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ABSTRACT 

Urbanisation, climate change, and their impacts on hydrological 

processes are a growing concern in urban watersheds around the world. 

This research examined the complex relationship between land use and 

land cover (LULC) change, precipitation variability, and their combined 

spatio-temporal impacts on surface runoff and river discharge in the 

Klang River basin, Malaysia.  

The research utilised an integrated approach, combining outputs from 

LULC and climate models with a hydrological model. Trend analysis of 

LULC, precipitation, and temperature were also carried out, to detect 

trends in these parameters. 

The maximum likelihood algorithm and The Decision Forest – Markov 

Chain models were used for LULC classification and LULC change 

modelling. Mann-Kendall and Sen’s Slope statistical methods were used 

for trend analysis. Lastly, the Soil and Water Assessment Tool (SWAT) 

was used for the hydrological modelling of surface runoff and river 

discharge.  

The results of the study, reveal a significant trend in LULC, mostly 

attributed to the increasing trend in urban land, where urban areas 

increased by 147.5 km² (11.8 %), and natural vegetation decreased by 

73.4 km² (5.9%) in the period 1999 to 2017. Similarly, increasing trends 
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were observed in precipitation intensity and frequency in urban areas. 

An increasing trend was also detected in temperature, specifically land 

surface temperature.  

The hydrological modelling results demonstrate the relationship 

between these changes and increased surface runoff and river 

discharge. The results also illustrate that LULC changes have a more 

significant impact on hydrological processes compared to climate 

change, especially in urbanised regions.  

However, the magnitude and contribution of these changes are still 

uncertain in many watersheds in Malaysia. Hence, this study addressed 

the gap in research by integrating the impact of both LULC change and 

climate change variables on hydrological processes, where previous 

studies only considered one or the other.  

The outcome of the quantitative analysis of this study can help 

policymakers prioritise the protection and conservation of urban green 

spaces and forests, implement green and climate-resilient 

infrastructure, and consider the potential future impacts of both LULC 

and climate change on hydrological processes in urban planning and 

decision making.  

Keywords: Land use change, hydro-meteorological trends, hydrological 

modelling, SWAT, surface runoff.  
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND 

Water is an important part of sustainable development, as it is an 

essential natural resource for human activity. Land use and land cover 

(LULC) change and changes in precipitation properties are two major 

factors that greatly affect water resources and the hydrological cycle. 

Surface runoff and river discharge are among the major parameters of 

the hydrological cycle that are directly affected by LULC and 

precipitation changes. 

The combination of LULC and precipitation change can potentially have 

a significant effect on surface runoff and river discharge. Therefore, to 

effectively manage water resources it is essential to develop an 

integrated spatio-temporal model that assesses the impacts of LULC and 

precipitation changes on runoff and river discharge at basin level.  

The interrelated relationship between LULC and precipitation changes 

and their effects on surface runoff and river discharge can be complex. 

The changes in LULC can impact the amount and timing of runoff, while 

changes in precipitation like shift in patterns and intensity can 

exacerbate these effects. LULC change can occur because of urban and 

agricultural expansion, deforestation, and mining activities. When LULC 

changes occurs, it can alter the biogeochemical cycles and 
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biogeophysical processes between the surface and atmosphere (Zhou et 

al., 2020).   

LULC change can impact biogeochemical cycles like the carbon cycle by 

altering carbon sinks and carbon dioxide (CO²) emissions (Li et al., 

2020), and affects biogeophysical process like surface albedo, 

roughness, and evapotranspiration (Lejeune et al., 2017; Winckler et 

al., 2017; Hirsch et al., 2018), and hence alter the energy budget, water 

budget and atmospheric variables like temperature and precipitation.  

Urbanisation can greatly affect surface properties, like an increase in 

imperviousness due to roads, pavements, and buildings, which can 

significantly reduce infiltration and increase surface runoff. Urbanisation 

can also lead to deforestation and reduction in vegetation cover, which 

can further reduce evapotranspiration, interception by plants and 

increase soil compaction, hence leading to increase in surface runoff. 

Several studies have shown the changes to surface properties due to 

urbanisation can alter and induce precipitation over urban areas (Pielke 

et al., 2002; Shepherd, 2005; Liang and Ding, 2017; Niyogi et al., 2017; 

Liu and Niyogi, 2019; Singh and Qin, 2020; Yu et al., 2020). Past studies 

have shown that the combination of increasing temperature and cloud 

nucleating aerosols in urban areas has greatly affected precipitation 

properties, where increase in precipitation amount and intensity has 



Page | 18  
 

been observed as a result (Seino et al., 2018; Varentsov et al., 2018; 

M. Wu et al., 2019; Schmid and Niyogi, 2017; Zhong et al., 2017). 

Other land-use changes like agricultural expansion and mining can also 

greatly affect surface properties, like increasing soil erosion, which can 

increase sediment loading in rivers and reduce the water holding 

capacity of soils, and removal of vegetation cover, which all can lead to 

an increase in surface runoff.  

LULC change around the world has seen significant rise in the past few 

decades, because of increasing population, demand for agricultural land, 

increasing economic growth, and urbanisation. More than 70% of the 

global ice-free land surface is directly affected by anthropogenic actions 

(IPCC, 2019), and in the past five decades, the driving force behind 

these LULC changes has been the increase in agricultural land, and since 

1992 rapid urbanisation has also added to the ever-growing change in 

LULC (Díaz et al., 2019). 

To understand the effects of LULC change on surface runoff and river 

flow, it’s important to first carry out land use change modelling, with its 

results being used as input into hydrological models. Land use change 

modelling provides a systematic method for quantifying and simulating 

these changes and helps in estimating future scenarios. Furthermore, 

the output from land use and climate change models can be integrated 
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with hydrological models, which allows for greater understanding of 

these complex interactions between LULC, climate and hydrological 

processes. Researchers can examin how different land use scenarios 

affect surface runoff and river flow under different climate conditions 

using various statistical, empirical, or process-based models. 

There are several types of models with which LULC change modelling 

can be carried out. There are statistical models like Markov Chain (MC), 

empirical models like logistic regression, dynamic models like Cellular 

Automata (CA), and integrated models. The Decision Forest – Markov 

Chain (DF-MC) model used in this research is an integrated model where 

the Random Forest machine learning algorithm is integrated with MC.  

DF-MC is largely used for land use classification; however, a few studies 

have shown its effectiveness in land use change modelling too. Al-sharif 

and Pradhan, (2015); Samardžić-petrović et al., (2015); Karimi et al., 

(2019) all used DF-MC to model land use change, and the studies 

concluded that it is an effective method in predicting future scenarios of 

land use change.  

The DF-MC model has several advantages over other models. The DF 

model is easy to understand and interpret, it is highly flexible and 

adaptable to various types of data, it can capture non-linear 

relationships between input variables and land use change outcomes, it 
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can handle missing data effectively, which is a common issue in land use 

change modeling due to data availability and quality, and decision forest 

is an ensemble of random tress which improves performance and 

reduces overfitting (Bruch et al, 2020; Colkesen and Kavzoglu, 2019).  

The Klang River basin is an important source of water for Kuala Lumpur 

and its surrounding area. The basin has experienced significant 

environmental challenges, including land use changes, shift in local 

weather parameters like precipitation and temperature. These changes 

have had an impact on the hydrological cycle, water quantity and quality 

of the basin. However, the contribution and magnitude of these changes 

are still uncertain in many basins in Malaysia and in the Klang River 

basin, with most previous studies focusing only on either land use 

change or climate change. 

Understanding the role of LULC change and changes in climate 

parameters in the hydrological cycle, and the effects in future scenarios, 

is important in the mitigation and implementation of land use policies 

and planning, and helps policy makers, and stake holders to better 

tackle the future issues related to LULC change. 

1.2 PROBLEM STATEMENT 

Changes in land use and land cover coupled with changes in precipitation 

have the potential to greatly alter hydrological processes and pose 
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significant threats to water resources in river basins. LULC change can 

alter surface properties like permeability which can affect infiltration, 

surface runoff and river discharge. It can also affect surface albedo and 

evapotranspiration, which can lead to changes in precipitation, and 

these changes to surface properties can hence increase risk of flooding.  

Malaysia has seen a rapid change in LULC in the last 50 years, due to 

population and economic growth. Agricultural land has been the 

dominant land use change in Malaysia, however, since the early 1990s, 

urbanisation has seen an accelerated increase. The Malaysian 

government in 1991 implemented the Vision 2020 with the goal to 

achieve a fully developed and industrialised economy by 2020, and this 

has led to accelerated LULC change and urbanisation. The state of 

Selangor has seen the greatest increase in population and urbanisation 

in this period, and as of 2010 the federal territories of Kuala Lumpur and 

Putrajaya are 100% urbanised (Hasan and Nair, 2014).  

Flooding has been a major issue in Malaysia, and the country has 

experienced significant flooding events in recent years, which have 

resulted in loss of life and economic damage (Table 1.2-1). 

Table 1.2-1: List Of Flood Events In Malaysia. 

Year Cost (millions) Victims Deaths 

1926 / / 45 

1967 >60 MYR >250000 / 

1971 >84.7 MYR 180000 24 

1996 300 USD 39687 241 
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2000 / 100000 15 

2001 0.65 USD >10000 14 

2003 / 31046 5 

2005 240 MYR 99405 14 

2007 605 USD 137533 17 

2007 316 MYR 36143 22 

2008 21 USD 34000 28 

2010 8 USD 50000 4 

2013 / 34000 3 

2014 2900 MYR >500000 25 

(Bell et al., 2020) 

Selangor has faced several major flooding and extreme weather events 

during the last two decades, for example, the floods on 30th April 2000, 

26th April 2001, 29th October 2001, 11th June 2002, 10th June 2003, and 

10th June 2007 (Samsuri et al., 2018), and in recent years areas like 

Kajang Town faced flash floods in 2002, 2008, 2011 and three times in 

2014, resulting in damages and economic loss to the people in the area. 

It is estimated that during floods there is around 51.5% in economic 

loss due to businesses being unable to operate, and about 46% loss due 

to damages to goods and commodities (Bari et al., 2021).  

Despite numerous studies on the effects of land use changes and climate 

change on hydrological processes, the combined effects of these factors 

on surface runoff and river flow dynamics are poorly understood. 

There have been few past studies that have analysed the combined 

effects of LULC and climate change on hydrological process in Malaysia. 

For instance, the study by (Tan et la., 2015) investigated separate and 
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combined impacts of land use and climate variability on hydrological 

components in the Johor River Basin, however the study did not consider 

future LULC and climate scenarios. Most of the past studies in Malaysia 

have been concentrating on either LULC impacts or climatic impacts, 

therefore there is still gaps in knowledge on the combined effects of 

LULC and climate change.  

For example, the study by Kabiri et al., (2015) examined the effects of 

climate change on river discharge in the Klang River basin, where the 

study used global climate models for emission scenarios A2 and B2 for 

the period 2001 -2100. However, this study did not consider land use 

change and the effects of land use change on river discharge.  

Therefore, this research aims to bridge the gap in existing knowledge 

by assessing the combined effects of LULC and precipitation changes on 

hydrological processes, with a focus on surface runoff and river 

discharge in the Klang River basin. Importantly, the research will 

analyse the potential impacts of LULC changes, especially urban 

expansion, coupled with projected precipitation and temperature change 

scenarios on hydrological processes in the Klang River basin. To achieve 

this aim, the study will integrate future LULC and climate scenarios into 

the analysis, which will provide an overall understanding of the potential 

threats to water resources, particularly in the face of increasing flood 

events.  
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The study will contribute to both the scientific understanding of these 

complex interactions and provide valuable insights for policymakers and 

urban planners. Ultimately, this research aims to provide valuable 

information, to help in sustainable land use planning and water resource 

management in the Klang River basin. 

1.3 AIM AND OBJECTIVES 

The aim of this research is to assess the combined spatio-temporal 

impacts of land use and land cover (LULC) changes and precipitation 

variations on surface runoff and river discharge within the Klang River 

basin, while also projecting these effects under future scenarios. 

The objectives are: 

1. To analyse spatio-temporal trends in land use and land cover, 

precipitation, and temperature.  

2. To develop an integrated spatio-temporal hydrological model, with 

land use and climate models. 

3. To measure quantitative effects of both LULC and precipitation 

changes on surface runoff and river discharge. 

1.4 RESEARCH QUESTIONS 

The following research questions will be used to address and achieve 

the objectives of the study.  
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1. What is the magnitude of the spatio-temporal changes in LULC for 

the period 1999 to 2017 in Klang River basin? 

2. What are the future patterns of change in LULC as projected by 

DT-Markov Chain model? 

3. What is the intensity and frequency of the trends detected in 

precipitation and temperature data, for the Klang River basin?  

4. What are the quantitative effects of both LULC change and 

precipitation change under different scenarios on the surface 

runoff and river discharge in Klang River basin?  

1.5 SIGNIFICANCE OF THE STUDY 

Southeast Asia is one of the most populated regions in the world, with 

a large number of the population living within urban areas located close 

to major water resources like rivers, lakes, and coastal lines. LULC and 

climate change have greatly affected the hydrological cycle and water 

resources in this part of the world, where natural disasters like extreme 

weather events and flooding occur regularly.  

Although the effects of LULC and climate change can be observed at 

different scales, it is at local and watershed levels that these effects are 

significant. It is therefore important to assess these effects, which play 

an important part in policy making discussions and urban planning at 

the local level. 
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The Klang River basin located in the state of Selangor, is a highly 

urbanised and populated basin. In the past few decades, the basin has 

experienced major LULC change, in particular urban expansion, which 

has resulted in areas like the federal territories of Kuala Lumpur and 

Putrajaya becoming 100% urbanised. Current studies have shown that 

LULC change has played an integral role in impacting hydrological 

processes and increasing the risk of flooding in the Klang River basin.  

Research on precipitation and temperature trends has shown that these 

climate variables can also impact the hydrological cycle and water 

resources of the basin. However, in most of these studies the combined 

effects of LULC change and changes in precipitation variables were not 

considered. As both LULC and precipitation changes play a significant 

role in surface runoff and river discharge, it is important to study and 

understand the relationship and impacts of both on hydrological 

processes in the Klang River basin and how these processes could be 

affected under future scenarios. 

Therefore, a quantitative assessment of the potential consequences of 

LULC change and climate change on hydrological processes at the 

watershed level in the Klang River basin, is of utmost importance. The 

results of this study can help to better understand the implications of 

LULC change and climate change in the real-world environment, which 
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can help policy makers and urban planners to incorporate the effects of 

LULC change and climate change into policies and decisions. 

1.6 SCOPE 

The focus of the study is to assess the combined effects of land use and 

land cover and precipitation change on surface runoff and river 

discharge in the Klang River basin. The first step in the study is to 

determine the spatio-temporal changes in LULC and to establish the 

pattern of change, with a particular interest in expansion of urban land 

for an 18-year period from 1999 to 2017. This is followed by modelling 

future LULC change scenarios for the year 2030, based on past trends, 

and variables that bring about change. Secondly, the study will analyse 

climatic variables, in particular precipitation and temperature for a 40-

year period from 1975 to 2015, to showcase the spatio-temporal trends, 

and compare these trends with future climate scenarios from climate 

models. Lastly, the study will integrate the LULC change and climate 

models with the SWAT hydrological model to analyse the spatio-

temporal quantitative effects of LULC and precipitation changes on 

surface runoff and river discharge in the Klang River basin.   

The study has certain limitations, with one of the limitations being that 

the LULC change modeling is only up to the year 2017, as the study 

began in year 2017 and satellite data were only available up to the year 
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2017. The other limitation is that the study only covers the Klang River 

basin, since modelling hydrological processes is complex and time 

consuming, therefore the neighboring basins were not considered for 

this study. Availability and quality of overserved data was another 

limitation to the study. 

1.7 THESIS OUTLINE 

The thesis comprises of five chapters; each chapter is briefly described 

below: 

Chapter 1 includes the introduction of the thesis, which gives a general 

introduction of the research topic. It also includes the problem 

statement, aims and objectives, research questions, scope, and 

importance of the study in the Klang River basin.  

Chapter 2 explores the impacts of land use and land cover change on 

climate and hydrological processes, and the various methodologies in 

land use, climate, and hydrological modelling, by reviewing previous 

studies. The aim of this chapter is to review previous studies and journal 

papers on the effects of land use and climate change on hydrological 

processes, to identify gaps in knowledge, and identify the strengths and 

weaknesses of the various methodologies used.  

Chapter 3 describes the methodology used in this research. This 

chapter consists of two parts, the first part describes the study area and 
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characteristics, such as climate, geology, soil, and drainage. In the 

second part, the various data and methods used in land use change 

modelling, trend analysis and hydrological modelling are described. 

Three hydro-metrological time series data are utilised in the trend 

analysis method, these are precipitation, temperature, and river 

discharge, the Mann-Kendall test and Sen’s slope are used to detect 

trends in these data. For land use change modelling, a Decision Forest 

- Markov Chain model is utilised, and for hydrological modelling the 

SWAT model is used. This chapter also presents the full description of 

the methods used for land use change modelling, trend analysis and 

hydrological modelling. 

Chapter 4 presents the results and discussions of the study. It 

demonstrates the spatio-temporal trends and changes in LULC and 

hydro-climatic variables like precipitation and temperature, in the Klang 

River basin. The LULC maps are classified and changes in land use are 

modelled for future scenarios. The Mann-Kendall test is used to analyse 

the annual and seasonal trend in precipitation intensity and frequency, 

mean, maximum and minimum temperature and river discharge. 

Landsat satellite images are utilised to generate LSTs. Finally, in this 

chapter, the separate and combined effects of LULC change and climate 

change are modelled using the SWAT hydrological model, to assess the 

changes in river discharge and runoff. 
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Chapter 5 presents the conclusions arrived through the study and 

includes the limitations the study faces, while also giving 

recommendations for future studies and for policymakers. 
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CHAPTER 2: LITERATURE REVIEW 

Land use and land cover (LULC) change can have several impacts on the 

environment, these include loss of biodiversity (Powers and Jetz, 2019), 

reduction in water quality (Calijuri et al., 2015; Hua, 2017; Namugize 

et al., 2018), impact on the hydrological cycle which can lead to increase 

in flooding (Apollonio et al., 2016; Welde and Gebremariam, 2017; Patil 

and Nataraja, 2020), regional climate change (Salazar et al., 2015; 

Findell et al., 2017), air quality change (Sun et al., 2016), and soil 

erosion (Borrelli et al., 2017). This chapter will review the literature on 

the impacts of LULC, precipitation and temperature on surface runoff 

and river discharge. The chapter will also review the global and local 

trends in LULC, precipitation and temperature, and the modelling 

methods used to analyse the impacts of these changes and trends on 

hydrological processes.  

2.1 GENERAL FACTORS AFFECTING SURFACE RUNOFF AND RIVER DISCHARGE 

There are several factors that affect surface runoff and river discharge, 

which can be natural or human induced. Among these factors 

precipitation plays a significant role, which can determine the amount 

of surface runoff and river discharge. Precipitation properties like 

volume, intensity, and duration can greatly impact surface runoff and 

river discharge.  
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Intense and prolonged precipitation, particularly when the soil is 

saturated or impermeable, can result in an increase of surface runoff 

and river discharge. On the other hand, drought and low precipitation 

events can result in decrease of surface runoff and river discharge, 

leading to low soil moisture and, in extreme cases, drying of rivers. 

Other climate and weather factors that can also impact surface runoff 

and river discharge, include temperature, evaporation rates, and 

prevailing wind patterns, which can affect water availability and 

influence the timing and intensity of runoff events (Depetris, 2021).   

LULC change is another significant factor that can affect surface runoff 

and river discharge. Urbanisation, deforestation, agricultural practices, 

and other land use changes can impact the flow of water within a 

watershed. Paved surfaces and buildings increase surface runoff by 

preventing water from infiltrating into the ground and disrupting the 

natural drainage patterns. Similarly, irrigation and reservoir 

management can modify river discharge.  

Besides LULC change, other human activities, and land modifications, 

like building of dams, levees, and reservoirs can highly impact surface 

runoff and river discharge, by changing the natural flow patterns of 

rivers and streams. For example, dams regulate flow and storage of 

water, which then affects downstream discharge. 
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The physical characteristic of a watershed also influences the movement 

of water within a watershed and ultimately affects surface runoff and 

river discharge. Watershed size, shape, slope, and soil properties can 

determine the rate and flow path of water, for example steep slopes and 

smaller watersheds tend to generate more surface runoff, impermeable 

soils can result in higher surface runoff compared to well-draining soils.  

2.2 LAND USE AND LAND COVER CHANGE IMPACTS ON SURFACE RUNOFF 

AND RIVER DISCHARGE 

Water is a vital component of the ecosystem, but its availability and 

quality are threatened by the increasing demands and pressures from 

the growing global population and economy. The hydrological processes 

that govern the water cycle, such as surface runoff, evapotranspiration, 

and infiltration, are sensitive to changes in land use and land cover 

(LULC) (Dwarakish and Ganasri, 2015).  

One of the major drivers of LULC change is agriculture, which can have 

profound effects on the hydrological cycle. For instance, deforestation 

for agricultural expansion and irrigation can alter the global 

evapotranspiration (ET) fluxes, which in turn can influence the regional 

climate (Gordon et al., 2008).  

Zou et al., (2017) found that in Northwest China, agricultural practices 

had a larger impact on ET than climate change, accounting for 60.93% 
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of the ET increase from 1984 to 2014, while climate change contributed 

28.01%. Another aspect of the hydrological cycle that is strongly 

affected by LULC change is runoff. The conversion of forests and natural 

vegetation to agricultural and urban land can reduce the soil infiltration 

capacity and increase the surface runoff generation.  

Munoth and Goyal, (2020) demonstrated that in the Upper Tapi River 

Sub-Basin, India, the LULC change from 1975 to 2016, which involved 

an 18% increase in agricultural land, a 7% decrease in forest and a 10% 

decrease in rangeland, resulted in a 32% increase in runoff. Similarly, 

Bradshaw et al., (2007) reported that a 10% decrease in natural forest 

area across 56 developing countries from 1990 to 2000 was associated 

with a 4%-28% increase in flood frequency and a 4%-8% increase in 

flood duration. 

Urbanisation is a global phenomenon that has altered the hydrological 

cycle by replacing the natural vegetation and soil, which play a key role 

in intercepting, storing, and releasing rainwater, with impervious 

surfaces such as buildings, roads, and sidewalks. These surfaces reduce 

the infiltration and evapotranspiration of rainwater and increase the 

surface runoff into streams, leading to higher peak discharge, volume, 

and frequency of floods (Bonneau et al., 2017). 
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Zang et al., (2019) showed that in the upper reaches of the Minjing 

River in China, the urbanisation of forest and grassland areas decreased 

the actual ET, soil water content, percolation, and groundwater 

contribution to streamflow, while increasing the surface runoff, water 

yield and annual runoff. In contrast, natural areas such as forests and 

grasslands have a greater capacity to regulate the rainwater through 

vegetation and soil processes and generate subsurface flow when the 

storage capacity is exceeded (Konrad, 2003).  

Zope et al., (2016) illustrated that in the Oshiwara river basin in 

Mumbai, India, the rapid urbanisation from 1966 to 2009, which 

involved a 74.84% increase in urban land and a 42.8% decrease in open 

spaces, resulted in a significant increase in runoff volume, with the 2-

year return period exceeding the 100-year return period, and an 

expansion of flood risk areas by 64.29%. These studies all reach a 

common conclusion, where agricultural and urban land uses are the two 

most significant land uses that have great impact on hydrological 

processes, in particular surface runoff.  

The future implication of LULC change on hydrological processes is an 

important issue to consider, and several studies have delved into the 

possible effects of future land use change on runoff and river discharge. 

For example, two recent studies by Mohammady et al., (2017) and 

Sinha and Eldho, (2018) assessed the effects of land use change on 
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runoff for different time periods, both studies simulated land use change 

for the year 2030 and past years and compared the runoff of each year. 

Mohammady et al., (2017) looked at the Baghsalian watershed in Iran, 

where land use maps for the years 1986, 2012 and 2030 are used. The 

results showed that the main land use change is from forest and 

rangeland to agricultural and urban areas. Similarly, Sinha and Eldho, 

(2018) used land use maps for years 1972, 1979, 1991, 2000, 2012, 

and 2030 for the Netravati River basin in India, which showed urban 

areas, agriculture and water bodies increased and forests, grassland and 

bare lands decreased from 1972 to 2030. In both studies, runoff 

simulation software is used to calculate runoff volumes, and in both 

studies the results showed an increase in runoff volume due to land-use 

change, in the case of Sinha and Eldho, (2018) there is also a continues 

increase of 7.88% in stream flow. 

2.2.1 SURFACE RUNOFF AND RIVER DISCHARGE DYNAMICS IN RESPONSE 

TO LAND USE AND LAND COVER CHANGES IN MALAYSIA 

In Malaysia, the increase in agricultural land and urbanisation, have had 

great impact on water resources and the hydrological process, which 

have increased the risk of extreme flooding. LULC change is a major 

contributor to flooding in states like Selangor, Johor, and Kelantan, 

where there has been extensive change in LULC. For example, in Sungai 

Layang catchment in Johor, the increase of agricultural and urban land 
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between the years 2000 and 2010, resulted in 47.9% loss in forest 

cover, and increased water yield by 35.46%, due to changes in 

infiltration rate and evapotranspiration, which can affect surface runoff 

(Baiya and Hashim, 2020). 

In the Kelantan River basin, correlation between deforestation, 

agricultural land, and runoff volume was observed for the period 1984 

to 2013. In this period forest areas were converted to agricultural land 

(palm oil, rubber, and paddy), urban land and grass land, which resulted 

in increased peak discharge and runoff (Abdulkareem et al., 2019, 

Saadatkhah et al., 2016,). 

Similarly in the Hulu Kelang basin in Selangor, the direct runoff volume 

from agricultural and urban land increased by 10%, and decreased by 

5% for forest land, in the period between 1994 to 2013 (Nader and 

Azman, 2017). In Hulu Langat basin, Memarian et al., (2014) analysed 

the impacts of LULC changes on water discharge and sediment load 

using the SWAT model, for past, present, and future land use scenarios. 

The study used land use maps of 1984, 1990, 1997 and 2002 as past 

land use scenarios, land use map of 2006 as present land use scenario 

and a simulated land use map of 2020 for future land use scenario. The 

results showed an increasing trend in discharge and surface runoff from 

the years 1984 -2020, due to an increase in urban land use. 
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In the Klang River basin, a study by Abas & Hashim, (2014) examined 

the relationship between urban growth and surface runoff in the Klang 

and Langat River basins for the period 2000 to 2010. The study used 

the Soil Conservation Service Curve Number (SCS CN) method and 

calculated the runoff coefficient for the land use maps of the years 2000, 

2006 and 2010. The results showed increasing runoff coefficient with an 

increase in urban area, and an average of 5% increase in runoff from 

2002 -2010.   

Similar results were found at Sungai Kayu Ara a sub basin in the Klang 

River basin, where the impact of rainfall duration, ARI (magnitude) and 

land use development on peak discharge and volume was examined 

under different land development conditions (Alaghmand et al., 2012). 

The result of the study shows, land development had more impact on 

runoff peak discharge and runoff volume compared to rainfall duration 

and magnitude, with ultimate land development condition where 

imperviousness is at 90%, having the largest increase in runoff peak 

discharge (91%) and runoff volume (45%) compared to other 

conditions. 

It is clear from all these studies, that land use change has a significant 

impact on hydrological processes in watersheds across Malaysia, and in 

particular, urban land use has the largest impact. However, in all these 

studies the combined impacts of LULC and precipitation changes on 
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hydrological processes were not analysed, with only few studies like 

Alaghmand et al., (2012) and Ebrahimian et al., (2017) which assessed 

the combined effects of LULC and climate change on hydrological 

processes. Therefore, there is still a gap in knowledge and 

understanding of the relationship between LULC and climatic changes 

on hydrological processes in Malaysia and the Klang River basin.  

2.3 LAND USE AND LAND COVER CHANGE IMPACTS ON CLIMATE VARIABLES 

2.3.1 IMPACTS ON BIOGEOCHEMICAL CYCLES 

Land is both a source and a sink of greenhouse gases (GHGs), therefore 

land use and land cover change have major impact on the 

biogeochmecial cycles, in particular the carbon cycle. In the last 50 

years, 82% of total global carbon emissions is caused by fossil fuel 

burning, and 18% by land use change (Friedlingstein et al., 2019). 

According to a 2019 report by IPCC in the period 2007- 2016, about 

13% of CO², 44% of methane (CH4), and 82% of nitrous oxide (N²O) 

emissions were due to Agriculture, Forestry and Other Land Use 

(AFOLU) activities, which accounted for 23% of total net anthropogenic 

emissions of GHGs (IPCC, 2019). 

The increase in CO² and other GHGs can affect global temperatures, 

carbon cycling can affect vegetation cover, which can directly affect 

albedo hence resulting in the increase or decrease of surface 
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temperatures. On the other hand, the GHGs and aerosols in the 

atmosphere can affect the incoming solar radiation and the outgoing 

longwave radiation by absorbing or reflecting the radiation (Megonigal 

and Neubauer, 2019). The change of LULC from forest to agricultural 

land and pasture can decrease the soil carbon concentration mainly by 

the reduction of detritus, the acceleration of soil organic matter 

decomposition, and the destruction of the physical protection of organic 

matter due to agricultural practices (Yang et al., 2003). 

Climate modelling for the period 1850 to 2300, shows carbon loss of 

490 Pg C  due to land conversion, which is larger than the 230 Pg C 

caused by climate change, and 40% of the carbon loss due to LULC 

change is due to direct human modification of land surface (Mahowald 

et al., 2017). Other GHGs have also been increasing due to LULC 

change, for example, global N₂O has increased since 1750 from a pre-

industrial concentration of 270 ppbv to 330 ppbv in 2017, and the main 

source of N₂O is agriculture (IPCC, 2019). 

2.3.2 IMPACTS ON BIOGEOPHYSICAL PROCESSES 

LULC change also affects the biogeophysical processes of earth’s 

surface, like surface albedo, roughness, and evapotranspiration, which 

can impact local, regional, and even global climate. The changes in the 

biogeophysical processes leads to changes in the energy and moisture 
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budget of the land surface, which hence alters the flow of heat, water, 

and dynamics of near-surface atmosphere and influences properties of 

the atmosphere (Deng et al., 2013).  

Surface albedo is the fraction of the sunlight reflected by the earth’s 

surface and is a main part of the energy budget. The change in surface 

albedo can result in an increase or decrease in temperature, which can 

hence affect other climate variables like precipitation, by affecting the 

amount of water vapor the atmosphere can hold, which affects the 

planet’s cloudiness, which in turn again affects the albedo, and hence 

the cycle starts again (Perkins, 2019).  

During 1750–2011, the global albedo effect had an estimated radiative 

forcing of about -0.15±0.10 Wm−2, which is a small amount due to 

LULC change being highly regionalised, however the effects of local LULC 

change on albedo can be significant (Zhang and Liang, 2018). Different 

land use types and land covers have different albedos, for example, 

fresh snow covering sea ice has a 85% reflective rate, whereas ocean 

waters can have 7% reflective rate (Perkins, 2019). 

Forests for example, usually have low albedo but have higher 

evapotranspiration rates, compared to open vegetation, therefore this 

can lead to warming through higher absorption of shortwave radiation, 

however this is encountered by the cooling effect from the loss of latent 
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heat due to evapotranspiration (Prevedello et al., 2019). Forests and 

other vegetation like grassland, also have impact on spatial and 

seasonal variations in albedo and temperature. For example, 

deforestation and afforestation in Europe have varying effects on albedo 

and temperature at different latitudes, and seasons.  

A climate modeling study by Tölle et al., (2018) used the COSMO-CLM 

(v5.09) regional climate model to study the sensitivity of temperature 

to albedo parametrisation in Europe for the period 1986-2015. The 

results showed afforestation in the mid-latitudes has a strong warming 

effect during winter due to lower albedo, however, during summer 

afforestation has a small effect on warming, due to the cooling effects 

of evapotranspiration. On the other hand, the warming effect due to 

deforestation in the summer is 3°C higher than the warming from 

afforestation, and in the high latitudes the high conversion of forest to 

grassland, which results in high snow cover during winter has cooling 

effect of about -0.5°C.  

A similar study by Huang et al., (2020) also looked at the effects of LULC 

changes on temperature and humidity in Europe for the period 1992-

2015. The study came to similar conclusions, where revegetation of 

abandoned agricultural land in Eastern Europe resulted in a warming 

effect, due to reduction of surface albedo and soil moisture-temperature 
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feedback, and Southern, Central and Western parts of Europe 

experienced an average cooling of -0.12°C. 

However, deforestation and afforestation in the tropical and temperate 

regions show the opposite effect, where deforestation has a warming 

effect and afforestation has a cooling effect (Li et al., 2015, Li et al., 

2016; Alkama and Cescatti, 2016). From 2000-2010 deforestation in 

the tropics and temperate regions caused an average warming of 0.38°C 

and 0.16°C respectively, whereas afforestation resulted in cooling of 

about -0.18°C and -0.19°C in these same regions. The tropical regions 

have the highest sensitivity to forest changes, where losses of about 

50% in forest cover resulted in 1.08°C increase in land surface 

temperature (LST), and a similar forest cover gain reduced LST by -

1.11°C (Prevedello et al., 2019). 

Urbanisation also has low albedo, and high absorption rate, due to the 

darker color materials used in urban areas, like asphalt and concrete (Li 

et al., 2013). For example, Trlica et al., (2017) studied the variations in 

albedo and surface temperatures across an urbanised landscape, and 

the study found that with increasing urbanisation, surface albedo 

decreased and surface temperature increased. The combination of low 

albedo, vegetation cover, and moisture plus the added heat from 

anthropogenic activities in urban areas, results in a phenomenon known 

as Urban Heat Island (UHI) effect, where urban areas have higher 
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temperature than the surrounding rural areas (Lo and Quattrochi, 

2003).  

UHI effect is generally very localised and is dependent on local 

vegetation cover, albedo, and climate variables like wind, cloud cover, 

and the proximity to sea (IPCC, 2007). A study on surface urban heat 

island intensity (SUHII) effect across 419 global big cities, showed an 

average annual increase of 1.5°C for daytime SUHII, and an increase of 

1.1°C for nighttime SUHII. The study found a negative correlation 

between daytime SUHII and urban vegetation cover (Peng et al., 2012). 

In South East Asia, urbanisation has been increasing at a rapid rate, 

where currently half of the population live in urban areas, and by 2025 

about 70 million more people will be living in urban areas (Rahman et 

al., 2020). A study by Estoque et al., (2017) examined the relationship 

between LST with impervious surface and green spaces, in the 

metropolitan cities of Bangkok (Thailand), Jakarta (Indonesia), and 

Manila (Philippines). The study found a strong significant positive 

correlation between LST and density of impervious surfaces, and a 

negative correlation with green spaces, where the mean LST of 

imperviousness surfaces is about 3°C higher than that of green spaces.  

The changes in evapotranspiration (ET) and surface roughness due to 

LULC change also affect the climate and go hand in hand with the effects 
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of albedo. ET is the combined process of evaporation from the soil and 

transpiration from the vegetation mainly through the leaves (Boulet et 

al., 2020). ET is a major part of Earth’s energy balance, and influences 

the planetary boundary layer, mesoscale circulation patterns, and 

weather, it is also a large part of the hydrological cycle and accounts for 

60% of continental precipitation (Liang et al, 2012), and 70% of total 

global precipitation (Good et al., 2015). ET is influenced by atmospheric 

variables (radiation, wind speed, temperature, and vapor pressure 

deficit), vegetation type, and available soil moisture (Wang et al., 2018; 

Ajami, 2021). 

Surface roughness can have a major control on atmospheric responses 

to LULC changes, where it can impact vertical wind speed, air 

temperature, mesoscale and global momentum exchange, energy 

exchange between land and atmosphere, and turbulent air mixing (June 

et al., 2018). For example, a decrease in surface roughness can increase 

the boundary layer wind speed (Laban et al., 2019), deforestation can 

results in reduction of surface roughness which can alter precipitation  

(Khanna and Medvigy, 2014; Khanna et al., 2017). 

2.3.2.1 IMPACT OF URBANISATION ON PRECIPITATION 

The biogeopheysical processes can also play a major role in precipitation 

variability, changes due to urbanisation can alter precipitation over an 
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urban area. The increase in urban areas results in the increasing of 

surface roughness, rise in air temperature, increase in aerosols which 

then provide a source for cloud condensation nuclei, and the urban 

canopy can result in diverting of precipitating systems (Shepherd, 

2005). Several studies on the impact of urbanisation on precipitation 

show an increase in precipitation amounts and intensity over urban 

areas attributed to an increase in temperature (Seino et al., 2018; 

Varentsov et al., 2018; Wu et al., 2019), cloud nucleating aerosols 

(Schmid and Niyogi, 2017), and a combination of temperature increase 

and aerosol effect (Zhong et al., 2017). 

The increase in greenhouse gases and aerosols due to urbanisation, 

industrialisation, and biomass burning, creates a mechanism called 

aerosol-enhanced conditional instability. The burning of fossil fuels and 

biomass produces a pollutant called ‘black carbon’, which when 

suspended in the atmosphere absorbs the sun’s radiation. During the 

daytime, this process stabilises the atmosphere and suppresses local 

storms, subsequently the wind transports heavy warm moist air to 

mountainous regions, which is lifted, generating strong convection and 

extremely heavy precipitation in the evening (Figure 2.3-1). 

Simulations by Fan et al., (2015), at northwest of the Sichuan basin in 

China, showed that heavy air pollution trapped in the basin significantly 

enhanced the rainfall intensity over the mountainous areas through the 



Page | 47  
 

aerosol-enhanced conditional instability, which resulted in catastrophic 

flooding in the Sichuan basin on 8-9 July 2013.  

 

 

Figure 2.3-1: Aerosol-Enhanced Conditional Instability Increasing Rainfall Levels In 

Sichuan. Acronyms: MSE (Moist Static Energy), SW (Shortwave Radiation), SH 

(Surface Sensible Heat Flux), And LH (Surface Latent Heat Flux) (Fan et al., 2015) 

In Northern Taiwan, heat from anthropogenic activities has shown to 

influence precipitation formation, where climate modeling shows 

precipitation to be stronger on urban areas compared to non-urban 

areas (Lin et al., 2011). In another study by Yang et al., (2017), it is 

observed that there is a relationship between urban heat island intensity 

(UHII) and short duration intense rainfall (SDIR) in Beijing. The study 

found that SDIR occurred more frequently in urban areas compared to 
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rural areas and mostly in the summer, it also showed that UHII is at its 

highest before the start of SDIR events. 

2.3.3 IMPACTS OF LAND USE AND LAND COVER CHANGE ON LOCAL 

CLIMATE IN MALAYSIA 

Malaysia is one of the most urbanised countries in East Asia (Plecher, 

2020), in 2020 the urban population in Malaysia was at 75%, with 

projections estimating by 2040, it will reach 85% (Samat et al., 2020). 

This has resulted in expansion of urban areas at the expense of other 

land covers, by 2010 the federal territories of Kuala Lumpur and 

Putrajaya were 100% urbanised, and the state of Selangor was 91.4% 

urbanised (Hasan and Nair, 2014). The effects of urbanisationthe 

citycityUHI in Selangor and in particular the Greater Kuala Lumpur (GKL) 

area have been studied as early as 1972 by (Sani, 1972), who used in-

situ data collection using temperature traverse technique, and 

determined that temperatures are higher at the city center compared to 

its surrounding rural areas.  

More recent studies have been carried out to analyse UHI in GKL, for 

example, Elsayed, (2012) modified the methods used by Sani in 1972 

and analysed UHI in GKL, whereas several studies used geographic 

information system (GIS) and remote sensing methods to study UHI 

(Shaharuddin et al., 2014; Yusuf et al., 2014; Amanollahi et al., 2016), 
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and some studies used climate models like ADMS-Urban (Wang et al., 

2019) and Weather Research and Forecasting (WRF) Model (Morris et 

al., 2015, 2017). The consensus from all these studies is that UHII is 

higher in urban areas compared to its surrounding rural areas, and the 

intensity ranges between 4°C – 6°C in most studies, with some studies 

showing intensity as high as 8°C.  

2.4 IMPACT OF CLIMATE VARIABILITY ON SURFACE RUNOFF AND RIVER 

DISCHARGE 

Climate variability, in particular precipitation changes can significantly 

impact hydrological processes in a watershed (Zhang et al., 2016). To 

better plan and manage water resources, it is important to understand 

the impacts of changes in climate parameters on hydrological processes 

within a watershed (Amisigo et al., 2015). The changes in climate 

parameters can have a direct impact on the spatial and temporal 

dynamics of the water cycle. These changes can affect precipitation 

patterns, intensity, and duration, evaporation rates and overall water 

availability in a watershed (Konapala et al., 2020).  

The changes in climate parameters can cause several hydrological 

issues, including altering of river flow, surface runoff, impacts on 

groundwater recharge, and overall changes in the water balance of a 

watershed. Climate change can also increase the frequency and 
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magnitude of extreme hydrological events such as droughts and floods. 

Döll and Schmied, (2012) carried out a global scale analysis of the 

impacts of climate change on mean annual runoff and mean annual 

discharge of freshwater resources, under A2 and B2 climate change 

scenarios until 2050. The study estimated that the mean annual runoff, 

discharge, and high flows are projected to increase by more than 10% 

on about half of the global land area by the year 2050. 

2.4.1 IMPACT OF PRECIPITATION CHANGES ON SURFACE RUNOFF AND 

RIVER DISCHARGE IN MALAYSIA 

Malaysia like many parts of the world, has been affected by climate 

change. The changes in global climate have impacted local weather, in 

particular precipitation and temperature, which in turn have affected 

hydrological processes. There has been increasing occurrences of 

extreme weather event in the past few decades in Malaysia, which are 

characterised by high temperatures, high rainfall, dry spells, 

thunderstorms, and strong winds (Tang, 2019).  

In a study by Amin et al., (2019), a regional climate model was used to 

assess the impact of climate change in the 21st century on precipitation, 

air temperature, soil water storage and annual mean flows. Based on 

Coupled Model Intercomparison Project phase 3 (CMIP3) datasets, the 

study dynamically downscaled 15 future climate projections from 3 
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GCMs covering 4 emission scenarios (SRES B1, A1FI, A1B, A2), for the 

whole Peninsular Malaysia covering 10 watersheds and 12 coastal 

regions.  

The results showed, change in the 30-year mean annual precipitation 

for the period 2070-2100 to be 36.3% compared to the period 1970-

2000 which is 17.1%, among the 10 watersheds and 45.4% and 22.9% 

respectively, among the coastal regions. However, for annual mean flow, 

the results show variation among the 10 watersheds, although the 30-

year average mean flow does increase during the 21st century, with the 

period 2070-2100 showing the highest range in average change 

between 19.1% to 45.8%. 

In the Klang River basin, changes in precipitation and temperature have 

had a significant impact on hydrological processes. In a study for Klang 

River basin conducted by Kabiri et al., (2015), hydrological modelling 

was carried out using output data from the Hadley Centre Third 

Generation—GCM model for emission scenarios A2 and B2. The results 

showed that the mean annual discharge is predicted to decrease by 

9.4%, 4.9%, and increase by 3.4% for the A2 and decrease by about 

17.3%, 14.3% and 6.2% for the B2 scenario, respectively, in the 2020s, 

2050s, and 2080s. 
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The review of past literature shows that there is spatial and temporal 

variability in precipitation patterns, frequency, and intensity, which 

results in variability in hydrological processes like river discharge and 

runoff. On the other hand, the impacts of LULC change are consistently 

similar among past studies, where increase in urbanisation and 

agricultural land, has resulted in increase in runoff and river discharge.  

However, there is an important factor missing from many of the previous 

studies, where the combined effect of LULC change and climatic change 

on hydrological processes is not assessed. Since both LULC and climate 

parameters are interlinked and have significant impact on hydrological 

processes, it’s important to consider both factors in hydrological studies.    

2.5 TRENDS IN LAND USE AND LAND COVER, PRECIPITATION AND 

TEMPERATURE 

2.5.1 GLOBAL TRENDS IN LAND USE AND LAND COVER 

About 100 million km² (70%) of Earth’s ice free surface has been directly 

affected by human activities (Arneth and et al., 2019), around 30% of 

this has been changed from forests to agricultural and urban land 

(Luyssaert et al., 2014). The Global South has strong decrease in forest 

cover and increase in agricultural land, whereas the Global North 

(including China) has increase in forest cover and decrease in 

agricultural land between 1960-2019, with tropical forests experiencing 
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the highest deforestation rates (Winkler et al., 2021). The agricultural 

abandonment in Europe and US, and reforestation programs in China 

have contributed to the forest gain in the Global North, whereas the 

increase in production of beef and agricultural products in Brazil has 

increased deforestation in the Amazon, and the increase in palm oil 

production has resulted in an increase of deforestation in Southeast Asia 

and West Africa (Winkler et al., 2021).  

However, in recent times the rate of deforestation has reduced in some 

tropical areas, for example, from 2015-2020 the rate of deforestation in 

South America and Asia was half of the rate in the 1990s, whereas in 

Africa deforestation rates continue to be high. Although the 

deforestation rate has reduced in South America and Asia, there are still 

large parts of forests being converted to other land types, like 

agriculture and urban land. For example, palm plantations have more 

than doubled between 1990 and 2020, from 4.20 million ha to 9.34 

million ha, with Asia having most of the increase, and mainly in Malaysia 

where palm oil plantations increased from 2.35 million ha to 6.36 million 

ha (FAO, 2020). 

2.5.1.1 LAND USE AND LAND COVER TRENDS IN MALAYSIA 

Palm oil production, was the main contributor to the Malaysian economy 

until 1987, when manufacturing took over as the main contributor to 
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the economy as the government shifted its development policy to the 

manufacturing sector, and by the year 2000 other sectors like 

infrastructure and commercial development started growing, giving rise 

to urbanisation (Abdullah and Hezri, 2008). However, palm oil remains 

a major part of the Malaysian economy and continues to expand. 

Between 1990 and 2017 agricultural land increased by 55.7% with 

98.2% of this area being plantations (Yan et al., 2020). And as of 2017 

palm oil plantations occupied 17.62% of the land mass in Malaysia, 

which has led to 20% loss in forests (Ezechi and Muda, 2019).  

For example, a study by Masum et al., (2017) looked at land use change 

and forest management of hill forest areas in Penang, and the study 

found the annual rate of deforestation since 1991 is at 1.4%, which is 

higher than the rate across Southeast Asia. Deforestation has occurred 

in many parts of Malaysia between 1988 and 2017, about 16% (189,423 

ha) of forest cover in Perak and more than 9% (33,391 ha) of forest 

cover in Kedah is lost to anthropogenic activities (Mohd Jaafar et al., 

2020). In Selangor, forest and peat swamps decreased by 2.5% and 

12.7% respectively, from 1989 to 2011 (Aisyah et al., 2015), in another 

study it is shown that, the district of Gombak experienced an increase 

of 44.53% in urban land from 1999-2014, and a decrease of 34.6% in 

rubber plantation (Asnawi and Choy, 2016). 
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Urbanisation has seen a rapid increase, and Malaysia is one of the most 

urbanised countries in East Asia (Plecher, 2020). 50.4% of the 

population lived in urban areas in 1991, this number reached to 65% in 

2010, and as of 2020 the number of the population living in urban areas 

has reached 75%, with projections estimating by 2040 it will reach 85% 

(Samat et al., 2020). This has resulted in expansion of urban areas at 

the expense of other land cover, urban areas increased from 1793.2 ha 

in 1992 to 3235.4 ha in 2002 and in 2010 urban areas reached to 3987.8 

ha (Mohammed et al., 2016). Selangor and Penang have historically 

been the most urbanised states in Malaysia and the rate of urbanisation 

continued to rise over the years, by 2010 the federal territories of Kuala 

Lumpur and Putrajaya were 100% urbanised and the state of Selangor 

was 91.4% urbanised (Hasan and Nair, 2014). 

Projection for future global land use scenarios show an increase in 

cropland by 2.1 million km² and pasture land by 1.6 million km² by 

2050, and built-up areas are expected to increase by 0.5 million km² 

(80%), with these expansions expected to be mostly occurring in Sub-

Saharan Africa, Latin America, South Asia and Southeast Asia (Van der 

Esch et al., 2017). In Malaysia, a study by Mahamud et al., (2019) 

projected the future LULC scenario in Kelantan for the year 2025, the 

study showed expected increase in built-up areas (181.69 km), oil palm 

(2142.48 km), and rubber plantation (3076.24 km). And in Seremban, 
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projections show decrease in agricultural land by 337 km² and increase 

in urban areas by 278 km² by the year 2030 (Aburas et al., 2018). In 

terms of projecting future land use change, there have been few studies 

carried out, especially in Malaysia, therefore there is need for more 

studies in future LULC change scenarios. 

2.5.2 GLOBAL TRENDS IN PRECIPITATION AND TEMPERATURE 
 

The Intergovernmental Panel on Climate Change (IPCC) has predicted a 

rise in global mean temperatures between 1.4 - 5.8°C by the year 2100 

(Haines et al., 2006; McMichael et al., 2006; Ullah et al., 2021). Past 

trends show a significant rise in global temperatures since the early 20th 

century, and some of the evidence includes the melting of polar ice caps 

and rising sea levels (Foster and Rahmstorf, 2011). In recent years, the 

global mean surface temperatures (GMST) recorded have been 

extremely high. The year 2020 is the second warmest year on record 

based on National Oceanic and Atmospheric Administration’s (NOAA) 

temperature data, which is 0.98°C warmer than the twentieth century 

average temperature of 13.9°C, and just 0.04°C less than the 2016 

temperatures which is the warmest year on record, and the 10 warmest 

years on record have all occurred since 2005 (Figure 2.5-1) (NOAA, 

2021). However, on a regional scale, many regions have already 

experienced greater warming, with increases of 1.5°C in at least one 

season (Allen et al., 2018). 
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Figure 2.5-1: Yearly Surface Temperature Compared To The 20th-Century Average 

From 1880-2020. Blue Bars Indicate Cooler-Than-Average Years; Red Bars Show 

Warmer-Than-Average Years (NOAA, 2021). 

The increase in global average surface temperatures results in an 

increase in evaporation, which in turn, increases overall global 

precipitation. The atmospheric water vapor, which supplies the water for 

precipitation increases in proportion to the saturation concentrations at 

a rate of about 6%–7% per degree rise in temperature (Tabari, 2020). 

It is expected that a warming climate will increase precipitation in many 

areas. However, because climate change causes shifts in wind patterns 
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and ocean currents that drive the world’s climate system, it results in 

some areas warming more than others and some areas cooling, which 

also means precipitation patterns vary across the world. For example, 

observed trends in the period 1900 to 2005 show a significant increase 

in precipitation in eastern parts of North and South America, northern 

Europe, and northern and central Asia, whereas precipitation declined 

in the Sahel, the Mediterranean, southern Africa and parts of southern 

Asia (IPCC, 2007). Overall, the global precipitation since 1901 has 

increased at an average rate of 0.10 inches per decade (Figure 2.5-2), 

and in the same period global surface temperature has increased by 

0.17°F per decade (Blunden et al., 2020).  

 

Figure 2.5-2: Precipitation Worldwide, 1901-2019 (Blunden et al., 2020) . 
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Southeast Asia and Asia as a whole has also faced rising temperature 

over the past few decades. Choi et al., (2009) looked at the changes in 

mean and extreme temperature and rainfall events of 10 Asia Pacific 

countries from 1955-2007, the study found that the annual average 

maximum and minimum temperatures have increased by 

0.17°C/decade and 0.24°C/decade respectively since the 1950s which 

are greater than the average global rates. 

2.5.2.1 PRECIPITATION AND TEMPERATURE TRENDS IN MALAYSIA 
 

The trend in temperature across Malaysia for the period 1956-2018, 

shows an increasing trend across all parts of Malaysia, with western 

Peninsular Malaysia having the highest trend, and the year 2015 – 2016 

having the strongest spike in temperatures due to El Nino (Tang, 2019). 

This is akin to the findings in the report by Malaysian Meteorological 

Department (MET), for the 40-year period from 1968 to 2007. For the 

analysis, four meteorological stations namely Kuching, Kota Kinabalu, 

Kuantan and Petaling Jaya, are chosen which represent Sarawak, Sabah, 

East and West Peninsular Malaysia respectively. All stations showed an 

increase in temperature trend, with Petaling Jaya station located in 

Selangor showing the highest increase in temperature as shown in 

Figure 2.5-3 (Malaysian Meteorological Department, 2009).  
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Figure 2.5-3: Annual Mean Temperature Trend For Four Meteorological Stations In 

Malaysia. (Malaysian Meteorological Department, 2009). 

The report also looked at the precipitation trend, where data from 1951 

to 2005 is gathered from meteorological stations, and El Nino and La 

Nina events in this period are also considered too. The results show high 

variability in rainfall trend, with a fall in rainfall from 1975 to 2005 with 

more intense and frequent dry spells compared to the period from 1951 

to 1975, with the El Nino events having resulted in dry events in 

Peninsular Malaysia. However, the La Nina events resulted in wet years 

except for 1955 and 1998, and the wettest years were 1984, 1988 and 

1999. Although the dry years are more frequent, the intensity of rainfall 
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increase during the wet years is comparable with the intensity of dry 

years (Malaysian Meteorological Department, 2009).  

However, the main drawback of this study is that only one 

meteorological station was used for each of the 4 regions in Malaysia, 

and this may not give a proper representation of the climatic factors in 

those regions. Because, both temperature and precipitation can have 

great spatial variability within local climatic scales. Therefore, adding 

more meteorological stations will give a better representation of the 

spatial and temporal variation in climatic factors.  

In terms of seasonal climate, the Northeast monsoon (NEM) has a 

greater influence on annual precipitation compared to the Southwest 

monsoon (SWM), especially in the eastern parts of Peninsular Malaysia, 

on the other hand there is a high variability in monthly rainfall in 

Southwest and Western regions during the NEM (Wong et al., 2016). In 

eastern Peninsular Malaysia, significant increase in annual, and seasonal 

precipitation during the period 1971-2010 is detected, at a rate of 12.8 

mm/year for annual precipitation, and the Northeast monsoon rainfall 

increased at a rate of 2.7 mm/year (Mayowa et al., 2015). In Selangor, 

rainfall trend analysis carried out for the Langat river basin by Palizdan 

et al., (2014); and Amirabadizadeh et al., (2015), show increasing trend 

in annual and NEM precipitations, with the rate of increase in annual 

precipitation being greater than that of the seasonal precipitation. 
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2.5.2.2 INDICES FOR TREND ANALYSIS 

To detect and analyse trends in precipitation and temperature the list of 

indices recommended by the Expert Team for Climate Change Detection 

and Indices (ETCCDI) is commonly used (Klein Tank et al., 2009). The 

ETCCDI indices are easy to calculate and understand, and provide 

statistically sound measures of daily variability of extreme events 

derived from daily precipitation and temperature data (Shawul and 

Chakma, 2020). The list consists of 27 indices for precipitation and 

temperature as shown in Appendix A.  

There are several advantages of using the ETCCDI indices, for example 

SDII considers the total amount of precipitation throughout the year and 

considers the changes in daily precipitation. As for the benefit of using 

percentile thresholds like R95p, is that they take the edges of the time 

series into account, and therefore the number of days exceeding 

percentile thresholds is more evenly distributed in space and is 

meaningful in every region. 

2.6 LAND USE AND LAND COVER, HYDROLOGICAL AND CLIMATE MODELLING 

METHODS 

2.6.1 LAND USE AND LAND COVER MODELLING METHODS 

Land use change models are great tools for researchers and 

professionals to explore the dynamics and drivers that bring about 
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change in LULC (Agarwal et al., 2002). LULC change models are capable 

of capturing (reproducing) these complex dynamics of LULC change and 

be used to extrapolate future land use scenarios (Soesbergen, 2016), 

which can help to inform policies affecting such change. A broad array 

of models and modelling methods are available to researchers, and each 

type has certain advantages and disadvantages depending on the 

objective of the research.  

There are statistical and empirical models like logistic regression and 

Markov chain, dynamic models like Cellular Automata (CA) and 

integrated models (Al-sharif and Pradhan, 2014). The Markov chain and 

CA are the most commonly used methods in LULC change and many 

studies use an integration of CA-Markov method (Hamad et al., 2018; 

Karimi et al., 2018; Khawaldah et al., 2020; Mansour et al., 2020; 

Huang et al., 2020). 

In recent years, several machine learning (ML) methods have been 

commonly used in LULC change modelling, like artificial neural network 

(ANN), support vector machine (SVM) and random forest (RF). For 

example, Mirici et al., (2017) used a Multi-Layer Perceptron (MLP), ANN 

and Markov chain approach to simulated future land use change. 

Whereas Samardžić‑Petrović et al., (2016) used the SVM method to 

model urban land use change. 
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GIS and remote sensing are also commonly used methods for land use 

and land cover change modelling. Remotely sensed, multispectral, 

multiresolution, and temporal satellite images are used by processing 

and extracting information about land use and land cover changes with 

the use of GIS tools. Studies like (Hegazy and Kaloop, 2015; Rawat and 

Kumar, 2015; Haque and Basak, 2017) all used GIS and remote sensing 

methods to assess land use change.  

GIS and remote sensing are user friendly, handle data processing easier 

and less expertise is needed to analyse data, therefore making these 

methods popular. Another advantage of using GIS and remote sensing 

is that it allows support data to help in interpretation and analysis of 

land use data, but on the other hand GIS and remote sensing also have 

some disadvantages for example, the different quality of data from 

various sources can degrade the results of land use and land cover 

detection (Lu et al., 2004), some of the data used may require large 

storage space, and processing the data can be time consuming. 

In Malaysia, there have been several studies that have used LULC 

models, GIS, and Remote Sensing to study LULC changes, with these 

studies having varied spatial scope. For example, Gambo et al., (2018); 

and Rafaai et al., (2020) utilised LULC change modelling to study the 

changes within and around protected areas. Whereas studies by Verburg 

et al., (2002); Memarian et al., (2012); Ibrahim and Ludin, (2016); 
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Kamarudin et al., (2018); and Majid et al., (2018) all studied LULC 

change at the basin level, and other studies like Boori et al., (2015); 

Almdhun et al., (2018); and Samat et al., (2020) studied land use 

change in cities/towns. In Selangor, several studies have carried out 

LULC change modelling, for example, Boori et al., (2015); Nourqolipour 

et al., (2015a); Nourqolipour et al., (2015b) and Nourqolipour et al., 

(2016) analysed LULC change for several areas in Selangor. 

2.6.2 HYDROLOGICAL MODELLING METHODS 

Hydrological process, like infiltration, stream flow, and surface runoff 

are an important component of the hydrological cycle. LULC can greatly 

affect the amount of runoff flowing into rivers and lakes, which depends 

on soil properties, land cover, elevation, vegetation type and weather 

variables like precipitation amount, duration and intensity (Sitterson et 

al., 2017). Hydrological models are powerful tools that help researchers 

to better understand these processes of the hydrological cycle and their 

interactions with the land and atmosphere.  

There are a wide range of hydrological models available for various types 

of hydrological studies. These hydrological models can be classified into 

2 main categories, stochastic models and deterministic models, based 

on the presence of random variables, their distribution in space, and 

temporal variation (Dwarakish and Ganasri, 2015). Hydrological models 
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can furthermore be classified based on if the hydrological processes are 

described as conceptual, empirical, or fully physically based as shown in 

Error! Reference source not found.. 

 

Figure 2.6-1: The Classification Of Hydrological Models (Dwarakish and Ganasri, 

2015). 

2.6.2.1 MAIN HYDROLOGICAL MODEL CLASSIFICATION 

2.6.2.1.1 STOCHASTIC MODELS 

Stochastic models are mathematical models, which use random 

variables to represent process uncertainty and generate different results 

from one set of input data and parameter values when they run under 

“externally seen” identical conditions. A particular set of inputs will 
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produce an output according to a statistical distribution. This allows 

some randomness or uncertainty in the possible outcome due to 

uncertainty in input variables, boundary conditions, or model 

parameters.  

On the other hand, in deterministic models’ randomness is not 

considered, therefore a given input always produces the same output, 

where a single set of data and parameter values in a simulation will 

produce a single result. Stochastic-deterministic models can also be 

created by introducing stochastic error models to the deterministic 

models. For example, in a deterministic rainfall-runoff model stochastic 

rainfall could be used as an input (Pechlivanidis et al., 2011). 

2.6.2.1.2 DETERMINISTIC MODELS 

Deterministic models can be classified in to 3 classes, lumped models, 

semi-distributed models, and distributed models.   

1. Lumped models are simple models developed based on the 

water balance equation. They use basin-averaged 

meteorological inputs and consider the whole basin as a single 

unit, flow is generated at the basin outlet by homogenising the 

model parameters throughout the basin, which can often cause 

over or under estimation (Beven, 2012). The weakness of a 

lumped model is that it assumes all data including input, 
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output, and parameters to be uniform both spatially and 

temporally over the watershed. However, in real world there is 

variability over space and time, for example rainfall can vary 

significantly both spatially and temporally (Sitterson et al., 

2017).  

2. Semi-distributed models, on the other hand, are developed to 

consider spatial variability of the watershed characteristics. The 

semi-distributed models are popular models used in 

hydrological studies, where the models divide the watershed to 

smaller subbasins, and hydrological computation is carried out 

separately for each subbasin. There are different ways models 

divide the watershed, some models like HEC-HMS use natural 

watershed divides as the criterion for dividing a watershed, 

whereas other models use the hydrological response unit 

(HRU), which is based upon the LULC, soil and slope, for 

example SWAT and HSPF models (Paudel, 2010). A benefit of 

using semi-distributed models compared to disturbed models 

is they use less computational time and less data and fewer 

parameters (Pechlivanidis et al., 2011). 

3. Distributed models consider the spatial heterogeneity in input 

data and parameters, therefore making them the most 

complex models. Fully distributed models divide the watershed 
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into homogenous grids, which routs flow through the basin 

from grid to grid (Brirhet and Benaabidate, 2016). The 

hydrological process within each grid is calculated separately, 

however the model incorporates interaction with neighboring 

grids. This hence can provide greater detail of processes at 

specific parts of the watershed, and since distributed models 

are structured like physically based models, they provide 

modelling which is closer to actual hydrological processes in the 

watershed. Distributed models require large number of 

spatially and temporally distributed data, the data include land 

use maps, DEM, topography, gridded precipitation, soil 

characteristics and their change over time, and watershed 

characteristics like dimension and boundaries. Therefore, the 

disadvantage of using distributed models is, they require long 

computational time, dependence on input data, catchment size 

and computational constraints. Secondly, distributed models 

require distributed data and calibrated parameters for each grid 

cell. And these models can also be limited spatially by model 

resolution or input grid size (Vaze et al., 2012). 
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2.6.2.2 HYDROLOGICAL MODEL CLASSIFICATION BASED ON STRUCTURE 

Hydrological models can also be classified based on their structure, into 

3 classes, empirical models, conceptual models and physical models 

(Sitterson et al., 2017). 

1. Empirical models, also called data driven models, have no 

physical transformation function to relate input to output, and 

hence do not consider the features and process of the 

hydrological system. Therefore, simple equations are used that 

relate drivers of runoff response to flow at the watershed 

outlet. Empirical models often use regression relationship, 

where there is always a non-linear statistical relationship 

between input and output, based on hydro-meteorological 

data, like rainfall and runoff (Vaze et al., 2012). Empirical 

models, are best suited for ungauged watershed where there 

is less availability of data, as very few parameters are needed 

to run the model (Pechlivanidis et al., 2011). 

2. Conceptual models describe all the components of the 

hydrological processes that convert rainfall to runoff. These 

models use conceptual storage (reservoirs) that interconnect 

to represent the physical elements in the catchment, whereby 

they are recharged by rainfall, infiltration and percolation and 

emptied by evaporation, runoff, and drainage. Mathematical 
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equations are used to estimate the components of the water 

balance equation, which determine the movement of water 

between these storages and in and out of the model. The 

general equations for conceptual models are versions of the 

water balance equation which control surface water and 

storage fluctuations, as shown below. 

𝒅𝒔

𝒅𝒕
= 𝑷 − 𝑬𝑻 − 𝑸𝒔 ± 𝑮𝑾                                                                           (1) 

Where ds/dt is the change in storage, P is precipitation, ET is 

evapotranspiration, 𝑄𝑠 is surface runoff and GW is groundwater. 

One of the drawbacks of conceptual models is, that they require 

large amount of meteorological and hydrological data for 

calibration, and the calibration involves curve fitting, which 

make interpreting the model difficult, therefore effects of land 

use change cannot be predicated with much accuracy (Devi et 

al., 2015).  

3. Physical models, also referred to as mechanistic models, are 

based on the physics of hydrological processes, and physically 

based equations to describe these processes and control 

watershed responses. Some of the equations used in physically 

based models, include the water balance equation, 

conservation of mass and energy, momentum, and kinematics 

equation (Sitterson et al., 2017). Physical models use variables 
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that can be measured and are functions of both time and space. 

Physical models do not require large number of meteorological 

and hydrological data to calibrate the model, but they do 

require evaluation of a large number of parameters that 

describe the physical characteristics of the watershed (Devi et 

al., 2015). 

A comparison and examples of empirical, conceptual, and physical 

models is shown in Table 2.6-1.  

Table 2.6-1: Comparison Of The Basic Structure Of Rainfall-Runoff Models (Devi et 

al., 2015). 

  Empirical Conceptual Physical  

Method  Non-linear 

relationship 

between inputs 

and outputs, 

black box concept  

Simplified 

equations that 

represent water 

storage in 

catchment  

Physical laws and 

equations based on 

real hydrologic 

responses  

Strengths  Small number of 

parameters 

needed, can be 

more accurate, 

fast run time  

Easy to calibrate, 

simple model 

structure  

Incorporates spatial 

and temporal 

variability, very fine 

scale  

Weaknesses  No connection 

between physical 

catchment, input 

data distortion  

Does not consider 

spatial variability 

within catchment  

Large number of 

parameters and 

calibration needed, site 

specific  

Best Use  In ungauged 

watersheds, 

runoff is the only 

output needed  

When 

computational time 

or data are limited.  

Have great data 

availability on a small 

scale  

Examples  Curve Number, 

Artificial Neural 

Networks 

HSPF, TOPMODEL, 

HBV, Stanford 

MIKE-SHE, KINEROS, 

VIC, PRMS  

 

Semi-distributed physical models are some of the most popular 

hydrological models used in research studies. One of the most used 

models is the Soil and Water Assessment Tool (SWAT) that is developed 
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by USDA Agriculture Research Service (USDA-ARS). SWAT is a river 

basin or watershed scale, semi-distributed physically based continuous 

model, which has been extensively used around the world in 

hydrological studies for various purposes, for example in research on 

agricultural practices and their effects on hydrological process (Jang et 

al., 2017; Briak et al., 2019; Chen et al., 2021; Rumph Frederiksen and 

Molina-Navarro, 2021), or research on water quality (Khwairakpam et 

al., 2019; Nazari-Sharabian et al., 2019; Y. Wu et al., 2019; Noori et 

al., 2020) and research on the effects of land use change or climate 

change on hydrological processes (Shiferaw et al., 2018; Tamm et al., 

2018; Bhatta et al., 2019; Ndhlovu and Woyessa, 2020; Saade et al., 

2021).  

Some of the strengths of the SWAT model, is its ability to integrate 

different aspects of hydrological modelling, from land use management 

practices to climate change scenarios, and water quality and quantity 

studies. Another advantage of using the SWAT model is that it can model 

yearly, monthly, daily, and even sub-daily simulations over a long period 

of time. On the other hand, one of the main weaknesses of the SWAT 

model is, HRUs are not spatially represented in the subbasins, this keeps 

the model simple, but ignores flow and pollutant routing between HRUs. 

The other disadvantage of the SWAT model is, it requires a wide range 
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of different data to run the model and many parameters to modify during 

calibration, which makes it time consuming (Glavan and Pintar, 2012).  

Another widely used method by researchers is the Soil Conservation 

Service Curve Number (SCS-CN), which is an empirical method used to 

calculate runoff or infiltration from excess rainfall. The SCS-CN is 

developed by the Soil Conservation Services of the U.S Department of 

Agriculture which is first published in Section 4 of the National 

Engineering Handbook in 1956. SCS-CN takes in to account the soil 

type, land-use, hydrologic conditions, and antecedent moisture 

conditions, it is primarily developed for small agricultural watersheds, 

but over the years it has been used for rural, forest and urban 

watersheds (Mishra et al., 2012). The popularity of SCS-CN is down to 

its simplicity to use, easy to understand and that it considers most of 

the runoff variables. The SCS-CN method is available in many of the 

hydrological models, like the HEC-HMS and SWAT models. 

2.6.3 CLIMATE MODELLING METHODS 

2.6.3.1 GLOBAL CLIMATE MODELS 

Global climate models (GCM) also sometimes called general circulation 

models have evolved from atmospheric general circulation models 

(AGCMs) that used physics only, and mostly predicted daily weather, to 

more complex models that simulate other aspects of the climate 
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systems: atmospheric chemistry, aerosols, interaction of land surface, 

land and sea ice, carbon cycle and biogeochemical processes. GCMs 

simulate present and project future climate under various scenarios of 

CO² increase in the atmosphere (Idso et al., 2013). GCMs solve 

mathematical equations, that account for conservation of energy, mass 

and momentum and the exchange of these components in the climate 

systems, based on well documented physical processes (Flato et al., 

2013).  

In GCMs the Earth’s surface is divided into three-dimensional grid cells, 

and the results of each process modelled in each cell are transferred to 

neighboring cells, which allows temporal modelling of energy and 

matter. The resolution of GCMs depend on the grid cell size, the smaller 

the grid size the higher the resolution of the model, and the more details 

the model will have (Elias, 2021). However, high resolution models 

require much higher computing power, which is why there are only 

several institutions around world capable of carrying out high resolution 

global climate modelling. 

GCMs however have some limitations which can result in uncertainties 

in the model: 

• To produce viable future projections, GCMs must incorporate many 

physical, chemical, and biological processes that influence climate 
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over time, however some of these processes are missing or 

inadequately represented in some GCMs.  

• Limitations in computing power is another drawback that GCMs 

face. This reduces the ability of some GCMs to model important 

climate processes. Therefore, low-resolution models often fail to 

capture many important phenomena of regional and lesser scales.  

Uncertainty in some GCMs can also arise, due to the failure to account 

properly for certain “multiplier effects” that could significantly amplify 

the initial impacts of certain biospheric processes. 

2.6.3.2 REPRESENTATIVE CONCENTRATION PATHWAYS 

In climate change studies to model and project future climate, 

assumptions are made based on socio-economic and physical changes 

within the environment that can affect climate change, and provide 

possible description of future scenarios with respect to changes in a 

range of variables like socio-economic, technology, energy, land use and 

emissions of greenhouse gases and air pollutants (van Vuuren et al., 

2011). These assumptions are used as input in climate models to 

explore potential impacts of anthropogenic climate change and the 

vulnerability associated with these changes and help provide adaptive 

policies in decision making under these uncertainties.  
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In the past several sets of scenarios were created by IPCC like the IS92 

scenarios and the Special Report on Emission Scenarios (SRES) 

scenarios. However, as the need for more detailed scenarios has 

increased in recent years, with interest in scenarios that consider the 

impact of different climate policies, a new set of scenarios is developed 

known as the representative concentration pathways (RCPs). The RCPs 

are four greenhouse gas concentration (not emissions) trajectories 

adopted by the IPCC for its Fifth Assessment Report (AR5). The four 

RCPs, RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, are named after a 

possible range of radiative forcing values in the year 2100 (van Vuuren 

et al., 2011).  

Each of the RCPs represents a target level of radiative forcing produced 

by the end of 2100.  Radiative forcing is described as the extra heat in 

the lower atmosphere that will be retained due to additional greenhouse 

gases, it is measured in Watts per square meter (W/m²). The RPC2.6 

represents the best-case scenario pathway, where greenhouse gas 

emissions are greatly reduced, resulting in a best estimate global 

average temperatures rise of 1.6°C by 2100 compared to the pre-

industrial period. On the other hand, RCP8.5 is the worst-case scenario 

or the business-as-usual scenario, where greenhouse gas emissions 

continue to grow unregulated, leading to a best estimate global average 

temperature rise of 4.3°C by 2100. And the RCP4.5 and RCP6.0 are two 
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medium stabilisation pathways, with varying levels of mitigation (van 

Vuuren et al., 2011). 

The comparison between SRES scenarios and RCP scenarios, shows the 

SRES scenarios are slightly higher for CO² concentration. And in terms 

of CO² concentrations and global temperature change the SRES A1F1 is 

similar to RCP8.5; SRES A1B to RCP6.0 and SRES B1 to RCP4.5. 

However, the RCP2.6 scenario show much lower CO² and temperatures 

values compared to any SRES scenario, this is because it includes the 

option of using policies to achieve net negative CO²  emissions before 

the end of century, while SRES scenarios do not (IPCC, 2014). 

The RCP scenarios have some advantages over SRES scenarios. The 

major difference between SRES and RCP scenarios is that RCP scenarios 

start with atmospheric concentrations of greenhouse gases (GHG), 

whereas SRES scenarios start with socio-economic processes. This 

reduces uncertainty in modelling, because every modelling step from a 

socio-economic scenario to climate change impact adds uncertainty. 

Therefore, by starting with concentrations there are fewer steps to 

impacts and hence less uncertainty in impact assessment (Jubb et al., 

2013; Sanderson et al., 2017). 
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The other advantage of RCP scenarios is, they consider climate change 

mitigation policies to limit emissions, whereas the SRES scenarios do 

not have explicate carbon emission controls. 

2.6.3.3 GLOBAL CLIMATE MODEL DOWNSCALING 

Downscaling is the process of creating higher spatial resolution data 

from the coarse global climate models, to have climate data in closer 

agreement with station level data. There are 2 methods of downscaling 

GCM models, dynamic downscaling, and statistical downscaling. 

Statistical downscaling creates high resolution dataset, by developing 

statistical relationship between the GCMs parameters and locally 

observed data. It uses historical observations to calibrate statistical 

models, which then generate future climate data by using the GCMs 

output for future scenarios on regional scale (Rashid and Hossain, 

2018). 

On the other hand, dynamic downscaling uses a mesoscale high 

resolution or regional climate model (RCM) coupled with a GCM to 

estimate local scale climate (Gaur and Simonovic, 2019).  In dynamic 

downscaling RCMs take the large-scale atmospheric output from GCMs 

at the lateral boundaries and incorporate detailed surface properties, 

like topography, land-sea contrast, and surface heterogeneities, to 

generate realistic high resolution climate data. One weakness of 
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dynamic downscaling is, because they are nested in GCMs, they are 

affected by the accuracy of the large scale forcing of GCMs and their 

biases, therefore the is a need for bias correction with dynamic 

downscaling (Trzaska and Schnarr, 2014). 

2.6.3.4 CLIMATE MODELLING IN MALAYSIA 

There are several climate change modelling studies in Malaysia that 

have assessed the impacts of climate change in various topics, like 

agriculture, hydrology, and policy mitigation.  

For example, a study by the Malaysian Meteorological Department, 

(2009) used nine coupled Atmosphere-Ocean General Circulation Models 

(AOGCMs) to study future climate conditions in Malaysia up to year 

2100, under the SRES A1B scenario. The results of the ensemble mean 

temperature and precipitation show, an increase of 2.5°C in mean 

temperature for both Peninsular and East Malaysia. However, 

precipitation shows no clear trend due to the high variability, with an 

increase of 6%-10% in west coast of peninsular Malaysia and Sarawak, 

10% increase in Sabah and 4%-6% decrease over central Pahang and 

coastal Kelantan, relative to the 1990-1999 annual precipitation values.  

The study also used the Regional Climates for Impacts Studies (PRECIS) 

RCM model, to project regional climate under A2 and B2 scenarios at 50 

km scale. The average annual temperature from the RCM for all the 
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regions are consistent with GCM, however there is some deviation from 

the GCM for the period 2080 to 2089, where significant reduction 0.4°C 

to 0.5°C is projected by the RCM. As for precipitation the RCM simulates 

general reduction in annual average precipitation for all regions. 

However, the decrease in precipitation is more evident in Sabah. The 

significant decrease in precipitation during years 2028, 2048, 2061 and 

2079 simulated by the RCM, is consistent with the corresponding 

significant decrease in temperature projected for the same 4 years. 

However, this study assessed the wider sub regional climate in Malaysia, 

and the study used the older SRES scenarios.  

In a similar study by Ngai et al., (2020) seven RCMs under RCP4.5 and 

RCP8.5 are used to assess precipitation at six sub regions in Malaysia. 

The results show expected decrease in precipitation frequencies over 

Malaysia by the end of the century under both scenarios, with western 

Peninsular Malaysia experiencing 4% to 8% decrease in frequency 

compared to historic data. However, precipitation intensity and 

extremes are expected to decrease over Peninsular Malaysia during 

winter and increase over east Malaysia during summer and autumn.   

At watershed level there are only a hand full of studies that have carried 

out climate change modelling to assess the impact of climate change on 

hydrological process. For example, Syahmi Armain et al., (2021) used 

statistical downscaling to downscale the CanESM2 climate model to the 
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Kelantan River basin scale, and assessed the impact of precipitation 

change on river discharge under the RCP8.5 climate scenario for two 

time periods, 2041-2070 and 2071-2100. The study found monthly 

precipitation is expected to decrease by 30% and river discharge by 

50% during both time periods. 

Tan, et al., (2019) used climate projections from four Coordinated 

Regional Climate Downscaling Experiments–Southeast Asia (CORDEX-

SEA) models under RCP4.5 and RCP8.5 scenarios to assess the future 

hydro-meteorological droughts in Johor River basin. The study found 

that annual precipitation is expected to vary between -44.2% to 24.3% 

among the 4 models, and maximum and minimum temperatures are 

expected to increase between 0.8°C-3.7°C and 0.7°C-4.7°C respectively, 

like precipitation annual stream flow is expected to vary between -

88.7% to 42.2%. Overall, it is expected Johor River basin will experience 

more frequent dry conditions in the future. 

As for Klang River basin, climate modelling is carried out by one study 

only, where Kabiri et al., (2013), used the HadCM3 global climate model 

for the Klang River basin. The study assessed the future climate change 

precipitation under the SRES A2 scenario, for 3 time slices the 2020s, 

2050s and 2080s. The results show increasing precipitation by the end 

of the century. However, projections show decrease in mean 
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precipitation in 2020s by 7% and in 2050s by 0.6%, whereas there is 

increase in precipitation in 2080s by 12.4%. 

However, in majority of these studies, LULC change was not considered 

when assessing climate change impact on hydrological process. It’s 

important to integrate LULC change into hydro-meteorological studies, 

as LULC change has direct impact on hydrological process, and on local 

climate conditions. Therefore, in this study, the combined effects of both 

LULC change and climate change on hydrological process in the Klang 

River basin is assessed. 

2.7 Summary of Literature Review 

The summary of each literature review section highlighting the key 

findings is presented in Table 2.7-1. 

Table 2.7-1: Summary Of Literature Review. 

Section Key Findings 

1. General Factors 

Affecting Surface 

Runoff and River 

Discharge 

• Precipitation including its volume, intensity and 

duration play a significant role in affecting 

surface runoff and river discharge.  

• Other factors like urbanisation, deforestation and 

temperature also have significant impact on 

hydrological processes. 

2. Land Use and 

Land Cover 

Change Impacts 

on Surface Runoff 

and River 

Discharge 

• Agricultural activities, deforestation, and 

urbanisation significantly impact the hydrological 

cycle. 

• Urbanisation replaces natural vegetation and soil 

with impervious surfaces, increasing surface 

runoff and the risk of flooding. 

• Strong correlation between LULC changes and 

increased runoff volume observed in Malaysia, 

with urban expansion and agricultural land 



Page | 84  
 

having significant impact on hydrological 

processes. 

3. Land Use and 

Land Cover 

Change Impacts 

on Climate 

Variables 

• Biogeophysical processes, such as surface 

albedo, roughness, and evapotranspiration, are 

influenced by LULC change and have cascading 

effects on climate. 

• Surface albedo changes can lead to temperature 

fluctuations that influence other climate variables 

like precipitation. 

• ET and surface roughness affect the energy and 

moisture budget of the land surface, impacting 

climate. 

• Urbanisation lowers albedo, raises temperatures, 

and contributes to the Urban Heat Island (UHI) 

effect. 

• UHI can result in higher precipitation intensity 

over urban areas due to aerosol-enhanced 

conditional instability. 

• The increase in urban areas in Malaysia, 

particularly in the Greater Kuala Lumpur (GKL) 

area, has led to significant UHI effects, with 

temperatures often 4°C - 6°C higher in urban 

areas compared to rural surroundings. 

4. Impact of Climate 

variability on 

Surface runoff and 

River Discharge 

• Climate variability, particularly changes in 

precipitation, has a significant impact on 

hydrological processes within watersheds. 

• Climate change can alter the spatial and temporal 

dynamics of the water cycle, affecting 

precipitation patterns, intensity, and duration. 

• These changes can lead to alterations in river 

flow, surface runoff, groundwater recharge, and 

the overall water balance in a watershed. 

• Climate change can also exacerbate the 

occurrence of extreme hydrological events like 

droughts and floods. 

• Global analyses suggest that mean annual runoff 

and discharge are projected to increase by more 

than 10% on about half of the global land area 

by 2050. 

• Research in Malaysia indicates that future climate 

change is expected to lead to significant 

increases in mean annual precipitation. 

• Climate modelling for the Klang River basin 

reveals mean annual discharge showing 

variations and trends based on emission 

scenarios. 
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5. Trends In Land-

use and Land 

Cover, 

Precipitation and 

Temperature 

• Tropical forests have experienced the highest 

deforestation rates. 

• Factors contributing to deforestation include 

agricultural practices, urbanisation, and mining. 

• Palm plantations in Malaysia more than doubled 

between 1990 and 2020. 

• Urbanisation has rapidly increased in Malaysia, 

making it one of the most urbanised countries in 

East Asia. 

• Temperature trends show a significant increase 

across Malaysia, with western Peninsular 

Malaysia experiencing the highest trend. 

• Precipitation trends indicate high variability, with 

periods of increased rainfall and more intense dry 

spells. 

• Seasonal climate is influenced by monsoons, with 

Northeast monsoon (NEM) having a greater 

impact on annual precipitation. 

6. Land Use and 

Land Cover, 

Hydrological and 

Climate Modelling 

Methods 

• Various LULC models, including statistical, 

dynamic, and integrated models, are available. 

• Markov chain and Cellular Automata (CA) are 

commonly used methods for LULC change. 

• Machine learning methods like Artificial Neural 

Networks (ANN), Support Vector Machine (SVM), 

and Random Forest (RF) are increasingly used. 

• Hydrological models can be grouped into 

empirical, conceptual, or physical models. 

• Hydrological models can further be grouped as 

stochastic or deterministic, lumped, semi-

distributed, or distributed. 

• SWAT is a popular semi-distributed model. 

• Global Climate Models (GCMs) help study climate 

change, with varying spatial resolutions. 

• Representative Concentration Pathways (RCPs) 

provide scenarios for future climate conditions. 

• Downscaling methods (dynamic and statistical) 

are used to refine GCM output for regional-scale 

studies. 

• In Malaysia, various studies have examined 

climate change impacts on temperature, 

precipitation, and hydrological processes. 

• Few studies have integrated both LULC change 

and climate change impacts on hydrological 

processes. 
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CHAPTER 3: METHODOLOGY 

3.1 INTRODUCTION 

The following chapter will provide an in-depth explanation of each of the 

methods used within this study, outlining step-by-step procedures, and 

data sources used to analyse the impacts of land use and land cover 

change and precipitation changes on surface runoff and river discharge. 

The summary of the overall methodology and data used is presented in 

Figure 3.1-1. 
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Figure 3.1-1: The Summary Flowchart Of The Overall Methodology. 

3.2 STUDY AREA 

The Klang River basin is located in West Coast of Peninsular Malaysia in 

the state Selangor, at latitudes 2°35′-3°60′ N and longitudes 100°45′-
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102°00′ E. Figure 3.2-1 shows the geographical location of the Klang 

River basin. Upstream of the basin, elevation is around 1400 m above 

sea level, and downstream of the basin elevation is between -115 m to 

15 m. The federal territory of Kuala Lumpur is located within the Klang 

River basin, with majority of the 6.5 million inhabitants of Selangor living 

within the Klang River basin.   

 

Figure 3.2-1: Map Of The Klang River Basin. 

3.2.1 CLIMATE 

The Klang River basin receives widespread heavy and prolonged rainfall 

during the summer (May–September) and winter (November–March) 

seasons, associated with the SWM and NEM monsoon winds, 
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respectively (Figure 3.2-2), with 2 inter- monsoon periods occurring in 

April (IntM1) and October (IntM2). At the same time, because of its 

nearness to the equator, heavy localised rainfalls of shorter duration, 

associated with severe convective thunderstorms created by unstable 

weather conditions, occur throughout the year. The average annual 

rainfall ranges from 1900 mm to over 2600 mm. The mean monthly 

temperature in the basin ranges from 26-28°C, with a daily mean 

humidity of about 80%-85%. 

 

Figure 3.2-2: (a) Northeast Monsoon And (b) Southwest Monsoon (Bakar et al., 

2020). 

3.2.2 GEOLOGY AND SOIL 

The upper part of the Klang River basin consists of mostly igneous rocks, 

in particular granite with some dacite, rhyolite, and micro granodiorite. 
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The Northwest of the Klang River basin is made up of mostly granitic 

rocks and vein quartz of the Mesozoic age, with some parts of the 

Northwest being covered by schist of Kajang formation. The central 

parts of the basin is underlain by limestone of the Kuala Lumpur 

limestone formation, and schist underlies the land between Kelang and 

Gombak River, while most of the Ampang area is underlain by granite 

(Balamurugan, 1991). 

The soils in the Klang River basin consist of a wide range, which vary 

from very thin sandy regolith covering quartize ridges to the extremely 

deep weathering profile on the most gentile granite slopes. The soils are 

mostly formed from igneous, sedimentary, and metamorphic rocks, and 

marine and river alluvium. Like most sedentary soil in Western Malaysia, 

the soils in the Klang River basin are highly weathered, leached, and low 

in nutrient, with a strong influence from parent rock materials. Slope 

also plays a large part in the formation of soils in the Klang River basin, 

where soils on hill tops are generally shallow and young compared to 

those in the lower slopes (Balamurugan, 1991). 

3.2.3 DRAINAGE AND WATER RESOURCES 

The Klang River is 120 km in length, and consists of several tributaries, 

namely, Batu River, Gombak River, Kerayong River, Damansara River, 

Keroh River, Kuyoh River, Penchala River and Ampang River. The Klang 



Page | 91  
 

River originates upstream on the eastern part of the basin and flows 

through KL and eventually drains into the Malacca strait to the west of 

the basin. The basin area is approximately 1285 km², which is mostly 

urbanised, with the upstream of the basin having tropical rain forests.  

3.3 DATA ACQUISITION 

3.3.1 LAND USE AND LAND COVER DATA 

The study used Landsat 5 TM (1999 & 2006) and Landsat 8 OLI (2017) 

satellite images (Table 3.3-1) obtained from United State Geological 

Services (USGS) at (http://earthexplorer.usgs.gov/). The Shuttle Radar 

Topography Mission (SRTM) digital elevation map is also obtained from 

USGS website, the ancillary data like, road network and rivers are 

obtained from open street website at (https://www.openstreetmap.org) 

which are used for land use change modelling. The slope map is created 

from the DEM and using the slope tool in ArcGIS.   

Table 3.3-1: Landsat Image Information Used In Study. 

Date  Satellite  Resolution  Date Acquired  

1999 Landsat 5 Thematic Mapper 30m 11th February 1999 

2006 Landsat 5 Thematic Mapper 30m 2nd March 2006 

2017 Landsat 8 Operational Land Imager 30m 27th March 2017 

 

Landsat images are chosen because, the Landsat images have a wider 

spatial coverage at 30 m resolution, compared to other satellites like 

Sentinel, therefor there is less need for image mosaicking. Another 

reason for choosing Landsat, is that for the study area Landsat images 

http://earthexplorer.usgs.gov/
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have less cloud cover compared to other satellite images, and the 

images for the years 1999, 2006 and 2017 are chosen, as they have 

less than 10% cloud cover. 

The LULC maps, are compared with the LULC maps from the Department 

of Town and Country Planning Malaysia (JPBD). Although, the LULC 

maps from JPBD has more land use classes under urban and agricultural 

classes, the overall classification does match the LULC classifications in 

this study.  

3.3.2 HYDRO-CLIMATIC DATA 

The climate data consists of precipitation and temperature data, and the 

hydrological data consists of river discharge. For precipitation, daily data 

from 8 stations obtained from the Department of Irrigation and Drainage 

(DID) and 2 stations from the MET is used. The location of each station 

is shown in Figure 3.3-1, and the station details are shown in Table 

3.3-2. The period for the rainfall data for the DID stations is from 1975-

2015, however for station 3117070 it's from 1975-2019, and for station 

3116006 from 1977-2019, as for the 2 stations for MET, the data period 

is from 1995-2018.  

For temperature, due to insufficient data, the ERA 5 reanalysis daily 

mean, maximum and minimum 2m temperature data from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) at 0.25° by 
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0.25° spatial resolution for the period 1979 to 2018 is used, the data is 

obtained from ClimateEngine.org.  

 

Figure 3.3-1: Location Of Selected Hydro-Climatic Stations. 

Table 3.3-2: Station Name, ID, Coordinates, And Period Of Data, For Selected 

Stations. 

Station ID Station Name Latitude Longitude Data Period 

2616135 Ldg. Telok Merbau 2.86 101.68 1975 - 2015 

3014084 Pejabat JPS Klang 3.21 101.88 1975 - 2015 

3113087 Ldg. Sg. Kapar 3.12 101.38 1975 - 2015 

3115079 Pusat Penyelidikan Getah Sg.Bul 3.17 101.56 1975 - 2015 

3114085 Setia Alam 3.1 101.46 1975 - 2015 

3115053 Ldg. Elmina A 3.21 101.5 1975 - 2015 

48648 Petaling Jaya 3.1 101.65 1995 - 2018 

48647 Subang 3.12 101.55 1995 - 2018 

3117070 Pusat Penyelidikan at JP Ampang 3.16 101.75 1975 - 2019 

3116006 Ldg. Edinburgh 3.18 101.63 1977 - 2019 

3116430 Jambatan Sulaiman 3.14 101.70 1973 - 2017 

3116434 Batu Sentul 3.18 101.69 1970 - 2018 

 

http://climateengine.org/
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An ensemble of 5 GCMs, each with 4 RCPs scenarios supported by Inter-

Sectoral Impact Model Intercomparison Project (ISI-MIP5) for daily 

precipitation, maximum and minimum temperature is used for future 

climate change analysis. This daily data covers the period 1950 to 2099, 

and the data is obtained from 2w2e.com, where the data is reformatted 

from NetCDF into SWAT-readable text files. The 5 GCM models used to 

analyse the future climate are; HadGEM2-ES, IPSL-CM5A-LR, MIROC-

ESM-CHEM, GFDL-ESM2M, and NorESM1-MThe (Table 3.3-3), and the 

4 RCPs scenarios used are RCP2.6, RCP4.5, RCP6 and RCP8.5 

(Abbaspour et al., 2019).  

Table 3.3-3. Details Of The Global Climate Models Used In The Study. 

Data 

Type 

Resolution Period of 

Data 

Source 

GCM 1 0.5° (1960-2099) GFDL-ESM2M, daily, RCP (2.6, 4.5, 6.0, 

8.5), NOAA/Geophysical Fluid Dynamics 

Laboratory 

GCM 2 0.5° (1960-2099) HadGEM2-ES, daily, RCP (2.6, 4.5, 6.0, 8.5), 

Met Office Hadley Center 

GCM3 0.5° (1960-2099) IPSL-CM5A-LR, daily, RCP (2.6, 4.5, 6.0, 

8.5), L’Institut Pierre-Simon Laplace 

GCM4 0.5° (1960-2099) MIROC, daily, RCP (2.6, 4.5, 6.0, 8.5), AORI, 

NIES and JAMSTEC 

GCM5 0.5° (1960-2099) NorESM1-M, daily, RCP (2.6, 4.5, 6.0, 8.5), 

Norwegian Climate Center 
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The data used from the GCMs consist of historic data from 1960-2005 

and future data from 2006-2099. In this study we used 3 future time 

periods (TP) to analyses the future climate variables, the time periods 

used are TP1 (2006-2039), TP2 (2040-2069) and TP3 (2070-2099). 

3.3.3 HYDROLOGICAL MODELLING DATA 

SWAT requires large geospatial input data to drive watershed dynamics. 

These data include topography (Digital Elevation Map), weather data, 

soil physical parameters and LULC map. The accuracy of model 

prediction depends on data availability and quality. All the input maps 

are projected to the WGS 1984 UTM Zone 47N projection. 

3.3.3.1 DIGITAL ELEVATION MAP 

SRTM digital elevation map (DEM) with the resolution of 90 m by 90 m 

for the study area (Figure 3.3-2A) obtained from USGS 

(https://earthexplorer.usgs.gov/) is used in this study.  

3.3.3.2 SLOPE 

Slope represents the rate of change of elevation for each DEM cell. The 

slope map (Figure 3.3-2B) is created from the DEM using the slope 

tool in ArcGIS. 

https://earthexplorer.usgs.gov/
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3.3.3.3 SOIL 

FAO-UNESCO soil map of the World, which is based on the FAO-UNESCO 

soil map of the world, is obtained from Food and Agriculture 

Organisation (FAO). The soil map is at 1:5.000.000 scale. The soil map 

for the study area is shown in (Figure 3.3-2C) and the soil code and 

its classification are shown in Table 3.3-4. 
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Figure 3.3-2: A.Elevation Map, B.Slope Map And C.Soil Map Of The Study Area. 
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Table 3.3-4: FAO Soil Code And Soil Classification. 

 Soil Classification 

FAO Soil Code Dominant Soil 
Unit 

Soil Association Textural 
Class 

Slope Class 

Ao108-2ab Orthic Acrisols  Ferric Acrisols and 
Dystric Nitrosols 

Medium 
texture 

Level to undulated 
and rolling to hilly 

Ao90-2-3c Orthic Acrisols Humic Acrisols, Dystric 
Cambisols and Lithosols 

Medium 
and fine 
texture 

Steeply dissected 
to mountainous 

Ge55-3a Eutric Gleysols Gleyic Cambisols and 
Thionic Fluvisols 

Fine 
texture 

Level to undulated 

Od21-a Dystric 
Histosols 

Humic Gleysols and 
Thionic Fluvisols 

- Level to undulated 

 

3.3.3.4 LAND USE AND LAND COVER 

The classified land use maps for the years 1999, 2006, 2017 (Figure 

4.1-1) and 2030 (Figure 4.1-2) are used as the land use inputs. The 

land use maps consist of 5 classes; Water, Natural Vegetation, 

Agriculture, Built Up and Cleared Land. The SWAT LULC codes and their 

representative LULC types are shown in (Table 3.3-5). 

Table 3.3-5: LULC Classification And SWAT Code. 

LULC SWAT Code LULC Classification  SWAT Definition 

WATR Water Water 
FRSE Natural Vegetation  Evergreen Forest 
AGRL Agriculture Agricultural Generic 
URHD Built Up Urban High Density 
BARR Cleared Land Bare Ground 

 

3.3.3.5 WEATHER 

The weather data is an important input in hydrological modelling; 

therefore, the lack of weather data and the poor quality of data can 

increase modelling uncertainty and bring about limitations to the study, 
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which is a common issue in hydrological studies. To compensate for the 

lack of data, many hydrological studies use other sources of data like 

reanalysis and satellite data. Hence in this study we incorporate 

reanalysis and satellite data with observed data to improve the quality 

of weather input data and compensate for lack of data. The weather 

variables used in this study are daily precipitation, daily maximum and 

minimum temperature, relative humidity, solar radiation, and wind 

speed.  

For precipitation, data from 8 stations obtained from DID and 2 stations 

obtained from MET, located within and around the watershed is used 

(Figure 3.3-3). To increase the coverage of the precipitation data over 

the basin, the study integrated the Climate Hazards Group InfraRed 

Precipitation with Station data (CHIRPS) precipitation data with 

observed data. CHIRPS is a 35+ year quasi-global rainfall data set with 

a resolution 0.05° ranging from 1981 to near-present.  

The CHIRPS product is an integration of various datasets: the monthly 

precipitation climatology (CHPclim) that is created using rain gauge 

stations collected from FAO and GHCN, the Cold Cloud Duration (CCD) 

information based on thermal infrared data archived from CPC and 

NOAA National Climate Data Centre (NCDC), the Version 7 TRMM 3B42 

data, the Version 2 atmospheric model rainfall field from the NOAA 
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Climate Forecast System (CFS), and the rain gauge stations data from 

multiple sources.  

Several studies have shown the CHIRPS dataset to perform well in 

hydrological modelling and having better agreement with observed data 

compared to other datasets (Tuo et al., 2016; Dhanesh et al., 2020; 

Pang et al., 2020; Zhang et al., 2020).  

For temperature, data are only available from 2 MET stations, therefor 

due to lack of data, ERA5 reanalysis data is integrated with the 2 MET 

station data. As for relative humidity, wind speed, and solar radiation 

there is no observed data available, therefor the ERA5 reanalysis data 

is also used for wind speed and for relative humidity data from NASA’s 

The Prediction of Worldwide Energy Resources (POWER) project dataset 

is used at resolution of 1/2° by 5/8°. For solar radiation simulated data 

within SWAT model is used.  

All the weather datasets used for the hydrological modelling are for the 

period 1995-2018.  
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Figure 3.3-3: Ground Stations And CHIRPS Locations For Precipitation Data. 

3.3.3.6 STREAMFLOW DATA 

River discharge data is obtained from DID, for stations Jambatan 

Sulaiman (3116430) and Batu Sentul (3116434) as shown in Figure 

3.3-1 under Section 3.3.2 for the periods 1973 to 2017 and 1970 to 

2018 respectively.  

3.4 METHODOLOGY 

3.4.1 ANALYSIS OF SPATIO-TEMPORAL TRENDS IN LAND-USE AND LAND 

COVER 

The Figure 3.4-1 shows the flowchart of the methods used in the land 

use and land cover modelling. 
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Figure 3.4-1: Summery Flowchart Of The Land-Use And Land Cover Modelling. 
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3.4.1.1 LAND USE AND LAND COVER CLASSIFICATION 

Image mosaic is carried out to merge images which give the full extent 

of the study area, followed by haze reduction process to remove, or 

reduce any haze in all the images, and for the 2017 image the 

panchromatic band of Landsat 8 is used to pan sharpen the image and 

improve its spatial resolution from 30 m to 15 m, for better 

interpretation and classification of land use.  

The maximum likelihood algorithm under supervised classification which 

is a commonly used method for classification is performed to classify 

Landsat images of 1999, 2006, and 2017. The following 5 land use 

classes are generated; Water, Natural Vegetation, Agriculture, Built-up 

and Cleared Land.  

3.4.1.1.1 ACCURACY ASSESSMENT 

For accuracy assessment, error matrix which is a commonly used 

method is calculated, using stratified random sampling. 150 sample 

points are generated for the study area for each map, and ground truth 

data obtained from Google Earth is used as reference points.  

3.4.1.2 LAND USE AND LAND COVER CHANGE MODELLING 

To simulate a future land use map, an integrated Decision Forest - 

Markov Chain (DF-MC) model is used. The DF-MC method uses the 

Random Forest machine learning algorithm, which consists of an 
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ensemble of Decision Trees (DT). This method has only been used in few 

land use change modelling studies in recent times (Al-sharif and 

Pradhan, 2015; Samardžić-petrović et al., 2015; Karimi et al., 2019). 

However, the Random Forest algorithm has shown to have several 

advantages over other machine learning methods. It is faster and easier 

to understand and interpret, the algorithm is completed at a fixed 

number of operations, it can process large volumes of data, a small 

quantity of parameters is needed to be adjusted during modelling, and 

has higher accuracy compared to other machine learning algorithms, as 

shown in studies by (Kamusoko and Gamba, 2015; Legdou et al., 2020; 

Mao et al., 2020). 

The Land Change Modeller (LCM) in TerrSet software developed by Clack 

Labs, is used for the modelling. The LCM is based on historical land use 

data, transition potential maps and Markov matrices, to simulate future 

LULC change. The LCM consists of 3 main steps, change analysis, 

transition potential modelling, and change prediction. The data used in 

this study are the land use maps of the years 1999, 2006 and 2017, and 

the parameters used in the land use change are, distance to roads, 

distance to rivers, distance to urban areas, digital elevation map and 

slope. 
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3.4.1.2.1 CHANGE ANALYSIS 

The change analysis step calculates the nature and extent of land use 

change between time 1 and time 2 and between 2 land use maps, the 

changes that are identified are transitions from one land use state to 

another. The change analysis evaluates gains and losses, detect net 

gains, and create change maps. 

3.4.1.2.2 TRANSITION POTENTIAL MODELLING 

In this step the potential of land to transition are identified, and 

transition potential maps for each transition is created. The transition 

potential maps that have same underlying driver variables, are grouped 

within an empirically evaluated transition sub-model. A transition sub-

model can consist of a single land use transition or a group of transitions 

that are thought to have the same underlying driver variables. These 

driver variables are used to model the historical change process.  

The driver variables used in this study are, distance to roads, distance 

to rivers, distance to urban, DEM and slope (Appendix B). The driver 

variables are selected based on literature review and authors knowledge 

of the study area. The transition potential maps are created using 

Decision Forest algorithm, which is implementation of the Random 

Forest method. 
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3.4.1.2.3 CHANGE PREDICTION 

In the final step, the historical change of rates calculated in the change 

analysis step and the transition potential maps, are used to predict a 

future scenario for a specified future date. The Markov Chain determines 

the amount of change using the earlier and later land cover maps along 

with the date specified. The procedure determines exactly how much 

land would be expected to transition from the later date to the prediction 

date based on a projection of the transition potentials into the future 

and creates a transition probabilities file. The transition probabilities file 

is a matrix that records the probability that each land cover category 

will change to every other category.  

To validate the model, the LULC maps of 1999 and 2006 are first used 

to simulate a LULC map of 2017, which is then validated against the 

reference LULC map of 2017. Then in the next step the future land use 

map of 2030 is simulated using the 2006 and 2017 LULC maps. The year 

2030 is chosen for future LULC map, to reflect the Malaysian 

Government Shared Prosperity Vision 2030, with one of its visions being 

sustainability, which aims to achieve national development which is eco-

friendly and gives emphasis on conserving and preserving natural 

resources. This is also in line with the United Nations (UN) 2030 Agenda 

for Sustainable Development (SDG 2030) and the Selangor structural 

Plan 2035.  



Page | 107  
 

The gains and losses and net gain for the year 1999-2006 and 2006-

2017 from the change analysis step is shown is (Appendix C). 

3.4.1.2.4 VALIDATION 

For the validation of the model the Area under the Curve (AUC) of Total 

Operating Characteristic (TOC) and disagreement parameters 

(allocation disagreement and quantity disagreement) methods are used. 

TOC method indicates how well the model is predicting change, while 

the allocation and quantity disagreement provides detailed information 

on the accuracy of predicted change and persistence of each land cover 

class.  

Quantity disagreement (quantification error) is when the quantity of 

cells of a class in the simulated map is different from the quantity of 

cells of the same class in the reference map. On the other hand, 

allocation disagreement (location error) is when the location of a class 

in the simulated map is different from location of that class in the 

reference map.  These metrics of disagreement are recommended by 

(Pontius and Millones, 2011; Pontius et al., 2011) as an alternative to 

Kappa statistics, since Kappa indices attempt to compare accuracy to a 

baseline of randomness, but randomness is not a reasonable alternative 

for map construction. 
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The accuracy of the model is based on four components of disagreement 

namely, hits (accuracy of observed versus predicted change), misses 

(error due to observed change predicted as persistence), false alarms 

(error due to observed persistence predicted as change) and correct 

rejections (accuracy of observed versus predicted persistence) 

(Kushwaha et al., 2021). 

3.4.2 ANALYSIS OF SPATIO-TEMPORAL TRENDS IN PRECIPITATION AND 

TEMPERATURE  

The summary flowchart of hydro-climatic trend analysis is shown in 

Figure 3.4-2. 

 

Figure 3.4-2: Summary Flowchart Of The Hydro-Climatic Trend Analysis. 
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3.4.2.1 DATA PREPROCESSING 

3.4.2.1.1 NORMALITY AND AUTOCORRELATION 

Before carrying out the trend analysis, normality, and autocorrelation 

tests are conducted for the data of each station. For normality, four tests 

are used, the Shapiro-Wilk test, the Anderson-Darling test, the Lilliefors 

test, and the Jarque-Bera test, and for autocorrelation, the Durbin 

Watson test is used.  

The Durbin Watson measures autocorrelation (also called serial 

correlation) in residual from regression analysis. Autocorrelation occurs 

when there are similarities of a time series data over successive time 

intervals, which can lead to underestimates of the standard error and 

can result in insignificant predictors to appear as significant. The Durbin 

Watson test always assumes values between 0 and 4, where:  

2 is no autocorrelation. 

0 to <2 is positive autocorrelation (common in time series data). 

>2 to 4 is negative autocorrelation (less common in time series data). 

Test statistic values in the range of 1.5 to 2.5 are commonly considered 

as relatively normal, and hence no autocorrelation is present, on the 

other hand values outside of this range could be cause for concern. The 

Durbin-Watson statistics can also be tested for significance using the 
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Durbin-Watson Table. For each value of alpha (.01 or .05) and each 

value of the sample size n (from 6 to 2000) and each value of the 

number of independent variables k (from 1 to 20), the table contains a 

lower and upper critical value (dL and dU). The test value d greater than 

dU indicates there is no autocorrelation, values below dL indicate there 

is autocorrelation and values between dL and dU indicate the test is 

inconclusive.  

The data for all stations are found to be normally distributed, and there 

is no autocorrelation found in the data.  

3.4.2.1.2 OUTLIER DETECTION 

The method suggested by (Crochemore et al., 2019) is used to detected 

the outliers in river discharge. In this method the outlier detection is 

based on the median and standard deviation of the data, while the 

median is not sensitive to outliers, the standard deviation is sensitive to 

the existence of outliers. First the data is standardised by subtracting 

the median from the data. Then all the values greater than five times 

the standard deviation (5SD) is flagged as outliers, and finally the 

outliers are visually inspected to differentiate with peak flows, where 

outliers are considered as events instead of single days, where one 

outlier is consists of consecutive days above the threshold (5SD). 



Page | 111  
 

3.4.2.1.3 FILLING MISSING DATA 

The precipitation stations with less than 10 percent of missing data are 

chosen for the study. And since Mann-Kendall test has a low sensitivity 

to abrupt breaks and missing values (Sa’adi et al., 2019), the missing 

data are ignored, and not considered in the trend analysis.  

As for the river discharge data, since there is lack of neighboring stations 

to carry out linear interpolation regression method and multiple 

imputation method did not give accurate representation of the data, 

therefore the dates with missing value are ignored in trend analysis. And 

after visual inspection of the data, it is found that data from 2014-2018 

for station Batu Sentul (3116434) has irregular pattern, where for the 

5-year period all daily discharge is less than or equal to 1m/s, which 

indicates an issue with the instrument or an unknown element in the 

river upstream of the station resulting in the reduced flow. Therefore, 

this 5-year period is removed from the analysis. 

3.4.2.1.4 VALIDATION OF ERA5 DATA 

The ERA 5 reanalysis temperature data are compared and validated with 

temperature data from stations 48648 and 48647, using correlation 

coefficient (R2), mean absolute error (MAE), root mean square error 

(RMSE), and Pearson's correlation coefficient (R) as shown in Table 

3.4-1. 
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The correlation of coefficient (R2) is the measure of how strong the 

linear relationship is between 2 variables, the R2 values range between 

-1 to 1, a correlation value of -1 shows a perfect correlation but negative 

and a value of 1 show a perfect positive correlation, and a correlation 

coefficient 0 shows no correlation. The correlation coefficient R2 is 

similar to Pearson’s correlation coefficient R, where R2 is square of the 

Pearson’s coefficient R. The RMSE on the other hand is used to measure 

the difference between predicted values from a model and observed 

values. Root Mean Square Error (RMSE) is the standard deviation of the 

residuals (prediction errors). And the residuals are a measure of how far 

from the regression line data points are; RMSE is a measure of how 

spread out these residuals are. Whereas the MAE is the mean of the 

amount of error in the measurements. The MAE measures the average 

magnitude of the errors in a set of predictions, without considering their 

direction. 

The ERA5 data covers grids of 0.25 by 0.25 therefore for temperature 

trend analysis, data for each grid covering the study area is used 

(Figure 3.4-3). 

Table 3.4-1: Statistics Comparing ERA5 Data With Observed Data. 

  Station 
48647 

Station 
48648 

Root Mean Square Error (RMSE) 0.995 1.075 

Correlation Coefficient (R2) 0.636 0.654 

Pearson's correlation coefficient(R) 0.798 0.809 
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Mean Absolute Error (MAE) 0.83 0.887 

 

 

Figure 3.4-3: ERA5 grid for the study area, from which temperature data is 

collected. 

3.4.2.1.5 DOWNSCALING OF THE GCM MODELS 

The Water and global change (WATCH) forcing data is a 20th century 

meteorological forcing dataset for land surface and hydrological models, 

which is generated as part of the European Union’s (EU) 6th Research 

Framework Program (FP 6). The 5 GCM models are downscaled using 

the 0.5° grid WATCH Forcing Data, the period 1960 to 1999 is used as 

the reference period to downscale the GCM models.  
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WATCH is a combination of the ERA-40 daily data, which is the 40-year 

reanalysis of the European Centre for Medium-Range Weather 

Forecasts, and the Climate Research Unit TS2.1 dataset (CRU). The 

WATCH Forcing Data combines the daily statistics of ERA-40 with the 

monthly mean characteristics of CRU and Global Precipitation 

Climatology Centre (GPCC) datasets and represents a complete gridded 

observational dataset for bias correction of global climate data 

(Abbaspour et al., 2019). 

3.4.2.2 SELECTED INDICES FOR PRECIPITATION AND TEMPERATURE 

ANALYSIS 

The indices selected for the trend analysis of precipitation and 

temperature are chosen from the list recommended by the Expert Team 

for Climate Change Detection and Indices (ETCCDI). For precipitation 4 

indices were selected, the R10mm and Rnnmm indices represented 

precipitation frequency, whereas the R95p and SDII represented the 

intensity of precipitation. For temperature 2 indices were selected, the 

TXx and TNx. 

The Department of Irrigation and Drainage (DID) has categorised 

rainfall intensity into 4 categories (Table 3.4-2). In this study we used 

R10mm index to represent the light rainfall intensity and for Rnnmm 
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index we used rainfall amount ≥30mm which represents heavy rainfall 

intensity.  

Table 3.4-2: Rainfall intensity categories according to Department of Irrigation and 

Drainage. 

Categorisation of Rainfall Intensity (in one hour.) 

Light 1-10(mm)   
Moderate 11-30(mm)   
Heavy 30-60(mm)   
Very Heavy > 60(mm) 

 

 

3.4.2.3 MANN-KENDALL TREND STATISTICS 

Trend analysis is important when studying climate variables as it shows 

significant changes in these variables over time. The Mann-Kendall test 

(Mann, 1945; Kendall, 1975) is used to analyse the trend in annual and 

seasonal precipitation and precipitation intensity. The Mann-Kendall 

(MK) test is a non-parametric test, therefore the data does not need to 

fit a normal distribution, and it can identify if there are linear or non-

linear trends in the time series data. The null hypothesis of the Mann-

Kendall test is that there is no trend in the data, whereas the alternative 

hypothesis is that there is a trend in the data, and this trend can be 

positive, negative, or non-null.  

The Mann-Kendall test statistic S is calculated using the formula. 

 

𝑺 = ∑ ∑ 𝒔𝒈𝒏(𝑿𝒋 − 𝑿𝒌)
𝒏
𝒋=𝒌+𝟏

𝒏−𝟏
𝒌=𝟏                                                                        (2) 

Where xj and xk are the annual values in years’ j and k, j > k, 

respectively, and 

http://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm
http://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm
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 𝒔𝒈𝒏(𝑿𝒋 − 𝑿𝒌) = {

𝟏  𝒊𝒇 𝑿𝒋 − 𝑿𝒌 > 0

𝟎  𝒊𝒇 𝑿𝒋 − 𝑿𝒌 = 𝟎

−𝟏 𝒊𝒇 𝑿𝒋 − 𝑿𝒌 < 0

 

As suggested by (Salmi et al., 2002) if n is 9 or less, the absolute value 

of S is compared directly to the theoretical distribution of S derived by 

Mann and Kendall. The two-tailed test is used for four different 

significance levels α: 0.1, 0.05, 0.01, and 0.001. At a certain probability 

level, the null hypothesis is rejected in favor of the alternative 

hypothesis if the absolute value of S equals or exceeds a specified value 

Sα/2, where Sα/2 is the smallest S which has a probability less than α/2 

to appear in case of no trend. A positive (negative) value of S indicates 

an upward (downward) trend. If n is at least 10, the normal 

approximation test is used. However, if there are several tied values 

(i.e., equal values) in the time series, it may reduce the validity of the 

normal approximation when the number of data values is close to 10. 

First, the variance of S is computed by the following equation which 

considers that ties may be present: 

𝑽𝑨𝑹(𝑺) =
𝟏

𝟏𝟖
[𝒏(𝒏 − 𝟏)(𝟐𝒏 + 𝟓) − ∑ 𝒕𝒑(𝒕𝒑 − 𝟏)(𝟐𝒕𝒑 + 𝟓)

𝒒
𝒑=𝟏 ]           (3) 

Here q is the number of tied groups and tp is the number of data values 

in the pth group. 

The values of S and VAR(S) are used to compute the test statistic Z as 

follows: 
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𝒛 =

{
 

 
𝑺−𝟏

√𝑽𝑨𝑹(𝑺)

𝟎
𝑺+𝟏

√𝑽𝑨𝑹(𝑺)

𝒊𝒇 𝑺 > 0
𝒊𝒇 𝑺 = 𝟎
𝒊𝒇 𝑺 < 0

                                                                              (4) 

The Z value indicates a significant trend, where a positive (negative) 

value of Z indicates an upward (downward) trend, and the statistic Z 

has a normal distribution. To test for either an upward or downward 

monotone trend (a two- tailed test) at α level of significance, H0 is 

rejected if the absolute value of Z is greater than Z1-α/2, where Z1-α/2 

is obtained from the standard normal cumulative distribution tables. In 

this research, we used the MAKESENS excel templet which is developed 

by the Finnish Meteorological Institute to calculate the Mann-Kendall 

test, and the significance is considered at 0.01 and 0.05 levels of 

significance. 

3.4.2.3.1 SEN’S SLOPE 

Sen's slope estimator Q is used to measure the magnitude of change. 

Sen's nonparametric method is used to estimate the true slope of an 

existing trend (as change per year), which is developed by Sen (Sen, 

1968). The Sen’s slope estimator Q is calculated by: 

𝑸𝒊 =
𝑿𝒋−𝑿𝒌

𝒋−𝒌
                                                     (5) 

where j>k. 
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If there are n values Xj in the time series, we get as many as N = n(n-

1)/2 slope estimates Qi. Sen's estimator of the slope is the median of 

these N values of Qi. The N values of Qi are ranked from the smallest to 

the largest and the Sen’s estimator is: 

𝑸 = 𝑸
[
𝑵+𝟏

𝟐
]
, if N is odd. 

or                                                                                                                        (6) 

𝑸 =
𝟏

𝟐
(𝑸

[
𝑵
𝟐
]
+ 𝑸

[
𝑵+𝟐
𝟐
]
 

A 100(1-α)% two-sided confidence interval about the slope estimate is 

obtained by the nonparametric technique based on the normal 

distribution. The method is valid for n as small as 10 unless there are 

many ties. 

3.4.2.4 LAND SURFACE TEMPERATURE TREND ANALYSIS 

The Land Surface Temperature (LST) trend analysis summary flowchart 

is shown in Figure 3.4-4. 
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Figure 3.4-4: Summary Flowchart Of The Land Surface Temperature Modelling.  

The Land Surface Temperature (LST) is calculated for the year 2017 

using the thermal band (band 10) and bands 6 and 5 of the Landsat 

images, and for LST for years 1999 and 2006 only the thermal band 

(band 6) is used. To obtain the LST map of 2017 from Landsat 8 image, 

methods used in (Avdan and Jovanovska, 2016) are used. The first step 

is to calculate the top of the atmosphere (TOA) spectral radiance with 

the equation: 

𝑳𝝀 = 𝑴𝑳 ∗ 𝑸𝒄𝒂𝒍 + 𝑨𝑳 −𝑶𝒊                                                                                           (7) 

Where 𝑀𝐿 represents the band-specific multiplicative rescaling factor, 

𝑄𝑐𝑎𝑙 is the Band 10 image, 𝐴𝐿 is the band-specific additive rescaling 
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factor, and 𝑂𝑖 is the correction for Band 10. All these data are available 

in the metadata of the image.  

The second step is to convert the spectral radiance to At-sensor 

temperature, using the thermal constants provided in the metadata. The 

following equation is used to get the brightness temperature (BT). 

𝑩𝑻 =
𝑲𝟐

𝒍𝒏[(𝑲𝟏 𝑳𝝀)+𝟏⁄ ]
− 𝟐𝟕𝟑. 𝟏𝟓                                                                                         (8) 

Where 𝐾1 and 𝐾2 stand for the band-specific thermal conversion 

constants obtained from the metadata. To convert the results from 

Kelvin to Celsius, the absolute zero (-273.15°C) is added to the 

equation.  

The next step is to calculate Normal Difference Vegetation Index (NDVI) 

for emissivity correction. To calculate NDVI, the visible and near-infrared 

bands are used. The calculation of NDVI is essential since the amount 

of vegetation present is an important factor, and NDVI is used to 

calculate proportion of vegetation (𝑃𝑣). The following equation is used to 

calculate NDVI. 

𝑵𝑫𝑽𝑰 =
𝑵𝑰𝑹(𝒃𝒂𝒏𝒅 𝟓) − 𝑹(𝒃𝒂𝒏𝒅 𝟒)

𝑵𝑰𝑹(𝒃𝒂𝒏𝒅 𝟓) + 𝑹(𝒃𝒂𝒏𝒅 𝟒)
                                                                                    (9) 

Where NIR represents the near-infrared band (Band 5) and 𝑅 represents 

the red band (Band 4). 
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The next step is to calculate the proportion of vegetation (𝑃𝑣) using the 

equation (10).  

𝑷𝒗 = (
𝑵𝑫𝑽𝑰−𝑵𝑫𝑽𝑰𝒎𝒊𝒏

𝑵𝑫𝑽𝑰𝒎𝒂𝒙−𝑵𝑫𝑽𝑰𝒎𝒊𝒏
) ²                                                                                         (10) 

Where NDVImin is the minimum value of NDVI obtained from equation 

(9) and NDVImax is the maximum value of NDVI. 

This is then followed by calculating the Land Surface Emissivity (LSE), 

which is important in calculating LST, since the LSE is a proportionality 

factor that scales blackbody radiance (Planck’s law) to predict emitted 

radiance, and it is the efficiency of transmitting thermal energy across 

the surface into the atmosphere. LSE is calculated using equation (11), 

which is suggested by (Sobrino, Jiménez-Muñoz and Paolini, 2004). 

ɛ = 𝟎. 𝟎𝟎𝟒𝑷𝒗 + 𝟎. 𝟗𝟖𝟔                                                                                                   (11) 

The final step is to calculate the LST or the emissivity corrected land 

surface temperature 𝑻𝒔, using the equation (12). 

𝑻𝒔 =
𝑩𝑻

{𝟏+[(𝝀𝑩𝑻/𝝆) 𝒍𝒏 ɛ]}
                                                                                                        (12) 

Where, 𝑻𝒔 is the LST in Celsius, BT is at-sensor BT (∘C), 𝜆 is the 

wavelength of emitted radiance (for which the peak response and the 

average of the limiting wavelength (𝜆 =10.895) will be used), 𝜀 is the 

emissivity calculated in equation (11), and 
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𝝆 = 𝒉𝝈
𝒄 = 𝟏. 𝟒𝟑𝟖 ∗ 𝟏𝟎−𝟐𝒎𝑲                                                          (13) 

Where 𝜎 is the Boltzmann constant (1.38 × 10−23 J/K), ℎ is Planck’s 

constant (6.626 × 10−34 J s), and 𝑐 is the velocity of light (2.998 × 108 

m/s). 

For LST for years 1999 and 2006, obtained from Landsat 5, the steps 

and equations from the Landsat hand book is used (Ihlen and Zanter, 

2019).  

For Landsat 5, band 6 which is the thermal band is used to obtain LST. 

First the Digital Number (DN) is converted to spectral radiance (Lλ) 

using the equation (14) 

𝑳𝝀 = (
𝑳𝑴𝑨𝑿𝝀−𝑳𝑴𝑰𝑵𝝀

𝑸𝑪𝑨𝑳𝑴𝑨𝑿−𝑸𝑪𝑨𝑳𝑴𝑰𝑵
) ∗ (𝑸𝑪𝑨𝑳 − 𝑸𝑪𝑺𝑳𝑴𝑰𝑵) + 𝑳𝑴𝑰𝑵𝝀               (14) 

Where, Lλ is the Spectral radiance at the sensor’s aperture in (Watts/ 

(m² * sr * μm)), QCAL is band 6, LMINλ is Spectral radiance scaled to 

QCALMIN in (Watts/ (m² * sr * μm)), LMAXλ is the Spectral radiance 

scaled to QCALMAX in (Watts/ (m² * sr * μm)), QCALMIN is Minimum 

quantized calibrated pixel value (corresponding to LMINλ) in DN and 

QCALMAX is the Maximum quantized calibrated pixel value 

(corresponding to LMAXλ) in DN. All these values are found in the 

metadata of Landsat 5. 

The next step is to calculate LST, by using the equation (15). 
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𝑻 =
𝑲𝟐

𝒍𝒏(
𝑲𝟏

𝑳𝝀
+𝟏)

− 𝟐𝟕𝟑. 𝟏𝟓                                                                                                 (15) 

Where, T is the Effective at-satellite temperature in Kelvin, K2 is the 

Calibration constant 2, K1 is the Calibration constant 1 and Lλ is Spectral 

radiance in (Watts/ (m² * sr * μm)) which is calculated in equation (14). 

The K1 and K2 constants are found in the metadata of Landsat 5. Finally, 

the LST is converted from Kelvin to Celsius by adding the absolute zero 

(-273.15°C) to the equation. 

3.4.3 DEVELOPMENT OF SPATIO-TEMPORAL HYDROLOGICAL MODEL 

3.4.3.1 SWAT MODEL DESCRIPTION 

The summary of the SWAT model setup is presented in the Figure 

3.4-5. 
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Figure 3.4-5: Summary Flowchart Of The Hydrological Modelling Using SWAT Model. 

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1993; Arnold 

et al., 1998), is a long-term, continuous simulation watershed model. 
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SWAT is a public domain model that is developed by the USDA 

Agricultural Research Service (USDA-ARS) and Texas A&M AgriLife 

Research. Its main aim is to predict the impact of land management 

practices on water, sediment and agricultural chemical yields with 

reasonable accuracy in a large, complex, ungauged watersheds with 

varying soil, land use and management conditions over long periods of 

time (Neitsch et al., 2000a; Neitsch et al., 2000b). SWAT is a physically 

based model that can run at various time steps including daily, monthly 

and yearly (Gassman et al., 2007).   

The major components used in the model include weather, hydrology, 

soil properties, plant growth, pesticides, and land management (Arnold 

et al., 2012).  The model divides the watershed in to sub watersheds, 

which are further divided into Hydrologic Response Units (HRUs) that 

represent areas of homogeneous land use, management, topographical 

and soil characteristics (Neitsch et al., 2011). The output from each HRU 

is routed to the stream within the sub watershed, and the model does 

not simulate the interaction among HRUs (Srinivasan et al., 2005).  

Water balance is the moving force behind all the processes in SWAT, as 

it affects plant growth and movement of sediments, nutrients, 

pesticides, and pathogens. Watershed hydrology is divided into a land 

phase and a water phase. The land phase deals with sediment and 

nutrient loading in to the main channel in each sub basin, and the water 
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phase (in-stream or routing phase) deals with movement of water and 

sediment through the channel network of the sub basin to the outlet 

(Arnold et al., 2012).  

There are several hydrological components that SWAT is able to 

manage, for example surface runoff, stream flow and subsurface flow, 

evaporation from the soil, evapotranspiration from plant canopy and 

aquifer recharge (Neitsch et al., 2000). SWAT uses the modified USDA-

SCS Curve Number (CN) method (USDA Soil Conservation Service, 

1972) to estimate runoff volumes from daily rainfall, and uses Modified 

Universal Soil Loss Equation to estimate sediment yield for each sub-

watershed or HRU (Williams, 1995). 

3.4.3.2 MODEL SETUP 

The study is conducted using SWAT 2012 with ArcSWAT 10.1.18 

interface which is an extension of ArcGIS. The first step in the model 

setup is watershed delineation, where the basin and sub-basin 

boundaries plus stream networks are delineated using the DEM map. 

This was then followed by adding reservoirs to the watershed, and in 

the Klang River basin there are 2 reservoirs, the Batu dam, and the 

Klang Gates dam.  

To simulate the reservoir outflow, the targeted release method is used 

since release data from the dams are not available. In this method, a 
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target storage is set, and the water released from the reservoir is a 

function of the target storage. This method is a simplistic method, and 

does not consider all decision criteria, however it does follow the general 

release rules used by reservoir operators and reasonably simulates 

major outflows and low-flow periods (Memarian et al., 2014).  

The HRUs are then defined based on unique land use, soil, and slope 

combinations. The land use, soil and slope maps are overlaid together 

creating the HRUs. The slope consisted of 3 classes 0-5%, 5-15%, and 

15-9999%. This is then followed by defining the HRUs, default values 

for land-use (20%), soil (10%) and slope (20%) as suggested by 

(Winchell et al., 2007) to be adequate for most applications is used in 

this study. Once the HRUs are created, the weather data is then 

imported into the model and input tables are generated. The SWAT 

weather generator within the model is used in filling missing weather 

data.  

The modified Soil Conservation Service Curve Number (SCS-CN) 

method, which uses land use, soil, and the antecedent moisture 

condition to estimate surface runoff from daily precipitation is used for 

this study, the Green-Ampt method which estimates infiltration is 

another method available in SWAT to determine surface runoff and 

infiltration.  
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As for channel routing, there are 2 options available in SWAT, the 

variable storage method, and the Muskingum method. For this study the 

Muskingum method is used. 

The final step before calibration involves model simulation and reading 

output files, which are then used for calibration. The model is simulated 

on a daily time step from January 1999 to December 2018, with 4 years 

of warm up from January 1995 to December 1998. 

3.4.3.3 SENSITIVITY ANALYSIS 

The process of calculating the rate of change in model output with 

respect to changes to model inputs (parameters) is known as sensitivity 

analysis (Arnold et al., 2012). SWAT uses many parameters, therefore 

the first step in calibration is to determine the most sensitive parameters 

that have the greatest impact on the output. In this study sensitivity 

analysis is done by using the SWAT-CUP software (Abbaspour, 2012) an 

ArcSWAT interface tool. Sensitivity analysis is important for 2 main 

reasons, firstly the parameters in the model represent the processes in 

the hydrological system, and sensitivity analysis provides information 

on the most important processes in the study region. Secondly, 

sensitivity analysis eliminates the parameters identified as not sensitive, 

therefore reducing the number of parameters needed for calibration. 
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There are 2 methods of sensitivity analysis in SWAT-CUP, the one-at-a-

time (OAT) or local sensitivity analysis, and all-at-a-time (AAT) or global 

sensitivity analysis. In OAT method, all parameters are held constant 

while changing one to determine its effect on model output, whereas 

AAT all parameters are changing. In AAT parameter sensitivities are 

determined by calculating a multiple regression system to get the 

statistics of the parameter sensitivity. A t-test is then used to identify 

the relative significance of a parameter, and t-stat and p-values are used 

to rank each parameter according to its sensitivity. Parameters with p-

values of <0.05 and larger t-stat values are considered more sensitive 

(Abbaspour et al., 2017). 

3.4.3.4 CALIBRATION AND VALIDATION 

Calibration is the process of reducing the prediction uncertainty to try 

and get a more accurate output, by better parameterising the model to 

a given set of local conditions. Calibration is achieved by comparing 

model predictions (output) for a given set of assumed conditions with 

observed data for the same conditions, and carefully selecting values for 

model input parameters within their respective uncertainty ranges 

(Arnold et al., 2012). 

There are several calibration and validation methods available for SWAT, 

within SWAT-CUP there is the algorithm SUFI-2 (Sequential Uncertainty 
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Fitting), generalised likelihood uncertainty estimation (GLUE), 

parameter solution (ParaSol), Markov chain Monte Carlo (MCMC), and 

particle swarm optimisation (PSO) which can all be utilised in calibration 

and validation of SWAT models (Abbaspour et al., 2004; Abbaspour et 

al., 2007). 

The SUFI-2 algorithm which is a built-in function of SWAT-CUP, that 

takes into consideration all the sources of uncertainties such as 

parameters, conceptual model, input, and driving variables, is a popular 

method used in hydrological studies. The degree to which all 

uncertainties are accounted for is quantified by a measure referred to 

as the p-factor, which is the percentage of measured data bracketed by 

the 95% prediction uncertainty (95PPU).  

The 95PPU is calculated at the 2.5% and 97.5% levels of the cumulative 

distribution of an output variable obtained through Latin Hypercube (LH) 

sampling, disallowing 5% of very bad simulations. The r-factor on the 

other hand is the ratio of the average width of the 95PPU band and the 

standard deviation of the measured variable. Theoretically, the value of 

the p-factor ranges between 0 and 100%, while that of r-factor ranges 

between 0 and infinity. A p-factor of 1 and r-factor of zero is a simulation 

that exactly corresponds to measured data. Generally, a value greater 

than 0.7 for p-factor and a value less than 1.5 for r-factor is consider 

acceptable for calibration and validation of discharge (Abbaspour et al., 
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2015). In this study the SUFI-2 method is used to calibrate and validate 

the model, with observed data from Batu Sentul station. 

Model Validation is the process where a given site-specific model can 

show the ability to make sufficiently accurate simulations, although 

sufficiently accurate can vary based on project goals (Moriasi et al., 

2012). In SWAT validation involves using the parameters that are 

determined during calibration to run the model, then comparing the 

simulated data with observed data that is not used in calibration. In this 

study, observed stream flow data from the station, for the period of 

1999 to 2002 is used for calibration and the period 2006 to 2008 is used 

for validation. 

3.4.3.4.1 OBJECTIVE FUNCTIONS 

To evaluate the hydrological goodness of fit of a hydrological model, 

objective functions are used. In SWAT-CUP there are several objective 

functions that can be used in calibration and validation of the model.  

Two of the most common objective functions used are the Nash-Sutcliffe 

efficiency (NS) and the coefficient of determination (R²), which are used 

for this study. The NS is a normalised statistic that determines the 

relative magnitude of the residual variance (“noise”) compared to the 

measured data variance (“information”) (Nash and Sutcliffe, 1970). NS 

ranges between −∞ and 1, where 1 being the optimal value. Generally, 
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values between 0 and 1 are considered acceptable, with values greater 

than 0.5 being satisfactory (Moriasi et al., 2007). NS is calculated with 

following equation: 

𝑵𝑺 = 𝟏 −
∑ (𝑸𝒐−𝑸𝒑)²𝒏
𝒊=𝟏

∑ (𝑸𝒐−𝑸𝒂𝒗𝒈)²𝒏
𝒊=𝟏

                                                                      (16) 

Where Qo and Qp are the observed and simulated data, respectively, 

Qavg is the average of the observed data and n is the total number of 

data records.  

The R² describes the degree of collinearity or the proportion of variance 

measured between simulated and measured data. R² ranges from 0 – 

1, with values greater than 0.5 considered acceptable (Santhi et al., 

2001; Van Liew et al., 2003). R² is calculated with the following 

equation.   

 𝑹𝟐 = 𝟏 −
∑(𝒀𝒊−Ŷ𝒊)²

∑(𝒀𝒊−Ȳ)²
                                                                                                     (17) 

Yi denotes the value of the ith dependent variable, Ȳ is the mean of the 

dependent variable and Ŷi is the ith fitted value. 

3.4.3.5 HYDROLOGICAL MODELLING FOR FUTURE SCENARIOS 

After calibration and validation of the model and simulation of 

hydrological processes for the years 1999, 2006 and 2017, the model is 

used to simulate hydrological processes for future LULC and climate 
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scenarios. All the input parameters are unchanged, except for land use 

map, precipitation, and temperature data, where future data is used. 

For land use map, the modelled land use map of 2030 is used, and for 

weather data precipitation and temperature data from the GCMs for the 

RCP4.5 and RCP8.5 scenarios for the TP1, TP2 and TP3 time periods is 

used. First, simulation is carried out for LULC 2030 separately, then for 

RCP4.5 and RCP8.5 scenarios separately, and finally simulation is carried 

out for combined LULC 2030 and RCP scenarios. 

3.4.4 SUMMARY OF METHODOLOGY 

The summary of all the methods and the criteria for assessment of the 

methods used in this research is presented in Table 3.4-3. 

Table 3.4-3: Summary Of Methodology. 

Methodology Summary Criteria for Testing 

Land use and land 
cover classification 

• Landsat satellite images for 
years 1999, 2006 and 2017 
used. 

• Maximum likelihood 
algorithm supervised 
classification used. 

• Maps classified into 5 classes 
namely: Water, Natural 
Vegetation, Agriculture, Built-
up, Cleared land. 

• Accuracy assessment 
carried out. 

• Error matrix method 
used. 

• Stratified random 
sampling used, with 
150 random samples. 

• Ground truth data 
obtained from Google 
Earth for reference 
points. 

• Producer accuracy 
and user accuracy 
criteria used for 
accuracy assessment. 

Land use and land 
cover change 
modelling 

• Integrated Decision Forest - 
Markov Chain (DF-MC) model 
used. 

• Criteria for accuracy 
assessment used are, 
Area under the Curve 
(AUC) of Total 
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• Change analysis step is 
carried out, which calculates 
the changes between 2 land 
use maps. 

• The transition potential 
modelling is carried out, 
where potential of land to 
transition are identified, and 
transition potential maps for 
each transition is created. 

• Variables for LULC change 
used are distance to roads, 
distance to rivers, distance to 
urban, DEM and slope. 

• Markov chain model with the 
transition potential and rate 
of changed used to model 
future LULC map for year 
2030, based on LULC maps of 
2006 and 2017. 

Operating 
Characteristic (TOC) 
and disagreement 
parameters. 

• Accuracy of the model 
is based on four 
components of 
disagreement namely, 
hits, misses, false 
alarms, and correct 
rejections. 

Spatio-temporal 
trend analysis 

• Mann-Kendall and Sen’s 
slope statistics used. 

• Normality, autocorrelation, 
outlier detection tests used. 

• 4 indices for precipitation 
(SDII, R95p, R10mm and 
R30mm) and 2 indices for 
temperature (TXx and TNx) 
used. 

• Land Surface Temperature 
(LST) calculated from thermal 
band of satellite images for 
years 1999, 2006 and 2017. 

• Criteria for data 
preprocessing include 
data must be normally 
distributed, data must 
not have 
autocorrelation, must 
detect, and remove 
outliers, fill missing 
data or if few missing 
data ignore. 

Hydrological 
modelling (SWAT) 

• The SWAT model used for 
the hydrological modelling of 
the Klang River basin. 

• Sensitivity analysis 
must be carried out to 
determine most 
sensitive parameters. 

• The p-factor and r-
factor are important 
in model validation. 

• NS and R2 should also 
be considered. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 ANALYSIS OF SPATIO-TEMPORAL TRENDS IN LAND-USE AND LAND COVER 

4.1.1 LAND USE AND LAND COVER CLASSIFICATION 

The spatio-temporal land use and land cover (LULC) classification maps 

for the years 1999, 2006, and 2017 are presented in Figure 4.1-1. 

There have been notable trends detected in LULC change within the 

study area over the period 1999- 2017. Built-up land has seen a 

significant increase by 147.5 km² constituting to an 11.8% rise, while 

water bodies have seen a slight expansion of 4.31 km². in contrast 

agricultural land decreased by 36.71 km² (2.9 %), natural vegetation 

by 73.4 km² (5.9%), and cleared land by 41.79 km² (3.3%).  

In terms of spatial trend, changes are primarily located in the lower 

parts of the Klang River basin where substantial areas of cleared land 

have been transformed into urban land. On the other hand, the upper 

parts of the basin remain largely unchanged and are predominantly 

covered by natural vegetation. Table 4.1-1 provides the breakdown of 

changes in land area for each land use classification for the period 1999 

-2017.  
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Figure 4.1-1: Lulc Map Of Year 1999, 2006 And 2017. 
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Table 4.1-1: LULC Area For Each Classification, For The Years 1999, 2006, And 

2017. 

  Area Change 

1999 2006 2017 1999-2017 

Area 
(km²) 

Area 
(%) 

Area 
(km²) 

Area 
(%) 

Area 
(km²) 

Area 
(%) 

Area 
(km²) 

Area 
(%) 

Water 19.38 1.6 22.27 1.8 23.69 1.9 4.31 0.3 

Natural Vegetation 516.3 41.3 488.9 39.1 442.9 35.4 -73.4 -5.9 

Agriculture 98.46 7.9 79.53 6.4 61.75 4.9 -36.71 -2.9 

Built Up 538.7 43.1 570 45.6 686.2 54.9 147.5 11.8 

Cleared Land 76.86 6.2 88.92 7.1 35.07 2.8 -41.79 -3.3 

 

The overall accuracy of the LULC maps for the years 1999, 2006, and 

2017 stands at 84%, 92.74%, and 88.67%, respectively. More details 

of the accuracy assessment are provided in Table 4.1-2. 

Table 4.1-2: The Producer's And User's Accuracy For The LULC Classification Maps 

Of Years 1999,2006, And 2017, Showing The Accuracy Of The LULC Maps.  

 
1999 2006 2017 

Producers 
Accuracy 

Users 
Accuracy 

Producers 
Accuracy 

Users 
Accuracy 

Producers 
Accuracy 

Users 
Accuracy 

Water 50.00% 100.00% 100.00% 100.00% 50.00% 50.00% 

Natural 
Vegetation 

97.14% 80.95% 98.18% 91.53% 96.49% 83.33% 

Agriculture 70.00% 89.74% 88.64% 92.86% 86.27% 91.67% 

Built-Up 82.61% 90.48% 85.00% 100.00% 84.85% 96.55% 

Cleared 
Land 

60.00% 60.00% 100.00% 80.00% 71.43% 100.00% 

 

However, for the 1999 and 2017 LULC maps, the class water exhibits 

low producer and user accuracy, both at 50%. This can be attributed to 

the limited number of random samples available for the class water 

during the accuracy assessment, with only 2 random samples selected 

for the class water in each year. In both cases, the model incorrectly 

classified one sample point as another class, leading to the 50% 
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producer and user accuracy scores, as further illustrated in the error 

matrix in Table 4.1-3. 

Table 4.1-3: Error Matrix For The LULC Maps Of 1999, 2006, And 2017, Showing 

Accuracy Of The LULC Maps. 

Error Matrix of 
1999 

Reference Data 

Classified Data Water Natural 
Vegetation 

Agriculture Built-Up Cleared 
Land 

Row 
Total        

Water 1 0 0 0 0 1 

Natural 
Vegetation 

1 68 14 1 0 84 

Agriculture 0 2 35 2 0 39 

Built Up 0 0 0 19 2 21 

Cleared Land 0 0 1 1 3 5        

Column Total 2 70 50 23 5 150        

Error Matrix of 
2006 

Reference Data 

Classified Data Water Natural 
Vegetation 

Agriculture Built-Up Cleared 
Land 

Row 
Total        

Water 27 0 0 0 0 27 

Natural 
Vegetation 

0 54 4 1 0 59 

Agriculture 0 1 39 2 0 42 

Built Up 0 0 0 17 0 17 

Cleared Land 0 0 1 0 4 5        

Column Total 27 55 44 20 4 150        

Error Matrix of 
2017 

Reference Data 

Classified Data Water Natural 
Vegetation 

Agriculture Built-Up Cleared 
Land 

Row 
Total        

Water 1 0 1 0 0 2 

Natural 
Vegetation 

1 55 6 3 1 66 

Agriculture 0 2 44 2 0 48 

Built Up 0 0 0 28 1 29 



Page | 139  
 

Cleared Land 0 0 0 0 5 5        

Column Total 2 57 51 33 7 150 

 

4.1.2 LAND USE AND LAND COVER CHANGE MODELLING 

The simulated LULC map of 2030 is presented in Figure 4.1-2. The 

projection of future changes shows several significant changes in LULC 

between 2017 and 2030. Built-up land is estimated to increase by 120.6 

km² (9.7%), and agricultural land to marginally increase by 9.11 km² 

(0.7%). On the other hand, natural vegetation is projected to decrease 

by 109.5 km² (8.7%), and a marginal decrease in water bodies by 20.94 

km² (1.7%). A detailed summary of these changes is provided in Table 

4.1-4.  

The trends in the projected model between 2017 to 2030 shows 

similarities to the trends in LULC change between 1999 and 2017. In 

both the past and projected future model, Built-up land exhibits 

increasing trend in both spatial and temporal context. Whereas, in both 

cases natural vegetation and cleared land show decreasing trend. The 

magnitude of change in both past and future projected models are 

similar, showing continuous rate of change into the future with current 

development conditions.  
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Figure 4.1-2: The Simulated LULC Map For Year 2030. 

Table 4.1-4: LULC Area And Changes Between Years 2017 And 2030. 

  2030 Change from  
2017-2030 

Area (km²) Area (%) Area (km²) Area (%) 

Water 23.6 1.9 -0.09 0.0 

Natural Vegetation 333.4 26.7 -109.5 -8.7 

Agriculture 70.86 5.7 9.11 0.7 

Built Up 806.8 64.6 120.6 9.7 

Cleared Land 14.13 1.1 -20.94 -1.7 

 

4.1.2.1 MODEL VALIDATION 

The model validation is presented by the Area Under the Curve (AUC) 

of the Total Operating Characteristic (TOC) as shown in Figure 4.1-3. 

An AUC value of 0.84 for model validation was obtained. 
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Figure 4.1-3: The Area Under The Curve Of The Total Operating Characteristic, 

Showcasing The Validation Of The Model. 

The cross-tabulation matrix in Figure 4.1-4 presents a breakdown of 

hits, misses, false alarms, wrong hits, and correct rejections in the 

model validation process. The overall components of agreement amount 

to 71.1%, derived from the sum of Hits (3.1%) and Correct Rejections 

(68%). In contrast, the components of disagreement total to 28.9%, 

resulting from the sum of Misses (14.9%), False Alarms (9.4%), and 

Wrong Hits (4.7%). This comprehensive assessment contributes to our 

understanding of the model's performance and accuracy. 



Page | 142  
 

 

Figure 4.1-4: The Quantity And Allocation Disagreement, Showcasing The Validation 

Of The Simulated Map With The Reference Map. 

4.1.3 DISCUSSION 

Land use and land cover change modelling provides valuable information 

on changing landscape dynamics and their potential impact on 

hydrological processes. To understand the impacts of these change on 

hydrological processes, it is important to first analyse and understand 

the trends in LULC, and to showcase the magnitude of change both in 

terms of spatial and temporal trend, then project future changes in 

LULC. To accomplish this, the study utilised the maximum likelihood 

algorithm under the supervised classification and the integrated 
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Decision Forest – Markov Chain model methods, to classify and analyse 

the spatio-temporal trends in LULC. The model used Landsat satellite 

images for land use classification and input for the land use change 

model. 

An important step in LULC change modelling is to assess the goodness 

of the model in use. The overall accuracy assessment of the LULC maps 

as shown in Table 4.1-2, presents satisfactory outcome in land use 

classification. Additionally, the Area Under the Curve (AUC) value of 

0.84, and the higher total components of agreement (71.1%) over total 

components of disagreement (28.9%) in the DT-MC model validation 

affirm the reliability and suitability of the model for simulating future 

land use scenarios. These validation results are in accordance with prior 

research conducted by Samardžić-petrović et al. (2015), which obtained 

similar AUC values (0.7 to 0.8). Therefore, highlighting the effectiveness 

of the DT-MC model in modeling LULC changes.  

The analysis of the spatio-temporal trends in LULC change, discovered 

several significant trends. The observed LULC trend for the period 1997 

to 2017 illustrates the magnitude of change in LULC, with an increase 

of 147.5 km² (11.8%) in built-up areas, increasing at a rate of 7.76 km² 

(0.62%) per year was observed (Figure 4.1-5). This expansion is 

primarily concentrated in the central part of the Klang River basin 

highlighting the spatial trend. Although the average annual urban 
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growth rate of 0.6% for Klang River basin is lower than the Malaysian 

average annual urban growth rate of 1.5% for the period 2000 to 2010 

(World Bank Group, 2015), this is still a significant increase in urban 

land in the Klang River basin, considering around 43% of the basin was 

already urbanised in the year 1999.   

The increase in urban land is mostly attributed to the urban sprawl of 

the densely populated federal territory of Kuala Lumpur (KL) and its 

surrounding urban areas. This urban sprawl phenomenon aligns with the 

findings of previous studies (Rosni et al., 2016; and Almdhun et al., 

2018), underscoring the growth of KL and its consequential impact on 

the wider basin landscape. 

The LULC change beyond 2017 and up to 2030, illustrates continuous 

increasing trend in built-up land, with an estimated increase of 120.6 

km² (9.7%). The spatial trend shows that urban expansion will primarily 

encroach within urban green spaces and the remaining forests located 

in the middle and lower regions of the basin. This is attributed to the 

proximity to existing urban areas and road networks, with the lower-

lying and accessible terrains in these areas being especially attractive 

for urban development. On the other hand, natural vegetation and 

forests in the upper basin are expected to remain largely unaffected, 

due to lack of accessibility and steeper slopes.  
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This is supported by the findings in the study by Othman et al., (2009) 

that examined land use and land cover changes in the Langat-Dengkil 

sub-catchment within the Klang-Langat catchment from 1990 to 2001, 

with a forecast for 2020. During this period, there was a significant 

decrease of 9.5% (4,303 ha) in forested land and a 17.3% (11,598 ha) 

reduction in agricultural land, while urban land expanded substantially 

by almost six times (18,860 ha), primarily at the expense of agriculture 

and forests in the Langat-Dengkil sub-catchment. In the wider Klang-

Langat catchment, deforestation encompassed 36,351 ha, including 

12,244 ha of Permanent Forest Reserve. 

The analysis identified key factors contributing to deforestation: 

proximity to major access points within 1000m, proximity to towns 

within 2000m, lower altitudes below 100m, and gentle slopes less than 

5°. The study's projections for 2020 indicated that if the Permanent 

Forest Reserve is strictly protected, deforestation could be reduced to 

22,340 ha or 22%. However, without such protection, deforestation is 

expected to be much more extensive, covering 50,851 ha or 50% of the 

area. This illustrates the vulnerability of urban green spaces and 

protected forests to LULC change, which is important in control and 

reduction of surface runoff and risk of flooding. 

Unfortunately, urban expansion into these Forest Reserves is already 

taking place. For example, the large forest area at Bukit Jelutong in the 
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southern part of Klang River basin is experiencing urban encroachment 

as of 2022, as shown in Figure 4.1-6. Similarly, the northern part of 

Selangor is estimated to undergo urban expansion by about 33% from 

2015 to 2033 with distance to road and distance to build up areas, being 

the major variables in the urban expansion (Camara et al., 2020). 

Further highlighting the role of accessibility in driving land use changes. 

The increase of transportation networks is a major factor in the 

expansion of urban areas in Malaysia. For example, in George Town, 

Northern Malaysia, it is estimated by 2030 urban land to expand from 

925.77 km² to 1253.95 km², with the North-South highway and the 

second bridge between Georg Town and Penang island playing a major 

role in this expansion (Samat et al., 2020). This illustrates that 

availability of road network and accessibility increases the speed and 

magnitude of LULC change and urban expansion. 
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Figure 4.1-5: The Increase Of Built-Up Areas For The Period 1999 To 2030. 
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Figure 4.1-6: Urban Expansion Into Forest Areas In Bukit Jelutong (Image Obtained 

From Google Earth, In Year 2022). 

The decrease in natural vegetation and agricultural land for the period 

1999 to 2017 by 73.4 km² (5.9%) and 36.71 km² (2.9%) respectively, 

and increase in built-up areas, resulted in increase in imperviousness of 

the land surface and therefore reducing infiltration capacity of land, as 

shown by previous studies, hence increasing surface runoff, river 

discharge and risk of flooding. 

The regions most affected by the decreasing trend in natural vegetation, 

agricultural land and cleared land are the Southern and Western parts 

of the basin. The future projections, estimates a continuous decrease in 
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natural vegetation and cleared land until 2030, at a yearly rate of 7.82 

km² (0.62%) and 1.5 km² (0.12%) respectively, with agricultural land 

projected to increase slightly. 

As the population and the economy of Selangor continues to grow, and 

with the aim of reaching the goals of Malaysia Shared Prosperity Vision 

2030 and Selangor Structural Plan 2030, demand for urban and 

agricultural land increases, hence more of the protected areas and urban 

green spaces will be used to meet these demands. This is evident in 

past cases where the government de-gazette forest reserves for urban 

expansion.  

For example, 106.65 ha of the Ampang forest reserve was de-gazette in 

2014 to construct an expressway, and in 2016 around 30 ha of Sungai 

Puteh North and South Forest Reserves were de-gazette for a highway, 

and 28.3 ha of Bukit Lagong Forest Reserve was de-gazette for a 

housing project. In a more recent case, the government has proposed 

to de-gazette 985 ha (97%) of the Kuala Langat North Forest Reserve 

for urban development (Ravindran and Rajendra, 2020). 

If the rapid increase in urbanisation and uncontrolled urban expansion 

is allowed to continue, it will have a negative impact on the basin. The 

Klang River basin and in particular KL experience regular flooding 

events, and this is largely attributed to urban development (Bhuiyan et 
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al., 2018). The combined impact of the uncontrolled urban expansion 

and changing precipitation can have devastating effect on the 

hydrological processes in the Klang River basin, that is already 

experiencing regular flooding events.  

4.2 ANALYSIS OF SPATIO-TEMPORAL TRENDS IN PRECIPITATION, 

TEMPERATURE AND RIVER DISCHARGE 

4.2.1 PRECIPITATION TRENDS 

4.2.1.1 ANNUAL TREND 

The interpolated mean annual precipitation map of the Klang River basin 

is presented in Figure 4.2-1, while the annual precipitation trend map 

of the 10 stations is presented in Figure 4.2-2. The mean annual 

precipitation analysis exhibits a distinct pattern across the Klang River 

basin. The central regions of the basin experienced higher mean annual 

precipitation, ranging from 3010mm to 3368mm, in contrast the 

Southern regions of the basin recorded the lowest mean annual 

precipitation, varying between 2024mm and 2388mm. This 

demonstrates that there is spatial variability in precipitation distribution 

in the Klang River basin. 

The annual precipitation trend map highlights an overall increasing trend 

in precipitation, with only one station displaying a decreasing trend. A 

significant trend in precipitation was noticeable at stations located in the 
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central part of the Klang River basin. The mean annual precipitation 

amounts for the period 1999 to 2017 for the 5 stations located in the 

central part of the basin as shown in Figure 4.2-3, illustrates a gradual 

increase in precipitation over this period. Notably, the year 2006 stands 

out as the year with the highest annual precipitation amount for 3 out 

of the 5 stations. 

Spatial variability is present in mean annual precipitation for the period 

1999 to 2017, as the 5 stations in the basin exhibit higher precipitation 

amounts compared to the 5 stations located outside the basin. Station 

48648 had the highest mean annual precipitation at 3369 mm, whereas 

station 2616135 located outside the basin had the lowest mean annual 

precipitation at 1708 mm. 
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Figure 4.2-1: Average Annual Precipitation In Klang River Basin. 
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Figure 4.2-2: The Annual Precipitation Trend For Klang River Basin (Significance 

Level Taken At 0.01 And 0.05). 
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Figure 4.2-3: The Graph Of Average Annual Precipitation For Stations Located 

Within Built Up Areas. 

The significance level and rate of change in annual precipitation trend is 

shown in Table 4.2-1. Among the 10 stations negative trend was 

detected at only station 2616135, while only half of the stations had 

significant trend. The rate of change, which is represented by the Sen’s 

slope, was found to be highest at station 3116006, with a rate of 28.46 

mm/year. The results of the Sen’s slope indicate that rate of change is 

higher at the stations located in the central region of the Klang River 

basin.  
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Table 4.2-1: Trends For Annual Precipitation. 

Stations Annual Precipitation 

Test Z Sen’s Slope 

2616135 -1.02 -3.94 

3014084 2.50* 15.76 

3113087 1.56 9.67 

3115079 3.16** 21.61 

3114085 0.26 0.82 

3115053 0.33 2.53 

48648 2.06* 26.27 

48647 1.56 15.41 

3117070 2.01* 11.68 

3116006 3.43** 28.46 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

Shifting the focus to the annual trends of key precipitation indices, 

namely SDII, R10mm, R30mm, and R95p  (Table 4.2-2), it is evident 

that there is spatial and temporal variability in trends among the indices. 

While some stations show decreasing trends in SDII, the stations located 

in the central part of the Klang River basin consistently display positive 

trends across all four indices. Many of these trends are statistically 

significant, emphasising the dynamic nature of precipitation patterns in 

this region. 
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Table 4.2-2: Annual Trend For SDII, R10mm, R30mm, And R95p. 

Stations SDII R10mm R30mm R95p 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

2616135 -2.28* -0.14 -1.32 -0.11 -1.48 -0.11 -0.43 -1.35 

3014084 -3.25** -0.14 1.64 0.29 0.87 0.08 1.92+ 6.43 

3113087 0.3 0.01 0.54 0.09 1.77+ 0.15 2.10* 6.82 

3115079 4.84** 0.12 3.19** 0.55 4.33** 0.37 2.75** 9.87 

3114085 -4.01** -0.19 -2.44* -0.44 -0.91 -0.06 0.46 1.51 

3115053 -0.01 0 -0.33 -0.08 0.2 0 0.51 1.69 

48648 2.41* 0.12 2.90** 0.65 1.94+ 0.38 1.36 7.54 

48647 0.92 0.07 1.15 0.25 1.15 0.25 1.07 8.1 

3117070 1.32 0.04 2.11* 0.27 2.10* 0.17 1.75+ 8.87 

3116006 2.55* 0.08 3.81** 0.8 2.55* 0.28 3.01** 16.53 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if 

trend at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 

0.1. 

On the other hand, the Sen's slope estimator for the R95p index, shows 

notably high rate of increase for stations within urban areas of the Klang 

River basin. Station 3116006 exhibits the highest rate of change at 

16.53 mm per year for R95p compared to other stations. Whereas, for 

SDII stations with decreasing significant trends exhibited higher rate of 

change. The station 3114085 located in the Southern part of the basin 

recorded the highest rate of change at -0.19 mm/day per year.    

The Sen's slope for R10mm and R30mm, at stations 48648 and 

3115079, both situated in urban areas, demonstrates the highest rates 

of change. Station 48648 has the highest rate of change at 0.65 days 

per year for R10mm and 0.38 days per year for R30mm. This illustrates 

that there is higher frequency of heavy and moderate precipitation over 
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urban areas, whereas the intensity of heavy precipitation is highest over 

urban areas, but intensity of moderate to low precipitation is low and 

decreasing over certain areas in the South, West and Eastern part of the 

basin.  

4.2.1.2 SEASONAL TREND 

The analysis of the average monthly precipitation presented in 

Appendix D, provides crucial insights into the seasonal variability of 

precipitation across our study area. The highest average precipitation 

was observed in the month of November across all the stations, which 

correspond to the North-East Monsoon. The urban stations situated 

within the Klang River basin exhibit notably higher average precipitation 

in November compared to stations located outside the basin. Among 

these urban stations, station 48648 registers the highest November 

precipitation at 416 mm. On the other hand, the month of June, 

corresponding to the South-West Monsoon (SWM) season, emerges as 

the driest month for most of the stations, with an average precipitation 

amount of merely 139 mm. 

➢ SIMPLE DAY INTENSITY INDEX (SDII) 

The analysis of the SDII trend shows spatial variability, with a mixture 

of increasing and decreasing trend detected among the stations, as 

highlighted in Figure 4.2-4. With 6 out of 10 stations, the SWM has the 
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most stations with significant trend, as shown in Table 4.2-3. Overall, 

the 5 urban stations showcase an increasing trend, except for station 

3117070 during IntM1. Meanwhile, stations located outside the basin 

boundaries consistently display a decreasing trend. This highlights the 

spatial and seasonal variability in moderate to low precipitation intensity, 

which echoes the annual patterns. 

 The Sen's slope estimator reveals that the rate of change in SDII is 

most pronounced during SWM and IntM2, with station 48648 registering 

the highest rate at 0.29 mm/day per year. Among all the stations, the 

stations 3014084 and 3114085 show consistent significant negative 

trend, with an average seasonal rate of change at -0.14 mm/day per 

year and -0.2 mm/day per year respectively.  
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Figure 4.2-4: The SDII Seasonal Trend Map For NWM, SWM, Intm1 And Intm2. 

Table 4.2-3: Seasonal Trend For SDII. 

Stations NEM SWM IntM1 IntM2 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

2616135 -1.70+ -0.1 -2.48* -0.16 -1.07 -0.09 -2.56* -0.26 

3014084 -2.53* -0.12 -2.32* -0.13 -2.13* -0.13 -2.33* -0.19 

3113087 -0.03 -0.01 0.82 0.04 0.13 0.03 0.76 0.06 

3115079 4.03** 0.15 3.25** 0.11 0.51 0.02 1.38 0.08 

3114085 -4.10** -0.21 -2.85** -0.19 -2.14* -0.22 -2.33* -0.18 

3115053 0.57 0.04 -1 -0.05 -0.59 -0.05 -0.51 -0.04 

48648 0.67 0.05 1.61 0.11 1.07 0.09 0.92 0.29 

48647 0.92 0.07 1.76+ 0.1 0.22 0.04 0.97 0.15 

3117070 1.14 0.04 2.20* 0.06 -0.41 -0.03 1.35 0.08 

3116006 1.32 0.05 3.01** 0.11 0.7 0.07 3.53** 0.23 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if 

trend at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 

0.1. 
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➢ R10mm 

The analysis of R10mm, which quantifies the frequency of days with 

precipitation exceeding 10 mm, shows a mix of increasing and 

decreasing trends (Figure 4.2-5). Notably, significant trends are only 

detected during the NEM season, and only for urban stations within our 

study area (Table 4.2-4). Examining Sen's slope, we find that the 

highest rate of change in R10mm occurs during the NEM season, with 

stations 3116006 and 3115079 in urban areas registering the most 

substantial increases at 0.4 and 0.38 days per year, respectively. Among 

all the stations only station 3114085 exhibits negative trend for all the 

seasons. The overall positive trend in R10mm indicates an increase in 

frequency of occurrence of moderate rainfall events, especially in the 

NEM period. 
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Figure 4.2-5: The R10mm Seasonal Trend Map For NWM, SWM, Intm1, And Intm2. 

Table 4.2-4: Seasonal Trend For R10mm.  

Stations NEM SWM IntM1 IntM2 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

2616135 0.51 0.04 -1.65+ -0.1 -1.36 -0.03 -0.99 -0.03 

3014084 1.76+ 0.23 1.21 0.08 1 0.03 1.56 0.05 

3113087 -0.09 0 0.19 0 0.96 0 -0.16 0 

3115079 3.61** 0.38 1.34 0.1 0.58 0 0.87 0.04 

3114085 -1.70+ -0.17 -1.16 -0.09 -1.02 -0.04 -1.46 -0.06 

3115053 0.8 0.11 -1.37 -0.11 -1.06 -0.04 -0.66 -0.01 

48648 1.47 0.26 1.27 0.29 1.23 0.09 0.8 0.06 

48647 1.15 0.25 0.52 0.09 -1.24 -0.09 0.1 0 

3117070 2.15* 0.19 0.64 0.06 0.71 0 0.7 0 

3116006 3.33** 0.4 1.41 0.17 1.58 0.07 1.29 0.06 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 
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➢ R30mm 

Similarly, the analysis of R30mm, which characterises the frequency of 

extreme rainfall events, reveals an overall increase in trends (Figure 

4.2-6). However, statistically significant trends are primarily confined to 

the urban stations 3117070, 3116006, and 3115079 during the NEM 

season and station 3115079 during the SWM season, with no significant 

decreasing trends observed (Table 4.2-5).  

Sen's slope analysis underscores the prominence of change during the 

NEM and SWM periods, with stations 3116006 and 3115079 again 

exhibiting the highest rate of change at 0.15 and 0.25 days per year, 

respectively. On the other hand, the rate of change for the IntM1 and 

IntM2 were very low and at many stations the rate of change is 0, 

indicating no increase in number of extreme rainfall events for most of 

the locations.  
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Figure 4.2-6: The R30mm Seasonal Trend Maps For NEM, SWM, Intm1 And Intm2. 

Table 4.2-5: Seasonal Trend For R30mm. 

Stations NEM SWM IntM1 IntM2 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

2616135 -1.09 -0.03 -0.84 -0.04 -0.82 0 -0.99 -0.03 

3014084 0.81 0.04 0.96 0.04 0.64 0 -0.16 0 

3113087 1.63 0.08 1.28 0.06 0.91 0 0.8 0 

3115079 4.04** 0.25 2.66** 0.11 0.31 0 0.83 0 

3114085 -1.82+ -0.07 -0.59 0 0.13 0 0.38 0 

3115053 1.58 0.11 -0.79 -0.03 0.06 0 -0.83 0 

48648 0.95 0.12 1 0.12 0.26 0 1.16 0.07 

48647 0.6 0.07 0.52 0.09 0.64 0 0.08 0 

3117070 2.20* 0.11 1.33 0.04 0.58 0 0.3 0 

3116006 2.30* 0.15 1.88+ 0.09 1.04 0 0.73 0 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 
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➢ R95p 

Lastly, the study examined R95p, a metric that reflects the intensity of 

heavy precipitation events. A consistent increase in trends is observed 

during NEM, except for station 2616135 (Figure 4.2-7). Whereas, 

during SWM period station 2616135 did not show any trend. The inter-

monsoon periods generally exhibited increasing trend, apart from 

stations 2616135, 3014084, 3114085, and 3115053. However, 

statistically significant trends are observed only at stations 3117070, 

3116006, and 3115079 (Table 4.2-6), highlighting the importance of 

extreme precipitation on urban areas within the Klang River basin. 

Sen's slope calculations reveal that the highest rate of change in R95p 

is observed at Station 48648, located in the central part of the basin, 

with an increase of 7.87 mm per year during the SWM season. Overall, 

the highest rate of change in extreme precipitation intensity was 

detected at the 5 urban stations particularly during NEM and SWM. 

Indicating an increase in intensity of extreme precipitation events over 

urban areas. 
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Figure 4.2-7: The R95p Seasonal Trend Maps For NEM, SWM, Intm1 And Intm2. 

Table 4.2-6: Seasonal Trend For R95p. 

Stations NEM SWM IntM1 IntM2 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

Test Z Sen’s 
Slope 

2616135 -0.97 -1.11 0 0 1.54 0.46 -0.83 -1.17 

3014084 1.84+ 3.35 1.37 2.28 -0.14 -0.05 -0.13 -0.05 

3113087 1.44 2.57 1.19 2.08 0.72 1 0.7 0.23 

3115079 2.92** 6.18 1.63 2.98 0.63 0.12 0.36 0.07 

3114085 1.36 1.52 0.1 0 -0.05 -0.03 0.16 0.12 

3115053 1.21 2.45 -0.38 -0.42 -0.42 -0.18 -0.55 -0.19 

48648 1.22 5.54 1.22 7.87 0.15 0 0.3 0 

48647 0.02 0.97 1.94+ 6.37 0.55 0.1 1.6 1.42 

3117070 1.33 3.24 2.03* 4.41 0.01 0 1.1 0.6 

3116006 1.67+ 4.39 3.00** 7.74 0.24 0 1.96* 1.54 
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4.2.2 TEMPERATURE TRENDS 

The annual mean, maximum, and minimum 2-meter air temperatures, 

depicted in Figure 4.2-8, convey a comprehensive overview of the 

temperature regime. The annual average temperature ranges from 

24.8°C to 28°C, while the average annual minimum temperature spans 

from 21.4°C to 25.7°C, and the average annual maximum temperature 

ranges between 28.2°C to 32.4°C. Notably, the highest annual mean 

and minimum temperatures are situated downstream of the Klang River, 

predominantly in the southern region of our study area. On the other 

hand, the lowest temperatures are observed upstream, in the Northern 

segment of the basin. The highest annual maximum temperatures are 

primarily concentrated in the central part of the basin, corresponding to 

the urban areas. 
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Figure 4.2-8: The Average Annual ERA5 Temperature For The Period 1979-2018. 

The annual temperature trends, as presented in Table 4.2-7, unveils a 

pattern of statistically significant increasing trends across all grid points 

throughout the entire study period, including both the monsoon and 

inter-monsoon seasons. Only two grids in IntM1 and IntM2 periods 

exhibit non-significant trends. Interestingly, no decreasing trends in 

mean temperature were observed in any of the periods analysed. The 
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Sen's slope estimator further underscores the magnitude of these 

changes, with most grid points registering an annual increase of 0.03°C 

per year. 

Table 4.2-7: The Annual And Seasonal Mean Temperature Trend. 

Grids Annual NEM SWM IntM1 IntM2 

Test Z Q Test Z Q Test Z Q Test Z Q Test Z Q 

Grid 1 4.72** 0.03 3.67** 0.02 5.46** 0.04 4* 0.03 4.16** 0.03 

Grid 2 5** 0.03 3.93** 0.03 5.77** 0.03 4.46** 0.03 5.23** 0.04 

Grid 3 2.06* 0.01 2.23* 0.01 2.09* 0.01 0.59 0 1.5 0.01 

Grid 4 5.49** 0.03 5.07** 0.03 5.12** 0.03 4.67** 0.03 4.04** 0.03 

Grid 5 6.21** 0.03 4.97** 0.03 6.77** 0.04 5** 0.03 5.60** 0.03 

Grid 6 2.57* 0.01 2.92** 0.01 2.41* 0.01 0.43 0 2.32* 0.01 

Grid 7 3.90** 0.03 3.60** 0.03 3.70** 0.03 2.53* 0.02 3.37** 0.03 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

➢ TXx TREND 

The analysis of the TXx trend, representing the warmest days (Table 

4.2-8), shows a primarily increasing trend across the majority of the 

study area's grids, spanning both annual and seasonal periods. The 

exception is noted in grids 1 and 2, located upstream in the Northern 

region of the basin, where a decreasing trend is observed. Notably, 

significant trends are predominantly detected during IntM2, with grid 3 

being the sole exception, showing insignificance. No significant trend 

emerges during the NEM season across the entire study area. The rate 

of change in TXx closely parallels that of mean temperature, with the 
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most rapid increase observed during the SWM period at grid 1, reaching 

0.04°C per year. 

Table 4.2-8: The Annual And Seasonal Txx Trend. 

Grids Annual NEM SWM IntM1 IntM2 

Test Z Q Test Z Q Test Z Q Test Z Q Test Z Q 

Grid 1 0.5 0.01 -0.69 -0.01 2.39* 0.04 1.36 0.02 2.18* 0.02 

Grid 2 0.15 0 -0.09 0 1.36 0.02 2.52* 0.03 3.09** 0.03 

Grid 3 1.04 0 0.71 0.01 0.24 0 0.8 0 1.85+ 0.01 

Grid 4 2.34* 0.03 0.29 0.01 2.34* 0.03 2.27* 0.02 3.11** 0.03 

Grid 5 0.9 0.01 0.34 0.01 3.18** 0.03 2.85** 0.03 3.95** 0.03 

Grid 6 0.6 0 1.29 0.01 0.29 0 0.8 0.01 2.18* 0.01 

Grid 7 1.64 0.02 0.01 0 0.92 0.01 0.57 0.01 2.3* 0.03 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

➢ TNx TREND 

Similarly, the analysis of the TNx trend, which quantifies the warmest 

nights (Table 4.2-9), reveals a pattern of significant positive trends 

across most grids during all analysed periods. These trends are often 

significant at a 0.01 level of significance. The rate of change, as 

determined by the Sen's slope, mirrors both the mean temperature and 

the TXx trend, with the highest rate of change reaching 0.05°C per year. 

This collective evidence underscores the consistent warming of night 

time temperatures within the study area. 

Table 4.2-9: The Annual And Seasonal Tnx Trend. 

Grids Annual NEM SWM IntM1 IntM2 

Test Z Q Test Z Q Test Z Q Test Z Q Test Z Q 

Grid 1 5.37** 0.04 3.11** 0.03 5.58** 0.05 5.25** 0.04 5.39** 0.04 

Grid 2 5.21** 0.04 3.69** 0.03 6.05** 0.05 4.84** 0.04 5.65** 0.04 
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Grid 3 2.53* 0.01 1.69+ 0.01 2.32* 0.01 1.5 0.01 2.6** 0.02 

Grid 4 5.7** 0.05 4.74** 0.04 5.79** 0.05 5.14** 0.03 5.21** 0.04 

Grid 5 5.91** 0.04 4.7** 0.04 6** 0.04 5.04** 0.04 5.35** 0.04 

Grid 6 2.2* 0.01 1.74+ 0.01 2.02* 0.01 0.87 0.01 2.04* 0.02 

Grid 7 4.53** 0.04 3.83** 0.03 4.19** 0.03 3.76** 0.03 4.36** 0.04 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

4.2.2.1 LAND SURFACE TEMPERATURE 

The evaluation of land surface temperature dynamics over three distinct 

years (1999, 2006, and 2017) offers a valuable perspective on long-

term trends (Figure 4.2-9). The observations reveal a clear increase in 

temperature and a corresponding upward shift in temperature range 

over the 18-year period, as previously noted by Azari et al., (2020). 

Specifically, temperatures ranged from 9.5°C to 31.2°C in 1999, 8.5°C 

to 35.7°C in 2006, and 12.1°C to 41.3°C in 2017. The most elevated 

temperatures are concentrated in urbanised regions in the Southern and 

central regions of the basin, while the lowest temperatures prevail in the 

natural vegetation dominated Northern areas. 

Importantly, this analysis indicates a substantial increase in both 

minimum and maximum temperatures over the 18-year period, with 

maximum temperatures experiencing a significant rise of 10.1°C and 

minimum temperatures increasing by 2.6°C. This robust evidence 

underscores the direct influence of urbanisation on surface 



Page | 171  
 

temperatures, resulting in elevated and intensified thermal conditions 

within the Klang River basin. 
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Figure 4.2-9: Land Surface Temperature For Year 1999, 2006 And 2017. 
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4.2.3 TRENDS IN FUTURE SCENARIOS 

4.2.3.1 PRECIPITATION TREND 

Table 4.2-10 illustrates the annual precipitation trends over the entire 

future period (2006-2099) and three distinct time periods: TP1 (2006-

2039), TP2 (2040-2069), and TP3 (2070-2099) for the four different 

RCP scenarios. Across the entire period, all RCP scenarios exhibit 

positive trends, though RCP2.5 was not statistically significant. 

Projections suggest that annual precipitation will increase by 0.2% 

under RCP2.6, 3% under RCP4.5, 1.4% under RCP6, and 5.6% under 

RCP8.5 compared to baseline values. RCP8.5 exhibits the highest rate 

of change at 4.41 mm/year according to Sen's slope Q estimator, with 

RCP4.5 and RCP6 following at 2.48 mm/year and 1.84 mm/year, 

respectively. 

For the TP1 period, all scenarios display positive trends, with only 

RCP4.5 exhibiting significance. On the other hand, TP2 and TP3 periods 

show no significant trends, and RCP6 even presents negative trends. 

The highest rate of change was detected for RCP4.5 during TP1 period, 

at rate of change of 6.05 mm/year. 
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Table 4.2-10: Annual Precipitation Trend For Future Climate Scenarios For The 

Period 2006-2099. 

RCP 
Scenarios 

2006-2099 TP1 (2006-2039) TP2 (2040-2069) TP3 (2070-2099) 

Test Z Q Test Z Q Test Z Q Test Z Q 

RCP 2.6 0.84 0.55 1.22 3.74 0.82 3.45 0.11 0.35 

RCP 4.5 3.66** 2.48 2.28* 6.05 1.75+ 6.83 -0.04 -0.33 

RCP 6 2.94** 1.84 0.56 1.62 -1.07 -4.67 -0.75 -2.65 

RCP 8.5 5.45** 4.41 0.33 1.29 1.5 5.09 0.79 3.92 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

Monthly Precipitation Trends for the 4 RCP Scenarios for the entire future 

period (2006-2099) are presented in Table 4.2-11. Most trends are 

positive, with RCP2.6 and RCP6 having some negative trends, although 

a significant negative trend was detected in the month of April under 

RCP8.5 scenario. RCP8.5 shows significant positive trends in 8 out of 12 

months. Notably, May, June, and November display positive significant 

trends for RCP4.5, RCP6, and RCP8.5. The month of April records the 

highest rate of change for RCP8.5 at 0.72 mm/year.  

Table 4.2-11: Monthly Precipitation Trend For Future Climate Scenarios For The 

Period 2006-2099. 

Month Period 2006-2099 

RCP 2.6 RCP 4.5 RCP 6 RCP 8.5 

Test Z Q Test Z Q Test Z Q Test Z Q 

January 0.56 0.11 0.29 0.04 -0.76 -0.11 0.6 0.12 

February 1.27 0.20 1.38 0.25 0.67 0.11 0.56 0.11 

March 0.78 0.17 -0.32 -0.07 -0.25 -0.06 1.08 0.23 

April 0.35 0.06 2.68** 0.50 -0.32 -0.07 3.90** 0.72 

May 0.42 0.05 3.33** 0.40 4.74** 0.63 5.00** 0.68 

June -0.91 -0.05 2.35* 0.15 3.08** 0.22 4.32** 0.39 

July 0.88 0.06 1.63 0.09 1.98* 0.16 2.82** 0.28 

August -1.08 -0.10 0.35 0.03 1.83+ 0.18 4.19** 0.44 

September -1.03 -0.11 2.66** 0.24 1.27 0.14 3.25** 0.41 
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October 1.44 0.14 1.65+ 0.21 2.22* 0.29 3.21** 0.45 

November -0.66 -0.10 2.49* 0.35 2.63** 0.42 2.34* 0.36 

December 0.48 0.07 1.84+ 0.25 0.46 0.06 1.42 0.25 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

The analysis of precipitation intensity indicators, SDII and R95p are 

presented in Table 4.2-12 and Table 4.2-13, respectively. Across the 

entire future time frame from 2006 to 2099, both SDII and R95p exhibit 

noteworthy positive trends for the RCP4.5, RCP6, and RCP8.5 scenarios. 

However, it's worth noting that the most optimistic scenario, RCP2.6, 

does not display a significant trend in either indicator. 

Examining the different time periods, a mix of upward and downward 

trends is observed. Of particular significance, the RCP4.5 scenario 

during period TP1 demonstrates a substantial upward trend for both 

SDII and R95p. However, negative trends become apparent in some 

scenarios. For instance, during TP3, SDII exhibits negative trends for 

RCP2.6, RCP4.5, and RCP6. In TP2, RCP6 also demonstrates a negative 

trend for SDII. 

It's important to highlight that the rate of change for SDII remains 

minimal across the entire time span, registering at 0.01mm/day per 

year for RCP4.5, RCP6, and RCP8.5. On the other hand, R95p shows its 

highest rate of change for a significant trend in the RCP8.5 scenario, 

with a substantial increase of 2.63 mm per year. 
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Table 4.2-12: SDII Trend For Future Climate Scenarios. 

RCP 
Scenarios 

SDII   

2006-2099 TP1 (2006-
2039) 

TP2 (2040-2069) TP3 (2070-2099) 

Test Z Q Test Z Q Test Z Q Test Z Q 

RCP 2.6 0.76 0.00 1.33 0.01 0.64 0.01 -0.18 0.00 

RCP 4.5 3.64** 0.01 2.19* 0.02 1.71+ 0.02 -0.36 0.00 

RCP 6 3.12** 0.01 0.65 0.00 -0.79 -0.01 -0.79 -0.01 

RCP 8.5 5.59** 0.01 0.44 0.00 1.78+ 0.02 0.89 0.01 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

Table 4.2-13: R95p Trend For Future Climate Scenarios. 

RCP 
Scenarios 

R95p 

2006-2099 TP1 (2006-2039) TP2 (2040-2069) TP3 (2070-2099) 

Test Z Q Test Z Q Test Z Q Test Z Q 

RCP 2.6 1.31 0.60 1.16 2.44 1.14 3.23 0.29 0.56 

RCP 4.5 3.60** 1.98 2.19* 5.29 0.89 1.99 0.75 2.47 

RCP 6 2.23* 1.07 -0.65 -1.21 -0.25 -1.08 -0.82 -2.15 

RCP 8.5 4.80** 2.63 -0.47 -0.99 1.64 5.70 1.5 6.06 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

4.2.3.2 TEMPERATURE TREND 

Figure 4.2-10 presents the mean annual temperature projections for 

the period 2006-2099 under different RCP scenarios. All scenarios 

predict an increase in mean annual temperatures, with RCP8.5 showing 

the most substantial increase at 2.3°C compared to historical values. 

Average maximum temperatures are expected to decrease by 2.6°C for 

RCP2.6, 1.9°C for RCP4.5, and 1.6°C for RCP6 but increase by 0.5°C for 

RCP8.5.  
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In contrast, average minimum temperatures are projected to increase 

for all RCPs by approximately 4.7°C. Table 4.2-14 outlines the changes 

in mean, maximum, and minimum temperatures relative to historical 

data for all time periods and RCP scenarios. Under RCP8.5, mean, 

maximum, and minimum temperatures are anticipated to increase by 

3.8°C, 0.5°C, and 7.4°C, respectively, during the TP3 period. 

 

Figure 4.2-10: Mean Annual Temperature For Klang River Basin (2006-2099), Under 

Different RCP Scenarios. 

Table 4.2-14: Change In Mean, Maximum, And Minimum Temperatures Under 

Different RCP Scenarios For All Time Periods Relative To Historical Data. 

RCP 
Scenarios 

TP1 (2006-2039) TP2 (2040-2069) TP3 (2070-2099) 

Change (°C) Change (°C) Change (°C) 

Mean Max Min Mean Max Min Mean Max Min 

RCP2.6 0.9 -2.9 4.7 1.2 -2.8 5.3 1.3 -2.6 5.3 

RCP4.5 0.9 -2.9 4.6 1.6 -2.4 5.6 2.0 -1.9 6.1 

RCP6 0.9 -3.0 4.8 1.6 -2.1 5.4 2.4 -1.6 6.2 

RCP8.5 1.0 -2.5 4.7 2.2 -1.3 5.8 3.8 0.5 7.4 
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** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

Annual average temperature trends for the period 2006-2099 and the 

three time periods are presented in Table 4.2-15. All RCP scenarios 

show significant increasing trends for the entire period, with RCP8.5 

displaying the highest rate of change at 0.05°C per year. 

Table 4.2-15: Average Annual Temperature Trend For Future Climate Scenarios For 

The Period 2006-2099. 

RCP 
Scenarios 

2006-2099 TP1 (2006-2039) TP2 (2040-2069) TP3 (2070-2099) 

Test Z Q Test Z Q Test Z Q Test Z Q 

RCP 2.6 7.71** 0.01 5.43** 0.02 2.28* 0.01 1.46 0.01 

RCP 4.5 11.61** 0.02 5.46** 0.02 3.18** 0.01 1.68+ 0.01 

RCP 6 12.29** 0.02 4.89** 0.02 4.71** 0.02 5.00** 0.02 

RCP 8.5 13.31** 0.05 6.02** 0.03 6.96** 0.05 6.57** 0.05 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

The trends in annual maximum and minimum temperatures, spanning 

the entire period from 2006 to 2099 and encompassing all climate 

scenarios, is presented in Table 4.2-16 and Table 4.2-17. The analysis 

shows a significant increasing trend in both maximum and minimum 

temperatures for all scenarios. Notably, the RCP8.5 scenario exhibits the 

most pronounced rate of change, with temperatures rising by 0.05°C for 

both maximum and minimum temperatures. However, for specific time 

periods, this shows variations detected in these trends. During TP2, 

there is a nonsignificant decreasing trend in maximum temperatures for 
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the RCP4.5 scenario. Additionally, during TP3, a significant decreasing 

trend in minimum temperatures is observed for the RCP2.6 scenario. 

Table 4.2-16: Annual Maximum Temperature Trend For Future Climate Scenarios 

For The Period 2006-2099. 

RCP 
Scenarios 

2006-2099 TP1 (2006-2039) TP2 (2040-2069) TP3 (2070-2099) 

Test Z Q Test Z Q Test Z Q Test Z Q 

RCP 2.6 6.91** 0.01 3.59** 0.02 2.50* 0.015 1.93+ 0.02 

RCP 4.5 9.89** 0.02 3.50** 0.02 -0.14 -0.001 1.75+ 0.01 

RCP 6 10.62** 0.02 3.44** 0.02 2.43* 0.020 2.07* 0.01 

RCP 8.5 12.44** 0.05 4.48** 0.03 6.49** 0.054 5.50** 0.05 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

Table 4.2-17: Annual Minimum Temperature Trend For Future Climate Scenarios For 

The Period 2006-2099. 

RCP 
Scenarios 

2006-2099 2006-2039 2040-2069 2070-2099 

Test Z Q Test Z Q Test Z Q Test Z Q 

RCP 2.6 6.20** 0.01 6.20** 0.02 0.89 0.00 -2.32* -0.01 

RCP 4.5 12.14** 0.02 6.64** 0.03 5.74** 0.02 1.46 0.00 

RCP 6 12.86** 0.03 5.63** 0.02 5.92** 0.03 5.74** 0.03 

RCP 8.5 13.69** 0.05 7.12** 0.03 7.00** 0.05 6.85** 0.05 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

4.2.4 RIVER DISCHARGE TRENDS 

The average annual and monthly river discharge data for Batu Sentul 

station (3116434) and Jambatan Sulaiman station (3116430) are 

represented in Figure 4.2-11. Notably, November stands out as the 

month with the highest discharge rates at both stations, measuring 9.6 

m³/s for Batu Sentul and 29 m³/s for Jambatan Sulaiman. This spike in 

discharge aligns with the period of high precipitation observed during 

the Northeast Monsoon (NEM) in November. 
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Figure 4.2-11: Average Annual And Monthly River Discharge At Stations Sungai 

Batu And Jambatan Sulaiman. 

The analysis of the trends in annual and monthly discharge are 

presented in Table 4.2-18. The analysis reveals a consistent and 

statistically significant increasing annual trend in discharge for both 

stations. However, when assessing monthly trends, Batu Sentul station 

does not exhibit any statistically significant trends, while Jambatan 
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Sulaiman station demonstrates significant increases in discharge for 7 

out of the 12 months. Notably, Jambatan Sulaiman station also boasts 

a higher annual rate of change, registering at 0.35 m³/s, compared to 

Batu Sentul station's 0.08 m³/s. When it comes to monthly rates of 

change, August emerges as the month with the most substantial 

increase, measuring 0.53 m³/s at Jambatan Sulaiman station. 

Table 4.2-18: Annual And Monthly River Discharge Trends For Stations 3116430 

And 3116434. 

Date Batu Sentul Jambatan Sulaiman 

Test Z Q Test Z Q 

January 0.93 0.04 3.16** 0.4 

February 1.18 0.05 1.92+ 0.25 

March 1.70+ 0.09 2.40* 0.29 

April 0.94 0.05 2.19* 0.3 

May 0.98 0.07 1.90+ 0.34 

June 0 0 2.82** 0.35 

July 1.78+ 0.07 3.41** 0.34 

August 1.61 0.07 3.63** 0.53 

September 1.05 0.05 2.55* 0.33 

October 1.34 0.07 1.3 0.23 

November 1.21 0.09 1.32 0.17 

December 0.62 0.04 1.74+ 0.3 

Annual 2.09* 0.08 3.16** 0.35 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

4.2.5 DISCUSSION 

In addition to LULC change, another important factor that impacts 

hydrological processes is climate parameters, in particular precipitation. 

Therefore, it is curial to detect and understand the trends in hydro-

meteorological parameters to comprehend the impacts of climate 
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change and LULC changes on hydrological processes. This section delves 

into the analysis of spatio-temporal trends in precipitation, temperature, 

and river discharge within the Klang River basin and addresses the 

question of what is the intensity and frequency of trends observed in 

these hydro-meteorological parameters.  

In this study intensity in precipitation was presented by SDII and R95p 

indices and frequency was represented by R10mm and R30mm indices. 

Temperature trends were analysed using TXx and TNx indices, which 

represent warmest days and warmest nights, in addition to mean, 

maximum and minimum temperatures, as well as surface temperatures. 

The TXx and TNx reveal the extremeness of temperature patterns. 

Analysis of trend under future scenarios was based on data collected 

from global climate models for the period 2006 to 2099, under 4 

Representative Concentration Pathway (RCP) scenarios, including 

RCP2.6, RCP4.5, RCP6, and RCP8.5, to account for various greenhouse 

gas emission trajectories and their potential impacts on the climate. 

Precipitation data for 10 stations for a period of 40 years obtained from 

the Department of Irrigation and Drainage was utilised. However, for 

temperature due to lack of observed station data, the ERA 5 reanalysis 

data was utilised, plus thermal band of Landsat satellite images for 

surface temperatures. For discharge data for stations Batu Sentul and 

Jambatan Suliman was utilised. The ERA 5 data was assessed and 
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validated against 2 available data sets of observed station data spanning 

the period 1995 to 2018.  

The validation demonstrated good correlation between the observed and 

ERA 5 dataset, and multiple studies have shown that ERA 5 can be a 

good substitute for observed station data, when there is lack of data, as 

it gives better representation of observed data and has less bias in 

temperature, precipitation and humidity data compared to other sources 

of data (Betts et al., 2019; Graham et al., 2019; Mahto and Mishra, 

2019; Li, 2020). 

Delving into the analysis of the precipitation trends, a pattern of upward 

trajectory over the Klang River basin is observed, with urban areas 

experiencing the most substantial increases. The intensity and 

frequency of precipitation mirrors these trends, with notable changes in 

central areas over urban land and declining trends in the upper forested 

land and lower parts of the basin.  

The precipitation results obtained in this study for Klang River basin are 

comparable with results obtained for the neighboring Langat River basin 

by Amirabadizadeh et al., (2015), where increasing trend in annual 

precipitation was detected over urban areas, similarly the NEM showed 

increasing trend over urban areas for the period 1971 to 2011. This 
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illustrates that these changes in precipitation in the Klang River basin 

can be significantly influenced by change in climate at regional level.  

The quantitative analysis of the precipitation trend illustrates that, with 

an average precipitation range of 2583 mm to 3368 mm urban areas in 

the Klang River basin experience the highest amount of precipitation. Of 

the five weather stations situated within these urban areas, four 

stations; namely 48648, 3117070, 3116006, and 3115079 have 

recorded an increase in precipitation during the period spanning from 

1999 to 2017, with percentage increases of 0.4%, 2.2%, 0.7%, and 

4.9%, respectively.  

All four stations also exhibit statistically significant upward trends in 

annual precipitation, with station 3116006 displaying the most notable 

rate of change at 28.46 mm per year. Meanwhile, the average annual 

precipitation in both the upper and lower parts of the basin fall within 

the range of 2024 mm to 2583 mm. This highlights the spatial variability 

in precipitation, and that urban areas on average receive more rainfall 

than other areas in Klang River basin. This also highlights the 

assumption that increasing trend in precipitation has significant impact 

on hydrological processes in the Klang River basin, which shall be further 

analysed in Section 4.3. 
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The other important aspects of precipitation change are intensity and 

frequency, where more intense rainfall can culminate in more intense 

flooding and more frequent extreme precipitation can culminate in more 

frequent flooding events. Across the Klang River basin, the annual SDII, 

R10mm, R30mm, and R95p indices yield similar results to the observed 

precipitation amounts. Central parts of the basin experience increasing 

trends, while the upper and lower segments show decreasing trends. 

Positive trends are detected for all indices at stations 3116006 and 

3115079, whereas negative trends are observed at stations 2616135, 

3014084, and 3114085, all of which are located just outside the 

boundaries of the Klang River basin. Illustrating more intense and 

frequent extreme rainfall events occurring over urban areas.  

Seasonality plays an important part in precipitation trends, particularly 

in Southeast Asia which experiences monsoon seasons. The seasonal 

trend in the Klang River basin exhibited a similar spatial pattern to 

annual trend, as illustrated by the trend maps in Section 4.2.1.2. 

Notably, a consistent increasing trend in the five weather stations 

situated within the urban areas of the basin was detected. Of particular 

significance is the SDII, which provides a measure of precipitation 

intensity, with station 48648 exhibiting the highest rate of change at 

0.29 mm/day.  
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Significant increase in precipitation intensity and frequency is mostly 

detected during the NEM period, and the average monthly precipitation 

is highest in the month of November for all the stations. This indicates 

that NEM is the major contributing factor to the annual precipitation. 

This is similar to results found by Palizdan et al., (2014) that showed 

increasing trend for precipitation during NEM season in the Langat River 

basin.   

As past studies have shown, temperatures can influence precipitation. 

Increase in temperatures leads to increase in evapotranspiration, which 

results in higher air moisture, hence it can lead to urban induced 

precipitation. As demonstrated by Ooi et al., (2017), increase in urban 

heat intensity of 0.9°C during the day and a more sever increase of 1.9°C 

during the night in the Greater Kuala Lumpur, accelerated the moisture 

bearing sea breeze during the day and with the simultaneous vertical 

lifting created an environment for convective precipitation on the upwind 

of the region.  

The patterns of temperature trends observed for the Klang River basin 

are similar to precipitation patterns, with land surface temperatures 

exhibiting higher values and intensity over urban areas. On the other 

hand, uptrends in mean temperature, TXx, and TNx observed across the 

basin align with broader global warming patterns, that have an 

increasing rate 0.08°C per decade since 1880 as report by NOAA, 
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(2020), with the maximum temperatures detected over urban areas. 

However, it is important to note that this temperature is 2m air 

temperature which represents ambient temperature and differs from 

surface temperature where during the day the ground temperature is 

higher than air temperature and at night when the ground releases heat 

to the atmosphere, the ground temperature is lower than air 

temperature. 

The higher surface temperature can lead to higher evaporation and 

hence lead to induced precipitation, this point is further highlighted in 

the study by Li et al., (2020) that observed increase in precipitation 

intensity by 35% over the period 1981 to 2011 due to UHI effect, which 

created a more unstable atmosphere, increased vertical uplift and 

moisture convergence .  

In the Klang River basin, the increase in urban land in the period 1999 

to 2017 resulted in an increase in maximum LST of about 10.1°C and 

minimum LST of about 2.6°C, over urban areas, creating the urban heat 

island effect over KL and conditions suitable for urban induced 

precipitation. This is in agreement with Harun et al., (2020), that 

analysed the various factors that affect UHI in KL, and the results show 

that land cover is the main factor in increasing of temperatures 

compared to other factors like wind speed and humidity. The results 
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show that urban green spaces and water can reduce UHI by 6°C - 3°C 

compared to pure urban mid-rise building areas. 

Similarly Yatim et al., (2019) showcased increases in  the annual daily 

mean temperature, daily mean maximum temperature, and daily mean 

minimum temperature in the Klang Valley  by 0.07°C/year, 0.07°C/year 

and 0.08°C/year, respectively and that the annual TNx trend increased 

more than TXx at a rate of 0.11°C/year, which is similar to values found 

in this study. 

To address the assumption that changes in LULC and precipitation in the 

Klang River basin have impact on hydrological processes, it’s important 

to analyse the trend in these processes. Trend in river discharge was 

analysed to better understand the magnitude of the impacts from LULC 

and precipitation changes. The trend in river discharge at Batu Sentul 

and Jambatan Sulaiman stations mirrors that of precipitation and 

temperature trend, with an overall increasing trend detected at both 

stations with an annual rate of change of 0.08 m³/s and 0.35 m³/s 

respectively.  

However, significant trend was only detected at station Jambatan 

Sulaiman, with 7 out of 12 months having significance, and the month 

of August having the highest rate of change at 0.53 m³/s. On the other 

hand, in the study by Kabiri et al., (2015) on the assessment of climate 
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change impact on runoff and discharge in Klang River basin, observed 

river discharge at station Jambatan Sulaiman for the period 1975 to 

2001, showed peak discharge in April and November, and lowest 

discharge in February and August. The reason for higher discharge in 

August in this study compared to the study by Kabiri et al., (2015) can 

be due to the increase in urban land and changes in precipitation after 

the year 2001. This highlights the effects of LULC change and 

precipitation changes on river discharge and hydrological processes.  

The trend analysis of future precipitation and temperature under 

different climate change scenarios, can give better insight into the 

impacts of climate change in the future and help in better preparation 

and management of water resource for possible future conditions. Trend 

in future precipitation in Klang River basin illustrates by the end of the 

century, average annual precipitation will increase by 0.2%, 3%, 1.4% 

and 5.6% under RCP2.6, RCP4.5, RCP6 and RCP8.5 scenarios 

respectively, relative to the baseline precipitation. With RCP8.5 scenario 

having the highest intensity of change at a rate of 4.41 mm/year.   
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4.3 QUANTITATIVE ANALYSIS OF SPATIO-TEMPORAL HYDROLOGICAL 

MODELLING 

4.3.1 SWAT MODEL PARAMETER SENSITIVITY ANALYSIS 

The sensitivity analysis of model parameters identified eight parameters 

to be the most sensitive and influential in shaping the model's 

performance, as detailed in Table 4.3-1. The parameters include 

CH_K1 which affects the movement of water within the tributary 

channels, CH_K2 and CH_N2 which affect the movement of water within 

the main channel, SOL_AWC which affects the availability of water in 

the soil, SOL_K which affects the movement of water within the soil 

layer, ESCO which affects soil evaporation rate, SURLAG which affects 

the timing and movement of surface runoff and CN2 which affects the 

amount of surface runoff. Notably, CH_K1, CH_K2, and CH_N2 emerge 

as the most sensitive parameters, each demonstrating substantial 

statistical significance. These eight parameters are chosen for model 

calibration as they are the most sensitive parameters.  

Table 4.3-1: Sensitivity Ranking Of Parameters Used In Simulation Of Water 

Discharge. 

Ranking  Parameter Description t-Stat P-Value 

1 CH K1 Effective hydraulic conductivity in tributary 
channel alluvium (mm/h) 

-37.2764 3.2E-114 

2 CH K2 Effective hydraulic conductivity in main 
channel alluvium (mm/h) 

-44.9951 2.6E-176 

3 CH N2 Manning’s n value for the main channel 10.79926 1.55E-24 

4 SOL AWC Soil available water capacity (mm H2O/mm 
soil) 

-1.59938 0.11038 
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5 SOL K Soil saturated hydraulic conductivity (mm/h) 1.542174 0.123675 

6 ESCO Soil evaporation compensation factor 0.52675 0.598605 

7 SURLAG Surface runoff lag time (days) -0.37643 0.706758 

8 CN2 Initial SCS runoff curve number for moisture 
condition II 

-0.19705 0.843873 

 

4.3.2 SWAT MODEL CALIBRATION AND VALIDATION 

The model is calibrated for streamflow by calibrating the eight 

parameters identified during the sensitivity analysis. The parameter 

ranges used to calibrate the model is selected based on literature review 

and similar studies in Malaysia. The description and range of the 

parameters is presented in Table 4.3-2. 

Table 4.3-2: SWAT Model Parameters Used To Calibrate Streamflow. 

Parameter Description Initial range 
used in 

calibration 

Calibrated 
value 

r_CN2.mgt SCS runoff curve number –0.2 to 0.2 0.015 

v_ESCO.bsn Soil evaporation compensation factor 0 to 1 0.167 

v_CH_K1.sub Effective hydraulic conductivity in 
tributary channel alluvium (mm/hr) 

0 to 300 0.166 

v_CH_K2.rte Effective hydraulic conductivity in 
main channel alluvium (mm/hr) 

-0.01 to 500 1.748 

r_SOL_AWC.sol Available water capacity of the soil 
layer (mm H2O/mm soil) 

0 to 1 0.095 

v_SOL_K.sol Saturated hydraulic conductivity 
(mm/hr) 

0 to 300 124.5 

v__CH_N2.rte Manning's "n" value for the main 
channel 

0 to 0.3 0.027 

v__SURLAG.bsn Surface runoff lag time (days) 4 to 24 14.58 

 

The p-factor, r-factor, R2 and NS values that show the performance of 

the calibration and validation are presented in Table 4.3-3. While 

calibration attains a p-factor of 0.67 and an r-factor of 0.9, the R2 and 
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NS values reveal room for improvement, standing at 0.33. During 

validation, the p-factor registers 0.7, and the r-factor 1.69, albeit with 

R2 at 0.31 and NS at 0.19. It is noteworthy that the model effectively 

captures base flow but occasionally underestimates peak flows, as 

observed in the 95PPU graphs for both calibration (Figure 4.3-1) and 

validation (Figure 4.3-2). 

Table 4.3-3: The Calibration And Validation Fitting Metrices. 

  Calibration (Daily) Validation (Daily) 

1999-2002 2006-2008 

p-factor 0.67 0.7 

r-factor 0.9 1.69 

R2 0.33 0.31 

NS 0.33 0.19 

  

 

Figure 4.3-1: SWAT Model Calibration 95PPU. 
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Figure 4.3-2: SWAT Model Validation 95PPU. 

4.3.3 IMPACTS OF LAND USE AND LAND COVER AND PRECIPITATION 

CHANGES ON SURFACE RUNOFF 

Analysing the simulated surface runoff illustrates the intricate interplay 

of land use and land cover (LULC) and precipitation changes on 

hydrological dynamics of the Klang River basin. In 1999, the basin 

averaged 1327.3mm of surface runoff with a range of 437.5mm - 

2479.1mm, and notable variations across subbasins, prominently 

affecting the middle and lower parts of the basin (Figure 4.3-3). By 

2006, the basin average increased to 1640.6mm, with a range of 

619.1mm – 3099.3mm, predominantly driven by urban land cover in 
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the middle part. In 2017, surface runoff ranged from 536.5mm to 

2754.5mm, with a basin average of 1550.8mm, once again highlighting 

the most affected areas being the urbanised regions in the middle and 

lower parts of the basin. 
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Figure 4.3-3: Surface Runoff For The Land-Use And Land Cover Maps Of 1999, 2006 

And 2017. 
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4.3.3.1 IMPACTS UNDER FUTURE SCENARIOS 

Three future LULC and climate change scenarios were considered in the 

analysis of future runoff. The first scenario with only LULC changing for 

the year 2030 and climate remaining the same, illustrates an increase 

in surface runoff by 71.8mm relative to 2017 values, although the basin 

average dips slightly compared to the 2006 LULC due to higher 

precipitation amounts in 2006. The simulated surface runoff ranged 

between 536.6mm to 2754.5mm, with the highest simulated runoff 

observed in the middle region of the basin as presented in Figure 4.3-4. 
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Figure 4.3-4: Simulated Surface Runoff For LULC 2030 Scenario. 

Under the second scenario where LULC is unchanged and only climate 

variables, precipitation and temperature are changed under RCP8.5 and 

RCP4.5, surface runoff decreased compared to when only LULC is 
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changed. For the RCP4.5 scenario simulated runoff ranged between 

196.5mm to 1053.3mm, with an average basin value of 771.9mm, with 

the highest runoff occurring in the central regions of the basin. Under 

the RCP8.5 scenario the simulated surface runoff exhibited a slightly 

higher range between 239.3mm and 1090.2mm and a slightly higher 

basin average of 757mm. However, compared to RCP4.5 scenario, most 

of the subbasins with high runoff are located at the lower regions of the 

basin, with a few in the middle part of the basin as shown in Figure 

4.3-5. 

 

Figure 4.3-5: Simulated Surface Runoff For Climate Change Scenarios RCP4.5 And 

RCP8.5. 
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In the third scenario, both LULC and climate change are considered, 

under two conditions, one where LULC 2030 and climate scenario 

RCP8.5 is considered and one where LULC 2030 with climate scenario 

RCP4.5 is considered. The simulated surface runoff under both 

conditions illustrates a higher range of runoff compared to the scenario 

when only climate change was considered, but lower range compared to 

the scenario when LULC was considered. The range of runoff for 

combined LULC 2030 and RCP4.5 scenario is between 196.5mm to 

1053.3mm with a basin average of 860.7mm, and the range of runoff 

for the combined LULC 2030 and RCP8.5 scenario is between 237.9mm 

to 1088.2mm, with a basin average of 832.7mm as shown in Figure 

4.3-6. In both cases the subbasins experiencing the highest runoff are 

located mostly in the middle region of the basin, some parts of the lower 

basin and some parts on the east of the basin.  
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Figure 4.3-6: Simulated Surface Runoff For Combined LULC 2030 And RCP4.5 

Scenario, And LULC 2030 And RCP8.5 Scenario. 

4.3.4 IMPACTS OF LAND USE AND LAND COVER AND PRECIPITATION 

CHANGES ON RIVER DISCHARGE UNDER FUTURE SCENARIOS 

River discharge was simulated under both LULC and climate change 

scenarios at Batu Sentul station. Examining the simulated river 

discharge across different time periods underscores noteworthy trends. 

Singnificant increasing trend was detected under the RCP4.5 scenario 

and the combined LULC 2030 and RCP4.5 scenario, with a rate of 

increase of 0.04 m³/s per year during TP1 and TP2 periods. However, 
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significant trend was not detected for other scenarios as shown in Table 

4.3-4.  

On the other hand, the average annual river discharge illustrates higher 

discharges for all scenarios during the period (TP3) from 2070 to 2099, 

compared to TP1 and TP2, with TP1 having the lowest discharges as 

shown in Table 4.3-5. However, all the discharges for all these 

scenarios are lower that the scenario when only LULC was changed, 

which exhibited an average annual discharge of 11.5m³/s. 

Table 4.3-4: Trend For Simulated River Discharge For Future LULC And Climate 

Change Scenarios. 

Scenarios TP1  

(2010-2039) 

TP2  

(2040-2069) 

TP3  

(2070-2099) 

Test Z Q Test Z Q Test Z Q 

RCP4.5 2.21* 0.04 1.82+ 0.04 0.05 0.00 

RCP8.5 0 0.00 1.48 0.03 0.87 0.03 

LULC 2030 and 

RCP4.5 

2.21* 0.04 1.96* 0.04 -0.07 0.00 

LULC 2030 and 

RCP8.5 

0 0.00 1.48 0.03 0.89 0.02 

** if trend at α = 0.01 level of significance, * if trend at α = 0.05 level of significance, + if trend 

at α = 0.1 level of significance, if the cell is blank, the significance level is greater than 0.1. 

Table 4.3-5: Simulated Average Annual River Discharge For Future LULC And 

Climate Chane Scenarios At Sg. Batu Sentul Station. 

Scenarios  Average Annual River Discharge (m³/s) 

TP1 (2010-2039) TP2 (2040-2069) TP3 (2070-2099) 

RCP4.5 9.29 9.73 9.89 

RCP8.5 9.35 9.97 10.44 

LULC2030 RCP4.5 9.29 9.73 9.88 

LULC2030 RCP8.5 9.35  9.97 10.44 
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4.3.5 DISCUSSION 

The SWAT model has been instrumental in simulating surface runoff and 

river discharge for both historical and future LULC and climate change 

scenarios. The sensitivity analysis of the hydrological parameters 

revealed the eight most sensitive parameters in model calibration. 

Among these, CH_K1, CH_K2, and CH_N1 stood out as the most 

sensitive parameters. CH_K1 and CH_K2 play a pivotal role in 

determining the hydraulic conductivity of the main channel and 

tributaries, thereby influencing the movement of water between the 

channels and groundwater.  

Meanwhile, CH_N1 represents Manning's roughness coefficient for the 

main channel, affecting water flow characteristics within the channel. 

The calibration value of 0.027 for CH_N1, reflects the relative uniform 

and straight nature of the channels, which is common in urbanised 

watersheds characterised by artificial channels and river channelisation 

(Chow, 1959). This highlights the impact of urbanisation and land use 

change on the morphology of the basin, which ultimately affects river 

discharge.  

Model calibration achieved a p-factor of 0.67 and an r-factor of 0.9, 

indicating a reasonable fit of the model to the observed hydrological 

processes. It is important to note that the model occasionally 
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underestimated peak flows, possibly due to a lack of operational and 

release data for upstream structures like the Batu dam and Batu 

retention pond, which affect the flow patterns at the observed station. 

During the model validation, the p-factor improved to 0.7, while the r-

factor increased to 1.69, suggesting a more robust performance in 

capturing the hydrological dynamics. Despite these slight 

underestimations in peak flows, we can conclude that the model has 

been effectively calibrated and validated for the study area. 

The model is used to analyse the complex interactions between LULC 

changes and climate variations and their impact on surface runoff and 

river discharge within the Klang River basin. Surface runoff was initially 

simulated for the years 1999, 2006, and 2017 to assess the influence of 

LULC modifications. It was observed that, as urban land cover increased, 

surface runoff also exhibited a corresponding increase. In particular, the 

year 2006 recorded the highest average basin runoff, primarily 

attributed to higher annual precipitation levels during that period.  

This in agreement with the study by Saadatkhah and Kassim, (2017), 

that analysed the impacts of land use change on flood events in the Hulu 

Kelang River basin, which covers the Northen and Northeastern parts of 

the Klang River basin. The study observed that urban and agricultural 

land contributed to around 50% of runoff volume in 1994 and that this 

number increased to more than 60% in 2013 as the area of urban and 
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agricultural land increased, whereas natural forests and secondary 

forests contributed to only 20% and 15% in 1994 and 2013 respectively.  

In a similar study in Kelantan River basin, the agricultural and developed 

land areas during the period 1988 to 2013, were observed to have 

resulted in enhanced flood volumes compared to other land use classes 

(Asmat et al., 2016). This illustrates significant impact of LULC change 

on surface runoff, where the change from forest to urban and 

agricultural land increases imperviousness and reduces canopy cover, 

hence less water is trapped by the canopy and less water is infiltrated 

by the surface.  

Subsequent simulations considering future scenarios with three distinct 

combinations: changes in LULC only, changes in climate variables only 

(under RCP4.5 and RCP8.5), and the combined effect of LULC and 

climate scenarios was carried out. The results illustrated that LULC 

changes have a significant impact on future surface runoff. Specifically, 

under the combined influence of LULC changes and climate scenarios, 

surface runoff levels surpassed those resulting from climate changes 

alone. This indicates that LULC change is expected to have a higher 

impact on future hydrological processes than climate change. 

In terms of spatial variability, the middle region of the basin, which is 

predominantly urbanised, consistently experienced the highest surface 
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runoff throughout the study period. However, under future climate 

scenarios, some parts of the lower basin began to exhibit increased 

surface runoff, potentially reflecting shifts in precipitation patterns and 

the interplay with urban development. 

On the other hand, the analysis of river discharge under various future 

scenarios at the Batu Sentul station revealed the most significant 

increase in river discharge was observed under the RCP4.5 scenario and 

the combined LULC 2030 and RCP4.5 scenario during TP1 and TP2 

periods. However, these significant trends were not detected in other 

scenarios. The average annual river discharge for TP3 (2070-2099) was 

consistently higher across all scenarios, compared to TP1 and TP2, 

similar to the results presented by Kabiri et la., (2015), where mean 

annual discharge for the 2080s under A2 scenario increased by 3.4% 

within the Klang River basin.  

However, it’s important to indicate that Kabiri et al., (2015) did not 

consider the potential impact of LULC change in their study, and this 

study illustrates the importance of LULC change where it showcases 

changes in LULC have a substantial impact, resulting in higher average 

annual discharge compared to scenarios where only climate variables 

were altered. As illustrated under the LULC 2030 scenario with current 

climate conditions, where the average annual river discharge at Batu 

Sentul was projected to be 11.15 m³/s, significantly higher than the 
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discharge under RCP4.5 and the combined LULC 2030 and RCP4.5 

scenarios during TP1, which registered average annual discharges of 

9.29 m³/s.  

Overall, the outcome of the study illustrates the significant correlation 

with LULC and climate change with changes in hydrological processes. 

And the pivotal role both LULC change and the changes in precipitation 

play in influencing hydrological processes. Although LULC change has a 

more significant impact on hydrological processes, it is important to 

consider both LULC and climate change in planning and policy making 

decisions. 

4.4 SUMMARY OF RESULTS AND DISCUSSION 

The summary of all the results and discussion is presented in Table 

4.4-1. 

Table 4.4-1: Summary Of Results And Discussion. 

Objective Results Discussion 

To analyse 
spatio-
temporal 
trends in land-
use and land 
cover. 

• Increase in Built-up by 147.5 
km² (11.8%) and decrease in 
agricultural by 36.71 km² (2.9 
%), and natural vegetation by 
73.4 km² (5.9%) from 1999 -
2017.  

• Projected increase in built-up 
land by 120.6 km² (9.7%), 
decrease in agricultural by 
9.11 km² (0.7%) and natural 
vegetation by 109.5 km² 
(8.7%) from 2017 to 2030. 

• High magnitude of urban 
expansion in the period 1999 
to 2017 at the expense of 
natural vegetation. 

• Urbanisation increased at a 
rate of 0.6% per year in the 
period 1999 to 2017. 

• It is expected urban land use 
to continue to expand until 
2030 with expansion taking 
place in protected forest 
reserves and urban green 
spaces.  
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• Accessibility and proximity to 
urban areas, are major factors 
that contribute to this 
expansion. 

• This Urban expansion can 
have significant impact on 
hydrological processes in 
Klang River basin. 

To analyse 
spatio-
temporal 
trends in 
Precipitation, 
and 
temperature. 

• Mean annual precipitation 
highest in urban areas ranging 
from 3010mm to 3368mm. 

• Significant trend in mean 
annual precipitation detected. 

• Increasing trend in 
precipitation intensity and 
frequency observed over 
urban areas. 

• Seasonal trend is similar to 
annual trend. 

• Increasing trend also detected 
for land surface temperature 
(LST) over urban areas. 

• Maximum LST increased by 
10.1°C and minimum 
temperatures increasing by 
2.6°C in the period 1999 to 
2017. 

• Increasing trend in 
precipitation and temperature 
predicted under future 
scenarios. 

• Significant increasing trend in 
river discharged was detected 
most at station Jambatan 
Sulaiman. 

• Precipitation showed 
increasing trend, with urban 
areas experiencing the most 
significant increases.  

• Central urban areas exhibit 
the most intense and frequent 
precipitation. 

• Temperature trends in the 
Klang River basin align with 
broader global warming 
patterns, with urban areas 
having higher land surface 
temperatures. 

• NEM period has the highest 
influence on annual 
precipitation. 

• The analysis of river discharge 
trends at Batu Sentul and 
Jambatan Sulaiman stations 
mirrors precipitation and 
temperature trends, with an 
overall increasing trend. 

• Significant trends are 
observed at Jambatan 
Sulaiman, emphasising the 
impacts of LULC and 
precipitation changes on river 
discharge. 

To develop an 
integrated 
spatio-
temporal 
hydrological 
model, with 
land use and 
climate 
models. 

• 8 parameters identified as the 
most sensitive. 

• CH_K1, CH_K2, and CH_N2 
were the most sensitive 
parameters. 

• Calibration with p-factor of 
0.67 and r-factor of 0.9, with 
R2 and NS of 0.33. 

• Validation with p-factor of 0.7 
and r-factor of 1.69, with R2 of 
0.31 and NS of 0.19. 

• CH_K1, CH_K2 and CH_N2, 
illustrate the movement of 
water in main channel and 
tributaries, showcasing the 
impact of urbanisation on 
morphology of the basin. 

• The model underestimated 
some peak flows. 

• Calibration and validation 
were satisfactory. 
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• Model was able to successfully 
integrate LULC change and 
climate change variables. 

To measure 
quantitative 
effects of both 
LULC and 
precipitation 
changes on 
surface runoff 
and river 
discharge. 

• Increase in surface runoff 
from 1999 to 2017. 

• In the year 1999 average basin 
runoff at 1327.3mm, year 
2006 at 1640.6mm, year 2017 
at 1550.8mm. 

• Under future scenario for only 
LULC change, runoff increased 
by 71.8mm relative to 2017 
value. 

• Under RCP 4.5 and RCP8.5 
only scenarios runoff is less, 
compared to LULC change 
only scenario, with average 
basin runoff at 771.9mm and 
757mm respectively. 

• Under combined LULC change 
and RCP climate change 
scenarios, runoff is higher 
compared to only RCP 
scenarios but less than only 
LULC change scenario at 
860.7mm, and 832.7mm. 

• Significant river discharge 
trend detected during TP1 
period under RCP4.5 only 
scenario and under combined 
RCP4.5 and LULC 2030 
scenario. 

• Highest average annual 
discharge during TP3 period. 

• Highest annual discharge 
detected when only LULC 
2030 scenario used at 11.15 
m³/s. 

• With increase in urbanisation 
surface runoff also increased 
in the period 1999 to 2017. 

• The year 2006 had the highest 
surface runoff, partly due to 
high precipitation amount in 
that year. 

• Similar findings observed by 
Saadatkhah and Kassim, 
(2017). 

• Under future scenarios, LULC 
changes have higher 
significant impact on future 
surface runoff. 

• Spatially the middle region of 
the basin which are highly 
urbanised, experience higher 
runoff. 

• Significant increase in river 
discharge was observed under 
the RCP4.5 and the combined 
LULC 2030 and RCP4.5 
scenarios during TP1 and TP2 
periods. 

• Highest river discharge was 
observed under the LULC 2030 
only scenario, indicating the 
significant of LULC change on 
river discharge. 
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CHAPTER 5: CONCLUSION 

This chapter presents the conclusion of the study on the impacts of 

spatio-temporal changes in land use and land cover, and precipitation 

on surface runoff and river discharge in the Klang River basin. 

5.1 CONCLUSION 

This study was conducted with the main aim of assessing the combined 

effects of land use and land cover change and change in precipitation on 

surface runoff and river discharge within the Klang River basin, with a 

focus on projecting these effects under future scenarios. To achieve this 

aim, several specific objectives were outlined.  

The first objective of the study was to analyse the spatial and temporal 

trends in LULC change, precipitation, and temperature. To achieve this 

objective, a combination of methods was utilised, including maximum 

likelihood algorithm for land use classification, and the Decision Forest 

– Markov Chain model for land use change modelling. Additionally 

historical data was examined to detect trends in precipitation and 

temperature, using the Mann-Kendall and Sen’s slope statistics. 

The findings revealed significant trends detected in land use and land 

cover, particularly an increase in urbanisation, which was concentrated 

in the central part of the Klang River basin in the period 1999 to 2017. 

These trends are consistent with previous studies and highlight the 
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urban expansion of Kuala Lumpur and its surrounding areas. And due to 

the urban expansion, natural vegetation and other land use classes have 

been on the decline. The future scenarios show, these trends to 

continue, with urban areas expanding in the remaining urban green 

spaces and forests.  

As for precipitation, trends show an upwards trajectory in the basin, 

particularly in urban areas. Increasing trend in precipitation intensity 

and frequency was detected among urban stations, although Simple Day 

Intensity Index (SDII) exhibited decreasing trend in most of the 

stations. Similarly, increasing trends were detected in seasonal 

precipitation, with the most significant increasing trends detected during 

the NEM period. Temperature patterns also exhibited similarities to 

precipitation, with higher surface temperatures observed in urban areas, 

potentially contributing to urban-induced precipitation. 

The assessment of precipitation and temperature under future climate 

scenarios illustrates an increasing trend in both precipitation and 

temperature for the period 2006 to 2099. Overall, we can conclude that 

increasing trend in both LULC and climate variables is detected within 

Klang River basin, with variability in spatial trend, and under future 

scenarios it is expected that these trends will continue.  
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The second objective of this study involves the development of an 

integrated hydrological model that combines land use and climate 

models, to assess the impacts of LULC and climate changes on 

hydrological processes. The SWAT model was utilised to achieve this 

objective. The calibration and validation of the SWAT model 

demonstrates its effectiveness and reliability in modelling hydrological 

processes in the Klang River basin. However, the model can be improved 

to better capture peak flow with additional operational and release data 

for upstream structures. 

The final objective of the study aimed to measure the quantitative 

effects of both LULC and precipitation changes on surface runoff and 

river discharge. The results showed that LULC change has a significant 

impact on surface runoff and river discharge, particularly urban land 

use. The increase in urban land use has resulted in increasing 

impervious surfaces, reduction in infiltration and hence increase in 

surface runoff.  

Notably, the study illustrates that LULC change has a higher impact on 

hydrological processes, than changes in climate variables alone. 

Although, the combined impact of LULC change and changes climate 

scenarios resulted in high surface runoff levels, emphasising the 

importance of considering both factors in planning and policy-making 

decisions. 
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Overall, the results of this study illustrate the significance of 

understanding the impacts of LULC change and changes in climate 

variables on the hydrological processes of the Klang River basin. The 

combined impact of urbanisation and changes in precipitation properties 

can have a great effect on surface runoff and river discharge, potentially 

increasing the risk of flooding in the Klang River basin.  

This research has contributed to the body of knowledge regarding the 

dynamic relationship between land use, climate variables and 

hydrological processes. Highlighting the importance of sustainable land 

use practices and urban planning in the face of current urbanisation and 

climate change. The outcomes of this study can better inform 

policymakers and stakeholders in making decisions that ensure the 

resilience and sustainability of the Klang River basin in the future. 

5.2 STUDY LIMITATIONS 

While this study contributes valuable insights into the combined impacts 

of LULC change and changes in precipitation on hydrological processes 

in the Klang River basin, it is essential to acknowledge the limitations of 

the study. 

Data limitations were a challenge faced in the study, where availability 

and quality of the input data for the hydrological model and runoff data 

for model calibration and validation was an issue. The lack of data for 
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some of the weather parameters, like temperature, humidity, wind 

speed and solar radiation added further uncertainty to the model. 

Secondly gaps and missing values in the data added further limitations 

to the study. This is a common limitations within hydrological studies, 

as stated in a review of SWAT model studies in Southeast Asia by Tan et 

al., (2019), which revealed one of the major limitations most 

hydrological studies in Southeast Asia face is poor data reliability and 

availability. 

Another limitation the study faced is the limitation of the models used. 

The SWAT model has limited options for treatment of artificial pathways 

(sewers, storm water systems, channels etc.) and since urbanised 

watersheds are highly channelised and have many artificial pathways, it 

is difficult to incorporate some of these aspects of the urban watershed 

in the model, which increases the model uncertainty. 

5.3 RECOMMENDATIONS  

5.3.1 RECOMMENDATIONS FOR FUTURE RESEARCH 

Future research could consider integrating socio-economic variables in 

LULC change modelling, such as population growth, economic 

development, and policy changes. Understanding how these factors 

influence land use decisions can help to improve model accuracy.   
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Future studies could also integrate more sources of hydro-climatic data, 

to reduce the gap and missing values of the data and improve the quality 

of input data for modelling. These sources of data include weather radar, 

climate model outputs and satellite data. 

Lastly, future research could utilise and integrate urban hydrological 

models with other hydrological models, for watersheds that are highly 

urbanised. This can improve the accuracy of the outputs by considering 

the urban hydrological infrastructure. Examples of urban hydrological 

models include SWMM, MIKE Urban, and URBS-MO. 

5.3.2 RECOMMENDATIONS FOR POLICY MAKERS AND STAKEHOLDERS 

Policy makers should consider the long-term impacts of urbanisation on 

LULC and hydrological processes and prioritise sustainable urban 

planning. Emphasis should be given to preserving urban green spaces, 

forests, and natural vegetation to mitigate the adverse effects of urban 

sprawl. 

Secondly, policy makers and stakeholders should promote and prioritise 

investment in green infrastructure, such as green roofs, urban forest, 

and permeable surfaces. Green infrastructure can help improve water 

retention, infiltration and reduce surface runoff. 

Lastly, policy makers and stakeholders should incorporate climate 

change into decision-making and policy development. This can be done 
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through the implementation of more climate resistant infrastructure. 

Such as, designing drainage systems capable of handling more intense 

rainfall and integrating climate adaptation strategies into urban 

development plans. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 216  
 

References 

• Abas, A. A. and Hashim, M. (2014) ‘Change detection of runoff-urban growth 

relationship in urbanised watershed’, IOP Conference Series: Earth and 

Environmental Science, 18(1), p. 012040. doi: 10.1088/1755-

1315/18/1/012040. 

• Abbaspour, K. C., Johnson, C. A. and van Genuchten, M. T. (2004) ‘Estimating 

Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting 

Procedure’, Vadose Zone Journal, 3(4), pp. 1340–1352. doi: 

10.2136/vzj2004.1340. 

• Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., 

Zobrist, J. and Srinivasan, R. (2007) ‘Modelling hydrology and water quality in 

the pre-alpine/alpine Thur watershed using SWAT’, Journal of Hydrology, 

333(2–4), pp. 413–430. doi: 10.1016/j.jhydrol.2006.09.014. 

• Abbaspour,  k. C. (2012) ‘Swat-Cup2: SWAT Calibration and Uncertainty 

Programs Manual Version 2, Department of Systems Analysis, Integrated 

Assessment and Modelling (SIAM) Eawag’, Swiss Federal Institute of Aquatic 

Science and Technology, Duebendorf, Switzerland. 106 p., Swiss Federal 

Institute of Aquatic Science and Technology. Duebendorf, Switzerland. 

• Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H. and 

Kløve, B. (2015) ‘A continental-scale hydrology and water quality model for 

Europe: Calibration and uncertainty of a high-resolution large-scale SWAT 

model’, Journal of Hydrology, 524, pp. 733–752. doi: 

10.1016/j.jhydrol.2015.03.027. 

• Abbaspour, K. C., Vaghefi, S. A. and Srinivasan, R. (2017) ‘A guideline for 

successful calibration and uncertainty analysis for soil and water assessment: 

A review of papers from the 2016 international SWAT conference’, Water 



Page | 217  
 

(Switzerland). doi: 10.3390/w10010006. 

• Abbaspour, K. C., Vaghefi, S. A., Yang, H. and Srinivasan, R. (2019) ‘Global 

soil, landuse, evapotranspiration, historical and future weather databases for 

SWAT Applications’, Scientific Data, 6(1), pp. 1–11. doi: 10.1038/s41597-019-

0282-4. 

• Abdulkareem, J. H., Pradhan, B., Sulaiman, W. N. A. and Jamil, N. R. (2018) 

‘Review of studies on hydrological modelling in Malaysia’, Modeling Earth 

Systems and Environment, pp. 1577–1605. doi: 10.1007/s40808-018-0509-y. 

• Abdulkareem, J. H., Pradhan, B., Sulaiman, W. N. A. and Jamil, N. R. (2019) 

‘Long-term runoff dynamics assessment measured through land use/cover 

(LULC) changes in a tropical complex catchment’, Environment Systems and 

Decisions, 39(1), 16–33. https://doi.org/10.1007/s10669-018-9696-3. 

• Abdullah, S. A. and Hezri, A. A. (2008) ‘From forest landscape to agricultural 

landscape in the developing tropical country of Malaysia: Pattern, process, and 

their significance on policy’, Environmental Management, 42(5), pp. 907–917. 

doi: 10.1007/s00267-008-9178-3. 

• Aburas, M. M., Abdullah, S. H., Ramli, M. F., Ash’aari, Z. H. and Ahamad, M. S. 

S. (2018) ‘Simulating and monitoring future land-use trends using CA-Markov 

and LCM models’, IOP Conference Series: Earth and Environmental Science, 

169(1), p. 012050. doi: 10.1088/1755-1315/169/1/012050. 

• Adnan, N. A. and Atkinson, P. M. (2018) ‘Disentangling the effects of long-term 

changes in precipitation and land use on hydrological response in a monsoonal 

catchment’, Journal of Flood Risk Management, 11, pp. S1063–S1077. doi: 

10.1111/jfr3.12294. 

• Agarwal, C., Green, G. M., Grove, J. M., Evans, T. P. and Schweik, C. M. (2002) 

‘A Review and Assessment of Land-Use Change Models: Dynamics of Space, 

Time, and Human Choice’, Apollo The International Magazine Of Art And 



Page | 218  
 

Antiques, p. 62. Available at: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.2775&amp;rep

=rep1&amp;type=pdf. 

• Aisyah, A., Shahrul, A., Zulfahmie, M., Sharifah Mastura, S. and Mokhtar, J. 

(2015) ‘DEFORESTATION ANALYSIS IN SELANGOR, MALAYSIA BETWEEN 1989 

AND 2011’, Journal of Tropical Forest Science, 27(1), pp. 3–12. 

• Ajami, H. (2021) Geohydrology: Global Hydrological Cycle. 2nd edn, 

Encyclopedia of Geology. 2nd edn. Edited by D. Alderton and S. A. Elias. 

Academic Press. doi: 10.1016/B978-0-12-409548-9.12387-5. 

• Ajmal, M., Moon, G. woo, Ahn, J. hyun and Kim, T. woong (2015) ‘Investigation 

of SCS-CN and its inspired modified models for runoff estimation in South 

Korean watersheds’, Journal of Hydro-Environment Research, 9(4), pp. 592–

603. doi: 10.1016/j.jher.2014.11.003. 

• Alaghmand, S., Abdullah, R., Abustan, I. and Vosoogh B. (2012) ‘The Effects 

of Rainfall Event and Land Use Characteristics on River Basin Hydrological 

Response: A Case of Sg. Kayu Ara, Malaysia’,  Pertanika Journal of Science & 

Technology, 20(2), 205–219. 

• Al-sharif, A. A. A. and Pradhan, B. (2014) ‘Monitoring and predicting land use 

change in Tripoli Metropolitan City using an integrated Markov chain and cellular 

automata models in GIS’, Arabian Journal of Geosciences, 7(10), pp. 4291–

4301. doi: 10.1007/s12517-013-1119-7. 

• Al-sharif, A. A. A. and Pradhan, B. (2015) ‘A novel approach for predicting the 

spatial patterns of urban expansion by combining the chi-squared automatic 

integration detection decision tree, Markov chain and cellular automata models 

in GIS’, Geocarto International, 30(8), pp. 858–881. doi: 

10.1080/10106049.2014.997308. 

• Alkama, R. and Cescatti, A. (2016) ‘Biophysical climate impacts of recent 



Page | 219  
 

changes in global forest cover’, Science, 351(6273), pp. 600–604. doi: 

10.1126/science.aad7270. 

• Allen, M. R., Dube, O. P., Solecki, W., Aragón-Durand, F., Cramer, W., 

Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., 

M. Wairiu, A. and Zickfeld, K. (2018) ‘Framing and Context. In: Global Warming 

of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C 

above pre-industrial levels and related global greenhouse gas emission 

pathways, in the context of strengthening the global response to the’, [Masson-

Delmotte, V., P.Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A.Pirani, 

W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, 

X.Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M.Tignor, and T. Waterfield (eds.)]. 

In Press. doi: 10.5194/nhess-16-2189-2016. 

• Almdhun, H. M., Mallak, S. K., Aburas, M. M., Md Said, M. A. and Ghadiri, S. M. 

(2018) ‘Measuring and predicting urban growth patterns and trends in 

Putrajaya, Malaysia’, IOP Conference Series: Earth and Environmental Science, 

169(1). doi: 10.1088/1755-1315/169/1/012114. 

• Amanollahi, J., Tzanis, C., Ramli, M. F. and Abdullah, A. M. (2016) ‘Urban heat 

evolution in a tropical area utilizing Landsat imagery’, Atmospheric Research, 

167, pp. 175–182. doi: 10.1016/J.ATMOSRES.2015.07.019. 

• Amin, I. M. Z. bin M., Ercan, A., Ishida, K., Kavvas, M. L., Chen, Z. Q. and Jang, 

S. H. (2019) ‘Impacts of climate change on the hydro-climate of peninsular 

Malaysia’, Water, 11(9). https://doi.org/10.3390/w11091798. 

• Amirabadizadeh, M., Huang, Y. F. and Lee, T. S. (2015) ‘Recent Trends in 

Temperature and Precipitation in the Langat River Basin, Malaysia’, Advances 

in Meteorology, 2015, pp. 1–16. doi: 10.1155/2015/579437. 

• Amisigo, B. A., McCluskey, A. and Swanson, R. (2015) ‘Modeling impact of 

climate change on water resources and agriculture demand in the Volta Basin 



Page | 220  
 

and other basin systems in Ghana’, Sustainability, 7(6), 6957–6975. 

https://doi.org/10.3390/su7066957. 

• Apollonio, C., Balacco, G., Novelli, A., Tarantino, E., and Piccinni, A. F. (2016) 

‘Land use change impact on flooding areas: The case study of Cervaro Basin 

(Italy) ’, Sustainability (Switzerland), 8(10), 996 -1014. 

https://doi.org/10.3390/su8100996 

• Arneth, A. and et. al (2019) ‘Framing and Context. in Climate Change and Land: 

An IPCC Special Report on Climate Change, Desertification, Land Degradation, 

Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in 

Terrestrial Ecosystems’, (eds. Shukla, P. R. et al.) Ch. 1. 

• Arnold, J. G., Allen, P. M. and Bernhardt, G. (1993) ‘A comprehensive surface-

groundwater flow model’, Journal of Hydrology, 142(1–4), pp. 47–69. doi: 

10.1016/0022-1694(93)90004-S. 

• Arnold, J. G., Srinivasan, R., Muttiah, R. S. and Williams, J. R. (1998) ‘Large 

area hydrologic modeling and assessment part I: Model development’, Journal 

of the American Water Resources Association, 34(1), pp. 73–89. doi: 

10.1111/j.1752-1688.1998.tb05961.x. 

• Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., 

Srinivasan, R., Santhi, C., Harmel, R. D., Griensven, A. van, Liew, M. W. Van, 

Kannan, N. and Jha, M. K. (2012) ‘SWAT: Model Use, Calibration, and 

Validation’, Transactions of the ASABE, 55(4), pp. 1491–1508. doi: 

10.13031/2013.42256. 

• Asmat, A., Mansor, S., Saadatkhah, N., Adnan, N. A. and Khuzaimah, Z. (2016) 

‘Land Use Change Effects on Extreme Flood in the Kelantan Basin Using 

Hydrological Model’, in ISFRAM 2015. Springer, Singapore, pp. 221–236. doi: 

10.1007/978-981-10-0500-8_18. 

• Asnawi, N. H. and Choy, L. K. (2016) ‘Analysis of land use and land cover 



Page | 221  
 

changes in Gombak, Selangor using remote sensing data’, Sains Malaysiana, 

45(12), pp. 1869–1877. doi: 10.17576/JSM-2016-4512-11. 

• Avdan, U. and Jovanovska, G. (2016) ‘Algorithm for automated mapping of land 

surface temperature using LANDSAT 8 satellite data’, Journal of Sensors, 2016. 

doi: 10.1155/2016/1480307. 

• Azari, M., Billa, L. and Chan, A. (2020) ‘Modelling of Land-Use/Land-Cover 

Change and Its Impact on Local Climate of Klang River Basin’, IOP Conference 

Series: Earth and Environmental Science, 489(1). doi: 10.1088/1755-

1315/489/1/012017. 

• Baiya, B. and Hashim, M. (2020) ‘Modelling Catchment Land Use Changes 

against Water Yield with Satellite Multi-Temporal Data’, IOP Conference Series: 

Earth and Environmental Science, 540(1), p. 12060. 

https://doi.org/10.1088/1755-1315/540/1/012060. 

• Bakar, M. A. A., Ariff, N. M., Jemain, A. A. and Nadzir, M. S. M. (2020) ‘Cluster 

Analysis of Hourly Rainfalls Using Storm Indices in Peninsular Malaysia’, Journal 

of Hydrologic Engineering, 25(7), pp. 1–11. doi: 10.1061/(ASCE)HE.1943-

5584.0001942. 

• Balamurugan, G. (1991) ‘Sediment balance and delivery in a humid tropical 

urban river basin: The Kelang River, Malaysia’, Catena, 18(3–4), pp. 271–287. 

doi: 10.1016/0341-8162(91)90026-T. 

• Bari, M. A., Alam, L., Alam, M. M., Rahman, L. F. and Pereira, J. J. (2021) 

‘Estimation of losses and damages caused by flash floods in the commercial 

area of Kajang, Selangor, Malaysia’, Arabian Journal of Geosciences, 14(3), p. 

195. doi: 10.1007/s12517-021-06503-x. 

• Bell, V. et al. (2020) ‘Flood Impacts across Scales: towards an integrated multi-

scale approach for Malaysia’, in 4th European Conference on Flood Risk 

Management. doi: 10.3311/floodrisk2020.9.6. 



Page | 222  
 

• Betts, A. K., Chan, D. Z. and Desjardins, R. L. (2019) ‘Near-Surface Biases in 

ERA5 Over the Canadian Prairies’, Frontiers in Environmental Science, 7. 

https://doi.org/10.3389/fenvs.2019.00129. 

• Beven, K. (2012) Rainfall-Runoff Modelling: The Primer, 2nd Edition, Wiley-

Blackwell. Wiley-Blackwell. Available at: https://www.wiley.com/en-

gb/Rainfall+Runoff+Modelling%3A+The+Primer%2C+2nd+Edition-p-

9780470714591 (Accessed: 11 April 2022). 

• Bhatta, B., Shrestha, S., Shrestha, P. K. and Talchabhadel, R. (2019) 

‘Evaluation and application of a SWAT model to assess the climate change 

impact on the hydrology of the Himalayan River Basin’, Catena, 181(October 

2018), p. 104082. doi: 10.1016/j.catena.2019.104082. 

• Bhuiyan, T. R., Hasan Reza, M. I., Choy, E. A. and Pereira, J. J. (2018) ‘Direct 

impact of flash floods in Kuala Lumpur City: Secondary data-based analysis’, 

ASM Science Journal, 11(3), pp. 145–157. 

• Blunden, J., Arndt, D. S. and Dunn, R. J. H. (2020) ‘State of the Climate in 

2019’, Bulletin of the American Meteorological Society. American Meteorological 

Society, p. SI-S429. doi: 10.1175/2020BAMSSTATEOFTHECLIMATE.1. 

• Bonneau, J., Fletcher, T. D., Costelloe, J. F. and Burns, M. J. (2017) 

‘Stormwater infiltration and the “urban karst” – A review’, Journal of Hydrology. 

Elsevier, pp. 141–150. doi: 10.1016/j.jhydrol.2017.06.043. 

• Boori, M. S., Netzband, M., Choudhary, K. and Voženílek, V. (2015) ‘Monitoring 

and modeling of urban sprawl through remote sensing and GIS in Kuala 

Lumpur, Malaysia’, Ecological Processes, 4(1), pp. 1–10. doi: 10.1186/s13717-

015-0040-2. 

• Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, 

C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. 

Van, Montanarella, L., & Panagos, P. (2017) ‘An assessment of the global 



Page | 223  
 

impact of 21st century land use change on soil erosion’, Nature 

Communications, 8(1), pp. 1–13. https://doi.org/10.1038/s41467-017-02142-

7. 

• Boulet, G., Jarlan, L., Olioso, A. and Nieto, H. (2020) ‘Evapotranspiration in the 

Mediterranean region’, in Water Resources in the Mediterranean Region. 

Elsevier, pp. 23–49. doi: 10.1016/B978-0-12-818086-0.00002-9. 

• Bradshaw, C. J. A., Sodhi, N. S., Peh, K. S. H. and Brook, B. W. (2007) ‘Global 

evidence that deforestation amplifies flood risk and severity in the developing 

world’, Global Change Biology, 13(11), pp. 2379–2395. doi: 10.1111/j.1365-

2486.2007.01446.x. 

• Briak, H., Mrabet, R., Moussadek, R. and Aboumaria, K. (2019) ‘Use of a 

calibrated SWAT model to evaluate the effects of agricultural BMPs on 

sediments of the Kalaya river basin (North of Morocco)’, International Soil and 

Water Conservation Research, 7(2), pp. 176–183. doi: 

10.1016/j.iswcr.2019.02.002. 

• Brirhet, H. and Benaabidate, L. (2016) ‘Comparison Of Two Hydrological Models 

(Lumped And Distributed) Over A Pilot Area Of The Issen Watershed In The 

Souss Basin, Morocco’, European Scientific Journal, ESJ, 12(18), p. 347. doi: 

10.19044/esj.2016.v12n18p347. 

• Bruch, S., Pfeifer J. and Guillame-bert, M. (2020) ‘Learning Representations for 

Axis-Aligned Decision Forests through Input Perturbation’, arXiv:2007.14761 

[cs.LG]. 

• Calijuri, M.L., Castro, J.S., Costa, L.S., Assemany, P.P. and Alves, J.E.M. (2015) 

‘Impact of land use/land cover changes on water quality and hydrological 

behavior of an agricultural subwatershed’, Environmental Earth Sciences, 74, 

pp. 5373–5382. doi.org/10.1007/s12665-015-4550-0. 

• Chao, Z., Wang, L., Che, M. and Hou, S. (2020) ‘Effects of Different 



Page | 224  
 

Urbanization Levels on Land Surface Temperature Change: Taking Tokyo and 

Shanghai for Example’, Remote Sensing, 12(12), p. 2022. doi: 

10.3390/rs12122022. 

• Chen, Y., Marek, G. W., Marek, T. H., Porter, D. O., Brauer, D. K. and 

Srinivasan, R. (2021) ‘Simulating the effects of agricultural production practices 

on water conservation and crop yields using an improved SWAT model in the 

Texas High Plains, USA’, Agricultural Water Management, 244(August 2020), 

p. 106574. doi: 10.1016/j.agwat.2020.106574. 

• Choi, G., Collins, D., Ren, G., Trewin, B., Baldi, M., Fukuda, Y., Afzaal, M., 

Pianmana, T., Gomboluudev, P., Huong, P. T. T., Lias, N., Kwon, W. T., Boo, K. 

O., Cha, Y. M. and Zhou, Y. (2009) ‘Changes in means and extreme events of 

temperature and precipitation in the Asia-Pacific Network region, 1955-2007’, 

International Journal of Climatology, 29(13), pp. 1906–1925. doi: 

10.1002/joc.1979. 

• Chow, V. Te (1959) ‘Open-channel hydraulics’, New York: McGraw-Hill. 

• Colkesen, I. and Kavzoglu, T. (2019) ‘Comparative Evaluation of Decision-

Forest Algorithms in Object-Based Land Use and Land Cover Mapping’,  499-

517. doi: 10.1016/B978-0-12-815226-3.00023-5. 

• Crochemore, L., Isberg, K., Pimentel, R., Pineda, L., Hasan, A. and Arheimer, 

B. (2019) ‘Lessons learnt from checking the quality of openly accessible river 

flow data worldwide’, Hydrological Sciences Journal, 65(5), pp. 699–711. doi: 

10.1080/02626667.2019.1659509. 

• Deng, X., Zhao, C. and Yan, H. (2013) ‘Systematic modeling of impacts of land 

use and land cover changes on regional climate: A review’, Advances in 

Meteorology, 2013. doi: 10.1155/2013/317678. 

• Depetris, P. J. (2021) ‘The Importance of Monitoring River Water Discharge’, 

Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.745912. 



Page | 225  
 

• Devia, G. K., Ganasri, B. P. and Dwarakish, G. S. (2015) ‘A Review on 

Hydrological Models’, Aquatic Procedia, 4, pp. 1001–1007. doi: 

10.1016/j.aqpro.2015.02.126. 

• Dhanesh, Y., Bindhu, V. M., Senent-Aparicio, J., Brighenti, T. M., Ayana, E., 

Smitha, P. S., Fei, C. and Srinivasan, R. (2020) ‘A comparative evaluation of 

the performance of CHIRPS and CFSR data for different climate zones using the 

SWAT model’, Remote Sensing, 12(18), p. 3088. doi: 10.3390/RS12183088. 

• Díaz, S. et al. (2019) Summary for policymakers of the global assessment 

report on biodiversity and ecosystem services of the Intergovernmental 

Science-Policy Platform on Biodiversity and Ecosystem Services, Secretariat of 

the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 

Services. Bonn, Germany. Available at: 

https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_

for_posting_htn.pdf%0Ahttp://www.scielo.br/scielo.php?script=sci_arttext&pi

d=S1676-06032016000100010&lng=en&tlng=en. 

• Döll, P. and Schmied, H. M. (2012) ‘How is the impact of climate change on 

river flow regimes related to the impact on mean annual runoff? A global-scale 

analysis’, Environmental Research Letters, 7(1). 

https://doi.org/10.1088/1748-9326/7/1/014037. 

• Dwarakish, G. S. and Ganasri, B. P. (2015) ‘Impact of land use change on 

hydrological systems: A review of current modeling approaches’, Cogent 

Geoscience, 1(1), p. 1115691. doi: 10.1080/23312041.2015.1115691. 

• Ebrahimian, M., Nuruddin, A. A., Mohd Soom, A. M., Mohd Sood, A. and Juneng, 

L. (2017) ‘Hydrological Responses to Climate and Land Use Change at 

Watershed Scale - Malaysia’, Pertanika Journal of Scholarly Research Reviews, 

2(3), 10–32. http://www.pjsrr.upm.edu.my/. 

• Elias, S. A. (2021) ‘Introduction to Paleoclimates’, in Encyclopedia of Geology. 



Page | 226  
 

Academic Press, pp. 288–298. doi: 10.1016/b978-0-08-102908-4.00013-8. 

• Elsayed, I. S. M. (2012) ‘A Study on the Urban Heat Island of the City of Kuala 

Lumpur , Malaysia’, Journal of King Abdulaziz University: Metrology , 

Environment and Arid Land Agricultural Sciences, 23(2), pp. 121–134. doi: 

10.4197/MET.23-2-8. 

• Estoque, R. C., Murayama, Y. and Myint, S. W. (2017) ‘Effects of landscape 

composition and pattern on land surface temperature: An urban heat island 

study in the megacities of Southeast Asia’, Science of The Total Environment, 

577, pp. 349–359. doi: 10.1016/J.SCITOTENV.2016.10.195. 

• Ezechi, E. H. and Muda, K. (2019) ‘Overview of trends in crude palm oil 

production and economic impact in Malaysia’, Sriwijaya Journal of Environment, 

4(1), pp. 19–26. doi: 10.22135/sje.2019.4.1.19. 

• Fan, J., Rosenfeld, D., Yang, Y., Zhao, C., Leung, L. R. and Li, Z. (2015) 

‘Substantial contribution of anthropogenic air pollution to catastrophic floods in 

Southwest China’, Geophysical Research Letters, 42(6066–6075), p. pg 175 of 

649. doi: doi:10.1002/2015GL064479. 

• FAO (2020) ‘Global Forest Resources Assessment 2020: Main report’, Rome. 

doi: https://doi.org/10.4060/ca9825en. 

• Findell, K. L., Berg, A., Gentine, P., Krasting, J. P., Lintner, B. R., Malyshev, S., 

Santanello, J. A., & Shevliakova, E. (2017) ‘The impact of anthropogenic land 

use and land cover change on regional climate extremes’, Nature 

Communications, 8(1), pp. 1–10. https://doi.org/10.1038/s41467-017-01038-

w. 

• Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., 

Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, 

E., Jakob, C., Kattsov, V., Reason, C. and M. Rummukaine (2013) Evaluation 

of Climate Models. In: Climate Change 2013: The Physical Science Basis. 



Page | 227  
 

Contribution of Working Group I to the Fifth Assess-ment Report of the 

Intergovernmental Panel on Climate Change, Cambridge University Press. 

Cambridge, United Kingdom and New York, NY, USA. 

• Foster, G. and Rahmstorf, S. (2011) ‘Global temperature evolution 1979–2010’, 

Environmental Research Letters, 6(4), 044022. https://doi.org/10.1088/1748-

9326/6/4/044022. 

• Friedlingstein, P. et al. (2019) ‘Global carbon budget 2019’, Earth System 

Science Data, 11(4), pp. 1783–1838. doi: 10.5194/ESSD-11-1783-2019. 

• Gambo, J., Mohd Shafri, H. Z., Shaharum, N. S. N., Abidin, F. A. Z. and 

Rahman, M. T. A. (2018) ‘Monitoring and Predicting Land Use-Land Cover (Lulc) 

Changes Within and Around Krau Wildlife Reserve (Kwr) Protected Area in 

Malaysia Using Multi-Temporal Landsat Data’, Geoplanning: Journal of 

Geomatics and Planning, 5(1), p. 17. doi: 10.14710/geoplanning.5.1.17-34. 

• Gassman, P. ., Reyes, M. ., Green, C. . and Arnold, J. . (2007) ‘The Soil and 

Water Assessment Tool: Historical Development, Applications, and Future 

Research Directions’, Transactions of the ASABE, 50(4), pp. 1211–1250. doi: 

10.13031/2013.23637. 

• Gaur, A. and Simonovic, S. P. (2019) ‘Chapter 4 - Introduction to Physical 

Scaling: A Model Aimed to Bridge the Gap Between Statistical and Dynamic 

Downscaling Approaches’, in Ramesh, T. (ed.) Trends and Changes in 

Hydroclimatic Variables. Elsevier, pp. 199–273. doi: 10.1016/B978-0-12-

810985-4.00004-9. 

• Glavan, M. and Pintar, M. (2012) ‘Strengths, Weaknesses, Opportunities and 

Threats of Catchment Modelling with Soil and Water Assessment Tool (SWAT) 

Model’, in Nayak, P. D. (ed.) Water Resources Management and Modeling. 

InTech, pp. 39–64. doi: DOI: 10.5772/34539. 

• Good, S. P., Noone, D. and Bowen, G. (2015) ‘Hydrologic connectivity 



Page | 228  
 

constrains partitioning of global terrestrial water fluxes’, Science, 349(6244), 

pp. 175–177. doi: 10.1126/SCIENCE.AAA5931. 

• Gordon, L. J., Peterson, G. D. and Bennett, E. M. (2008) ‘Agricultural 

modifications ofhydrological flows create ecologicalsurprises’, Trends in Ecology 

and Evolution, 23(4), pp. 211–219. doi: /10.1016/j.tree.2007.11.011. 

• Graham, R. M., Hudson, S. R. and Maturilli, M. (2019) ‘Improved Performance 

of ERA5 in Arctic Gateway Relative to Four Global Atmospheric Reanalyses’, 

Geophysical Research Letters, 46(11), 6138–6147. 

https://doi.org/10.1029/2019GL082781. 

• Hafoud, S., Boutoial, K., Oussama, A., Mahjoubi, F. and Kzaiber, F. (2020) 

‘Urbanisation and Its Impact on Land Surface Temperature Changes Using 

Landsat Image in Dakhla City, Morocco’, International Journal of Advanced 

Research in Engineering and Technology, 11(6), pp. 143–155. Available at: 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3644315 (Accessed: 8 

March 2021). 

• Haines, A., Kovats, R. S., Campbell-lendrum, D. and Corvalan, C. (2006) 

‘Climate change and human health : Impacts , vulnerability and public health 

*’, pp. 585–596. doi: 10.1016/j.puhe.2006.01.002. 

• Hamad, R., Balzter, H. and Kolo, K. (2018) ‘Predicting land use/land cover 

changes using a CA-Markov model under two different scenarios’, Sustainability 

(Switzerland), 10(10), pp. 1–23. doi: 10.3390/su10103421. 

• Haque, M. I. and Basak, R. (2017) ‘Land cover change detection using GIS and 

remote sensing techniques: A spatio-temporal study on Tanguar Haor, 

Sunamganj, Bangladesh’, Egyptian Journal of Remote Sensing and Space 

Science, 20(2), pp. 251–263. doi: 10.1016/j.ejrs.2016.12.003. 

• Harun, Z., Reda, E., Abdulrazzaq, A., Abbas, A. A., Yusup, Y. and Zaki, S. A. 

(2020) ‘Urban heat island in the modern tropical Kuala Lumpur: Comparative 



Page | 229  
 

weight of the different parameters’, Alexandria Engineering Journal, 59(6), pp. 

4475–4489. doi: 10.1016/j.aej.2020.07.053. 

• Hasan, A. R. and Nair, P. L. (2014) ‘Urbanisation and growth of metropolitan 

centres in Malaysia’, Malaysian Journal of Economic Studies, 51(1), pp. 87–

101. 

• Hegazy, I. R. and Kaloop, M. R. (2015) ‘Monitoring urban growth and land use 

change detection with GIS and remote sensing techniques in Daqahlia 

governorate Egypt’, International Journal of Sustainable Built Environment, 

4(1), pp. 117–124. doi: 10.1016/j.ijsbe.2015.02.005. 

• Hirsch, A. L., Guillod, B. P., Seneviratne, S. I., Beyerle, U., Boysen, L. R., 

Brovkin, V., Davin, E. L., Doelman, J. C., Kim, H., Mitchell, D. M., Nitta, T., 

Shiogama, H., Sparrow, S., Stehfest, E., van Vuuren, D. P. and Wilson, S. 

(2018) ‘Biogeophysical Impacts of Land-Use Change on Climate Extremes in 

Low-Emission Scenarios: Results From HAPPI-Land’, Earth’s Future, 6(3), pp. 

396–409. doi: 10.1002/2017EF000744. 

• Hrachowitz, M., Stockinger, M., Coenders-Gerrits, M., van der Ent, R., Bogena, 

H., Lücke, A. and Stumpp, C. (2020) ‘Deforestation reduces the vegetation-

accessible water storage in the unsaturated soil and affects catchment travel 

time distributions and young water fractions’, Hydrology and Earth System 

Sciences Discussions, pp. 1–43. doi: 10.5194/hess-2020-293. 

• Hua, A.K. (2017) ‘Land Use Land Cover Changes in Detection of Water Quality: 

A Study Based on Remote Sensing and Multivariate Statistics’, Journal of 

Environmental and Public Health, pp. 1-12. doi.org/10.1155/2017/7515130.   

• Huang, B., Hu, X., Fuglstad, G.-A., Zhou, X., Zhao, W. and Cherubini, F. (2020) 

‘Predominant regional biophysical cooling from recent land cover changes in 

Europe’, Nature Communications 2020 11:1, 11(1), pp. 1–13. doi: 

10.1038/s41467-020-14890-0. 



Page | 230  
 

• Huang, Y., Yang, B., Wang, M., Liu, B. and Yang, X. (2020) ‘Analysis of the 

future land cover change in Beijing using CA–Markov chain model’, 

Environmental Earth Sciences, 79(2), pp. 1–12. doi: 10.1007/s12665-019-

8785-z. 

• Ibrahim, W. Y. W. and Ludin, A. N. M. (2016) ‘SPATIOTEMPORAL LAND USE 

AND LAND COVER CHANGE IN MAJOR RIVER BASINS IN COMPREHENSIVE 

DEVELOPMENT AREA’, Journal of the Malaysian Institute of Planners, (Iv), pp. 

225–242. 

• Idso, C. D., Carter, R. M. and Singer, S. F. (2013) Climate Change Reconsidered 

II: Physical Science. Chicago, IL: Sebastian Lüning. Available at: 

www.heartland.org (Accessed: 25 April 2022). 

• Ihlen, V. and Zanter, K. (2019) ‘Landsat 7 (L7) Data Users Handbook’, USGS 

Landsat User Services, 7(November), p. 151. 

• IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of 

Working Group I to the Fourth Assessment Report of the Intergovernmental 

Panel on Climate Change, Cambridge University Press. Cambridge, United 

Kingdom and New York, NY, USA,. doi: 10.1256/wea.58.04. 

• IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working 

Groups I, II and III to the Fifth Assessment Report of the Intergovernmental 

Panel on Climate Change, Ipcc. Geneva, Switzerland. Available at: https://ar5-

syr.ipcc.ch/topic_futurechanges.php (Accessed: 23 May 2022). 

• IPCC (2019) ‘Climate Change and Land: an IPCC special report’, Climate 

Change and Land: an IPCC special report on climate change, desertification, 

land degradation, sustainable land management, food security, and 

greenhouse gas fluxes in terrestrial ecosystems, pp. 1–864. Available at: 

https://www.ipcc.ch/srccl/. 

• Jamaludin, N. and Izma, N. (2015) ‘Thermal Comfort of Residential Building in 



Page | 231  
 

Malaysia at Different Micro-Climates’, Procedia - Social and Behavioral 

Sciences, 170, pp. 613–623. doi: 10.1016/j.sbspro.2015.01.063. 

• Jang, S. S., Ahn, S. R. and Kim, S. J. (2017) ‘Evaluation of executable best 

management practices in Haean highland agricultural catchment of South 

Korea using SWAT’, Agricultural Water Management, 180, pp. 224–234. doi: 

10.1016/j.agwat.2016.06.008. 

• Jia, G., Shevliakova, E., Artaxo, P., Ducoudré, N. D. N., Houghton, R., House, 

J., Kitajima, K., Lennard, C., Popp, A., Sirin, A., Sukumar, R. and Verchot, L. 

(2019) Land–climate interactions. In: Climate Change and Land: an IPCC 

special report on climate change, desertification, land degradation, sustainable 

land management, food security, and greenhouse gas fluxes in terrestrial 

ecosystems. 

• Jubb, I., Canadell, P. and Dix, M. (2013) ‘Representative Concentration 

Pathways’, AUSTRALIAN CLIMATE CHANGE SCIENCE PROGRAM, pp. 1–3. 

• June, T., Meijide, A., Stiegler, C., Kusuma, A. P. and Knohl, A. (2018) ‘The 

influence of surface roughness and turbulence on heat fluxes from an oil palm 

plantation in Jambi, Indonesia’, IOP Conference Series: Earth and 

Environmental Science, 149, p. 12048. doi: 10.1088/1755-

1315/149/1/012048. 

• Kabiri, R., Ramani Bai, R. and Chan, A. (2013) ‘Regional precipitation scenarios 

using a spatial statistical downscaling approach for Klang watershed, Malaysia’, 

Journal of Environmental Research And Development, 8(1), pp. 126–134. 

• Kabiri, R., Ramani Bai, R. and Chan, A. (2015) ‘Assessment of hydrologic 

impacts of climate change on the runoff trend in Klang Watershed, Malaysia’, 

Environmental Earth Sciences, 73, pp. 27–37. doi.org/10.1007/s12665-014-

3392-5. 

• Kamarudin, M. K. A., Gidado, K. A., Toriman, M. E., Juahir, H., Umar, R., Abd 



Page | 232  
 

Wahab, N., Ibrahim, S., Awang, S. and Maulud, K. N. A. (2018) ‘Classification 

of land use/land cover changes using GIS and remote sensing technique in Lake 

Kenyir Basin, Terengganu, Malaysia’, International Journal of Engineering and 

Technology(UAE), 7(3.14 Special Issue  14), pp. 12–15. doi: 

10.14419/ijet.v7i3.14.16854. 

• Kamusoko, C. and Gamba, J. (2015) ‘Simulating Urban Growth Using a Random 

Forest-Cellular Automata (RF-CA) Model’, ISPRS International Journal of Geo-

Information, 4(2), pp. 447–470. doi: 10.3390/ijgi4020447. 

• Karimi, F., Sultana, S., Babakan, A. S. and Suthaharan, S. (2019) ‘Urban 

expansion modeling using an enhanced decision tree algorithm’, 

GeoInformatica. doi: 10.1007/s10707-019-00377-8. 

• Karimi, H., Jafarnezhad, J., Khaledi, J. and Ahmadi, P. (2018) ‘Monitoring and 

prediction of land use/land cover changes using CA-Markov model: a case study 

of Ravansar County in Iran’, Arabian Journal of Geosciences, 11(19). doi: 

10.1007/s12517-018-3940-5. 

• Kendall, M. G. (Maurice G. (1975) Rank correlation methods. London: Griffin. 

• Khaleghi, M. R. (2017) ‘The influence of deforestation and anthropogenic 

activities on runoff generation’, Journal of Forest Science, 63(6), pp. 245–253. 

doi: 10.17221/130/2016-JFS. 

• Khanna, J., Medvigy, D., Fueglistaler, S. and Walko, R. (2017) ‘Regional dry-

season climate changes due to three decades of Amazonian deforestation’, 

Nature Climate Change, 7(3), pp. 200–204. doi: 10.1038/nclimate3226. 

• Khanna, J. and Medvigy, D. (2014) ‘Strong control of surface roughness 

variations on the simulated dry season regional atmospheric response to 

contemporary deforestation in Rondônia, Brazil’, Journal of Geophysical 

Research: Atmospheres, 119(23), pp. 13,067-13,078. doi: 

10.1002/2014JD022278. 



Page | 233  
 

• Khawaldah, H. A., Farhan, I. and Alzboun, N. M. (2020) ‘Simulation and 

prediction of land use and land cover change using GIS, remote sensing and 

CA-Markov model’, Global Journal of Environmental Science and Management, 

6(2), pp. 215–232. doi: 10.22034/gjesm.2020.02.07. 

• Khwairakpam, E., Khosa, R., Gosain, A. and Nema, A. (2019) ‘Monitoring and 

modelling water quality of Loktak Lake catchment’, SN Applied Sciences, 1(5), 

pp. 1–15. doi: 10.1007/s42452-019-0517-1. 

• Klein Tank, A. M. G., Zwiers, F. W. and Zhang, X. (2009) ‘Guidelines on Analysis 

of extremes in a changing climate in support of informed decisions for 

adaptation’, http://www.clivar.org/organisation/etccdi/etccdi.php. 

• Konapala, G., Mishra, A. K., Wada, Y. and Mann, M. E. (2020) ‘Climate change 

will affect global water availability through compounding changes in seasonal 

precipitation and evaporation’, Nature Communications, 11(1). 

https://doi.org/10.1038/s41467-020-16757-w. 

• Konrad, C. P. (2003) ‘Effects of Urban Development on Floods’, U.S. Geological 

Survey, pp. 1–4. 

• Kushwaha, K., Singh, M. M., Singh, S. K. and Patel, A. (2021) ‘Urban growth 

modeling using earth observation datasets, Cellular Automata-Markov Chain 

model and urban metrics to measure urban footprints’, Remote Sensing 

Applications: Society and Environment, p. 100479. doi: 

10.1016/j.rsase.2021.100479. 

• Laban, O. N., Maghanga, C. M. and Joash, K. (2019) ‘Determination of the 

Surface Roughness Parameter and Wind Shear Exponent of Kisii Region from 

the On-Site Measurement of Wind Profiles’, Journal of Energy, 2019, pp. 1–12. 

doi: 10.1155/2019/8264061. 

• Lal, M., Mishra, S. K. and Pandey, A. (2015) ‘Physical verification of the effect 

of land features and antecedent moisture on runoff curve number’, Catena, 



Page | 234  
 

133, pp. 318–327. doi: 10.1016/j.catena.2015.06.001. 

• Lambin, E. (2006) ‘Land Cover Assessment and Monitoring’, in Encyclopedia of 

Analytical Chemistry. John Wiley & Sons, Ltd. doi: 

10.1002/9780470027318.a2311. 

• Legdou, A., Chafik, H., Amine, A., Lahssini, S. and Berrada, M. (2020) ‘A 

random forest-cellular automata modeling approach to predict future forest 

cover change in middle atlas morocco, under anthropic, biotic and abiotic 

parameters’, in Lecture Notes in Computer Science (including subseries Lecture 

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, 

pp. 91–100. doi: 10.1007/978-3-030-51935-3_10. 

• Lejeune, Q., Seneviratne, S. I. and Davin, E. L. (2017) ‘Historical land-cover 

change impacts on climate: Comparative assessment of LUCID and CMIP5 

multimodel experiments’, Journal of Climate, 30(4), pp. 1439–1459. doi: 

10.1175/JCLI-D-16-0213.1. 

• Li, H., Harvey, J. and Kendall, A. (2013) ‘Field measurement of albedo for 

different land cover materials and effects on thermal performance’, Building 

and Environment, 59, pp. 536–546. doi: 10.1016/J.BUILDENV.2012.10.014. 

• Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E. and Li, S. (2015) ‘Local 

cooling and warming effects of forests based on satellite observations’, Nature 

Communications, 6(1), pp. 1–8. doi: 10.1038/ncomms7603. 

• Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E., Zhao, F., 

Li, S. and Wang, K. (2016) ‘Potential and Actual impacts of deforestation and 

afforestation on land surface temperature’, Journal of Geophysical Research: 

Atmospheres, 121(24), pp. 14,372-14,386. doi: 10.1002/2016JD024969. 

• Li, M., Cui, Y., Fu, Y., Li, N., Tang, X., Liu, X. and Run, Y. (2020) ‘Simulating 

the potential sequestration of three major greenhouse gases in China’s natural 

ecosystems’, Forests, 11(2), p. 128. doi: 10.3390/f11020128. 



Page | 235  
 

• Li, Y., Fowler, H. J., Argüeso, D., Blenkinsop, S., Evans, J. P., Lenderink, G., 

Yan, X., Guerreiro, S. B., Lewis, E. and Li, X. F. (2020) ‘Strong Intensification 

of Hourly Rainfall Extremes by Urbanisation’, Geophysical Research Letters, 

47(14), p. e2020GL088758. doi: 10.1029/2020GL088758. 

• Li, X. X. (2020) ‘Heat wave trends in Southeast Asia during 1979–2018: The 

impact of humidity’, Science of The Total Environment, 721, 137664. 

https://doi.org/10.1016/J.SCITOTENV.2020.137664. 

• Liang, P. and Ding, Y. (2017) ‘The long-term variation of extreme heavy 

precipitation and its link to urbanisation effects in Shanghai during 1916–2014’, 

Advances in Atmospheric Sciences, 34(3), pp. 321–334. doi: 10.1007/s00376-

016-6120-0. 

• Liang, S., Li, X. and Wang, J. (2012) ‘Land Cover and Land use Changes’, in 

Advanced Remote Sensing. Academic Press, pp. 703–772. doi: 10.1016/B978-

0-12-385954-9.00024-1. 

• Lin, C. Y., Chen, W. C., Chang, P. L. and Sheng, Y. F. (2011) ‘Impact of the 

urban heat island effect on precipitation over a complex geographic 

environment in northern Taiwan’, Journal of Applied Meteorology and 

Climatology, 50(2), pp. 339–353. doi: 10.1175/2010JAMC2504.1. 

• Liu, J., Zhang, C., Kou, L. and Zhou, Q. (2017) ‘Effects of Climate and Land Use 

Changes on Water Resources in the Taoer River’, Advances in Meteorology, 

2017, pp. 1–13. doi: 10.1155/2017/1031854. 

• Liu, J. and Niyogi, D. (2019) ‘Meta-analysis of urbanisation impact on rainfall 

modification’, Scientific Reports, 9(1), p. 7301. doi: 10.1038/s41598-019-

42494-2. 

• Lo, C. P. and Quattrochi, D. A. (2003) ‘Land-Use and Land-Cover Change,Urban 

Heat Island Phenomenon,and Health Implications:A Remote Sensing 

Approach’, Photogrammetric Engineering & Remote Sensing, 69(9), pp. 1053–



Page | 236  
 

1063. 

• Lu, D., Mausel, P., Brondízio, E. and Moran, E. (2004) ‘Change detection 

techniques’, International Journal of Remote Sensing, 25(12), pp. 2365–2407. 

doi: 10.1080/0143116031000139863. 

• Luyssaert, S. et al. (2014) ‘Land management and land-cover change have 

impacts of similar magnitude on surface temperature’, Nature Climate Change, 

4(5), pp. 389–393. doi: 10.1038/nclimate2196. 

• Mahamud, M. A., Samat, N., Tan, M. L., Chan, N. W. and Tew, Y. L. (2019) 

‘PREDICTION of FUTURE LAND USE LAND COVER CHANGES of KELANTAN, 

MALAYSIA’, International Archives of the Photogrammetry, Remote Sensing 

and Spatial Information Sciences - ISPRS Archives, 42(4/W16), pp. 379–384. 

doi: 10.5194/isprs-archives-XLII-4-W16-379-2019. 

• Mahowald, N. M., Randerson, J. T., Lindsay, K., Munoz, E., Doney, S. C., 

Lawrence, P., Schlunegger, S., Ward, D. S., Lawrence, D. and Hoffman, F. M. 

(2017) ‘Interactions between land use change and carbon cycle feedbacks’, 

Global Biogeochemical Cycles, 31(1), pp. 96–113. doi: 

10.1002/2016GB005374. 

• Mahto, S. S. and Mishra, V. (2019) ‘Does ERA-5 Outperform Other Reanalysis 

Products for Hydrologic Applications in India?’, Journal of Geophysical 

Research: Atmospheres, 124(16), 9423–9441. 

https://doi.org/10.1029/2019JD031155. 

• Majid, N. A., Rainis, R. and Mohamed, A. F. (2018) ‘Spatial analysis of 

development pressure in the Langat Basin, Selangor, Malaysia’, IOP Conference 

Series: Earth and Environmental Science, 169(1). doi: 10.1088/1755-

1315/169/1/012016. 

• Malaysian Meteorological Department. (2009) ‘Climate change scenarios for 

Malaysia, 2001 – 2099’. 



Page | 237  
 

• Mann, B. H. (1945) ‘Nonparametric Tests Against Trend’, Econometrica, 13(3), 

pp. 245–259. Available at: http://www.jstor.com/stable/1907187. 

• Mansour, S., Al-Belushi, M. and Al-Awadhi, T. (2020) ‘Monitoring land use and 

land cover changes in the mountainous cities of Oman using GIS and CA-

Markov modelling techniques’, Land Use Policy, 91(November 2019), p. 

104414. doi: 10.1016/j.landusepol.2019.104414. 

• Mao, W., Lu, D., Hou, L., Liu, X. and Yue, W. (2020) ‘Comparison of Machine-

Learning Methods for Urban Land-Use Mapping in Hangzhou City, China’, 

Remote Sensing, 12(17), p. 2817. doi: 10.3390/rs12172817. 

• Masum, K. M., Mansor, A., Sah, S. A. M. and Lim, H. S. (2017) ‘Effect of 

differential forest management on land-use change (LUC) in a tropical hill forest 

of Malaysia’, Journal of Environmental Management, 200, 468–474. 

https://doi.org/10.1016/j.jenvman.2017.06.009. 

• Mayowa, O. O., Pour, S. H., Shahid, S., Mohsenipour, M., Harun, S. Bin, 

Heryansyah, A. and Ismail, T. (2015) ‘Trends in rainfall and rainfall-related 

extremes in the east coast of peninsular Malaysia’, Journal of Earth System 

Science, 124(8), pp. 1609–1622. doi: 10.1007/s12040-015-0639-9. 

• McMichael, A. J., Woodruff, R. E. and Hales, S. (2006) ‘Climate change and 

human health: Present and future risks’, Lancet, 367(9513), pp. 859–869. doi: 

10.1016/S0140-6736(06)68079-3. 

• Megonigal, J. P. and Neubauer, S. C. (2019) ‘Biogeochemistry of Tidal 

Freshwater Wetlands’, in Perillo, G. M. . et al. (eds) Coastal Wetlands: An 

Integrated Ecosystem Approach. Elsevier, pp. 641–683. doi: 10.1016/B978-0-

444-63893-9.00019-8. 

• Memarian, H., Balasundram, S.K., Talib, J.B., Sung, C.T.B., Sood, A.M. and 

Abbaspour, K. (2012) ‘Validation of CA-Markov for Simulation of Land Use and 

Cover Change in the Langat Basin, Malaysia’, Journal of Geographic Information 



Page | 238  
 

System, 4(6), pp. 542–554. doi: 10.4236/jgis.2012.46059. 

• Memarian, H., Balasundram, S. K., Abbaspour, K. C., Talib, J. B., Teh, C., Sung, 

C.T.B. and Sood, A. M. (2014) ‘SWAT-based hydrological modelling of tropical 

land-use scenarios’, Hydrological Sciences Journal, 59(10), pp. 1808–1829. 

doi: 10.1080/02626667.2014.892598. 

• Mirici, M. E., Berberoglu, S., Akin, A. and Satir, O. (2017) ‘Land Use/Cover 

Change Modelling in Mediterranean Rural Landscape Using Multi-Layer 

Perceptron and Markov Chain (MLP-MC)’, Applied Ecology and Environmental 

Research, 16(1), pp. 467–486. doi: 10.15666/aeer/1601. 

• Mishra, S. K., Pandey, A. and Singh, V. P. (2012) ‘Special Issue on Soil 

Conservation Service Curve Number (SCS-CN) Methodology’, Journal of 

Hydrologic Engineering, 17(11), pp. 1157–1157. doi: 

10.1061/(ASCE)HE.1943-5584.0000694. 

• Mohammed, K. S., Eltayeb Elhadary, Y. A. and Samat, N. (2016) ‘Identifying 

Potential Areas for Future Urban Development Using Gis-Based Multi Criteria 

Evaluation Technique’, SHS Web of Conferences, 23, p. 03001. doi: 

10.1051/shsconf/20162303001. 

• Mohammady, M., Moradi, H. R., Zeinivand, H., Temme, A. J. A. M., Yazdani, M. 

R. and Pourghasemi, H. R. (2017) ‘Modeling and assessing the effects of land 

use changes on runoff generation with the CLUE-s and WetSpa models’, 

Theoretical and Applied Climatology, pp. 1–13. 

https://doi.org/10.1007/s00704-017-2190-x. 

• Mohd Jaafar, W. S. W., Maulud, K. N. A., Muhmad Kamarulzaman, A. M., 

Raihan, A., Sah, S. M., Ahmad, A., Maizah Saad, S. N., Mohd Azmi, A. T., 

Syukri, N. K. A. J. and Khan, W. R. (2020) ‘The influence of deforestation on 

land surface temperature-A case study of Perak and Kedah, Malaysia’, Forests, 

11(6). doi: 10.3390/F11060670. 



Page | 239  
 

• Mohd, M. S. F., Mispan, M. R., Juneng, L., Tangang, F. T., Rahman, N. F. A., 

Khalid, K., Rasid, M. Z. A. and Haron, S. H. (2015) ‘Assessment of impacts of 

climate change on streamflow trend in upper Kuantan watershed’, ARPN Journal 

of Engineering and Applied Sciences, 10(15), pp. 6634–6642. Available at: 

https://www.researchgate.net/publication/281264803 (Accessed: 18 April 

2022). 

• Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D. and 

Veith, T. L. (2007) ‘Model Evaluation Guidelines for Systematic Quantification 

of Accuracy in Watershed Simulations’, Transactions of the ASABE, 50(3), pp. 

885–900. doi: 10.13031/2013.23153. 

• Moriasi, D. N., Wilson, B. N., Douglas-Mankin, K. R., Arnold, J. G. and Gowda, 

P. H. (2012) ‘Hydrologic and water quality models: Use, calibration, and 

validation’, Transactions of the ASABE, 55(4), pp. 1241–1247. 

• Morris, K. I., Aekbal Salleh, S., Chan, A., Ooi, M. C. G., Abakr, Y. A., Oozeer, 

M. Y. and Duda, M. (2015) ‘Computational study of urban heat island of 

Putrajaya, Malaysia’, Sustainable Cities and Society, 19, pp. 359–372. doi: 

10.1016/J.SCS.2015.04.010. 

• Morris, K. I., Chan, A., Morris, K. J. K., Ooi, M. C. G., Oozeer, M. Y., Abakr, Y. 

A., Nadzir, M. S. M. and Mohammed, I. Y. (2017) ‘Urbanisation and urban 

climate of a tropical conurbation, Klang Valley, Malaysia’, Urban Climate, 

19(October 2016), pp. 54–71. doi: 10.1016/j.uclim.2016.12.002. 

• Munoth, P. and Goyal, R. (2020) ‘Impacts of land use land cover change on 

runoff and sediment yield of Upper Tapi River Sub-Basin, India’, International 

Journal of River Basin Management, 18(2), pp. 177–189. doi: 

10.1080/15715124.2019.1613413. 

• Nader, S. and Azman, K. (2017) ‘Land use Changes Impact on extreme flood 

events inthe Hulu Kelang River Basin, Malaysia’, Journal of Geotechnical 



Page | 240  
 

Geology, 13(1), pp. 73–86. 

• Namugize, J.N., Jewitt, G. and Graham, M. (2018) ‘Effects of land use and land 

cover changes on water quality in the uMngeni river catchment, South Africa’, 

Physics and Chemistry of the Earth, 105, pp. 247 - 264.    

• Nazari-Sharabian, M., Taheriyoun, M., Ahmad, S., Karakouzian, M. and 

Ahmadi, A. (2019) ‘Water quality modeling of Mahabad Dam watershed-

reservoir system under climate change conditions, using SWAT and system 

dynamics’, Water, 11(2), pp. 1–16. doi: 10.3390/w11020394. 

• Ndhlovu, G. Z. and Woyessa, Y. E. (2020) ‘Modelling impact of climate change 

on catchment water balance, Kabompo River in Zambezi River Basin’, Journal 

of Hydrology: Regional Studies, 27, pp. 100650. doi: 

10.1016/j.ejrh.2019.100650. 

• Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Srinivasan, R. and Williams, J. R. 

(2000a) ‘Soil and Water Assessment Tool User’s Manual, Version 2000’, 

Temple, Texas. 

• Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R. and King, K. W. (2000b) 

‘Soil and Water Assessment Tool, Theoretical Documentation Version 2000’, 

Temple, Texas. 

• Neitsch, S. L., Arnold, J. G., Kiniry, J. R. and Williams, J. R. (2011) ‘Soil and 

Water Assessment Tool Theoretical Documentation Version 2009’, Science of 

the Total Environment. Texas. doi: 10.1016/j.scitotenv.2015.11.063. 

• Ngai, S. T., Juneng, L., Tangang, F., Chung, J. X., Salimun, E., Tan, M. L. and 

Amalia, S. (2020) ‘Future projections of Malaysia daily precipitation 

characteristics using bias correction technique’, Atmospheric Research, 240, p. 

104926. doi: 10.1016/j.atmosres.2020.104926. 

• Niyogi, D., Lei, M., Kishtawal, C., Schmid, P. and Shepherd, M. (2017) 

‘Urbanisation impacts on the summer heavy rainfall climatology over the 



Page | 241  
 

eastern United States’, Earth Interactions, 21(5). doi: 10.1175/EI-D-15-

0045.1. 

• NOAA (2020) Global Climate Report - Annual 2020 | National Centers for 

Environmental Information (NCEI). Available at: 

https://www.ncdc.noaa.gov/sotc/global/202013 (Accessed: 19 January 2022). 

• NOAA (2021) State of the Climate: Global Climate Report for Annual 2020, 

National Center for Environmental Information. Available at: 

https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202013 

(Accessed: 31 March 2022). 

• Noori, N., Kalin, L. and Isik, S. (2020) ‘Water quality prediction using SWAT-

ANN coupled approach’, Journal of Hydrology, 590(December 2019), p. 

125220. doi: 10.1016/j.jhydrol.2020.125220. 

• Nourqolipour, R., Shariff, A. R. B. M., Balasundram, S. K., Ahmad, N. B., Sood, 

A. M., Buyong, T. and Amiri, F. (2015a) ‘A GIS-based model to analyse the 

spatial and temporal development of oil palm land use in Kuala Langat district, 

Malaysia’, Environmental Earth Sciences, 73(4), pp. 1687–1700. doi: 

10.1007/s12665-014-3521-1. 

• Nourqolipour, R., Shariff, A. R. B. M., Ahmad, N. B., Balasundram, S. K., Sood, 

A. M., Buyong, T. and Amiri, F. (2015b) ‘Multi-objective-based modeling for 

land use change analysis in the South West of Selangor, Malaysia’, 

Environmental Earth Sciences, 74(5), pp. 4133–4143. doi: 10.1007/s12665-

015-4486-4. 

• Nourqolipour, R., Shariff, A. R. B. M., Balasundram, S. K., Ahmad, N. B., Sood, 

A. M. and Buyong, T. (2016) ‘Predicting the Effects of Urban Development on 

Land Transition and Spatial Patterns of Land Use in Western Peninsular 

Malaysia’, Applied Spatial Analysis and Policy, 9(1), pp. 1–19. doi: 

10.1007/s12061-014-9128-9. 



Page | 242  
 

• De Oliveira, V. A., De Mello, C. R., Viola, M. R. and Srinivasan, R. (2018) ‘Land-

use change impacts on the hydrology of the upper grande River Basin, Brazil’, 

Cerne, 24(4), pp. 334–343. doi: 10.1590/01047760201824042573. 

• Ooi, M. C. G., Chan, A., Ashfold, M. J., Morris, K. I., Oozeer, M. Y. and Salleh, 

S. A. (2017) ‘Numerical study on effect of urban heating on local climate during 

calm inter-monsoon period in greater Kuala Lumpur, Malaysia’, Urban Climate, 

20, pp. 228–250. doi: 10.1016/j.uclim.2017.04.010. 

• Othman, J., Sharifah Mastura, S.A. and Mohd Sood, A. (2009) ‘Land Use and 

Deforestation Modelling of River Catchments in Klang Valley, Malaysia’, Sains 

Malaysiana, 38(5), pp. 655-664.  

• Palizdan, N., Falamarzi, Y., Huang, Y. F., Lee, T. S. and Ghazali, A. H. (2014) 

‘Regional precipitation trend analysis at the Langat River Basin, Selangor, 

Malaysia’, Theoretical and Applied Climatology, 117(3–4), pp. 589–606. doi: 

10.1007/s00704-013-1026-6. 

• Pang, J., Zhang, H., Xu, Q., Wang, Yujie, Wang, Yunqi, Zhang, O. and Hao, J. 

(2020) ‘Hydrological evaluation of open-access precipitation data using SWAT 

at multiple temporal and spatial scales’, Hydrology and Earth System Sciences, 

24(7), pp. 3603–3626. doi: 10.5194/hess-24-3603-2020. 

• Patil, N. S., & Nataraja, M. (2020) ‘Effect of land use land cover changes on 

runoff using hydrological model: a case study in Hiranyakeshi watershed’, 

Modeling Earth Systems and Environment, 6(4), pp. 2345–2357. 

https://doi.org/10.1007/s40808-020-00808-8. 

• Paudel, M. (2010) ‘An Examination of Distributed Hydrologic Modeling Methods 

as An Examination of Distributed Hydrologic Modeling Methods as Compared 

with Traditional Lumped Parameter Approaches Compared with Traditional 

Lumped Parameter Approaches’,, Brigham Young University. Available at: 

https://scholarsarchive.byu.edu/etd (Accessed: 11 April 2022). 



Page | 243  
 

• Pechlivanidis, Ilias G., Jackson, B. M., Mcintyre, N. R. and Wheater, H. S. (2011) 

‘Catchment scale hydrological modelling: A review of model types, calibration 

approaches and uncertainty analysis methods in the context of recent 

developments in technology and applications’, Global Nest Journal, 13(3), pp. 

193–214. doi: 10.30955/gnj.000778. 

• Peña-Arancibia, J. L., Bruijnzeel, L. A., Mulligan, M. and van Dijk, A. I. J. M. 

(2019) ‘Forests as “sponges” and “pumps”: Assessing the impact of 

deforestation on dry-season flows across the tropics’, Journal of Hydrology, 

574, pp. 946–963. doi: 10.1016/j.jhydrol.2019.04.064. 

• Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F.-M., Nan, H., 

Zhou, L. and Myneni, R. B. (2012) ‘Surface Urban Heat Island Across 419 Global 

Big Cities’, Environmental Science and Technology, 46(2), pp. 696–703. doi: 

10.1021/ES2030438. 

• Perkins, S. (2019) ‘Core Concept: Albedo is a simple concept that plays 

complicated roles in climate and astronomy’, Proceedings of the National 

Academy of Sciences of the United States of America, 116(51), pp. 25369–

25371. doi: 10.1073/pnas.1922493117. 

• Pielke, R. A., Marland, G., Betts, R. A., Chase, T. N., Eastman, J. L., Niles, J. 

O., Niyogi, D. and Running, S. (2002) ‘The influence of land-use change and 

landscape dynamics on the climate system- relevance to climate change policy 

beyond the radiative effect of greenhouse gases’, Philosophical Transactions of 

the Royal Society A, 360, pp. 1705–1719. 

• Plecher, H. (2020) Malaysia - urbanisation 2009-2019 | Statista. Available at: 

https://www.statista.com/statistics/455880/urbanisation-in-malaysia/ 

(Accessed: 8 February 2021). 

• Pontius, R. G. and Millones, M. (2011) ‘Death to Kappa: Birth of quantity 

disagreement and allocation disagreement for accuracy assessment’, 



Page | 244  
 

International Journal of Remote Sensing. Taylor and Francis Ltd., pp. 4407–

4429. doi: 10.1080/01431161.2011.552923. 

• Pontius, R. G., Peethambaram, S. and Castella, J. C. (2011) ‘Comparison of 

three maps at multiple resolutions: A case study of land change simulation in 

cho don district, Vietnam’, Annals of the Association of American Geographers, 

101(1), pp. 45–62. doi: 10.1080/00045608.2010.517742. 

• Powers, R.P. and Jetz, W. (2019) ‘Global habitat loss and extinction risk of 

terrestrial vertebrates under future land-use-change scenarios’, Nature Climate 

Change, 9(4), pp. 323 - 329. 

• Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. and Sinervo, B. (2019) 

‘Impacts of forestation and deforestation on local temperature across the 

globe’, PLOS ONE, 14(3), p. e0213368. doi: 10.1371/JOURNAL.PONE.0213368. 

• Qiu, J., Yang, X., Cao, B., Chen, Z. and Li, Y. (2020) ‘Effects of Urbanisation on 

Regional Extreme-Temperature Changes in China, 1960–2016’, Sustainability, 

12(16), p. 6560. doi: 10.3390/su12166560. 

• Quinta Shegwe, T., Destain Yungsi, W., Erika Suh, S., Christian Brice, T., 

Kohtem Lebga, A., Mbi Bienvenu Magloire, T., Ngouanet, C. and Mbi Bienvenu, 

T. (2021) ‘Land Use / Land Cover Change in the Western Highlands of 

Cameroon: Case of the Sabga-Bamunka Area (1980-2020)’, American Journal 

of Remote Sensing, 9(1), pp. 55–64. doi: 10.11648/j.ajrs.20210901.17. 

• Rafaai, N. H., Abdullah, S. A. and Hasan Reza, M. I. (2020) ‘Identifying factors 

and predicting the future land-use change of protected area in the agricultural 

landscape of Malaysian peninsula for conservation planning’, Remote Sensing 

Applications: Society and Environment, 18, p. 100298. doi: 

10.1016/j.rsase.2020.100298. 

• Rahman, N. A. A. S., Ridzuan, M. R., Hidayahtul, N. and Manas, N. B. (2020) 

‘The Aftermathof Unsustainable Urbanisation In South East Asia Countries’, 



Page | 245  
 

International Journal of Humanities Technology and Civilisation, 1(9), pp. 57–

68. 

• Rashid, M. B. and Hossain, S. S. (2018) ‘Statistical downscaling of global 

climate model (GCM) outputs for climate change impact assessment of mean 

temperature of the winter season over Bangladesh’, The Journal of NOAMI, 

35(1–2), pp. 45–58. Available at: 

https://www.researchgate.net/publication/348916418 (Accessed: 1 May 

2022). 

• Ravindran, S. and Rajendra, E. (2020) ‘Green lung under threat’, 

Thestar.Com.My. https://www.thestar.com.my/metro/metro-

news/2020/02/18/green-lung-under-threat. 

• Rawat, J. S. and Kumar, M. (2015) ‘Monitoring land use/cover change using 

remote sensing and GIS techniques: A case study of Hawalbagh block, district 

Almora, Uttarakhand, India’, Egyptian Journal of Remote Sensing and Space 

Science, 18(1), pp. 77–84. doi: 10.1016/j.ejrs.2015.02.002. 

• Rosni, N. A., Noor, N. M. and Abdullah, A. (2016) ‘Managing urbanisation and 

urban sprawl in Malaysia by using remote sensing and GIS applications’, 

Planning Malaysia, 4(Special Issue 4), pp. 17–30. doi: 

10.21837/pmjournal.v14.i4.145. 

• Rumph Frederiksen, R. and Molina-Navarro, E. (2021) ‘The importance of 

subsurface drainage on model performance and water balance in an agricultural 

catchment using SWAT and SWAT-MODFLOW’, Agricultural Water 

Management, 255(May), p. 107058. doi: 10.1016/j.agwat.2021.107058. 

• Saadatkhah, N., Tehrani, M.H., Mansor, S., Khuzaimah, Z., Kassim, A. and 

Saadatkhah R. (2016) ‘Impact assessment of land cover changes on the runoff 

changes on the extreme flood events in the Kelantan River basin’, Arabian 

Journal of Geosciences, 9(687). https://doi.org/10.1007/s12517-016-2716-z. 



Page | 246  
 

• Saadatkhah, N. and Kassim, A. (2017) ‘Land use Changes Impact on extreme 

flood events inthe Hulu Kelang River Basin, Malaysia’, Journal of Geotechnical 

Geology, 13(1), 73–86. 

• Sa’adi, Z., Shahid, S., Ismail, T., Chung, E. S. and Wang, X. J. (2019) ‘Trends 

analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified 

Mann–Kendall test’, Meteorology and Atmospheric Physics, 131(3), pp. 263–

277. doi: 10.1007/s00703-017-0564-3. 

• Saade, J., Atieh, M., Ghanimeh, S. and Golmohammadi, G. (2021) ‘Modeling 

impact of climate change on surface water availability using swat model in a 

semi-arid basin: Case of el kalb river, lebanon’, Hydrology, 8(3). doi: 

10.3390/HYDROLOGY8030134. 

• Salazar, A., Baldi, G., Hirota, M., Syktus, J., & McAlpine, C. (2015) ‘Land use 

and land cover change impacts on the regional climate of non-Amazonian South 

America: A review’, In Global and Planetary Change, 128, pp. 103–119. 

https://doi.org/10.1016/j.gloplacha.2015.02.009. 

• Salmi, T., Maatta, A., Anttila, P., Ruoho-Airola, T. and Amnell, T. (2002) 

Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-

Kendall Test and Sen’s Solpe Estimates the Excel Template Application 

MAKESENS, Finnish Meteorological Institute, Air Quality Research. 

• Samardžić-petrović, M., Dragićević, S., Bajat, B. and Kovačević, M. (2015) 

‘Exploring the Decision Tree Method for Modelling Urban Land Use Change’, 

GEOMATICA, 69(3). doi: dx.doi.org/10.5623/cig2015-305. 

• Samardžić‑Petrović, M., Dragićević, S., Kovačević, M. and Bajat, B. (2016) 

‘Modeling Urban Land Use Changes Using Support Vector Machines’, 

Transactions in GIS, 20(5), pp. 718–734. doi: 10.1111/TGIS.12174. 

• Samat, N., Mahamud, M. A., Tan, M. L., Tilaki, M. J. M. and Tew, Y. L. (2020) 

‘Modelling land cover changes in peri-urban areas: A case study of george town 



Page | 247  
 

conurbation, malaysia’, Land, 9(10), pp. 1–16. doi: 10.3390/land9100373. 

• Samsuri, N., Abu Bakar, R. and Unjah, T. (2018). ‘Flash Flood Impact in Kuala 

Lumpur – Approach Review and Way Forward’, International Journal of the 

Malay World and Civilisation, 6(1), pp. 69 - 76. doi.org/10.17576/jatma-2018-

06SI1-10. 

• Sanderson, M., Arbuthnott, K., Kovats, S., Hajat, S. and Falloon, P. (2017) ‘The 

use of climate information to estimate future mortality from high ambient 

temperature: A systematic literature review’, PLoS ONE. Public Library of 

Science. doi: 10.1371/journal.pone.0180369. 

• Sani, S. (1972) ‘Some aspects of urban micro-climate in Kuala Lumpur West 

Malaysia’, Akademika, 1, pp. 85–92. Available at: 

https://ejournal.ukm.my/akademika/article/view/410 (Accessed: 15 July 

2021). 

• Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R. and 

Hauck, L. M. (2001) ‘Validation of the SWAT model on a large river basin with 

point and nonpoint sources’, Journal of the American Water Resources 

Association, 37(5), pp. 1169–1188. doi: 10.1111/j.1752-

1688.2001.tb03630.x. 

• Schmid, P. E. and Niyogi, D. (2017) ‘Modeling urban precipitation modification 

by spatially heterogeneous aerosols’, Journal of Applied Meteorology and 

Climatology, 56(8), pp. 2141–2153. doi: 10.1175/JAMC-D-16-0320.1. 

• Seino, N., Aoyagi, T. and Tsuguti, H. (2018) ‘Numerical simulation of urban 

impact on precipitation in Tokyo: How does urban temperature rise affect 

precipitation?’, Urban Climate, 23, pp. 8–35. doi: 

10.1016/j.uclim.2016.11.007. 

• Sen, P. K. (1968) ‘Estimates of the Regression Coefficient Based on Kendall’s 

Tau’, Journal of the American Statistical Association, 63(324), pp. 1379–1389. 



Page | 248  
 

doi: 10.1080/01621459.1968.10480934. 

• Shadeed, S. and Almasri, M. (2010) ‘Application of GIS-based SCS-CN method 

in’, Water Science and Engineering, 3(1), pp. 1–13. doi: 10.3882/j.issn.1674-

2370.2010.01.001. 

• Shaharuddin, A., Noorazuan, M. H., Takeuchi, W. and Noraziah, A. (2014) ‘The 

effects of Urban Heat Islands on Human Comfort: A case of Klang Valley 

Malaysia’, Global Journal on Advances Pure and Applied Sciences, 2, pp. 1–8. 

Available at: http://archives.un-pub.eu/index.php/paas/article/view/3099 

(Accessed: 15 July 2021). 

• Shawul, A. A. and Chakma, S. (2020) ‘Trend of extreme precipitation indices 

and analysis of long-term climate variability in the Upper Awash basin, 

Ethiopia’, Theoretical and Applied Climatology, 140(1–2), pp. 635–652. doi: 

10.1007/s00704-020-03112-8. 

• Shepherd, J. M. (2005) ‘A review of current investigations of urban-induced 

rainfall and recommendations for the future’, Earth Interactions, 9(12). doi: 

10.1175/EI156.1. 

• Shi, Z. H., Chen, L. D., Fang, N. F., Qin, D. F. and Cai, C. F. (2009) ‘Research 

on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the 

Three Gorges Area, China’, Catena, 77(1), pp. 1–7. doi: 

10.1016/j.catena.2008.11.006. 

• Shiferaw, H., Gebremedhin, A., Gebretsadkan, T. and Zenebe, A. (2018) 

‘Modelling hydrological response under climate change scenarios using SWAT 

model: the case of Ilala watershed, Northern Ethiopia’, Modeling Earth Systems 

and Environment, 4(1), pp. 437–449. doi: 10.1007/s40808-018-0439-8. 

• Singh, V. and Qin, X. (2020) ‘Study of rainfall variabilities in Southeast Asia 

using long-term gridded rainfall and its substantiation through global climate 

indices’, Journal of Hydrology, 585(October 2019). doi: 



Page | 249  
 

10.1016/j.jhydrol.2019.124320. 

• Sinha, R. K. and Eldho, T. I. (2018) ‘Effects of historical and projected land 

use/cover change on runoff and sediment yield in the Netravati River basin, 

Western Ghats, India’, Environmental Earth Sciences, 77(3), 1–19. 

https://doi.org/10.1007/s12665-018-7317-6. 

• Sitterson, J., Knightes, C., Parmar, R., Wolfe, K., Muche, M. and Avant, B. 

(2017b) ‘An Overview of Rainfall-Runoff Model Types An Overview of Rainfall-

Runoff Model Types’, United States Environmental Protection Agency, pp. 0–

29. Available at: www.epa.gov/research (Accessed: 11 April 2022). 

• Sleeter, B. M., Loveland, T. R., Domke, G. M., Herold, N., Wickham, J. and 

Wood, N. J. (2018) Land Cover and Land Use Change. Impacts, Risks, and 

Adaptation in the United States: The Fourth National Climate Assessment, 

Volume II. Washington, DC. doi: 10.7930/NCA4.2018.CH5. 

• Sobrino, J. A., Jiménez-Muñoz, J. C. and Paolini, L. (2004) ‘Land surface 

temperature retrieval from LANDSAT TM 5’, Remote Sensing of Environment, 

90(4), pp. 434–440. doi: 10.1016/j.rse.2004.02.003. 

• Soesbergen, A. van (2016) ‘a Review of Land’, Available at: https://www.unep-

wcmc.org/system/comfy/cms/files/files/000/000/802/original/Land_Use_Cha

nge_Models_2016_WEB.pdf. 

• Solomon, N., Pabi, O., Annang, T., Asante, I. K. and Birhane, E. (2018) ‘The 

effects of land cover change on carbon stock dynamics in a dry Afromontane 

forest in northern Ethiopia’, Carbon Balance and Management, 13(1), p. 14. 

doi: 10.1186/s13021-018-0103-7. 

• Son, N. T., Chen, C. F. and Chen, C. R. (2020) ‘Urban expansion and its impacts 

on local temperature in San Salvador, El Salvador’, Urban Climate, 32, p. 

100617. doi: 10.1016/j.uclim.2020.100617. 

• Soulis, K. X. and Valiantzas, J. D. (2012) ‘SCS-CN parameter determination 



Page | 250  
 

using rainfall-runoff data in heterogeneous watersheds-the two-CN system 

approach’, Hydrology and Earth System Sciences, 16(3), pp. 1001–1015. doi: 

10.5194/hess-16-1001-2012. 

• Srinivasan, M. S., Gérard-Marchant, P., Veith, T. L., Gburek, W. J. and 

Steenhuis, T. S. (2005) ‘Watershed scale modeling of critical source areas of 

runoff generation and phosphorus transport’, Journal of the American Water 

Resources Association, 41(2), pp. 361–377. doi: 10.1111/j.1752-

1688.2005.tb03741.x. 

• Sultana, S. and Satyanarayana, A. N. V. (2020) ‘Assessment of urbanisation 

and urban heat island intensities using landsat imageries during 2000 – 2018 

over a sub-tropical Indian City’, Sustainable Cities and Society, 52, p. 101846. 

doi: 10.1016/j.scs.2019.101846. 

• Sun, L., Wei, J., Duan, D. H., Guo, Y. M., Yang, D. X., Jia, C., & Mi, X. T. (2016) 

‘Impact of Land-Use and Land-Cover Change on urban air quality in 

representative cities of China’, Journal of Atmospheric and Solar-Terrestrial 

Physics, 142, pp. 43–54. https://doi.org/10.1016/j.jastp.2016.02.022. 

• Syahmi Armain, M. Z., Hassan, Z., Zainol, M. R. R. M. A., Harun, S., 

Kamarudzaman, A. N. and Makhtar, S. M. Z. (2021) ‘Analysis impact of climate 

change on hydrological trend in Kelantan River Basin using HEC-HMS coupled 

with SDSM’, in 5th International Conference on Water Resources. Johor Bahru. 

Available at: 

https://www.researchgate.net/publication/356617308_Analysis_impact_of_cli

mate_change_on_hydrological_trend_in_Kelantan_River_Basin_using_HEC-

HMS_coupled_with_SDSM (Accessed: 23 May 2022). 

• Tabari, H. (2020) ‘Climate change impact on flood and extreme precipitation 

increases with water availability’, Scientific Reports, 10(1), pp. 1–10. doi: 

10.1038/s41598-020-70816-2. 



Page | 251  
 

• Tamm, O., Maasikamäe, S., Padari, A. and Tamm, T. (2018) ‘Modelling the 

effects of land use and climate change on the water resources in the eastern 

Baltic Sea region using the SWAT model’, Catena, 167(April), pp. 78–89. doi: 

10.1016/j.catena.2018.04.029. 

• Tan, M. L., Ibrahim, A. L., Yusop, Z., Duan, Z. and Ling, L. (2015) ‘Impacts of 

land-use and climate variability on hydrological components in the Johor River 

basin, Malaysia’, Hydrological Sciences Journal, 60(5), pp. 873–889. doi: 

10.1080/02626667.2014.967246. 

• Tan, M. L., Gassman, P. W., Srinivasan, R., Arnold, J. G. and Yang, X. Y. (2019) 

‘A review of SWAT studies in Southeast Asia: Applications, challenges and 

future directions’, Water (Switzerland). MDPI AG. doi: 10.3390/w11050914. 

• Tan, M. L., Juneng, L., Tangang, F. T., Chan, N. W. and Ngai, S. T. (2019) 

‘Future hydro-meteorological drought of the Johor River Basin, Malaysia, based 

on CORDEX-SEA projections’, Hydrological Sciences Journal, 64(8), pp. 921–

933. doi: 10.1080/02626667.2019.1612901. 

• Tang, K. H. D. (2019) ‘Climate change in Malaysia: Trends, contributors, 

impacts, mitigation and adaptations’, Science of the Total Environment. 

Elsevier, pp. 1858–1871. doi: 10.1016/j.scitotenv.2018.09.316. 

• Tölle, M. H., Breil, M., Radtke, K. and Panitz, H.-J. (2018) ‘Sensitivity of 

European Temperature to Albedo Parameterization in the Regional Climate 

Model COSMO-CLM Linked to Extreme Land Use Changes’, Frontiers in 

Environmental Science, 6(123), pp. 1–15. doi: 10.3389/FENVS.2018.00123. 

• Trlica, A., Hutyra, L. R., Schaaf, C. L., Erb, A. and Wang, J. A. (2017) ‘Albedo, 

Land Cover, and Daytime Surface Temperature Variation Across an Urbanised 

Landscape’, Earth’s Future, 5(11), pp. 1084–1101. doi: 

10.1002/2017EF000569. 

• Trzaska, S. and Schnarr, E. (2014) A review of downscaling methods for climate 



Page | 252  
 

change projections. Burlington, Vermont. 

• Tuo, Y., Duan, Z., Disse, M. and Chiogna, G. (2016) ‘Evaluation of precipitation 

input for SWAT modeling in Alpine catchment: A case study in the Adige river 

basin (Italy)’, Science of the Total Environment, 573, pp. 66–82. doi: 

10.1016/j.scitotenv.2016.08.034. 

• Ullah, S., Noman, M., Rahimi, M., Stanikzai, A. G., Ayub, S., Din, Z. U., Emiliya, 

H., Esmati, S., Zahoor, F. and Khan, S. (2021) ‘A Comprehensive Review of 

Climate Change Impacts on Water Resources: A Global perspective’, IOSR 

Journal of Environmental Science, Toxicology and Food Technology, 15(3), pp. 

43–48. doi: 10.9790/2402-1503034348. 

• Varentsov, M., Wouters, H., Platonov, V. and Konstantinov, P. (2018) 

‘Megacity-induced mesoclimatic effects in the lower atmosphere: A modeling 

study for multiple summers over Moscow, Russia’, Atmosphere, 9(2). doi: 

10.3390/atmos9020050. 

• Vaze, J., Jordan, P., Beecham, R., Frost, A., Summerell, G. and Vaze, J., Jordan, 

P., Beecham, R., Frost, A., Summerell, G. (2012) ‘Guidelines for rainfall-runoff 

modelling Towards best practice model application’, eWater Cooperative 

Research Center. 

• Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V. and 

Mastura, S. S. A. (2002) ‘Modeling the spatial dynamics of regional land use: 

The CLUE-S model’, Environmental Management, 30(3), pp. 391–405. doi: 

10.1007/s00267-002-2630-x. 

• van der Esch, S., ten Brink, B., Stehfest, E., Bakkenes, M., Sewell, A., 

Bouwman, A., Meijer, J., Westhoek, H. and van den Berg, M. (2017) ‘Exploring 

future changes in land use and land condition and the impacts on food, water, 

climate change and biodiversity: Scenarios for the Global Land Outlook’, Hague. 

• van Liew, M. W., Arnold, J. G. and Garbrecht, J. D. (2003) ‘Hydrologic 



Page | 253  
 

simulation on agricultural watersheds: Choosing between two models’, 

Transactions of the American Society of Agricultural Engineers, 46(6), pp. 

1539–1551. doi: 10.13031/2013.15643. 

• van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, 

K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, 

M., Nakicenovic, N., Smith, S. J. and Rose, S. K. (2011) ‘The representative 

concentration pathways: An overview’, Climatic Change, 109(1), pp. 5–31. doi: 

10.1007/s10584-011-0148-z. 

• Wang, K., Aktas, Y. D., Stocker, J., Carruthers, D., Hunt, J. and Malki-Epshtein, 

L. (2019) ‘Urban heat island modelling of a tropical city: case of Kuala Lumpur’, 

Geoscience Letters, 6(1), pp. 1–11. doi: 10.1186/S40562-019-0134-2. 

• Wang, Y., Liu, Y. and Jin, J. (2018) ‘Contrast effects of vegetation cover change 

on evapotranspiration during a revegetation period in the Poyang Lake Basin, 

China’, Forests, 9(4), p. 217. doi: 10.3390/f9040217. 

• Welde, K., & Gebremariam, B. (2017) ‘Effect of land use land cover dynamics 

on hydrological response of watershed: Case study of Tekeze Dam watershed, 

northern Ethiopia’, International Soil and Water Conservation Research, 5(1), 

pp. 1–16. https://doi.org/10.1016/j.iswcr.2017.03.002. 

• Williams, J. R. (1995) ‘The EPIC Model, Computer Models of Watershed 

Hydrology’, Computer models of watershed hydrology, pp. 909–1000. 

• Winchell, M., Srinivasan, R., Di Luzio, M. and Arnold, J. . (2007) ArcSWAT 

interface for SWAT2005 - User’s Guide. Temple, Texas. 

• Winckler, J., Reick, C. H. and Pongratz, J. (2017) ‘Robust identification of local 

biogeophysical effects of land-cover change in a global climate model’, Journal 

of Climate, 30(3), pp. 1159–1176. doi: 10.1175/JCLI-D-16-0067.1. 

• Winkler, K., Fuchs, R., Rounsevell, M. and Herold, M. (2021) ‘Global land use 

changes are four times greater than previously estimated’, Nature 



Page | 254  
 

Communications, 12(1), pp. 1–10. doi: 10.1038/s41467-021-22702-2. 

• Wong, C. L., Liew, J., Yusop, Z., Ismail, T., Venneker, R. and Uhlenbrook, S. 

(2016) ‘Rainfall characteristics and regionalisation in peninsular malaysia based 

on a high resolution gridded data set’, Water (Switzerland), 8(11). doi: 

10.3390/w8110500. 

• World Bank Group. (2015) ‘East Asia's Changing Urban Landscape : Measuring 

a Decade of Spatial Growth’, Urban Development, Washington, DC, World Bank. 

http://hdl.handle.net/10986/21159. 

• Wu, M., Luo, Y., Chen, F. and Wong, W. K. (2019) ‘Observed link of extreme 

hourly precipitation changes to urbanisation over coastal South China’, Journal 

of Applied Meteorology and Climatology, 58(8), pp. 1799–1819. doi: 

10.1175/JAMC-D-18-0284.1. 

• Wu, Y., Tao, Y., Yang, G., Ou, W., Pueppke, S., Sun, X. and Chen, G. (2019) 

‘Land Use Policy Impact of land use change on multiple ecosystem services in 

the rapidly urbanising Kunshan City of China : Past trajectories and future 

projections’, 85(October 2018), pp. 419–427. doi: 

10.1016/j.landusepol.2019.04.022. 

• Xiao, B., Wang, Q. H., Fan, J., Han, F. P. and Dai, Q. H. (2011) ‘Application of 

the SCS-CN model to runoff estimation in a small watershed with high spatial 

heterogeneity’, Pedosphere, 21(6), pp. 738–749. doi: 10.1016/S1002-

0160(11)60177-X. 

• Yan, J., Gao, S., Xu, M. and Su, F. (2020) ‘Spatial-temporal changes of forests 

and agricultural lands in Malaysia from 1990 to 2017’, Environmental 

Monitoring and Assessment, 192(12). doi: 10.1007/s10661-020-08765-6. 

• Yang, J., Han, X., Huang, J. and Pan, Q. (2003) ‘Effects of land use change on 

carbon storage in terrestrial ecosystem’, Chinese Journal of Applied Ecology, 

14(8), pp. 1385–1390. Available at: 



Page | 255  
 

https://pubmed.ncbi.nlm.nih.gov/14655381/ (Accessed: 17 July 2021). 

• Yang, P., Ren, G. and Yan, P. (2017) ‘Evidence for a strong association of short-

duration intense rainfall with urbanisation in the Beijing urban area’, Journal of 

Climate, 30(15), pp. 5851–5870. doi: 10.1175/JCLI-D-16-0671.1. 

• Yatim, A. N. M., Latif, M. T., Ahamad, F., Khan, M. F., Nadzir, M. S. M. and 

Juneng, L. (2019) ‘Observed Trends in Extreme Temperature over the Klang 

Valley, Malaysia’, Advances in Atmospheric Sciences, 36(12), pp. 1355–1370. 

doi: 10.1007/s00376-019-9075-0. 

• Yu, M., Liu, Y. and Miao, S. (2020) ‘Impact of urbanisation on rainfall of different 

strengths in the Beijing area’, Theoretical and Applied Climatology, 139(3–4), 

pp. 1097–1110. doi: 10.1007/s00704-019-03035-z. 

• Yusuf, Y. A., Pradhan, B. and Idrees, M. O. (2014) ‘Spatio-temporal Assessment 

of Urban Heat Island Effects in Kuala Lumpur Metropolitan City Using Landsat 

Images’, Journal of the Indian Society of Remote Sensing, 42(4), pp. 829–837. 

doi: 10.1007/S12524-013-0342-8. 

• Zang, W., Liu, S., Huang, S., Li, J., Fu, Y., Sun, Y. and Zheng, J. (2019) ‘Impact 

of urbanisation on hydrological processes under different precipitation 

scenarios’, Natural Hazards, 99(3), pp. 1233–1257. doi: 10.1007/s11069-018-

3534-2. 

• Zhan, X. and Huang, M. L. (2004) ‘ArcCN-Runoff: An ArcGIS tool for generating 

curve number and runoff maps’, Environmental Modelling and Software, 

19(10), pp. 875–879. doi: 10.1016/j.envsoft.2004.03.001. 

• Zhang, G., Su, X., Ayantobo, O. O., Feng, K. and Guo, J. (2020) ‘Evaluation of 

open access precipitation and temperature products using SWAT in Shiyang 

river basin , Northwest China’, Preprints, (March). doi: 

10.20944/preprints202003.0294.v1. 

• Zhang, L., Nan, Z., Xu, Y. and Li, S. (2016) ‘Hydrological impacts of land use 



Page | 256  
 

change and climate variability in the headwater region of the Heihe River Basin, 

northwest China’, PLoS ONE, 11(6). doi: 10.1371/journal.pone.0158394. 

• Zhang, Y. and Liang, S. (2018) ‘Impacts of land cover transitions on surface 

temperature in China based on satellite observations’, Environmnetal Research 

Letters, 13(2). doi: 10.1088/1748-9326/aa9e93. 

• Zhong, S., Qian, Y., Zhao, C., Leung, R., Wang, H., Yang, B., Fan, J., Yan, H., 

Yang, X. Q. and Liu, D. (2017) ‘Urbanisation-induced urban heat island and 

aerosol effects on climate extremes in the Yangtze River Delta region of China’, 

Atmospheric Chemistry and Physics, 17(8), pp. 5439–5457. doi: 10.5194/acp-

17-5439-2017. 

• Zhou, S., Wang, K., Yang, S., Li, W., Zhang, Y., Zhang, B., Fu, Y., Liu, X., Run, 

Y., Chubwa, O. G., Zhao, G., Dong, J. and Cui, Y. (2020) ‘Warming effort and 

energy budget difference of various human land use intensity: Case study of 

beijing, China’, Land, 9(9), p. 280. doi: 10.3390/LAND9090280. 

• Zope, P. E., Eldho, T. I. and Jothiprakash, V. (2016) ‘Impacts of land use-land 

cover change and urbanisation on flooding: A case study of Oshiwara River 

Basin in Mumbai, India’, Catena, 145, pp. 142–154. doi: 

10.1016/j.catena.2016.06.009. 

• Zou, M., Niu, J., Kang, S., Li, X. and Lu, H. (2017) ‘The contribution of human 

agricultural activities to increasing evapotranspiration is significantly greater 

than climate change effect over Heihe agricultural region’, Scientific Reports, 

7(1), pp. 1–14. doi: 10.1038/s41598-017-08952-5. 

 



Page | 257  
 

Appendix 

Appendix A – Definition of the ETCCDI indices. 

Indices Name Indices Calculation Definition Unit 

FD Frost days TNij < 0°C Annual count of 
days when TN 
(daily minimum 
temperature) < 
0°C 

Days 

SU Summer days TXij > 25°C Annual count of 
days when TX 
(daily maximum 
temperature) > 
25°C 

Days 

ID Icing days TXij < 0°C Annual count of 
days when TX 
(daily maximum 
temperature) < 
0°C 

Days 

TR Tropical nights TNij > 20°C Annual count of 
days when TN 
(daily minimum 
temperature) > 
20oC 

Days 

GSL Growing season 
length 

TGij > 5°C 
 
TGij < 5°C 

Annual count 
between first span 
of at least 6 days 
with daily mean 
temperature 
TG>5°C and first 
span after July 1st 
(Jan 1st in SH) of 6 
days with TG<5°C. 

Days 

TXx, Warmest day  𝑇𝑋𝑥𝑘𝑗 = 𝑚𝑎𝑥(𝑇𝑋𝑥𝑘𝑗) 
Monthly 
maximum value of 
daily maximum 
temperature 

°C 



Page | 258  
 

TNx Warmest night  𝑇𝑁𝑥𝑘𝑗 = 𝑚𝑎𝑥(𝑇𝑁𝑥𝑘𝑗) 
Monthly 
maximum value of 
daily minimum 
temperature 

°C 

TXn Coolest day  𝑇𝑋𝑛𝑘𝑗 
= 𝑚𝑖𝑛(𝑇𝑋𝑛𝑘𝑗) Monthly minimum 

value of daily 
maximum 
temperature 

°C 

TNn Coolest night  𝑇𝑁𝑛𝑘𝑗 
= 𝑚𝑖𝑛(𝑇𝑁𝑛𝑘𝑗) Monthly minimum 

value of daily 
minimum 
temperature 

°C 

TN10p Cold nights TNij < TNin10 Percentage of 
days when TN < 
10th percentile 

% 
days 

TX10p Cold daytimes TXij < TXin10 Percentage of 
days when TX < 
10th percentile 

% 
days 

TN90p Warm nights TNij > TNin90 Percentage of 
days when TN > 
90th percentile 

% 
days 

TX90p Warm daytime TXij > TXin90 Percentage of 
days when TX > 
90th percentile 

% 
days 

WSDI Warm spell duration 
index 

TXij > TXin90 Annual count of 
days with at least 
6 consecutive 
days when TX > 
90th percentile 

days 

CSDI Cold spell duration 
index 

TNij < TNin10 Annual count of 
days with at least 
6 consecutive 
days when TN < 
10th percentile 

days 
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DTR Daily temperature 
range 𝐷𝑇𝑅𝑗 =

∑ (𝑇𝑥𝑖𝑗 − 𝑇𝑛𝑖𝑗)
𝐼
𝑖=1

𝐼
 

 

Monthly mean 
difference 
between TX and 
TN 

°C 

Rx1day Monthly maximum 
one-day precipitation 

Rx1dayj = max (RRij) - mm 

Rx5day Monthly maximum 
consecutive 5-day 
precipitation 

Rx5dayj = max (RRkj) - mm 

SDII Simple daily intensity 
index 𝑆𝐷𝐼𝐼𝑗 =

∑ 𝑅𝑅𝑤𝑗
𝑊
𝑊=1

𝑊
 

 

Annual mean 
rainfall when 
PRCP ≥ 1 mm 

Mm/
day 

R10mm Number of low to 
rainfall days 

𝑅𝑅𝑖𝑗 ≥ 10 Annual count of 
days when PRCP 
≥10 mm 

Days 

R20mm Number of moderate 
rainfall days 

RRij ≥ 20mm Annual count of 
days when PRCP≥ 
20mm 

Days 

Rnnmm 
(30mm) 

The number of rainfall 
days for user defined 
threshold. In this case 
≥30mm 

𝑅𝑅𝑖𝑗 ≥ 𝑛𝑛 Annual count of 
days when PRCP 
≥nnmm, nn is user 
defined threshold 

Days 

CDD Maximum length of 
dry spell 

RRij < 1mm Maximum number 
of consecutive 
days with RR < 
1mm 

Days 

CWD Maximum length of 
wet spell 

RRij ≥ 1mm Maximum number 
of consecutive 
days with RR ≥ 
1mm 

Days 
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R95p Very wet days 
𝑅95𝑝𝑗 = ∑ 𝑅𝑅𝑤𝑗

𝑊

𝑊=1

 
Annual total 
rainfall when RR> 
95 percentile 

mm 

R99p Extreme wet days 
𝑅99𝑝𝑗 = ∑ 𝑅𝑅𝑤𝑗

𝑊

𝑊=1

 
Annual total 
rainfall when RR> 
95 percentile 

mm 

PRCPTOT Annual total 
precipitation in wet 
days 

𝑃𝑅𝐶𝑃𝑇𝑂𝑇𝑗 =∑𝑅𝑅𝑖𝑗

𝐼

𝑖=1

 
- mm 

 

Appendix B - LULC Modelling Driver variables 
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Appendix C – The Gains and Losses and Net Gain for The Year 1999-2006 And 

2006-2017 

 



Page | 264  
 

Appendix D – Average Monthly Precipitation 
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