space in layer 1, then 

projecting the reconstructed deviation vectors into the multi-view layer 

and reconstructing all other views. Reconstructions from single-view 

inputs are still slightly caricatured but less so when restricted to the first 

13 components (Figure 4.35). 

We next tested the generalisation to new frames. Again, 

reconstructions for untrained frames were visibly accurate but 
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quantitatively worse. The loading similarity Z-values when scaled with 

simple scaling factors were not significantly different for untrained 

(mean = 1.225, SD = 0.168) than trained frames (mean = 1.278, SD = 

0.093, t(8) = -0.76, p = .471, 95% CI = [-0.215, 0.109]). However, the 

ED was significantly worse (untrained: mean = 476.13, SD = 166.51, 

trained: mean = 310.68, SD = 62.58, t(8) = 3.73, p = .006, 95% CI = 

[63.12, 267.80]), suggesting a difference in magnitude rather than 

direction. 

This pattern was also observed for reconstructions from the first 

layer of the model. The Z-value, ignoring same-view reconstructions, 

was not significantly different between trained (mean = 1.633, SD = 

0.129) and untrained frames (mean = 1.448, SD = 0.233, t(8) = 1.69, 

p = .130, 95% CI = [-0.067, 0.437]). In contrast, the ED was significantly 

worse for untrained (mean = 416.13, SD = 181.76) than trained frames 

(mean = 220.90, SD = 45.69, t(8) = 3.29, p = .011, 95% CI = [58.31, 

332.17]). As the angle was not significantly different this again suggests 

the difference was primarily in the magnitude. 

4.8.6 Discussion 

Here, the aim was to make a biologically plausible model that 

recapitulated the hierarchical transition from view-dependence to view-

invariance (Freiwald & Tsao, 2010; Gross & Sergent, 1992; Meyers et 

al., 2015; Perrett et al., 1991). The first layer provided view-dependent 

representations while the second achieved view-invariance, with 

components containing information about all 5 views. 
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Despite the additional steps necessary to create the 

representation in a biologically plausible manner, the model was able to 

reconstruct motion well from either layer and could generalise to new 

frames reasonably well. It combined some of the techniques used by 

Lan and colleagues (2012) to learn the associations between separate 

spaces, and then formulated a multi-view representation as previously 

created by Beridze (2021).  

If the aim were purely computational, one could ignore the 

second, multi-view layer. The reconstructions from the first layer were 

more accurate than all other models created here, including the second 

layer of this model. Thus, for transforming across views for automatic 

speech-reading software, for example, layer 1 of this model should be 

used. 

The complete model comes with increased computational costs 

over the multi-view spaces of Model 3 or the separate spaces of Model 

1. Firstly, there are increased storage costs of having both view-specific 

and multi-view representations, as well as storing information about 

how the separate spaces are related. In contrast, the multi-view space 

of Model 3 only has one set of ‘neurons’ (components) with the 

associations between different viewpoints already learned and implicitly 

stored within the representation. The two-step model also has additional 

processing demands, with two stages of representation and 

reconstruction rather than just one. 
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To reduce computational costs, one could assume the separate 

spaces are redundant and are pruned once the multi-view 

representations are learned. But how then would the multi-view model 

update with new information? It would also be inconsistent with the 

aims to imitate the hierarchical, posterior-anterior progression from 

view-dependence to view-invariance (Freiwald & Tsao, 2010; Gross & 

Sergent, 1992; Meyers et al., 2015; Perrett et al., 1991). 

Overall, the two-step model was able to reconstruct motion well 

and could be constructed in a biologically plausible manner. The model 

neither needed to ‘see’ all views concurrently when creating the multi-

view space or when determining scaling. Despite creating impressive 

cross-view reconstructions using the second layer of the model, the 

reconstructions were better using the first layer, therefore, the first layer 

of the two-step model is best if one’s goals are purely computational. 

4.9 General discussion 

This chapter aimed to expand on the work by Beridze (2021) to 

develop a biologically plausible model of view-invariance that can 

reconstruct facial motion across views during speech, as if performing a 

mental rotation. While the question on the importance of motion and 3D 

information in identification is still open (Hancock et al., 2000), we have 

shown that a view-invariant representation of facial motion is possible 

without the necessity to form a 3D model. 



University of Nottingham  Chapter 4 

228 

Model 1 comprised of separate spaces for each view and 

attempted to directly project deviation vectors from one view into the 

space of the neighbouring view. Model 2 tried to form a single space in 

which different views could be considered around local, view-specific 

means. Both were unsuccessful, with problems of spatial positioning 

and superimposition causing poor reconstructions. 

Replicating the methods of Beridze (2021), Model 3 

concatenated all 5 views into multi-view vectors to form one, multi-view 

PCA space which was able to reconstruct motion well across views 

once scaling was applied. While not biologically plausible, it provides a 

good computational model and provided a basis for making Models 4 

and 5. 

 Model 4 attempted to build the multi-view space in a more 

biologically plausible way by only concatenating neighbouring views, 

with the hope that the overlap would allow associations to be extracted 

across all 5 views. It was able to learn some of the correlated 

movements across the different views. However, Model 4 had problems 

that could not easily be solved, with the motion in the components not 

always being consistent across views, with some reversals in the 

direction of actions and some different, non-reversed actions. 

Model 5 took inspiration from Lan and colleagues (2012) and 

some of the previous models outlined by Ding and Tao (2016) using 

canonical correlation analysis, to learn the relationships between the 
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components in the separate spaces for different views. The learned 

relationships, in the form of transformation matrices, were then used to 

transform the loadings and reconstruct frames across views. The 

reconstructions were then used to build a multi-view space and provide 

suitable scaling. Model 5 provided the most biologically plausible model, 

comprising 2 layers, that of all our models best mimicked the transition 

in neural tuning from view-dependence to view-independence (Freiwald 

& Tsao, 2010; Gross & Sergent, 1992; Meyers et al., 2015; Perrett et 

al., 1991). The first, view-dependent layer was able to reconstruct 

motion remarkably well, the best of all models created thus far. The 

second, view-independent layer was able to reconstruct motion across 

views but, like Model 3, the loadings needed scaling. Unlike Model 3, 

the scaling could be determined in a more biologically plausible way. 

In Model 3 and the second layer of Model 5, the relative loading 

was also considered rather than the inner product loading. The aim was 

to use the magnitude of the truncated component to scale the loadings. 

The intuition was that this would prevent the need to project in either 

veridical or reconstructed multi-view vectors for determining scaling. 

However, when using all components, the reconstructions were often 

caricatured. Further investigation through assessing the correlations 

between the single view and multi-view loadings suggested this was 

due to the correspondence across the views decreasing as the 

component number increased, although it was not possible to see this 

discrepancy from visualising the components. Nevertheless, this 
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indicates that the scaling factors identified also down-regulate the 

loadings to mediate the decreasing correspondence.  

Using the relative loadings with only the early components, 

where the correlation between the single-view and multi-view loadings 

was higher, improved reconstruction accuracy compared to either using 

all components or compared to using the inner product loadings with no 

scaling, showing it was somewhat effective. However, the 

reconstructions were still not as good as using the scaling factors 

determined using either the veridical or reconstructed multi-view 

vectors.  

Although not formally tested, caricaturing may not always be 

problematic. It was often easy to tell what the actor was saying when 

the motion was caricatured using an early subset of the components. 

Moreover, Furl and colleagues (2020) found that caricatured dynamic 

expressions were still recognisable and convincing, and exaggerating 

lip movements has also been found to improve human lip-reading 

(Theobald et al., 2006). Therefore, caricatured motion in speech may 

even be beneficial for some applications.  

The first layer of the model adapted methods used previously 

(Lan et al., 2012; Lucey et al., 2007) to transform the appearance of the 

full face across views rather than just the mouth. It also improved the 

biological plausibility by not requiring the ‘observer’ to view all 5 views 

simultaneously unlike in Lan et al (2012) and Beridze (2021). The 
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methods also have practical advantages. Because the associations 

between views are only learned between neighbouring views, it means 

only 2 rather than 5 cameras are required. Having more cameras 

makes the task easier as you do not need to record multiple videos, yet 

2 will be sufficient with no need to record from every possible pair of 

views (e.g., 1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5 …). 

The second layer of Model 5 also provides a plausible and 

accurate model for reconstructing facial motion across views. It has the 

same limitations as the multi-view model in Model 3 and previous work 

(Beridze, 2021), in that scaling is required to enhance the 

reconstructions. Unlike Model 3, however, there is no need to project all 

veridical views back into the space to ascertain the required scaling 

factors. Instead, the required scaling factors can be determined by 

projecting the multi-view reconstructions from the first layer into the 

space, retaining more biological plausibility.  

The reconstructions were quantitatively worse for untrained than 

trained frames, yet they were still visibly accurate. Nevertheless, future 

work should look to improve the model so that the model can better 

generalise to new frames with smaller errors in the reconstructions. 

Here the videos were taken under highly controlled conditions. Training 

the models of videos captured under more variable conditions should 

improve the model’s capacity to generalise to new frames. 
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Despite saying the same sentences, the components in the 

models showed signs of being idiosyncratic. This is consistent with the 

work by Burton and colleagues (2016) yet poses a problem to the 

question outlined by Dobs and colleagues (2018) as to how many 

components are needed to encode the full space of facial motion. We 

found a less clear division between rigid and non-rigid motion compared 

to Burton and colleagues (2016) but this is unsurprising; our videos 

were captured under controlled conditions with actors repeating 10 

sentences. Had the videos been taken under more varied conditions 

and with a variety of tasks we would likely have seen a stronger 

separation of rigid and non-rigid motion. 

To summarise, we have created a 2-layer model that can 

reconstruct facial motion across views well whilst retaining biologically 

plausibility in not being exposed to multiple or distal views 

simultaneous. It also partially replicates the transition from view-

dependence to view-independence seen in the macaque face 

processing system.  

The above work focused on one side of the face, yet it is 

important to consider how the other side of the face, and mirror-views 

might be represented. This will be discussed in the next chapter. 
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4.10 Supplementary materials 

4.10.1 Supplementary videos 

Supplementary videos can be found using the link below: 

https://www.dropbox.com/scl/fo/kaqognq18e0a5vira9syo/h?rlkey=m0k5

mrhvglk69rpjdy92lk5ha&dl=0 

Within the Supplementary Materials folder, navigate to 

‘Supplementary_Videos/Chapter_4_multiview_face_space’. This folder 

contains videos from all 5 models. Within each model there are folders 

containing ‘reconstructions’ and/or ‘pc_videos’ (videos of the principal 

components), sometimes for one actor only (‘S1’) or sometimes for two 

actors (‘S1’ & ‘S3’). There are Word documents (‘info.docx’) provided 

throughout to provide information about the videos. 

https://www.dropbox.com/scl/fo/kaqognq18e0a5vira9syo/h?rlkey=m0k5mrhvglk69rpjdy92lk5ha&dl=0
https://www.dropbox.com/scl/fo/kaqognq18e0a5vira9syo/h?rlkey=m0k5mrhvglk69rpjdy92lk5ha&dl=0


University of Nottingham  Chapter 5 

234 

Chapter 5 A collapsed representation of 

motion across mirror views 

5.1 Preface 

In this chapter, the role of mirror views in face processing and 

some methods for incorporating mirror view representations into the 

multi-view PCA work are discussed. A pilot computational experiment is 

also presented demonstrating attempts at reconstructing mirror-flipped 

motion.  

5.2 Introduction 

The previous chapter presented models of view-invariant motion 

processing, culminating with a 2-layer model. The first layer contained 

separate PCA spaces for each viewpoint and the second a view-

invariant, multi-view space. This work only included one hemi-view, so 

the next stage is to explore how mirror views might be incorporated into 

the model, and into face space more generally. For clarity, hemi-view 

refers to which side the face is seen from. 

Previously, it was thought that neural responses to mirror views 

are a by-product of increased interhemispheric connectivity (e.g., see 

Corballis & Beale, 2020) yet more recently the emphasis has been on 

mirror views as a functional stepping stone to achieving view-invariance 

(Flack et al., 2019; Freiwald & Tsao, 2010; Meyers et al., 2015; Rogers 

& Andrews, 2022). Recent work using DNNs supports both suggestions 

(Farzmahdi et al., 2023) also emphasising the importance of spatial 

pooling across the visual field on the emergence of mirror responses. 
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This spatial pooling is consistent with interhemispheric connectivity 

leading to wider receptive fields (e.g., see Gross et al., 1977). However, 

while Farzmadhi and colleagues used a relatively simple DNN 

(AlexNet), a potentially simpler representation in face space might be 

possible. A simple active appearance model better predicted neural 

responses in macaque face patch AM than many DNNs, including 

AlexNet (Chang et al., 2021). The current chapter therefore explores 

how this intermediate stage for mirror views might be represented within 

our relatively simple multi-view face space.  

The hierarchical progression to view-invariance has been shown 

in macaques (Freiwald & Tsao, 2010; Meyers et al., 2015) where the 

more posterior neurons in areas ML/MF show sensitivity to viewpoint, 

neurons in anterior area AM show invariance to viewpoint, and neurons 

in AL respond to mirror symmetric views. 

The intermediate preference for mirror symmetric views has also 

been seen in humans. For instance, adaptation aftereffects transfer 

across mirror views (Jeffery et al., 2006, 2007) to a greater degree than 

can be explained by broad tuning curves, and response patterns in FFA 

and pSTS are more similar for mirror viewpoints than non-mirror views 

(Axelrod & Yovel, 2012; Flack et al., 2019). Similar neuroimaging 

results were also observed by Rogers and Andrews (2022), although, 

interestingly the right pSTS only showed an effect of mirror symmetry 

for familiar faces. The OFA, FFA and pSTS also showed more similar 

response patterns to symmetrical picture-plane rotations, suggesting 
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that sensitivity to symmetry is a general property of the neurons. This is 

further supported by mirror responses emerging for both faces and 

other object categories in DNNs (Farzmahdi et al., 2023). This general 

property may help build viewpoint-invariance, but possibly in different 

ways depending on the symmetry. Responses to symmetrical views 

across changes in yaw may help build viewpoint-invariance through 

mechanisms discussed below, while responses to mirror symmetry in 

roll (picture plane) may help with alignment. This dissociation would of 

course need to be investigated. 

While research has shown that neurons are sensitive to mirror 

symmetrical views, and researchers have suggested that mirror views 

are important for developing view-invariance, the mechanism by which 

this occurs is not yet clear. This chapter explores some possible 

mechanisms by which mirror views might be represented, particularly 

within the context of facial motion. Although not tested here, it is worth 

noting that the role and representation of hemi-views may differ for 

tasks such as speech processing compared to identity processing. 

Faces are generally quite symmetric in structure, yet speech and other 

facial actions are often quite asymmetric. Processing of motion and 

identity across mirror views might therefore require different 

mechanisms.  

There are various theories of why facial motion is asymmetric, 

which will be touched upon briefly here. Notably, asymmetries in 

emission and perception differ based on the content, being either 
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emotional or verbal. The right hemisphere model (H. S. Asthana & 

Mandal, 1997) posits that emotional expressions are presented more 

clearly and intensely on the left hemiface due to a right hemisphere 

dominance for processing and generating expressions. This results in a 

stronger driving force for emotive actions on the left side of the face. 

This was supported by evidence showing that the left hemiface moves 

more than the right during facial expressions (Nicholls et al., 2004). The 

valence model (see Nicholls et al., 2004) further predicts that the left 

hemiface is particularly biased for negative emotions. While Nicholls et 

al found no interaction between asymmetric movement and valence, 

participants rated the left side of the face (from the actor's perspective) 

to be sadder and the right happier (Nicholls et al., 2004). This effect 

was stronger when viewed veridically, compared to when mirror-flipped, 

suggesting a physical asymmetry in the motion. The presence of the 

perceptual bias even when mirror-flipped, however, also supports an 

asymmetry in perception, consistent with suggested hemispheric 

differences in emotion processing (Natale et al., 1983).  

Similar theories have also been used to explain asymmetries in 

speech. During speech, the right side of the mouth (from the speaker’s 

perspective) opens more and for longer than the left (Graves et al., 

1982; Jordan & Thomas, 2007; Nicholls & Searle, 2006). This is 

theorised to result from the left-hemisphere dominance for language 

(e.g., Graves et al., 1982). Word recognition from visual speech is also 

easier from the right hemiface than the left (Jordan & Thomas, 2007; 

Nicholls & Searle, 2006), consistent with greater right-sided motion. 
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Participants also, however, show better accuracy for visual speech 

presented in the right visual field, especially when that information 

contains the right hemiface (Jordan & Thomas, 2007), consistent with a 

left hemisphere advantage for processing speech. 

The main question of interest here, however, is not why facial 

motion is asymmetric, but how (a)symmetries across mirror views are 

represented in the context of facial motion? The use of mirror views for 

view-invariance might depend on whether faces are represented in a 

2D or 3D manner. If the brain holds a 3D representation, one route to 

view-invariance might be through inverting the 3D structure of a seen 

view through the midsagittal plane to estimate the structure of the other 

hemiface and therefore the full structure of the face. But the additional 

complexity of determining 3D structure means this process is unlikely 

used for rapid, dynamic changes in facial motion. Instead, we focus on 

2D representations which are likely faster, and explore how mirror views 

might be incorporated into the multi-view face space model. 

The first consideration is that mirror views are not processed in 

the same way for motion as identity. Facial motion may instead be 

processed in a purely view-dependent manner. Research showing 

responses to mirror views typically uses static faces (Chang & Tsao, 

2017; Flack et al., 2019; Freiwald & Tsao, 2010; Meyers et al., 2015; 

Rogers & Andrews, 2022) so it is currently unknown if mirror-responses 

emerge for dynamic stimuli. The pSTS, however, which is thought to be 

involved in processing dynamic facial aspects such as speech (Haxby 
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et al., 2000; Pitcher & Ungerleider, 2021), is sensitive to mirror 

symmetry (Axelrod & Yovel, 2012; Flack et al., 2019; Rogers & 

Andrews, 2022), suggesting there is a role of symmetry in processing 

facial motion. This could be a biproduct of larger receptive fields and 

increased interhemispheric connectivity (e.g., see Corballis & Beale, 

2020; Gross et al., 1977; Pitcher et al., 2020) given that unlike the OFA 

and FFA, the pSTS is equally sensitive to both ipsilateral and 

contralateral visual fields (Nikel et al., 2022; Pitcher et al., 2020). 

However, the sensitivity to mirror views in the pSTS is also modulated 

by familiarity (Rogers & Andrews, 2022) suggesting that familiarity 

might help build mirror-tuned representations. 

Mirror views may help create templates during learning. There is 

sufficient evidence that the brain first represents each hemi-view 

separately (e.g., Freiwald & Tsao, 2010; Meyers et al., 2015), thus, 

during learning, templates for the unseen side might be estimated, 

through exploiting mirror symmetry to construct ‘virtual views’ (Vetter et 

al., 1994). This, however, is likely not the sole use of mirror views, as 

mirror responses to familiar faces suggest the representation is not 

restricted to learning (Rogers & Andrews, 2022). Moreover, the 

intermediate stage of mirror responses in more anterior areas (Meyers 

et al., 2015) suggests they have a bigger role to play in achieving view-

invariance.  

It may not be the case that the brain collapses across mirror 

views per se, but responses to mirror views might allow better access to 
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a view-invariant representation. In this case, as depicted in Figure 5.1, 

the multi-view PCA space would have separate view-specific spaces for 

𝑛 viewpoints between ±90o, and the multi-view space would have 

separate ‘slots’ for them all. Mirror responses may be observed 

because inputs are then projected into both the veridical and mirror 

spaces, consistent with pooling across a larger receptive field and 

across hemispheres (e.g., see Corballis & Beale, 2020; Gross et al., 

1977). Subsequently the representations from both veridical and mirror 

spaces might be projected onto the corresponding slots of the multi-

view space, allowing better access to the view-invariant representation.  

 
Figure 5.1. An example of a separate space model of mirror view 

processing. 

(A) A separate PCA space is first made for each view. The multi-view 

space is then constructed with dedicated slots for both hemi-views. (B) 

Input views can be projected into both veridical and mirror-flip spaces, 

and the output from both spaces can be projected into the multi-view 

space. 
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Alternatively, facial motion may only be represented from ‘one 

side’, reducing computational and storage costs compared to 

representing both. In the context of the two-step multi-view model, the 

first layer would only contain separate spaces from 0o to 90o. One 

option for this is to only learn motion from one hemi-view, e.g., encoding 

the left hemi-view and ignoring the right. This of course is unlikely given 

that faces are generally viewed from both sides, but it is worth 

exploring. For this model, and the model with separate spaces for each 

hemi-view, the view-specific representations would need to code motion 

sufficiently well from one hemi-view, to be able to effectively process 

and recognise speech from both. This is especially important if motion 

is only learned from one side. 

We therefore explored how well facial motion could be 

reconstructed in its mirror view’s space. We created separate spaces 

for frames in their veridical and mirror viewpoints and then projected the 

frames into the opposite spaces. If symmetrical enough, then the facial 

motion should be recoverable regardless of whether the mirror-flip or 

the veridical view is projected into a given space. If asymmetrical, then 

it will be challenging to recover the mirror-flipped motion as the spaces 

can only recover textures and motion on the span of the training set. As 

an extreme example, if using view-specific spaces one cannot recover a 

frontal image solely from a profile view’s space; the profile space simply 

does not contain the appropriate information to represent the frontal 

view. Due to the asymmetries in facial motion, we hypothesised that 

reconstruction fidelity would be better in the corresponding view’s space 
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than in the opposite view’s space. We expected that symmetric motion 

would be reconstructed well from the opposite space, but asymmetric 

motion would not be. This example is outlined under the ‘separate 

spaces’ section of this chapter. 

In the model with separate spaces for each hemi-view, it is 

difficult to imagine how the view-specific spaces could be learnt from 

one hemi-view and not update over time to also represent the other if 

both are subsequently being projected into the space. If they evolve to 

represent both hemi-views, then it would result in two spaces coding 

virtually the same information, the only difference being the direction the 

face is pointing. A more compact alternative with fewer redundancies 

would be to collapse mirror views into one representation with a 

separate signal coding left-right direction. 

In the next experimental model, we therefore explored the 

possibility of a collapsed representation. In this case, the separate 

spaces from 0o to 90o would each contain information about both hemi-

views (see Figure 5.2). As not all motion is asymmetric, it may be 

computationally advantageous to collapse across mirror views in this 

way. Symmetric motion such as a simple vertical drop of the mouth can 

be represented by one component, reducing computational costs 

compared to representing that same motion in separate spaces for left 

and right-facing views. Asymmetric motion might be represented by 

different components that are more hemi-view specific, or by opposing 

directions along single components.  
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Figure 5.2. An example of a 

combined space model of mirror 

view processing. 

Mirror views are concatenated and 

combined. A separate PCA space is 

made for each combined view. The 

multi-view space is then constructed. 

To simulate this, we created a single PCA space using frames 

from both the veridical and mirror-flipped view. We hypothesised that 

there would be separate components reflecting symmetric motion, 

structural asymmetries, and asymmetric motion. We then projected 

frames containing either the veridical or mirror-flipped motion into the 

space and assessed the reconstruction fidelity, hypothesising that we 

would be able to reconstruct the motion for both well.  

5.3 Methods 

5.3.1 Videos 

New videos were acquired for this pilot experiment as the videos 

from the multi-view PCA work were illuminated and captured from one 

side only. In the current experiment, the illumination needed to be equal 

on both sides of the face. New videos were recorded of one actor (the 

author) with illumination provided through two diffuse lamps (InterFit F5, 

50 x 69 cm), positioned at -25o and +25o yaw from frontal, with the 

centre of the lamps 20o above the camera position, approximately 

128cm from the actor. In this pilot experiment, the actor was recorded 
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from frontal (0o), -25o, and +25o while repeating the sentences from the 

multi-view PCA work. 

 

Figure 5.3. Mirror-flipping and warping to an averaged reference 

frame. 

(A) The veridical (blue) and the mirror-flipped (red) reference frame for 

each view. The bottom row shows the averaged reference frame for 

each view, calculated in image space. (B) Warping the veridical and 

flipped frames to the averaged reference frame for the right-facing 

view. The columns of the ‘XYRGB’ matrices represent individual 

frames. The X (lilac) and Y (cyan) squares represent the X and Y warp 

fields from the McGM analysis. The R, G, and B squares represent the 

red, green and blue texture maps once aligned to the reference frame. 

Each individual square represents a 12,544 x 1 column vector 

(vectorised from the 112 x 112 pixels in image space).  

The frames (𝑁 = 4450) were first spatially aligned using 

OpenFace (Baltrusaitis et al., 2018), so that when mirror-flipped, the 

faces would occupy the same regions of the image. Once aligned and 

down-sampled to 112 x 112 pixels, the frames were mirror-flipped, 

providing three pairs of frames: veridical and mirror-flipped frontal 
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frames, veridical and mirror-flipped left-facing frames (mirror-flipped 

originally right-facing) and veridical and mirror-flipped right-facing 

frames (mirror-flipped originally left-facing). See Figure 5.3. 

For each view (frontal, left-facing, right-facing), both the veridical 

and mirror-flipped frames were aligned to an averaged reference frame 

(Figure 5.3) using the McGM (Johnston et al., 1992, 1999). The 

template frame was an average of a veridical reference frame and its 

mirror-flip counterpart. The frame was chosen to have a relatively 

neutral expression with the mouth open, and the head positioned 

centrally to provide sufficient overlap between the veridical and mirror-

flipped frames for each view. The veridical and mirror-flipped reference 

frames were averaged in image space. The same frame number was 

used for each view. 

An averaged template was used for two reasons. Firstly, the 

‘combined space’ model required all frames (veridical and flipped) to be 

aligned to a single template. Aligning to either the veridical or flipped 

template would bias the reconstructions towards that view. Secondly, in 

the ‘separate space’ model, it improved the alignment when projecting 

mirror-flipped frames into the veridical space and vice versa, minimising 

the impact of certain asymmetric features, such as the actor’s crooked 

nose. As demonstrated later in Figure 5.7., the asymmetrical nose is 

reconstructed well. 
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5.3.2 Separate space model 

Separate PCA spaces were made for veridical and mirror-flipped 

frames. The X/Y fields and RGB textures were vectorised and 

concatenated as in the multi-view PCA models, such that each frame 

was a 62,720 x 1 column vector. For each view, the average vectors for 

the veridical (�̅�) and flipped (�̅�) frames were then subtracted providing 

zero-centred deviation vectors. PCA was performed on the veridical and 

flipped deviation vectors separately. All spaces were cropped to the first 

100 components. Both veridical and mirror-flipped frames were then 

projected into the spaces. 

To compare how well motion could be reconstructed in the 

matching or opposite spaces, we compared three reconstruction 

methods (see Figure 5.4). The first reconstruction method was veridical 

frames reconstructed from the veridical space. For this, �̅� was 

subtracted from the veridical frames giving deviation vectors, which 

were projected into the veridical space. To reconstruct the frames, �̅� 

was added to the weighted sum of the components and the image de-

warped. The second method was the veridical frames (-�̅�) 

reconstructed in the space for the flipped frames. The reconstructed 

deviation vectors were a weighted sum of components in the flipped 

space. To reconstruct the frames �̅� was added.  

The third was the flipped frames projected into the veridical 

space. However, these were more like ‘pseudo-reconstructions;’ the 

aim was not to reconstruct the flipped frames per se, but to animate the 
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veridical view with the flipped motion. If symmetrical, the reconstructed 

motion should be similar when animated with either the veridical or 

mirror-flipped view. For this, �̅� was subtracted from the flipped frames 

and the deviation vectors projected into the veridical space. To 

construct the images �̅� was added to animate the veridical view.  

We hypothesised that reconstructions of veridical frames would 

be worse when made from the flipped space than the veridical space. 

We further predicted that the pseudo-reconstructions of the flipped 

frames would be less similar to the veridical frames than the veridical 

reconstructions in either space. To reiterate, if motion is perfectly 

symmetrical then the non-rigid motion of the mirror-flipped and veridical 

views should be identical and therefore recoverable in either space. If 

asymmetrical, then frames animated with the mirror-flipped motion 

should be less like the veridical frames, and the motion of veridical 

frames will only be partially recoverable from the flipped space.  
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Figure 5.4. Projection and reconstruction in the separate spaces 

for mirror views. 

(A) Veridical (blue) and mirror-flipped (red) frames are projected into 

the veridical and mirror-flipped spaces. The weighted components are 

summed to reconstruct deviation vectors. The average for the veridical 

frames is then added to reconstruct: the veridical frames projected into 

the veridical space (1, blue), the veridical frames projected into the 

flipped space (2, red), and the flipped frames projected into the 

veridical space (3, yellow). (B) Reconstructions are projected into the 

veridical space and compared to the baseline (the projection of the 

veridical frames into the space) to compare loading similarity. Images 

show actual frames and reconstructions. Projections into the veridical 

space in (B) illustrate the methods and predicted results, not actual 

data. The reconstructions are colour coded to match with the results. 
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5.3.3 Combined space model 

In the ‘combined space’ model the X/Y fields and RGB textures 

for the veridical and mirror-flipped frames were vectorised and 

concatenated in time, akin to how different viewpoints were 

concatenated in Model 2 of the multi-view face space work. The 

average (𝐶̅) across the full set (𝑁 = 8900) was subtracted and PCA was 

performed. This was done for each view separately providing one space 

for frontal frames, one for left-facing, and one for right-facing frames. All 

spaces were cropped to the first 100 components. Veridical and mirror-

flipped frames were projected into the spaces to assess reconstruction 

fidelity. We also inspected the components to assess how 

(a)symmetries were encoded. 

Firstly, we assessed if the reconstructions of veridical frames 

from the combined space were as good as from the veridical space and 

if they were better than from the flipped space. To test this, we 

compared four reconstruction methods (see Figure 5.5). The first two 

reconstruction types were the reconstructions of veridical frames from 

1) the veridical space and 2) the flipped space, as described in the 

‘separate space’ model.  
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Figure 5.5. Projection and reconstruction in the combined space 

for mirror views. 

(A) Veridical frames were projected into the combined space having 

either subtracted the average of the veridical frames (veridical mu) or 

the average across the veridical and mirror-flipped frames (combined 

mu). The weighted components were then summed to reconstruct 

deviation vectors. The veridical and combined averages were added to 

reconstruct the frames. (B) Reconstructed frames were projected into 

the veridical space and compared to baseline (the projection of the 

veridical frames into the space). The red dot shows the projection of 

the veridical frames reconstructed in the flipped space for comparison. 

Images show actual frames and reconstructions. Projections into the 

veridical space in (B) illustrate the methods and predicted results, not 

actual data. The reconstructions are colour coded to match with the 

results. 
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In the other two reconstruction methods, frames were projected 

into the combined space and varied subtly by whether �̅� (3) or 𝐶̅ (4) 

was subtracted prior to and re-added after projection. The difference 

being that deviation vectors for the veridical frames when �̅� has been 

subtracted are devoid of any information about structural asymmetries. 

In contrast, 𝐶̅ contains half-strength, averaged information about the 

view (veridical or flipped), thus subtracting 𝐶̅ induces asymmetries into 

the deviation vectors. In either case, reconstructions should be 

accurate.  

5.3.4 Measures of reconstruction accuracy 

To quantify reconstruction fidelity we used the same measures of 

reconstruction accuracy as in the multi-view PCA work. We used the 

image and deviation vector similarity between the reconstructions and 

the original frames. We also compared loading similarities within the 

veridical spaces, by projecting the reconstructions (-�̅�) into the veridical 

spaces. For most comparisons, the loading similarity was measured 

relative to baseline (the projection of the veridical frames into the 

space). For each of these features, we assessed the Euclidean 

distance (ED) and the correlation coefficient (Fisher’s Z) between either 

the pixels or the loadings. 
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Figure 5.6. Principal components in the separate spaces for mirror 

views. 

PCs 1 to 5 for right-facing (A), frontal (B) and left-facing (C) views. In 

each tuple, the middle image is the origin of the space. The left and 

right images show the polarities of the given component, created by 

scaling the unit vector for the component by +1000 and -1000 

respectively. Note that while some components are similar, there are 

some differences across the three views. 

5.4 Results 

5.4.1 Separate spaces 

5.4.1.1 Principal components 

Example components for the three views can be seen in Figure 

5.6. While some components are very similar across the three views, 

such as PC1, others differ, for instance PC4 which is different across all 

three viewpoints. 
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Figure 5.7. Reconstructed frame from the separate space model of 

mirror view processing. 

Reconstructions of veridical and mirror-flipped frames in the veridical 

and mirror-flipped spaces. The top row shows the veridical (blue) and 

mirror-flipped (red) frames for frontal (A) and left-facing (B) views. The 

bottom row shows the reconstructions of the veridical frames in the 

veridical (blue) and flipped (red) spaces, and the pseudo-

reconstructions of the mirror-flipped frame in the veridical space 

(yellow). The coloured borders correspond to the colours used in the 

projection and reconstruction methods in Figure 5.4 and the results in 

Figure 5.8. 

5.4.1.2 Reconstructions 

We were able to reconstruct the veridical motion well from the 

veridical space (e.g., see Figure 5.7). In contrast, reconstructions of 

either the veridical frames from the mirror-flipped space or the mirrored-

frames from the veridical space were not as good. Note how the 

asymmetric lip separation is captured well using the veridical space, but 

less well using the mirror-flipped space. This is likely because the 

actor’s mouth consistently opens/closes asymmetrically. Some actions 

may be presented asymmetrically at a given time but alternate in 
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laterality, and these should be reconstructed well even across mirror 

views. In contrast, other asymmetric actions such as the opening and 

protrusion of the lips in the example are more consistently unilateral, 

with the actor’s mouth seldom opening more on the right side than the 

left. As a result, we cannot accurately recreate unilateral asymmetric 

actions from the flipped space. 

Oddly, the asymmetric lip-separation was obvious in the 

reconstruction of the mirror-flipped frame in the veridical space for left-

facing stimuli, despite not being a good reconstruction of the actual 

mirror-flipped frame. This incidental reconstruction of the veridical 

appearance from the mirror-flipped frame, however, cannot have been 

a regular occurrence, as (as will be detailed shortly) these pseudo-

reconstructions were more dissimilar to the veridical frames than the 

reconstructions from the flipped space. 
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Figure 5.8. Reconstruction accuracy of veridical and mirror-

flipped frames in the separate spaces. 

Reconstruction accuracy (ED and Fisher’s Z) for veridical frames 

reconstructed in the veridical (blue) and mirror-flipped spaces (red) and 

mirror-flipped frames reconstructed in the veridical space (yellow). 

Deviation vector and frame similarity was measured relative to the 

veridical frames. Loading similarity was measured relative to the 

loadings of the veridical frames in the veridical space. The colour code 

corresponds to the projection and reconstruction methods in Figure 5.4 

and reconstructions in Figure 5.7. Error bars show ±1SD. 

To quantify whether reconstructions were worse when projected 

into the opposite space, for each feature (image and deviation vector 

similarity) and measure (ED and Z) we performed a one-way within-

subjects ANOVA using the frames as the ‘subjects’, and 3 levels of 

reconstruction method. The first and second being the reconstructions 

of veridical frames from the veridical and mirror-flipped spaces 

respectively. The third was the mirror-flipped frames reconstructed from 
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the veridical space. Reconstruction accuracy is presented in Figure 5.8. 

The data was often skewed towards 0 for ED and was sometimes 

skewed in either direction for Z. ANOVAs and t-tests are robust to 

normality violations (Knief & Forstmeier, 2021; Schmider et al., 2010), 

however, as a precautionary measure Wilcoxon Signed Rank tests 

were performed alongside the post-hoc t-tests to confirm the findings.  

We found that for frame and deviation vector similarity there was 

a main effect of reconstruction method for all views and all measures 

(all F(2, 8898) > 5800, p < .001, ηp
2 > .57). In all cases, the ED was 

lower for veridical frames reconstructed in the veridical PCA space 

compared to the flipped space (all p < .001) and the Z-value was higher 

(all p < .001) therefore providing better reconstructions. As an example, 

the ED of the image similarity for the frontal frames was smaller for the 

veridical frames reconstructed in the veridical space (mean = 688.08, 

SD = 167.34) than those reconstructed from the flipped space (mean = 

1062.87, SD = 321.59, t(4449) = -118.77, p < .001, 95% CI = [-380.98,  

-368.60]). The Z-value of the image similarity for the same frames was 

higher for reconstructions from the veridical space (mean = 3.489, SD = 

0.210) than the flipped space (mean = 3.058, SD = 0.218, t(4449) = 

220.84, p < .001, 95% CI = [0.427, 0.435]). 

The pseudo-reconstructions of the flipped frames in the veridical 

space were more dissimilar to the veridical frames than the veridical 

reconstructions from either space (all p < .001). For instance, the image 

similarity for the frontal frames was lower for the pseudo-
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reconstructions (ED: mean = 2400.08, SD = 605.61, Z: mean = 2.225, 

SD = 0.159) than the corresponding veridical frames reconstructed in 

either the veridical space (ED: t(4449) = 213.33, p < .001, 95% CI = 

[1696.27, 1727.74], Z: t(4449) = -439.73, p < .001, 95% CI = [-1.270,     

-1.258]) or the flipped space (ED: t(4449) = 208.52, p < .001, 95% CI = 

[1324.64, 1349.79], Z: t(4449) = -311.19, p < .001, 95% CI = [-0.838,     

-0.828]).  

We also compared the loading similarity when the 

reconstructions were projected into the veridical space relative to 

baseline (the loadings of the veridical frames) between 1) the 

reconstructions of veridical frames from the flipped space, and 2) the 

pseudo-reconstructions of the flipped frames. The loadings of the 

veridical frames reconstructed from the flipped space (ED: mean = 

515.43, SD = 267.45, Z: mean = 1.473, SD = 0.154) were more similar 

to the baseline than the loadings of the pseudo-reconstructions of the 

flipped frames (ED: mean = 860.68, SD = 443.82, t(4449) = -98.18, 

p < .001, 95% CI = [-352.15, -338.36], Z: mean = 0.738, SD = 0.285, 

t(4449) = 182.21, p < .001, 95% CI = [0.728, 0.743]). 
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Figure 5.9. Principal components in the combined mirror space. 

PCs 1-5 in the frontal (A) and non-frontal (B) spaces. In each tuple, the 

middle image shows the origin of the space, and the left and right 

images show the components by +1000 and -1000 respectively. Note 

how PC1 seems to carry most of the information about hemi-view, 

while all other components are more symmetrical, with a straight nose 

and a mole of both cheeks. For reference, the mole is on the actor’s 

right cheek.  

5.4.2 Combined space 

5.4.2.1 Principal components 

We first inspected the components to assess the encoding of 

asymmetric and symmetric information. As expected, the origin is an 

averaged, symmetrical face. As presented in Figure 5.9, PC1 for both 

the frontal (0o) and non-frontal (22.5o) spaces encodes the structural 

asymmetries of the face almost fully. One side of the component 
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reflects the left hemi-view and the other the right. Subsequent PCs 

coded symmetric and asymmetric non-rigid deformations. 

5.4.2.2 Reconstructions 

We then assessed reconstruction fidelity. As shown in Figure 

5.10, we can reconstruct both dynamic and structural asymmetries 

reasonably well. ANOVAs were performed to test if reconstructions from 

the combined space were as good as or better than those made in the 

veridical and flipped spaces respectively. For each feature (frame 

similarity, deviation vector similarity), measure (ED, Z) and view, we 

performed a one-way within-subjects ANOVA with 4 levels of the 

independent variable, being the reconstruction methods. The first two 

were the reconstructions using the veridical (1) and mirror-flipped space 

(2). The other two were reconstructions from the combined space, 

created by subtracting and adding either �̅� (3) or 𝐶̅ (4).  
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Figure 5.10. Reconstructed frame from the combined mirror space. 

Reconstructions of veridical and mirror-flipped frames in the combined 

space with and without PC1. The top row shows the veridical (blue) and 

mirror-flipped (red) frames for frontal (A) and left-facing (B) views. The 

row second from top shows the reconstructions of the veridical (pink, 

left) and mirror-flipped (no border, right) frames created by subtracting 

and re-adding �̅� and �̅� respectively. The bottom row and second from 

bottom show reconstructions of the veridical (purple + lavender) and 

mirror-flipped (orange + green) frames made by subtracting and re-

adding 𝐶̅ with (purple + orange) and without (lavender + green) PC1 

included in the combined space. The coloured borders correspond to 

the colours used describe the methods in Figure 5.5 and Figure 5.12 

and in the results in Figure 5.11 and Figure 5.13. 

There was a main effect of reconstruction method across all 

views, features, and measures (all F(3,13347) > 4800, p < .001, 

ηp
2 > .52). Reconstructions were worse from the combined space than 
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the veridical space (all p < .001) yet the differences were comparatively 

small (see the blue, pink, and purple bars in Figure 5.11). For instance, 

the difference in ED in image similarity for frontal frames between 

reconstructions in the veridical space and in the combined space using 

either method (±�̅�, ±𝐶̅) was smaller (both δ = 55.31) than the 

reconstructions made from the flipped space (δ = 374.79). 

Reconstructions using the combined space were also significantly 

better than those using the flipped space, with lower EDs and higher 

Z-values (all p < .001). The methods used for the combined space (±�̅�, 

±𝐶̅) did not significantly differ (all p > .02) after Bonferroni-correction 

(α = .004). 

We again assessed the loading similarity of the reconstructed 

deviation vectors relative to the veridical frames in the veridical space. 

�̅� was subtracted from all reconstructions so that the deviation vectors 

would be relative to the origin of the veridical space. The loading 

similarity to the veridical projections was consistently better (lower ED 

and higher Z) for reconstructions made using the combined space than 

those made in the flipped space (all p < .001). In fact, no frames had a 

higher loading similarity when reconstructed in the flipped space 

compared to the combined space. There was no difference in the 

loading similarities between methods (±�̅�, ±𝐶̅) for reconstructing in the 

combined space (all p > .042, α = .008). 
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Figure 5.11. Reconstruction accuracy of veridical and mirror-

flipped frames in the combined space. 

Reconstruction accuracy (ED and Fisher’s Z) for veridical frames 

reconstructed in the veridical (blue), the mirror-flipped (red) and the 

combined space after removing and re-adding �̅� (pink) and 𝐶̅ (purple). 

Deviation vector and frame similarity is measured relative to the 

veridical frames. Loading similarity is measured relative to the loadings 

of the veridical frames in the veridical space. The colour code 

corresponds to the methods in Figure 5.5 and the example 

reconstructions in Figure 5.10. Error bars show ±1SD. 

As the first component seems to capture the structural 

asymmetries, we next assessed reconstructions made without PC1. 

Looking at the reconstructions (lavender + green in Figure 5.10) it is 

much more challenging to see the structural asymmetries. The nose is 

straight, and the mole appears faintly on both cheeks. Despite this, 

asymmetric motion was somewhat recoverable, suggesting 

asymmetries in the facial motion were captured by other components, 



University of Nottingham  Chapter 5 

263 

indeed asymmetries are visible in other components particularly for the 

non-frontal views. 

To test the importance of PC1 we performed analyses to assess 

1) if reconstructions made without PC1 were significantly worse than 

those with PC1, and 2) whether the reconstructions of the veridical and 

flipped frames were more similar when PC1 was removed than when 

included. We assessed these effects using two analyses. The methods 

are shown in Figure 5.12. We projected the veridical and flipped frames 

into the combined space having first subtracted 𝐶̅, and reconstructed 

the deviation vectors with and without PC1. To reconstruct the frames, 

we added 𝐶̅ and de-warped the images. We compared the image and 

deviation vector similarity as well as the loading similarity in the veridical 

space using one-way within-subjects ANOVAs to compare the 

reconstruction methods. To test the loading similarity, �̅� was again 

subtracted, relating the deviation vectors to the origin of the veridical 

space. In this first analysis, measures of reconstruction were all relative 

to the images, deviation vectors and loadings of the veridical frames.  

In this analysis, there was a main effect of reconstruction method 

for all views, features and measures (all F(3, 13347) > 13,600, p < .001, 

ηp
2 > .75). Reconstructions of the veridical frames were consistently 

worse without, compared to with, PC1 (all p < .001), yet they were still 

significantly more similar to the veridical frames than reconstructions of 

the flipped frames (all p < .001). But, removing PC1 made the 

reconstructions of the flipped frames significantly more similar to the 
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veridical frames (all p < .001), suggesting that the veridical and mirror-

flipped reconstructions were significantly more similar to each other 

when PC1 was omitted.  

 
Figure caption on next page 
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Figure 5.12. Projection and reconstruction in the combined space 

with and without PC1. 

(A) Veridical (1+3) and mirror-flipped (2+4) frames were projected into 

the combined space with (1+2) and without (3+4) PC1. The weighted 

components were then summed to reconstruct deviation vectors and 𝐶̅ 

was added to reconstruct the frames. (B) Veridical and mirror-flipped 

reconstructions were projected into the veridical space and either 

compared to baseline (the loadings of the veridical frames) or to each 

other. Images show actual frames and reconstructions. Projections into 

the veridical space in (B) illustrate the methods and predicted results, 

not actual data. The colour code corresponds with the results in Figure 

5.13 and reconstructions in Figure 5.10. 

To test this further, a second analysis directly compared the 

image, deviation vector and loading similarities calculated between the 

veridical and mirror-flipped reconstructions, with and without PC1 (see 

Figure 5.12b). This is contrast to the previous comparisons in which 

similarity was calculated relative to the baseline (the actual veridical 

frames). This more direct comparison confirmed that the 

reconstructions of veridical and mirror-flipped frames from the combined 

space were more similar to each other when PC1 was removed (all 

p < .001). 



University of Nottingham  Chapter 5 

266 

 
Figure 5.13. Reconstruction accuracy of veridical and mirror-

flipped frames in the combined space with and without PC1. 

Reconstruction accuracy (ED and Fisher’s Z) for veridical (purple, 

lavender) and flipped (orange, green) frames reconstructed in the 

combined space with (purple, orange) and without (lavender, green) 

PC1. Deviation vector and frame similarity was measured relative to 

the veridical frames. Loading similarity was measured relative to the 

loadings of the veridical frames in the veridical space. The colour code 

corresponds to the methods in Figure 5.12 and reconstructions in 

Figure 5.10. Error bars show ±1SD. 

5.5 Discussion 

The observed responses to mirror viewpoints within face-

selective regions of cortex has led to suggestions that mirror views are 

a stepping stone to view-invariance (e.g., Meyers et al., 2015; Rogers & 

Andrews, 2022), yet the underlying mechanism is unclear. This chapter 

therefore explored a couple of ways that mirror views might be 

represented within a 2D face space representation and presented a 
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method that can compress the representation of mirror views within our 

multi-view face space models. It discussed three theoretical models in 

the introduction and used two experimental models to test their 

plausibility. 

The first theoretical model discussed contained view-specific 

spaces learned for each hemi-view. New information was projected into 

both the spaces corresponding to the input view and to the mirror 

viewpoint. This is conceptually similar to pooling across visual fields 

(e.g., see Corballis & Beale, 2020; Gross et al., 1977). The second 

related, albeit unlikely, model contained spaces which were only 

learned from one hemi-view, with the other hemi-view ignored. After 

learning, both hemi-views would be projected into this space for 

subsequent processing. Neither model collapsed across mirror views 

per se, but in both there was an assumption that information from one 

hemi-view should be retrievable from the other hemi-view and thus that 

facial motion needs to be sufficiently symmetrical.  

In the first experimental model, reconstructions made by 

projecting frames into the mirror-opposite space were found to be 

significantly worse than those made from the hemi-view’s own space. 

From visually comparing reconstructions and measures of 

reconstruction accuracy, we found that facial motion is asymmetric, 

consistent with prior results (Graves et al., 1982; Jordan & Thomas, 

2007; Nicholls & Searle, 2006) and that it is challenging to reconstruct 

these asymmetries in the opposite view’s space. This casts doubt on 
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the efficacy on the first two models discussed, especially for the model 

which only learns from one hemi-view. 

In the second experimental model we then assessed the 

plausibility of encoding a collapsed version of both hemi-views, where 

one view is mirror-flipped, and both views are encoded together in 2D 

space. We found that we could encode and reconstruct motion well 

from both hemi-views, and that reconstructions were better from this 

combined space than from the mirror-flipped space.  

The first component reflected major structural asymmetries, with 

subsequent components being symmetrical in structure. The 

subsequent components coded both symmetric and asymmetric 

dynamic information. The coding of symmetric motion in the combined 

space may reduce redundancies over encoding the same symmetrical 

actions in both hemi-views separately. Despite coding two hemi-views 

instead of one within the same number of components, the combined 

space did a sufficient job of capturing both symmetrical and 

asymmetrical information. 

While the first component for this actor captures structural 

asymmetries well, this may not always be the case. For other actors 

with more symmetrical faces, or for videos captured under more 

variable conditions we may find different results. For example, the first 

component may instead reflect a change in lighting (e.g., see Burton et 

al., 2016) with subsequent components coding structural asymmetries. 
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For the actor shown, the lip separation is greater on the actor’s 

left side than right side. This is at odds with evidence that, on average, 

lip separation and movement is greater on the right side of the face, 

particularly for a right-handed male (Graves et al., 1982; Jordan & 

Thomas, 2007; Nicholls & Searle, 2006), but this is not unexpected 

given individual variation and bears no impact of the efficacy of the 

model. 

In relation to the multi-view face space model in the previous 

chapter, our results support the possibility that mirror viewpoints can be 

collapsed prior to creating the final multi-view representation. Rather 

than having, say, 9 separate spaces or slots covering -90o to +90o (or 

10 if also mirror-flipping frontal), one could simply have 5 spaces from 

0o to 90o. Note there is ambiguity over the frontal face. Flipping 0o 

seems somewhat illogical, but if you mirror-flip the other views then 

where is the boundary? Also, in the current digital age, frontal faces are 

often mirror-reflected by the front-facing cameras on phones and 

laptops. Nevertheless, the results here suggest that it would be 

plausible for both hemi-views to be represented in one space, providing 

a route to forming a more compact multi-view face space. 

This work has shown how mirror views might be collapsed within 

a 2D, multi-view face representation, yet there is still much research to 

be done. For instance, behavioural experiments would be needed to 

establish if the brain does collapse across mirror views. Evidence for 

this could come from ensemble coding. Participants incorrectly identify 
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the average of four seen images as a previously seen image itself 

(Davis et al., 2021) showing evidence that the brain automatically 

extracts averages, even when stimuli are presented in an atypical 

manner, such as when inverted (Davis et al., 2021). If the brain 

collapses across hemi-views, then the average across the hemi-views 

should also be mistakenly identified as a previously seen image, 

although perhaps only under challenging task conditions. 

Furthermore, it would need to be determined if collapsing across 

mirror views like this helps in achieving view-invariance, or if there is 

another step or process necessary. It could be the case that collapsing 

across mirror views populates the view-specific spaces faster than 

representing each hemi-view separately, thus making it quicker to 

formulate the view-invariant, multi-view representation. It may also be 

easier to construct this multi-view representation with half the number of 

view-specific slots.  

In summary, this chapter addressed a couple of ways in which 

hemi-views of faces in motion might be collated and represented within 

a 2D face space representation and the multi-view face space model 

presented in the previous chapter. From our results it seems that both 

hemi-views are necessary to suitably encode asymmetric facial motion, 

but that it is possible to collapse both hemi-views into a single face 

space representation. These methods potentially provide a route to 

simplifying the transition from view-dependence to view-invariance.  
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5.6 Supplementary materials 

5.6.1 Supplementary videos 

Supplementary videos can be found using the link below: 

https://www.dropbox.com/scl/fo/kaqognq18e0a5vira9syo/h?rlkey=m0k5

mrhvglk69rpjdy92lk5ha&dl=0 

Within the Supplementary Materials folder, navigate to 

‘Supplementary_Videos/Chapter_5_mirrored_motion’. This folder 

contains videos from both models. Within each model there are folders 

containing ‘reconstructions’ and ‘pc_videos’ (videos of the principal 

components). There are Word documents (‘info.docx’) provided 

throughout to provide information about the videos. 

https://www.dropbox.com/scl/fo/kaqognq18e0a5vira9syo/h?rlkey=m0k5mrhvglk69rpjdy92lk5ha&dl=0
https://www.dropbox.com/scl/fo/kaqognq18e0a5vira9syo/h?rlkey=m0k5mrhvglk69rpjdy92lk5ha&dl=0
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Chapter 6 Investigating the presence of 

prototypical views 

6.1 Preface 

One of the key assumptions in the multi-view PCA work outlined 

in Chapter 4 is that a few prototypical views are a represented at the 

view-dependent stage rather than every possible viewpoint. In the 

model these were assumed to be at 0o, 22.5o, 45o, 67.5o and 90o. In the 

current chapter we wanted to investigate which views the brain might 

use to form these representations, both to further understand the face 

processing system and to guide future model development. 

6.2 Introduction 

When talking to a friend, loved one, or even a stranger, we can 

often process emotional expression, health, age, identity, gender and 

more regardless of viewpoint. While the process for achieving view-

invariance is not fully understood, it is widely recognised that the 

hierarchy to invariance starts with a level of view-dependence (Chang & 

Tsao, 2017; Freiwald & Tsao, 2010; Meyers et al., 2015; Perrett et al., 

1991; G. Wang et al., 1996, 1998). Unlike in macaques, little research 

has been conducted in humans to assess which views might be 

involved in this view-dependent stage. Understanding which views 

might be preferentially represented has many important applications, 

from improving computational models such as in Chapter 4 to guiding 

which viewpoints should be used in police lineups. 
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Early research in macaques (Perrett et al., 1988, 1991; G. Wang 

et al., 1996, 1998) showed evidence of neurons preferentially tuned to 

different prototypical views, including frontal (0o), profile (90o/270o), 

back, tilted upwards and tilted downwards views, with fewer specifically 

tuned to 45o and even fewer to intermediate views (22.5o, Perrett et al., 

1991). View-selective neurons are seen in partially overlapping clusters 

(Perrett et al., 1988) with neighbouring views occupying neighbouring 

regions of cortex (G. Wang et al., 1996, 1998). Even view-selective 

neurons however show large tuning widths, responding to a broad 

range of views (Perrett et al., 1991). It is likely that the combination of a 

few prototypical views and broad tuning curves is computationally 

optimal for achieving view-invariance compared to representing every 

possible view. 

Following learning of novel objects, Logothetis and Pauls (1995) 

found that monkeys could often interpolate between learned views up to 

120o apart, and found that that different, view-selective neurons tended 

to be preferentially tuned to views ~40-50o apart. Although this is in the 

context of object processing, it is consistent with the evidence of 

neurons preferentially tuned to frontal (0o), profile (90o) and 45o views of 

faces (Perrett et al., 1991).  

While single unit recordings provide invaluable insights into the 

activity of single neurons, they are limited in by how many neurons they 

can record from; other viewpoints may be represented, but neurons 

representing those views are not sampled. Perrett and colleagues 
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(1991) for instance only recorded from 120 neurons in the polysensory 

area of the macaque STS. Logothetis and Paul (1995) recorded from 

over 700 neurons but were testing responses to objects. The number of 

views necessary to encode dynamic faces may be more than for coding 

objects. Moreover, view-invariance may be achieved differently in 

humans and macaques as their face space representations have been 

suggested to differ (Parr et al., 2012), so it is important to investigate 

which views are preferentially represented in humans. 

While some research supports a 2D interpolation account (H. H. 

Bülthoff & Edelman, 1992) of face processing (W. Chen & Liu, 2009; Y. 

Lee et al., 2006; Liu et al., 2009; Schwaninger et al., 2007; Wallraven et 

al., 2002), it is not yet clear which views contribute to this interpolation 

system. Lee and colleagues (2006) found evidence suggesting a 

categorical representations of view, however they only tested a limited 

range of viewpoints (0o, 6.7o, 13.3o, 20o). They did not test viewpoints 

outside of this range to establish how many categories of view there are 

or whether the group size changes with distance from 0o, nor did they 

determine where between 6.7o and 13.3o the boundary occurs. This 

grouping has also not been seen in other research with slightly different 

viewpoints (Swystun & Logan, 2019), although see a critique of this 

paper below. 

Behavioural evidence in humans for preferential views is mixed. 

Some studies show a ¾ view (~45o) advantage (Marotta et al., 2002; 

O’Toole et al., 1998; Troje & Bülthoff, 1996; Van der Linde & Watson, 
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2010) over both frontal and profile, suggesting that the ¾ view is 

preferentially represented. In contrast, others show a frontal view 

advantage (Favelle et al., 2017; H. Hill et al., 1997), and some show no 

difference between these views (Carbon & Leder, 2006; Favelle & 

Palmisano, 2018). Sama and colleagues (2019) found a frontal 

advantage for ensemble coding of viewpoint, but no effect of view on 

the ensemble coding of identity.  

Swystun and Logan (2019) also found a frontal advantage over 

more intermediate views (5o, 10o and 20o) which is compatible with 

neural preferences for frontal views over intermediate views (Perrett et 

al., 1991). However, the facial features always appeared to be of a 

front-facing image, placed into their respective positions on a rotated 

face, leading to an uneasy percept. More work is needed to verify their 

findings.  

The apparent preference for 45o may stem from having a neural 

population preferential to this view, from the overlap between broad 

tuning curves for frontal and profile views, or most likely, a combination 

of both. Interpolation alone between neurons tuned to frontal and profile 

is likely insufficient to support a behavioural advantage. As view-

selective neurons on average have a full width at half-maximum 

(FWHM) of 60o (Perrett et al., 1991), their firing rate will have decreased 

by ~80% by 45o. Even when summed this is only 40% compared to 

frontal or profile, although, some neurons are more broadly tuned. In 

macaques, Perrett and colleagues (1991) also found far fewer neurons 
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tuned to 45o than frontal or profile, suggesting that the behavioural 

advantage for 45o cannot solely be explained by neurons preferentially 

selective to this view. However, in more anterior and dorsal portions of 

the STS, De Souza and colleagues (2005) found more neurons 

sensitive to oblique views than frontal or profile, potentially explaining 

the behavioural results. 

While many studies have looked at behavioural preferences to 

different viewpoints, this has either been on quite a coarse scale, for 

example ≥15o between viewpoint (Favelle & Palmisano, 2018; Marotta 

et al., 2002; O’Toole et al., 1998; Troje & Bülthoff, 1996; Van der Linde 

& Watson, 2010), or on a finer scale but over a smaller range (Y. Lee et 

al., 2006). This is likely because of the challenges of investigating a 

finer scale over a larger range, however, to build a comprehensive 

picture of whether certain viewpoints are better represented than 

others, it is a necessary task. For context, 19 conditions are required to 

transition from frontal (0o) to profile (90o) in 5o increments in only one 

direction. Kietzman and colleagues (2017) have a dataset of EEG 

responses to stimuli at these 19 viewpoints, but they did not report any 

results regarding, for example, response amplitudes to the different 

views. Such an analysis would help provide evidence for prototypical 

views. 

Problematically, the task may confound this research. For 

example, Van der Linde and Watson (2010) showed a frontal view 

advantage when participants did not need to match identity across 
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views, but a ¾ advantage when they did. This behavioural change may 

indicate a change in the neurons used for the task, with same-view 

matching recruiting more posterior neurons (Perrett et al., 1991) and 

cross-view matching more anterior neurons (De Souza et al., 2005). 

This may indicate that the ¾ view might be especially informative for 

achieving view-invariance. Three-quarter views may provide the best 

visibility of transformation points, provide the most information about 3D 

shape or contain the most diagnostic information about identity (H. Hill 

et al., 1997; Marotta et al., 2002; Troje & Bülthoff, 1996). Regardless of 

the exact reason for the ¾ preference for cross-view matching, it is 

clear that the task might confound research into which viewpoints are 

best represented, especially if trying to understand the first, view-

dependent stage of the hierarchy. 

One way to avoid this confound is to make the task as perceptual 

as possible, rather than cognitive. Like many functions, face processing 

involves a hierarchy of processes, starting with perceptual processing of 

low-level properties of the face, such as certain colours and shapes, 

and eventually ending with higher-level properties such as gender, 

identity and expression recognition, and impression formation. 

Recently, Diane Beck and colleagues (Caddigan et al., 2017; Center et 

al., 2022; P-L. Yang & Beck, 2021, 2022, 2023) have provided some 

excellent insight into higher-level distinctions for faces and objects using 

lower-level perceptual processes. Rather than asking participants to 

perform identity judgements for example, requiring a more cognitive 

judgement, they were asked to discriminate the intact image from either 
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a phase scrambled (Caddigan et al., 2017) or morphed version of that 

image (Center et al., 2022), requiring a more perceptual judgement. 

Morphing using Diffeomorph (Stojanoski & Cusack, 2014) retains most 

of the low-level properties whilst highly distorting the stimuli.  

In scene and object processing, images rated as highly 

representative of a particular category are better discriminated from 

scrambled/warped images than those not rated as highly representative 

(Caddigan et al., 2017; P-L. Yang & Beck, 2022). These stimuli were 

also more easily discerned by support vector machines, and lead to 

better learning in those models (P-L. Yang & Beck, 2022). Participants 

were also faster to discriminate objects from scrambled versions in 

typical orientations than atypical orientations when rotated in depth, 

such as viewing a lamp from the side rather than underneath (Center et 

al., 2022). The results further suggested that particularly informative 

viewpoints lead to faster discrimination, not just the amount of 

experience with the viewpoint. This again argues for a 2D interpolation 

account based on prototypical views.  

In the context of faces, Yang and Beck (2021, 2023) found that 

upright and famous faces are more easily discriminated from 

scrambled/warped images than inverted and unfamiliar faces. 

Furthermore, the advantage for upright faces was stronger for famous 

than unfamiliar faces. This interaction was not seen for brand logos, 

suggesting the benefit of famous upright faces reflects a face-specific 

process (P-L. Yang & Beck, 2021, 2023). These results suggest that at 
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the purely perceptual level, there is a more efficient representation for 

familiar, famous faces than unfamiliar faces. To reiterate, participants 

did not have to recognise the faces, they simply had to detect the 

veridical images.  

Here, we used similar methods to assess for prototypical 

horizontal viewpoints. We hypothesised based on the recordings in 

macaques (De Souza et al., 2005; Perrett et al., 1991) and behavioural 

results (Marotta et al., 2002; O’Toole et al., 1998; Troje & Bülthoff, 

1996; Van der Linde & Watson, 2010) that thresholds for distinguishing 

veridical and morphed stimuli would be smallest for 0o, 45o and 90o 

viewpoints and largest for intermediate viewpoints.  

To minimise the influence of lower-level confounds, we also 

included blocks of picture plane inverted stimuli. We firstly hypothesised 

that thresholds would be larger for inverted stimuli. Secondly, we 

hypothesised that any increases in the thresholds for certain views 

would be larger for inverted stimuli than upright stimuli. We assumed 

that frontal, ¾ and profile views would be well represented and could be 

processed efficiently when upright and reasonably efficiently when 

inverted. If intermediate views are presented, we reasoned that 

interpolation would be more efficient for upright faces than inverted 

faces, giving rise to more prominent inversion effects for these 

intermediate views. 
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6.3 Materials and methods 

6.3.1 Participants 

Ten healthy volunteers with normal or corrected-to-normal vision 

were recruited for this study. Participants were aged between 18 and 33 

years old (mean = 26 years, 6 months, SD = 5 years, 6 months). Seven 

were female, 3 male.  

From self-reports, 7 participants were very familiar with the 

researcher prior to the study, 2 were completely unfamiliar, and 1 was 

only slightly familiar. Familiar participants reported that they were 

familiar with and could recognise the researcher from frontal, ¾ and 

profile views. 

No other demographic details were collected. The sample was a 

mix of postgraduate research students and staff from the School of 

Psychology at the University of Nottingham. Fellow PhD students who 

were familiar with the researcher were recruited through a combination 

of convenience and snowball sampling. Undergraduates with no 

familiarity with the researcher were recruited through the School’s 

Research Participation Scheme. The study was approved by the 

School’s ethics committee.  

6.3.2 Apparatus 

The experiment was built in MATLAB version 9.5 (R2018b) using 

the Psychophysics Toolbox extensions (Psychtoolbox-3 version 3.0.17, 

Brainard, 1997; Kleiner, 2007; Pelli, 1997). 
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Due to restrictions in laboratory availability, the experiment was 

conducted across two laboratories. The same model of CRT monitor 

was used in both (Mitsubishi DPlus 230SB, 1024 x 768 pixels), one 

running Windows 7, with a screen refresh rate of 85Hz, the other, 

Ubuntu 18.04 at 120Hz. Viewing distance was 100cm in both instances. 

Head position was maintained using a head and chin rest. No obvious 

differences in the data were observed between the two laboratories. 

6.3.3 Stimuli 

Due to the length of the experiment and the number of potentially 

confounding factors, we focused on controlling effects of identity by 

using one actor. Due to being in the height of the Covid-19 pandemic, 

stimuli were captured of the researcher (RE). The actor maintained a 

neutral expression throughout. 

Photographs were taken from 0o (frontal) to 90o (left profile) in 5o 

increments (19 views total) on a Huawei P20 Pro. Photographs were 

taken 110cm away from the actor, with the camera positioned using a 

semi-circular camera rig covering a range of 180o in total (see Figure 

6.1). Illumination was provided through the ceiling lights and two diffuse 

lamps (InterFit F5, 50 x 69 cm), positioned at 20o and 70o yaw from 

frontal, with the centre of the lamps 20o above the camera position, at 

approximately 128cm from the actor.  
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Figure 6.1. Stimulus 

capture 

(A) The semi-circular 

camera rig, with lines 

reflecting the angles 

photographs were taken 

from. Pictures were taken 

110cm from the actor. The 

trapeziums show the 

position of the diffuse lights 

in azimuth. (B) Distance 

and angle of the camera 

and diffuse lights relative to 

the actor in elevation. 

Vertical head position is 

approximate. 

  

The backgrounds were removed from the stimuli by hand to keep 

only the face, hair and neck. Stimuli were then morphed using 

Diffeomorph (Stojanoski & Cusack, 2014). Each of the 19 stimuli were 

warped to generate 20 unique sets of 80 warp levels. Twenty unique 

sets were generated to reduce confounding effects of specific warping 

to each viewpoint (see Figure 6.2a). Each set was used twice per 

viewpoint in each block, in a random order. On average, stimuli (not 

including the backgrounds) occupied ~8o of visual angle. 
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Figure 6.2. Example stimuli and trial in the prototypical views 

experiment. 

(A) Example stimuli. The top two rows show example stimuli made by 

warping the same image twice, creating two different sets of warps. The 

bottom row shows some examples of warping the 45o stimulus. A warp 

level of 1 is the intact, unedited image. (B) An example trial. 

Participants fixate on the central fixation cross, a stimulus appears on 

either side for 300ms, and participants have to determine which image 

(left or right) was not warped. 

6.3.4 Task 

The task consisted of a psychophysics experiment using a 

staircase method to test whether there is a difference in thresholds for 

correctly identifying the non-morphed image across different viewpoints. 

On each trial, participants were presented with 2 stimuli simultaneously, 

one either side of a central fixation cross. One stimulus was an unedited 

image (veridical), the other a morph of that image. Participants had to 

identify the veridical stimulus using the left and right arrow keys. As the 

trials progressed, the warp level (arbitrary unit) decreased using a 

Quest staircase procedure (Watson & Pelli, 1983), starting at a warp 

level of 46. This differed from the methods by Yang and Beck (2021, 

2023) who instead used extremely morphed stimuli and modulated the 
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presentation duration. The reason for not modulating the duration here 

was because a suitable starting duration for upright stimuli was far too 

short for inverted stimuli, but a longer initial duration decreased the 

chance of reaching threshold for upright stimuli.  

Three different viewpoints were presented within each block to 

reduce the reliance on certain external contours and internal 

configurations. Each viewpoint was presented in 3 different blocks 

(within a given direction 𝑥 inversion condition), paired with different 

viewpoints in each. As 3 of the 19 viewpoints were presented in each 

block, and each viewpoint was presented 3 times, this gave 19 blocks. 

All blocks were presented four times: upright and inverted 𝑥 original 

(rotating from frontal to left profile) and mirror-flipped (frontal to ‘right’ 

profile) directions. This gave a total of 76 blocks (19 view sets 𝑥 2 

orientations 𝑥 2 directions). Within each block, 40 trials were presented 

per viewpoint, giving 120 trials per block presented in a random order, 

and 9120 across the whole experiment. Each block took on average 3 

minutes 40 seconds (SD = 37 seconds). The experiment took 

approximately 8 hours in total, split into several sessions. The division 

of blocks was up to participants, but they were encouraged to complete 

8 sessions of ~10 blocks.  

Participants maintained fixation on the black central fixation 

cross throughout. Stimuli were presented either side of this cross for 

300ms. Responses could only be made after the stimulus was 

removed, indicated by the fixation cross turning white until response. 
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Response time was unlimited, and the next trial began 1s after 

response. Reaction times were recorded but not analysed as 

participants were instructed to focus on accuracy. 

Stimulus size and position jittered slightly across trials to reduce 

retinotopic adaptation. Horizontal and vertical position was randomly 

jittered by 0, 5, 10 or 15 pixels in each direction. Size was modulated by 

expanding or contracting the stimuli by 0, 10, 20 or 30 pixels in each 

direction. This was applied to the whole square image, so aspect ratios 

were unaffected. Stimuli were presented on coloured backgrounds 

made using random noise in each of the RGB channels, which changed 

at the onset of each new stimulus. Masks were feathered into the 

background and their size and position remained constant. 

6.3.5 Inter-feature distance 

It is possible that the results may be predicted based on 

distances between features. To measure the inter-feature distances, up 

to 82 landmarks were positioned on each of the 19 veridical stimuli 

using InterFace (Kramer et al., 2017), depending on landmark visibility. 

In some cases, the landmark itself was not visible but the marker was 

still used. For instance, the landmark for the actor’s right tragus was 

used to mark the edge of the cheek at the same height when the tragus 

was occluded. While the distances may generally be proportional to the 

cosine of the angle from frontal, they may also deviate from this. For 

instance, a measure of total visible width will likely peak at the view 

where the nose begins to extend the external contour past the cheek.  
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The features were initially collapsed into 8 horizontal distances. 

(1) The whole visible range of the face (excluding the ears, hair and 

back of the head). (2) The whole visible size of the mouth and (3) the 

distance from the centre of the top lip to the actor’s left corner of the 

mouth. (4) The whole visible size of the nose. The distance between the 

tip of the nose and (5) the actor’s left flange, (6) the left pupil and (7) the 

left tragus. (8) The inter-pupil distance, although note that the position 

of the actor’s right pupil was estimated once occluded.  

6.4 Results 

To summarise the primary results, we found that upright faces 

were processed more efficiently than inverted faces, and that in general 

processing efficiency reduced as the distance from frontal increased. 

The inversion effect linearly increased with increasing angular distance 

from frontal but was proportional to the threshold for upright stimuli; the 

threshold for inverted stimuli was on average 1.48x the threshold for 

upright stimuli, irrespective of viewpoint.  

To investigate the effect of viewpoint, we collapsed across 

direction (left/right) giving 6 runs in total per condition. Trials from each 

of these 6 runs were collated and used to fit one Weibell function per 

condition (240 trials). Trials where participants were assumed to have 

made a response error by responding incorrectly to a high warp level 

were removed. These response errors were determined by listing the 

warp levels for the incorrect trials for each condition and removing any 

trials where the warp level was >3SD away from the mean. The 
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threshold at 75% accuracy was then calculated (see Figure 6.3). This 

was performed at subject-level. 

 
Figure 6.3. Threshold calculation. 

Demonstration of threshold calculation for upright stimuli at 5o for one 

participant. All trials for a condition were collated together, coded as 

either correct (1) or incorrect (0). Individual trials are shown by empty 

circles (red = response error). The proportion correct for each warp 

level is shown by filled circles, with the area being proportional to the 

number of trials for that warp level. The dark red and light blue circles 

show the proportion correct including and excluding response errors 

respectively. The horizontal grey line shows the 75% accuracy 

threshold. The dotted red curve and blue vertical show the Weibell fit 

and estimated threshold respectively including response errors. The 

solid red curve and blue vertical show the Weibell fit and estimated 

threshold respectively after excluding response errors. 
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Figure 6.4. Average thresholds for upright and inverted stimuli. 

(A) The average warp level required for participants to distinguish a 

warped from a veridical image at 75% accuracy for upright (blue) and 

inverted (red) stimuli as a function of viewpoint. The solid black lines 

show the fit of the ‘M + cosine’ models, the dashed black lines show the 

fit of the ‘M + linear’ models. (B&C) The average inversion effect for 

each viewpoint, calculated by (B) subtracting the thresholds for the 

inverted stimuli from the thresholds for upright stimuli and (C) dividing 

the threshold for inverted by that of upright. The solid black lines show 

the fit of the linear model. In B the dotted black line shows the fit of the 

inter-feature distance model. (D) The model fits for the data in A, with 

the linear (left), cosine (middle) and inter-feature distance (right) 

models. In all plots, the error bars/area show ±1 SEM of within-subjects 

variance. 
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Figure 6.4 shows the 75% accuracy thresholds for correctly 

identifying the intact upright and inverted stimuli averaged across 

participants. Other than an apparent inversion effect in most 

participants, and a general trend for an increase in threshold with 

angular distance from frontal, there were no other pronounced effects 

from looking at individual data separately. Group-level analyses were 

therefore performed.  

As the thresholds for upright and inverted stimuli were 

approximately linear, a 2 x 19 ANOVA, with orientation (upright and 

inverted) and viewpoint (0o, 5o, … 90o) was first performed to assess 

the main effect of inversion and to establish if there are linear trends in 

the threshold as a function of angular distance from frontal. The 

dependent variable was the warp level at the 75% threshold. 

There was a significant inversion effect. Thresholds were 

significantly lower for upright stimuli than inverted stimuli (F(1,9) = 

56.60, p < .001, ηp
2 = 0.86). There was also a significant effect of 

viewpoint (F(18,162) = 25.61, p < .001, ηp
2 = 0.74) and a significant 

interaction between orientation and viewpoint (F(18,162) = 3.49, 

p < .001, ηp
2 = 0.28).  

As there was a significant interaction between viewpoint and 

inversion, the effect of viewpoint for upright and inverted faces was 

further analysed separately. To analyse the effect of viewpoint (0o, 5o, 

… 90o), five pairs (upright / inverted) of models were considered: two 



University of Nottingham  Chapter 6 

290 

that treated viewpoint linearly; two that treated viewpoint non-linearly 

based on the cosine of the angle from frontal; and one that used inter-

feature distances. For each, a linear mixed model was performed with a 

fixed slope and random intercepts. The dependent variable was the 

estimated threshold.  

For the two linear and cosine models, two options were 

considered. The first simply tried to predict the threshold based on the 

distance from frontal. The second options added another regressor 

based on the hypothesised predictions. We initially predicted that the 

thresholds would be lower for frontal faces, 45o and profile than 

intermediate views. From the plot it almost appears that the opposite 

trend was present, superimposed on top of a linear or cosine function, 

with an increase in threshold at 0o, 45o and 90o. The second regressor 

was therefore constructed based on a sinusoidal curve with the lowest 

values at 0o, 45o and 90o, and the highest values at 22.5o and 67.5o. 

This was constructed using the following prompt in MATLAB: “m = 1 – 

cosd(8v)” where v is the vector of views (0:5:90). This regressor formed 

an ‘M’ shape so for simplicity is referred to as ‘M’.  

For the models using the inter-feature distances, multi-

collinearity was first dealt with by removing variables such that no 

correlation was greater than 0.8. Four distances remained: the total 

width visible; the nose tip to actor’s left tragus; the nose tip to left pupil; 

and the total mouth visible. In the upright model, all 4 distances were 

significant when entered in separate models as sole regressors (all 
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p < .006). In the inverted model all were significant save for the distance 

between the nose tip and actor’s left pupil (p = .740). The overall fit of 

the model was not significantly reduced by removing this distance (χ2(1) 

= 3.39, p = .066) so for consistency with the upright model, this distance 

was retained. 

6.4.1 Upright stimuli 

Firstly, the general effect of viewpoint was evaluated using the 

linear fit. The linear model showed that as the distance from frontal 

increased, the threshold increased (slope: t(188) = 12.71, 

unstandardized β = 0.15, p < .001, 95% CI = [0.13, 0.17]). 

The model fits were then compared to see if a linear or non-

linear function could best explain the data. Model comparisons were 

performed by comparing the explained variance, the Akaike and Bayes 

Information Criteria (AIC and BIC) and through Simulation Likelihood 

Ratio Tests (SLRTs) with 1000 simulations. Model comparisons are 

presented in Table 6.1 and the average fit for each model in Figure 

6.4a. 

The best model was the M + cosine model. It explained the most 

variance, had the lowest AIC and BIC and the highest log likelihood. It 

was also significantly better than all other models in the SLRTs. Both 

the cosine and M regressors were significant predictors (cosine: t(187) 

= 14.31, unstandardised β = 2.67, p < .001, 95% CI = [2.30, 3.03], M: 

t(187) = -3.37, unstandardised β = -0.28, p < .001, 95% CI = 
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[-0.44, -0.13]). As expected from viewing the plots, the sign of the 

coefficient for the M regressor was flipped compared to what was 

initially hypothesised. 

 

Table 6.1. Model comparisons for upright stimuli. 

Model accuracy and comparisons for the upright thresholds. In the top 

section, bold highlights the model with the best value. For AIC and BIC this 

is the lowest value, for log likelihood it is the highest. The bottom section 

shows model comparisons from Simulated Likelihood Ratio Tests. Bold = 

significant at α = .05, * = significant once corrected for 10 comparisons 

(α = .005). AIC = Akaike’s Information Criteria, BIC = Bayes Information 

Criteria. Models were ordered based on the log likelihood. 

While the model explained the data well, there is scope for 

improvement; the central peak in the threshold occurred slightly earlier 

than the model predicted at 40o rather than 45o, and had a sharper fall 
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either side. Further work would need to replicate this finding before any 

fine tuning of the model would be valid. 

 
Table 6.2. Model comparisons for inverted stimuli. 

Model accuracy and model comparisons for the inverted thresholds. In the 

top section, bold highlights the model with the best value. For AIC and BIC 

this is the lowest value, for log likelihood it is the highest. The bottom 

section shows model comparisons from Simulated Likelihood Ratio Tests. 

Bold indicates significance at α = .05. No comparisons survived Bonferroni 

correction (α = .005). AIC = Akaike’s Information Criteria, BIC = Bayes 

Information Criteria. 

6.4.2 Inverted stimuli  

In general, the models for inverted stimuli explained ~7% less of 

the variance than for upright stimuli. As with the upright stimuli, the 

linear model showed that thresholds generally increased as the 
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distance from frontal increased (slope: t(188) = 14.38, unstandardized β 

= 0.27, p < .001, 95% CI = [0.22, 0.30]). 

All of the models were very similar with no clear winner (see 

Figure 6.4a and Table 6.2). In general, adding the M regressor 

improved the explained variance, but this did not necessarily lead to a 

significant improvement or a more parsimonious model (as indicated 

from the AIC and BIC scores). There was also a negligible difference 

between the M + linear and M + cosine model.  

6.4.3 Inversion effect 

From visualising the data, and from the regression models, it 

appears that the inversion effect increased more when further from 

frontal. This can be seen in beta coefficients of the slopes for upright 

(unstandardized β = 0.15) and inverted (unstandardized β = 0.27). 

To begin to unpack the interaction, an inversion effect for each 

view was calculated by subtracting the thresholds for inverted stimuli 

from those for upright stimuli. Linear mixed models were again 

constructed using linear angle, cosine of the angle, and inter-feature 

distances to predict the inversion effect.  

The linear model showed that as the distance from frontal 

increased the inversion effect increased (t(188) = -5.63, unstandardised 

β = -0.11, p < .001, 95% CI = [-0.15, -0.07]). 
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The inversion effects were best explained by the inter-feature 

distance and linear models. The inter-feature distance model explained 

slightly more of the variance (cond. R2 = 0.515, cond. R2
adjusted = 0.505) 

than the linear model (cond. R2 = 0.503, cond. R2
adjusted = 0.500) but 

was not significantly better in a SLRT. The AIC and BIC were lower in 

the linear models. Adding the M regressor decreased the model fit. In 

summary, the inversion effect could be generally explained by an 

approximately linear model as the angle from frontal increased. 

Interestingly, while the magnitude of the inversion effect seemed 

to increase with the angular distance from frontal, the effect was 

proportional to the threshold for upright stimuli. The threshold for 

inverted stimuli was on average 1.48x the threshold for upright stimuli, 

regardless of viewpoint (see Figure 6.4c). This was confirmed using 

another linear mixed model, again with a fixed slope and random 

intercepts, and the simple scaling factor (inverted threshold ÷ upright 

threshold) as the dependent variable. The simple scaling factor did not 

significantly vary as a function of viewpoint (slope = t(188) = -1.83, 

p = .069, unstandardized β = -5.48x10-3, 95% CI [-0.04x10-2, 

1.13x10-2]).  

Allowing the slope to vary across participants did not significantly 

improve the model (χ2(2) = 2.00, p = .368). In contrast, fixing the 

intercept significantly decreased the model fit, (χ2(1) = 87.89, p < .001), 

increased Akaike’s Information Criterion from 10.84 to 96.73, and 

decreased conditional R2
adjusted from 45.78% to 0.42%. Overall, this 



University of Nottingham  Chapter 6 

296 

shows that the relative magnitude of the inversion effect did not differ 

significantly across views but did by participant.  

6.5 Discussion 

In this experiment we sought to test if there was a systematic 

difference across viewpoints in the thresholds for discriminating 

veridical from warped versions of the same image of a face. These 

thresholds would reflect which views are best represented in the brain. 

Based on the prior work (De Souza et al., 2005; Marotta et al., 2002; 

O’Toole et al., 1998; Perrett et al., 1991; Troje & Bülthoff, 1996; Van der 

Linde & Watson, 2010) we hypothesised that thresholds would be 

smaller for frontal, ¾ and profile than intermediate views. Furthermore, 

we hypothesised that thresholds would be higher for inverted faces and 

that the inversion effect would be larger for intermediate views due to 

view interpolation being less efficient.  

Overall, we found that there was a general increase in the 

threshold as the angular distance increased from frontal and that the 

threshold was higher for inverted faces than upright faces. Contrary to 

our hypothesis we also found some indication that thresholds were 

higher for frontal, profile, and ~3/4 (40o) stimuli than intermediate views. 

We did not find evidence to suggest that the inversion effect was 

stronger for intermediate views. 

The general increase in threshold for non-frontal faces is 

congruent with prior evidence that there are more neurons tuned to 
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frontal than profile views (Dubois et al., 2015; Perrett et al., 1991) in 

view-dependent regions, allowing for a more efficient representation 

(although see Hasselmo et al., 1989). It is also consistent with evidence 

that frontal and ¾ faces are more easily detected in natural scenes 

compared to profile (Burton & Bindemann, 2009). Burton and 

Bindemann’s findings suggest that our results are not due to symmetry 

or both eyes being present as their effects were observed even when 

half of the image was occluded.  

The lower thresholds for more frontal over more profile faces is 

also consistent with the amount of exposure we have in the natural 

world to different viewpoints. Oruc and colleagues (2019) reported that 

we are exposed to more frontal views than any other view, when 

calculated per degree. However, under their criteria ‘frontal’ faces only 

occupy a very narrow range (±10o). When categorised based on the 

visibility of the eyes and ears, the ¾ view is the most prevalent 

category, and profile the least. The slight decrease in threshold that we 

observed for stimuli at 15-30o may also therefore be explained by 

exposure, as this range is near frontal, yet would be categorised as ‘¾’ 

according to the conditions used by Oruc and colleagues. The increase 

in threshold at ~40o however is not well explained.  

The evidence for a behavioural benefit for slightly non-frontal 

faces is limited, however there is evidence that landmark detection and 

face identification in DNNs is optimal for slightly non-frontal (10-20o) 

views (Choithwani et al., 2023). There is also evidence that in both 
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humans and DNNs lipreading is easier at ~30o (Lan et al., 2012). All 

three of these scenarios may explicitly benefit from the processing of 

3D information. For instance, landmarking may be easier with access to 

the additional depth information from a non-frontal image, although the 

optimal view was not too far from frontal. Lipreading may also be easier 

at 30o due to having good visibility of the full width of the mouth as well 

as additional depth information about lip protrusions. In our study it may 

have been easier to distinguish warped facial features from veridical 

shapes using the additional structural information available at 15-30o 

from frontal. 

As well as a slight decrease in threshold for ~15-30o stimuli 

relative to frontal and ¾, we also observed a slight decrease at ~50-60o 

relative to ¾ and profile. This decrease is not well explained by 

exposure but perhaps the advantage for both of these intermediate 

views could be due to overlap in broad tuning curves (e.g., Perrett et al., 

1991). We hypothesised that the viewpoints that neurons would be 

preferentially tuned to (based on macaque studies) would be the 

viewpoints with the lowest threshold, but it is possible that the overlap 

between broad tuning curves for intermediate views allows them to be 

more efficiently represented.  

The presence of lower thresholds at intermediate views does not 

refute the neurophysiological evidence of neurons preferentially tuned 

to frontal, 45o and profile (De Souza et al., 2005; Perrett et al., 1991) in 

favour of intermediate views, but it may indicate that more neurons are 
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tuned to these intermediate views than previously sampled. Neurons 

responding maximally to these intermediate views alongside the overlap 

in broad tuning curves for frontal, ¾ and profile views may result in 

lower thresholds. 

The thresholds being higher for inverted faces than upright faces 

is consistent with a wide range of evidence (Eng et al., 2017; Garrido et 

al., 2008; McCleery et al., 2008; Thornton et al., 2011; P-L. Yang & 

Beck, 2021, 2023; R. K. Yin, 1969) and shows that our task tapped into 

higher-level face processing mechanisms. Moreover, it supports the 

prior evidence that the perceptual representation (before any cognitive 

judgement about identity) is optimised for upright faces. This includes 

the work by Yang and Beck (2021, 2023) who also found larger 

thresholds for inverted faces and from whom the methods of this current 

study were based. The fact that we too saw a substantial inversion 

effect is reassuring given that we manipulated warp level rather than 

stimulus duration and had many more conditions. Had we not seen an 

effect of inversion then the lack of clear systematic effects of viewpoint 

(other than the general increase with view away from frontal) would 

likely result from a dependence of lower-level visual features rather than 

higher-level features. It is worth noting however that the manipulation of 

the warp level may have made the task more cognitive. The task did not 

require participants to identify the face, and it should have required 

more image-based assessments, but it may have required more 

cognitive judgements about the natural shape of the actor’s face. 
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The magnitude of the inversion effect increased as distance from 

frontal increased, but the threshold for inverted stimuli was proportional 

to those for upright stimuli. This suggests a consistent, proportional 

disadvantage for inverted compared to upright faces. It would be 

interesting to see if this relative detrimental effect is seen in future 

studies. Similar results were observed by Favelle and Palmisano (2012) 

who in Fig 3 present data showing that the sensitivity for matching 

inverted faces is approximately proportional to the sensitivity for upright 

faces (upright = ~1.4x inverted). The relative difference is slightly larger 

for frontal faces (~1.6x), but this may be because the first stimulus in 

each stimulus pair was frontal. In contrast however, Watson and 

colleagues (2005) found a greater degree of variability in the effect of 

inversion across view. 

We did not find any additional detrimental effect on the inverted 

stimuli for views that were either classed as intermediate a priori or the 

prototypical views (0o, 45o, 90o). If the interpolation account (H. H. 

Bülthoff & Edelman, 1992) of face processing is accurate then, 

according to our data within a face detection paradigm, interpolation is 

as efficient for inverted stimuli as it is upright, once the general 

inversion effect is accounted for. This is potentially consistent with 

evidence that identity discrimination is equally affected in changes in 

view for both upright and inverted faces (Wright & Barton, 2008). In 

contrast, other research with unfamiliar faces has shown that viewpoint 

generalisation is worse for inverted faces (Moses et al., 1996). In the 

current experiment, most participants were familiar with the actor and 
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thus more robust interpolation for inverted faces might be possible. The 

current task was also based on a more perceptual task (detection) 

rather than a more cognitive task (recognition) for which interpolation 

may be more efficient. That said, our results for inverted stimuli were 

clearly noisier than for upright stimuli, so further work would be needed 

to form any conclusions on this matter. 

There are a few confounds that may contribute to an increased 

threshold at ~40o, however none provide a perfect explanation for the 

findings. While 20 different sets of warps were created, it is possible 

that warping had less of an effect on the features or contours necessary 

for discrimination at ~40o compared to other views. However, the 

internal features are closer to the external contours than for more frontal 

faces, but not as close as for more profile faces, so it is not clear why 

this configuration would be particularly affected. Participants may have 

also changed response strategy at ~40o. For frontal faces, the internal 

features of the two face stimuli are approximately equidistant from 

fixation, so it is easier to attend to both faces concurrently. At profile, 

the internal features of one face are closer to fixation than the other, 

meaning that participants may have attended to the closer face and 

decided if that was morphed or veridical. At 40o, participants may have 

been torn by which strategy to use as neither were optimal, increasing 

the threshold. The effects of warping and changing strategies, however, 

would be expected to be more gradual and should have affected both 

upright and inverted faces similarly. While a slight peak is present at 

~40o for inverted faces this is less clear than for upright faces. A spatial 
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jitter was also introduced which would have further reduced sudden 

effects due to changes in strategy. One might also expect a decrease in 

thresholds if participants were able to use both strategies concurrently 

rather than just one.  

A direction for future work would be to compare the thresholds 

across views for familiar and unfamiliar participants. Depending on how 

view-invariance is achieved, one may find different patterns in the 

thresholds for familiar and unfamiliar participants. Following the results 

from Yang and Beck (2021, 2023), one might expect that any benefit for 

specific viewpoints might be stronger for familiar over unfamiliar faces. 

On the other hand, weaker effects across viewpoint might be observed 

for familiar observers than unfamiliar due to having a better view-

invariant representation. 

In summary, we found a clear increase in the thresholds for 

inverted faces and faces closer to profile compared to upright and 

closer to frontal. Contrary to our predictions, slightly higher thresholds 

were observed for frontal, ¾ and profile views relative to intermediate 

views. More research is required to see if this finding replicates. If it 

does, this may provide useful insight into which viewpoints are 

preferentially represented and the efficiency of view-interpolation. 
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Chapter 7 General discussion 

Recent research has shown strong evidence for norm-based 

coding in macaques through axis coding (Chang & Tsao, 2017; Koyano 

et al., 2021), allowing faces to processed in a linear face space. This 

doctoral research assessed two aspects of linear face space. Firstly, 

Chapter 3 assessed what happens when face space is taken to the 

extreme, by presenting participants with hyper-caricatured faces. This 

fMRI experiment showed that caricatured faces beyond the realm of 

natural plausibility activate cortex typically associated with object 

processing. The second stream of work addressed how to incorporate 

view-invariance into a 2D face space, specifically in the domain of facial 

motion. In Chapter 4, various models that tried to reconstruct facial 

motion across viewpoints were described, concluding with a two-step 

model capable of accurate reconstructions whilst adhering to some 

constraints of biological plausibility. Chapter 5 then discussed how 

mirror-views might be represented within a view-invariant face space, 

expanding briefly on the structure of the models in the previous chapter. 

Chapter 6 began to test which viewpoints might be preferentially 

represented in the human brain, to help guide future construction for 

models of view-invariance such as those described in Chapter 4. 

7.1 The effects of caricaturing in face space 

In the fMRI study assessing the response to hyper-caricatured 

faces, we anticipated that as the caricature level increased, the BOLD 

response in the FFA and other face selective areas would increase. 
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This was based on single unit recordings in macaques (Chang & Tsao, 

2017; Leopold et al., 2006) although there was mixed evidence for the 

shape of the response function in humans (Carlin & Kriegeskorte, 2017; 

Loffler et al., 2005; McKone et al., 2014; Susilo, McKone, & Edwards, 

2010).  

A small increase in the BOLD response for highly caricatured 

faces over more average faces was observed in the right FFA, but this 

was not significant when considering all caricature levels and only 

upright stimuli. The response pattern, however, increased in 

consistency in the right FFA as caricature level increased, perhaps 

through enhancing the signal-to-noise ratio. In comparison, there was 

an increase in both response amplitude and response pattern 

consistency in object-selective cortex. 

Although the consistent response amplitude in face-selective 

areas to different caricature levels overall was not predicted based on a 

norm-based representation of face space, it is not clearly congruent 

with an exemplar-based model either (Lewis, 2004; Valentine, 1991). 

An exemplar-based model would predict the highest response for the 

most average faces, as these would fall into the region of face space 

with the highest density and therefore the most overlap with known 

exemplars, and the smallest response for highly caricatured faces. 

While we did not see a clear increase in response amplitude with 

increasing caricature level, neither did we see a decrease. If faces are 

processed with completely separate spaces, say with ‘islands’ for 
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familiar identities (Hancock, 2021) that are not situated in an exemplar 

code, then we perhaps would predict a consistent response across all 

caricature levels for these unfamiliar stimuli, as all caricature levels 

would sit within the sea of unknown faces. However, we can generally 

distinguish different identities and different caricature levels, so there 

must be some common space in which all faces are processed to at 

least some degree. 

Within a norm-based representation, we have already described 

how the relatively consistent response amplitude to different caricature 

levels may have occurred through a balance of some cells increasing 

and others decreasing in firing rate. However, there may also be a 

balance between the initial response, and later inhibition to more 

average stimuli. In macaques, Koyano and colleagues (2021) found 

initial ramp tuning to stimuli at a greater distance from the average, with 

cells either firing more or less relative to average depending on whether 

the stimulus was on the preferred direction of the neurons axis. At a 

later timepoint they then found a downregulation of the response to 

more average stimuli. Our results may therefore reflect a balance 

between the initial responses and the downregulation. Further studies 

using MEG or EEG could explore this possibility as it would help to 

elucidate the neural coding underlying human face processing. 

Alternatively, it is possible that the FFA does not code faces 

within a face space representation. Baseler and colleagues (2016) 

suggested that the FFA plays an intermediate role in alignment prior to 
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further processing (perhaps in a face space manner) in more anterior 

areas. Different caricature levels may therefore require different neural 

populations for the alignment, leading to no net effect of caricature 

level. It is possible that the distortions seen during electrical brain 

stimulation of the right FFA (Parvizi et al., 2012; Rangarajan et al., 

2014) reflect errors in alignment rather than accentuating particular 

dimensions of face space as suggested in the introduction. The results 

and discussions here are, however, incongruent with the recordings in 

macaque area ML (Chang & Tsao, 2017), thought to be the homologue 

of human FFA (Tsao et al., 2003), and the already mentioned results 

from (Loffler et al., 2005). Yet they are consistent with evidence of an 

intact face space representation in a patient with prosopagnosia who 

had damage to the right fusiform gyrus (Rivest et al., 2009). We cannot 

comment on face representations in more anterior areas as our slice 

prescription was focused on the OFA, FFA and pSTS so the anterior 

temporal cortex and IFG were outside the field of view. 

Despite generally consistent responses across caricature levels 

in face-selective regions, we did observe some trends worth 

highlighting. Firstly, as already highlighted in Chapter 3, we observed 

evidence that the response in the right FFA increased to highly 

caricatured faces whereas the left FFA remained unperturbed. This was 

shown in the ANOVA comparing upright and inverted faces at the 

highest and lowest caricature levels. A follow-up comparison showed 

that the difference in hemispheres was still significant when only 

considering the upright stimuli (t(8) = 2.67, p = .029) prior to correction. 
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The left FFA’s indifference to caricature level is potentially consistent 

with functional differences between the left and the right FFA as shown 

by electrical stimulation (Rangarajan et al., 2014) and fMRI (Rossion et 

al., 2000).  

From visually inspecting Figure 3.4, there also appeared to be an 

increase in the response amplitude for caricatures on the naturalness 

boundary in the right FFA. A subsequent analysis revealed a 

significantly larger response in the right FFA than left to these stimuli 

(t(8) = 3.82, p = .005). This is potentially compatible with the peak in 

aftereffect strength around the naturalness boundary seen in prior work 

(McKone et al., 2014) and may further demonstrate functional 

differences between hemispheres (Rangarajan et al., 2014; Rossion et 

al., 2000). However, this trend was also present in object and scene-

selective regions, potentially reflecting a global enhancement in visual 

attention; participants may have been consciously aware that these 

stimuli closely matched their perceptual boundary from the behavioural 

study. This is compatible with general evidence for right hemisphere 

dominance in attentional processes (e.g., Heilman & Abell, 1980) 

although is less consistent with evidence that the response in FFA 

increases bilaterally when attention is guided to faces (Wojciulik et al., 

1998). It is also not consistent with evidence showing that attention to, 

and mental imagery for, faces over houses selectively activates face-

selective cortex (O’Craven et al., 1999; O’Craven & Kanwisher, 2000; 

Wojciulik et al., 1998) and conversely that the parahippocampal place 
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area is selectively activated by attention to houses (O’Craven et al., 

1999; O’Craven & Kanwisher, 2000).  

Participants may have attended to more local, lower-level visual 

features to discriminate plausible from implausible faces. This would 

likely have less of a specific effect on face-selective regions if the 

features attended were lower-level visual properties. However, if they 

were attending to more local facial features then this would instead 

predict an increase in response in the left FFA, which is more sensitive 

to part-based information (Rossion et al., 2000). 

The lack of hemispheric differences for mildly caricatured faces 

(+1SD and +3SD) further muddies the argument about functional 

differences between the left and right FFA. Why would highly 

caricatured faces and faces on the naturalness boundary selectively 

enhance the response in the right FFA but not the left? And why do 

intermediate caricature levels not elicit a difference between 

hemispheres? As already noted, changes in visual attention do not 

explain these hemispheric differences well (Wojciulik et al., 1998). 

Moreover, if the response to highly caricatured faces in the right FFA 

indicated a difference in face space representations then the BOLD 

response would be expected to change in a more linear fashion across 

caricature levels.  

Although the responses to faces on the naturalness boundary 

(0SD) and highly caricatured (+6SD) faces were larger in the right than 
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left FFA, the responses in the right FFA to these levels were not 

significantly different from the other caricature levels once corrected for 

multiple comparisons (all p > .034). Further studies would therefore be 

needed to explore whether, and if so why, the right FFA shows an 

increase in response to caricatures on the boundary of natural 

plausibility and highly caricatured stimuli but not intermediate caricature 

levels.  

 While some differences across hemispheres were present for 

certain caricature levels, there was not a main effect of hemisphere 

overall. Studies have often shown that the FFA is more consistently 

found in the right hemisphere than the left (Kanwisher et al., 1997; 

Pitcher et al., 2011, 2023; Sliwinska et al., 2020) and is larger in the 

right hemisphere (Bukowski et al., 2013; Pitcher et al., 2023) supporting 

a right hemisphere dominance in face processing. In contrast, we did 

not see a difference in volume between the left and right FFA, nor did 

we see a main effect of hemisphere overall in the response amplitude 

or, in a follow-up analysis, in the response pattern consistency. 

However, not all prior studies show right hemisphere dominance (e.g., 

Fox et al., 2009; Grill-Spector et al., 2004; Ishai et al., 2002) and there 

is evidence that a right hemisphere advantage is only seen for certain 

tasks (Ellis & Young, 1983). The lack of a right hemisphere advantage 

overall was therefore not of concern in our study, and possibly reflected 

the task not being directed to the faces.  
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In contrast to the response amplitudes, which did not differ 

significantly across caricature level within the FFA or face-selective 

regions generally, we did observe an increase in the response pattern 

consistency in the right FFA. This suggests the right FFA is sensitive to 

caricature level, and that increasing the caricature level might elicit a 

more consistent response profile. This may therefore suggest the 

presence of a face space representation in the right FFA but we cannot 

discount the possibility that the FFA is involved in alignment procedures 

(Baseler et al., 2016).  

In object-selective cortex, both a significant increase in the 

response amplitude and the response pattern consistency was 

observed as the caricature level increased, particularly for hyper-

caricatured stimuli. This may be due to low-level properties such as 

certain shapes or colours, or it may be that object-selective cortex 

provides some functional benefit to recognising caricatured faces.  

It has long been debated whether higher-level visual processing 

is modular or distributed (Haxby et al., 2001) so it seems possible that 

caricatures might exacerbate the response to faces in cortex typically 

defined as object-selective, potentially through similarities of lower-level 

features. As faces have been argued to sit within a more general object-

space (Bao et al., 2020), regions outside of face clusters respond to 

faces (Haxby et al., 2001) and the OFA responds to face-like objects 

(Decramer et al., 2021), this seems plausible. Indeed, the response to 

faces compared to baseline in the localiser scan of our study 
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(Supplementary Figure 3.6) shows that many object-selective voxels 

also respond to faces. These object-selective regions may even be 

recruited for cross-communication with face-selective voxels for trying 

to process these ‘unusual’ faces. Disrupting the face processing 

network by applying transcranial magnetic stimulation (TMS, Barker et 

al., 1985) to the OFA reduces the response to both faces and objects in 

the object-selective LO (lateral occipital, Pitcher et al., 2014) suggesting 

that face and object-selective regions are connected and overlap in 

function. That said, evidence from electrical stimulation in macaques 

suggests that the communication between neurons is highly selective to 

face-selective regions, with little cross communication (Moeller et al., 

2008). If cross-communication is present, however, then this could 

explain the behavioural benefits of caricaturing discussed in the 

introduction if both face- and object-selective areas are working in 

tandem to process these more unusual stimuli.  

7.1.1 Directions for future work 

As already mentioned, some future work could look to expand 

this study through the inclusion of M/EEG. The precise temporal 

resolution would allow these studies to investigate the presence of initial 

ramp responses to caricatured faces followed by lateral inhibition to 

average faces (Koyano et al., 2021). This would help distinguish norm-

based and exemplar representations of face space. 

Like previous research (Carlin & Kriegeskorte, 2017; Loffler et 

al., 2005) we used unfamiliar faces, however it would also be beneficial 
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to assess the effect of caricaturing on familiar individuals. Familiar faces 

increase the response in the OFA and FFA compared to unfamiliar 

faces (Eger et al., 2005; Ewbank & Andrews, 2008; although see 

Minnebusch et al., 2009) and familiarity biases the magnitudes of 

perceived distinctiveness, attractiveness, likeability and trustworthiness 

compared to their respective anti-faces (Faerber et al., 2016). In 

contrast, unfamiliar faces show equivalent ratings across face/anti-face 

pairs (Faerber et al., 2016). Familiar faces might therefore elicit a 

sharper rise in response amplitude, perhaps revealing a more 

substantial effect of caricaturing than found here. Caricatured familiar 

faces might also provide evidence for separate spaces or subspaces 

capturing within-identity variation (Burton et al., 2016; Hancock, 2021). 

This would be particularly insightful if caricaturing is coded relative to 

identity-specific norms rather than a norm of all encountered faces. 

Further research should also investigate why hyper-caricatured 

faces activate regions typically associated with object processing. If the 

object-selective cortex is functionally involved in face processing, then 

caricaturing may provide a route to helping those with prosopagnosia. 

One would of course need to establish whether the object-selective 

cortex does contribute, and if so, which regions specifically, perhaps 

using non-invasive brain stimulation techniques such as TMS. In the 

current study all object-selective voxels were grouped into one ROI. 

Recognition for hyper-caricatures could also be assessed in individuals 

with prosopagnosia.  
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7.1.2 Is caricaturing a route to helping those with prosopagnosia 

and other conditions? 

If object-selective cortex poses a functional benefit to recognising 

highly caricatured faces, then hyper-caricaturing may benefit those 

whose face recognition streams have been damaged or function 

differently, as is often the case in acquired prosopagnosia (AP) and 

developmental prosopagnosia (DP) respectively.  

If caricaturing is beneficial for individuals with prosopagnosia, 

then similar portable technologies to those mentioned in Chapter 4 

might be beneficial. Chapter 4 mentioned that wearable technologies 

will soon be able to help convert visual information into auditory speech, 

to help those with hearing difficulties. Similar technologies may help 

individuals with face recognition difficulties. Dawel and colleagues 

(2019) suggested that caricatures may help improve recognition in 

patients with prosopagnosia, as well as individuals with vision loss, 

such as central vision loss in age-related macular degeneration. They 

also described how technology could caricature faces in real-time, such 

as on a phone or tablet, or with augmented reality glasses. As noted by 

Dawel and colleagues, this technology would need to work under any 

viewing conditions including across large changes in pose, but there is 

currently no software effective enough at this, in part due to the 

necessity for fast and accurate landmark detection. These are the same 

requirements needed by, and the same limitations of, software for 

transforming facial motion across viewpoint and into auditory speech. 

The technologies could even be combined; caricaturing could be 
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applied to facial motion to improve lip-reading and similarly, the multi-

view PCA model could be used for frontalisation before caricaturing 

information diagnostic of identity.  

The benefit of caricaturing, and therefore the suggested 

technologies, firstly depend on whether an intact face space 

representation is present. Individuals with DP generally show an intact 

face space representation (Leib et al., 2012; Nishimura et al., 2010; 

Robson et al., 2018; Susilo, McKone, Dennett, et al., 2010 b), although 

some research suggests a modified face space (Palermo et al., 2011; 

Robson et al., 2018). In contrast, the evidence for intact face space 

representations in patients with AP is mixed (Nishimura et al., 2010; 

Rivest et al., 2009). This distinction may influence how caricatures are 

used, if at all. Moreover, the amount of caricaturing required might also 

vary. For instance, if no face space representation is present, but 

object-selective cortex provides some functional benefit for recognising 

highly caricatured faces, then one possibility would be to hyper-

caricature faces and force the processing to occur in object-selective 

cortex. In contrast, if a face space representation is present, then less 

caricaturing might be necessary. 

In general, a lack of a face space representation in acquired 

prosopagnosia is not surprising (e.g., Nishimura et al., 2010). Face 

space representations should reside within face-selective regions of 

cortex, which are often lesioned in AP. However, evidence for an intact 

face space has been seen in some cases (e.g., Rivest et al., 2009). The 
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lesion in this patient included the right fusiform gyrus suggesting that if 

a face space representation is present, it may not reside in the right 

FFA. Yet, another patient with damage to the right FFA (Behrmann & 

Williams, 2007) showed no indication of an intact face space (Nishimura 

et al., 2010). Both patients had damage extending more anterior to the 

FFA, as well as to other areas, so it is not clear where face space is 

represented. 

Caricaturing has been shown to benefit healthy controls (Itz et 

al., 2017; although see Minnebusch et al., 2007), individuals with poor 

face recognition, but not necessarily prosopagnosia (Limbach et al., 

2022; Powell et al., 2008) and individuals with age-related macular 

degeneration (Lane et al., 2018). Caricaturing also provides larger 

benefit for older adults than younger adults despite worse recognition, 

suggesting that face space may be present but distorted in older adults 

(Dawel et al., 2019) and that older adults and those with worse 

recognition would benefit most from caricaturing technologies. Despite 

this, and despite evidence for intact face space representations, at least 

in DP, there is mixed evidence whether caricaturing benefits face 

processing in prosopagnosia. 

Three-dimensional hyper-caricatures, containing both shape and 

texture distortions, have been found to improve behavioural 

performance and increase the N170 in patients with DP (Minnebusch et 

al., 2007) and they elicit comparable BOLD responses to controls, 

despite DPs showing more variable responses to veridical famous and 
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unfamiliar faces (Minnebusch et al., 2009). This indicates the 

representation of caricatures is more stable in DPs and potentially 

corroborates our findings of more consistent response patterns in the 

FFA to caricatured faces. In contrast to this, and in contrast to the 

studies discussed previously, controls showed some behavioural 

deficits for caricatures compared to veridical pictures, alongside weaker 

N170s (Minnebusch et al., 2007). Controls also showed larger BOLD 

responses to caricatures and unfamiliar faces than famous faces 

(Minnebusch et al., 2009) which the authors interpreted as increased 

processing costs of viewing novel (caricatured and unfamiliar) stimuli. 

Other research, however, suggests that caricaturing does not 

help those with prosopagnosia. Some individuals with prosopagnosia 

are able to recognise cartoons, both from silhouettes (M. Cook et al., 

2019) and line drawings (Rivest et al., 2009) yet are unable to 

recognise line-drawn caricatures (Rivest et al., 2009). Others are not 

able to recognise faces from line-drawn caricatures or cartoons (de 

Gelder & Rouw, 2000). Sergent and Signoret also reported that 

individuals with AP were worse at recognising caricatures than controls, 

and patients reported that they “found the tasks with caricatures very 

frustrating”, and caricatures “made even less sense to them than 

normal faces”, and “were more difficult to recognise” (Sergent & 

Signoret, 1992, p. 384). Matching caricatures to their veridical face was 

also impaired, suggesting that their face space had been disrupted. The 

line-drawn caricatures used in these studies, however, are limited or 

even devoid of texture, which appears to be important for recognition 
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and learning (Itz et al., 2017; Limbach et al., 2022), so they may not 

engage the same processes as more image-realistic caricatures made 

by computationally extrapolating face space. 

Instead of caricaturing, Powell et al (2008) found that only 

directing attention to distinctive features improved performance for an 

individual with pure prosopagnosia (W.J.). This is despite observing 

benefits of caricaturing for brain damaged patients who show face 

processing deficits, but who do not strictly have prosopagnosia. 

Combining caricaturing and part-based attention might improve 

performance further, although W.J. was almost at ceiling with part-

based attention in this particular task. Guiding attention away from the 

mouth and to the eyes has also been found to improve face matching in 

AP (Ramon & Rossion, 2010), suggesting that some of the deficits stem 

from over-attention to the mouth. If combined with caricaturing however, 

the focus of directed attention may of course differ depending on what 

features are particularly distinctive. 

Overall, there is mixed evidence that caricaturing helps those 

with prosopagnosia, possibly due to the methods and particular stimuli 

used. More realistic textured stimuli seem to suggest that caricaturing 

faces can help those with prosopagnosia (Minnebusch et al., 2007, 

2009), and caricaturing texture has also been shown to improve face 

processing (Itz et al., 2017; Limbach et al., 2022). Therefore, if 

caricatures are to help those with prosopagnosia, retaining and 

caricaturing texture is likely crucial. 
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There is limited evidence whether caricatured faces recruit cortex 

outside of typical face-selective regions. But, some evidence has shown 

that caricaturing the distances between features during training leads to 

better recognition alongside increased connectivity between face- and 

non-face-selective regions in DP (DeGutis et al., 2007).  

Even if the object-selective cortex does not functionally 

contribute to caricature processing per se, the intentional caricaturing of 

stimuli to activate object-cortex might prove useful through plasticity. If 

caricatured faces activate object-selective cortex, then over time this 

cortex may learn to more effectively represent these stimuli, not 

necessarily as faces per se but as a class of object. It may then even be 

possible to decrease the amount of caricaturing required. In other 

words, caricatures might be able to guide object-selective cortex into 

processing faces. Current evidence for this as a possibility is mixed. 

Hadjikhani and de Gelder (2002) studied responses in three individuals 

with prosopagnosia from either birth or early childhood and found no 

evidence of cortex selectively responding to faces over objects. Yet, for 

one individual the (typically object-selective) region LO responded 

equally to faces and objects compared to houses, suggesting that LO 

had assimilated some ability to process faces, though not enough to 

sufficiently enhance face recognition.  

The suggestion of encouraging faces to be processed in object-

selective regions is further complicated as face and object processing 

deficits are often co-morbid (e.g., Barton et al., 2003; Behrmann & 
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Williams, 2007; Farah et al., 2000; Svart & Starrfelt, 2022). Also, even 

in DPs there is substantial heterogeneity in the responses to faces 

within the OFA and FFA (Minnebusch et al., 2009) before even 

considering object-selective regions.  

In summary, we found evidence that object-selective cortex 

responds to hyper-caricatured faces, and thus posed the question of 

whether hyper-caricatured faces might help those with prosopagnosia 

through recruiting object-selective cortex. Patients with developmental 

prosopagnosia often show evidence of intact face space 

representations, and caricaturing has sometimes proven useful in 

improving recognition both in DP and AP, showing that caricaturing can 

be beneficial. Furthermore, the evidence for increased functional 

connectivity between face- and non-face-selective regions with training 

of caricatured configurations, and the assimilation of face responses in 

object cortex in prosopagnosia, indicates that engaging object-selective 

regions for processing caricatures might be possible. The efficacy of 

such a strategy would of course depend on the presence of damage to 

object-selective regions or object processing deficits, so would be highly 

individualised. Nevertheless, this provides an exciting and highly 

beneficial line of research. 

7.2 Learning view-invariant representations in face 

space: the multi-view PCA models 

Moving away from caricaturing, chapters 4 to 6 assessed view-

invariance and facial motion processing in face space. In Chapter 4 the 
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aim was to build a biologically plausible model that could reconstruct 

facial motion across changes in viewpoint, based on the premise of 

using 2D, view-specific representations rather than a 3D representation. 

The aim of the work was to expand on and accumulate methods used 

by Beridze (2021), Lan et al (2012) and Lucey et al (2007), Scholes et 

al (2020) and Burton et al (2016). Model 5, the two-step model, was the 

most promising of those described and was able to reconstruct motion 

well across all 5 viewpoints whilst adhering to biological constraints, 

primarily that the model was never exposed to all viewpoints 

simultaneously.  

The first layer of the two-step model contained view-specific 

spaces, however rather than directly projecting frames across spaces 

(Beridze, 2021) the associations between the spaces were learned, 

akin to in Lan et al (2012) and Lucey et al (2007). However, it was not 

possible to learn these associations directly from the components due 

to using the full face rather than just the mouth, as the components 

were less spatially aligned across views. Instead, the relationships 

between the loadings on the components in neighbouring spaces were 

learned. The model also improved biological plausibility over Lan et al 

(2012) by only learning the associations between neighbouring views 

and not distal views.  

Although cross-view reconstructions could be made in the first 

layer, it was in essence a view-dependent layer, as no single unit (e.g., 

component) contained knowledge of all 5 viewpoints. This layer is 
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commensurable with evidence of view-dependent neurons in posterior 

regions of the macaque STS (Chang & Tsao, 2017; Freiwald & Tsao, 

2010; Gross & Sergent, 1992; Meyers et al., 2015; Perrett et al., 1991) 

and in more posterior regions of the human face processing system 

(Ewbank & Andrews, 2008; Fang et al., 2007; Guntupalli et al., 2017; 

Natu et al., 2010; Pourtois et al., 2005). 

The second layer of the model then forms the view-invariant 

layer, with each unit possessing information about multiple viewpoints. 

It is possible to reconstruct motion well across views with this model, 

which provides a potential mechanism for how view-invariance might be 

achieved in the brain. The view-invariance in this layer is 

commensurable with evidence of view-independent neurons in 

macaques (Chang & Tsao, 2017; Freiwald & Tsao, 2010; Gross & 

Sergent, 1992; Meyers et al., 2015; Perrett et al., 1991) and evidence of 

view-invariance in more anterior regions of the human face processing 

system (Anzellotti et al., 2014; Guntupalli et al., 2017; Pourtois et al., 

2005).  

For example, Chang and Tsao (2017) found that neurons in the 

more anterior region AM showed axis coding to multiple viewpoints. The 

second, multi-view layer of Model 5 shows how axis coding can occur 

for multiple viewpoints from a set of 2D representations, in essence by 

pooling the responses from the view-dependent layer. The 

representation did not need to form a 3D model to show corresponding 

changes in appearance across the views within a given axis.  
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The two-step model is also compatible with adaptation 

aftereffects. The first, view-dependent layer would give rise to view-

selective adaptation aftereffects (J. Chen et al., 2010; Jeffery et al., 

2006) particularly for unfamiliar faces (Jiang et al., 2007) and would 

allow the specific, contingent aftereffects observed by Welling and 

colleagues (2009). It is also compatible with evidence for multi-channel 

coding of viewpoints (Fang & He, 2005). The learned associations 

between neighbouring spaces can then help explain why aftereffects 

translate across small changes in view (Jiang et al., 2007).  

Once the multi-view representation in layer 2 is developed then 

greater transfer of the adaptation aftereffects across views can occur, if 

the adaptation effects either propagate through to, or occur in, the view-

independent, multi-view layer. For this to occur, there would need to be 

sufficient experience with the person to learn the associations between 

the separate view spaces and build the multi-view representation. This 

is supported by evidence showing that increased familiarity, even with 

static stimuli, can increase the transfer of aftereffects across views 

(Jiang et al., 2007), although they did not test for adaptation effects 

across large rotations. The effect of familiarity on adaptation aftereffects 

across large rotations has yet to be thoroughly explored. 

The amount of transfer across views would of course depend on 

the aftereffect being explored and whether separate spaces are 

required for each familiar individual. If there is one identity-general 
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space, then the effect of familiarity would be less than if identity-specific 

spaces were necessary. 

The multi-view face space model has been constructed based on 

the assumption of opponent, norm-based coding around an average, 

neutral expression. However, the effects of caricaturing facial motion 

shown by Furl and colleagues (2020) suggest that facial actions are 

also coded around action-specific norms, supporting instead exemplar 

coding. This is also supported by prior behavioural evidence showing 

that caricaturing motion relative to a static norm results in undesired 

changes in the perceived expression, whereas caricaturing motion 

around a dynamic expression-specific average selectively increases the 

perceived intensity of that expression (H. Hill et al., 2005). However, if 

different actions are processed in a common space using exemplar 

coding rather than completely separate spaces, then the PCA spaces 

constructed could provide the set of common dimensions for exemplar 

coding to occur in. The average trajectories of facial motion could be 

learned within this space to form the local, utterance-specific norms. 

7.2.1 Future directions 

While the multi-view PCA models, namely Models 3 and 5, can 

reconstruct motion well across views, there are many areas that can be 

expanded.  

Firstly, the videos were captured under constrained viewing 

conditions and the actors remained fairly neutral in expression 
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throughout. To make the model more effective in the real-world, videos 

would need to be captured under more varied viewing conditions and 

demonstrate a range of expressions, alongside variations in 

appearance such as health, makeup, and facial hair.  

Secondly, one could explore whether one identity-general model 

would be better than separate identity-specific models. Identity-specific 

models have the benefit of capturing important idiosyncratic information 

(Burton et al., 2016) useful for identity, emotion and speech processing 

(H. Hill & Johnston, 2001; Rosenblum et al., 2002, 2006; Sheffert & 

Olson, 2004). They are also more commensurable with suggestions 

that familiar faces are represented as discrete islands (Hancock, 2021). 

Facial motion of a novel person could be processed in one or more 

familiar spaces if they share resemblance (Hancock, 2021). On the 

other hand, separate spaces have additional storage requirements over 

a single identity-general model. They also raise the question of how 

completely novel faces are processed if bearing no resemblance to any 

known face. 

Thirdly, the models should be expanded to work incrementally 

and be updated with new data. In the current models the videos were 

provided as a single batch, whereas real visual input would appear 

incrementally. A MATLAB implementation of incremental PCA (Wai, 

2021), which takes a small batch of initial frames, performs PCA and 

then updates the PCA space with new information, showed promising 

results in pilot testing, but this was only tested briefly for Model 3. 
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Example components and reconstructions can be seen in the 

supplementary videos. It would also need testing for Model 5 (the two-

step model) as one would need to allow both layers to be updated, as 

well as the relationships between the separate spaces. If there is also 

an identity-general space that uses an average template as a single 

prototype for guiding recognition (Abudarham et al., 2019; Jenkins & 

Burton, 2011) then as the models update, the average representation 

for a given identity can also be fed back to improve their prototype and 

improve cursory recognition from the identity-general space (Burton et 

al., 2005).  

The models would also need to be tested with intermediate 

views. While there was some rigid head motion and rotations seen by 

each view, the models would need to be able to reconstruct motion 

from, and possibly in, intermediate views such as 12o. One could, for 

example, directly project frames for these viewpoints into the spaces 

after subtracting a mean of that view (12o) or the mean of the space 

projected into (e.g., 0o or 22.5o). If motion cannot be sufficiently 

represented in these spaces, then the model would not necessarily 

provide a good account of viewpoint interpolation.  

As well as expanding the model, there are also some 

assumptions that need to be tested. In these models, it was assumed 

that facial motion is processed in a view-invariant manner. This was in 

part assumed because motion helps achieve view-invariance (O’Toole 

et al., 2002; T. Watson et al., 2005), as was outlined in the introduction. 
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This could be tested by establishing whether motion in one viewpoint 

primes the representation of the action in another. If it does, then this 

suggests that motion is processed in a view-invariant manner. 

Further work should also expand on the experiment in Chapter 6 

to further investigate the presence of prototypical viewpoints, to guide 

which views are used in the model. Ideally, similar experiments would 

be performed with different actors, a larger sample and a wider range of 

stimuli and tasks. 

In this work we used pixel-based information to calculate the 

PCA spaces to provide an interpretable description of the methods. The 

methods however should be transferable to vectors containing the 

output of filters such as Gabor filters, Hermite functions and Gaussian 

derivatives which have been shown to predict responses in simple cells 

within cat and primate visual cortex well (Jones & Palmer, 1987; R. 

Young et al., 2001; R. Young & Lesperance, 2001). The output from 

these filters can replace the vectors of pixel and warp values. The 

model should learn how filter outputs are related across views in the 

same way as for pixel values. 

Finally, the current models only contained one side of the face, 

therefore further improvements could be made by expanding the model 

to also include the other hemi-view. Some suggestions of how mirror 

views are included was provided in Chapter 5 and discussions 
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surrounding the expansion of the model to include mirror views are 

provided in the next subsection.  

7.3 Mirror views 

As discussed in Chapter 5, evidence of responses to mirror 

views are taken to suggest an intermediate stage between view-

dependence and view-invariance. For instance, neurons more centrally 

spaced on the posterior-anterior face processing hierarchy seem to 

respond to mirror views without responding in a fully view-invariant 

manner (Chang & Tsao, 2017; Freiwald & Tsao, 2010; Meyers et al., 

2015; Pinsk et al., 2009). Recent evidence in humans also suggests 

that mirror views and mirror symmetry are important stages within view-

invariant face representations (e.g., Flack et al., 2019; Kietzmann et al., 

2017; Rogers & Andrews, 2022). Despite this converging research, it is 

not yet clear how or why mirror views are used in achieving view-

invariance.  

How this happens may be highly informative in understanding 

how faces are represented as there are different ways that mirror views 

can be used depending on whether the 3D or 2D account of face 

processing is true. For instance, Chapter 5 considered how mirror views 

might be represented in a 2D face space, and showed how one hemi-

view might be mirror-flipped, so that both hemi-views can be combined 

into a single space. In Chapter 5 we then briefly outlined how that 

representation might fit with the multi-view face space models in 

Chapter 4, particularly in relation to the two-step model. However, the 
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exact representation would need to be elaborated further to understand 

how the layers in the multi-view space correspond to the 3 apparent 

stages of face processing: view-dependence, invariance across mirror 

views, and full view-invariance (Chang & Tsao, 2017; Freiwald & Tsao, 

2010; Meyers et al., 2015; Pinsk et al., 2009). 

Firstly, it is evident from the neuroimaging results described 

above and from adaptation studies that mirror views initially need 

representing separately. Repulsive aftereffects of adapting to a side 

view changed the perceived direction (left/right) of a near-frontal view to 

the opposite direction (J. Chen et al., 2010; Fang & He, 2005; Ryu & 

Chaudhuri, 2006), with adaptor strength peaking at 20-30o (J. Chen et 

al., 2010). This shows that mirror views would need, at some level, 

separate representations for repulsive aftereffects across frontal to 

occur. Moreover, the results show that coding of viewpoint is 

multichannel at this stage rather than two-pool opponent coding (J. 

Chen et al., 2010). Interestingly, these repulsive effects are stronger for 

familiar than unfamiliar faces, but only when the identity remains 

constant across adaptor and test (Ryu & Chaudhuri, 2006). When 

identity changed on familiar trials participants were impaired in reporting 

which way the test stimulus was facing. This indicates separate 

representations of view for familiar and unfamiliar participants and that 

the aftereffects for familiar individuals are stronger but identity-specific. 

This is compatible with having separate identity-specific representations 

in the first, fully view-dependent layer of the model, but also perhaps 

indicates a distinct set of spaces for representing unfamiliar faces. 
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This fully view-dependent representation could be the current 

first layer of the multi-view model if expanded to include additional 

separate spaces for the currently unseen hemi-view. It may be the case 

that half of the spaces (one hemi-view) are processed in one 

hemisphere, and the other half in the other hemisphere (Corballis & 

Beale, 2020; Gross et al., 1977). The high level of inter-hemispheric 

connectivity (Davies-Thompson & Andrews, 2012) would then allow for 

seamless perception across hemi-views.  

If layer 1 of the two-step model is fully view-dependent and has 

separate spaces for the mirror views, e.g., 9 spaces instead of 5 then 

another, middle layer would be needed for collating mirror views, but 

how and to what end? In the combined space model of Chapter 5 we 

considered the possibility that the final (multi-view) layer of the two-step 

model may represent a single, combined ‘side’ of the face, so the 

additional, middle layer may combine mirror views prior to forming this 

representation.  

The computational benefits of having an intermediate layer would 

need to outweigh the costs relative to directly constructing the multi-

view layer from the fully view-dependent layer. In terms of vectors and 

matrices, we have shown the potential advantages of collapsing mirror 

views over representing redundant symmetrical information in separate 

slots for each hemi-view in the multi-view components. Thus, an 

intermediate layer could collapse across hemi-views before making the 

multi-view representation. Each multi-view PCA component is meant to 
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represent a single neuron, so the descriptions of vectors with separate 

‘slots’ for separate views and hemi-views make less sense, but the slots 

can perhaps be thought of as inputs to the neuron. A vector with 9 view-

specific slots might represent a neuron with 9 connecting synapses, 

whereas a condensed vector with 5 slots might represent a neuron with 

only 5. This is obviously an over-simplification, but the point is that the 

benefit of an intermediate stage might be through reducing the number 

of synaptic connections to the view-invariant neuron.  

A potential problem with having a 3-layer representation is that 

the first 2 layers may contain many redundancies if both contain face 

space representations. Alternatively, the current first layer of the two-

step model may be the intermediate stage with the capacity to contain 

both veridical and mirror-flipped views. The fully view-dependent 

representation may be prior to this and may not necessarily be 

comprised of any form of face space representation. But if that is the 

case, what is represented in the view-dependent layer? Perhaps view-

specific detection, featural processing or alignment to view-specific 

templates. If a stage of view-dependent alignment procedures is 

present this may be performed in the FFA (see Baseler et al., 2016), 

although, this would not explain why response patterns are similar 

across mirror views in the FFA (Axelrod & Yovel, 2012; Flack et al., 

2019; Rogers & Andrews, 2022). However, adaptation aftereffects 

suggest that the view-dependent representations may be coded in a 

face space manner. Jeffery and colleagues (2006) found aftereffects to 

stimuli varying in configuration and feature size, and these were larger 
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in the observed view than the mirror view. It is possible that the results 

may reflect adaptation within the neurons performing alignment, but the 

results would perhaps be better supported by separate face space 

representations for each hemi-view. 

Although weaker, the presence of aftereffects to mirror views 

even over a 90o separation (Jeffery et al., 2006) also supports a layer 

that collates mirror views. Moreover, Jeffery et al (2007) observed a 

greater amount of adaptation cancellation using the mirror viewpoint 

than a profile viewpoint despite being separated by the same angle. If 

mirror views are collapsed and represented together as detailed in 

Chapter 5, then adaptation to a particular deviation in one view would 

affect the perception of its mirror due to both hemi-views being coded 

by a single set of neurons. The presence of a layer that collates mirror 

views into a single space could be tested by adapting to stimuli where 

the asymmetries have been accentuated. This should selectively adapt 

the components reflecting the asymmetries, causing the aftereffect to 

be asymmetrically distorted in an opponent fashion, changing the 

perceived hemi-view. This could be through asymmetric motion or 

structure. Although faces are reasonably symmetrical, there are 

structural and textural asymmetries such as differences in volume 

(Hardie et al., 2005) or the presence of moles or crooked noses as in 

the case of our actor. 

While the mechanism behind the use of mirror views has not 

been fully elucidated, Chapter 5 and the current discussion provides 
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some potential methods for representing mirror views in face space 

generally and within the PCA-based multi-view face space. Further 

work is needed to provide additional insights into how mirror views are 

represented and how bimodal tuning to mirror views is involved in 

achieving viewpoint-invariance. Future guidance can then be provided 

for incorporating mirror representations into the multi-view face space. 

7.4 How do the models correspond to face patches in the 

brain? 

Overall, we have provided a two-step view-invariant 

representation of facial motion and described how an intermediate layer 

collapsing mirror views might be included to form a three-step model. 

Here we discuss how these three stages might correspond to the face 

patches in the human brain. Due to the complexity of the functions and 

interactions of the different patches it is not possible to provide 

conclusive answers as to where the layers of the model would reside, 

but some prospective locations are discussed. 

The first, fully view-dependent layer is compatible with evidence 

of view-dependent neurons in posterior regions of the macaque STS 

such as areas ML and MF (Chang & Tsao, 2017; Freiwald & Tsao, 

2010; Gross & Sergent, 1992; Meyers et al., 2015; Perrett et al., 1991). 

It is also commensurable with evidence of view-dependence in the 

OFA, FFA and pSTS (Ewbank & Andrews, 2008; Fang et al., 2007; 

Guntupalli et al., 2017; Natu et al., 2010; Pourtois et al., 2005), although 

some view-invariance has been seen in these regions (Anzellotti et al., 
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2014; Ewbank & Andrews, 2008; Guntupalli et al., 2017; Natu et al., 

2010; Ramírez et al., 2014).  

The OFA may provide a good candidate for the view-dependent 

layer of the representation. The OFA is view-dependent (Guntupalli et 

al., 2017) and does not show responses to mirror views (Flack et al., 

2019; Guntupalli et al., 2017; Rogers & Andrews, 2022). It is also 

functionally connected to the pSTS and the FFA (Davies-Thompson & 

Andrews, 2012; Handwerker et al., 2020), which are both sensitive to 

mirror views (Axelrod & Yovel, 2012; Flack et al., 2019; Rogers & 

Andrews, 2022). TMS of the OFA impacts both expression processing 

(Pitcher, 2014; Pitcher et al., 2008) and identity processing (Ambrus et 

al., 2017; Eick et al., 2020; Solomon-Harris et al., 2013) suggesting it 

can encode changeable aspects as well as information about identity. 

Not all evidence from TMS and fMRI suggests that the OFA is sensitive 

to identity (Gilaie-Dotan et al., 2010; Guntupalli et al., 2017), however, 

evidence from acquired prosopagnosia suggests it is crucial (Rossion et 

al., 2003; Schiltz et al., 2006; Steeves et al., 2006, 2007). If the OFA 

does process identity, then this would be compatible with identity-

specific spaces. If not, then an identity-general model would still be 

plausible.  

The OFA is thought to process features rather than global 

configurations (Pitcher et al., 2007) suggesting it may not represent 

faces globally in a face space manner. We have already noted that the 

fully view-dependent layer need not contain face space representations, 
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so in that sense the OFA is suitable. However, the presence of view-

specific aftereffects to different facial configurations (Jeffery et al., 2006) 

suggests that there is a stage where faces are processed holistically in 

a face space manner, which is less compatible with the feature-based 

processing of the OFA.  

At the second level of the three-step model, representations are 

view-selective but invariant to mirror views. Three possible candidates 

for the cortical location for this layer are within the FFA, pSTS or ATL. 

The right FFA has been shown to process faces holistically (Rossion et 

al., 2000) and shows sensitivity to both viewpoint (Guntupalli et al., 

2017; Weibert & Andrews, 2016) and identity (Axelrod & Yovel, 2015; 

Guntupalli et al., 2017; Tsantani et al., 2021; Visconti di Oleggio 

Castello et al., 2021). It is also the suggested homologue of macaque 

area ML (Tsao et al., 2003, 2008) which has been shown to use axis 

coding (Chang & Tsao, 2017) suggesting a face space representation in 

the FFA. The FFA also shows mirror-tuning (Axelrod & Yovel, 2012; 

Flack et al., 2019; Guntupalli et al., 2017; Rogers & Andrews, 2022).  

The FFA as a potential candidate however assumes a 

feedforward hierarchy from the OFA, so it is unclear if it is compatible 

with arguments for a non-hierarchical, re-entrant model (e.g., Rossion, 

2008; Solomon-Harris et al., 2013). As discussed by Rossion (2008), 

evidence from prosopagnosia shows patients with face-selectivity in the 

FFA (Rossion et al., 2003; Steeves et al., 2006) and pSTS (Sorger et 

al., 2007; Steeves et al., 2006) despite having no OFA, suggesting the 
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presence of direct connections that bypass the OFA. However, the FFA 

in these individuals does not show a release from adaptation when a 

different identity is shown unlike controls (Schiltz et al., 2006; Steeves 

et al., 2007). Overall, they suggest that the FFA initially detects and 

processes the holistic configuration of the face, which may guide the 

OFA to finer-grained features diagnostic of identity. The OFA 

subsequently feeds information regarding identity back to the FFA. This 

re-entrant information of identity back into the FFA might support 

identity-specific spaces, but it is unclear if this is the case. 

Although the FFA was initially proposed to process invariant 

aspects of faces such as identity (Haxby et al., 2000), as discussed in 

the introduction, there is possibly less division of labour between the 

FFA and pSTS than previously thought (e.g., E. Schwartz, Alreja, et al., 

2023; E. Schwartz, O’Nell, et al., 2023) and numerous studies have 

shown that the FFA is sensitive to facial expressions (see review by 

Bernstein & Yovel, 2015). In their review, Bernstein and Yovel (2015) 

suggest that the FFA does not process the facial motion within 

expressions, but instead processes the facial form. We have described 

our model as representing dynamic information such as speech, 

however the components themselves represent the different forms 

during speech, not motion. Thus, the mirror-tuned layer could reside in 

the FFA. The dynamic motion of speech can be processed as the 

trajectories through those spaces, which could be analysed elsewhere 

such as in the pSTS, in conjunction with motion signals from the 

motion-selective area, hMT.  
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The pSTS may provide an alternative locus for the mirror-tuned 

layer. It is typically thought to be involved in processing variable and 

dynamic aspects of faces (Haxby et al., 2000) and is functionally 

connected to both the OFA and the FFA (Davies-Thompson & Andrews, 

2012), so may interact with dynamic properties and identity. Decoding 

of identity has been reported in pSTS (Anzellotti & Caramazza, 2017; 

Visconti di Oleggio Castello et al., 2021), although the number of 

studies reporting sensitivity to identity in pSTS pales in comparison to 

the number of studies showing expression processing in the FFA (see 

review by Bernstein & Yovel, 2015). Nevertheless, the pSTS also 

shows mirror-tuning (Axelrod & Yovel, 2012; Flack et al., 2019; Rogers 

& Andrews, 2022). Consistent with learning identity-specific 

representations, Rogers and Andrews (2022) only found mirror-tuning 

for familiar faces suggesting the representation of mirror views is 

benefitted by prior experience with the individual. However, like the 

FFA, the pSTS can receive input without the OFA (Richoz et al., 2015; 

Sorger et al., 2007; Steeves et al., 2006) making the transition from the 

proposed fully view-dependent layer in OFA to the proposed mirror-

tuned layer in pSTS harder to reconcile. 

The ATL might also provide a locus for either the mirror-tuned 

layer or the multi-view layer, although the evidence towards this is even 

less clear. The ATL shows sensitivity to identity (Anzellotti et al., 2014; 

Guntupalli et al., 2017) and is the suggested homologue of macaque 

area AM (Rajimehr et al., 2009), which also shows axis coding of 

properties important for identification (2017) suggesting the ATL can 
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hold the necessary face space representation. Although, it is worth 

noting that face selectivity is seen in a few clusters within the ATL, with 

some overlap between personally familiar and famous faces in more 

dorsal regions around the aSTS, particularly in the left hemisphere, and 

a separate ventromedial cluster that in the right hemisphere is sensitive 

to novel faces (Von Der Heide et al., 2013). 

Interestingly, Yang and colleagues (2016) also found face 

selectivity in the ATL in a patient with acquired prosopagnosia missing 

the right FFA and right OFA. This region showed similar repetition 

suppression to repeated identities as controls indicating that the ATL is 

sensitive to identity, but it can inherit this information from regions other 

than the right OFA and FFA. This may be through dorsal regions such 

as the pSTS or the intact OFA and FFA in the left hemisphere. 

The ATL is somewhat view-invariant, but is less so than the rIFG 

(Guntupalli et al., 2017). This intermediate view-invariance may, 

however, surpass mirror-tuning as Guntupalli et al found no evidence of 

mirror-tuning in the ATL, nor did they find clear sensitivity to viewpoint, 

which would still be predicted in a mirror-tuned representation. 

Likewise, Anzellotti et al (2014) were able to decode identity across 

views even when the response to mirror views was omitted, suggesting 

the view-invariance may surpass that of mirror-tuning. The fact that the 

ATL is less view-invariant than the rIFG (Guntupalli et al., 2017), 

however, casts doubt on whether it could instead house the multi-view, 

view-invariant layer of the model.  
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It is also unclear if the regions in ATL sensitive to identity are 

sensitive to facial expressions and dynamic actions. Evidence from 

anterior temporal lobe lobectomies have shown expression processing 

deficits (Milesi et al., 2014; Vliet et al., 2018) but the removed cortex 

included the amygdala. Other work has shown sensitivity to facial 

expressions in ventromedial regions near the amygdala (Hung et al., 

2020), in a similar but perhaps slightly more medial region to where 

sensitivity to identity has been reported (Guntupalli et al., 2017; H. Yang 

et al., 2016). However, while emotion processing in general is 

widespread in the ATL (Hung et al., 2020), Avidan et al (2014) found no 

evidence of expression sensitivity in this slightly more lateral region. 

Other regions sensitive to identity have also been seen in a region 

slightly more anterior, dorsal and lateral (Von Der Heide et al., 2013). 

While some research has found a region corresponding to the ATL 

using dynamic localisers (H. Yang et al., 2016) not all research has 

(Bernstein et al., 2018). Therefore, it is unclear if the ATL provides a 

cortical locus for any layer of our model. 

The anterior STS may be included as part of the hierarchy 

although currently less is known about the properties of the aSTS. The 

direction of head movement (left versus right) can be decoded in the 

right aSTS (Carlin et al., 2012) however in general the aSTS is more 

specialised to non-rigid deformations than the pSTS (H. Zhang et al., 

2020) suggesting it may code the non-rigid deformations contained in 

the PCA spaces. Unlike the pSTS and mSTS, Visconti di Oleggio 

Castello and colleagues (2021) were unable to decode identity in the 



University of Nottingham  Chapter 7 

339 

aSTS suggesting that it may process facial dynamics irrespective of 

identity, which would be compatible with an identity-general model of 

view-invariant facial motion but not identity-specific spaces. The aSTS 

shows evidence of coding gaze direction that is invariant to head view 

(Carlin et al., 2011) although only views up to ~20o in yaw from frontal 

were used. The sensitivity to gaze could manifest through components 

that represent gaze, but multi-view components coding gaze would 

likely code direction relative to the head and not relative to the viewer, 

contrary to the results by Carlin et al.  

The final layer of the model then forms the view-invariant layer, 

with each unit possessing information about multiple viewpoints. The 

right inferior frontal cortex poses a candidate locus of this layer. It 

shows view-invariance (Flack et al., 2019; Guntupalli et al., 2017) yet is 

sensitive to identity (Guntupalli et al., 2017), is involved in processing 

dynamic aspects of faces such as expressions (Nakamura et al., 1999) 

and is activated more by dynamic than static faces (Nikel et al., 2022). 

The response profile shares similarities with the pSTS, including 

responding equally to both visual hemifields, suggesting that the rIFG 

shares functional properties with the pSTS (Nikel et al., 2022) and there 

is evidence that they are functionally connected (Dasgupta et al., 2017; 

Davies-Thompson & Andrews, 2012). Thus, the IFG could collate 

information across the more view-dependent representations in the 

pSTS. The culmination of properties means it is a plausible candidate 

for housing the identity-specific, view-invariant representations of facial 

motion.  
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Our model is also based on representing familiar faces, yet, 

effects of familiarity are mixed across hemispheres. Some studies have 

shown effects of familiarity in right inferior frontal regions (Leveroni et 

al., 2000; Visconti di Oleggio Castello et al., 2021) whereas others have 

found effects in the left (Pourtois et al., 2005; Sun et al., 2015; Taylor et 

al., 2009). Rossion and colleagues (2001) found weak evidence of 

increased responses in the middle frontal gyrus bilaterally to familiar 

faces, but this was not significant. Leveroni et al (2000) found 

significantly larger responses in rIFG to famous faces over newly 

learned faces, but no difference between either compared to unfamiliar 

foils. Visconti di Oleggio Castello and colleagues (2021) also found 

higher decoding accuracy for personally familiar than newly learned 

identities. Of course, the effect of familiarity may be less prominent in 

an identity-general representation rather than the identity-specific 

spaces used here. 

Due to the various inconsistences and caveats discussed, it is 

not possible to conclude exactly which face patches correspond to the 

different layers of the processed three-step multi-view face spaces. 

However, we have outlined some prospective candidates. The OFA 

might form the fully view-dependent stage, either the pSTS or the FFA 

as the intermediate stage representing mirror views, and either the ATL 

or more likely the IFG in representing the fully view-invariant stage. 
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7.5 Evidence of prototypical views 

As well as elucidating which regions of cortex are involved in 

representing the different layers of the multi-view model, to increase the 

compatibility of the model with neural representations we also need to 

establish which views are represented within the view-dependent stage. 

In Chapter 6 we sought to investigate this. The models currently 

assume that the brain holds representations at 0o, 22.5o, 45o, 67.5o and 

90o. Based on prior research in macaques (De Souza et al., 2005; 

Perrett et al., 1991) and behavioural results in humans (Marotta et al., 

2002; O’Toole et al., 1998; Troje & Bülthoff, 1996; Van der Linde & 

Watson, 2010) we expected to see a decrease in thresholds needed to 

discriminate a veridical face from a warped face at 0o, 45o and 90o. To 

verify the current views used in the model, we would also expect lower 

thresholds for 22.5o and 67.5o.  

We saw a clear inversion effect, with the threshold for inverted 

faces being higher than for upright faces and in general there was an 

increase in threshold as stimuli rotated away from frontal. Lower 

thresholds for generally more frontal views is consistent both with 

evidence that more neurons are tuned to frontal (Dubois et al., 2015; 

Perrett et al., 1991) and that we are exposed more to frontal views 

(Oruc et al., 2019).  

There were not, however, lower thresholds for the expected 

prototypical views based on macaque and human data (0o, 45o, 90o) 

compared to intermediate views (22.5o, 67.5o). If anything, the 
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thresholds were higher for these prototypical viewpoints and 

comparatively lower at these intermediate views. Given the 

neurophysiological evidence in macaques of neurons tuned to frontal, 

45o and profile (De Souza et al., 2005; Perrett et al., 1991) the lower 

thresholds for intermediate views perhaps indicates the efficiency of 

view-interpolation between broad tuning curves for processing 22.5o 

and 67.5o views. It may also indicate the presence of previously 

unsampled neurons sensitive to these viewpoints. More research would 

need to be conducted to see if this pattern persists for different stimulus 

identities or different experimental paradigms.  

Based on the neurophysiological evidence (De Souza et al., 

2005; Perrett et al., 1991; G. Wang et al., 1996, 1998) we recommend 

that the multi-view model includes dedicated representations for frontal, 

45o and profile. Based on the results presented here it is unclear 

whether dedicated representations should also be included for 22.5o 

and 67.5o in a model that aims to best replicate neural functioning. 

Ignoring neurophysiological evidence, the results presented here would 

suggest that it was more important to include 22.5o and 67.5o than 0o, 

45o and 90o.  

One way to explore whether dedicated representations for 22.5o 

and 67.5o views should be included is to form a model without them, 

and instead train the representations of the prototypical views on a 

wider range of angles, for example by warping 22.5o to both 0o and 45o. 

Likewise frontal frames could also be warped to ±45o and vice versa. 
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Due to the increased structural similarities across the smaller rotations, 

the intermediate views would likely be better reconstructed from either 

neighbouring prototypical space than prototypical views would be from 

each other’s space. It is unlikely that the reconstructions of intermediate 

views would be as good as prototypical views in their own space, but, 

because intermediate views should be reconstructed reasonably well in 

both viewpoints, they should allow better learning of the associations 

between prototypical views. As such, intermediate views may also be 

recognised more easily because they activate two sets of neurons 

rather than just one. 

Combined with evidence from single unit recordings in 

macaques, the current results generally support the use of 0o, 22.5o, 

45o, 67.5o and 90o in the multi-view face space models. However, 

further research should be conducted to establish if the findings 

replicate with different stimuli and different methods to better 

understand why we observed higher thresholds for views defined as 

prototypical a priori and to help guide the choice of viewpoints in future 

developments of the multi-view face space model. 

7.6 Summary 

Overall, this thesis explored two aspects of linear face space. We 

firstly explored the response in face and object-selective cortex using 

fMRI when an identity-general face space was taken to the extreme. 

Responses were assessed for faces that varied in caricature level, 

ranging from average to hyper-caricatured faces beyond the realm of 
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natural variability. The primary finding was that both the average 

response amplitude and response pattern consistency increased in the 

object-selective cortex as caricaturing increased. To our knowledge this 

was the first study to show that caricatured faces activate cortex 

typically associated with processing objects. It thus raises the 

interesting question of whether object-selective cortex plays any 

functional role in the recognition of caricatures and therefore whether 

hyper-caricaturing might provide a route to helping those with 

prosopagnosia. The response profile in the FFA and face-selective 

regions more generally was less clear. They showed no overall effect of 

caricature level in the response amplitude, however the response 

pattern in the right FFA became significantly more consistent as the 

response pattern increased. While this suggests that the FFA is 

sensitive to caricature level, it does not shed much light on whether an 

exemplar-based or norm-based face space is present in the FFA.  

As well as variations in identity, within-identity variations such as 

changes in expression and pose can also be captured using face space 

representations. While much research has explored the representations 

of expression, little research has addressed how changes in pose might 

be incorporated into face space. The second line of research therefore 

assessed whether it was possible to form a view-invariant face space 

representation of facial motion based on the assumption of 2D 

processing. We proposed a two-step multi-view face space model 

which was able to reconstruct facial motion well across changes in 

viewpoint whilst adhering to some biological constraints, namely that 
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the model could not be exposed to multiple, distant viewpoints at the 

same time. In the first layer of this model, facial expressions were 

coded in a view-dependent manner. The second layer combined the 

representations into a view-invariant layer. We then outlined a potential 

mechanism by which mirror views might be collapsed in such a 

representation, reducing computational costs while still explaining 

neural responses to mirror views. Overall, this model is compatible with 

the evidence in humans and macaques of the transition from view-

dependence, to mirror-tuning and then view-invariance, and potential 

cortical locations for these stages were discussed. We also outlined 

various ways to expand the model. The model included representations 

at 0o, 45o and 90o based on neurophysiological results, and a further 

behavioural experiment supported the inclusion of intermediate 

representations at ~22.5o and ~67.5o. Thresholds for correctly 

discriminating veridical images from warped versions were 

comparatively lower at these intermediate viewpoints. More research 

will need to be conducted to see if these findings replicate, to help guide 

future model development.  
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Supplementary Materials 

Supplementary figures and tables for Chapter 3 can be found in 

sections 3.7.2 and 3.7.3 respectively.  

Supplementary videos for chapters 3, 4 and 5 can be found at 

the Dropbox link below. More information about the videos can be found 

at the end of the respective chapters (sections 3.7.1, 4.10.1 and 5.6.1) 

and in the “info.docx” files throughout the folders in the Dropbox. 

https://www.dropbox.com/scl/fo/kaqognq18e0a5vira9syo/h?rlkey=m0k5

mrhvglk69rpjdy92lk5ha&dl=0 

https://www.dropbox.com/scl/fo/kaqognq18e0a5vira9syo/h?rlkey=m0k5mrhvglk69rpjdy92lk5ha&dl=0
https://www.dropbox.com/scl/fo/kaqognq18e0a5vira9syo/h?rlkey=m0k5mrhvglk69rpjdy92lk5ha&dl=0
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