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Abstract

The kinetic sieving mechanism (Gray and Thornton, 2005; Gray, 2018) is

a well-known continuum method for modelling granular size segregation

phenomena, typically solved for steady-state chute flows.

In this thesis, we develop a model to include normal confining pressure

dependence, time-dependence and evolving velocity profiles through the

grain body. This enabled more sophisticated granular behaviours and feed-

backs to be explored - in particular, those relevant to cyclic loading of soils

through e.g. wind turbine foundations. An iterative expansion approach

is proposed to self-expand the classic bi-disperse or tri-disperse segregation

problem towards arbitrarily poly-disperse systems, with minimal change of

input parameters and data structures.

Under pair-wise stress partition and segregation relationships, behaviour

can be directly linked to size ratios. Simulations show the dependence on

particle size distribution alongside the controlling non-dimensional param-

eters: inter-particle drag C, diffusion rate D and confining pressure P0.

The final goal of this project was to couple particle crushing with the

validated poly-disperse segregation model. After exploring possible ways of

incorporating breakage, solid volume fraction re-distribution was tested in a

10-population problem with clear feed-backs from the prescribed crushing.
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Chapter 1

Introduction

In this Chapter, we briefly explain the motivation behind modelling gran-

ular size segregation effects using continuum models as well as provide an

overview of the development process of our models. An outline of the

project is given at the end of this chapter.
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1.1. THE GEOTECHNICAL MOTIVATION

1.1 The geotechnical motivation

Systems of granular materials, from geophysical phenomena such as dry

snow avalanches (Jomelli and Bertran, 2001; Bartelt and McArdell, 2009;

Pudasaini and Hutter, 2007; Issler et al., 2018) to industrial applications

such as pharmaceutical manufacture (Bae et al., 2018; Muzzio et al., 2002),

exhibit segregation effects. Also known as the ‘Brazil nut effect’ (Rosato

et al., 1987; Ottino and Khakhar, 2000), when a mixture of granules is

energetically excited, granules differing in size tend to migrate and form

highly-concentrated regions of particles sorted by size. As shown in Figure

1.1(a), the largest granules (the Brazil nuts) are lifted to the top of the

layer where the smallest (the milk powder) collect at the base. Interestingly,

reversed Brazil nut effect have also been predicted and observed where large

particles fall through the swarm of small particles under specific settings

(Hong et al., 2001; Quinn et al., 2002) as shown in Figure 1.1(b). We are

particularly interested in modelling the typical Brazil nut effect.

A number of driving mechanisms can explain this re-arranging effect under

various circumstances. For the chute flow scenario, where granular mixture

is moving along an inclined slope driven by gravity (e.g. debris flows),

kinetic-sieving (Scott and Bridgwater, 1975; Savage and Lun, 1988) appears

to dominate. Kinetic-sieving comprises a two-step process of ‘granular

percolation’ and ‘squeeze expulsion’. As the granular mixture propagates

down-slope, local void spaces are created and eliminated due to the bulk

movement. This enables a subset of the grains (usually of smaller size) to

percolate through temporary gaps driven by gravity. The closer packing of

these smaller particles collecting at the base of the flow then in turn levers

other grains upwards through squeeze expulsion.

3



1.2. GRANULAR SIZE SEGREGATION

Figure 1.1: (a) Typical Brazil nut effect observed with 8 mm glass beads
on top of 15 mm polypropylene; (b) Reverse Brazil nut effect observed with
10 mm bronze spheres on 4 mm glass beads (Breu et al., 2003).

1.2 Granular size segregation

In this thesis we are interested in the behaviour of granular material sur-

rounding structures in the ground, such as pipelines, turbine foundations

and underground tunnels. These structures typically exert cyclic loads onto

the surrounding soil leading to size segregation which alters the macro be-

haviour of the soil such as drainage and bearing capacity. Further, the

confinement and high loads associated with such infrastructure can lead

to the soil granules being crushed into smaller fragments (Mullin, 2000;

Pihler-Puzović and Mullin, 2013). Hence, the load characteristics are im-

portant if we are to develop an understanding of the interplay between

cyclic behaviour and normal loading in the development of size segregated

regions.

Although Discrete Element Methods (DEM) are frequently used for more

realistic granular simulations due to their ability in specifying meso-scopic

particle-to-particle interaction parameters and laws (Brandao et al., 2020a;

4



1.3. CYCLIC LOADING SHEAR BOX

Combarros et al., 2014), a continuum model poses far lower computing

demand and hence provides much room for extension towards highly poly-

diperse mixtures. Good qualitative and quantitative agreement with shear

box (Golick and Daniels, 2009) and Couette cell (May et al., 2010) experi-

ments show the adaptability of a continuum framework and these features

will help pave the way for the future incorporation of particle crushing or

breakage mechanics into the continuum model.

1.3 Cyclic loading shear box

To date, a number of granular size-segregation experiments have been car-

ried out for chute flows going down slopes, rotating drums with an avalanch-

ing free surface (Johnson et al., 2012; Golick and Daniels, 2009; May et al.,

2010) and side-shearing in annular shear cells (Scott and Bridgwater, 1975;

van der Vaart et al., 2015). However, measuring and recording data for

the granular mixture proves to be difficult especially when the bulk mo-

tions are still taking place (Leadbeater et al., 2012). DEM and continuum

models are useful methods to provide insight and predictions on what ex-

actly is going on inside the mixture based on macroscopic measurements

and hence facilitate the extrapolation of experimental insight to large-scale

geotechnical processes.

The specific cases of geo-physical processes that motivate our exploration

of combining granular segregation and particle breakage is the cyclic load-

ing environment for soils. For example, the soil underneath railway tracks

(as shown in Figure 1.2) or a wind turbine foundation (as shown in Figure

1.3) experience cyclic shearing exerted from above. These excitements of

grains can possibly encourage the soil particles to segregate in size. Addi-
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1.3. CYCLIC LOADING SHEAR BOX

tionally, the confining stress acting on the soil can often crush the brittle

particles into smaller pieces or dust. We are particularly interested in ex-

ploring whether we can capture these phenomena and their interactions via

modified version of classic granular segregation models.

Here, we employ a modified continuummodelling approach following (Thorn-

ton and Gray, 2008; Gajjar and Gray, 2014). This translates chute flow

continuum segregation models to the geometry of a top-driven cyclic shear

box (Forterre and Pouliquen, 2008), incorporating normal loads. This is

a computationally low-cost and scale-able method of developing our un-

derstanding of how cyclic loading and confining pressures influence the

dynamics of granular mixture undergoing kinetic-sieving type segregation.

After developing time-dependence in the governing equations the role of

the evolving velocity profile through the cyclic shear cell is explored. An

evolving velocity profile is proposed that originates from Bagnold-type pro-

files in published experiments and DEM simulations for shear boxes (Lo

et al., 2010; Brewster et al., 2005). The strong variations in velocity gradi-

ent through the shear box lead to different segregation behaviours in those

regions. Finally, a normal confining pressure acting on the shear cell is

incorporated.

With time-dependence and absolute local stresses included, we look to

generalise the methodology such that subsequent work can extend to highly

poly-dispersed systems with stress-dependent, localised particle breakage.

6



1.3. CYCLIC LOADING SHEAR BOX

Figure 1.2: Stress conditions under a single moving wheel load (Thevaku-
mar et al., 2021).

Figure 1.3: Loads acting on a typical offshore wind turbine foundation and
typical mud-line moment (Nikitas et al., 2017).
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1.4 Outline of this project

Starting from Chapter 2, we go through the theoretical framework and crit-

ical assumptions needed to construct classic kinetic-sieving model. Starting

from Section 2.3, we start diverting from the classic model in terms of con-

fining pressure dependence and velocity profile. These modifications are

introduced with the purpose of capturing more distinct granular charac-

teristics in a cyclic loading environment. In Chapter 4, a new approach

of effectively self-assembling granular segregation problems involving arbi-

trarily many populations of size categories is proposed. This approach has

the appealing quality of requiring minimal prescription of parameters as

well as being able to adjust and record complex poly-disperse relationships

via iterative expansion and symbolic calculation. After validating the poly-

disperse results against known classic kinetic-sieving results, a number of

test designs are also discussed before showing their simulation results. In

Chapter 5, we explore the possibility of incorporating granular breakage,

especially corner crushing effects into poly-disperse models.

8



Chapter 2

Shear Box Model Derivation

This chapter goes through the mathematical structure of the kinetic sieving

model. We depart from a classical model designed around chute flow, start-

ing by incorporating a normal, confining pressure. We finish by describing

the numerical implementation of the segregation problem, solving by con-

verting the group of partial differential equations into ordinary differential

equations for each time-step.
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2.1. MIXTURE THEORY FRAMEWORK

2.1 Mixture theory framework

Our approach is built on the basis of an existing chute flow model (Thornton

and Gray, 2008) which offers a robust foundation thanks to the physically

interpretable mathematical framework, compatibility with semi-discrete

numerical solvers and its rich potential of further modifications (such as

poly-dispersion and time-dependence). This framework adopts a mixture

theory (Truesdell and Truesdell, 1984; Thornton et al., 2006) model, with

space being perceived to be simultaneously occupied by different phases of

granular material. Each phase solely corresponds to the population of a

certain type of granular particle categorised by size. According to standard

mixture theory, partial quantities can be derived to represent the charac-

teristics of individual phases within the granular mixture. Solid volume

fractions ϕν describe the spatial distribution of the particles within this

continuum system (Gray and Thornton, 2005).

∑
ν∈S

ϕν = 1 (2.1)

As shown in equation 2.1, the volume fractions must sum to unity. For

example, a bi-disperse mixture of small and large particles satisfies the solid

volume fraction relation ϕl + ϕs = 1, where ϕs stands for small particles

and ϕl stands for large particles. Hence, the partial density ρν of each

population ν is defined based on how ϕν partitions solid volume.

ρ =
∑
ν∈S

ρν where ρν = ϕνρν∗. (2.2)

Here, ρν∗ stands for the intrinsic density of granular species ν, which is

in fact the mean solids fraction times the bulk solid density (Gray and

Thornton, 2005).
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2.1. MIXTURE THEORY FRAMEWORK

The mixture theory framework provides a reasonable way to scale and par-

tition physical quantities such as density and stress for each size population

within a bulk mixture. In the context of granular segregation, we are in-

terested in the relative motion of each size population against the bulk.

Therefore, it is crucial to define partial velocity profiles uν and compare

with the bulk velocity profile u. Therefore, it is helpful to assume intrinsic

and partial velocity fields to be equal (Gray and Thornton, 2005).

uν = uν∗. (2.3)

However, stresses are not partitioned directly by volume fraction because,

as a granular mixture segregates in size, small particles are more prone

to fall through local void spaces and in turn detach from the local force

chains, meaning that large particles would need to support a bigger portion

of the ‘geostatic’ pressure inside the granular matrix (Thornton and Gray,

2008; Gajjar and Gray, 2014). An alternative stress partition function f ν

is defined to replace the typical solid volume fraction partition. Hence, the

Cauchy stress tensor results in partial stresses

Tν = f νTν∗ (2.4)

with vertical z component

pν = f νpν∗

leading to a bulk ‘geostatic’ stress

p =
∑
ν∈S

pν =
∑
ν∈S

f νpν∗. (2.5)
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2.2. GENERAL KINETIC SIEVING EQUATIONS FOR GRANULAR
SEGREGATION

z

x

z

x

g
g

(a) (b)

�

cyclic shear with period T

z = s

z = 0

P0

Figure 2.1: Illustrations of chute flow (a) and shear box (b) set-ups. For
chute flows, it is convenient to set x axis along the inclined slope and a
component of gravity drives the kinetic sieving mechanism in slope-normal
z. The shear box’s configuration has a level bottom surface and top plate
subject to a confining pressure P0 and driving cyclic shear with period T .

2.2 General kinetic sieving equations for gran-

ular segregation

Mass and momentum are conserved for each phase in the granular mixture

following

∂ρν

∂t
+∇ · (ρνuν) = 0 ∀ν ∈ S (2.6)

and

∂

∂t
(ρνuν) +∇ · (ρνuν ⊗ uν) = ∇ ·Tν + ρνg + βν (2.7)

∀ν ∈ S

respectively. Here βν denotes interaction force exerted onto phase ν collec-

tively by all other phases. By Newton’s Third Law βν should sum to zero

for all phases, i.e.
∑

ν∈S β
ν = 0. The Cauchy stress tensor is also assumed

to take a simple form Tν = −pνI + σν , where the first term represents a

spherical inwards pressure and the latter a deviatoric stress.

Here we will contrast the slight differences in modelling conditions between

chute flows and the cyclic driven shear cells we aim to explore, shown in

Figure 2.1. Since the model was originally devised to simulate steady-
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2.2. GENERAL KINETIC SIEVING EQUATIONS FOR GRANULAR
SEGREGATION

state chute flows, the flow was assumed to be quasi-steady, and the lateral

transport and deviatoric stress are assumed to be marginal. After summing

over all phases under these two assumptions, the chute flow in z-direction

momentum balance equation 2.7 becomes

0 + 0 = −∂p

∂z
+ ρg cos ξ, (2.8)

where ξ denotes the inclination angle of the slope as shown in Figure 2.1.

However, in the cyclic shear box set-up, the net granular motion to be

horizontal with cos ξ = 1 and

0 + 0 = −∂p

∂z
+ ρg. (2.9)

The chute flow has a free surface where the pressure p = 0. However, the

cyclic loading shear box may have a normal load, such that the boundary

condition at the top of the granular medium p = P0 at z = s, where s

denotes height of the top surface. The new top boundary condition yields

a pressure distribution through the bulk

p = ρg(s− z) + P0, (2.10)

in the form of a geo-static stress.

Switching to the cyclic shearing set-up, it makes sense to be mindful about

whether the chute flow assumptions should still be employed. For exam-

ple, deriving equation 2.8 requires quasi-steadiness assumption of the flow,

which may not appear suitable for a top-shearing scenario with cyclic re-

versal taking place. However, we decided to keep this assumption in place

mainly for two reasons. First, retaining the time derivative term from mo-

mentum balance equation would lead to additional complexity of pressure

14



2.3. NORMAL PRESSURE DEPENDENCE

formulation compared to a simpler geo-static format (as shown in equa-

tion 2.10). Since pressure dependence plays an active role in our modified

convection-diffusion equation (as shown in equation 2.14), we found it sen-

sible to start with a mathematically simpler formulation and leave room

for improvement for future works. Secondly, we can still interpret retaining

quasi-steadiness assumption in cyclic shearing scenario as this: the cyclic

reversal timescale is significantly larger than the timescale of segregation,

making it appropriate to assume that the mass flux of each granular popula-

tion caused by segregation does not change significantly in time. Therefore,

it makes sense to assume that at least the z-component of ∂(ρνuν)/∂t is

sufficiently small, making equation 2.8 still hold.

The resultant geo-static pressure profile will be used throughout this thesis.

In future works, a more complex pressure profile with time-dependence

seems the right step towards a more general model.

2.3 Normal pressure dependence

By design, the interaction drag βν in momentum balance equation origi-

nally takes the form (Thornton and Gray, 2008)

βν = p∇f ν − ρνc(uν − u)− ρd∇ϕν , (2.11)

where c denotes coefficient of inter-particle drag, d stands for coefficient of

diffusive remixing and u stands for the bulk velocity profile. The first term

p∇f ν was designed to cancel out the second half of ∇ · Tν in momentum

balance equation to ensure that segregation process is driven by bulk (or
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2.3. NORMAL PRESSURE DEPENDENCE

intrinsic) stress p = pν∗ rather than partial stress pν :

∇ ·Tν = −∇pν = −f ν∇p− p∇f ν . (2.12)

However, when considering the effects of normal stress the term −p∇f ν

must be retained since it carries the normal stress information caused by

top plate. Substituting eqn. 2.11 into the momentum balance eqn. 2.7

and once again assuming quasi-steadiness and marginal deviatoric motion

yields

0 = −f ν∇p− p∇f ν + ρνg − ρνc(uν − u)− ρd∇ϕν . (2.13)

Specific information on how one phase of particle migrates within the mix-

ture can be obtained when taking the z-component of eqn. 2.13 , the den-

sity mixture partition eqn. 2.2, the pressure distribution through the bulk

eqn. 2.10 and further rearranging them into an expression of the vertical

velocity of that phase relative to the bulk

wν − w =
g

c

(
f ν

ϕν
− 1

)
− d

c

1

ϕν

∂ϕν

∂z
− p

ρc

1

ϕν

∂f ν

∂ϕν

∂ϕν

∂z
. (2.14)

where wν − w can be seen as the segregation speed of the phase.

The stress partition function f ν is also a modelling choice. For the function

to remain physical, pure phase conditions must hold. In other words, if the

granular mixture contained only one phase, that sole phase must carry all

the load; conversely, if a particle species is not present in the mixture, that
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2.3. NORMAL PRESSURE DEPENDENCE

phase can carry no load:

f ν = 1 when ϕν = 1

f ν = 0 when ϕν = 0.

For chute flow, Thornton and Gray (2008) proposed a form of f ν that can

satisfy this pure phase condition

f ν = ϕν +
∑
∀µ

Bνµϕ
νϕµ, (2.15)

where Bνµ is a pairwise segregation parameter describing the segregation

effect phase ν receives caused by its pairwise interaction with phase µ.

In order to satisfy the unity-summation condition
∑

f ν = 1, it is required

to enforce Bνν = 0 ∀ν and Bνµ = −Bµν ∀ν ̸= µ. Therefore the matrix

B storing all the pairwise segregation relation terms Bνµ is anti-symmetric

i.e. B = −BT ; the segregation effect of phase µ on phase ν is equal and

opposite to the segregation effect of phase ν on phase µ. The derivative of

this stress partition function f ν with respect to ϕν is

∂f ν

∂ϕν
= 1 +

∑
∀µ

Bνµϕ
µ. (2.16)

The choice of stress partition function can strongly influence the behaviour

of the simulated flow (Tunuguntla et al., 2017). Choice of stress parti-

tion function can be is a method to prioritize which granular behaviour to

capture. For example, the pairwise function approach proposed by Thorn-

ton and Gray (2008) has the advantage of mathematical simplicity and

allows for well-validated parameter extraction via pairwise segregation ex-

periments. In contrast, the quotient form proposed by Marks et al. (2012a)

rather focuses on how large particles are being levered upwards due to local
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2.4. NON-DIMENSIONALISATION

‘granular buoyancy’. For simplicity, we adopt the well-established pairwise

approach, recognising that different aspects of our system could be brought

out with a different choice of partition function.

Substituting the pairwise stress partition equations 2.15 and 2.16 into the

segregation speed equation 2.14 for our cyclic shear cell with normal applied

stress yields

wν − w =
∑
∀µ

g

c
Bνµϕ

µ − 1

c

[
d+

p

ρ

(
1 +

∑
∀µ

Bνµϕ
µ

)]
1

ϕν

∂ϕν

∂z
(2.17)

where p comprises the normal confining pressure alongside the geo-static

load, as defined in equation 2.10.

As a comparison, the segregation speed for the kinetic sieving model for a

chute flow is

wν − w =
∑
∀µ

g

c
Bνµϕ

µ − d

c

∂

∂z
(lnϕν) , (2.18)

and we see that the effect of introducing the normal applied load is to create

an additional term in the segregation speed, acting similarly to the diffusion

flux. Note, that since we are restricting our study to size-segregation,

neglecting the role of density differences, ρ is considered constant.

2.4 Non-dimensionalisation

The mass and momentum balance equations 2.6 and 2.7 can be non-

dimensionalised

z = Hẑ, x = Lx̂, t = T t̂ (2.19)
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where H is a typical height of the granular mixture in shear box, L is a

length of the shear box and T is the period of the cyclic shear motion.

Therefore, a velocity scale in x-direction can be devised using L/T and

H/T can function as a normal velocity scale. After substitution of these

scaling choices the mass balance equation 2.6 becomes

1

T

∂ϕν

∂t̂
+

1

T

∂

∂x̂
(ϕν û) +

1

T

∂

∂ẑ
[ϕν (ŵν − ŵ)] = 0 (2.20)

where u = ûL/T and w = ŵH/T , and the length scales conveniently cancel

out. The non-dimensionalised form of relative normal velocity (i.e. segre-

gation speed) ŵν − ŵ. As defined in 2.2 and 2.4, ϕν denotes solid volume

fraction of a certain class of granular population labelled as ν while f ν is

the stress partition function indicating how much stress such class of gran-

ular material is sharing among all classes. Note that both ϕν , the solid

volume fraction granular ν, and f ν , the proportion of stress population ν

carries, are dimensionless quantities. Equation 2.14 can be re-arranged

c

g
(wν − w) =

(
f ν

ϕν
− 1

)
− d

g

1

ϕν

∂ϕν

∂z
−
[
P0

ρg
+ (s− z)

]
1

ϕν

∂f ν

∂ϕν

∂ϕν

∂z
. (2.21)

where, s is the height of granular surface in the z-direction. This seems a

sensible choice of typical height scale H, leading to

cs

Tg
(ŵν − ŵ) =

(
f ν

ϕν
− 1

)
− d

gs

1

ϕν

∂ϕν

∂ẑ
−
[
P0

ρgs
+ (1− ẑ)

]
1

ϕν

∂f ν

∂ϕν

∂ϕν

∂ẑ
.

(2.22)

where P0/ρgs is the normalised ‘surface pressure’ due to the applied nor-

mal confining stress relative to the geostatic load associated with the gran-

ular layer. Substituting this non-dimensionalised segregation speed equa-

tion 2.22 into the mas balance equation 2.20, the non-dimensionalised seg-
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regation equation becomes

∂ϕν

∂t̂
+

∂

∂x̂
(ϕν û) +

Tg

cs

∂

∂ẑ
(f ν − ϕν)− Tg

cs

∂

∂ẑ

[
d

gs

(
∂ϕν

∂ẑ

)]
−Tg

cs

∂

∂ẑ

{[
P0

ρgs
+ (1− ẑ)

]
1

ϕν

∂f ν

∂ϕν

∂ϕν

∂ẑ

}
= 0. (2.23)

Taking the pairwise stress partition function f ν from equation 2.15, the

final form of non-dimensionalised segregation equation is

∂ϕν

∂t
+

∂

∂x
(ϕνu) +

∂

∂z

{
1

C
∑
∀µ

Bνµϕ
νϕµ − D

C
∂ϕν

∂z

}

− 1

C
∂

∂z

{
[P0 + (1− z)] (1 +

∑
∀µ

Bνµϕ
µ)
∂ϕν

∂z

}
= 0 (2.24)

where C =
sc

Tg
, D =

d

gs
, P0 =

P0

ρgs
, (2.25)

the non-dimensional groups controlling inter-particle drag, vertical diffusion

and confining pressure respectively.

Compared to Gray and Thornton’s segregation equation, although more

parameters appear in our equation 2.24, due to the introduction of the

confining pressure, the conservative convection-diffusion structure remains

the same. As long as the equation can be written as series of flux func-

tion derivatives in x, z and t, it should be theoretically solvable by the

Kurganov-Tadmor scheme (Kurganov and Tadmor, 2000). We note that

our control space of C,D and P0 translates to the parameterisations used

by Gray, Thorton, Ancey (Gray and Ancey, 2011) via Sνµ = BνµTg/Hc

and Dr = Td/Hc.
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2.5 Numerical solver

Having reached a non-dimensionalized segregation equation 2.24 for each

size population, we can employ the semi-discrete Kurganov-Tadmor method

(Kurganov and Tadmor, 2000) to obtain numerical approximations of all

the spatial derivative terms. The Kurganov-Tadmor method is a powerful

central scheme that offer great resolution independent of the eigenstructure,

especially suitable for solving convection-diffusion equations (Kurganov and

Tadmor, 2000). We will use a two-dimensional bi-disperse set-up to demon-

strate the workflow of the numerical method.

For a two-dimensional bi-disperse problem, only one of the two population

needs to be solved thanks to conservation of mass and therefore solid volume

fraction. Therefore, the bi-disperse segregation equation takes form:

∂ϕ

∂t
+

∂

∂x
(ϕu) +

∂

∂z

{
1

C
Bϕ(1− ϕ)− D

C
∂ϕ

∂z

}
− 1

C
∂

∂z

{
[P0 + (1− z)] (1 +B(1− ϕ))

∂ϕ

∂z

}
= 0 (2.26)

where C =
sc

Tg
, D =

d

gs
, P0 =

P0

ρgs
.

Here, ϕ is the solid volume fraction of small-sized population and B denotes

the segregation rate caused by large-sized grains. The two-dimensional

space is discretised into a m× n array with step-sizes ∆x and ∆z in x and

z direction respectively, and solid volume fraction ϕi,j is stored on each

node of the array. We are solving the segregation equation 2.26 coupled

with an initial condition such as ϕi,j = 0.5 ∀i, j at t = 0. At the start of

each time-step, Kurganov-Tadmor scheme starts by taking local gradients
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of ϕi,j in spatial dimensions:

(ϕx)i,j = minmod

(
ϕi+1,j − ϕi,j

∆x
,
ϕi,j − ϕi−1,j

∆x

)
(ϕz)i,j = minmod

(
ϕi,j+1 − ϕi,j

∆z
,
ϕi,j − ϕi,j−1

∆z

)
where minmod(a, b) =

1

2
(sign(a) + sign(b))×min(|a|, |b|). (2.27)

The minmod operator takes both the forward and backward piecewise

z

x

Figure 2.2: Illustrations of the node values and grid-point values in
Kurganov-Tadmor scheme. Initial condition and calculated solutions of
solid volume fraction ϕ are stored on nodes (shown as red points), the
midpoints (shown as blue dots) in-between adjacent nodes are referred to
as grid-points because they form a grid enveloping all the nodes. Inter-
mediate estimates ϕ±

i+1/2,j and ϕ±
i,j+1/2 are calculated for each grid-point

based on piece-wise local gradients of the node values. Based on inter-
mediate values, local speeds of propagation can be numerically calculated,
leading to a numerical estimate of the flux values, effectively turning the
non-dimensionalised segregation equation into a time-dependent 1st-order
ODE. This is then numerically solved by a 2nd-order Runge-Kutta method
for each timestep.

gradients into account and does a good job at avoiding shocks, ensuring

the non-oscillatory property (Kurganov and Tadmor, 2000). As shown

in Figure 2.2, we can take halfway points between each adjacent node

value of ϕi,j. These halfway points form a grid surrounding each node
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value and allow midpoint values to be calculated and stored for numerical

approximations of the flux terms. These approximated intermediate values

at grid-points are defined as

ϕ±
i+ 1

2
,j
= ϕi+ 1

2
± 1

2
,j ∓

∆x

2
(ϕx)i+ 1

2
± 1

2
,j

ϕ±
i,j+ 1

2

= ϕi,j+ 1
2
± 1

2
∓ ∆z

2
(ϕx)i,j+ 1

2
± 1

2
. (2.28)

The local maximal speed axi+1/2,j and azi,j+1/2 are defined at grid-points:

ax
i+ 1

2
,j
= max

ϕ−
i+1/2,j

,ϕ+
i+1/2,j

ρ

(
∂f(ϕ)

∂ϕ

)
az
i,j+ 1

2
= max

ϕ−
i,j+1/2

,ϕ+
i,j+1/2

ρ

(
∂g(ϕ)

∂ϕ

)
where f(ϕ) = ϕu, g(ϕ) =

1

C
Bϕ(1− ϕ). (2.29)

Here f(ϕ) and g(ϕ) are the flux functions in x and z directions from segre-

gation equation 2.24, and ρ(ϕ) = maxi(|λi(ϕ)|) where λi denote eigenvalues

of ϕ. Conveniently, for a bi-disperse case,

ax
i+ 1

2
,j
= max

ϕ−
i+1/2,j

,ϕ+
i+1/2,j

∣∣∣∣∂f(ϕ)∂ϕ

∣∣∣∣
az
i,j+ 1

2
= max

ϕ−
i,j+1/2

,ϕ+
i,j+1/2

∣∣∣∣∂g(ϕ)∂ϕ

∣∣∣∣
where f(ϕ) = ϕu, g(ϕ) =

1

C
Bϕ(1− ϕ). (2.30)

The numerical convection flux approximations are therefore defined

Hx
i+ 1

2
,j
=

f(ϕ+
i+ 1

2
,j
) + f(ϕ−

i+ 1
2
,j
)

2
−

ax
i+ 1

2
,j

2

[
ϕ+
i+ 1

2
,j
− ϕ−

i+ 1
2
,j

]
Hz

i,j+ 1
2
=

g(ϕ+
i,j+ 1

2

) + g(ϕ−
i,j+ 1

2

)

2
−

ax
i,j+ 1

2

2

[
ϕ+
i,j+ 1

2

− ϕ−
i,j+ 1

2

]
where f(ϕ) = ϕu, g(ϕ) =

1

C
Bϕ(1− ϕ). (2.31)

23



2.5. NUMERICAL SOLVER

Since numerical fluxes are calculated and stored on grid-points, it is es-

sential to impose spatial boundary conditions for boundary grid-points.

Considering the ultimate goal of modelling cyclic loading within a shear

box, we propose periodic inflow and outflow boundary conditions in x di-

rection and zero-flux boundary condition in z direction. We hope this can

provide a reasonable ground for simulating granular behaviour near the

central columns. One of the reasons behind this choice is that, as we get

closer towards the horizontal sides of shear box, re-arrangement of grains

might be too volatile for a continuum model to provide predictions.

The remaining terms in the segregation equation 2.24 all have 2nd-order

spatial derivatives and are also numerically approximated as an entire ‘dif-

fusion term’. Due to the emphasis on vertical diffusion as well as the

horizontal periodic boundary condition, the bi-disperse segregation equa-

tion 2.26 only contain spatial derivatives in z direction inside the diffusion

flux terms. Therefore, the numerical diffusion flux approximations at grid-

points are calculated using forward gradients of piece-wise node values of

ϕ as numerical derivatives:

P z
i,j+ 1

2
=

1

2

[
Q

(
ϕi,j,

ϕi,j+1 − ϕi, j

∆z

)
+Q

(
ϕi,j+1,

ϕi,j+1 − ϕi, j

∆z

)]
where Q(ϕ,

∂ϕ

∂z
) =

D
C
∂ϕ

∂z
+

1

C
[P0 + (1− z)] (1 +B(1− ϕ))

∂ϕ

∂z
. (2.32)

After numerically approximating each flux term in spatial dimensions, the

system of PDEs (in bi-disperse case only one equation) takes form of a

time-dependent ODE

d

dt
ϕi,j = −

Hx
i+ 1

2
,j
−Hx

i− 1
2
,j

∆x
−

Hz
i,j+ 1

2

−Hz
i,j− 1

2

∆z
+

P z
i,j+ 1

2

− P z
i,j− 1

2

∆z
. (2.33)

All the terms on the right hand side are numerically calculated for each
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time-step. We use 2nd-order Runge-Kutta method (Heun’s method) as the

time-stepper to solve the ODE for ϕi,j and use it as the initial condition

for the following time-step:

ϕ̂ti+1 = ϕti + tR (ti, ϕti)

ϕti+1 = ϕti +
∆t

2

[
R (ti, ϕti) +R

(
ti+1, ϕ̂ti+1

)]
. (2.34)

Here, ϕti denotes the ϕ value at i-th time-step in time, R(ti, ϕti) is the

right hand side function from equation 2.33. The intermediate value ϕ̂ti+1

is calculated first and then serves to increase the accuracy of the final

prediction for next time-step.

2.6 Summary

In this chapter we have constructed a time-dependent problem for the pur-

pose of modelling granular behaviour inside a shear box. A shear box is a

classic, idealised set-up that has many of the features that will allow us to

explore geotechnical problems involving the interactions between soil grains

and cyclically loaded structures within them. Following the steps of the

steady-state kinetic-sieving chute flow model (Gray and Thornton, 2005),

we adopt its mixture theory framework and use solid volume fraction ϕν to

represent distribution of any particular granular population categorized in

its size. After imposing assumptions of geo-static stress profile and inter-

action drag βν (Thornton and Gray, 2008) between granular populations,

an expression of any population’s relative velocity to the bulk 2.14 can

derived.

One key departure from the mixture theory occurs when stress is parti-

tioned among different populations in kinetic-sieving model. After cov-
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ering the basic requirements for the stress partition functions, we adopt

the pair-wise set-up (Gray and Thornton, 2005) as a starting point due

to its mathematical simplicity and potential convenience in experimental

parameter measurement. At this point, a basic system of PDEs have been

established. We then used scales such as typical height of the granular mix-

ture and shear box length for non-dimensionalisation and end up with a

system of PDEs, equation 2.24. This is mathematically similar to the orig-

inal chute-flow model and can also be solved using the Kurganov-Tadmor

convection-diffusion numerical scheme.

In the following chapter we will develop this system further to understand

how the cyclic loads which develop the shear in the geotechnical case can

be modelled.
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Chapter 3

Cyclic Loading

This chapter describes the modification of the kinetic sieving model to

capture granular behaviour in a cyclic loading set-up. In particular we

consider the choices of time-evolving velocity profiles and their feedback to

the granular behaviour.
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3.1. DRIVING THROUGH CYCLIC SHEAR

3.1 Driving through cyclic shear

In order to model the cyclic, confined conditions of geo-technical loads, such

as those on the soil around a wind turbine foundation, we are investigating

the geometry of a shear box (Figure 2.1). Here, the grains are mobilized

by an imposed shear on the top lid, mimicking the action of an oscillating

structure surface on neighbouring soil grains in its vicinity.

So far, we have put together a time-dependent continuum problem that

models granular behaviour within a shear box where the top plate is shear-

ing the granules back and forth, creating void spaces locally and driving

the different-sized granules to segregate into packets of high-concentration

regions. The kinetic-sieving model (Gray and Thornton, 2005) was orig-

inally designed to model steady-state chute flows and achieved excellent

agreement with experimental data (van der Vaart et al., 2015). In previ-

ous sections, we modified this configuration to include time dependence, a

normal confining pressure and we explored new flux term structures to the

kinetic sieving model. These changes adapted what was originally designed

as a steady-state chute flow model to a cyclic loading shear box scenario.

In this chapter, we consider the nature of the driving shear term at the sur-

face of the cyclic cell and how this boundary condition affects segregation.

3.1.1 Cyclic implementation

Reflecting the horizontal symmetry of the setup, we adopt periodic bound-

ary conditions. When reversal of top plate shear direction takes place, we

prescribe the solid volume fraction, ϕ, of the original downstream boundary

as a constant inflow boundary condition, and the former inflow boundary is
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3.1. DRIVING THROUGH CYCLIC SHEAR

given the ϕ values from its closest neighbour column under quasi-steadiness

assumption.

Physically, this implies a ‘central’ part of the granular mass is modelled,

because we are assuming a quasi-steady horizontal inflow and outflow con-

dition for the modelled region. Therefore, instead of rocks and boulders

trapped inside a metal box, the granular behaviour we are trying to simu-

late here bare a closer resemblance towards a small section of sand particles

underneath a long metal pipe exerting periodic horizontal shear.

The periodic boundary conditions are chosen in part due to concern over

the behaviour of a granule close to boundaries and the reflection of those

behaviours within a mixture theory framework: We are assuming the vol-

ume fraction to be similar across the modelled region. But if we consider a

small confined model region, the granular material would soon be sheared

towards one side, making the bulk material denser than the other side,

effectively breaking our volume fraction assumption. Furthermore, we ex-

pect granular motion to be more complicated near confined boundaries. In

reality, the imbalance of volume fraction as described before could poten-

tially create void space so large that the mixture can no-longer be modelled

as a continuum. Hence, periodic boundary conditions in the horizontal, x,

direction have been adopted.

Although the simulation results are two-dimensional, it makes sense to only

extract the central column from each time-step. There are two reasons for

this simplification. First, we are mostly interested in normal transport and

diffusion flux terms in z direction, leaving flux terms in x direction less

dominant, hence ϕ has relatively less significant horizontal variations. Sec-

ond, changes in horizontal flux term magnitude are largely determined by

size of ϕu, but the velocity profile can vary on a case-by-case basis, and we
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3.2. VALIDATION AGAINST PUBLISHED RESULTS

are currently only imposing profile without a constitutive law, once again

making it difficult to give a general prediction for ϕ changes in x direction.

In later sections, we will demonstrate that choice of velocity profile can still

influence simulation results when coupled with additional assumptions. For

now, we only sample the central column of ϕ from each time-step, combin-

ing them into a matrix containing solid volume fraction evolution data.

This effectively reduces the model to a single spatial dimension z.

3.2 Validation against published results

The oscillatory shear experiment (Scott and Bridgwater, 1975) conducted

by van der Vaart et al. (2015) provides a set of reproducible results to

draw comparison with thanks to its non-intrusive measurement method of

all granular particles and laterally-uniform configurations. Additionally,

the authors also employed the continuum-based kinetic sieving model to

generate theoretical predictions of how the solid volume fraction of small

particles ϕ evolves in time with the motivation being to justify the intro-

duction of asymmetric segregation flux function in z−direction. Hence, we

can validate our time-dependent solver and choice of lateral boundary con-

ditions through comparison with these data, before exploring the effects of

the confining pressure and imposed, time-dependent velocity profile.

With similar structure to equation 2.24, the advection-diffusion equation

to be solved for this side-wall driven oscillatory shear flow takes the form

∂ϕ

∂t
+∇ · (ϕu)− ∂

∂z
[qF (ϕ)] =

∂

∂z

(
D
∂ϕ

∂z

)
. (3.1)

where u denotes the bulk velocity profile, q is the mean segregation velocity

within in shear box, D denotes diffusivity and F (ϕ) is the segregation
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3.2. VALIDATION AGAINST PUBLISHED RESULTS

flux function. Derived from the simplest form of stress partition function

equation 2.15, the resultant segregation flux function takes the form

F (ϕ) = ϕ(1− ϕ). (3.2)

Due to the lateral uniformity of oscillatory shear box, the bulk velocity pro-

file has only horizontal components with magnitude dependent on depth

z and time t, i.e. u = (u(z, t), 0, 0). After non-dimensionalisation, equa-

tion 3.1 effectively reduces to a one-dimensional convection-diffusion equa-

tion

∂ϕ

∂t
+− ∂

∂z
(SrF (ϕ)) =

∂

∂z

(
Dr

∂ϕ

∂z

)
. (3.3)

It was noted that the trajectories of large and small particles suggest that

small particles reach the bottom boundary faster than the large particles

reach the top boundary. Hence, a novel asymmetric flux function devised

by Gajjar and Gray (2014) was introduced

F (ϕ) = Aκϕ(1− ϕ)(1− κϕ). (3.4)

Here, the asymmetry parameter κ can be used to configure the flux func-

tion from quadratic to cubic form, and the amplitude parameter Aκ serves

to guarantee unchanged flux amplitude. After substituting the asymmetric

flux function, the numerical solution provides a closer prediction towards

experimental measurement of ϕ evolution, as shown in Figure 3.1. It can

be seen that this one-dimensional time-dependent problem has very similar

mathematical structure to the two-dimensional time-dependent problem

covered in section 2, when combined with periodic boundary conditions.

Such mathematical resemblance presents an opportunity to validate the

time-dependent continuum implementation of this work against published

data. Using the same velocity profile, segregation rate and diffusion rate
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Figure 3.1: Figures produced by van der Vaart et al. (2015): (a) Vol-
ume fraction, ϕ, data extracted using refractive index-matched scanning
under oscillatory shear. (b) Theoretical prediction of small particle solid
volume fraction ϕ using bi-disperse kinetic sieving model using the sym-
metric flux function, with Sr = 0.016 and Péclet number Sr/Dr = 20.9.
(c) Theoretical prediction of ϕ using the asymmetric cubic flux function
proposed by Gajjar and Gray (2014), with Sr = 0.030 and Péclet number
Sr/Dr = 29.6. (d)(e) Our time evolution graph numerical solution ϕ to
the non-dimensionalised segregation-diffusion problem obtained using the
symmetric flux and asymmetric flux and equivalent periodic boundary con-
dition to match the oscillatory shear box problem. The parameters Sr, Dr,
κ and Aκ are chosen to match with the results produced by van der Vaart
et al. (2015).

parameters as featured in original work (van der Vaart et al., 2015), and

recording central column of the 2D solution under periodic boundary con-

dition, a time evolution heat graph can be generated for both symmetric

and asymmetric flux functions, shown in Figure 3.1. Qualitative and quan-

titative agreement can be seen between the published experimental data

and model implementation of Figures 3.1(a), (b) and (c) and the equations

derived here - subject to periodic boundary conditions - Figures 3.1(d) and

(e). This agreement justifies the functionality of our continuum model for

granular segregation, and sets the foundation for further modifications on

time-varying velocity profile and shear rate dependence in later sections.
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3.3. TIME-EVOLVING VELOCITY PROFILE

3.3 Time-evolving velocity profile

3.3.1 Desired characteristics

Within a cyclic shearing environment with periodic back-and-forth motion

exerted from the top interface, it is natural to expect that how velocity

profile changes in time would have a strong contribution or impact onto

granular behaviour. We need to provide a time-evolving velocity profile

that reflects the features of the periodic, surface-driven shear cell. A goal

should be to use a constitutive law in ways such as a µ− I or kinetic the-

ory approach (Montanero et al., 1999; Jenkins and Berzi, 2012) to directly

relate the shear rate of the granular mixture with the imposed stress. How-

ever, there are many open choices and questions in such an approach which

would also add complexity to the solution method. Here, for simplicity and

as an initial step, we will impose on our system a time-evolving velocity

profile function u(z, t) that fits with observations. This is an approach that

could be revisited in further work.

Therefore, this section starts by exploring what criteria need to be met for

such a velocity profile, and what features we should anticipate the profile

to have based on existing knowledge and assumptions.

Inside a cyclic loading environment, it makes sense to assume that velocity

profiles undergo active and complex changes in time. Unlike steady-state

granular flow, extraction of velocity profile under non-steady motion proves

challenging. Measurements on boundary surfaces are most convenient, but

usually introduce additional concerns such as interface friction and slipping

effects (Forterre and Pouliquen, 2008). On the other hand, measuring ve-

locity profile internally poses more technical difficulties and often requires

remarkable efforts to make the process less intrusive to the material (Pu-
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dasaini et al., 2005). Discrete element models (Ketterhagen et al., 2007;

Marks et al., 2012b) have also been used to explore velocity profiles within

granular mixtures, but the results are often sensitive to parameter and

setting choices (Brandao et al., 2020b).

Since this thesis revolves around modifying the continuum model and di-

rectly relevant cyclic shearing experiments have been conducted yet, we

want our non-steady velocity profile to be as general and flexible as pos-

sible. However, we do have a basic understanding of the desired features

of such velocity profiles. It needs to be capable of qualitatively fitting

known granular profiles in similar shear flow scenarios, but can also be eas-

ily tweaked for substituting specific experimental readings, such as surface

velocity measurements. Additionally, previous cyclic shearing experiments

indicate that the shape of velocity profile is hysteretic, changing upon re-

versal of the shear; so there needs to be a way of manipulating shape of

velocity profile in time.

3.3.2 First attempt: Discrete sequence

Data from chute flow models (Johnson et al., 2012), annular shear cell

experiments (Golick and Daniels, 2009) and various DEM simulations (Qiao

et al., 2021) show that a number of factors affect the strain response to

shear. These factors include surface roughness of the shearing surface and

granular beads, curvature influences in annular shear cells, packing fraction

of the granular material, shear strain rate and even crush-ability of the

material.

We can attempt to capture some of these effects through our choice of

evolving profile, i.e. prescribing a sequence of velocity profiles that not
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only adopt the key shapes observed in shear layer velocity profiles, but are

also based on empirical expectations of how such velocity profiles might

behave in a cyclic-loading shear box environment.

For simplicity of implementation, while maintaining the appropriate ge-

ometries of the cyclic shear cell, we propose a series of hyperbolic velocity

profiles. Ideally, conducting a poly-disperse granular shearing experiment

and measuring how velocity profile evolves under cyclic shear would be

preferable. However, the Covid-19 pandemic made planning and conduct-

ing experimental studies challenging. Therefore, our choice of hyperbolic

profiles is mostly inspired by published cyclic shear cell experimental stud-

ies (Golick and Daniels, 2009) as shown in Figure 3.2. However, it should

made clear that the closest experimental study (May et al., 2010) featured

a bottom-driven annular shear cell instead of a top-driven one. There-

fore, we are employing the hyperbolic profiles as a starting point, and have

made sure that experimentally-measure velocity profiles can indeed be im-

plemented into the model conveniently in future. For the remaining part

of this thesis, we will continue exploring with hyperbolic velocity profiles.

Figure 3.2: Side-by-side comparison between the velocity profile measured
by May et al.(2010) and the family of hyperbolic velocity profiles used in
this thesis, this time inverted in z.
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3.3. TIME-EVOLVING VELOCITY PROFILE

The hyperbolic form we adopt for the velocity u(z) at an elevation z from

the base of the shear box

u(z) =
1

unorm

[
tanh

(
β

πz

)
− 1

]
, (3.5)

where unorm = tanh β
π
− 1 serves to normalize velocity profile magnitude

based on surface speed and β is the shape-adjusting parameter: an increase

in β results in a faster decay of horizontal speed in depth, i.e. darker-colored

curves shown in Figure 3.3(a).
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Figure 3.3: (a) Illustration of how u(z) iterates to mimic initialisation
process as the layer becomes mobilised by the applied top shear. Time
increases with blue through red to orange colour; (b) Illustration of how
u(z) iterates over one complete shear cell cycle.

Inside a shear box where the top plate is shearing the granular material

back and forth periodically, it makes sense to expect velocity profile to have

maximum magnitude towards top surface and decay towards bottom. The
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velocity is thus expected to be at maximum when z = s, where grains are

directly in contact with and driven by top plate, tending to zero towards

the base of the cell to facilitate the non-slip boundary condition. The hy-

perbolic profile can be adjusted via the shape parameter β to mimic the

gradual increase of horizontal motion in depth as shearing motion continues

especially upon initialization. As shown in Figure 3.3(a), the warm-colored

group of functions can simulate how velocity profile would evolve in time

as the shearing starts (β decreases from 10 to 0.5 as the curve color change

from dark red to light orange). However, during the earliest stages of mo-

bilization, we anticipate the velocity profile to take a much more top-heavy

shape as the motion is still being transferred to bottom. Unfortunately,

setting β beyond a certain threshold would result in non-smooth profiles.

Hence, the hyperbolic function is stretched upwards in z-direction (instead

of changing β because the curve becomes non-smooth as β becomes too

big) to form the dark-colored curves. Combining the two groups of func-

tions together, an reasonable iteration sequence of velocity profile upon

initialization is complete.

When the top plate changes shearing direction, we expect grains near top

surface to decelerate and consequently change direction of velocity along

with top plate, while such reversal of horizontal motion also take place in

lower regions with a slight ‘hysteresis’ due to their distance from the top.

In order to simulate this effect, we take difference increments of velocity

profiles in-between time-steps for both directions and use these truncated

values to model evolution of velocity during reversal process as shown in

Figure 3.3(b). As the top velocity changes direction, grains below the

surface is prescribed to change their movement direction according to the

surface profile, but in a slightly delayed fashion. Another reason for using

sequences of truncated values is mathematical simplicity, as the interme-
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diate curves are not possible to generate by tweaking parameters of the

hyperbolic profile.

In this section, we have assembled a sequence of velocity profiles attempting

to capture the gradual propagation of velocity down depth and hysteresis

effect upon reversal. However, being a discrete sequence poses some limits:

the sequence have to be generated and sometimes adjusted before run-

ning the simulation; the group of stretched profiles (dark-colored ones in

Figure 3.3(a)) are also potentially unreliable because their shapes don’t

necessarily align with main group, sometimes requiring additional calibra-

tion. In hindsight, another overlooked element is the attention to surface

velocity magnitude. In fact, the surface velocity magnitudes start with a

fixed value upon initialization, which is not accurate: it should rise from

0 until the maximum is reached. Additionally, parameters used to adjust

profile behaviour are not linked to non-dimensionalizing scales or crucial

experimental values such as shear cycle period and surface velocity mag-

nitude, making it difficult to compare or calibrate with experimental data.

Simulation results using this version of velocity profile can be found in

section 3.3.4.

3.3.3 Second attempt: Continuous function

Indeed, generating a sequence of velocity profiles beforehand for the simu-

lation leaves room for improvement. This compromise is made in order to

see if reversal behaviour could be captured using the method. Naturally,

we now advance to improve the drawbacks and limitations by proposing

a new set-up of hyperbolic profiles, this time having a firmer anchor in

reality.

u(z) =
1

unorm

[
tanh

(
β

πz

)
− 1

]
(3.6)
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where

unorm =

(
tanh β

π
− 1
)

us

,

β is the shape-adjusting parameter and us is the surface velocity magnitude.

As shown in Figure 3.4(a), β still controls how the velocity retains its mag-

nitude as it propagates in depth. Figure 3.4(b) demonstrates how us forces

the velocity profile to take a certain value at surface z = s. This feature

can simplify the progress of tweaking the profile against experimental mea-

surements. The biggest change we made is how β and us change in time. It

has been discussed in previous section that, it makes sense to tie these pa-

rameters and their ways of iteration with the non-dimensionalisation scales

and measurement values easy to retrieve from experiments. Therefore, we

propose a scenario where β and us are defined by periodic trigonometric

functions.

β = sin

(
πt

T

)
, us = 5 cos

(
2πt

T

)
+ 5.5 (3.7)

where T is the shearing period. As shown in Figure 3.4(c) and Figure 3.5,

the evolution curves of β and us are chosen to fit the conditions of initial-

ization and reversal: When shearing starts from still, us should increase

from 0 and β decreases from 10.5 to 0.5 to imply the gradual mobilization

and acceleration of granules in depth. Upon reaching T/2, surface velocity

touches its local maximum 1 and begin decreasing whereas the decelera-

tion gradually propagate in depth, reflected by increase of β. The first

reversal process finally concludes at 3T/2, when us reaches local minimum

of −1 and shape parameter β declines to 0.5 once again. Compared with

the previous attempt, this version of velocity profile evolution has the fol-

lowing advantages: First, most of its parameters (us and T ) can be easily

measured and retrieved from field experiments. Second, it provides great
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Figure 3.4: Illustration of how the control parameters manipulate velocity
profile characteristics and evolve themselves. (a) Simulated velocity profile
shape change via changing shape factor β; (b) Surface velocity condition
enforced by us; (c) Design of how β and us periodically fluctuate.

freedom in choosing what kind of periodic behaviour the controlling pa-

rameters take, making it easy to calibrate. Third, using smooth functions

instead of discrete arrays offers improved flexibility when it comes to ad-

justing the profile for different simulations. However, it should be noted

that both versions of velocity profiles serve as initial solutions towards in-

corporating more shear-box-related features into the model. Having shear

rate dependence take a more active role in constitutive law should be the

goal moving forward.
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t = 0

t = 3T/2

Figure 3.5: Illustration of how velocity profile evolves under the periodic
set-up.
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Figure 3.6: Heat maps presenting 2D bi-disperse simulation results for dif-
ferent configurations of discrete-sequenced velocity profiles and segregation
rate dependence settings: (a) steady plug flow û = 0.5 ∀ẑ ∈ [0, 1]; (b)
steady hyperbolic u(z) as defined by equation 3.5 with β = 1.0816; (c)
discrete hyperbolic u(z) with only initialisation for t ∈ [0, 5]; (d) discrete
hyperbolic u(z) with initialisation and reversal events at t = 10, 25; (e)
discrete hyperbolic u(z) with only initialisation for t ∈ [0, 5], now coupled
with shear rate dependence enforced in B = Bbase +

√
du/dz B0 where

Bbase = 0.5 and B0 = 0.3; (f) discrete hyperbolic u(z) with with initialisa-
tion and reversal events at t = 10, 25, now coupled with shear rate depen-
dence enforced in B = Bbase+

√
du/dz B0 where Bbase = 0.5 and B0 = 0.3;

(g) continuous hyperbolic u(z) as defined by equation 3.6; (h) continuous
hyperbolic u(z) as defined by equation 3.6, now coupled with shear rate
dependence enforced in B = Bbase +

√
du/dz B0 where Bbase = 0.5 and

B0 = 0.3.
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3.3.4 Sensitivity of velocity profile choices

In the shear box scenario, one could argue that shear rate within the gran-

ular material should affect how actively granular material segregate in size.

With this in mind, we experimented with adding shear rate dependency to

the pairwise segregation rate Bνµ in a bi-disperse case using the formula

Bupdated =

(
B0 +

√
∂u

∂z

)
Bbase (3.8)

where B0 is a background value and Bbase is what was previously used as

Bνµ. The shear rate ∂u/∂z is obtained numerically from the velocity pro-

file. As discussed in previous sections, different choices of velocity profile

u(z, t) does not produce dominant impact on ϕ evolution due to the size of

horizontal flux and periodic boundary conditions. However, with the pair-

wise segregation rate forced to take a numerical shear rate dependence, we

can really start to see feed-backs created by changes in velocity magnitude

and direction. We start by experimenting with the sequenced version (as

discussed in section 3.3.2) due to their sharper changes in velocity gradient.

As shown in Figure 3.6(a)-(h), feed-backs onto segregation timescale caused

by various factors and dependence mechanisms are demonstrated. In each

sub-figure, the horizontal axis corresponds to non-dimensionalised time and

vertical axis corresponds to non-dimensionalised depth. For each simula-

tion, only the central column of the 2D solution matrix is recorded at

each time-step due to the observation of small horizontal differences mostly

caused by periodic boundary conditions in x-direction. The collection of

these ‘column snapshots’ form the heat maps shown here. Each simulation

is run for t̂ ∈ [0, 40] for a 2D bi-disperse simulation. Local distribution of

the two particles is represented by ϕ, the solid volume fraction of small par-

ticles. In the sub-figures, noticeable differences in how quickly and how far
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concentrated regions of high or low ϕ values form can be seen for different

configurations.

Compared with the bi-disperse simulation result for plug flow, segregation

appears to vary in depth once we use the hyperbolic velocity profile caused

by the ϕu term in segregation equation 2.24. Additionally, subtle changes

in segregation timescale caused by the initialisation and reversal events can

be seen in Figure 3.6(c) and (d). A noticeably longer segregation timescale

can be observed for cyclic shear (initialisation + reversal) than simple shear

(initialisation + no reversal). The contrast can be amplified if we force

segregation parameter to depend on numerical shear rate as defined in 3.8.

As shown in Figure 3.6(e) and (f), volume fraction ϕ visibly go through

local fluctuations as reversal takes place and shear rate changes the most.

This shows that more shear-rate-related behaviour could be incorporated

in the continuum model, provided they are implemented under robust and

realistic assumptions.

Figure 3.6(g) shows how ϕ evolves when the continuous function defined by

equation 3.6 is introduced. As expected, when surface velocity is the same,

differences in ϕu caused by different velocity profile evolution schemes are

not significant. Lastly, Figure 3.6(h) demonstrates that smoother feed-

backs to ϕ distribution compared to discrete profiles can be seen when

shear-rate dependence is enforced, showing that sensitivity of simulated

granular behaviour to velocity profiles can indeed be encouraged and cus-

tomised to fit experimental data or specific modelling scenarios.

It should be made clear that the new patterns are only expected outcome

made possible by our choice of modification and shear rate does not yet

play a part anywhere further in the model. However, it does seem to

produce periodic features related to cyclic loading. It remains for actual
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3.4. BI-DISPERSE RESULTS

experiments to guide whether such features are meaningful or not.

3.4 Bi-disperse results

Having described how the segregation equation is constructed and how solid

volume fraction ϕ is numerically calculated using the Kurganov-Tadmor

scheme (Kurganov and Tadmor, 2000) and Heun’s method for each time-

step, we are now able to simulate granular behaviour for elongated time.

As shown in Figure 3.7 and Figure 3.8, effect of changing key parameters B,

C, D and P0 are demonstrated by the differences of segregation behaviour.

Each subplot heat-map corresponds to the time evolution of a two-dimensional

bi-disperse simulation. Due to the horizontal periodic boundary condition,

we only sample the central column from the ϕ matrix at each time-step,

making the horizontal axis of each heat-map t. Each simulation starts

with the same initial condition: 50% large particles at the bottom and 50%

small particles on top. For reference, a default template is chosen with

parameters B = 0.9, C = 20,D = 0 and P0 = 0.1, and each row focuses on

changing one of the four parameters.

As the pair-wise segregation rate parameter B rises, the relative segregation

velocity and normal convection flux relative to the bulk also increase, mak-

ing the grains reach neutral and later reversed positions quicker in time.

Coefficient of interactive drag c contributes to C, and an increase in C sup-

presses the grains’ ability to dilate locally and rearrange, preventing and

delaying the emergence of reversed high-concentration layers. D is a generic

diffusion parameter in z direction, and P0 is the non-dimensionalized con-

fining pressure. One very interesting observation is that, these two param-

eters seem to both cause the granular mixture to reach neutral state sooner
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3.5. SUMMARY

but also harder to accumulate into reversed regions. Mathematically, this

makes sense because we have shown that P0 also controls a diffusion flux

term.

3.5 Summary

In this section, we have made additional modifications to the kinetic siev-

ing model. Specifically, we explored two versions of prescribed velocity

profile evolution pattern, each designed to capture granular patterns seen

in experiments. We started by validating bi-disperse version of our model

against published results, making sure we are building on a firm founda-

tion. Because there is not yet a constitutive law to determine how the

velocity should evolve in time for granular material, desired characteristics

are discussed before two versions of velocity profile are proposed, with one

being discrete and one being continuous. Feed-backs of the chosen velocity

profiles are also discussed as shear rate dependence is applied. We finish

this chapter by showcasing the simulation results of the bi-disperse simula-

tion as well as a brief analysis of effects onto segregation behaviour by key

parameters.

In following chapters, we continue building the continuum model by ex-

ploring poly-dispersity and simulated breakage.
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Chapter 4

Incorporating Poly-dispersity

This chapter walks through the process of expanding the kinetic sieving

model from bi-disperse to poly-disperse. Various details about tackling

model set-up during expansion is also discussed.

49



Contents

4.1 Importance of achieving poly-dispersity . . . . . . . . 51

4.2 Iterative expansion of species . . . . . . . . . . . . . . 52

4.3 Validation against bi-disperse and tri-disperse results 65

4.4 Test design scenarios based on size ratio distribution . 70

4.5 Results and discussion . . . . . . . . . . . . . . . . . . 74

50



4.1. IMPORTANCE OF ACHIEVING POLY-DISPERSITY

4.1 Importance of achieving poly-dispersity

One crucial element of geophysical granular mixtures is the great diver-

sity of granular sizes. Specifically, it is almost impossible to find granular

samples from sand, dry snow or dry soil consisting of only one or two size

categories.

In previous chapters, we have made modifications to a continuum kinetic

sieving model (Gray and Thornton, 2005) with the intention to prepare

it for the goal of simulating the granular behaviour of a central region

within a shear box, where the top plate is exerting cyclic shearing motion

and normal pressure through contact. The list of modifications include the

inclusion of normal pressure terms in segregation equation and two versions

of generated velocity profile evolution patterns.

In this chapter, we extend the model to incorporate poly-dispersity, i.e.

multiple populations categorized by granular sizes. We start by explaining

how the scheme can in fact be translated into symbolic form for iterative

expansion. After assembling a structure where the scheme can be appro-

priately expanded based on the number of size population and their infor-

mation, we proceed to validate against existing bi-disperse and tri-disperse

results. At last, we discuss various poly-disperse scenarios that might em-

ulate features from different types of granular mixtures, before eventually

showing and analyzing a few groups of simulation results modelling 10 dif-

ferent size populations.
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4.2. ITERATIVE EXPANSION OF SPECIES

4.2 Iterative expansion of species

Kinetic sieving model has been a well-known and powerful tool for mod-

elling shallow quasi-steady chute flows (van der Vaart et al., 2015; John-

son et al., 2012). However, a great proportion of published works using

this model are focused on bi-disperse (Thornton and Gray, 2008) and

tri-disperse case (Gray and Ancey, 2011). Our ultimate goal remains to

capture as many features of a geo-physical granular mixture under cyclic

loading as possible. Therefore, it makes sense to go one step further and

expand the population count from 2 and 3.

As defined in equation 2.15, rate of segregation activity is controlled by

pairwise rates Bνµ between the pair of populations ν and µ. For a bi-

disperse mixture, this set-up is straight-forward and convenient, but the

relationships become rather complex as population count increases. In fact,

discussion on impacts of how pairwise segregation rate (Gray and Ancey,

2011) has been made for the tri-disperse case. One important question

to ask is: what dictates how big a value Bνµ takes for a certain pair of

populations ν and µ? Based on segregation time scale measurements from

experiments conducted by Golick and Daniels (2009) and May et al. (2010),

Gray and Ancey (2011) proposed to model pairwise maximum segregation

speed qνµ (Bνµ multiplied by scale parameters) as a function of grain size

ratio. The pairwise structure of prescribing segregation rate actually has

a unique advantage: it can potentially simplify segregation relationships

among multiple size populations into a superposition of pairwise relation-

ships. Precisely due to the fact that the value of Bνµ need to be measured

for each scenario, measuring for a group of pairwise relationships seems a

much more convenient and feasible option. Going one step further, if we

can find a suitable function or curve to describe how Bνµ evolves as size
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4.2. ITERATIVE EXPANSION OF SPECIES

ratio increases, then all the pairwise components of a poly-disperse segre-

gation relationship can be mapped onto a an array of points on that curve,

making visualizing and understanding the segregation relationships within

the mixture a much more straight-forward task. Guided by the experimen-

0 1 2 3 4 5 6

sνµ = dν/dµ

0

0.5

1

B
ν
µ

Figure 4.1: Illustration of an expected relationship between grain-size ratio
sνµ and non-dimensionalised segregation rate Bνµ.The three highlighted
points are at sνµ = 1, sνµ = 2 and sνµ = 4.

tal observation that segregation time scale ts has a minimum at a specific

size ratio (Golick and Daniels, 2009; May et al., 2010), a local maximum is

suggested to exist for pairwise maximum segregation speed qνµ (Gray and

Ancey, 2011). This idea of having a local maximum for segregation rate

makes sense to a certain degree, meaning that there exists an ‘optimal size

ratio’ for granular segregation under a particular setup, coinciding with ex-

perimental observations of size ratio’s influence on segregation behaviour

from previous works (Scott and Bridgwater, 1975; Woodhouse et al., 2012;

Gray, 2018).

As demonstrated in Figure 4.1, we adopt the assumption of a local max-

imum for segregation rate Bνµ and employed a 3rd power polynomial to

capture the shape defined as below.

Bνµ = α
(
(sνµ − 4)3 + 3 (sνµ − 4)2

)
(4.1)
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4.2. ITERATIVE EXPANSION OF SPECIES

where α = 0.2 is an amplitude-controlling parameter and sνµ = dµ/dν is

the size ratio. The second highlighted point at sνµ = 2 is where segregation

rate reaches its local maximum by design. As mentioned in chapter 2, two

crucial conditions have to be met when designing the pairwise segregation

rate function:

Bνν = 0 ∀ν

Bνµ = −Bµν ∀ν ̸= µ. (4.2)

The first condition implies that no segregation should take place within a

mono-disperse mixture, i.e. only one size category is present (as shown at

the first highlighted point at sνµ = 1 in Figure 4.1); The second condition

corresponds to the idea that each pair of particle populations should have

an equal and opposite rate and effect of size segregation. In context of

designing the function, meeting the first condition means ensuring Bνµ = 0

at sνµ = 1. As for the second condition, it can also be interpreted as:

B(sνµ) = −B(1/sνµ) where Bνµ = B(sνµ). (4.3)

In practice, it makes sense to only use equation 4.1 for sνµ ≥ 1, and refer

to equation 4.3 to define B(sνµ) for 0 ≤ sνµ ≤ 1. This decision help avoid

the complexity of designing a polynomial meeting all requirements across

the entire domain.

The third highlighted point in Figure 4.1 demonstrates one additional as-

sumption we propose: The segregation rate eventually falls back to 0 when

the size ratio becomes too large, in this case, at sνµ = 4. In agreement with

the local maximum segregation rate observation, we anticipate the segre-

gation rate to decline as size ratio go beyond the optimal value. During

this process of size ratio increase, the local gaps in-between particles are
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4.2. ITERATIVE EXPANSION OF SPECIES

expected to become larger compared to the smaller-sized particles, making

them easier to fill in the fluctuating void spaces opened up and closed down

during shearing motion. However, it becomes harder to lever larger-sized

particles upwards because they are sustaining a large portion of the con-

tact network, effectively locking them in place and preventing them from

changing positions. Therefore, the ability for the two grains to segregation

through kinetic sieving is expected to decline as size ratio grows beyond a

certain optimal value.

The reason for us to go one step further and assume Bνµ = 0 at sνµ = 4

is simple: such increased ability of small particles to fill in void spaces as

well as the gradual inability of large particle to change position go against

fundamental assumptions within the mixture theory framework. As de-

scribed in Chapter 2, we assume solid volume fraction to be steady and

near-uniform across the modelled region, this enables us to only consider

solid volume fraction ϕν for each population of grains. Our expectation of

granular behaviour as sνµ increases goes against such assumption, threat-

ening the functionality of kinetic sieving mechanism and model. Therefore,

we assume Bνµ = 0 at sνµ = 4, indicating a point where the grains effec-

tively interact similar to how dust and boulders interact. It might be really

easy for dust to ‘trickle down’ and collect at the bottom, but it is much

more difficult to have dust collectively lift the boulders upwards. In general,

it becomes harder to model granular mixture in the form of a continuum as

size ratio becomes too large (the average size of void spaces could be on the

same level of some populations of small-sized particles). Therefore, we only

use the last highlighted point (in this case at sνµ = 4) as a reference point

‘in far distance’ in size ratio axes and avoid actually approaching near it.

It should also be noted that the function 4.1 is a manually-selected one,

and the size ratio at which point Bνµ goes back to 0 can be altered to fit
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4.2. ITERATIVE EXPANSION OF SPECIES

different scenarios.

Conveniently, the Kurganov-Tadmor semi-discrete scheme (Kurganov and

Tadmor, 2000) allows for expansion into groups of convection-diffusion

equations to solve (it only implies that the formerly scalar problem is now

in vector format), effectively permits the possibility of modelling multi-

ple granular size categories simultaneously. However, the actual process

of expanding the kinetic-sieving model is a complex and challenging one.

To start with, a list of ϕ values need to be processed and stored at the

same time, demanding a change of data structure and rewriting of how

each function processes the data. Additionally, as there are more than 2

or 3 populations of particles at play, the complexity of function naturally

increases, sometimes making it no-longer possible to adopt simplification

measures that were previously in use.

It should be made clear that, our goal of expanding kinetic-sieving model to

poly-dispersity is never to just have 4 or 5 types of particles being modelled

at once. In fact, we aim to build an algorithm that can perform iterative

expansion to involve any specific number n of granular populations. We

believe this is the right step to take before incorporating breakage effect

into the model although it does pose additional mathematical challenges.

In order to ensure reliability, we minimise the amount of prescribed pa-

rameters and function settings. Instead, we have made a strong effort to

make the expansion process as ‘automatic’ and flexible to any arbitrary

population number as possible.

One good example of complexity of the iterative expansion process is how

pairwise functions are properly superimposed when multiple new popula-

tions are introduced. As defined in equation 4.4, matrix Pn stores the

pairing relationships among all population members when there are n pop-
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4.2. ITERATIVE EXPANSION OF SPECIES

ulations being modelled. For a bi-disperse problem, P2 is conveniently

one-dimensional and therefore only require one partial equation to solve

(as described in Chapter 2). Due to the pairwise design of stress partition

functions, the pairing relationships play a key role in computing numerical

values for various convection and diffusion terms in the group of segre-

gation equations. For example, P4 can be used to guide how pairwise

segregation effects should be superimposed to form the net motion relative

to bulk. This might seem straightforward or unnecessary when there is

only a handful of populations. However, size of the Pn matrix increases in

both its dimensions as new populations are introduced. Therefore, it makes

sense to establish an iterative way of constructing Pn based on Pn−1 in an

iterative manner as shown in equation 4.5 and equation 4.6.

P2 =

[
1 2

]
P3 =

1 2 1 3

2 1 2 3

 P4 =


1 2 1 3 1 4

2 1 2 3 2 4

3 1 3 2 3 4

 (4.4)

Pn−1 =



1 2 1 3 . . . 1 n− 1

2 1 2 3 . . . 2 n− 1

...
...

. . .
...

...

n− 2 1 n− 2 2 . . . n− 2 n− 1


(4.5)

Pn =



1 2 1 3 . . . 1 n− 1 1 n

2 1 2 3 . . . 2 n− 1 2 n

...
...

. . .
...

...
...

...

n− 2 1 n− 2 2 . . . n− 2 n− 1 n− 2 n

n− 1 1 n− 1 2 . . . n− 1 n− 2 n− 1 n


(4.6)

The pairing matrix Pn−1 documents all pairwise relationships between non-

identical pairs for n − 1 populations. As shown in equation 4.5, elements
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4.2. ITERATIVE EXPANSION OF SPECIES

marked in blue and cyan were introduced to expand Pn−2 into Pn−1. Here,

blue columns describe the relationships going from each other population

to the (n − 1)-th; cyan rows include relationships going from the n − 2-

th population to everyone else. The rule to automatically expand Pn−1

into Pn is in two steps. First, information stored in the blue-colored last

columns are transposed to form the orange-colored new row. Second, a new

set of last columns colored in red is constructed according to relationships

from each other population to the n-th.

P3 =

1 2 1 3

2 1 2 3

 G3 =


1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

 (4.7)

It should be noted that, only a selected subset of all pair-wise relation-

ships are recorded by Pn matrices. The omitted relationships consist of

two groups: self-identical pairs and the replaceable pairs thanks to mass

conservation. A side-by-side comparison is shown in Figure 4.7, where

G3 is a generic matrix recording all pair-wise relationships. Due to the

non-segregation condition for mono-disperse mixture (i.e. Bνν = 0) and

structure of Jacobian matrices used in computing flux function derivatives

in equation 2.28, it makes sense to omit the diagonal pairs colored in red

for higher computing efficiency.

Since volume fraction of the last population can always be calculated with

information of the remaining populations based on mass conservation of all

populations combined, we can omit the set of equation for one population.

Therefore, the line of equation dedicated to the last population is no-longer

necessary, and the row regarding to n − 1-th particle (shown as the blue-

colored pairs within G3 in Figure 4.7) is omitted.
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The biggest strength of Pn matrices compared to generic Gn formulation

is an more optimised and simplified data structure. Quantitatively, only a

(n − 1) × (n − 1) matrix (instead of a n × n one) is required to model a

n-disperse problem, potentially saving considerable amount of computing

power and storage resource for simulations with very high population count.

One of the re-occurring themes of this chapter is the necessity to be able

to establish and maintain a correct data structure as the population count

increases. Iterative approaches of building the structure for n populations

based on that for n−1 populations prove powerful and reliable. For exam-

ple, pairing matrix Pn provides a clear framework to list or superimpose

pairwise relationships. Given an array of n grain sizes, one can easily use

Pn to calculate grain size ratios and hence pairwise segregation rates Bνµ

based on equation 4.1. Similarly, numerical approximation of flux term val-

ues from segregation equation 2.24 include summation of pairwise segrega-

tion rate contributions. Iterative expansion can once again help construct

appropriate equations based on information of all modelled populations

using 4.1 coupled with symbolic calculation and differentiation. It can be

said that symbolic calculation slows down computing speed significantly in

coding practice, but we do believe it is the right sacrifice to make in order

to ensure robustness of the model upon population expansion. Addition-

ally, we want to make sure everything is working as intended during the

iterative expansion process, therefore we greatly emphasised on performing

all the steps in a way as straight-forward as we can. In future stages, there

is a considerable amount of room for further optimizations.

The reason to employ symbolic calculation mostly comes from the need

to generate partial derivatives while numerically approximating flux terms

within Kurganov-Tadmor scheme for an arbitrary number of size popula-

tions. As described earlier, poly-dispersity implies that a vector Φ instead
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4.2. ITERATIVE EXPANSION OF SPECIES

of a scalar ϕ acts as the unknown and hence every flux function takes

vectorised format. As defined in equation 2.29, the partial derivative of a

function vector f(Φ) or g(Φ) with respect to Φ is therefore their Jacobian

matrix ∂f/∂Φ.

So far, the pairing matrix introduced earlier is capable of allocating the

correct array of pair-wise coefficients (namely Bνµ ∀ϕµ ̸= ϕν ∈ Φ) for each

element of a flux function f(Φ) (namely ∀ϕν ∈ Φ). However, construct-

ing the Jacobian matrix involves partially differentiating each element of

f(Φ) with respect to each element of Φ. For a particular set-up with a

fixed number of size populations (with bi-disperse and tri-disperse being

the two simplest cases), it is not hard to manually and analytically pre-

pare these derivatives beforehand and then prescribe the exact formulae of

∂f/∂Φ. However, adding a size population into the system would bring

so many challenging changes to the data and computing structure, making

this partially-prescribed approach no-longer suitable. Specifically, these

challenging changes can take the form of additional terms in each element

of f(Φ), additional elements in f(Φ) and consequently, entirely different

formulae for the Jacobian matrix ∂f/∂Φ.

Having pointed out the limitations of partially-prescribed formulations for

polydisperse and the need for a truly self-organized approach to assemble

the correct formulae (with the biggest challenge being constructing ∂f/∂Φ),

it becomes very clear that symbolic calculation has to be incorporated into

the automated process. In practice, we use SymPy library for the symbolic

calculation and differentiation due to its versatility of dealing with multiple

symbolic items and compatibility with the rest of our defined functions

written in Python. In the remaining part of this section, we will go through

one poly-disperse example, explain how the Kurganov-Tadmor scheme is

carried out with the help of symbolic preparation.
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4.2. ITERATIVE EXPANSION OF SPECIES

Consider a mixture of five size populations with their sizes defined as

s = [1, 1.1, 1.2, 1.3, 1.4]. According to the previously-defined procedure

(equation 4.4 - 4.6), we have already constructed function pairingAdd to

generate the appropriate pairing matrix (source code can be found in Ap-

pendix).

P5 =



1 2 1 3 1 4 1 5

2 1 2 3 2 4 2 5

3 1 3 2 3 4 3 5

4 1 4 2 4 3 4 5


(4.8)

Based on the pairing matrix P5 and the size array s = [1, 1.1, 1.2, 1.3, 1.4],

function updateSizeRatios is created to calculated pairwise grain-size ra-

tios according to P5. The output is a 4 × 4 matrix R5 containing these

ratios as shown in equation 4.9. For example, the (2, 3)-th element of R5

is guided by the 3rd pairwise relationship stored on the 2nd row of P5, i.e.

[2, 4]. This piece of information is then fed into updateSizeRatios and

guides it to calculate size ratio of the 2nd over the 4th particle population,

i.e. 1.1/1.3 = 0.846154.

R5 =



0.909091 0.833333 0.769231 0.714286

1.1 0.916667 0.846154 0.785714

1.2 1.09091 0.923077 0.857143

1.3 1.18182 1.08333 0.928571


(4.9)

After enforcing the size-ratio dependence of Bνµ as defined in equation

4.1, an array of the pair-wise segregation rates can be computed via func-

tion sizeRatioRelation and updateSegBs. In this example, the resulting
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matrix B5 consisting of all Bνµ takes the following form.

B5 =



0.1682 0.3136 0.4374 0.5408

-0.1682 0.153869 0.288805 0.40571

-0.3136 -0.153869 0.141782 0.267593

-0.4374 -0.288805 -0.141782 0.131452


(4.10)

As described in section (2.5), Kurganov-Tadmor scheme revolves around

achieving numerical approximations for each convection and diffusion flux

function. In this case, we need to supply the semi-discrete scheme with the

correct procedure working towards the numerical flux for vectorized version

of the non-dimensionalized segregation equation 2.24.

As explained earlier in the section, symbolic calculation via SymPy is pro-

posed to keep track of polynomial structures of the flux functions and

their derivatives with respect to solution vector ∂f/∂Φ. Similar to the

pairing matrix Pn, symbolic representation of these polynomials can effec-

tively provide a correct mapping of mathematical structure of these crucial

terms, guiding the numerical computation process while eliminating the

need of prescribing the formulae manually for different configurations of

poly-dispersed problems.

It is worth-noting that, while symbolic calculation does objectively draw

more computing power and slows down the process, it does retain the criti-

cal advantage of flexibility. Furthermore, symbolic differentiation does not

need to be carried out for each and every time-step. In fact, we propose

generating and storing the polynomial structure for flux terms and their

derivatives before the time loop, and referring to these symbolic polynomi-

als for computing formulae for each time-step, minimizing the computing

demand especially for simulation consisting of large number of populations.
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4.2. ITERATIVE EXPANSION OF SPECIES

Back in context of the example problem involving five size populations, the

symbolic polynomials for convection flux in z-direction is calculated via

SymPy. Combining pairwise segregation rate information from B5 (4.10)

and pairwise relationship information from P5 (4.8), we are now able to

assemble a matrix P5 storing symbolic polynomials representing the vec-

torized flux function f(Φ) as shown in equation 4.11.

P5 =
1

C



B12ϕ1ϕ2 +B13ϕ1ϕ3 +B14ϕ1ϕ4 +B15ϕ1ϕ5

B21ϕ2ϕ1 +B23ϕ2ϕ3 +B24ϕ2ϕ4 +B25ϕ2ϕ5

B31ϕ3ϕ1 +B32ϕ3ϕ2 +B34ϕ3ϕ4 +B35ϕ3ϕ5

B41ϕ4ϕ1 +B42ϕ4ϕ2 +B43ϕ4ϕ3 +B45ϕ4ϕ5


(4.11)

It can be seen that, P5 consists of four rows, each dedicated to the net

segregation influences experienced by one size population. Thanks to mass

conservation, we can omit the last size population and express its volume

fraction in terms of volume fraction of the remaining populations. In this

case, we omit the row dedicated to ϕ5 and utilize ϕ5 = 1−ϕ1−ϕ2−ϕ3−ϕ4

for the last pair of each row in P5. In fact, the pairing matrix P5 itself was

specifically designed with this intention in mind, so that the last ‘binned’

population would only occur in fixed position in each row. For example,

the first row of P5 takes the form as shown below.

0.0841*phi1*phi2 + 0.1568*phi1*phi3 + 0.2187*phi1*phi4

+ 0.2704*phi1*(-phi1-phi2-phi3-phi4+1) (4.12)

where phi1, phi2, phi3 and phi4 are symbolic objects defined to represent

the first four size populations. To further obtain Jacobian matrix of the

flux function f(Φ), we employ symPy.diff to differentiate the symbolic

polynomial with respect to each symbolic object. For example, the first

row shown in equation 4.12 can be differentiated with respect to phi1,
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phi2, phi3 and phi4 and form the first row of the Jacobian matrix ∂f/∂Φ

as shown in equation 4.13.



-0.5408*phi1-0.1863*phi2-0.1136*phi3-0.0517*phi4+0.2704

-0.1863*phi1

-0.1136*phi1

-0.0517*phi1



T

(4.13)

After cross-checking, it can be seen this expression reaches agreement with

the correct formula 4.14. In fact, it is mathematically equivalent to the first

row of Jacobian matrix. This example clearly demonstrates that SymPy

can indeed function as intended for the purpose of generating and storing

symbolic polynomial before the time loop starts, providing a formulae of

substitution for constantly evolving elements of the solution vector Φ.



−2B15ϕ1 + (B12 −B15)ϕ2 + (B13 −B15)ϕ3 + (B14 −B15)ϕ4 +B15

(B12 −B15)ϕ1

(B13 −B15)ϕ1

(B14 −B15)ϕ1



T

(4.14)

Being capable of building a correct formula for Jacobian matrix indepen-

dent of the current ϕν values, we use the symbolic polynomials P5 and its

derivative J5 to compute intermediate values defined in equations 2.29, 2.31

and 2.32 without pre-placed information about these polynomials, making

it a fully-automated iterative process. It is worth-noting that, while cal-

culating the normal local maximum speed az as defined in equations 2.29,

NumPy.linalg.eig is employed to calculate eigenvalues of the Jacobian

matrices.

Being able to compute all intermediate values, temporal numerical approx-
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imations Hx and Hz (also in vectorized format for poly-dispersed case) of

flux terms can be obtained, leading to a group of time-dependent ODEs

dedicated to each population similar to equation 2.33. Since all the right-

hand-sided terms are approximated numerically, a 2nd-order Runge-Kunta

method (Heun’s method) is used as a time-stepper to obtain an updated

value of solution vector Φ in the next time-step. This entire process can

be repeated to generate evolution of all solid volume fractions for all size

populations, allowing us to simulate granular behaviour subject to granular

segregation coupled with cyclic loading.

4.3 Validation against bi-disperse and tri-

disperse results

Having walked through how the iterative expansion process is able to formu-

late and numerically compute solid volume fraction vector ϕ via construct-

ing the correct symbolic structure for pairing relationships, flux functions

and their derivatives with respect to volume fraction of some size popu-

lation ϕν , it is important to first test and validate whether the iterative

expansion method is doing everything correctly.

In this section, we document two validation cases, with the first one being

against the classic bi-disperse kinetic-sieving model and the second one be-

ing against tri-disperse case. The first and most important objective is to

make sure that iterative expansion process is adjusting the model and data

structure in the correct way, producing reasonable simulation results align-

ing with classic models which require pre-placed formulae. Additionally,

we hope to demonstrate that: although symbolic calculation takes a toll on

computing speed and can potentially be optimized for a specific case, its
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advantage of avoiding accumulating ‘numerical noise’ is indeed noticeable

upon comparing simulation results.

Figure 4.2: Side-by-side comparison of bi-disperse simulations from itera-
tive expansion method and classic kinetic-sieving method. All parameters,
with P0 = 0.5, C = 2 and D = 0.2, are kept the same. The same size ratio,
pairwise segregation rate, cyclic-loading velocity profile, initial condition
and pressure-dependent diffusion flux term are in place for both simula-
tions. (a),(b): Large and small particle evolution profile from iterative
expansion simulation; (c),(d): Large and small particle evolution profile
from iterative expansion simulation; (e): Difference of large particle pop-
ulation solid volume fraction ϕL between the two simulations, the error is
in magnitude of 10−6, mostly taking place during segregation process, then
declines afterwards.

For a bi-disperse set-up, the size ratio input vector is set as [1.5,1.0],

resulting in a size ratio of s12 = 1.5 (due to the order of size prescription)

and hence a pair-wise segregation rate B1,2 = 0.625 defined by equation 4.1.

The pressure-dependence diffusion flux as proposed in Chapter 2 Section 3

is kept in place with non-dimensionalized confining pressure P0 = 0.5. Af-

ter prescribing all spatial and scaling parameters with the same value and

using the same homogeneous initial condition ϕ1 = 0.5 ∀z ∈ [0, 1], two sim-

ulations have been carried out with the only difference being between the

usage of classic kinetic-sieving approach and that of iterative expansion

approach. As shown in Figure 4.2, the results qualitatively and quanti-

tatively agree to the magnitude of 10−6, with most of the disagreements

taking place when size segregation and population spatial migration are

most active. After the populations have segregated to enriched regions and
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convection flux has fallen back to a lower level, such numerical disagree-

ment between the two retreats back to the order of 10−15, suggesting a

well-reached agreement for quasi-steady state between the two approaches.
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Figure 4.3: Heat-map of the accumulation of numerical disagreement be-
tween two bi-disperse simulations during the first 100 time-steps. Errors
appear to emerge from the top and bottom boundaries and propagate to-
wards the centre with time, eventually stabilizing with a magnitude of order
10−6.

In addition to Figure 4.2(e), the heat-map shown in Figure 4.3 provides a

closer inspection of how exactly the errors occur and accumulate for the first

100 time-steps out of a total of 5000. Numerical disagreements can clearly

be observed to first emerge at top and bottom boundary layers, gradually

increasing and accumulating into enriched central regions. The general

trend of how these difference values evolve bears strong resemblance to the

size segregation behaviour itself. However, no clear explanation has been

found about the cause of these disagreements. Initially, it was suspected to

be an ‘hysteresis echo’ caused by delayed enforcement of convection terms,

but this is found not to be the case after data comparison: numerical

changes of ϕ between adjacent time-steps are often beyond the magnitude

of 10−6. However, the general pattern does suggest the possibility of an

unexpected or overlooked influence from or within the modelled convection

in z-direction.
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One possible explanation is the usage of symbolic formulae in iterative ex-

pansion approach. For example, when setting large particle to have solid

volume fraction phi = 0.8 for classic approach and equivalently phis =

[0.8], the latter approach manages to provide the most accurate result,

whereas the former’s output suffers from numerical discrepancy as demon-

strated in equation 4.15. It is possible that these small numerical errors

create accumulative noise in the solution for each time-step, further af-

fecting the initial condition for future time-steps. As defined in equation

2.29, 2.31, magnitude of vertical numerical fluxes are influenced by local

maximum speed az, whose process of computing is actually the biggest

motivation behind developing and using the iterative expansion approach.

In classic kinetic sieving models, it is convenient to prescribe the already-

differentiated formulae to the solver alongside with the simplified case of

ρ(Φ) (a clear example is shown in equation 2.30). In iterative expansion

approach, symbolic calculation is performed to construct the Jacobian ma-

trices and to find their eigenvalues. Similar to the case of flux function,

the steps of symbolic calculation instead of numerical computation might

contribute to the local numerical disagreements.

fluxFunZ(phi) = 0.04999999999999999

fluxFunZp(phis) = 0.05 (4.15)

Similar comparison of results are also drawn for a tri-disperse scenario. As

shown in Figure 4.4, numerical disagreements also appear to emerge and

eventually fade away in time with the peak magnitude once again being

10−6. No final conclusion can yet be drawn about why the error start

at top and bottom boundaries by the time of writing this version of the

thesis. More efforts will be made to uncover more understanding of this

phenomenon, especially for multi-disperse scenarios.
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Figure 4.4: Side-by-side comparison of tri-disperse simulations from itera-
tive expansion method and classic kinetic-sieving method. All parameters,
with P0 = 0.5, C = 2 and D = 0.2, are kept the same. The same size ratio,
pairwise segregation rate, cyclic-loading velocity profile, initial condition
and pressure-dependent diffusion flux term are in place for both simula-
tions. (a),(b),(c): Large, median and small particle evolution profile from
iterative expansion simulation; (d),(e),(f): Large, median and small parti-
cle evolution profile from iterative expansion simulation; (g),(h): Difference
of large and small particle population solid volume fraction ϕL and ϕS be-
tween the two simulations, the error is in magnitude of 10−6, reaching their
peaks during segregation process, then declines afterwards.

In this section, side-by-side comparisons against classic kinetic-sieving meth-

ods have been made for bi-disperse and tri-disperse cases. The objective

is to validate the reliability and examine the exact performance of the

more flexible iterative expansion approach. In conclusion, good quantita-

tive agreements have been reached for both cases, showing clearly that the

iterative expansion process can indeed produce the correct symbolic data

storing as well as computing structures for bi-disperse and tri-disperse prob-

lems. Since no human configuration beyond initial conditions was required

to switch from bi-disperse to tri-disperse, it is reasonable to believe that

the iterative expansion approach can continue producing correct results for

granular mixtures with an arbitrarily-larger population pool.
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4.4 Test design scenarios based on size ratio

distribution

In the previous section, validation against classic bi-disperse and tri-disperse

kinetic-sieving models were carried out resulting in quantitative agreements

up to the magnitude of 10−6, suggesting that poly-dispersity problem could

be safely constructed and numerically solved via the iterative expansion

approach. These encouraging results open up vast room of possibility, es-

pecially in terms of accurately incorporating large number of granular size

populations in the modelled mixture, bringing the continuum model one

more step closer towards modelling geo-physical granular flows with entire

spectrum’s of complex particle size distributions. In fact, we will reveal

in next chapter that poly-dispersity is also a very crucial prerequisite to

simulating particle breakage effect.

To demonstrate capability of the iterative expansion poly-dispersity model

as well as to explore how pair-wise size segregation behaves for large number

of populations, we designed a series of 10-population simulations featuring

different types of size distribution. Similar to the two examples covered in

previous section, the poly-dispersity model reads the prescribed size array

and generate the appropriate data structure for storing and calculating data

using the iterative expansion approach. Due to the much larger population

pool, high performance computers were employed to run these simulations,

cutting the running time from over a week on average desktop to around

three days.

Precisely as the population number grows larger, the significance of a well-

thought-out test design become more and more highlighted. After all,

too much time and computing power would go wasted if a 100-population

70



4.4. TEST DESIGN SCENARIOS BASED ON SIZE RATIO
DISTRIBUTION

simulation turns out to be ill-organized. This section is dedicated to explain

the motivation and thinking process behind these test designs.

A key defining choice of the classic kinetic-sieving model is the usage of

pair-wise type stress partition function, shown in equation 2.15. By sacri-

ficing the complexity of additional local information, it gains the advantage

of mathematical simplicity and robustness: segregation effects now consist

of pair-wise components dedicated to each pair of dissimilar size popula-

tions, making it possible to estimate as well as experimentally measure and

calibrate the segregation rates Bνµ. Furthermore, the pair-wise formula-

tion allows a relationship between segregation rates and size ratios (such

as the one defined by 4.1 and shown in Figure 4.1) to be established. This

offers convenience both to potentially measuring the curve from experi-

ment (measuring segregation time scale of a bi-disperse mixture should be

much easier than that of a mixture containing 10 size populations) as well

as designing a 10-population test: it is much easier to anchor and visual-

ize the segregation rate distribution on a curve and determine whether it

works as intended. In fact, such a direct link between segregation rate and

size ratio will become even more valuable for simulations involving larger

number of populations. For example, prescribing 3 pair-wise segregation

rates for a tri-disperse simulation already needs to divided into multiple

cases (Gray and Ancey, 2011), it can be predicted that manually prescrib-

ing segregation rates for an ambitious large-population-number test would

be an impossible task without a rule of guidance, which is exactly what

equation 2.15 provides.
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Distribution test design Particle size array

Small grain rich distribution [1, linspace(1.4,1.6,num=9)]

Large grain rich distribution [1, linspace(2.6,2.9,num=9)]

Peak spectrum distribution [1, linspace(1.6,2.4,num=9)]

Broad spectrum distribution [1, linspace(1.1,3.4,num=9)]

‘Realistic’ distribution [1, linspace(1.2,1.8,num=9)]

Table 4.1: Size distribution details of each test design.
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Figure 4.5: Illustration of the five test design scenarios for one poly-disperse
mixture consisting of 10 size populations. The orange circled points mark
the critical size ratios where non-segregation and peak-segregation rates are
reached, the purple dots correspond to size ratios of larger grains against
the reference grain category. (a) Small grain rich distribution; (b) Large
grain rich distribution; (c) Peak spectrum distribution; (d) Broad spectrum
distribution; (e) ‘Realistic’ distribution.

As demonstrated in Table 4.1 and Figure 4.5, 10-population simulations

have been run for five different test designs which were designed in order

to capture characteristics of different types of granular mixture. In order

to provide reference, the smallest-sized population within each test design

is set to have size = 1.0, and the remaining size populations are mapped

onto equation 4.1 using their size ratios against the smallest population.

This decision helps keep all size ratios bigger than or equal to 1, and at

the same time provide a rough idea of how the spread of segregation rates

look like, this is shown in details by Figure 4.6. All the dissimilar pair-wise

size ratios are mapped onto the curve, demonstrating that the range of

reference size ratios envelope that of remaining pair-wise ratios.
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Figure 4.6: Distribution of reference size ratios as well as pairwise size
ratios between each pair of dissimilar size populations. The particle size
distribution is the ‘broad spectrum’ as defined in Figure 4.5.

The first three cases (small grain rich, large grain rich and peak spectrum)

focus on how a packet of similar-sized populations would react to a smaller

‘dust’ population, differentiating in the gap of grain size as well as position

of the packet on the segregation rate function. The broad spectrum case

aims to model the opposite: the grains sizes are spread out very thinly,

across both side of the optimal segregation ratio. We hope to observe

what could happen if the granular mixture has a well-spaced spectrum

of size distribution. The last case (‘realistic’) attempts to link further

towards geo-physical granular mixture and to foreshadow the possibility

of particle breakage. Within a cyclic-loading environment, breakage might

occur in different fashions depending on grain material. It is possible to

have breakage taking place mostly in the form of crushing and wearing off

edges from larger particles. In this case, the grains break and form a much

smaller collection of dust population. Therefore, the last case have a well-

spaced-out packet of grain sizes as well as a much smaller population (in

this case the reference population due to its smallest size).
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4.5 Results and discussion

In previous section, we explained the rationale behind proposing five spe-

cific grain size distributions, mostly targeting diversity and anticipating

to see variation of simulation results among different configurations. Uti-

lizing these test designs, a series of 10-population simulations have been

performed.

Test Case Diffusion Rate D Confining Pressure P0

(a) 0.1 0.1

(b) 0.1 0.2

(c) 0.1 0.5

(d) 0.2 0.1

(e) 0.5 0.1

Table 4.2: Specification of test case parameters for each size distribution.

In total, 25 poly-disperse simulations were run using the high performance

computers (HPC), with variation in three categories: particle size distri-

bution, diffusion parameter D and non-dimensional confining pressure P0.

Each simulation has the same spatial limits and discretisation and is set to

run 2400 time-steps representing a non-dimensionalised simulation time-

span t ∈ [0, 2.4], starting from the same homogeneous initial condition

where each population has solid volume fraction ϕν = 0.1 ∀ν. We have

demonstrated in Figures 3.7 and 3.8 that inter-particle drag coefficient C

has a clear impact on time-scale of all flux terms for all size populations.

However, the diffusion flux terms contributed by D and P0 seem to undergo

more complex evolution in space and time. Also considering the fact that

each batch of simulation costs around 3 − 5 days to finish computing in

parallel on HPC, the decision was made to plan 5 simulations for each size-

distribution case, varying in D and P0. The exact setting of each case is
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documented in Table 4.2. Test case (a) serves as a reference point with the

smallest flux term amplitudes, while (b)(c) and (d)(e) focus on variations

in diffusion rate D and confining pressure P0 respectively. The full list of

poly-disperse figures can be seen in Appendix Chapter D.

Figures D.1 - D.25 document the exact simulation results corresponding

to each test design and parameter configuration. After analysing the sim-

ulation results, two observations can be made. Firstly, size distribution

seem to have a strong impact on shape and even in one case position of

the high-concentration region (Most noticeable for dust populations). Sec-

ondly, both D and P0 have a clear and qualitatively similar impact on

segregation time-scale.

Among the five types of size distributions, the first two (small grain rich

and large grain rich) involve a close group of size populations far away

from the reference population (in this case also set as the dust population).

Therefore, it was expected to see the group of 9 non-reference populations

to have rather limited degree of segregation among themselves compared

to how they segregate against the dust population. Figures D.1 - D.10 cer-

tainly agrees with this prediction. For both of the packet-ed test designs,

the dust population undergo a quick and clear segregation process and ac-

cumulate at the bottom. After roughly 0.5−0.7 seconds, the concentration

region of dust population seem to reach a stable value from this point.

In contrast, simulation conducted using peak spectrum distribution appear

to have a much more fluctuating outline for dust population. Furthermore,

due to the non-reference populations no-longer being on the same side of

the optimal size ratio point, they seem to segregate much more rapidly

compared with the two packet-ed distributions. Furthermore, since the

smallest non-reference population now has a size closer to that of refer-
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ence population, clear high concentration regions from more than one size

populations can be observed to form at the bottom. However, we find

the fluctuating outline of dust population regime most outstanding. One

possible way of explaining this behaviour could be that, fluctuation of the

pressure dependent diffusion flux term is causing a non-steady influence

during the most active period of segregation process. This hypothesis is

supported by the eventual stabilization of dust region regimes. However,

we are not yet able to explain why only the dust population appear to

posses such fluctuating pattern and the others do not.

As shown in Figures D.16 - D.20, changing the test design to broad spec-

trum distribution seems to drastically change the behaviour for smaller-

sized populations. Clear concentration regions emerge for population (h)

and (i), but the dust population seems to be unexpectedly migrating and

accumulating near top boundary. We can not yet determine the exact rea-

son behind such behaviour, but it is fair to assume that size distribution and

its implicated pair-wise relationships must play a crucial role. In hindsight,

Figure 4.5 seems to provide some insights especially considering the distri-

bution of all pair-wise ratios. For packet-ed distributions, the non-reference

pair-wise ratios are far apart from the reference ratios, making the reference

relationships take a leading role in both segregation and pressure-dependent

diffusion flux terms. In contrast, the broad distribution involves a much

more inter-twined combination of reference and non-reference ratios, pos-

sibly making the pressure-dependent diffusion flux components overrule

the pair-wise segregation ones, leading towards a reversely-segregated dust

population. Although there is not a well-validated conclusive explanation

yet, it makes sense to assume that broad spectrum distribution serves as

a counter-example in terms of test design. In future poly-disperse simula-

tions, the choice of avoiding overly spread-out reference ratios and conse-
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quently non-reference ratios inter-twining with reference ratios should be

seriously considered. For the ‘realistic’ distribution, similar fluctuation for

dust population is once again evident in simulation results, also hinting the

importance of imposing appropriate size ratio relationships.

Figure 4.7: Comparison of simulated dust population results corresponding
to different D and P0 settings under small grain rich distribution: (a)
D = 0.1, P0 = 0.1; (b) D = 0.1, P0 = 0.2; (c) D = 0.1, P0 = 0.5; (d)
D = 0.2, P0 = 0.1; (e) D = 0.5, P0 = 0.1.
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Figure 4.8: Illustrations of solid volume fraction ϕ against height ẑ: (a)
Comparison of terminal ϕ data of all 10 populations at t̂ = 4 against their
initial condition ϕ0 = 0.1 at t̂ = 0 under small grain rich distribution.
Here ϕ1 corresponds to the largest population and ϕ10 corresponds to the
smallest; (b) Comparison of terminal ϕ1 for the five D and P0 settings
under small grain rich distribution; (c) Comparison of terminal ϕ10 for the
five D and P0 settings under small grain rich distribution.

On the other hand, confining pressure appears to produce visible influence

towards time-scale and extent of segregation outcome. As shown in Figure
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4.7, even for the relatively stabler small grain rich distribution, increase of

P0 leads to a very similar outcome as increase of D. However, it should be

noted that the effect of confining pressure is depth-dependent and there-

fore the pressure-dependent flux increases in magnitude towards bottom of

the modelled region. More quantitative comparison can be seen in Figure

4.8, where the terminal volume fraction values are compared against the

uniform initial condition (ϕ0 = 0.1 at t̂ = 0). As expected, the smallest-

sized population undergoes the most significant changes in volume fraction

distribution during the simulation. Additionally, similarity between feed-

backs caused by increasing D and P0 is demonstrated in an even more

quantitative manner. The depth-dependence of pressure-dependent flux

can also be seen when being compared with effects of increasing D (i.e.

curves corresponding to cases (b) and (c) are closer to the initial condition,

suggesting longer segregation timescales at bottom).

Finally, we would like to report another simulation feature that we are not

yet able to explain. From the definition of classic kinetic-sieving model to

iterative expansion poly-disperse model, the simulation results seem to be

sensitive to order of size prescribing order. Frankly, it is by no means a

designed or desired feature, considerable amount of time has been devoted

trying to uncover the root cause of this unexpected order-sensitivity, we can

only say with confidence that the coding of pressure-dependent diffusion

is possibly carrying over some discrepancies for large number of size pop-

ulations. However, validations against classic bi-disperse and tri-disperse

data have both reached quantitative agreements. Therefore, we are assum-

ing this is a poly-disperse-specific problem. More efforts are being devoted

into investigating this issue at the time of submission, it is possible that

we have a better understanding of the root cause soon.

78



Chapter 5

Incorporating breakage

In this chapter, we start by addressing various technical challenges of com-

bining breakage effect with a continuum model. A triangular breakage

model is proposed to provide preliminary predictions of how breakage in-

fluence the grain size distribution. Afterwards, the idea of solid volume

fraction exchange is introduced with some further explorations of using

gain and loss functions in conservation equations. In the last section, poly-

disperse simulation results ran with simple breakage are presented and

discussed.
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5.1 Difficulty of simulating breakage effect

within a continuum model

Although various continuum models have been developed to describe gran-

ular segregation in chute flows, most of the well-known breakage models

come from a ‘discrete element’ point of view. While size segregation can

be modelled as a macroscopic mass migration of certain populations of

grains relative to the bulk mixture, particle breakage are generally seen as

a rather microscopic phenomenon occurring to individual particles. In ad-

dition, proposed criteria of breakage often requires local information in the

form of contact stress (McDowell et al., 2013) or force (Hanley et al., 2015)

surrounding the particle of interest. Therefore, numerous studies on granu-

lar breakage employ discrete element modelling (DEM) methods (Golchert

et al., 2004; Antonyuk et al., 2006; Wang and Yan, 2013; Zhang et al.,

2020), varying in targeted breakage mechanisms, assumptions of breakage

criteria and representation of crushing outcomes.

For example, McDowell et al. (2013) proposed to utilize octahedral shear

stress to facilitate multiple contacts and Weibull distribution of particle

strength to enforce size effects while Hanley et al. (2015) suggested that

‘fragment particles’ should be created upon breakage and comminution

limit ought to be introduced. In addition, it is widely-accepted that DEM

methods of crushing can be categorized in mainly two types: agglomerate

models where uncrushable principle particles are joint together by break-

able bonds and replacement models where parent particles would be re-

placed by daughter particles when breakage takes place (McDowell et al.,

2013). Further reviews on various breakage mechanisms can be found in

recent publications (McDowell et al., 2013; de Bono and McDowell, 2016;

Yu, 2021).
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When it comes to accommodating particle breakage, population balance

modelling (Ramkrishna, 2000) has also seen considerable development and

applications in various fields (Ramkrishna and Singh, 2014). Modelling

via population balance equations has one similar feature as the mixture

theory inspired model: changes in internal coordinate (i.e. aggregation

(Jeldres et al., 2018) and breakage (Chakraborty and Ramkrishna, 2011))

can be phenomenologically described in terms of number density. However,

it remains significant to supply sufficient criteria information on breakage

events(Chakraborty and Ramkrishna, 2011). We acknowledge that popula-

tion balance modelling is a successful and closely-relevant approach that has

shown great potential in simulating computational fluid dynamics (Marchi-

sio and Fox, 2005). However, we decided to focus on the kinetic sieving

model in this thesis due to limited time of the project. In future, it would

be interesting to see if population balance models can be introduced to

model granular breakage occuring under cylic loading.

In general, it is realized that a shortage of particle breakage models com-

patible with continuum segregation models is present, and it remains a

serious challenge to impose plausible breakage criteria for continuum mod-

els due to the lack of local stress/force information. Further investigation

on DEM methods may be required for deeper understanding in particle

breakage, because the majority of effort in this project has been commit-

ted on constructing a polydisperse time-dependent continuum segregation

model. And the process of implementing such breakage mechanism within

a continuum model will be covered in the following sections.
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5.2 ‘Toy model’ for visualising size distribu-

tion

Before embarking on the task of incorporating breakage ideas, it is worth-

while to gain some understanding of how the grain size distribution would

evolve as breakage takes place. In all classic and polydisperse simulations

covered so far, total solid volume fraction ϕν remains conserved for each

size population ν. However, as will be discussed in later sections, break-

age can be visualized and interpreted as a re-distribution process of solid

volume fraction, making them no longer conserved throughout simulated

time-frame. Therefore, in order to understand what kind of change in

grain size distribution we should anticipate, a ‘toy model’ for breakage was

developed in early stages of this project.

In this simple model, we consider all objects to be in triangular shape,

with each of the three vertices free to break away into smaller daughter

triangles. As shown in Figure 5.1, creation of each daughter triangle adds

one new edge to the mother triangle. When breakage has occurred on

every vertex, the mother triangle will become a hexagon and is considered

no-longer eligible for further breakage. Breakage progress of each object is

documented via recording the number of edges. For example, when mother

triangle A1 breaks two vertices and form daughter triangles B1 and B2,

edge count of A1 increases from 3 to 5, and two new object entries of 3 edge

count are created for new B-class triangles B1 and B2. When one vertex

of B2 breaks into a smaller class of triangle, triangle C1 is also represented

by a new object entry of 3 in C-class. When A1 eventually have all three

vertices broken away, it reaches edge count 6 and is no-longer considered

breakable. At each time-step, we loop over all non-hexagon triangles with

edge count less than 6 and apply a probability pbreak for event of breakage.
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Figure 5.2 shows the cumulative density function of triangles assigned to

different size classes after various time-steps of breakage constant breakage

probability pbreak = 0.8. The simulation starts with 10 triangles of size 1

(this can be viewed as edge length), and every daughter triangle takes 1/3

the size of its mother triangle.

Figure 5.1: Illustration of how the triangle breakage events are recorded
via counting the available edges.

One of the key motives of using discrete triangle object to experiment

breakage is to explore effects of possible crushing mechanisms. For example,

a pseudo comminution point is implemented: The triangular particles are

listed in descending order of size, and those below the 10% quantile is

forbidden from breakage. In hindsight, this way of enforcing a comminution

point at each time-step lacks a great deal of accuracy: the polygons are

categorized into a discrete range of size populations, hence the 10% quantile

threshold would only filter them into broad-stroke classes, and if a size class

takes a big part of the total population, the entire group would be forbidden

from breaking even if the quantiled range only cover a small percentage of

this group. But since this simulation was done at an early stage of the

project, the objective was just to see what would happen if features of geo-

physical breakage were taken into consideration. Therefore, the algorithm

was allowed to loop over all the size columns and check if the size of this

column is smaller than 10% quantile threshold. If so, this class is treated

as hexagons for this time-step only.
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Figure 5.2: Cumulative distribution of size populations after 3, 10 and 100
time-steps of triangle breakage simulation with constant breakage proba-
bility pbreak = 0.8.

It can be seen that, the cumulative distribution of size classes changes very

rapidly during the first few time-steps, then gradually stabilizes at later

time. Although smaller classes continue to be created as the iteration pro-

gresses, it is clear their magnitude grow drastically more insignificant com-

pared to the 10 original triangles (now stable hexagons). This observation

suggests the simplification of crushing via only having one designated pop-

ulation to represent fine dust compared to all regular-sized populations.

Besides, the constant breakage probability does not necessarily apply to

real geo-physical granular mixture. It is fair to assume that breaking off

an edge from a regular-sized cobblestone is considerably easier than for a

tiny grain of sand. Therefore, results of the ‘toy model’ motivated us to

limit how far particles can break and to focus on having only one terminal

size population dedicated to fine dust. This idea was later on incorporated

in poly-disperse test designs (as shown in Table 4.4) in preparation for

breakage implementation.
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5.3 Simplest breakage idea: Solid volume

fraction exchange

If we picture particle breakage within a polydisperse continuum frame-

work, then there must be exchanges of solid volume among all particle

types, hence solid volume fractions are redistributed whenever breakage

takes place. The simplest way to achieve such effect within the polydis-

perse model is to force a certain amount of volume fraction redistribution

in-between convection-diffusion time-steps.

As shown in Figure 5.3, breakage in the form of solid volume fraction re-

distribution is implemented within a quad-disperse simulation for example.

During the 4s length of simulated time, three redistribution time-steps are

inserted early on (at t = 0.05s, t = 0.1s and t = 0.2s) to effectively break

down 1%, 5% and 10% of the three largest-sized particles into the smallest-

sized one. Even with just three inserted time-steps of redistribution, a

considerable amount of feedback is visible in the solid volume fraction evo-

lution. This once again demonstrates how much more exciting granular

interactions and feed-backs can be captured once breakage is incorporated

into the poly-disperse time-dependent continuum model.
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5.4 Gain and loss functions

In order to see breakage effects having more detailed and realistic feed-

backs to the granular flow, it makes sense to start by modifying the mass

balance equation to describe this rearrangement of volume fractions across

different phases. Recall that assuming uniform intrinsic density for all

types of particles (i.e. ρν = ϕνρ where ρ = const), the mass conservation

equation satisfied by each phase is:

∂ϕν

∂t
+∇ · (ϕνuν) = 0. (5.1)

In earlier derivations of the kinetic-sieving segregation theory, information

of the bulk velocity u and relative velocity uν − u for some phase ν are

extensively explored and utilized, it makes sense to rearrange the general

segregation equation 2.24 to involve the bulk and relative velocity profiles:

∂ϕν

∂t
+∇ · (ϕνu) +∇ · (ϕ(uν − u)) = 0. (5.2)

Applying the in-compressibility condition ∇ · u = 0 and using the chain

rule, one can see that

∇ · (ϕνu) = (∇ϕν) · u. (5.3)

The shallow water assumption made in the original kinetic-sieving chute

flow model (Gray and Thornton, 2005) suggests that the bulk velocity

profile can be approximated as u = (u, 0, 0) in three-dimensional space, i.e.

only moving in the down-slope direction. Therefore equation 5.3 can be

further simplified to

∇ · (ϕνu) = (∇ϕν) · u = u
∂ϕν

∂x
. (5.4)
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The steady-state assumption is also typically implemented in the chute

model, i.e. ∂ϕν/∂t = 0. As a result of these assumptions, equation 5.2 now

becomes

u
∂ϕν

∂x
+

∂

∂z
(ϕν(wν − w)) = 0. (5.5)

A simple bi-disperse case of breakage could be: one type of large particle

breaks into a smaller type of particle. Considering mass conservation during

breakage and constant density for all particles, volume is conserved during

breakage process. In other words, the amount of solid volume fraction lost

by large particles and the amount of solid volume fraction gained by small

particles should equate in magnitude. In other words, if ϕν
t is denoted for

terminal solid volume fraction of phase ν after breakage, then ∆ϕl+∆ϕs = 0

holds for ∆ϕl = ϕl
t−ϕl and ∆ϕs = ϕs

t −ϕs. For simplicity, the positive one

∆ϕs is more preferable to be used, i.e. ϕl
t = ϕl −∆ϕs and ϕs

t = ϕs +∆ϕs.

Note that in this case, the relative velocity wν − w is prescribed as in

equation 5.5 and the mass balance equation 5.1 eventually becomes

u
∂ϕl

∂x
+

∂

∂z
(Slsϕ

lϕs) =
∂

∂z
(Dr

∂ϕl

∂z
);

u
∂ϕs

∂x
+

∂

∂z
(−Slsϕ

lϕs) =
∂

∂z
(Dr

∂ϕs

∂z
). (5.6)

If the change in partial velocity profiles ul and us due to breakage is ne-

glected, then one can argue that the mixture still satisfies the same mass

conservation relation after breakage

∂ϕl
t

∂t
+∇ · (ϕl

tu
l) = 0;

∂ϕs
t

∂t
+∇ · (ϕs

tu
s) = 0. (5.7)
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Under the same assumptions made earlier, this group of equations can be

expanded into

∂ϕl

∂t
+∇ · (ϕlul) +

(
− ∂

∂t
∆ϕs −∇ · (∆ϕsul)

)
= 0

∂ϕs

∂t
+∇ · (ϕsus) +

( ∂

∂t
∆ϕs +∇ · (∆ϕsus)

)
= 0. (5.8)

Considering ∆ϕν to be a function of all phases, the ideal goal is to rearrange

this system of equations into a general form:

∂ϕν

∂t
+∇ · (ϕνuν) +Gain(ϕµ,∀µ ∈ S)− Loss(ϕµ,∀µ ∈ S) = 0, (5.9)

where Gain(ϕµ,∀µ ∈ S) = 0 for ν = l, Loss(ϕµ,∀µ ∈ S) for ν = s. With

an appropriate formula of ∆ϕs, it may be possible to simulate breakage

effects in the continuum framework. However, this approach poses serious

challenges in mainly two ways.

First, particle breakage is mostly discussed in a discrete-element view where

particles are modelled individually. This is not compatible with our contin-

uum framework, which can lead to problems in crucial parts of the formulae.

For example, one would expect the Gain(ϕµ, ∀µ ∈ S) and Loss(ϕµ, ∀µ ∈ S)

terms to satisfy an overall ‘conservation relation’ so that the total mass or

volume fraction of the system remains constant. However, it is difficult to

construct such relations in detail within the continuum framework due to

the complexity of the terms. Therefore some works remain to be done in

order to explore further what can be done to ensure volume/mass conser-

vation in breakage terms.

The second challenge comes from the complexity of the terms: even a

simple formula of ∆ϕs can lead to complex terms in the ODE, making it

difficult to achieve analytical or numerical solutions. Here is an example
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of such escalating complexity: In a steady-state problem, it is difficult

to incorporate a separate time-dependency for ∆ϕs alone, for the original

2D problem only has derivatives in x and z directions. As a first guess,

∆ϕs = 0.01x2 is proposed: this would eliminate the time-derivatives, and

thus only leaving the ∇· (∆ϕsuν) term to be simplified for ν = s, l. Similar

to the procedure in equations 5.3 - 5.6, this term can be expanded as:

∇ · (∆ϕsul) =u
∂(∆ϕs)

∂z
+

∂

∂z
[∆ϕs(Slsϕ

s − Dr

ϕl

∂ϕl

∂z
)],

∇ · (∆ϕsus) =u
∂(∆ϕs)

∂z
+

∂

∂z
[∆ϕs(−Slsϕ

l − Dr

ϕs

∂ϕs

∂z
)]. (5.10)

Note that the Dr

ϕl and Dr

ϕs terms can no-longer be cancelled out like it was

in derivation process of the segregation-remixing equation, which makes

the steady-state solver unable to yield numerical results. Admittedly, a

more suitable choice of ∆ϕs could remedy this situation, but this example

has already shown the difficulties in incorporating breakage in the steady-

state problem in an already simplified bi-disperse problem. In reality, it is

almost impossible to maintain bi-dispersity when breakage takes place and

the granular particles should be allowed to break into at least several other

size-classes. In addition, the dependency of (∆ϕs is not fully explored yet in

this section. In order for the breakage model to achieve enough resemblance

to reality, a lot of experimental or theoretical improvements remains to be

done, thus leaving another area of huge potentials and challenges.

Another fundamental risk of such approach is that breakage of the granu-

lar material would suggest against the flow being in steady state. There-

fore, the exploration of implementing breakage in steady-state is paused

at this point, and we suggest a more general time-dependent problem for

bi-disperse and poly-disperse granular mixture for future work.
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5.5 Preliminary results and discussion

In Chapter 4, a way of constructing poly-disperse size segregation simula-

tions using iterative expansion approach is proposed and validated against

classic kinetic sieving models in bi -disperse and tri-disperse set-ups. Hav-

ing briefly touched on the idea of representing breakage in the form of solid

volume fraction re-distribution with clear in simulation results (as shown

in Figure 5.3), we explored the possibility and feasibility of introducing

loss and gain functions into the mass balance equations. The goal is to

see whether we can simulate the inter-size-population re-distribution as in-

troduced in previous section in the case of building from a steady-state

problem. It becomes reasonably clear that difficulties such as an appropri-

ate choice of loss/ gain functions as well as further complications of granular

flow conditions make it challenging and difficult to actually involve break-

age as a part of the numerical solving process within the time-dependent

problem. Therefore, based on the earlier encouraging quad-disperse re-

sults (Figure 5.3), we propose to instead explore the possible effects of just

solid volume fraction re-distribution in between time-steps for poly-disperse

problems consisting of more than 4 populations, this time with the empha-

sis focused on capturing characteristics of ‘crushing and wearing into dust’

phenomenon.

One of the key differences between ‘breaking into two parts’ and ‘wear-

ing into dust’ is the size ratio between mother and daughter particles. As

demonstrated in section 5.2 (especially in Figure 5.2), it seems appropri-

ate to have one or two dedicated populations that is much smaller in size

than all other ones to represent the dust worn off from them. There are

mainly two reasons behind this decision: Firstly, further breakage of the

dust population can be less likely to happen while also having a smaller
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impact on normal-sized particles. Secondly, it makes sense to assume the

newly-created dust particles to be similar-sized for all normal particles un-

der cyclic-loading because their size magnitudes are usually relatively far

away in size axis. Hence, for a 10-population simulation, we need to have

the majority of all size populations possess a much larger size than the

dust population. To accommodate such diversity in size and size ratios, a

slightly-adjusted version of segregation rate function is proposed as below.

Bνµ = α
(
(sνµ − 20)3 + 19 (sνµ − 20)2

)
(5.11)

where α = 0.001. As shown in Figure 5.4, sizes for majority of popu-

lations are between 10 and 19 whereas size of the dust population is de-

fined to be 1. After comparing segregation rates corresponding to reference

and remaining ratios, it is evident that segregation rates are prescribed to

be remarkably higher against the dust population (as marked by refer-

ence ratios) compared to other combinations (as marked by other pair-

wise ratios), with its magnitude gradually declining as size ratio increases.

Breakage is incorporated into the model via solid volume re-distribution in

0 7.3333 20

0

0.5

1.0161

B
ν
µ

Reference ratios

Other pairwise ratios

Figure 5.4: Illustration of size ratio distribution and segregation rate
function for the 10-population simulation with size distribution set as
[1,10,11,12,13,14,15,16,17,18,19].

between time-steps with period Tbreak = 0.04s. The 10-population polydis-

perse mixture is simulated for 0.2s in total, resulting in breakage event at

t = 0.04s, t = 0.08s, t = 0.12s and t = 0.16s. At every breakage event, we
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insert one additional procedure dedicated to re-distributing ϕν before nu-

merically solving for that time-step. The exact extent of the re-distribution

is determined by a prescription vector breakPlan as defined in equation

5.12 containing the exact proportion of each non-reference population be-

ing transferred to reference duct population representing crushing into dust.

The prescription vector breakPlan is highly customizable and compatible

with potential modifications such as additional depth and size dependence.

For this demonstration case, we keep a simple setting and prescribe a 5%

breakage rate for each non-reference population.

breakPlan = [0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05]

(5.12)
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Figure 5.5: Terminal cumulative distribution of size populations of the 10-
population polydisperse simulation with mass exchange mechanism func-
tioning in between time-step.

As shown in simulation history results (Figure 5.6) and the cumulative dis-

tribution of size populations at start and finish of simulation (Figure 5.5),

quantitative impacts are observed in simulation results, and the cumulative

distribution of size populations shift towards a more ‘dust-heavy’ direction

as expected. In Sub-figure 5.6(j), the dust population receive noticeable

additional increases across the entire depth at breakage events, resulting a
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realistic-looking accumulation of dust at the bottom of the simulated space.

In fact, this high-concentration region of dust seems to create a feed-back

to other populations, causing the smaller non-reference populations to ac-

cumulate at depths higher above bottom.

In conclusion, we have successfully incorporated simple solid-volume re-

distribution functions into the poly-disperse simulations and are once again

able to numerically solve the problem using Kurganov-Tadmor scheme. In

simulation results, quantitative feed-backs caused by breakage events are

evident, justifying solid-volume re-distribution as a starting approach to-

wards incorporating complex breakage phenomenon with size segregation.

We also discussed about a more complex and self-contained approach of

involving breakage into the mass conservation equations themselves using

gain and loss functions. Due to the limited time of this project, we are

not able to pursue further in this direction, but a great amount of oppor-

tunities seem to be open for both approaches. It is foreseeable that, given

more detailed dependence settings and designed breakage functions, having

breakage effect actively modelled in a continuum poly-disperse size segre-

gation model is no-longer one impossible task. Based on simulation results

up to the point of thesis submission, a lot of breakage features appear to

be captured correctly under even the simplest settings, encouraging us to

be optimistic about the outlook and potential of these methods.

95



5.5. PRELIMINARY RESULTS AND DISCUSSION

(a
)

0

0
.51

z

(b
)

(c
)

(d
)

(e
)

00
.3

(f
)

0
0

.2

t

0

0
.51

z

(g
)

0
0

.2

t

(h
)

0
0

.2

t

(i
)

0
0

.2

t

(j
)

0
0

.2

t

00
.3

F
ig
u
re

5.
6:

S
im

u
la
ti
on

re
su
lt
s
of

a
p
ol
y
d
is
p
er
se

si
m
u
la
ti
on

co
u
p
le
d
w
it
h
m
as
s
ex
ch
an

ge
m
ec
h
an

is
m

in
b
et
w
ee
n
ti
m
e-
st
ep
s
in
vo
lv
in
g
10

si
ze

p
op

u
la
ti
on

s,
su
b
-fi
gu

re
s
(a
)-
(j
)
co
rr
es
p
on

d
to

th
e
gr
ai
n
p
op

u
la
ti
on

s
in

d
es
ce
n
d
in
g
or
d
er

of
si
ze
.

96



Chapter 6

Conclusions

6.1 From chute flow model to shear box model

with breakage: highlights of the thesis

In this thesis, we walked through the process of building a highly-customised

poly-disperse granular segregation continuum model based on classic ki-

netic sieving chute flow model for the purpose of capturing more features

of granular behaviour inside a cyclic-shearing environment. With the ulti-

mate goal being incorporating effective breakage into the model, we devised

an iterative expansion mechanism allowing the model to self-expand from

bi-disperse to arbitrarily-poly-disperse. In this conclusion chapter, we start

by going through the highlights of each chapter in broad strokes before

discussing in details the potential for future improvements and follow-up

works.

In Chapter 1, we started by a brief walk-through of various granular segre-

gation mechanisms and explained why it is important to gain further un-

derstandings of size segregation phenomenon in dry sense granular flows.
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Specifically, we put a strong emphasis on simulating size segregation within

poly-disperse mixtures under cyclic-loading scenario motivated by real-

life problems such as underwater wind turbine foundations loading their

surrounding soil particles and oil transport pipes cyclically shearing sand

grains in deserts.

In Chapter 2, we went through the theoretical framework and mathematical

procedures of the classic kinetic sieving model, originally proposed to model

gravity-driven chute flows. After acknowledging the need for necessary

departure to the classic model driven by different assumptions and set-ups,

we implemented time dependence and normal pressure dependence into the

model and conducted comparison with the classic model.

During non-dimensionalisation section, we introduced cyclic shearing pe-

riod as the new time scale, leading to a different set of scaling parameters

from the classic model. A brief overview of how the Kurganov-Tadmor

semi-discrete central difference numerical scheme is employed to approx-

imate groups of convection-diffusion PDEs as time-dependent ODEs for

each time-step is also conducted. At this point, initial modifications to

classic kinetic sieving model have been implemented with an appropriate

numerical solver introduced.

In Chapter 3, we started by acknowledging the need for further modifica-

tions to the model in order to better capture cyclic shear features. After

selecting two-dimensional simulation coupled with periodic boundary con-

ditions for modelling central sections of the shear box and briefly describing

how solutions are handled and stored, we performed validation of the model

against results from a similar parallel shear study (van der Vaart et al.,

2015). Agreements of the simulation results indicate that our model agrees

with the classic kinetic-sieving model for non-chute-flow scenarios, which
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further encourages implementations of modifications based on specific mod-

elling scenarios. Therefore, we recognised time-evolving velocity profile as

a desired characteristics in modelling cyclic shearing motion driven by top

plate.

After going through the list of desired features we anticipate for the profile,

two attempts were made to incorporate time-dependent velocity profile.

First, we proposed a discrete sequence of hyperbolic profiles inspired by

experimental measurements of a bottom-driven annular shear box study

(Golick and Daniels, 2009; May et al., 2010). The sequenced profiles in-

deed enabled us to simulate initialisation and reversal events within cyclic

shearing environments. However, it has many limitations such as inconve-

nience of configuring surface velocity magnitude and potential disconnect

between different groups of profiles. Additionally, the parameters used

to adjust profile behaviour are not directly linked to non-dimensionalising

scales or typical experimental measurements.

Recognising the room for improvement, we proposed using periodic func-

tions to control the surface velocity magnitude and shape parameter. In

this way, we arrived at a more physically anchored control over changing

velocity profiles. We also experimented with enforcing numerical shear

rate dependence for segregation rate based on the notion that shear rate

within the granular material should affect how actively granular material

segregate in size. Indeed, we were able to achieve clear feed-backs to bi-

disperse two-dimensional simulation results, with or without the enforced

shear rate dependence. The sensitivity of velocity profiles suggest the need

for more purpose-driven and case-specific profiles in order to achieve the

most optimal agreement with real-life scenarios. We concluded this chapter

by showcasing the simulation results of the bi-disperse simulation as well

as a brief analysis of effects onto segregation behaviour by key parameters.
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In Chapter 4, we revealed that the modifications including pressure depen-

dence and time-dependent velocity profiles were all introduced in prepara-

tion for achieving poly-dispersity, i.e. being able to model multiple gran-

ular populations simultaneously in the model. Traditionally, expanding

a bi-disperse problem into a tri-disperse problem requires major overhaul

of function definitions and data structure rework. We propose a noval it-

erative expansion approach to expand any n-population problem into a

(n+ 1)-population one.

We began by visualising how pairwise segregation relationships could be

generated and maintained within a poly-disperse model and the unique

advantage of doing so. Motivated by the pairwise relationships, we designed

pairing matrices Pn as a blueprint for storing segregation rate, pairwise

segregation flux terms, pressure-dependent diffusion flux terms and various

numerical values used by the Kurganov-Tadmor scheme. Due to the mass-

conservation assumption and nature of self-segregation, we made changes

to pairing matrices so that only a (n− 1)× (n− 1) matrix is required for

a n-population problem, which would save considerable computing power

for highly poly-disperse simulations.

Afterwards, we briefly showcased the general process of how critical data

are generated and computed within the iterative expansion structure. With

the help of symbolic calculation and relationship-storing matrices, the poly-

disperse model only requires a short list of prescription parameters: size

data for all populations and surface velocity magnitude. The choice of these

two parameters is motivated by the ease of experimental measurement. Ad-

ditionally, most of the modifications and settings are designed with flexibil-

ity and robustness in mind. For example, the function between segregation

rate Bνµ and size ratio sνµ can be freely adjusted to achieve better fitting

towards a certain experiment or validation scenario, and the time-evolving
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velocity profile can also be replaced with experimentally-measured data.

Naturally, it makes sense to validate whether the model is producing correct

results under the new iterative expansion approach. We conducted quali-

tative and quantitative comparison of two-dimensional simulations for bi-

disperse and tri-disperse problems. We compared the solutions computed

using iterative expansion model with those computed using traditional bi-

disperse and tri-disperse models. For both scenarios, solutions generated by

two models agree to the order of 10−6 with the biggest disagreements hap-

pening during the most active stages of segregation and then converges to

much lower values. We are not yet crystal clear about the source of these

temporal disagreements, but the validation results are certainly encour-

aging enough for us to keep carrying out poly-disperse simulations using

iterative expansion procedure.

In the last section of Chapter 4, test design scenarios for poly-disperse sim-

ulations are discussed in details. Specifically, we are interested in how size

ratio distribution might potentially impact the outcome of the simulation.

Consequently, we proposed five test distributions in hope to capture a di-

verse spectrum of granular size compositions, and presented 10-population

simulations for these distributions. Additionally, we designed a group of five

test cases to compare the effect of diffusion rate D and confining pressure

P0. After comparison among initial and terminal solid volume distributions

for all populations, noticeable patterns revealing the desired characteristics

of pressure-dependent flux terms can be observed.

In Chapter 5, we started by recognising the technical difficulty of incorpo-

rating breakage, an inherently discrete behaviour in a continuum model. A

brief literature review on particle breakage DEMs and population balance

method were presented. Ultimately, we expressed that further investiga-

101



6.1. FROM CHUTE FLOW MODEL TO SHEAR BOX MODEL WITH
BREAKAGE: HIGHLIGHTS OF THE THESIS

tion on DEM and population balance methods may prove beneficial to our

simulation, but we made the conscious decision to keep exploring possibil-

ities within the continuum model set-up because of time constraint of the

project and the closest relevance to our approach.

Before documenting the implementation details of breakage ideas, we used a

triangular breakage ‘toy model’ to help visualise the concept of representing

particle breakage via size distribution, and ultimately re-distribution of

solid volume fractions. After briefly going through preliminary findings of

the test, we concluded that it may be wise to limit how far particles can

break and focus on having only one terminal size population to account for

generated dust.

In the following chapter, we experimented with solid volume fraction re-

distribution events taking place in-between simulation time-steps for a

quad-disperse problem as a preliminary test for possible breakage-like be-

haviour. Noticeable feed-backs to the solution can be observed, even with

only three inserted breakage events, demonstrating the feasibility of the

simplest breakage mechanism.

Shortly afterwards, we also attempted a more self-contained approach to

model breakage: this time in the form of gain and loss functions. After

careful derivations, we concluded that it may be possible to develop one

such functional mechanism of breakage and have it directly tied with the

conservation equations. However, it probably demands a longer list of

assumptions and may depend on specific settings of future experiments or

model scenarios. Therefore, we acknowledge the addition layers of challenge

of this approach, but we also believe this can be a very promising direction

for future works.

Finally, we experimented the functional solid volume fraction re-distribution
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mechanism on a 10-population poly-disperse simulation. After showing

breakage can be modelled in the form of solid volume fraction re-distribution

with clear feed-back created in simulation result, we are pleased to see that

the poly-disperse model does indeed show promise in modelling complex

geo-physical flows with a much higher level of detail in terms of size diver-

sity and crushing phenomena.

6.2 Potential for future improvements

As described in the previous section, there is a vast room for customization

when it comes to prescribed profiles and functions. More state-of-the-

art findings and methodologies could also directly or indirectly provide

insights for better ways of imposing stress-partition functions, segregation

rate functions or velocity profiles.

Unfortunately, it became very difficult to conduct experimental works dur-

ing the Covid-19 pandemic. As stated in Chapter 3, it would be hugely

beneficial if a case-specific top-driven cyclic shearing experiment could be

conducted. These results would provide valuable insights for velocity profile

and list of assumptions.

The flexibility of modifications and prescription parameters can be espe-

cially advantageous when it comes to fitting the model configuration to-

wards experimental results. Therefore, we believe it is a step in the right

direction to conduct laboratory experiments with a non-trivial amount of

size variations and possibly with crush-able particles. Data collected from

these real-life experiments could provide huge guidance and feed-backs for

adjusting and improving the poly-disperse model.
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Additionally, further testing of the poly-disperse simulations is also crucial

to obtain further and firmer understanding of the assumptions, behaviour

and limitations of our model. As pointed out in Chapter 4 and 5, there are

certainly times where we aren’t able to entirely explain every unexpected

behaviour of the solutions. Therefore, we believe there is still a considerable

room for further assumption checking and programming optimisation.
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Appendix A

Python code for classic

bi-disperse simulation

”””

Created on Sat Nov 21 10 : 50 : 03 2020

@author : J i a x i n Zhang

”””

# Import u s e f u l modules

import numpy as np

import matp lo t l ib . pyplot as p l t

# Def ine g l o b a l v a r i a b l e s

# B = −0.0003

# C = 0.2

# D = 0.00007

# HP0 = 10000

B = 0.625

C = 2

D = 0.2

HP0 = 0.5

T = 1

# H = 1

# # U = 0.05

# c = 100

# SLS = 0.0016

# Pe = 20.9

# # I = 1/( np . s q r t (H∗H + U∗U∗T∗T) )

# # J = (np . s q r t (H∗H + U∗U∗T∗T) ) ∗(9 .81∗H + U∗U∗T∗T)/H

# B = −SLS∗(H∗c ) /(T∗9 .81)

# d = −B/Pe∗9.81

# s = 1.5
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# rho = 2500

# P0 = 0

# HP0 = P0/( rho ∗9.81∗H)

nX = 10

nZ = 20

nT = 5000

xStart = 0

xEnd = 5

zBot = 0

zTop = 1

tEnd = 5

# t0Rev = np . array ( [ 1 0 , 2 0 ] )

# tRev = T∗0.5

# n0Rev = nT/tEnd∗ t0Rev + 1

# nRev = nT/tEnd∗ tRev

dx = (xEnd − xStart ) /nX

dz = (zTop − zBot ) /nZ

dt = tEnd/(nT−1)

x = np . l i n s pa c e ( xStart , xEnd ,nX+1)

z = np . l i n s pa c e ( zBot , zTop , nZ+1)

time = np . l i n s pa c e (0 , tEnd ,nT)

uTempCell = np . z e ro s ( [ nZ , 1 ] )

uTempGrdpt = np . z e ro s ( [ nZ+1 ,1])

”””

Some check parameters

”””

# aXCheck = np . z e r o s ( [ nZ ,nX+1])

# aZCheck = np . z e r o s ( [ nZ+1,nX ] )

# =============================================================================

# Create t h e l i s t o f f u n c t i o n s needed

# =============================================================================

# de f s i g n ( a ) :

# ”””

# Returns s i g n o f t h e number .

# Returns 0 i f i npu t i s 0 .

# ”””

# i f a == 0 . 0 :

# ou tpu t = 0

# i f a > 0 . 0 :

# ou tpu t = 1

# i f a < 0 . 0 :

# ou tpu t = −1

# re tu rn ou tpu t

def minmod(a , b) :

”””

Returns t h e f l a t t e r l o c a l s l o p e out o f t h e g i v en two .

I f t h e two s l o p e s have d i f f e r e n t s i gn s , then i t r e t u rn s 0 .

”””

output = 0 .5∗ ( np . s i gn ( a )+np . s i gn (b) ) ∗ np .min ( [ np . abs ( a ) ,np . abs (b) ] )
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return output

def segB ( dudz ) :

”””

Returns t h e l o c a l p a i rw i s e s e g r e g a t i o n r a t e parameter

”””

global B

output = B

# outpu t = B

return output

def fluxFunX ( phi , iZ ) :

”””

Flux f un c t i o n in x−d i r e c t i o n , c o l l e c t s v e l o c i t y p r o f i l e v i a g l o b a l .

”””

global uTempCell

output = phi ∗ uTempCell [ iZ ]

return output

def fluxFunXdPhi ( iZ ) :

”””

De r i v a t i v e o f f l u x f u n c t i o n in x−d i r e c t i o n .

”””

global uTempCell

output = uTempCell [ iZ ]

return output

def fluxFunZ ( phi , dudz ) :

”””

Flux f un c t i o n in z−d i r e c t i o n ,

w i th p r e s c r i b e d dependency on v e l o c i t y g r a d i e n t .

”””

# g l o b a l T

# g l o b a l H

# g l o b a l c

# g l o b a l B

# g l o b a l I

# g l o b a l s

global C

BTemp= segB ( dudz )

output = (1/C) ∗ BTemp ∗ phi ∗ (1−phi )

# outpu t = (1/C)∗ ph i + (1/C) ∗ BTemp ∗ ph i ∗ (1− ph i )

# ou tpu t = (1/C) ∗ BTemp ∗ ph i ∗ (1− ph i ) + ph i /C

# bo t = ph i + s∗(1− ph i )

# ou tpu t = (1/C)∗ ph i / bo t

return output

def fluxFunZdPhi ( phi , dudz ) :

”””

De r i v a t i v e o f f l u x f u n c t i o n in z−d i r e c t i o n .

”””

# g l o b a l T

# g l o b a l H
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# g l o b a l c

# g l o b a l B

# g l o b a l I

global s

global C

BTemp= segB ( dudz )

output = (1/C) ∗ BTemp ∗ (1−2∗phi )

# outpu t = (1/C) + (1/C) ∗ BTemp ∗ (1−2∗ ph i )

# ou tpu t = (1/C) ∗ BTemp ∗ (1−2∗ ph i ) + 1/C

# bo t = ( ph i+s∗(1− ph i ) ) ∗( ph i+s∗(1− ph i ) )

# ou tpu t = (1/C)∗ s / bo t

return output

# de f f luxFunZ ( ph i ) :

# ”””

# Flux f un c t i o n in z−d i r e c t i o n ,

# wi th p r e s c r i b e d dependency on v e l o c i t y g r a d i e n t .

# ”””

# g l o b a l T

# g l o b a l H

# g l o b a l c

# g l o b a l B

# ou tpu t = (T∗9.81∗B) /(H∗c ) ∗ ph i ∗ (1− ph i )

# re tu rn ou tpu t

# de f f luxFunZdPhi ( ph i ) :

# ”””

# De r i v a t i v e o f f l u x f u n c t i o n in z−d i r e c t i o n .

# ”””

# g l o b a l T

# g l o b a l H

# g l o b a l c

# g l o b a l B

# ou tpu t = (T∗9.81∗B) /(H∗c ) ∗ (1−2∗ ph i )

# re tu rn ou tpu t

def f luxFunDi f f ( dphidz , iz , phi , dudz ) :

”””

D i f f u s i o n f l u x f unc t i on , more mod i f i c a t i o n s to be a p p l i e d

”””

# g l o b a l T

# g l o b a l d

# g l o b a l H

# g l o b a l c

# g l o b a l B

# g l o b a l rho

# g l o b a l J

# g l o b a l zTop

# g l o b a l HP

global D

global C

global HP0

global s

BTemp= segB ( dudz )

# outpu t = (D/C)∗ dph id z

z = zBot + (0.5+ i z ) ∗dz

output = (D/C) ∗dphidz + (1/C) ∗(HP0 + (1−z ) ) ∗(1+BTemp∗(1−phi ) ) ∗dphidz
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# outpu t = 0

# bo t = ( ph i+s∗(1− ph i ) ) ∗( ph i+s∗(1− ph i ) )

# ou tpu t = (D/C)∗ dph id z + (1/C) ∗(HP0 + (1− z ) ) ∗( s / bo t )∗ dph id z

return output

# de f f l u xFunD i f f ( dph i d z ) :

# ”””

# D i f f u s i o n f l u x func t i on , more mod i f i c a t i o n s to be a p p l i e d

# ”””

# g l o b a l T

# g l o b a l d

# g l o b a l H

# g l o b a l c

# ou tpu t = (T∗d ) /(H∗c ) ∗ dph id z

# re tu rn ou tpu t

# de f p ( z ) :

# g l o b a l zTop

# g l o b a l rho

# g l o b a l P0

# ou tpu t = rho ∗9.81∗( zTop−z ) + P0

# re tu rn ou tpu t

# de f u ( z , a lpha , b e t a ) :

# ”””

# Pre s c r i b e d b u l k v e l o c i t y p r o f i l e ,

# wi th i t s shape i n s p i r e d by e xp e r imen t a l r e s u l t s .

# ”””

# g l o b a l uAmp

# # g l o b a l a l pha

# # g l o b a l b e t a

# L = 1 − 1/ a lpha

# norm = np . tanh ( b e t a /np . p i ) − 1

# i f z >= L and z<= 1:

# ou tpu t = uAmp ∗ ( np . tanh ( b e t a /( np . p i∗ a lpha ∗( z−L) ) )−1)/norm

# # outpu t = uAmp ∗ ( np . tanh ( b e t a /( np . p i∗ z ) )−1)/norm

# e l s e :

# ou tpu t = 0

# re tu rn ou tpu t

def u( z ,R, velTop ) :

”””

Pr e s c r i b e d b u l k v e l o c i t y p r o f i l e ,

w i t h i t s shape i n s p i r e d by e xp e r imen t a l r e s u l t s .

”””

# g l o b a l a l pha

# g l o b a l b e t a

norm = np . tanh (R/np . p i ) − 1

norm = norm/velTop

output = np . s i gn (R) ∗(np . tanh (R/(np . p i ∗z ) )−1)/norm

return output

# de f g e t L i s t ( a l p haL i s t , b e t aL i s t , z ) :

# # g l o b a l a l pha

# # g l o b a l b e t a

# ”””
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# Get inc r emen ta l v a l u e s

# to be i t e r a t e d and superposed f o r i n i t i a l i z a t i o n p ro c e s s .

# ”””

# uNum = l en ( a l p h aL i s t ) + l en ( b e t a L i s t )

# uL i s t = np . z e r o s ( [ l e n ( z ) ,uNum] )

# ” r e v e r s e t h e order o f v e c t o r f o r top−down a r c h i v i n g ”

# # zRev = z [ : : −1 ]

# # zRev = z

# ” loop over a l pha l i s t t o record f u l l e v o l u t i o n o f v e l o c i t y p r o f i l e ”

# uI = 0

# f o r a l p h a I in range ( l en ( a l p h aL i s t ) ) :

# alphaTemp = a l p h aL i s t [ a l p h a I ]

# betaTemp = b e t a L i s t [ 0 ]

# uTemp = np . z e r o s ( [ l e n ( z ) , 1 ] )

# f o r i in range ( l en ( z ) ) :

# a lpha = alphaTemp

# be t a = betaTemp

# # uTemp [ i ] = u ( zRev [ i ] , a lpha , b e t a )

# uTemp [ i ] = u ( z [ i ] , a lpha , b e t a )

# uL i s t [ i , uI ] = uTemp [ i ]

# uI = uI + 1

# ” loop over b e t a l i s t t o r ecord f u l l e v o l u t i o n o f v e l o c i t y p r o f i l e ”

# uI = 0

# f o r b e t a I in range ( l en ( b e t a L i s t ) ) :

# alphaTemp = 1

# betaTemp = b e t a L i s t [ b e t a I ]

# uTemp = np . z e r o s ( [ l e n ( z ) , 1 ] )

# f o r i in range ( l en ( z ) ) :

# a lpha = alphaTemp

# be t a = betaTemp

# # uTemp [ i ] = u ( zRev [ i ] , a lpha , b e t a )

# uTemp [ i ] = u ( z [ i ] , a lpha , b e t a )

# uL i s t [ i , uI + l en ( a l p h aL i s t ) ] = uTemp [ i ]

# uI = uI + 1

# re tu rn uL i s t

# de f g e t Inc r emen t s ( a l p haL i s t , b e t aL i s t , z , uL i s t ) :

# ”””

# Take incremented v a l u e s o f v e l o c i t y p r o f i l e s based on g i v en uL i s t .

# ”””

# uNum = l en ( a l p h aL i s t ) + l en ( b e t a L i s t )

# duL i s t = np . z e r o s ( [ l e n ( z ) ,uNum] )

# duL i s t [ : , 0 ] = uL i s t [ : , 0 ]

# f o r uI in range (1 ,uNum) :

# f o r i in range ( l en ( z ) ) :

# duL i s t [ i , uI ] = np . s u b t r a c t ( uL i s t [ i , uI ] , uL i s t [ i , uI −1])

# re tu rn duL i s t

# =============================================================================

# KT scheme f un c t i o n

# =============================================================================

def getRHS( phi ) :

”””
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Semi−d i s c r e t e s o l v e r t h a t c on v e r t s t h e PDE to a time−dependent ODE f o r

each time−s t e p . Right−hand−s i d e v a l u e o f t h e ODE dph i d t = RHS i s ou tpu t ed

a l ong w i th o t h e r u s e f u l i n f o rma t i on .

”””

global nZ , nX, dx , dz

global d i r e c t i on , uTempCell , uTempGrdpt

global zBot

global phiC

phiC = phi

”””

Def ine t h e l o c a l s l o p e s in x and z d i r e c t i o n s .

S tored a t c e l l s .

”””

phiX = np . z e ro s ( [ nZ ,nX ] )

phiZ = np . z e ro s ( [ nZ ,nX ] )

" N o t e : due to the z e r o i n i t i a l i z a t i o n , "

" p h i X = 0 at x = { xStart , x E n d } and "

" p h i Z = 0 at z = { zBot , z T o p } are a u t o m a t i c a l l y s a t i s f i e d . "

" T h e r e f o r e it r e m a i n s to set o t h e r l o c a l s l o p e e n t r i e s "

" u s i n g m i n m o d l i m i t e r f u n c t i o n . "

for i in range (nZ) :

for j in range (1 ,nX−1) :

l e f t = ( phi [ i , j ] − phi [ i , j −1]) /dx

r i gh t = ( phi [ i , j +1] − phi [ i , j ] ) /dx

phiX [ i , j ] = minmod( l e f t , r i gh t )

global downs , ups

downs = np . z e ro s ( [ nZ ,nX ] )

ups = np . z e ro s ( [ nZ ,nX ] )

for i in range (1 ,nZ−1) :

for j in range (nX) :

down = ( phi [ i , j ] − phi [ i −1, j ] ) /dz

up = ( phi [ i +1, j ] − phi [ i , j ] ) /dz

downs [ i , j ] = down

ups [ i , j ] = up

phiZ [ i , j ] = minmod(down , up)

”””

Def ine back and forward l i n e a r approx imat i ons o f ph i in x and z d i r e c t i o n s

based on l o c a l s l o p e s .

S to red a t Gr i dpo in t s .

”””

phiL = np . z e ro s ( [ nZ ,nX+1])

phiR = np . z e ro s ( [ nZ ,nX+1])

phiD = np . z e ro s ( [ nZ+1,nX ] )

phiU = np . z e ro s ( [ nZ+1,nX ] )

" N o t e : l i n e a r a p p r o x i m a t i o n s at b o u n d a r y e n d p o i n t s are a s s u m e d to be 0. "

" T h i s is b e c a u s e one of t h e i r n e i g h b o u r s is non - e x i s t a n t . T h i s BC is "

" a u t o m a t i c a l l y s a t i s f i e d via z e r o i n i t i a l i z a t i o n . "

for i in range (nZ) :

for j in range (nX) :

" l e f t ( x -) l i n e a r a p p r o x i m a t i o n b a s e d on p h i X "

phiL [ i , j +1] = phi [ i , j ] + phiX [ i , j ]∗ dx ∗0 .5

" r i g h t ( x +) l i n e a r a p p r o x i m a t i o n b a s e d on p h i X "

phiR [ i , j ] = phi [ i , j ] − phiX [ i , j ]∗ dx ∗0 .5

" d o w n ( z -) l i n e a r a p p r o x i m a t i o n b a s e d on p h i Z "

phiD [ i +1, j ] = phi [ i , j ] + phiZ [ i , j ]∗ dz ∗0 .5
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" up ( z +) l i n e a r a p p r o x i m a t i o n b a s e d on p h i Z "

phiU [ i , j ] = phi [ i , j ] − phiZ [ i , j ]∗ dz ∗0 .5

”””

Record t he downstream v e l o c i t y component v a l u e s a t c e l l s and g r i d p o i n t s

in order to c a l c u l a t e du/ dz .

”””

uValCel l = np . z e ro s ( [ nZ , 1 ] )

uValGrdpt = np . z e ro s ( [ nZ+1 ,1])

for i in range (nZ) :

uValCel l [ i ] = uTempCell [ i ]

for i in range (nZ+1) :

uValGrdpt [ i ] = uTempGrdpt [ i ]

”””

Use minmod l i m i t e r to numer i c a l l y c a l c u l a t e magnitude o f l o c a l v e l o c i t y

g r a d i e n t s du/ dz a t c e l l s and g r i d p o i n t s .

”””

dudzCel l = np . z e ro s ( [ nZ , 1 ] )

dudzGrdpt = np . z e ro s ( [ nZ+1 ,1])

for i in range (1 ,nZ−1) :

L = ( uValCel l [ i ] − uValCel l [ i −1]) /dz

R = ( uValCel l [ i +1] − uValCel l [ i ] ) /dz

dudzCel l [ i ] = np . abs (minmod(L ,R) )

for i in range (1 ,nZ) :

L = ( uValGrdpt [ i ] − uValGrdpt [ i −1]) /dz

R = ( uValGrdpt [ i +1] − uValGrdpt [ i ] ) /dz

dudzGrdpt [ i ] = np . abs (minmod(L ,R) )

”””

Def ine t h e maximum l o c a l s p eed s aX and aZ at c e l l endpo in t s in x and z

d i r e c t i o n s . Again a d d i t i o n a l row/ c o l i s r e q u i r e d .

”””

aX = np . z e ro s ( [ nZ ,nX+1])

aZ = np . z e ro s ( [ nZ+1,nX ] )

aU = np . z e ro s ( [ nZ+1,nX ] )

aD = np . z e ro s ( [ nZ+1,nX ] )

for i in range (nZ) :

for j in range (nX+1) :

aL = np . abs ( fluxFunXdPhi ( i ) )

aR = np . abs ( fluxFunXdPhi ( i ) )

aX [ i , j ] = np .max( [ aL , aR ] )

for i in range (nZ+1) :

for j in range (nX) :

aU [ i , j ] = np . abs ( fluxFunZdPhi ( phiU [ i , j ] , dudzGrdpt [ i ] ) )

aD [ i , j ] = np . abs ( fluxFunZdPhi ( phiD [ i , j ] , dudzGrdpt [ i ] ) )

aZ [ i , j ] = np .max( [ aU [ i , j ] , aD [ i , j ] ] )

”””

Def ine t h e numer ica l f l u x terms Hx and Hz

in x and z d i r e c t i o n s s t o r e d a t c e l l endpo in t s .

”””

HX = np . z e ro s ( [ nZ ,nX+1])
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HZ = np . z e ro s ( [ nZ+1,nX ] )

" F i r s t p r e s c r i b e the i n f l o w and o u t f l o w BCs in x , now p e r i o d i c . "

for i in range (nZ) :

i f d i r e c t i o n == 1 :

HX[ i , 0 ] = fluxFunX ( phi [ i , nX−1] , i )

HX[ i ,nX] = fluxFunX ( phi [ i , nX−1] , i )

else :

HX[ i ,nX] = fluxFunX ( phi [ i , 1 ] , i )

HX[ i , 0 ] = fluxFunX ( phi [ i , 1 ] , i )

for j in range (1 ,nX) :

HX[ i , j ] = 0 . 5∗ ( fluxFunX (phiR [ i , j ] , i ) + fluxFunX ( phiL [ i , j ] , i ) ) \

−0.5 ∗ aX [ i , j ] ∗ ( phiR [ i , j ] − phiL [ i , j ] )

" F i r s t p r e s c r i b e top and b o t t o m no - f l u x BC in z . "

for j in range (nX) :

HZ[ 0 , j ] = 0

HZ[ nZ , j ] = 0

for i in range (1 ,nZ) :

# HZ[ i , j ] = 0 .5∗ ( f luxFunZ ( phiU [ i , j ] , d ud zCe l l [ i ] ) + \

# fluxFunZ ( phiD [ i , j ] , d ud zCe l l [ i ] ) ) \

# −0.5∗ aZ [ i , j ] ∗ ( phiU [ i , j ] − phiD [ i , j ] )

HZ[ i , j ] = 0 . 5∗ ( fluxFunZ ( phiU [ i , j ] , dudzCel l [ i ] ) + \

fluxFunZ (phiD [ i , j ] , dudzCel l [ i ] ) ) \

−0.5∗ aZ [ i , j ] ∗ ( phiU [ i , j ] − phiD [ i , j ] )

”””

Def ine t h e numer ica l d i f f u s i o n f l u x terms .

S tored a t g r i d p o i n t s .

”””

PZ = np . z e ro s ( [ nZ+1,nX ] )

for j in range (nX) :

for i in range (1 ,nZ) :

# zUp = zTop − ( i −0.5)∗dz

# zDown = zTop − ( i +0.5)∗dz

# z = zTop − ( i +0.5)∗dz

dphidz = ( phi [ i , j ] − phi [ i −1, j ] ) /dz

PZ[ i , j ] = 0 . 5∗ ( f luxFunDi f f ( dphidz , i , phi [ i , j ] , dudzCel l [ i ] ) \

+ f luxFunDi f f ( dphidz , i , phi [ i , j ] , dudzCel l [ i ] ) )

RHS = np . z e ro s ( [ nZ ,nX ] )

for i in range (nZ) :

for j in range (nX) :

RHS[ i , j ] = −(HX[ i , j +1] − HX[ i , j ] ) /dx \

−(HZ[ i +1, j ] − HZ[ i , j ] ) /dz \

+(PZ[ i +1, j ] − PZ[ i , j ] ) /dz

”””

Checks

”””

# g l o b a l XCheck , ZCheck

# XCheck = phiX

# ZCheck = phiZ

# g l o b a l LCheck , RCheck , DCheck , UCheck

# LCheck = phiL

# RCheck = phiR

# DCheck = phiD
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# UCheck = phiU

# g l o b a l aXCheck , aZCheck

# aXCheck = aX

# aZCheck = aZ

# g l o b a l HXC,HZC

# HXC = HX

# HZC = HZ

# g l o b a l PZC

# PZC = PZ

# g l o b a l RHSC

# RHSC = RHS

return RHS

def rk t imes t ep ( phi ) :

”””

Runge−Kutta t ime s t e p p e r to s o l v e t h e ODE f o r each t ime s t e p .

”””

global nX, nZ , dt

eta = 0 .5

phiTemp = np . z e ro s ( [ nZ ,nX ] )

phiNew = np . z e ro s ( [ nZ ,nX ] )

RHS = getRHS( phi )

for i in range (nZ) :

for j in range (nX) :

phiTemp [ i , j ] = phi [ i , j ] + dt∗RHS[ i , j ]

RHSTemp = getRHS(phiTemp)

for i in range (nZ) :

for j in range (nX) :

phiNew [ i , j ] = eta ∗phi [ i , j ] + \

(1− eta ) ∗ (phiTemp [ i , j ] + dt∗RHSTemp[ i , j ] )

return phiNew

# re tu rn phiTemp

# =============================================================================

# Main f un c t i o n

# =============================================================================

" I n i t i a l v o l u m e f r a c t i o n c o n d i t i o n "

# phi = np . conca t ena t e ( [ \

# 0.2∗ np . ones ( [ i n t (nZ∗0 .5 ) ,nX ] ) ,0 .8∗ np . ones ( [ i n t (nZ∗0 .5 ) ,nX ] ) ] )

# ph i = np . ones ( [ nZ ,nX ] ) ∗0.6

phi = np . ones ( [ nZ ,nX ] ) ∗ (1/2)

" G e n e r a t e v e l o c i t y e v o l u t i o n d a t a to i t e r a t e in t i m e "

zCe l l = np . l i n s pa c e ( zBot , zTop−dz , nZ)+0.5∗dz

# f u L i s t C e l l = g e t L i s t ( a l p haL i s t , b e t aL i s t , z C e l l )

# f d u L i s t C e l l = ge t Inc r emen t s ( a l p haL i s t , b e t aL i s t , zCe l l , u L i s t C e l l )

# # uL i s t C e l l = np . f l i p u d ( g e t L i s t ( a l p haL i s t , b e t aL i s t , z C e l l ) )

# # duL i s tC e l l = np . f l i p u d ( g e t Inc r emen t s ( a l p haL i s t , b e t aL i s t , zCe l l , u L i s t C e l l ) )

# zMod = z

# zMod [ 0 ] = z [0 ]+0.01∗ dz

# uLi s tGrdp t = g e t L i s t ( a l p haL i s t , b e t aL i s t , zMod)
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# duLis tGrdp t = ge t Inc r emen t s ( a l p haL i s t , b e t aL i s t , z , uL i s tGrdp t )

# # uLis tGrdp t = np . f l i p u d ( g e t L i s t ( a l p haL i s t , b e t aL i s t , zMod) )

# # duLis tGrdp t = np . f l i p u d ( g e t Inc r emen t s ( a l p haL i s t , b e t aL i s t , z , uL i s tGrdp t ) )

uL i s tCe l lH i s t = np . z e ro s ( [ nZ ,nT ] )

duL i s tCe l lH i s t = np . z e ro s ( [ nZ ,nT ] )

" I n i t i a l i z e m a t r i x to s t o r e v o l u m e f r a c t i o n and o t h e r d a t a "

r e s u l t s = np . z e ro s ( [ nZ ,nT+1])

# Seg1 = np . z e r o s ( [ nZ ,nT ] )

# Seg2 = np . z e r o s ( [ nZ ,nT ] )

# Seg3 = np . z e r o s ( [ nZ ,nT ] )

# SegVel = np . z e r o s ( [ nZ ,nT ] )

# SegFlux = np . z e r o s ( [ nZ ,nT ] )

# D i f f F l u x = np . z e r o s ( [ nZ ,nT ] )

" R e c o r d IC in r e s u l t s "

for i in range (nZ) :

r e s u l t s [ i , 0 ] = 0 . 5∗ ( phi [ i , int (nX/2) ] + phi [ i , int (nX/2) +1])

" I n d e x u s e d to d o c u m e n t e v o l u t i o n p r o g r e s s of v e l o c i t y p r o f i l e in t i m e "

# inde x I = 0

# indexR = l en ( a l p h aL i s t ) + l en ( b e t a L i s t )

" L o o p o v e r t i m e "

for t in range (nT) :

# ” check whether t h e t ime s t e p i s t h e s t a r t o f t h e i n i t i a l i z a t i o n pe r i od ”

# i f i n d e x I+1 <= len ( a l p h aL i s t )+l en ( b e t a L i s t ) :

# f o r i in range (nZ) :

# uTempCell [ i ] = uTempCell [ i ] + d i r e c t i o n ∗ d uL i s tC e l l [ i , i n d e x I ]

# f o r i in range (nZ+1) :

# uTempGrdpt [ i ] = uTempGrdpt [ i ] + d i r e c t i o n ∗ duLi s tGrdp t [ i , i n d e x I ]

# ” update t h e coun te r ”

# ind e x I = ind e x I + 1

# ” check whether t h e t ime s t e p i s t h e s t a r t o f t h e r e v e r s a l p e r i o d ”

# i f t in n0Rev :

# ” r e s e t t h e r e v e r s a l p r o g r e s s coun te r and record change o f d i r e c t i o n ”

# indexR = 0

# d i r e c t i o n = −1∗ d i r e c t i o n

# f o r i in range (nZ) :

# uTempCell [ i ] = uTempCell [ i ] + 2∗ d i r e c t i o n ∗ d uL i s tC e l l [ i , indexR ]

# f o r i in range (nZ+1) :

# uTempGrdpt [ i ] = uTempGrdpt [ i ] + 2∗ d i r e c t i o n ∗ duLi s tGrdp t [ i , indexR ]

# ” update t h e coun te r ”

# indexR = indexR + 1

# ” check whether t h e t ime s t e p i s w i t h i n t h e r e v e r s a l p e r i od ”

# i f t not in n0Rev and indexR+1 <= len ( a l p h aL i s t )+l en ( b e t a L i s t ) :

# ”add the p r e s c r i b e d increment a s s i g n ed to t h i s s t e p ”

# f o r i in range (nZ) :

# uTempCell [ i ] = uTempCell [ i ] + 2∗ d i r e c t i o n ∗ d uL i s tC e l l [ i , indexR ]

# f o r i in range (nZ+1) :

# uTempGrdpt [ i ] = uTempGrdpt [ i ] + 2∗ d i r e c t i o n ∗ duLi s tGrdp t [ i , indexR ]

# ” update t h e coun te r ”

# indexR = indexR + 1
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" S e c o n d v e r s i o n of v e l o c i t y p r o f i l e e v o l u t i o n "

RTemp = 5∗np . cos (2∗np . p i ∗ t /T)+5.5

velTopTemp = np . s i n (np . p i ∗ t /T)

d i r e c t i o n = np . s i gn (velTopTemp)

for i in range (nZ) :

zTemp = zTop − ( i +0.5)∗dz

uTempCell [ i ] = u(zTemp ,RTemp, velTopTemp)

for i in range (nZ+1) :

zTemp = zTop − i ∗dz

uTempGrdpt [ i ] = u(zTemp ,RTemp, velTopTemp)

" r e c o r d v e l o c i t y e v o l u t i o n d a t a "

for i in range (nZ) :

uL i s tCe l lH i s t [ i , t ] = uTempCell [ i ]

" r e c o r d s h e a r r a t e d a t a "

for i in range (1 ,nZ−1) :

dudzTemp = minmod ( ( uTempCell [ i ] − uTempCell [ i −1]) /dz ,

( uTempCell [ i +1] − uTempCell [ i ] ) /dz )

duL i s tCe l lH i s t [ i , t ] = dudzTemp

# ” record v e l o c i t y e v o l u t i o n data ”

# f o r i in range (nZ) :

# uL i s t C e l l H i s t [ i , t ] = uTempCell [ i ]

# ” record shear r a t e data ”

# f o r i in range (1 , nZ−1) :

# dudzTemp = minmod ( ( uTempCell [ i ] − uTempCell [ i −1])/dz ,

# ( uTempCell [ i +1] − uTempCell [ i ] ) / dz )

# d uL i s t C e l l H i s t [ i , t ] = dudzTemp

# uTempCell = np . ones ( [ nZ , 1 ] )

# uTempGrdpt = np . ones ( [ nZ+1 ,1])

" c a l c u l a t e phi for n e x t t i m e s t e p u s i n g KT s o l v e r "

phiNew = rk t imes t ep ( phi )

phi = phiNew

" s t o r e the c e n t r a l c o l u m n for e v o l u t i o n g r a p h "

i f np .mod(nX, 2 ) == 0 :

for i in range (nZ) :

r e s u l t s [ i , t+1] = 0 .5∗ ( phi [ i , int (nX∗0 . 5 ) ] + phi [ i , int (nX∗0 . 5 ) +1])

e l i f np .mod(nX, 2 ) == 1 :

for i in range (nZ) :

r e s u l t s [ i , t+1] = phi [ i , ( nX+1) ∗ 0 . 5 ]

# ” Ca l c u l a t e and s t o r e t h e shear r a t e data ”

# dudzCel lTemp = np . z e r o s ( [ nZ , 1 ] )

# f o r i in range (1 , nZ−1) :

# L = ( uTempCell [ i ] − uTempCell [ i −1])/ dz

# R = ( uTempCell [ i +1] − uTempCell [ i ] ) / dz

# dudzCel lTemp [ i ] = np . abs (minmod(L ,R) )

# ” c a l c u l a t e and s t o r e t h e s e g r e g a t i o n v e l o c i t y norma l i z ed by s q r t (H/g ) ”

# f o r i in range (nZ) :

# zTemp = zTop − ( i +0.5)∗dz

# phiTemp = r e s u l t s [ i , t ]

# i f i == 0 or i == nZ−1:
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# dphidzTemp = 0

# e l s e :

# dphidzTemp = minmod ( ( r e s u l t s [ i , t ] − r e s u l t s [ i −1, t ] ) /dz , \

# ( r e s u l t s [ i +1, t ] − r e s u l t s [ i , t ] ) / dz )

# BTemp = segB ( dudzCel lTemp [ i ] )

# Seg1Temp = 9 .81/(C∗T)∗BTemp∗(1−phiTemp )

# Diff1Temp = −(D/C) ∗(1/ phiTemp )∗dphidzTemp

# Diff2Temp = −1/(C∗T∗9 .81) ∗(HP0 + (1−zTemp) )∗ \

# (1+BTemp∗(1−phiTemp ) ) /phiTemp∗dphidzTemp

# # Seg1 = 9 .81/(C∗T)∗B∗(1−phiTemp )∗phiTemp

# # Di f f 1 = −(D/C)∗dphidzTemp

# # Di f f 2 = −1/(C∗T∗9 .81) ∗(HP0+(1−zTemp) )∗(1+B∗(1−phiTemp ) )∗dphidzTemp

# Seg1 [ i , t ] = Seg1Temp

# Seg2 [ i , t ] = Diff1Temp

# Seg3 [ i , t ] = Diff2Temp

# SegVel [ i , t ] = Seg1Temp + Diff1Temp + Diff2Temp

# f o r i in range (nZ) :

# phiTemp = r e s u l t s [ i , t ]

# SegFlux [ i , t ] = f luxFunZ ( phiTemp , dudzCel lTemp [ i ] )

# ” c a l c u l a t e and s t o r e t h e magnitude o f d i f f u s i o n f l u x ”

# f o r i in range (nZ) :

# zTemp = zTop − ( i +0.5)∗dz

# phiTemp = r e s u l t s [ i , t ]

# i f i == 0 or i == nZ−1:

# dphidzTemp = 0

# e l s e :

# dphidzTemp = minmod ( ( r e s u l t s [ i , t ] − r e s u l t s [ i −1, t ] ) /dz , \

# ( r e s u l t s [ i +1, t ] − r e s u l t s [ i , t ] ) / dz )

# D i f f F l u x [ i , t ] = f l u xFunD i f f ( dphidzTemp , zTemp , phiTemp , dudzCel lTemp [ i ] )

" c o u n t e r "

print ( " t i m e s t e p n u m b e r " , t , " c o m p l e t e d " )

" P l o t the e v o l u t i o n g r a p h "

# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

# p l t . imshow ( np . f l i p u d ( r e s u l t s ) , i n t e r p o l a t i o n =’none ’ , \

# cmap=’ v i r i d i s ’ , a s p e c t=nT/nZ)

# p l t . imshow ( np . f l i p u d ( np . ones ( [ nZ ,nT+1])−r e s u l t s ) , \

# i n t e r p o l a t i o n =’none ’ , cmap=’ v i r i d i s ’ , a s p e c t=nT/nZ)

# p l t . show ( )

" S a v e the e v o l u t i o n d a t a "

np . savetxt ( " r e s u l t s 0 _ 1 0 _ P 0 _ 0 .5 _ s p r e a d _ r e a l 1 a _ b i . csv " , r e s u l t s , d e l im i t e r=" , " )

# np . s a v e t x t (” SegVe l B 0 . 9 C 20 D 0 HP0 0 .1 f l i p p e d v . c s v ” , SegVel , d e l im i t e r =” ,”)

# np . s a v e t x t (” SegF lux B 0 .9 C 20 D 0 HP0 0 .1 f l i p p e d v . c s v ” , SegFlux , d e l im i t e r

=” ,”)

# np . s a v e t x t (” D i f fF l u x B 0 .9 C 20 D 0 HP0 0 .1 f l i p p e d v . c s v ” , D i f fF l u x , d e l im i t e r

=” ,”)

125



Appendix B

Python code for classic

tri-disperse simulation

”””

Created on Sat Nov 21 10 : 50 : 03 2020

@author : J i a x i n Zhang

”””

# Import u s e f u l modules

import numpy as np

from numpy import l i n a l g as LA

import matp lo t l ib . pyplot as p l t

# Def ine g l o b a l v a r i a b l e s

# B = −0.0003

# C = 0.2

# D = 0.00007

# HP0 = 10000

BLS = 0.625

BLM = 0.378125

BMS = 0.3136

# si z eRa t i oLS = 10

# sizeRat ioMS = 1

# sizeRatioLM = s i z eRa t i oLS / sizeRat ioMS

# sizeRat ioDim = 1

C = 2

D = 0.2

HP0 = 0.5

T = 1

# H = 1

# # U = 0.05

# c = 100

# SLS = 0.0016
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# Pe = 20.9

# # I = 1/( np . s q r t (H∗H + U∗U∗T∗T) )

# # J = (np . s q r t (H∗H + U∗U∗T∗T) ) ∗(9 .81∗H + U∗U∗T∗T)/H

# B = −SLS∗(H∗c ) /(T∗9 .81)

# d = −B/Pe∗9.81

s = 1 .5

# rho = 2500

# P0 = 0

# HP0 = P0/( rho ∗9.81∗H)

nX = 10

nZ = 20

nT = 5000

xStart = 0

xEnd = 5

zBot = 0

zTop = 1

tEnd = 5

# t0Rev = np . array ( [ 1 0 , 2 0 ] )

# tRev = T∗0.5

# n0Rev = nT/tEnd∗ t0Rev + 1

# nRev = nT/tEnd∗ tRev

# uAmp = 1

# a lpha = np . l i n s p a c e (3 , 1 . 04 , i n t ( nRev ∗0 .8 ) )

# # a lpha = np . l i n s p a c e (3 , 1 . 04 , 50)

# a l p h aL i s t = np . mu l t i p l y ( a lpha , a l pha )

# b e t a L i s t = np . l i n s p a c e (8 , 1 , i n t ( nRev ∗0 .5 ) )

# # b e t a L i s t = np . l i n s p a c e (10 , 0 . 5 , 10)

x = np . l i n s pa c e ( xStart , xEnd ,nX+1)

z = np . l i n s pa c e ( zBot , zTop , nZ+1)

time = np . l i n s pa c e (0 , tEnd ,nT+1)

dx = (xEnd − xStart ) /nX

dz = (zTop − zBot ) /nZ

dt = tEnd/(nT−1)

# d i r e c t i o n = 1

uTempCell = np . z e ro s ( [ nZ , 1 ] )

uTempGrdpt = np . z e ro s ( [ nZ+1 ,1])

# =============================================================================

# Create t h e l i s t o f f u n c t i o n s needed

# =============================================================================

def s i gn ( a ) :

”””

Returns s i g n o f t h e number .

Returns 0 i f i npu t i s 0 .

”””

i f a == 0 . 0 :

output = 0
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i f a > 0 . 0 :

output = 1

i f a < 0 . 0 :

output = −1

return output

def minmod(a , b) :

”””

Returns t h e f l a t t e r l o c a l s l o p e out o f t h e g i v en two .

I f t h e two s l o p e s have d i f f e r e n t s i gn s , then i t r e t u rn s 0 .

”””

output = 0 .5∗ ( np . s i gn ( a )+np . s i gn (b) ) ∗ np .min ( [ np . abs ( a ) ,np . abs (b) ] )

return output

def segB ( dudz ) :

”””

Returns t h e l o c a l p a i rw i s e s e g r e g a t i o n r a t e parameter

”””

global BLS, BLM, BMS

BTemp = np . z e ro s ( [ 3 , 1 ] )

# BTemp [ 0 ] = np . s q r t ( dudz )∗BLS

# BTemp [ 1 ] = np . s q r t ( dudz )∗BLM

# BTemp [ 2 ] = np . s q r t ( dudz )∗BMS

BTemp [ 0 ] = BLS

BTemp [ 1 ] = BLM

BTemp [ 2 ] = BMS

# outpu t = (0 . 5 + np . s q r t ( dudz ) )∗B

output = BTemp

return output

def fluxFunX ( phiL , phiS , iZ ) :

”””

Flux f un c t i o n in x−d i r e c t i o n , c o l l e c t s v e l o c i t y p r o f i l e v i a g l o b a l .

”””

global uTempCell

output = np . z e ro s ( [ 2 , 1 ] )

output [ 0 ] = phiL ∗ uTempCell [ iZ ]

output [ 1 ] = phiS ∗ uTempCell [ iZ ]

return output

def fluxFunXdPhi ( iZ ) :

”””

De r i v a t i v e o f f l u x f u n c t i o n in x−d i r e c t i o n .

”””

global uTempCell

output = uTempCell [ iZ ]

return output

# de f f luxFunZ ( phi , dudz ) :

# ”””

# Flux f un c t i o n in z−d i r e c t i o n , w i th p r e s c r i b e d dependency on v e l o c i t y

g r a d i e n t .

# ”””

# # g l o b a l T

# # g l o b a l H

# # g l o b a l c

# # g l o b a l B
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# # g l o b a l I

# g l o b a l s

# g l o b a l C

# BTemp= segB ( dudz )

# ou tpu t = (1/C) ∗ BTemp ∗ ph i ∗ (1− ph i )

# # bo t = ph i + s∗(1− ph i )

# # ou tpu t = (1/C)∗ ph i / bo t

# re tu rn ou tpu t

def fluxFunZ ( phiL , phiS , dudz ) :

”””

Flux f un c t i o n in z−d i r e c t i o n , w i th p r e s c r i b e d dependency on v e l o c i t y g r a d i e n t .

”””

output = np . z e ro s ( [ 2 , 1 ] )

" pair - w i s e f u n c t i o n "

global C

BTemp= segB ( dudz )

output [ 0 ] = (1/C) ∗BTemp[ 0 ] ∗ phiL∗phiS + (1/C) ∗BTemp[ 1 ] ∗ phiL∗(1−phiL−phiS )

output [ 1 ] = −(1/C) ∗BTemp[ 0 ] ∗ phiL∗phiS − (1/C) ∗BTemp[ 2 ] ∗ phiS∗(1−phiL−phiS )

" q u o t i e n t f u n c t i o n "

# g l o b a l s i z eRat ioLS , sizeRatioLM , sizeRatioMS , s i zeRat ioDim

# botL = phiL + (1/ s i z eRa t i oLS )∗∗ s i zeRat ioDim∗phiS + (1/ sizeRatioLM )∗∗

s i zeRat ioDim∗(1−phiL−phiS )

# botS = phiS + s i z eRa t i oLS ∗∗ s i zeRat ioDim∗phiL + sizeRat ioMS∗∗ s i zeRat ioDim∗(1−

phiL−phiS )

# ou tpu t [ 0 ] = (1/C)∗phiL / botL

# ou tpu t [ 1 ] = (1/C)∗phiS / botS

return output

def f luxFunZJacobian ( phiL , phiS , dudz ) :

output = np . z e ro s ( [ 2 , 2 ] )

" pair - w i s e f u n c t i o n "

global C

BTemp = segB ( dudz )

output [ 0 , 0 ] = (1/C) ∗BTemp [ 1 ] − 2∗(1/C) ∗BTemp[ 1 ] ∗ phiL + (1/C) ∗(BTemp[0]−BTemp

[ 1 ] ) ∗phiS

output [ 0 , 1 ] = (1/C) ∗(BTemp[0]−BTemp [ 1 ] ) ∗phiL

output [ 1 , 0 ] = (1/C) ∗(BTemp[2]−BTemp [ 0 ] ) ∗phiS

output [ 1 , 1 ] = −(1/C) ∗BTemp [ 2 ] + 2∗(1/C) ∗BTemp[ 2 ] ∗ phiS + (1/C) ∗(BTemp[2]−BTemp

[ 0 ] ) ∗phiL

" q u o t i e n t f u n c t i o n "

# g l o b a l s i z eRat ioLS , sizeRatioLM , sizeRatioMS , s i zeRat ioDim

# botL = phiL + (1/ s i z eRa t i oLS )∗∗ s i zeRat ioDim∗phiS + (1/ sizeRatioLM )∗∗

s i zeRat ioDim∗(1−phiL−phiS )

# botS = phiS + s i z eRa t i oLS ∗∗ s i zeRat ioDim∗phiL + sizeRat ioMS∗∗ s i zeRat ioDim∗(1−

phiL−phiS )

# up1 = ((1/ s i z eRa t i oLS )∗∗ s i zeRat ioDim − (1/ sizeRatioLM )∗∗ s i zeRat ioDim )∗phiS +

(1/ sizeRatioLM )∗∗ s i zeRat ioDim

# up2 = ((1/ sizeRatioLM )∗∗ s i zeRat ioDim − (1/ s i z eRa t i oLS )∗∗ s i zeRat ioDim )∗phiL

# up3 = ( sizeRat ioMS∗∗ s i zeRat ioDim − s i z eRa t i oLS ∗∗ s i zeRat ioDim )∗phiS

# up4 = ( s i z eRa t i oLS ∗∗ s i zeRat ioDim − s i zeRat ioMS∗∗ s i zeRat ioDim )∗phiL +

sizeRat ioMS∗∗ s i zeRat ioDim

# ou tpu t [ 0 , 0 ] = (1/C)∗up1 /( botL ∗∗2)

# ou tpu t [ 0 , 1 ] = (1/C)∗up2 /( botL ∗∗2)

# ou tpu t [ 1 , 0 ] = (1/C)∗up3 /( botS ∗∗2)
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# outpu t [ 1 , 1 ] = (1/C)∗up4 /( botS ∗∗2)

return output

def getRho ( jacob ian ) :

w, v = LA. e i g ( jacob ian )

output = np . amax(np . abs (w) )

return output

# de f f luxFunZdPhi ( phi , dudz ) :

# ”””

# De r i v a t i v e o f f l u x f u n c t i o n in z−d i r e c t i o n .

# ”””

# # g l o b a l T

# # g l o b a l H

# # g l o b a l c

# # g l o b a l B

# # g l o b a l I

# g l o b a l s

# g l o b a l C

# # BTemp= segB ( dudz )

# # ou tpu t = (1/C) ∗ BTemp ∗ (1−2∗ ph i )

# bo t = ( ph i+s∗(1− ph i ) ) ∗( ph i+s∗(1− ph i ) )

# ou tpu t = (1/C)∗ s / bo t

# re tu rn ou tpu t

# de f f luxFunZ ( ph i ) :

# ”””

# Flux f un c t i o n in z−d i r e c t i o n , w i th p r e s c r i b e d dependency on v e l o c i t y

g r a d i e n t .

# ”””

# g l o b a l T

# g l o b a l H

# g l o b a l c

# g l o b a l B

# ou tpu t = (T∗9.81∗B) /(H∗c ) ∗ ph i ∗ (1− ph i )

# re tu rn ou tpu t

# de f f luxFunZdPhi ( ph i ) :

# ”””

# De r i v a t i v e o f f l u x f u n c t i o n in z−d i r e c t i o n .

# ”””

# g l o b a l T

# g l o b a l H

# g l o b a l c

# g l o b a l B

# ou tpu t = (T∗9.81∗B) /(H∗c ) ∗ (1−2∗ ph i )

# re tu rn ou tpu t

# de f f l u xFunD i f f ( dphidz , z , phi , dudz ) :

# ”””

# D i f f u s i o n f l u x func t i on , more mod i f i c a t i o n s to be a p p l i e d

# ”””

# # g l o b a l T

# # g l o b a l d

# # g l o b a l H

# # g l o b a l c

# # g l o b a l B
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# # g l o b a l rho

# # g l o b a l J

# # g l o b a l zTop

# # g l o b a l HP

# g l o b a l D

# g l o b a l C

# g l o b a l HP0

# g l o b a l s

# # BTemp= segB ( dudz )

# # ou tpu t = (D/C)∗ dph id z + (1/C) ∗(HP0 + (1− z ) )∗(1+BTemp∗(1− ph i ) )∗ dph id z

# # ou tpu t = 0

# bo t = ( ph i+s∗(1− ph i ) ) ∗( ph i+s∗(1− ph i ) )

# ou tpu t = (D/C)∗ dph id z + (1/C) ∗(HP0 + (1− z ) ) ∗( s / bo t )∗ dph id z

# re tu rn ou tpu t

def f luxFunDi f f ( dphiLdz , dphiSdz , iz , phiL , phiS , dudz ) :

”””

D i f f u s i o n f l u x f unc t i on , more mod i f i c a t i o n s to be a p p l i e d

”””

output = np . z e ro s ( [ 2 , 1 ] )

" pair - w i s e f u n c t i o n "

global D

global C

global HP0

global zBot

BTemp= segB ( dudz )

z = zBot + ( i z +0.5)∗dz

output [ 0 ] = (D/C) ∗dphiLdz + (1/C) ∗(HP0 + (1−z ) ) ∗(1 + BTemp[ 0 ] ∗ phiS + BTemp

[1]∗(1 − phiS−phiL ) ) ∗dphiLdz

output [ 1 ] = (D/C) ∗dphiSdz + (1/C) ∗(HP0 + (1−z ) ) ∗(1 − BTemp[ 0 ] ∗ phiL − BTemp

[2]∗(1 − phiS−phiL ) ) ∗dphiSdz

" q u o t i e n t f u n c t i o n "

# g l o b a l s i z eRat ioLS , sizeRatioLM , sizeRatioMS , s i zeRat ioDim

# botL = phiL + (1/ s i z eRa t i oLS )∗∗ s i zeRat ioDim∗phiS + (1/ sizeRatioLM )∗∗

s i zeRat ioDim∗(1−phiL−phiS )

# botS = phiS + s i z eRa t i oLS ∗∗ s i zeRat ioDim∗phiL + sizeRat ioMS∗∗ s i zeRat ioDim∗(1−

phiL−phiS )

# up5 = ((1/ s i z eRa t i oLS )∗∗ s i zeRat ioDim − (1/ sizeRatioLM )∗∗ s i zeRat ioDim )∗phiS +

(1/ sizeRatioLM )∗∗ s i zeRat ioDim

# up6 = ( s i z eRa t i oLS ∗∗ s i zeRat ioDim − s i zeRat ioMS∗∗ s i zeRat ioDim )∗phiL +

sizeRat ioMS∗∗ s i zeRat ioDim

# ou tpu t [ 0 ] = (D/C)∗dphiLdz + (1/C) ∗(HP0 + (1− z ) ) ∗( up5 /( botL ∗∗2) )∗dphiLdz

# ou tpu t [ 1 ] = (D/C)∗ dph iSdz + (1/C) ∗(HP0 + (1− z ) ) ∗( up6 /( bo tS ∗∗2) )∗ dph iSdz

return output

# de f f l u xFunD i f f ( dph i d z ) :

# ”””

# D i f f u s i o n f l u x func t i on , more mod i f i c a t i o n s to be a p p l i e d

# ”””

# g l o b a l T

# g l o b a l d

# g l o b a l H

# g l o b a l c

# ou tpu t = (T∗d ) /(H∗c ) ∗ dph id z

# re tu rn ou tpu t

# de f p ( z ) :
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# g l o b a l zTop

# g l o b a l rho

# g l o b a l P0

# ou tpu t = rho ∗9.81∗( zTop−z ) + P0

# re tu rn ou tpu t

# de f u ( z , a lpha , b e t a ) :

# ”””

# Pre s c r i b e d b u l k v e l o c i t y p r o f i l e , w i t h i t s shape i n s p i r e d by e xp e r imen t a l

r e s u l t s .

# ”””

# g l o b a l uAmp

# # g l o b a l a l pha

# # g l o b a l b e t a

# L = 1 − 1/ a lpha

# norm = np . tanh ( b e t a /np . p i ) − 1

# i f z >= L and z<= 1:

# ou tpu t = uAmp ∗ ( np . tanh ( b e t a /( np . p i∗ a lpha ∗( z−L) ) )−1)/norm

# e l s e :

# ou tpu t = 0

# re tu rn ou tpu t

def u( z ,R, velTop ) :

”””

Pr e s c r i b e d b u l k v e l o c i t y p r o f i l e , w i t h i t s shape i n s p i r e d by e xp e r imen t a l

r e s u l t s .

”””

# g l o b a l a l pha

# g l o b a l b e t a

norm = np . tanh (R/np . p i ) − 1

norm = norm/velTop

output = np . s i gn (R) ∗(np . tanh (R/(np . p i ∗z ) )−1)/norm

return output

# de f g e t L i s t ( a l p haL i s t , b e t aL i s t , z ) :

# # g l o b a l a l pha

# # g l o b a l b e t a

# ”””

# Get inc r emen ta l v a l u e s to be i t e r a t e d and superposed f o r i n i t i a l i z a t i o n

p ro c e s s .

# ”””

# uNum = l en ( a l p h aL i s t ) + l en ( b e t a L i s t )

# uL i s t = np . z e r o s ( [ l e n ( z ) ,uNum] )

# ” r e v e r s e t h e order o f v e c t o r f o r top−down a r c h i v i n g ”

# # zRev = z [ : : −1 ]

# # zRev = z

# ” loop over a l pha l i s t t o record f u l l e v o l u t i o n o f v e l o c i t y p r o f i l e ”

# uI = 0

# f o r a l p h a I in range ( l en ( a l p h aL i s t ) ) :

# alphaTemp = a l p h aL i s t [ a l p h a I ]

# betaTemp = b e t a L i s t [ 0 ]

# uTemp = np . z e r o s ( [ l e n ( z ) , 1 ] )

# f o r i in range ( l en ( z ) ) :

# a lpha = alphaTemp

# be t a = betaTemp

# # uTemp [ i ] = u ( zRev [ i ] , a lpha , b e t a )

# uTemp [ i ] = u ( z [ i ] , a lpha , b e t a )
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# uL i s t [ i , uI ] = uTemp [ i ]

# uI = uI + 1

# ” loop over b e t a l i s t t o r ecord f u l l e v o l u t i o n o f v e l o c i t y p r o f i l e ”

# uI = 0

# f o r b e t a I in range ( l en ( b e t a L i s t ) ) :

# alphaTemp = 1

# betaTemp = b e t a L i s t [ b e t a I ]

# uTemp = np . z e r o s ( [ l e n ( z ) , 1 ] )

# f o r i in range ( l en ( z ) ) :

# a lpha = alphaTemp

# be t a = betaTemp

# # uTemp [ i ] = u ( zRev [ i ] , a lpha , b e t a )

# uTemp [ i ] = u ( z [ i ] , a lpha , b e t a )

# uL i s t [ i , uI + l en ( a l p h aL i s t ) ] = uTemp [ i ]

# uI = uI + 1

# re tu rn uL i s t

# de f g e t Inc r emen t s ( a l p haL i s t , b e t aL i s t , z , uL i s t ) :

# ”””

# Take incremented v a l u e s o f v e l o c i t y p r o f i l e s based on g i v en uL i s t .

# ”””

# uNum = l en ( a l p h aL i s t ) + l en ( b e t a L i s t )

# duL i s t = np . z e r o s ( [ l e n ( z ) ,uNum] )

# duL i s t [ : , 0 ] = uL i s t [ : , 0 ]

# f o r uI in range (1 ,uNum) :

# f o r i in range ( l en ( z ) ) :

# duL i s t [ i , uI ] = np . s u b t r a c t ( uL i s t [ i , uI ] , uL i s t [ i , uI −1])

# re tu rn duL i s t

# =============================================================================

# KT scheme f un c t i o n

# =============================================================================

def getRHS( phiL , phiS ) :

”””

Semi−d i s c r e t e s o l v e r t h a t c on v e r t s t h e PDE to a time−dependent ODE f o r

each time−s t e p . Right−hand−s i d e v a l u e o f t h e ODE dph i d t = RHS i s ou tpu t ed

a l ong w i th o t h e r u s e f u l i n f o rma t i on .

”””

global nZ , nX, dx , dz

global d i r e c t i on , uTempCell , uTempGrdpt

global zTop

”””

Def ine t h e l o c a l s l o p e s in x and z d i r e c t i o n s .

S tored a t c e l l s .

”””

phiLX = np . z e ro s ( [ nZ ,nX ] )

phiSX = np . z e ro s ( [ nZ ,nX ] )

phiLZ = np . z e ro s ( [ nZ ,nX ] )

phiSZ = np . z e ro s ( [ nZ ,nX ] )

" N o t e : due to the z e r o i n i t i a l i z a t i o n , "

" p h i X = 0 at x = { xStart , x E n d } and "

" p h i Z = 0 at z = { zBot , z T o p } are a u t o m a t i c a l l y s a t i s f i e d . "

" T h e r e f o r e it r e m a i n s to set o t h e r l o c a l s l o p e e n t r i e s "

" u s i n g m i n m o d l i m i t e r f u n c t i o n . "
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for i in range (nZ) :

for j in range (1 ,nX−1) :

l e f t L = ( phiL [ i , j ] − phiL [ i , j −1]) /dx

r ightL = ( phiL [ i , j +1] − phiL [ i , j ] ) /dx

phiLX [ i , j ] = minmod( l e f tL , r ightL )

l e f t S = ( phiS [ i , j ] − phiS [ i , j −1]) /dx

r i ghtS = ( phiS [ i , j +1] − phiS [ i , j ] ) /dx

phiSX [ i , j ] = minmod( l e f t S , r i ghtS )

for i in range (1 ,nZ−1) :

for j in range (nX) :

downL = ( phiL [ i , j ] − phiL [ i −1, j ] ) /dz

upL = ( phiL [ i +1, j ] − phiL [ i , j ] ) /dz

phiLZ [ i , j ] = minmod(downL , upL)

downS = ( phiS [ i , j ] − phiS [ i −1, j ] ) /dz

upS = ( phiS [ i +1, j ] − phiS [ i , j ] ) /dz

phiSZ [ i , j ] = minmod(downS , upS)

”””

Def ine back and forward l i n e a r approx imat i ons o f ph i in x and z d i r e c t i o n s

based on l o c a l s l o p e s .

S to red a t Gr i dpo in t s .

”””

phiLL = np . z e ro s ( [ nZ ,nX+1])

phiLR = np . z e ro s ( [ nZ ,nX+1])

phiLD = np . z e ro s ( [ nZ+1,nX ] )

phiLU = np . z e ro s ( [ nZ+1,nX ] )

phiSL = np . z e ro s ( [ nZ ,nX+1])

phiSR = np . z e ro s ( [ nZ ,nX+1])

phiSD = np . z e ro s ( [ nZ+1,nX ] )

phiSU = np . z e ro s ( [ nZ+1,nX ] )

" N o t e : l i n e a r a p p r o x i m a t i o n s at the b o u n d a r y e n d p o i n t s are a s s u m e d to be 0. "

" T h i s is b e c a u s e one of t h e i r n e i g h b o u r s is non - e x i s t a n t . T h i s BC is "

" a u t o m a t i c a l l y s a t i s f i e d via z e r o i n i t i a l i z a t i o n . "

for i in range (nZ) :

for j in range (nX) :

" l e f t ( x -) l i n e a r a p p r o x i m a t i o n b a s e d on p h i X "

phiLL [ i , j +1] = phiL [ i , j ] + phiLX [ i , j ]∗ dx ∗0 .5

phiSL [ i , j +1] = phiS [ i , j ] + phiSX [ i , j ]∗ dx ∗0 .5

" r i g h t ( x +) l i n e a r a p p r o x i m a t i o n b a s e d on p h i X "

phiLR [ i , j ] = phiL [ i , j ] − phiLX [ i , j ]∗ dx ∗0 .5

phiSR [ i , j ] = phiS [ i , j ] − phiSX [ i , j ]∗ dx ∗0 .5

" d o w n ( z -) l i n e a r a p p r o x i m a t i o n b a s e d on p h i Z "

phiLD [ i +1, j ] = phiL [ i , j ] + phiLZ [ i , j ]∗ dz ∗0 .5

phiSD [ i +1, j ] = phiS [ i , j ] + phiSZ [ i , j ]∗ dz ∗0 .5

" up ( z +) l i n e a r a p p r o x i m a t i o n b a s e d on p h i Z "

phiLU [ i , j ] = phiL [ i , j ] − phiLZ [ i , j ]∗ dz ∗0 .5

phiSU [ i , j ] = phiS [ i , j ] − phiSZ [ i , j ]∗ dz ∗0 .5

”””

Record t he downstream v e l o c i t y component v a l u e s a t c e l l s and g r i d p o i n t s

in order to c a l c u l a t e du/ dz .

”””

uValCel l = np . z e ro s ( [ nZ , 1 ] )

uValGrdpt = np . z e ro s ( [ nZ+1 ,1])
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for i in range (nZ) :

uValCel l [ i ] = uTempCell [ i ]

for i in range (nZ+1) :

uValGrdpt [ i ] = uTempGrdpt [ i ]

”””

Use minmod l i m i t e r to numer i c a l l y c a l c u l a t e magnitude o f l o c a l v e l o c i t y

g r a d i e n t s du/ dz a t c e l l s and g r i d p o i n t s .

”””

dudzCel l = np . z e ro s ( [ nZ , 1 ] )

dudzGrdpt = np . z e ro s ( [ nZ+1 ,1])

for i in range (1 ,nZ−1) :

L = ( uValCel l [ i ] − uValCel l [ i −1]) /dz

R = ( uValCel l [ i +1] − uValCel l [ i ] ) /dz

dudzCel l [ i ] = np . abs (minmod(L ,R) )

for i in range (1 ,nZ) :

L = ( uValGrdpt [ i ] − uValGrdpt [ i −1]) /dz

R = ( uValGrdpt [ i +1] − uValGrdpt [ i ] ) /dz

dudzGrdpt [ i ] = np . abs (minmod(L ,R) )

”””

Def ine t h e maximum l o c a l s p eed s aX and aZ at c e l l endpo in t s in x and z

d i r e c t i o n s . Again a d d i t i o n a l row/ c o l i s r e q u i r e d .

”””

aX = np . z e ro s ( [ nZ ,nX+1])

aZ = np . z e ro s ( [ nZ+1,nX ] )

for i in range (nZ) :

for j in range (nX+1) :

aL = np . abs ( fluxFunXdPhi ( i ) )

aR = np . abs ( fluxFunXdPhi ( i ) )

aX [ i , j ] = max(aL , aR)

for i in range (nZ+1) :

for j in range (nX) :

# aU = np . abs ( f luxFunZdPhi ( phiU [ i , j ] , dudzGrdpt [ i ] ) )

# aD = np . abs ( f luxFunZdPhi ( phiD [ i , j ] , dudzGrdpt [ i ] ) )

aU = getRho ( fluxFunZJacobian (phiLU [ i , j ] , phiSU [ i , j ] , dudzGrdpt [ i ] ) )

aD = getRho ( fluxFunZJacobian (phiLD [ i , j ] , phiSD [ i , j ] , dudzGrdpt [ i ] ) )

aZ [ i , j ] = max(aU , aD)

”””

Def ine t h e numer ica l f l u x terms Hx and Hz

in x and z d i r e c t i o n s s t o r e d a t c e l l endpo in t s .

”””

HXL = np . z e ro s ( [ nZ ,nX+1])

HZL = np . z e ro s ( [ nZ+1,nX ] )

HXS = np . z e ro s ( [ nZ ,nX+1])

HZS = np . z e ro s ( [ nZ+1,nX ] )

" F i r s t p r e s c r i b e the i n f l o w and o u t f l o w BCs in x , now p e r i o d i c . "

for i in range (nZ) :

i f d i r e c t i o n == 1 :

in f l ow = fluxFunX ( phiL [ i , nX−1] , phiS [ i , nX−1] , i )
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HXL[ i , 0 ] = in f l ow [ 0 ]

HXS[ i , 0 ] = in f l ow [ 1 ]

out f low = fluxFunX ( phiL [ i , nX−1] , phiS [ i , nX−1] , i )

HXL[ i ,nX] = outf low [ 0 ]

HXS[ i ,nX] = outf low [ 1 ]

else :

i n f l ow = fluxFunX ( phiL [ i , 1 ] , phiS [ i , 1 ] , i )

HXL[ i ,nX] = in f l ow [ 0 ]

HXS[ i ,nX] = in f l ow [ 1 ]

out f low = fluxFunX ( phiL [ i , 1 ] , phiS [ i , 1 ] , i )

HXL[ i , 0 ] = outf low [ 0 ]

HXS[ i , 0 ] = outf low [ 1 ]

for j in range (1 ,nX) :

ph iD i f f = np . z e ro s ( [ 2 , 1 ] )

ph iD i f f [ 0 ] = phiLR [ i , j ] − phiLL [ i , j ]

ph iD i f f [ 1 ] = phiSR [ i , j ] − phiSL [ i , j ]

H = 0 .5∗ ( fluxFunX (phiLR [ i , j ] , phiSR [ i , j ] , i ) + fluxFunX ( phiLL [ i , j ] , phiSL

[ i , j ] , i ) ) \

−0.5∗aX [ i , j ] ∗ ph iD i f f

HXL[ i , j ] = H[ 0 ]

HXS[ i , j ] = H[ 1 ]

" F i r s t p r e s c r i b e top and b o t t o m no - f l u x BC in z . "

for j in range (nX) :

HZL[ 0 , j ] = 0

HZS[ 0 , j ] = 0

HZL[ nZ , j ] = 0

HZS [ nZ , j ] = 0

for i in range (1 ,nZ) :

ph iD i f f = np . z e ro s ( [ 2 , 1 ] )

ph iD i f f [ 0 ] = phiLU [ i , j ] − phiLD [ i , j ]

ph iD i f f [ 1 ] = phiSU [ i , j ] − phiSD [ i , j ]

H = 0 .5∗ ( fluxFunZ (phiLU [ i , j ] , phiSU [ i , j ] , dudzCel l [ i ] ) + fluxFunZ (phiLD

[ i , j ] , phiSD [ i , j ] , dudzCel l [ i ] ) ) \

−0.5∗ aZ [ i , j ] ∗ ph iD i f f

HZL[ i , j ] = H[ 0 ]

HZS [ i , j ] = H[ 1 ]

”””

Def ine t h e numer ica l d i f f u s i o n f l u x terms .

S tored a t g r i d p o i n t s .

”””

PZL = np . z e ro s ( [ nZ+1,nX ] )

PZS = np . z e ro s ( [ nZ+1,nX ] )

for j in range (nX) :

for i in range (1 ,nZ) :

# zUp = zTop − ( i −0.5)∗dz

# zDown = zTop − ( i +0.5)∗dz

dphiLdz = ( phiL [ i , j ] − phiL [ i −1, j ] ) /dz
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dphiSdz = ( phiS [ i , j ] − phiS [ i −1, j ] ) /dz

P = f luxFunDi f f ( dphiLdz , dphiSdz , i , phiL [ i , j ] , phiS [ i , j ] , dudzCel l [ i ] )

PZL [ i , j ] = P [ 0 ]

PZS [ i , j ] = P [ 1 ]

RHSL = np . z e ro s ( [ nZ ,nX ] )

RHSS = np . z e ro s ( [ nZ ,nX ] )

for i in range (nZ) :

for j in range (nX) :

RHSL[ i , j ] = −(HXL[ i , j +1] − HXL[ i , j ] ) /dx \

−(HZL[ i +1, j ] − HZL[ i , j ] ) /dz \

+(PZL[ i +1, j ] − PZL[ i , j ] ) /dz

RHSS[ i , j ] = −(HXS[ i , j +1] − HXS[ i , j ] ) /dx \

−(HZS [ i +1, j ] − HZS[ i , j ] ) /dz \

+(PZS [ i +1, j ] − PZS [ i , j ] ) /dz

return RHSL,RHSS

def rk t imes t ep ( phiL , phiS ) :

”””

Runge−Kutta t ime s t e p p e r to s o l v e t h e ODE f o r each t ime s t e p .

”””

global nX, nZ , dt

eta = 0 .5

phiTempL = np . z e ro s ( [ nZ ,nX ] )

phiTempS = np . z e ro s ( [ nZ ,nX ] )

phiNewL = np . z e ro s ( [ nZ ,nX ] )

phiNewS = np . z e ro s ( [ nZ ,nX ] )

RHSL,RHSS = getRHS( phiL , phiS )

for i in range (nZ) :

for j in range (nX) :

phiTempL [ i , j ] = phiL [ i , j ] + dt∗RHSL[ i , j ]

phiTempS [ i , j ] = phiS [ i , j ] + dt∗RHSS[ i , j ]

RHSTempL,RHSTempS = getRHS(phiTempL , phiTempS)

for i in range (nZ) :

for j in range (nX) :

phiNewL [ i , j ] = eta ∗phiL [ i , j ] + (1− eta ) ∗ (phiTempL [ i , j ] + dt∗RHSTempL[

i , j ] )

phiNewS [ i , j ] = eta ∗phiS [ i , j ] + (1− eta ) ∗ (phiTempS [ i , j ] + dt∗RHSTempS[

i , j ] )

return phiNewL , phiNewS

# =============================================================================

# Main f un c t i o n

# =============================================================================

" I n i t i a l v o l u m e f r a c t i o n c o n d i t i o n "

# phi = np . conca t ena t e ( ( np . ones ( [ i n t (nZ∗0 .5 ) ,nX ] ) ∗0 .1 , np . ones ( [ i n t (nZ∗0 .5 ) ,nX ] ) , )

)

phiL = np . ones ( [ nZ ,nX ] ) ∗(1/3)

phiS = np . ones ( [ nZ ,nX ] ) ∗(1/3)
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# phiL = np . conca t ena t e ( [ np . ones ( [ i n t (nZ∗0 .3 ) ,nX ] ) , np . z e r o s ( [ i n t (nZ∗0 .7 ) ,nX ] ) ] )

# phiS = np . conca t ena t e ( [ np . z e r o s ( [ i n t (nZ∗0 .3 ) ,nX ] ) , np . ones ( [ i n t (nZ∗0 .5 ) ,nX ] ) , np .

z e r o s ( [ i n t (nZ∗0 .2 ) ,nX ] ) ] )

# phiM = np . ones ( [ nZ ,nX ] ) − phiL − phiS

" G e n e r a t e v e l o c i t y e v o l u t i o n d a t a to i t e r a t e in t i m e "

zCe l l = np . l i n s pa c e ( zBot , zTop−dz , nZ)+0.5∗dz

# uL i s t C e l l = g e t L i s t ( a l p haL i s t , b e t aL i s t , z C e l l )

# duL i s tC e l l = ge t Inc r emen t s ( a l p haL i s t , b e t aL i s t , zCe l l , u L i s t C e l l )

uL i s tCe l lH i s t = np . z e ro s ( [ nZ ,nT ] )

duL i s tCe l lH i s t = np . z e ro s ( [ nZ ,nT ] )

# uLis tGrdp t = g e t L i s t ( a l p haL i s t , b e t aL i s t , z )

# duLi s tGrdp t = ge t Inc r emen t s ( a l p haL i s t , b e t aL i s t , z , uL i s tGrdp t )

" I n i t i a l i z e m a t r i x to s t o r e v o l u m e f r a c t i o n and o t h e r d a t a "

r e s u l t sL = np . z e ro s ( [ nZ ,nT+1])

# resu l t sM = np . z e r o s ( [ nZ ,nT+1])

r e s u l t s S = np . z e ro s ( [ nZ ,nT+1])

# Seg1L = np . z e r o s ( [ nZ ,nT ] )

# Seg2L = np . z e r o s ( [ nZ ,nT ] )

# Seg3L = np . z e r o s ( [ nZ ,nT ] )

# SegVelL = np . z e r o s ( [ nZ ,nT ] )

# Seg1M = np . z e r o s ( [ nZ ,nT ] )

# Seg2M = np . z e r o s ( [ nZ ,nT ] )

# Seg3M = np . z e r o s ( [ nZ ,nT ] )

# SegVelM = np . z e r o s ( [ nZ ,nT ] )

# Seg1S = np . z e r o s ( [ nZ ,nT ] )

# Seg2S = np . z e r o s ( [ nZ ,nT ] )

# Seg3S = np . z e r o s ( [ nZ ,nT ] )

# SegVelS = np . z e r o s ( [ nZ ,nT ] )

# SegFluxL = np . z e r o s ( [ nZ ,nT ] )

# # SegFluxM = np . z e r o s ( [ nZ ,nT ] )

# SegFluxS = np . z e r o s ( [ nZ ,nT ] )

# Di f fF l u xL = np . z e r o s ( [ nZ ,nT ] )

# # Dif fFluxM = np . z e r o s ( [ nZ ,nT ] )

# Di f fF l u xS = np . z e r o s ( [ nZ ,nT ] )

" R e c o r d IC in r e s u l t s "

for i in range (nZ) :

r e s u l t sL [ i , 0 ] = 0 .5∗ ( phiL [ i , int (nX/2) ] + phiL [ i , int (nX/2) +1])

r e s u l t s S [ i , 0 ] = 0 . 5∗ ( phiS [ i , int (nX/2) ] + phiS [ i , int (nX/2) +1])

" I n d e x u s e d to d o c u m e n t e v o l u t i o n p r o g r e s s of v e l o c i t y p r o f i l e in t i m e "

# inde x I = 0

# indexR = l en ( a l p h aL i s t ) + l en ( b e t a L i s t )

" L o o p o v e r t i m e "

for t in range (nT) :

# ” check whether t h e t ime s t e p i s t h e s t a r t o f t h e i n i t i a l i z a t i o n pe r i od ”

# i f i n d e x I+1 <= len ( a l p h aL i s t )+l en ( b e t a L i s t ) :

# f o r i in range (nZ) :

# uTempCell [ i ] = uTempCell [ i ] + d i r e c t i o n ∗ d uL i s tC e l l [ i , i n d e x I ]
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# fo r i in range (nZ+1) :

# uTempGrdpt [ i ] = uTempGrdpt [ i ] + d i r e c t i o n ∗ duLi s tGrdp t [ i , i n d e x I ]

# ” update t h e coun te r ”

# ind e x I = ind e x I + 1

# ” check whether t h e t ime s t e p i s t h e s t a r t o f t h e r e v e r s a l p e r i o d ”

# i f t in n0Rev :

# ” r e s e t t h e r e v e r s a l p r o g r e s s coun te r and record change o f d i r e c t i o n ”

# indexR = 0

# d i r e c t i o n = −1∗ d i r e c t i o n

# f o r i in range (nZ) :

# uTempCell [ i ] = uTempCell [ i ] + 2 ∗ d i r e c t i o n ∗ d uL i s tC e l l [ i , indexR ]

# f o r i in range (nZ+1) :

# uTempGrdpt [ i ] = uTempGrdpt [ i ] + 2 ∗ d i r e c t i o n ∗ duLi s tGrdp t [ i , indexR

]

# ” update t h e coun te r ”

# indexR = indexR + 1

# ” check whether t h e t ime s t e p i s w i t h i n t h e r e v e r s a l p e r i od ”

# i f t not in n0Rev and indexR+1 <= len ( a l p h aL i s t )+l en ( b e t a L i s t ) :

# ”add the p r e s c r i b e d increment a s s i g n ed to t h i s s t e p ”

# f o r i in range (nZ) :

# uTempCell [ i ] = uTempCell [ i ] + 2 ∗ d i r e c t i o n ∗ d uL i s tC e l l [ i , indexR ]

# f o r i in range (nZ+1) :

# uTempGrdpt [ i ] = uTempGrdpt [ i ] + 2 ∗ d i r e c t i o n ∗ duLi s tGrdp t [ i , indexR

]

# ” update t h e coun te r ”

# indexR = indexR + 1

" S e c o n d v e r s i o n of v e l o c i t y p r o f i l e e v o l u t i o n "

RTemp = 5∗np . cos (2∗np . p i ∗ t /T)+5.5

velTopTemp = np . s i n (np . p i ∗ t /T)

d i r e c t i o n = np . s i gn (velTopTemp)

for i in range (nZ) :

zTemp = zBot + ( i +0.5)∗dz

uTempCell [ i ] = u(zTemp ,RTemp, velTopTemp)

for i in range (nZ+1) :

zTemp = zBot + i ∗dz

uTempGrdpt [ i ] = u(zTemp ,RTemp, velTopTemp)

" r e c o r d v e l o c i t y e v o l u t i o n d a t a "

for i in range (nZ) :

uL i s tCe l lH i s t [ i , t ] = uTempCell [ i ]

" r e c o r d v e l o c i t y e v o l u t i o n d a t a "

for i in range (nZ) :

uL i s tCe l lH i s t [ i , t ] = uTempCell [ i ]

" r e c o r d s h e a r r a t e d a t a "

for i in range (1 ,nZ−1) :

dudzTemp = minmod ( ( uTempCell [ i ] − uTempCell [ i −1]) /dz , ( uTempCell [ i +1] −

uTempCell [ i ] ) /dz )

duL i s tCe l lH i s t [ i , t ] = dudzTemp

# uTempCell = np . ones ( [ nZ , 1 ] )

# uTempGrdpt = np . ones ( [ nZ+1 ,1])

" c a l c u l a t e phi for n e x t t i m e s t e p u s i n g KT s o l v e r "
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phiNewL , phiNewS = rk t imes t ep ( phiL , phiS )

phiL = phiNewL

phiS = phiNewS

" s t o r e the c e n t r a l c o l u m n for e v o l u t i o n g r a p h "

i f np .mod(nX, 2 ) == 0 :

for i in range (nZ) :

r e s u l t sL [ i , t+1] = 0 .5∗ ( phiL [ i , int (nX∗0 . 5 ) ] + phiL [ i , int (nX∗0 . 5 ) +1])

r e s u l t s S [ i , t+1] = 0 .5∗ ( phiS [ i , int (nX∗0 . 5 ) ] + phiS [ i , int (nX∗0 . 5 ) +1])

# resu l t sM [ i , t ] = 1− r e s u l t s L [ i , t ] − r e s u l t s S [ i , t ]

e l i f np .mod(nX, 2 ) == 1 :

for i in range (nZ) :

r e s u l t sL [ i , t+1] = phiL [ i , ( nX+1) ∗ 0 . 5 ]

r e s u l t s S [ i , t+1] = phiS [ i , ( nX+1) ∗ 0 . 5 ]

# resu l t sM [ i , t ] = 1− r e s u l t s L [ i , t ] − r e s u l t s S [ i , t ]

# ” Ca l c u l a t e and s t o r e t h e shear r a t e data ”

# dudzCel lTemp = np . z e r o s ( [ nZ , 1 ] )

# f o r i in range (1 , nZ−1) :

# L = ( uTempCell [ i ] − uTempCell [ i −1])/ dz

# R = ( uTempCell [ i +1] − uTempCell [ i ] ) / dz

# dudzCel lTemp [ i ] = np . abs (minmod(L ,R) )

# ” c a l c u l a t e and s t o r e t h e s e g r e g a t i o n v e l o c i t y norma l i z ed by s q r t (H/g ) ”

# f o r i in range (nZ) :

# zTemp = zTop − ( i +0.5)∗dz

# phiTempL = r e s u l t s L [ i , t ]

# phiTempM = resu l t sM [ i , t ]

# phiTempS = r e s u l t s S [ i , t ]

# i f i == 0 or i == nZ−1:

# dphidzTempL = 0

# e l s e :

# dphidzTempL = minmod ( ( r e s u l t s L [ i , t ] − r e s u l t s L [ i −1, t ] ) /dz , ( r e s u l t s L

[ i +1, t ] − r e s u l t s L [ i , t ] ) / dz )

# i f i == 0 or i == nZ−1:

# dphidzTempM = 0

# e l s e :

# dphidzTempM = minmod ( ( r e su l t sM [ i , t ] − r e su l t sM [ i −1, t ] ) /dz , ( r e su l t sM

[ i +1, t ] − r e su l t sM [ i , t ] ) / dz )

# i f i == 0 or i == nZ−1:

# dphidzTempS = 0

# e l s e :

# dphidzTempS = minmod ( ( r e s u l t s S [ i , t ] − r e s u l t s S [ i −1, t ] ) /dz , ( r e s u l t s S

[ i +1, t ] − r e s u l t s S [ i , t ] ) / dz )

# BTemp = segB ( dudzCel lTemp [ i ] )

# Seg1L [ i , t ] = 9 .81/ (C∗T) ∗ (BTemp [ 0 ]∗ phiTempS + BTemp [ 1 ]∗ phiTempM)

# Seg1M [ i , t ] = 9 .81/(C∗T) ∗ (BTemp [ 1 ]∗ phiTempL + BTemp [ 2 ]∗ phiTempS )

# Seg1S [ i , t ] = 9 .81/ (C∗T) ∗ (BTemp [ 0 ]∗ phiTempL + BTemp [ 2 ]∗ phiTempM)

# Seg2L [ i , t ] = −(D/C) ∗(1/ phiTempL )∗dphidzTempL

# Seg2M [ i , t ] = −(D/C) ∗(1/phiTempM)∗dphidzTempM

# Seg2S [ i , t ] = −(D/C) ∗(1/ phiTempS )∗dphidzTempS

# Seg3L [ i , t ] = −1/(C∗T∗9 .81) ∗(HP0 + (1−zTemp) ) ∗(1 + BTemp [ 0 ]∗ phiTempS +

BTemp [ 1 ]∗ phiTempM)/phiTempL∗dphidzTempL
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# Seg3M [ i , t ] = −1/(C∗T∗9 .81) ∗(HP0 + (1−zTemp) ) ∗(1 + BTemp [ 1 ]∗ phiTempL +

BTemp [ 2 ]∗ phiTempS ) /phiTempM∗dphidzTempM

# Seg3S [ i , t ] = −1/(C∗T∗9 .81) ∗(HP0 + (1−zTemp) ) ∗(1 + BTemp [ 0 ]∗ phiTempL +

BTemp [ 2 ]∗ phiTempM)/phiTempS∗dphidzTempS

# SegVelL [ i , t ] = Seg1L [ i , t ] + Seg2L [ i , t ] + Seg3L [ i , t ]

# SegVelM [ i , t ] = Seg1M [ i , t ] + Seg2M [ i , t ] + Seg3M [ i , t ]

# SegVelL [ i , t ] = Seg1S [ i , t ] + Seg2S [ i , t ] + Seg3S [ i , t ]

# ” c a l c u l a t e and s t o r e t h e magnitude o f s e g r e g a t i o n f l u x ”

# f o r i in range (nZ) :

# phiTempL = r e s u l t s L [ i , t ]

# phiTempL = r e s u l t s S [ i , t ]

# SegFluxTemp = f luxFunZ ( phiTempL , phiTempS , dudzCel lTemp [ i ] )

# SegFluxL [ i , t ] = SegFluxTemp [ 0 ]

# SegFluxS [ i , t ] = SegFluxTemp [ 1 ]

# ” c a l c u l a t e and s t o r e t h e magnitude o f d i f f u s i o n f l u x ”

# f o r i in range (nZ) :

# zTemp = zTop − ( i +0.5)∗dz

# phiTempL = r e s u l t s L [ i , t ]

# phiTempM = resu l t sM [ i , t ]

# phiTempS = r e s u l t s S [ i , t ]

# i f i == 0 or i == nZ−1:

# dphidzTempL = 0

# e l s e :

# dphidzTempL = minmod ( ( r e s u l t s L [ i , t ] − r e s u l t s L [ i −1, t ] ) /dz , ( r e s u l t s L

[ i +1, t ] − r e s u l t s L [ i , t ] ) / dz )

# i f i == 0 or i == nZ−1:

# dphidzTempM = 0

# e l s e :

# dphidzTempM = minmod ( ( r e su l t sM [ i , t ] − r e su l t sM [ i −1, t ] ) /dz , ( r e su l t sM

[ i +1, t ] − r e su l t sM [ i , t ] ) / dz )

# i f i == 0 or i == nZ−1:

# dphidzTempS = 0

# e l s e :

# dphidzTempS = minmod ( ( r e s u l t s S [ i , t ] − r e s u l t s S [ i −1, t ] ) /dz , ( r e s u l t s S

[ i +1, t ] − r e s u l t s S [ i , t ] ) / dz )

# DiffFluxTemp = f l u xFunD i f f ( dphidzTempL , dphidzTempS , zTemp , phiTempL ,

phiTempS , dudzCel lTemp [ i ] )

# Di f fF l uxL [ i , t ] = DiffFluxTemp [ 0 ]

# Di f fF l u xS [ i , t ] = DiffFluxTemp [ 1 ]

" c o u n t e r "

print ( " t i m e s t e p n u m b e r " , t , " c o m p l e t e d " )

" c r e a t e the f i g u r e and a x e s o b j e c t s "

# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

" P l o t the e v o l u t i o n g r a p h "

f i g , axes = p l t . subp lo t s (1 ,1 , f i g s i z e = (5 ,5 ) )
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p l t . imshow(np . f l i p ud ( r e s u l t sL ) , i n t e r p o l a t i o n=’ n o n e ’ , cmap=’ v i r i d i s ’ , a spect=nT/nZ)

p l t . c l im ( 0 . 2 5 , 0 . 4 )

p l t . c o l o rba r ( )

# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

# p l t . imshow ( np . f l i p u d ( r e su l t sM ) , i n t e r p o l a t i o n =’none ’ , cmap=’ v i r i d i s ’ , a s p e c t=nT/

nZ)

# p l t . c l im (0 ,1 )

# p l t . c o l o r b a r ( )

f i g , axes = p l t . subp lo t s (1 ,1 , f i g s i z e = (5 ,5 ) )

p l t . imshow(np . f l i p ud ( r e s u l t s S ) , i n t e r p o l a t i o n=’ n o n e ’ , cmap=’ v i r i d i s ’ , a spect=nT/nZ)

p l t . c l im ( 0 . 2 5 , 0 . 4 )

p l t . c o l o rba r ( )

p l t . show ( )

" S a v e the e v o l u t i o n d a t a "

np . savetxt ( " r e s u l t s 0 _ 1 0 _ P 0 _ 0 .5 _ s p r e a d _ r e a l 2 a 1 _ t r i . csv " , r e su l t sL , d e l im i t e r=" , " )

np . savetxt ( " r e s u l t s 2 _ 1 0 _ P 0 _ 0 .5 _ s p r e a d _ r e a l 2 a 1 _ t r i . csv " , r e su l t sS , d e l im i t e r=" , " )

# np . s a v e t x t (” r e s u l t s S . c s v ” , r e s u l t s S , d e l im i t e r =” ,”)

# np . s a v e t x t (” SegVelL . c s v ” , SegVelL , d e l im i t e r =” ,”)

# np . s a v e t x t (” SegVelM . c sv ” , SegVelM , d e l im i t e r =” ,”)

# np . s a v e t x t (” SegVelS . c sv ” , SegVelS , d e l im i t e r =” ,”)

# np . s a v e t x t (” SegFluxL . c sv ” , SegFluxL , d e l im i t e r =” ,”)

# # np . s a v e t x t (” SegFluxM . csv ” , SegFluxM , d e l im i t e r =” ,”)

# np . s a v e t x t (” SegFluxS . c sv ” , SegFluxS , d e l im i t e r =” ,”)

# np . s a v e t x t (” D i f fF lu xL . c sv ” , Di f fF luxL , d e l im i t e r =” ,”)

# # np . s a v e t x t (” Dif fFluxM . csv ” , DiffFluxM , d e l im i t e r =” ,”)

# np . s a v e t x t (” D i f fF l u xS . c sv ” , Di f fF luxS , d e l im i t e r =” ,”)
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Appendix C

Python code for iterative

expansion poly-disperse

simulation

# −∗− cod ing : u t f −8 −∗−

”””

Created on Thu Nov 10 10 : 31 : 51 2022

@author : J i a x i n Zhang

”””

import time as tm

import numpy as np

import sympy as sym

from numpy import l i n a l g as LA

import matp lo t l ib . pyplot as p l t

" D E F I N E THE P A R A M E T E R S "

" - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - "

" P o p u l a t i o n p r e s c r i p t i o n p a r a m e t e r s "

s i z e s = np . append ( [ 1 ] , np . l i n s pa c e ( 1 . 5 , 3 ,num=9) )

s i z e s = np . l i n s pa c e ( 1 . 5 , 1 . 0 ,num=2)

# temp = s i z e s [ 3 ]

# s i z e s [ 3 ] = s i z e s [ 2 ]

# s i z e s [ 2 ] = temp

symbols = [ ’ p h i 1 ’ , ’ p h i 2 ’ , ’ p h i 3 ’ , ’ p h i 4 ’ , ’ p h i 5 ’ , ’ p h i 6 ’ , ’ p h i 7 ’ , ’ p h i 8 ’ , ’ p h i 9 ’ , ’ p h i 1 0 ’ ]

phaseNum = 2

" Key c o n v e c t i o n - d i f f u s i o n p a r a m e t e r s "

C = 2

D = 0.2

HP0 = 0.5

143



T = 1

" S p a t i a l and t e m p o r a l d i s c r e t i s a t i o n p a r a m e t e r s "

nX = 10

nZ = 20

nT = 5000

xStart = 0

xEnd = 5

zBot = 0

zTop = 1

tEnd = 5

dx = (xEnd − xStart ) /nX

dz = (zTop − zBot ) /nZ

dt = tEnd/(nT)

x = np . l i n s pa c e ( xStart , xEnd ,nX+1)

z = np . l i n s pa c e ( zBot , zTop , nZ+1)

time = np . l i n s pa c e (0 , tEnd ,nT+1)

" V e l o c i t y p r o f i l e e v o l u t i o n p a r a m e t e r s ( i n i t i a t i o n + r e v e r s a l ) "

# d i r e c t i o n = 1

# t0Rev = np . array ( [ 1 0 0 ] )

# tRev = T∗0.5

# n0Rev = nT/tEnd∗ t0Rev + 1

# nRev = nT/tEnd∗ tRev

# uAmp = 1

# a lpha = np . l i n s p a c e (3 , 1 . 04 , i n t ( nRev ∗0 .8 ) )

# a l p h aL i s t = np . mu l t i p l y ( a lpha , a l pha )

# b e t a L i s t = np . l i n s p a c e (8 , 1 , i n t ( nRev ∗0 .5 ) )

uTempCell = np . z e ro s ( [ nZ , 1 ] )

uTempGrdpt = np . z e ro s ( [ nZ+1 ,1])

" B r e a k a g e - r e l a t e d p a r a m e t e r s "

tBreak = np . array ( [ 1 0 0 ] )

# tBreak = np . l i n s p a c e ( 0 . 005 , 3 . 9 95 , 799 )

# tBreak = np . l i n s p a c e ( 0 . 0 5 , 3 . 9 5 , 7 9 )

nBreak = nT/tEnd∗ tBreak + 1

nBreak = nBreak . astype ( int )

# breakP lan = np . array ( [ 0 . 1 , 0 . 0 5 , 0 . 0 1 ] )

breakPlan = np . array ( [ 0 . 0 1 , 0 . 0 1 , 0 . 0 1 ] )

" I T E R A T I O N - R E L A T E D F U N C T I O N S "

" - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - "

def pairingAdd (matrix , phaseNum) :

# g l o b a l phaseNum

l a s t c o l s = matrix [ : , [ 2 ∗ ( phaseNum−1)−2 ,2∗(phaseNum−1) −1]]

newrow = np . z e ro s (2∗ ( phaseNum−1) )

for i in range (phaseNum−1) :

newrow [2∗ i ] = l a s t c o l s [ i , 1 ]

newrow [2∗ i +1] = l a s t c o l s [ i , 0 ]

s tep1 = np . vstack ( [ matrix , newrow ] )

newcol1 = np . arange (1 , phaseNum+1)

newcol2 = np . ones (phaseNum) ∗(phaseNum+1)

newrows = np . c [ newcol1 , newcol2 ]

pair ingMatrixT = np . c [ step1 , newrows ]

" u p d a t e the c u r r e n t p h a s e n u m b e r "

phaseNum = phaseNum+1

return pair ingMatrixT
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def s i z eRa t i oRe l a t i on (x ) :

output = 0 .2 ∗ ( np . power (x−4 ,3) + 3∗np . power (x−4 ,2) )

return output

def updateS izeRat ios ( pa i r ingMatr ix ) :

global phaseNum , s i z e s

" u p d a t e s i z e r a t i o m a t r i x "

s i z eRa t i o s = np . z e ro s ( [ phaseNum−1,phaseNum−1])

for i in range (phaseNum−1) :

for j in range (phaseNum−1) :

s i z e Ind1 = int ( pa i r ingMatr ix [ i , 2∗ j ] )

s i z e Ind2 = int ( pa i r ingMatr ix [ i , 2∗ j +1])

s i z eRa t i o s [ i , j ] = s i z e s [ s i ze Ind1 −1]/ s i z e s [ s i ze Ind2 −1]

return s i z eRa t i o s

def updateSegBs ( pair ingMatr ix , s i z eRa t i o s ) :

global phaseNum

" u p d a t e s e g r e g a t i o n r a t e m a t r i x "

segBs = np . z e ro s ( [ phaseNum−1,phaseNum−1])

for i in range (phaseNum−1) :

for j in range (phaseNum−1) :

r a t i o = s i z eRa t i o s [ i , j ]

i f r a t i o >=1:

segBs [ i , j ] = s i z eRa t i oRe l a t i on ( r a t i o )

i f r a t i o <1:

segBs [ i , j ] = −s i z eRa t i oRe l a t i on (1/ r a t i o )

return segBs

" D E F A U L T F U N C T I O N S "

" - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - "

def fluxFunX ( phis , iZ ) :

”””

Flux f un c t i o n in x−d i r e c t i o n , c o l l e c t s v e l o c i t y p r o f i l e v i a g l o b a l .

i npu t : a l i s t o f ph i ( e . g . [ phi1 , ph i2 ] ) o f s i z e phaseNum−1

”””

global uTempCell , phaseNum

output = np . z e ro s ( [ phaseNum−1 ,1])

for k in range (phaseNum−1) :

output [ k ] = phis [ k ] ∗ uTempCell [ iZ ]

return output

def fluxFunXdPhi ( iZ ) :

”””

De r i v a t i v e o f f l u x f u n c t i o n in x−d i r e c t i o n .

”””

global uTempCell

output = uTempCell [ iZ ]

return output

def fluxFunZp ( phis Input ) :

”””

Flux f un c t i o n in z−d i r e c t i o n , w i th p r e s c r i b e d dependency on v e l o c i t y g r a d i e n t .

i npu t : a l i s t o f ph i ( e . g . [ phi1 , ph i2 ] ) o f s i z e phaseNum−1

”””

global C, segBs , phaseNum , pa i r ingMatr ix

" f i r s t c a l c u l a t e s o l i d v o l u m e f r a c t i o n of r e m a i n d e r by m a s s c o n s e r v a t i o n "
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phiSum = 0

phisTemp = [ [ ] for i in range (phaseNum) ]

for k in range (phaseNum−1) :

phisTemp [ k ] = phis Input [ k ]

phiSum = phiSum + phis Input [ k ]

l a s tPh i = 1 − phiSum

phisTemp [ phaseNum−1] = la s tPh i

pairsTemp = np . z e ro s ( [ phaseNum−1,phaseNum−1])

for i in range (phaseNum−1) :

for j in range (phaseNum−1) :

pa i r Ind1 = int ( pa i r ingMatr ix [ i , 2∗ j ] )

pa i r Ind2 = int ( pa i r ingMatr ix [ i , 2∗ j +1])

pairsTemp [ i , j ] = phisTemp [ pairInd1 −1]∗phisTemp [ pairInd2 −1]

" a s s e m b l e all the t e r m s to be a d d e d "

terms = np . mult ip ly ( (1/C) ∗ segBs , pairsTemp )

" add all the t e r m s "

output = np .sum( terms , ax i s=1)

# bo t = ph i + s∗(1− ph i )

# ou tpu t = (1/C)∗ ph i / bo t

return output

def f luxFunZJacobianp ( phisInput , dudz ) :

”””

Ca l c u l a t e s Jacob ian o f t h e f l u x f u n c t i o n in Z

inpu t : a l i s t o f ph i ( e . g . [ phi1 , ph i2 ] ) o f s i z e phaseNum−1

”””

global phiSyms , po lyDi f f , phaseNum

" For bi - d i s p e r s e o n l y "

# ph i s I n pu t = np . array ( [ p h i s I n pu t ] )

" f i r s t c a l c u l a t e s o l i d v o l u m e f r a c t i o n of r e m a i n d e r by m a s s c o n s e r v a t i o n "

phiSum = 0

phisTemp = [ [ ] for i in range (phaseNum) ]

for k in range (phaseNum−1) :

phisTemp [ k ] = phis Input [ k ]

phiSum = phiSum + phis Input [ k ]

l a s tPh i = 1 − phiSum

phisTemp [ phaseNum−1] = la s tPh i

jacob ian = np . z e ro s ( [ phaseNum−1,phaseNum−1])

for i in range (phaseNum−1) :

for j in range (phaseNum−1) :

rep lacements = [ ]

for k in range (phaseNum−1) :

rep lacements . append ( ( phiSyms [ k ] , phisTemp [ k ] ) )

polyDiffTemp = po lyD i f f [ i , j ]

j a cob ian [ i , j ] = polyDiffTemp . subs ( replacements )

return j acob ian

def getRho ( jacob ian ) :

w, v = LA. e i g ( jacob ian )

output = np . amax(np . abs (w) )

return output
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def f luxFunDi f fp ( phisInput , dphidz , iZ ) :

”””

D i f f u s i o n f l u x f unc t i on , more mod i f i c a t i o n s to be a p p l i e d

”””

global C, D, HP0, phaseNum , pairngMatrix

global zBot , dz

" pair - w i s e f u n c t i o n "

" f i r s t c a l c u l a t e s o l i d v o l u m e f r a c t i o n of r e m a i n d e r by m a s s c o n s e r v a t i o n "

phiSum = 0

phisTemp = [ [ ] for i in range (phaseNum) ]

for k in range (phaseNum−1) :

phisTemp [ k ] = phis Input [ k ]

phiSum = phiSum + phis Input [ k ]

l a s tPh i = 1 − phiSum

phisTemp [ phaseNum−1] = la s tPh i

pairsTemp = np . z e ro s ( [ phaseNum−1,phaseNum−1])

for i in range (phaseNum−1) :

for j in range (phaseNum−1) :

# pa i r Ind1 = i n t ( p a i r i n gMa t r i x [ i ,2∗ j ] )

pai r Ind2 = int ( pa i r ingMatr ix [ i , 2∗ j +1])

pairsTemp [ i , j ] = phisTemp [ pairInd2 −1]

" a s s e m b l e all the t e r m s to be a d d e d "

terms = np . mult ip ly ( segBs , pairsTemp )

" add all the t e r m s "

di f fSums = np .sum( terms , ax i s=1)

output = np . z e ro s ( [ phaseNum−1 ,1])

for k in range (phaseNum−1) :

di f fTerm1 = (D/C) ∗dphidz [ k ]

dif fSum = dif fSums [ k ]

zTemp = zBot + (0.5+ iZ ) ∗dz

dif fTerm2 = (1/C) ∗(HP0 + (1−zTemp) ) ∗dphidz [ k ]∗ ( 1 + diffSum )

# di f fTerm2 = 0

output [ k ] = dif fTerm1 + dif fTerm2

return output

def minmod(a , b) :

”””

Returns t h e f l a t t e r l o c a l s l o p e out o f t h e g i v en two .

I f t h e two s l o p e s have d i f f e r e n t s i gn s , then i t r e t u rn s 0 .

”””

output = 0 .5∗ ( np . s i gn ( a )+np . s i gn (b) ) ∗ np .min ( [ np . abs ( a ) ,np . abs (b) ] )

return output

# de f u ( z , a lpha , b e t a ) :

# ”””

# Pre s c r i b e d b u l k v e l o c i t y p r o f i l e , w i t h i t s shape i n s p i r e d by e xp e r imen t a l

r e s u l t s .

# ”””

# g l o b a l uAmp

# # g l o b a l a l pha

# # g l o b a l b e t a

# L = 1 − 1/ a lpha

# norm = np . tanh ( b e t a /np . p i ) − 1

# i f z >= L and z<= 1:
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# outpu t = uAmp ∗ ( np . tanh ( b e t a /( np . p i∗ a lpha ∗( z−L) ) )−1)/norm

# e l s e :

# ou tpu t = 0

# re tu rn ou tpu t

def u( z ,R, velTop ) :

”””

Pr e s c r i b e d b u l k v e l o c i t y p r o f i l e , w i t h i t s shape i n s p i r e d by e xp e r imen t a l

r e s u l t s .

”””

# g l o b a l a l pha

# g l o b a l b e t a

norm = np . tanh (R/np . p i ) − 1

norm = norm/velTop

output = np . s i gn (R) ∗(np . tanh (R/(np . p i ∗z ) )−1)/norm

return output

# de f g e t L i s t ( a l p haL i s t , b e t aL i s t , z ) :

# # g l o b a l a l pha

# # g l o b a l b e t a

# ”””

# Get inc r emen ta l v a l u e s to be i t e r a t e d and superposed f o r i n i t i a l i z a t i o n

p ro c e s s .

# ”””

# uNum = l en ( a l p h aL i s t ) + l en ( b e t a L i s t )

# uL i s t = np . z e r o s ( [ l e n ( z ) ,uNum] )

# ” r e v e r s e t h e order o f v e c t o r f o r top−down a r c h i v i n g ”

# # zRev = z [ : : −1 ]

# # zRev = z

# ” loop over a l pha l i s t t o record f u l l e v o l u t i o n o f v e l o c i t y p r o f i l e ”

# uI = 0

# f o r a l p h a I in range ( l en ( a l p h aL i s t ) ) :

# alphaTemp = a l p h aL i s t [ a l p h a I ]

# betaTemp = b e t a L i s t [ 0 ]

# uTemp = np . z e r o s ( [ l e n ( z ) , 1 ] )

# f o r i in range ( l en ( z ) ) :

# a lpha = alphaTemp

# be t a = betaTemp

# # uTemp [ i ] = u ( zRev [ i ] , a lpha , b e t a )

# uTemp [ i ] = u ( z [ i ] , a lpha , b e t a )

# uL i s t [ i , uI ] = uTemp [ i ]

# uI = uI + 1

# ” loop over b e t a l i s t t o r ecord f u l l e v o l u t i o n o f v e l o c i t y p r o f i l e ”

# uI = 0

# f o r b e t a I in range ( l en ( b e t a L i s t ) ) :

# alphaTemp = 1

# betaTemp = b e t a L i s t [ b e t a I ]

# uTemp = np . z e r o s ( [ l e n ( z ) , 1 ] )

# f o r i in range ( l en ( z ) ) :

# a lpha = alphaTemp

# be t a = betaTemp

# # uTemp [ i ] = u ( zRev [ i ] , a lpha , b e t a )

# uTemp [ i ] = u ( z [ i ] , a lpha , b e t a )

# uL i s t [ i , uI + l en ( a l p h aL i s t ) ] = uTemp [ i ]
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# uI = uI + 1

# re tu rn uL i s t

# de f g e t Inc r emen t s ( a l p haL i s t , b e t aL i s t , z , uL i s t ) :

# ”””

# Take incremented v a l u e s o f v e l o c i t y p r o f i l e s based on g i v en uL i s t .

# ”””

# uNum = l en ( a l p h aL i s t ) + l en ( b e t a L i s t )

# duL i s t = np . z e r o s ( [ l e n ( z ) ,uNum] )

# duL i s t [ : , 0 ] = uL i s t [ : , 0 ]

# f o r uI in range (1 ,uNum) :

# f o r i in range ( l en ( z ) ) :

# duL i s t [ i , uI ] = np . s u b t r a c t ( uL i s t [ i , uI ] , uL i s t [ i , uI −1])

# re tu rn duL i s t

" S O L V E R "

" - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - "

def getRHS( phis ) :

”””

Semi−d i s c r e t e s o l v e r t h a t c on v e r t s t h e PDE to a time−dependent ODE f o r

each time−s t e p . Right−hand−s i d e v a l u e o f t h e ODE dph i d t = RHS i s ou tpu t ed

a l ong w i th o t h e r u s e f u l i n f o rma t i on .

”””

global nZ , nX, dx , dz

global d i r e c t i on , uTempCell , uTempGrdpt

global zTop

global phaseNum

global phiC1

phiC1 = phis [ 0 ]

# ”””

# Der ive t h e l a s t volume f r a c t i o n v i a mass c on s e r v a t i on c ond i t i o n

# ”””

# phiSum = 0

# phisTemp = [ [ ] f o r i in range ( phaseNum) ]

# f o r k in range ( phaseNum−1) :

# phisTemp [ k ] = ph i s [ k ]

# phiSum = phiSum + ph i s [ k ]

# l a s t P h i = 1 − phiSum

# phisTemp [ phaseNum−1] = l a s t P h i

”””

Def ine t h e l o c a l s l o p e s in x and z d i r e c t i o n s .

S tored a t c e l l s .

”””

phiXp = [ [ ] for i in range (phaseNum−1) ]

phiZp = [ [ ] for i in range (phaseNum−1) ]

for k in range (phaseNum−1) :

phiXp [ k ] = np . z e ro s ( [ nZ ,nX ] )

phiZp [ k ] = np . z e ro s ( [ nZ ,nX ] )

" N o t e : due to the z e r o i n i t i a l i z a t i o n , "

" p h i X = 0 at x = { xStart , x E n d } and "

" p h i Z = 0 at z = { zBot , z T o p } are a u t o m a t i c a l l y s a t i s f i e d . "

" T h e r e f o r e it r e m a i n s to set o t h e r l o c a l s l o p e e n t r i e s "

" u s i n g m i n m o d l i m i t e r f u n c t i o n . "
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for k in range (phaseNum−1) :

for i in range (nZ) :

for j in range (1 ,nX−1) :

l e f t = ( phi s [ k ] [ i , j ] − phis [ k ] [ i , j −1]) /dx

r i gh t = ( phis [ k ] [ i , j +1] − phis [ k ] [ i , j ] ) /dx

phiXp [ k ] [ i , j ] = minmod( l e f t , r i g h t )

downs1 = [ [ ] for i in range (phaseNum−1) ]

ups1 = [ [ ] for i in range (phaseNum−1) ]

for k in range (phaseNum−1) :

downs1 [ k ] = np . z e ro s ( [ nZ ,nX ] )

ups1 [ k ] = np . z e ro s ( [ nZ ,nX ] )

for k in range (phaseNum−1) :

for i in range (1 ,nZ−1) :

for j in range (nX) :

down1 = ( phis [ k ] [ i , j ] − phis [ k ] [ i −1, j ] ) /dz

up1 = ( phis [ k ] [ i +1, j ] − phis [ k ] [ i , j ] ) /dz

downs1 [ k ] [ i , j ] = down1

ups1 [ k ] [ i , j ] = up1

phiZp [ k ] [ i , j ] = minmod(down1 , up1 )

”””

Def ine back and forward l i n e a r approx imat i ons o f ph i in x and z d i r e c t i o n s

based on l o c a l s l o p e s .

S to red a t Gr i dpo in t s .

”””

phiLp = [ [ ] for i in range (phaseNum−1) ]

phiRp = [ [ ] for i in range (phaseNum−1) ]

phiDp = [ [ ] for i in range (phaseNum−1) ]

phiUp = [ [ ] for i in range (phaseNum−1) ]

for k in range (phaseNum−1) :

phiLp [ k ] = np . z e ro s ( [ nZ ,nX+1])

phiRp [ k ] = np . z e ro s ( [ nZ ,nX+1])

phiDp [ k ] = np . z e ro s ( [ nZ+1,nX ] )

phiUp [ k ] = np . z e ro s ( [ nZ+1,nX ] )

" N o t e : l i n e a r a p p r o x i m a t i o n s at the b o u n d a r y e n d p o i n t s are a s s u m e d to be 0. "

" T h i s is b e c a u s e one of t h e i r n e i g h b o u r s is non - e x i s t a n t . T h i s BC is "

" a u t o m a t i c a l l y s a t i s f i e d via z e r o i n i t i a l i z a t i o n . "

for k in range (phaseNum−1) :

for i in range (nZ) :

for j in range (nX) :

" l e f t ( x -) l i n e a r a p p r o x i m a t i o n b a s e d on p h i X "

phiLp [ k ] [ i , j +1] = phis [ k ] [ i , j ] + phiXp [ k ] [ i , j ]∗ dx ∗0 .5

" r i g h t ( x +) l i n e a r a p p r o x i m a t i o n b a s e d on p h i X "

phiRp [ k ] [ i , j ] = phis [ k ] [ i , j ] − phiXp [ k ] [ i , j ]∗ dx ∗0 .5

" d o w n ( z -) l i n e a r a p p r o x i m a t i o n b a s e d on p h i Z "

phiDp [ k ] [ i +1, j ] = phis [ k ] [ i , j ] + phiZp [ k ] [ i , j ]∗ dz ∗0 .5

" up ( z +) l i n e a r a p p r o x i m a t i o n b a s e d on p h i Z "

phiUp [ k ] [ i , j ] = phis [ k ] [ i , j ] − phiZp [ k ] [ i , j ]∗ dz ∗0 .5

”””

Record t he downstream v e l o c i t y component v a l u e s a t c e l l s and g r i d p o i n t s

in order to c a l c u l a t e du/ dz .

”””

uValCel l = np . z e ro s ( [ nZ , 1 ] )

uValGrdpt = np . z e ro s ( [ nZ+1 ,1])
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for i in range (nZ) :

uValCel l [ i ] = uTempCell [ i ]

for i in range (nZ+1) :

uValGrdpt [ i ] = uTempGrdpt [ i ]

”””

Use minmod l i m i t e r to numer i c a l l y c a l c u l a t e magnitude o f l o c a l v e l o c i t y

g r a d i e n t s du/ dz a t c e l l s and g r i d p o i n t s .

”””

dudzCel l = np . z e ro s ( [ nZ , 1 ] )

dudzGrdpt = np . z e ro s ( [ nZ+1 ,1])

for i in range (1 ,nZ−1) :

L1 = ( uValCel l [ i ] − uValCel l [ i −1]) /dz

R1 = ( uValCel l [ i +1] − uValCel l [ i ] ) /dz

dudzCel l [ i ] = np . abs (minmod(L1 ,R1) )

for i in range (1 ,nZ) :

L2 = ( uValGrdpt [ i ] − uValGrdpt [ i −1]) /dz

R2 = ( uValGrdpt [ i +1] − uValGrdpt [ i ] ) /dz

dudzGrdpt [ i ] = np . abs (minmod(L2 ,R2) )

”””

Def ine t h e maximum l o c a l s p eed s aX and aZ at c e l l endpo in t s in x and z

d i r e c t i o n s . Again a d d i t i o n a l row/ c o l i s r e q u i r e d .

”””

# aUa = [ [ ] f o r i in range ( phaseNum−1) ]

# aDa = [ [ ] f o r i in range ( phaseNum−1) ]

# aX = [ [ ] f o r i in range ( phaseNum−1) ]

# aZ = [ [ ] f o r i in range ( phaseNum−1) ]

# f o r k in range ( phaseNum−1) :

# aUa [ k ] = np . z e r o s ( [ nZ+1,nX ] )

# aDa [ k ] = np . z e r o s ( [ nZ+1,nX ] )

# aX = np . z e r o s ( [ nZ ,nX+1])

# aZ = np . z e r o s ( [ nZ+1,nX ] )

aUp = np . z e ro s ( [ nZ+1,nX ] )

aDp = np . z e ro s ( [ nZ+1,nX ] )

aXp = np . z e ro s ( [ nZ ,nX+1])

aZp = np . z e ro s ( [ nZ+1,nX ] )

for i in range (nZ) :

for j in range (nX+1) :

for k in range (phaseNum−1) :

aL = np . abs ( fluxFunXdPhi ( i ) )

aR = np . abs ( fluxFunXdPhi ( i ) )

aXp [ i , j ] = np .max( [ aL , aR ] )

for i in range (nZ+1) :

for j in range (nX) :

phiSampleU = np . z e ro s (phaseNum−1)

phiSampleD = np . z e ro s (phaseNum−1)

for k in range (phaseNum−1) :

phiSampleU [ k ] = phiUp [ k ] [ i , j ]

phiSampleD [ k ] = phiDp [ k ] [ i , j ]

aUp [ i , j ] = getRho ( fluxFunZJacobianp ( phiSampleU , dudzGrdpt [ i ] ) )
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aDp [ i , j ] = getRho ( fluxFunZJacobianp ( phiSampleD , dudzGrdpt [ i ] ) )

aZp [ i , j ] = np .max( [ aUp [ i , j ] , aDp [ i , j ] ] )

”””

Def ine t h e numer ica l f l u x terms Hx and Hz

in x and z d i r e c t i o n s s t o r e d a t c e l l endpo in t s .

”””

HXp = [ ]

HZp = [ ]

for k in range (phaseNum−1) :

HXp. append (np . z e ro s ( [ nZ ,nX+1]) )

HZp . append (np . z e ro s ( [ nZ+1,nX ] ) )

" F i r s t p r e s c r i b e the i n f l o w and o u t f l o w BCs in x , now p e r i o d i c . "

for i in range (nZ) :

for k in range (phaseNum−1) :

i f d i r e c t i o n == 1 :

phiSample = np . z e ro s ( [ phaseNum−1 ,1])

for k1 in range (phaseNum−1) :

phiSample [ k1 ] = phis [ k1 ] [ i , nX−1]

i n f l ow = fluxFunX ( phiSample , i )

HXp[ k ] [ i , 0 ] = in f l ow [ k , 0 ]

HXp[ k ] [ i ,nX] = in f l ow [ k , 0 ]

else :

phiSample1 = np . z e ro s ( [ phaseNum−1 ,1])

for k1 in range (phaseNum−1) :

phiSample1 [ k1 ] = phis [ k1 ] [ i , 1 ]

i n f l ow = fluxFunX ( phiSample1 , i )

HXp[ k ] [ i ,nX] = in f l ow [ k , 0 ]

HXp[ k ] [ i , 0 ] = in f l ow [ k , 0 ]

for j in range (1 ,nX) :

phiLsample = np . z e ro s ( [ phaseNum−1 ,1])

phiRsample = np . z e ro s ( [ phaseNum−1 ,1])

for k1 in range (phaseNum−1) :

# phiRsample [ k ] = phiL [ k ] [ i , j ]

# phiLsample [ k ] = phiR [ k ] [ i , j ]

phiLsample [ k1 , 0 ] = phiLp [ k1 ] [ i , j ]

phiRsample [ k1 , 0 ] = phiRp [ k1 ] [ i , j ]

HXp[ k ] [ i , j ] = 0 . 5∗ ( fluxFunX ( phiRsample , i ) [ k ] \

+ fluxFunX ( phiLsample , i ) [ k ] ) \

−0.5 ∗ aXp [ i , j ] ∗ ( phiRsample [ k ] − phiLsample [ k

] )

" F i r s t p r e s c r i b e top and b o t t o m no - f l u x BC in z . "

for j in range (nX) :

for k in range (phaseNum−1) :

HZp [ k ] [ 0 , j ] = 0

HZp [ k ] [ nZ , j ] = 0

for i in range (1 ,nZ) :

phiUsample = np . z e ro s ( [ phaseNum−1 ,1])

phiDsample = np . z e ro s ( [ phaseNum−1 ,1])

for k1 in range (phaseNum−1) :

phiUsample [ k1 ] = phiUp [ k1 ] [ i , j ]

phiDsample [ k1 ] = phiDp [ k1 ] [ i , j ]

HZp [ k ] [ i , j ] = 0 . 5∗ ( fluxFunZp ( phiUsample ) [ k ] \
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+ fluxFunZp ( phiDsample ) [ k ] ) \

−0.5∗ aZp [ i , j ] ∗ ( phiUsample [ k ] − phiDsample [ k ] )

”””

Def ine t h e numer ica l d i f f u s i o n f l u x terms .

S tored a t g r i d p o i n t s .

”””

PZp = [ ]

for k in range (phaseNum−1) :

PZp . append (np . z e ro s ( [ nZ+1,nX ] ) )

for j in range (nX) :

for i in range (1 ,nZ) :

dphidzs = np . z e ro s ( [ phaseNum−1 ,1])

for k in range (phaseNum−1) :

phiSample = np . z e ro s ( [ phaseNum−1 ,1])

for k1 in range (phaseNum−1) :

phiSample [ k1 ] = phis [ k1 ] [ i , j ]

dphidzs [ k ] = ( phis [ k ] [ i , j ] − phis [ k ] [ i −1, j ] ) /dz

PZp [ k ] [ i , j ] = f luxFunDi f fp ( phiSample , dphidzs , i ) [ k ]

# PZ[ k ] [ i , j ] = 0

RHSp = [ ]

for k in range (phaseNum−1) :

RHSp. append (np . z e ro s ( [ nZ ,nX ] ) )

for i in range (nZ) :

for j in range (nX) :

for k in range (phaseNum−1) :

RHSp[ k ] [ i , j ] = −(HXp[ k ] [ i , j +1] − HXp[ k ] [ i , j ] ) /dx \

−(HZp [ k ] [ i +1, j ] − HZp[ k ] [ i , j ] ) /dz \

+(PZp [ k ] [ i +1, j ] − PZp [ k ] [ i , j ] ) /dz

return RHSp

def rk t imes t ep ( phi s ) :

”””

Runge−Kutta t ime s t e p p e r to s o l v e t h e ODE f o r each t ime s t e p .

”””

global nX, nZ , dt

global phaseNum

eta = 0 .5

phiTemp = [ [ ] for i in range (phaseNum−1) ]

for k in range (phaseNum−1) :

phiTemp [ k ] = np . z e ro s ( [ nZ ,nX ] )

phiNew= [ [ ] for i in range (phaseNum−1) ]

for k in range (phaseNum−1) :

phiNew [ k ] = np . z e ro s ( [ nZ ,nX ] )

RHS = getRHS( phis )

for i in range (nZ) :

for j in range (nX) :

for k in range (phaseNum−1) :

phiTemp [ k ] [ i , j ] = phis [ k ] [ i , j ] + dt∗RHS[ k ] [ i , j ]

RHSTemp = getRHS(phiTemp)

for i in range (nZ) :

for j in range (nX) :
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for k in range (phaseNum−1) :

phiNew [ k ] [ i , j ] = eta ∗ phis [ k ] [ i , j ] + (1− eta ) ∗ (phiTemp [ k ] [ i , j ] +

dt∗RHSTemp[ k ] [ i , j ] )

return phiNew

" M A I N "

" - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - "

# s t a r t = tm . t ime ( )

s i z eRa t i o s = np . z e ro s ( [ phaseNum−1,phaseNum−1])

segBs = np . z e ro s ( [ phaseNum−1,phaseNum−1])

pa i r ingMatr ix = np . z e ro s ( [ 1 , 2 ] )

pa i r ingMatr ix [ 0 , 0 ] = 1

pa i r ingMatr ix [ 0 , 1 ] = 2

for i in range (phaseNum−2) :

phaseNumTemp = i+2

pa i r ingMatr ix = pairingAdd ( pair ingMatr ix , phaseNumTemp)

phis = [ [ ] for i in range (phaseNum) ]

for k in range (phaseNum) :

ph i s [ k ] = np . z e ro s ( [ nZ ,nX ] )

s i z eRa t i o s = updateS izeRat ios ( pa i r ingMatr ix )

segBs = updateSegBs ( pair ingMatr ix , s i z eRa t i o s )

" g e n e r a t e s y m b o l i c v a r i a b l e s to s t o r e p a i r w i s e p o l y n o m i a l s "

global phiSyms

phiSyms = [ ]

for k in range (phaseNum) :

symTemp = sym . Symbol ( symbols [ k ] )

phiSyms . append (symTemp)

" g e n a r a t e s y m b o l i c p o l y n o m i a l s w . r . t . f l u x f u n c t i o n s "

po lys = [ ]

for i in range (phaseNum−1) :

row = 0

phiSumSyms = 0

for k in range (phaseNum−1) :

phiSumSyms = phiSumSyms + phiSyms [ k ]

for j in range (phaseNum−2) :

pa i r Ind1 = int ( pa i r ingMatr ix [ i , 2∗ j ] − 1)

pa i r Ind2 = int ( pa i r ingMatr ix [ i , 2∗ j +1] − 1)

term = (1/C) ∗ segBs [ i , j ] ∗ phiSyms [ pa i r Ind1 ] ∗ phiSyms [ pa i r Ind2 ]

row = row + term

" p r e s c r i b e the l a s t c o l u m n n s e p a r a t e l y "

row = row + (1/C) ∗ segBs [ i , phaseNum−2]∗phiSyms [ i ]∗(1−phiSumSyms)

po lys . append ( row )

global po l yD i f f

po l yD i f f = sym . eye (phaseNum−1)

for i in range (phaseNum−1) :

for j in range (phaseNum−1) :

po l yD i f f [ i , j ] = sym . d i f f ( po lys [ i ] , phiSyms [ j ] )

" I n i t i a l v o l u m e f r a c t i o n c o n d i t i o n "

# ph i s [ 0 ] = np . conca t ena t e ( [ 0 . 2∗ np . ones ( [ i n t (nZ∗0 .5 ) ,nX ] ) ,0 .8∗ np . ones ( [ i n t (nZ∗0 .5 )
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,nX ] ) ] )

phis [ 0 ] = np . ones ( [ nZ ,nX ] ) ∗ (1/2)

# ph i s [ 1 ] = np . ones ( [ nZ ,nX ] ) ∗ (1/3)

# ph i s [ 2 ] = np . ones ( [ nZ ,nX ] ) ∗ (1/4)

# ph i s [ 3 ] = np . ones ( [ nZ ,nX ] ) ∗ (1/5)

# ph i s [ 4 ] = np . ones ( [ nZ ,nX ] ) ∗ (1/6)

# ph i s [ 5 ] = np . ones ( [ nZ ,nX ] ) ∗ 0 .1

# ph i s [ 6 ] = np . ones ( [ nZ ,nX ] ) ∗ 0 .1

# ph i s [ 7 ] = np . ones ( [ nZ ,nX ] ) ∗ 0 .1

# ph i s [ 8 ] = np . ones ( [ nZ ,nX ] ) ∗ 0 .1

" G e n e r a t e v e l o c i t y e v o l u t i o n d a t a to i t e r a t e in t i m e "

zCe l l = np . l i n s pa c e ( zBot , zTop−dz , nZ)+0.5∗dz

# uL i s t C e l l = g e t L i s t ( a l p haL i s t , b e t aL i s t , z C e l l )

# duL i s tC e l l = ge t Inc r emen t s ( a l p haL i s t , b e t aL i s t , zCe l l , u L i s t C e l l )

uL i s tCe l lH i s t = np . z e ro s ( [ nZ ,nT+np . s i z e ( nBreak ) ] )

duL i s tCe l lH i s t = np . z e ro s ( [ nZ ,nT+np . s i z e ( nBreak ) ] )

# uLis tGrdp t = g e t L i s t ( a l p haL i s t , b e t aL i s t , z )

# duLi s tGrdp t = ge t Inc r emen t s ( a l p haL i s t , b e t aL i s t , z , uL i s tGrdp t )

" I n i t i a l i z e m a t r i x to s t o r e v o l u m e f r a c t i o n and o t h e r d a t a "

r e s u l t s 1 = [ [ ] for i in range (phaseNum−1+np . s i z e ( tBreak ) ) ]

for k in range (phaseNum−1) :

r e s u l t s 1 [ k ] = np . z e ro s ( [ nZ ,nT+1])

# r e s u l t s 1 [ k ] = np . z e r o s ( [ nZ ,nT+1+np . s i z e ( nBreak ) ] )

" R e c o r d IC in r e s u l t s "

for i in range (nZ) :

for k in range (phaseNum−1) :

r e s u l t s 1 [ k ] [ i , 0 ] = 0 . 5∗ ( ph i s [ k ] [ i , int (nX/2) ] + phis [ k ] [ i , int (nX/2) +1])

" I n d e x u s e d to d o c u m e n t e v o l u t i o n p r o g r e s s of v e l o c i t y p r o f i l e in t i m e "

# inde x I = 0

# indexR = l en ( a l p h aL i s t ) + l en ( b e t a L i s t )

" L o o p o v e r t i m e "

t = 0

iSeg = 0

iBreak = 0

while iSeg in range (nT) :

# ” check whether t h e t ime s t e p i s t h e s t a r t o f t h e i n i t i a l i z a t i o n pe r i od ”

# i f i n d e x I+1 <= len ( a l p h aL i s t )+l en ( b e t a L i s t ) :

# f o r i in range (nZ) :

# uTempCell [ i ] = uTempCell [ i ] + d i r e c t i o n ∗ d uL i s tC e l l [ i , i n d e x I ]

# f o r i in range (nZ+1) :

# uTempGrdpt [ i ] = uTempGrdpt [ i ] + d i r e c t i o n ∗ duLi s tGrdp t [ i , i n d e x I ]

# ” update t h e coun te r ”

# ind e x I = ind e x I + 1

# ” check whether t h e t ime s t e p i s t h e s t a r t o f t h e r e v e r s a l p e r i od ”

# i f i S eg in n0Rev :

# ” r e s e t t h e r e v e r s a l p r o g r e s s coun te r and record change o f d i r e c t i o n ”

# indexR = 0

# d i r e c t i o n = −1∗ d i r e c t i o n

# f o r i in range (nZ) :

# uTempCell [ i ] = uTempCell [ i ] + 2 ∗ d i r e c t i o n ∗ d uL i s tC e l l [ i , indexR ]
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# fo r i in range (nZ+1) :

# uTempGrdpt [ i ] = uTempGrdpt [ i ] + 2 ∗ d i r e c t i o n ∗ duLi s tGrdp t [ i , indexR

]

# ” update t h e coun te r ”

# indexR = indexR + 1

# ” check whether t h e t ime s t e p i s w i t h i n t h e r e v e r s a l p e r i od ”

# i f i S eg not in n0Rev and indexR+1 <= len ( a l p h aL i s t )+l en ( b e t a L i s t ) :

# ”add the p r e s c r i b e d increment a s s i g n ed to t h i s s t e p ”

# f o r i in range (nZ) :

# uTempCell [ i ] = uTempCell [ i ] + 2 ∗ d i r e c t i o n ∗ d uL i s tC e l l [ i , indexR ]

# f o r i in range (nZ+1) :

# uTempGrdpt [ i ] = uTempGrdpt [ i ] + 2 ∗ d i r e c t i o n ∗ duLi s tGrdp t [ i , indexR

]

# ” update t h e coun te r ”

# indexR = indexR + 1

" S e c o n d v e r s i o n of v e l o c i t y p r o f i l e e v o l u t i o n "

RTemp = 5∗np . cos (2∗np . p i ∗ t /T)+5.5

velTopTemp = np . s i n (np . p i ∗ t /T)

d i r e c t i o n = np . s i gn (velTopTemp)

for i in range (nZ) :

zTemp = zBot + ( i +0.5)∗dz

uTempCell [ i ] = u(zTemp ,RTemp, velTopTemp)

for i in range (nZ+1) :

zTemp = zBot + i ∗dz

uTempGrdpt [ i ] = u(zTemp ,RTemp, velTopTemp)

" r e c o r d v e l o c i t y e v o l u t i o n d a t a "

for i in range (nZ) :

uL i s tCe l lH i s t [ i , iSeg ] = uTempCell [ i ]

" r e c o r d s h e a r r a t e d a t a "

for i in range (1 ,nZ−1) :

dudzTemp = minmod ( ( uTempCell [ i ] − uTempCell [ i −1]) /dz , ( uTempCell [ i +1] −

uTempCell [ i ] ) /dz )

duL i s tCe l lH i s t [ i , iSeg ] = dudzTemp

" d e t e r m i n e w h e t h e r it is a b r e a k a g e t i m e s t e p or c o n v e c t i o n - d i f f u s i o n t i m e s t e p "

i f iSeg in nBreak :

" s t e p 1 of b r e a k a g e : re - d i s t r i b u t i o n of phi "

for i in range (nZ) :

for j in range (nX) :

for k1 in range (phaseNum−1) :

ph i s [ k1 ] [ i , j ] = phis [ k1 ] [ i , j ]− breakPlan [ k1 ]∗ phis [ k1 ] [ i , j ]

" s t o r e the c e n t r a l c o l u m n for e v o l u t i o n g r a p h "

i f np .mod(nX, 2 ) == 0 :

for k in range (phaseNum−1) :

for i in range (nZ) :

r e s u l t s 1 [ k ] [ i , t+1] = 0 .5∗ ( ph i s [ k ] [ i , int (nX∗0 . 5 ) ] + phis [ k ] [ i ,

int (nX∗0 . 5 ) +1])

e l i f np .mod(nX, 2 ) == 1 :

for i in range (nZ) :

for k in range (phaseNum−1) :

r e s u l t s 1 [ k ] [ i , t+1] = phis [ k ] [ i , ( nX+1) ∗ 0 . 5 ]
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print ( " b r e a k a g e t a k e s p l a c e " )

" c o u n t e r "

t = t + 1

" s t e p 2 of b r e a k a g e : use the re - d i s t r i b u t e d phi for e v o l u t i o n "

" c a l c u l a t e phi for n e x t t i m e s t e p u s i n g KT s o l v e r "

phiNew = rk t imes t ep ( phi s )

ph i s = phiNew

" s t o r e the c e n t r a l c o l u m n for e v o l u t i o n g r a p h "

i f np .mod(nX, 2 ) == 0 :

for k in range (phaseNum−1) :

for i in range (nZ) :

r e s u l t s 1 [ k ] [ i , t+1] = 0 .5∗ ( ph i s [ k ] [ i , int (nX∗0 . 5 ) ] + phis [ k ] [ i ,

int (nX∗0 . 5 ) +1])

e l i f np .mod(nX, 2 ) == 1 :

for i in range (nZ) :

for k in range (phaseNum−1) :

r e s u l t s 1 [ k ] [ i , t+1] = phis [ k ] [ i , ( nX+1) ∗ 0 . 5 ]

" c o u n t e r "

print ( " t i m e s t e p n u m b e r " , iSeg , " c o m p l e t e d " )

iSeg = iSeg + 1

t = t + 1

else :

" c a l c u l a t e phi for n e x t t i m e s t e p u s i n g KT s o l v e r "

phiNew = rk t imes t ep ( phi s )

ph i s = phiNew

" s t o r e the c e n t r a l c o l u m n for e v o l u t i o n g r a p h "

i f np .mod(nX, 2 ) == 0 :

for k in range (phaseNum−1) :

for i in range (nZ) :

r e s u l t s 1 [ k ] [ i , t+1] = 0 .5∗ ( ph i s [ k ] [ i , int (nX∗0 . 5 ) ] + phis [ k ] [ i ,

int (nX∗0 . 5 ) +1])

e l i f np .mod(nX, 2 ) == 1 :

for i in range (nZ) :

for k in range (phaseNum−1) :

r e s u l t s 1 [ k ] [ i , t+1] = phis [ k ] [ i , ( nX+1) ∗ 0 . 5 ]

# np . s a v e t x t (” r e s u l t s 0 1 0 P0 0 . 5 s p r e a d r e a l 2 a 1 . c sv ” , r e s u l t s 1 [ 0 ] ,

d e l im i t e r =” ,”)

# np . s a v e t x t (” r e s u l t s 1 1 0 P0 0 . 5 s p r e a d r e a l 2 a 1 . c sv ” , r e s u l t s 1 [ 1 ] ,

d e l im i t e r =” ,”)

# np . s a v e t x t (” r e s u l t s 2 1 0 P0 0 . 5 s p r e a d r e a l 6 b 1 . c sv ” , r e s u l t s 1 [ 2 ] ,

d e l im i t e r =” ,”)

# np . s a v e t x t (” r e s u l t s 3 1 0 P0 0 . 5 s p r e a d r e a l 6 e . c s v ” , r e s u l t s 1 [ 3 ] ,

d e l im i t e r =” ,”)

# np . s a v e t x t (” r e s u l t s 4 1 0 P0 0 . 5 s p r e a d r e a l 7 . c s v ” , r e s u l t s 1 [ 4 ] , d e l im i t e r

=” ,”)

# np . s a v e t x t (” r e s u l t s 5 1 0 P0 0 . 5 s p r e a d r e a l 2 . c s v ” , r e s u l t s 1 [ 5 ] , d e l im i t e r

=” ,”)

# np . s a v e t x t (” r e s u l t s 6 1 0 P0 0 . 5 s p r e a d r e a l 2 . c s v ” , r e s u l t s 1 [ 6 ] , d e l im i t e r

=” ,”)

# np . s a v e t x t (” r e s u l t s 7 1 0 P0 0 . 5 s p r e a d r e a l 2 . c s v ” , r e s u l t s 1 [ 7 ] , d e l im i t e r

=” ,”)

# np . s a v e t x t (” r e s u l t s 8 1 0 P0 0 . 5 s p r e a d r e a l 2 . c s v ” , r e s u l t s 1 [ 8 ] , d e l im i t e r
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=” ,”)

" c o u n t e r "

print ( " t i m e s t e p n u m b e r " , iSeg+1 , " c o m p l e t e d " )

iSeg = iSeg + 1

t = t + 1

# ” Ca l c u l a t e and s t o r e t h e shear r a t e data ”

# dudzCel lTemp = np . z e r o s ( [ nZ , 1 ] )

# f o r i in range (1 , nZ−1) :

# L = ( uTempCell [ i ] − uTempCell [ i −1])/ dz

# R = ( uTempCell [ i +1] − uTempCell [ i ] ) / dz

# dudzCel lTemp [ i ] = np . abs (minmod(L ,R) )

#%%

# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

# p l t . imshow ( r e s u l t s 1 [ 0 ] , i n t e r p o l a t i o n =’none ’ , cmap=’ v i r i d i s ’ , a s p e c t=nT/nZ)

# p l t . c l im (0 ,1 )

# p l t . c o l o r b a r ( )

# f i g . s a v e f i g ( r ”C:\ Users\ J i a x i n Zhang\Desktop\myimage ” , format=’png ’ , dp i =1200)

# p l t . t i t l e (” Mu l t i p l e Da ta s e t s in One P lo t ”)

# p l t . draw ( )

#%%

# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

# p l t . imshow ( r e s u l t s 1 [ 0 ] , i n t e r p o l a t i o n =’none ’ , cmap=’ v i r i d i s ’ , a s p e c t=nT/nZ)

# p l t . c l im (0 ,1 )

# p l t . c o l o r b a r ( )

# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

# p l t . imshow ( r e s u l t s 1 [ 1 ] , i n t e r p o l a t i o n =’none ’ , cmap=’ v i r i d i s ’ , a s p e c t=nT/nZ)

# p l t . c l im (0 ,1 )

# p l t . c o l o r b a r ( )

# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

# p l t . imshow ( r e s u l t s 1 [ 2 ] , i n t e r p o l a t i o n =’none ’ , cmap=’ v i r i d i s ’ , a s p e c t=nT/nZ)

# p l t . c l im (0 ,1 )

# p l t . c o l o r b a r ( )

# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

# p l t . imshow ( np . ones ( [ nZ , r e s u l t s 1 [ 0 ] . shape [ 1 ] ] )−r e s u l t s 1 [0]− r e s u l t s 1 [1]− r e s u l t s 1

[ 2 ] , i n t e r p o l a t i o n =’none ’ , cmap=’ v i r i d i s ’ , a s p e c t=nT/nZ)

# p l t . c l im (0 ,1 )

# p l t . c o l o r b a r ( )

# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

# p l t . imshow ( r e s u l t s 1 [ 3 ] , i n t e r p o l a t i o n =’none ’ , cmap=’ v i r i d i s ’ , a s p e c t=nT/nZ)

# p l t . c l im (0 ,1 )

# p l t . c o l o r b a r ( )

# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

# p l t . imshow ( r e s u l t s 1 [ 4 ] , i n t e r p o l a t i o n =’none ’ , cmap=’ v i r i d i s ’ , a s p e c t=nT/nZ)

# p l t . c l im (0 ,1 )

# p l t . c o l o r b a r ( )
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# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

# p l t . imshow ( np . ones ( [ nZ ,nT+1])−r e s u l t s 1 [0]− r e s u l t s 1 [1]− r e s u l t s 1 [2]− r e s u l t s 1 [3]−

r e s u l t s 1 [ 4 ] , i n t e r p o l a t i o n =’none ’ , cmap=’ v i r i d i s ’ , a s p e c t=nT/nZ)

# p l t . c l im (0 ,1 )

# p l t . c o l o r b a r ( )

# np . s a v e t x t (” r e s u l t s 0 1 0 P 0 0 s p r e a d l e f t s i d e . c s v ” , r e s u l t s 1 [ 0 ] , d e l im i t e r =” ,”)

# np . s a v e t x t (” r e s u l t s 1 1 0 P 0 0 s p r e a d l e f t s i d e . c s v ” , r e s u l t s 1 [ 1 ] , d e l im i t e r =” ,”)

# np . s a v e t x t (” r e s u l t s 2 1 0 P 0 0 s p r e a d l e f t s i d e . c s v ” , r e s u l t s 1 [ 2 ] , d e l im i t e r =” ,”)

# np . s a v e t x t (” r e s u l t s 3 1 0 P 0 0 s p r e a d l e f t s i d e . c s v ” , r e s u l t s 1 [ 3 ] , d e l im i t e r =” ,”)

# np . s a v e t x t (” r e s u l t s 4 1 0 P 0 0 s p r e a d l e f t s i d e . c s v ” , r e s u l t s 1 [ 4 ] , d e l im i t e r =” ,”)

# np . s a v e t x t (” r e s u l t s 5 1 0 P 0 0 s p r e a d l e f t s i d e . c s v ” , r e s u l t s 1 [ 5 ] , d e l im i t e r =” ,”)

# np . s a v e t x t (” r e s u l t s 6 1 0 P 0 0 s p r e a d l e f t s i d e . c s v ” , r e s u l t s 1 [ 6 ] , d e l im i t e r =” ,”)

# np . s a v e t x t (” r e s u l t s 7 1 0 P 0 0 s p r e a d l e f t s i d e . c s v ” , r e s u l t s 1 [ 7 ] , d e l im i t e r =” ,”)

# np . s a v e t x t (” r e s u l t s 8 1 0 P 0 0 s p r e a d l e f t s i d e . c s v ” , r e s u l t s 1 [ 8 ] , d e l im i t e r =” ,”)

# end = tm . t ime ( )

# resu l t sNew1 = r e s u l t s 1 [ 0 ]

# re su l t sNew2 = r e s u l t s 1 [ 1 ]

# r e s u l t sO l d 1 = r e s u l t s L

# r e s u l t sO l d 2 = r e s u l t s S

# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

# p l t . imshow ( resu l t sNew1−r e s u l t sO l d 1 , i n t e r p o l a t i o n =’none ’ , cmap=’ v i r i d i s ’ , a s p e c t=

nT/nZ)

# p l t . c o l o r b a r ( )

# f i g , axes = p l t . s u b p l o t s (1 ,1 , f i g s i z e = (5 ,5 ) )

# p l t . imshow ( resu l t sNew2−r e s u l t sO l d 2 , i n t e r p o l a t i o n =’none ’ , cmap=’ v i r i d i s ’ , a s p e c t=

nT/nZ)

# p l t . c o l o r b a r ( )
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Appendix D

Poly-disperse simulation

figures
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Appendix E

Matlab code for triangular

breakage simulation

clear

%% s e t c o n t r o l parameters

pBase = 0 . 8 ;

iterationNum = 100 ;

p a r t i c l e S i d e L i s t = [ 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 ] ’ ;

s i z eRa t i o = 1/3 ;

%% i t e r a t e a u t oma t i c a l l y

for k = 1 : iterationNum

% make a temporary copy o f data

s ideL i s t t emp = pa r t i c l e S i d e L i s t ;

% from the 3 rd i t e r a t i o n o f breakage , app l y t h e D10 non−break f i l t e r

i f k > 2

par t i c l eCount s = 1 ;

for i = 1 : s ize ( s ideLi s t temp , 2 )

% count po l ygon number o f each s i z e c a t e g o r y

par t i c l eCount s ( i , 1 ) = length (nonzeros ( s ideL i s t t emp ( : , i ) ) ) ;

end

p a r t i c l e S i z e s = zeros (sum( par t i c l eCount s ) ,1 ) ;

sumNum = 0 ;

for i = 1 : length ( par t i c l eCount s )

% acce s s p a r t i c l e s o f one s i z e c a t e g o r y

sumNumNew = sumNum + par t i c l eCount s ( i ) ;

% record t h e wid th o f t h i s ca t egory , s e t t i n g t h e s t a r t i n g v a l u e

% to be 1

p a r t i c l e S i z e s (sumNum+1:1:sumNumNew) = 1∗ ( (1/3) ˆ( i −1) ) ;

sumNum = sumNumNew;

end

% ge t t h e D10 t h r e s h o l d
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th r e sho ld = quant i l e ( p a r t i c l e S i z e s , 0 . 10 ) ;

% app l y t h e D10 f i l t e r :

% Dilema : t h e s i z e s o f po l y gon s obey a d i s c r e t e d i s t r i b u t i o n , hence

% the D10 t h r e s h o l d would on l y f i l t e r po l y gons in b i g ’ chunks ’ .

% But f o r t h e t ime be ing , I am abus ing t h i s f a c t , j u s t t o see what

% would happen . So I am l o o p i n g over a l l t h e s i z e columns , check

% i f t h e s i z e o f t h i s column i s sma l l e r than D10 t h r e s h o l d . I f so ,

% we make the a l g o r i t hm t h i n k t h i s c l a s s i s 6− s i d e d f o r t h i s

% i t e r a t i o n ONLY.

for j = 1 : s ize ( s ideLi s t temp , 2 )

sizeTemp = 1∗ ( (1/3) ˆ( j −1) ) ;

i f sizeTemp < th r e sho ld

% i f some column has s i z e sma l l e r than t h r e s h o l d ,

% we t r e a t t h i s column as hexagons f o r t h i s i t e r a t i o n ONLY

s ideL i s t t emp ( s ideL i s t t emp ˜= 0) = 6 ;

end

end

end

% check t h e number o f ’ corners ’ a v a i l a b l e to b reak

s ideL i s t t emp = 6 − s ideL i s t t emp ;

s ideL i s t t emp = mod( s ideLi s t temp , 6 ) ;

%po s s i b l eB r e a k sTo t a l = sum(sum( s i d eL i s t t emp ) ) ;

% acc e s s each p r e s en t p a r t i c l e

for i = 1 : s ize ( s ideLi s t temp , 1 )

for j = 1 : s ize ( s ideLi s t temp , 2 )

nCorners = s ideL i s t t emp ( i , j ) ;

% i f i t has 6 s i d e s or i s empty entry , s k i p

i f nCorners == 0

cont inue

end

p1 = p( pBase , j ) ;

% s imu l a t e b r eakage f o r ONE p a r t i c l e w i th g i v en p r o b a b i l i t y

breakOutcome = randsample ( [ 1 , 0 ] , nCorners , true , [ p1 , 1 − p1 ] ) ;

% record how many b r ea ka g e s a c t u a l l y occur

breakCount = length (nonzeros ( breakOutcome ) ) ;

% update p a r t i c l e i n f o rma t i on : mother p a r t i c l e g e t s more s i d e s

p a r t i c l e S i d e L i s t ( i , j ) = p a r t i c l e S i d e L i s t ( i , j ) + breakCount ;

% check i f t h e r e are some ’ newer ’ c l a s s p a r t i c l e s a l r e a d y

i f s ize ( p a r t i c l e S i d eL i s t , 2 ) == j

newParticleCount = 1 ;

else

newParticleCount = length (nonzeros ( p a r t i c l e S i d e L i s t ( : , j +1) ) ) + 1 ;

end

% update p a r t i c l e i n f o rma t i on : new p a r t i c l e s are t r i a n g l e s

for count = 1 : breakCount

p a r t i c l e S i d e L i s t ( newParticleCount , j +1) = 3 ;

newParticleCount = newParticleCount+1;

end

end

end

% p a r t i c l e S i d e L i s t

end
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% c a l c u l a t e number o f p a r t i c l e s o f each s i z e ( from l a r g e s t t o sma l l e s t )

par t i c l eCount s = 1 ;

for i = 1 : s ize ( p a r t i c l e S i d eL i s t , 2 )

par t i c l eCount s ( i , 1 ) = length (nonzeros ( p a r t i c l e S i d e L i s t ( : , i ) ) ) ;

end

% popu l a t i o n pe r c en t a g e o f t h e two sma l l e s t s i z e s

sum( par t i c l eCount s ( [ end−1,end ] ) ) / sum( pa r t i c l eCount s )

% assume the o r i g i n a l p a r t i c l e has d iameter 1 , and each ’ fragment ’ has

% 1/3 wid th o f i t s mother p a r t i c l e

p a r t i c l e S i z e s = zeros (sum( par t i c l eCount s ) ,1 ) ;

sumNum = 0 ;

for i = 1 : length ( par t i c l eCount s )

sumNumNew = sumNum + par t i c l eCount s ( i ) ;

p a r t i c l e S i z e s (sumNum+1:1:sumNumNew) = 1∗ ( ( s i z eRa t i o ) ˆ( i −1) ) ;

sumNum = sumNumNew;

end

figure

p3 = cd fp l o t ( p a r t i c l e S i z e s ) ;

set (p3 , ’ l i n e w i d t h ’ , 2 )

set (gca , ’ X S c a l e ’ , ’ log ’ )

xlabel ( ’ S i z e ’ )

ylabel ( ’ C u m u l a t i v e p e r c e n t a g e ’ )

set (gca , ’ F o n t S i z e ’ , 15)

t i t l e ( ’ ’ )

% pr i n t (’− depsc ’ , ’ t r i b r e a k c d f . eps ’ )
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