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Abstract

Advances in sequencing technology and the reduction in associated costs have enabled

scientists to obtain highly detailed genomic data on disease-causing pathogens on a

scale never seen before. Combining genomic data with traditional epidemiological

data (e.g. incidence data) provides a unique opportunity to determine the actual

transmission pathway of the pathogen through a population. Despite recent advances,

existing approaches have their own limitations, such as simplifications to the underly-

ing biological processes, arbitrary phenomenological models or approximations to the

likelihood function, to name a few.

We present a novel modelling framework for integrating epidemiological and whole

genome sequence data to overcome the above limitations where (i) we use the matrix

of pairwise horizontal distances between sequences as a summary statistic for the

genetic data and (ii) explicitly derive joint probability distribution of pairwise genetic

distances under the assumption of microevolution mutation models. We develop

bespoke and computationally efficient data-augmentation MCMC algorithms to infer

the transmission network, infection times and unobserved genetic distances from

pathogen sequences at the time of transmission.



ii

The framework presented is general and applicable to a variety of outbreak scenarios.

For example, we explicitly consider a discrete time transmission model for healthcare

associated infections and demonstrate the performance of our framework on simulated

data and also analyse an outbreak of S. aureus in an intensive care unit in Brighton

during 2011-2012. Our approach integrates healthcare worker data at an individual

level and considers the possibility of multiple distinct genetic subtypes.

Finally we also consider integrating genetic data with a continuous time SEIR model

and analyse an outbreak of foot-and-mouth disease in Darlington, a town in the north

west of the UK in 2001. We validated our inferred transmission network with previous

modelling studies and demonstrate that pairwise genetic distance is an informative

summary of the raw sequence data.
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CHAPTER 1

Introduction

1.1 Motivation

In the past decade, advances in genomic sequencing technology have provided scientists

with an abundance of detailed and high dimensional data on a scale never seen

before. These developments allow researchers to collect and process sequence data at

unprecedented levels of resolution, at affordable prices and turnaround times (Gaiarsa

et al., 2015). Whole-genome sequencing (WGS) has become an essential tool for

public health surveillance and molecular epidemiology by unveiling the transmission

dynamics of infection and microbial resistance allowing for effective and targetted

interventions (Revez et al., 2017).

Not only does sequence data inform individual level pathogen phenotypic charac-

teristics such as virulence and vaccine resistance (Neher and Bedford, 2018); there

is also the opportunity to perform microbial source attribution, i.e. determining
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the transmission pathway of the pathogen through the population (Cottam et al.,

2008). Isolates with high genetic similarity are likely to be closely related, as such

this provides us with a starting point to develop models that readily incorporate the

wealth of WGS data (Vasylyeva et al., 2016).

Integrating genetic data with traditional epidemiological data may provide greater

insight into probable transmission links, exploiting the idea that high genetic simi-

larity between isolates is likely indicative of a closer link in the transmission chain

(Klinkenberg et al., 2019). Reconstruction of transmission trees provides answers to

questions such as ‘who infected whom and when?’, and consequently can inform deci-

sion making regarding intervention strategies, such as vaccination programmes, deep

cleaning procedures, treatment programs and quarantine measures (e.g. Chapman

et al. (2020)).

Furthermore, the genetic diversity of sampled isolates allows researchers and clinicians

to identify unexpected modes of transmission (Snitkin et al., 2012) and distinguish

between within-hospital transmission and imported cases from the community. For

healthcare associated infections (HCAIs), identification of clusters early in an outbreak

allows the use of infection prevention and control (IPC) measures to minimize

pathogen transmission and ensure adequate care and patient safety (Mutters et al.,

2017). A detailed picture of emerging outbreaks for HCAIs refined by utilising the

high resolution WGS data has the potential to revolutionize infection control practice

on local, national and international scales (Price et al., 2013).

1.2 Literature review

Traditional analysis of data from outbreaks of infection disease typically involves

host data such as the dates of symptom onset and recovery, age, sex, geographical

location and dates of control measures. These can then be used to infer individual

level parameters, such as the rate of infection, infectious period, risk factors, and
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population level parameters such as the basic reproduction ratio and the effectiveness

of any control measures (Klinkenberg et al., 2019).

The application of molecular techniques to the study of heterogeneous organisms

enhances epidemiological studies by improving our ability to subclassify these organ-

isms into meaningful groups (Foxman, 2001). In the past few decades the accuracy,

speed and cost effectiveness of genetic sequencing tools has improved at an unprece-

dented rate (van Dijk et al., 2018). Through genotyping, a molecular fingerprint

of each pathogen isolate can be generated and compared with others in the same

suspected cluster. Isolates with the same or highly similar genotypes, and linked

by epidemiologic data, are likely to represent related cases of the infectious disease

within an outbreak (Tang et al., 2017).

Epidemiological analysis based on genetic data often contains sequences from a

limited subset of all cases in an outbreak, commonly referred to as a sparsely sampled

outbreak. Conversely, epidemics with most genetic sequences observed are called

densely sampled outbreaks (Klinkenberg et al., 2019).

Frameworks for analysing epidemiological and genetic data can be separated into two

distinct paradigms, phylogenetic based inference which is based on the reconstruction

of ancestries between hypothetical common ancestors and sampled isolates (Jombart

et al., 2010), and non-phylogeny based methods which avoid the use of phylogenies

by constructing transmission trees weighted by functions of genetic distance (Worby

et al., 2016).

The heart of phylogenetic inference relies on the construction of phylogenetic trees. A

phylogenetic tree is a a diagrammatic representation of the evolutionary relationship

between various organisms (Choudhuri, 2014). The external nodes, also referred to

as leaves or clades in the literature, represent the organisms in question, whereas the

internal nodes represent ancestral states or evolutionary events (Nakhleh, 2013).

Although phylogenetic models are useful to describe the spread of pathogens, they do

not aim to directly reconstruct transmission trees. Instead, phylogenetic models can
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be used to infer most recent common ancestors between pairs of isolates, which may

not be suitable for densely sampled outbreaks that contain ancestral and descendant

isolates (Jombart et al., 2010).

1.2.1 Phylogenetic based inference

Cottam et al. (2006, 2008) provide some of the earliest attempts to integrate epidemi-

ological and genetic data to infer transmission pathways, specifically for the 2001

foot-and-mouth (FMD) outbreak in the UK. The authors construct a phylogenetic

tree from sequence data using maximum parsimony and then enumerate all possible

transmission trees consistent with the phylogenetic tree. Maximum parsimony seeks

to construct a tree that exhibits the minimum amount of genetic evolution (Edwards,

2009). The transmission model consists of a discrete form of the gamma distribution

to describe the incubation period and a discrete form of the beta distribution to

describe the probability a particular farm is infected. The authors then compute the

transmission likelihood for the epidemiological data for each plausible transmission

tree and they found four trees which account for more than 95% of the total likelihood.

This approach does not integrate sequence data directly in the model, rather the

sequence data is used to narrow down plausible transmission trees.

In Hall et al. (2015) the authors assume a mutation model for nucleotide evolution, a

coalescent process to model within-host diversity and an SEIR model with a spatial

kernel to describe the transmission process, however making the assumption of a

single individual initially infectious and complete observational data. A Markov

chain Monte Carlo (MCMC) algorithm is used to simultaneously sample both the

transmission tree and phylogeny with a focus on accurate phylogenetic inference.

The model was used to analyse the 2003 H7N7 avian influenza outbreak in the

Netherlands.

Klinkenberg et al. (2017) provides a MCMC algorithm to infer within a Bayesian

framework the transmission tree and phylogeny simultaneously, using ideas that
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were first described by Ypma et al. (2013). The authors explicitly model the within-

host dynamics using a coalescent process, and the mutation using the Jukes Cantor

model of evolution. The limitation of this approach is the assumption of complete

observation of cases, which is unlikely for most outbreaks.

1.2.2 Non-phylogeny based methods

Morelli et al. (2012) provides an integration of genetic and spatio-temporal epidemio-

logical data in a Bayesian framework which is able to reconstruct transmission trees

and estimate infection dates. The authors’ describe a stochastic SEIR transmis-

sion model with gamma distributed exposure and infectious periods with a spatial

transmission kernel. To model the genetic data the authors consider the probability

distribution of the number of substitutions (mutations) between sequences and their

ancestor under the assumption of the Jukes Cantor microevolution model. The

conditional distribution of the observed sequences depends explicitly depends on

sequences transmitted at the time of infection, which are often unobserved.

Consequently the authors consider a pseudo-distribution of observed sequences which

calculates the likelihood of ancestor genetic sequences assuming that sequence ancestor

pairs are independent of one another. The main drawbacks are that the model assumes

a single initial infective and only one sequence per host. This method is applied to

the 2007 and a subset of the 2001 foot-and-mouth outbreaks in the United Kingdom.

Mollentze et al. (2014) is an extension of the work in Morelli et al. (2012) which allows

for multiple introductions of the pathogen. The authors’ considered an alternative

genetic microevolution model with the Kimura three-parameter model (Kimura, 1981)

and include a sound post-processing algorithm to detect imported cases from the

genetic data. This method is applied to an outbreak of Rabies in South Africa from

March 2010 to June 2011.

Jombart et al. (2014) describes a fully integrated Bayesian reconstruction of transmis-
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sion trees using pathogen genetic sequences and their collection dates. The authors

use a discrete time Binomial model to describe the epidemiological data and assume

a mutation rate per generation to model the genetic data. Furthermore the model

assumes that mutations take place during the transmission event and only one genetic

sequence per host which therefore may not be suitable for epidemics with multiple

sequences from infected hosts. The authors examine the performance of the model

on simulated data and also provide an analysis to the 2003 outbreak of Severe Acute

Respiratory Syndrome (SARS) in Singapore.

Lau et al. (2015) proposes a stochastic SEIR model with a spatial kernel to model the

epidemic process and a Kimura model to describe the process for genetic evolution.

The authors integrate these components in a Bayesian framework which simultaneously

infers the transmission tree and unobserved infection times and sequences using data

augmentation MCMC techniques. Their model makes the assumption of a single

master sequence to allow multiple introductions of the pathogen, and assumes a single

dominant strain which does not consider the within-host diversity of the pathogen. A

disadvantage to the model lies with needing to keep track of entire genetic sequences,

which may be computationally demanding for large data sets. The authors apply

the algorithm to the 2001 outbreak of foot-and-mouth disease, demonstrating both

agreement with previous findings and also improvements on inference.

Worby et al. (2016) attempts to integrate epidemiological and genetic data by

introducing phenomenological models that calculate the probability of pairwise

genetic distances between isolates (SNPs), rather than entire sequences. The methods

are applied to an outbreak out MRSA in 2011 and unobserved transmission dynamics

are imputed using a data augmentation MCMC scheme. This approach is flexible

and allows for multiple importations of the pathogen and multiple sequences per

host, which is useful for modelling healthcare associated infections. A disadvantage

is that the model assumes that genetic distances between each pair of isolates are

independent, and that the distributions for pairwise genetic data are arbitrary.

Cassidy et al. (2020) builds upon the work of Worby et al. (2016) by relaxing the
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assumption of independent genetic distances and proposes flexible models to calculate

the probability of pairwise genetic distances. The models assume that the number of

mutations between sequences of length N over a fixed time period follows a Binomial

distribution, which is then approximated using Poisson distributions. The author

addresses the issue of independence by considering the relatedness of host sequences

in the transmission chain and applies these models to data from a MRSA outbreak

in Thailand and the avian influenza in the Netherlands.

We review the models of Cassidy (2019) and Worby et al. (2016) in more detail in

Section 2.3 and a more comprehensive and systematic review of existing methods to

integrate genomic and epidemiological data can be found in Duault et al. (2022).

The aim of this thesis is build upon the models introduced in Worby et al. (2016) and

Cassidy (2019). The main benefit of these approaches, compared to the others, is that

we wish to work with the pairwise genetic distances rather than the full sequences

themselves. We seek to develop a framework similar to that in Lau et al. (2015)

where we explicitly model the genetic evolutionary process, however we wish to use

(and impute) genetic distances, rather than whole sequences.

Another important feature of these non-phylogeny based models is that these ap-

proaches have generative models for the epidemiological and genetic processes. This

is an important feature as it allows one to simulate forward in time which can be

useful many reasons, e.g. model assessment using posterior predictive distributions.

This is advantageous to phylogeny based models that work backwards in time by

inferring past events.

1.3 Epidemic modelling

Mathematical models for infectious disease have proven essential for understanding

the transmission dynamics of pathogens in a population. Models can be useful at the

theoretical level to understand how the system behaves for certain parameter values
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and initial conditions, for example the scenarios at which epidemics ‘take off’ or final

size estimation. However, relating these models to real world data allows researchers

to investigate a variety of practical situations, for example evaluation of scientific

hypotheses, estimation of biological parameters and what-if scenarios (O’Neill, 2010).

Firstly, evaluation of scientific hypotheses usually involves some kind of model

comparison and has been used to assess the role of isolation in transmission of MRSA

(Kypraios et al., 2010), evaluate transmission routes for the plague (Whittles and

Didelot, 2016) and analysing the impact of control measures for SARS (Wallinga,

2004).

Secondly, estimation is primarily concerned with inferring model parameters that

may be of biological interest. Examples include estimating quantities that relate to

the latent and infectious periods for Ebola (Lekone and Finkenstädt, 2006) and the

basic reproduction number for smallpox (Clancy and O’Neill, 2008).

Finally, prediction and what-if analyses are useful to evaluate model predictions when

comparing control or intervention strategies. Previous examples in the literature

include evaluating the impact of different intervention strategies for lymphatic filariasis

(Touloupou et al., 2022), analysing retrospective control strategies for foot-and-

mouth disease (Keeling et al., 2001) and assessing the impact of non-pharmaceutical

interventions for COVID-19 (Ferguson et al., 2020), to name a few. The latter of

the three has been largely been attributed as one of the factors which influenced

lockdown measures introduced in the UK during the COVID-19 pandemic.

Epidemic models can be divided into two distinct groups, stochastic and deterministic

models. Deterministic models usually involve a system of differential equations

which describe how individuals in different states evolve through time, e.g. the

original SIR model described in Kermack and McKendrick (1927). On the other hand,

stochastic models involve probabilistic arguments for how individuals change state (e.g.

susceptible to infectious). In this thesis we focus on stochastic epidemic models, and

to our knowledge there are no attempts in the literature to combine epidemiological
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and genetic data using deterministic models. For a more comprehensive overview of

the mathematical theory of infectious diseases we direct the reader to Bailey (1975).

1.4 Whole genome sequence data

The genome is a store of biological information that consists of DNA, a polymer

comprised of two helical polynucleotide chains each coiled round the same axis

(Watson and Crick, 1953). Each DNA strand is a string of four different units called

nucleotide bases and are adenine (A), guanine (G), cytosine (C) and thymine (T).

Furthermore the two DNA strands are joined by bonds between nucleotide bases

known as base pairs. Each nucleotide may bond with one other base, e.g. A may

only bond with T and C may only bond with G, therefore we only need to observe

one strand as the other is uniquely determined.

Whole-genome sequencing is a tool to analyse the entire genome which provide a unique

snapshot of a particular organism at a point in time. A whole genome sequence is the

chain of nucleotides of length N which may be represented as X = (B1, B2, ..., BN)

where Bi ∈ {A,G,C, T} denotes the nucleotide base in the ith position. Genome

length varies by species, for example the average size of S. aureus is 280kb (Shukla

et al., 2012) and the average size of foot-and-mouth disease virus is 8.5kb, where 1kb

is equal to 1000 base pairs (Domingo et al., 2002).

Genomes are dynamic entities that change over time as a result of small-scale sequences

alterations caused by mutation (Brown, 2018, Chapter 16). Mutations are caused by

physical changes to the genetic material and can occur in a variety of ways, however

we focus on single nucleotide polymorphisms (SNPs) which are substitutions of a

single nucleotide at a specific position, also known as point mutations. Typically

mutations arise as a result of errors in the DNA replication process or from mutagens

(e.g. radiation).

Furthermore we can classify the type of mutation in two groups: transitions and
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transversions. In molecular biology, nucleotide bases can be classified as pyrimidines

(T,C) and purines (A,G). A transition is a substitution between the two pyrimidines

(T ↔ C) or the two purines (A↔ G), and a transversion is a substitution between a

pyrimidine and a purine (T,C ↔ A,G).

Furthermore transitions occur more often than transversions (Lyons and Lauring,

2017), which should be taken into account when developing a realistic model that is

motivated by the underlying biological processes. Genetic distance between isolates

can be measured by counting the number of horizontal differences, that is the number

of SNPs between the two sequences. Sequence pairs with small genetic distances

indicate that they have many genes in common and are biologically related where

they have both descended from a common ancestral species (Higgs and Derrida,

1992).

1.5 Continuous time Markov chains

The mutation models that are considered in this thesis use continuous time Markov

chains to describe nucleotide substitution, therefore we briefly present the required

preliminaries. Let {X(t), t ≥ 0} be a continuous time stochastic process on a discrete

state space S.

Definition 1.5.1. The process {X(t) : t ≥ 0} is said to be a homogeneous continuous

time Markov chain on the discrete state space S with Q−matrix Q = (qij)i,j∈S if for

all t, h ≥ 0, 0 ≤ s < t and i, j, k ∈ S,

1. Pr(X(t+ s) = j|X(t) = i,X(s) = k) = Pr(X(t+ s) = j|X(t) = i)

2. Pr(X(t+ s) = j|X(t) = i) = Pr(X(s) = j|X(0) = i)

3. Pr(X(t+ s) = j|X(t) = i) =

qijs+ o(s) i ̸= j

1 + qiis+ o(s) i = j

.
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Note that (1) is the Markov property, (2) is time-homogeneity and (3) defines qij as

the rate of jumping from i to j.

A consequence of the Markov property is that the waiting time until transition is

exponentially distributed. If X(t) = i then the chain remains in state i for some time

Ti ∼ Exp(−qii) and then transitions to state j ̸= i with probability −qij/qii.

Let pij(t) = Pr(X(t+ s) = j|X(s) = 0) denote the probability that the process is in

state i and will be in state j after t time units. These quantities are the transition

probabilities of the CTMC define the transition matrix P (t) = (pi,j(t))i,j∈S. From

the Chapman-Kolmogorov equations we have

pi,j(t+ s) =
∑
k∈S

pi,k(t)pk,j(u),

which can be used to derive analytical transition probabilities for simple processes.

1.6 Bayesian inference

Often when relating epidemic models to outbreaks, the data are only partially observed

in the sense that we may have information on the time of symptom onset, however

we do not know the precise time of infection. As a consequence the likelihood for

many epidemic models may be intractable as it involves integrating over all possible

unobserved times which is typically a difficult task due to the high dimensional nature

of the problem.

A natural approach to overcome the intractability of the likelihood is to use data

imputation methods where the unknown quantities are treated as model parameters.

Inference may then be performed from a classical viewpoint through the use of the

EM algorithm (Becker, 1993) or from a Bayesian perspective using Markov chain

Monte Carlo (MCMC) methods (O’Neill and Roberts, 1999). However, in O’Neill

(2002) the author argues that the Bayesian approach provides information concerning

parameter uncertainty that is otherwise difficult to obtain through the classical
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approach. Furthermore evaluation of the expectation step for the EM algorithm may

be complicated compared to the MCMC methods.

For these reasons we shall use the Bayesian approach throughout this thesis and

now we describe the fundamentals of Bayesian inference and computation. Let x

denote the data that we assume are generated by some process parametrised by θ.

In the classical framework, it is assumed that the parameters θ are fixed non-random

quantities that we wish to infer, primarily through the likelihood function L(θ) which

more precisely is the density of the data conditional on the model parameters, f(x|θ),

regarded as a function of θ alone.

On the other hand, the Bayesian approach now considers the parameters θ to be

random quantities and is assigned a probability distribution with density π(θ) known

as the prior distribution. Then, according to Bayes’ theorem we obtain

π(θ|x) = f(x|θ)π(θ)
π(x)

, (1.1)

where π(x) is the marginal likelihood and π(θ|x) is the posterior distribution which

is the main object of interest. We may then estimate quantities such as the mean,

median and credible intervals from the posterior distribution.

The main challenge with the Bayesian approach is that the marginal likelihood,

or normalising constant, in Equation 1.1 is often difficult to compute analytically.

Fortunately it is possible to simulate from a target density that is only known up to

a proportionality using Markov chain Monte Carlo techniques.

1.6.1 Markov chain Monte Carlo

There is an vast and extensive literature of MCMC methods and applications and

thus we do not go into great detail here, instead we give an overview and briefly

outline two important methods, however the reader should consult Gilks (1998);

Robert and Changye (2020) and Brooks et al. (2011) for a more broad overview.
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Markov chain Monte Carlo (MCMC) methods are a class of algorithms which aim to

generate a sequence of samples X1, ..., Xn from a target density π(x). More precisely,

the Markov chain is constructed in such a way that the equilibrium distribution is

proportion to the target density. An important feature is that we only need know

the target density up to a proportionality, which is useful for the Bayesian approach

if the marginal likelihood π(X) in Equation 1.1 is difficult to compute.

For the Bayesian approach the target density is the posterior distribution π(θ|X).

We now briefly outline the two simple approaches which are used throughout this

thesis, that is the Metropolis-Hastings algorithm (Hastings, 1970) and Gibbs sampler

(Geman and Geman, 1984).

1.6.1.1 Metropolis-Hastings algorithm

Suppose we wish to draw approximate samples from a target density π(x), which for

our purposes is the posterior distribution and the general procedure can be found in

Algorithm 1. The main idea is to propose a new value y from a distribution q and

then accept the proposal with probability min
(
1, π(y)q(y,x)

π(x)q(x,y)

)
.

The algorithm is general in the sense that there is no restriction on the choice of

proposal distribution q, however a popular choice are proposal distributions of the

form

q(x, y) = q(|x− y|),

i.e. the proposal is symmetric in x and y. If the proposal distribution is symmetric,

then the acceptance probability simplifies to min
(
1, π(y)

π(x)

)
since q(x, y) = q(y, x) and

note that this quantity depends only on the ratio of the density evaluated at candidate

and current values.

In order to verify that the algorithm is sampling from the target density, it is

sufficient to verify that the chain produced by the algorithm does have the stationary

distribution π(x). In other words, we require π and Q to satisfy the detailed balance
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equations

π(x)Q(x, y) = π(y)Q(y, x) ∀x, y,

where Q(x, y) is the transition kernel of the chain and is written as

Q(x, y) =

q(x, y)α(x, y) x ̸= y∫
(1− α(x, y))q(x, y)dy x = y.

Algorithm 1 Structure of the Metropolis-Hastings algorithm

1: Initialise the chain with initial values X0 = x0

2: Suppose at time t we have Xt = x. Propose a candidate value y from a proposal

distribution q(x, y).

3: Calculate the Metropolis-Hastings acceptance probability written as

α(x, y) = min

(
1,
π(y)q(y, x)

π(x)q(x, y)

)
4: Accept the move with probability α(x, y), that is we set Xt+1 = y. If the move is

rejected we set Xt+1 = x.

5: Repeat steps 2-4.

1.6.1.2 Gibbs sampler

The Gibbs sampler can be viewed as a special case of the Metropolis-Hastings

algorithm which utilises the full conditional distributions to simulate values that are

always accepted, that is the Metropolis-Hastings acceptance probability is always

one.

Suppose we wish to sample from π(x ) where x = (x1, ..., xd) is a d-dimensional vector.

We sample from the full-conditional distributions which is defined by π(xi|x−(i))

where x−(i) = (x1, ..., xi−1, xi+1, ..., xd) is x with the ith element removed.

Note that we can write the full-conditional distribution as

π(xi|x (i)) =
π(xi,x−(i))

π(x−(i))
=

π(x )∫
π(x )dxi

,
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from which it is clear that π(xi|x−(i)) ∝ π(x ), that is the full conditional distribution

is proportional to the target density. We repeat this process for each of the available

full-conditional distributions that are known and can be sampled from. If the full

conditional distribution is unknown, then we may update the parameter using other

techniques such as a Metropolis-Hastings step. The general procedure for the Gibbs

sampler can be found in Algorithm 2.

Algorithm 2 Structure of the Metropolis-Hastings

1: Initialise the chain with initial values X 0 = x 0

2: Given that we have x (j) = (x
(j)
1 , ..., x

(j)
d ), we sample x (j+1) as follows:

• Sample x
(j+1)
1 from π(x1|x (j)

−(1))

• Sample x
(j+1)
2 from π(x2|x (j)

−(2))

...

• Sample x
(j+1)
d from π(xd|x (j)

−(d))

3: Now we have x (j+1) = (x
(j+1)
1 , ..., x

(j+1)
d ), set j = j + 1 and repeat step 2.

1.6.2 Data augmentation

As discussed in Section 1.6, real world data are often partially observed and in

most cases the likelihood is intractable, consequently we resort to data augmentation

methods. The first examples of data augmentation MCMC techniques for analysis of

outbreak data first appeared in Gibson and Renshaw (1998) and O’Neill and Roberts

(1999) and for a more broader overview of data augmentation see van Dyk and Meng

(2001).

Let x denote the observed data and θ the model parameters, and π(x|θ) the likelihood

that is intractable. The main idea is to introduce missing data z such that the

likelihood π(x, z|θ) is tractable and these quantities are related by

π(x|θ) =
∫
z

π(x, z|θ)dz.
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In the Bayesian framework we augment the parameter space to include the unobserved

quantities z and the resulting posterior is π(θ, z|x) ∝ π(x, z|θ)π(θ, z). We wish to

develop MCMC algorithms to sample both the model parameters θ and missing data z.

Often direct sampling of the unobserved data z is problematic due to the complicated

nature of the density π(z|x, θ), however we may use standard Metropolis-Hastings

steps to explore the parameter space.

Let q(z∗|z) and q(z|z∗) denote the proposal densities for the forward and reverse moves

for the unobserved data where z∗ is the proposed value and z is the current state of

the chain. After sampling z∗ from q(z∗|z), this move is accepted with probability

min

(
1,
π(θ, z∗|x)q(z|z∗)
π(θ, z|x)q(z∗|z)

)
.

A key challenge with developing data-augmented MCMC algorithms is designing

efficient proposal distributions that are sophisticated enough to explore the parameter

space but also simple in the sense that the proposed moves get accepted often enough.

This trade off between complexity and efficiency is more art than science however

there are a list of tools available to assess the quality of MCMC outputs which we

describe in the following section.

1.6.3 MCMC diagnostics

Markov chain Monte Carlo (MCMC) algorithms are essential tools in Bayesian statis-

tics for complex high-dimensional problems, however there are several implementation

issues that must be considered, hence it is natural to check whether these algorithms

‘work’. That is, are the samples generated by the algorithm truly representative of the

underlying stationary distribution of the Markov chain (Cowles and Carlin, 1996)?

The two primary areas of interest to assess the performance of MCMC algorithms

are convergence and mixing. The notion of convergence refers to convergence of the

underlying Markov chain to stationarity and convergence of Monte Carlo estimators

to population quantities (Roy, 2020). On the other hand, mixing refers to efficient
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exploration of the parameter space, which is a concern for high-dimensional problems

since conventional MCMC algorithms often scale poorly in problem size and complexity

(Duan et al., 2018).

It is important ensure that the Markov chain we simulate from converges to a

stationary distribution that sufficiently explores the parameter space. There is no

definitive rule or method to assess the convergence of a Markov chain, however we

shall outline some techniques below.

Starting point determination Unless prior knowledge is known about the target

density, the choice of starting point may not be obvious. One option is to choose

various points at random from the parameter space, which in principle can also be

used as a measure of convergence to check visually that the univariate Markov chains

converge to the same posterior mode.

Burn in Often MCMC algorithms take some number of iterations, M say, such

that the underlying Markov chain converges to the stationary distribution which

translates to sampling from the target distribution. Hence we wish to discard the first

M iterations and keep the latter M + 1, ..., N samples which have been simulated

from a stationary Markov chain and therefore the samples are from the distribution

of interest. The first M values is typically known as the burn in period, the choice of

M is not obvious however can be determined by several methods, one of which being

visual inspection of trace plots.

Correlated observations Due to the Markov nature of these methods, consecutive

samples are clearly correlated. A technique to reduce the dependent nature of

observations and autocorrelation is thinning, which aims to store every k sample.

Suppose we have N samples denoted by

θ(1), θ(2), θ(3), ..., θ(N),
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then by thinning the output we end up with N/k observations which correspond to

θ(1), θ(k+1), θ(2k+1), ..., θ(N),

assuming that k divides N . The practice of thinning MCMC outputs has been used

often in the literature, however in Link and Eaton (2011) the authors claim that

thinning is often unnecessary and always inefficient.

Visual Assessment Visual assessment of the Markov chains are usually achieved

by the use of trace plots, which are a time series of the sampler iterations. Trace plots

give a rough idea of the when a distribution reaches stationarity and also indicate

how well the chain is mixing.

Effective sample size Effective sample size (ESS) is a metric that aims to measure

the amount of information loss due to autocorrelation in samples. Given a sample

of N dependent samples, the effective sample size NESS can be considered as the

number of independent samples with the same estimation power (Gamerman and

Lopes, 2006).

Parallel chains and the Gelman-Rubin diagnostic Originally proposed in

Gelman and Rubin (1992), the authors use multiple chains and an analysis of variance

technique to assess whether or not each of the chains has the same distribution. The

method is implemented as follows.

Run J chains in parallel from an overdispersed distribution, i.e. widely different

starting positions, for 2n iterations and discard the first n iterations as a burn in.

For each scalar parameter of interest θi: label the draws from the J chains as ψjk,

j = 1, ..., J and k = 1, ..., n. Then the between-chain variance is defined as:

B

n
=

1

J − 1

J∑
j=1

(ψ̄j· − ψ̄··)
2,
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where

ψ̄j· =
1

n

n∑
k=1

ψjk ψ̄·· =
1

J

J∑
j=1

ψ̄j·

The quantity ψ̄·j is the mean of the jth chain and ψ̄·· is the overall mean. Next we

defined the within-chain variance as:

W =
1

J

J∑
j=1

s2j ,

where

s2j =
1

n− 1

n∑
k=1

(ψjk − ψ̄j·)
2.

Then calculate the weighted average

σ̂2 =
n− 1

n
W +

B

n

and monitor the ratio

R =
σ̂2

W
=
n− 1

n
+

B

nW
≈ 1 +

B

nW
,

which should decrease to 1 upon convergence to the stationary distribution. A general

rule of thumb is to monitor the chains and stop the simulations when each parameter

has R < 1.1 (Gelman et al., 2013).

A multivariate version of the Gelman-Rubin diagnostic was later proposed in Brooks

and Gelman (1998) which is known as the multivariate potential scale factor which

aims to estimate the posterior variance-covariance matrix. All of the above tools can

be readily implemented in the R package coda (Plummer et al., 2006).

1.7 Thesis structure

This thesis is composed of three main contributions to the literature of epidemic

modelling. This chapter aims to provide an overview of the existing approaches for

integrating epidemiological and genetic data and some preliminary work that will be

useful for later in this thesis.
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In Chapter 2 we summarise the models described in Worby et al. (2016) and Cassidy

et al. (2020) and outline how we aim to build upon this work. We then explore some

mutation models used in the literature and consider the joint distribution of pairwise

genetic distances under the assumption of a nucleotide substitution model. We derive

the distributions for sequences of length N = 1 and then extend this to sequences of

arbitrary length by utilising the independence assumption of nucleotides. The main

strategy for deriving these distributions is to start with the pairwise genetic distances

and consider the set of possible sequences that give rise to the distances.

We conclude that inference for the mutation parameters, conditional on an underlying

genetic network, can be performed using the pairwise distance matrix due to sufficiency.

Finally we outline how to relate these models to data, that is how one may construct

the genetic network that is consistent with epidemiological data (i.e. the transmission

network). We also consider a simple model that describes the contribution of genetic

sequences that are of the same type but are unrelated, which is common for situations

where an individual imports the pathogen from the community, such as nosocomial

infections.

In Chapter 3 we provide an application for the models developed in Chapter 2 where

we analyse a data set containing information on transmission of MRSA in a hospital

in Brighton. Motivated by the exploratory analysis we extend the transmission and

genetic model to include (i) integration healthcare worker data at an individual level

and (ii) multiple distinct genetic subtypes.

We develop an MCMC algorithm to sample the model parameters and unobserved

data, that is the transmission tree and unobserved genetic distances. We demonstrate

the performance of the algorithm on simulated data and then provide a detailed

analysis of the Brighton data set.

Next in Chapter 4 we analyse a well studied data set of foot-and-mouth disease

known as the Darlington cluster. This application is an example of integrating the

genetic data in a continuous time framework and assuming that the mutations can
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be described by the Kimura mutation model. We also demonstrate the performance

of the algorithm on simulated data and provide a rigorous analysis of the data set

and compare our inference to existing approaches in the literature.

Finally in Chapter 5 we conclude by summarising our findings and discuss how the

work developed in this thesis contributes to the field of epidemic modelling and

inference. We also discuss the limitations of our approach and directions for future

research.



CHAPTER 2

Models to analyse whole genome sequence data

2.1 Introduction

This chapter aims to develop statistical methods to analyse genetic and epidemiological

data simultaneously. Genome length varies by species, and as such raw sequence

data are often high dimensional. A technique that is commonly used to reduce the

dimensionality is to measure the genetic distance between isolates by counting the

number of horizontal differences of aligned sequences, referred to as single nucleotide

polymorphisms (SNP).

Sequences that are collected during an outbreak may be epidemiologically related,

therefore interest lies in modelling the distribution of SNPs conditional on the

outbreak. We aim to derive a joint distribution of pairwise genetic distances (SNPs)

under the assumption of an underlying mutation model. Mutation models provide a

framework to describe evolution of the genetic sequences by assuming that nucleotide
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bases change over time according to some random process.

We aim to build upon the work of Worby et al. (2016) and Cassidy (2019) and focus on

analysis of genetic data using genetic distance matrices instead of raw sequence data.

The work in Worby et al. (2016) models the genetic distance between pairs of isolates

using arbitrary geometric distributions, and in a similar fashion the work in Cassidy

(2019) uses arbitrary Poisson distributions. Our approach is to assume an underlying

mutation model and derive the joint distribution of the observed pairwise distances,

rather than using arbitrary phenomenological models such as those described later in

Section 2.3.

In this chapter we do not focus on any pathogen in particular and describe the general

methodology to integrate genetic data in any outbreak scenario. In Chapters 3 and 4

we apply the models develop here to an outbreak of methicillin-resistant S. aureus

(MRSA) and foot-and-mouth-disease virus (FMDV) respectively.

This chapter is organised as follows. In Section 2.3 we review the models developed

in Worby et al. (2016) and Cassidy et al. (2020). Next, in Section 2.4 we present

the two simplest nucleotide Markov mutation models. Then, in Sections 2.5 and

2.6 we present some graph theoretic definitions of two important objects of interest,

specifically transmission and genetic networks. Transmission networks are useful for

describing the spread of the pathogen through the population and genetic networks

for describing the evolution of the pathogen.

Next, in Section 2.7 we begin by considering a single nucleotide evolving through

time and derive the probability distribution implied by pairwise genetic distances

assuming that the underlying mutation process can be modelled by the Jukes-Cantor

(Jukes and Cantor, 1969) and Kimura models (Kimura, 1980). Then, we consider the

probability of observing independent and identically distributed distance matrices for

each nucleotide in sequences of arbitrary length.

Next, in Section 2.8 we discuss the assumptions and general procedure for constructing

genetic networks conditional on the transmission network and later in Section 2.9 we
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outline a simple approach to model multiple introductions of the pathogen. Finally in

Section 2.10 we discuss the strengths and limitations of the models and distributions

developed in this chapter.

2.2 Motivation

In this thesis we analyse two data sets, specifically the Brighton data set in Chapter 3

and the Darlington data set in Chapter 4, where both contain information on

traditional epidemiological features such as removal/discharge times, symptom times

and swab testing data. In addition, the data sets are scenarios where pathogenic

genetic information have been collected, that is we have genetic sequences that have

been isolated and sampled from individuals or farms.

Raw sequence data are often high dimensional depending on the type of organism

under consideration. For example, the human genome is approximately 3.2 billion

nucleotides in length (Brown, 2018, Chapter 1), whereas MRSA has been found to

be approximately 2.8 million nucleotides (Shukla et al., 2012) and foot-and-mouth

has been estimated to be 8500 nucleotides (Domingo et al., 2002).

Suppose we have ns ≥ 1 sequences observed that each have been assumed to be

aligned and are of size N , where N is sufficiently large, the genetic data are of

dimension ns ×N which may be computationally intractable (Bang, 2010, Chapter

14). In our analysis we propose to represent the genetic data by the matrix of pairwise

distances which is of dimension ns × ns.

A important feature of the Brighton data set analysed later in Chapter 3 is that

we do not have access to the raw sequence data, as such the genetic data are the

pairwise distances, times of sampling and the individuals that the sequences were

sampled from. As a consequence, we wish to use the matrix of pairwise distances

as a starting point for the analysis, similar to the approaches in Worby et al. (2016)

and Cassidy et al. (2020). More precisely, we aim to derive the joint distribution of
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pairwise genetic distances under the assumption of microevolution mutation models.

Furthermore, many existing approaches for the joint analysis of genetic and epidemio-

logical data (Lau et al. (2015); Morelli et al. (2012); Mollentze et al. (2014), to name

a few) make the assumption of a single dominant strain in the population at any

point in time. Such assumptions are reasonable for data sets that do not exhibit a

large amount of genetic diversity (e.g. the Darlington data set in Chapter 4), however

these may impractical for highly diverse pathogenic colonies. For example, there are

individuals in the Brighton data set with multiple sequences with genetic distances

greater than 10,000 SNPs, indicating that there are multiple distinct lineages or

strains in the population.

In light of those features highlighted in the Brighton data set (Section 3.2), we seek

to develop a flexible and efficient model using pairwise genetic distances which allows

for the possibility of multiple genetic strains competing within hosts which are a

result of coinfection.

2.3 Pairwise distance models

In this section we outline the models in Worby et al. (2016) and Cassidy et al. (2020)

before discussing how we aim to build upon this work.

In Worby et al. (2016) the authors introduce two models for the pairwise genetic

distances that are the transmission diversity and importation structure models. For

both of these let Ψ denote the matrix of pairwise genetic distances that measures the

number of SNPs (horizontal differences) between each pair where ψx,y is the distance

between sequences x and y for x, y = 1, ..., ns.
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2.3.1 Transmission diversity model

Define t(x, y) to be the number of transmission events separating sequences x and y.

If sequences x and y originate from the same person then t(x, y) = 0, and if sequences

x and y originate from individuals in distinct transmission chains then t(x, y) = ∞.

For d = 0, 1, ..., the distribution of the distance between sequences x and y is written

as

π(ψx,y = d) =

γk
t(x,y)(1− γkt(x,y))d t(x, y) <∞

γG(1− γG)
d t(x, y) = ∞,

where γkt(x,y) ∈ [0, 1] and γG is the genetic diversity parameter between samples in

distinct transmission chains and γ is the diversity parameter for distances in the

same chain.

2.3.2 Importation structure model

In this model each sequence belongs to a group which contains genetically similar

sequences. For d = 0, 1, ... the distribution of the distance between sequences x and

y is written as

π(ψx,y = d) =

γ(1− γ)d x and y are in the same group

γG(1− γG)
d otherwise,

where γ and γG are the genetic diversity parameters for sequences in the same group

and different groups respectively.

For both models, it is assumed that pairwise genetic distances are independent of

one another, hence the probability of the pairwise distance matrix is written as

π(Ψ|X,T, θ) =
ns∏
y=2

y∏
x=1

π(ψx,y = d),

where X is the screening data, T is the transmission tree and θ are the model

parameters.
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For both models, geometric distributions are used to describe the genetic distance

between isolates which is reasonable as the probability mass function is decreas-

ing. Furthermore, geometric distributions have been previously used to model the

accumulation of SNPs (Sainudiin et al., 2007).

The work in Cassidy et al. (2020) naturally builds upon these models by relaxing the

assumption of independence between isolates and utilising Poisson distributions to

model the accumulation of SNPs. More precisely, the authors describe the Poisson

error dependence and Poisson chain dependence models which are defined as follows.

2.3.3 Poisson chain dependence model

The Poisson error model assumes that the genetic distance between sequences x and

y follows a Poisson distribution with parameter θG, θI or θ depending on the number

of transmission events between x and y. Recall that t(x, y) denotes the number of

transmission events between isolates x and y, then the probability of a distance d

between sequences x and y for x = 0, 1, ... is written as

P (ψx,y = d)



(
θdG/d!

)
exp (−θG) t(x, y) = ∞(

θdI/d!
)
exp (−θI) t(x, y) = 0(

θd/d!
)
exp (−θ) t(x, y) = 1(

D(x, y)d/d!
)
exp(−D(x, y)) t(x, y) > 1,

where D(x, y) is the sum of genetic distances between sequences x and y along the

transmission chain.

2.3.4 Poisson error dependence model

The Poisson error model is identical to the chain dependence model apart from

the contribution for isolates sampled from individuals separated by more than one

transmission event. In this formulation, if t(x, y) > 1 then the genetic distance is
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defined as D(x, y)+ξW where Pr(ξ = 1) = Pr(ξ = −1) = 0.5, W is a Poisson random

variable with parameter t(x, y)γ truncated at D(x, y) and ξ and W are independent.

The authors then define the probability of a distance d between sequences x and y

for x = 0, 1, ... as

P (ψx,y = d)



(
θdG/d!

)
exp (−θG) t(x, y) = ∞(

θdI/d!
)
exp (−θI) t(x, y) = 0(

θd/d!
)
exp (−θ) t(x, y) = 1

(t(x,y)γ)|d−D(x,y)|

|d−D(x,y)|!Cd

(
1
2

)1{d ̸=D(x,y)} t(x, y) > 1,

where D(x, y) the sum of genetic distances between sequences x and y along the trans-

mission chain, 1A is the indicator function of the eventA and CD =
∑D(x,y)

l=0 (t(x, y)γ)l/l!.

We wish to build upon these models in the sense that we want a probability distribution

for the pairwise distance matrix conditional on the transmission tree, however we

wish to consider the probability distribution implied by assuming an underlying

mutation model, rather than simply assigning geometric or Poisson distributions to

genetic distances. This now motivations the work in the rest of this chapter where we

derive the joint distribution of genetic distances under the assumption of a nucleotide

substitution model.

2.4 Models of nucleotide substitution

In this section we describe a class of probabilistic models used to describe the

evolutionary changes over time, specially Markov nucleotide substitution models.

The evolutionary process of the pathogen is modelled at the level of nucleotide substi-

tutions. To model DNA sequence evolution, probabilistic models were introduced to

describe the evolutionary changes between nucleotides over time, and continuous-time

Markov chains are commonly used for this purpose.

In previous literature it is assumed that substitutions at any particular site occur
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independently of one another (Yang, 2014). Jukes and Cantor (1969) originally

proposed the simplest model where the mutation rate for any transition is constant,

also commonly referred to as the JC69 model.

We also consider the Kimura 2 parameter mutation (K80) model described in Kimura

(1980) which aims at a more realistic representation of the underlying biological

processes and also the General Time Reversible (GTR) model (Tavaré, 1986).

The general setup for the following sections is as follows. Define {X(t) : t ≥ 0} to

be a homogeneous continuous-time Markov chain where X(t) is a nucleotide base

at time t on the state space E = {A,G,C, T}. For distinct i, j ∈ E , let q̃ij be the

transition rate from state i to state j, and q̃ii = −
∑

j ̸=i q̃ij < 0 by definition.

2.4.1 Jukes Cantor (JC69) model

The JC69 model (Jukes and Cantor, 1969) assumes that nucleotides have the same

instantaneous rate λ of transitioning to another nucleotide. Suppose that the rate of

mutation for a single nucleotide base is constant, denoted by λ, so that q̃ij = λ, for

all i ̸= j. The corresponding rate matrix is then given by

Q̃ =


−3λ λ λ λ

λ −3λ λ λ

λ λ −3λ λ

λ λ λ −3λ

 .

Let pij(t) = Pr(X(t) = j | X(0) = i). It is straightforward to show that the

probability that a nucleotide base i ∈ E mutates to j ∈ E in t time units is given by

pij(t) =


1
4
(1 + 3e−4λt) i = j

1
4
(1− e−4λt) i ̸= j.
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2.4.2 Kimura (K80) model

The K80 model (Kimura, 1980) now relaxes the assumption of equal mutation rates

and differentiates between the type of substitution, which may either be a transition

or transversion. It is important to note that the transition described here is different

to the transition for a Markov chain and the specific definition should be clear from

the context.

Recall that a transition is a substitution between two pyrimidines (T ↔ C) or two

purines (A↔ G), and a transversion is a substitution between a pyrimidine and a

purine (T,C ↔ A,G).

Let λT and λV denote the transition and transversion rate respectively, then the

corresponding rate matrix is given by

Q̃ =


−(2λV + λT ) λT λV λV

λT −(2λV + λT ) λV λV

λV λV −(2λV + λT ) λT

λV λV λT −(2λV + λT )

 .

We again define pij(t) = Pr(X(t) = j | X(0) = i) which is the probability that a

nucleotide base i ∈ E mutates to j ∈ E in t time units. With some algebra it can be

shown that

pij(t) =


1
4
(1 + e−4λV t + 2e−2(λT+λV )t) i = j

1
4
(1 + e−4λV t − 2e−2(λT+λV )t) i ̸= j (transition)

1
4
(1− e−4λV t) i ̸= j (transversion).

(2.1)

2.4.3 General time reversible (GTR) model

For completeness we present the most general of the Markov substitution models, first

proposed in (Tavaré, 1986) and is referred to as the general time reversible (GTR)

model.
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An important property of the previous two models is time-reversibility, which loosely

states that the random process of nucleotide substitution is identical if the direction

of time is reversed. It is important to note that there is no biological reason to

suggest this process is reversible, rather the notion of reversibility is a mathematical

convenience (Yang, 2014). A Markov chain is said to be time-reversible if and only if

πipij(t) = πjpji(t), for all i, j, t (2.2)

where Equations (2.2) are the detailed balance equations (Grimmett, 2001, Chapter

6).

The most general of models that satisfies the time reversibility conditions in Equa-

tion (2.2) has nine free parameters: the rates a-f and three frequency parameters

and the rate matrix is given by

Q̃ =


· aπG bπC cπT

aπA · dπC eπT

bπA dπG · fπT

cπA eπG fπC ·

 ,

where the diagonals are given by q̃ii = −
∑

i ̸=j q̃ij and πy are the equilibrium frequen-

cies for y ∈ {A,G,C, T} and details of how to calculate the transition matrix is given

in Lanave et al. (1984).

We now have a probabilistic frameworks for a nucleotide observed at two distinct

time points, and we now wish to consider the joint distribution of these pairwise

distances for sequences of length one.

Before that we first define some key concepts that will be used throughout this

thesis, specifically some graph theoretic definitions that describe the evolutionary

relationship between the observed genetic sequences.
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2.5 Transmission networks

In the context of epidemic modelling, a commonly used definition for a transmission

network usually has nodes which describe individuals or groups of individuals and

links between the represent transmission events (e.g. Pellis et al. (2015) and references

therein).

While this serves as a simple and intuitive way to describe the transmission through

a population, we wish to extend this notion to explicitly consider the temporal

progression of the disease, for reasons discussed later in Section 2.8.

We wish to represent the transmission network by the individual life histories of each

infected individual. In the models we are considering, each individual ever to have

been infected will have a time at which they contracted the pathogen (typically an

infection time for SIR models, or exposure time for SEIR models, etc.) and also a

time at which the individual is no longer infectious, i.e. a removal time. To avoid

confusion between the various types of terminology we shall refer to the time at which

the individual contracted the pathogen as the infection time.

In this formulation, rather than representing an individual with a single node, we now

represent an individual by a collection of connected nodes between the infection and

removal time to denote the period which an individual is present in the population

with the pathogen. Furthermore, if an individual i infects another individual j we

connect the two with a directed edge, however here the origin of the edge is at the

precise time of infection.

More precisely, let V I
i and V R

i denote the nodes which correspond to the time of

infection and removal respectively for individual i. Furthermore, suppose that a

particular individual i infects k ≥ 0 susceptibles and let Ci = {C1
i , ..., C

k
i } denote the

set of nodes corresponding to these infections, ordered by the time of infection such

that the first element corresponds to the first infection and so on. Note that if i does

not infect anyone then k = 0 and Ci = ∅.
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Define Vi = {V I
i , Ci, V

R
i } to be to complete set of nodes associated with i which

are the infection time node, all infections and the removal time node. Finally we

‘join’ these nodes by adding an edge between sequential nodes and also between the

infection node V I
j with the corresponding node in the infector Cj

i where i infects

j. In the event that a particular individual i has imported the pathogen from the

community and hence has no source of infection, then the infection node V I
j is the

root of the tree. A simple example transmission network with two individuals can be

found in Figure 2.1.

V I
iIndividual i

Individual j

Cj
i V R

i

V I
j V R

j

TimeIi Ij

Figure 2.1: An example transmission network consisting of two

individuals where i is initially infectious at time Ii and later infects

j at time Ij where Ii < Ij < ∞. Here V I
i and V I

j are the nodes

that correspond to the time of infection for individuals i and j and

similarly V R
i and V R

j are the nodes that correspond to the time of

removal. Since i infects j there also is Cj
i in the node set for i at the

time of infection.

The nodes need not be aligned by time as in Figure 2.1, however this presentation is

intuitive and straightforward to understand. The benefit of viewing the transmission

network temporally is useful to visually describe the evolution of the pathogen, in

the sense that an individual contracts the pathogen at the time of infection and then

the pathogen will evolve over time along the network.
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2.6 Genetic networks

In this section we define the two primary objects of interest, a sub genetic network

and genetic network. The models of nucleotide substitution introduced in Section 2.4

provide us with a framework to evaluate the probability of various substitution types

between a single nucleotide observed at distinct time points, however we need an

idea of how each of the nucleotides are related. Throughout this section we shall use

the terms nucleotides and genetic sequences interchangeably, since a nucleotide is a

specific case of a sequence of length one and here we are interested in describing how

these objects are related.

Suppose we observe multiple nucleotides, typically from a phylogenetic viewpoint the

goal would be to reconstruct a phylogenetic tree which describes the evolutionary

relationship between the observed sequences by inferring most recent common an-

cestors. In our work we wish to construct a genetic network, which plays the same

role as a phylogenetic tree in the sense that it provides a graphical representation

of the evolutionary relationship between sequences, however we do not explicitly

aim to reconstruct unobserved ancestral states. To put it another way, in order to

evaluate the probability of nucleotide substitution, we need to have knowledge of

which sequences are directly linked.

Furthermore, motivated by real world data, there are often significant genetic diversity

between organisms sampled from the same species which may be referred to as a

specific ‘strain’ or ‘subtype’. In the literature there is not a universally accepted

definition for the terms ‘strain’, ‘variant’ or ‘subtype’ (Kuhn et al., 2012), however

throughout the rest of the thesis we shall use the term ‘subtype’ to refer to genetically

similar organisms from the same species.

In light of the various genetic subtypes that are found in real world data, we wish to

explicitly describe the structure of the genetic isolates within each subtype and also

the genetic structure of all organisms as a whole.
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Suppose there are ns genetic sequences of length N sampled from a population which

are assumed to belong to one of M distinct genetic subtypes. First we describe a sub

genetic network which is defined as follows.

Definition 2.6.1 (Sub genetic network). A sub genetic network, denoted by Gi =

(Vi, Ei) for i = 1, ...,M provides a graphical representation of the evolution of the

sequences corresponding to the ith subtype.

In a more precise mathematical framework, a sub genetic network Gi for the ith

subtype is a rooted directed acyclic graph with mi nodes (or vertices) corresponding

to each of the genetic sequences, with arbitrary labels Vi = {Si,1, ..., Si,mi
}, and edges

Ei which represent an evolutionary transition from an ancestral genetic sequence. For

any (a, b) ∈ Ei with a specified direction a→ b, the genetic sequence b is assumed to

have evolved from the ancestral genetic sequence a. We further note that the sub

genetic network Gi is in fact weighted by an edge function w : Ei → R+ which assigns

the difference in time between genetic isolates. Assuming that we are modelling the

evolution of a single genetic sequence, if the weight between two nodes is zero, then

the sequences are sampled at the same time and therefore must be identical.

We wish to consider the possibility of multiple introductions of the pathogen and

consequently the sub genetic network may consist of multiple disjoint trees. Each

node that is not a root of a tree has exactly one source, which is referred to as

the ancestor sequence or genetic source. Details of how to construct the genetic

network given epidemiological data are introduced later in Section 2.8. An example

sub genetic network with three sequences is given in Figure 2.2.

We introduce the term genetic network which is the graphical object (also known as

a forest) that consists of all sub genetic networks and is defined as follows.

Definition 2.6.2 (Genetic network). A genetic network, denoted by G = (V,E), is

defined as the disjoint union of all sub genetic networks Gi for i = 1, ...,M . In line

with the notation used in (Gross et al., 2018, Chapter 2), the disjoint union of graphs
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Si,2Si,1 Si,3

Figure 2.2: An example sub genetic network Gi = (Vi, Ei) for genetic

subtype i consisting of three genetic sequences. The origin or root

is sequence Si,1, which evolves through time and is later observed,

denoted by sequence Si,2. The genetic sequence is then observed at

some time later, denoted by sequence Si,3 which is assumed to have

evolved from sequence Si,2. The genetic sequences are observed at

times ti for i = {1, 2, 3} and the edges are weighted by the difference

in time between the genetic sequences. The vertices are defined as

Vi = {Si,1, Si,2, Si,3} with edges Ei = {{Si,1, Si,2}, {Si,2, Si,3}}

is defined as

G = ∪M
i=1Gi

= ∪M
i=1(Vi, Ei)

= (∪M
i=1Vi,∪M

i=1Ei)

= (V,E).

The genetic network is therefore a forest that contains the M sub genetic networks,

where V = ∪M
i=1Vi is the disjoint union of nodes in each sub network and E = ∪M

i=1Ei

is the disjoint union of edges. An example of a genetic network can be found in

Figure 2.3.

The main idea here is that we have multiple genetic sequences that are assumed to

belong to one ofM distinct subtypes. The graphical representation of the ith subtype

is referred to as a sub genetic network, denoted by Gi. The collection (or disjoint

union) of the M sub genetic networks is then called the genetic network, which will

be a convenient mathematical object that is necessary evaluate the probability of

pairwise genetic distances used throughout the rest of this thesis.
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S1,1 S1,2 S1,3

S2,1 S2,2

S3,1 S3,2

G1

G2

G3

Figure 2.3: An example genetic network G consisting of observed

sequences assumed to belong to one of three subtypes. The genetic

network G is a union of three disjoint sub networks G = G1 ∪ G2 ∪ G3

where each sub graph Gi describes the genetic network of the ith

nucleotide for i = 1, 2, 3.

2.7 Distributions of pairwise genetic distances

In this section we consider the joint distribution of pairwise genetic distances under the

assumption of two nucleotide substitution models. The assumed substitution models

are the Jukes-Cantor (JC69) and Kimura (K80) which are described in Section 2.4.

Furthermore, we would like to derive probability distributions in the general scenario

where there are M ≥ 1 competing organisms evolving through time.

The setup for each of the following sections is identical and is as follows. Consider

nucleotides evolving through time evolving through time under an arbitrary genetic

network G = (V,E) which is comprised of M sub genetic networks where the ith

network describes the ith genetic subtype for i = 1, ...,M .

With each of these we first derive the distribution of the distances for a sequence of

length N = 1. Then, by assuming that each nucleotide evolves independently of one

another we derive expressions for sequences of arbitrary length.

Consider M ≥ 1 distinct nucleotides evolving independently of one another through
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time denoted by {X(t)} = {X1(t), X2(t), ..., XK(t)} where {Xn(t)} describes the

process of the nth nucleotide where each {Xn(t)} is a homogeneous continuous-time

Markov chain for n = 1, ...,M on a finite state space E = {A,G,C, T}. For distinct

i, j ∈ E , let q[n]ij be the transition rate for the nth nucleotide from state i to state j,

and q
[n]
ii = −

∑
j ̸=i q

[n]
ij < 0 by definition.

2.7.1 JC69 model

Before deriving the distribution of pairwise genetic distances under the JC69 mutation

model we first outline properties of the distance matrix calculated from sequences

of length one. Let (X, dH) denote a metric space with {x1, . . . , xn} to be a set of

points in X and let d(x1, . . . , xn) denote its distance matrix which is a symmetric

non-negative matrix with zeros along the diagonal and elements (dH(xi, xj))
n
i,j=1.

Define the distance function dH(xi, xj) = 1 if xi = xj otherwise dH(xi, xj) = 0 and

let dH(xi, xj) = di,j for shorthand.

Each xi is a genetic sequence of length one, in other words each xi ∈ E is a nucleotide

base. We wish to determine properties of the distance matrix d in order for it to

have been computed from the n nucleotide bases x1, . . . , xn.

We defineDn to be the space of all valid distance matrices computed from n nucleotides.

For example, consider nucleotides (x1, x2, x3) and suppose the pairwise distances

are d = (d1,2, d1,3, d2,3) = (0, 1, 0). We note that d1,2 = d2,3 = 0 which implies that

x1 = x2 and x2 = x3, however d1,3 = 1 and hence x1 ̸= x3, which is a contradiction

and therefore d /∈ D3.

A distance matrix d is considered valid if and only if there is complete agreement

among all pairwise distances. An algorithmic approach to determine whether or not

an arbitrary distance matrix has been computed from the metric space (X, dH) and

therefore is valid is described as follows.

Consider a graph G = (V,E) with an adjacency matrix A which is defined as Aij = 1
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if and only if dij = 0 and Aij = 0 otherwise. In other words, we construct a simple

undirected graph such that an edge is connected between nodes i and j if the distance

is zero. A graph G is said to be disconnected if and only if it can be expressed

as a disjoint union of two or more subgraphs and we define the subgraphs to be

components of G (Bondy, 1976).

We wish to find the number of components of G induced by the adjacency matrix

A and assign the nodes v ∈ V to one of these components. Note that the number

of components of G must not be greater than four, which is the size of the set of

nucleotide bases E . Equivalently, we are determining a partition of the nodes which

is later formalised by equivalence relations. Once we have assigned a group for each

v ∈ V , all that remains is to check is that the subgraphs are complete - each node

should have an edge with all other nodes in the group. This is straight forward to

compute in linear time by verifying that the degree of nodes within the same group

is equal.

In the example above with d = (d1,2, d1,3, d2,3) = (0, 1, 0) we calculate the adjacency

matrix of G = (V,E) as

A =


0 1 0

1 0 1

0 1 0

 ,

which implies that there is a singular component consisting of the nodes {1, 2, 3}.

However, the graph is not complete since nodes {1, 3} are of degree one but node {2}

is of degree two and hence d /∈ D3. Now we have an algorithm approach to determine

whether or not the pairwise distances have been computed from nucleotides x1, . . . , xn,

we now outline a procedure for assigning nucleotide bases from valid distance matrices

d ∈ Dn.

Recall that under the assumption of the JC69 mutation model, the probability that

the nth nucleotide is in state j after t time units given the nucleotide started in state
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B1 B2
. . . Bk−1 Bk

Figure 2.4: A single nucleotide evolving through time, observed at

time points ti with each Bi denoting the observed nucleotide base at

that time.

i is given by

p
[n]
ij (t) =


1
4
(1 + 3e−4λnt) i = j

1
4
(1− e−4λnt) i ̸= j.

Since we are observing k processes assumed to have evolved independently from one

another, the joint probability mass function of X(t) is the product of the probability

mass functions for X1(t), ..., Xk(t).

For each of the k nucleotides evolving independently of one another there are distinct

mutation rates denoted by λn, however throughout the rest of the chapter we shall

assume that these processes are identical and there is a common mutation rate,

λ1 = λ2 = ...λk = λ say.

Suppose there are k nodes in the genetic network that correspond to observations

of the nucleotide at time points ti for i = 1, ..., k and label this set of vertices

V = {1, ..., k}. Recall that a directed edge (i, j) ∈ E indicates that nucleotide j has

evolved from i and the edge is weighted by the difference in time, i.e. tj − ti.

Recall that E = {A,G,C, T} denotes the set of DNA nucleotide bases and let

(x1, ..., xk) denote the vector of observed nucleotide bases where xi ∈ E for i = 1, ..., k.

The general procedure is to use the pairwise genetic distances as the starting point

of analysis, that is we wish to derive the probability distributions for the distances

without observing the original sequence. The strategy we use is to consider all possible

nucleotide bases that give rise to the observed genetic distances.

It is straightforward to calculate the matrix of pairwise distances d if we observe the
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genetic sequences directly, however we wish to categorize the reverse and determine

the genetic sequences from the matrix of pairwise genetic distances. Mathematically,

we are trying to characterize the mapping from the set of possible k × k distance

matrices into the set of sequences (x1, ..., xk).

Lemma 2.7.1. Let d ∈ Dk be a distance matrix for sequences of length one for a

known genetic network G with k > 1 connected nodes. Then there exists a unique cor-

responding sequence of nucleotides, up to a permutation of the bases E = {A,G,C, T}.

Proof. We wish to assign each node in the genetic network to a nucleotide base

that agrees with the distance matrix d . Furthermore we wish to prove that this

assignment is unique (up to permutation of bases), and that the maximum number of

assignments is four. We begin by labelling the set of nodes S = {1, ..., k} and define

a binary relation on the set S by i ∼ j ⇐⇒ dij = 0. We note that this relation has

the following properties:

1. Reflexive – Suppose i ∈ S, then dii = 0 by definition.

2. Symmetric – Suppose i, j ∈ S, and i ∼ j. Then dij = dji = 0, and so i ∼ j.

3. Transitive – Suppose i, j ∈ S, i ∼ j and j ∼ k. Then dij = 0 and djk = 0. Then

i has the same base as j, and k has the same base as j, hence all three are the

same, and so i ∼ k.

Therefore ∼ is an equivalence relation on S. This equivalence relation induces a

partition on S; every element of S belongs to only one equivalence class, where each

equivalence class is the set of nodes with a distance of zero, i.e. they share a common

nucleotide base.

Suppose we wish to assign nucleotide bases to the nodes in S. We first label the

equivalence classes as 1, ..., p where p is the number of partitions induced on S. Then

we can assign all of the nodes in class 1 to A, all of the nodes in class 2 to G, all of

the nodes in class 3 to C and finally all of the nodes in class 4 to T.
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If we have more than four equivalence classes, then this corresponds to an invalid

biological sequence as there are at most four nucleotide bases to assign. Furthermore, it

does not matter which order the nucleotide bases are assigned since we are primarily

concerned with the structure of the sequence, rather than the actual sequence

itself.

It has been shown that given a k × k pairwise distance matrix for genetic sequences

of length N = 1, there exists a unique corresponding sequence (up to a permutation

of bases). Before we introduce our main result, we first require a way to count the

number of partitions of nodes in G induced by the pairwise distance matrix d . Define

h(d) to be the number of distinct nucleotide bases in the genetic sequence.

Lemma 2.7.2. Let d ∈ Dk be a distance matrix for a sequence of length one for a

known genetic tree G with k > 1 connected nodes. Then the number of distinct bases

in the genetic network is given by

h(d) = 1 +
k∑

j=2

[
j−1∏
i=1

di,j

]
, (2.3)

where the number of distinct bases is the number of distinct elements from E =

{A,G,C, T}.

Proof. Begin by labelling the nodes 1, ..., k and the first node is the first base we

are counting. Clearly there is always at least one distinct base in a given sequence.

The next distinct base can be determined by inspecting each node j in order and

observing the associated pairwise distances. For any j = 2, ..., k, suppose there exists

a node i < j such that dij = 0, then by definition this implies that xi = xj and

therefore node j is not distinct. However suppose dij = 1 for all i = 1, ..., j − 1, then

clearly xi ̸= xj and j is a new nucleotide base, and therefore the product term in

Equation (2.3) will be equal to 1. The product term will be zero otherwise, hence

the product term is equal to 1 if and only if node j is a different base to nodes

1, ..., j − 1. Furthermore by Lemma 2.7.1, the maximum value h(d) can take is 4,

therefore h(d) ∈ {1, 2, 3, 4}.
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The result from Lemma 2.7.1 induces a partition of the nodes in G by the distance

matrix d , and Lemma 2.7.2 provides us with an expression to calculate the number

of partitions.

Now we consider the probability of observing a distance matrix for a sequence of

length one under the assumption that nucleotides mutate according to the JC69

model. Recall from Section 2.4.1 that the probability to observe a mutation between

two connected nodes in t time units is given q(t) = 1− pii(t) =
3
4
(1− e−4λt). Note

that q also depends on λ, however we shall consider q as a function of t for a fixed λ

for all subsequent notation.

Theorem 2.7.3. Let d be the pairwise distance matrix for a sequence of length one

under a genetic network G = (V,E) with k > 1 connected nodes, q(t) be the probability

of observing a mutation in t time units under the JC69 model and tij = tj − ti be

the difference in time between nodes i and j. The probability mass function for the

distance matrix is given by

f(d|λ,G) =

31{h(d)>1}21{h(d)>2}
∏

(i,j)∈E(1− q(tij))
1−dij

(
1
3
q(tij)

)dij
d ∈ Dk

0 otherwise

where E is the set of edges in the genetic network, dij refers to the distance between

nodes i and j and λ is the mutation rate.

Proof. Consider a partition of nodes in G induced by the distance matrix d and call

the first node the reference base. It is clear that if h(d) > 1, the second distinct base

can be chosen from the three remaining bases in {A,G,C, T}, and if h(d) > 2, the

third distinct node can be chosen from the two remaining bases in {A,G,C, T}.

With any assignment we choose, the probability to observe d is obtained by simply

evaluating the probability of mutation (or lack of mutation) in the links (or edges) of

the genetic network. Every link in the genetic tree is independent of all others from

the Markov assumption of the JC69 mutation model, and the probability of observing

a specific mutation is given by q(t)/3, since there are three remaining nucleotide
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bases to mutate to, hence the 1/3 term. Finally, the probability of not observing a

mutation is given by the 1− q(t) term.

We have verified computationally that
∑

d∈Dk
f(d|λ,G) = 1 for genetic networks with

k ≤ 8 nodes and believe that this result is true for all k > 1, however we no formal

proof for this claim.

It is important to note that this result is valid for any number of genetic subtypes,

i.e. M ≥ 1. We had made no explicit reference the subtypes since all information

on the connectivity of the nodes is contained within the genetic network G which is

assumed to be known. Details on how to calculate genetic networks conditional on

an underlying transmission network is discussed in Section 2.8.

2.7.1.1 Sequences of length N

Up to this point we have only considered a sequences of length one evolving through

time, however our primary interest lies with whole genome sequences which vary in

length depending on the organism. We will assume that each nucleotide site evolves

independently of one another and we wish to consider the joint distribution of genetic

distances for each nucleotide.

Suppose each of the N nucleotides evolve through time under the genetic network G,

then let d [i] ∈ Dk denote the observed pairwise distance matrix for the ith nucleotide

for i = 1, ..., N . Recall that the genetic tree G = (V,E) describes the structure of the

genetic isolates.

Let d [1], . . . ,d [N ] be independent and identically distributed random distance matrices

from the distribution in Theorem 2.7.3. Then the joint probability mass function is
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given by

fd [1],...,d [N ](d [1], . . . ,d [N ]|λ,G) = Pr(d [1] = d [1], . . . ,d [N ] = d [N ])

=
N∏
i=1

f(d [i]|λ,G)

=
N∏
i=1

31{h(d [i])>1}2
1{h(d [i])>2}

∏
(j,k)∈E

(1− q(tjk))
1−d

[i]
jk

(1
3
q(tjk)

)d[i]jk


= 3a × 2b ×

N∏
i=1

∏
(j,k)∈E

(1− q(tjk))
1−d

[i]
jk

(
1

3
q(tjk)

)d
[i]
jk

= 3a × 2b ×
∏

(j,k)∈E

(1− q(tjk))
N−Djk

(
1

3
q(tjk)

)Djk

= H1(d
[1], ...,d [N ])g1(λ,G, T1(d [1], ...,d [N ])), (2.4)

where a =
∑N

i=1 1{h(d [i])>1} and b =
∑N

i=1 1{h(d [i])>2} which are the number of distance

matrices that contain more than one and two distinct nodes respectively. Furthermore

we have Djk =
∑N

i=1 d
[i]
jk which is the total number of differences (SNPs) between

sequence j and the sequence k, where (j, k) ∈ E, and the functions H1, g1 and T1 are

defined as

H1(d
[1], ...,d [N ]) = 3

∑N
i=1 1{h(d [i])>1} × 2

∑N
i=1 1{h(d [i])>2}

g1(λ,G, T1(d [1], ...,d [N ])) =
∏

(i,j)∈E

(1− q(tjk))
N−Djk

(
1

3
q(tjk)

)Djk

T1(d
[1], ...,d [N ]) =

N∑
i=1

d [i]

It is important to note that the quantities Dij for (i, j) ∈ E are straightforward

to obtain by calculating a matrix of pairwise distances for each observed sequence.

For all subsequent analysis, we shall refer to D as the pairwise distance matrix for

sequences of length N . It follows from the Fisher-Neyman factorisation theorem that

the (matrix) statistic T , which is the defined as the sum of distance matrices d [i] for

i = 1, ..., N , is sufficient for the underlying parameter λ.

We are unable to calculate H1 explicitly as we require knowledge of the actual

sequences rather than the matrix of pairwise distances, however since these are
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functions of the data alone these terms vanish in the posterior distribution when

performing Bayesian inference.

To see this clearly, consider some data X with model parameters θ. Let π(X | θ)

denote the likelihood and suppose that the likelihood can be decomposed into two

functions H and g such that π(X | θ) = H(X)g(X | θ) where H(X) depends on the

data alone and g(X | θ) depends on the data conditional on the model parameters.

The posterior distribution is then given by

π(θ | X) =
π(X | θ)π(θ)∫

θ
π(X | θ)π(θ)dθ

=
H(X)g(X | θ)π(θ)∫

θ
H(X)g(X | θ)π(θ)dθ

=
H(X)g(X | θ)π(θ)

H(X)
∫
θ
g(X | θ)π(θ)dθ

=
g(X | θ)π(θ)∫

θ
g(X | θ)π(θ)dθ

From the above formulation, it is clear the function H1 which involves the data alone

cancel in the posterior distribution and the matrix of pairwise distances is sufficient

to perform inference with a known genetic network G.

For a genetic sequence of length one, we have found a unique mapping (up to a

permutation) from the distance matrix to the sequence of nucleotide bases. Given

that we are able to recover the structure of the nucleotides, we can then evaluate

the probability of observing pairwise genetic distances under the JC69 model and

provide the explicit probability mass function in Theorem 2.7.3.

Since each nucleotide site is assumed to evolve independently of all other sites, it

has been shown that the joint probability mass function can be factored such that

the sum of the distance matrices is sufficient to estimate the mutation rate. This

formulation is convenient, since the aim of this chapter is to provide inference from

the full matrix of pairwise distances alone. To show this, consider the following

example.

Example 2.7.1. Suppose we observe a genetic sequence of length N = 6 at times
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Nucleotide (d12, d13, d23) h(d) Probability

1 (0, 0, 0) 1 (1− q(t12)) (1− q(t23))

2 (1, 0, 1) 2 1
3
q(t12)q(t23)

3 (0, 1, 1) 2 (1− q(t12)) q(t23)

4 (0, 0, 0) 1 (1− q(t12)) (1− q(t23))

5 (1, 1, 1) 3 2
3
q(t12)q(t23)

6 (1, 1, 0) 2 q(t12) (1− q(t23))

Table 2.1: The distance matrix for each nucleotide and corresponding

probability from Theorem 2.7.3 for the nucleotides i = 1, ..., 6 which

are shown in Figure 2.5.

t1, t2 and t3 such that t1 < t2 < t3 with the setup in Figure 2.5. In this scenario the

pairwise distance matrix can be summarised as D = (d12, d13, d23) = (3, 3, 3). Recall

that the objective is to perform inference on the matrix of pairwise distances alone,

without knowledge of the exact composition of the sequences themselves.

Suppose we do in fact observe the sequences directly, then the corresponding probabil-

ity to observe each nucleotide site is calculated by Theorem 2.7.3 and is summarised

in Table 2.1.

By considering the joint probability mass function described by Equation (2.4), we

obtain

fd [1],...,d [6](d [1], . . . ,d [6]|λ,G) =
6∏

i=1

f(d [i]|λ,G)

= H1(d
[1], ...,d [6]) (1− q(t12))

3

(
1

3
q(t12)

)3

× (1− q(t23))
3

(
1

3
q(t23)

)3

where H1 is function that depends on the data alone and is explicitly given by H1 =

3
∑6

i=1 1{h(d [i])>1}×2
∑6

i=1 1{h(d [i])>2} = 34×2. It is clear that the statistic T1(d
[1], ...,d [6]) =∑6

i=1 d
[i] = (3, 3, 3) is sufficient to estimate the mutation rate λ which occurs in the

joint mass function through the function q(·) alone.
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Figure 2.5: A genetic sequence of length N = 6 evolving through

time observed at t = t1, t2 and t3. The total pairwise differences

between the sequences is given by (d12, d13, d23) = (3, 3, 3).

2.7.2 K80 model

Under the assumption of the K80 mutation model, we now differentiate between

the type of substitution and hence require more detailed summary statistics for the

genetic data, rather than simply pairwise distances introduced in Section 2.7.1. Define

dTij, d
V
ij to be the transition and transversion indicator functions which are equal to

one if there is a transition or transversion mutation between nucleotides i and j

respectively. Furthermore it follows that we have dTij + dVij = dij where dij is defined

as in Section 2.7.1 as equal to one if and only if the bases between nucleotides i and

j differ.

Let Pu = {A,G} and Py = {C, T} denote the purines and pyrimidines respectively

and consider a nucleotide at distinct time points denoted by xi and xj. The two

nucleotides are said to have a transversion mutation if and only if

xi ∈ Pu, xj ∈ Py or xj ∈ Py, xi ∈ Pu,

and in this case we set dVij = 1 and dTij = 0. On the other hand, the two nucleotides

are said to have a transition mutation if and only if xi ̸= xj and

xi, xj ∈ Pu or xi, xj ∈ Py,
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and we set dVij = 0 and dTij = 0. Finally we have the case where the nucleotides are

equal, i.e. xi = xj, in which case no mutation is said to have occurred and we set

dVij = 0 and dTij = 0.

Finally, let dT ,dV denote the matrices of pairwise transition and transversions and

define DK to be the space of transition and transversion matrices that correspond to

a valid biological sequence.

For example, consider the simplest scenario with two nucleotide bases (labelled 1 and

2) in which case we have two random variables denoted by (dT12, d
V
12). Suppose we

have (dT12, d
V
12) = (1, 1), i.e. both a transition and transversion has occurred. Notice

dT12 = 1 implies that both nucleotides are either purines or pyrimidines, however

dV12 = 1 implies that the nucleotides are not of the same group, hence we have a

contradiction and (1, 1) /∈ DK . Put another way, there are no possible sequences

which give rise to the distances (1, 1) and this particular realisation has probability

zero.

The general strategy to derive the joint distribution of distances is to consider

a mapping from genetic distances (transitions and transversions in this case) to

a nucleotide bases. In other words, we trying to determine all possible genetic

sequences that give rise to a particular set of distances. Mathematically we are trying

to characterize a mapping from the set of possible transition and transversion matrices

to the set of nucleotide bases, written as ϕ(dT ,dV ) 7→ S ∈ Ek where E = {A,G,C, T}

is the set of DNA nucleotide bases.

Define the term ‘nucleotide type’ to denote the type of organic group the particular

base belongs to, which may either be a purine or pyrimidine.

Theorem 2.7.4. Let dT ,dV ∈ DK be the pairwise transitions and transversions

for a sequence of length one under a known genetic network G = (V,E) with k > 1

connected nodes. Define pT (t) and pV (t) to be the probability of a transition and

transversion respectively in t time units under the K80 model. Let tij = tj − ti be the

difference in time between nodes i and j. The probability mass function for matrices
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of pairwise transition and transversions is given by

f(dT ,dV |λT , λV ,G) =
∏

(i,j)∈E

(1− pT (tij)− pV (tij))
1−dTij−dVijpT (tij)

dTij

(1
2
pV (tij)

)dVij
× 2

1{
∑

i,j dV
ij

>0} (2.5)

if (dT ,dV ) ∈ DK and f(dT ,dV |λT , λV ,G) = 0 otherwise. Recall that dTij, d
V
ij are the

transitions and transversions between sequences i and j, where (i, j) ∈ E is an edge

in the genetic network G and λT and λV are the mutation rate parameters.

Proof. Given there are k nodes in the genetic network which can be written as

S = (B1, ..., Bk), we wish to assign a nucleotide base to each xi for i = 1, ..., k.

Without loss of generality set x1 = A, then we wish to consider the pairwise transitions

and transversions to deduce the nucleotide base for all other nodes. Let T = {j :

dT1j = 1, j > 1} denote the set of nodes that have a transversion and A = {j : dT1j =

dT1j = 0, j > 1} denote the set of nodes that have no difference between nodes 1 and

j for j > 1.

If there exists a transversion substitution between nodes 1 and j for some j > 1, then

the only way this may occur is if xj = G for all j ∈ T . Similarly it is straightforward

to deduce that all nodes that have no difference between node 1 must be of the same

base, i.e. xj = A for j ∈ A.

Now we wish to assign the remaining nodes a nucleotide base to either C or T . Let

X = {j : V1j = 1, j > 1} denote the set of nodes that have a transversion difference

with node 1 and pick an element from this set at random and observe there are exactly

two ways to assign the nucleotide base. Suppose we assign xy = C for any y ∈ X ,

then the remaining nucleotide bases are easily assigned where {j : dTyj = dVyj = 0} is

the set of nodes that are the same as y and {j : dTyj = 1} is the set of nodes with a

transition difference to y which must be the last available nucleotide to assign T .

If there are any nodes not assigned by this point then we have distances that do not

correspond to a valid biological sequence, i.e. (dT ,dV ) /∈ DK .
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Now that we have assigned a nucleotide base to each node, given an underlying

genetic network G, we may now look at the edges in the network and evaluate the

probabilities of the different types of substitution given by Equation 2.1, which are

product terms in Equation 2.5.

Finally, if there is a transversion substitution, there are exactly two ways to assign this

base. Therefore we multiply by a factor of 2 given in the second line of Equation 2.5 if

and only if there is a transversion substitution which is given by the event {
∑

i,j Vij >

0}.

We remark that we assigned to first node to be base A, however this need not be

the case. We may start with any base and by following the same logic the nodes

will get assigned in a similar fashion. Furthermore, the labels assigned to the nodes

are invariant to permutation, that is to say it does not matter which labels are

assigned.

We provide a sketch proof of Theorem 2.7.4 in Figure 2.6 for a genetic network with

k = 5 nodes which illustrates the procedure of assigning nucleotide bases to the nodes,

which can be seen as equivalent to colouring the nodes on a graph.

2.7.2.1 Sequences of length N

Similar to Section 2.7.1.1, we consider N nucleotides evolving independently of each

other and derive the joint probability mass function.

Suppose we have N nucleotides evolving through time under the genetic network

G and let x [i] = (dT [i],dV [i]) ∈ DK denote the observed pairwise transition and

transversion matrices for the ith nucleotide for i = 1, ..., N .

LetX[1], ...,X[N ] be independent and identically distribution random distance matrices

from the probability mass function in Theorem 2.7.4. The joint probability distribution
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Figure 2.6: Sketch proof to illustrate the base assignment procedure

described in Theorem 2.7.4. (a) Select an initial base at random

and set this to be A indicated by red, and assign all other nodes

with distance zero to also be red. (b) Find all nodes which have a

transversion between the initial node and set these to G, indicated by

blue. (c) Select one node uniformly at random from the set of nodes

that have a transversion difference and find all other nodes which

are identical and set these to C, indicated by green. (d) Fill in all

remaining nodes by the final nucleotide base T , indicated by yellow.
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is given by

fX[1],...,X[N ](x [1], ...,x [N ]|λT , λV ,G) = Pr(X[1] = x [1], ...,X[N ] = x [N ])

=
N∏
i=1

f(dT [i],dV [i]|λT , λV ,G)

=
N∏
i=1

[ ∏
(j,k)∈E

(1− pT (tjk)− pV (tjk))
1−d

T [i]
jk −d

V [i]
jk pT (tjk)

d
T [i]
jk

×
(1
2
pV (tjk)

)dV [i]
jk

2
1
{
∑

j,k d
V [i]
jk

>0}
]

=
∏

(j,k)∈E

(1− pT (tjk)− pV (tjk))
∑N

i=1 1−d
T [i]
jk −d

V [i]
jk pT (tjk)

∑N
i=1 d

T [i]
jk

×
(1
2
pV (tjk)

)∑N
i=1 d

V [i]
jk

2

∑N
i=1 1{

∑
j,k d

V [i]
jk

>0}

=
∏

(j,k)∈E

(1− pT (tjk)− pV (tjk))
1−DT

jk−DV
jkpT (tjk)

DT
jk

×
(1
2
pV (tjk)

)DV
jk

2

∑N
i=1 1{

∑
j,k d

V [i]
jk

>0}

= H2(x
[1], ...,x [N ])g2(λT , λV ,G, T2(x [1], ...,x [N ])),

(2.6)

where DT
jk =

∑N
i=1 d

T [i]
jk and DV

jk =
∑N

i=1 d
V [i]
jk are pairwise transition and transversion

matrices for sequences of length N and the functions H2, g2 and T2 are defined as

H2(x
[1], ...,x [N ]) = 2

∑N
i=1 1{

∑
j,k d

V [i]
jk

>0}

g2(λT , λV ,G, T2(x [1], ...,x [N ])) =
∏

(j,k)∈E

(1− pT (tjk)− pV (tjk))
1−DT

jk−DV
jkpT (tjk)

DT
jk

×
(1
2
pV (tjk)

)DV
jk

T2(x
[1], ...,x [N ]) =

N∑
i=1

x [i]

=
N∑
i=1

(dT [i],dV [i]).

It can be seen that the joint probability mass function takes the form required by

the Fisher-Neyman factorization theorem, therefore it follows that the matrices of
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pairwise transition and transversions for sequences of length N , T2(x
[1], ...,x [N ]) =∑N

i=1(d
T [i],dV [i]) is a sufficient statistic for (λT , λV ).

Furthermore, we are unable to calculate H2 explicitly as we require knowledge of the

actual sequences rather than pairwise distance data, however for reasons discussed

in Section 2.7.1.1 this function vanishes in the posterior in a Bayesian setting and

therefore is suitable for practical inference.

2.7.3 Determining genetic groups

In order to evaluate the probability of a pairwise distance matrix assumed to contain

observations from multiple sequences described in Section 2.7, we must construct

a genetic network G = ∪K
i=1Gi. In order to do this we cluster the genetic sequences

such that sequences within clusters are similar and sequences in different clusters are

dissimilar. The process to classify and cluster genetic sequences to groups is typically

a non trivial task and is an active area of research in bioinformatics, a review of some

methods can be found in Zou et al. (2018), however we now describe some simple

approaches.

It will be convenient to introduce two equivalent ways to describe an arbitrary

allocation of each genetic sequence to one of the K groups. Suppose there are ns

genetic sequences denoted by G1, ...., Gns , then we write η = (η1, ...., ηns) to denote

the genetic group. Consider the equivalence

ηi = j ⇐⇒ Gi ∈ Gj, j = 1, ...., K,

where Gj denotes the sub genetic network associated with group j for all i = 1, ..., ns

and

G = ∪K
j=1Gj, and Gi ∩ Gj = ∅, i ̸= j,

that is to say the genetic groups induce a partition in the set of nodes of genetic

sequences.
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The process of determining the genetic groups is largely an arbitrary choice and is

likely to be a modelling specific decision. In this section we introduce some methods

to calculate the genetic groups η from the matrix of pairwise distances D. The aim

here is to partition the sequences such that each partition contains similar sequences

which can then be used to construct the sub genetic networks and hence the genetic

network.

2.7.3.1 Group by threshold

Here we choose an arbitrary threshold, ζ say, and group similar genetic sequences

that have pairwise distances less than the given threshold. The idea is that genetic

distances with large distances are clearly unrelated, therefore intuitively it makes

sense to group distances that are ‘similar enough’. For any graph G consisting of k

nodes (or vertices) denoted by vi for i = 1, ..., k, we can construct a k × k adjacency

matrix A such that Aij is the number of edges joining nodes vi and vj (Bondy, 1976).

First define the adjacency matrix A such that

Aij =

1 Dij < ζ,

0 otherwise.

The adjacency matrix induces a partition of the nodes in the complete genetic network,

with each partition assigned an arbitrary label.

It is important to note that the graph represented by the adjacency matrix in the

above formula need not be strongly connected, that is there may be some sequences

within the same group that have a distance greater than the threshold ζ. For example,

consider three sequences labelled A,B and C with the following pairwise distances

dAB = 2

dBC = 2

dAC = 4,
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and suppose that the threshold is given as ζ = 3. In this example there is an edge

between nodes A,B and B,C but no edge connecting nodes A,C, however here A

and C are considered to be in the same group due to the mutual connection with B.

Theorem 2.7.5. Let G be the graph induced by the adjacency matrix A. Then G will

be a disjoint union of complete graphs with an edge between nodes if the distance is

smaller than the threshold value ζ. Furthermore, any graph induced by A is invariant

to a permutation of labels.

Proof. Suppose G can be decomposed into a disjoint union of sub graphs such that

G = G1∪...∪GK whereK is the number of partitions induced by A and Gn = (Vn, En)

for n = 1, ..., K. Then for any fixed n we have Gn = (Vn, En), for all nodes v ∈ Vn

there exists an edge (i, j) ∈ En such that Dij < ζ by definition of Aij, hence Gn is

complete and G is a disjoint union of complete graphs by construction.

Furthermore, suppose there are K partitions or disjoint complete graphs in the

network induced by A, labelled from 1, ..., K. The choice of label is arbitrary since

any other permutation of labels will preserve adjacency and induce a graph G′ which

is isomorphic to G.

The benefit of this method to cluster genetic sequences is that it is straightforward to

implement and interpret. In practice one should choose a value ζ that is consistent

with biological theory and prior beliefs. When considering genetic sequences sampled

in some time frame, it may be suitable to choose ζ with respect to the expected

evolutionary changes in a larger time frame. In Young et al. (2012) the authors

estimate the evolution of a bacterial population of S. aureus to be a rate of 2.72

mutations per megabase per year, hence choosing ζ > 2.72γ would separate sequences

with more than γ years of expected mutations.

Once we have calculated the adjacency matrix A from ns sequences and observe

K ≥ 1 partitions according to the rule, we are able to assign the subtype groups as

follows. Let η denote the vector of genetic groups such that ηi = j if and only if
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sequence i belongs in sub genetic network j for i = 1, ...ns and j = 1, ..., K.

2.7.3.2 The k-means clustering and partitioning around medoids algo-

rithms

The k-means clustering method seeks to partition objects into groups such that the

objects within the group are sufficiently close, and the discordance between the data

and a given partition P (M,K) of M objects and K clusters is measured by an error

e (P (M,K)) (Hartigan, 1975). The main idea is to search for an optimal partitioning

where each observation belongs to a cluster with the nearest mean by minimising the

within-cluster variances (given by the error function e).

A caveat here is that the algorithm typically operates on a data matrix by minimizing

squared Euclidean distances and as such it is not appropriate to apply the method

for non-Euclidean distances. In the context of pairwise sequence alignment, the

number of SNPs is referred to as the Hamming distance between the two sequences

(Mohammadi-Kambs et al., 2017). Alternatively we look towards other techniques

that partition objects irrespective to the distance metric, such as partitioning around

medoids.

The idea of partitioning around medoids (PAM) was first described in Kaufmann and

Rousseeuw (1987) as a more robust method than k-means clustering which seeks to

find k ‘representative’ objects called medoids. After finding a set of k medoids, the k

clusters are constructed by assigning each object of the data set to the nearest medoid

(Kaufman and Rousseeuw, 2005). Since PAM performs clustering with respect to any

distance metric, it allows a flexible definition for what it means for two elements to

be ‘close’ (der Laan et al., 2003). A comprehensive comparison of k-means and PAM

can be found in Mondal and Choudhury (2013) where the authors compare physical

characteristics of different varieties of mango in India.

As with k-means clustering, the user must specify the number of clusters pre-analysis,

which is usually situation dependent and purely a modelling choice. Choosing the
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‘correct’ number of clusters is non trivial and will largely depend on subject specific

knowledge and exploratory data analysis.

2.7.3.3 Spa typing

As an alternative to statistical based methodology for clustering using a pairwise

distance matrix (or dissimilarity matrix in the literature), one can use biological

techniques during the sequence analysis such as spa typing. The idea is to specifi-

cally look at the gene for S. aureus protein A (spa) due to the surface containing

polymorphic regions (Frénay et al., 1994), which is where there are more than one

variant genes that may be present.

Due to the high variability of gene expression in protein A it is then possible to

classify different organisms by the number of repeating sequences and hence provide

suitable discrimination for outbreak investigation (Shopsin et al., 1999).

Typically whole genome sequencing (WGS) provides much greater resolution than

spa typing, however the data set discussed in Section 3.2 contains genetic spa types

and hence can be considered and compared with other methods of genetic sequence

clustering. The benefit here is that there is no need to make arbitrary choices as to

what the clusters should be, either through choosing a cut off threshold or choosing

the ideal number of clusters.

2.8 Construction of genetic networks

In this section we describe how to integrate genetic data with traditional epidemiolog-

ical data (such as case incidence) in an outbreak scenario. Up to now, the probability

distributions derived in Equations (2.4) and (2.6) are conditional on an underlying

genetic network G which describes the evolution of the pathogen.

Recall from Section 2.6 that the genetic network describes the evolutionary relationship
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between observed sequences. The aim of this section is to construct a genetic network

that is consistent with the epidemiological data, that is the transmission network.

Here we assume that individuals may be infected as a result of coinfection, that is

individuals can be infected by multiple pathogen subtypes concurrently. Furthermore

we do not make any attempt to model the introduction of these pathogen species

and assume that every individual may possess any strain.

Let η denote the vector of genetic subtypes, such that ηi = j if and only if genetic

sequence i belongs to subtype j. Furthermore, we require the following assumptions.

1. Upon colonisation, the genetic information of the pathogen is transmitted from

the source of colonisation to the recipient. The transmitted pathogen then

evolves independently from the pathogen in the source of colonisation.

2. Each individual may have a genetic sequence for each subtype at the time of

colonisation, which may be either observed or unobserved.

Assumption 1 provides us with a framework to perform any meaningful inference, since

the genetic evolution models considered require the same pathogen to be observed

at distinct points in time. In general, this is an oversimplification of the biological

processes where we do not attempt to model any transmission bottleneck. Assumption

2 is a requirement to capture the shared stochastic evolution of the pathogen.

It should be noted that an individual’s genetic sequence (and corresponding genetic

distances) at the time of colonisation may not be directly observed and as such it is

natural to impute these missing quantities in a Bayesian MCMC framework.

The main idea behind constructing genetic networks is to determine the genetic source

for each genetic sequence. We use the term ‘genetic source’ rather than ‘source’ to

avoid confusion with the source of infection. A genetic source for sequence i is the

genetic sequence that i is assumed to have evolved from, also known as the ancestral

sequence. We also define the term ‘infectee’ to be the recipient of an infection.
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To determine the genetic source for a given sequence, at an individual level we look

backwards in time to determine if there is a previously sampled genetic sequence.

More precisely, we use the graph representation of the temporal transmission network

described in Section 2.5 to trace the evolution of the pathogen backwards in time.

A genetic source sequence will either be a previously sampled sequence from the

same individual, or a sequence at the time of infection from an infectee. If there are

no genetic source sequences in the host, we then look at the source of infection and

repeat the process.

The construction of the genetic network is unique and explicitly depends on the

transmission tree, and therefore unobserved quantities such as the source and time of

infection. If there are multiple sequences from the same individual at the same time,

then we order the sequences by index. The lowest index will require calculating the

genetic source as above, and all other indexes will assign the previous index to be

the genetic source.

The genetic network G is constructed as follows. For each genetic sequence we wish

to determine the source of the sequence, where the genetic source is defined as the

ancestor sequence. In other words, a sequence j may have a source sequence i if

and only if sequence i is assumed to have evolved to sequence j after some time.

The evolutionary time between two sequences in the context of an outbreak is the

difference in sampling times.

Suppose there are k genetic sequences assumed to belong to one ofM genetic subtypes,

we now briefly outline the method to determine the genetic source of a particular

sequence, denoted by i ∈ {1, ..., k}.

For any sequence i we have the individual which the sequence has been sampled

from denoted by νi at some time τi with genetic subtype ηi. Let Si = {(j, τj) : νj =

νi, ηj = ηi, i ≠ j} denote the set of sequences sampled from the same individual and

genetic subtype, not including sequence i, and the corresponding time at which the

sequence is sampled.
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Then we order the set of sequences Si by the corresponding sampling times τ and

choose the sequence that has been sampled most recently. In the event of a tie, i.e.

multiple sequences are sampled at the same time, then the sequences are ordered by

index.

If there are no sequences in that particular individual with a time less than the

sampling time of the current sequence, then we look at the source of colonisation sνi .

The idea is then to find the most recent sequence in the individual sνi that belongs

to the same genetic subtype. If there are no sequences to choose in this individual,

then we look at their source of colonisation and so on.

This process is repeated until either an observed sequence is found or there is no

more individuals to search through. If a genetic source is not found, then that

particular sequence is considered to be an imported sequence, whereby the individual

is considered to have imported that particular sequence from the community.

2.9 Modelling imported genetic sequences

In this section we wish to consider the possibility of multiple introductions of the

pathogen, which are essential for epidemic models with a background transmission

or importation (e.g. Deardon et al. (2010) and Worby et al. (2016)). The mutation

models described thus far are only applicable when modelling the evolution of a single

nucleotide or sequence. As a consequence, in order to model multiple introductions of

the pathogen we introduce another probabilistic model which describes the likelihood

of pairwise distances from multiple sequences that are unrelated.

Consider two distinct nucleotides observed at the same point in time tC denoted

by N1,N2 ∈ {A, T,G,C}. Typically from a phylogenetic viewpoint it is reasonable

to assume that the two nucleotides have a common ancestor NP at some time in

the past tP (Figure 2.7). Let X = (N1, N2) denote the data which are the observed

nucleotides and θ the model parameters for the particular mutation model under
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consideration. Then, conditional on the model parameters, the probability of the

data is given by

Pr(X|θ) =
∑
k

πkpkN1(tC − tP )pkN2(tC − tP ), (2.7)

where pij(t) is the probability of observing nucleotides i and j which are separated by

t time units and πk is the equilibrium frequency of nucleotide k (Felsenstein, 1981).

The summation in Equation (2.7) is due to the fact that the ancestor nucleotide NP is

unobserved and as a result we sum over all possible choices. In the above formulation,

the vector θ contains not only the parameters governing the rate of mutation but

also the unknown time of evolutionary divergence tP , which must also be estimated.

NP

N1

N2

tCtP time

Figure 2.7: Phylogenetic approach for modelling distinct genetic

sequences where nucleotides N1,N2 are observed at time tC . The two

nucleotides are assumed to have a common ancestor NP at a previous

point in time tP . The nucleotides N1,N2 are then assumed to have

evolved independently from a previous ancestral state NP in tC − tP

time units. The ancestral nucleotide NP and the time of evolutionary

divergence tP are both unobserved.

Assuming the JC69 mutation model, the above example is simple enough in the sense

that there are only two unknown parameters, the mutation rate λ and the time of

divergence tP , however the problem quickly becomes cumbersome if there are more

genetic sequences under consideration.
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This type of problem is an active area of research in the Bayesian phylogenetics

community and reconstructing phylogenetic networks is a non-trivial task and beyond

the scope for this thesis. Instead we propose a simpler model to describe the

introduction of multiple genetic sequences that are assumed to be unrelated.

Similar to the approach taken in Cassidy (2019), we wish to consider a generative

process that explicitly models (i) the pairwise distances between directly connected

sequences from the mutation model, (ii) the pairwise distances between imported

sequences of the same subtype and (iii) the pairwise distances between imported

sequences of a different subtype.

Suppose there are M distinct genetic subtypes defined by the vector η where each

subtype contains mi imported sequences for i = 1, ...,M . Let I i = (I i
1, ..., I i

mi
) denote

the vector of imported sequence labels for genetic subtype i. For (i), Equation (2.4)

is used to evaluate the probability of distances between directly connected nodes

corresponding to the edges E in the genetic network G assuming the JC69 mutation

model.

Similarly, for (ii) we assume that the pairwise distances for imported sequences of

the same genetic subtype follow a Poisson distribution with mean µi for i = 1, ..., K

which represents the ‘within-subtype importation distance’ for genetic subtype i. For

simplicity we assume that each genetic subtype has an identical parameter µ, i.e.

µ1, ..., µK = µ.

Let I denote the complete set of imported sequences. In order to model the con-

tribution of imported sequences of a different genetic subtype, we assume that the

pairwise distances follow a Poisson distribution with mean ξ, then the probability to
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evaluate the pairwise distance matrix is given by

Pr(D, η | λ, µ, ξ) ∝
∏

(i,j)∈E(G)

(1− q (tij))
N−Dij

(
1

3
q (tij)

)Dij

×
∏
i∈I

∏
j∈I
i ̸=j

(
1{ηj=ηk} Pr

[
Po(µ) = DIi

jIi
k

]

+ 1{ηj ̸=ηk} Pr
[
Po(ξ) = DIi

jIi
k

])
(2.8)

where λ is the mutation rate, tij = tj − ti is the difference in sampling times of

sequences i and j and q (tij) is the probability of mutation in tij time units. The first

line is the contribution of directly connected distances under the mutation model.

The second line is the contribution of pairwise distances between imported sequences

in the same genetic subtype where ηj = ηk. Finally, the last line is the contribution of

pairwise distances between imported sequences in a different genetic subtype where

ηj ̸= ηk.

1 2 3

4 5

67

G2G1

Figure 2.8: An example genetic network G consisting of 7 observed

genetic sequences which is composed of K = 2 distinct genetic

subtypes, where nodes 6 and 7 are in the sub genetic network G1

(dashed green line) with subtype 1 and the remaining nodes are in

the sub genetic network G2 (dashed red line) with subtype 2. The

solid black lines indicate directly connected nodes that are assumed

to have evolved under the mutation model. The dotted orange line

indicates pairs of sequences that are imported but within the same

genetic subtype, and the dashed blue lines indicates pairs of sequences

that are imported but in different subtypes.
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We now make some remarks about the ‘between-subtype importation distance’ ξ.

It is perhaps more suitable to have K(K − 1)/2 independent parameters denoted

by ξjk to model the average distance between imported sequences in distinct groups

j and k. This is however not necessary for two reasons. Firstly, we are primarily

interested in resolving transmission pathways by integrating genetic data, information

of distances between subtypes offers little use as pairwise distances are likely to be

large and therefore may be not indicative of transmission. Furthermore, we determine

the genetic subtypes η pre-analysis which are fixed and as a consequence we do not

attempt to infer ξ and therefore we may remove the last line in Equation (2.8). An

example of the genetic model can be seen in Figure 2.8.

It is often the case that imported individuals do not have an observed sequence at

the time of infection, hence these quantities must be imputed for the model described

above. Inference in a Bayesian framework is able to handle missing data through

data augmentation MCMC, details for imputing genetic distances are discussed in

Section 3.5.3.

2.10 Discussion

In this chapter the primary goal was to develop a model for genomic data that is

applicable in outbreak settings. Specifically, the aim was to work with pairwise

genetic distances rather than the raw sequence data, under the assumption of a

microevolution model. More precisely, we have derived the distribution of pairwise

genetic distances implied under the assumption of a microevolution model.

We have considered two nucleotide substitution models, in particular the JC69 and

K80 mutation models, and derived the joint distribution of pairwise genetic distances

for sequences of length one.

The general strategy for deriving these distributions is to consider the set of possible

nucleotides that give rise to the pairwise distances under consideration. Once we are
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able to assign nucleotide bases that are consistent with the genetic distances, then

we are able to evaluate mutation probabilities conditional on an underlying genetic

network that describes the evolution of the sequences.

We have then extended these ideas for more general sequences of arbitrary length

N and derived an expression for this joint probability mass function. The exact

distribution of the pairwise distances requires detailed information at the nucleotide

level, specifically the number of unique bases at each site.

If the data are the matrix of pairwise genetic distances (i.e. we do not have the original

raw sequence data), then we may only evaluate the probability up to a proportionality.

From a practical viewpoint this does not pose an issue as the complete pairwise genetic

distances are a sufficient statistic for the mutation rate parameters. Furthermore, in

a Bayesian setting the terms that involve the data alone vanish in the posterior.

It is important to note that the derived distributions are conditional on an arbitrary

genetic network. In Section 2.8 we discuss how to construct a genetic network that

is consistent with the epidemiological data, i.e. the transmission network. The true

transmission network is unobserved and a common approach among practitioners

is to augment the parameter space with the unobserved data and sample these in a

data augmentation MCMC framework.

When sampling from the space of transmission trees and proposing updates to

the augmented data, there will now be a component in the likelihood that is the

genetic data conditional on the transmission tree. In principle, proposed updates (e.g.

Metropolis-Hastings steps) to the transmission tree are now informed by the genetic

data.

The main strength of our method lies with the fact that we are working with pairwise

distance matrices alone. This is particularly convenient as we do not need to store or

impute the full genetic sequences, and the pairwise distance matrix acts as a summary

statistic of the genetic data.



CHAPTER 3

Analysis of the Brighton data set

3.1 Introduction

In this chapter we focus on the transmission of nosocomial infections, specifically

the spread of Methicillin-resistant Staphylococcus aureus (MRSA) within a hospital

ward. The emergence of antibiotic resistant pathogens poses a serious public health

risk to healthcare agencies worldwide. The burden of healthcare associated infections

(HCAIs) is estimated to have cost the United Kingdom £2.1 billion in 2016/2017,

arising from 653, 000 infections, and of that total 22, 800 deaths (Guest et al., 2020).

In the context of nosocomial infections, specifically MRSA, patients are referred to

as ‘colonised’ rather than ‘infected’. In the literature many authors use ‘colonisation’

and ‘infection’ interchangeably (Dani, 2014), however in fact colonisation is defined

in Longe (2015) as “when a microorganism is found on or in a person without causing

disease”. Throughout we shall maintain the convention that colonisation is the
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presence of detectable levels of the pathogen, with no reference or indication to

whether the patient has the disease.

Throughout we shall work in discrete time, a modelling assumption which is a natural

choice when considering the type of data typically available. Hospital data and swab

tests for the pathogen are often recorded by healthcare workers or administrators

daily and the exact times are not always known.

We analyse a data set of an outbreak of S. aureus in the Royal Sussex County

Hospital, an acute teaching hospital in Brighton during 2011-2012. In this data set

patients, healthcare workers and the environment were systemically sampled for the

presence of the pathogen. Isolates were cultured from positive swab results and their

whole genome was sequenced. A comprehensive description of the study can be found

in Price et al. (2017).

The aim of this chapter is to build upon the transmission model developed in Worby

et al. (2016) and fit the genetic model developed in Chapter 2 to infer the mechanisms

governing transmission for the Brighton data set. More precisely, we wish to extend

the transmission model to incorporate healthcare worker data at an individual level.

This chapter is organised as follows. In Section 3.2 we provide an exploratory analysis

of the Brighton data set. In Section 3.3 we provide a review of the literature surround-

ing the impact of healthcare workers on transmission. Then we introduce a model

to incorporate healthcare worker transmission which builds upon the transmission

model in Worby et al. (2016).

Next, in Section 3.4 we present the model likelihood and details for Bayesian inference,

then we develop a Markov chain Monte Carlo algorithm to draw samples from the

posterior distribution in Section 3.5.

In Section 3.6 we present a simulation study which details the simulation method,

transmission network accuracy, parameter estimation, sensitivity analysis and MCMC

diagnostics. In Section 3.7 we analyse the Brighton data set using the extended
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model developed throughout this chapter and perform model assessment. Finally, in

Section 3.8 we provide a discussion of our analysis and highlight the limitations of

our approach.

3.2 Brighton data set

In this section we present an overview of the Brighton data set, highlighting features

of the data that motivated the need to incorporate multiple subtypes in the genetic

model developed in Chapter 2. The data were collected as part of a study in the

Brighton and Sussex University Hospital (BSUH), where the study was conducted

between 31st October 2011 and 23rd December 2012, a total span for 14 months.

During the study, data were collected from two locations, an adult intensive care unit

(ICU) and high-dependency unit (HDU).

The adult ICU consisted of one 5-bedded area, one 4-bedded area, 3 double side

rooms, and 1 single side room. The adult HDU was located two floors below the ICU

and consisted of a 12-bedded unit with two 4-bedded areas, one 2-bedded areas, and

2 single side rooms (Price, 2014).

During the study period, patients were screened on admission to the ICU/HDU,

weekly thereafter and on the day of discharge. Screens consisted of a single nasal

swab, however in some cases swabs from the perineum, groin, sputum, urine and

wounds may have been collected. All patients received antibacterial skin washes

(Chlorhexidine) while on the ICU and patients identified as carrying MRSA received

adjunctive antibacterial nasal ointment mupirocin (Price, 2014).

The study also consisted of screening data from healthcare workers on the wards. A

total of 208 nurses were employed to work in the adult high-dependency settings at

the BSUH. Up to 21 nursing staff worked on the ICU/HDU per shift depending on

the number of patients, with shifts typically 12.5 hours long and allocation to either

the ICU or HDU determined on a shift-by-shift basis.
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Additional clinical staff were recruited in the final eight months of the study (16th April

2012 - 23rd December 2012), resulting in a total of 42 doctors and 9 physiotherapists

who worked on the ICU/HDU during the study. Healthcare workers were screened

weekly by nasal swabs, with a follow-up throat swab taken every six months.

Furthermore, environmental screening was undertaken on a monthly basis during

the study period, with air sampling performed at 10 locations on ICU and HDU.

Air sampling is a process which determines what airborne organisms are present in

an environment. Throughout the study period 26 bed spaces were serially screened,

where each screen consisted of 5 swabs representing areas of frequent staff contact

(monitor button, computer keyboard, disposable curtains) and other less frequently

touched areas such as the floor behind the bed and underside of the bed. Swabs were

also taken of the communal blood gas machine located in the central ICU utility

room.

All available screening swabs were included in the study and cultured for methicillin-

resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA). A timeline

of swab results can be found in Figure 3.2.

The test sensitivity of patient screening for MRSA colonisation is partially dependent

on the body sites sampled (Currie et al., 2008). For example, Senn et al. (2012)

estimate the sensitivity for the nose, groin, throat as 48%, 63% and 61% respectively

and as a consequence we wish to consider a model using only nasal swab data.

3.2.1 The data

The complete data set contains 1919 patient admissions which consists of 1760 unique

individuals where 124 patients were admitted more than once. From the 1760 unique

individuals, there are 1051 males (59.7%) and 709 females (40.3%) with an average

age of 62.2 years (median 65.9, IQR [49.9,76.7]). The average length of stay during

the ward is 5.2 days, with a median of 3 days (Figure 3.1).
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Figure 3.1: A summary of patients admitted to the ward in the

Brighton data set. Top: Distribution of age among the admitted

patients. Bottom: Length of stay for patients on the ward.

For the patient screening data there are 3851 recorded tests of which 759 returned a

positive result indicating that the individual is colonised with S. aureus at the time

of sampling. From the 759 positive test results, 552 are from the nose (72.7%), 91

from the perineum (12.0%), 30 from the sputum (3.96%) and the remaining 86 are

from other sources such as urine, groin, wounds, etc. A timeline of screening results

can be seen in Figure 3.2.

Motivated by the findings in Senn et al. (2012) where the authors found different test

sensitivity across anatomical sites, we shall consider nasal carriage only and discard

all test results from other anatomical sites. A timeline of the population of individuals

present in the ward can be seen in Figure 3.3, with the colonised population overlaid

where an individual is assumed to be colonised on day t if they have a positive test

result on or before day t and we assume individuals remain colonised until discharge.

From the timeline we can see that there is consistent carriage of the pathogen in
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Figure 3.2: A timeline of screening results for patients in the

ICU/HDU. Unique patient IDs are allocated based on ordered admis-

sion times (y-axis) with time in days on the x-axis. Points in black

indicate negative results, blue indicate positive for MSSA and red is

positive for MRSA.

the ward over the study period, highlighted by the fact that there is nearly always a

colonised patient in the ward at any point in time.

Healthcare worker data Of the 198 hospital staff who consented and were involved

in the study, 113 (57%) ever tested positive for colonisation of S. aureus during the

study period. Out of the 113 healthcare workers to ever test positive, 24 (21.2%) only

had one positive test with the remaining healthcare workers testing positive more

than once.

From the distribution of the number of positive tests in Figure 3.4 it can be seen
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Figure 3.3: A timeline of the total number of patients in the ward

(black) and the number of individuals who are assumed to be colonised

(red). Individuals are assumed to be colonised on day t if they have a

positive test result on or before day t.

that the majority of healthcare workers had more than one positive test result, with

30 healthcare workers having 10 or more positive results, suggesting fairly consist

carriage of S. aureus.

By considering the time series data for positive tests (Figure 3.5), we assume that

every individual with more than one positive result is colonised from the earliest

result to the latest result. Furthermore, we assume that each healthcare worker

remains colonised for α days following their last positive test result. This assumption

only applies to healthcare workers since we do not have precise information of when

the healthcare workers are present on the ward.

Genomic data In addition to the swab data, 1976 organisms were cultured and

sequenced of which 867 are sampled from patients (43.9%), 929 from healthcare
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Figure 3.4: The number of positive tests on the x-axis with frequency

of healthcare workers on the y-axis.

workers (47.0%) and the remaining 180 from the environment or unknown (9.1%).

An overview of the genetic sequences collected in the study can be seen in Figure 3.6.

Since primary interest lies with integrating healthcare worker data and patient data,

we focus on those sequences only and discard the rest. Out of the 1796 sequences

under consideration that are sampled from either patients or healthcare workers, 1308

are sampled from the nose (72.8%) which will be the final sequences used for the rest

of the analysis.

By excluding environmental and non-nasal swabs we are effectively discarding 668 of

the total 1976 (33.8%) genetic sequences. While this constitutes a large proportion

of the genetic data, the hope is that there is enough information left within the

remaining sequences to answer the primary research question, which addresses if we

are able to better determine transmission pathways with the addition of genetic data.

If we are interested in measuring the amount of within-host genetic diversity we can
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Figure 3.5: Top: Positive test results (black circle) for each healthcare

worker. Bottom: Assumed number of colonised healthcare workers on

the ward by assuming constant carriage in-between test results and

for a fixed period of α = 14 days thereafter.

look at every individual who has more than one genetic sequences sampled and look

at the pairwise distances between those sequences only. We define the term average

within-host diversity to be the mean of all pairwise distances from sequences sampled

from the same individual, which is calculated as follows.

Suppose there are N genetic sequences sampled from one of k individuals where each

individual has vi genetic sequences for i = 1, ..., k. Let A = {i : vi > 1} be the set of

individuals with more than one genetic sequence, then for each j ∈ A, let Dj denote

the matrix of pairwise distances calculated for the sequences from individual j. There

will be exactly Tj =
vj(vj−1)

2
pairwise distances distances labelled x1, x2, ..., xTj

and

hence the average pairwise distance for individual j is simply the arithmetic mean of

these distances calculated by 1
Tj

∑Tj

i=1 xi. From this we can construct a distribution

of the mean or average within-host diversity. Similarly, we can also calculate other

summary statistics, such as the median.
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Figure 3.6: An overview of the number of sequences collected during

the study from either (i) patients, (ii) healthcare workers or (iii) the

environment. The anatomical site has been coloured in to show the

relative frequency of each.

While this is a crude method to estimate the amount of within-host genetic diversity

in the sample, it does offer some indication of the proportion of diverse genetic

sequences. In Young et al. (2012) the authors estimate the number of mutations per

megabase per year for S. aureus to be 2.72 ([1.64,4.42] 95% credible interval), hence

one would expect to see a relatively small number of mutations, that is if sequences

are genetically related.

From Figure 3.7 it can be seen that the majority of the average within-host distances

fall within a reasonable range (less than four mutations), however it is clear there are

a large portion of pairwise distances that are greater than 10, 000 SNPs and hence

are almost certainly unrelated.
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Figure 3.7: Mean genetic distance between pairs of nasal isolates

sequenced from individuals with two or more sequences.

From the heat map of the pairwise distance matrix (Figure 3.8) it is somewhat difficult

to deduce much information from the genetic data, with the exception of observing

that there are extremely diverse genetic sequences with many distances greater than

10, 000 SNPs which corresponds to over 1800 years of evolution. It should be noted

that these sequences, albeit extremely diverse, are still variations of the pathogen S.

aureus.

Although not immediately obvious, upon closer inspection there are in fact small

areas of the heat map with colours indicating < 5 SNPs, which ultimately may

indicate epidemiological relatedness. We are not able to perform any meaningful

analysis with the extremely diverse genetic distances, instead we focus on the similar

genetic isolates. In a similar fashion to the work in Price et al. (2017) we define the

term genetic subtype to refer to ‘similar’ sequences, details of how to calculate these
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Figure 3.8: Heat map of the pairwise genetic distance matrix from

the Brighton data set where samples are sorted by unique patient ID

with only the upper triangular entries displayed due to symmetry. A

colour (key indicated on the right) in position (i, j) is representative

of the distance (or the number of SNPs) between sequences i and j.

genetic subtypes are discussed later in Section 2.7.3. Sequences within the same

genetic subtype can be thought of as snapshots of the same organism, therefore the

distances may be described by the mutation model.

We define the term putative transmission pair to be any pair of individuals that have

observed distances with less than 5 SNPs and also spend time on the ward together

at the same time. Intuitively if a pair of individuals have small genetic distances

and are on the ward at the same time, it is considered likely that one may have

colonised the other or both have been colonised by the same individual. We shall

focus on patient-patient and healthcare worker-patient pairs since we are not directly

modelling acquisition of healthcare workers.
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A plot of the putative transmission pairs can be found in Figure 3.9 which highlights

14 potential clusters containing a total of 22 individuals that are assumed to be

epidemiologically related.
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Figure 3.9: Putative transmission pairs for the Brighton data set

which is defined as either two patients (orange) or a patient and a

healthcare worker (blue) with at least one similar genetic sequence (a

genetic distance less than 5), who are also on the ward together at

the same time.

3.3 Incorporating healthcare worker data

In this section we develop the model described in Chapter 2 that readily incorporates

minimal healthcare worker data. Throughout this section we shall consider healthcare

workers as potential carriers of pathogens, with the objective to determine possible

transmission pathways that may have been result of healthcare worker to patient

contamination.
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Consequently we are not going to attempt to model the acquisition of the pathogen

from healthcare workers, even though in reality it may be the case that a healthcare

worker becomes colonised from a patient or other members of staff.

First we will review the literature and previous attempts to model the impact of

healthcare workers on the transmission of nosocomial infections and then present an

updated transmission model which includes healthcare worker data at an individual

level.

3.3.1 Background

Previous literature has indicated that transient carriage of S. aureus on the hands of

hospital personnel appears to be the most important mechanism of serial patient-to-

patient transmission (Thompson, 1982). The role of healthcare workers in transmission

of nosocomial infections is not fully understood and needs to be investigated further,

however prevalence of MRSA among healthcare workers has been previously esti-

mated to be 4.6% ([1.0, 8.2]% 95% confidence interval) from pooled results of 127

investigations (Hawkins et al., 2011).

A more recent study discussed in Sassmannshausen et al. (2016) looked at estimating

the prevalence among HCWs in nine hospitals in Germany. The authors estimated

the prevalence of MRSA among HCWs to be 4.6% from 729 participants.

Another more recent study discussed in Sassmannshausen et al. (2016) estimated the

overall prevalence of MRSA among HCWs in a non-outbreak situation to be 4.6%

A review and discussion of the literature can be found in Albrich and Harbarth

(2008) where the authors identified 27 studies from a total of 106 that reported

direct transmission from healthcare workers to patients through molecular and

epidemiological evidence, and a further 52 studies that consider transmission likely.

Barnes et al. (2010) investigates transmission of MRSA using agent based modelling
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and simulation. In the study the authors simulate scenarios such as varying levels

of transmissibility, number of colonised healthcare workers, isolation measures and

hand-hygiene compliance, to name a few. The study found that frequent transmission

occurs when the patient population is well mixed, which usually occurs when patients

share the same healthcare worker.

In Goldstein et al. (2017) the authors present a simulation based network modelling

approach to investigate the impact of hand hygiene on MRSA transmission within

healthcare settings. A stochastic susceptible-colonised compartmental transmission

model is used to describe the transmission of the pathogen indirectly via healthcare

workers and observational data is used to construct a contact network. The authors

conclude that the care network in the newborn intensive care unit described in the

study is a major contributor to the transmission of MRSA, which is likely due to

the care requirements in an intensive care setting which offer many opportunities for

healthcare workers to be intermediaries or vectors for colonisation.

In Nübel et al. (2013) the authors integrate epidemiological and genomic data in

order to investigate transmission pathways in a neonatal intensive care unit in Berlin.

Genetic isolates were cultured and sequenced from 26 patients, 2 mothers of patients

and 2 healthcare workers. Phylogenetic analysis identified two distinct clades which

indicate close epidemiological linkage between outbreak isolates.

The authors conducted a matched case-control study to identify risk factors of MRSA

transmission using controls such as positive swab results, weight at birth, gender,

length of stay etc. Patients who test positive for the pathogen are compared to patients

who have tested negative but have similar features (the ‘controls’). Admission times

were not included when matching cases and controls to avoid over-matching for

possible time-dependent factors affecting the entire ward, such as colonised healthcare

workers. By constraining the phylogenetic tree to be consistent with the spatial

and temporal epidemiological data, risk factor analysis using logistic regression was

performed which found that contact with one specific healthcare worker increased

the odds ratio of acquisition by 9.3 (p-value 0.03).
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Worby et al. (2014) provide a framework for the usage of a pairwise genetic distance

matrix to investigate disease transmission. The authors explicitly consider genetically

diverse isolates by developing a model that includes a molecular clock, within-host

pathogen population dynamics and a transmission bottleneck size. A Poisson mutation

model is used to describe the number of mutations between lineage divergence and

observation and a coalescent model is used to describe the number of mutations prior

to lineage divergence. Coalescent models assume a constant population size which

is violated by assuming a population bottleneck at the time of transmission, hence

the authors consider a discrete-time population model as an approximation to the

pathogen population size.

The authors apply the model to an outbreak at a special care baby unit in Cambridge

where there were 15 newborn infants colonised with MRSA, each with a single

genome sampled and sequenced. Furthermore, 20 genetic isolates were collected

from a healthcare worker. The results indicate that the colonised healthcare worker

played an important role in colonisation in the outbreak, with three patients having

a posterior probability of colonisation from the healthcare worker to be > 99%, and

another two patients with > 50% probability. A more detailed description of the

study can be found in Harris et al. (2013).

Popovich et al. (2020) present a detailed genomic analysis of patients, environments

and healthcare workers in 4 adult intensive care units between September 2015 and

February 2016. Swabs were taken from patients at various anatomical sites, environ-

mental room surfaces, and healthcare workers before and after patient encounters.

A pairwise distance matrix was constructed and a cutoff of 40 SNPs were used to

determine putative transmission clusters. Isolates found to be part of genomic clusters

that spanned different patient episodes were reviewed and further evaluated using

spatial (location and room of the encounter) and temporal epidemiological data. The

authors identified 2 instances of likely transmission between patients and healthcare

workers as a result of genetic sequences differing by a maximum of 10 SNPs.

While the role of healthcare workers on transmission of nosocomial infections is not
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entirely understood, it is clear that further work must be done to better understand

the impact on transmission in healthcare settings.

We now present a novel framework that incorporates healthcare worker data at an

individual level. In line with the work developed before in Chapter 2, we wish to use

the matrix of pairwise distances as summary statistics for the genetic data, which is

made up from a combination of both patient and healthcare worker genetic samples.

3.3.2 Transmission model for nosocomial infections

In this section we first present the discrete time stochastic transmission model

described in Worby et al. (2016) for patient data only before extending these ideas to

incorporate healthcare workers at an individual level.

Suppose we observe n patients labelled {1, ..., n} in a hospital ward over a period of

L days where patient j has a time of admission taj , a time of discharge, tdj , and a time

of colonisation, tcj. If an individual j avoids colonisation throughout their entire stay

on the ward, we set tcj = ∞.

As discussed in Section 3.1, time units are resolved at the level of days. At any time

(or day) t, each patient is categorized as being either (1) susceptible, where they are

able to contract the pathogen from other individuals or (2) colonised, where they

have tested positive for the presence of the pathogen.

We assume that admission and discharge times are fixed and do not contribute ot the

stochastic model - these times are directly provided in the data and are considered

reliable. We further assume that once an individual is colonised, they will remain

in that state until discharge. This seems reasonable since previous studies have

estimated that the median duration of colonisation is 8.5 months (Scanvic et al.,

2001), and the average length of stay for intensive care units has been estimated as

10.2 days (Toptas et al., 2018).
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We assume that there is no background transmission, i.e. the only way to acquire the

pathogen is through contact with an already colonised individual. It is important to

note in our scenario, given the nature of intensive care units, contacts are invariably

indirect and are usually through healthcare workers or hospital staff. We further

assume that new introductions of the pathogen to the ward are imported cases,

which are patients who are colonised on admission. We explicitly model this by

assuming that each individual has a probability p of being colonised on admission,

which is independent of every other patient. Let ϕ = (ϕ1, ..., ϕn) be the vector of

importations such that if a patient j is positive on admission, we set ϕj = 1 and

tcj = taj , otherwise ϕj = 0. We do not explicitly model patient readmissions, and

consider any readmission to be a new patient.

We assume that patients on the ward mix homogeneously and that colonisation

occurs upon contact with an already colonised individual. We note that patients do

not ‘mix’ with other patients in the usual sense, but rather each colonised patient is

equally likely to indirectly colonise each susceptible patient.

Suppose there are C(t) colonised patients on day t, then the probability for a

susceptible patient j to avoid colonisation on day t is given by e−βC(t), and it follows

that

Pr(patient j is colonised on day t) = 1− exp(−βC(t)).

Mathematically this is motivated by a homogeneous Poisson processes where individ-

uals mix at a constant rate β. It is important to note that the susceptible-colonised

pairs of contact are formulated as a continuous-time model, which needs to be trans-

lated in a discrete-time setting. To construct a discrete-time model we assume that

once an individual has been colonised, they are then able to colonise other individuals

in the following day. This ensures that the total pressure from colonised individuals

remains constant throughout each day. An illustration of the compartmental model

can be seen in Figure 3.10.

If an individual becomes colonised at time tcj, it is assumed that they are able to
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Figure 3.10: A stochastic compartmental model where individuals

are either susceptible or colonised. Individuals may be admitted in a

susceptible state with probability 1−p, and admitted with a colonised

state with probability p. Individuals transition from susceptible to

colonised at a rate of βC(t) and eventually patients are discharged.

colonise others from time tcj + 1 to tdj . Furthermore, each patient j may be tested

regularly for presence of the pathogen during their stay. Let vj be the number of tests

for patient j, at times ttj = {tt1,j, ..., ttvj ,j} with results xj = {x1,j, ..., xvj ,j} which are

either positive or negative. Each pathogen test is assumed, independent of any other

test, to have sensitivity z and specificity 1, which means a colonised individual has

probability z to return a positive result, and an uncolonised individual will always

return a negative result. The swab test results may also be referred to as ‘screening

data’.

It is also possible for an individual to have multiple tests on a given day, and is often

common in real data scenarios. This is because swab testing carriage for MRSA is

performed at multiple anatomical sites, for example the throat, groin and broken skin

to name a few (Price et al., 2017). Patient tests are often performed on admission

and regularly after that. It is possible that some hospital wards may adjust their

test frequency depending on a patients clinical state, but in our analysis we do not

assume that a patient who receives a test is in any way more likely to be colonised

than a patient who did not receive a test on any given day.

A colonised patient j who receives positive screening results may also have mj isolates



Chapter 3: Analysis of the Brighton data set 86

of the pathogen sequenced. Genetic sequences, gj = {g1,j, ..., gmj ,j}, for a patient j,

are produced from isolates sampled at times tsgj = {tsg1,j , ..., t
s
gmj,j

}.

Since we are interested in inferring the source of transmission, we introduce the vector

s = (s1, . . . , sn) to be the vector of sources such that si = j implies that patient j is

the source of colonisation for individual i, and we set si = −1 if patient i is colonised

on admission and si = ∞ if the patient is never colonised.

3.3.3 Transmission model with healthcare worker data

In this section we extend the transmission model described in the previous section

with the distinction that we now allow for the possibility of patient colonisation

from healthcare workers. The aim here is to include healthcare worker data at an

individual level, with the following assumptions:

1. Healthcare workers that ever become colonised are assumed to have imported the

pathogen from the community, that is to say we assume that healthcare workers

cannot become colonised by patients or other staff which is a consequence of

not directly modelling healthcare worker acquisition.

2. Following a positive test result on day t, healthcare workers are able to colonise

other individuals from day t onwards.

3. If a healthcare worker has more than one positive result, they are assumed to

be colonised at every time in between positive test results and α days thereafter.

If a healthcare worker has one test result, then they are able to colonise patients

for α days thereafter.

These assumptions may not be entirely reasonable in practice, for example assumption

3 assumes that colonised healthcare workers are potentially able to colonise patients

on the ward the entire time between positive swab results. This may be somewhat

flawed in practice in the sense that some healthcare workers may not be present
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for some patient episodes (such as working on a different ward, annual leave, etc.),

however they are considered by the model to exert a constant colonisation pressure

at all times. Furthermore, with assumption 1 we are implicitly assuming that that

healthcare works become colonised uniformly at random.

These assumptions are specific to the Brighton data set, that is to say we only

have information on positive test results that have then be sequenced. There is no

information in the data about negative test results, positive results that were not

sequenced or shift patterns.

Another issue is that due to the nature of modelling nosocomial infections in an

intensive care unit, forward transmission is implicitly assumed to occur indirectly

through healthcare workers. We are now considering a model where patients are able

to colonise other patients indirectly through healthcare workers or the environment,

while healthcare workers are also able to colonise patients directly. Note that the

respective parameters may be difficult to interpret due to the fact there is no

information in the data to suggest whether colonisation is direct or otherwise.

Consider a general scenario similar to that in Section 3.3.2 whereby we have n

patients labelled {1, ..., n} monitored over a study period from t = 0 to t = L days.

Furthermore, suppose that there are nH healthcare workers labelled {n+1, ..., n+nH}

working on the ward over the study period.

We define βH to be the rate of colonisation between healthcare worker and patient

pairs and H(t) to be the number of colonised healthcare workers in the ward at time

t. Recall from Section 3.3.2 we define β to be the rate of contact between pairs of

patients and C(t) to be the number of colonised patients on the ward on day t. For a

given susceptible patient, the total colonisation pressure that is exerted by colonised

patients and healthcare workers is given by A = βC(t) + βHH(t), and therefore the

probability of colonisation is given by

Pr(susceptible patient j is colonised on day t) = 1− exp (−A) .

We are assuming that patients who acquire the pathogen in the ward on day t are
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Susceptible

S(t)

Admission

Discharge

Colonised

C(t)

Admission

Discharge

1− p p

βC(t) + βHH(t)

Figure 3.11: A stochastic compartmental model where individuals

are either susceptible or colonised. Individuals are admitted in a

susceptible state with probability 1− p or with a colonised state with

probability p. Individuals on the ward recieve colonisation pressure

from colonised patients and healthcare workers where individuals

transition from susceptible to colonised at a rate of βC(t) + βHH(t)

and eventually patients are discharged.

then able to colonise other patients on day t+ 1. Furthermore, we assume that on a

given day, any susceptible patient that becomes colonised is independent of all other

susceptible patients that become colonised.

In our model we wish to infer C(t) and H(t), the number of colonised patients and

healthcare workers in the ward on day t respectively.

3.4 Inference

We have extended the transmission model in Worby et al. (2016) to incorporate

healthcare worker data and also the genetic model in Chapter 2 by relaxing assump-

tions to allow for the possibility of multiple genetic subtypes. Now we outline the

inference procedure in a Bayesian framework.
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3.4.1 Data and notation

Suppose we have n patients and nH healthcare workers ever admitted, or recorded to

have worked on the ward in the case of healthcare workers, over a study period from

t = 0 to t = L days. Let zobs = (ta, td) denote the set of admission and discharge times

of both patients and healthcare workers where ta = (ta1, ..., t
a
n, t

a
n+1, ..., t

a
n+nH

) and

td = (td1, ..., t
d
n, t

d
n+1, ..., t

d
n+nH

). The transmission dynamics are defined as T = (tc, s, ϕ)

which contains the colonisation times, tc, vector of sources, s, and importation statuses,

ϕ, for both patients and healthcare workers.

Recall from Section 3.3 that we assume healthcare workers import the pathogen from

the community, i.e. they were colonised before admission and did not acquire the

pathogen on the ward, therefore they are considered to be importations. Furthermore,

from the Brighton data set we only have information on positive test results that were

sequenced and therefore do not know the admission and discharge times, however

for simplicity we set the admission time of healthcare workers to be t = 0 and the

discharge time to be t = Ti+α where Ti is the latest positive test result for healthcare

worker i and α is the colonisation period which is assumed to be fixed and known.

The observational data consists of the matrix, denoted by xs ∈ {−1, 0, 1}(n+nH)×(L+1)

of test results where the elements of xs are defined as

(xs)i,j =


1 individual i tests positive on day j − 1

0 individual i tests negative on day j − 1

−1 individual i has no test on day j − 1.

Note that above we have j − 1 because the study period begins at t = 0 and matrices

are indexed from 1.

Given there are ns genetic sequences, the genetic data is defined as ψ = (D, τ, ν, η)

where D is the matrix of pairwise distances, τ is the corresponding sampling times

for the sequences and ν contains the ID of the individual which the sequence was

sampled from, either a patient or healthcare worker. Define the vector η to contain



Chapter 3: Analysis of the Brighton data set 90

the subtype number for each genetic sequence which is an arbitrary label in {1, ..., K}

where K is the number of distinct genetic subtypes. Furthermore, the genetic network

G may now be composed of multiple sub genetic networks which explicitly is written

as G = ∪K
i=1Gi. The genetic network G is not a genuine parameter as the object is

uniquely constructed depending on the unobserved transmission dynamics G = G(T ),

however we consider it to be a separate parameter for clarity in notation. There also

may be unobserved genetic data denoted by ψ̃ = (D̃, τ̃ , ν̃, η̃).

Let F = (T, ψ̃,G) denote the vector of unobserved quantities that must be imputed

and ρ = (z, p, β, βH , λ, µ) the vector of model parameters, where we ultimately aim

to infer these quantities. The key data and notation used in the model is summarised

in Table 3.1.

3.4.2 Model likelihood

In this section we present the joint likelihood of the transmission dynamics, screening

results and genetic data conditional the model parameters. The joint likelihood

π(zobs, ψ, xs|ρ) in Equation (3.1) is intractable as it involves summing over all possible

unobserved values of F ,

π(zobs, ψ, xs|ρ) =
∑
F

π(zobs, ψ, F, xs|ρ). (3.1)

Consequently, we consider augmenting the parameters space in a Bayesian framework

with the unobserved quantities F which in turn leads to an augmented tractable

likelihood. Note that we can decompose this likelihood into independent components,

such that

π(zobs, ψ, F, xs|ρ) = π(ψ, ψ̃|zobs, T,G, ρ)π(xs|zobs, T, ρ)π(T |zobs, ρ), (3.2)

where the first term in Equation (3.2) is the likelihood of the genetic data, the second

term is the likelihood of observational data arising from the pathogen screening tests

and lastly the third term in is the likelihood of the transmission dynamics.
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Notation used for Chapter 3

n Total number of patients admitted to the ward over the study

L Length of study in days

zobs = (ta, td) Observed admission and discharge times that do not contribute to the

stochastic model

ta Vector of admission times where tai is the admission time for the ith

individual

td Vector of discharge times where tdi is the discharge time for the ith indi-

vidual

T = (tc, s, ϕ) Vector of quantities that describe the transmission dynamics

tc Vector of colonisation times where tci is the colonisation time for the ith

individual

s Vector of sources

ϕ Vector of importation statuses

xs The swab times and results encoded in a matrix

ψ = (D, τ, ν, η) Observed genetic data consisting of the pairwise distance matrix D,

sequence sample times τ , IDs ν and subtype numbers η.

ψ̃ = (D̃, t̃s, ν̃, η̃) Unobserved genetic data consisting of the pairwise distance matrix D̃,

sequence sample times τ̃ , IDs ν̃ and subtype numbers η̃.

G The underlying genetic network that describes the structure of the isolates

F = (T, ψ̃,G) Vector of unobserved quantities that consists of the transmission dynamics

T , the unobserved genetic data ψ̃ and the underlying genetic network G.

ρ = (z, p, β, βH , λ, µ) Vector of model parameters

z Test sensitivity parameter

p Importation probability parameter

β Transmission rate parameter

βH Healthcare worker transmission rate parameter

λ Mutation rate parameter

µ Average imported sequence distance parameter

Table 3.1: Summary of the data and notation used in the extended

model which models the contribution of healthcare worker data and

genetic diversity.
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Epidemiological component The term π(T |zobs, ρ) in Equation (3.2) is the

likelihood of the data given the admission and discharge times and the model

parameters. Recall that the total number of patients who are ever admitted to

the ward over the course of the study is denoted by n and the health care workers in

the study is denoted by nH . The total number of individuals in the study are labelled

i = 1, ..., n, n+ 1, ..., n+ nH where the first n individuals correspond to patients and

individuals n+1 to n+nH correspond to healthcare workers, the likelihood is written

as

π(T |zobs, ρ) = p
∑n

i=1 ϕi(1− p)n−
∑n

i=1 ϕi

×
n∏

i=1

exp
−1{tci ̸=tai }

min(tci−1,tdi )∑
t=tai

βC(t) + βHH(t)


×
∏

j:tcj ̸=∞
ϕj=0

[(
1− e−(βC(tcj)+βHH(tcj))

βC(tcj) + βHH(tcj)

)(
1{sj≤n}β + 1{sj>n}βH

)]
, (3.3)

where the source of colonisation sj necessarily must be able to colonise patient j.

The first term is the contribution of the importation status of individuals. The first

product is the probability of individuals avoiding colonisation events. The second

product is the probability that a given individual is colonised which depends on

whether the source of colonisation is a patient or healthcare worker. Specifically this

joint probability can be split into the following:

Pr(Colonisation on day t and colonised by type i)

=Pr(Colonised by type i | colonised on day t) Pr(colonised on day t)

where the type i can either be a patient or healthcare worker. The probability of

colonisation on day t is given by

Pr(colonised on day t) = 1− e−(βC(t)+βHH(t)).

If we first consider the probability of colonisation from any other patient given that

the patient has been colonised on day t, we assume that all colonised individuals are

equally likely to be the source of transmission and we obtain the following

Pr(Colonised by patient | colonised on day t) =
βC(t)

βC(t) + βHH(t)
× 1

C(t)
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where the first term is the probability of colonisation from all colonised patients and

the second term is the probability of the source of transmission, since each of the

C(t) colonised individuals are considered to be equally likely. In a similar fashion,

the probability to become colonised by a specific healthcare worker is given by

Pr(Colonised by patient | colonised on day t) =
βHH(t)

βC(t) + βHH(t)
× 1

H(t)
.

Recall that s denotes the vector of sources, therefore if there are n patients then it

follows that sj ≤ n for any patient j who is colonised by another patient, otherwise

sj > n which indicates colonisation by a health care worker. After simplifying

terms and inclusion of the indicator functions which determine whether the source

of colonisation is a patient or healthcare worker, we arrive at the second product in

Equation (3.3).

Screening component The contribution of the observational screening data

π(xs|zobs, T, ρ) is given by

π(xs|zobs, T, ρ) = zTP(xs)(1− z)FN(xs,T ), (3.4)

where TP(xs) and FN(xs, T ) are the number of true positive and false negative test

results. Explicitly these quantities are

TP(xs) =
n∑

i=1

L+1∑
j=1

1{xs
ij=1}

FN(xs, T ) =
n∑

i=1

L+1∑
j=1

1{xs
ij=0,tci≤j+1}

Since we assume that tests have perfect specificity, the number of true positives

depends on the observed data alone and is simply the number of all positive test

results. On the other hand, the number of false negatives depends on the unobserved

colonisation times and is not known from the observed data.

We note that in the Brighton data set healthcare workers do not contribute to the

number of false negatives and true positives due to lack of negative test data.
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Genetic component In Section 2.9 we describe the genetic model in an outbreak

setting. Suppose there are K distinct genetic subtypes defined by the vector η where

each subtype contains mi imported sequences for i = 1, ..., K and let I i = (I i
1, ..., I i

mi
)

denote the vector of imported sequence labels for genetic subtype i.

The contribution to the likelihood from the complete genetic data (ψ, ψ̃) given the

admission and discharge times, zobs, unobserved transmission dynamics T , genetic

network G and model parameters ρ is given by

π(ψ, ψ̃|zobs, T,G, ρ) ∝
∏

(i,j)∈E(G)

(1− q (tij))
N−Dij

(
1

3
q (tij)

)Dij

×
K∏
i=1

mi∏
j=2

j∏
k=1

µ
DIi

j
Ii
ke−µ

DIi
jIi

k
!

(3.5)

where E(G) is the set of edges in the genetic network G, q(tij) is the probability of

observing a mutation between nodes i and j in tij time units. The first term is the

contribution of directly connected distances assuming a mutation model and the

second term is the contribution of all distances between imported sequences within

the same genetic subtype.

Furthermore, the proportionality in Equation (3.5) is required due to the fact we

only have knowledge of the full matrix of pairwise distances and do not know the

precise number of mutations at each site.

3.4.3 Bayesian inference

Our primary interest is to make inferences about the model parameters ρ and

unobserved data F , and to do so we wish to explore the joint posterior density
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π(ρ, F |zobs, ψ, xs). From Bayes’ Theorem we obtain

π(ρ, F |zobs, ψ, xs) ∝ π(ψ, ψ̃|zobs, T,G, ρ)π(xs|zobs, T, ρ)π(T |zobs, ρ)π(ρ)

= zTP(xs)(1− z)FN(xs,T )

×
∏

(i,j)∈E(G)

(1− q (tij))
N−Dij

(
1

3
q (tij)

)Dij

×
K∏
i=1

mi∏
j=2

j∏
k=1

µ
DIi

j
Ii
ke−µ

DIi
jIi

k
!

×
n∏

i=1

exp
−1{tci ̸=tai }

min(tci−1,tdi )∑
t=tai

βC(t) + βHH(t)


×
∏

j:tcj ̸=∞
ϕj=0

[(
1− e−(βC(tcj)+βHH(tcj))

βC(tcj) + βHH(tcj)

)(
1{sj≤n}β + 1{sj>n}βH

)]

× p
∑n

i=1 ϕi(1− p)n−
∑n

i=1 ϕi × π(ρ), (3.6)

where the first three terms denote the likelihood of the observational, genetic and

epidemiological data given by Equations (3.3)-(3.5) and π(ρ) is the joint prior density

of the parameters. If the outbreak is fully observed then it is straightforward to

sample from the posterior distribution using Markov chain Monte Carlo algorithms.

If the outbreak is not fully observed (which is invariably the case for real data sets),

then we must update the augmented data in an efficient manner to explore the space.

We assign

z ∼ Beta(αz, βz)

p ∼ Beta(αp, βp)

β ∼ Exp(νβ)

βH ∼ Exp(νβH
)

λ ∼ Exp(νλ)

µ ∼ Gamma(αµ, βµ)

a priori and assume that for the priors the parameters are independent, i.e. π(ρ) =

π(z, p, β, βH , λ, µ) = π(z)π(p)π(β)π(βH)π(λ)π(µ). Details of the MCMC algorithm

can be found in Section 3.5.
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3.5 Markov chain Monte Carlo procedure

In order to fit the model outlined in Section 3.4.3, we employ a data-augmented

MCMC routine to sample the parameters ρ and the unobserved data F from the

target density in Equation (3.6).

At each iteration our MCMC routine updates each parameter sequentially, and then

proposes updates to the augmented data y times. Details of the routine can be found

in Algorithm 3 and parameter updates can be found in Section 3.5.1. The mechanisms

for imputing genetic distances and updating the augmented data described later in

Section 3.5.2.

Algorithm 3 Structure of the MCMC algorithm

1: Initialise the chain with initial values z(1), p(1), β(1), β
(1)
H , λ(1), µ(1), maximum

number of iterations M , proposal variances σ2
β, σ

2
βH
, σ2

λ and prior parameters

az, bz, ap, bp, νβ, νβH
, νλ, aµ, bµ.

Repeat the following steps

2: Sample z(i) from the full conditional distribution.

3: Sample p(i) from the full conditional distribution.

4: Update β(i) using a random walk Metropolis-Hastings step with proposal variance

σ2
β.

5: Update β
(i)
H using a random walk Metropolis-Hastings step with proposal variance

σ2
βH

.

6: Update λ(i) using a random walk Metropolis-Hastings step with proposal variance

σ2
λ.

7: Sample µ(i) from the full conditional distribution.

8: Update the augmented data y times.



Chapter 3: Analysis of the Brighton data set 97

3.5.1 Parameter updates

In this section we explicitly show how each of the parameters are updated in our

MCMC algorithm. Let X = (zobs, ψ, xs) denote the observed data, ρ the model pa-

rameters, F the unobserved data and ρ−x to be the vector of parameters not including

x. We may sample p, z and µ from the following full conditional distributions,

z | ρ−z, F,X ∼ Beta (αz + TP(xs), βz + FN(xs, T ))

p | ρ−p, F,X ∼ Beta

(
αp +

n∑
i=1

ϕi, βp + n−
n∑

i=1

ϕi

)

µ | ρ−µ, F,X ∼ Gamma

(
αµ +

K∑
i=1

mi∑
j=2

j∑
k=1

DIi
jIi

k
, βµ +R

)
,

where the triple sum is the total of all pairwise distances and R is the number of

pairwise distances between imported sequences within the same subtype. For the

remaining parameters which are the patient transmission rate β, healthcare worker

transmission rate βH and mutation rate λ, we may update these parameters using a

Metropolis-Hastings random-walk with a normal proposal distribution.

Let β′, β′
H and λ′ be the proposal values for the parameters and ρ′ be the vector

of proposal parameters where ρ′ = (p, z, β′, βH , λ, µ), ρ
′ = (p, z, β, β′

H , λ, µ) or ρ
′ =

(p, z, β, βH , λ
′, µ), depending on which parameter we are trying to update. Explicitly

the proposal values are given by

β′ ∼ N(β, σ2
β)

β′
H ∼ N(β, σ2

βH
)

λ′ ∼ N(λ, σ2
λ),

which are accepted with probability

min

(
1,
π(ρ′, F |zobs, ψ, xs)
π(ρ, F |zobs, ψ, xs)

)
.
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3.5.2 Imputing genetic distances

In this section we present the proposal mechanisms for imputing genetic distances.

Recall from Section 2.8 that we are assuming that each individual has a genetic

sequence at the time of colonisation, which may be unobserved. If the time of

colonisation for an individual occurs prior to the first observed genetic sequence then

a new set of distances may need to be imputed.

The general setup is as follows. Suppose we wish to impute genetic distances for some

genetic sequence denoted by X for patient i at time t = tX . Begin by constructing

the genetic network G which includes the imputed node. Define the parent node as

the node which corresponds to the genetic source. Suppose the parent node of X

is node j, then we write this by Pa(X) = j. If there is no genetic source, then the

imputed node X is imported, and we set the parent node Pa(X) = −1.

Define a child node for node X to be a genetic sequence with X as the genetic source,

then the set of child nodes for X is defined as Ch(X) = {j : Pa(j) = X}. Let |Ch(X)|

denote the number of child nodes such that X is the parent. If |Ch(X)| ≤ 1, i.e.

there are no children or only one child node, then the imputation is not necessary.

We begin by defining two distinct scenarios for imputing genetic nodes, which are

interior nodes and exterior nodes. We define an imputed node X to be an interior

node if and only if Pa(X) ̸= −1, otherwise it is an exterior node. An example setup

with an interior and exterior node is given in Figure 3.12.

Before looking at the specific details of the imputation, recall a key fact for Poisson

processes. Let N(t) be the number of mutations in t time units. Suppose there are

N(t) = n mutations observed in the interval [0, t], then the n points are distributed as

independent and identically distributed uniform random variables on [0, t]. It follows

that for s < t,

(N(s)|N(t) = n) ∼ Bin(n, s/t). (3.7)
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3

1

4

XE
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Figure 3.12: An example setup with an interior node, denoted by XI ,

and an exterior node denoted by XE . Since the node XI has a parent

node given by Pa(XI) = 1 and children nodes Ch(XI) = {2, 3}, then

by definition XI is an interior node. Similarly, node XE has no parent

and thus PA(XE) = −1 with children nodes Ch(XE) = {4, 5}, hence

XE is an exterior node by definition.

Imputing interior nodes Suppose we wish to impute a set of genetic distances

for a genetic sequence labelled X at time t = tX . The term interior node comes from

the fact there exists a parent node Pa(X) and at least two child nodes Ch(X). Let

k = |Ch(X)| be the number of child nodes and begin by labelling the parent node

P which is observed at time t = tP and the child nodes Ci for which is observed at

times t = tCi
for i = 1, ..., k.

Let α ∈ Ch(X) denote the sequence that exhibits the smallest amount of genetic

evolution between the parent node P and the child nodes Ch(X), i.e. DPα ≤ DPCi

for all i = 1, ..., k. We are interested in the number of mutations between nodes P

and X (denoted by DPX) in the smaller interval t = tP − tX , given that we have

observed DPα mutations in the larger interval t = tα − tX .

In line with the notation in Equation (3.7), we have n = DPα, s = tP − tX and

t = tα − tX . Therefore we can propose the genetic distance between the parent node
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P and the imputed node X by

(DPX |DPα = n) ∼ Bin

(
n,
tP − tX
tα − tX

)
By assuming that any nucleotide cannot mutate more than once, the distances

between the imputed node X and the child nodes Ci for i = 1, ..., k are calculated by

DXCi
= DPCi

−DPX .

Although this assumption is not entirely consistent with continuous time Markov

chains, we find this assumption to be reasonable for large N and small t. Verifying

the validity of this assumption is discussed more in detail in Section 3.6.7.

The genetic distance between the imputed node X and all other nodes is calculated

by simply summing the total distance along the branches to the node. An example

outbreak that requires imputing an interior node is presented in Figure 3.13.

0 1 2 3 4

time (days)

patient i

patient j
1

X 2

3

(a) Transmission tree

1 X

2

3

(b) Genetic network

Figure 3.13: An example outbreak with genetic data (a) and the

corresponding genetic network (b) for the scenario of imputing interior

nodes. Patient j colonises patient i at time t = 2, with observed

genetic sequences denoted in blue, and the unobserved sequence X

in red. The imputed node is denoted by X, with the parent node

Pa(X) = 1 and child nodes Ch(X) = {2, 3}.

Imputing exterior nodes Suppose we wish to impute a set of genetic distances

for a sequence labelled X at time t = tX such that node X has no parent, i.e.
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Pa(X) = −1 and therefore X is an exterior node. Let Ch(X) denote the set of child

nodes and k = |Ch(X)| denote the number of child nodes, where k ≥ 2. Label the

child nodes Ci which is observed at time t = tCi
for i = 1, ..., k.

Let α, β ∈ Ch(X) denote the pair of sequences from the child nodes that exhibits the

smallest amount of genetic evolution, where α ̸= β. In a similar fashion to before,

we wish to simulate the distance DXα mutations in the interval t = tα − tX , given

that there are Dαβ in the larger interval t = (tα − tX) + (tβ − tX). By considering

the setup in Equation (3.7), we obtain

(DXα|Dαβ = n) ∼ Bin

(
n,

tα − tX
tα + tβ − 2tX

)
.

Assuming that nucleotides cannot mutate more than once in the time interval, the

distance between the imputed node X and child node Ci is given by

DXCi
= DαCi

−DXα, i = 1, ..., k Ci ̸= α.

Now we must consider the distance between the imputed node X, and other nodes

in the genetic network G that are roots of their genetic tree. Let SX = {i : Pa(i) =

−1, i ̸= X} denote the set of imported sequences that excluding the imputed node

X and kX = |SX | denote the size of this set. Given that kX > 0, we calculate these

distances by

DiX = Diα −DXα, i ∈ SX .

The genetic distance between the imputed node X and all other nodes is calculated

by simply summing the total distance along the branches to the node. An example

outbreak that requires imputing an exterior node is presented in Figure 3.14.

3.5.2.1 Proposal ratios when imputing distances

In this section we briefly outline the contribution to the proposal ratio when updating

genetic data. After proposing a change to the transmission tree it may be necessary

to update the augmented genetic data.
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Figure 3.14: An example outbreak with genetic data (a) and the

corresponding genetic network (b) for the scenario of imputing exterior

nodes. Patient j colonises patient i at time t = 2, patient k is colonised

on admission. Observed genetic sequences denoted in blue, and the

unobserved sequence X in red. The imputed node is denoted by X,

with the parent node Pa(X) = −1 and child nodes Ch(X) = {1, 2}.

Let N ,N ∗ denote the set of nodes that require imputation given the current and

proposal configuration respectively. Then we simulate distances for each i ∈ N ∗ using

the mechanisms in Section 3.5.2. The contribution to the proposal ratio is given by

Ygen =

∏
i∈N

(
1{P (i)̸=−1}fI(i) + 1{P (i)=−1}fE(i)

)∏
i∈N ∗

(
1{P (i)̸=−1}fI(i) + 1{P (i)=−1}fE(i)

) ,
where fI(i) and fE(i) are the probability mass functions associated with generating

interior and exterior distances respectively. Explicitly these are given by

fI(i) = Pr

[
Bin

(
DPα,

tP − ti
tα − ti

)
= DiP

]
,

where for each imputed node i, P denotes the parent node and α denotes the child that

exhibits the minimum amount of genetic evolution. Similarly, for exterior distances

we obtain

fE(i) = Pr

[
Bin

(
Dαβ,

tα − ti
tα + tβ − 2ti

)
= Diα

]
,
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where for each imputed node i, α and β denote the pair of nodes that exhibit the

minimum amount of genetic evolution.

In each step we are proposing to update all of the unobserved genetic distances

simultaneously, i.e. a block update.

3.5.3 Augmented data updates

In this section we present the motivation for updating the augmented data and the

specific mechanisms for this, which is based on the work in Cassidy (2019) and Worby

et al. (2016). The general idea is as follows: any individual who receives a positive test

result must have a colonisation time since we are assuming that the test specificity is

100% and there are no false positives. The colonisation times are partially observed

in the sense that the exact time of colonisation is not known, but the latest time

an individual could have been colonised is the time of the first positive test result.

Therefore we propose to update the colonisation times by moving them.

In principle any patient may have a finite colonisation time and will either be colonised

on admission or colonised by another patient. For those patients with no positive test

results, addition and deletion of colonisation times can occur in addition to moving

the times.

After sampling a new vector of model parameters we proceed to update the augmented

data F , which consists of the set of colonisation times, importation statuses, sources

of colonisation and genetic data. In order to update the augmented data, we randomly

choose one of the possible moves with equal probability. We may also update the

importation status of an individual and the source of colonisation.

Once we have proposed a colonisation time, source of colonisation and importation

status, we may also update the genetic data. Genetic sequences (and corresponding

distances) need only be imputed in cases which are necessary to capture the shared

stochastic evolution of the pathogen. After identifying the set of sequences and times
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that require imputation, distances can be generated using the scheme discussed in

Section 3.5.2.

Let F ∗ denote the complete candidate data set such that F ∗ = {tc∗, ϕ∗, s∗, D̃∗, τ̃ ∗,

ν̃∗, G∗} and define the proposal ratio qF,F ∗ = Pr(F ∗ → F )/Pr(F → F ∗), which is

the probability of making the reverse move divided by the probability of making the

forward move.

First we propose to update the transmission tree by proposing a move with corre-

sponding candidate values (tc∗, ϕ∗, s∗). Depending on the move proposed we then

identify sequences that should be imputed (or removed) and update the candidate

genetic network G∗. Finally, we then update genetic distances and propose values for

(D̃∗, τ̃ ∗, ν̃∗). Hence we accept the proposal data set F∗ with probability

min

(
1,
π(ρ, F ∗|zobs, ψ, xs)
π(ρ, F |zobs, ψ, xs)

qF,F ∗

)
.

For the rest of this section we shall outline the specific moves and the corresponding

proposal ratios.

3.5.3.1 Moving a colonisation time

Select one of the colonised patients uniformly who are considered to have ever

contracted the pathogen during their stay on the ward, called patient j. With

probability w the patient is proposed to be an importation and we set ϕ∗
j = 1 and

tc∗j = taj , otherwise with probability 1 − w the patient is proposed to have been

colonised by another patient. Let lj be the last possible day that patient j could

have been colonised, which is either the time of first positive swab or the time of first

colonisation with patient j as the source. Then uniformly sample the colonisation

time tc∗j from the day of admission to the last day, {taj , ..., lj} and set ϕ∗
j = 0. Select

a source of colonisation uniformly from one of the C(tc∗j ) individuals that are able to

colonise on day tc∗j , if C(t
c∗
j ) = 0 then we reject this move.

Finally, given the proposal transmission tree we update the genetic data introduced
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in Section 3.5.2.1 with a contribution of Ygen to the proposal ratio.

The mechanisms to propose updates for colonised individuals depend on the current

configuration of the chain and the type of proposal. The proposed moves and

corresponding proposal ratios qF,F ∗ for patient j can be summarised in Table 3.2.

Acquisition Importation

Acquisition
C(tc∗j )

C(tcj)
Ygen

1−w
w(lj−taj+1)C(tcj)

Ygen

Importation
w(lj−taj+1)C(tc∗j )

1−w
Ygen Ygen

Table 3.2: Proposal ratios for the possible moves when updating an

individual’s time of colonisation, importation status and source. The

leftmost column is for the current state of the patient, and the top

row is the proposal state. Importations are the case where patients

are positive on admission, and acquisitions the case of patients being

colonised by other patients.

3.5.3.2 Adding a colonisation time

In this move we randomly select a currently uncolonised patient, j, and propose to add

a colonisation for them. If there are no uncolonised patients to select, then no move

is made. The number of uncolonised patients is the number of patients to have never

tested positive, ns, minus the number of patients added by the algorithm, na. For a

given patient j, propose them to be an importation with probability w, in which case

we set tc∗j = taj and ϕ∗
j = 1. Otherwise patient j is proposed to have been colonised

by another patient with probability 1 − w, and the colonisation time is uniformly

sampled from the day of admission to the day of discharge, {taj , ..., tdj}. The source

of the colonisation is then sampled randomly from the C(tc∗j ) currently colonised

patients. If there are no colonised patients at the proposed time of colonisation, then

no move is made.
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The proposal ratio for adding an importation is given by

qF,F ∗ =
ns − na

w(1 + nz)
,

and the proposal ratio for adding an acquisition is

qF,F ∗ =
C(tc∗j )(ns − na)(t

d
j − taj + 1)

(1− w)(1 + nz)
.

3.5.3.3 Removing a colonisation time

In this move we uniformly select one of the na patients who have been added by

the algorithm but are not considered to be a source of colonisation. If there are

no available individuals to remove, then no move is made. If we are removing an

individual who is assumed to be imported, then the proposal ratio is

qF,F ∗ =
nzw

ns − na + 1
.

If we are removing an individual who is assumed to be an acquisition, then the

proposal ratio is

qF,F ∗ =
nz(1− w)

(tdj − taj + 1)(ns − na + 1)(C(tcj)− 1)
.

We note that in each of our proposal moves, the quantity w is simply a tuning

parameter to ensure sufficient mixing and exploration of the state space.

3.5.3.4 Moving a colonisation time of a healthcare worker

Similar to moving the colonisation time of patients, this move is motivated by the

fact that colonisation times are not known exactly and there is uncertainty due to

the test sensitivity and testing frequency. We found that in simulated scenarios it

may be the case that a healthcare worker colonises a patient on day t and then tests

positive on day t+ δ for some δ > 0. If the healthcare worker colonisation times were

fixed then it could be possible that the patient would never be colonised by the ‘true’
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source, hence we propose small updates to the colonisation times that help resolve

these issues and explore the state space of the chain.

Let nH be the number of healthcare workers with a finite colonisation time. Uniformly

at random sample one of the nH workers, denoted by j. Let tcj denote the current

colonisation time for the healthcare worker, we then update this time by adding 1 with

probability 1
2
or subtract 1 with probability 1

2
, and denote this proposal colonisation

time as tc∗j . If the proposal time is outside of the study period we reject the move, in

other words reject if tc∗j < 0 or tc∗j > L.

Finally, given the proposal transmission tree we update the genetic data (see Sec-

tion 3.5.2.1 for details) and hence the proposal ratio is qF,F ∗ = Ygen, where Ygen is

contribution of the genetic imputation to the proposal ratio.

3.5.3.5 Update a transmission cluster

The idea behind this move is fix the root of a transmission tree (the imported

individual) and propose to update every other individual in the tree. The rationale

behind this is that in some scenarios the chain would get stuck in a local mode and

some configurations were very unlikely to ever be explored from updating colonisation

times and sources one at a time. Therefore to address this we are proposing a block

update to a variable number of colonisation times depending on the size of the

transmission tree.

Let nimp the set of individuals who are considered to have imported the pathogen

from the community which will also all colonised healthcare workers, and sample

individual j uniformly at random from this set. Let ωj denote the set of ‘complete

offspring’ for imported individual j, which is defined as all offspring originating from

the root of the tree. If there are no offspring originating from individual j we reject

the move. Let fi denote the time of the first positive test result or first observed

sequence for individual i. Then for each offspring i ∈ ωj, sample a colonisation time

uniformly at random from the set {tai , ..., fi}.
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After sampling a colonisation time for each offspring we have a proposal vector of

colonisation times tc∗, now we propose to update the source of colonisation for each

individual. For each offspring i ∈ ωj, sample a source of colonisation uniformly at

random from the C(tc∗i ) +H(tc∗i ) possible colonised individuals at the proposal time

of colonisation for patient i. If there are no possible sources to sample for any of the

offspring we reject the move.

Finally, given the proposal transmission tree we update the genetic data (see Sec-

tion 3.5.2.1 for details) and hence the proposal ratio is

qF,F ∗ =
∏
i∈ωj

C(tc∗i ) +H(tc∗i )

C(tci) +H(tci)
Ygen,

where Ygen is contribution of the genetic imputation to the proposal ratio.

3.5.3.6 Swap a patient with the source

Similar to the work in Cassidy (2019), we outline a move to swap a patient with their

source of colonisation. The idea behind this is to ‘reshuffle’ parts of the transmission

chain in order to avoid getting stuck in local modes. In some situations it may be

impossible to move the colonisation time of specific targets due to that target being a

source of colonisation, i.e. they are assumed to colonise someone else at a later time.

Suppose the pair i, j are in fact epidemiologically linked, i.e. one colonised the other

and they may have similar genetic sequences (and hence small distances), in which

case there should be a high probability in favour of one to colonise the other. Further

suppose that i colonises j however the current state of the chain is that j colonised i.

It is generally unlikely to move one or the other using a single proposal, since any

move that attempts to update a source will ‘break’ a link in the genetic network and

the proposal will invariably have a lower likelihood.

Select one of the patients, denoted by j, on the ward who are assumed to have

acquired the pathogen from another individual uniformly at random. Define i to

be the source of colonisation for j such that sj = i. If i is a healthcare worker we
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immediately reject since healthcare workers cannot acquire the pathogen on the ward.

Next if the colonisation time for i is before the admission time for j, i.e. tci < tcj, we

reject the move. Furthermore, if there is a positive test result or an observed sequence

for i prior to the time of colonisation for j we reject since an individual should not

have a colonisation time later than a positive test result. Finally, if i colonises any

other individual prior to the time of colonisation for j, we reject since it is not possible

to colonise someone before the time of colonisation. Otherwise swap colonisation

times and set tc∗j = tci and t
c∗
i = tcj and also set the source of colonisation for i to be

j, and the source of colonisation for j to be the previous source of colonisation for i,

i.e. s∗i = j and s∗j = si.

Finally, given the proposal transmission tree we update the genetic data (see Sec-

tion 3.5.2.1 for details) and hence the proposal ratio is qF,F ∗ = Ygen, where Ygen is

contribution of the genetic imputation to the proposal ratio.

3.6 Simulation study

In this section we present a comprehensive simulation study and examine the perfor-

mance of our methods through parameter estimation, sensitivity analysis and network

accuracy.

The main goal is to simulate outbreaks with various parameter choices and determine

for which the parameters can be inferred using the algorithm detailed in Algorithm 3.

We also would like to explore the valuation of genetic data, in other words we wish to

examine the improvement when inferring the transmission network with and without

genetic data. Finally, we would also like to assess the performance of the sampler

through various MCMC diagnostic tools.
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3.6.1 Simulation method

Simulating outbreaks of nosocomial infections in a hospital setting is achieved through

three independent steps. First we simulate an outbreak from the transmission model,

then we screen individuals on admission and then at regular intervals from the

observational model, and finally we generate a pairwise genetic distance matrix that

corresponds to the positive swab results such that every positive swab will correspond

to a set of genetic distances.

Simulating outbreak data In order to simulate an outbreak of a nosocomial

infection on a hospital ward, we specify the number of patients in the study, n, the

number of healthcare workers to ever become colonised, nH , the length of the study,

L, and the average length of stay for patients admitted to the ward, µLOS.

For each of the n patients, their admission time is sampled uniformly at a random

time from t = 0 to t = L, and their length of stay is drawn from a Poisson distribution

with mean µLOS. Furthermore, each patient has some probability p to be colonised

on admission. All other patients admitted to the ward are susceptible from the day

of admission. For each of the nH healthcare workers a colonisation time is sampled

uniformly from the days {0, ..., L}.

Simulating observational data For a given individual i, the patient is tested

on admission at time t = tai and every κ days thereafter until the day of discharge,

tdi . Healthcare workers are tested at time t = 0 and every κH days thereafter. For

a given patient or healthcare worker i that is tested on day t, a positive result is

returned with probability z if the individual is colonised such that t ≥ tci , otherwise a

negative result is returned.

Simulating genetic data We will assume that every positive swab test has a

corresponding genetic sequence sampled. This is not necessarily true in practice as
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individuals may have a positive result but no genetic isolate sequenced, however here

we shall assume complete coverage of genetic testing.

In order to generate the genetic data we must specify the mutation rate λ, importation

distance µ and average distance between imported sequences in distinct subtypes,

denoted by δ. Furthermore, we require the genome size of the pathogen, N , and the

number of distinct genetic subtypes K. We wish to generate genetic data that is

consistent with the true simulated transmission network.

From the positive results we have the nodes in the genetic network denoted by V .

For each node v ∈ V in the genetic network, uniformly at random sample the subtype

number ηv from the set {1, ..., K}. First we construct the sub genetic networks Gi

outlined in Section 2.8, with the added requirement that all colonised individuals have

a sequence at the time of colonisation. Given the true underlying genetic network

G = ∪Gmax
i=1 Gi and the corresponding sequence times τ , we simulate the number of

mutations along each edge (i, j) ∈ E(G) from the genetic evolution model outlined in

Section 2.4. Let q(t) be the probability of mutation in t time units, then the distance

between nodes i and j is simply

Dij ∼ Bin(N, q(tj − ti)), (3.8)

where N is the length of the genetic sequence and tj ≥ ti. To generate distances from

nodes that are in the same genetic group but separate trees, i.e. imported sequences,

we draw pairwise distances between the imported sequences from

Dij ∼ Po(µ), (3.9)

where µ can be interpreted as the average distance between imported sequences

within the same genetic group.

If we wish to generate distances between sequences from different genetic groups, we

draw the distances of the root nodes from

Dij ∼ Po(ξ), (3.10)
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where ξ is required to generate a complete matrix of pairwise distances, but we note

that this parameter is not inferred.

To generate the pairwise distances between nodes that are not directly connected, we

assume that the same nucleotide cannot mutate twice (see Section 3.6.7), therefore

the distance is a sum of the distances along the path that connects the nodes. This

assumption may not hold for diverse genetic sequences, however should be reasonable

for within subtype distances which are of primary interest. An example simulated

complete genetic network can be found in Figure 3.15.

1 2 3

4 5

67

G2G1

Figure 3.15: An example genetic network G consisting of 7 observed

genetic sequences which is composed of K = 2 distinct genetic

subtypes, where nodes 6 and 7 are in the sub genetic network G1

(dashed green line) with subtype 1 and the remaining nodes are in the

sub genetic network G2 (dashed red line) with subtype 2. Solid black

lines between directly connected nodes i and j have their distances

Dij simulated from the mutation model in Equation 3.8. The orange

dotted line connects nodes that are in the same group, but are

importations of the sequence and therefore we simulate distances Dij

from Equation 3.9. Dashed lines in blue are root nodes that are in

distinct sub genetic networks and therefore we simulate the distances

from Equation 3.10. All other pairwise distances are calculated by

summing all connected distances in the network.

Note that instead of simulating genetic distances it is possible to instead generate

entire sequences, calculate the number of mutations along each branch in the genetic

network and then uniformly sample and replace nucleotides in the sequences. While
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this method would more accurately describe the biological process, generating large

sequences is computationally intensive. The above method generates a close enough

approximation, assuming that a nucleotide at any single site cannot mutate twice.

3.6.2 Network accuracy

In this section we describe methods to determine the accuracy of the transmission

network inferred by the algorithm. At each iteration of the MCMC algorithm we store

the current state of the transmission network which includes the source of colonisation

for each patient. Recall that the vector of sources is denoted by s where si = j if and

only if the source of colonisation for individual i is individual j. From the output

of the algorithm, for each patient i we are able to construct the marginal posterior

distribution of the source of colonisation, given by si | X where X = (zobs, ψ, xs)

denotes the observed data, by simply calculating the proportion of iterations any

individual is considered the be the source of colonisation for i.

For a given individual, the ‘most probable source’ is defined as the person who is

considered to be the most frequent source, i.e. the posterior mode. The proportion of

iterations that individual i is the source for individual j is the posterior probability of

si = j, and for any given data set we can construct a weighted transmission network

such that the edges are assigned to be the posterior probability of that transmission

link.

Let Ŝi denote the ‘most probable source’ for individual i who is considered to be

the most common source of colonisation, i.e. the posterior mode. The proportion of

iterations that individual i is the source for individual j is the posterior probability

of si = j and for any data set we can construct a weighted transmission network such

that the edges are assigned to be the posterior probability of that transmission link.

Mathematically this is defined as

Ŝi = argmax
y

Pr(si = y | zobs, ψ, xs).
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Furthermore, if an individual i is considered to have imported the pathogen we set

si = −1 in addition to ϕi = 1 such that importations can be determined from the

vector of sources.

Constructing a posterior probability transmission network is informative to gauge

transmission routes, however this is purely a visual technique and therefore we wish

to explore summary statistics to categorise the accuracy of the inferred transmission

network.

Definition 3.6.1 (Source accuracy). The term source accuracy, denoted by AS, is

the proportion of sources such that the true source is the most probable source, or

the posterior mode. Let vp denote the set of patients who ever receive a positive

test result on the ward. For any i ∈ vp, let Ŝi denote the most probable source

for individual i and Si denote the true simulated source. The source accuracy is

calculated as

AS =
1

|vp|
∑
i∈vp

1{Ŝi=Si},

where |vp| is the number of elements in vp, or simply the number of patients to ever

receive a positive test result. This is a straight forward estimate for the proportion

of patients that are correctly inferred and is a rough indicator of the performance of

the algorithm.

Definition 3.6.2 (Cluster accuracy). The term cluster accuracy, denoted by AC , is

the proportion of clusters in the genetic network that are correctly inferred. We define

the term cluster to be the set of individuals in the same transmission tree. Recall

that the transmission network (or transmission forest) may be composed of multiple

disjoint transmission trees, where the root of each transmission tree corresponds to

an individual who has imported the pathogen from the community.

Let Ŝ = (Ŝ1, ..., Ŝn) denote the vector of posterior modes for the sources of colonisation

and v̂imp = {i : Ŝj = −1, j = 1, ..., n} denote the set of individuals who are inferred to

have imported the pathogen to the ward, where d̂ = |v̂imp| is the number of individuals

in this set and n is the number of patients in the study. Let Ĉ = {Ĉ1, ..., Ĉd̂} denote
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the set of inferred clusters where Ĉi contains the individuals in cluster i for i = 1, ..., d̂.

Let vimp denote the set of known imported individuals from simulated data, which

is of size d = |vimp|. Let C = {C1, ..., Cd} denote the set of true simulated clusters

where Ci contains the individuals in cluster i.

An inferred cluster Ĉi is considered correctly inferred if there exists the same cluster

in the set of true clusters C. We define two clusters Ĉi and Cj to be equal if and only

if they have the same elements. Mathematically this is equivalent to writing Ĉi = Cj

if and only if Ĉi ⊂ Cj and Cj ⊂ Ĉi. Define the function Φ(Ĉi | C) to equal 1 if cluster

i is correctly inferred and 0 otherwise, then the cluster accuracy is calculated as

AS =
1

d̂

d̂∑
i=1

Φ(Ĉi | C).

The notion of inferred correct clusters is motivated by the idea that it may not be

possible to correctly infer the root of each cluster simply because there is not enough

information in the data. In some simulated scenarios an individual may import the

pathogen and later colonise other individuals, however if this imported individual

tests positive at either similar or a later time to the other colonised individuals then

it may be too difficult to correctly resolve the true root of the tree.

In order to account for this we require each individual in an inferred cluster to be the

same as the true simulated data. The idea behind this is that genetic distances for

related individuals should be small and hence informative of transmission clusters.

Therefore the algorithm may infer related individuals within the cluster but may not

be able to successfully determine the structure within the cluster. Intuitively this

metric is informative as there lies interest in determining clusters of transmission

which is useful from an infection control standpoint.
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3.6.3 Parameter estimation

In order to demonstrate the performance of the algorithm, we begin by first simulating

data sets with suitable parameter values motivated by the work in Cassidy et al.

(2020) and attempt to infer the true values.

In our simulations we simulate outbreaks that consists of n = 100 patients over a

period of L = 150 days, with an average length of stay set to µLOS = 7. Furthermore,

we suppose that there are nH = 5 healthcare workers who ever become colonised

during the study period. We impose that patients and healthcare workers are tested

on admission and every κ = 7 days thereafter.

For each positive test result a genetic sequence of length N = 2800000 is returned

and the genetic group of the sequence is sampled uniformly from K = 3 subtypes.

The parameter values for the simulated outbreaks were set as the following:

• z = 0.7

• p = 0.05

• β = 0.03

• βH = 0.003

• λ = 9.04× 10−9

• µ = 20.

We simulated 1000 data sets and inferred the model parameters using the MCMC

routine outlined in Algorithm 3. In the algorithm we set the maximum number

of iterations to be M = 25000, the importation tuning parameter to be w = 0.3

and at the end of each iteration we update the augmented data y = 25 times. For

the test sensitivity parameter z and importation probability p we assigned vague

Beta(1, 1) priors. For the patient transmission rate parameter β, healthcare worker
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transmission rate βH , mutation rate parameter λ and importation distance parameter

µ we assigned vague Exp(0.001) priors.

For each of the 1000 simulations we excluded the first 5000 iterations as a burn in and

then thinned the remaining 20000 posterior samples by a factor of 4, resulting in 5000

samples from the posterior distribution. Furthermore, we output the colonisation

times and vector of sources at each iteration which is needed to construct a weighted

posterior transmission network, details of which can be found in Section 3.6.2.

As a summary statistic for the posterior distributions, we calculate the median for

each parameter and plot the distribution of posterior median estimates in Figure 3.16.

For each of the parameters we can see that the true simulated value has been recovered

well and lies within the 95% credible intervals.

In an ideal world one would monitor every single parameter, including all colonisation

times, but this approach is infeasible due to the large number of parameters. Therefore

to demonstrate efficient exploration of the Markov chain we assess the relative error

of the sum of colonisation times. Consider a specific simulated data set and let T

denote the sum of colonisation times and T̂ denote the posterior median estimate of

T calculated from the MCMC output. The relative error is then defined as

ϵ =
T − T̂

T
,

and the distribution of errors from simulated data can be found in Figure 3.17.

Lastly for each data set we also fit the transmission and observational model without

genetic data. The idea behind this is to compare the accuracy of transmission network

that is inferred with and without the genetic data. For any network accuracy metric,

the difference between the full model and the simpler model provides an indication of

the valuation of genetic data. The distribution for the two network accuracy metrics,

specifically source and cluster improvement, can be found in Figure 3.18. Out of

the 1000 simulated data sets, 842 (84.2%) demonstrated an improvement in source

accuracy and 959 (95.9%) showed an improvement in cluster accuracy.
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Figure 3.16: The distributions of the posterior median estimates

for z (top left), p (top right), β (middle left), βH (middle right), λ

(bottom left) and µ (bottom right) for the simulated data sets. The

blue lines are the 95% (equal-tailed) credible intervals and the red

line is the true simulated value.

3.6.4 MCMC diagnostics

In this section we demonstrate some tools used to check that the algorithm is sampling

from a stationary distribution and there is sufficient mixing. For each of the simulated
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Figure 3.17: The distribution of the difference between the true

sum of colonisation times and the posterior median of the sum of the

colonisation times. The blue lines are the 95% (equal-tailed) credible

intervals the red line is the true value.
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Figure 3.18: Transmission network accuracy improvement on sim-

ulated data for two metrics, source accuracy (above) and cluster

accuracy (below). Here ‘improvement’ is defined as the difference

between the accuracy with and without genetic data.

data sets we check the parameter trace plots as a method to check convergence. The

parameter trace plots for a specific data set can be found in Figure 3.19. For nearly
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all parameters the truth is well recovered by the algorithm, apart from βH which

is slightly overestimated however the true value still lies within the 95% credible

interval. Furthermore, we summarise the mean and median effective sample size

(ESS) of all parameters and the acceptance rates of the Metropolis-Hastings updates

in Table 3.3.

Acceptance rate ESS

Mean Median Mean Median

z – – 251.38 180.46

p – – 2572.23 2367.96

β 0.44 0.42 414.60 354.55

βH 0.39 0.45 441.20 369.87

λ 0.30 0.29 1156.93 1186.81

µ – – 952.26 853.49

Table 3.3: Mean and median acceptance rate and effective sample

size (ESS) for the 1000 simulated data sets.

Another commonly used technique to evaluate the convergence of MCMC schemes

is to start multiple chains in parallel from overdispersed starting points, with the

idea that in theory the chains should converge to the same stationary distribution.

Figure A.19 shows the trace plots of four parallel chains of the parameters updated

by Metropolis-Hastings steps, where visually each eventually converges to the same

stationary distribution.

Finally, we may evaluate the other features of the MCMC when ran in parallel,

such as the trace plot of the log-likelihood and also the sum of colonisation times

(Figure A.20).
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Figure 3.19: Parameter trace plots of the posterior samples for

simulated data set 21. The line in red indicates the true simulated

value and the blue lines are the 95% (equal-tailed) credible intervals.
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3.6.5 Sensitivity analysis

In this section we provide a sensitivity analysis to evaluate the output of the model

under various parameter choices. We wish to vary the parameters which are repre-

sentative of plausible scenarios and attempt to recover the true simulated values.

For each parameter we choose five values, two of which are lower and two are higher

than parameter values used in Section 3.6.3. Specifically these parameter values are

given by

• z = (0.25, 0.5, 0.7, 0.75, 1)

• p = (0.01, 0.025, 0.05, 0.15, 0.3)

• β = (0.01, 0.02, 0.03, 0.04, 0.05)

• βH = (0.001, 0.002, 0.003, 0.004, 0.005)

• λ = (1.80, 4.52, 9.04, 18.08, 45.20)× 10−9

• µ = (5, 10, 20, 30, 35).

For each parameter that is varied, all other parameters are set to the ‘baseline’ values

which are parameter choices motivated by the results in Cassidy et al. (2020). For

each of the 30 parameter choices we simulate 100 data sets and infer the parameters

using the MCMC algorithm (Algorithm 3) for M = 25000 iterations and update the

augmented data y = 10 times. The first 5000 samples are excluded as a burn-in and

the remaining samples are thinned by a factor of 4, leaving a total of 5000 posterior

samples. We then plot the medians for each parameter that is varied.

Finally, we also fit the transmission and observational model without genetic data

and compare the change in source and cluster accuracy.

Results when varying the test sensitivity parameter z For each of the

parameter choices of z the true simulated value is slightly underestimated but generally
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well recovered for z = 0.25, 0.5, 0.7, 0.75, with the true value in the interquartile

range of the posterior median estimates (Figure A.1). For z = 1 the parameter is

underestimated which is perhaps not surprising since we are sampling from a Beta

distribution with an approximate median TP−1/3
TP+FN−2/3

where TP and FN are the

number true positives and false negatives respectively. Recall that the number of

true positives are fixed, but the number of false negatives are calculated using the

current state of the unobserved data augmented by the algorithm and will constantly

be updated. Therefore due to the uncertainty around detection it is unlikely our

estimates will recover the parameter value of 1.

There does not appear to be any significant patterns with the source accuracy im-

provement when varying z (Figure A.2), however each scenario shows an improvement

for determining the source of colonisation when including genetic data.

On the other hand there appears to be a clear positive association between the

simulated parameter values and cluster accuracy improvement (Figure A.3), as z

increases so does the cluster accuracy. This is explained by the fact that more positive

tests result in an increase of observed genetic sequences (and hence genetic distances)

and less uncertainty in the true time of colonisation. Consequently the algorithm is

able to successfully determine clusters of transmission, which intuitively is achieved

by grouping similar individuals that have small pairwise genetic distances.

Results when varying the importation probability parameter p For the

importation probability p the true simulated parameter is well recovered for p =

0.05, 0.15, 0.3 but is slightly underestimated for p = 0.01, 0.025 (Figure A.4). This

is likely due to the fact that for low values of p, there will less imported cases and

hence less overall transmission.

For both the source and cluster accuracy (Figures A.5-A.6) there appears to be a

negative association between the simulated parameter values and accuracy and in

general as p increases, accuracy for both metrics decreases. This is not surprising as
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increasing the importation probability p will result in more imported cases, and hence

more transmission overall and consequently it may be difficult to infer the correct

source for each individual. Since imported individuals are the root of transmission

clusters, an increase in the importation probability will increase the number of

transmission clusters and hence it may be harder to correctly infer each of them.

Results when varying the patient transmission rate parameter β The

algorithm tends to successfully recover the true simulated values of β for each

scenario (Figure A.7). The source accuracy tends to decrease as the transmission

rate increases (Figure A.8) which makes sense as there will be more transmission

overall and hence it may be difficult to correctly infer sources of colonisation.

The cluster accuracy does not appear to significantly change when varying the

parameter β (Figure A.9). This demonstrates that if the number of transmission

clusters remain roughly the same, the algorithm is able to successfully infer individuals

within each cluster, even if the transmission rate is high and therefore a higher average

number of individuals within each cluster.

Results when varying the healthcare worker transmission rate parameter

βH The algorithm tends to slightly overestimate the true simulated values for each

parameter choice (Figure A.10), with the true value on the edge of the interquartile

range of the posterior median estimates. This could potentially be a consequence of

low levels of healthcare worker transmission and therefore identifiability issues since

there may not be enough information in the data to estimate βH well.

The source accuracy tends to increase when βH increases (Figure A.11), in contrast

to the patient transmission rate parameter β where increasing the parameter value

resulted in a decrease of source accuracy. This is potentially because although there

is more healthcare worker transmission, it is generally easier to choose a healthcare

worker as the source of colonisation since they are assumed to exert a constant

colonisation pressure and are nearly always able to colonise patients.
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The cluster accuracy remains fairly consistent, with βH = 0.005 indicating the best

overall improvement (Figure A.12). Similar to the cluster accuracy for β, the average

number of clusters between scenarios remains the same and the algorithm is able to

successfully infer individuals within each cluster.

Results when varying the mutation rate parameter λ The true simulated

values are generally well recovered by the algorithm (Figure A.13). There are however

many outliers (indicated by the black dots), which are a consequence of the algorithm

incorrectly inferring sources of colonisation and hence individuals that are unrelated

(with higher than expected pairwise distances) are considered to be related, which

increases the estimated mutation rate. This is essentially a mixing issue and in

an ideal world these errors can be mitigated with more iterations of the MCMC

algorithm and more updates each iteration for the augmented data.

There does not appear to be any significant trend for the source accuracy for the

various values of λ (Figure A.14). On the other hand there appears to be a positive

association with cluster accuracy and the mutation rate λ (Figure A.15). Intuitively

this can be explained by the fact that closely related individuals will have small

genetic distances and therefore should be easier to infer, however we would also expect

the source accuracy to increase which is not the case here.

Results when varying the average importation distance parameter µ In

general the importation distance parameter µ is generally well recovered, except for

when µ = 5 in which case the parameter is slightly overestimated (Figure A.16).

There does not appear to be any obvious patterns for the source accuracy (Fig-

ure A.17), however there is a positive association between cluster accuracy and the

true simulated values of µ (Figure A.18). This is perhaps not surprising as individuals

in distinct transmission clusters will have larger pairwise distances as µ increases and

consequently it is easier to identify similar individuals within the same transmission

cluster.
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3.6.6 Model misspecification

In this section we wish to investigate the robustness of the model through simulation-

based techniques. In particular we wish to examine model performance under

misspecification, that is where the data generating process for simulation is different

to that assumed in the inference procedure. The real world biological mechanisms

that govern processes such as mutation are significantly more complex than that

assumed in most mathematical models. Therefore, it would be of interest to examine

the performance of our inference algorithm when the genetic data are generated from

models that are (i) similar and (ii) significantly different to the JC69 model.

The probability distributions derived in Chapter 2 assume that each nucleotide site

evolves independently of all other sites and the parameters governing the mutation

process are equal. In general this is a large oversimplification of the mutation process

as it well known that nucleotides mutate at varying rates, for example there are

interactions between neighbouring sites (Benzer, 1961). We now introduce the notion

of variable mutation rates across sites for the mutation models described in Chapter 2

(see (Yang, 2014, Chapter 1) for more details).

One method to incorporate rate heterogeneity between sites is to assume that the

parameters governing the mutation process, θ, are now random variables with prob-

ability density or mass function denoted by g(θ | ξ) where ξ are the associated

parameters.

More precisely, we simulate genetic distances from the probability mass function

f(d | λ,G) in Theorem 2.7.3 where the mutation rate is a random variable such

that λ ∼ g. In this scenario we are directly violating the assumption that distance

matrices are identically distributed in Equation 2.4. Assume that the mutation rate

λ follows a Gamma distribution with shape α and rate γ and density function

g(λ | α, γ) = λα−1e−γλγα

Γ(α)
, for λ > 0 α, γ > 0.

We wish to consider the scenarios where g generates mutation rates that are similar to
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the JC model and those that are different. For simplicity we fix the shape parameter

to α = 1 in which case we obtain E[λ] = 1/γ and Var(λ) = 1/γ2. In the first instance

we may choose γ = 1/9.04× 10−9 so that the mean mutation rate is the equal to the

mutation rate value chosen for the simulation study described in Section 3.6.3 and

denote this model as M1.

Next, we wish to choose γ such that the mutation rates (and hence genetic distances)

are significantly different to those previously considered. One choice is to choose

γ = 1/9.04 × 10−9 × 1/1000 such that the mean rate is 1000 times higher than

previously assumed and denote this model as M2.

We repeat the procedure described in Section 3.6.1 however now we simulate the

genetic data from model M1 or M2. We repeat this process 100 times for each

model and then summarise the MCMC output by the posterior median estimates

(Figure 3.20). For each of the simulations we fix the genome size to N = 8000 and

the parameters to the following,

• z = 0.7

• p = 0.05

• β = 0.04

• βH = 0.003

• λ = 9.04× 10−9

• µ = 5.

In order to simulate the genetic data from the variable rate substitution model, we

replace the distance calculation between directly connected nodes in Equation (3.8)

with Dij =
∑N

k=1 d
[k]
ij , where

d
[k]
ij ∼ Bernoulli(q(tj − ti | λk)),
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and λk denotes the mutation rate for the kth nucleotide and λk ∼ Gamma(1, γ). In

other words, we explicitly model the mutation (or lack thereof) of each nucleotide

conditional on a random mutation rate which has been drawn from a Gamma

distribution with rate γ, dependent on models M1 or M2.
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Figure 3.20: Posterior median estimates for 100 simulated data sets

under model M1 and M2 for each of the model parameters ρ. The

red line indicates the true simulated parameter values.

In general we find that the parameters governing the transmission process are reason-

ably well recovered, indicating that the model performs well under misspecification of

the genetic process. The posterior median estimates for the mutation rate parameter

λ is similar to the truth for model M1, and significantly higher for M2 which is

expected due to the higher mean mutation rate.
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3.6.7 Checking the mutation assumption

In the genetic distance imputation and simulation methods we explicitly assume that

a nucleotide cannot mutate more than once at a single site, and consequently we wish

to determine if this assumption is reasonable.

Consider a genetic sequence of N nucleotides evolving under the JC69 mutation

model under a known genetic network G = (V,E). We assume that the network is

fully connected and there are k+ 1 vertices and k edges. Each vertex v ∈ V (G) has a

corresponding time at which the sequence is sampled denoted by τv.

Under the JC69 mutation model, the number of mutations can be described by a

Poisson process. Hence the number of mutations for a single nucleotide in some time

interval [0, t] can be described by a Poisson random variable with mean λt where λ

is the mutation rate. Let X denote the number of mutations for a single nucleotide

such that

X ∼ Po(λt).

Let Y be the indicator function of the event that at least one nucleotide mutates

more than once. Since we have N independent Poisson processes, Y = 0 if and only

if each of the N independent Poisson processes that govern the mutations have either

0 or 1 mutations in [0, t]. In other words,

Pr(Y = 0) = (Pr(X = 0) + Pr(X = 1))N

= e−Nλt(1 + λt)N ,

hence it follows that

Pr(Y = 1) = 1− e−Nλt(1 + λt)N .

The evolution of MRSA in a hospital environment was studied in Harris et al. (2010)

and the mutation rate of the pathogen was estimated to be 9.04× 10−9 per site per

day, 95% confidence interval (6.85× 10−9, 1.10× 10−8). Furthermore, previous studies

have calculated the genome length of MRSA to be approximately N = 2800000 (Ali

et al., 2019).



Chapter 3: Analysis of the Brighton data set 130

If we wish consider the mutation rate λ and size of the genetic sequences N to be fixed,

then we wish to find the largest value t such that the probability of any nucleotide

mutates more than once is greater than some predefined threshold, α say.

Assuming a threshold of α = 0.001 and sequence length of N = 2800000, we can plot

the probability as a function of time for various mutation rates λ (Figure 3.21). The

time at which Pr(Y = 1) > α is calculated to be t = 2957.
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Figure 3.21: The probability that any nucleotide mutates more than

once against time, assuming sequences of length N = 2800000 and

that each nucleotide mutates according to some constant rate λ.

The three increasing lines correspond to low (orange), middle (black)

and high (blue) mutation rates. The red line indicates the assumed

threshold of α = 0.001.

Note that t has been rounded down so that it is consistent with the discrete time

model presented in this chapter. In the context of our problem, t is the sum of all

branch lengths in the genetic network G, which explicitly is
∑

(i,j)∈E |τj − τi|. For
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most scenarios this value is unlikely to be very large, however for larger data sets

under a longer study period this assumption may not hold.

3.7 Analysis of the Brighton data set

In this section we analyse the Brighton data set first introduced in Section 3.2. In

order to investigate if there are any significant differences between MRSA and MSSA

we provide an analysis into the separate data sources and also the combined results.

The genetic subtype groups η were calculated pre-analysis using the group by threshold

method (Section 2.7.3.1) with threshold of ζ = 40 which is consistent with the analysis

in Price et al. (2017).

We ran the algorithm for 250,000 iterations, set the importation tuning parameter to

be w = 0.3 and updated the augmented data 50 times at each iteration. The first

50,000 iterations are excluded as a burn in and the output is then thinned by a factor

of 20, resulting in 10,000 remaining posterior samples.

For the test sensitivity parameter z and importation probability p we assigned

uninformative Beta(1, 1) priors. For the patient transmission rate parameter β,

healthcare worker transmission rate βH and mutation rate parameter λ we assigned

uninformative Exp(0.001) priors. For importation distance parameter µ we assigned

a informative Gamma(0.001, 0.001) prior.

The MCMC algorithm was coded in the C++ language and was run on a server with

an Intel (R) Xeon (R), E5-2450 2.1GHz CPU. Parts of the algorithm, specifically

the imputation of genetic distances and calculation of the genetic network, were

implemented by parallel processing using OpenMP (Dagum and Menon, 1998).

We repeated this five times for the three separate analyses (MRSA, MSSA and

combined) to give 15 outputs. The separate analyses were done to compare inferred

parameter estimates between the data sources, and the replications were done in order
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to determine if the chains do in fact converge to the same stationary distributions.

3.7.1 Results

From the box plots of the posterior samples (Figure 3.22) it is immediately obvious

that the estimates when considering only MRSA are significantly different from the

MRSA or combined data sources. Furthermore, there is much higher uncertainty

with the parameter estimates for MRSA compared with the other two data sources

which is likely due to the fact that MRSA data constitutes a small percentage of the

combined data.

Specifically there are 34 distinct patients who ever test positive for MRSA out of

388 for the combined data (8.76%) and 169 genetic sequences out of 1308 for the

combined data set (12.9%). Furthermore, it is not surprising that the estimates for

MSSA and combined are similar since the majority of the combined data are MSSA

organisms.

From the posterior box plots for each data source (Figure 3.22), the test sensitivity

z and importation probability p are significantly lower in the model that contains

only MRSA samples compared to MSSA and combined data sources. Furthermore,

both the patient and healthcare worker transmission rates, denoted by β and βH

respectively, are higher in the model with only MRSA compared to the other two. In

the cases above the significantly different estimates and larger uncertainty is a likely

consequence of a lack of observed data, with only 34 patients out of 1919 (1.77%) to

become colonised, there simply is not enough information to draw any meaningful

inference.

The mutation rate λ is similar across all three analyses which is expected, however

the average importation distance µ when considering MRSA only is estimated to be

approximately three times higher than the other data sources and reasons for why

are discussed later in Section 3.8
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Figure 3.22: Posterior distributions of each parameter when fitting

the full model to the Brighton data set where the genetic data

is composed of either MSSA (blue), MRSA (green) or combined

(red). The parameters are explicitly the test sensitivity z (top left),

importation probability p (top right), patient transmission rate β

(middle left), βH (middle right), λ (bottom left) and µ (bottom

right).

Since the results of the combined data set are similar to the data set containing only

MSSA organisms, we shall now turn out attention to the combined data set. The
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Parameter MRSA MSSA Combined

z 0.381 (0.202,0.569) 0.552 (0.501,0.601) 0.546 (0.496,0.594)

p 0.029 (0.015,0.053) 0.266 (0.238,0.297) 0.287 (0.257,0.32)

β × 10−4 10.9 (1.17, 27.9) 1.22 (0.043,3.79) 1.54 (0.058,4.66)

βH × 10−5 27.2 (5.95,67.7) 2.17 (0.09,6.6) 2.94 (0.166,8.29)

λ× 10−9 6.02 (5.05,7.08) 5.65 (5.26,6.06) 5.96 (5.32,6.07)

µ 15.4 (12.7,18.2) 1.76 (1.4,2.14) 3.63 (3.15,4.14)

Table 3.4: Posterior mean estimates for the model parameters along

with 95% (equal-tailed) credible intervals.

posterior distributions for each parameter can be found in Figure 3.23 and the table

of posterior mean estimates can be found in Table 3.4.

3.7.2 Inferred transmission network

From the output of the MCMC algorithm we are able to construct a weighted posterior

transmission network (Section 3.6.2). Recall that a transmission network contains all

colonised individuals in the outbreak, however this may be difficult to interpret if we

plot the complete transmission tree since there are 501 distinct individuals to ever

test positive for the pathogen. For clarity we shall only display patient acquisitions in

the inferred transmission network (Figure 3.24), from which there are three patient

acquisitions.

The link between healthcare HCW 9 and patient 1831 is explained by the having

distances of 0 between a sequence observed on day 368 for the healthcare worker and

three sequences for the patient on days 367, 367 and 371 respectively.

The link between HCW 71 and patient 1672 is explained by having a distance of 1

between a sequence sampled on day 419 for the healthcare worker and two sequences

for the patient on days 343 and 346 respectively.
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Figure 3.23: Posterior distributions of each parameter when fitting

the full model to the Brighton data set where the genetic data

contains both MRSA and MSSA organisms. The parameters are

explicitly the test sensitivity z (top left), importation probability p

(top right), patient transmission rate β (middle left), healthcare worker

transmission rate βH (middle right), mutation rate λ (bottom left)

and average importation distance µ (bottom right).

The link between patients 1693 and 1748 can be explained by a distance of 0 between

a sequence observed on day 338 for patient 1693 and on day 339 for patient 1748.

The algorithm has found transmission pairs which are considered likely by the model,

supported by small pairwise distances indicating similar genetic sequences across the

individuals. On the other hand, from the exploratory analysis there are 22 putative
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Figure 3.24: Inferred transmission network for the Brighton data set.

Each patient is either an importation (red) or acquisition (blue). Indi-

vidual 1963 is assumed to be the source of colonisation for individual

1748 with posterior probability 0.28. Healthcare worker 9 is assumed

to be the source of colonisation for individual 1831 with posterior

probability 0.55. Healthcare worker 71 is assumed to be the source of

colonisation for individual 1762 with posterior probability 0.97.

transmission pairs that one may hope to recover by the algorithm, possible reasons

for why are discussed in Section 3.8.

3.7.3 MCMC diagnostics

In order to ensure we are sampling from the target density in Equation (3.6), we shall

utilise diagnostic tools to check the quality of the samples generated by the algorithm.

We specifically are interested in the convergence and mixing of the Markov chains,

which may be determined by visual inspection of trace plots. We may also start

several chains to run in parallel and check whether the chains converge to the same

mode.
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We ran the Brighton analysis for each of the data sources (MRSA, MSSA and com-

bined) for a total of five times each. From the posterior distributions in Figures (B.1)-

(B.6) and trace plots in Figure B.7 we can see that the posterior distributions are

similar within each data source and hence the chains have converged to the same sta-

tionary distribution by visual inspection. Furthermore we calculate the multivariate

potential scale reduction factor for each of the data sources and find these values

to be 1.00, 1.01 and 1.10 for the MRSA, MSSA and combined chains respectively

(Brooks and Gelman, 1998). Finally a summary of the effective sample size (ESS)

for each parameter is displayed in Table 3.5 and acceptance rates are displayed in

Table 3.6.

z p β βH λ µ

MSSA 1 1756.98 1531.70 360.51 176.62 703.74 6656.66

MSSA 2 1815.36 1529.17 428.12 194.26 916.43 7518.18

MSSA 3 1837.30 1546.44 442.25 178.15 1191.23 7122.54

MSSA 4 1818.20 1514.33 342.73 130.28 647.77 6920.98

MSSA 5 1578.93 1509.07 314.28 119.83 635.17 7049.84

MRSA 1 1497.15 1368.50 1050.94 684.84 3746.48 9484.13

MRSA 2 1223.16 1186.96 1000.52 912.17 3706.07 9788.43

MRSA 3 1177.08 882.05 699.22 477.12 2836.83 9655.08

MRSA 4 1308.01 1161.57 1135.44 1023.03 3377.99 9670.17

MRSA 5 1251.23 1183.93 1154.51 762.18 2766.21 9403.57

Combined 1 1302.40 969.27 228.33 163.03 844.01 1409.69

Combined 2 1537.11 1225.95 256.10 250.45 653.49 1727.16

Combined 3 1304.21 1029.36 286.68 158.17 712.07 1668.81

Combined 4 1215.46 1010.30 235.00 161.74 543.23 1303.04

Combined 5 1649.17 1266.44 188.42 190.21 556.04 2154.60

Table 3.5: Effective sample size for each parameter for each of the

MCMC outputs.
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β βH λ

MSSA 1 0.61 0.15 0.61

MSSA 2 0.62 0.16 0.62

MSSA 3 0.58 0.16 0.61

MSSA 4 0.61 0.15 0.60

MSSA 5 0.61 0.15 0.61

MRSA 1 0.32 0.76 0.91

MRSA 2 0.31 0.76 0.90

MRSA 3 0.31 0.76 0.90

MRSA 4 0.30 0.75 0.90

MRSA 5 0.31 0.76 0.91

Combined 1 0.62 0.17 0.58

Combined 2 0.62 0.22 0.59

Combined 3 0.66 0.17 0.59

Combined 4 0.67 0.16 0.59

Combined 5 0.63 0.18 0.60

Table 3.6: Acceptance rates for the parameters updated by

Metropolis-Hastings steps for each of the MCMC outputs.

We may also check the trace plot of the log-likelihood (Figure B.8) without a burn

in and observe that the chains start in regions of low likelihood and increase until

convergence. Finally, due to the large amount of data augmentation and therefore

parameters inferred in the model, it is necessary to check that the chains are well

mixed and are able to efficiently explore the state space. Summary trace plots for the

augmented data can be found in Figure B.9 which include the sum of colonisation

times and the number of patients who have been added as colonised by the algorithm.
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3.7.4 Informative priors

We also wish to consider the scenario where we use more informative priors for the

importation distance parameter µ. The rationale behind this is that we would expect

this parameter to be reasonably high.

Recall that the importation distance parameter µ describes the average pairwise

distance between genetic sequences of the same subtype that have been imported by

the community. In general we would expect this value to be higher than values that

could be explained by direct mutation. Recall that in Young et al. (2012) the authors

estimate the evolution of a bacterial population of S. aureus to be a rate of 2.72

mutations per megabase per year, therefore we would expect the average distance to

be higher than this.

We assume a priori that µ ∼ Gamma(10, 1) such that E[µ] = 10 and the variance is

large enough to cover a wide range of values. A comparison of the inferred posterior

distributions with and without informative priors is in Figure 3.25.

Finally, the inferred transmission network with a stronger prior for µ is shown in

Figure 3.26. In general we see more patient acquisitions, reasons for this are discussed

in Section 3.8. Reassuringly, we recover the transmission links previously found in

Figure 3.24 and also recover 12 of the 21 putative transmission links one would hope

to see from the exploratory analysis (Section 3.2) which is summarised in Table 3.7.

3.7.5 Model assessment

In this section we shall assess the model fit to the Brighton data, which in a Bayesian

framework can be naturally done via posterior predictive checking. The purpose

of posterior predictive checking is that replicated data generated under the model

should look similar to the observed data (Gelman et al., 2013). In other words, the

observed data should look plausible under the posterior predictive distribution, which
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Link Posterior probability

HCW 9 → 1831 0.98658

HCW 74 → 1422 0.89184

HCW 71 → 1671 0.72868

HCW 71 → 1422 0.85040

HCW 8 → 1615 0.95104

1692 → 1578 0.95926

1704 → 1810 0.91624

1597 → 1631 0.76562

1746 → 1779 1

HCW 84 → 1519 0.59984

1693 → 1748 0.66602

1706 → 1468 0.17322

1468 → 1706 0.59522

Table 3.7: Inferred transmission links from the putative transmission

pairs and the posterior probability of each link.
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Figure 3.25: Comparison of posterior estimates with (blue) and

without (red) informative priors. The parameters are explicitly the test

sensitivity z (top left), importation probability p (top right), patient

transmission rate β (middle left), healthcare worker transmission

rate βH (middle right), mutation rate λ (bottom left) and average

importation distance µ (bottom right).

is defined as follows.

Let y be the observed data and θ be the vector of model parameters and define yrep

to be data that has been generated (or replicated) by the model. Then the posterior
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Figure 3.26: Inferred transmission network for the Brighton data set.

Each patient is either an importation (red) or acquisition (blue) and

healthcare workers are denoted by purple.

predictive distribution (PPD) is defined by

π(yrep | y) =
∫
π(yrep | θ)π(θ | y)dθ.

In order to measure the discrepancy between the data and model we define the notion

of test quantities which are aspects of the data we wish to check. A test quantity,

T (y, θ) is a scalar statistic of some feature of the data which explicitly depends on

the data and model parameters.

The general idea of posterior predictive checking is as follows. From the MCMC
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output we have M samples from the posterior distribution of the model parameters,

denoted by θ1, ..., θM . We then simulate N data sets from the model, denoted by

yrep1 , ..., yrepN , from the distribution yrep | θ where the simulated model parameters

are random samples from the posterior distribution θ | y. We then compare the

observed test statistic T (y, θ) to the distribution of the test statistic under replicated

data T (yrep, θ). The Bayesian p-value pB, is then defined as the probability that

the replicated data is more extreme than the observed data, measured by the test

quantity:

pB = Pr(T (yrep, θ) ≥ T (y, θ)|y).

Extreme pB values that are close to 0 or 1 are evidence for poor model fit, whereas if

the model is true or close to true, the posterior predictive p-value will almost certainly

be very close to 0.5 (Gelman, 2013).

3.7.5.1 Epidemic model assessment

Similar to the work in Cassidy (2019) and Worby et al. (2016) we use three summary

statistics that capture key features of the transmission process, specifically they are

(i) the total number of positive tests over the study period, (ii) the number of patients

to ever test positive on the ward and (iii) the number of colonised patients in the

ward over time.

From the posterior predictive distributions (Figure 3.27) it is clear that the true

observed number of positive tests and patients to ever test positive lies within the

95% credible intervals. Furthermore, looking at the number of patients colonised

in the ward over time, the observed value in general lies within the 95% credible

intervals. Explicitly we may calculate the proportion of days where the true observed

C(t) lies within the credible interval, which in this case is 96%. All of these posterior

predictive distributions indicate that after simulating data from the model, using

parameters inferred by the algorithm, we obtain data sets that are similar to the

observed data and hence there is no evidence of lack of fit.
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Figure 3.27: Posterior predictive distributions for the number of

positive tests (top left), number of patients to ever test positive (top

right) and the number of colonised patients in the ward (bottom).

The true observed values are in red. The green region indicates the

95% (equal-tailed) credible interval and red line is the mean.

3.7.5.2 Genetic model assessment

In this section we present the framework to perform model assessment for the genetic

data using the approach described in Cassidy et al. (2020). The differences here

are that we use a different generative model for the distances with explicit time

dependence and the possibility of multiple genetic subtypes.

Recall that the genetic model consists of a model for (i) pairwise distances between

directly connected sequences from the mutation model, (ii) pairwise distances between

imported sequences in the same genetic subtype and (iii) pairwise distances between

imported sequences in distinct genetic subtypes (see Section 2.9 for details). Since

we are interested in pairwise distances within the same genetic subtype, we do not

attempt to model the distances between distinct subtypes, hence the model assessment
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will only include pairwise distances within the same genetic group.

In order to simulate a pairwise distance matrix we require knowledge of the underlying

genetic network G which is constructed from the current state of the transmission

network. For convenience we output the genetic network at each iteration in the

algorithm to avoid extra computation.

Given a genetic network G, we may simulate pairwise distances of directly connected

sequences from the mutation model given the mutation rate λ and sampling time

between sequences. Next we can simulate pairwise distances of sequences in the

same genetic subtype using the Poisson model given the average importation distance

µ, and in distinct genetic subtypes also using the Poisson model with parameter ξ.

Finally, we calculate pairwise distances between two sequences that are not connected

by summing the number of mutations along the path in the genetic network under

the assumption that any nucleotide cannot mutate more than once.

Suppose we wish to produce N simulated data sets of genetic distances Drep
1 , ..., Drep

N

from M available posterior samples. The general procedure is for i = 1, ..., N , select

a posterior sample (ρ, F ) uniformly at random and then simulate a distance matrix

Drep
i using the genetic data (λ, µ,G) and a specified between subtype importation

distance ξ.

In order to compare the replicated data sets Drep
1 , ..., Drep

N to the true observed matrix

D we look at the marginal distributions of distances. In a framework similar to

above, suppose there k within-subtype pairwise distances indexed by some i, j. Then

by considering each of the marginal distances, there will be k (univariate) marginal

PPDs denoted by Drep
ij where now it is straightforward to compare to the observed

distance Dij.

We then may use the p-value definition above and for any marginal PPD indexed by

i, j, we may compute the probability that the replicated data is more extreme than

the observed data, which explicitly is written as pBij = Pr
(
Drep

ij ≥ Dij

)
. Finally, we

may define a P -matrix to contain the p-values of each marginal distribution.
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One potential caveat with the P -matrix is that depending on the number of pairwise

distances under consideration k, the matrix may be difficult to interpret. There may

also be incorrect conclusions drawn for discrete random variables on a non-negative

support. For example, consider a discrete random variable X with an observed

value x = 0 and suppose there are five samples generated from the PPD denoted by

Xrep = (0, 0, 0, 0, 1). The posterior predictive distribution clearly is similar to the

observed data, however the p-value is Pr(Xrep ≥ 0) = 1 which is contradictory as an

extreme p-value indicates poor model fit. Consequently notions of p-values may not

be useful for discrete random variables that are particularly concentrated around low

values, which certainly may be the case for genetic distances.

Alternatively we may opt for a simpler graphical representation of the posterior

predictive summaries and instead use binary matrices that satisfies any criterion. For

example we may define a Q-matrix, where elements are equal to 1 if and only if the

observed genetic distance Dij lies within the 95% credible interval of the marginal

PPD Drep
ij . More generally we may define a Qα-matrix for any confidence level α

where any element [Qα]ij is equal to 1 if and only if Dij lies within the 100(1− α)%

credible interval.

For the Brighton data there are 210 distinct genetic subtypes that have more than one

observed sequence, with a total of 3954 within group pairwise distances. Furthermore,

there are a total of 1308 genetic sequences and hence 854, 778 total pairwise distances.

Consequently presenting all 3954 posterior predictive checks at the same time may

be difficult to visualise and interpret due to the fact the Q-matrix is sparse, instead

we may look at individual matrices for a particular genetic subtype.

From Figure 3.28 we see the posterior predictive summary for a particular genetic

subtype which contains sequences from a specific patient. There are a total of 13

pairwise distances where the observed distance lies within the 95% credible interval

out of 21 (61.9%) which demonstrates reasonably good model fit.

By considering all 3954 within group pairwise distances, there are 1630 marginal
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Figure 3.28: Posterior predictive summary for all sequences in genetic

subtype 65. All genetic sequences within this subtype were sampled

from the same patient (ID 1973). The blue boxes indicate that the

true observed distance lies within the 95% credible interval of the

simulated distances, and red indicates the true distances lies outside

of the interval.

posterior predictive distributions (41.2%) such that the observed distance lies within

the 95% credible interval. This indicates that these distances can be well explained

by the model, conversely there are a significant proportion of distances that are not

captured by the model which highlights the need to develop alternative models to

accurately describe genetic data in an outbreak.

3.8 Discussion

In this chapter we have presented a novel framework for analysing outbreak data

which may contain within-host genetic diversity and healthcare worker data. These

extensions naturally build upon the work described in Worby et al. (2016) and

Chapter 2 by modelling healthcare workers on an individual level and partitioning
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genetic sequences that are assumed to have evolved from independent stochastic

processes.

The two extensions are motivated by the Brighton data set, where a significant

portion of the data are sequences from healthcare worker swab tests. Furthermore,

the data set exhibits a significant amount of within-host genetic diversity, where some

individuals have multiple sequences from different strains of the organism.

Genetic sequences are partitioned into groups such that the pairwise distances within

a group are similar and hence represent snapshots of the same organism at various

points in time. The underlying mutation model describes the evolution of a single

nucleotide through time, therefore separating sequences into groups is necessary

where each group corresponds to a different nucleotide. The motivation here is that

modelling multiple strains evolving independently more accurately describes the

underlying biological process. Typically individuals test positive for colonisation if

the pathogen is detected on a particular anatomical site, which usually presents in the

form of a colony which will likely contain variations of the pathogen. Since multiple

‘versions’ or more suitably strains of the pathogen exist concurrently, hence we model

each of these as independent stochastic processes.

The results in this chapter are natural generalisations of those derived in Chapter 2

where the contributions of the genetic data for each subtype are independent of

one another. Furthermore, we discuss how to construct a genetic network that is

consistent with the transmission tree and genetic subtypes.

Including healthcare workers at an individual level provides us with a method to better

determine transmission routes through the population. This is particularly useful in a

Bayesian framework where we frequently update the augmented data which consists

of the unobserved transmission dynamics, particularly the source of colonisation. In

our MCMC algorithm we continuously update the source of colonisation for each

individual which now may be either other patients or healthcare workers.

When updating sources of colonisation in the algorithm, proposals that involve
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individuals with similar genetic sequences are more likely. In principle, updates that

‘join’ two individuals together (i.e. one of the individuals are proposed to be the

source of colonisation for the other) are informed by the genetic data. If the two

individuals have similar genetic sequences (indicated by low pairwise distances), then

the genetic model should consider these two to be epidemiologically related and hence

more likely to accept the proposed move. Inclusion of healthcare worker data now

allows those individuals to be proposed as a source of colonisation for patients which

should determine transmission pathways by proposing to randomly ‘join’ individuals

together and eventually finding the most likely transmission network.

We then examined the performance of the model through a simulation study and sen-

sitivity analysis. When simulating data sets with parameter choices informed by real

world choices, we were able to successfully infer the true simulated parameter values

and also demonstrated significant improvement in inferring the correct transmission

network compared to without the genetic data. Furthermore, we demonstrated that

the algorithm is able to infer times and sources of colonisation.

We also tested the robustness of the parameter estimation by varying the true

simulated parameters across a range of values and showed that the algorithm was

able to recover the true value most of the time. The model seemed to consistently

underestimate the healthcare worker transmission rate βH , reasons why are discussed

below. For all parameter choices in simulated scenarios the algorithm demonstrated

significant improvement of accuracy when reconstructing the transmission network

with genetic data, compared to when inferring the transmission network without

the genetic data. Consequently this gives support that inclusion of genetic data is

worthwhile to better determine transmission pathways through the population.

Next we fit the model to the Brighton data set and where we inferred the parameter

values, times and sources of colonisation. From the posterior samples from the

MCMC we were able to construct posterior distribution for each parameter and

also a weighted transmission network. We found that there were three instances of

transmission, two of which were healthcare worker to patient (posterior probability
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of 55% and 97%) and one of patient to patient (posterior probability 28%).

The reason for inferring little transmission is likely due to identifiability issues with

the Poisson model to describe the genetic distance between imported sequences. Put

another way, there are multiple ways to explain the same data. Suppose we have

three individuals that are separated by low genetic distances (less than 5 SNPs).

One explanation is that all three imported the pathogen from the community, in

which case the average distance parameter µ is low. On the other hand, another

explanation is that all three are directly linked in one way or another, hence those

genetic distances now inform the mutation rate and the average distance parameter

µ will be higher.

We see this in the posterior median estimates for MSSA and the combined data

sources, where the median of µ is estimated to be 1.76 and 3.63 respectively. There

are a few ways to ameliorate this, such as imposing informative priors or fixing the

parameter. Since we have a genuine belief that this parameter is higher, we feel it

is appropriate in this case to use stronger priors to reflect this and we find that the

model captures more transmission rather than assuming each individual imported

the pathogen from the community.

We also investigated the impact of organism type, specifically by applying the analysis

separately to the three genetic data sources, specifically data that contained MRSA,

MSSA and combined. The MSSA and combined data sources produced similar results

which is expected since the MRSA data contributes a small portion of the combined

data. On the other hand, the results when considering only MRSA were significantly

different to the other two, which is likely due to a lack of data, indicated by the

amount of uncertainty in the parameter estimates.

Furthermore, we replicated the analysis five times for each data source to verify that

independent runs of the same data under a different starting seed converge to the

same mode. We also visually inspected various trace plots, such as the log likelihood,

sum of colonisation times and number of patients added by the algorithm, to verify
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that the chains have converged to the same stationary distribution.

Finally, we performed model assessment using Bayesian posterior predictive checks

to determine the extent to which the observed data departs from replicated data

simulated from the model. We found that posterior predictive distributions for

the epidemiological data are consistent with the observed data, specifically the

observed number of positive tests, number of patients to ever test positive and the

number of colonised patients in the ward are reasonable under the posterior predictive

distributions.

On the other hand, for the genetic data only 41.2% of the marginal posterior predictive

distributions contained the true distance within the 95% credible intervals, indicating

that over half of the within-group distances could not be well explained by the model.

Ultimately the genetic model should certainly be improved, however when modelling

complex biological systems there will invariably be discrepancies between an assumed

model and the true underlying process. The strength in our model lies with the

ability to summarise the genetic data using the matrix of pairwise distances alone,

where the evolutionary relationship of these distances are (partly) inferred by the

algorithm. This is particularly relevant for the Brighton data set where there are

1308 genetic sequences. If we were to store the whole genome sequences then we

are working with 1308 N -dimensional vectors, which translates to approximately

3.66 billion nucleotide bases to store. Alternatively the matrix of pairwise distances

requires 854, 778 elements stored which is over 4000 times smaller than if we were to

store the sequences.

3.8.1 Limitations

By treating healthcare workers at an individual level and without knowledge of actual

time spent on the ward (shift pattern data), we are implicitly assuming that HCWs

apply constant colonisation pressure at all points in time between positive test results.
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In reality it may be the case that for some patient episodes a particular healthcare

worker may never have come into contact with a specific individual simply due to not

working in the ward on those specific dates. While the healthcare worker transmission

model may have some simplifying assumptions, we believe that they are necessary

without more detailed data and ultimately provides a starting point for analysis.

Furthermore, in the analysis of the Brighton data set we have assumed that there

exists one large ward in the hospital where patients are admitted and eventually

discharged, however in fact that data was collected from two separate wards. This

may violate certain assumptions in the transmission model, particularly with regards

to homogeneous mixing of patients (indirectly via healthcare workers). In principle

the correct approach would be to run two separate analyses, one per ward, however

this data were not available and as a consequence it is natural to pool them together.

When analysing the Brighton data set we determined the genetic subtype pre-analysis

using the group by threshold method with a cut-off of 40 single nucleotide polymor-

phisms (SNPs). This choice was to be consistent with the analysis accompanying the

data set, however the decision is still somewhat arbitrary.

As noted about we found that the healthcare worker transmission rate was typically

underestimated in nearly all of the results of the simulation study. Patient to patient

transmission in intensive care units typically occurs indirectly via healthcare workers,

therefore including a healthcare worker to patient transmission rate is potentially

difficult to interpret as there may be some identifiability issues. Another reason is

that healthcare worker transmission is typically low and there may not be enough

information in the data to well estimate the healthcare worker transmission rate

parameter βH .

In the exploratory analysis of the Brighton data set we identified 21 putative trans-

mission pairs informed by low distances sampled at similar times which the algorithm

should recover. The analysis of the Brighton data set inferred only 3 of these 21 pairs

and therefore there may be some acquisitions of the pathogen that were not correctly
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inferred by the algorithm and we believe that this is a consequence of the Poisson

model for imported sequences.

The modelling of imported sequences is intended to provide a generative model to

give contribution to distances that are in distinct transmission chains where the

standard mutation model may not be used. The idea behind this is that distances

within the same genetic subtype by definition are lower than an arbitrary threshold

ζ, but there may still be some natural clustering within the subtypes. Intuitively

larger distances (typically greater than 5 SNPs) within the same genetic subtype are

considered too large to occur by mutation alone, hence this supports the idea that

these two observed groups are related since they are in the same subtype, but occur

as a result of multiple introductions of the pathogen.

These ideas borrow from the phylogenetic approach where we assume that these

sequences evolved from a most recent common ancestor and instead of inferring the

phylogenetic network we assume a Poisson model for the pairwise distances between

these sequences.



CHAPTER 4

Inference for foot-and-mouth disease (FMD)

4.1 Introduction

Foot-and-mouth disease (FMD) is a contagious viral disease that primarily affects

cattle and swine, however the virus can be transmitted by other cloven hoofed animals

such as sheep and goats (Dunbar et al., 2009). Livestock infected with the disease

typically exhibit fever, shivering, drooling of saliva, lameness and vesicular lesions on

the tongue, nose, coronary bands and teats due to the replication of FMD (Meyer

and Knudsen, 2001).

The virus is considered one of the most highly contagious diseases due to the rapid

replicated of the pathogen within animals and the ease of transmission between

other susceptible livestock in close proximity (Grubman and Baxt, 2004). The virus

may also be spread through aerosolised droplets that come into contact with the

respiratory tract of recipient livestock (Alexandersen et al., 2003).
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In addition to direct animal-to-animal contact, FMD can also be spread through

indirect contact, such as contaminated fomites. Fomites are objects or materials

that can becoming contaminated with infectious microorganisms, such as vehicles,

clothing or equipment that have come into contact with infected animals or their

secretions (Woodbury, 1995).

In the context of foot-and-mouth disease, studies have estimated a £3.1 billion GBP

loss to the agriculture and food chain and £355 million to agricultural produces in

the 2001 UK outbreak alone (Thompson et al., 2002).

Modelling outbreak data provides an opportunity to understand transmission dynam-

ics, evaluate control measures (Hayama et al., 2013), predict observed transmission

(Jewell et al., 2008), model vaccination strategies (Keeling et al., 2002) and infer

transmission networks (Cottam et al., 2008; Morelli et al., 2012; Lau et al., 2015).

This chapter is organised as follows. In Section 4.2 we review previous modelling

studies of FMD. In Section 4.3 we introduce the motivating data set for this chapter

and present an exploratory analysis. Next in Section 4.4 we outline the stochastic

models we have developed to describe the data.

Later in Section 4.5 we describe how to perform inference in a Bayesian framework, in

particular the Markov chain Monte Carlo (MCMC) algorithm used to draw samples

from the posterior distribution and steps to sample the unobserved data and in

Section 4.6 we present a simulation study to demonstrate the performance of the

algorithm.

Furthermore, we present an analysis of an outbreak of FMD in Darlington in the north

east of the United Kingdom in Section 4.7 for various competing models informed by

the exploratory data and then assess the goodness of fit of each of these models in

Section 4.8. Finally, we present a discussion into the models and methods developed

in this chapter in Section 4.9 including the limitations of our approach and potential

future research directions.
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4.2 Literature review

In this section we review previous attempts at modelling FMD, in particular the 2001

outbreak in the United Kingdom which began in February 2001 and lasted for over

six months and saw the destruction of four million animals (Davies, 2002). The work

in Keeling (2005) provides a detailed description of three popular models developed

at the time by different groups, that is the Cambridge-Edinburgh model (Keeling

et al., 2001), Imperial model (Ferguson et al., 2001) and InterSpread (Morris et al.,

2001), however in this review we only focus on the former.

In Keeling et al. (2001) the authors provide an analysis of the dynamics of the

2001 foot-and-mouth epidemic in the UK. The model described (later coined as

the ‘Cambridge-Edinburgh’ model (Keeling, 2005)) is a discrete time stochastic

Susceptible-Exposed-Infected-Removed (SEIR) model where the rate of transmission

depends on the distance between infected-susceptible farm pairs, the number and

type of infected livestock and their relative susceptibility.

In their formulation, at time t each susceptible farm j receives infectious pressure

from each infective farm i, independent of all other farms, denoted by βij. Exposure

to the pathogen is then modelled by contacts with infective farms and contact with

other farms are determined by the time points of independent Poisson processes.

Hence, the probability of exposure in the time interval (t, t+ 1] is given by

Pr(farm i is exposed on day t) = 1− exp

(
−
∑
i∈It

βij

)
,

where It is the set of infected farms at the start of day t. The latent and infectious

periods are considered to be fixed and are 5 and 9 days respectively.

The authors employ a two-step approach whereby they first estimate the model

parameters using maximum likelihood estimation to generate an initial fit, and then

refine their estimates on a regional level using Monte Carlo simulation. The general

procedure was to split the data and model parameters at a county level and then

tune parameter estimates which minimise the differences between the observed data
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and the simulated epidemic curves using a least squares approach. The main findings

were the importance of rapid implementation of control strategies and the importance

of quantifying the spatial infection kernel that contributed to local and non-local

spread. Using the same model, a detailed analysis of vaccination strategies can be

found in Keeling et al. (2002).

Cottam et al. (2006) examines the molecular epidemiology of FMD by sequencing the

genomes of 21 samples collected from infected premises during the 2001 outbreak in

the United Kingdom. The authors reconstructed a phylogenetic tree using maximum

likelihood methods under the assumption of the Hasegawa–Kishono–Yano (HKY)

mutation model, which is similar to the Kimura mutation model with the assumption

of equal base frequencies relaxed. The authors provide an estimate for the mutation

rate of the virus, which was found to be 2.26×10−5 (95% CI [1.75×10−5, 2.80×10−5])

and an estimated date for the start of the outbreak, 7th February 2001, which is

consistent with clinical evidence. The authors also assess the feasibility of contract

tracing when informed by genetic data. They found that phylogenetic analysis agreed

with traditional tracing methods and also provided new insights, such as linking

farms that were previously considered unrelated.

In Savill et al. (2006) the authors look at the spatial dynamics that can be attributed

to the spread of FMD in the 2001 UK outbreak. Specifically they use contract tracing

data from the Department for Environment, Food and Rural Affairs (DEFRA)

alongside UK road network data to compare the risk of infection between susceptible

and infective farm pairs using Euclidean distance versus the shortest and average

distance using roads. They conclude that a transmission kernel based on Euclidean

distance is sufficient to estimate transmission risk compared with the shortest path

via road travel.

In their discussion the authors suggest possible reasons for the results, which are (i)

there are more transmission routes than just the main road, such as farms sharing a

common boundary or private paths not included in the road data and (ii) infections

may occur by social networks.
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Tildesley et al. (2008) provides a detailed analysis of the Cambridge-Edinburgh model

(Keeling, 2005) and develops techniques to assess the accuracy of the model, in

particular its predictive ability to correctly identify cases and culls. By simulating

data at a farm level the authors are able to compare the status of any particular

farm at the end of the outbreak with the true status, where a farm may either be

(i) reported, (ii) culled or (iii) susceptible. In the usual fashion, a straightforward

measure of accuracy is then given by

accuracy =
NRR +NCC +NSS

total number of farms
,

where NRR, NCC and NSS are the number of farms that were correctly predicted to

be reported, culled and susceptible respectively. The authors calculated the accuracy

to be 92.46% (95% of simulations lie within 91.66-93.16%), suggesting good predictive

power in general but only a small part of the overall picture.

In particular, it is difficult to summarise the accuracy of a models ability to capture

the spatio-temporal dynamics down to a single statistic, hence the authors consider

the accuracy of predicting reported and culled cases separately.

4.3 The Darlington data set

The data set we apply the models and methods developed in this chapter to is the

‘Darlington cluster’ (Cottam et al., 2008). The data set includes information on

the location, date and type of premises affected, as well as the number of animals

slaughtered and the dates on which they were slaughtered. The data set is called the

‘Darlington cluster’ because it refers to a specific geographic area in the north-east of

England where a large number of farms were affected by the outbreak. The original

data was provided by DEFRA and a description can be found in (Cottam et al.,

2008).

More precisely, the observed data are the location (longitude and latitude of infected

premises), date of culling, date of examination, date of first lesion appearance and



Chapter 4: Inference for FMDV 159

the pairwise transitions and transversions for all isolates that were sequenced, the

corresponding farm and time of sampling.

In this work we do not account for the species and number of each infected animal

on the premises, however it is possible to account for farm level covariates (Firestone

et al., 2020). An overview of the epidemiological and genetic data can be found in

Figures 4.1 and 4.2 respectively.

We also note that there are other farms in the nearby area that were never infected

and are not included in this data set. The inclusion of susceptible farms will invariably

have an impact on the inference and consequently we later consider a separate analysis

with susceptible farms.

Immediately from the overview of the genetic data we observe sequences with a high

degree of similarity, indicated by the white cells in Figure 4.2. Intuitively, genetic

sequences that are similar suggest that the farms which they were sampled from are

potentially linked in terms of transmission.

From the pairwise transitions, we notice similarity between farms A and N , with

a distance of 6 transitions. Furthermore, the next farm that is similar to A is K

with a distance of 17 transitions, and the next most similar farm to N is also K with

a distance of 21. Hence it is clear that the genetic sequences sampled from A and

N are distinct from all other observed farms, which gives evidence that these two

may be related and in a separate transmission cluster. It can also be seen that these

two premises are also geographically linked, which further suggests that transmission

between the two is plausible.

Next we observe multiple small genetic distances for farm K where the corresponding

farms with these similar sequences are F,B,M,G and P with (5, 6, 8, 8, 9) transitions

respectively, which may be an indicator for a small cluster of farms which are

potentially related.

Moreover there is a strong link between farms M and D with a transition distance of
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Figure 4.1: An overview of the epidemiological data for the Darlington

cluster. Above: Temporal trends with the infected premises where the

segments in blue indicate the time where lesions were detected on the

livestock but before examination. The segments in red indicate the

time after examination to the time of culling. Below: The location of

each farm in space.

2 which suggests strong support for transmission. Finally, we see another cluster of

transmission between farms G, I and J with pairwise transitions (TGI , TGJ , TIJ) =

(2, 4, 2), again indicating suggesting that these farms may be related in transmission,

such as one infecting the others or all three infected by an external farm. It can also

be seen that these three farms are also geographically linked, in the sense that these
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Figure 4.2: An overview of the genetic data for the Darlington cluster,

summarised as a heat map of the number of pairwise transitions

(above) and transversions (below). A colour (key indicated on the

right) in position (i,j) is representative of the number of transitions or

transversions (text in individual cells) between sequences i and j.

farms are all close to one another.

From the pairwise transversions in Figure 4.2, the data are less informative due to

the transversion rate being significantly lower than the transition rate and hence we
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see many sequences that are identical in terms of transversions, or differ only by a

few. The heat map for the number of pairwise transitions is in general darker than

the heat map for the number of pairwise transversions, which is to be expected as

the transition transversion ratio has previously been estimated to be 7.61 (Cottam

et al., 2006).

One feature we may discern from the transversion matrix is that farm C appears to

be significantly different from all other farms, perhaps indicating that C did not play

a role in the Darlington cluster. Similarly, farm E is also perhaps unrelated to other

farms, however to a much lesser degree.

We now make some remarks as to possible explanations for the observed data in

Figure 4.1. Firstly, it should be noted that the true exposure time will be before

the time at which the lesions are detected and we will attempt to infer these in our

analysis. One explanation is that the true time of exposure occurs shortly before

the developing symptoms, and hence the period between infection and symptoms is

small. In this scenario, if infectious periods are short then there may be multiple

transmission clusters or unobserved transmission events that are not present in the

data, i.e. unreported premises.

On the other hand, if the infectious periods are long, then it is possible that the

outbreak is a result of a single initial infective. The aim of this chapter is to incorporate

multiple sources of information, namely the recorded time of culling, examination

and symptoms with geographical location and genetic data to reduce uncertainty in

the inference of (i) key epidemiological parameters and (ii) the transmission network.

Since we have extra information of the events on the farm prior to culling, such as

the date of lesion onset and the date of examination, we are motivated to extend the

general SEIR modelling framework to incorporate this extra information.
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4.4 Model description

In this section we outline the model and assumptions used to analyse data from an

outbreak of food-and-mouth disease virus (FMD). We propose a stochastic model

where we are modelling farms at an individual level in the context of FMD and

throughout the rest of this chapter we shall use the terminology ‘farm’ and ‘premises’

interchangeably.

In general this is an oversimplification of the transmission process since we are

explicitly assuming that within-farm infections occur rapidly (Thornley and France,

2009). Furthermore, a farm is considered to have been exposed to the pathogen if

any of the livestock show clinical symptoms of FMD.

We use a compartmental stochastic epidemic model to describe the transmission

process where each farm may belong to exactly one of six compartments: susceptible

(S), exposed (E), presymptomatic (I), postsymptomatic (L), examined (X) and

removed (R).

Susceptible

S(t)

Exposed

E(t)

Presymptomatic

I(t)

Postsymptomatic

L(t)

Examined

X(t)

Removed

R(t)

Figure 4.3: A stochastic compartmental model where each farm

may belong to one of six states, which are susceptible, exposed,

presymptomatic, postsymptomatic, examined and removed. Initially

farms are susceptible to the disease and transition to the exposed

state upon contact with an infected farm.

Any particular farm that is susceptible, denoted by i, receives infectious pressure

denoted by Pi(t) at any time t, which depends on parameters governing the trans-
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mission process and also the data, for example geographical distance. We assume

that farms become infectious and hence exert infectious pressure on susceptible farms

after entering the presymptomatic stage I.

Following standard assumptions in the literature (Andersson and Britton, 2012,

Chapter 2), we assume that exposure to the pathogen for a susceptible farm j is

a result of contact with an infectious farm i. Contacts between pairs of farms can

be modelled as a time homogeneous Poisson process with intensity βij, with the

assumption that all Poisson processes are mutually independent. The infectious

pressure a susceptible farm i receives is therefore given by

Pi(t) =
∑

j∈Y(t)

βij,

where Y(t) = {j : Ij < t < Rj} is the set of farms who are infected at time t.

In light of the previous modelling attempts discussed in Section 4.2 we are motivated

to adopt a heterogeneous transmission rate that depends on the Euclidean distance

between farms. More precisely, we wish to define a transmission kernel where the

rate of contact between farms i and j is βij = βK(d), that is the transmission rate

depends on the distance between the two farms through the kernel K. Throughout

the rest of this chapter we shall assume the exponential kernel (Lau et al., 2014),

which is explicitly given by K(dij) = exp(−κdij). The choice of transmission kernel

is largely arbitrary, however one may circumvent this decision and instead opt to

estimate the infection rate non-parametrically (Seymour et al., 2022).

The intuition behind the kernel is that the rate of transmission is high when individuals

are close to one another and this decays as distance increases, where κ is the parameter

that specifies the rate of decay. Example transmission kernels with various values of

κ are shown in Figure 4.4.

As opposed to Lau et al. (2014) we do not consider background exposures but instead

consider the possibility of multiple initially infected farms. In the context of Foot-

and-Mouth disease, clearly farms cannot contact others in the usual sense, rather
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Figure 4.4: Spatial transmission kernels of the form K(d) =

exp(−κd) where d is the Euclidean distance and κ is the decay

parameter. The line in red correspond to κ = 0.01, green corresponds

to κ = 0.1 and blue corresponds to κ = 1.

contacts are indirect and occur through various means, such as contact with fomites

(contaminated objects), airborne transmission, contaminated feed and water (Paton

et al., 2018).

Susceptible farms that are exposed to the pathogen and hence transition from S → E

remain in state E for a fixed amount of time which defined as the latent period.

During this period the farm has contracted the disease but are not yet able to further

transmit the pathogen.

After the latent period the farm will transition from E → I, whereby the farm now

exerts infectious pressure on susceptible farms. The amount of time spent in state I

is defined as the presymptomatic period, after which the farm will transition to the

lesion state (I → L) upon developing symptoms. This duration may also be referred

to as the ‘subclinical‘ period in the literature (Mardones et al., 2010).

We define the time spent in state L to be the post symptomatic period where there are

observable symptoms on the livestock, but there has not been a formal examination

yet. Intuitively this can be thought of as the response time, which may be high

if an outbreak is severe and there are not enough veterinary doctors to attend all
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infected premises. Naturally it is of interest for the government and health agencies

to keep this as low as possible. After examination the farm transitions compartments

(L→ X).

In the United Kingdom, after developing symptoms a farm is considered an infected

premises and is subject to various restrictions. In particular, livestock will be humanely

culled in accordance with The Animal Health Act 1981 and the European Communities

Act 1972 and an epidemiological investigation is carried out in an attempt to control

the spread of the disease. Hence after being culled a farm transitions from state X to

R, where it is considered to be removed and no longer exerts infectious pressure on

the population. The time spent in class X can intuitively be thought of as the time

until culling after detection of the pathogen. Usually farms are culled immediately,

however in some instances this may take a day or two. Furthermore, it is of interest

from an infection control perspective to estimate this time period.

We assume that the latent period is constant and assumed to be known for all farms

and the presymptomatic, post-symptomatic and removal periods are modelled by

Gamma distributions. Furthermore, these periods are assumed to be independent of

one another and the periods for different farms are assumed to be independent. Note

that in general these random periods can be modelled by any arbitrary but specified

non-negative distribution.

Furthermore, we assume that genomic sampling has been done where isolates have

been cultured and sequenced from infected livestock, usually at the time of examina-

tion. Similar to Section 2.8 we assume that there exists a single dominant lineage in

the population at any particular time, and upon exposure the pathogen is ‘copied’

from the source of infection to the recipient. That is to say, suppose farm i infects

farm j at time t, then pathogen in farms i and j will be identical at time t, i.e. they

will have the same whole genome sequence.

Finally, we model the genetic data at the level of nucleotide substitutions and assume

that nucleotides evolve according to the Kimura model (Section 2.4.2). Recall that
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substitutions between the two pyrimidines (T ↔ C) or the two purines (A↔ G) are

called transitions and substitutions between a pyrimidine and a purine (T,C ↔ A,G)

are called transversions. Finally, we assume that each nucleotide evolves independently

of each other.

4.4.1 Data and notation

Following from the transmission and genetic models described above, we shall now

outline some key notation that shall be used throughout the chapter. Consider a

closed population of N farms, labelled {1, ..., N}, and let nE denote the number of

premises to ever become exposed to the pathogen. Due to the compartmental nature

of the model, farms may only belong to one of the six classes at any particular moment

in time, hence we necessarily must have S(t) +E(t) + I(t) +L(t) +X(t) +R(t) = N .

For j = 1, ..., N we denote Ej, Ij, Lj, Xj and Rj to be the precise time of exposure,

infectiousness, lesion onset, examination and removal where necessarily we must have

Ej < Ij < Lj < Xj < Rj ≤ T where T = maxj Rj. If a particular farm j is never

exposed to the pathogen we set A = ∞ for all A ∈ {Ej, Ij, Lj, Xj, Rj}. Recall that

we assume there is a fixed latent period which we denote by L and hence Ej = Ij −L

for all j = 1, ..., nE.

Let K denote the set of farms that are assumed to be the root of the transmission

clusters, where the number of transmission clusters, nc, is the size of this set. Fur-

thermore, define sj to be the source of infection such that sj = k if and only if farm k

infects farm j. If a particular farm j is considered to be the root of the transmission

cluster we set sj = −1 for all j ∈ K, and sj = ∞ if farm j is never exposed to the

pathogen.

Let E, I,L,X,R denote the complete set of times for the exposures, infectiousness,

lesion onset, examination and removal respectively and s = (s1, ..., sN ) denote the set

of source of infection for each farm. Note that the true time of exposure, infection
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and the source of infection are typically unobserved, hence we denote Y = (E, I, s) to

be the unobserved quantities. We assume that the lesion, examination and removal

times are observed and hence we write Z = (L,X,R) to be the observed data. Note

that there does exist some uncertainty around the estimated date of lesion onset

where the data are originally from the Defra data warehouse (Cottam et al., 2008),

however for simplicity we shall treat them as known.

Furthermore, suppose we have observed ns genetic sequences, we define T ∈ Nns×ns
0

and V ∈ Nns×ns
0 to be the matrices of pairwise transitions and transversions respec-

tively (for example Figure 4.2). For any genetic sequence label j = 1, ..., ns we denote

νj to be the farm where the sequence was collected, ηj to be the genetic subtype

number for the sequence and τj to denote the corresponding time of sampling. Let ν, η

and τ denote the complete set of sequence locations, subtype numbers and sampling

times, then we may write the complete genetic data as ψ = (T, V, ν, η, τ). There

may also be unobserved genetic sequences, hence the unobserved genetic data can be

written as ψ̃ = (T̃ , Ṽ , ν̃, η̃, τ̃). Finally, let G denote the underlying genetic network

that describes the evolution of the pathogen. Recall from Section 3.4.1 that the

genetic network G is not a genuine parameter and is constructed from the data.

Let F = (Y, ψ̃,G) denote the unobserved data which consists of the times of exposure,

infection, source of infection, genetic data and the underlying genetic network.

We define ρ = (α1, γ1, α2, γ2, α3, γ3, β, κ, λT , λV ) to be the vector of model parameters

which contain the shape and rate parameters for the distributions of the random

times spent in the compartments, the parameters governing the transmission process

and finally parameters for the mutation model.

4.4.2 Model likelihood

In this section we present the joint likelihood of the transmission process and genetic

data given the model parameters. Let K denote the farms that are the roots of each
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transmission clusters and EK denote their respective exposure times. The density

of the observed data f(Z, ψ | ρ, EK,K) in Equation (4.1) is intractable as it involves

integrating over the unobserved data F ,

f(Z, ψ | ρ, EK,K) =

∫
F

f(Z, ψ, F | ρ, EK,K)dF. (4.1)

Consequently we consider augmenting the parameter space with the unobserved

quantities F which leads to a tractable likelihood. Note that we may decompose this

likelihood into two independent components,

f(Z, ψ, F | ρ, EK,K) = fG(ψ, F | ρG,Z, EK,K)fT (Z, F | ρT , EK,K), (4.2)

where fG(ψ, F | ρG,Z, EK,K) is the density of the genetic data, conditional on

the outbreak data and model parameters, fT (Z, F |ρT , EK,K) is the density of the

transmission data conditional on the model parameters and the complete parameter

vector is ρ = (ρG, ρT ).

For the rest of the chapter we shall drop the conditioning on the transmission cluster

roots K for notational convenience.

4.4.2.1 Epidemiological component

The term fT (Z | F, ρ, EK) in Equation (4.2) is the density of the transmission process,

conditional on the model parameters. We may decompose this into independent

components,

fT (Z, F | ρ, EK) = LT × LS × LX × LR, (4.3)

where LT , LS, LX and LR are the contributions from the (i) transmission process,

(ii) presymptomatic periods, (iii) postsymptomatic periods and (iv) removal periods

respectively. We define the random period of time spent in classes I, L, X and R for

each farm to be the sojourn times.

Transmission contribution We do not directly model introductions of the pathogen

into the population and instead assume that the number of transmission clusters to
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be constant and known, hence the likelihood of the transmission process consists of

the probability of susceptible premises avoiding infection and the probability of farms

becoming infected.

As discussed in Section 4.4, any susceptible farm denoted by i receives infectious

pressure from already infective farms, j say, at a rate βij = β exp(−κdij).

The contribution of the transmission process can be written as

LT =

nE∏
j=1
j /∈K

(
βe−κdsjj

)
× exp (−βS) (4.4)

= βnE−nc × exp
(
−(κd̄+ βS)

)
, (4.5)

where d̄ is the distance sum between infected susceptible pairs and S is the total

infectious pressure during the epidemic and these quantities are explicitly given by

d̄ =

nE∑
j=1
j /∈K

dsj ,j, (4.6)

S =

nI∑
j=1

N∑
k=1

e−κdij ((Rj ∧ Ek)− (Ij ∧ Ek)) . (4.7)

The product in Equation (4.4) is the probability of exposure from a particular source

and the exponential term is the probability to avoid exposure from infectious farms.

Sojourn time contribution The contribution of the sojourn times are similar

hence we present a general framework here. Suppose we wish to determine the

contribution of random time spent in a particular class, X, before transitioning to

the next compartment, Y . Recall that we assume the random time spent in a class

can be modelled by some arbitrary but non-negative distribution, Q, with probability

density function fQ(Yj − Xj | ω) for all j = 1, ..., nE. Since all sojourn times are

independent of one another, the contribution to the likelihood is a product of the

independent densities, given by

Lk =

nE∏
j=1

fQ(Yj −Xj | ω), (4.8)
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where k ∈ {E, S,X,R} and ω are the relevant model parameters and Yj, Xj are

the random variables. The specific choice of Q is a modelling decision and may be

dependent on the particular pathogen under consideration. We shall outline some

common choices in the literature (Vergu et al., 2010; Streftaris and Gibson, 2012).

If we assign Q ∼ Gamma(α, γ), then Equation (4.8) becomes

Lk = γαnE exp

{
−γ

nE∑
j=1

(Yj −Xj)

}
nE∏
j=1

(Yj −Xj)
α−1

Γ(α)
. (4.9)

Alternatively we may set α = 1, then we have Q ∼ Exp(α), then we have

Lk = γnE exp

{
−γ

nE∑
j=1

(Yj −Xj)

}
.

Finally, we may consider Q ∼ Weibull(α, γ) with density function f(x | α, γ) =

(α/γ) (x/γ)k−1 e−(x/γ)α . Then we arrive at

Lk =

(
α

γα

)nE

exp

{
− 1

γα

nE∑
j=1

(Yj −Xj)
α

}
nE∏
j=1

(Yj −Xj)
α−1

Throughout the rest of this chapter we shall assign

Li − Ii ∼ Gamma(α1, γ1),

Xi − Li ∼ Gamma(α2, γ2),

Ri −Xi ∼ Gamma(α3, γ3),

to the sojourn times and the vector of parameters for the transmission process is

therefore ρT = (β, κ, α1, γ1, α2, γ2, α3, γ3).

4.4.2.2 Genetic model

In Section 2.7.2 we describe the joint probability mass function for genetic distances

under the assumption of the Kimura mutation model. In the current formulation

of the transmission model we do not attempt to model the incursion of the virus,

and instead we allow for the possibility of multiple introductions of the pathogen.
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Since we assume that the number of transmission clusters are fixed and known, we do

not need to consider the contribution of genetic sequences in unrelated transmission

chains.

Let ψ = (T, V, ν, η, τ) denote the genetic data which are the matrix of pairwise

transitions, transversions, farm where the sequence was sampled, genetic subtype

and sampling times respectively.

From Section 2.7.2, the density of the genetic data, conditional on the genetic network

G and model parameters ρG is proportional to

fG(ψ, F | ρG,Z, EK) ∝
∏

(i,j)∈E

q(τij)
N−Tij−VijpT (τij)

Tij (pV (τij)/2)
Vij (4.10)

where q(τij), pT (τij) and pV (τij) are the probabilities for a nucleotide to not mutate,

transition and transversion in τij time units and q(τij) + pT (τij) + pV (τij) = 1.

The proportionality in Equation (4.10) is a consequence of knowing only the matrices

of pairwise transitions and transversions, rather than the sequence data directly.

4.5 Bayesian inference

Since we augment the parameter space to include all unobserved quantities, it is

then natural to perform inference in a Bayesian framework whereby we treat the

augmented parameters as random variables, conditional on the data. Using Bayes’
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theorem, we obtain

π(ρ, F,EK | Z, ψ) ∝ fG(ψ, F | ρG,Z, EK)fT (Z, F | ρT , EK)π(ρ, EK)

=
∏

(i,j)∈E

q(τij)
N−Tij−VijpT (τij)

Tij (pV (τij)/2)
Vij

× βnE−nc × exp
(
−(κd̄+ βS)

)
× γα1nE

1 exp

{
−γ1

nE∑
j=1

(Lj − Ij)

}
nE∏
j=1

(Lj − Ij)
α1−1

Γ(α1)

× γα2nE
2 exp

{
−γ2

nE∑
j=1

(Xj − Lj)

}
nE∏
j=1

(Xj − Lj)
α2−1

Γ(α2)

× γα3nE
3 exp

{
−γ3

nE∑
j=1

(Rj − Lj)

}
nE∏
j=1

(Rj − Lj)
α3−1

Γ(α3)

× π(ρ, EK), (4.11)

where fG(ψ, F | ρG,Z, EK) and fT (Z, F | ρT , EK) are the likelihoods of the genetic

and transmission data respectively and π(ρ, EK) is the joint distribution of the prior

parameters and exposure times for each transmission cluster.

We assume that the model parameters and exposure times that initiate the trans-

mission clusters are independent a priori, and that the model parameters have the

following distributions:

β ∼ Gamma(aβ, bβ)

κ ∼ Uniform(0, 100)

αi ∼ Uniform(0, 100) i = 1, 2, 3

γi ∼ Gamma(ai, bi) i = 1, 2, 3

λT ∼ Uniform(0, 1)

λV ∼ Uniform(0, 1).

For the prior distribution on the exposure times that initiate the transmission clusters,

π(EK), in a similar fashion to O’Neill and Becker (2001) we assign improper uniform

priors to each of the exposure times that initiate the transmission clusters.
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4.5.1 Markov chain Monte Carlo procedure

In this section we describe how we draw approximate samples from the target density

of interest, π(ρ, F,EK | Z, ψ), i.e. the posterior distribution. We provide an overview

of the MCMC procedure in Algorithm 4 and then explicitly discuss how to update

the parameters (Section 4.5.2) and augmented data (Section 4.5.3).

Algorithm 4 Structure of the MCMC algorithm

1: Initialise the chain with initial values β(1), κ(1), α
(1)
1 , γ

(1)
1 , α

(1)
2 , γ

(1)
2 , α

(1)
3 , γ

(1)
3 , λ

(1)
T , λ

(1)
V ,

maximum number of iterations M , proposal variances σ2
κ, σ

2
α1
, σ2

α2
, σ2

α3
, σ2

λT
, σ2

λV

and prior parameters aβ, bβ, a1, b1, a2, b2, a3, b3.

Repeat the following steps for i = 2,...,M

2: Sample β(i) from π(β | ρ−β, F,Z, ψ).

3: Sample γ
(i)
1 from π(γ1 | ρ−γ1 , F,Z, ψ).

4: Sample γ
(i)
2 from π(γ2 | ρ−γ2 , F,Z, ψ).

5: Sample γ
(i)
3 from π(γ3 | ρ−γ3 , F,Z, ψ).

6: Update κ(i) using a random walk Metropolis-Hastings step.

7: Update α
(i)
1 using a random walk Metropolis-Hastings step.

8: Update α
(i)
2 using a random walk Metropolis-Hastings step.

9: Update α
(i)
3 using a random walk Metropolis-Hastings step.

10: Update λ
(i)
T using a random walk Metropolis-Hastings step.

11: Update λ
(i)
V using a random walk Metropolis-Hastings step.

12: Update the augmented data y times.

4.5.2 Parameter updates

In this section we explicitly show how each of the parameters are updated in our

MCMC algorithm. Let (Z, ψ) denote the observed data, ρ the model parameters, F

the unobserved data and ρ−x to be the vector of parameters not including x.
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Steps 2-5: From Equation (4.11) it is straightforward to see that we may sample

β and γi for i = 1, 2, 3 from the following full conditional distributions,

β | ρ−β, F,Z, ψ ∼ Gamma (nE − nc + aβ, S + bβ)

γi | ρ−β, F,Z, ψ ∼ Gamma

(
αinE + aγi ,

nE∑
j=1

(Xi − Yi) + bγi

)
, i = 1, 2, 3

where S is the double sum in Equation (4.7) and the quantity
∑nE

j=1(Xi − Yi) refers

to the sojourn period associated with the rate parameter γi where Xi and Yi are the

appropriate variables.

Steps 6-11: For the remaining parameters, which are the shape parameters for

the sojourn time distributions α1, α2 and α3, the transmission kernel decay κ and

transition and transversion rates λT and λV , we may update these parameters using

a Metropolis-Hastings random-walk with a normal proposal distribution.

We may update the all remaining parameters using a Metropolis-Hastings random-

walk with a normal proposal distribution. Let θ = {α1, α2, α3, κ, λT , λV } denote this

parameter set, then for each x ∈ θ we propose

x′ ∼ N(x, σ2
x),

where x′ denotes the proposed parameter value which is drawn from a normal

distribution with the mean set to the current parameter value x and σ2
x is the

variance. Finally, the proposed value x′ is accepted with probability

min

(
1,
π(ρ′, F, EK | Z, ψ)
π(ρ, F,EK | Z, ψ)

)
,

where ρ′ is the parameter set with the proposal parameter value x′.

4.5.3 Augmented data updates

In this section we describe how to sample the unobserved quantities F = (Y, ψ̃,G) in

Algorithm 4, step 12 which are the unknown infection times, the source of infection
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and unobserved genetic distances. Since the transmission tree is defined by the event

times and source of infection, updating these quantities is equivalent to sampling

from the space of transmission networks.

The general procedure is as follows. Let F ∗ denote the proposed data set such that

F ∗ = (Y∗, ψ̃∗,G∗) and define the proposal ratio qF,F ∗ = Pr(F ∗ → F )/Pr(F → F ∗),

which is the probability of making the reverse move divided by the probability of

making the forward move.

Any proposal to the transmission tree may require the genetic data to also be updated

where we use an identical process to that described in Section 3.5.2, with the difference

that here we sample the number of transitions and transversions independently from

the proposal distributions fI and fE for interior and exterior nodes respectively. Once

a candidate data set has been proposed, we accept this move with probability

min

(
1,
π(ρ, F ∗|zobs, ψ, xs)
π(ρ, F |zobs, ψ, xs)

qF,F ∗

)
,

otherwise we reject and move to the next step.

For the following sections we denote vE = {i : Ei <∞} to be the set of individuals

to ever become exposed to the pathogen and hence have a finite exposure time and

C(Ej) = {i : Ii < Ej < Ri} to be the set of individuals who are currently infective at

time Ej. Finally, let O(j) = {i : si = j} denote the set of offspring for farm j where

we define the term offspring to be the set of farms who are considered to have been

infected by j.

Sampling the unobserved data is not a straightforward task and standard data

augmentation moves are not efficient to explore the space of transmission networks.

Instead we develop carefully designed proposals to update the augmented data for

more efficient sampling which we describe below.
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4.5.3.1 Update an infection time

First we sample one of these exposed farms uniformly at random from vI and

denote this individual as j. Next we propose a new infection time I∗j = Lj − X

where X ∼ Gamma(α1, γ1) and (α1, γ1) are the current values of the shape and rate

parameters for the presymptomatic period distribution and we set E∗
j = I∗j −L, where

L is the known constant latent period.

Note that if E∗
j < Isj , that is the proposed exposure time is before the infection

time for the source, we reject immediately. Similarly if E∗
j > Rsj where the proposed

exposure occurs after the source has been removed we also reject immediately. Next

we check that the proposed infection time is before the exposure time of any offspring,

i.e. I∗j < Ek for all k ∈ O(j). Finally, we check that that the proposed infection

time I∗j is before any sampled sequence time associated with farm j. In all of these

scenarios we arrive at an outbreak that is impossible and hence has probability zero.

After proposing E∗
j we may update the genetic data if necessary by imputing any

unobserved sequences (and hence corresponding distances) at the time of exposure,

and we denote the proposal ratio for the genetic data to be Ygen. The proposal ratio

for this move is explicitly given by

qF,F ∗ =
Pr [Gamma(α1, γ1) = Ij − Ej]

Pr
[
Gamma(α1, γ1) = Ij − E∗

j

]Ygen

=

(
Ij − Ej

Ij − E∗
j

)α1−1

e−γ1(E∗
j−Ej)Ygen.

4.5.3.2 Update an infection time and source

This move is similar to above, except now we also propose to update the source of

infection jointly with the infection time. First we sample one of these exposed farms

uniformly at random from vI and denote this individual as j. Next we propose a new

infection time I∗j = Lj −X where X ∼ Gamma(α1, γ1) and (α1, γ1) are the current

values of the shape and rate parameters for the presymptomatic period distribution
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and we set E∗
j = I∗j − 2.

Next we check that the proposed infection time is before the exposure time of any

offspring, i.e. I∗j < Ek for all k ∈ O(j). Finally, we check that that the proposed

exposure time E∗
j is before any sampled sequence time associated with farm j. In

all of these scenarios we arrive at an outbreak that is impossible and hence has

probability zero.

Then we sample a source of infection s∗j from the set of farms exerting infectious

pressure C(E∗
j ) with probability

Pr(s∗j = i|E∗
j ) =

βe−κdi,j∑
k∈C(E∗

j )
βe−κdk,j

,

however if this set is empty we reject the move.

After proposing E∗
j we may update the genetic data if necessary by imputing any

unobserved sequences (and hence corresponding distances) at the time of exposure,

and we denote the proposal ratio for the genetic data to be Ygen. The proposal ratio

for this move is explicitly given by

qF,F ∗ =
Pr [Gamma(α1, γ1) = Ij − Ej] Pr(sj = i|Ej)

Pr
[
Gamma(α1, γ1) = Ij − E∗

j

]
Pr(s∗j = i|E∗

j )
Ygen

=

(
Ij − Ej

Ij − E∗
j

)α1−1

e−γ1(E∗
j−Ej)

∑
k∈C(E∗

j )
e−κdkj∑

k∈C(Ej)
e−κdkj

e
−κ(dsj ,j−ds∗

j
,j)Ygen.

4.6 Simulation study

In this section we examine the performance of the algorithm on simulated data. We

begin by simulating data sets with parameter values motivated by existing analyses

(e.g. Mardones et al. (2010); Charleston et al. (2011); Lau et al. (2015) to name a

few) and examine the properties of the algorithm, in particular the ability to recover

the true simulated parameter values and the accuracy in determining the source of

infection.
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We also with to determine how well the algorithm can identify clusters of transmission,

therefore we consider scenarios of nc = 1, 2, 3 clusters and compare the parameter

estimates and source accuracy for each.

4.6.1 Simulation method

In order to simulate from the model with a population of size n we begin by drawing

a pair of (x, y) coordinates uniformly at random from the unit square for each farm

to describe their geographical location in space. These coordinates are considered to

be part of the observed data and hence we do not model how these are generated. We

also specify the number of transmission clusters nc and sample the initially infective

farms uniformly at random from all susceptible premises.

We use an extension of the Gillespie algorithm for stochastic simulation (Bratsun

et al., 2005) to generate outbreaks from non-Markovian epidemic models. The general

idea is to simulate the time until exposure for each susceptible farm where the time

until exposure is a random draw from an exponential distribution with rate to be the

total infectious pressure received at that time and then choose the minimum of these

as the time until next exposure. Then we compare the time until next exposure with

the time of the next transition for all other compartments and choose the minimum

of these as the next event.

In the event of an exposure, we must also draw the sojourn times for each compartment

from the relevant Gamma distribution and then update the state of the system and

move time forward. Otherwise, in the event of any other transition, we simply update

the state of the system and move time forward.

For a population of size n with y removed farms by time t, there are exactly n− y

total transitions that may occur. Suppose the system is currently at time t, then the

K = n− y event times are drawn from the relevant distributions, denoted by τi for

i = 1, ..., K. Then let τ = mini τi denote the smallest of these event times and P
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denote the farm where the next transition will occur. We set the new time t = t+ τ

and update the state of farm P .

Susceptible farms receive infectious pressure at time t from each of the j ∈ C(t)

where C(t) = {j : Ij < t < Rj} is the set of currently infectious farms. Note that

C(t) may be empty, in which case the farm cannot be exposed to the pathogen and

hence the outbreak has ceased.

If the transition for farm P is S → E, i.e. an exposure has occurred, we update the

state of the farm and also generate the future infection, symptom, examination and

removal time. Next we sample a source of infection where the probability of choosing

an infectious farm i ∈ C(t) is proportional to βe−κdij . Otherwise we simply update

the state of the farm for any other type of transition.

Next we generate genetic data consistent with the transmission tree and genetic

model. More precisely we wish to simulate matrices of pairwise transitions, T , and

transversions, V . We assume that genetic isolates are collected and sequenced at

the examination times X, which constitute the observed genetic data. However, to

generate these distances we must construct the genetic network G from the true

transmission network, which also requires simulating unobserved sequences at the

times of exposure E.

After constructing the ‘true’ genetic network, we simulate genetic distances from the

mutation model between pairs of connected sequences in the network, i.e. for each

(i, j) ∈ E we draw

(Tij, Vij, N − Tij − Vij) ∼ Multinomial(N ; pT (τij), pV (τij), 1− pT (τij)− pV (τij)),

where τij is the absolute difference in sampling times of the sequences, pT (τij) and

pV (τij) are the probabilities of transition and transversion in τij time units respectively

and N is the size of the genome.

This may be achieved by simulating from successive Binomial distributions (Linderman

et al., 2015) by first drawing the number of transitions Tij ∼ Bin(N, pT (τij)) and
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then, conditional on the number of transitions, we draw the number of transversions

Vij | Tij ∼ Bin
(
N − Tij,

pV (τij)

1−pT (τij)

)
.

Similar to Section 3.6.1, we assume that for any nodes (i, j) /∈ E that are not

directly connected we simply sum along the branches. We do not explicitly model

the distance between unrelated sequences that are imported, however to generate

complete matrices of pairwise transitions and transversions we draw these distances

from a Poisson distribution with mean µ.

Finally, after generating the complete set of pairwise transitions and transversions,

we discard the distances associated with the unobserved sequences at the time of

infection and return only the observed data denoted by ψ = (T, V, ν, η, τ).

4.6.2 Parameter estimation

We first simulate data sets with parameter values consistent with those in the literature

and assess the performance of the algorithm. For each outbreak we set the population

size to be n = 30 where the transmission parameters were chosen such that a ‘typical’

outbreak had a final size of roughly 20 farms. We start the outbreak at time t = 0

and run until there are either no infectious farms or no susceptible farms left to infect.

For person-to-person transmission we set the rate of contact between pairs i and j to

be βij = 0.01 exp(−0.2dij), where dij denotes the Euclidean distance.

For the latent period we chose a fixed length of 2 days and for the pre-symptomatic,

post-symptomatic and removal periods we assign Gamma(2,1), Gamma(1,1), Gamma(1,2)

distributions respectively.

For the genetic data the length of the genome was N = 8000, the transition and

transversion rates were set to be λT = 4× 10−6 and λV = 2× 10−6 respectively. The

average transition and transversion distance between imported sequences were set to

be µT = 20 and µV = 20.
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For all future inference we fix the distance kernel parameter κ, the shape parameters

α1, α2, α3 (similar to Jewell et al. (2008)) to the truth because we found that trying

to infer all of these parameters, in addition to infection times, led to undesirable

properties of the Markov chain, such as poor mixing and convergence.

For each of the parameters β, γ1, γ2, γ3, we assign independent uninformative expo-

nential prior distributions with mean 0.001 and for λT and λV we assign Uniform(0,1)

priors. We simulated 300 data sets using the procedure and parameters outlined

above and then attempted to infer the parameter values and exposure times using

Algorithm 4. We repeat this procedure for nc = 1, 2, 3 number of initially infected

farms, resulting in a total of 900 simulated data sets and 900 outputs from the MCMC

algorithm.

In each iteration we randomly select 50% of the infected premises and propose to

update the infection time without changing the source, and then randomly select

another 50% and attempt to update both the infection time and the source. We

found that a combination of these moves aided the mixing properties of the algorithm

such that the sampler was able to better explore the space of transmission networks.

Finally, we also run a similar algorithm assuming that only the epidemiological data

are available. The aim here is to compare the posterior distribution of sources with

and without genetic data as rough indicator of the extra information gain from using

whole genome sequence data.

4.6.2.1 Results

For each simulated data set we ran the algorithm for 5000 iterations as a burn in and

then store every 20th iteration until we have 1000 samples from the posterior. As a

summary we calculate the posterior median of each parameter and summarise the

distribution of these estimates in Figure (4.5). We first look at the results for the

single transmission cluster scenario and then we compare these to the results for the

two and three cluster case.
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Single transmission cluster In general the parameters are well recovered by

the algorithm seen clearly by the distribution of posterior medians estimates that

are centered on the true simulated values in red. There are some posterior median
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Figure 4.5: Posterior median estimates of the model parameters for

300 simulated data sets for the single cluster scenario. The red line

indicates the true simulated value and the blue lines are the 95%

credible intervals.

estimates for the mutation rate parameters λT and λV which are significantly higher

than the true simulated values. The reason is that in some of those outbreaks, farms
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which are unrelated and hence have high genetic distances are considered to be related

by the algorithm and the high genetic distances therefore drive up the estimate for

the mutation rates.

In addition to the inference for model parameters, we are also interested in the

determining the accuracy of the inferred infection times and the source of infection.

In principle one would check each of these parameter individually for convergence and

mixing, however in practice we instead consider a summary statistic of the infection

times. For the accuracy of the inference of infection times, we consider the relative

error between the inferred sum of infection times and the true sum of infection times.

Let Ī =
∑
Ij denote the true simulated sum of the infection times and Î to denote

the inferred sum of infection times which are calculated from the current state of the

Markov chain in the algorithm. Finally, let ÎM denote the median of the posterior

samples, then the infection error is defined as

ϵ =
Ī − ÎM
Ī

.

We use the term source accuracy (defined in Section 3.6.2) to be the proportion of

correctly inferred sources, where an inferred source is the marginal posterior mode

for a particular individual.

Finally, we define the term ‘source improvement’ to be the difference between the

source accuracy inferred using the full model and the source accuracy inferred using

only epidemiological data. This can be considered as a crude metric to estimate the

information gain when including genetic data in this model.

In Figure 4.6 we can see that the error of the infection times sum is centered on

zero which demonstrates that in general the algorithm is able to reasonably well

infer the times at which the farms are infectious. For the source improvement we see

that distribution has low density for values less than zero, specifically 32 of the 300

simulations (10.7%), suggesting that in general the algorithm does not perform worse

than when using epidemiological data alone. Furthermore, from the 300 simulations

we have 208 (69.3%) which show an improvement in accuracy after the inclusion
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Figure 4.6: A summary of the augmented data for the transmission

model, specifically the unobserved infection times summarised by the

sum (left) and the source accuracy as a summary of the inferred

transmission network (right).

of genetic data, indicating that the genetic data provides some insight into the

transmission pathways of the pathogen through the population.

Multiple transmission clusters We have demonstrated that the algorithm tends

to perform well in the event of a single initially infectious farm and hence a single

transmission cluster, however it is also of interest to assess the performance of the

algorithm in the event of multiple transmission clusters, i.e. nc > 1. From the box

plots in Figure 4.7 we see that the algorithm is able to successfully recover the true

simulated parameter values well and there does not appear to be any real discernable

differences between the inferences.

Furthermore, we see from Figure 4.8 that the error of the inferred sum of the infection

times is also centered on zero, suggesting that the algorithm is in general able to

successfully recover the true simulated times.

The source improvement increases as the number of clusters increase, which is

unsurprising given the nature of the model. We assume that the average distance
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Figure 4.7: Posterior median estimates for multiple transmission

clusters where we have one cluster(red), two clusters (green) and

three clusters (blue). For each scenario we simulated 300 data sets

and plot the posterior medians of each.

between sequences in distinct transmission clusters is µT = µV = 20, hence when

proposing a new source of infection, some moves will be much less likely due the fact

that some proposed configurations will have a high number of mutations between

sequences in the genetic network. Each of the outputs from the algorithm were visually

inspected for mixing and convergence. Example trace plots for a particular simulated

data set can be seen in Appendix C.1 and the inferred posterior transmission network

for this particular data set in Appendix C.2.

In conclusion, the MCMC algorithm (Algorithm 4) developed in this chapter is able to

successfully recover the true simulated parameter values when the data are generated
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Figure 4.8: Summary of the augmented transmission data for sim-

ulated data for multiple transmission clusters where we have one

cluster(red), two clusters (green) and three clusters (blue). Specif-

ically we have the unobserved infection times summarised by the

sum (left) and the source accuracy as a summary of the inferred

transmission network (right).

from the SEILXR transmission model. Furthermore, we have demonstrated that,

assuming a fixed and known latent period, we are able to reasonably well infer the

exact times and source of infection. Furthermore, we have demonstrated that genetic

data reduces uncertainty when inferring the source of infection on simulated data.

4.7 Analysis of the Darlington data set

In this section we wish to apply Algorithm 4 on the real data and compare the results

to previous attempts at modelling FMD in the UK, in particular the work in Cottam

et al. (2008); Morelli et al. (2012); Lau et al. (2015).

In our model we assume a fixed number of transmission clusters, therefore the specific

choice of these will invariably have a significant impact on the analysis. Therefore we

wish to consider competing models where each model reflects our belief about the

transmission clusters in the data. We shall write these competing models as Mi(A)

where i denotes the number of independent transmission clusters and A is the set of
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Model Number Model Description

1 M1(A) One cluster with A as the root

2 M1(B) One cluster with B as the root

3 M1(K) One cluster with K as the root

4 M2(A,K) Two clusters with A and K as the roots

5 M2(A,B) Two clusters with A and B as the roots

6 M3(A,B,K) Three clusters with A, B and K as the roots

Table 4.1: Competing models for the Darlington data set where

Mi(A) denotes nc = i transmission clusters with the roots of these

clusters to be A. Specifically we consider up to the three cluster

scenario which is supported by exploratory analysis and previous

modelling attempts.

farms that are assumed to have been the first case of the transmission cluster, where

the size of this set is equal to i.

From the exploratory analysis (Section 4.3) there is strong genetic support that

premises A and N are unrelated to all other transmission, hence we wish to consider

various models that include A as the root of a transmission tree. Furthermore, due

to the similarity in symptom times between farms A,B and K, it is plausible that all

of these may have been independently infected from an outside site, hence we wish

to consider scenarios where K or B are the roots of the clusters. An overview of all

competing models can be found in Table 4.1. Similar to Section 4.6.2 we assign vague

uninformative Gamma(1,0.0001) priors for parameters β, γ1, γ2, γ3 and Uniform(0, 1)

priors for λT and λV . We fixed the distance kernel parameter to be κ = 0.02 and the

latent period to be 5 days.

We ran the algorithm for 250,000 iterations with the first 50,000 discarded as a burn

in and the remaining thinned by a factor of 200, resulting in 1000 samples from

the posterior distribution. In each iteration we update the infection time without
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changing the source for all infected premises, and then propose to update the infection

time and the source for all premises again. Finally, we propose to update 10 genetic

distances at each iteration.

4.7.1 Results

We can see that the posterior distributions for each parameter are broadly similar

across the three models (Figure 4.9). One striking feature of our inference is the

posterior samples for the rate parameter γ1 in the pre-symptomatic period ranges

from 0.1 to 0.3, hence the expected values range between 6.6 and 20 days since the

shape parameter is fixed to α1 = 2. The large differences indicate that the inference

is sensitive to the specific model under consideration since the inferred parameter

values offer different explanations for the data.

Finally, we compare the results for the mutation rate parameters in Figure 4.10 with

a previous analyses of the virus. In Cottam et al. (2008) the authors estimate the

overall mutation rate to be 2.26× 10−5 (95% CI, 1.75× 10−5 to 2.80× 10−5) and the

transition transversion ratio to be 7.61, both of which are higher than what has been

inferred in our analysis.

On the other hand, in Yoon et al. (2011) the authors estimate the overall mutation

rate to be 4×10−6 (95% HPD, 2.9×10−6 to 5.1×10−6) and the transition transversion

ratio estimates range from 2.30 to 5.34. These estimates are lower than those obtained

in our analysis, however since our inferred mutation rates are somewhere between

previous estimates, we have some confidence that our results are plausible. To put

it another way, if the inferred rates were significantly different to estimates in the

literature, then this may suggest that our model offers a poor fit to the data.
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Figure 4.9: Posterior distributions for the inferred model parameters

for the Darlington data set. The distributions are broadly similar and

details of the competing models can be found in Table 4.1.

4.7.2 Inferred transmission networks

In this section we analyse the posterior transmission networks inferred by the al-

gorithm. The networks in Figures (4.11)-(4.13) are weighted such that a directed

edge from i to j with weight w indicates that farm i was considered the source of

infection for farm j for w% of the iterations, i.e. the marginal posterior probability

Pr(sj = i|·) = w.

For M1(A), the model with a single cluster and A as the root of transmission, we

notice that some expected links are present (A → N and I → J), however the

algorithm has failed to identify potential transmission sources, such as the G with I
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Figure 4.10: Validation of the model when considering the inferred

mutation rates. Left: posterior distributions for the transition transver-

sion ratio λT /λV with the estimated ratio from Cottam et al. (2008)

overlaid in red. Right: posterior distributions for the overall mutation

rate λT +λV with the estimated rate from Yoon et al. (2011) overlaid

in red and the HPDR overlaid in blue.

or J and any links between K and F,B,M,G, P .

For M1(B) with B as the root of the transmission cluster, we have A → N and

I → J identified again. However this time there are extra links which are informed

by genetic data, such as B → K and B → F .

For the final single cluster model M1(K) with K as the root of the transmission tree,

we see that the algorithm has managed to capture some strong links such as A→ N

and G → I → J . There are also other links that can be explained by the genetic

data, such as K → B and K → F .

For each of the three competing models, from a qualitative perspective we find that

the analysis with K as the root of the transmission cluster provides the most likely

transmission network in the sense that we have found several links that were identified

as potential transmission in the exploratory analysis (Section 4.3).
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Figure 4.11: Inferred transmission networks for the single cluster

scenario with (top left) M1(A), (top right) M1(B) and (bottom left)

M1(K). The opacity of the edges are weighted by the posterior

probability and stronger links are darker and blue.

For the two cluster scenario (Figure 4.12) we can immediately see in both scenarios

than the (A,N) link has been identified as a separate cluster of transmission. We

also find that model 4 (M2(A,K)) has identified the (G, I, J) cluster suspected from

the exploratory analysis.

For the three cluster scenario (Figure 4.13) we once more identify the (A,N) and

(G, I, J) clusters. There are also some similarities to the inferred networks in Lau

et al. (2015); Morris et al. (2001), such as the (K,L), (A,N) and (G, I, J) links,

however the overall structure has some differences.

Our analysis for M3(A,B,K) indicates that the three clusters of transmission are

(A,N), (K,L,O) and the third cluster consisting of the remaining farms. However
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previous studies have inferred the transmission network with clusters are (A,N), (B)

and the third cluster again consisting of the remaining farms (Cottam et al., 2008;

Lau et al., 2015).
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Figure 4.12: Inferred transmission networks for the two cluster

scenario with (left) M2(A,K) and (right) M2(A,B). The opacity of

the edges are weighted by the posterior probability and stronger links

are darker and blue.

4.7.3 Including unreported susceptibles

The Darlington data set only includes information of premises that were confirmed

infected and consequently we do not have data on farms that remained susceptible in

the region during the outbreak.

In a similar fashion to Lau et al. (2015), we propose a similar methodology whereby

we simulate 300 susceptible farms with a geographical location drawn uniformly

at random from the study area. We repeat the analysis for all six models under

consideration and use the same location of each farm for the models.

From the posterior distributions of the inference with susceptibles included (Fig-
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Figure 4.13: Inferred transmission networks for the three cluster

scenario where the model is M3(A,B,K). The opacity of the edges

are weighted by the posterior probability and stronger links are darker

and blue.

ure 4.14), immediately we see that the transmission rate β is significantly lower,

however this is unsurprising considering previously we had every farm in the popula-

tion infected (15 out of 15), however in this case we have less than 5% of farms infected

(15 out of 315). Consequently this drives down the estimate of the transmission rate.

In principle the other parameters should be largely unaffected by the inclusion of

extra susceptibles since susceptible premises only contribute to the transmission

part of the likelihood. Any other differences can be attributed to differences in the

estimation of the unobserved data, in particular the infection times and transmission

network, where the Markov chain ends up in a slightly different local mode.

4.8 Model assessment

In this section we assess the quality of our model fit through posterior predictive

checking (see Section 3.7.5 and Gelman et al. (2013)). In particular, we are interested
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Figure 4.14: The posterior distributions of the model parameters for

each of the competing models with and without unreported susceptible

premises. The red plots indicate without susceptibles and the blue

plots are with susceptible farms included.

in assessing whether each of our proposed models accurately describes the observed

data, rather than identifying the ‘best’ of the competing models.

We shall now briefly describe posterior predictive checking in the context of epidemic

modelling. Let Z denote the observed data, π(Z | ρ) the data generating process of

the model and π(ρ | Z) the posterior density of the model parameters ρ. Then we

may draw replicated data Zrep from the posterior predictive distribution, denoted by

π(Zrep | Z), which is explicitly given by

π(Zrep | Z) =
∫
π(Zrep | ρ)π(ρ | Z)dρ. (4.12)
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The posterior distribution is analytically intractable hence we describe how to com-

pute Equation (4.12) numerically. Suppose we have K samples from the posterior

distribution denoted ρ[k] for k = 1, ..., K, then for each sample from the posterior

π(ρ | Z) we simulate replicate outbreaks from the model π(Z | ρ) and denote these

samples Zrep
[k] .

Comparison between observed data Z and replicates Zrep can be complicated for

high-dimensional data and it is therefore of interest to focus on real valued statistics

or test quantities. Define the test quantity T (Z, ρ) to be a scalar statistics that

captures features of the data, then we wish to compare the observed test statistic

T (Z, ρ) to the distribution of the test statistic under replicated data T (Zrep, ρ).

Finally, we define the Bayesian p-value similar to Section 3.7.5 as the probability

that the replicated data is more extreme than the observed data, measured by the

test quantity

pB = Pr(T (Zrep, ρ) ≥ T (Z, ρ) | Z).

Recall that extreme pB values close to 0 or 1 are evidence for poor model fit whereas

values close to 0.5 indicate goodness of fit.

Our model can be decomposed into two parts, a model describing (i) the transmission

of the pathogen and (ii) the evolution of the genetic sequences. We will assess the

quality of these two separately and determine which of the competing models provided

an adequate fit for the data.

4.8.1 Epidemic model assessment

In order to assess the goodness of fit for the transmission model we use the distance

method described in Aristotelous et al. (2022) which looks at disease progression

curves which explicitly assess the models ability to capture temporal features of the

outbreak. However, rather than looking at removal curves, we look at symptom curves

as a summary of the temporal progression of the outbreak. In principle one may also
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choose to look at examination curves, or indeed curves of any observed data, however

we believe that these will be similar and offer little information gain.

The method is described as follows. Define zt(L) =
∑nE

i=1 1{Li≤t} as the symptom

curve, which is simply the number of premises that have detected any symptomatic

livestock up to time t. The test statistic is defined as T (zt) = d(zt,Ezrept ) on the space

of symptom curves L, where Ezrept is the mean of the replicated symptom curves and

d is the Euclidean distance which is given by

d(zt, z
∗
t ) =

(∫ max(LnE
,L∗

nE
)

min(L1,L∗
1)

(zt − z∗t )
2dt

) 1
2

,

where zt, z
∗
t ∈ L with corresponding time-ordered symptom vectors (lesion times)

L,L∗ ∈ RnE .

The posterior predictive mean symptom curve is defined as Ezrept = zt(ELrep) =∑nE

i=1 1{E(Lrep
i )≤t} where

E(Lrep
i ) =

∫
Lrep
i π(Lrep

i | Lobs)dLrep
i , i = 1, ..., nE. (4.13)

We may approximate the integral in Equation 4.13 by its Monte Carlo estimate

1
K

∑K
k=1 (L

rep
i )[k] for k = 1, ..., K.

Aristotelous et al. (2022) also introduce the idea of a ‘folded posterior predictive

value‘ (fppp-value) which is defined as

fppp-value = Pr(|Zrep − E(Zrep)| < |Zobs − E(Zobs)|),

which may be again approximated by the Monte Carlo estimate 1
K

∑K
k=1 1{T rep

[k]
<T rep},

i.e. the proportion of test statistics that have been calculated from outbreaks

simulated from the posterior predictive distribution that are less than the observed

test statistic, which in this case is the Euclidean distance between symptom curves.

Folded ppp-values near 0 indicate goodness of fit and values near 1 indicate poor

model fit. A more comprehensive overview of model assessment techniques and

extensive simulation studies can be found in Aristotelous (2020).
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Figure 4.15: Epidemic model assessment for the Darlington data set

for each of the competing models. Left column: observed symptom

curve in black zobst , the mean of the replicated symptom curves Ezrept

and the 95% quantiles of the simulated replicate symptom curves are

overlaid in blue. Right column: Histograms of 1000 replications from

the posterior predictive distribution T rep with the observed distance

T obs overlaid in red.
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We apply this methodology for each of the competing models described in Section 4.7

and produce the simulated symptom curves and calculate the folded ppp-values.

The replicated symptom curves and distribution of the distances can be found in

Figure 4.15. For the models with a single cluster we find that model 1 and model 3

have extreme ppp-values of 0.993 and 0.957 respectively, indicating poor model fit.

All other models are slightly better, with fppp-values of 0.818, 0.886, 0.788 and 0.788

for models 2, 4, 5 and 6 respectively, indicating that all of these manage to capture

some of the temporal aspects in the data.

Finally, we observe from visual inspection of the symptom curves that the model is

able to capture the general progression of the epidemic, with the exception of the

start which is always underestimated.

4.8.2 Genetic model assessment

In order to assess the goodness of fit of the genetic model we use the method

described in Cassidy (2019). We shall briefly recall the procedure which is discussed

in Section 3.7.5, with the modification that we are looking at the posterior predictive

distributions for the matrix of pairwise transitions and transversions separately.

Suppose there are ns genetic sequences, it follows that there are N = 1
2
ns(ns − 1)

pairwise transition and transversion distances denoted by T obs
ij and V obs

ij respectively

for j = 2, ..., N , i = 1, ..., j − 1. We wish to consider the marginal genetic distances

separately for each i, j and calculate the posterior predictive p-value which is defined

as

p
B[X]
ij = Pr(Xrep

ij ≥ Xobs
ij ), (4.14)

where X ∈ {T, V } and Xrep
ij is the random posterior predictive distance. We may

approximate these probabilities using the Monte Carlo estimate 1
K

∑K
k=1 1{Xrep

ij ≥Xobs
ij }

where each Xrep
ij are samples from the posterior predictive distribution.

Finally, we define the term ‘accepted proportion’ (AP ) to be the proportion of
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Figure 4.16: Genetic model assessment for model 1 for the Dar-

lington data set. Matrix summary of pairwise marginal transition

distances (above) and transversion distances (below) simulated from

the posterior predictive distribution where the values in each cell are

the Bayesian posterior predictive p-value (Equation (4.14)).

posterior predictive p-values which lie within the 100(1− α)% credible interval of the

appropriate marginal distribution, where α is a value set to define what p-values are

‘acceptable’.

More precisely, suppose there are 2N marginal pairwise posterior predictive distribu-

tions in total, then the accepted proportion is given by

AP =
1

N

N∑
j=2

j−1∑
i=1

1{pB[T ]
ij ∈C(α)} + 1{pB[V ]

ij ∈C(α)},
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Model Number Model AP

1 M1(A) 0.405

2 M1(B) 0.419

3 M1(K) 0.481

4 M2(A,K) 0.429

5 M2(A,B) 0.395

6 M3(A,B,K) 0.429

Table 4.2: Competing models for the Darlington data set where

Mi(A) denotes nc = i transmission clusters with the roots of these

clusters to be A. Specifically we consider up to the three cluster

scenario which is supported by exploratory analysis and previous

modelling attempts.

where p
B[T ]
ij and p

B[V ]
ij are the posterior predictive p-values for the transition and

transversion distance between sequences i and j, and C(α) = {p : α/2 < p < 1−α/2}

is the set of acceptable p-values. For the sake of clarity we present the posterior

predictive matrices for model 1 in Figure 4.16 and the posterior predictive matrices

for models 2-6 in Appendices (D.1)-(D.5).

From the summary of AP values in Table 4.2 we find that each of the competing

models are broadly similar when considering the number of observed pairwise genetic

distances that are captured by the model.

Model 3 which has a single transmission cluster K seems to provide a better fit

than all other models. One possible reason for this is that the inferred transmission

network, and hence the genetic network is more accurate.

It is important to note that in order to simulate genetic data from the model we

must simulate distances between unrelated genetic sequences which are described by

Poisson distributions with mean µ. The specific choice of µ significantly impacts the

pairwise genetic distances between sequences in distinct transmission chains, however
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in this model assessment we set µ = 0 in order to generate pairwise distances in

distinct transmission clusters.

4.9 Discussion

In this chapter we have analysed a data set of small cluster, named the Darlington

cluster, of foot-and-mouth disease in the United Kingdom in 2001. We have extended

the general SEIR modelling framework to incorporate extra covariates, such as the

timing of symptoms and examination which can naturally be accommodated in a

stochastic compartmental model.

In order to incorporate the sequence data we have applied the genetic model developed

in Chapter 2 where the data are pairwise transitions and transversions. Then we

present novel Markov chain Monte Carlo techniques which allow for the imputation

of unobserved genetic distances at the time of transmission.

We present a detailed simulation study that determines (i) how well the algorithm is

able to recover the true simulated parameter values and (ii) how much information

the genetic data is able to provide in the context of reconstructing the transmission

network. We found that the algorithm was able to infer the parameter values well,

with the distribution of posterior median estimates centered on the true value.

Furthermore, the algorithm was able to infer the infection times with good accuracy,

also demonstrated by the distribution of the infection sum errors also centered on

zero. More often than not we found that inclusion of the genetic data and the genetic

model resulted in an increase of the proportion of correctly inferred sources, which is

a nice summary statistic for the accuracy of the transmission networks.

We repeated the above simulations for the two and three cluster scenario, in order to

assess how well the model performs under the assumption of multiple initial invectives.

We found that in general the parameter estimates were consistent with the single
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cluster scenario, and in some cases there was less uncertainty of the posterior median

estimates. We also found that the the error of the infection time sum was consistent

with the single cluster analysis, and source accuracy increased with the number of

transmission clusters.

In our model we do not allow for the possibility of background exposure, that is we

specify the number of initially infective farms pre analysis. Consequently we consider

various competing models that are informed by the exploratory analysis (Section 4.3)

and previous modelling attempts (Lau et al., 2015; Morelli et al., 2012; Cottam et al.,

2008) and analyse the results separately.

We found some links in our inferred transmission network to be the same in previous

analyses, however there were also several important distinctions. Naturally the

inferred transmission networks in our analysis and other previous analyses will not

be identical due to differences in the model and inference, however it would be of

interest to determine the strengths and weaknesses of these algorithms more closely.

Inference for transmission networks, and in our model genetic networks, is in general

a non-trivial task due to the complex high dimensional nature of the problem. A key

challenge when designing any MCMC algorithm is a balance between efficiency and

complexity, one must design moves that are able to effectively explore the parameter

space but also get accepted a reasonable amount of times.

Often when designing proposal distributions to sample the unobserved data (infection

times, sources, genetic distances, etc.) we often choose to update a single or just a

few data points. The rationale here is that the proposed move must be small enough

such that it will be accepted enough times, however it also needs to be large to

fully explore the state space. Designing more complex proposal distributions and

sampling the unobserved data more efficiently is an avenue for future research, such

as proposing block updates to the infection times and sources.

A key strength of our model remains the ability to capture important features of

the genetic information using pairwise transitions and transversions alone, rather
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than working with raw sequence data. This strength is not completely utilised in the

Darlington data set due to this small cluster having only 15 genetic sequence sampled,

compared to say Chapter 3 where there are over 1800 genetic sequences. Nevertheless

the algorithm is able to scale reasonably well and with the increased frequency of

data collection and genetic sampling, scalable inference for large outbreaks offers an

interesting avenue for future research.

Finally, we perform model assessment to determine the goodness of fit of the competing

models and found that two of the six models were a poor fit for the transmission model

and that the genetic models were broadly similar in terms of model fit. Interestingly,

the model with the best fit for the genetic data performed comparatively worse for

the epidemiological model fit.

In conclusion, from the model assessment we find that models 2, 3, 4 and 5 are

all plausible explanations for the data and model selection should involve external

factors such as expert opinion when explaining the outbreak. Exploratory analysis of

the genetic data suggests that the A,N cluster is distinct from all other premises,

therefore on balance we conclude that models 4 and 5 both provide a plausible

explanation for the observed data. A more principled approach would be to perform

formal model selection using methods such as Bayes factors (Alharthi et al., 2019),

latent residuals (Lau et al., 2014) and Deviance Information Criterion (Deeth et al.,

2015), to name a few.

4.9.1 Limitations

The biggest limitation with our implementation is the requirement of a fixed number

of transmission clusters that are specified pre-analysis. A more flexible approach

would be to include a constant background infectious pressure as a way to explain

multiple introductions of the pathogen. With a constant background pressure, one

can carefully design sophisticated proposals to the augmented data to fully explore

the space of transmission trees. Preliminary results (not presented) indicate that this
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is very challenging and will be the topic of future research.

For example, we may propose to reduce or increase the number of transmission clusters

(similar to the hospital data in Chapter 3 or Lau et al. (2015)) where such moves are

informed by the sequence data. In principle these approaches provide a systematic

way to identify the clusters of transmission within an outbreak. Furthermore, another

clear benefit is that we do not need to make arbitrary decisions pre-analysis about the

number of clusters, the idea being that the algorithm is able to infer these. We also

would circumvent the need to compare various competing models and can analyse a

single model directly.

Next another limitation is the assumption of a constant latent period rather than

random. We are once again making an arbitrary decision about our belief of the

length of the latent period, a more flexible approach would be to have this interval

follow some distribution and then we could infer the parameters the characterise the

distribution.

It is straightforward to simulate from and draw inference for a model with a random

latent period, however this is only the case when the exposure times are fixed and

known. We found that it would incredibly difficult to infer both the exposure and

infection time for each individual, in addition to the rate parameters governing these

distributions. Intuitively this is difficult since we are trying to infer two data points

(Ej and Ij) for a farm j from a single data point Lj , the symptom time. Furthermore,

these parameters and times are naturally correlated.

Next it would have also been interesting to also infer the shape parameters of the

sojourn time distributions (namely α1, α2, α3), however we found that it was also

difficult to estimate both the shape and rate of data that are assumed to be Gamma

distributed, perhaps due to the fact that the total number of infected farms is nE = 15

and hence there is not enough information in the data.



CHAPTER 5

Conclusion

In this thesis we have developed novel models and methods to integrate genetic

data with traditional epidemiological data in a structured Bayesian framework. In

particular, we have extended the work of Worby et al. (2016) and Cassidy et al. (2020)

where the genetic data are represented by the matrix of pairwise distances.

In Chapter 2, our approach began by deriving the joint distribution of pairwise genetic

distances under the assumption of a mutation model for sequences of length one. We

then extended these ideas for sequences of length N and derive an expression for the

joint distribution of these distances.

These distributions derived are all conditional on an underlying genetic network,

in order to evaluate the probabilities of mutation we need some idea of how the

observed sequences are related. We then provide a general methodology to construct

genetic networks given the transmission network. Next we consider the contribution

of genetic distances that are unrelated which is useful for modelling the multiple
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introductions of pathogen.

To show the generality of the proposed modelling framework developed we demonstrate

the performance with two distinct scenarios; a discrete time model for nosocomial

infections in Chapter 3 and also a continuous time model for the spread of foot-and-

mouth disease virus in Chapter 4.

In Chapter 3 we extend both the genetic and transmission model motivated by

features in the Brighton data set. Specifically, we provide a framework to incorporate

healthcare worker data at an individual level and also extended the genetic model to

allow for the possibility of multiple distinct genetic subtypes.

We demonstrate the performance of the MCMC algorithm on simulated data where we

are able to successfully recover the simulated parameter values and also demonstrate

that the addition of genetic data nearly always results in a more accurate inferred

transmission network.

Finally, we present a detailed analysis of the Brighton data set and attempt to infer

the model parameters and transmission dynamics for the MRSA and MSSA data

separately and combined. We also present a comparison when using informative

priors for the importation distance parameter and the inferred transmission networks

in each case.

In Chapter 4 we apply the genetic model to a continuous time transmission model

for the spread of foot-and-mouth disease virus. We extend the traditional SEIR

framework to incorporate extra data sources (estimated date of lesion onset and

examination) and attempt to infer the transmission network.

We show the algorithm has good performance on simulated data, that is we are able

to reasonably well recover the true simulated parameter values and transmission

networks. We then provide an analysis of the Darlington cluster data set and compare

our inference to existing approaches.

The strength of our model lies with the fact we are working with pairwise genetic
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distances rather than raw sequence data. This is especially evident with the Brighton

data set in Chapter 3 genetic data consist of 1976 genetic sequences, which invariably

has significant computational costs when working with raw sequence data. The fact

that our model uses the pairwise genetic distances as a summary of the data allows

for fast and scalable inference.

5.1 Limitations and future work

The biggest avenue for future work and a limitation of the current model is the

contribution of imported sequences that are considered unrelated. For example, in

Lau et al. (2015) the authors assume that imported sequences are a result of a ‘master’

sequence that is unobserved and to be imputed. In our work we assume that pairwise

genetic distances from unrelated sequences can be modelled by a Poisson distribution

with parameter µ.

Both approaches are reasonable and pragmatic however ultimately are arbitrary,

therefore it may be of interest to extend these approaches to include the inherent

phylogenetic information contained in the sequences. A natural extension would

be to derive the distribution of pairwise genetic distances assuming an underlying

phylogenetic tree, however the phylogenetic tree is unobserved and inference for tree

requires expensive MCMC algorithms (Nascimento et al., 2017). A more detailed

introduction to Bayesian phylogenetics can be found in (Yang, 2014, Chapter 8).

An approach similar to Klinkenberg et al. (2017) may provide a good starting point

for future analysis where the authors perform simultaneous inference of both the

transmission and phylogenetic tree.

Another limitation with the work in Chapter 4 is the lack of a model to explain

background transmission. A consequence of this is that we specify the number of

transmission clusters pre-analysis, however it would be of interest to infer the number

of transmission clusters which in principle are informed by the genetic data.
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We also would like to derive the distribution of pairwise distances under the most

general nucleotide substitution model and evaluate the information gain by using

more biologically accurate models (if any).

In Chapter 3 we could look at inferring the genetic subtypes η within the algorithm.

At present we determine these groups pre-analysis and fix them for the duration,

however in principle one should be able to propose to update these subtypes within

the algorithm. This certainly would be useful in the sense that the arbitrary choice

of partitioning the genetic groups would have less impact on the inference, assuming

that the inferred groups converge to the truth from any starting point.

We are motivated to extend the transmission model described in Chapter 4 to naturally

accommodate a constant background pressure to explain multiple introductions of

the pathogen. This is straight forward to implement for transmission data, however

care must be taken when modelling the genetic data.

Next, in all of the MCMC algorithms featured in the thesis we utilise simple proposal

distributions for each of the Metropolis-Hastings updates. Certainly these algorithms

can be improved to utilise more efficient sampling techniques, e.g. adaptive methods

(Spencer, 2021) or Hamiltonian Monte Carlo techniques (Andrade and Duggan, 2020).

Finally, another interesting research direction one could take is the development of

model assessment techniques for genetic data. The advantage of having a generative

model for the genetic data is that we may assess model fit through Bayesian posterior

predictive checking, a technique that has received very little attention apart from the

work in Cassidy et al. (2020).
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Figure A.1: Posterior median estimates of the parameter z from

fitting the full model to 100 simulated data sets for each parameter

choice of z = 0.25, 0.5, 0.7, 0.75, 1 with the true simulated value is

overlaid in red.



Chapter A: Simulation study results 213

−0.25

0.00

0.25

0.50

S
ou

rc
e 

ac
cu

ra
cy

 im
pr

ov
em

en
t

      z

0.25

0.5

0.7

0.75

1

Figure A.2: Source accuracy improvement from fitting the model

with and without genetic data to 100 simulated data sets for each

parameter choice of z = 0.25, 0.5, 0.7, 0.75, 1. The line y = 0 has

been overlaid in red which would indicate no improvement from the

genetic data.
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Figure A.3: Cluster accuracy improvement from fitting the model

with and without genetic data to 100 simulated data sets for each

parameter choice of z = 0.25, 0.5, 0.7, 0.75, 1. The line y = 0 has

been overlaid in red which would indicate no improvement from the

genetic data.
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Figure A.4: Posterior median estimates of the parameter p from

fitting the full model to 100 simulated data sets for each parameter

choice of p = 0.01, 0.025, 0.05, 0.15, 0.3 with the true simulated value

is overlaid in red.
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Figure A.5: Source accuracy improvement from fitting the model

with and without genetic data to 100 simulated data sets for each

parameter choice of p = 0.01, 0.025, 0.05, 0.15, 0.3. The line y = 0

has been overlaid in red which would indicate no improvement from

the genetic data.
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Figure A.6: Cluster accuracy improvement from fitting the model

with and without genetic data to 100 simulated data sets for each

parameter choice of p = 0.01, 0.025, 0.05, 0.15, 0.3. The line y = 0

has been overlaid in red which would indicate no improvement from

the genetic data.
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Figure A.7: Posterior median estimates of the parameter β from

fitting the full model to 100 simulated data sets for each parameter

choice of β = 0.01, 0.02, 0.03, 0.04, 0.05 with the true simulated value

is overlaid in red.



Chapter A: Simulation study results 219

0.0

0.4

0.8

S
ou

rc
e 

ac
cu

ra
cy

 im
pr

ov
em

en
t

      beta

0.01

0.02

0.03

0.04

0.05

Figure A.8: Source accuracy improvement from fitting the model

with and without genetic data to 100 simulated data sets for each

parameter choice of β = 0.01, 0.02, 0.03, 0.04, 0.05. The line y = 0

has been overlaid in red which would indicate no improvement from

the genetic data.
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Figure A.9: Cluster accuracy improvement from fitting the model

with and without genetic data to 100 simulated data sets for each

parameter choice of β = 0.01, 0.02, 0.03, 0.04, 0.05. The line y = 0

has been overlaid in red which would indicate no improvement from

the genetic data.
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Figure A.10: Posterior median estimates of the parameter βH from

fitting the full model to 100 simulated data sets for each parameter

choice of βh = 0.001, 0.002, 0.003, 0.004, 0.005 with the true simu-

lated value is overlaid in red.
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Figure A.11: Source accuracy improvement from fitting the model

with and without genetic data to 100 simulated data sets for each

parameter choice of βH = 0.001, 0.002, 0.003, 0.004, 0.005. The line

y = 0 has been overlaid in red which would indicate no improvement

from the genetic data.
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Figure A.12: Cluster accuracy improvement from fitting the model

with and without genetic data to 100 simulated data sets for each

parameter choice of βH = 0.001, 0.002, 0.003, 0.004, 0.005. The line

y = 0 has been overlaid in red which would indicate no improvement

from the genetic data.
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Figure A.13: Posterior median estimates of the parameter λ from

fitting the full model to 100 simulated data sets for each parameter

choice of λ = (1.80, 4.52, 9.04, 18.08, 45.20) × 10−9 with the true

simulated value is overlaid in red.
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Figure A.14: Source accuracy improvement from fitting the model

with and without genetic data to 100 simulated data sets for each

parameter choice of λ = (1.80, 4.52, 9.04, 18.08, 45.20)× 10−9. The

line y = 0 has been overlaid in red which would indicate no improve-

ment from the genetic data.



Chapter A: Simulation study results 226

0.0

0.5

1.0

C
lu

st
er

 a
cc

ur
ac

y 
im

pr
ov

em
en

t

      lambda

1.81e−09

4.52e−09

9.04e−09

1.81e−08

4.52e−08

Figure A.15: Cluster accuracy improvement from fitting the model

with and without genetic data to 100 simulated data sets for each

parameter choice of λ = (1.80, 4.52, 9.04, 18.08, 45.20)× 10−9. The

line y = 0 has been overlaid in red which would indicate no improve-

ment from the genetic data.
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Figure A.16: Posterior median estimates of the parameter µ from

fitting the full model to 100 simulated data sets for each parameter

choice of µ = 5, 10, 20, 30, 35 with the true simulated value is overlaid

in red.
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Figure A.17: Source accuracy improvement from fitting the model

with and without genetic data to 100 simulated data sets for each

parameter choice of µ = 5, 10, 20, 30, 35. The line y = 0 has been

overlaid in red which would indicate no improvement from the genetic

data.
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Figure A.18: Cluster accuracy improvement from fitting the model

with and without genetic data to 100 simulated data sets for each

parameter choice of µ = 5, 10, 20, 30, 35. The line y = 0 has been

overlaid in red which would indicate no improvement from the genetic

data.
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Figure A.19: Trace plots of four chains run in parallel on simulated

data set 21 with the burn in period included. The specific parameters

here are those updated by a Metropolis-Hastings step, which are the

patient transmission rate β, healthcare worker transmission rate βH

and mutation rate λ.
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Figure A.20: Log-likelihood and colonisation time sum trace plots

for simulated data set 21.
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Figure B.1: Posterior box plots for the test sensitivity parameter z

for the MRSA (red), MSSA (blue) and combined (green) data sources.

For each data source there are 5 separate runs of each analysis.
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Figure B.2: Posterior box plots for the importation probability pa-

rameter p for the MRSA (red), MSSA (blue) and combined (green)

data sources. For each data source there are 5 separate runs of each

analysis.
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Figure B.3: Posterior box plots for the patient transmission parameter

β for the MRSA (red), MSSA (blue) and combined (green) data

sources. For each data source there are 5 separate runs of each

analysis.



Chapter B: Results from the Brighton data set 236

0e+00 2e−04 4e−04 6e−04

MSSA 1

MSSA 2

MSSA 3

MSSA 4

MSSA 5

MRSA 1

MRSA 2

MRSA 3

MRSA 4

MRSA 5

Combined 1

Combined 2

Combined 3

Combined 4

Combined 5

beta_h

A
na

ly
si

s Type

Combined
MRSA
MSSA

Figure B.4: Posterior box plots for the healthcare worker transmission

parameter βH for the MRSA (red), MSSA (blue) and combined (green)

data sources. For each data source there are 5 separate runs of each

analysis.



Chapter B: Results from the Brighton data set 237

5e−09 6e−09 7e−09

MSSA 1

MSSA 2

MSSA 3

MSSA 4

MSSA 5

MRSA 1

MRSA 2

MRSA 3

MRSA 4

MRSA 5

Combined 1

Combined 2

Combined 3

Combined 4

Combined 5

lambda

A
na

ly
si

s Type

Combined
MRSA
MSSA

Figure B.5: Posterior box plots for the mutation rate parameter λ for

the MRSA (red), MSSA (blue) and combined (green) data sources.

For each data source there are 5 separate runs of each analysis.
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Figure B.6: Posterior box plots for the importation distance parameter

µ for the MRSA (red), MSSA (blue) and combined (green) data

sources. For each data source there are 5 separate runs of each

analysis.
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Figure B.7: Posterior trace plots for the model parameters when

fitting the full model to the Brighton data set where the genetic

data contains either MRSA, MSSA or both. The parameters are

explicitly the test sensitivity z (top left), importation probability p

(top right), patient transmission rate β (middle left), healthcare worker

transmission rate βH (middle right), mutation rate λ (bottom left)

and average importation distance µ (bottom right).
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Figure B.8: Posterior trace plots for the log-likelihood when fitting

the full model to the Brighton data set where the genetic data contains

either MRSA, MSSA or both. The plot contains samples from the

burn-in to demonstrate that the chain is initialised in regions of low

likelihood and increases until convergence.
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augmented data which include the sum of colonisation times (above)

and the number of patients added by the algorithm (below).
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Figure C.1: Trace plots for all inferred model parameters and the

log likelihood for simulated data. The lines in red indicate the true

simulated parameter value. Each of the chains demonstrate good

mixing and convergence to near the true value.
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Figure C.2: Above: inferred posterior transmission network where the

edge weights are the marginal posterior probability of that particular

source infector pair. Below: the true simulated transmission network.

The source accuracy for this data set was 64.7%.
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