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Abstract

This thesis examines the Intracluster Light (ICL) of galaxy clusters, using both simu-
lated and real observations. We, first, used data from the Millennium MAMBO light-
cone to devise a method of simulating realistic images of the ICL for a given cluster.
These simulated images may be used to infer the limiting capabilities of ICL detection
codes, and to test whether reduction pipelines are suitable for ICL studies. They also
allow users to further optimise their codes, as the input ICL variables are known.

We worked with the ICL science working group of the Euclid collaboration, using our
method to simulate images compatible with the Euclid-VIS instrument, so that members
could test their codes in preparation for the launch of Euclid. On inserting our images
into a Euclid-VIS field mosaic image, which was processed with Euclid’s pipeline, we
discovered that the standard pipeline produced images with a background that was not
sufficiently flat at the levels required, and would have removed any ICL present in the
images prior to reduction. The need for an alternative background subtraction method
was subsequently suggested, which should be optimised for studies of faint, extended
sources.

We then measured the ICL radial profiles for clusters in HSC-SSP images, and inves-
tigated how the ICL fraction changes as a function of cluster redshift and mass, using
a sample of 72 clusters in the redshift range 0.1 ≤ z ≤ 0.8. These clusters originate
from two cluster catalogs: a sample of 18 XMM Cluster Survey (XCS) clusters, which
are also included as part of a previous work (Furnell et al., 2021); and a sample of 54
clusters that are detected using the CAMIRA cluster-finding algorithm. Using HSC
i-band data, we applied a surface brightness thresholding method to find an average
ICL fraction of ∼ 0.24, which is typical of clusters in this redshift range. It was also
found that there was no correlation between the ICL fraction and cluster redshift nor
the ICL fraction and cluster mass. The former is in disagreement with the previous
work, which used the same XCS sample of clusters and HSC i-band data to find a well-
defined anti-correlation. We argue that the disagreement may be due to: this work using
a more refined method that corrects for contaminant photometric cluster galaxies being
included in calculations; this work masking the BCG using segmentation data versus
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the previous author using a fitting method; or this work using more recent data that has
been processed in an optimal way for faint, extended sources - the previous work re-
quired ‘divot corrections’ to account for an overly harsh background subtraction in the
HSC pipeline at the time. The lack of correlation established between ICL fraction and
cluster mass comes as no surprise, as this is commonly found in ICL studies and can be
explained using ICL formation models.

We finish by outlining a new ICL detection algorithm: ficl. This automated code
makes use of the best aspects of the three most common ICL detection methods in
tandem: surface brightness thresholding, profile fitting and wavelet filtering. We use
ficl in its current, incomplete form on a simple toy model image, as proof of concept,
to show that it is already capable of recovering 60% of the ICL that was put in to the
model.
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Chapter 1

Introduction

This thesis investigates the faint, diffuse component of galaxy clusters - the intracluster
light (ICL). We use a combination of simulated and observed data to discern how/when
the ICL might be formed, as well as its evolution as a function of both cosmic time and
cluster mass. This is motivated by the prospect of a deeper understanding of cluster
accretion history and the nature of dark matter and dark energy.

We propose two methods of disentangling the ICL from its native cluster: the first is
based on a simple surface brightness (SB) threshold applied to the cluster, which we use
to analyse a sample of 72 clusters out to a redshift z = 0.8; the second is, at this time
of writing, a concept that combines the best aspects of existing methods, which may
help in potentially solve some longstanding issues in ICL analyses. Perfecting such a
method, as well as testing the accuracy of existing methods, requires test data that the
user can tweak as they wish - i.e. realistically simulated images of ICL. Therefore,
we also propose a method of simulating images of clusters with realistic ICL using
lightcone data.

In this chapter, a comprehensive background of the ICL is given, along with the rel-
evant literature. Chapter 1.1 addresses the properties of the ICL, including its rela-
tionship with the brightest cluster galaxy (BCG), its relationship with the cluster and
and its connection with dark matter and (potentially) dark energy. In Chapter 1.2 the
difficulties in observing and subsequently measuring the ICL are outlined, along with
popular existing methods that attempt to isolate the ICL from its cluster. The method of
simulating realistic images of ICL is contained within Chapter 2, which also includes
preparatory work for the Euclid collaboration’s ICL science working group (SWG).
Chapter 3 concerns measuring the ICL using a SB threshold method and presents the
results and analysis on 72 HSC galaxy clusters in the i-band. A new, improved method
for measuring the ICL is discussed in Chapter 4, which combines various aspects of
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1.1. INTRACLUSTER LIGHT (ICL)

existing methods. The progress to date is presented, including some preliminary results
on a simple toy model. Finally, the conclusions of this thesis are outlined in Chapter 5,
along with future work.

Throughout this thesis, where applicable, we adopt a standard ΛCDM cosmology, with
parameters: H0 = 70kms−1Mpc−1, ΩM = 0.3, ΩΛ = 0.7, h100 = 0.7.

1.1 Intracluster Light (ICL)

During the first half of the 20th century, Fritz Zwicky began his research into groups
and clusters of galaxies. While studying the Coma cluster he noticed that to account
for its large velocity dispersion, the density of luminous matter should be greater than
400 times that derived from observations (Zwicky, 1933). It was in this paper where the
phrase dark matter was first used to describe this missing mass and Zwicky was keen
to try and account for its existence. Just four years later, Zwicky postulated a potential
solution to the missing mass problem: a faint component in galaxy clusters formed by
stars that are stripped from galaxies, that fill the space between the galaxies (Zwicky,
1937). The existence of this stellar halo was indeed confirmed a few years later, as
Zwicky observed a faint, diffuse and extended component in the Coma cluster (Zwicky,
1951). However, it was realised soon after this discovery that this faint envelope of
light was not capable of accounting for the mass-to-light ratios of galaxy clusters (e.g.
de Vaucouleurs, 1960; Oemler, 1973).

While Zwicky’s discovery of the faint, diffuse component of galaxy clusters (intraclus-
ter light, or ICL, hereafter) did not solve the missing mass problem, it opened up a new
avenue of research. More and more studies were made on the ICL (e.g. Matthews et al.,
1964; Arp & Bertola, 1969; de Vaucouleurs & de Vaucouleurs, 1970; Mattila, 1977;
Melnick et al., 1977; Thuan & Kormendy, 1977); however, these were limited studies
due to observations at the time being made using photographic plates and photomulti-
plier tubes. Since the advent of CCD chips, it has become easier to study the ICL due
to deeper, higher quality data (the first study that use CCD imaging for ICL studies was
that of Bernstein et al., 1995). This has led to an abundance of studies that have scruti-
nised the ICL, giving more insight into its properties and its potential as a cosmological
probe.

1.1.1 The ICL and its Cluster

Typically, the Intracluster Light (ICL) contributes between ∼5-50% to the total optical
cluster light (e.g. Jiménez-Teja et al., 2018; Kluge et al., 2021; Ragusa et al., 2021;
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1.1. INTRACLUSTER LIGHT (ICL)

Figure 1.1: Galaxy cluster MACS J0416.1-2403 (z ∼ 0.4) taken from the Hubble
Frontier Fields program. The faint, diffuse light is shown in blue, and is most strongly
concentrated around the two central galaxies. Credits: NASA, ESA and M. Montes.

Furnell et al., 2021), i.e. the sum of the luminous contributions from cluster galaxies
and the ICL. Figure 1.1 shows an example of a galaxy cluster with ICL that is clearly
visible. There are various physical processes by which the ICL may form over time in
the cluster. How important each of these processes are may be inferred from the stellar
colours/populations of the ICL.

Tidal forces within galaxy clusters may strip the outskirts of massive galaxies or even
completely rip apart low-mass satellites (e.g. Peng et al., 2011; Jiménez-Teja et al.,
2018, 2019). Both processes should create a radial colour gradient in the ICL, going
from red at small cluster radii to blue at large cluster radii:

6



1.1. INTRACLUSTER LIGHT (ICL)

• Stripping of massive galaxies: Massive galaxies have internal colour gradients
(La Barbera et al., 2012), meaning that the metallicity of stars that are liber-
ated from these galaxies is related to the galactocentric radius at which they are
stripped. In galaxy clusters, tidal forces tend to be stronger nearer the centre,
meaning that deeper, redder stars are stripped at small cluster radii while bluer
stars from the outskirts of these galaxies are stripped at larger cluster radii.

• Disruption of dwarf satellites: Low-mass dwarf galaxies have low metallicities
(Zaritsky et al., 1994, this means that they are bluer in colour). Therefore, tidal
forces at large cluster radii are capable of tearing apart low-mass, blue dwarfs
(Melnick et al., 2012).

Indeed, these colour gradients are observed (e.g. Iodice et al., 2017; DeMaio et al.,
2018), meaning that tidal stripping of galaxies is evidently an important contributor to
the formation of ICL. However, it appears that the stripping of massive galaxies may
contribute significantly more stars to the ICL (e.g. Montes & Trujillo, 2014), because
the number of dwarf galaxies required to account for the total luminosity of the ICL may
drastically alter the cluster luminosity function (DeMaio et al., 2018). Nevertheless,
theoretical models that are able to reproduce the observed metallicity gradients predict
that the stripping of low-mass galaxies (9 < log (M/M⊙) < 10) is the most important
contributor at the early stages of ICL formation (Contini et al., 2019).

As well as tidal stripping, stars may be ejected from galaxies undergoing major mergers
with the central brightest cluster galaxy (BCG), via violent relaxation (Murante et al.,
2007; Lidman et al., 2013). If this ICL formation channel is dominant, the major merg-
ers will abolish any existing stellar colour gradient (Di Matteo et al., 2009; Eigenthaler
& Zeilinger, 2013), meaning that an observed flat stellar colour gradient will imply that
this process is most important. This has been observed in a sample of 10 galaxy clus-
ters going out to redshift z = 0.3 (Krick & Bernstein, 2007); however, this sample was
incomplete at high redshifts (it did not include low-mass, low-luminosity, low-density,
high-redshift clusters due to sensitivity limitations), leaving only 5 clusters that were
unaffected by selection-bias. Therefore, it is impossible to say whether these clusters
were fully representative of the entire range of cluster properties.

The ICL may also grow as a result of accretion of pre-processed ICL from infalling
groups onto the galaxy cluster (Rudick et al., 2006). In this scenario, the ICL fraction
rises sporadically, increasing at every accretion event. Figure 1.2 shows the growth of
the ICL component as 4 massive groups collapse to form one massive complex, taken
from an N-body simulation. Observationally, it is impossible to track every accretion
event onto any particular cluster; however, a recently merged system will exhibit sub-
structures (e.g. see the work of Mohammed et al., 2016).
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1.1. INTRACLUSTER LIGHT (ICL)

Figure 1.2: Figure 6 from Rudick et al. (2006), modified to show the redshifts of each
step. Growth of the ICL due to 4 massive groups collapsing to form one massive com-
plex. The colours represent the ICL of decreasing surface brightness from black to light
blue. The groups are well-pronounced by z = 0.8, and, by z = 0.4, have collapsed to
form a very massive, concentrated structure. By z = 0, the combined ICL has mixed to
form a single, smooth, diffuse component.

The last, perhaps least dominant, formation channel of the ICL is by means of in-situ
star formation from infalling gas clouds (e.g. Puchwein et al., 2010). This may be
associated with faint, diffuse UV emissions (Hatch et al., 2008), but identifying these
star-forming regions is difficult because of current UV detection limits.

It has been suggested that, by z = 0, almost half of the member galaxies within a
cluster have been accreted in galaxy groups (Bahé et al., 2013). This means that the
pre-processed ICL in these groups may contribute a significant amount to the cluster
ICL fraction, particularly below z = 1 (as found in Rudick et al., 2006). In fact, Contini
et al. (2014) showed in simulations that up to ∼30% of the ICL in clusters may have
originated from pre-processed ICL from accreted groups. Therefore, studying how the
ICL fraction depends on total cluster mass may offer an insight into this mechanism,
since one might expect more massive systems to have accreted more groups and thus
more pre-processed ICL.

Observational studies are inconclusive as to whether there is a relation between cluster
mass and ICL fraction: some see no correlation at all (e.g. Krick & Bernstein, 2007;
Burke et al., 2015; Ragusa et al., 2021), while others see a clear increase of ICL frac-
tion with increasing cluster mass (e.g. Jiménez-Teja et al., 2018; Zhang et al., 2019;
Sampaio-Santos et al., 2021). This inconsistency is mirrored by theoretical models as
some predict a positive correlation (e.g. Lin & Mohr, 2004; Murante et al., 2007; Pur-
cell et al., 2007), others no correlation (e.g. Henriques & Thomas, 2010; Contini et al.,
2014), and even a negative correlation has been found (Cui et al., 2014). It is possible
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1.1. INTRACLUSTER LIGHT (ICL)

that the theoretical models do not show consistent results due to intrinsic differences
in the simulations. Also, there is an important caveat to consider and that is that the
ICL fraction can vary dramatically depending on what radius the ICL is defined, which
differs in each study.

The inconsistencies in the relation between the ICL fraction and the total cluster mass
may be explained, in part, in terms of the concentration of the cluster and the evolu-
tionary stage of the cluster. Contini et al. (2014) used simulations to demonstrate that
the ICL fraction increases strongly with both how concentrated the cluster is1 and how
evolved the cluster is. The latter relation particularly stands out here: the ICL is an ex-

cellent tracer of the dynamical evolutionary stage of galaxy clusters (see also Aguerri
et al., 2006; Da Rocha et al., 2008).

1.1.2 The ICL and the Brightest Cluster Galaxy (BCG)

The ICL component is strongly believed to be related to the BCG – the galaxy that
resides at the barycenter of the cluster, which tends to also be the most massive and ex-
tended – because it is often mostly concentrated around it (Mihos et al., 2005; Arnaboldi
et al., 2012). Furthermore, the BCG and ICL component are usually well-described by
the same Sérsic profile within the central region of the cluster (Gonzalez et al., 2005;
Seigar et al., 2007).

However, at larger radii the ICL shows a growing ellipticity with radius (Gonzalez
et al., 2005; Huang et al., 2018; Montes et al., 2021) and can also exhibit a position
angle that deviates from that of the BCG (Kluge et al., 2021), meaning that the ICL and
BCG stellar components must be truly different from one another. This is kinematically
confirmed by integrated light spectroscopy (Edwards et al., 2016; Gu et al., 2020) and
planetary nebula kinematics (Arnaboldi et al., 1996; Longobardi et al., 2018) of several
nearby BCGs, which show that the velocity dispersions of stars within the BCG increase
radially until they eventually match the velocity dispersions of cluster galaxies. This is
consistent with ICL stars being bound to the cluster’s dark matter halo.

The ICL is formed during the hierarchical buildup of its cluster, due to interactions that
strip galaxies of their stellar content (see, for example, Rudick et al., 2010). Therefore,
characterising the ICL reveals the assembly history of its cluster and, since the ICL
and BCG are strongly associated with one another, understanding the ICL is key to
understanding how the BCG grows with time.

1Defined as the ratio between scale radius (assuming a Navarro-Frenk-White, NFW, profile) and virial
radius, R200.
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1.1. INTRACLUSTER LIGHT (ICL)

Figure 1.3: Figure 5 from Burke et al. (2015). Contributions of the ICL (taken in two
different surface brightness slices) and the BCG light to the total light of 13 galaxy
clusters over the redshift range 0.19 < z < 0.40, taken from Hubble’s CLASH survey.
A steep growth with decreasing redshift is exhibited by the ICL component, while the
BCG shows very little growth.

While the central regions of BCGs are expected to have formed at high redshifts and
on short timescales (Dubinski, 1998), the outer regions of BCGs are likely formed as a
result of accretion from multiple minor mergers over time (Trujillo et al., 2011). Ob-
servations show that BCGs tend to be fully assembled at redshift z ∼ 1 (Collins et al.,
2009), and they show very little (if any) mass growth between 0 ≲ z ≲ 1 (Lidman et al.,
2012; Burke et al., 2015; Zhang et al., 2016). This is in contrast with the ICL, which
can show significant growth since z = 1 (see Figure 1.3, for example).

Theoretical models that come in the form of N-body simulations (e.g. Rudick et al.,
2006) and semi-analytic models (e.g. Contini et al., 2018) also predict that the ICL
should show significant growth since z = 1; however, they over-estimate the mass
growth of BCGs, predicting a growth rate of 3-4 since z = 1 (De Lucia & Blaizot,
2007). In order to alleviate this tension between theory and observations, it is often
assumed that many of the stars that are accreted onto the BCG actually end up forming
part of the ICL (Laporte et al., 2013; Contini et al., 2018). This resolution highlights
the strong relation between the ICL and BCGs.
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1.1. INTRACLUSTER LIGHT (ICL)

1.1.3 The ICL as a Dark Matter Tracer

As already discussed, the ICL is formed by stripping galaxies of their stellar content.
These stars remain unbound to any particular galaxy in the cluster, and so are freely
floating in the DM halo potential well. Because DM particles are collisionless, and it
is also reasonable to assume that the stars in the ICL are collisionless, the ICL should
serve as a dark matter distribution tracer in galaxy clusters.

Though this area of ICL science has only seriously been probed over the past few years,
there are some older studies that made the link between the ICL and the DM within
galaxy clusters. For example, Zibetti et al. (2005) fit an NFW profile to the ICL spatial
distribution in their sample of nearly 700 galaxy clusters. A decade later, Giallongo
et al. (2015) were perhaps the first to make the suggestion that the ICL may be used
to trace the DM distribution in clusters. This has been confirmed to be the case in one
dimension by Sampaio-Santos et al. (2021), who compared the ICL surface brightness
profiles of 528 galaxy clusters to their dark matter profiles (constructed using weak-
lensing data), using data from the Dark Energy Survey in the redshift range 0.2 ≤
z ≤ 0.35. They found that these profiles were comparable, indicating a strong relation
between the dark matter distribution and the ICL.

It was Montes & Trujillo (2019) who published the first study that explicitly showed
that the ICL follows the same global distribution of the DM halo in three dimensions.
In their study, they used a sample of 6 Hubble Frontier Fields clusters to compare the
distributions of: the DM (from gravitational lensing measurements), the ICL, and the
cluster’s hot gas content (from X-ray emissions), using a method known as the ‘Modi-
fied Hausdorff Distance’ (MHD). Figure 1.4 shows the results from one of the clusters
they studied. Two of the main findings, most relevant here, were that: the X-ray emis-
sions from the hot intracluster gas cannot be used as a global DM distribution tracer
for unrelaxed clusters because gas is highly collisional, meaning that it is delayed in
settling into the DM potential (hence the offset in Figure 1.4); the ICL and DM dis-
tributions are strongly connected. Follow-up theoretical work (also using the MHD
method) by Alonso Asensio et al. (2020), using a set of 30 clusters simulated using
the Cluster-EAGLE hydrosimulations (Barnes et al., 2017), confirmed the findings of
Montes & Trujillo (2019). They, too, found that the baryonic matter distribution is not
traced by the ICL distribution. The same conclusions have also been established by
Yoo et al. (2022), who used a different method of comparing spatial distributions of the
ICL and dark matter on 6 clusters selected from the Galaxy Replacement Technique
simulation (Chun et al., 2022), which is specifically tailored to studies of the ICL.

Recently, Deason et al. (2021) argued using simulations that the ICL boundary may be
closely related to the boundary of the DM halo, the “Splashback radius”. This has been
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somewhat confirmed observationally by Gonzalez et al. (2021), who found a potential
splashback feature in the surface brightness profile of the ICL in MACS J1149.5+2223
(z = 0.54), at around 1.4Mpc from the centre of the cluster. If confirmed, then the ICL
may be used to determine some of the physical parameters of the DM. Furthermore, it
may even be used as a test of modified gravity and dark energy, since the splashback
radius is sensitive to these phenomena (Contigiani et al., 2019).

Figure 1.4: Taken from Figure 3 of Montes & Trujillo (2019). Comparisons of the
distributions of the DM, the ICL and the hot gas in Abell S1063. The relevant contours
are colour-coded as red (intracluster gas), blue (dark matter) and green (ICL).

Motivated by the science discussed in Section 1.1.1, I use a sample of Hyper-Suprime
Camera clusters in the i-band to investigate the ICL properties as a function of cosmic
time and cluster mass/richness, which is the topic of Chapter 3.

1.2 Difficulties in Detecting the ICL

1.2.1 Problems Faced by Surveys

Observing such a faint, extended surface brightness feature (typically 1% of the bright-
ness of the night-sky or even fainter, e.g. Bernardi et al., 2017) comes with its limita-
tions. Historically, most surveys have not been designed to operate in a way to optimise
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their detections of low surface brightness features, giving large statistical uncertainties.
One way of handling statistical uncertainties present in ICL studies is to stack the data
from a large sample of clusters, with their ICL normalised (as in Zhang et al., 2019).
However, this averages out any structures within individual clusters.

Estimating and subtracting the background poses further difficulties. The most com-
mon method (as implemented in Source Extractor, or SExtractor; Bertin & Arnouts,
1996) divides images into a grid of sections, with the size of each section specified
by the user. SExtractor makes a first pass by estimating the local background in each
section (covering the whole frame), using a combination of kappa-sigma-clipping and
mode-estimation2. If the mode and clipped median statistic disagree by more than 30%,
SExtractor falls back to a simple median for estimating the local background. Each
section then has a median filter applied to it, suppressing any local flux spikes, and a
spline is fitted to the data. Interpolating between each section gives the background
map, which is ultimately subtracted from the image. Choosing the size of the sections
presents a trade-off of undesired outcomes: if the sections are too small SExtractor will
over-subtract the flux around extended objects, if the sections are too large SExtractor
cannot model spatial variations in the background level, leading to an inaccurate repre-
sentation of the global background map. The former case occurs most often (see, for
example, section 5.8.5 of Aihara et al., 2018b), which can lead to significant underesti-
mates of the ICL (e.g. Zackrisson et al., 2009; Krick et al., 2012). Akhlaghi & Ichikawa
(2015) have put forth a promising alternative sky background estimator in Noise Chisel,
which is a noise-based non-parametric technique primarily used for detecting irregular
galaxies and their substructure (see Figure 2 of the paper for its implementation).

Finally, there are a variety of observational artefacts that may contaminate ICL mea-
surements. Some examples of these are: satellite trails (see, for example, top panel of
Figure 3 in Singhal et al., 2021), ghosts (see, for example, Figure 3 in Bosch et al.,
2018), and PSF wings from bright stars (these are addressed in relation to the ICL in
DeMaio et al., 2018; Montes & Trujillo, 2018). The latter here may be rectified by
accurately modelling the PSF, which is by no means an easy task; however, accounting
for the vast majority of flux contaminants from observational effects in an automated
way is extremely complicated (Duc et al., 2015), with most diluting into the final coadd
images. This, along with the other issues discussed here, presents a huge task for future
pipelines, in order to generate pristine data for the most intricate ICL studies.

In Chapter 2 I show how I simulate realistic ICL for testing ICL detection codes, with
reference to some preparatory work I was involved in with the Euclid collaboration. I
will also show that, because Euclid’s standard pipeline is optimised for purposes out-

2see https://sextractor.readthedocs.io/en/latest/Background.html for full details.
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side of studying faint, extended features, ICL studies using Euclid-imaging requires an
alternative data processing pipeline.

1.2.2 The Ill-Defined ICL

It is widely accepted that the ICL is formed by stars that are stripped from cluster galax-
ies, and these stars remain bound to the potential of the cluster, rather than any of its
constituent galaxies. However, because it is impossible to resolve the individual stars of
the ICL, astronomers must come up with observational-based methods of disentangling
the ICL from its cluster – in particular, the BCG to which it is associated. These meth-
ods are usually derived from parameter-based priors, which can involve strong assump-
tions about the ICL, resulting in differing amounts of ICL and indirect comparisons
between studies that use different methods. Here, the three most common observational
techniques will be addressed, with examples for each.

It is worth noting that theoretical methods exist, capable of separating the ICL from its
cluster, but these require a wealth of information about the cluster that is only available
using simulated data. Since this thesis only concerns ICL from an observational per-
spective, I will only go as far as listing a few relevant references: using the ‘binding
energy’ of stars in the ICL (Dolag et al., 2010; Murante et al., 2004, 2007; Sommer-
Larsen et al., 2005); using the mass density of stars in the ICL (Rudick et al., 2009,
2011); tracking the stellar-stripping from satellite galaxies and violent mergers using a
semi-analytic model (Contini et al., 2018, 2019).

Surface Brightness Thresholding

The simplest technique to separate out the ICL from its cluster is to define a cut in the
surface brightness (dependent on the band of the observation): pixels with values lower
than this cut are assigned to the ICL, while pixels above the threshold are assigned to
cluster galaxies. This technique is susceptible to contamination from the faint outskirts
of galaxies and extended wings of the PSF, leading to an over-estimation of the total
ICL light (Presotto et al., 2014). However, avoiding contamination by reducing the
threshold dramatically reduces the area from which the ICL signal may be recovered.

It is possible to alleviate this issue by applying a fainter surface brightness threshold
to everything except the BCG, which is commonly defined by a B-band cut of µB ∼

25mag arcsec−2 (e.g. Feldmeier et al., 2004; Krick & Bernstein, 2007; Presotto et al.,
2014; Burke et al., 2015; Furnell et al., 2021).
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Parametric Fitting

A more computationally-demanding alternative is to fit parametric surface-brightness
profiles to the galaxies, e.g. as a double/triple Sérsic (Sérsic, 1963), then subtract these
from the image to leave behind the ICL (e.g. Gonzalez et al., 2005; Zhang et al., 2019;
Kluge et al., 2021; Montes et al., 2021). However, if the ICL is not explicitly included in
the model, then the optimisation will attempt to use the outskirts of galaxies to remove
the diffuse light. On the other hand, adopting a specific parametric form for the ICL
makes strong assumptions, compromising the utility of the results.

Recently, Zhang et al. (2019) found that the ICL could be represented by a triple
Sérsic fit. They used a stacked surface-brightness profile of ∼ 300 Dark Energy Sur-
vey (DES) clusters at z ∼ 0.25 and found that: a core component is dominant in the
ICL within 10kpc of the cluster centre; between 30kpc and 100kpc a bulge component
dominates; beyond 200kpc a diffuse component dominates the ICL. The sum of these
well-describes the stacked profile (see Figure 1.5).

Figure 1.5: Taken from Figure 10 of Zhang et al. (2019). The stacked surface-
brightness profile of the ICL of 300 DES clusters (shaded red), fitted by a triple-Sérsic
profile (black solid line), composed of: a core component (black dotted line), a bulge
component (black dashed line) and a diffuse component (red dashed line).

Non-Parametric Fitting (Wavelet Analysis)

Another approach is to perform wavelet-filtering to remove objects on specific scales
(small galaxies), while retaining large scale features (the ICL). This kind of analysis
was first utilised by Slezak et al. (1994), when they investigated substructures of 11 X-
ray clusters of galaxies. In recent years, there have been several examples of wavelet-
based analyses of ICL (see, for example, Adami et al., 2005; Guennou et al., 2012;
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Ellien et al., 2021). However, users must be cautious as such algorithms can run into
difficulties when images contain galaxies of similar size to the ICL.

Figure 1.6 shows a comparison of the resulting ICL when using each method outlined
here, applied to two different clusters.

Figure 1.6: Taken from Figure 1 of Montes (2022), individual references therein.
Resulting ICL extracted from Abell 85 (top row) and Abell S1063 (bottom row), us-
ing different techniques: (panel b) surface brightness thresholding to define the ICL,
(panel c) parametric fitting of galaxies and ICL using Sérsic profiles, and (panel e) non-
parametric fitting using wavelet analysis.

In Chapter 4, I outline the concept of a new ICL detection code currently under con-
struction. This code combines elements of each of the three detection methods dis-
cussed in this section, and it hopes to offer an automated, non-parametric way of sepa-
rating out the ICL from its cluster and the BCG.

1.2.3 Outline of Thesis

In Chapter 2 I begin by providing a method of simulating realistic images of galaxy
clusters that contain ICL, followed by preparatory work I did for Euclid’s ICL science
working group. This work involved simulating images using Euclid instrumentation,
so that different ICL codes could be tested prior to launch. The suitability of Euclid’s
standard data processing pipeline for ICL studies is also discussed, along with ongo-
ing/future work.

Chapter 3 concerns the work I did on implementing an automated surface brightness
thresholding method to measure the ICL. After giving a detailed description of the
code, I apply this method to 72 galaxy clusters in the redshift range 0.1 ≤ z ≤ 0.8,
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originating from two different catalogs (the XMM Cluster Survey, Romer et al. 2001,
and CAMIRA, Oguri 2014; Oguri et al. 2018), using HSC i-band data. The results are
examined for correlations between ICL and cluster properties, and compared with other
studies that use clusters with similar mass and redshift range. The Chapter ends with a
discussion of suggested future work, which will ultimately lead to a paper.

In Chapter 4 I outline a new method of measuring the ICL, which combines the advan-
tages of existing methods in a hybrid approach. The code is yet to be completed at this
time of writing, but the work done to date is set out and proof-of-concept results are
provided. The next steps in finalising the code are given, along with subsequent future
work.
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Chapter 2

Simulating Realistic ICL and Euclid
Preparatory Work

2.1 Overview

The upcoming Euclid survey will provide an excellent sample of clusters to study the
ICL in depth. Euclid consists of a 1.2m-aperture telescope with two instruments: the
visual imager (VIS) and the near-infrared spectrometer and photometer (NISP). Over
a third of the celestial sphere will be covered by the Euclid survey over a 6 year pe-
riod; the VIS instrument’s wide field of view (0.787deg×0.709deg), spectral resolution
(0.1arcsec) and sensitivity (25mag) makes Euclid an ideal candidate for optical studies
of the ICL. Moreover, Euclid will operate on a large halo orbit at Lagrangian point 2
(L2), which will be highly stable - this is very ideal for observing faint surface bright-
ness features. I was involved in a project with the ICL science working group in Euclid,
testing ICL detection codes in preparation for Euclid’s launch. The objectives were: to
forecast for what range of cluster masses and redshifts Euclid’s VIS camera will be able
to detect ICL, to test the effect of the reduction pipeline’s background subtraction and
develop suitable alternatives, and to evaluate and compare the performance of different
ICL detection codes within the group.

In order to forecast what range of cluster redshifts and masses Euclid will be able to de-
tect ICL, we required realistic images that contained stars, galaxies, clusters and ICL.
These needed to be simulated using the appropriate instrumentation (in our case, that of
Euclid’s VIS camera) and reduced using the same pipeline that Euclid will use on real
data. Note that the standard pipeline, which was still in development at this time of writ-
ing, is focused on measuring accurate ellipticities and position angles of small galaxies,
for weak-lensing measurements. We had access to the most up-to-date and realisti-
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Figure 2.1: The simulated mosaic image from Euclid that we place our cluster image
onto. This image has been simulated using the instrumentation of Euclid’s VIS instru-
ment, and has been processed via the data reduction pipeline. The mosaic covers an
area of 0.53◦ × 0.53◦ on the sky.

cally simulated images from Euclid that had been processed by the reduction pipeline.
Though these contained realistic stars and galaxies, they did not contain galaxy clusters
with ICL (this is probably due to the fact that observing faint surface brightness features
is not a primary objective of Euclid).

Therefore, this chapter concerns work done on simulating images of galaxy clusters that
contain ICL, which were added on to one of the realistically simulated Euclid images
(the one we used is shown in Figure 2.1). However, this work was interrupted when
we found that the pipeline was too harsh in its background subtraction (discussed later
on in the chapter). Since this issue was being handled by other members of the group,
I moved away from this project to focus on my own work, and so I will only discuss
work that was done up to this point here.
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2.2 Simulating Images of Clusters with ICL

The data we used to simulate the cluster galaxies were taken from the Millennium
MAMBO lightcone. This lightcone is generated based on the full dark-matter Mil-
lennium simulation (Springel et al., 2005), using semi-analytical models of galaxy for-
mation from Henriques et al. (2015), consisting of realistic galaxy properties from the
Empirical Galaxy Generator (EGG; Schreiber et al., 2017). The relevant parameters we
obtained for each galaxy from the lightcone were: positions on the sky (RA/dec), AB
apparent magnitudes in the Euclid-VIS band, bulge-to-disk stellar mass ratios, bulge
half-light radii, disk half-light radii, bulge axis ratio, disk axis ratio. We sampled posi-
tion angles and Sérsic indices (Sérsic, 1963) from random distributions.

We modelled the galaxies as two-component, bulge+disk Sérsic profiles. In order to
obtain realistic Sérsic indices for every cluster galaxy, we, first, created a cumulative
distribution function (CDF) using a sample of observationally inferred Sérsic indices of
bulges (nbulge), taken from Kennedy et al. (2016), while assuming exponential profiles
for each disk (i.e. ndisk = 1; this is also in line with the work of Kennedy et al. (2016)).
We then randomly sampled the nbulge from the resulting probability density function
(PDF). It is worth noting that Galsim struggles to create images corresponding to n ≥ 6
profiles, so we had to limit nbulge accordingly. Figure 2.2 shows the distribution for 4000
bulge Sérsic indices. The position angle (ϕ) for each galaxy was randomly sampled
from a uniform distribution, between 0 ≤ ϕ ≤ 2π.
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Figure 2.2: Sérsic indices of 4000 randomly sampled galaxy bulges, computed using
the PDF that was constructed based on the results in Kennedy et al. (2016) (see their
Figure 6). Note that a large sample of galaxies was chosen here purely for illustration
purposes - in practice we sample the same number of nbulge as the number of member
galaxies in the cluster.

As mentioned in Section 1.1.2, simulations struggle to account for the hierarchical
growth of the BCG with the cluster, so their models tend to be unrealistic. Therefore,
we removed the lightcone’s bulge+disk model of the BCG (retaining the total flux and
centroid) and replaced it with a single component Sérsic profile. This profile has the
same total flux as the lightcone BCG, but a half-light radius and Sérsic index adapted
from the work of Kluge et al. (2020), who fit a composite BCG+ICL model to obser-
vational data. The median values of their Sérsic indices (n) and half-light radii (re) for
the decomposed BCG+ICL model are given in Table 2.1 (provided by M. Kluge in pri-
vate communication). Denoting the half-light radii from Table 2.1 as re,0, the half-light
radius of the BCG or ICL in a cluster of stellar mass M⋆ is scaled as

re =

(0.83 log M⋆
M⊙
− 8.55

1.74

)
log re,0. (2.1)

Equation 2.1 is formulated based on the data in Figure 2.3.
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n re [kpc]
BCG 4.58 22.61
ICL 0.76 189.5

Table 2.1: Sérsic index (n) and half-light radius (re) of the decomposed BCG+ICL
model from Kluge et al. (2020)

Figure 2.3: Half-light radius of the combined BCG+ICL model, fit to observed data,
versus total cluster mass (based on the work of Kluge et al., 2020, provided via private
communication).

We estimated the position angle and ellipticity of the BCG from a principle component
analysis of the cluster, by using each cluster galaxy’s position relative to the centroid of
the BCG (a mathematical description of principal component analysis in relation to the
ICL shape will be provided in Chapter 3). This is because the BCG+ICL tends to have
a similar shape to the cluster (e.g. see Kluge, 2019)

We modelled the ICL as a single-component Sérsic profile that was initially concentric
to the BCG with the same position angle and ellipticity. The Sérsic index and half-light
radius given to the ICL profile were assumed using the same methodology as for the
BCG. The flux of the ICL profile was taken arbitrarily as a specified fraction of the total
cluster flux (considering contributions from cluster galaxies and the ICL), within the
typically observed limits (see Section 1.1.1).

In order to produce an image of the cluster and its ICL from the analytical profiles,
we used GalSim (Rowe et al., 2015). Fluxes were converted from physical units to
electrons using the predicted zeropoint of Euclid’s VIS instrument (25.5mag). Positions
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on the sky and physical size units from the lightcone were converted to pixels using
the VIS instrument’s pixel scale (a simple, linear mapping). The size of the cluster
image was chosen to encompass all the cluster galaxies, with an additional margin of an
arcminute so that no galaxies sat on the edge of the image. Each profile was convolved
with a model for Euclid’s VIS instrument’s point-spread function (PSF; see Figure 2.4),
and then had Poisson noise added to it.

Figure 2.4: The PSF model for Euclid-VIS camera’s PSF. This was convolved with
each galaxy profile.

A total of 18 cluster images were simulated (including a red-herring image with no
ICL), using the same cluster each time from the Millennium MAMBO lightcone, and
separately added to the same region of the original image simulated by Euclid. Within
these images, we varied the following ICL parameters:

1. Total flux and half-light radius: For these, we varied the ICL flux while ad-
justing the half-light radius to maintain a constant central surface brightness. 5
images were created, with ICL flux ranging from 2% to 50% of the total cluster
flux.
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2. Total flux: This time, central flux is not constant as half-light radius is fixed
(using the original value). 5 images were created in the same manner as the
previous example - note that this actually produced 4 new images, due to one of
the clusters being the same as the standard in the previous category.

3. Ellipticity: Keeping the flux of the ICL fixed at 20% of the total cluster flux, the
ellipticity was varied across 5 images, from 0 to 0.5.

4. ICL centroid: Again, the flux of the ICL is fixed at 20%, while its centroid is
varied across 3 images, from 10kpc offset to the BCG to 50kpc offset to the BCG.

Figure 2.5 shows 4 example cluster images, with varied ICL parameters, before they
were added onto the Euclid mosaic image.
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Figure 2.5: Comparing images of clusters with different ICL parameters, before they
were added onto the Euclid mosaic image. These show: (top left) an ICL with a flux
equating to 2% of the total cluster light in the constant central surface brightness run;
(top right) an ICL with a flux equating to 36% of the total cluster light in the varying
central surface brightness run; (bottom left) an ICL with zero ellipticity in the varying
ellipticity run; (bottom right) an ICL with an offset of 50kpc from the BCG centroid.
Note that the surface brightness limits were chosen here so that the ICL is clearly visi-
ble, and each image is zoomed in to 260′′ on a side, with the BCG at the centre.

The resulting images were distributed amongst our collaborators in the ICL science
working group within Euclid, so that they could test their ICL detection algorithms.
Figure 2.6 shows a region of Figure 2.1 before and after one of the cluster images was
added.
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Figure 2.6: Region of Figure 2.1 before (left) and after (right) one of the cluster images
was added. This particular cluster is at z = 0.2 and has an ICL component with: an ICL
fraction of 50%, a shared centroid with the BCG, and an ellipticity and position angle
taken from a principle component analysis of the cluster. These images are both 0.30◦

on a side.

2.3 Euclid’s harsh background subtraction

One of our collaborators managed to fit the ICL in our simulated images with a two
component Sérsic model, but noticed an unusual feature: the data repeatedly dipped
below the expected model at a certain radius (see Figure 2.7). After applying surface
brightness cuts to Figure 2.1, we realised that the background was uneven; this was due
to being overly subtracted in particular regions (see Figure 2.8). The region that we
added our cluster onto had contained one of these regions, and this is where we were
seeing dips in the data compared with the model.

This is concerning because the ICL is extremely faint - having a harsh background
subtraction will potentially obliterate the ICL signal. Euclid’s pipeline performs two
background subtractions: the first subtraction is done via NoiseChisel (Akhlaghi
& Ichikawa, 2015; Akhlaghi, 2019), which is optimised for the detection of diffuse,
extended bodies that may get buried in noise. The second subtraction is done via
SExtractor (Bertin & Arnouts, 1996). The operational procedure of SExtractor’s
background subtraction is outlined in Section 1.2.1, and it is heavily influenced by
bright pixels (such as those containing stars). Therefore, it is our suspicion that this
part of the pipeline was causing problems in the overall background subtraction.
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Figure 2.7: One of the radial profiles that a collaborator produced from our simulated
images, described in Section 2.2. The left panel shows the full cluster + Euclid mosaic
image, the middle panel shows the ICL profile obtained by fitting with a double Sérsic
profile, and the right panel shows the surface brightness (in mag arcsec−2) as a function
of semi-major radius. The grey curves in the right panel are the individual components
of the double Sérsic fit to the data, with the combined profile shown as the green curve.
The data (orange points) match what is expected from the combined Sérsic profile until
a

1
4 ∼ 3 − 4arcsec

1
4 - this region corresponds to the region in the left panel pointed out

by the arrow, which has a visible dearth in flux. Plots provided by Matthias Kluge.

2.4 Summary and Future Work

A procedure for simulating realistic Cluster+ICL images has been outlined in this chap-
ter. This work is useful in preparing surveys for studying the ICL and testing the per-
formance of ICL detection algorithms. The cluster images were constructed using data
from the Millennium MAMBO lightcone (Springel et al., 2005), with the ICL parame-
ters being derived from its cluster properties (though these were varied to create multi-
ple slightly differing images). The Cluster+ICL images were added onto a Euclid-VIS
simulated mosaic image (generated by Euclid’s simulations group), which had already
been processed via the data reduction pipeline.

It was found that Euclid’s background subtraction algorithm is too harsh for ICL studies,
and will likely diminish a significant amount of the ICL signal in images. A postdoctoral
fellow at the University of Nottingham (C. Bellhouse) has followed on from the work
set out in this chapter and added cluster images onto unprocessed, raw exposures that
Euclid simulates, and passed them through the reduction pipeline. This has revealed
that, just as expected, a significant loss in the ICL signal is seen when using Euclid’s
standard reduction pipeline, as shown in Figure 2.9. C. Bellhouse is also using the
method of simulating images outlined in this chapter to quantify the detectability of
the ICL as a function of its cluster redshift and mass, and to test the performance of
different ICL measurement methods - I will be a co-author on the resulting paper for
this work. It is advisable that, should ICL studies be conducted using Euclid images, an
alternative background subtraction should be applied to the raw, unprocessed data that
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Figure 2.8: Same image as in Fig. 2.1, but with surface brightness cuts that emphasise
the background. The background subtraction pipeline is producing a patchy image,
consisting of many overly subtracted (dark) regions.

is suitable for this kind of science, instead of using data processed by Euclid’s standard
pipeline. The galaxy evolution and ICL groups of Euclid are currently working on this.
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Figure 2.9: (Right panel) A cluster image, simulated using the methodology outlined
in Section 2.2, that has been added onto a raw, unprocessed field exposure simulated
by Euclid, and (left panel) the same image after being processed by Euclid’s reduction
pipeline. Both images here are 240′′ on a side and the colorbar shows the flux values,
in counts, calculated using Euclid’s VIS instrument zeropoint. This figure, provided by
C. Bellhouse (University of Nottingham), explicitly shows a significant loss in the ICL
signal through use of the reduction pipeline, and highlights the need for an alternative
for future ICL studies.
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Chapter 3

Measuring the ICL in HSC Clusters
using an Automated SB Threshold
Method

The contents of this Chapter represent the work I did as part of my final project at the
University of Nottingham. After some further analysis (described in Section 3.7.3), this
work will form the basis of a journal paper.

3.1 Overview

Our primary goals here were: to implement an automated version of the traditional
approach to measuring ICL, demonstrate it on a real dataset and study correlations
between ICL and cluster properties. This work was inspired by the work of Furnell et al.
(2021), who applied a combination of masking and surface brightness thresholding to
a sample of X-ray selected clusters (see Section 3.3.1), cross-matched with the HSC
Subaru Strategic Program (SSP) deep layer footprint, to analyse the ICL as a function
of cosmic time. Although Furnell et al. (2021) had already measured the ICL in these
clusters, we decided it was appropriate to try to reproduce their results for the following
reasons:

1. Access to Public Data Release 3 (PDR3): The original study made use of HSC-
SSP PDR1 but we now have access to the most up-to-date data from PDR3. This
marks a significant improvement because the global sky background subtraction
has been improved in a way that complements studies of extended objects. It was
noted in PDR1 (section 5.8.5 of Aihara et al., 2018b) that the background sub-
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traction was performed on a CCD-by-CCD basis, using pixel grids that had their
sizes chosen to preserve small-scale features, at the cost of degrading extended
features (see Bosch et al., 2018, for the full description of the HSC pipeline at
PDR1). This meant that the wings of both the ICL and extended cluster galaxies
were oversubtracted, leading to a reduced ICL signal and dearths of flux around
cluster galaxies (‘divots’). To account for this, Furnell et al. (2021) proposed a
post-processing fix in divot-corrections: interpolating galaxy profiles to try and
estimate the over-subtracted flux.

A solution to the global background subtraction of the HSC pipeline was im-
plemented in PDR2, which modelled the sky across the entire field-of-view, as
opposed to modelling the sky for each individual CCD (alleviating biases due to
bright, extended objects and preventing discontinuities between CCDs in the sky
model Aihara et al., 2019). Further improvements were made to the sky model in
PDR3, to remove biases in regions near dead CCDs or the field edge (see Figure
7 of Aihara et al., 2022). Coadd images with the global sky model subtracted
from them are available to users in an intermediary state before they undergo
local sky-subtraction (necessary for source detection and measurements), which
preserves the wings of objects that may be lost as a result of harsh deblending.
Therefore, we do not require divot-corrections when using PDR3 data, giving a
more accurate representation of the ICL.

As well as the improved sky background subtraction, the star masking in HSC-
SSP’s recent data releases has improved. At PDR1, star masks were created using
the NOMAD reference catalog (Zacharias et al., 2004). Furnell et al. (2021) noted
that this catalog is incomplete, and so opted to create their own masks using the
catalog from GAIA DR2 (Gaia Collaboration et al., 2018). In HSC-SSP PDR2
and PDR3, star masks were created based on GAIA DR2 data, meaning the star
masking was much more complete than before. It was also noted in PDR3 that
improvements were made to the size of star masks, as these were now dependent
on the filter (see Section 4.2 in Aihara et al., 2022). Therefore, using PDR3 data
means we do not require reference catalogs of stars for masking, as these are
contained in the HSC mask images.

2. We outline an alternative method of determining the total cluster flux, with
a statistical background correction: In order to estimate how much of the total
light of a cluster is ICL, it is necessary to estimate how much flux is due to cluster
galaxies. It is not clear in Furnell et al. (2021) exactly how they obtain their cluster
galaxy flux estimate, and there is no information on what these values actually are
(we assume they they just summed up all the light within R500 after doing some,
unspecified, masking). Therefore, we provide a method of assigning membership
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to galaxies using spectroscopic data, where available, or photometric data with a
statistical background subtraction.

3. Our method is automated: Some of the masking is done by eye in Furnell et al.
(2021), which becomes time-consuming with large samples of clusters. We avoid
this by ensuring that our masking is done on an automated basis, provided that
the relevant input parameters are known. This also removes any human biases
that may propagate in the final results.

With our analysis, we explore some of the ideas discussed in Section 1.1.1, specifically
how the ICL evolves with cosmic time and cluster mass/richness. We then apply the
method to a larger sample of clusters.

3.2 The HSC-SSP Survey

3.2.1 Survey Description

The HSC instrument (Miyazaki et al., 2018) is composed of 104 science CCDs (equat-
ing to 870 Megapixels) that offer a resolution of 0.168”/pix, and it covers a field of view
of 1.5deg in diameter. The camera is mounted on the prime focus of the 8.2m Subaru
Telescope, located at the summit of the inactive volcano Mauna Kea in Hawaii. This
site offers excellent seeing conditions, with a median of 0.6” in the i-band; combining
this with the large aperture and wide field of view makes HSC a particularly suitable
instrument for carrying out ICL studies.

The HSC-SSP (Aihara et al., 2018a,b, 2019, 2022) resembles one of the deepest ground-
based, publicly available, optical surveys, with a 5σ limiting depth of i ∼ 26.8mag.
Since its first-light in March 2014, the HSC-SSP has been scheduled to observe over
a total of 330 nights, with data being collected in three separate layers across multiple
passbands (grizy plus 4 narrow-band filters): ‘Wide’ (1200deg2), ‘Deep’ (27deg2) and
‘UltraDeep’ (3.5deg2). In this work we use i-band, Deep-layer data, which is split
across 4 fields: XMM-LSS, E-COSMOS, ELAIS-N11, DEEP2-F3.

3.2.2 HSC-SSP PDR3 Data Reduction

Data from the third release of the HSC-SSP survey is processed via the eighth version
of HSC’s pipeline tool, hscPipe (full implementation outlined in Bosch et al., 2018,

1This is the only field that is not covered by the Wide-layer of the HSC-SSP survey.
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Figure 3.1: Galaxy cluster XMMXCS J022456.1-050802.0 (see Table 3.1) imaged
using PDR1 data (left) vs PDR3 data (right). Both images are 370′′ on each side. Note
that the image on the left has been fully processed, while the image on the right is at
an intermediary stage before local sky-subtraction, a feature that only became available
at PDR3. It is clear that more ICL signal is recovered in the most recent data release,
marking a significant improvement for studies of the ICL.

although only at version 4). This software is open source and licensed for public use
under version 3 of the GNU public license. As already mentioned, the pipeline used to
process PDR3 data marks a significant improvement from the one used to process PDR1
data (hscPipe 4). The biggest concern for ICL studies was that hscPipe 4 would
oversubtract the flux around bright, extended objects in the background subtraction, as
was noted in Aihara et al. (2018b) and also shown in Huang et al. (2018). Figure 3.1
shows a comparison of the galaxy cluster XMMXCS J022456.1-050802.0 (the first
cluster in the sample used by Furnell et al., 2021) from PDR1 and from PDR3. The
ICL signal is reduced and the flux around bright sources is visibly over-subtracted in
the PDR1 version.

The sky contribution was estimated and subtracted individually for each CCD in the
fourth version of hscPipe, using a sixth-order variance-weighted Chebyshev polyno-
mial, fit to the 3σ-clipped average values in 128×128 bins of pixels across the whole
detector (typically ∼256×256 pixels in size, known as ‘superpixels’), ignoring any pix-
els that belong to sources. Due to the relatively small size of the superpixels in com-
parison to the size of a CCD (2048×4176 pixels), the sky model was heavily influenced
by pixels in regions containing bright, extended objects. Furthermore, the sky model
exhibited discontinuities where images spanned across multiple CCDs.
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In hscPipe 8, used to process PDR3 data, the global sky frame is estimated and sub-
tracted as follows: (1) a clipped mean is calculated for superpixels of size 8k × 8k
pixels, not including pixels that belong to sources; (2) the superpixels are then fit with
2D polynomials to construct a sky background model; (3) the background model is
subtracted from the science image; (4) a scaled-sky frame is constructed by separately
stacking many (typically several tens) science exposures with large dithers and this is
also subtracted from the image – this removes static features that have a smaller scale
than the initial sky background sky model. An additional step is taken to remove small-
scale fluctuations at very low flux levels: superpixels of 256×256 pixels in size are
used to estimate the background, which is then subtracted; sources are then carefully
detected, characterised and masked; the sky is put back in and the process is repeated
three times. Doing this retains the wings of bright sources while removing small-scale
flux variations.

The global sky subtraction represents the end of the first stage of the data reduction pro-
cess (CCD processing). Prior to this, basic data reduction is performed (flat-fielding,
bias and dark frames), brighter-fatter corrections due to source intensity dependence on
the measured PSF are made, and cross-talk and CCD non-linearity corrections are car-
ried out. Also at this stage, bad and saturated pixels are identified and these are included
in mask images, which can be obtained in parallel with science and variance images,
using HSC’s DAS cutout tool. After CCD processing, there are two more stages of data
reduction to produce the final pipeline output images: Joint Calibration to refine photo-
metric and astrometric calibrations after CCD processing, and Image Coaddition. The
images used in this work are in an intermediate state, just after global sky subtraction
and subsequent coaddition, but before the final aggressive background subtraction (this
final step gives images that the photometry measurements are performed on). There-
fore, extended objects in these images, which would usually be affected by the aggres-
sive background subtraction, are preserved, enabling more accurate characterisation of
the ICL.

Note that in this Chapter, the images analysed are obtained in the form provided by the
HSC archive – I do not run any parts of the pipeline on the unprocessed images myself
for this work.

3.3 Data

We use galaxy clusters identified in two datasets. The first, which was also used in Fur-
nell et al. (2021), is a set of X-ray clusters from the XMM Cluster Survey (XCS; Romer
et al., 2001), while the second is an optically-selected cluster catalog from the HSC-SSP,
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constructed using the CAMIRA cluster finding algorithm (Oguri, 2014; Oguri et al.,
2018). Details of the XCS (also given in Furnell et al., 2021) and the CAMIRA cluster
finding algorithm are given below.

3.3.1 The XMM Cluster Survey

The XCS is a serendipitous X-ray survey, searching for galaxy clusters using archival
data from the XMM-Newton space telescope. X-ray surveys of clusters have the upper
hand over their optical counterparts as they are less biased with regards to the nature of
their detections: X-ray measurements are far less susceptible to contamination by mul-
tiple structures along the projected line-of-sight, as they relate to the intrinsic properties
of galaxy clusters, e.g. intracluster medium (ICM) temperatures and spatial distribu-
tions, rather than relying on overdensities from optical catalogs. This makes the XCS a
desirable survey for constructing a sample of clusters.

In order to confirm detections as true galaxy clusters, the XCS implements two rounds
of scrutiny. The first categorises X-ray detections as point-like and extended-like,
the latter resembling a possible cluster, using XMM’s Automated Pipeline Algorithm
(XAPA; see Mehrtens et al., 2012). However, this pipeline can provide false rejection-
s/confirmations if: a cluster has multiple X-ray peaks as opposed to a single smooth
profile, leading to rejection; bright, non-cluster sources contain ‘bleed trails’, which are
mistaken as extended emissions, or Active Galactic Nuclei (AGN), misclassifying them
as a cluster. Therefore, a second round of examination is performed by members of
the XCS collaboration, who validate these detections by-eye, using a regime that ranks
objects from definite clusters to definite contaminants (known as the ‘XCS Zoo’).

The most recent XCS data release (DR2; Manolopoulou et al., in preparation) is com-
posed of nearly 1300 optically confirmed galaxy clusters, with over 200 of these being
completely new to literature. These clusters are cross-matched for spectroscopy with
the SDSS DR13 (Albareti et al., 2017), DEEP2 (Newman et al., 2013) and VIPERS
DR2 (Guzzo et al., 2014) surveys. Their spectroscopic redshifts are computed by, first,
using a biweight location estimator (as in Beers et al., 1990) on the spectroscopic red-
shifts of all galaxies that fall within 1.5 arcminutes of the XAPA-computed centroid,
with varying spectroscopic completeness, followed by re-calculation after applying a
velocity dispersion cut of ∆v ± 3000kms−1 about the initial redshift, within a physical
radius of 1.5Mpc from the XAPA centroid.
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3.3.2 The CAMIRA Catalog

The CAMIRA cluster-finding algorithm (Oguri, 2014) operates based on the fact that
all galaxy clusters are observed to have a well-defined, highly regular population of
elliptical and lenticular galaxies. This ‘red sequence’ of galaxies exhibits a tight cor-
relation between colour and luminosity (the colour-magnitude relation; Visvanathan &
Sandage, 1977), which has been known for quite some time (Baum, 1959). The algo-
rithm first fits all photometric galaxies with the stellar population synthesis (SPS) model
from Bruzual & Charlot (2003), and then it estimates the likelihood of them being on
the red sequence as a function of redshift. Each galaxy is assigned a ‘number parame-
ter’ as a function of redshift, based on the likelihood of it being a red sequence galaxy.
Using these number parameters, three-dimensional richness maps are constructed and
cluster candidates are identified based on peaks in cluster richness. Note that the rich-
ness parameter here is defined as the number of red sequence cluster members with
masses M ≳ 1010.2M⊙ within a circular aperture of radius R ≃ 1h−1Mpc.

The CAMIRA algorithm was first used in Oguri (2014), where it was applied to imag-
ing data from SDSS DR8 (Aihara et al., 2011), covering roughly 11960deg2 on the sky.
A catalog of 71743 galaxy clusters was constructed in the redshift range 0.1 ≤ z ≤ 0.6.
The cluster redshift estimates were compared with spectroscopic redshifts from the fol-
lowing external cluster catalogs: XCS (Mehrtens et al., 2012), the Meta-Catalog of
X-ray detected Clusters (MCXC; Piffaretti et al., 2011), ACCEPT (Cavagnolo et al.,
2009) and the Sloan Giant Arcs Survey (SGAS; note that only 24 clusters from the
works of Bayliss et al., 2011; Oguri et al., 2012; Bayliss et al., 2014, were used). This
comparison revealed that the photometric estimates derived from CAMIRA were accu-
rate with low bias and scatter. The author also found a strong correlation between the
CAMIRA-estimated cluster richness and X-ray luminosities and temperatures, taken
from the aforementioned cluster catalogs.

More recently, the CAMIRA algorithm has been applied to HSC-SSP Wide PDR3 data
(Oguri et al., 2018, note that this paper refers to PDR1 data, but the catalog itself has
since been updated to include PDR3 data). This initially led to the detection of 1921
high purity, high completeness galaxy clusters in the redshift range 0.1 ≤ z ≤ 1.1,
covering an area of ∼ 232deg2 – the catalog has since grown to include 7939 clusters.
As before, the authors found that the sample was accurate with low bias and scatter, and
the richness is concordant with the cluster X-ray properties. In this work, we require
deep HSC data to analyse the ICL with as much accuracy as possible. Therefore, we
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use the most recent Deep-layer catalog from Oguri et al. (2018), consisting of 248 HSC
galaxy clusters2.

3.4 Sample Selection

3.4.1 XCS Sample

For the XCS sample, we use the same data as in Furnell et al. (2021). A summary of
how the sample was obtained is given below:

• The XCS-DR2 North (Manolopoulou et al., in preparation) catalogue of clusters
was cross-matched with the entire HSC-SSP PDR1 footprint (Wide, Deep and
UltraDeep layers), producing a match for 202 clusters.

• The clusters and their BCGs were required to have spectroscopic redshifts, further
reducing the sample to 79 clusters.

• The cluster redshift and BCG redshift were not allowed to deviate from each
other in velocity space by more than ∆v = ±5000kms−1. This criterion reduced
the sample by 8, leaving 71 clusters.

• The clusters had to have X-ray parameters from XAPA - 53 satisfied this require-
ment. Of these, 29 resided in the HSC-SSP PDR1 Deep footprint.

• 1.5Mpc2 cutouts of the 29 Deep-layer clusters were downloaded using HSC’s
DAS cutout tool. This led to the rejection of 11 more clusters due to them having
too much bright foreground object contamination or being on the edge of the
survey (7 clusters), or being deemed poor candidates by the authors (4 clusters).

The 18 XCS-HSC clusters are described in Table 3.1.
2Available at:

https://github.com/oguri/cluster_catalogs/blob/main/hsc_s20a_camira/camira_s20a_dud.tbl
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Table 3.1: The 18 XCS-HSC clusters used in this work, adapted from Table 2 of Furnell
et al. (2021) – note that only the parameters relevant to this work have been kept from
the original table.

XCS ID α2000 δ2000 z R500 [Mpc] M500 [1014M⊙]

XMMXCS J022456.1-050802.0 36.234 -5.134 0.084 0.331 0.112
XMMXCS J161039.2+540604.0 242.664 54.101 0.339 0.483 0.457
XMMXCS J233137.8+000735.0 352.908 0.126 0.224 0.537 0.553
XMMXCS J232923.6-004854.7 352.348 -0.815 0.300 0.746 1.611
XMMXCS J161134.1+541640.5 242.892 54.278 0.337 0.729 1.567
XMMXCS J095902.7+025544.9 149.761 2.929 0.349 0.765 1.836
XMMXCS J095901.2+024740.4 149.755 2.794 0.501 0.406 0.327
XMMXCS J100141.6+022538.8 150.424 2.427 0.124 0.509 0.424
XMMXCS J095737.1+023428.9 149.405 2.575 0.373 0.741 1.716
XMMXCS J022156.8-054521.9 35.487 -5.756 0.259 0.544 0.595
XMMXCS J022148.1-034608.0 35.45 -3.769 0.432 0.873 3.001
XMMXCS J022530.8-041421.1 36.378 -4.239 0.143 0.568 0.602
XMMXCS J100047.3+013927.8 150.197 1.658 0.221 0.73 1.382
XMMXCS J022726.5-043207.1 36.861 -4.535 0.308 0.716 1.438
XMMXCS J022524.8-044043.4 36.353 -4.679 0.264 0.626 0.917
XMMXCS J095951.2+014045.8 149.963 1.679 0.372 0.557 0.734
XMMXCS J022401.9-050528.4 36.008 -5.091 0.324 0.515 0.544
XMMXCS J095924.7+014614.1 149.853 1.77 0.124 0.472 0.339

3.4.2 CAMIRA Sample

The CAMIRA catalogue does not directly provide cluster mass or size information.
Instead, the catalog provides richness values derived for each cluster, which can be
used to estimate M200. In applying CAMIRA to a mock galaxy catalog – constructed
for testing purposes – Oguri et al. (2018) fit a power-law to the median values of M200 as
a function of the respective CAMIRA-computed richness values (see their Figure 13).
They found that

⟨log(M|N)⟩ = aM log
(

N
30

)
+ bM, (3.1)

where ⟨log(M|N)⟩ is the median mass-richness relation, which we assume to be equiva-
lent to log(M200), aM and bM are fitting parameters with best-fit values of 1.31 and 13.89
respectively, and N is the ‘mask-corrected richness’ (as defined in Oguri, 2014) com-
puted by the CAMIRA algorithm. The authors noted a scatter of σlog M = 0.19 on this
relation. We then calculate the concentration parameter, defined in Neto et al. (2007) as

c200 = 4.67(M200/1014h−1M⊙)−0.11, (3.2)
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and use this to calculate the value for R500, assuming that the halo is relaxed and can
be described by the Navarro-Frenk-White (NFW; Navarro et al., 1996, 1997) profile.
With our estimates for R500, we downloaded cutout images of all 248 S20a CAMIRA
Deep-layer clusters using HSC’s DAS cutout tool, with every image being 3R500 on
each side.

The initial sample of galaxy clusters covered a redshift range of 0.1 < z < 1.2 – we
began by limiting the sample to z < 0.8, which gave 189 clusters. Further inspection of
the images led us to conclude that those with a richness less than ∼ 20 did not appear
as obvious cluster candidates, centred on a BCG surrounded by satellite galaxies. This
richness cut was also applied to the mock clusters that were used to fit the CAMIRA
mass-richness relation, derived by Oguri et al. (2018) (Equation 3.1). After applying
redshift and richness cuts, our sample reduced to 101 clusters.

A further 41 clusters were omitted due to poor data quality (e.g. edge of survey or too
many artefacts), too much star masking (particularly candidates with star masks that
overlap significantly with the BCG, see Section 3.5.1), too much excess flux from fore-
ground objects/potentially merging clusters or candidates that we are not fully confident
are truly clusters with ICL – this reduced the sample to 60. We then noticed that 6 of the
CAMIRA clusters were included already in the sample used by Furnell et al. (2021),
so we chose to eliminate these because we are more confident in the X-ray derived
parameters. Therefore, our CAMIRA sample contained 54 clusters in total, given in
Table 3.2. In Figure 3.2, we give the distribution of log M200

M⊙
for our final cluster sample,

which were calculated using Equation 3.1.

Table 3.2: The main parameters of the 54 CAMIRA-detected sample of clusters used
in this work. R500 values are estimated using the methodology outlined in Section 3.4.2.

CAMIRA-HSC ID α2000 δ2000 z R500 [Mpc] Richness, N

HSCJ021528-044041 33.868 -4.678 0.332 0.836 67.1
HSCJ021635-042812 34.145 -4.470 0.455 0.515 24.2
HSCJ021837-054025 34.655 -5.674 0.256 0.533 21.8
HSCJ021942-045231 34.923 -4.875 0.316 0.548 24.7
HSCJ022351-053640 35.960 -5.611 0.493 0.519 25.5
HSCJ022358-043505 35.992 -4.585 0.490 0.477 20.9
HSCJ022433-041419 36.139 -4.239 0.252 0.527 21.3
HSCJ022636-040410 36.649 -4.070 0.334 0.499 20.1
HSCJ022828-042608 37.116 -4.435 0.427 0.549 27.4
HSCJ022933-043948 37.388 -4.663 0.610 0.534 30.5
HSCJ023028-043349 37.616 -4.564 0.271 0.620 31.6
HSCJ095536+010310 148.898 1.053 0.451 0.585 32.5
HSCJ095606+023650 149.024 2.614 0.488 0.480 21.1
HSCJ095728+033956 149.366 3.665 0.169 0.628 29.7
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Table 3.2 – continued from previous page
CAMIRA-HSC ID α2000 δ2000 z R500 [Mpc] Richness, N

HSCJ095824+024916 149.600 2.821 0.341 0.519 22.1
HSCJ095918+033052 149.826 3.514 0.718 0.445 22.0
HSCJ100022+022328 150.091 2.391 0.218 0.693 39.1
HSCJ100252+031427 150.716 3.241 0.548 0.531 28.4
HSCJ100300+013152 150.750 1.531 0.695 0.482 26.0
HSCJ100452+025434 151.215 2.909 0.108 0.545 20.4
HSCJ100459+015442 151.246 1.912 0.209 0.553 22.9
HSCJ100532+023518 151.381 2.588 0.348 0.869 74.4
HSCJ160159+552418 240.496 55.405 0.406 0.609 34.3
HSCJ160434+551301 241.142 55.217 0.379 0.501 21.2
HSCJ160439+543137 241.164 54.527 0.257 0.989 93.1
HSCJ160508+545208 241.283 54.869 0.605 0.479 23.5
HSCJ160551+544727 241.461 54.791 0.261 0.614 30.6
HSCJ160600+545854 241.501 54.982 0.540 0.468 21.0
HSCJ160605+542841 241.520 54.478 0.778 0.525 34.4
HSCJ160633+535359 241.638 53.900 0.362 0.700 45.4
HSCJ160639+560806 241.663 56.135 0.789 0.497 30.5
HSCJ160903+534302 242.262 53.717 0.744 0.483 27.3
HSCJ161101+561748 242.752 56.297 0.296 0.608 30.9
HSCJ161112+553451 242.799 55.581 0.224 0.788 53.1
HSCJ161221+532107 243.087 53.352 0.174 0.578 24.6
HSCJ161225+555438 243.103 55.910 0.274 0.686 40.1
HSCJ161249+540837 243.206 54.144 0.161 0.607 27.3
HSCJ161317+560119 243.323 56.022 0.494 0.481 21.4
HSCJ161412+554132 243.550 55.692 0.254 0.527 21.2
HSCJ161415+544328 243.564 54.725 0.338 0.787 58.5
HSCJ161434+542551 243.643 54.431 0.233 0.646 33.6
HSCJ161634+553955 244.143 55.665 0.253 0.669 37.0
HSCJ161704+545025 244.268 54.840 0.429 0.486 20.6
HSCJ161826+542543 244.608 54.428 0.544 0.481 22.4
HSCJ161834+551751 244.642 55.297 0.260 0.664 36.7
HSCJ161915+551341 244.811 55.228 0.353 0.537 24.3
HSCJ161925+551436 244.853 55.243 0.672 0.538 32.8
HSCJ232209-012057 350.537 -1.349 0.352 0.578 28.8
HSCJ232540-001112 351.418 -0.187 0.571 0.464 21.2
HSCJ232732+005634 351.883 0.943 0.256 0.764 50.8
HSCJ233015-011940 352.564 -1.328 0.508 0.521 26.1
HSCJ233031+003810 352.629 0.636 0.260 0.581 26.9
HSCJ233128+003654 352.867 0.615 0.260 0.621 31.3
HSCJ233328-000122 353.366 -0.023 0.503 0.502 23.9
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Figure 3.2: Distribution of the log M200
M⊙

values of our final sample of 54 CAMIRA-
detected clusters.

3.5 Method

3.5.1 Masking

We apply four mask layers to the HSC i-band science images, such that the remaining
flux is that of the ICL with as little contamination from artefacts, stars and cluster/field
galaxies as possible. The layers are outlined below.

1. HSC Mask: The first mask layer aims to identify regions in the image that have
been affected by bad/saturated pixels and stars. Although this information is con-
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tained within the mask image generated by the HSC pipeline, we only utilize the
binary masks corresponding to bad/saturated pixels.

We do not use binary masks corresponding to stars from the HSC pipeline because
many of these are larger than necessary, resulting in a potentially diminishing ICL
signal. The purpose of these HSC star masks is to account for dip features, present
after local sky subtraction, which exhibit areas of over-subtraction around stars.
Therefore, the HSC pipeline automatically applies a mask of radius 0.011111◦ to
all stars fainter than 10mag.

Because we use images in an intermediate stage before local sky subtraction and
after global sky subtraction, we construct our own masks using the parameters in
the HSC PDR3 bright object mask catalog3, with the dip features removed. We
also double the size of each star mask as the halo wings often remain visible.
Clusters that have star masks which overlap with more than 50% of a 50kpc re-
gion surrounding the BCG are automatically discarded from the sample, as these
mask too much of the highest signal regions of the ICL, making analysis inac-
curate. Figure 3.3 shows the cluster XMMXCS J022456.1-050802.0 before and
after the HSC mask is applied.

Figure 3.3: XMMXCS J022456.1-050802.0, from the sample in Table 3.1, before and
after the HSC mask is applied. This constitutes the first mask layer, removing any bright
stars in the image that would skew measurements of the ICL. The images are 370′′ on
a side.

2. 3σ Object Detection Mask: We then run object detection on the image with
a 3σ detection threshold using photutils. Groups of pixels which exceed the

3https://hsc-release.mtk.nao.ac.jp/archive/filetree/pdr3_wide/deepCoadd/

BrightObjectMasks/. This link can only be viewed with HSC membership.
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Figure 3.4: Same as in Figure 3.3, before and after the source mask is applied to
the HSC-masked image. This constitutes the second mask layer, removing any bright,
unmasked sources in the image that would skew measurements of the ICL. The images
are 370′′ on a side. In the right-hand panel, a dashed, white rectangle is shown – this
corresponds to the region in Figure 3.5.

3σ threshold and have a connectivity greater than 6 are assigned to a source,
ultimately leading to a segmentation image. We use the segmentation image to
mask pixels that belong to sources. We omit the BCG from the mask, as this is
handled by the surface brightness threshold mask. Figure 3.4 shows the cluster in
Figure 3.3 after applying the second mask layer.

3. Faint Object Detection Mask: Intracluster globular clusters (ICGCs) tend to be
concentrated in the core regions of galaxy clusters (e.g. Blakeslee, 1999; Longo-
bardi et al., 2018; Lee et al., 2022). These, along with other faint dwarf satellites,
can remain undetected in the previous mask layer because their flux peaks are
swamped by the ICL. Therefore, to reveal and detect these peaks, we first per-
form a harsh background subtraction across the image (using a mesh size of 50
pixels) and then run source detection with a slightly lower 2σ threshold. The
segmentation image array is used for the mask again and we make sure to omit
repeated detections from the previous mask (as well as the BCG) – this is so
that bright central galaxies are not overly-masked, which would diminish the ICL
signal. The result of applying this mask layer is shown in Figure 3.5.
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Figure 3.5: Same as in Figure 3.3 and Figure 3.4, before and after the faint source mask
is applied. This constitutes the third mask layer, removing any faint, unmasked sources
in the image, near to the BCG, that would skew measurements of the ICL. Note that in
this image we have zoomed in to a region to the right of the BCG, to show more clearly
that sources hidden by the bright regions of the ICL are being picked up and masked.
These images correspond to a size of 15′′ × 30′′, and the region of this cutout is shown
as the white dashed rectangle in Figure 3.4.
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4. Isophotal Threshold Mask: The final layer of the mask is defined by a surface
brightness threshold of µB,rest = 25mag arcsec−2 (as in Burke et al. 2015 and
Furnell et al. 2021). Below this value, we assume that the flux is from the ICL.
Since we are working with i-band data, we convert the restframe B-band limit to
an observed i-band surface brightness using Eq. 6 in Furnell et al. (2021):

µi,obs = µB,rest + 2.5 log10(1 + z)4 + ki,B(z), (3.3)

where µi,obs is the limit at which we observe µB,rest, 2.5 log10(1 + z)4 is the bolo-
metric cosmological dimming term and ki,B(z) is the k-correction term. ki,B(z) is
computed as follows:

ki,B(z) = Mi,obs(z) − MB,rest(z), (3.4)

where Mi,obs(z) and MB,rest(z) are the pseudo-absolute magnitudes derived for each
respective waveband as a function of redshift. To calculate these, we utilize Ezgal
(Mancone & Gonzalez, 2012), assuming an old stellar population with a redshift
of formation of z f = 3, solar metallicity (Z⊙), and subsequent passive evolution
using the models of (Bruzual & Charlot, 2003) and a Chabrier IMF (Chabrier,
2003).

We perform source detection, as before, with µi,obs as the isophotal threshold. The
mask is created using the segmentation image, whereby all connected pixels that
are brighter than µi,obs at the position of the BCG are assigned to the BCG and
masked (every other detected source brighter than µi,obs is omitted from this mask
layer). In Figure 3.6 we show the cluster XMMXCS J022456.1-050802.0 without
and with the four mask layers applied. We note that a few small sources close to
the BCG do not get detected and masked, which is not the case for every cluster.
This will not affect ICL measurements because sigma-clipping will be used to
measure the ICL (see next section), which will omit flux peaks from the data. We
do still stress, however, the importance of masking to establish a more accurate
representation of the ICL-level, as sigma-clipping alone would struggle in cases
where there are many unmasked sources (in which case, the average statistics
may be based on the ‘source-level’ rather than the ICL-level). Furthermore, the
omission of masking would particularly harm the errors on the ICL flux profile.
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Figure 3.6: XMMXCS J022456.1-050802.0 before and after the full mask is applied,
zoomed in to a region of 100′′ on a side. While all the bright sources are clearly masked,
some small sources very close to the BCG in the brightest regions of the ICL remain
undetected. This is not an issue because sigma-clipping will be applied in measuring
the ICL, removing contamination by such small objects.

3.5.2 Measuring the ICL

We quantify the ICL flux as that remaining after applying an isophotal threshold and
masking out satellite galaxies, bad/saturated pixels and stars. We assume that the
isophotal limit defines the BCG/ICL boundary and we measure the ICL out to a dis-
tance of R500.

The ICL component of clusters tends to be strongly concentrated around the BCG (Mi-
hos et al., 2005; Arnaboldi et al., 2012), so we use this position as the basis for the ICL
centre. We measure the ICL in 200 nested elliptical annuli out to a semimajor axis of
R500. To estimate the axis ratio (q) and position angle (θ) of these annuli, we perform a
flux-weighted principal-component analysis (PCA) on unmasked pixels out to a radius
of 0.4R500 – we avoid going beyond this for the PCA as the ICL becomes much fainter,
so it will be noisier and more susceptible to contamination from any faint galaxy wings
that are not included in the mask. We begin by creating a column vector (w) of the
normalised pixel values as

w =
(
f
)⊺∑

i, j
fi, j

, (3.5)

where f is a row vector containing the pixel values and fi, j is the value of pixel (i,j);
note that measurements are done only using the pixels remaining after masking. We
then compute the weighted covariance matrix of the pixel position vectors with respect
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to the centre of the ICL (taken to be the position of the BCG), X, as

cov(X) =
(X)⊺w · X∑

w −
∑

w2∑
w

. (3.6)

The eigenvalues (λa,b) and eigenvectors (a, b) are found by eigenvalue decomposition
of cov(X), giving information about the semimajor and semiminor axes that best fit the
flux-weighted unmasked pixel data. The axis ratio of an ellipse which best fits the data
is found by taking the ratio of the square rooted eigenvalues for the semiminor (λb) and
semimajor (λa) axis respectively, i.e.

q =

√
λb

λa
. (3.7)

The corresponding position angle is found by computing the arc-tangent of the semi-
major axis eigenvector:

θ = arctan(b). (3.8)

Figure 3.7 shows the cluster XMMXCS J022456.1-050802.0 bounded by the ellipse
defined by Equations 3.7 and 3.8 and a semi-major axis of R500. This represents the
outermost point where measurements of the ICL are made, with inner nested elliptical
annuli defined by the same shape parameters.
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Figure 3.7: XMMXCS J022456.1-050802.0 with an ellipse overlaid, that is defined by
the parameters calculated by PCA in Equations 3.7 and 3.8. The semi-major axis is
equal to R500. The image is 370′′ on a side.

For each annulus, k, we take the 3σ sigma-clipped mean value of the pixels ( f̄k) as the
flux of the ICL at that radius. Note that we also considered using the median value,
which would be more robust to the shortcomings in the masking, but would have a
larger error than the mean by a factor of ∼

√
2. Furthermore, using the median assumes

that the true ICL surface brightness is constant within each annulus. However, the ICL
may be expected to show some azimuthal structures, e.g. streams and shells, on top
of the smooth distribution. Using the mean, albeit with some clipping, will include
more of the flux from such ICL structures than would the median. The mean fluxes
are converted to the equivalent surface brightness values, with errors derived from the
standard error on f̄k as follows:

ek =
σk
√

Nk
, (3.9)

where σk is the standard deviation of the unmasked pixel values in annulus k and Nk is
the number of unmasked pixels in annulus k. We then calculate the total ICL flux via
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the following equation:
fICL =

∑
k

Nk,tot f̄k, (3.10)

where Nk,tot is the total number of pixels in annulus k. Likewise, the total error on fICL

is found by the following:

eICL =

√∑
k

(Nk,totαk)2. (3.11)

3.5.3 Estimating the Total Flux of Cluster Galaxies

In order to determine the ICL fraction, not only is the ICL flux required, but also the total
flux of the galaxies in the cluster. Ideally, one would identify which galaxies are cluster
members, but this is uncertain. Instead, we exclude galaxies that are unlikely to be
cluster members, and then calibrate a statistical correction to remove the contributions
of remaining non-members. We begin by obtaining source catalogs for each of the
four HSC deep fields out to a redshift of z = 1.6. We also assert z > 0.01 to omit
stars from the catalogs. For every source, these catalogues contain the: position (RA,
dec), i-band Kron magnitude (Kron, 1980), photometric redshift (photo-z) and (where
available) spectroscopic redshift (spec-z). The photo-zs are computed via DEmP (Hsieh
& Yee, 2014). The spec-zs originate from the works of several previous authors - these
are listed as follows: Lilly et al. (2009); Bradshaw et al. (2013); McLure et al. (2013);
Skelton et al. (2014); Momcheva et al. (2016); Silverman et al. (2015); Le Fèvre et al.
(2013); Garilli et al. (2014); Ahumada et al. (2020); Pâris et al. (2018); Liske et al.
(2015); Drinkwater et al. (2010); Davis et al. (2003); Newman et al. (2013); Cooper
et al. (2011, 2012); Coil et al. (2011); Cool et al. (2013); Colless et al. (2003); Jones
et al. (2004, 2009); Masters et al. (2017, 2019); Hasinger et al. (2018); Straatman et al.
(2018); Pentericci et al. (2018).

Figure 3.8 shows the position on the sky for each object contained within the deep field
catalogs, separated out by photo-z-only or spec-z candidates. While the XMMLSS field
appears to have a reasonable coverage of spec-zs, apart from the northern-most region,
the other three fields are much more sparse (particularly ELAISN1). The spec-z objects
in the COSMOS field are most strongly concentrated in the central-south east region;
in the DEEP23 field they are more concentrated in the north region. In Figure 3.9, the
redshift distribution for each deep field is plotted for the photo-z and spec-z candidates.
It is evident that there are far fewer spec-z objects than photo-z objects across the four
fields, meaning that a large proportion of members for every cluster will be designated
based on photometric data. Due to the uncertain nature of photometric measurements,
each cluster will potentially contain contaminant members, thus impacting estimates of
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Figure 3.8: Objects from each of the four HSC deep field catalogs out to z = 1.6. The
magenta data points are objects that only have photometric redshifts, while the yellow
data points are objects that have spectroscopic redshifts.

Figure 3.9: Redshift distributions of photometric (magenta) and spectroscopic (yellow)
candidates for each deep field, plotted separately due to the small amount of spec-zs
compared with photo-zs. Each bin is equivalent to ∆z = 0.02. Note the different vertical
scales.
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total cluster galaxy flux. To minimise this, we apply a ‘background correction’ after
assigning membership to objects (discussed later in this section).

Spectroscopic redshifts are typically more accurate than the cluster velocity dispersion,
so the latter can be used to determine membership. On the other hand, the uncertainties
on photo-zs are significantly larger than the cluster velocity dispersion, so we can only
determine potential cluster members. For objects with spectroscopic redshifts (zspec), we
attribute membership to those with spec-zs which fall within a 3σv slice of the cluster
redshift (zcl), where σv is the velocity dispersion relative to the cluster. We adopt a
value of 3σv = 3000kms−1 for each cluster, which is towards the upper limit of that
typical of galaxy clusters (Struble & Rood, 1999). The redshift slice relative to zcl that
corresponds to this velocity dispersion is given by

∆zcl =
3σv

c
(1 + zcl), (3.12)

where c is the speed of light. Therefore, membership is assigned to all objects contained
within an aperture of R500 that satisfy |zcl − zspec| ≤ ∆zcl. This provides us with a catalog
of Nspec,cl member galaxies for each cluster.

In the case of objects with photo-zs, we use the typical error on each measurement
(σphot) to identify candidate cluster members, since this tends to be much larger than
∆zcl. Within the redshift range 0.2 ≤ zphot ≤ 1.5, the typical error on the photo-zs is
σphot ∼ 0.05 (Tanaka et al., 2018). We take ∆zphot to be equivalent to a 3σphot spread on
each measurement of zphot, i.e.

∆zphot = 3σphot(1 + zphot). (3.13)

Thus, the membership condition in this case is that |zcl − zphot| ≤ ∆zphot within an aper-
ture of R500, providing us with a catalog of Nphot,cl candidate member galaxies for each
cluster.

‘Contaminant’ foreground and background galaxies may also be assigned as candidate
cluster members. To account for this, we estimate the contribution from these con-
taminant galaxies by placing n R500-sized apertures (we choose n = 4000, sufficient
to accurately estimate the average contamination and its standard deviation) at random
positions across the entire field to which that cluster belongs. For each aperture, we
count how many galaxies have photo-zs that would satisfy the membership condition
for a cluster at z = zcl. We therefore obtain a distribution for the number (Nbg) of photo-
z candidate members in the absence of a cluster. From this distribution we estimate a
mean of N̄bg and standard deviation σN,bg. Figure 3.10 shows the distribution of Nbg for
one cluster.
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Figure 3.10: The distribution of galaxies that satisfy the photometric membership cri-
teria for XMMXCS J022456.1-050802.0 in the field. The mean membership of this
distribution is N̄bg ∼ 100 galaxies.

While we count all galaxies in the random apertures, we only counted those without
spec-zs in the cluster aperture, meaning that if we did not adjust our background es-
timate, it would represent a larger correction than what is needed. Therefore, to ac-
count for this we scale-down our estimates of N̄bg and σN,bg by multiplying them by
cN =

Nphot,cl

Nphot,cl(A∨B) , where Nphot,cl(A∨ B) is the number of galaxies with zphot which satisfies
the photometric membership criterion either without spectroscopic data (A) or having
spectroscopic data that does not meet the spectroscopic membership criterion (B). With
that, the corrected value for number of photometric cluster members is given by

N∗phot,cl = Nphot,cl − N̄bgcN . (3.14)
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We then take the sum of the i-band fluxes of the photo-z cluster members ( fphot,cl) and
correct for the excess background flux with the following equation:

f N−corr
phot,cl =

(N∗phot,cl

Nphot,cl

)
fphot,cl. (3.15)

The error on f N−corr
phot,cl is calculated as

eN−corr
phot,cl =

(
σN,bgcN

Nphot,cl

)
fphot,cl. (3.16)

Equations 3.14–3.16 assume that the average flux of the contaminant galaxies is the
same as that of the true photo-z cluster members, which may not always hold true.
Instead of simply counting the number of candidate cluster members in each random
aperture, we sum their fluxes. From these we estimate the average contribution of con-
taminant galaxies to fphot,cl, and its error. Again, we must correct for the fact that spec-
troscopic non-members have been removed from the cluster aperture, but not the ran-
dom apertures. In this case, a scale factor of c f =

fphot,cl

fphot,cl(A∨B) is applied to the average flux
level ( ¯fbg) and standard deviation (σ f ,bg) across the n apertures, giving the following:

f f−corr
phot,cl = fphot,cl − ¯fbgc f , (3.17)

e f−corr
phot,cl = σ f ,bgc f . (3.18)

Figure 3.11 shows the distribution of fbg for XMMXCS J022456.1-050802.0.

Using the above, we calculate two ICL fractions, depending on whether we use the
membership-corrected photo-z member flux, f N−corr

phot,cl , or the flux-corrected photo-z mem-
ber flux, f f−corr

phot,cl - the latter should typically be less biased, but may be skewed by the
presence of very bright objects in some of the random apertures. This is given by:

ϕx−corr =
fICL

fICL + fgal
=

fICL

fICL + fspec,cl + f x−corr
phot,cl

, (3.19)

where fspec,cl is the total flux from spec-z cluster galaxies and x indicates either mem-
bership or flux-corrected cases. The error on ϕx−corr is calculated as follows:

ex−corr
ϕ = ϕx−corr

√√√√√√√( √(
ex−corr

phot,cl

)2
+ e2

ICL

fICL + fgal

)2

+

(
eICL

fICL

)2

. (3.20)
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Figure 3.11: The distribution of total galaxy fluxes within R500-sized apertures in
the field that satisfy the photometric membership criteria for XMMXCS J022456.1-
050802.0. The mean flux of this distribution is ¯fbg ∼ 100000 counts.

We find that, after scaling, typically (42.5 ± 1.4)% of photo-z candidate members are
designated as genuine cluster members. We also find that the uncertainty on the total
galaxy flux (originating from the photo-z measurements) dominates the ultimate ICL
fraction uncertainty, as opposed to the uncertainty on the ICL measurement.

3.6 Results

3.6.1 The XCS Sample and Comparison to Furnell et al. (2021)

For each cluster, we generate an observed i-band surface brightness profile of the ICL
using the 3σ sigma-clipped mean values of the unmasked pixels in elliptical annuli ( f̄k),
going out to R500. Figure 3.12 shows the profile we obtained for the cluster XMMXCS
J022456.1-050802.0; in this plot, along with some of the input parameters listed in

54



3.6. RESULTS

Table 3.1, we include the main parameters output by our analysis: the ICL fractions in
both corrected cases, the total flux (in counts) of the galaxies in both corrected cases and
the total flux (in counts) of the ICL. The ICL flux corresponds to an i-band magnitude
of Mi = −22.3, which was obtained using the conversion

Mi = −2.5 log10(F) + mzp − 5 log10

(
d
10

)
, (3.21)

where F is the flux of the ICL in counts, mzp = 27.0 is the zeropoint magnitude of HSC
and d is the comoving distance to the cluster. The plots for the rest of the clusters in
the sample can be seen in Figure A.1. Figure 3.12 demonstrates that the ICL is most
strongly concentrated around the BCG, where it has the highest surface brightness,
and decreases radially until it becomes indistinguishable from the residual background
noise. In elliptical annuli, containing typically ∼1000 pixels, the surface brightness
values are reaching below 28mag arcsec−2. For this cluster, we measure a convincing
ICL profile out to around 0.5R500, which is around 160kpc along the semimajor axis.
It is worth reiterating here that we do not consider anything brighter than µB,rest =

25mag arcsec−2 to be ICL, which is equivalent to µi,obs = 23.8mag arcsec−2. The BCG
is the masked object at the centre of Figure 3.12 and it extends to a radius of around
20kpc, meaning that we measure the ICL to around 10× that of the BCG - this range
is similar to that in Furnell et al. (2021). Although we do not analyse the ICL profiles
further in this work, we hope to use them to quantify the extent of the ICL in future
work.
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Figure 3.12: The observed-frame i-band surface brightness profile of the ICL com-
puted for the cluster XMMXCS J022456.1-050802.0 (left) alongside the respective
fully masked image (right), which was created using the methodology set out in Sec-
tion 3.5.1 – the image is 370′′ on a side. On the surface brightness plot we have included
relevant input and output parameters of our analysis, with r being the semi-major axis of
the elliptical annuli, and on the image we have overlaid a yellow ellipse which extends
to R500, with the shape parameters calculated using the methodology in Section 3.5.2.

We measure a statistically significant ICL fraction in every cluster, with a signifi-
cance of >3σ, and typically ∼5σ. For these massive X-ray clusters, we find an av-
erage N-corrected(F-corrected) ICL fraction of 0.23(0.22), with a standard deviation of
0.08(0.09). These values are very similar to the average ICL fraction of 0.24 found by
Furnell et al. (2021), who used the same sample of clusters. Table 3.3 shows the main
results of this work for the XCS sample of clusters. We compare our corrected ICL
fractions those of Furnell et al. (2021) in Figure 3.13. We find that, although the mean
and scatter of our ICL fractions aligns nicely with the work of Furnell et al. (2021),
there are significant differences between the measurements for individual clusters. We
discuss this further in Section 3.7. In Figure 3.14 and Figure 3.15, we plot the corrected
ICL fractions as a function of redshift and M500 respectively. We also include the results
from Furnell et al. (2021) on these plots.

We performed Spearman’s Rank analysis to check if any correlation exists in either
case, using Pingouin (Vallat, 2018). Here, we take p-values less than 5% as evidence
of a correlation, which corresponds to values less than log10(pS ) = −1.3. For Fig-
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ure 3.14, we obtained a Spearman’s rank correlation coefficient of rS = 0.095 and a
corresponding p-value of log10(pS ) = −0.15 in both corrected cases, indicating that
there is no obvious correlation between ICL fraction and redshift. This is in disagree-
ment with Furnell et al. (2021), who found a strong anti-correlation with rS = −0.79 and
log10(pS ) = −4.02. We then computed the partial Spearman coefficients, controlling for
cluster mass, but there was still no correlation (rS = 0.053 and log10(pS ) = −0.075 in
the N-corrected case and rS = −0.018 and log10(pS ) = −0.024 in the F-corrected case
– the partial coefficients in Furnell et al. 2021 still showed strong anti-correlation). We
carried out the same calculations on Figure 3.15 and obtained Spearman coefficients of
rS = 0.10(0.24) and log10(pS ) = −0.17(−0.46) in the N-corrected(F-corrected) case,
indicating a lack of correlation between ICL fraction and cluster mass. This is in agree-
ment with what Furnell et al. (2021) found. When controlling for redshift, the partial
Spearman coefficients still translate to a lack of correlation between cluster mass and
ICL fraction (rS = 0.068 and log10(pS ) = −0.10 in the N-corrected case and rS = 0.22
and log10(pS ) = −0.40 in the F-corrected case). The implications of what we have
found here are discussed in Section 3.7.

Table 3.3: The main results for the XCS sample of clusters from this work. We have in-
cluded, for each cluster, the ICL fraction with no photometric contamination correction
(ϕuncorrected), the ICL fractions with photometric corrections set out in Equations 3.15
and 3.17 (ϕN−corr and ϕ f−corr respectively) and their respective errors (eN−corr

ϕ and e f−corr
ϕ ).

XCS ID ϕuncorrected ϕN−corr eN−corr
ϕ ϕ f−corr e f−corr

ϕ

XMMXCS J022456.1-050802.0 0.18 0.25 0.03 0.21 0.02
XMMXCS J161039.2+540604.0 0.12 0.18 0.02 0.18 0.03
XMMXCS J233137.8+000735.0 0.08 0.17 0.03 0.12 0.02
XMMXCS J232923.6-004854.7 0.18 0.30 0.03 0.37 0.10
XMMXCS J161134.1+541640.5 0.13 0.19 0.02 0.19 0.02
XMMXCS J095902.7+025544.9 0.10 0.16 0.02 0.20 0.07
XMMXCS J095901.2+024740.4 0.14 0.23 0.03 0.18 0.02
XMMXCS J100141.6+022538.8 0.12 0.16 0.01 0.16 0.02
XMMXCS J095737.1+023428.9 0.05 0.08 0.01 0.06 0.00
XMMXCS J022156.8-054521.9 0.17 0.26 0.03 0.25 0.04
XMMXCS J022148.1-034608.0 0.18 0.30 0.03 0.27 0.03
XMMXCS J022530.8-041421.1 0.19 0.31 0.04 0.32 0.08
XMMXCS J100047.3+013927.8 0.09 0.15 0.02 0.15 0.02
XMMXCS J022726.5-043207.1 0.24 0.44 0.08 0.40 0.09
XMMXCS J022524.8-044043.4 0.16 0.24 0.03 0.25 0.04
XMMXCS J095951.2+014045.8 0.18 0.26 0.02 0.25 0.04
XMMXCS J022401.9-050528.4 0.19 0.30 0.03 0.32 0.08
XMMXCS J095924.7+014614.1 0.10 0.15 0.01 0.16 0.03
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Figure 3.13: The residuals of the XCS sample ICL fractions derived from this work
subtracted from those from Furnell et al. (2021) for each cluster. We show the residuals
for the uncorrected case and for both corrected cases from this work. For the corrected
ICL fractions, we also give the linearly combined errors from both works (we note that
the errors given in Furnell et al. 2021 are unrealistically small). Most clusters have
nonzero residuals, even taking into account the combined errors.
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Figure 3.14: The ICL fraction of the XCS-Sample as a function of redshift in the N-
corrected case (left) and the F-corrected case (right). Also plotted are the results from
Furnell et al. (2021) (red stars). While the work of Furnell et al. (2021) shows a strong
anti-correlation between ICL fraction and redshift, no correlation is exhibited by the
results of this work.

Figure 3.15: The ICL fraction as a function of cluster mass (M500) in the N-corrected
case (left) and the F-corrected case (right). Also plotted are the results from Furnell
et al. (2021) (red stars). In both this work and Furnell et al. (2021), no correlation is
found between ICL fraction and cluster mass.
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3.6.2 The CAMIRA Sample

The ICL profiles of the CAMIRA-detected sample of clusters are given in Figure A.2,
which is formatted in the same way as in Figure A.1 but with richness provided instead
of M500. Using the R500 values derived in Section 3.4.2, we estimate the range in M500

values for the CAMIRA sample to be 0.473 < ( M500
M⊙
× 1014) < 3.367, corresponding to

a richness range of 20 < N < 93; this compares with the range in M500 values from
the XCS sample of 0.112 < ( M500

M⊙
× 1014) < 3.001. As with the XCS sample, we detect

ICL in every cluster. The average N-corrected(F-corrected) ICL fraction is found to be
0.25(0.24), with a standard deviation of 0.11(0.10). These values are extremely similar
to the average ICL fractions from the XCS sample. Note here that the scatter of the
ICL fractions is generally larger than the error bars on the individual measurements,
meaning that the total scatter is dominated by the differences in ICL fractions between
the clusters, rather than by their individual uncertainties. We give the main results of
the 54 CAMIRA clusters in Table 3.4.

When plotting the ICL fractions as a function of redshift (Figure 3.16), we find no cor-
relation between the two, with rS = 0.19(0.084) and log10(pS ) = −0.83(−0.28) in the
N-corrected(F-corrected) case. We also control for richness (as we assume this cor-
relates with M500) and perform partial Spearman analysis and find that there is still
no correlation (rS = 0.19(0.10) and log10(pS ) = −0.81(−0.37) in the N-corrected(F-
corrected) case). When combining the ICL fractions and their respective redshifts
with those of the XCS sample, the Spearman analysis produces rS = 0.17(0.084) and
log10(pS ) = −0.33(−0.87) in the N-corrected(F-corrected) case. We find an average
ICL fraction across both samples, for all redshifts, of ϕN = 0.25 and ϕF = 0.24, which
is in line with those found in previous studies (Jiménez-Teja et al., 2018; Kluge et al.,
2021; Ragusa et al., 2021; Furnell et al., 2021).

In Figure 3.17, we plot the ICL fractions of the CAMIRA-detected sample as a func-
tion of richness. We find that these do not correlate, with rS = −0.028(0.080) and
log10(pS ) = −0.081(−0.27) in the N-corrected(F-corrected) case. This conclusion
does not change when controlling for redshift, as partial Spearman’s analysis gives
rS = 0.014(0.10) and log10(pS ) = −0.037(−0.35) in the N-corrected(F-corrected) case.
If one assumes that cluster mass and richness are correlated, this agrees with what was
found in the XCS sample of clusters in Figure 3.15 and in Furnell et al. (2021).
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Table 3.4: The main results for the CAMIRA-detected sample of clusters from this
work. We have included, for each cluster, the ICL fraction with no photometric con-
tamination correction (ϕuncorrected), the ICL fractions with photometric corrections set
out in Equations 3.15 and 3.17 (ϕN−corr and ϕ f−corr respectively) and their respective er-
rors (eN−corr

ϕ and e f−corr
ϕ ).

CAMIRA-HSC ID ϕuncorrected ϕN−corr eN−corr
ϕ ϕ f−corr e f−corr

ϕ

HSCJ021528-044041 0.23 0.37 0.04 0.38 0.07
HSCJ021635-042812 0.07 0.08 0.01 0.08 0.01
HSCJ021837-054025 0.27 0.43 0.06 0.44 0.11
HSCJ021942-045231 0.25 0.33 0.02 0.40 0.08
HSCJ022351-053640 0.14 0.20 0.02 0.18 0.02
HSCJ022358-043505 0.12 0.16 0.01 0.15 0.02
HSCJ022433-041419 0.11 0.15 0.01 0.14 0.02
HSCJ022636-040410 0.30 0.43 0.06 0.44 0.09
HSCJ022828-042608 0.09 0.13 0.01 0.13 0.02
HSCJ022933-043948 0.15 0.33 0.06 0.23 0.04
HSCJ023028-043349 0.16 0.33 0.07 0.26 0.05
HSCJ095536+010310 0.18 0.28 0.03 0.26 0.04
HSCJ095606+023650 0.15 0.24 0.02 0.22 0.04
HSCJ095728+033956 0.17 0.35 0.07 0.39 0.15
HSCJ095824+024916 0.16 0.22 0.02 0.21 0.02
HSCJ095918+033052 0.12 0.23 0.05 0.16 0.03
HSCJ100022+022328 0.07 0.10 0.01 0.10 0.02
HSCJ100252+031427 0.14 0.25 0.03 0.27 0.08
HSCJ100300+013152 0.21 0.37 0.06 0.31 0.05
HSCJ100452+025434 0.12 0.19 0.02 0.19 0.03
HSCJ100459+015442 0.13 0.60 0.39 0.29 0.12
HSCJ100532+023518 0.15 0.25 0.03 0.26 0.06
HSCJ160159+552418 0.16 0.32 0.06 0.30 0.08
HSCJ160434+551301 0.10 0.20 0.04 0.20 0.07
HSCJ160439+543137 0.14 0.24 0.03 0.27 0.05
HSCJ160508+545208 0.15 0.31 0.05 0.40 0.21
HSCJ160551+544727 0.10 0.17 0.03 0.14 0.02
HSCJ160600+545854 0.09 0.18 0.03 0.18 0.06
HSCJ160605+542841 0.17 0.29 0.03 0.33 0.11
HSCJ160633+535359 0.10 0.22 0.04 0.18 0.04
HSCJ160639+560806 0.23 0.36 0.03 0.42 0.12
HSCJ160903+534302 0.23 0.43 0.07 0.58 0.31
HSCJ161101+561748 0.07 0.12 0.02 0.20 0.09
HSCJ161112+553451 0.10 0.16 0.02 0.16 0.02
HSCJ161221+532107 0.09 0.33 0.14 0.22 0.08
HSCJ161225+555438 0.07 0.14 0.03 0.15 0.05
HSCJ161249+540837 0.10 0.21 0.04 0.19 0.04
HSCJ161317+560119 0.12 0.19 0.02 0.19 0.04
HSCJ161412+554132 0.08 0.16 0.03 0.14 0.04
HSCJ161415+544328 0.13 0.18 0.02 0.20 0.03
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Table 3.4 – continued from previous page
CAMIRA-HSC ID ϕuncorrected ϕN−corr eN−corr

ϕ ϕ f−corr e f−corr
ϕ

HSCJ161434+542551 0.08 0.13 0.01 0.13 0.02
HSCJ161634+553955 0.16 0.31 0.05 0.34 0.10
HSCJ161704+545025 0.08 0.16 0.03 0.14 0.04
HSCJ161826+542543 0.11 0.22 0.04 0.19 0.05
HSCJ161834+551751 0.10 0.17 0.02 0.17 0.03
HSCJ161915+551341 0.13 0.24 0.04 0.20 0.04
HSCJ161925+551436 0.14 0.26 0.03 0.23 0.05
HSCJ232209-012057 0.17 0.29 0.05 0.26 0.05
HSCJ232540-001112 0.09 0.17 0.03 0.13 0.02
HSCJ232732+005634 0.13 0.25 0.04 0.30 0.10
HSCJ233015-011940 0.13 0.19 0.02 0.17 0.02
HSCJ233031+003810 0.08 0.22 0.06 0.22 0.11
HSCJ233128+003654 0.23 0.34 0.03 0.37 0.07
HSCJ233328-000122 0.21 0.36 0.05 0.40 0.13

Figure 3.16: The ICL fraction of the CAMIRA-detected sample as a function of red-
shift in the N-corrected case (left) and the F-corrected case (right). As in Figure 3.14,
no correlation is exhibited by the results of this work.
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Figure 3.17: The ICL fraction of the CAMIRA-detected sample as a function of rich-
ness in the N-corrected case (left) and the F-corrected case (right). No correlation is
exhibited in either case; if one assumes richness as a cluster mass proxy, this is in line
with Figure 3.15 and the work of Furnell et al. (2021).

3.7 Discussion and Future Work

3.7.1 No Correlation Between ICL Fraction and z

In this work, we have measured convincing ICL profiles for many massive clusters
(see Appendix A). Also, we have measured average membership-corrected and flux-
corrected ICL fractions of 0.25 and 0.24, respectively, for 72 massive clusters across
a redshift range of 0.1 ≤ z ≤ 0.8, which agrees with those found in previous works
(Jiménez-Teja et al., 2018; Kluge et al., 2021; Ragusa et al., 2021; Furnell et al., 2021).

We find no correlation between the ICL fraction and redshift (Figures 3.14 and 3.16),
and our results for the XCS sample disagree with those of Furnell et al. (2021) (Fig-
ure 3.13). Theoretical works tend to associate higher ICL fractions with more dynam-
ically evolved clusters, with the ICL being rapidly formed since redshift z = 1 (Martel
et al., 2012; Contini et al., 2014; Murante et al., 2007). These support the idea that the
ICL is formed mainly due to stellar stripping/destruction of galaxies from mergers both
onto the BCG and between intermediate-sized satellites. However, these works adopt
methods that are not observationally feasible (e.g. tracking the binding energies of stars
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in cosmological simulations Murante et al., 2007), and so the observational results are
less clear-cut as they use slightly varying definitions of the ICL.

There is disagreement in the literature as to whether the ICL shows significant growth
in the redshift range covered in this work. One perspective from observational studies
is that the bulk of the ICL is rapidly formed during the period z = 1 to present day.
For example DeMaio et al. (2020) measured the ICL+BCG light of 42 clusters in the
redshift range z = 0.05 to z = 1.75 and found that, for a fixed mass, the BCG+ICL
flux grew within a physical radius of 100kpc by a factor of ∼2 between 0.4 ≲ z ≲ 1.5.
However, below z ∼ 0.4, they found no evidence for evolution. Here the authors de-
fined the ICL as the residual light left over after masking all sources, with the masks
defined by their SExtractor-constructed catalog semimajor and semiminor axis val-
ues beyond 7 arcseconds of the BCG, and by eye within 7 arcseconds of the BCG.
Burke et al. (2015) used a sample of CLASH clusters to measure the ICL contribution
over the redshift range 0.18 ≤ z ≤ 0.90, by applying a surface brightness threshold
of 25mag arcsec−2 in the B-band to define the ICL. They found that the ICL exhibited
a growth by a factor of 4-5 in this redshift range. Furnell et al. (2021) used a similar
method to measure the ICL of 18 XCS clusters in the redshift range 0.1 ≤ z ≤ 0.5, using
HSC i-band data, but had to modify their approach to tailor for the harsh background
subtraction in divot corrections. The authors found a similar growth rate in the ICL
fraction (2-4) in this redshift range, but noted that they found typically higher ICL frac-
tions with redshift. They attributed their deviations to observational effects associated
with differing k-corrections (Furnell et al. 2021 used data from a redder observational
bandpass) and PSF sizes (Burke et al. 2015 used space-based data while HSC data is
from ground-based observations).

On the other hand, other observational studies have found only a mild correlation, if
any, between ICL fraction and redshift. Montes & Trujillo (2014) measured the ICL
in 6 Hubble Frontier Fields galaxy clusters in the redshift range 0.3 < z < 0.6. They
used a surface brightness threshold of 26mag arcsec−2 in the V-band to define the ICL
contribution, and found no clear correlation to the ICL growth with time. The same
conclusion was reached by Guennou et al. (2012), who isolated the ICL of 10 HST
ACS clusters in the redshift range 0.4 < z < 0.8 in two bandpasses (HST/ACS F814W-
band and VLT/FORS2 V-band). In this case, wavelet analysis was adopted, which is
capable of separating large-scale (ICL) features from small-scale (sources) features.
More recently, Golden-Marx et al. (2023) found a lack of evidence for evolution in the
stellar mass of the ICL in massive clusters, over a redshift range of 0.2 ≤ z ≤ 0.8.
The authors used masking based on surface brightness thresholds to isolate the ICL, for
their sample of DES-ACT clusters. These results are more consistent with the results
presented in Figures 3.14 and 3.16; however, because of the various definitions used
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to measure the ICL, along with all the observational considerations in each work, it is
difficult to make direct comparisons and it is also impossible to say whether any one
work is more credible than the rest. The disagreement in the literature highlights the
need for a well-calibrated, deep survey of large numbers of clusters across a wide range
of mass and redshift. This is exactly what Euclid will provide, and so follow-on work
from Chapter 2 will offer a basis for a more accurate representation of the ICL in future
studies.

Figure 3.13 shows that, prior to correction, our ICL fractions tend to be lower than those
estimated in Furnell et al. (2021) (top plot in Figure 3.13). This suggests a systematic
bias that propagates between the two works: it is quite possible that the divot correc-
tions are over-estimating the flux lost from HSC PDR1’s data processing pipeline. Even
still, after we perform our correction to account for potential contaminant photometric
galaxies in our cluster galaxy flux estimates, there does not appear to be a clear offset
in our resultant ICL fractions and those from Furnell et al. (2021) (bottom two plots in
Figure 3.13). If Furnell et al. (2021) used a similar way of assigning cluster membership
to each galaxy as in this work, but did not make the corrections as done in this work,
each cluster will have been subject to different levels of contamination, hence the incon-
sistently different ICL fractions. In order to make better comparisons between the two
works, the ICL flux contribution, the cluster galaxy contribution and the constructed
cluster-member source catalogs from Furnell et al. (2021) would be needed. Looking
at the images in Figure 5 of Furnell et al. (2021) and in Figure A.1 of this work, it is
difficult to ascertain whether the strength of masking is a factor in the discrepancies,
since the former resembles a zoomed in (0.4R500) version of each masked cluster. The
BCG masks appears to be larger in the work of Furnell et al. (2021) - this may be due to
the fact that we explicitly defined the BCG/ICL boundary by the i-band surface bright-
ness threshold, instead of performing source detection and fitting the BCG as a Sérsic
(Sérsic, 1963) or de Vaucouleurs profile, or designating the central 50kpc to the BCG
(the authors used all three of these approaches to define the BCG).

3.7.2 No Correlation Between ICL Fraction and M500/Richness

Figures 3.15 and 3.17 suggest a lack of a correlation between ICL fraction and cluster
mass or richness respectively. From a theoretical standpoint, there is no clear agreement
on whether a correlation should exist or not, for example: Murante et al. (2007) found
that the fraction of the diffuse stellar component (i.e. the ICL) grew with increasing
cluster mass in cosmological hydrodynamical simulations; Contini et al. (2014), on the
other hand, found no correlation between ICL fraction and cluster mass in their simu-
lations; Cui et al. (2014) even found that the ICL fraction exhibited an anti-correlation

65



3.8. SUMMARY OF CHAPTER

with cluster mass. Many other theoretical works report a variety of findings (e.g. Purcell
et al., 2007; Lin & Mohr, 2004; Dolag et al., 2010; Henriques & Thomas, 2010).

Observationally, most studies find there to be no correlation between ICL fraction and
cluster mass or richness. Zibetti et al. (2005), for example, used data from SDSS-DR1
and found that, while the surface brightness of the ICL was higher in richer clusters
between z = 2 and z = 3, the ICL fraction was insensitive to cluster richness. Sampaio-
Santos et al. (2021) also found that the ICL fraction did not correlate with cluster mass
in their sample of 528 DES clusters between z = 0.2 and z = 0.35. The same lack of
correlation has been found by Furnell et al. (2021), which agrees with the results of this
work (although the ICL fractions do not agree with each other in most cases). Although
one might think that more massive halos give higher ICL fractions, it is actually the
concentration (i.e. number of galaxies/mass of galaxies within a given radius) which is
more important: in more concentrated clusters, the tidal interactions between galaxies
are stronger and so there is much more stellar stripping (this has been demonstrated
in simulations by Contini et al., 2014, see their Figure 3). This is why many studies
of groups of galaxies reveal intragroup light (IGL) fractions that are comparable to
ICL fractions of massive halos (e.g. Raj et al., 2020; Spavone et al., 2020; Ragusa
et al., 2021). Therefore, it would make sense that any future studies should adopt a
concentration parameter for groups/clusters when probing the ICL fraction dependence
on cluster properties.

3.7.3 Future Work

At this moment of writing, we have two further analyses in mind that would make this
study of the ICL more complete. One extension to this work is that we would like to
repeat the process in different bands to compare the results and study colours (overall
and gradients). Another analysis we would like to do is to fit the ICL radial profiles
(Figures A.1 and A.2). This would enable us to quantify the extent of the ICL. Clearly,
this would require that the clusters have detectable ICL, which, given the capability of
the most recent surveys at this time of writing, we would expect a limit of z ∼ 1.

3.8 Summary of Chapter

We have presented our measurements of the ICL from a sample of 72 galaxy clus-
ters in the redshift range 0.1 ≤ z ≤ 0.8, which were taken from a combination of:
the XCS sample of 18 galaxy clusters used in Furnell et al. (2021); and a sample of
54 CAMIRA-detected galaxy clusters. We applied a method of masking and surface
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brightness thresholding to isolate the ICL in HSC i-band images, allowing us to cal-
culate their radial profiles, and we used spectroscopic and photometric data to assign
cluster membership to galaxies, in order to estimate the ICL contribution to the total
light of each cluster. We accounted for contaminant photometric cluster galaxies using a
prescribed correction technique, which gave membership-corrected and flux-corrected
photometric galaxy fluxes. We plotted our ICL fractions as functions of redshift and
virial mass/cluster richness and compared with other studies to conclude the following:

• The ICL fractions we computed for the XCS sample of clusters did not align with
those from Furnell et al. (2021), who used the same sample. We were unable
to come up with definitive answers as to why this may be, as we are not sure
how the authors assigned membership to cluster galaxies, or what the resultant
fluxes were. We suspect that our correction technique, accounting for contami-
nant photometric galaxies, coupled with how we mask the central BCG in each
cluster may make the largest contribution to these discrepancies (in the latter case,
Furnell et al. 2021 fit profiles to the BCG to generate a mask, while we used seg-
mentation data, obtained using a detection threshold of B = 25 mag arcsec−2).

• We found no correlation between the ICL fraction and redshift. There is a dis-
agreement in the current literature as to whether the ICL exhibits evolution in this
redshift range: some other authors find a significant growth (e.g. Burke et al.,
2015; DeMaio et al., 2020; Furnell et al., 2021), while other authors have found
the same lack of correlation as in this work (e.g. Guennou et al., 2012; Montes &
Trujillo, 2014; Golden-Marx et al., 2023). This disagreement can be accredited
to the inconsistent definition of the ICL used in each case, highlighting the need
for a single, unified definition of the ICL in order to make better comparisons.

• We found no correlation between the ICL fraction and cluster mass/richness. This
is in agreement with what is commonly found in ICL studies (e.g. Zibetti et al.,
2005; Sampaio-Santos et al., 2021; Furnell et al., 2021); we have discussed how
a cluster concentration proxy would more likely reveal a positive correlation with
the ICL fraction, since tidal stripping events occur more frequently between satel-
lite galaxies in regions containing more galaxies, rather than in generally more
massive clusters.

Our work presented here is not complete, as we have further analyses in mind. These
are: studying the ICL in different bandpasses to compare the results in each band and
study colours (overall and gradients); and fitting the ICL radial profiles to quantify the
extent of the ICL in different clusters.
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As already mentioned, there remains a significant issue with modern studies, in that the
ICL is ill-defined. Therefore, even with the advent of the most cutting-edge surveys
with the most intricate reduction pipelines (e.g. at this time of writing, JWST and
Euclid have begun their missions), studies will always be limited until a solid definition
has been established.
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Chapter 4

Fitting ICL (ficl): A New Automated
Code to Measure the ICL in Multiple
Clusters

This Chapter forms the final piece of my thesis, and represents the work I began at the
start of my journey at the University of Nottingham. The work discussed here is yet to
be completed (I could not finish the project due to personal problems I faced during my
time at Nottingham) but, when finished, will offer a new, robust method of disentangling
the ICL from clusters of galaxies.

4.1 Overview

We have chosen to combine the advantages of surface brightness thresholding, profile
fitting and wavelet filtering in a hybrid approach, providing the required combination
of accuracy, robustness and computational efficiency. We first mask the brightest pixels
that belong to the central regions of galaxies containing excess nuclear light, which
may otherwise influence the fitting aspect of our method (this removes the need to
include an additional central component to the galaxy light profiles, as discussed in
Section 2.3 in Graham, 2013). The image is de-noised using wavelet filtering, which is
capable of identifying surface-brightness features on given scales. Then, any remaining
compact sources or high-surface-brightness galaxy features (nuclei, spiral arms, etc.)
are assigned to a small-scale “non-parametric” component via an iterative combination
of profile fitting and wavelet filtering. The influence of the ICL on the fitted galaxy
profiles is also ameliorated by another large-scale “non-parametric” component. The
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resulting parametric, single component, Sérsic (Sérsic, 1963) models can be used to
subtract the remaining, smooth, galaxy light.

Our method separates the original image out into three images: the small-scale features
that belong to the galaxies; the smooth, Sérsic models of each galaxy; and the ICL.
The ICL image derived using ficl is smooth, giving a much higher SNR than the ICL
derived from the method used in the previous Chapter (see Figures A.1 and A.2, the
masks present in the images can dramatically reduce the ICL signal). This offers a 3D
interpretation of the ICL, rather than a 1D radial profile that is constructed using mean
values of unmasked pixels in elliptical annuli, which allows for much more complicated
analyses of the ICL to be performed (e.g. the ICL as a dark matter tracer in clusters, as
found by Montes & Trujillo, 2019). Furthermore, because we do not make any strong
assumptions about the ICL in ficl, our results are much more representative of the true
ICL in clusters - surface brightness thresholding and profile fitting approaches, on their
own, make significant assumptions about the brightness and shape of the ICL.

A flow-chart is given in Figure 4.1, showing the workings of our code. In the following,
I discuss our progress to date with ficl.

Figure 4.1: Simple flow diagram of our ICL extraction method.
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4.2 Source detection, Profile fitting and Filtering

After a sensible surface brightness mask is applied, we perform source detection using
photutils (Bradley et al., 2016), which is essentially a pythonic version of SExtractor
(Bertin & Arnouts, 1996). photutils detects sources using image segmentation: pix-
els that have values greater than a chosen multiple of sigmas above the background
level are assigned to a source. For overlapping sources, photutils also performs de-
blending1. Then, photutils produces a source catalog – we compare and calibrate the
measured parameters against the true parameters from a simulated cluster image (sim-
ulated in a similar fashion to Chapter 2, only this time retaining the BCG parameters
from the lightcone for simplicity). The source catalog does not include estimates for the
half-light radius or the Sérsic index (n, Sérsic, 1963) for each source. It does, however,
provide an estimate of the Kron radius (rk, Kron, 1980), and photutils can estimate
the flux within a given number of rk. Therefore, we measure the flux between 0.2rk and
2.5rk in small increments (the latter value here is deemed an appropriate measure of the
total flux of the source, as shown by Graham & Driver, 2005), and interpolate to find the
radius that encapsulates half of the total flux - this provides an estimate of the half-light
radii. For the Sérsic indices, we just adopt a value of n = 2 for every source, since this
will be converted into a more accurate value for each galaxy during the fitting process.

With the parameters in the source catalog, we create a model image – simulated using
GalSim (Rowe et al., 2015) – and subtract this from the original image to obtain a resid-
ual image. We then begin the iterative fitting+filtering process: in parallel to optimising
each parameter (i.e. minimising the χ2s), we filter out the large-scale (ICL) and small-
scale (nuclei, spiral arms, star-forming regions...) features that may serve to influence
the fitting process, at given optimisation steps. We use a gradient descent method for
our optimisation algorithm. For this, we are currently calculating the derivatives of χ2

for each parameter manually; however, we are in the process of developing an automatic
differentiation tool using jax (Frostig et al., 2018).

We use PyWavelets (Lee et al., 2019) to perform wavelet filtering on the small-scale
features, and we use a Gaussian-smoothed median filter for the ICL2 (note, filtering is
performed on the residuals at specified iterations during optimisation). Therefore, we
iteratively filter out these non-parametric features and deposit them onto separate, ini-
tially empty, “non-parametric images”. Meanwhile, the fitting of the remaining, smooth
galaxies in the ‘working image’ is more accurate as it is not influenced by these fea-
tures. The end product: a non-parametric image containing the small-scale features, a

1The full documentation can be found at https://photutils.readthedocs.io/en/stable/
index.html.

2We are also investigating wavelet-filter approaches
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parametric image containing the smooth galaxy models, and a non-parametric image
containing our desired ICL.

4.3 Proof-of-concept results

Figure 4.2: Results of our ICL extraction algorithm from a simple toy-model run. This
model contains: three simple galaxies (one of which has two star-forming regions)
and an overlaid ICL component. The top row shows all of the originally simulated
components, the second row shows the resulting model for each component from our
algorithm, and the bottom row shows the residuals.

We simulated a simple image containing three galaxies, one of which contained two
star-forming regions, and an ICL component. We added a constant background sky-
level and added Poisson and CCD noise using the readout noise of Euclid’s VIS in-
strument. We also convolved each profile with a numerical model of Euclid’s PSF.
The reason we chose to do this is because we wanted to eventually use our method
on realistic Euclid simulations, so that we could compete against other methods in the
ICL working group. The results from our ICL extraction method on this toy model are
shown in Figure 4.2.

In Figure 4.2, the star-forming regions from the original model (middle panel of the
top row) have been identified by our method (middle panel of the second row). In
addition to this, our method has filtered out the central regions of the other two galaxies.
Meanwhile, the residuals of the smooth galaxy profiles (left panel of bottom row) are
small, showing that the fitting aspect has been reasonably successful. The final ICL
profile that our method extracts (second panel of middle row) contains around 60% of
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the original ICL profile’s flux. This is promising, as we can see that the method is
certainly doing as we expected. However, we still have a lot of work to do to get our
method working on a full, realistically simulated image.

4.4 Summary and Future Work

In this brief Chapter, I have outlined progress made to date on developing ficl, which
is an automated ICL fitting code. This method makes use of aspects from three existing
techniques: surface brightness thresholding, profile fitting and wavelets. The first two of
these methods are based on strong assumptions about the ICL, while the latter struggles
to separate the ICL from clusters with galaxies of a similar size to the ICL. However,
when used in tandem, we have shown that the ICL can be successfully extracted from
clusters with no strong assumptions about the ICL, even if the ICL is of a similar scale
to the galaxies.

At current, this method is still in progress. We still need to add in the element of
wavelets as, at the moment, we are using median-filtering. Once this has been incorpo-
rated into ficl, the testing phase can begin, which will allow for further refinements
and optimisation. In parallel with this, we are in the process of speeding up the fitting
part of ficl, by automatically differentiating the gradients in gradient descent, using
jax (Frostig et al., 2018). This will require a lesser computational demand, and, by
making use of GPUs, we can speed up the computations.

To test ficl, we will apply it to a variety of simulated images. Firstly, we will apply it
to simple images that we simulate using lightcone data (as described in Chapter 2), then
we hope to access hydrosimulations of clusters (e.g. C-EAGLE; Barnes et al., 2017).
We will also compare ficl with more traditional approaches, as applied in Chapter 3.
We will hopefully prove from this that we can recover a high proportion of the ICL that
was contained within these models. This testing is currently being performed in the
Euclid ICL group, using descendants of the simulations outlined in Chapter 2. We can
then look at applying ficl to observational data, where we can make measurements
of ICL colours, study the dynamical properties of ICL, compare radial profiles versus
other techniques (such as in the previous chapter), and also enable a more systematic
study of the 2D spatial structure of the ICL. For this, we will have access to data from
some of the most cutting-edge surveys, such as Euclid, LSST and JWST.
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Chapter 5

Conclusions and Future Work

This work has been concerned with the challenges of simulating and measuring ICL.
We have: devised a simple way of simulating realistic ICL, using data lightcone data,
which is beneficial for testing methods that measure the ICL; used a surface brightness
thresholding method to analyse the ICL in a sample of 72 galaxy clusters in the redshift
range 0.1 ≤ z ≤ 0.8; and introduced a new code that isolates the ICL, which will be
robust against other traditional methods. A summary of each of these elements to this
work will be given in the following.

5.1 Simulating Realistic ICL

Using data from the Millennium MAMBO lightcone, we simulated images of clusters
that contain ICL (Chapter 2). The lightcone is constructed based on the full dark-matter
Millennium simulation (Springel et al., 2005), using semi-analytical models of galaxy
formation from Henriques et al. (2015), consisting of realistic galaxy properties from
the Empirical Galaxy Generator (EGG; Schreiber et al., 2017). We used Euclid instru-
mentation to generate our images, since I was a part of Euclid’s ICL science working
group at the time and we ultimately wanted to test our ICL codes.

We modelled galaxies from this lightcone as bulge+disk Sérsic profiles (Sérsic, 1963).
In the case of the Brightest Cluster Galaxy, we assumed a single-component Sérsic
profile, with the Sérsic index and effective radius taken from observational data (see
Appendix ??) and the ellipticity and orientation being estimated from principle compo-
nent analysis of the cluster member galaxies (the cluster tends to have a roughly similar
shape to the ICL and BCG, Kluge, 2019). A similar process was used to define the
ICL parameters, and we varied the ICL fraction, shape and offset from the cluster to
generate 18 cluster images. These images were added to a field image that was gener-
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ated and processed using Euclid’s pipeline. The 18 images were distributed amongst
members of Euclid’s ICL science working group so that they could test their ICL codes
in preparation for data from the upcoming Euclid survey.

Upon receiving results from the group, it was discovered that the measured ICL profiles
had unusual dips in flux, which were not implemented in the simulated ICL images.
Closer inspection revealed that the background mosaic had a patchy background due to
a harsh background subtraction. Figure 2.9, provided by C. Bellhouse, explicitly shows
a significant loss in the ICL signal when using Euclid’s standard reduction pipeline to
process raw data. This is common in surveys, particularly for those with pipelines that
are not optimised for studies of extended, low surface brightness features. Therefore,
any further work was suspended until this issue could be resolved. An alternative back-
ground estimator in Euclid’s pipeline should be used for ICL science – NoiseChisel
(Akhlaghi & Ichikawa, 2015; Akhlaghi, 2019) seems particularly promising for this task
as it is optimised for processing images that are used to study faint, extended sources.
The galaxy evolution and ICL groups of Euclid are currently working on an alternative
for ICL studies.

5.2 Measuring the ICL by Applying a SB-Threshold

In a similar fashion to previous works (e.g. Burke et al., 2015; Furnell et al., 2021),
we applied a combination of surface brightness thresholding and masking to a sample
of 72 clusters, using HSC i-band data in the redshift range 0.1 ≤ z ≤ 0.8 (Chapter 3).
The sample consisted of two subsets: the same XCS sample of 18 clusters used in
Furnell et al. (2021) and a sample of 54 clusters that were detected using the CAMIRA
algorithm (Oguri et al., 2018). We used data from the most recent release of the HSC
Subaru Strategic Program (PDR3), an improvement from previous releases as it was
processed in a way which was optimal for faint, extended sources (removing the element
of ‘divots’, which had to be accounted for in Furnell et al., 2021). As well as this, we
explicitly provided a simple way of estimating the total flux from cluster members,
while accounting for potential contaminant photometric cluster galaxies (these arise
due to the large uncertainties associated with photo-zs).

Our method begins by masking bad pixels and the brightest objects in the frame, which
utilises the HSC mask data. We do not simply use the HSC mask image for halo masks,
as these include ‘dip’ features that are often too large. Therefore, we remove these
constant-sized masks and double the halo masks to blank out stellar halos from our ICL
estimates. We then run a 3σ object detection and use the segmentation data to mask
sources in the image. Beneath the blanket of the ICL remains many fainter sources (e.g.
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globular clusters or small satellites), so we generate a mask for these by first removing
the ICL using a harsh background subtraction, running a 2σ source detection and then
using the resulting segmentation data. The BCG is not included in any of these mask
layers as we use an isophotal threshold of 25mag arcsec−2 (as in Burke et al., 2015;
Furnell et al., 2021) to define the BCG/ICL boundary: we perform source detection at
the position of the BCG using this threshold, and mask using the resulting segmentation
data.

With our masked images, we measure the unmasked pixels as the ICL flux. To account
for regions with no data (masked regions), we extrapolate data from nested elliptical
annuli that resemble the shape of the ICL, which were estimated using principle com-
ponent analysis of the unmasked pixels in the central 0.4R500 region of the image. Thus,
we obtain a radial profile for each cluster, and this is integrated to give the total ICL flux.

We use photometric and spectroscopic data from catalogs of sources in each of the
HSC deep fields to assign cluster membership within apertures of R500. For spectro-
scopic data, we define members as those with zspecs that fall within a 3σv slice of the
cluster, adopting a typical cluster velocity dispersion of 3σv = 3000kms−1. For sources
with only photometric data, we use the typical error on photo-zs from the code DEmP
(Hsieh & Yee, 2014) to ascertain whether it is possible that, within 3σ, the source could
be a cluster member. We sum the fluxes from the potential photo-z members and apply
a background-level correction, which estimates the typical membership of field galaxies
to a cluster at zcl within an aperture of R500, accounting for potential contaminant photo-
z members. This provides two different estimates: corrected using total fluxes within
background apertures and corrected using membership to each aperture. We then cal-
culate the ICL fractions using these corrected values, the fluxes from the spectroscopic
members and the ICL flux.

Our ICL fractions for the XCS sample did not match those of Furnell et al. (2021),
with no consistent offset exhibited that would give a reasonable explanation. A couple
of possible causes may be that: we masked the BCG using segmentation data, defined
by the isophotal threshold, whereas Furnell et al. (2021) used profile-fitting to mask the
BCGs; and we applied a background correction to our photometric cluster member flux,
while Furnell et al. (2021) did not (as far as we know).

When plotting all of the ICL fractions against redshift, no correlation was found, dis-
agreeing with various other authors (e.g. Burke et al., 2015; DeMaio et al., 2020; Furnell
et al., 2021). However, this is not the only work to output a lack of evidence for ICL
growth over time, as Guennou et al. (2012) and Montes & Trujillo (2014) came to the
same conclusion when using clusters in the redshift range 0.3 ≤ z ≤ 0.8. The lack
of consistency between works is perhaps mostly due to the ill-defined ICL, with some
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authors using surface brightness thresholds (e.g. Montes & Trujillo, 2014; Burke et al.,
2015; Furnell et al., 2021, note that the value used for the threshold in the first work
here was different to the other two), wavelet analysis (e.g. Adami et al., 2005; Guennou
et al., 2012; Ellien et al., 2021), or profile-fitting (e.g. Gonzalez et al., 2005; Zhang
et al., 2019; Kluge et al., 2021; Montes et al., 2021).

Our sample of clusters’ ICL fractions did not correlate with cluster mass/richness either,
a result which is commonly found in ICL studies (e.g. Zibetti et al., 2005; Sampaio-
Santos et al., 2021; Furnell et al., 2021). This is likely due to the fact that the concen-
tration of galaxies in the cluster, an important factor in the process of tidal stripping and
forming the ICL, has little dependence on the total cluster mass. Therefore, one may
wish to explore this further by defining a concentration parameter for groups/clusters,
and plotting the ICL fraction dependence.

5.3 A New Code to Measure the ICL: ficl

The inconsistent results among works in ICL studies are largely due to the lack of
grounding for a ‘well-defined’ ICL. We have, therefore, set out to address this issue by
outlining a new code for isolating and measuring the ICL (Chapter 4), which makes no
major prior assumptions that may compromise results. ficl combines the best aspects
of the three major ICL detection methods (surface brightness thresholding, profile fitting
and wavelet analysis) in a hybrid, fast (using jax-based implementation Frostig et al.,
2018) automated approach. Upon completion, we will make ficl an open-source user-
friendly software, with applications even beyond ICL studies (e.g. it will also provide
a new, powerful code for galaxy profile-fitting).

Firstly, the brightest pixels are masked, as these can influence the profiles that we fit to
sources in an image. Then, we detect and deblend sources using photutils (Bradley
et al., 2016) and construct a catalog of detected sources. An initial model image is
constructed using the parameters and the residuals are calculated. After this, an iterative
fitting and filtering process commences: while the parameters are optimised in gradient
descent, large-scale (ICL) and small-scale (nuclei, spiral arms, star-forming regions
etc.) features are slowly pulled out of the working image, which increasingly improves
the fitting process.

Once complete, the original image is separated out into images of the fitted galaxy
profiles, the small-scale features and the ICL. The ICL image that is produced in ficl
is smooth, unlike the ICL from simple masking methods, and so may be interpreted in
three dimensions without extrapolating pixels in masked regions. Because we do not
make any prior assumptions about the shape and/or profile of the ICL or the BCG (as
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one does in purely fitting methods), we get a more accurate picture of the ICL too. This
method is more powerful than those which are purely based on wavelets because we
remove the difficulty of separating out the ICL and large central galaxies, which may
become otherwise confused with each other.

We have used an unfinished version of ficl on a simple toy model, as a proof of con-
cept. This has proved that we are already able to successfully output the three images
of galaxy profiles, small-scale features and ICL, with a recovered ICL signal of 60% of
the input. However, this version of ficl is yet to have the wavelet component imple-
mented, since this is one of the more intricate elements to the code. We are confident
that, after implementing wavelets, testing our code and subsequently optimising, ficl
will offer an unbiased, accurate view of the ICL, which will revolutionise the field.

5.4 Future Work

The work presented in this thesis is by no means complete, and we will build on the
latter two chapters in particular.

In Chapter 3, while we obtained radial profiles of each cluster’s ICL, we did not perform
any further analysis on them. We aim to fit the profiles to quantify the extent of the ICL,
for clusters out to a redshift of z ∼ 0.1 (provided the clusters have measurable ICL).
Furthermore, we would like to make measurements in multiple bandpasses, so that we
can compare the results in each band and study the colours of the ICL (overall colours
and colour gradients).

As already mentioned, our work in Chapter 4 is due to be completed, as it requires
implementation of wavelets and testing and optimisation. Once ficl is up and run-
ning, we will test our algorithm on simulated images (data from both lightcones, as in
Chapter 2, and hydrosimulations, e.g. Barnes et al., 2017) and then observational data.
We will compare our method against other present methods (for example, Chapter 3
and DAWIS Ellien et al., 2021), and we will show that ficl is both computationally
efficient and more accurate than the other codes. We will offer ficl as an open-source,
user-friendly program, which will set the stage for more intricate studies of the ICL.

The dawn of new simulations dedicated to accurately modelling the processes in clus-
ters, together with data from the most cutting-edge surveys (such as JWST, Euclid and
LSST), which will allow the ICL to be probed in many thousands of clusters, span-
ning wide ranges in mass and redshift, gives an exciting outlook on advances in our
understanding of the ICL over the next few years.
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Appendix A

Cluster ICL Profiles
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A.1 XCS Sample

Figure A.1: The observed i-band ICL surface brightness profiles of the XCS clusters
to the left of their respective masked image. Relevant input and output parameters are
included on each plot. A yellow ellipse with the derived ICL shape parameters, going
out to R500 is overlaid on each masked image.
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Figure A.1: Continued from previous page.
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Figure A.1: Continued from previous page.
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A.2 CAMIRA Sample

Figure A.2: The observed i-band ICL surface brightness profiles of the CAMIRA-
detected clusters to the left of their respective masked image. Relevant input and output
parameters are included on each plot. A yellow ellipse with the derived ICL shape
parameters, going out to R500 is overlaid on each masked image.
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Figure A.2: Continued from previous page.
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Figure A.2: Continued from previous page.
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Figure A.2: Continued from previous page.
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Figure A.2: Continued from previous page.
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Figure A.2: Continued from previous page.
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Figure A.2: Continued from previous page.

96



Figure A.2: Continued from previous page.
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Figure A.2: Continued from previous page.
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