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ABSTRACT 

 

Human health risk assessments without generating new animal data have 
resulted in extreme efforts over the past few decades from industry,  
academia, and regulatory bodies to develop and apply new method  
approaches. Various non-animal approaches for chemical hazard  
characterisation has appeared known as new approach methodologies  
(NAMs) which form the basis of integrated testing and assessment strategies  
designed to prevent harm to human health. 
 
A bioinformatics workflow was developed to aid the exploration of Next  
Generation Risk Assessment (NGRA) to determine whether NAMs can be used  
for safety decisions using various consumer products. The analysis within this  
thesis continues the analysis conducted in the previous case studies and  
explores the key concepts relating to HepaRG, HepG2 and MCF-7 cells dosed  
with doxorubicin and niacinamide. The aim of this thesis has been achieved by  
addressing a gap of knowledge within Unilever by conducting biological 
interpretation of exposure to chemicals at different concentrations and the  
general use of in vitro methods for non-animal risk assessments using high  
throughput transcriptomics (HTTr) data. By looking at doxorubicin and  
niacinamide, this has enabled the interpretation of these chemicals using  
developed methodologies for future analysis of potential chemicals for NGRA.  
The bioinformatics workflow consisted of using R Studio to align, quantify and  
conduct differential expression analysis using DESeq2 for all chemical  
concentrations and cell lines. Furthermore, BMDExpress has been successfully  
conducted to derive Points of Departure (PoDs) for doxorubicin and  
niacinamide as well as pathway investigation alongside Ingenuity Pathway  
Analysis (IPA) to determine mechanisms of action (MoA) for the chemicals of  
interest. 
 
At least 20 pathways were detected to apply the pathway-level tests. Using 
these selections, the observed pathway-level PoD ranged from 0.0219µM to 
0.4854µM for doxorubicin and 2552.94µM to 24977.10µM for niacinamide 
across cell lines.  
The selected gene or pathway PoDs were derived using BMDExpress2 for 
HepaRG, HepG2 and MCF-7 cells dosed with doxorubicin were 0.1557µM, 
0.0313µM & 0.0219µM respectively. The selected PoDs for HepaRG, HepG2 
and MCF-7 cells dosed with niacinamide were 2552.94µM, 5046.89µM & 
5444.65µM respectively. 
 

Doxorubicin is a medication that belongs to the anthracycline class of 

medications. It works by slowing or stopping the growth of cancer cells in your 

https://www.bing.com/ck/a?!&&p=bf1ed204239f0b3eJmltdHM9MTY5MzI2NzIwMCZpZ3VpZD0xZWQwZmE3OC1hOTlhLTY0NjgtMDFiYi1lOTYzYTg0ODY1OTMmaW5zaWQ9NTkwNg&ptn=3&hsh=3&fclid=1ed0fa78-a99a-6468-01bb-e963a8486593&psq=doxorubicin+mode+of+action&u=a1aHR0cHM6Ly9tZWRsaW5lcGx1cy5nb3YvZHJ1Z2luZm8vbWVkcy9hNjgyMjIxLmh0bWw&ntb=1
https://www.bing.com/ck/a?!&&p=bf1ed204239f0b3eJmltdHM9MTY5MzI2NzIwMCZpZ3VpZD0xZWQwZmE3OC1hOTlhLTY0NjgtMDFiYi1lOTYzYTg0ODY1OTMmaW5zaWQ9NTkwNg&ptn=3&hsh=3&fclid=1ed0fa78-a99a-6468-01bb-e963a8486593&psq=doxorubicin+mode+of+action&u=a1aHR0cHM6Ly9tZWRsaW5lcGx1cy5nb3YvZHJ1Z2luZm8vbWVkcy9hNjgyMjIxLmh0bWw&ntb=1
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body interfering with the function of DNA. Niacinamide plays a significant role 

in DNA repair, maintenance of genomic stability and cellular responses to injury 

including inflammation and apoptosis (cell death). For both chemicals these 

modes of action have been identified in the BMDExpress and IPA analysis. 

 
Both BMDExpress and IPA are very different software packages with 
BMDExpress being used for gene and pathway level analysis, deriving PoDs and 
pathway related analysis while IPA is used solely for pathway interpretation and 
determining Mechanism of Action (MoA). The combination of using 
BMDExpress and IPA has demonstrated more robust data can be generated for 
gene and pathways interpretation. More investigations are required using both 
software to depict correlations between them as well as considering individual 
results. This thesis has explained how developing a bioinformatics workflow 
using BMDExpress and IPA has expanded knowledge in the NGRA space using 
NAMs for safety decision making as a non-animal alternative approach. 

  

https://www.bing.com/ck/a?!&&p=bf1ed204239f0b3eJmltdHM9MTY5MzI2NzIwMCZpZ3VpZD0xZWQwZmE3OC1hOTlhLTY0NjgtMDFiYi1lOTYzYTg0ODY1OTMmaW5zaWQ9NTkwNg&ptn=3&hsh=3&fclid=1ed0fa78-a99a-6468-01bb-e963a8486593&psq=doxorubicin+mode+of+action&u=a1aHR0cHM6Ly9tZWRsaW5lcGx1cy5nb3YvZHJ1Z2luZm8vbWVkcy9hNjgyMjIxLmh0bWw&ntb=1
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CHAPTER 1 

 

1. INTRODUCTION 
1.1 Introduction to non-animal new approach methodologies (NAMs) 

Human health risk assessments without generating new animal data have 
resulted in extreme efforts over the past few decades from industry, academia, 
and regulatory bodies to develop and apply new method approaches. Various 
non-animal approaches for chemical hazard characterisation have appeared 
known as NAMs which form the basis of integrated testing and assessment 
strategies designed to prevent harm to human health (Carmichael et al., 2009; 
Council, 2007; Desprez et al., 2018; Thomas et al., 2019; Westmoreland et al., 
2010).  Any technology, methodology, approach or combination of both that 
can be used to provide information on chemical hazard and risk that avoids the 
use of intact animals can be defined as a NAM (U.S. Environmental Protection 
Agency (USEPA 2018)). This can include many different types of in vitro 
bioactivity studies, in silico modelling of bioactivities and exposure predictions 
and cheminformatics. The USEPA has been evaluating high-throughput 
screening (HTS) through the ToxCast program and computational toxicology 
tools for over 10 years (Judson et al. 2010; Richard et al. 2016). Some of the 
outcomes that came out those efforts are NAM-based screening of endocrine 
disrupting chemicals for use in a regulatory setting (USEPA 2016) and high-
throughput transcriptomics (HTTr) using targeted RNA-Seq as a broad coverage 
screening assay (Harrill et al. 2021). 

New, non-animal approaches have been developed for conducting toxicological 
safety assessments being motivated by several factors including ethical 
considerations, regulatory action with certain types of ingredients being 
banned for animal testing, plus the need to assure the safety of chemicals using 
efficient, cost-effective, and robust methods (Dent et al., 2018, 2021; Thomas 
et al., 2019). NAMs also have the potential to improve safety assessments by 
using more human-relevant tools through coverage of key biological pathways 
or targets. However, as animal testing is illegal for the cosmetic industry, the 
safety assessment of new chemicals continues to rely on in vivo testing in 
animals, especially for higher tier hazard endpoints, such as systemic toxicity, 
but there have been advances in biotechnology and computational modelling. 
As a consequence, we see increasing use of different cell-based assays including 
high-content screening, omics, and reporter cell lines as well as a variety of 
computational models. In order to address these higher tied endpoints, a 
weight of evidence approach to combine NAMs to ensure the robustness and 
transparency of future risk assessments is required. Recently, the International 
Cooperation on Cosmetics Regulation (ICCR), a voluntary international group of 
cosmetic regulatory authorities, has defined the major principles for 
incorporating NAMs into an integrated strategy for Next-Generation Risk 
Assessment (NGRA) (Dent et al., 2018a). In line with the ICCR principles, NGRA 
provides a way to integrate NAM data from various sources into the decision-

https://www.bing.com/ck/a?!&&p=155a25f3c6625a5eJmltdHM9MTY5Mjc0ODgwMCZpZ3VpZD0xZWQwZmE3OC1hOTlhLTY0NjgtMDFiYi1lOTYzYTg0ODY1OTMmaW5zaWQ9NTIwNg&ptn=3&hsh=3&fclid=1ed0fa78-a99a-6468-01bb-e963a8486593&psq=USEPA&u=a1aHR0cHM6Ly93d3cuZXBhLmdvdi8&ntb=1
https://www.bing.com/ck/a?!&&p=155a25f3c6625a5eJmltdHM9MTY5Mjc0ODgwMCZpZ3VpZD0xZWQwZmE3OC1hOTlhLTY0NjgtMDFiYi1lOTYzYTg0ODY1OTMmaW5zaWQ9NTIwNg&ptn=3&hsh=3&fclid=1ed0fa78-a99a-6468-01bb-e963a8486593&psq=USEPA&u=a1aHR0cHM6Ly93d3cuZXBhLmdvdi8&ntb=1
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making process, allowing for safety assessments to be conducted without the 
use of animal data (Dent et al., 2018, 2021; Thomas et al., 2019). 

NGRA of cosmetic ingredients looks at the risk by comparing the exposure to 
an ingredient against the bioactivity of the ingredient itself. The bioactivity of 
the ingredient is probed using in vitro NAMs, such as a primary cell culture, co-
culture, or micro tissue. In those assays, the biological model is exposed to a 
chemical, typically over a range of concentrations and timepoints, where 
differences in biomarker(s) of interest are measured. This results in a 
concentration–response dataset which can be analysed using statistical 
methods to obtain concentrations of chemicals which lead to a response of a 
prechosen amount. For example, concentrations of chemical resulting in 
differences no larger than background variation may serve as points of 
departure (PoDs) for comparison against an estimate of exposure within an 
NGRA (Baltazar et al, 2020). 

One of the first examples of the use of NGRA in decision making has emerged 
recently where risk assessment of coumarin in a cosmetic product was 
assessed. The workflow for the coumarin case study, Figure 1, was based on 
the principles underpinning the use of NAMs in the safety assessment of 
cosmetic ingredients (Berggren et al., 2017; Dent et al., 2018a; Baltazar et al, 
2020). The workflow uses a hypothesis-driven decision-making process to move 
the risk assessment from problem formulation to safety decision. The first tier 
starts with the estimation of exposure levels based on the use scenario and 
consumer habits (“Exposure Estimation” step), incorporated with problem 
formulation including molecular structure, in silico predictions and information 
from literature (“Collate existing information” step). Relevant internal 
exposures were estimated using a physiologically based kinetic (PBK) model for 
coumarin for exposure scenarios based on the habits and practices of the 
European demographic (Hall et al., 2007; SCCS, 2018).  The second tier involves 
in vitro biological activity charactersation. The overall strategy for the second 
tier involves collecting and generating a wide range of bioactivity data to 
provide a comprehensive set of biomarkers which can be used to measure the 
bioactivity of the ingredient, and, corresponding PoDs, at consumer-relevant 
concentrations to identify or develop mechanistic hypotheses, or to obtain 
initial PoD. The third tier consisted of metabolism refinement which increased 
the certainty in the PoD using metabolite identification and 3D models. Once 
all these tiers were conducted, the margin of safety (MoS) was determined 
along with sufficient data and high certainty the risk assessment could be 
concluded with a low-risk conclusion based on the margin of safety 
calculations. All PoDs were compared with exposure estimates (plasma Cmax) 

to calculate the margin of safety (also known as bioactivity exposure ratio 
(BER)) distribution which is used in the risk assessment decision (Middleton et 
al, 2020). It is envisaged that such an approach could be used to decide, 
depending on the BER, whether a given chemical-exposure scenario is low risk, 
or whether to use higher tier approaches to refine the risk assessment further. 
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The PoD estimation module consists of 3 of the in vitro bioactivity platforms 
used in (Baltazar et al., 2020) to obtain a BER estimate: high-throughput 
transcriptomics (Harrill et al., 2021), a cell stress panel (Hatherell et al., 2020) 
and in vitro pharmacological profiling (Bowes et al., 2012). The latter 2 
platforms were selected to cover cellular stress and targeted biological effects, 
respectively, whereas the transcriptomics platform (generated using multiple 
cell models—HepG2, HepaRG, and MCF-7) was included to provide a non-
targeted approach to capture biological effects potentially not detected using 
the other tools as detailed in Middleton et al, 2020.  

 

 

 

Figure 1. An example of workflow used for systemic toxicity end point in the 
Baltazar et al (2020) paper. Workflow based on a tired approach with the first 
tier involving local & systemic exposure estimates and problem formulations, 
second tier involving in vitro biological activity characterisation and the third 
tier involving metabolism refinement.  

For a given workflow as detailed in Figure 1 above, the BER is defined as the 
ratio between the minimum PoD from bioactivity assays and the relevant 
plasma Cmax estimate (Figure 2). If the exposure level of a chemical in humans 

is far below the concentration needed for it to have any biological effect, then 
it is unlikely to trigger any toxicity. In contrast, if the exposure level is above the 
minimum concentration of the biological effect, the distributions of Cmax and 
bioactivities, and ultimately of the BER, can be further used to inform the 
decision and associated uncertainties.  
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Figure 2. BER distribution for decision-making. The BER was defined as the 
PoD/Cmax ratio. The uncertainty in the Cmax and PoD estimates is represented 

as a distribution, and hence the BER estimate is also a distribution. When the 
distribution for the PoD is predominantly lower than the distribution for the 
Cmax (exposure > bioactivity), this produces a distribution for the BER<1 and 

the safety decision for the exposure scenario is deemed uncertain (Middleton et 
al, 2020). Alternatively, if the distribution for the PoD is predominantly greater 
than the Cmax distribution (exposure < bioactivity), this produces a distribution 

for the BER>1 and the safety decision for the exposure scenario is deemed safe 
(Middleton et al, 2020). When the distributions for the Cmax and PoD strongly 

overlap (exposure≈ bioactivity), this results in an MoS distribution centred 
around 1 and uncertain decision.  

In order to understand the meaning of BER in the context of chemicals with a 
known history of use, BER distributions are obtained for the benchmark 
chemical-exposure scenarios, using the distributions from the Cmax error 

distribution model and the minimum POD. As a first step in benchmarking, the 
BER distributions were compared with the risk classifications assigned at stage 
1 to each of the benchmark chemical-exposure scenario (Figure 3). Here, 
exposure scenarios are ranked by the median estimated BER, from smallest to 
largest along the y-axis, and color-coded according to their assigned risk-
categories for doxorubicin and niacinamide (see Table 1). A BER<1 indicates the 
plasma Cmax is above the minimum PoD measured across the bioactivity 

platforms. Based on this ranking, the first 6 exposure scenarios (Figure 3) were 
all high-risk benchmark chemical-exposure scenarios, and all have a median 
BER less than 1 (uncertain risk). The last 13 exposure scenarios were all safe 
(Middleton et al, 2020).   
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1.2 Case study chemicals 

In this thesis, we will use two benchmark chemicals from (Middleton et al 
2022): doxorubicin and niacinamide, these chemicals are used for Unilever 
business purposes as reference materials.  

Doxorubicin is a chemotherapy drug and is a treatment for many different 
types of cancer. It slows or stops the growth of cancer cells by blocking 
enzymes called topoisomerase I and II. Cancer cells need these enzymes to 
divide and grow. Topoisomerase I inhibitors, such as irinotecan and 
topotecan, and topoisomerase II inhibitors, such as etoposide, teniposide, and 
anthracyclines, induce DNA strand breaks and hinder the action of 
topoisomerases that are involved in the DNA replication and process of 
transcription. Doxorubicin stabilizes the topoisomerase II complex after it has 
broken the DNA chain for replication, preventing the DNA double helix from 
being released and thereby stopping the process of replication. It may also 
increase quinone type free radical production, hence contributing to its 
cytotoxicity (Tacar et al. 2013).  doxorubicin has been demonstrated to have 
significant therapeutic potential and is recognized as one of the most efficient 
chemotherapy medications that have been approved by the Food and Drug 
Administration (FDA) for the treatment of various cancers (Kciuk et al. 2023)  

The planar aromatic chromophore portion of the molecule intercalates 
between two base pairs of the DNA, while the six-membered daunosamine 
sugar sits in the minor groove and interacts with flanking base pairs 
immediately adjacent to the intercalation site, as evidenced by several crystal 
structures (Frederick et al. 1990).Doxorubicin acts by inhibiting topoisomerase 
II (TopoII) resulting in DNA double-strand breaks. Cells then activate the DNA 
damage response (DDR) signalling cascade to guide recruitment of the repair 
machinery to these breaks. If this fails, the DNA repair programme initiates 
apoptosis. Rapidly replicating cells such as tumour cells are presumed to 
exhibit greater sensitivity to the resulting DNA damage than normal cells, thus 

constituting a chemotherapeutic window (Pang et al. 2013)  

 

Figure 3. Chemical structure of doxorubicin 

https://en.wikipedia.org/wiki/DNA_replication
https://pubmed.ncbi.nlm.nih.gov/?term=Kciuk%20M%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Pang%20B%5BAuthor%5D


19 

 

Niacinamide, an amide of vitamin B3 (niacin), is a hydrophilic endogenous 
substance. Given a sufficient bioavailability, niacinamide has antipruritic, 
antimicrobial, vasoactive, photo-protective and lightening effects depending 
on its concentration. There is tentative evidence for a potential role of 
niacinamide in treating acne, rosacea, autoimmune blistering disorders, 
ageing skin, and atopic dermatitis (National Cancer Institute. 
2011). niacinamide also inhibits poly(ADP-ribose) polymerases (PARP-1), 
enzymes involved in the rejoining of DNA strand breaks induced by radiation 
or chemotherapy. (Chen et al. 2014).niacinamide is a well-tolerated and safe 
substance often used in cosmetics (Knip et al. 2000).  

The structure of nicotinamide consists of a pyridine ring to which a primary 
amide group is attached in the meta position. It is an amide of nicotinic 
acid. As an aromatic compound, it undergoes electrophilic 
substitution reactions and transformations of its two functional groups(Knip 
et al. 2000).  

 

Figure 4. Chemical structure of niacinamide 

Doxorubicin falls in the high-risk benchmark chemical exposure scenario with 
a BER of approximately 10-4 and niacinamide falls into the low-risk benchmark 
chemical exposure scenario with BER at approximately 1000 (Figure 3). 

Risk classifications of “high” or “low” were assigned for the chosen chemicals 
investigated in this thesis, doxorubicin and niacinamide, to each benchmark 
scenario, for the purpose of safety decision-making in the context of a 
consumer product (e.g. personal care products). Therefore, if the documented 
safety profile of the benchmark chemical-exposure was used as a decision for 
inclusion in a consumer product, it would be considered high or low risk 
accordingly (Table 1). 

https://en.wikipedia.org/wiki/National_Cancer_Institute
https://en.wikipedia.org/wiki/Polymerase
https://en.wikipedia.org/wiki/PARP1
https://en.wikipedia.org/wiki/Pyridine
https://en.wikipedia.org/wiki/Primary_amide
https://en.wikipedia.org/wiki/Primary_amide
https://en.wikipedia.org/wiki/Arene_substitution_pattern
https://en.wikipedia.org/wiki/Amide
https://en.wikipedia.org/wiki/Aromatic_compound
https://en.wikipedia.org/wiki/Electrophilic_aromatic_substitution
https://en.wikipedia.org/wiki/Electrophilic_aromatic_substitution
https://en.wikipedia.org/wiki/Functional_group
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Figure 5. The distribution of the bioactivity exposure ratio (BER) when using all 
available predicted Cmax estimates. Background colours indicate the assigned 

risk category for each benchmark chemical-exposure scenario assigned at 
stage 1 (blue—low, yellow—high). The vertical dashed line indicates a BER 
equal to 1. For doxorubicin the risk category is in the yellow defined as high 
with BER<1 and for niacinamide the risk category is in the blue area defined as 
low were BER>1. 

 

Compound Use 
Scenario 

Risk 
Classification* 

Risk 
Classification 
Reasoning 

Reference 

Doxorubicin 
Hydrochloride 

IV bolus 75 
mg/m2, 10 
min 

High risk  The incidence 
of symptomatic 
chronic heart 
failure is 
estimated to be 
3–4% after a 
cumulative 
dose of 450 
mg/m2 if 
doxorubicin is 
administered as 
a bolus of 45–

Injac et al, 
2008 
Biganzoli 
et al, 2003 
Rahman 
et al, 2007 
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75 mg/m2 every 
3–4 weeks.  

Niacinamide 

Tolerable 
daily intake 
(TDI) 12.5 
mg/bw/day 

Low risk  History of safe 
use. No 
evidence for 
concern with 
respect to 
systemic 
toxicity from 
the available 
toxicological 
data, as 
concluded by 
the Scientific 
Committee on 
Food and 
Scientific Panel 
on Dietetic 
Products, 
Nutrition and 
Allergies. 
niacinamide is a 
form of vitamin 
B3 with a 
recommended 
intake of 10-15 
mg/day of 
niacin 
equivalent. 

Cosmetic 
Ingredient 
Review 
Expert 
Panel, 
2005; 
EFSA NDA 
Panel, 
2014; 
EFSA 
Panel on 
Nutrition, 
Novel 
Foods 
and Food 
Allergens, 
2022 

Norwegian 
dietary 
intake 22.2 
mg/day 

Low risk  

0.1% in a 
hair 
conditioner 

Low risk  

3% in a 
body lotion 

Low risk  

*from a consumer goods perspective with respect to systemic exposure 

Table 1 – Summary of risk classification and rationale for each chemical 
exposure scenario with doxorubicin defined as high risk for various in use 
scenarios and niacinamide defined as low risk for various in use scenarios. 

 

1.3 Introduction to Transcriptomics 

HTTr is the study of mRNA molecules in a cell. mRNA is copied from pieces of 
DNA and contains information to make proteins and perform other important 
functions in the cell. Transcriptomics is used to learn more about how genes 
are turned on in different types of cells and assesses changes in gene 
expression (Black et al. 2022). HTTr is a type of NAM that uses gene 
expression profiling as an endpoint for rapidly evaluating the effects of large 
numbers of chemicals on in vitro cell culture systems. As compared to 
targeted high-throughput screening (HTS) approaches that measure the effect 
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of chemical X on target Y, HTTr is a non-targeted approach that allows 
researchers to more broadly characterize the integrated response of an intact 
biological system to chemicals that may affect a specific biological target or 
many biological targets under a defined set of treatment conditions (time, 
concentration, etc.). HTTr screening performed in concentration-response 
mode can provide potency estimates for the concentrations of chemicals that 
produce perturbations in cellular response pathways (Harrill et al. 2021). 

Gene expression profiling has long been considered an informative method 
for evaluating the biological activity and/or toxicity of chemicals. Previous 
research focused on using gene expression data from in vivo animal studies to 
characterise the toxicity of environmental chemicals, using concentration-
response modelling of gene expression measurements to identify molecular 
mechanisms-of-action, and to define transcriptional PoDs (Blomme et al. 
2009; Cui and Paules 2010; Farmahin et al. 2017; Harrill et al. 2021; Thomas et 
al. 2013). Such studies were necessarily low-throughput given the use of 
laboratory animals and due to the changes in technology to high throughput 
transcriptomics. (Harrill et al. 2021) 

Over the years, advances in transcriptomics research have included 
technological improvements in transcriptomics assay platforms, the 
establishment of large-scale, open-access transcriptome profiling datasets 
housing both in vivo and in vitro chemical bioactivity data (Igarashi et al. 2015; 
Lamb et al. 2006; Svoboda et al. 2019), and development of many 
computational strategies for analysing such data. However, the latter two 
topics have primarily focused on mechanism-of-action characterization and 
chemical clustering/read-across in past research (De Abrew et al. 2016). 
Fortunately, increasing efficiency and declining costs associated with 
generating whole transcriptome profiles have made in vitro HTTr screening in 
concentration-response mode a feasible option for NAMs-based hazard 
characterisation of environmental chemicals (Harrill et al. 2021). 

In vitro biological activity characterisation can be conducted with a high 
throughput Transcriptomics method using TempO-Seq (Figure 4), a novel 
ligation-based targeted whole transcriptome expression profiling assay, to 
determine whether previously unreported compound-responsive genes could 
be identified and incorporated into a broad but specific compound signature 
(Yeakley et al, 2017) 

TempO-Seq (Templated Oligo assay with Sequencing readout) uses a different 
approach to targeted sequencing (Figure 4) for mRNA only. The whole 
transcriptome TempO-Seq assay targets and measures a specific sequence 
within each gene, while measuring every gene and isoform in the 
transcriptome, doing so by directly targeting the RNA contained in crude 
cellular lysates in a homogenous progressive addition assay. TempO-Seq relies 
on the hybridization of two novel “detector” oligos (DOs) to adjacent target 
sequences so that when properly hybridized they can be ligated. Excess 
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unhybridized DOs are removed enzymatically in a process that is readily 
scaled and automated, then the ligated DO pairs are amplified to add a 
sample-specific sequence and the adaptors required for sequencing. As there 
is no poly-(A)+ selection, there is no positional bias in target location, so DOs 
are designed to maximize hybridisation specificity. The ligation step also 
provides specificity for single base differences, making even highly 
homologous genes distinguishable. The unique biochemistry of TempO-Seq 
also eliminates mis-ligation and assay background, making the whole 
transcriptome content possible, and allowing precise dose-response and 
single-cell level measurements while maximizing sequencing flow cell 
productivity. Importantly, the sequencing process delivers only already known 
ligated DO sequences, so there is no complex bioinformatic analysis; the 
output of the assay is a simple table with expression levels of each gene in 
each sample (Yeakley et al, 2017). 

TempO-Seq exhibits 99.6% specificity, single cell sensitivity, and excellent 

correlation with fold differences measured by RNA-Seq (R2 = 0.9) for 20,629 
targets. Unlike many expression assays, TempO-Seq does not require RNA 

purification, cDNA synthesis, or capture of targeted RNA, and lacks a 3’ end 
bias (Yeakley et al, 2017). 

 

 

Figure 6. TempO-Seq biochemical scheme. RNAs are targeted by annealing to 
detector oligo (Dos) that contain target- specific sequences (green) as well as 
primer landing sites (red and yellow) that are shared across all DOs. Excess 

oligos are removed by a 30 exonuclease, then the hybridized oligos are ligated 
and amplified using primers that contain sample tag (index) sequences 
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(orange and purple bars), and adaptors required for sequencing. The amplified 
assay products are pooled for a library, purified/concentrated and sequenced 
(Yeakley et al, 2017).  

The main focus for this thesis will be HTTr data generated at a third-party 
contract organisation and three cell lines of interest were HepG2, HepaRG and 
MCF-7 cells. HepG2 cells are used as an in vitro model of the human liver and 
to study toxic effects of drugs in vitro, HepaRG cells exhibit many 
characteristics of primary human hepatocytes including key metabolic 
enzymes, expression of nuclear receptors and drug transporters while MCF-7 
cells are human breast cancer cell lines used for assessing the disruption in 
the endocrine system due to the expression of endocrine system related 
receptors (Middleton et al, 2020).  . 

1.4 Aims and Objectives  

The main aim of this project is to address a gap of knowledge within Unilever 
by conducting biological interpretation of exposure to chemicals at different 
concentrations and the general use of in vitro methods for non-animal 
risk assessments.The project will interpret dose response HTTr data produced  
from TempO-Seq for HepG2, HepaRG and MCF7 cells dosed with doxorubicin  
and niacinamide at seven different doses and comparisons with the DMSO  
control. The first objective is to use dose response modelling software  
BMDExpress to potentially derive transcriptional PoDs and compare them to  
Cmax value determined for the given exposure scenarios. 
Doxorubicin and niacinamide were selected as chemicals of interest for this  
project as they exemplify high and low risk benchmark chemical exposures,  
respectively, as determined using BER activities (Middleton et al 2022) (Figure  
3).  The null hypothesis states that there are no significant transcriptional  
differences in cell lines between control samples and samples treated with  
chemicals at different doses. The alternative hypothesis is that there are 
significant transcriptional differences in the various cell lines between control  
samples and samples treated with doxorubicin and niacinamide at seven  
different concentrations. 

The second objective of this project is to go beyond the PoD determination 
from HTTr and further carry out biological interpretation of the detected 
differentially expressed genes from the dose response HTTr experiment. The 
outcome of the biological interpretation is used to check the hypothesis 
whether the already known mechanism of action (MoA) of the chemicals can 
be observed from these pathway analyses.  For that reason, pathway analysis 
will be carried using Ingenuity Pathway Analysis (IPA) software and the 
outcomes will be compared with the known MoA of the chemicals.  

Technical questions were explored as follows:  



25 

 

1) Are there relevant transcriptional differences between control and 
treated samples in Hep G2, HepaRG and MCF7 cells at different 
doses?  

2) Is it possible to derive a PoD from dose response software 
BMDExpress?  

3) Identify pathways associated with the differential expressed gene 
profiles and determine whether the MoA of the chemicals in each 
cell line can be observed from these pathway analyses using 
BMDExpress and IPA 

The following objectives were investigated for this project:  

Objective 1: 
a) Align and quantify transcriptomics data (from fastq files) from HepG2, 
HepaRG and MCF7 cell lines treated with doxorubicin and niacinamide at 
seven different doses. 

b) Conduct differential expression analysis using DESeq2 between each 
treatment chemical and DMSO controls.  

 
Objective 2: 
a) Using dose response software BMDExpress to potentially derive PoD.  

Objective 3: 
a) Investigate the enriched pathways from the significant differentially 
expressed genes and determine whether the MoA of the chemical can be 
inferred using BMDExpress and IPA. 
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CHAPTER 2 

2. MATERIALS AND METHODS 

2.1 Introduction 

The work described in this report contains the analysis output of high-
throughput transcriptomics data (HTTr) using the TempO-Seq assay for 
targeted sequencing-based RNA expression analysis of HepaRG, HepG2 and 
MCF7 cell lysates, generated at a third party contract research organisation 
(CRO) Cyprotex, where cells were treated with doxorubicin and niacinamide  
for 24 hours prior to cell lysate generation and subsequent shipping to 
another third party contract research organisation, Bioclavis for QC analysis 
and results generated from the TempO-Seq assays were performed. The data 
generated was analysed by SEAC, Unilever using BMDExpress to generate 
Points of Departure (PoD) to be used in NGRA as well as pathway analysis 
using BMDExpress and Ingenuity Pathway Analysis (IPA). 
This report relates solely to the cell lysate samples that were exposed to 
doxorubicin and niacinamide, although these samples were part of a much 
larger study. 

2.2 Cell Culture 

HepG2 cells (human hepatoblastoma) were obtained from the Public Health 
England European Collection of Cell Cultures (ECACC, Salisbury, UK). Cells 
were cultured in complete MEM (Gibco) supplemented with 10% fetal bovine 
serum (FBS) (Sigma), 2 mM GlutaMAX (Gibco), 1% nonessential amino acids 
(Gibco), 53 U/mL penicillin (Sigma), and 53 μg/mL streptomycin (Sigma). 
HepG2 cells were maintained in 75 cm2 cell culture flasks in a humidified 
atmosphere incubator with 5% CO2 at 37 °C; the cells were kept at a 
confluence below 85% and were not maintained in culture for more than 4 
weeks (8 passages). Cells were seeded into 384-well, clear-bottom black-
walled tissue culture plates at a density of 6000 cells/well and were left 
overnight to attach. 

MCF-7 cells (human Caucasian breast adenocarcinoma) were obtained from 
ECACC (Salisbury, UK). Cells were cultured in complete RPMI 1640 medium 
(Gibco) supplemented with 10% FBS (Sigma), 2 mM GlutaMAX (Gibco), 53 
U/mL penicillin (Gibco), and 53 μg/mL streptomycin (Gibco). MCF-7 cells were 
seeded into 384-well, clear-bottom black-walled tissue culture plates at a 
density of 6000 cells/well and were left overnight for attachment. 

HepaRG cells (proliferative human hepatoma-derived cell line) were obtained 
from Life Technologies and cultured in Williams’ E medium supplemented 
(Gibco) with 2 mM L-glutamine (Gibco) and HPRG670 supplement (Lonza, UK), 
in collagen-coated, 384-well, clear-bottom, black-walled, tissue culture plates, 
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at a density of 20,000 cells/well. HepaRG cells were then transferred to 
serum-free medium following the initial 24 h seeding procedure (Williams E 
medium supplemented with 2 mM GlutaMAX, 100 units/mL penicillin, 100 
μg/mL streptomycin, and HPRG640 supplement), for 6 days prior to dosing, 
with media replenishment every second day. 

2.3 Cytotoxicity testing 

Cytotoxicity measurement was used to inform the dose range of doxorubicin 
and niacinamide. The experiments were done and reported in Middleton et al, 
(2022) by measuring the level of induced Lactate dehydrogenase (LDH) in all 
three cell lines. From the LDH measurements, doxorubicin became cytotoxic 
at approximately 0.5µM for all cell lines while niacinamide became cytotoxic 
at approximately 3000µM for Hep G2, >8000µM for HepaRG and 10,000µM 
for MCF-7 cells.   

2.4 Preparation of dose solutions 

Test compounds, doxorubicin (LGC Standards) and niacinamide (Sigma-
Aldrich) were prepared as stock solutions in 200× higher concentrations than 
the highest concentration to be tested. Dimethyl sulfoxide (DMSO) was used 
as the solvent, and its final concentration in treatment media was maintained 
at 0.5% v/v. Serial dilutions were performed using the custom dilution series 
for each compound. Doxorubicin was prepared at doses of 0.000064 - 1 µM 
for all cell line and niacinamide were prepared at doses of 0.512 - 8000 µM 
(HepaRG) and 3.84 - 60000 µM (HepG2 and MCF-7). Cells were treated at 
seven concentrations of each test compound, and five biological replicates 
were generated. Compound treatment was performed for 24 h in a 
humidified atmosphere with 5% CO2 at 37 °C. Cells were washed in calcium- 
and magnesium-free phosphate buffered saline (PBS) (Sigma). With all 
residual PBS removed, the 2X TempO-Seq lysis buffer (BioSpyder 
Technologies, proprietary kit) was diluted to 1× with PBS and added at a 
volume of 1 μL per 1000 cells with a minimum of 10 μL per well and incubated 
for 10 min at room temperature. Following lysis, the samples were frozen at 
−80 °C prior to sequencing. 
 
Doxorubicin and niacinamide were produced on separate exposure plates. 21 
DMSO (Sigma) solvent controls are produced per exposure plate, distributed 
across various columns and rows of the 384 well plate, resulting in 21 positive 
control samples. HTTr sequencing was performed using TempO-Seq 
(BioClavis) version two of the Human whole transcriptome panel.  

Probes were filtered to include only those which had a median count, across 
all samples, of 5 or above. Samples were filtered to only include those with 
more than a sum of 2,500,000 counts within the remaining probes and those 
with a mapped read percentage over 55%. 
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2.5 RNA Sequencing and Data Analysis 

TempO-Seq analysis was performed as described in the introduction (Section 
1.2) (Yeakley et al. 2017), with a targeted sequence depth of 200 mapped 
read counts per transcript including the use of the general attenuation panel. 
Raw count data was produced using a STAR algorithm (Dobin et al., 2013) and 
TempO-Seq R software package. Raw counts were processed using the R 
package DESeq2 (Love, Huber, and Anders 2014) as detailed in Appendix 1 
Supplementary Script 1 and GitHub link: https://github.com/liztulum/MRes-
thesis-scripts/blob/main/DESeq2%20MRes%20script.R). 

2.6 TempO-Seq assay protocol summary 

In TempO-Seq, each Detector Oligo (DO) consists of a sequence 
complementary to an mRNA target plus a universal primer binding site (i.e. 
same for every targeted gene). They anneal in immediate juxtaposition to 
each other on the targeted RNA template such that they can be ligated 
together. Ligated detector oligos are PCR-amplified using a primer set (single-
plex 25-cycle PCR reaction, with a single primer pair for each sample) that 
introduces both the adaptors required for sequencing and a sample-specific 
barcode. The barcode sequences flank the target sequence and are inserted 
appropriately into the standard Illumina adaptors to permit standard dual-
index sequencing of the barcodes and deconvolution of sample-specific reads 
from the sequencing data using the standard Illumina software. Up to 384 
PCR-amplified and barcoded samples are pooled into a single library for 
sequencing. Sequencing reads are demultiplexed using the standard 
sequencing instrument software for each sample using the barcodes to give a 
FASTQ file for each. 
 

2.7 Data analysis protocol 

 
TempO-Seq sequence files were analysed using the Tempo-SeqR software 
package. The input for TempO-Seq data analysis is a folder of zipped FASTQ 
files. Each FASTQ file contains the reads and quality scores for one sample. 
Each FASTQ file is aligned using the STAR algorithm to a pseudo-transcriptome 
corresponding to the gene panel used in the assay. The primary output of the 
Tempo-SeqR software was a table of counts with each column representing a 
sample and each row representing a gene. 
 
 

2.8 Data pre-filtering, differential expression analysis and                      
             visualisation 

Transcriptomics data was analysed using R Studio (2022.07.2 Build 576) (R 
script detailed in Appendix 1 Supplementary Script 1 and GitHub link: 
https://github.com/liztulum/MRes-thesis-
scripts/blob/main/DESeq2%20MRes%20script.R) to produce visualisation 

https://github.com/liztulum/MRes-thesis-scripts/blob/main/DESeq2%20MRes%20script.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/DESeq2%20MRes%20script.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/DESeq2%20MRes%20script.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/DESeq2%20MRes%20script.R
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plots including principal component analysis (PCA), MA plots, volcano plots 
and ggplots to identify any outliers in the data. 

For transcriptomics, a typical pre-filtering criterion of median counts over all 
samples < 5 was carried out. The normalization and analysis of differentially 
expressed genes (DEGs) were conducted by using DESeq2 (version 1.38.3 
(Love et al. 2014), which is regarded as one of the leading tools for pairwise 
differential expression analysis when fewer than 12 replicates are used 
(Schurch et al., 2016). 
 
Raw counts were processed using the R package DESeq2 (version 1.38.3) 
(Love et al., 2014) separately per chemical/cell-line dataset. Probes were 
filtered to include only those which had a median count, across all samples, of 
5 or above and samples were filtered to only include those with more than a 
sum of 2.5 million counts within the remaining probes and with a mapped 
read percentage over 55%. Outliers were removed where biological replicates 
had a correlation of <85% and could identified using principal component 
analysis. 

Data were normalized using the negative binomial distribution in DESeq2 with 
model “_ VESSEL_ID + CONCENTRATION” where “VESSEL_ID” is given per 
treatment 384 well plate and is identified as a strong source of variation 
between biological replicates, and therefore set as a confounding factor. Rlog-
transformed normalized counts were used as input into benchmark response 
(BMR) modelling software BMDExpress 2.3 (Version BUILD released on July 
15, 2020) (Phillips et al., 2019) where data were modelled to calculate PoDs 
per chemical/cell-line dataset. Figure 5 shows the analysis flowchart from raw 
counts to gene/pathway level PoD’s. 

 

Figure 7: Overview of analysis flowchart from raw counts to gene/pathway 
level PoD’s. 

 
All pre-processing steps were performed in R Studio (2022.07.2 Build 576) and 
visualizations were generated in the ggplot2 R package (2022.07.2 Build 576). 
RNA sequencing data was pre-processed in R using the raw RNA sequencing 
read counts. PCA was performed for the transcriptome data based on raw 
counts after variance stabilizing transformation using the ‘vst’ and ‘plotPCA’ 
functions of the R package DESeq2. MA and volcano plots were performed 
using plotMA and plot_EnhancedVolcano functions for each cell line and 
dosed chemical. 
 
For both doxorubicin and niacinamide, differentially expressed genes (DEGs) 
were identified by using a pre-filtering procedure with Benjamin-Hochberg 
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adjusted p-value < 0.05 with a fold change (FC) threshold of 1.5. 
 
DESeq2 normalised and rlog transformed data was used to investigate 
biological replicate quality by plotting PCA biplots coloured by replicate group 
(Concentration) and calculating correlation values for the top 20 differentially 
expressed genes and coloured by concentration groups (ggplots). 
MA plots are commonly used to represent log fold-change versus mean 
expression between 2 treatments. This is visually displayed as a scatter plot 
with base-2 log fold change along the y axis and normalised mean expression 
along the x axis. 
A volcano plot is a type of scatterplot that shows statistical significance (P 
value) versus magnitude of change (log 2 fold Change). It enables a visual 
identification of genes with large fold changes that are also statistically 
significant which may be the most biologically significant genes (add Volcano 
plots). 
Upset plots are a data visualisation method for showing set data with more 
than three intersecting sets, showing intersections in a matrix with the rows 
of the matrix corresponding to the sets and the columns to the intersections 
between these sets. The size of the sets and intersections are shown as bar 
charts. (R script details in Appendix 1 Supplementary Script 2 and GitHub link: 
https://github.com/liztulum/MRes-thesis-
scripts/blob/main/IPA_gene_intersect%20upset.R). 

 
2.9 Dose response based on Benchmark dose (BMD) method and            
             pathway enrichment analysis 

Chemical risk assessment aims to establish acceptable levels of exposures 
based on toxicological dose–response studies. Traditional methods that apply 
the lowest-observed-adverse-effect- level or no-observed-adverse-effects-
level, may be limited by the selection of doses, sample sizes required to 
detect subtle effects and by technical and biological variability that limits 
ability to detect significant changes (Crump, 1984). In contrast, benchmark 
dose (BMD) modelling fits experimental dose–response data with a statistical 
model to identify a defined level of response relative to a control group. BMD 
was developed to overcome the limitations of the lowest-observed-adverse-
effect-level/no-observed-ad- verse-effects-level approach (Crump, 1984). 
Regulatory agencies have increasingly adopted BMD modelling for human 
health risk assessment (Budtz-Jorgensen et al., 2013; Health Canada, 2013).  

For a comprehensive statistical analysis of the dose response data, 
BMDExpress 2 software (version 2.3) was used for multivariate dose-response 
analyses, which provides functionality for benchmark dose (BMD) 
computations using the same curve-fitting methods as implemented in the 
U.S. Environmental Protection Agency’s Benchmark Dose Software (BMDS) 
(U.S. Environmental Protection Agency)). The input for BMDExpress 2 was 
prepared from the pre-processed intensity and read count data after quality 
filtering. 

https://github.com/liztulum/MRes-thesis-scripts/blob/main/IPA_gene_intersect%20upset.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/IPA_gene_intersect%20upset.R
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BMDExpress computations are presented in tabular format viewable in the 
BMDExpress software. However, because of the limited capability to perform 
additional analyses and data visualization in the BMDExpress application, the 
results are typically exported to separate software (e.g., a spreadsheet) for 
further exploration. There are two major types of outputs that can be 
exported, i.e., (1) “BMD Analysis,” and (2) “Functional Classifications.” A “BMD 
Analysis” output file contains gene (or microarray probe), BMD and BMD 
lower confidence (BMDL) values for each statistical model, as well as the 
information required for model selection. A “Functional Classifications” 
output file was exported as “Gene Ontology Analyses” (Figure 6).  

 

 

Figure 8 - Workflow demonstrating the features and functionality of 
BMDExpress Data Viewer. BMD, benchmark dose; BMDL, benchmark dose 
lower confidence (values); GO, gene ontology; POD, point of departure.  

2.9.1 Preparation of input data for BMDExpress 2  

For all datasets, the pre-processed and filtered intensity/expression data was 
stored in tab-separated plain text files. These files were formatted according 
to the requirements of the BMDExpress 2 software (Phillips et al. 2019) i.e. 
with one column per sample and one row per feature, where the first column 
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contains the feature identifier and the first two rows contain the sample 
identifier (row 1) and the applied compound concentration (row 2).  

2.9.2 Benchmark dose analysis with BMDExpress 2  

The actual dose response analysis was performed using the BMDExpress 2 
desktop application (version 2.30, build 0439) (Phillips et al. 2019). To limit 
the number of models that need to be fitted in the actual benchmark dose 
(BMD) analysis, the data was pre-filtered within BMDExpress 2. Pre-filtering 
was performed using the “Williams Trend Test” with “P-Value Cutoff” set to 
0.05, “number of Permutations” set to 100 and without checking the 
“Multiple Testing Correction” and checking the “Filter Out Control Genes” 
options. Together with the Williams Trend Test, a Fold Change Filter was 
applied with the “Fold Change Value” set to 1.5 for all datasets. Execution 
parameters were set at “Number of Threads” to 20. 

Subsequently, the features passing pre-filtering in each dataset were used as 
input for the actual BMD analysis, i.e. the fitting of the dose response models. 
For each feature the following six types of model equations were fitted to the 
measurement data: four exponential models called Exponential 2 (Exp 2), 
Exponential 3 (Exp 3), Exponential 4 (Exp 4) and Exponential 5 (Exp 5), a 
second-degree Polynomial model (Poly 2), a Hill model (Hill), and a Power 
model (Power). After fitting all models, for each feature the best model was 
selected using the Akaike information criterion (AIC) (Cavanaughet al. 2019) as 
quality measure. Further parameters for curve fitting and model selection 
were set as follows:  

• P-Value Cutoff: 0.05  
• Best Poly Model Test: Lowest AIC  
• Flag Hill Model with ‘k’ Parameter < 1/3 of Lowest Positive Dose  
• Maximum Iterations: 250  
• Confidence Level: 0.95  
• Constant Variance: true  
• Restrict Power: No Restriction  
• BMR Factor: 1.349 (10%)  
• Multiple Threads: 20 

Finally, the BMD analysis output was filtered to keep only features for which 
the BMD of the best model was at most as high as the maximum tested 
concentration (Best BMD < Highest concentration of each sample) and the 
best model fitted the data sufficiently well (Best fitPValue > 0.1). Data was 
filtered further to keep only features with sufficiently small confidence 
intervals for the best BMD (BMDU/BMDL < 40). These parameters were 
conducted for all samples in this analysis. 

Downstream examination of the BMD results was performed directly within 
BMDExpress 2. Overlap plots were generated using the R package UpSetR (R 
script detailed in Appendix 1 Supplementary Script 2 and GitHub link: 
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https://github.com/liztulum/MRes-thesis-
scripts/blob/main/IPA_gene_intersect%20upset.R) and further visualizations 
were generated using ggplot2 (R script detailed in Appendix 1 Supplementary 
Script 1 and GitHub link: https://github.com/liztulum/MRes-thesis-
scripts/blob/main/DESeq2%20MRes%20script.R). 

2.9.3 Functional classification analysis 

To identify biological functions or pathways affected by the applied 
compound, we performed a functional classification analysis (Category 
Analysis) within BMDExpress 2. In this analysis, the features in the BMD 
analysis output are matched to different functional classifications based on 
their associated Entrez ID and summary values for the BMD values (from the 
best model) and the corresponding benchmark dose upper and lower 
confidence limits (BMDU, BMDL) are computed for each functional category. 
Functional classification analysis was performed for Gene Ontology (GO) 
terms (THE GENE ONTOLOGY, C. 2017; Mi et al. 2019) and REACTOME 
pathways (B. Jassal et al; Gillespie et al. 2022). The parameters for the 
functional classification analysis were set as follows:  

• Remove Promiscuous Probes: true  
• Remove BMD > Highest Dose from Category Descriptive Statistics: true  
• Remove BMD with p-Value < Cutoff: 0.1  
• Remove Genes with BMD/BMDL >: null  
• Remove Genes with BMD/BMD >: null 
• Remove Genes with BMDU/BMDL >: 40 
• Remove Genes with BMD Values > N Fold Below the Lowest Positive 

Dose: null  
• Identify Conflicting Probe Sets: true 
• Correlation cutoff for conflicting probes sets: 0.5 

All further parameters were left at the default values.  

For downstream examinations, the output of the functional classification 
analysis was filtered to keep only categories with a total size of more than two 
genes (All Genes (Platform) > 2), a sufficiently small p-value in the enrichment 
test (Fisher’s Exact Two Tail < 0.1), and for which more than one feature in the 
dataset was passing all input filters (Genes that Passed All Filters > 1). 

In addition to these five approaches suggested by Farmahin et al., we applied 
a sixth approach and computed a gene level global BMD /NOPEL/NOTEL as 
mean BMD of all genes associated to adverse reactions, cellular stress 
responses or AOPs. 

The BMDL mean value of each pathway for transcriptomics was calculated 

based on the average of BMDL values of the genes enriched in the particular 

pathway. Global POD values were determined at pathway and gene level 

https://github.com/liztulum/MRes-thesis-scripts/blob/main/IPA_gene_intersect%20upset.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/IPA_gene_intersect%20upset.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/DESeq2%20MRes%20script.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/DESeq2%20MRes%20script.R
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based on the previously published approaches (Farmahin et al. 2017):  

 

The mean BMDL was calculated by taking the mean of all significant probe 
level BMDLs in the given Reactome pathway. PoDs presented in this report 
are as follows with (1) and (2) being at the gene level and (3), (4) & (5) being 
at the pathway level 
 
1) the average of BMDLs of the 20 probes with highest fold change, gene level 
2) the average of probe BMDLs within the 25th to 75thpercentile, gene level 
3) the average of the lowest 20 mean pathway BMDLs,  
4) the average of the 20 mean pathway BMDLs with highest significance 
(lowest p value) 
5) the lowest mean pathway BMDL. PoDs presented are based on the nominal 
concentrations tested. 

2.10 Pathway and upstream regulator enrichment analysis using 
Ingenuity Pathway Analysis 

Pathway and upstream regulator enrichment analysis was carried out 
using QIAGEN IPA software that is built on the manually curated content 
of the QIAGEN Knowledge Base (Figure 7). 

 

Figure 9 – workflow of IPA software (image copied from 
https://digitalinsights.qiagen.com/products-overview/discovery-insights-
portfolio/analysis-and-visualization/qiagen-ipa/insightful/) 

 

IPA; QIAGEN, Redwood City, California (version 94302991, Build ing-lapis) was 
used to identify perturbed upstream regulators and canonical pathways. For 
each chemical tested, Excel files were imported into IPA containing gene IDs 
(Ensembl and Gene Symbol), p value, adjusted p value and the log2 fold-
changes of the gene relative to solvent controls (exported data from R 

https://digitalinsights.qiagen.com/products-overview/qiagen-knowledge-base/
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Studio). Using Visual Studio (VR) Code (version 1.77.0), (Python script detailed 
in Appendix 1 Supplementary Script 3 and GitHub link: 
https://github.com/liztulum/MRes-thesis-
scripts/blob/main/gene%20name%20change.py), the unique protein/site 
labels in the one JSON object were extracted and inserted into the 
corresponding slots of the other JSON object (with annotation information) to 
replace the ‘gene’ column in the excel file as “Gene IDs”. The resulting 
modified JSON objects with unique protein/site labels (“Gene IDs”) were 
imported as “txt files” into IPA for each cell line and dosed chemical. IPA is 
only able to process pathways with a minimum of 100 DEG’s therefore not all 
samples concentration were imported into IPA. The samples imported into 
IPA for pathway analysis were doxorubicin MCF-7 1, 0.2 and 0.04µM, HepG2 
1, 0.2, 0.04 and 0.00032µM, HepaRG 1, 0.2µM; niacinamide MCF-7 60000 and 
12000µM, HepG2 60000 and 12000µM and HepaRG 8000µM. 

This approach allowed us to identify enrichment of genes showing robust 
concentration-responses to the exposures. IPA Core Analysis with a gene 
expression threshold of log2 fold change 1.5 and FDR-adjusted p value 0.05 
was used with the direct and indirect relationship settings based on 
experimental and highly predicted data (focusing on human sources from 
breast cancer cell lines). Statistical significance of the overlap (FDR-adjusted p 
value .05) between the data set and known targets of upstream regulators in 
IPA were calculated using Fisher’s exact tests. The z-score was calculated 
using Fisher’s exact test based on the expected relationship for directions 
between upstream regulators and target genes and those observed in the 
data set. A z-score of >2 (activated) or <2 (inhibited) was considered 
statistically significant.  

The following parameters in IPA were set as default as follows:  

Core Analysis – Expression analysis 

• Measurement type – Expr Log Ratio 

• Population of genes to consider for p value calculations – Ingenuity 
Knowledge Base (Genes only) 

• Direct and indirect relationships 

• Interaction networks – Endogenous chemicals included with 35 
molecules per network and 24 networks per analysis 

• Causal networks – score using causal networks only 

• Data sources – Third party information including MicroRNA-mRNA 
interactions, Protein-protein interactions, additional sources i.e. Gene 
Ontology (GO); DrugBank; BioGrid etc 

• Species – Mammal (Human, Mouse and Rat) 

• Various Tissues, Primary cells and cell lines 

  

https://github.com/liztulum/MRes-thesis-scripts/blob/main/gene%20name%20change.py
https://github.com/liztulum/MRes-thesis-scripts/blob/main/gene%20name%20change.py
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Chapter 3 

 

3. RESULTS USING BMDEXPRESS 

To identify changes in the number of transcripts induced by doxorubicin and 
niacinamide exposure, we compared the treatment time profiles with control 
profiles derived from time-matched DMSO-treated cell lines. The choice of 
doses was informed by changes in cytotoxicity after 24 hours, as measured in 
the previous work (Middleton et al. 2022). Initial cytotoxicity pre-screens – 
cellular adenosine triphosphate (ATP) and lactate dehydrogenase (LDH) 
release measurements were used to set the maximum concentration to be 
tested for the transcriptomics platforms for each compound and cell line. For 
the transcriptomics platforms, the concentrations were 36 identified by using 
a standardised setting procedure which involved specifying the maximum 
concentration based on the minimum of either a chemical’s solubility limit or 
the concentration at which cytotoxicity is observed. The dilution series used 
for doxorubicin and niacinamide was the minimum concentration at 
approximately 4 orders of magnitude smaller than the maximum 
concentration. Cell toxicity for niacinamide was estimated to be ~3000µM for 
HepG2 cells; <8000µM for HepaRG and 11000µM for MCF-7 cells and for 
doxorubicin was estimated to be ~0.5µM for all cell lines. 
 
For each time point, each experiment was carried out using 6 doses and the 
vehicle control in 3 biological replicates. In order to maintain consistency with 
the previous risk assessment studies of coumarin and caffeine (Baltazar et al. 
2020; Hatherell et al. 2020; Rajagopal et al. 2022), doses for doxorubicin 
treatment were preselected, ranging between 0.000064 – 1 µM for all cell 
lines. Similarly, doses for the niacinamide treatment were preselected, 
ranging between 0.512 - 8000 µM (HepaRG) and 3.84 - 60000 µM (HepG2 and 
MCF-7).  
 
Raw counts data was inputted into R studio and analysed by using DESeq2 to 
produce differentially expressed genes (DEGs) for each chemical and cell line. 
The number of differentially expressed genes was calculated for each 
chemical concentration and cell line giving an indication as to how many 
genes had been differentially expressed using this methodology. These DEGs 
were then used for BMDExpress 2.3 analysis to identify genes and pathways 
relevant to doxorubicin and niacinamide for each cell line. IPA was also 
conducted using the DESeq2 data with only the number of DEGs above 100 
meeting the criteria, meaning not all chemical concentrations and cell lines 
were analysed using IPA. 
 
As expected, for all cell lines, the number of DEGs at higher doses of 
doxorubicin and niacinamide were higher compared to the lower doses as 
detailed in Table 2. The top 20 DEG’s for each cell line, doses and chemicals 
are illustrated in Appendix 2, Tables 1-28, this data was used in DESeq2 and 
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inputted into BMDExpress for data analysis. The data detailed for each cell 
line dosed with doxorubicin and niacinamide at various concentrations the 
top 20 genes identifed with up and down regulated DEG’s as calculated by the 
log2fold change results. Some of the lower concentrations contained less than 
20 DEG’s and some didn’t contain any DEG’s which is further illustrated in 
Table 2 below. 
 
 

Chemical/cell line names Concentrations (µM) No of DEG’s 

HepaRG Doxorubicin  1 1157 

 0.2 101 

 0.04 6 

 0.08 18 

 0.0016 0 

 0.00032 0 

 6.4e.05 0 

HepG2 Doxorubicin 1 5021 

 0.2 1994 

 0.04 183 

 0.08 0 

 0.0016 0 

 0.00032 61 

 6.4e.05 0 

MCF-7 Doxorubicin 1 5388 

 0.2 727 

 0.04 9 

 0.08 0 

 0.0016 0 

 0.00032 0 

 6.4e.05 0 

HepaRG Niacinamide 8000 167 

 1600 2 

 320 0 

 64 0 

 12.8 0 

 2.56 0 

 0.512 7 

HepG2 Niacinamide 60000 3813 

 12000 151 

 2400 236 

 480 2 

 96 2 

 19.2 57 

 3.84 1 

MCF-7 Niacinamide 60000 7689 

 12000 1622 
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 2400 76 

 480 0 

 96 0 

 19.2 0 

 3.84 0 

 
Table 2. The number of DEGs in all cell lines dosed with doxorubicin and 
niacinamide. 
 
In general, across the cell lines, treatment with doxorubicin resulted in limited 
gene expression changes at concentrations below 0.04µM suggesting limited 
cellular effects at lower concentrations. Specifically, in HepaRG cells there 
were no significant gene changes (p-adj < 0.05) at concentrations under 
0.2µM. By 0.2µM, only 101 genes were found to be differentially expressed, 
which increased to 1157 genes at 1µM. In the HepG2 cells the overall gene 
expression response to doxorubicin was stronger with 5021 DEGs identified at 
the highest concentration of 1µM, decreasing to 1994 DEGs at 0.2µM and 183 
at 0.04µM with no significant gene changes (p-adj < 0.05) at concentrations 
under 0.08µM. DEGs were detected in MCF7 cells at 1µM and 0.2µM only 
with 5388 and 727 genes, respectively. No significant differential gene 
expression was observed below 0.2µM for MCF7 cells. 
 
Treatment with niacinamide resulted in limited gene expression changes at 
concentrations below 2400µM for HepG2 and MCF7 cells suggesting limited 
cellular effects at lower concentrations, whereas HepaRG cells shows limited 
gene expression changes at concentrations below 8000µM. Specifically, in 
HepG2 cells there were no significant gene changes (p-adj < 0.05) at 
concentrations under 2400µM. By 12000µM, only 151 genes were found to be 
differentially expressed, which increased to 3813 genes at 60000µM.  In the 
HepaRG cells, the overall gene expression response to niacinamide was 
significantly lower with 167 differentially expressed genes identified at the 
highest concentration of 8000µM. The lower number of genes in HepaRG cells 
could be due to the smaller top dose of 8000µM compared to 60000µM in 
HepG2 and MCF-7 cells. DEGs were detected in MCF7 cells at 60000µM, 
12000µM and 2400µM only with 7689, 1622 and 76 genes, respectively. No 
DEGs were observed below 2400µM for MCF7 cells. 
 
Estimation of PoDs from high-throughput transcriptomics data is an active 
area of research and there is considerable debate about the selection of 
which method or PoD definition is most appropriate for NGRA (Baltazar et al., 
2020; Farmahin et al., 2017; Harrill et al., 2019, 2021; Reynolds et al., 2020). 
To begin to explore the potential impact of selecting one approach over 
another, the transcriptomics data were analysed using 2 different methods, 
BMDExpress2 and IPA, however, IPA is used for pathway identification and 
functional analysis for individual doses only, whereas the BMDExpress2 BMDL 
PoDs represent the lowest concentration at which mechanistic changes occur, 
inferred by Reactome pathways, and an estimate of apical endpoints 
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(Farmahin et al., 2017). A comparison of the two approaches will not be 
conducted in this thesis, rather an interpretation of the results for each 
individual approach and if any pathway similarities can be identifed these will 
be discussed. 
 

3.1 Doxorubicin 

3.1.1 Quality Control 

Firstly, PCA analysis was conducted to make sure there is a separation 
between the samples and there were no outliers. For doxorubicin we 
observed clear separation for MCF7 and HepG2 cells while for HepaRGs we 
observed no clear separation between treated and untreated samples, but 
there was a clear separation between samples treated with different 
concentrations (see Figure 8). The ggplots (Figure 9) showed a significant 
separation between the different concentrations for the top 20 genes in all 
cell lines dosed with doxorubicin, good correlation was observed showing the 
normalised counts increasing with the increased concentrations. The higher 
the concentration, the larger the number of normalised counts for the top 20 
significantly differentiated genes. 
 
A    B          C 

   
 
Figure 10: PCA biplots that show the distribution of the samples using top 2 
principal components PC1 and PC2 – (A) HepaRG doxorubicin; (B) HepG2 
doxorubicin; (C) MCF-7 doxorubicin 
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     A     B                        C 

   
 
 
Figure 11: ggplot plots that depict the normalised count of top 20 DEGs 
coloured by concentration – (A) HepaRG doxorubicin; (B) HepG2 doxorubicin; 
(C) MCF-7 doxorubicin. 

MA plots were conducted for doxorubicin samples and we observed a large 
number of DEGs with HepaRG showing the largest number of DEGs, followed 
by HepG2 and then MCF7 cells (Figures 10). A p-value cut off of <0.1 was 
implemented which illustrated a MA plot with the most significantly 
expressed genes. The blue dots depict the differentially expressed genes with 
a p value of <0.1 while the grey dots represent genes with a p value >0.1. The 
line in the middle of the plot represents the threshold, with genes above this 
line being upregulated and genes below this line being downregulated. From 
these plots, HepaRG cells appear to have the most DEG’s, followed by HepG2 
cells with the least amount in MCF-7 cells. The increased number of blue dots 
means the more DEG’s are present in these cells, with similar proportion of up 
and down regulated genes for HepaRG and MCF-7; slightly more down 
regulated genes compared to up regulated for HepG2 cells. 

A           B   C 

   

Figure 12: MA plots that depict the distribution of significantly expressed 
genes in doxorubicin-treated samples with p-value cut off of <0.1  in (A) 
HepaRGs; (B) HepG2s; (C) MCF-7s.  The blue dots depict the DEGs with a p-
value of <0.1 while the grey dots represent genes with a p-value >0.1. The line 
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in the middle of the plot represents the threshold, with genes above this line 
being upregulated and genes below this line being downregulated. 

For doxorubicin samples, volcano plots were constructed as illustrated in 
Figures 11. showing HepaRG cells had a similar number of up regulated and 
down regulated genes (red spots), while HepG2 and MCF7 cells showed to 
have slightly increased numbers of up regulated genes compared to down 
regulated. The amount of significantly expressed genes are similar for all 3 cell 
lines. These volcano plots correlate to the MA plots illustrated above. 

A        B         C 

   
 
Figure 13: Volcano plots that depict the distribution of p-value and fold change 
for DEGs (A) HepaRG doxorubicin; (B) HepG2 doxorubicin; (C) MCF-7 
doxorubicin 
 
 

3.1.2 Benchmark dose analysis  
 
For a comprehensive statistical analysis of the dose response data, we used 
the BMDExpress 2 software (See Materials and Methods). The input for 
BMDExpress 2 was prepared from the pre-processed intensity and read count 
data after quality filtering as described in the methods section for 
BMDExpress2. Within BMDExpress2, probes were first filtered for a significant 
concentration response using a Williams Trend Test with threshold p-value 
<0.05 and minimum fold change of 1.5 across concentrations tested. The data 
were then modelled using the following seven parametric models: Linear, Poly 
2, Hill, Power, Exponential 3, 4, and 5, with recommended default 
configurations. For more details see Materials and Methods. 
 
Table 3 summarises the number of features passing the further pre-filtering 
with Williams trend test and Benchmark dose analysis within BMDExpress 2. 
During pre-filtering, the data is restricted to features that show some 
indication of a dose response trend, to limit the amount of data for the 
subsequent model fitting. Thus, the number/fraction of features passing pre-
filtering can give a first rough estimate how many transcripts are affected by 
the compound treatment in a dose-dependent manner. 
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Dataset name Number of 
features 

Passing 
Williams Trend 
test prefiltering 

Passing BMD 
analysis 

HepaRG doxorubicin 22537 718 498 

MCF-7 doxorubicin 22537 7793 5967 

HepG2 doxorubicin 22537 7983 5557 

Table 3.  Number of features passing the pre-filtering steps in BMDExpress for 
HepaRG, HepG2 and MCF-7 cells dosed with doxorubicin  

The features passing pre-filtering were subsequently used as input for the 
actual BMD analysis, where seven different model equations were fitted to 
the dose response data and the best model was selected using the Akaike 
information criterion (AIC) (Bevans, R, 2023) as described in the methods. 
From the fitted best model the so-called benchmark dose (BMD) can be 
obtained, which is the lowest concentration in the curve at which a critical 
effect size (in the present study set to 10% difference) is observed. 
Additionally, also a 95% confidence interval for the BMD value is computed 
and the lower (BMDL) and upper (BMDU) borders of this interval are 
returned. For the downstream analyses, we wanted to focus on features with 
reliable curve fits and meaningful BMD values and therefore filtered the BMD 
analysis output as described in the methods section.  

The overall distributions of model types among the best models vary between 
the datasets indicating that the actual shapes of the dose response curves 
might differ. Nevertheless, we also observe some common patterns. For 
example in most datasets a large fraction of the best models followed either 
Linear or the exponential (Exp2) equations followed by Power for HepaRG and 
MCF7 samples with HepG2 showing either Linear, Power followed by 
exponential (Exp4) as illustrated in Figures 12. 
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Figure 14: Distribution of equation types among best models (“BMDS Model 
Counts”). Pie charts show for each dataset the fraction of best models per 
equation type that pass the output filter criteria. (A) HepaRG doxorubicin (B) 
MCF-7 doxorubicin (C) HepG2 doxorubicin  
 
 
Within BMDExpress2, probes which passed the Williams Trends Test are 
mapped to Reactome pathways with pathway level BMDLs are calculated as 
detailed in the materials and method section.  
 

 

C 
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Figure 15:  Overlayed accumulation plots of the best model BMDL values for 
doxorubicin in HepaRG (green), HepG2 (blue) and MCF-7 (red) cells. 
Accumulation plots include all features passing output filter criteria. 

BMDExpress2 also allows generation of accumulation plots, which plot for 
each dataset the ranks of all features (that pass output filtering) sorted by 
increasing BMD/BMDL value, against the BMD/BMDL values. Thus, these 
accumulation plots allow global assessment of the sensitivity against the 
compound within a dataset and an overall comparison between datasets. 
Figure 13 illustrates the comparison accumulation plots for doxorubicin in 
HepaRG, HepG2 and MCF7 cells at the gene level. As per Figure 13, both 
HepG2s and MCF-7 show higher sensitivity to doxorubicin in comparison to 
HepaRG cells. This trend is similar to the results for the number of DEGs for 
the three cell lines before the pre-filtering procedure (Table 1).   
 
Appendix 3 Supplementary Tables 1-3 illustrate the six lowest probe BMDL 
individual curve fits for HepaRG, HepG2 and MCF-7 cells dosed with 
doxorubicin respectively. Each graph shows the BMDL, BDM and BMDU values 
along with the best curve fit for each gene.  
 
While the accumulation plots provide an overview of the overall sensitivity 
per dataset, it is also important to examine whether the affected features are 
the same between doses for each cell line dosed with increasing 
concentration of doxorubicin. To this end, we examined the overlap of (dose-
responsive) features between the different datasets as illustrated in Figure 14, 
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C 

 
 
Figure 14: Feature overlap between doxorubicin doses. UpSet plots visualize 
the feature overlap between the different concentrations for HepaRG, HepG2 
and MCF-7 datasets dosed with doxorubicin, considering all features imported 
into BMDExpress (A), HepaRG at 1, 0.2, 0.04 & 0.008µM (B) HepG2 at 1, 0.2, 
0.04 & 0.00032µM (C) MCF-7 at 1, 0.2, 0.04 & 0.08µM 
 
The upset plots were constructed using R Studio with R script detailed in 
Appendix 1, supplementary script2 and GitHub link: 
https://github.com/liztulum/MRes-thesis-
scripts/blob/main/IPA_gene_intersect%20upset.R 
 
For HepaRG and MCF-7 cells there was a small number of overlaps between 
the doses, with 90 and 30 features identified between 1 and 0.2µM for 
HepaRG and MCF-7 datasets respectively, with ≤ 3 features identified 
between the other doses.  
Hep G2 datasets identifed many overlaps between doses, with the largest 
overlap being 2282 features identified between 1 and 0.2µM, and 525 
features identified between 1 and 0.00032µM, showing that HepG2 datasets 
have larger feature overlaps than the other two cell lines.  
 
Appendix 4 Supplementary Tables 1-3 show the summaries of the top twenty 
most significantly enriched genes based on the Highest Fold Change Absolute 
for HepaRG, HepG2 and MCF-7 cells respectively dosed with doxorubicin at 
the gene level. 
 
 

3.1.3 Functional classification analysis - BMDExpress 
 
To examine a potential mechanism of action of doxorubicin we next identified 

biological functions or pathways that were affected by the compound. For this 

purpose, we performed a functional classification analysis in BMDExpress 2 as 

described in the methods section Functional classification analysis, searching 

Dose 

No. of Genes 

https://github.com/liztulum/MRes-thesis-scripts/blob/main/IPA_gene_intersect%20upset.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/IPA_gene_intersect%20upset.R
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for over-/under-represented Gene Ontology (GO) terms and REACTOME 

pathways among the identified compound-responsive features. To focus on 

reliably identified functional categories, we filtered the category analysis 

output based on the criteria as described in the methods section Functional 

classification analysis. First, we looked at the number of identified pathways 

across the 3 cell lines as represented by the accumulation plot (Figure 17). Not 

surprisingly, the accumulation plots correlate to the BMDExpress data at the 

gene level showing HepaRG identified a lower number of pathways compared 

to HepG2 and MCF-7 dosed with doxorubicin.  

 
 

 

Figure 17: Overlaid accumulation plots of median BMDL values per REACTOME 
pathway for doxorubicin in HepaRG (green), HepG2 (blue) & MCF7(red) cells. 
Accumulation plots show median BMDL values across all features associated 
to a REACTOME pathway that were obtained by category analyses on all 
features passing the output filter criteria. 

Then we looked at the top twenty most significantly enriched pathways based 

on the lowest BMDL values with P value <0.05 for HepaRG, HepG2 and MCF-7 

cells respectively dosed with doxorubicin at the pathway level (see Appendix 4 

Supplementary Tables 4-6). This approach revealed the top pathway that was 

perturbed at the lowest dose was TP53 Regulates Transcription of cell death 

genes pathway for HepaRG; G2/M DNA replication checkpoint for MCF-7 cells 

and APC-Ccd20 mediated degradation of Nek2A for Hep G2 cells.  

 
All the cell lines, HepaRG, HepG2 and MCF-7 met the recommendation 
(Farmahin et al., 2017) that at least 20 pathways were detected to apply the 
pathway-level tests (detailed in Materials and Methods section). Using this 
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selection, the observed lowest mean pathway-level BMDL ranged from 
0.0219µM to 0.1557µM for doxorubicin across cell lines as detailed in Table 
10. 
 
A 

Cell line/Chemical 

Average of 20 
lowest 
pathway 
BMDLs (PoD) 
µM 

Average BMDL 
with the lowest p 
value (PoD) µM 

Number of 
features 

HepaRG 
Doxorubicin 0.3065 

0.4854 
20 

Hep G2 
Doxorubicin 0.0954 

0.2308 
20 

MCF7 
Doxorubicin 0.0610 

0.2313 
20 

 
B 

Cell 
line/Chemi
cal 

Lowest mean 
pathway BMDL 

Number of 
features 

Lowest mean pathway at 
the lowest dose 

HepaRG 
Doxorubici
n 0.1557 20  

TP53 Regulates 
Transcription of Cell Death 
Genes 

Hep G2 
Doxorubici
n 0.0392 20 

APC-Cdc20 mediated 
degradation of Nek2A 

MCF7 
Doxorubici
n 0.0219 20 

G2/M DNA replication 
checkpoint 

 
Table 4. Summary of BMDL computation results for HepaRG, HepG2 & MCF-7 
cell lines dosed with doxorubicin. Tables summarize the values obtained with 
two different approaches for all features passing the previously described 
output filter criteria. A –Mean of top 20 lowest pathway BMDL and–average 
BMDL with the lowest Fischer Exact Two Tail (P Value); B – Lowest mean 
pathway BMDL with the most sensitive pathways. 
 
 
3.2 NIACINAMIDE 
 
3.2.1 Quality Control 
 
As described above for doxorubicin, PCR analysis was conducted to make sure 
there is a separation between the samples and there were no outliers. For 
niacinamide we observed no clear separation between treated and untreated 
samples, but there was a clear separation between different treated sample 
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concentrations (Figure 16) No outlying replicates could be identified in the 
replicate correlation analysis where it is normally expected replicate 
correlation should be over 85%. The ggplots (Figure 17) all showed a varied 
separation between the different concentrations for the top 20 genes in all 
cell lines dosed with niacinamide, with some genes showing good correlation 
with normalised counts increasing with the increased concentrations, 
however there was still a clear separation between the different treated 
samples. For some genes, the higher the concentration, the larger the number 
of normalised counts for the top 20 significantly differentiated genes, but for 
others it was the opposite. The ggplots correlate to the PCA biplots showing 
no clear separation between untreated and treated samples, which could be 
due to errors in the experimental analysis of these samples and beyond the 
scope of this thesis. 
 
     
A                                                  B                                              C 

   
 
Figure 18: PCA biplots that show the distribution of the samples using top 2 
principal components PC1 and PC2 – (A) HepaRG niacinamide; (B) HepG2 
niacinamide;  (C) MCF-7 niacinamide 
 
 
    A     B                                             C 
 

   
 
Figure 19: ggplots that depict the normalised count of top 20 DEGs – (A) 
HepaRG doxorubicin; (B) HepG2 doxorubicin; (C) MCF-7 doxorubicin. 
 



51 

 

MA plots were conducted for niacinamide samples and we observed a large 
number of differentially expressed genes with HepaRG showing the largest 
number of differentially expressed genes, followed by HepG2 and then MCF7 
cells (Figures 18). p value cut off of <0.1 was implemented which illustrated a 
MA plot with the most significantly expressed genes. The blue dots depict the 
differentially expressed genes with a p value of <0.1 while the grey dots 
represent genes with a p value >0.1. The line in the middle of the plot 
represents the threshold, with genes above this line being upregulated and 
genes below this line being downregulated. From these plots, they show that 
HepaRG cells appear to have the most DEG’s, followed by HepG2 cells with 
the least amount in MCF-7 cells. The increased number of blue dots means 
the more DEG’s are present in these cells, with similar proportion of up and 
down regulated genes for all cell lines. 

        A       B                                             C 

   
 

Figure 20: MA plots that depict the distribution of significantly expressed 
genes in niacinamide-treated samples with p-value cut off of <0.1  in (A) 
HepaRGs; (B) HepG2s; (C) MCF-7s.  The blue dots depict the DEGs with a p-
value of <0.1 while the grey dots represent genes with a p-value >0.1. The line 
in the middle of the plot represents the threshold, with genes above this line 
being upregulated and genes below this line being downregulated. 

For niacinamide samples, volcano plots were constructed as illustrated in 
Figures 19. showing HepG2 cells had a smaller number of up regulated and 
down regulated genes (red spots), while MCF7 and HepaRG cells showed to 
have slightly increased numbers of up regulated genes. There were more 
significantly expressed genes in HepaRG and MCF7 cells compared to HepG2 
cells. 
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       A                                                            B                                                          C 
 

  
 

 
Figure 21: Volcano plots that depict the distribution of p-value and fold change 
for DEGs – (A) HepaRG niacinamide; (B) HepG2 niacinamide; (C) MCF-7 
niacinamide 
 
 

3.2.2 Benchmark dose analysis  
 
For a comprehensive statistical analysis of the dose response data, we used 
the BMDExpress 2 software.  

The input for BMDExpress 2 was prepared from the pre-processed intensity 
and read count data after quality filtering as described in the methods section 
for BMDExpress 2. Within BMDExpress2, probes were first filtered for a 
significant concentration response using a Williams Trend Test with threshold 
p value <0.05 and minimum fold change of 1.5 across concentrations tested. 
The data were then modelled using the following seven parametric models 
(Linear, Poly 2, Hill, Power, Exponential 3, 4, and 5, with recommended 
default configurations). 

Table 5 summarizes the number of features passing the further pre-filtering 
with Williams trend test and Benchmark dose analysis within BMDExpress 2.  

During pre-filtering, the data is restricted to features that show some 
indication of a dose response trend, to limit the amount of data for the 
subsequent model fitting. Thus, the number/fraction of features passing pre-
filtering can give a first rough estimate how many transcripts are affected by 
the compound treatment in a dose-dependent manner. 

 

Dataset name Number of 
features 

Passing 
Williams Trend 
test prefiltering 

Passing BMD 
analysis 

HepaRG Niacinamide 22537 153 18 

MCF-7 Niacinamide 22537 6831 5671 
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HepG2 Niacinamide 22537 3082 1965 

Table 5.  NµMber of features passing the pre-filtering steps in BMDExpress for 
HepaRG, HepG2 and MCF-7 cells dosed with niacinamide 

The features passing pre-filtering were subsequently used as input for the 
actual BMD analysis, as described in the doxorubicin results section. 

The overall distributions of model types among the best models vary between 
the datasets indicating that the actual shapes of the dose response curves 
might differ. Nevertheless, we also observe some common patterns. For 
example in most datasets a large fraction of the best models followed either 
Linear or the exponential (Exp2) equations followed by Power for HepaRG, 
HepG2 and MCF7 samples as illustrated in Figures 20. 
 
 
 

 

 
 

A 
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Figure 22: Distribution of equation types among best models (“BMDS Model 
Counts”). Pie charts show for each dataset the fraction of best models per 
equation type that the output filter criteria. (A) HepaRG niacinamide (B) MCF-
7 niacinamide (C) HepG2 niacinamide 

B 

C 
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Within BMDExpress2, probes which passed the Williams Trends Test are 
mapped to Reactome pathways with pathway level BMDLs are calculated as 
detailed in the materials and method section. 
 
 

 

Figure 23: Overlaid accumulation plots of the best model BMDL values for 
niacinamide in HepaRG (green), HepG2 (blue) and MCF-7 (red) cells. 
Accumulation plots include all features passing output filter criteria. 

BMDExpress2 also allows generation of accumulation plots, which plot for 
each dataset the ranks of all features (that pass output filtering) sorted by 
increasing BMD/BMDL value, against the BMD/BMDL values. Thus, these 
accumulation plots allow global assessment of the sensitivity against the 
compound within a dataset and an overall comparison between datasets. 
Figure 21. illustrates the comparison accumulation plots for niacinamide in 
HepaRG, HepG2 and MCF7 cells at the gene level. As per Figure 21, both 
HepG2s and MCF-7 show higher sensitivity to niacinamide in comparison to 
HepaRG cells. This trend is similar to the results for the number of DEGs for 
the three cell lines before the pre-filtering procedure (Table 5).   

Appendix 4 Supplementary Figures 4-6 illustrate the six lowest probe BMDL 
individual curve fits for HepaRG, HepG2 and MCF-7 cells dosed with 
niacinamide respectively. Each graph shows the BMDL, BMD and BMDU 
values along with the best curve fit for each gene.  
 
While the accumulation plots provide an overview of the overall sensitivity 
per dataset, it is also important to examine whether the affected features are 
the same between doses for each cell line dosed with increasing 
concentration of niacinamide. To this end, we examined the overlap of (dose-
responsive) features between the different datasets as illustrated in Figure 22. 
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A 

 
 
 
B 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dose 

No of Genes 

Dose 

No of Genes 
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C 

  
 
 
 
Figure 24: Feature overlap between niacinamide doses. UpSet plots visualize 
the feature overlap between the different concentrations for HepaRG, HepG2 
and MCF-7 datasets dosed with niacinamide, considering all features imported 
into BMDExpress (A), HepaRG at 8000, 1600, 0.512µM (B) HepG2 at 60000, 
12000, 2400, 480, 96, 19.2, 3.84µM (C) MCF-7 at 60000, 12000, 2400, 480, 96, 
19.2, 3.84µM 
 
For HepaRG and MCF-7 cells there were a small number of overlaps between 
the doses, with 1 feature identified between 8000, 1600 and 0.512µM. 
MCF7 datasets identified several more overlaps between doses compared to 
HepaRG with the largest overlap being 1225 features identified between 
60000 and 12000µM and ≤22 features for the other dose overlaps. 
Hep G2 datasets identifed several more overlaps between doses compared to 
HepaRG, with the largest overlap being 101 features identified between 
60000 and 12000µM, 48 features identified between 60000 and 2400µM and 
≤20 features for the other dose overlaps. 
 
Appendix 5 Supplementary Tables 7-9 show the summaries of the top twenty 
most significantly enriched genes based on the Highest Fold Change Absolute 
for HepaRG, HepG2 and MCF-7 cells respectively dosed with niacinamide at 
the gene level. 
 
 

 
3.2.3 Functional classification analysis - BMDExpress 

 
 
To examine a potential mechanism of action of niacinamide, we next 

identified biological functions or pathways that were affected by the 

Dose 

No of Genes 
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compound. For this purpose, we performed a functional classification analysis 

in BMDExpress 2 as described in the methods section Functional classification 

analysis, searching for over-/under-represented Gene Ontology (GO) terms 

and REACTOME pathways among the identified compound-responsive 

features. To focus on reliably identified functional categories, we filtered the 

category analysis output based on the criteria as described in the methods 

section Functional classification analysis. First, we looked at the number of 

identified pathways across the 3 cell lines as represented by the accumulation 

plot (Figure 23). Not surprisingly, the accumulation plots correlate to the 

BMDExpress data at the gene level showing HepaRG identified a lower 

number of pathways compared to HepG2 and MCF-7 dosed with doxorubicin.  

 

 
 
Figure 25: Overlaid accumulation plots of median BMD values per REACTOME 
pathway for niacinamide in HepG2 (blue), HepaRG (green) & MCF7 (red) cells. 
Accumulation plots show median BMD values across all features associated to 
a REACTOME pathway that were obtained by category analyses on all features 
passing the output filter criteria. 
 
 
Then we looked at the top twenty most significantly enriched pathways based 

on the lowest BMDL values with P value <0.05 for HepaRG, HepG2 and MCF-7 

cells respectively dosed with niacinamide at the pathway level (see Appendix 

5 Supplementary Tables 10-12). This approach revealed the pathway that was 

perturbed at the lowest dose was Metabolism of lipids pathway for HepaRG; 

Condensation of Prophase Chromosomes for MCF-7 cells and The AIM2 

inflammasome for Hep G2 cells.  
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All the cell lines, HepaRG, HepG2 and MCF-7 cell lines met the 
recommendation (Farmahin et al., 2017) that at least 20 pathways were 
detected to apply the pathway-level tests (detailed in Materials and Methods 
section). Using this selection, the observed lowest mean pathway-level BMDL 
ranged from 2552.94µM to 5444.65µM for niacinamide across cell lines as 
detailed in Table 6 
 
A 

Cell line/Chemical 

Average of 20 
lowest 
pathway 
BMDLs (PoD) 
µM 

Average BMDL 
with the lowest p 
value (PoD) µM 

Number of 
features 

HepaRG 
Niacinamide 3492.19 

3492.19 
20 

Hep G2 
Niacinamide 14857.81 

24977.10 
20 

MCF7 
Niacinamide 8169.58 

24395.43 
20 

 
B 

Cell 
line/Chemic
al 

Lowest mean 
pathway BMDL 

Number of 
features 

Lowest mean pathway at 
the lowest dose 

HepaRG 
Niacinamide 2552.94 20  Metabolism of lipids 

Hep G2 
Niacinamide 5046.89 20 The AIM2 inflammasome 

MCF7 
Niacinamide 5444.65 20 

Condensation of 
Prophase Chromosomes 

 
Table 6. Summary of  BMDL computation results for HepaRG, HepG2 & MCF-7 
cell lines dosed with niacinamide. Tables summarize the values obtained with 
two different approaches for all features passing the previously described 
output filter criteria. A –Mean of top 20 lowest pathway BMDL and–average 
BMDL with the lowest Fischer Exact Two Tail (P Value); B – Lowest mean 
pathway BMDL with the most sensitive pathways. 
 
 

3.2.4  Points of Departure calculations 
 
PoDs were calculated for both chemicals using an R scripts generated by 
Unilever, SEAC (R script detailed in Appendix 4 Supplementary Script 4 and 
GitHub links: https://github.com/liztulum/MRes-thesis-
scripts/blob/main/calculate_pods.R and Appendix 4 Supplementary Script 5 
and GitHub links: https://github.com/liztulum/MRes-thesis-
scripts/blob/main/Calculate_PoDs_from%20_BMDExpress2.R) – doxorubicin 

https://github.com/liztulum/MRes-thesis-scripts/blob/main/calculate_pods.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/calculate_pods.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/Calculate_PoDs_from%20_BMDExpress2.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/Calculate_PoDs_from%20_BMDExpress2.R
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and niacinamide based on probe BMDLs. The script applies the methodology 
published in Farmahin et al. (2017) where BMDExpress2 in vitro PoDs were 
calculated in a way to correlate with the reference/benchmark PoD data set 
derived from in vivo studiesµMAll the cell lines, HepaRG, HepG2 and MCF-7 
cell lines met the recommendation (Farmahin et al., 2017) that at least 20 
genes were detected to apply the gene-level tests. Using this selection, the 
lowest observed gene-level PoD ranged from 0.0855µM to 0.2569 M for 
doxorubicin and 4132.79µM to 11150.48 µM for niacinamide across cell lines 
using the lowest average BMDL values with the highest fold change values. 
 
The points of departures for each cell line are defined as the point on a 
toxicological dose-response curve generally corresponding to an estimated 
low effect level or no effect level at which a biological response is first 
observed. The niacinamide results in Table 7 identify that the PoD’s for HepG2 
and MCF-7 are higher compared to HepaRG, meaning the no effect level for 
these latter cells is lower compared to the others. This would indicate that 
HepaRG cells response to niacinamide is more potent at lower concentrations 
compared to HepG2 and MCF7 cells. For doxorubicin, this is the opposite with 
HepaRG cells having a higher PoD compared to HepG2 and MCF-7 meaning 
the latter two cell lines indicate the response to doxorubicin is more potent at 
lower concentrations.  
 

Cell line/ 
Chemical 
 
 
 
 
 
 
 
 
 
 
  

Number 
of 
features 
 
 
 
 
 
 
 
 
 
 
 

Average 
BMDL 
with the 
highest 
fold 
change 
(PoD) 
µM 
 
 
 
 
 
  

Average 
BMDL 
within 
25th to 
75th 
percentil
e (PoD) 
µM 

Average 
of 20 
lowest 
pathway 
BMDLs 
(PoD) 
µM 
 
 
 
 
 
 
 

Average 
pathway 
BMDL 
with the 
lowest p 
value 
(PoD) 
µM 

Lowest 
mean 
pathway 
BMDL 
 
 
 
 
 
 
 
 
 
 

HepaRG 
niacinamide 20 4132.79 

 
 
5068.61 3492.19 

 
 
3492.19 2552.94 

Hep G2 
niacinamide 20 8210.79 

 
 
37242.64 14857.81 

 
 
24977.10 5046.89 

MCF7 
niacinamide 20 11150.48 

 
 
34934.10 8169.58 

 
 
24395.43 5444.65 

HepaRG 
doxorubicin 20 0.2569 

 
 0.3065 

 
 0.1557 
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0.6086 0.4854 

Hep G2 
doxorubicin 20 0.0313 

 
 
0.5365 0.0954 

 
 
0.2308 0.0392 

MCF7 
doxorubicin 20 0.0856 

 
 
0.5625 0.0610 

 
 
0.2313 0.0219 

Table 7 – Summary of the average BMDL values (PoD) derived using the 
approach published in Farmahin et al. (2017) for HepaRG, HepG2 and MCF-7 
cells dosed with doxorubicin and niacinamide including the lowest PoD for 
each cell line selected in bold. The average BMDL values at the gene level were 
calculated by averaging the lowest BMDL values with the highest fold change 
and the average of BMDLs within the 25th to 75th percentile. 

 

The selected PoDs were derived using BMDExpress2 for HepaRG, HepG2 and 

MCF-7 cells dosed with doxorubicin were 0.1557µM, 0.0313µM & 0.0219µM 

respectively. The selected PoD’s for HepaRG, HepG2 and MCF-7 cells dosed 

with niacinamide were 2552.94µM, 5046.89µM & 5444.65µM respectively.  
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CHAPTER 4 
 

 

4.  RESULTS FOR IPA 
 

4.1 INGENUITY PATHWAY ANALYSIS (IPA) - PATHWAY AND UPSTREAM 
REGULATOR ENRICHMENT ANALYSIS 
 
The lists of genes with BMDs were uploaded, along with the maximum fold 
change and Williams trend test p-values, into IPA to determine if there was 
enrichment of genes fitting models to specific canonical pathways and 
associated with regulation by specific upstream molecules. Visual Studio code 
(version 1.77.1) was conducted to convert the DESeq results to compatible 
results for IPA as detailed in Appendix 1, supplementary script 3 and GitHub 
link: https://github.com/liztulum/MRes-thesis-
scripts/blob/main/gene%20name%20change.py. This approach allowed the 
comparison of chemicals across all concentrations tested and perturbed gene 
sets associated with predicted upstream regulators and canonical pathways. 
For IPA analysis, it is recommended that datasets with DEGs between 100-
3000 only would be analysed, therefore not all concentrations for doxorubicin 
and niacinamide were analysed using IPA. HepaRG niacinamide dataset gave 
less than 100 DEGs and were not processed using IPA, various lower 
concentrations for both chemicals were also not processed using IPA. Table 8 
shows the cell line concentrations used in IPA. 
 

Cell line/Chemical Concentrations used in IPA (µM) 

HepaRG doxorubicin 1, 0.2 

Hep G2 doxorubicin 1, 0.2, 0.04, 0.00032 

MCF-7 doxorubicin 1, 0.2, 0.04 

HepaRG niacinamide - 

Hep G2 niacinamide 60000, 12000, 2400 

MCF-7 niacinamide 60000, 12000 

 
Table 8. Cell line concentrations used in IPA for doxorubicin and niacinamide 
 
 
 

4.1.1 Doxorubicin 
 
Canonical pathways for each cell line and concentration for doxorubicin are 
illustrated in Figure 26. The orange bars showed a positive z-score which 
means the pathways was activated and gave upregulated responses while the 
blue bars showed negative z-scores which means the pathways are inhibited 
and gave down regulated responses. The grey bars detailed no activity 
patterns were available and the white bars showed a z-score of 0 therefore no 
up or down regulation of pathways. 
 

https://github.com/liztulum/MRes-thesis-scripts/blob/main/gene%20name%20change.py
https://github.com/liztulum/MRes-thesis-scripts/blob/main/gene%20name%20change.py
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Figure 26: Top 20 canonical pathways identifed using IPA for doxorubicin for 
each concentration analysed – (A) MCF7 doxorubicin 1µM; (B) MCF7 
doxorubicin 0.2µM; (C) MCF7 doxorubicin 0.04µM 
 
 
For MCF-7 cells, the canonical pathways illustrate most pathways are inhibited 
rather than activated (Figure 226). For all concentrations, the Kinetochore 
Metaphase Signalling pathway, p53 signalling and the ATM signalling pathway 
were identifed to be inhibited the most in the MCF-7 cell line. The 
Kinetochore Metaphase Signalling pathway is an important checkpoint in the 
middle of mitosis during which the cell ensures that it is ready to divide, but as 
it is inhibited this pathway doesn’t occur due to the reaction with doxorubicin 
in the cell process (Navarro et al,. 2021). ATM & P53 Signalling relates to DNA 
damage repair and apoptosis, therefore cell death. Most of the inhibited 

A 

B 

C 
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pathways relate to cell cycle, DNA damage, apoptosis, cell death, while the 
activated pathways relate to immune response pathways as the cells try to 
recover from chemical treatment i.e. p53 signalling (Abuetabh et al,. 2022). 
This adheres to the nature of doxorubicin being a highly toxic chemical 
slowing or stopping the growth of cells during the cell cycle. 
 

 

 

 

A 

B 

C 
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Figure 27: Top 20 canonical pathways identifed using IPA for doxorubicin for 
each concentration analysed – (A) HepG2 doxorubicin 1µM; (B) HepG2 
doxorubicin 0.2µM; (C) HepG2 doxorubicin 0.04µM; (D) HepG2 doxorubicin 
0.00032µM 
 
For HepG2 cells, the canonical pathways illustrate most pathways are a 
mixture of inhibited and activated pathways (Figure 27). For all 
concentrations, the BER Signalling pathway, PTEN signalling and the ATM 
signalling pathway were identifed to be inhibited the most in HepG2cell line. 
ATM & PTEN Signalling relates to DNA damage repair and apoptosis, therefore 
cell death. The majority of the inhibited pathways relate to DNA damage, 
apoptosis, cell death, while the activated pathways i.e. p53 signalling relate 
plays an important role in the co-ordination of the cellular response to 
different types of stress such as DNA damage and hypoxia with the 
downstream signals leading to apoptosis and cell cycle arrest (Abuetabh et al,. 
2022). 
 

 

D 

A 
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Figure 28: Top 20 canonical pathways identifed using IPA for doxorubicin for 
each concentration analysed – (A) HepaRG doxorubicin 1µM; (B) HepaRG 
doxorubicin 0.2µM 
 
For HepaRG cells, the canonical pathways illustrate most pathways are 
activated (Figure 28). For all concentrations, LXR/RXR activation, p53 signaling 
and FXR/RXR activation were identifed to be activated the most for the 
HepaRG cell line which are metabolism related and in agreement with the 
metabolising capacity of HepaRG cells (Jiang et al,. 2022). PTEN Signaling was 
identified as inhibited which relates to DNA damage repair and apoptosis, 
therefore cell death. The majority of the inhibited pathways relate to DNA 
damage, apoptosis, cell death, while the activated pathways i.e. p53 signaling 
plays an important role in the co-ordination of the cellular response to 
different types of stress such as DNA damage and hypoxia with the 
downstream signals leading to apoptosis and cell cycle arrest (Abuetabh et al,. 
2022). 
 
Comparison heatmaps for doxorubicin at the various concentrations are 
illustrated in Figure 29. These heatmaps show whether the various cell lines 
have been activated (orange) or inhibited (blue) by the treatment of 
doxorubicin using the z-score. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B 
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A                                          B                                           C 

   
 
 
Figure 29: Comparison Heatmaps of the top 20 canonical pathways comparing 
doxorubicin for each concentration analysed – (A) HepaRG doxorubicin ( first 
colµMn = 0.2µM; second column 1µM ); (B) Hep G2 doxorubicin (first column = 
1µM; second column = 0.00032µM; third coumn = 0.04µM; fourth coumn = 
0.2µM); (C) MCF7 doxorubicin (first column = 0.04µM; second column 0.2µM; 
third column = 1µM) 
 
This approach allowed us to compare chemicals across all concentrations 
tested and revealed that the HepaRG, HepG2 and MCF-7 cell lines doses with 
doxorubicin perturbed gene sets associated with predicted upstream 
regulators and canonical pathways.  For HepaRG, the top 3 pathways showed 
activated pathways with LXR/RXR activation, DHCR24 Signaling Pathway and 
production of Nitric Oxide, with IL-12 Signaling and Production showing 
inhibition. The darker the colour the higher the z-score which means for Hep 
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G2 1µM sample gives more pathway activation/inhibition compared to 
0.2µM.  
HepG2 and MCF-7 samples show more activation pathways compared to 
inhibition, with the higher concentrations having a higher z-score which is to 
be expected, with Pulmonary Fibrosis Idiopathic pathway in both being 
activated and Kinetochore Metaphase Signaling being inhibited. Some of 
these pathways are very similar to what was seen in the BMDExpress results 
with HepaRG showing cellular response to different types of stress such as 
DNA damage and hypoxia with the downstream signals leading to apoptosis 
and cell cycle arrest i.e. p53 signaling (Navarro et al,. 2021). The Kinetochore 
Metaphase Signaling pathway is an important checkpoint in the middle of 
mitosis during which the cell ensures that it is ready to divide, but as it is 
inhibited in HepG2 and MCF7 samples this pathway doesn’t occur due to the 
reaction with doxorubicin in the cell process. The gene set enrichment 
analyses were remarkably similar across the concentrations for each cell line 
dosed with doxorubicin, which indicates a high degree of concordance in the 
transcriptional alterations that they induce. 
 
The upstream regulator analysis (URA) tool is a novel function in IPA which 
can, by analysing linkage to DEGs through coordinated expression, identify 
potential upstream regulators including transcription factors (TFs) and any 
gene or small molecule that has been observed experimentally to affect gene 
expression. 
 
A                  B                          C 
 

   

 
Figure 30: Comparison Heatmaps of the top 20 Upstream regulators 
comparing doxorubicin for each concentration for each chemical analysed – 
(A) HepaRG doxorubicin (first column = 0.2µM; second column 1µM); (B) Hep 
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G2 doxorubicin (first column = 1µM; second column = 0.00032µM; third 
column = 0.04µM; fourth column = 0.2µM); (C) MCF7 doxorubicin (first column 
= 0.04µM; second column 0.2µM; third column = 1µM) 
 

Interestingly, doxorubicin is actually one of the reference chemicals used for 
the upstream analysis in the IPA. In all the heatmaps illustrated in Figure 30, 
doxorubicin was indeed identifed as an activated upstream regulator which 
gives the results a weight of evidence that this chemical has an activation 
effect on all the cell lines. TP53 upstream regulator appears in all the cell lines, 
this might be because doxorubicin is an anti-cancer drug or simply because 
these are cancer cell lines. The TP53 gene encodes the p53 protein, which has 
been recognised as a cell cycle and apoptosis regulator. TP53 is the most 
frequently mutated gene in human cancers rendering the gene inactive and 
resulting in chemo-resistance to chemotherapies that both halt cell cycle 
progression and trigger apoptosis via the p53 pathways (McSweeney et al, 
2019).  

  

4.1.2 Niacinamide 
 
Canonical pathways for each cell line and concentration for niacinamide are 
illustrated in Figure 31. The orange bars showed a positive z-score which 
means the pathways was activated and gave upregulated responses while the 
blue bars showed negative z-scores which means the pathways are inhibited 
and gave down regulated responses. The grey bars detailed no activity 
patterns were available and the white bars showed a z-score of 0 therefore no 
up or down regulation of pathways. 
 

 

A 
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Figure 31: Top 20 canonical pathways identifed using IPA for niacinamide for 
each concentration analysed – (A) MCF7 Niac 60000µM; (B) MCF7 Niac 
12000µM  
 
For MCF-7 cells, the canonical pathways illustrate most pathways are 
activated rather than inhibited meaning they are upstream regulated 
pathways. For the highest concentration 60000µM, p53 signalling, induction 
of apoptosis by HIV1, protein kinase A signalling and the death receptor 
signalling were identified to be inhibited whereas sirtuin signalling pathway, 
sumoylation pathway and lymphotoxin B receptor were identified to be 
activated the most for the MCF-7 cell line. The induction of apoptosis by HIV1 
relates to apoptosis of the cells resulting in cell death, P53 Signalling relates to 
DNA damage repair and apoptosis, therefore cell death. Sumoylation pathway 
affects normal cells in various ways, and usually plays a negative role in 
regulating transcription factor activity by changing the interaction with DNA 
and chromatin to repress gene expression, this pathway has been activated 
and will affect DNA damage of the cells. Most of the inhibited pathways relate 
to DNA damage, apoptosis, cell death, while the activated pathways relate to 
immune response pathways as the cells try to recover from chemical 
treatment.  For the 12000µM concentration, different pathways were 
identified as activated or inhibited including pyrimidine deoxyribonucleotide 
de novo biosynthesis as well as other DNA/RNA related pathways. Even 
though niacinamide isn’t a potent or highly toxic chemical compared to 
doxorubicin, the treatment of cells with any chemical can cause the slowing or 
stopping of cell growth during the cell cycle resulting in changes to the cells. 
 
 

B 
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Figure 32: Top 20 canonical pathways identifed using IPA for niacinamide for 
each concentration analysed – (A)  HepG2 Niac 60000µM; (B) HepG2 Niac 
12000µM; (C) HepG2 Niac 2400µM  
 
For HepG2 cells, the canonical pathways illustrate the majority of pathways 
are a mixture of inhibited and activated meaning some pathways are 
downstream regulated pathways and some are upstream regulated pathways 
(Figure 32). For the highest concentration 60000µM, PXR/RXR activation, 
melatonin degradation I and pulmonary fibrosis idiopathic signalling pathway 
were identified to be activated, the LXR/RXR Signaling pathway, DHCR24 
Signalling pathway and the kinetochore metaphase signalling pathway were 
identified to be inhibited the most for the HepG2 cell line. LXR/RXR relates to 
the regulation of lipid metabolism and inflammation, while DHCR24 signalling 

A 

B 

C 
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pathway is involved in cholesterol biosynthesis and kinetochore metaphase 
signalling pathway is an important checkpoint in the middle of mitosis during 
which the cells divide. As all these pathways are inhibited, it means they are 
not able to occur resulting in issues with metabolism and the cell cycle. The 
majority of the activated pathways relate to DNA damage, apoptosis, cell 
death, while the activated pathways i.e. PXP/RXR signaling plays an important 
role in drug metabolism and excretion, it can also regulate several 
endogenous transport, lipid metabolism and cholesterol homeostasis. 
 

 
 
 
Figure 33: Top 20 canonical pathways identifed using IPA for niacinamide for 
HepaRG Niac 8000µM;  
 
For HepaRG cells, the canonical pathways illustrate most pathways are 
activated meaning these pathways are upstream regulated pathways (Figure 
33). For the one concentration, LXR/RXR activation, DHCR24 signaling 
pathway and FXR/RXR activation were identified to be activated the most for 
the HepaRG cell line. LPS/IL-1 mediated inhibition of RXR function was 
identified as inhibited which relates to lipid metabolism. Most of the activated 
pathways relate to metabolism processes in the cells. 
 
Comparison heatmaps for niacinamide at the various concentrations and cell 
lines are illustrated in Figures 34 and 35, these heatmaps show whether the 
various cell lines have been activated (orange) or inhibited (blue) by the 
treatment of niacinamide using the z-score. 
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A           B 
 

  

 
 
Figure 34: Comparison Heatmaps of the top 20 canonical pathways comparing 
niacinamide for each concentration analysed – (A) Hep G2 niacinamide (first 
colµMn = 2400µM; second column = 12000µM; third column = 60000µM); (B) 
MCF7 niacinamide (first column = 12000µM; second column = 60000µM 
 
 
This approach allowed us to compare chemicals across all concentrations 
tested and revealed that the, HepG2 and MCF-7 cell lines doses with 
niacinamide perturbed gene sets associated with predicted upstream 
regulators and canonical pathways.  For HepG2, the top 2 pathways showed 
inhibited pathways with LXR/RXR activation and DHCR24 Signaling Pathway 
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showing inhibition. The darker the colour the higher the z-score which means 
for Hep G2 1µM sample gives more pathway activation/inhibition compared 
to 0.2µM.  
MCF-7 samples show a mixture of activation and inhibition pathways, with the 
higher concentrations having a higher z-score which is to be expected, with 
Pulmonary Fibrosis Idiopathic pathway and GP6 signalling pathway both being 
activated and ATM signalling, pyrimidine deoxyribonucleotide de novo 
biosynthesis and pyrimidine ribonucleotide interconversion being inhibited. 
Some of these pathways are very similar to what was seen in the BMDExpress 
results with HepaRG relating to lipid metabolism. HepG2 and MCF7 samples, 
the Kinetochore Metaphase Signaling pathway is an important checkpoint in 
the middle of mitosis during which the cell ensures that it is ready to divide, 
but as it is inhibited this pathway doesn’t occur due to the reaction with 
niacinamide in the cell process. The gene set enrichment analyses were 
remarkably similar across the concentrations for each cell line dosed with 
niacinamide, indication activation and inhibitions of metabolism processes 
and DNA/RNA processes in the cells. 
 
A         B 
 

 
 

 
 
Figure 35: Comparison Heatmaps of the top 20 Upstream regulators 
comparing niacinamide for each concentration analysed – (A) Hep G2 
niacinamide (first column = 2400µM; second column = 12000µM; third column 
= 60000µM); (B) MCF7 niacinamide (first column = 12000µM; second column = 
60000µM) 
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For doxorubicin most upstream regulators related to cell cycle death and 
apoptosis, while niacinamide being a less toxic chemical showed less significant 
cell death related pathways or regulators, instead relating to immune and 
inflammatory responses. IPA has been a valuable tool for determination of 
relevant pathways and demonstrating mechanism of action of both chemicals. 
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CHAPTER 5 
 
 
5. DISCUSSION 
 
For NGRA, there is a continuing need to determine whether NAMs can be 
used to make robust safety decisions that are protective of human health. 
How this could be done has been demonstrated using a hypothetical case 
study in which coumarin was used as an ingredient in various consumer 
products (Baltazar et al., 2020) as well as within this thesis for doxorubicin and 
niacinamide using similar techniques. A key aspect of the coumarin case study 
was that a BER estimate (or margin of safety) obtained using NAMs (in vitro 
assays, PBK models, etc.) was combined with other toxicity data (eg, in silico 
predictions) to make safety decisions. It remains uncertain the degree the 
tools and approaches used in the coumarin case study could be utilised more 
generally to guarantee systemic safety for a wider range of chemical-exposure 
scenarios. Furthermore, in line with the principles of NGRA (Dent et al., 2018), 
a key purpose is to provide human health protection, rather than to be 
necessarily predictive of various adverse effects in animals. This is particularly 
important in the area of systemic toxicity, where a wide range of potential 
adverse outcomes must be covered, with many often not being fully 
characterised in relation to mechanism of action or adverse outcome 
pathways. 
 
Several hypothetical frameworks describing a tiered approach for NGRA have 
been published over the past few years (Andersenet al., 2019; Berggren et al., 
2017; Thomas et al., 2019), but NGRA examples of how to analyse, integrate 
and interpret all the data obtained from NAMs to inform a safety decision are 
still not common. Consequently, a milestone has been reached in the 
development and application of non-animal approaches to assess human 
safety, demonstrating for the first time that in chemico, in silico, and in vitro 
approaches can be combined to reach a consumer safety decision for systemic 
effects. However, this work demonstrates several key principles of NGRA 
(Dent et al., 2018a). The overall goal was to perform an exposure-led human 
safety assessment designed to prevent harm by applying robust and relevant 
methods in a hypothesis-driven way without animal testing. The philosophy 
behind this type of risk assessment aimed at preventing harm is based on the 
premise of “Protection not Prediction” (Kavlock et al., 2018; Thomas et al., 
2019). Such a safety assessment approach is possible because it does not 
attempt to replicate the results of the animal tests historically used in safety 
assessment. Instead, the hypothesis underpinning this type of NGRA is that if 
there is no bioactivity observed at consumer-relevant concentrations, there 
can be no adverse health effects. 
 
The analysis within this thesis continues the analysis conducted in the  
coumarin case study and further explores the bioactivity of doxorubicin and  
niacinamide.  
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The doses used for all the cell lines are reflective of what has been used in the 
literature (Middleton et al., 2022) by looking at the Cmax values associated 
with the various in use exposure scenarios of doxorubicin (Injac et al., 2008; 
Biganzoli et al., 2003; Rahman et al., 2007) and niacinamide (Cosmetic 
Ingredient Review Expert Panel., 2005; EFSA NDA Panel., 2014; EFSA Panel on 
Nutrition, Novel Foods and Food Allergens., 2022) in the treatment of patients 
as detailed in Table 1 of this thesis. The Cmax values for both chemicals are in 
the range of doses used for the experimental analysis conducted which covers 
the dose ranges seen for doxorubicin and niacinamide.  
 
In particular, we have applied the PoD analysis to the dose response HTTr and  
carried out biological interpretation of the identified DEGs. By looking at  
doxorubicin and niacinamide, this has enabled the interpretation of these  
chemicals using developed methodologies for future analysis of potential  
chemicals for NGRA. The objectives outlined in the introduction section have  
been completed by using R Studio to align, quantify and conduct differential  
expression analysis using DESeq2 for all chemical concentrations and cell  
lines. Furthermore, BMDExpress has been successfully conducted to derive  
PoD's for doxorubicin and niacinamide as well as pathway investigation  
alongside IPA to determine a putative mechanism of action for the chemicals  
of interest. 
 
HTTr is usually used in NGRA as a non-targeted approach for characterising 
biological responses potentially not covered by the other tools (Baltazar et al., 
2020). In this thesis, we have applied different approaches for aggregating 
gene and pathway-level BMDs from HTTr based on previous work by 
Farmahin and colleagues (Baltazar et al., 2020). The results are combined in a 
weight of evidence to provide an overall understanding of transcriptional 
responses. Farmahin et al. (2017) indicated that summarizing BMD modelling 
in different ways has a comparatively small impact on the PoD, a similar result 
was seen in this study across all cell lines.  
 
There is still significant discussion of what approaches to use for deriving a 
PoD at both gene and pathway level using BMDExpress, and therefore 
multiple PoDs were derived using several published methods (Farmahin et al., 
2017) that have been shown to correlate closely to BMDL derived from 
equivalent treated samples using standard pathology studies. These included 
the mean of the 20 pathways with the lowest p value, or the 20 pathways 
with the lowest transcriptional BMDs and finally the lowest pathway BMDL 
that meets the significant enrichment criteria. At the gene level this included 
both the mean BMDL of 20 genes with largest fold change and the mean BMD 
of genes between 25th and 75th percentile. All the cell lines, HepaRG, HepG2 
and MCF-7 cell lines met the recommendation (Farmahin et al., 2017) that at 
least 20 genes were detected to apply the gene-level tests. We have shown in 
this thesis that no matter whether we used gene level-derived PoDs or 
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pathway level-derived PoDs, the relative potency of doxorubicin was higher 
than that of niacinamide.  
 
Niacinamide, an amide of vitamin B3, is a hydrophilic endogenous substance. 
Given a sufficient bioavailability, niacinamide has antipruritic, antimicrobial, 
vasoactive, photo-protective, sebostatic and lightening effects depending on 
its concentration. Within a complex metabolic system niacinamide controls 
the NFκB-mediated transcription of signalling molecules by inhibiting the 
nuclear poly (ADP-ribose) polymerase-1 (PARP-1) (Wohlrab et al). Niacinamide 
is a well-tolerated and safe substance often used in cosmetics (Wohlrab et 
al).  
Niacinamide plays a significant role in DNA repair, maintenance of genomic 
stability and cellular responses to injury including inflammation and apoptosis 
(cell death) (Boo et al,. 2021). Our PoD analysis shows that niacinamide is 
toxic to the cell lines in this thesis only at relatively high concentrations that 
are well above the use scenarios of niacinamide.  At high concentrations 
niacinamide elicits a broad cellular stress response and affects primarily the 
metabolism processes and DNA/RNA related processes. All these related 
genes gave a PoD closer to the highest concentration for HepaRG cells and 
closer to the second highest concentration for HepG2 and MCF-7 cells, this 
means niacinamide affects the cells at the higher concentrations depicting this 
chemical is less toxic to cells compared to doxorubicin. Further work is 
required to understand the advantages of this analysis for human health 
protection due to the added uncertainty in modelling the compound’s 
concentration in vitro following repeat dosing. For all the top pathways for 
HepaRG cells relates to metabolism processes i.e. Regulation of lipid 
metabolism by PPARalpha and Metabolism. The top pathways for MCF-7 cells 
relates to DNA/RNA related processes i.e. cleavage of the damaged 
pyrimidine and DNA methylation which could be due to the nature of the cell 
line itself as it is a cancer cell line (Comşa et al, 2015). For HepG2 cells, the top 
pathways identifed related to more generic cellular processes rather than any 
specific processes. 
 
For all the top 20 pathways for HepaRG cells, it was identified that these 
pathways also related to predominately metabolism processes i.e. 
metabolism of lipids, metabolism; while the top 20 pathways for MCF-7 cell 
identifed as predominately DNA/RNA related processes i.e. viral mRNA 
Translation, RNA Polymerise II transcription.  
Recent advances have provided physiological mechanisms of action of 
niacinamide on lipid metabolism and atherosclerosis (Kamanna et al) as related 
to the top pathway results in BMDExpress for HepaRG cells. Inflammatory 
benefits using niacinamide have been documented in the literature (Fivenson 
et al., Gehring et al) which relates to the top pathway for HepG2 cells. DNA 
related processes including the top pathway for MCF-7 cells – condensation of 
phosphate chromosomes were identified. 

https://pubmed.ncbi.nlm.nih.gov/?term=Com%C5%9Fa+%C5%9E&cauthor_id=26026074
https://pubmed.ncbi.nlm.nih.gov/?term=Kamanna+VS&cauthor_id=23619367
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Doxorubicin is an antibiotic derived from the Streptomyces 
peucetius bacterium. It has had wide use as a chemotherapeutic agent since 
the 1960s. Doxorubicin is part of the anthracycline group of 
chemotherapeutic agents; other anthracyclines include daunorubicin, 
idarubicin, and epirubicin. Commonly, doxorubicin is an agent used in the 
treatment of solid tumors in adult and pediatric patients. Doxorubicin may be 
used to treat soft tissue and bone sarcomas and cancers of the breast, ovary, 
bladder, and thyroid. It is also used to treat acute lymphoblastic leukemia, 
acute myeloblastic leukemia, Hodgkin lymphoma, and small cell lung cancer 
(Yu et al,. 2019). The primary mechanism of action of doxorubicin involves the 
drug’s ability to intercalate within DNA base pairs, causing breakage of DNA 
strands and inhibition of both DNA and RNA synthesis. Doxorubicin inhibits 
the enzyme topoisomerase II, causing DNA damage and induction of 
apoptosis (Sritharan et al,. 2021). Doxorubicin induces DNA strand breaks and 
triggers the activation of p53 to initiate DNA damage responses. Activation of 
p53 induces increased transcription of genes involved in the extrinsic and 
intrinsic apoptotic pathway as illustrated in this thesis. 

 Both PoD and functional analyses carried out in this thesis indicate that 
doxorubicin is a strongly toxic chemical. It is found that doxorubicin elicits a 
broad cellular stress response in HepG2 cells, and affects primarily the 
metabolism processes for HepaRG cells, and DNA/RNA related processes for 
MCF-7 cells. All these related genes gave a PoD closer to the second highest 
concentration for HepaRG cells and closer to the lower concentrations for 
HepG2 and MCF-7 cells, meaning doxorubicin affects the cells at the lower 
concentrations depicting this chemical is extremely toxic to cells compared to 
niacinamide.  

The top pathway for HepaRG cells relates to cell death processes which could 
be due to the potency of doxorubicin on cells i.e. programmed cell death and 
apoptosis (McSweeney et all, 2019). The top pathway for MCF-7 cell relates to 
cell cycle and DNA replication in particular i.e. unwinding of DNA, DNA strand 
elongation, DNA methylation and this could be due to the nature of the cell 
line itself as it is a cancer cell line (Comşa et al., 2015). Similarly, for HepG2 
cells, the top pathway refers to the cell cycle and in particular to the cell cycle-
regulated protein kinase Nek2A (Faragher et al., 2003).  
 
Furthermore, we have identified biological processes related to metabolism 
and immune response as more frequent among the top 20 pathways for 
HepaRG cells e.g. interferon signalling, metabolism of lipids, cytokine signaling 
in immune system (see Table 4). For MCF-7 and HepG2 cells we identified 
DNA/RNA related processes as the most common among the top 20 pathways 
e.g. metabolism of RNA, GTP hydrolysis and joining of the 60s ribosomal 
subunit and diseases of DNA repair. This difference between HepaRGs and 
MCF-7/HepG2s is not surprising, considering that HepaRG cells are more 
metabolically competent in comparison to MCF-7 and HepG2 cells 
(Duivenvoorde et al., 2021). 

https://www.nature.com/articles/s41420-019-0182-6#auth-K__Melodi-McSweeney-Aff1
https://pubmed.ncbi.nlm.nih.gov/?term=Com%C5%9Fa+%C5%9E&cauthor_id=26026074
https://pubmed.ncbi.nlm.nih.gov/?term=Faragher%20AJ%5BAuthor%5D
https://www.nature.com/articles/s41598-021-89710-6#auth-Loes_P__M_-Duivenvoorde-Aff1
https://www.nature.com/articles/s41598-021-89710-6#auth-Loes_P__M_-Duivenvoorde-Aff1
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For HepG2 cell lines stabilization of endogenous p53 by doxorubicin, decreases 
NEK2 expression (Fang et al) and treatment with doxorubicin reduces HepG2 
cell viability through initiating cell apoptosis and strong G2/M phase cell cycle 
arrest (Fan C et al). For HepaRG cells a similar top pathway was identifed 
relating to P53 and cell death as TP53 regulates Transcription of cell death 
genes with TP53 being the gene encoding p53 (McSweeney et al) and for MCF-
7 cells modulation of G2/M phase arrest induced by doxorubicin is depend on 
the characteristic of breast cancer cells especially the p53 status (Junedi et al), 
which is supported by the pathway results generated from BMDExpress and 
IPA. Literature evidence states that the functionally of the different cell lines 
dosed with doxorubicin and niacinamide relate to the results produced in this 
thesis. 

The significant up- and down-regulated gene lists for the two compounds also 
recovered enriched ontology pathway elements that were associated with 
aspects of the toxic response and MOA seen in vivo with these compounds. 
However, pathway elements associated with cell-cycle processes, mitotic 
processes, DNA damage, and some indirect indications of cell stress response 
and apoptosis signaling dominated. 
 
Full interpretation using IPA of altered canonical pathways is beyond the scope 
of this study but serves to group the cell lines dosed with doxorubicin and 
niacinamide based on possible mode of action. In summary, each cell line dosed 
with doxorubicin and niacinamide perturbed similar canonical pathways and 
increased the z-score based on concentration from high concentrations 
illustrating higher z-scores for activation (orange) or lower z-scores for 
inhibition (blue) (Figures 26-28 and Figures 31-33). As with BMDExpress, 
various pathways were identified mainly relating to DNA/RNA process, 
metabolism, DNA damage for both cell lines and for doxorubicin more 
dominant cell death (apoptosis) related pathways. Upstream regulator analysis 
provides additional support to the weight of evidence and refers to any 
molecule that can affect the expression, transcription or phosphorylation of 
another molecule. For doxorubicin most upstream regulators related to cell 
cycle death and apoptosis, while niacinamide being a less toxic chemical 
showed less significant cell death related pathways or regulators, instead 
relating to immune and inflammatory responses (Figures 30 and 35). 

Both BMDExpress and IPA are very different software packages with 
BMDExpress being used for gene and pathway level analysis, deriving PoDs and 
pathway related analysis, while IPA is used solely for pathway interpretation 
and determining MoA. The combination of using BMDExpress and IPA has 
demonstrated more robust data can be generated for gene and pathways 
interpretation. More investigations are required using both software to depict 
correlations between them as well as considering individual results. This thesis 
has explained how BMDExpress and IPA are conducted separately and the 
difference/correlations are not the aim of this thesis. 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/apoptosis
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Finally, this thesis shows that the majority of biological processes that were 
upregulated or downregulated by the chemicals are very much related to the 
underlying biology of the cancer cell lines used here. This leaves open the 
question of choice when selecting an immortalized cancer cell line and what 
constitutes a meaningful surrogate for in vivo response of compounds whose 
cellular affects related to potential adverse outcomes are known to target 
specific organs or where metabolic competency of the in vitro system is 
insufficient to serve as a surrogate for in vivo response. Further efforts will be 
needed to better inform choice of cell lines, or design assays with greater 
physiological relevance when designing high throughput chemical screening 
assays. 

In conclusion, this thesis has demonstrated that NAMs can provide robust  
insights to address a gap of knowledge within Unilever by conducting  
biological interpretation of exposure to chemicals at different concentrations  
and the general use of in vitro methods for non-animal risk assessments. The  
continuous development and application of NAMs in a decision-making  
context will participate in fulfilling the drive to assure safety of novel  
ingredients without the need for any animal testing, but confidence in NAMs  
will only occur with extensive learning by conducting and sharing more case  
studies. 
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6.  APPENDICES 
 
Appendix 1 

Supplementary Script 1 - DESeq2 script using R Studio (Github reference link: 
https://github.com/liztulum/MRes-thesis-
scripts/blob/main/DESeq2%20MRes%20script.R). 

#R script - DESeq2 MRes script - Sample data sets for HepG2, HepaRG and MCF7 cell line dosed with 
Doxorubicin and Niacinamide 

#Datasets analysed using DESeq2. 

#load libraries relevant to this analysis 

library(DESeq2) 

library(tidyverse) 

library(dplyr) 

library(EnhancedVolcano) 

library(org.Hs.eg.db) 

library(ggplot2) 

library(plyr) 

#read the csv files containing the sample data for each cell line and chemical 

counts <- read.csv("HepG2_Doxorubicin_HCl_counts.csv", row.name=1) 

head(counts) 

counts2 <- read.csv("HepG2_Niacinamide_counts.csv", row.name=1) 

head(counts2) 

counts3 <- read.csv("HepaRG_Niacinamide_counts.csv", row.name=1) 

head(counts3) 

counts4 <- read.csv("HepaRG_Doxorubicin_HCl_counts.csv", row.name=1) 

head(counts4) 

counts5 <- read.csv("MCF-7_Niacinamide_counts.csv", row.name=1) 

head(counts5) 

 

counts6 <- read.csv("MCF-7_Doxorubicin_HCl_counts.csv", row.name=1) 

https://github.com/liztulum/MRes-thesis-scripts/blob/main/DESeq2%20MRes%20script.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/DESeq2%20MRes%20script.R
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head(counts6) 

colSums(counts) 

#create list of all files to input into a loop 

files <- list.files(path = ".", pattern = "_counts.csv", full.names = T) 

files 

#loop created to analyse all the cell lines and chemicals individually 

for(i in (files)){ 

  print(i) 

  counts_file <- i 

  meta_files <- gsub("_counts.csv", "_metadata.csv", i) # create metadata csv files from the counts data 
files 

  counts <- read.csv(counts_file, row.names = 1) 

  SampleTable <- read.csv(meta_files, header = T) 

  SampleTable$CONCENTRATION <- as.factor(SampleTable$CONCENTRATION) 

  dds <- DESeqDataSetFromMatrix(countData = counts, 

                                colData = SampleTable, 

                                design = ~ VESSEL_ID + CONCENTRATION) 

  dds$condition <- relevel(dds$CONCENTRATION, ref = "0") 

  dds <- estimateSizeFactors(dds) 

  sizeFactors(dds) 

   dds <- DESeq(dds) 

  res <- results(dds) 

  comparisons <- resultsNames(dds) 

  normalisedCounts <- counts(dds, normalized = TRUE) 

    for (j in comparisons[6:12]) { 

      res <- results(dds, name = j) 

      padj.cutoff <- 0.05 

      lfc.cutoff <- 0.58 

      res_table <- res %>% 
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        data.frame() %>% 

        rownames_to_column(var="gene") %>% 

        as_tibble() #convert the results table into a tibble 

      sigOE <- res_table %>% 

        filter(padj < padj.cutoff & abs(log2FoldChange) > lfc.cutoff) 

      #write.table(sigOE, file = paste0(j, ".txt", i)) #need to add cell line & chemical? 

      write.table(sigOE, file = paste0(gsub("_counts.csv", "_DESeq", i), "_", j, ".txt"), col.names = T, 
row.names = T, quote = F, sep = "\t") 

    } 

  res_norm <- lfcShrink(dds=dds, coef=2, type="normal") 

  save(res_norm, file = "res_norm.RData") 

  png(gsub("_counts.csv", "_MA.png", i)) 

  ma <- plotMA(res_norm) 

  print(ma) 

  dev.off() 

    png(gsub("_counts.csv", "_MA2.png", i)) 

  ma2 <- plotMA(res_norm, alpha = 0.05) 

  print(ma) 

  dev.off() 

    plot_EnhancedVolcano <- EnhancedVolcano(res_norm, 

                                          lab = rownames(res), 

                                          x = "log2FoldChange", 

                                          y = "pvalue") 

   ggsave(plot_EnhancedVolcano, filename = gsub("_counts.csv", "_EV.png", i)) 

    normalised_counts <- normalisedCounts %>% 

  data.frame() %>% 

     rownames_to_column(var="gene") %>% 

     as_tibble() 

     top20_sigOE_genes <- res_table %>% 
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     arrange(padj) %>% 

     pull(gene) %>% 

     head(n=20) 

     top20_sigOE_norm <- normalised_counts %>% 

     filter(gene %in% top20_sigOE_genes) 

     pivot_top20_sigOE <- top20_sigOE_norm %>% 

     pivot_longer(!gene, names_to = "samplename", values_to = "normalised")  

   pivot_top20_sigOE_join <- pivot_top20_sigOE %>% 

     left_join(dplyr::select(SampleTable, X, CONCENTRATION), by = c("samplename" = "X")) 

   ggplot <- ggplot(pivot_top20_sigOE_join,aes(x = gene, y = normalised, color = CONCENTRATION)) + 

     geom_point() + 

     scale_y_log10() + 

     xlab("genes") + 

     ylab("normalised_counts") + 

     ggtitle("Top 20 Significant DE Genes") + 

     theme_bw() + 

     theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 

     theme(plot.title = element_text(hjust = 0.5)) 

      ggsave(ggplot, filename = gsub("_counts.csv", "_ggplot.png", i)) 

    rld <- vst(dds, blind=TRUE) 

  pca <- plotPCA(rld, intgroup="CONCENTRATION")  

  ggsave(pca, filename = gsub("_counts.csv", "_pca.png", i)) 

  vst_write <- assay(vst(dds, blind=FALSE)) 

  write.csv(as.data.frame(vst_write), file=gsub("_counts.csv", "_results.csv", i)) 

   vst_write_copy <- vst_write # COPY SO WE DONT RUIN DATA 

  colnames(vst_write_copy) <- NULL # Getting rid of colnames so we can append to data 

  cols <- colnames(vst_write) # pulling sample ids 

  vst_dose <- SampleTable[SampleTable$X %in% colnames(vst_write),"CONCENTRATION" ] # ordering 
the metadata in the order our sampleid in the normalised data then pulling concentration out 
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  vst_dose_dt <- data.frame(matrix(ncol=175, nrow=1)) # making the dose dataframe ready to rbind 

  vst_dose_dt[1, ] <- vst_dose # setting the first row to doses 

  bmd_input <- rbind(vst_dose_dt, data.frame(vst_write_copy)) # combining dose row with gene 
normalised data 

  rownames(bmd_input)[1] <- "Dose" # getting dose in the rownames 

  toprow <- data.frame(matrix(ncol = 175, nrow=1))  # new data  frame to get the 'SampleID' bit in 

  toprow[1, ] <- cols # set first row to sample ID. This will be our actual colnames name but we dont set it 
here 

  rownames(toprow) <- "SampleID" # corner value 

  final_bmd_input <- rbind(toprow, bmd_input) 

  write.table(final_bmd_input, file = gsub("_counts.csv", "_BMDInput.txt", i), col.names = F, row.names 
=T, quote = F, sep = "\t") # write withour colnames as these are current X1. X2 

  print(paste(i, "finished")) 

} 

 

Supplementary Script 2: Generation of Upset Plots using R Studio (Github 
reference link: https://github.com/liztulum/MRes-thesis-
scripts/blob/main/IPA_gene_intersect%20upset.Rlibrary(glue) 

library(purrr) 

library(dplyr) 

library(UpSetR) 

upset_gene_intersect <- function(cell_line,chemical, conc1, conc2, conc3, conc4, conc5, conc6, conc7){ 

   # check if there are 6 or 7 concentrations available and make list of all the concentrations 

    tsv_files <- c(file.path( 
glue::glue("{cell_line}_{chemical}_DESeq_CONCENTRATION_{conc1}_vs_0.txt")), 

                   file.path( glue::glue("{cell_line}_{chemical}_DESeq_CONCENTRATION_{conc2}_vs_0.txt")), 

                   file.path( glue::glue("{cell_line}_{chemical}_DESeq_CONCENTRATION_{conc3}_vs_0.txt")), 

                   file.path( glue::glue("{cell_line}_{chemical}_DESeq_CONCENTRATION_{conc4}_vs_0.txt")), 

                   file.path( glue::glue("{cell_line}_{chemical}_DESeq_CONCENTRATION_{conc5}_vs_0.txt")), 

                   file.path( glue::glue("{cell_line}_{chemical}_DESeq_CONCENTRATION_{conc6}_vs_0.txt")), 

                   file.path( glue::glue("{cell_line}_{chemical}_DESeq_CONCENTRATION_{conc7}_vs_0.txt"))) 

https://github.com/liztulum/MRes-thesis-scripts/blob/main/IPA_gene_intersect%20upset.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/IPA_gene_intersect%20upset.R
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    conc_list <- c(conc1,conc2, conc3, conc4, conc5, conc6, conc7) 

  # make a list of dataframes containing the data from the concentration with 1 or more degs 

  dfs <- list() 

  for (i in 1:length(tsv_files)){ 

    num_rows <- nrow(read.csv(tsv_files[i], sep = "\t")) 

    conc <- toString(conc_list[i]) 

    if (num_rows > 0) { 

    dfs[[conc]] <- read.csv(tsv_files[i], sep = "\t") 

    } 

  } 

  # check how many of the concentrations have degs, based on the number of data frames in the list 

  if (length(dfs) == 7){ 

    #combine data frames, given all the concentrations have 1 or more degs 

    combined <- purrr::reduce(list(data.frame(gene = dfs[[1]]$gene, conc1 = 1), 

                                   data.frame(gene = dfs[[2]]$gene, conc2 = 1), 

                                   data.frame(gene = dfs[[3]]$gene, conc3 = 1), 

                                   data.frame(gene = dfs[[4]]$gene, conc4 = 1), 

                                   data.frame(gene = dfs[[5]]$gene, conc5 = 1), 

                                   data.frame(gene = dfs[[6]]$gene, conc6 = 1), 

                                   data.frame(gene = dfs[[7]]$gene, conc7 = 1)), full_join) 

    combined[is.na(combined)] <- 0 

    # give columns more meaningful names 

    names(combined) <- c("genes", 

                         names(dfs)[1], 

                         names(dfs)[2], 

                         names(dfs)[3], 

                         names(dfs)[4], 

                         names(dfs)[5], 
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                         names(dfs)[6], 

                         names(dfs)[7]) 

  } else if (length(dfs) == 6){ 

    #combine data frames, given 6 of the concentrations have 1 or more degs 

    combined <- purrr::reduce(list(data.frame(gene = dfs[[1]]$gene, conc1 = 1), 

                                   data.frame(gene = dfs[[2]]$gene, conc2 = 1), 

                                   data.frame(gene = dfs[[3]]$gene, conc3 = 1), 

                                   data.frame(gene = dfs[[4]]$gene, conc4 = 1), 

                                   data.frame(gene = dfs[[5]]$gene, conc5 = 1), 

                                   data.frame(gene = dfs[[6]]$gene, conc6 = 1)), full_join) 

    combined[is.na(combined)] <- 0 

    # give columns more meaningful names 

    names(combined) <- c("genes", 

                         names(dfs)[1], 

                         names(dfs)[2], 

                         names(dfs)[3], 

                         names(dfs)[4], 

                         names(dfs)[5], 

                         names(dfs)[6]) 

  } else if (length(dfs) == 5){ 

    #combine data frames, given 5 of the concentrations have 1 or more degs 

    combined <- purrr::reduce(list(data.frame(gene = dfs[[1]]$Probe, conc1 = 1), 

                                   data.frame(gene = dfs[[2]]$Probe, conc2 = 1), 

                                   data.frame(gene = dfs[[3]]$Probe, conc3 = 1), 

                                   data.frame(gene = dfs[[4]]$Probe, conc4 = 1), 

                                   data.frame(gene = dfs[[5]]$Probe, conc5 = 1)), full_join) 

    combined[is.na(combined)] <- 0 
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    # give columns more meaningful names 

    names(combined) <- c("genes", 

                         names(dfs)[1], 

                         names(dfs)[2], 

                         names(dfs)[3], 

                         names(dfs)[4], 

                         names(dfs)[5]) 

  } else if (length(dfs) == 4){ 

    #combine data frames, given 4 of the concentrations have 1 or more degs 

    combined <- purrr::reduce(list(data.frame(gene = dfs[[1]]$gene, conc1 = 1), 

                                   data.frame(gene = dfs[[2]]$gene, conc2 = 1), 

                                   data.frame(gene = dfs[[3]]$gene, conc3 = 1), 

                                   data.frame(gene = dfs[[4]]$gene, conc4 = 1)), full_join) 

    combined[is.na(combined)] <- 0 

    # give columns more meaningful names 

    names(combined) <- c("genes", 

                         names(dfs)[1], 

                         names(dfs)[2], 

                         names(dfs)[3], 

                         names(dfs)[4]) 

  } else if (length(dfs) == 3){ 

    #combine data frames, given 3 of the concentrations have 1 or more degs 

    combined <- purrr::reduce(list(data.frame(gene = dfs[[1]]$gene, conc1 = 1), 

                                   data.frame(gene = dfs[[2]]$gene, conc2 = 1), 

                                   data.frame(gene = dfs[[3]]$gene, conc3 = 1)), full_join) 

    combined[is.na(combined)] <- 0 

    # give columns more meaningful names 

    names(combined) <- c("genes", 
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                         names(dfs)[1], 

                         names(dfs)[2], 

                         names(dfs)[3]) 

  } else if (length(dfs) == 2){ 

    #combine data frames, given 2 of the concentrations have 1 or more degs 

    combined <- purrr::reduce(list(data.frame(gene = dfs[[1]]$gene, conc1 = 1), 

                                   data.frame(gene = dfs[[2]]$gene, conc2 = 1)), full_join) 

    combined[is.na(combined)] <- 0 

    # give columns more meaningful names 

    names(combined) <- c("genes", 

                         names(dfs)[1], 

                         names(dfs)[2]) 

  } else { 

    # the chemical either has only one or no concentration with degs 

    # an upset plot is not needed 

    print("There are not enough data sets containing data!") 

  } 

  # check the chemical has at least 2 or more concentrations with degs 

  if (length(dfs) > 1) { 

    # get  vector names of concentrations being compared from the combined data frame column 
headers 

    # needed to set concentrations displayed order in the upset plot 

    upset_sets <- names(combined)[-1] 

    # create upset plot 

    plot <- UpSetR::upset(combined, nsets = length(names(combined)),keep.order = T, sets = upset_sets) 

    # export upset plot 

   png(file.path(glue::glue("{cell_line}_{chemical}_shared_genes_upset.png")), width = 1300, height = 
800, res = 100) 

   print(plot) 
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   dev.off() 

  } 

} 

upset_gene_intersect("HepaRG", "Niacinamide", 8000, 1600, 320, 64, 12.8, 2.56, 0.512) 

upset_gene_intersect("HepG2", "Niacinamide", 60000, 12000, 2400, 480, 96, 19.2, 3.84) 

upset_gene_intersect("MCF-7", "Niacinamide", 60000, 12000, 2400, 480, 96, 19.2, 3.84) 

upset_gene_intersect("HepaRG", "Doxorubicin_HCl", 1, 0.2, 0.04, 0.008, 0.0016, 0.00032, "6.4e.05") 

upset_gene_intersect("HepG2", "Doxorubicin_HCl", 1, 0.2, 0.04, 0.008, 0.0016, 0.00032, "6.4e.05") 

upset_gene_intersect("MCF-7", "Doxorubicin_HCl", 1, 0.2, 0.04, 0.008, 0.0016, 0.00032, "6.4e.05") 

 

Supplementary Script 3 – IPA gene name change using Visual Studio Code 
(Github reference link: https://github.com/liztulum/MRes-thesis-
scripts/blob/main/gene%20name%20change.py) 

import json 

import pandas as pd 

 

# add your file path to the json file 

gene_file = open('C:/Users/liz.tulum/OneDrive - Unilever/MRes 

course/190620_Human_Whole_Transcriptome_2.0_Manifest_probe_to_gene (3).json') 

 

# load in json file of gene names as data frame 

gene_names = json.load(gene_file) 

 

# the concentrations of the file your looking add 

niac_conc= ["0.512", "2.56", "12.8", "64", "320", "1600", "8000"] 

niac_conc2= ["3.84", "19.2", "96", "480", "2400", "12000", "60000"] 

doxo_conc= ["6.4e.05", "0.00032", "0.0016", "0.008", "0.04", "0.2", "1"] 

 

# for each concentration it reads in the file as a data frame and replaces 

the probe name with the gene name 

# HepaRG 

for conc in niac_conc: 

    df = pd.read_csv(f'C:/Users/liz.tulum/OneDrive - Unilever/MRes 

course/HepaRG_Niacinamide_DESeq_CONCENTRATION_{conc}_vs_0.txt', sep='\t') 

    print(df) 

    # change 'Unnamed:0' to 'gene' or whatever the first column of the file 

is caaled 

    df['gene'].replace(gene_names,inplace = True) 

     

    # export df with the gene names as a tsv 

https://github.com/liztulum/MRes-thesis-scripts/blob/main/gene%20name%20change.py
https://github.com/liztulum/MRes-thesis-scripts/blob/main/gene%20name%20change.py
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    df.to_csv(f'C:/Users/liz.tulum/OneDrive - Unilever/MRes 

course/HepaRG_Niacinamide_DESeq_CONCENTRATION_{conc}_vs_0.csv', index=False) 

 

for conc in doxo_conc: 

    df = pd.read_csv(f'C:/Users/liz.tulum/OneDrive - Unilever/MRes 

course/HepaRG_Doxorubicin_HCl_DESeq_CONCENTRATION_{conc}_vs_0.txt', sep='\t') 

    # change 'Unnamed:0' to 'gene' or whatever the first column of the file 

is caaled 

    df['gene'].replace(gene_names,inplace = True) 

    # export df with the gene names as a tsv 

    df.to_csv(f'C:/Users/liz.tulum/OneDrive - Unilever/MRes 

course/HepaRG_Doxorubicin_HCl_DESeq_CONCENTRATION_{conc}_vs_0.csv', 

index=False) 

 

#HepG2 

for conc in niac_conc2: 

    df = pd.read_csv(f'C:/Users/liz.tulum/OneDrive - Unilever/MRes 

course/HepG2_Niacinamide_DESeq_CONCENTRATION_{conc}_vs_0.txt', sep='\t') 

    # change 'Unnamed:0' to 'gene' or whatever the first column of the file 

is caaled 

    df['gene'].replace(gene_names,inplace = True) 

     

    # export df with the gene names as a tsv 

    df.to_csv(f'C:/Users/liz.tulum/OneDrive - Unilever/MRes 

course/HepG2_Niacinamide_DESeq_CONCENTRATION_{conc}_vs_0.csv', index=False) 

 

for conc in doxo_conc: 

    df = pd.read_csv(f'C:/Users/liz.tulum/OneDrive - Unilever/MRes 

course/HepG2_Doxorubicin_HCl_DESeq_CONCENTRATION_{conc}_vs_0.txt', sep='\t') 

    # change 'Unnamed:0' to 'gene' or whatever the first column of the file 

is caaled 

    df['gene'].replace(gene_names,inplace = True) 

    # export df with the gene names as a tsv 

    df.to_csv(f'C:/Users/liz.tulum/OneDrive - Unilever/MRes 

course/HepG2_Doxorubicin_HCl_DESeq_CONCENTRATION_{conc}_vs_0.csv', 

index=False) 

 

#MCF7 

for conc in niac_conc2: 

    df = pd.read_csv(f'C:/Users/liz.tulum/OneDrive - Unilever/MRes 

course/MCF-7_Niacinamide_DESeq_CONCENTRATION_{conc}_vs_0.txt', sep='\t') 

    # change 'Unnamed:0' to 'gene' or whatever the first column of the file 

is caaled 

    df['gene'].replace(gene_names,inplace = True) 

     

    # export df with the gene names as a tsv 

    df.to_csv(f'C:/Users/liz.tulum/OneDrive - Unilever/MRes course/MCF-

7_Niacinamide_DESeq_CONCENTRATION_{conc}_vs_0.csv', index=False) 
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for conc in doxo_conc: 

    df = pd.read_csv(f'C:/Users/liz.tulum/OneDrive - Unilever/MRes 

course/MCF-7_Doxorubicin_HCl_DESeq_CONCENTRATION_{conc}_vs_0.txt', sep='\t') 

    # change 'Unnamed:0' to 'gene' or whatever the first column of the file 

is caaled 

    df['gene'].replace(gene_names,inplace = True) 

    # export df with the gene names as a tsv 

    df.to_csv(f'C:/Users/liz.tulum/OneDrive - Unilever/MRes course/MCF-

7_Doxorubicin_HCl_DESeq_CONCENTRATION_{conc}_vs_0.csv', index=False) 

 
 

Supplementary Script 4 – Calculating PoD using R Studio (Github reference 
link: https://github.com/liztulum/MRes-thesis-
scripts/blob/main/calculate_pods.R) 

library(logger) 

library(glue) 

library(tibble) 

#' Create output directory if it doesn't exist. Warn if existing directory is not empty 

#' @param path directory path to create (string) 

#' @importFrom logger log_debug log_warn 

#' 

#' @export 

create_dir <- function(path) { 

  if (!dir.exists(path)) { 

    logger::log_debug("Creating output directory {dQuote(path)}") 

    dir.create(path, recursive = T) 

  } else { 

    logger::log_debug("Output directory {dQuote(path)} is existing") 

    if (length(dir(path = path, all.files = FALSE)) > 0) { 

      logger::log_warn("Output directory {dQuote(path)} is not empty, files may be overwritten") 

    } 

  } 

  return(path) 

https://github.com/liztulum/MRes-thesis-scripts/blob/main/calculate_pods.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/calculate_pods.R
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} 

 

#' BMD and pathway data checks and error handling 

#' 

#'  

#' @param data variable to check intended to be either bmd data or pathway data from BMDExpress2 

#' @param function_name name of the function running this check function. This is used in error 
messages 

# 

#' @importFrom logger log_fatal 

#' @importFrom glue glue 

check_data <- function(data, function_name) { 

  list( 

    type = function() { 

      if (!class(data) == "data.frame") { 

        logger::log_fatal("data passed to function '{function_name}' is not a data.frame") 

        stop(glue::glue("Please supply a data.frame object to function '{function_name}' with columns from 
BMDExpress2 results BMD export.")) 

      } 

    }, 

    cols = function(keep_cols) { 

      is_missing <- !(keep_cols %in% colnames(data)) 

      if (any(is_missing)) { 

        missing_cols <- keep_cols[is_missing] 

        logger::log_fatal("data passed to function '{function_name}' is missing column(s) {missing_cols}") 

        stop(glue::glue("Please supply a data.frame object to function '{function_name}' with columns from 
BMDExpress2 results BMD export.")) 

      }   

    }, 

    empty = function() { 
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      if (nrow(data) == 0) { 

        e <- "data passed to function '{function_name}' has no data." 

        logger::log_fatal(e) 

        stop(e) 

      } 

    },  

    analysis_length = function() { 

      if (length(unique(data$Analysis)) != 1) { 

        logger::log_fatal("data passed to function '{function_name}' has more than one analysis group.") 

        stop("pathway_filtered passed to function '{function_name}' has more than one analysis group. 
Please pass data with one unique value of column 'Analysis' only") 

      } 

    } 

  ) 

} 

#' Write filtered data set 

#' 

#' Write a data frame of data to csv with a table of filter parameters used writtten above data. 

#'  

#' @param filtered_data Dataframe of data to be written 

#' @param filter_info Dataframe of filter parameters to be written above the filtered_data 

#' @param output_file_name the file name (included '.csv') to be written 

#' @param output_dir the directory where the file should be written. 

#' @importFrom logger log_fatal log_info 

#' @importFrom glue glue 

write_filtered_data <- function(filtered_data, output_file_name, filter_info = NULL, output_dir = ".") { 

  # filter parameters 

  filter_by <- tibble::lst(filtered_data,  

                           filter_info) 
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  for (f in names(filter_by)) { 

    filter_value <- filter_by[[f]] 

    if(!is.null(filter_value)) { 

      if(!is.data.frame(filter_value)) { 

        logger::log_fatal("{f} '{filter_value}' passed to function 'write_filtered_data' is not a dataframe") 

        stop(glue::glue("{filter_value} passed to function 'write_filtered_data' is not a dataframe. Please 
supply a dataframe")) 

      } 

    } 

  } 

  create_dir(output_dir) 

    # Write filter parameters table and the filtered data to a csv file by appending tables on top another 
(with blank dataframe for spacing) 

  file_path <- file.path(output_dir, output_file_name) 

  write.table(filter_info, file_path, col.names = T, sep = ", ", append = F, row.names = F) 

  suppressWarnings(write.table(data.frame(), file_path, col.names = T, sep = ",", append = T)) 

  suppressWarnings(write.table(filtered_data, file_path, col.names = T, sep = ",", append = T, row.names 
= F)) 

    logger::log_info("Filtered data written to {file_path}.") 

} 

#' Filter Significant Gene BMDs 

#' 

#' Filtering for significant can include filtering out bmds which exceed the highest tested concentration, 
filtering based on the fit-p value and on the BMDU and BMDL ratio. 

#' This function can be run on different analysis groups (cell line - chemical groups) but it must be noted 
that different analysis groups likely have different highest concentrations and therefore require a 
different highest_conc_filter value. If this this the case the function should be run on a subset of the 
input data for one analysis. 

#' This function will write the returned data.frame of filtered gene level BMDs to csv file at {output_dir} 
with file name {output_prefix}_gene_bmd_filtered.csv 

#' @param bmd_data Dataframe subset of BMDExpress gene bmd data. Dataframe should only include 
one analysis (cell line - chemical) group. 
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#' Must include the following columns as a minimum 

#'  - Analysis 

#'  - Probe ID 

#'  - Entrez Gene IDs 

#'  - Genes Symbols 

#'  - Best Model 

#'  - Best BMD 

#'  - Best BMDL 

#'  - Best BMDU 

#'  - Best fitPValue 

#'  - Best fitLogLikelihood 

#'  - Best AIC 

#'  - Best BMD/BMDL 

#'  - Best BMDU/BMDL 

#'  - Best BMDU/BMD 

#'  - Max Fold Change 

#'  - Max Fold Change Absolute Value 

#' @param highest_conc_filter Numeric parameter indicating the value to filter 'Best BMD'. Data are 
filtered 'Best BMD' <= highest_conc_filer. To not use the filter set highest_conc_filter as NULL. 

#' @param bmdl_bmdu_filter Numeric parameter indicating the value to filter 'Best BMDU/BMDL'. Data 
are filtered 'Best BMDU/BMDL' < bmdl_bmdu_filter. To not use the filter set bmdl_bmdu_filter as NULL. 
Default = 40 

#' @param fitP_filter Numeric parameter indicating the value to filter on 'Best fitPValue'. Data are 
filtered 'Best fitPValue' > fitP_filter. To not use the filter set fitP_filter as NULL. Default = 0.1 

#' @param gene_csv_output_prefix Character string to use as the prefix the the outputed csv of filtered 
data. Recommended is the analysis group from BMDExpress. If no csv is required, use NULL (default). 

#' @param gene_csv_output_dir The directory path to where the output csv of filtered data should be 
written to. This directory should already exist. 

#' @importFrom logger log_fatal log_info 

#' @importFrom glue glue 

#' @return dataframe of filtered gene BMD data 
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#' @export 

filter_gene_bmds <- function(bmd_data, highest_conc_filter = NULL, bmdl_bmdu_filter = 40, fitP_filter 
= 0.1, gene_csv_output_prefix = NULL, gene_csv_output_dir = ".") { 

  keep_cols <- c( 

    "Analysis", # chosen as the most relavent data columns to save in csvs 

    "Probe ID", 

    "Entrez Gene IDs", 

    "Genes Symbols", 

    "Best Model", 

    "Best BMD", 

    "Best BMDL", 

    "Best BMDU", 

    "Best fitPValue", 

    "Best fitLogLikelihood", 

    "Best AIC", 

    "Best BMD/BMDL", 

    "Best BMDU/BMDL", 

    "Best BMDU/BMD", 

    "Max Fold Change", 

    "Max Fold Change Absolute Value" 

  ) 

  ## Parameter Error Handling 

  # bmd_data 

  check <- check_data(bmd_data, "filter_gene_bmds") 

  check$type() 

  check$cols(keep_cols) 

  check$empty() 

    # filter parameters 

  filter_by <- tibble::lst(fitP_filter,  
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                           bmdl_bmdu_filter,  

                           highest_conc_filter) 

    for (f in names(filter_by)) { 

    filter_value <- filter_by[[f]] 

    if(!is.null(filter_value)) { 

      if(!is.numeric(filter_value)) { 

        logger::log_fatal("{f} '{filter_value}' passed to function 'filter_gene_bmds' is not numeric") 

        stop(glue::glue("{filter_value} passed to function 'filter_gene_bmds' is not numeric. Please supply 
numeric value or NULL.")) 

      } 

    } 

  } 

   FC_cols <- colnames(bmd_data)[grep("FC Dose Level", colnames(bmd_data))] 

  keep_cols <- c(keep_cols, FC_cols) 

  bmd_filtered <- bmd_data[bmd_data$`Best BMD` != "none" & bmd_data$`Best BMD` != "NaN", 
keep_cols] # get rid of nones and remove unneeded columns 

  for (i in 1:ncol(bmd_filtered)) { 

    if (!any(is.na(suppressWarnings(as.numeric(bmd_filtered[, i]))))) { # check whether columns can be 
converted to numeric, if so convert. (NAs appear when non numeric characters are attempted to be 
converted so we check for NAs to determine suitability)  

      bmd_filtered[, i] <- as.numeric(bmd_filtered[, i]) 

    } 

  } 

  if (!is.null(highest_conc_filter)) { 

    bmd_filtered <- bmd_filtered[bmd_filtered[, "Best BMD"] <= highest_conc_filter, ] 

  } else { 

    highest_conc_filter <- "None" 

  } 

  if (!is.null(bmdl_bmdu_filter)) { 

    bmd_filtered <- bmd_filtered[bmd_filtered$`Best BMDU/BMDL` < bmdl_bmdu_filter, ] 
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  } else { 

    bmdl_bmdu_filter <- "None" 

  } 

  if (!is.null(fitP_filter)) { 

    bmd_filtered <- bmd_filtered[bmd_filtered$`Best fitPValue` > fitP_filter, ] 

  } else { 

    fitP_filter <- "None" 

  } 

   if (!is.null(gene_csv_output_prefix)) { 

    # Get table of filter parameters used 

    filters_used <- data.frame(c( 

      paste0("Best BMD <= ", highest_conc_filter), 

      paste0("Best BMDU/BMDL < ", bmdl_bmdu_filter), 

      paste0("Best fitPValue > ", fitP_filter) 

    )) 

    colnames(filters_used) <- "These data are filtered using the following column filters:" 

    write_filtered_data(filtered_data = bmd_filtered, 

                        filter_info = filters_used, 

                        output_file_name = paste0(gene_csv_output_prefix, "_gene_bmd_filtered.csv"), 

                        output_dir = gene_csv_output_dir)  

    } 

  return(bmd_filtered) 

} 

#' Calculate gene level PoDs from BMD data 

#' 

#' Using data from the filter_gene_bmds function, PoDs are calculated via 2 method: 

#' 1. Average of BMD/BMDLs of 20 genes with the largest fold change. 

#' 2. Average of the 25th and 75th percentile of BMD/BMDLs 
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#' This function assumed all genes inputted to the function have significant BMD/BMDLs and that only 
one analysis group is passed (eg one cell line- chemical) 

#' @param bmd_filtered output of the filter_gene_bmds. Data needs columns "Probe ID", "Max Fold 
Change Absolute Value" and "Best BMD" or "Best BMDL" 

#' @param bmd_param "BMD" or "BMDL" indicating which value to base calculations around. 

#' @param bmdExpress_input_dir directory path where BMD input files for BMDExpress are located 

#' @importFrom logger log_info 

#' @importFrom glue glue 

#' @importFrom stats quantile 

#'  

#' @return dataframe of gene level PoDs for one analysis group 

#' @export 

calculate_gene_PoD <- function(bmd_filtered, bmd_param, bmdExpress_input_dir) { 

  # Parameter Error Handling 

  # bmd_param 

  check_cols <- c("BMD", "BMDL") 

  if (!toupper(bmd_param) %in% check_cols) { 

    e <- glue::glue("bmd_param '{bmd_param}' passed to function 'filter_gene_bmds' is not 
{paste(check_cols, collapse = ' or ')}") 

    logger::log_fatal(e) 

    stop(e) 

  } 

  col_names <- c( 

    "Analysis", # minimum columns needed for filtering 

    "Best BMDU/BMDL", 

    "Max Fold Change Absolute Value", 

    paste0("Best ", bmd_param) 

  ) 

  check <- check_data(bmd_filtered, "calculate_gene_PoD") 

  check$type() 
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  check$cols(col_names) 

  check$empty() 

  check$analysis_length() 

  bmd_filtered[, paste0("Best ", bmd_param)] <- as.numeric(bmd_filtered[, paste0("Best ", 
bmd_param)]) 

  if(nrow(bmd_filtered) >= 20) { 

    top20FC <- bmd_filtered[order(bmd_filtered$`Max Fold Change Absolute Value`, decreasing = 
T)[1:20], paste0("Best ", bmd_param)] # get BMD/BMDL values for the genes with 20 highest FC 

    PoD_top20FC <- mean(top20FC) 

    analysis_name <- unique(bmd_filtered$Analysis) 

  } else { 

    PoD_top20FC <- mean(bmd_filtered[, paste0("Best ", bmd_param)]) 

    analysis_name <- paste0(unique(bmd_filtered$Analysis), " *(", nrow(bmd_filtered), " bmds)") 

  } 

  PoD_percentile_25 <- quantile(bmd_filtered[, paste0("Best ", bmd_param)], c(.25)) 

  PoD_percentile_75 <- quantile(bmd_filtered[, paste0("Best ", bmd_param)], c(.75)) 

  PoD_percentile <- mean(bmd_filtered[bmd_filtered[, paste0("Best ", bmd_param)] >= 
PoD_percentile_25 &  

                                        bmd_filtered[, paste0("Best ", bmd_param)] >= PoD_percentile_75, 

                                      paste0("Best ", bmd_param)]) 

  lowest_probe <-  bmd_filtered[order(bmd_filtered[, paste0("Best ", bmd_param)], decreasing = F)[1],]  

  lowest_probe_BMD_param <-  lowest_probe[, paste0("Best ", bmd_param)] # get lowest BMD/BMDL 
Conc 

  lowest_probe <-  lowest_probe[, "Probe ID"] # get probe name with lowest bmd param 

  lowest_conc <- get_highest_lowest_conc_value(analysis = analysis_name, bmdExpress_input_dir = 
bmdExpress_input_dir, get_value = "Lowest" ) 

  bmd_filtered_above_1st_conc <- bmd_filtered[bmd_filtered[, paste0("Best ", bmd_param)] >= 
lowest_conc,] 

  lowest_bmd_filtered_above_1st_conc <- 
bmd_filtered_above_1st_conc[order(bmd_filtered_above_1st_conc[, paste0("Best ", bmd_param)], 
decreasing = F)[1],] 

  lowest_bmd_filtered_above_1st_conc_BMD_param <- lowest_bmd_filtered_above_1st_conc[, 
paste0("Best ", bmd_param)] # get lowest BMD/BMDL Conc above lowest tested concentration 
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  lowest_bmd_filtered_above_1st_conc_probe <- lowest_bmd_filtered_above_1st_conc[, "Probe ID"] # 
get lowest BMD/BMDL Probe above lowest tested concentration 

   

  PoD_percentiles <- t(as.data.frame(quantile(bmd_filtered[, paste0("Best ", bmd_param)], c(.05, 0.10, 
.2, .3, .4, .5, .6 ,.7, .8, .9, .95)))) 

  gene_PoDs <- data.frame(analysis_name, 

                          PoD_top20FC, 

                          PoD_percentile, 

                          "", 

                          lowest_probe_BMD_param, 

                          lowest_probe, 

                          lowest_bmd_filtered_above_1st_conc_BMD_param, 

                          lowest_bmd_filtered_above_1st_conc_probe, 

                          stringsAsFactors = F) 

  colnames(gene_PoDs) <- c("Analysis", 

                           paste0("Avg of 20 ", bmd_param, "s with highest FC"), 

                           paste0("Avg of 25th-75th percentile of ", bmd_param, "s"), 

                           "-", 

                           paste0("Lowest probe ", bmd_param), 

                           paste0("Lowest probe ID"), 

                           paste0("Lowest probe ", bmd_param, "after lowest dose"), 

                           paste0("Lowest probe ID after lowest dose") 

  ) 

  gene_PoDs <- cbind(gene_PoDs, PoD_percentiles) 

  row.names(gene_PoDs) <- analysis_name 

  return(gene_PoDs) 

} 

#' Filter Significant Pathway BMDs 

#' 
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#' BMDExpress2 Pathway level BMD results can be extracted using bmdexpress2-cmd export --bm2-file 
{bm2_file_name.bm2} --analysis-group categorical --output-file-name {filename.txt}. These data should 
be filtered using this function for significance. 

#' Filtering for significant pathway level BMDs include: 

#' 1. Filtering by number of total genes (with a dose response) in the pathway. 

#' 2. Filtering by the number of significant dose responsive genes found in the pathway. NOTE: 
significant genes to filter pathway BMDs are defined in the BMDExpress2 configuration file not by this R 
package (NOT filter_gene_bmds()). 

#' 3. Filtering by Fishers 2-tail p value. 

#' This function can be run on multiple analysis groups if all analysis groups should be filtered the same. 

#' This function will write the returned data.frame of filtered pathway level BMDs to csv file at 
{path_csv_output_dir} with file name {path_csv_output_prefix}_path_bmd_filtered.csv 

#' 

#' @param path_data Dataframe of BMDExpress pathway bmd data. Minimum required columns: 

#' - Input Genes 

#' - Genes That Passed All Filters 

#' - Fisher's Exact Two Tail 

#' @param min_total_genes Numeric parameter indicating the value to filter 'Input Genes'. Data are 
filtered 'Input Genes' >= min_total_genes To not use the filter set min_total_genes as NULL. Default = 3 

#' @param min_sig_genes Numeric parameter indicating the value to filter 'Genes That Passed All 
Filters'. Data are filtered 'Genes That Passed All Filters' <= min_sig_genes. To not use the filter set 
min_sig_genes as NULL. Default = 2 

#' @param fishers_p_val Numeric parameter indicating the value to filter on 'Fisher's Exact Two Tail'. 
Data are filtered 'Fisher's Exact Two Tail' < fishers_p_val To not use the filter set fishers_p_val as NULL. 
Default = 0.1 

#' @param path_csv_output_prefix Character string to use as the prefix the the outputed csv of filtered 
data. Recommended is the analysis group from BMDExpress. If no csv is required, use NULL (default). 

#' @param path_csv_output_dir The directory path to where the output csv of filtered data should be 
written to. This directory should already exist. 

#'  

#' @importFrom glue glue 

#' @importFrom logger log_fatal log_info 

#' @return dataframe of filtered pathway BMD data 

#' @export 
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filter_pathway_bmds <- function(path_data, min_total_genes = 3, min_sig_genes = 2, fishers_p_val = 
0.1, path_csv_output_prefix = NULL, path_csv_output_dir = ".") { 

  # Parameter Error Handling 

  # path_data 

  col_names <- c("Analysis", "Input Genes", "Genes That Passed All Filters", "Fisher's Exact Two Tail") # 
minimum columns for filtering 

  check <- check_data(path_data, "filter_pathway_bmds") 

  check$type() 

  check$cols(col_names) 

  check$empty() 

    # filter parameters 

  filter_by <- tibble::lst(min_total_genes,  

                           min_sig_genes,  

                           fishers_p_val) 

  for (f in names(filter_by)) { 

    filter_value <- filter_by[[f]] 

    if(!is.null(filter_value)) { 

      if(!is.numeric(filter_value)) { 

        logger::log_fatal("{f} '{filter_value}' passed to function 'filter_pathway_bmds' is not numeric") 

        stop(glue::glue("'{filter_value}' passed to function 'filter_pathway_bmds' is not numeric. Please 
supply numeric value or NULL.")) 

      } 

    } 

  } 

  # path_csv_output_dir 

  create_dir(path_csv_output_dir) 

  path_data <- path_data[path_data$`Genes That Passed All Filters` != 0, ] # remove blank pathway 
enrichment rows (as no genes present) 

  for (i in 1:ncol(path_data)) { 

    if (!any(is.na(suppressWarnings(as.numeric(path_data[, i]))))) { 
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      path_data[, i] <- as.numeric(path_data[, i]) 

    } 

  } 

    filtered_path_data <- path_data 

  if (!is.null(min_total_genes)) { 

    filtered_path_data <- filtered_path_data[filtered_path_data$`Input Genes` >= min_total_genes, ] 

  } else { 

    min_total_genes <- "None" 

  } 

  if (!is.null(min_sig_genes)) { 

    filtered_path_data <- filtered_path_data[filtered_path_data$`Genes That Passed All Filters` >= 
min_sig_genes, ] 

  } else { 

    min_sig_genes <- "None" 

  } 

  if (!is.null(fishers_p_val)) { 

    filtered_path_data <- filtered_path_data[filtered_path_data$`Fisher's Exact Two Tail` < fishers_p_val, 
] 

  } else { 

    fishers_p_val <- "None" 

  } 

  if (!is.null(path_csv_output_prefix)) { 

    # Get a table of filter values 

    filters_used <- data.frame(c( 

      paste0("Input Genes >= ", min_total_genes), 

      paste0("Genes That Passed All Filters >= ", min_sig_genes), 

      paste0("Fisher's Exact Two Tail < ", fishers_p_val) 

    )) 

    colnames(filters_used) <- "These data are filtered using the following column filters:" 
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    write_filtered_data(filtered_data = filtered_path_data, 

                        filter_info = filters_used, 

                        output_file_name = paste0(path_csv_output_prefix, "_pathway_bmd_filtered.csv"), 

                        output_dir = path_csv_output_dir)  

  } 

  return(filtered_path_data) 

} 

#' Calculate pathway level PoDs from BMD data 

#' 

#' Using data from the filter_pathway_bmds function, PoDs are calculated via 3 methods. 

#' 1. Average of BMD/BMDLs of 20 pathways with the lowest Fishers 2-tail p values. 

#' 2. Average of BMD/BMDLs of 20 pathways with the lowest BMD/BMDLs mean values. 

#' 3. Taking the lowest pathways BMD/BMDLs mean value. 

#' 

#' This function assumed all pathways inputted to the function have significant BMD/BMDLs and that 
only one analysis group is passed (eg one cell line- chemical) 

#' 

#' @param pathway_filtered output of the filter_pathway_bmds. Minimum columns required: 

#' - Analysis 

#' - GO/Pathway/Gene Set Name 

#' - GO/Pathway/Gene Set ID 

#' - Fisher's Exact Two Tail 

#' - Mean BMD or Mean BMDL (dependent on the bmd_param parameter) 

#' 

#' @param bmd_param "BMD" or "BMDL" indicating which value to base calculations around. 

#' @param bmdExpress_input_dir directory path where BMD input files for BMDExpress are located 

#' @importFrom logger log_info 

#' @importFrom stats quantile 

#'  
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#' @return dataframe of pathway level PoDs for one analysis group 

#' @export 

calculate_pathway_PoD <- function(pathway_filtered, bmd_param, bmdExpress_input_dir) { 

  # Parameter Error Handling 

  # bmd_param 

  if (toupper(bmd_param) != "BMD" & toupper(bmd_param) != "BMDL") { 

    logger::log_fatal("bmd_param '{bmd_param}' passed to function 'calculate_gene_PoD' is not 'BMD' or 
'BMDL'.") 

    stop("bmd_param passed to function 'calculate_gene_PoD' is not 'BMD' or 'BMDL'.") 

  } else { 

    bmd_param <- toupper(bmd_param) 

  } 

  # pathway_filtered 

  #replace version 2.3 columns anems with version 2.0 column names 

  colnames(pathway_filtered) <- gsub("GO/Pathway/Gene Set/Gene Name", "GO/Pathway/Gene Set 
Name", colnames(pathway_filtered)) 

  colnames(pathway_filtered) <- gsub("GO/Pathway/Gene Set/Gene ID", "GO/Pathway/Gene Set ID", 
colnames(pathway_filtered)) 

  col_names <- c("Analysis", "GO/Pathway/Gene Set Name", "GO/Pathway/Gene Set ID", "Fisher's Exact 
Two Tail", paste0(bmd_param, " Mean")) 

  check <- check_data(pathway_filtered, "calculate_pathway_PoD") 

  check$type() 

  check$cols(col_names) 

  check$empty() 

  check$analysis_length() 

  if(nrow(pathway_filtered) >= 20) { 

    min20bmd <- pathway_filtered[order(pathway_filtered[, paste0(bmd_param, " Mean")], decreasing = 
F)[1:20], paste0(bmd_param, " Mean")] # Get 20 lowest BMD/BMDL values 

    minbmd <- min(min20bmd) # get the lowest BMD/BMDL value (complete.cases in line above retains 
orignal order of data so min has to be used in this line) 

    min20p <- pathway_filtered[order(pathway_filtered$`Fisher's Exact Two Tail`, decreasing = F)[1:20], 
paste0(bmd_param, " Mean")] # Get BMD/BMDL values for the pathways with the 20 lowest fishers 2 
tail p value 
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    analysis_name <- unique(pathway_filtered$Analysis) 

    } else { 

    min20bmd <- pathway_filtered[, paste0(bmd_param, " Mean")] # Get 20 lowest BMD/BMDL values 

    minbmd <- min(min20bmd) # get the lowest BMD/BMDL value (complete.cases in line above retains 
orignal order of data so min has to be used in this line) 

    min20p <- pathway_filtered[, paste0(bmd_param, " Mean")] 

    analysis_name <- paste0(unique(pathway_filtered$Analysis), " *(", length(min20bmd), " bmds)") 

  } 

  PoD_min20bmd <- mean(min20bmd) 

  PoD_minbmd <- minbmd 

  PoD_min20p <- mean(min20p) 

 lowest_conc <- get_highest_lowest_conc_value(analysis = analysis_name, bmdExpress_input_dir = 
bmdExpress_input_dir, get_value = "Lowest") 

  path_filtered_above_1st_conc <- pathway_filtered[pathway_filtered[, paste0(bmd_param, " Mean")] 
>= lowest_conc,] 

  lowest_path_filtered_above_1st_conc <- 
path_filtered_above_1st_conc[order(path_filtered_above_1st_conc[, paste0(bmd_param, " Mean")], 
decreasing = F)[1],] 

  lowest_path_filtered_above_1st_conc_BMD_param <- lowest_path_filtered_above_1st_conc[, 
paste0(bmd_param, " Mean")] # get lowest BMD/BMDL Conc above lowest tested concentration 

  lowest_path_filtered_above_1st_conc_path <- 
lowest_path_filtered_above_1st_conc[,"GO/Pathway/Gene Set Name"] # get lowest BMD/BMDL 
pathway above lowest tested concentration 

  PoD_percentiles <- t(as.data.frame(quantile(pathway_filtered[, paste0(bmd_param, " Mean")], c(.05, 
0.10, .2, .3, .4, .5, .6 ,.7, .8, .9, .95)))) 

  pathway_PoDs <- data.frame(analysis_name, 

                             PoD_min20bmd, 

                             PoD_minbmd, 

                             PoD_min20p, 

                             "", 

                             lowest_path_filtered_above_1st_conc_BMD_param, 

                             lowest_path_filtered_above_1st_conc_path, 

                             stringsAsFactors = F) 
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  colnames(pathway_PoDs) <- c("Analysis", 

                  paste0("Avg of 20 lowest pathway ", bmd_param, "s"), 

                  paste0("The lowest pathway ", bmd_param),  

                  paste0("Avg of 20 pathway ", bmd_param, "s with lowest 2-tail fisher P values"), 

                  "-", 

                  paste0("Lowest pathway ", bmd_param, "after lowest dose"), 

                  paste0("Lowest pathway after lowest dose") 

  ) 

  pathway_PoDs <- cbind(pathway_PoDs, PoD_percentiles)                 

  rownames(pathway_PoDs) <- analysis_name 

  return(pathway_PoDs) 

} 

#' Determine the highest concentration filter to be used based on a combination of highest_conc_filter 
and bmdExpress_input_dir parameters 

#' 

#' This function's set the rules of high_conc_filter is determined for use in function 
calculate_PoDs_from_BMDExpress2. 

#' - Rule 1: When a numeric value is given to highest_conc_filter, then this value will always be used. 

#' - Rule 2: When both highest_conc_filter and bmdExpress_input_dir are NULL then the final highest 
concentration wont be filtered and therefore final value set to NULL. 

#' - Rule 3: When highest_conc_filter is NULL but bmdExpress_input_dir is a valid file path to text files of 
the input files for BMDExpress2, the highest concentration value is set to the highest value found in the 
files which matches the BMDExpress2 analysis group. 

#' 

#' @param analysis BMDExpress2 analysis group name. This shall be used to match 
bmdExpress_input_dir files if present. 

#' @param bmdExpress_input_dir The directory path for the BMDExpress2 input text file of which 
highest concentration shall be extracted. Can also be NULL in cases of rule 1 and 2. 

#' @param highest_conc_filter The parameter value passed to calculate_PoDs_from_BMDExpress2. Can 
be numeric value for rule 1 or NULL for rules 2 and 3. 

#' @param get_value "Highest" or "Lowest" for concentration to be used 

#'  

#' @importFrom logger log_info 
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#' @importFrom utils read.delim 

#' @return The final determined highest_conc_filter value 

get_highest_lowest_conc_value <- function(analysis, bmdExpress_input_dir, highest_conc_filter = NULL, 
get_value = "Highest") { 

  get_value_accepted <- c("Highest", "Lowest") 

  if(!get_value %in% get_value_accepted){ 

    logger::log_fatal("get_value passes to get_highest_lowest_conc_value is not either of 
{get_value_accepted}. Value passed: {get_value}.") 

    stop("Incorrect get_value parameter.") 

  } 

  if (is.null(highest_conc_filter) | get_value == "Lowest") { 

    if (!is.null(bmdExpress_input_dir)) { 

      input_list <- list.files(path = bmdExpress_input_dir) 

      analysis_input <- input_list[unlist(lapply( 

        X = gsub(".txt", "", input_list), 

        FUN = grepl, 

        x = analysis 

      ))] # Get BMDExpress2 input file from bmdExpress_input_dir which has the part of the analysis string 
in - The original data 

      if(length(analysis_input) == 0) { 

        logger::log_fatal("BMDExpress input file for {analysis} cannot be found at {bmdExpress_input_dir}. 
This means a concentration to filter cannot be determined and analysis is terminated.") 

        stop("Analysis group not found in provide BMDExpress input files.") 

      } 

      input_file_path  <- file.path(bmdExpress_input_dir, analysis_input) 

      logger::log_debug("{get_value} concentration for {analysis} is pulled from {input_file_path}") 

      input_data <- read.delim(input_file_path, 

                               header = F, skip = 1, nrows = 1)[1, -1] 

      if(get_value == "Highest") { 

        chosen_filter <- max(input_data) # Get max concentration for the BMD input file from the second 
row of the text file. 
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      } else { 

        input_data_not0 = input_data[input_data!=0] 

        chosen_filter <- min(input_data_not0) # Get min concentration for the BMD input file from the 
second row of the text file. 

      } 

    } else { 

      chosen_filter <- NULL 

    } 

  } else { 

    chosen_filter <- highest_conc_filter 

  } 

  if(get_value == "Highest") { 

    logger::log_info("For {analysis} the chosen highest_conc_filter is {chosen_filter}.") 

  } else { 

    logger::log_info("For {analysis} the chosen lowest concentration is {chosen_filter}.") 

  } 

  return(chosen_filter) 

} 

#' Write PoD file 

#' 

#' PoD's shall be written to a csv file at {pod_csv_output_prefix} with file name 
{pod_csv_output_dir}_PoDs.csv. File will include filters applied to the data and gene and pathway level 
PoDs 

# 

#' @param defined_conc concentration to be used (TODO Jade to add more detail here) 

#' @param bmd_param "BMD" or "BMDL" indicating which value to base calculations around 

#' @param collated_gene_PoDs Calculated gene level PoDs (data to be included in csv) 

#' @param collated_pathway_PoDs Calculated pathway level PoDs (data to be included in csv) 

#' @param pod_csv_output_prefix Character string to use as the prefix the the outputed csv of PoDs 
calculated at both the gene and pathway level. Recommended is the analysis group from BMDExpress. If 
no csv is required, use NULL (default). 
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#' @param pod_csv_output_dir The directory path to where the output csv of PoDs calculated at both 
the gene and pathway level should be written to. This directory should already exist. If NULL no file will 
be written. 

 

#' @inheritParams filter_gene_bmds 

#' @inheritParams filter_pathway_bmds 

#'  

#' @importFrom logger log_info 

write_PoDs_to_file <- function(pod_csv_output_prefix, 

                               defined_conc, 

                               highest_conc_filter, 

                               bmd_param,  

                               bmdl_bmdu_filter, 

                               fitP_filter, 

                               min_total_genes, 

                               min_sig_genes, 

                               fishers_p_val, 

                               pod_csv_output_dir, 

                               collated_gene_PoDs, 

                               collated_pathway_PoDs) { 

     

    filters_used_gene <- data.frame(c( 

      paste0("PoDs based on ", bmd_param), 

      paste0("Best ", bmd_param, " <= ", defined_conc), 

      paste0("Best BMDU/BMDL < ", bmdl_bmdu_filter), 

      paste0("Best fitPValue > ", fitP_filter) 

    )) 

    colnames(filters_used_gene) <- "Gene BMDExpress2 results data are filtered using the following 
column filters:" 

    if (is.null(min_total_genes)) min_total_genes <- "None" 
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    if (is.null(min_sig_genes)) min_sig_genes <- "None" 

    if (is.null(fishers_p_val)) fishers_p_val <- "None" 

     

    filters_used_path <- data.frame(c( 

      paste0("Input Genes >= ", min_total_genes), 

      paste0("Genes That Passed All Filters >= ", min_sig_genes), 

      paste0("Fisher's Exact Two Tail < ", fishers_p_val))) 

    colnames(filters_used_path) <- "Pathway BMDExpress2 results are filtered using the following column 
filters:" 

    create_dir(pod_csv_output_dir) 

     file_path <- file.path(pod_csv_output_dir, paste0(pod_csv_output_prefix,"_", bmd_param, 
"_PoDs.csv")) 

    write.table(filters_used_gene, file_path, col.names = T, sep = ",", row.names = F) 

    suppressWarnings(write.table(data.frame(), file_path, col.names = T, sep = ",", append = T)) 

    suppressWarnings(write.table(filters_used_path, file_path, col.names = T, sep = ",", append = T, 
row.names =F)) 

    suppressWarnings(write.table(data.frame(), file_path, col.names = T, sep = ",", append = T)) 

    suppressWarnings(write.table(collated_gene_PoDs, file_path, col.names = T, sep = ",", append = T, 
row.names = F)) 

    suppressWarnings(write.table(data.frame(), file_path, col.names = T, sep = ",", append = T)) 

    suppressWarnings(write.table(collated_pathway_PoDs, file_path, col.names = T, sep = ",", append = T, 
row.names = F)) 

    logger::log_info("PoD file successfully written to {file_path}.") 

} 

#' Calculate gene level PoDs from BMDExpress2 output for a group of analysis 

#'  

#' Loop through each analysis group and call get_highest_lowest_conc_value, filter_gene_bmds and 
calculate_gene_PoD and then collate and output all gene PoDs. 

#' 

#' @param gene_bmd_file_path File path for the gene level bmd text file {filename.txt}, directly from 
bmdexpress2-cmd export --bm2-file {bm2_file_name.bm2} --analysis-group bmd --output-file-name 
{filename.txt}. 
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#' @param bmdExpress_input_dir Directory path for where the BMDExpress2 input files are. These files 
are read in for each analysis to get the highest concentration used to filter gene level BMDs by. This will 
override any value used set by highest_conc_filter. 

#' @inheritParams filter_gene_bmds 

#' @inheritParams calculate_gene_PoD 

#'  

#' @importFrom logger log_info 

#' @importFrom utils read.delim 

#' @return dataframe gene level PoDs for all analysis groups in the BMD files. 

run_gene_level_BMD_analysis <- function(gene_bmd_file_path, 

                                        gene_csv_output_dir, 

                                        bmdExpress_input_dir = NULL, 

                                        highest_conc_filter = NULL, 

                                        bmd_param = "BMDL", 

                                        bmdl_bmdu_filter = 40, 

                                        fitP_filter = 0.1 

                                        ) { 

  # gene_bmd_file_path 

  if(!file.exists(gene_bmd_file_path)) { 

    logger::log_fatal("gene_bmd_file_path '{gene_bmd_file_path}' passed to function 
'calculate_PoDs_from_BMDExpress2' has no such file or directory") 

    stop("gene_bmd_file_path passed to function 'calculate_PoDs_from_BMDExpress2' does not exist") 

  } 

  # bmdExpress_input_dir 

  if (!is.null(bmdExpress_input_dir)) { 

    if (!dir.exists(bmdExpress_input_dir)) { 

      logger::log_fatal("bmdExpress_input_dir '{bmdExpress_input_dir}' passed to function 
'calculate_PoDs_from_BMDExpress2' does not exist") 

      stop("bmdExpress_input_dir passed to function 'calculate_PoDs_from_BMDExpress2' does not 
exist") 

    } 
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  } 

  gene_data <- as.data.frame(read.delim(gene_bmd_file_path, sep = "\t", header = F, stringsAsFactors = 
F, skip = 1)) # header= T throws errors due to NA columns 

  # set column names 

  gene_data_cols <- as.character(gene_data[1, ]) 

  colnames(gene_data) <- gene_data_cols 

  gene_data <- gene_data[-1, ] 

  gene_data <- gene_data[, !apply(is.na(gene_data), 2, all)] # remove NA columns 

   collated_gene_PoDs <- data.frame(matrix(nrow = 0, ncol = 19)) 

  for (analysis in unique(gene_data$Analysis)) { 

    analysis_short_name <- gsub("_williams_0.05_NOMTC_foldfilter1.5_BMD", "", analysis) 

    analysis_bmd <- gene_data[gene_data$Analysis == analysis, ] 

    defined_conc <- get_highest_lowest_conc_value(analysis, bmdExpress_input_dir, highest_conc_filter) 

    if (nrow(analysis_bmd) > 0) { 

      bmd_filtered <- filter_gene_bmds( 

        bmd_data = analysis_bmd, 

        highest_conc_filter = defined_conc, 

        bmdl_bmdu_filter = bmdl_bmdu_filter, 

        fitP_filter = fitP_filter, 

        gene_csv_output_prefix = analysis_short_name, 

        gene_csv_output_dir = gene_csv_output_dir 

      ) 

      if (nrow(bmd_filtered) > 0) { 

        gene_PoDs <- calculate_gene_PoD(bmd_filtered = bmd_filtered, bmd_param = bmd_param, 
bmdExpress_input_dir = bmdExpress_input_dir) 

        collated_gene_PoDs <- rbind(collated_gene_PoDs, gene_PoDs) 

      } else { 

        collated_gene_PoDs[paste0(analysis, "  *(0 bmds)"),] <- c(paste0(analysis, " *(0 bmds)"),  rep(NA, 2), 
"",  rep(NA, 15)) # NA for when no pathway data is returned so no PoD can be calculated.  

      } 
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    } 

  } 

  for (i in 1:ncol(collated_gene_PoDs)) { 

    if (!any(is.na(suppressWarnings(as.numeric(collated_gene_PoDs[!is.na(collated_gene_PoDs[,i]), i]))))) 
{ # check whether columns can be converted to numeric, if so convert. (NAs appear when non numeric 
characters are attempted to be converted so we check for NAs to determine suitability)  

      collated_gene_PoDs[, i] <- as.numeric(collated_gene_PoDs[, i]) 

    } 

  } 

  return(collated_gene_PoDs) 

} 

#' Calculate pathway level PoDs from BMDExpress2 output for a group of analysis 

#'  

#' Loop through each analysis group and call filter_pathway_bmds and calculate_pathway_PoD and then 
collate and output all pathway PoDs. 

#' 

#' @param path_bmd_file_path File path for the pathway level bmd text file {filename.txt}, directly from 
bmdexpress2-cmd export --bm2-file {bm2_file_name.bm2} --analysis-group categorical --output-file-
name {filename.txt}. 

#' @param highest_conc_filter The parameter value passed to calculate_PoDs_from_BMDExpress2. Can 
be numeric value for rule 1 or NULL for rules 2 and 3. 

#' @inheritParams filter_pathway_bmds 

#' @inheritParams calculate_pathway_PoD 

#' @importFrom logger log_fatal 

#' @importFrom utils read.delim 

#' @return dataframe pathway level PoDs for all analysis groups in the BMD files. 

#' @export 

run_pathway_level_BMD_analysis <- function(path_bmd_file_path, 

                                           highest_conc_filter, 

                                           bmd_param = "BMDL", 

                                           min_total_genes = 3, 
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                                           min_sig_genes = 2, 

                                           fishers_p_val = 0.1, 

                                           path_csv_output_dir, 

                                           bmdExpress_input_dir) { 

  # path_bmd_file_path 

  if(!file.exists(path_bmd_file_path)) { 

    logger::log_fatal("path_bmd_file_path '{path_bmd_file_path}' passed to function 
'calculate_PoDs_from_BMDExpress2' has no such file or directory") 

    stop("path_bmd_file_path passed to function 'calculate_PoDs_from_BMDExpress2' does not exist") 

  } 

   path_data <- as.data.frame(read.delim(path_bmd_file_path, sep = "\t", header = F, stringsAsFactors = 
F, skip = 1)) # header= T throws errors due to NA columns 

  # set column names 

  path_data_cols <- as.character(path_data[1, ]) 

  colnames(path_data) <- path_data_cols 

  path_data <- path_data[-1, ] 

  path_data <- path_data[, !apply(is.na(path_data), 2, all)] # remove na columns 

    collated_pathway_PoDs <- data.frame(matrix(nrow = 0, ncol = 18), stringsAsFactors = F) 

  colnames(collated_pathway_PoDs) <- c("Analysis", 

                                       "Avg of 20 lowest pathway BMDLs", 

                                       "The lowest pathway BMDL", 

                                       "Avg of 20 pathway BMDLs with lowest 2-tail fisher P values", 

                                       "-", 

                                       "Lowest pathway BMDLafter lowest dose", 

                                       "Lowest pathway after lowest dose", 

                                       "5%", 

                                       "10%", 

                                       "20%", 

                                       "30%", 
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                                       "40%", 

                                       "50%", 

                                       "60%", 

                                       "70%", 

                                       "80%", 

                                       "90%", 

                                       "95%") 

  for (analysis in unique(path_data$Analysis)) { 

    analysis_short_name <- 
gsub("_williams_0.05_NOMTC_foldfilter1.5_BMD_WT_Human_REACTOME_true_true_pval0.1_ratio40"
, "", analysis) 

    analysis_bmd <- path_data[path_data$Analysis == analysis, ] 

    analysis_pathway_filtered <- filter_pathway_bmds( 

      path_data = analysis_bmd, 

      min_total_genes = min_total_genes, 

      min_sig_genes = min_sig_genes, 

      fishers_p_val = fishers_p_val, 

      path_csv_output_prefix = analysis_short_name,  

      path_csv_output_dir = path_csv_output_dir 

    ) 

    if (nrow(analysis_pathway_filtered) > 0) { 

      path_PoDs <- calculate_pathway_PoD(pathway_filtered = analysis_pathway_filtered, bmd_param = 
bmd_param, bmdExpress_input_dir = bmdExpress_input_dir) 

      collated_pathway_PoDs <- rbind(collated_pathway_PoDs, path_PoDs) 

    } else { 

      collated_pathway_PoDs[paste0(analysis, " *(0 bmds)"),] <- c(paste0(analysis, " *(0 bmds)"), rep(NA, 
3), "", rep(NA,13)) # NA for when no pathway data is returned so no PoD can be calculated.  

    } 

  } 

  for (i in 1:ncol(collated_pathway_PoDs)) { 
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    if 
(!any(is.na(suppressWarnings(as.numeric(collated_pathway_PoDs[!is.na(collated_pathway_PoDs[,i]), 
i]))))) { # check whether columns can be converted to numeric, if so convert. (NAs appear when non 
numeric characters are attempted to be converted so we check for NAs to determine suitability)  

      collated_pathway_PoDs[, i] <- as.numeric(collated_pathway_PoDs[, i]) 

    } 

  } 

  return(collated_pathway_PoDs) 

} 

#' Calculate gene and pathway level PoDs from BMDExpress2 output 

#' 

#' Point of departures are calculated from BMDExpress2's gene results for each analysis group 
(BMDExpress2 input file). Gene level BMDs can be extracted with bmdexpress2-cmd export --bm2-file 
{bm2_file_name.bm2} --analysis-group bmd --output-file-name {filename.txt}. 

#' Pathway level BMDs can be extracted with bmdexpress2-cmd export --bm2-file {bm2_file_name.bm2} 
--analysis-group categorical --output-file-name {filename.txt}. 

#' PoDs are calculated from a subset of the genes/pathways which are deemed as significant based on 
given filter parameters and the chemical PoD are defined using different methods: 

#' 

#' Gene Level PoDs 

#' 1. Average of BMD/BMDLs of 20 genes with the largest fold change. 

#' 2. Average of the 25th and 75th percentile of BMD/BMDLs 

#' 

#' Pathway Level PoDs 

#' 3. Average of BMD/BMDLs of 20 pathways with the lowest Fishers 2-tail p values. 

#' 4. Average of BMD/BMDLs of 20 pathways with the lowest BMD/BMDLs mean values. 

#' 5. Taking the lowest pathways BMD/BMDLs mean value. 

#' 

#' This function loops through each analysis group (cell line- chemical) in the BMDExpress2 text files and 
run functions 'filter_gene_bmds', 'calculate_gene_PoD', 'filter_pathway_bmds' and 
'calculate_pathway_PoD' and collate results. 

#' Each BMDExpress analysis will have filtered bmd and pathway csv exported. Output files will have 
BMDExpress2 analysis name with appended with "_bmd_filtered" and "_pathway_bmd_filtered".Where 
BMDExpress2 bmd analysis names have "_williams_0.05_NOMTC_foldfilter1.5_BMD" and pathway 
analysis names have 
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"_williams_0.05_NOMTC_foldfilter1.5_BMD_WT_Human_REACTOME_true_true_pval0.1_ratio40" in 
them, this text will be removed from the file output name to reduce characters, otherwise the whole 
BMDExpress analysis name will be seen.  

#'  

#' PoD's shall be written to a csv file at {pod_csv_output_prefix} with file name 
{pod_csv_output_dir}_PoDs.csv 

#' 

#' @param gene_bmd_file_path File path for the gene level bmd text file {filename.txt}, directly from 
bmdexpress2-cmd export --bm2-file {bm2_file_name.bm2} --analysis-group bmd --output-file-name 
{filename.txt}. 

#' @param path_bmd_file_path File path for the pathway level bmd text file {filename.txt}, directly from 
bmdexpress2-cmd export --bm2-file {bm2_file_name.bm2} --analysis-group categorical --output-file-
name {filename.txt}. 

#' @param bmdExpress_input_dir Directory path for where the BMDExpress2 input files are. These files 
are read in for each analysis to get the highest concentration used to filter gene level BMDs by. This will 
override any value used set by highest_conc_filter. 

#' @param bmd_param "BMD" or "BMDL" indicating which value to base calculations around. 

#' @inheritParams filter_gene_bmds 

#' @inheritParams filter_pathway_bmds 

#' @inheritParams write_PoDs_to_file 

#'  

#' @return list of 2 dataframes, gene_PoDs =  gene level PoDs and pathway_PoDs = pathway level PoDs 
for all analysis groups in the BMD files. 

#' @export 

calculate_PoDs_from_BMDExpress2 <- function(gene_bmd_file_path, 

                                            path_bmd_file_path, 

                                            bmdExpress_input_dir = NULL, 

                                            highest_conc_filter = NULL, 

                                            bmd_param = "BMDL", 

                                            bmdl_bmdu_filter = 40, 

                                            fitP_filter = 0.1, 

                                            min_total_genes = 3, 

                                            min_sig_genes = 2, 

                                            fishers_p_val = 0.1, 
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                                            gene_csv_output_dir = ".", 

                                            path_csv_output_dir = ".", 

                                            pod_csv_output_prefix = "", 

                                            pod_csv_output_dir = ".") { 

  collated_gene_PoDs <- run_gene_level_BMD_analysis(gene_bmd_file_path = gene_bmd_file_path, 

                                                    bmdExpress_input_dir = bmdExpress_input_dir, 

                                                    highest_conc_filter = highest_conc_filter, 

                                                    bmd_param = bmd_param, 

                                                    bmdl_bmdu_filter = bmdl_bmdu_filter, 

                                                    fitP_filter = fitP_filter, 

                                                    gene_csv_output_dir = gene_csv_output_dir) 

  collated_pathway_PoDs <- run_pathway_level_BMD_analysis(path_bmd_file_path = 
path_bmd_file_path, 

                                                          bmd_param = bmd_param, 

                                                          highest_conc_filter = highest_conc_filter, 

                                                          min_total_genes = min_total_genes, 

                                                          min_sig_genes = min_sig_genes, 

                                                          fishers_p_val = fishers_p_val, 

                                                          path_csv_output_dir = path_csv_output_dir, 

                                                          bmdExpress_input_dir = bmdExpress_input_dir) 

  if (!is.null(pod_csv_output_dir)) { 

    if (is.null(bmdExpress_input_dir) & is.null(highest_conc_filter)) { 

      conc <- "None" 

    } else if (!is.null(bmdExpress_input_dir) & is.null(highest_conc_filter)) { 

      conc <- "Highest tested concentration" 

    } else { 

      conc <- highest_conc_filter 

    } 

  write_PoDs_to_file(pod_csv_output_prefix, 
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                     conc, 

                     highest_conc_filter, 

                     bmd_param,  

                     bmdl_bmdu_filter, 

                     fitP_filter, 

                     min_total_genes, 

                     min_sig_genes, 

                     fishers_p_val, 

                     pod_csv_output_dir, 

                     collated_gene_PoDs, 

                     collated_pathway_PoDs) 

   

  } 

  return(list(gene_PoDs = collated_gene_PoDs, 

              pathway_PoDs = collated_pathway_PoDs)) 

} 

 

Supplementary Script 5 – Calculating PoD from BMDExpress2 using R Studio 
(Github reference link:https://github.com/liztulum/MRes-thesis-
scripts/blob/main/Calculate_PoDs_from%20_BMDExpress2.R) 

calculate_PoDs_from_BMDExpress2(gene_bmd_file_path = "bmd_gene.txt", 

                                path_bmd_file_path = "bmd_pathway.txt", 

                                bmdExpress_input_dir = "BMD_input", 

                                gene_csv_output_dir = "BMD_output_filtered/gene_bmds_filtered", 

                                path_csv_output_dir = "BMD_output_filtered/pathway_bmds_filtered", 

                                pod_csv_output_prefix = "pods", 

                                pod_csv_output_dir = ".") 

 
 

https://github.com/liztulum/MRes-thesis-scripts/blob/main/Calculate_PoDs_from%20_BMDExpress2.R
https://github.com/liztulum/MRes-thesis-scripts/blob/main/Calculate_PoDs_from%20_BMDExpress2.R
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APPENDIX 2 
 
The top 20 DEG’s for HepaRG, HepG2 and MCF-7 cell lines dosed with 
doxorubicin and niacinamide at various doses 
 
Supplementary Table 1 - HepaRG Doxorubicin 1uM 
 

Gene baseMean 
log2Fold 
Change lfcSE stat pvalue padj 

TSC22D3_73
66 3066.3732 2.67985490 

0.420
136 

6.3785
469 1.79E-10 3.44E-08 

MUC1_4366 42.950120 2.51909863 
0.527

62 
4.7744

541 1.80E-06 
0.000117

54 

COX4I1_151
5 545.26190 0.82955680 

0.263
074 

3.1533
201 

0.001614
25 

0.026695
41 

IER3_3214 175.68949 1.34579300 
0.382

493 
3.5184

734 
0.000434

04 
0.009910

82 

C3_886 1449.9124 1.1931151 
0.354

167 
3.3687

953 
0.000754

97 
0.014946

12 

CCNB1IP1_1
054 490.40493 0.88674597 

0.219
813 

4.0340
974 5.48E-05 

0.001879
87 

ARPC5L_463 771.04092 0.79558759 
0.253

73 
3.1355

704 
0.001715

2 
0.027666

3 

CDC26_1162 256.96022 0.80127001 
0.225

663 
3.5507

364 
0.000384

15 
0.009036

47 

CALU_944 37.345272 2.00997350 
0.536

098 
3.7492

684 
0.000177

35 
0.004807

27 

CCND1_1062 98.508150 1.55313804 
0.421

007 
3.6890

996 
0.000225

05 
0.005802

37 

ALDH7A1_22
7 36.896090 1.64870435 

0.511
464 

3.2235
007 

0.001266
34 

0.022126
48 

ARL6IP4_442 135.96376 1.26947646 
0.381

754 
3.3253

796 
0.000882

98 
0.016903

93 

COL5A1_148
0 513.18098 1.28552925 

0.396
414 

3.2428
963 

0.001183
21 

0.020919
61 

CTSD_1642 2756.8044 0.67965930 
0.233

531 
2.9103

556 
0.003610

18 
0.048447

4 

DDB2_1798 595.53087 0.98200603 
0.160

495 
6.1186

088 9.44E-10 1.55E-07 

F2_2286 1069.7516 2.75284869 
0.704

666 
3.9065

987 9.36E-05 
0.002869

83 

FHL2_2423 79.755736 1.79872609 
0.470

573 
3.8224

167 
0.000132

15 
0.003809

09 

DRAP1_1957 287.65094 1.12596204 
0.248

754 
4.5264

000 6.00E-06 
0.000312

21 

FEN1_2387 106.39603 1.66498619 
0.348

837 
4.7729

618 1.82E-06 
0.000117

94 

HSPG2_3153 172.88822 0.82013851 
0.246

472 
3.3275

055 
0.000876

27 
0.016830

27 
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Supplementary Table 2 - HepaRG Doxorubicin 0.2uM 
 

gene 
Base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

F2_2286 1069.75 2.713072 0.7045 3.8506 
0.00011

8 0.01903 

ORM1_4833 12107.7 2.177266 0.5221 4.1697 
3.05E-

05 
0.00871

4 

APOC3_356 4130.58 3.281813 0.7505 4.3724 
1.23E-

05 
0.00456

3 

FABP1_2298 81.4128 3.293434 0.8234 3.9996 
6.34E-

05 0.01219 

TWIST1_7416 1165.4 -0.86234 0.2293 3.7605 0.00017 
0.02485

8 

SYTL1_6923 145.509 1.141579 0.3138 3.6377 
0.00027

5 
0.03486

7 

VTN_7690 948.910 2.218009 0.5505 4.0284 
5.61E-

05 0.01219 

TP53I3_7290 1006.11 0.854612 0.2315 3.6913 
0.00022

3 
0.03031

5 

TUBA3D_7401 30.9310 -2.24717 0.5280 4.2553 
2.09E-

05 
0.00649

4 

ALB_217 17799.1 2.943891 0.7269 4.0493 
5.14E-

05 
0.01177

5 

CFB_872 5630.3 1.998505 0.4040 4.9463 
7.56E-

07 
0.00070

2 

HP_3085 88948.2 2.407425 0.6229 3.8646 
0.00011

1 
0.01823

2 

ORM2_4836 2856.77 1.834237 0.4960 3.6980 
0.00021

7 
0.02989

9 

CP_10542 1898.80 1.869051 0.5220 3.5803 
0.00034

3 
0.04112

8 

GPR87_10766 617.617 0.923777 0.2571 3.5927 
0.00032

7 
0.03963

1 

SERPINC1_110
69 501.634 3.61364 0.9050 3.9928 

6.53E-
05 0.01233 

FGL1_11631 900.767 3.471283 0.8198 4.2341 
2.29E-

05 
0.00672

8 

ARMC9_12765 557.600 -0.65645 0.1799 3.6489 
0.00026

3 
0.03431

1 

DRAXIN_12848 61.0077 2.876833 
0.63821

4 
4.5076

3 
6.56E-

06 0.00281 

GPX8_13313 153.058 -1.14464 
0.32393

9 3.5335 0.00041 
0.04525

3 

 

Supplementary Table 3 - HepaRG Doxorubicin 0.04uM 
 

gene 
Base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

CYP11B1_12735 1.53971 -17.1058 
3.68452

8 4.64261 3.44E-06 
0.01288

4 

EI24_15156 106.181 1.560374 
0.32560

8 
4.79E+0

0 1.65E-06 
0.00741

4 

SERPINB12_154
76 2.24729 -17.8041 

3.00387
4 

5.93E+0
0 3.08E-09 

1.73E-
05 
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OR51S1_19220 5.50985 -19.6494 
2.76761

6 
7.10E+0

0 1.25E-12 
1.40E-

08 

AC011525.2_20
202 3.64461 -18.4095 

3.00271
4 6.13094 8.74E-10 

6.54E-
06 

KRTAP10-
3_27410 4.59055 -18.9629 

2.38592
4 7.94781 1.90E-15 

4.27E-
11 

 

Supplementary Table 4 - HepaRG Doxorubicin 0.008uM 
 

gene 
Base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

DEFB103A_11955 11.948 -20.7024 
2.3004

07 
9.00E+

00 
2.27E-

19 
1.27E-

15 

CHST10_12175 3.9388 -18.749 
3.0461

71 
6.15E+

00 
7.51E-

10 
1.13E-

06 

INSYN2B_12783 3.8112 -19.5885 
2.96E+0

0 
6.6127

4 
3.77E-

11 
7.06E-

08 

CYP11B1_12735 1.5397 -17.5226 
3.6845

28 
4.7557

2 
1.98E-

06 
0.0026

14 

DHRS2_15289 61.309 -3.7339 
8.62E-

01 
4.3295

6 
1.49E-

05 
0.0186

51 

OR51S1_19220 5.5098 -20.257 
2.77E+0

0 7.3193 
2.49E-

13 
6.22E-

10 

AC011525.2_2020
2 3.6446 -19.0866 

3.00E+0
0 

6.3564
4 

2.06E-
10 

3.57E-
07 

OR6K3_23328 4.4097 -19.0838 
2.8322

89 
6.7379

6 
1.61E-

11 
3.28E-

08 

TRIM64_23528 8.3123 -20.3978 
2.4531

31 
8.3150

2 
9.17E-

17 
3.44E-

13 

PRAMEF13_26610 14.130 -21.4023 
2.6048

11 
8.2164

3 
2.10E-

16 
6.73E-

13 

SSX7_28872 6.2241 -19.813 
2.1602

41 
9.1716

8 
4.66E-

20 
3.49E-

16 

TRBV6-2_87654 6.0211 -20.0597 
2.30E+0

0 

-
8.7248

1 
2.67E-

18 
1.20E-

14 

TRBV27_88690 7.3410 -19.6724 
2.51E+0

0 

-
7.8311

6 
4.83E-

15 
1.36E-

11 

IGHV3OR16-
12_88869 5.8875 -18.4634 

2.9376
35 

-
6.2851

4 
3.28E-

10 
5.26E-

07 

PRAMEF13_90473 23.032 -20.8498 
2.24E+0

0 

-
9.3058

5 
1.33E-

20 
1.49E-

16 

KRTAP4-12_91049 7.2800 -19.2624 
2.7247

16 

-
7.0695

1 
1.55E-

12 
3.49E-

09 

GLIPR1L1_91181 3.8458 -18.7472 
3.35E+0

0 

-
5.5896

3 
2.28E-

08 
3.20E-

05 

FABP5_92946 19.376 -21.9984 
1.91E+0

0 

-
11.543

2 
7.99E-

31 
1.80E-

26 
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Supplementary Table 5 - HepaRG Niacinamide 8000uM 
 

gene 
Base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

TOP2A_7277 478.998 -1.17198 
2.90E-

01 
4.05E+0

0 
5.17E-

05 
0.00995

7 

CYP2E1_1722 218.219 3.570769 
7.39E-

01 
4.83E+0

0 
1.37E-

06 0.00082 

MAPRE1_4017 273.026 -7.78E-01 
0.22464

8 
3.46E+0

0 
5.37E-

04 
0.03021

2 

ORM1_4833 11786.6 1.960275 
0.54306

5 
3.61E+0

0 
0.00030

7 
0.02149

1 

PLP2_5208 369.057 -1.05E+00 
0.31631

3 
3.33E+0

0 
0.00087

1 
0.03891

9 

RNASEH2A_58
75 260.757 -1.16E+00 

0.30822
5 

3.75E+0
0 

1.74E-
04 

0.01603
8 

TMSB10_7224 4437.71 -1.24E+00 
0.33832

9 
3.68E+0

0 
2.35E-

04 
0.02014

3 

VTN_7690 924.518 1.830714 
0.55366

1 
3.31E+0

0 
9.44E-

04 
0.03922

4 

ALDH2_225 1919.88 1.191075 
0.22390

3 
5.32E+0

0 
1.04E-

07 0.00033 

ALB_217 17959.5 2.933615 
0.73427

8 
4.00E+0

0 
6.46E-

05 
0.01075

3 

CFB_872 5624.49 1.907168 
0.41463

5 
4.60E+0

0 
4.23E-

06 
0.00179

3 

TMEM263_820 456.149 -6.42E-01 
0.18703

4 
3.43E+0

0 
6.01E-

04 
0.03183

3 

CALR_943 19931.3 -1.22E+00 
0.34093

3 
3.58E+0

0 
3.43E-

04 
0.02269

9 

CAT_999 930.547 1.055826 
0.21315

2 
4.95E+0

0 
7.29E-

07 
0.00057

9 

C1R_871 2008.82 8.07E-01 
0.22850

2 
3.53E+0

0 
4.10E-

04 
0.02605

3 

CDK1_1196 924.811 -0.98139 
0.26751

3 
3.67E+0

0 
2.44E-

04 
0.02039

3 

DDIT4_1803 242.428 -9.52E-01 
0.29086

9 
3.27E+0

0 
1.06E-

03 
0.04121

5 

ERO1A_2227 3423.65 -6.71E-01 
0.16219

5 
4.13E+0

0 
3.55E-

05 
0.00752

4 

FGB_2397 3454.24 2.35E+00 0.68296 3.44434 
0.00057

2 
0.03135

7 

NUSAP1_4789 1507.60 -7.16E-01 
0.18123

7 3.95336 
7.71E-

05 
0.01138

7 

 

Supplementary Table 6 - HepaRG Niacinamide 1600uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

CETN1_23919 3.851851 -1.85E+01 2.78E+00 6.64E+00 3.04E-11 6.83E-07 

GABPA_92886 120.2599 -1.53E+00 3.30E-01 4.64E+00 3.48E-06 0.039133 
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Supplementary Table 7 - HepG2 Doxorubicin 1uM 
 

gene 
Base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

GLRX_2674 1.01E+03 1.46E+00 
1.39E-

01 
1.05E+0

1 
9.99E-

26 
2.01E-

24 

STXBP1_6866 3.15E+01 1.45E+00 
2.06E-

01 
7.04E+0

0 
1.92E-

12 
1.55E-

11 

AKAP8L_196 61.6881 1.38E+00 
2.52E-

01 
5.46801

6 
4.55E-

08 
2.33E-

07 

CTSL_1645 562.283 7.21E-01 
0.16852

8 4.27581 
1.90E-

05 
6.85E-

05 

IGFBP4_3271 49.5608 1.75E+00 
0.21357

4 
8.18598

9 
2.70E-

16 
2.95E-

15 

RAP1GAP_572
9 1.83996 1.83E+00 

5.22E-
01 

3.51254
3 

0.00044
4 

0.00125
6 

COQ8A_114 353.700 8.80E-01 
1.36E-

01 
6.48434

5 
8.91E-

11 
6.16E-

10 

FDFT1_2382 125.636 -1.19E+00 
1.66E-

01 7.17488 
7.24E-

13 
6.10E-

12 

AGRN_165 1015.58 1.80E+00 
3.27E-

01 
5.50202

2 
3.75E-

08 
1.95E-

07 

TSC22D3_736
6 4.03577 3.16E+00 

4.94E-
01 

6.39645
1 

1.59E-
10 

1.07E-
09 

ERBB3_2206 858.769 -2.41E+00 
1.29E-

01 18.6581 
1.09E-

77 
1.40E-

75 

SQLE_6736 232.902 -2.19E+00 
1.60E-

01 13.653 
1.94E-

42 
8.60E-

41 

AFMID_157 1228.74 -1.08E+00 
1.58E-

01 6.82459 
8.82E-

12 
6.70E-

11 

TOP2A_7277 1261.73 -6.39E-01 
1.64E-

01 3.8943 
9.85E-

05 
0.00031

5 

ALDH18A1_21
8 273.351 -1.90E+00 

2.69E-
01 7.04125 

1.91E-
12 

1.54E-
11 

AARS_3 970.041 -8.64E-01 
2.12E-

01 4.07233 
4.65E-

05 
0.00015

7 

CHD1L_1283 938.872 -1.00E+00 
1.17E-

01 8.57202 
1.02E-

17 
1.24E-

16 

GNS_2725 338.696 7.49E-01 
1.49E-

01 
5.02164

6 
5.12E-

07 
2.30E-

06 

AKT1_210 300.364 -1.77346 
0.22776

3 7.78645 
6.89E-

15 
6.83E-

14 

RFC5_5812 100.114 -1.28706 
2.70E-

01 4.77167 
1.83E-

06 
7.57E-

06 

 

Supplementary Table 8 – HepG2 Doxorubicin 0.2uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

STXBP1_6866 3.15E+01 1.03E+00 2.09E-01 4.94E+00 7.65E-07 8.24E-06 

IGFBP4_3271 4.96E+01 1.35E+00 2.15E-01 6.28E+00 3.40E-10 6.49E-09 

FDFT1_2382 1.26E+02 -5.95E-01 0.15697 3.79E+00 1.50E-04 0.000924 

AGRN_165 1.02E+03 0.861009 0.32721 2.63E+00 8.50E-03 0.029119 

COPS3_1496 6.93E+02 -0.75535 0.263291 2.87E+00 4.12E-03 0.015984 

SQLE_6736 2.33E+02 -1.15E+00 0.145954 -7.89707 2.86E-15 1.04E-13 
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TOP2A_7277 1.26E+03 -1.06E+00 0.164377 6.48E+00 9.34E-11 1.96E-09 

GNS_2725 3.39E+02 6.17E-01 0.14915 4.14E+00 3.48E-05 0.000254 

APOE_358 4.21E+02 8.53E-01 0.201148 4.24E+00 2.24E-05 0.000172 

RFC5_5812 1.00E+02 -9.01E-01 0.264401 3.41E+00 6.56E-04 0.003347 

CDK4_1203 4.18E+03 -7.61E-01 0.139307 5.46E+00 4.69E-08 6.30E-07 

STOML2_6858 1.14E+02 -9.19E-01 0.22657 4.06E+00 5.01E-05 0.000352 

IER3_3214 3.21E+02 8.26E-01 0.101898 8.11E+00 5.15E-16 2.01E-14 

PI4KA_5128 6.43E+02 5.81E-01 0.172422 3.37E+00 0.000745 0.003731 

C3_886 2.10E+03 6.83E-01 0.128866 5.30E+00 1.15E-07 1.43E-06 

ATF3_499 7.48E+00 1.50E+00 0.367699 4.09E+00 4.34E-05 0.000309 

RNPS1_5895 3.24E+03 -6.47E-01 0.14981 4.32E+00 1.56E-05 0.000124 

CDC25A_1158 1.63E+02 -1.31E+00 0.189285 6.91E+00 4.76E-12 1.18E-10 

AZIN1_593 95.94268 -1.0135 0.250859 4.04E+00 5.34E-05 0.000372 

CCNB1IP1_1054 993.1013 -6.47E-01 0.121392 5.33E+00 9.83E-08 1.24E-06 

 

Supplementary Table 9 - HepG2 Doxorubicin 0.04uM 
 

gene 
Base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

ADSL_153 1.37E+01 -1.08E+00 
3.42E-

01 
3.15E+0

0 
1.64E-

03 0.02417 

APOO_361 1.74E+02 -6.20E-01 
1.81E-

01 
3.43E+0

0 
5.94E-

04 
0.01160

9 

DDB2_1798 2.71E+02 1.224207 
1.94E-

01 
6.32E+0

0 
2.61E-

10 
3.78E-

08 

CHERP_1290 209.650 -0.66184 
1.72E-

01 
3.86E+0

0 
0.00011

4 
0.00348

2 

GABPB1_2555 641.222 -0.81465 
2.23E-

01 
3.65E+0

0 
0.00025

9 
0.00631

3 

HSPG2_3153 6.95E+0 0.753843 
0.16538

1 
4.56E+0

0 
5.16E-

06 
0.00027

9 

HIST1H4J_2959 3.67E+02 -2.49449 
5.18E-

01 
4.82E+0

0 
1.45E-

06 
9.53E-

05 

HIST1H3H_2957 2.19E+03 -2.91894 
2.32E-

01 
1.26E+0

1 
3.27E-

36 
6.84E-

33 

HIST1H2BH_29
54 1.89E+01 -1.87523 

4.78E-
01 

3.93E+0
0 

8.66E-
05 

0.00277
6 

HIST1H1C_2950 1.78E+03 -2.27769 
2.03E-

01 
1.12E+0

1 
2.60E-

29 
2.92E-

26 

HES1_2925 2.24E+02 0.730899 
1.72E-

01 
4.25E+0

0 
2.10E-

05 
0.00088

1 

HIST1H4E_2958 1.52E+03 -1.80561 
2.39E-

01 
7.54E+0

0 
4.54E-

14 
1.09E-

11 

HIST1H2BM_29
56 3.76E+02 -3.51783 

4.49E-
01 

7.83E+0
0 

4.87E-
15 

1.29E-
12 

HS2ST1_3104 2.41E+01 -0.83022 
2.89E-

01 2.86927 
0.00411

4 
0.04603

6 

HIST1H2BG_29
53 4.12E+01 -2.24454 

4.72E-
01 

4.75E+0
0 

2.01E-
06 

0.00012
6 

LRPAP1_3876 5.73E+01 0.724031 
2.49E-

01 
2.91E+0

0 
0.00358

3 
0.04158

3 
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LPIN3_3865 2.23E+01 1.00587 
2.67E-

01 
3.76E+0

0 
0.00016

8 
0.00465

3 

LAMA3_3717 1.59E+01 1.549756 
2.91E-

01 
5.33E+0

0 
9.79E-

08 
8.70E-

06 

LPAR2_3854 11.5139 0.948153 
3.04E-

01 
3.12E+0

0 
0.00180

2 
0.02591

2 

NFKB2_4567 2.86E+01 0.728765 
2.15E-

01 
3.39E+0

0 
6.97E-

04 
0.01291

6 

 

Supplementary Table 10 - HepG2 Doxorubicin 0.00032uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

IGFBP4_3271 4.96E+01 9.95E-01 2.19E-01 4.55E+00 5.34E-06 0.00034 

BCL2L2_665 2.07E+02 8.05E-01 2.32E-01 3.47E+00 0.000516 0.007183 

ALDH18A1_218 273.3511 8.98E-01 2.60E-01 3.46E+00 5.44E-04 0.007389 

ECH1_2022 41.36794 1.39E+00 4.06E-01 3.42775 0.000609 0.007861 

GNS_2725 338.6962 -7.14E-01 1.54E-01 -4.64579 3.39E-06 0.000259 

APOE_358 420.6231 1.033298 2.01E-01 5.14E+00 2.77E-07 5.15E-05 

RFC5_5812 100.1146 -7.52E-01 2.64E-01 
-

2.85E+00 4.43E-03 0.028518 

AGPAT2_163 21.81578 -7.69E-01 2.87E-01 
-

2.68E+00 7.34E-03 0.039641 

ELAC2_2114 32.2519 8.48E-01 2.25E-01 3.76E+00 0.000168 0.003545 

CHIC2_1295 126.4555 -7.47E-01 1.86E-01 
-

4.02E+00 5.73E-05 0.001786 

TMEM230_7197 1472.313 -5.92E-01 1.54E-01 
-

3.85E+00 0.00012 0.002844 

AZIN1_593 95.94268 -6.37E-01 2.48E-01 
-

2.57E+00 1.03E-02 0.049342 

BZW2_805 202.2757 -1.00E+00 3.75E-01 
-

2.67E+00 7.56E-03 0.040405 

BAG6_630 1250.878 6.61E-01 0.167598 3.941557 8.10E-05 0.002243 

BMI1_732 7.46865 -1.85E+00 5.82E-01 
-

3.18E+00 0.001489 0.014024 

AMD1_247 743.0572 -8.15E-01 2.20E-01 -3.70023 0.000215 0.004159 

ADGRE5_1154 18.76131 -1.61E+00 3.29E-01 -4.89737 9.71E-07 0.000113 

CD40_1129 7.830089 1.54E+00 5.23E-01 2.95E+00 3.16E-03 0.022649 

CCDC130_1019 55.97117 5.91E-01 2.31E-01 2.562345 0.010397 0.049754 

CIC_1347 5.822303 2.49E+00 5.15E-01 4.83E+00 1.40E-06 0.000138 

 

Supplementary Table 11 - HepG2 Niacinamide 60000uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

IGFBP4_3271 4.96E+01 9.95E-01 2.19E-01 4.55E+00 5.34E-06 0.00034 

BCL2L2_665 2.07E+02 8.05E-01 2.32E-01 3.47E+00 0.000516 0.007183 

ALDH18A1_218 273.3511 8.98E-01 2.60E-01 3.46E+00 5.44E-04 0.007389 

ECH1_2022 41.36794 1.39E+00 4.06E-01 3.42775 0.000609 0.007861 

GNS_2725 338.6962 -7.14E-01 1.54E-01 -4.64579 3.39E-06 0.000259 

APOE_358 420.6231 1.033298 2.01E-01 5.14E+00 2.77E-07 5.15E-05 

RFC5_5812 100.1146 -7.52E-01 2.64E-01 
-

2.85E+00 4.43E-03 0.028518 
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AGPAT2_163 21.81578 -7.69E-01 2.87E-01 
-

2.68E+00 7.34E-03 0.039641 

ELAC2_2114 32.2519 8.48E-01 2.25E-01 3.76E+00 0.000168 0.003545 

CHIC2_1295 126.4555 -7.47E-01 1.86E-01 
-

4.02E+00 5.73E-05 0.001786 

TMEM230_7197 1472.313 -5.92E-01 1.54E-01 
-

3.85E+00 0.00012 0.002844 

AZIN1_593 95.94268 -6.37E-01 2.48E-01 
-

2.57E+00 1.03E-02 0.049342 

BZW2_805 202.2757 -1.00E+00 3.75E-01 
-

2.67E+00 7.56E-03 0.040405 

BAG6_630 1250.878 6.61E-01 0.167598 3.941557 8.10E-05 0.002243 

BMI1_732 7.46865 -1.85E+00 5.82E-01 
-

3.18E+00 0.001489 0.014024 

AMD1_247 743.0572 -8.15E-01 2.20E-01 -3.70023 0.000215 0.004159 

ADGRE5_1154 18.76131 -1.61E+00 3.29E-01 -4.89737 9.71E-07 0.000113 

CD40_1129 7.830089 1.54E+00 5.23E-01 2.95E+00 3.16E-03 0.022649 

CCDC130_1019 55.97117 5.91E-01 2.31E-01 2.562345 0.010397 0.049754 

CIC_1347 5.822303 2.49E+00 5.15E-01 4.83E+00 1.40E-06 0.000138 

 

Supplementary Table 12 - HepG2 Niacinamide 12000uM 
 

gene 
Base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

APOE_358 3.90E+02 -8.56E-01 
2.10E-

01 
4.08E+0

0 
4.48E-

05 
0.00616

1 

AGPAT2_163 2.05E+01 -1.38E+00 
3.11E-

01 4.44598 
8.75E-

06 
0.00172

1 

CDH1_1186 7.61E+01 -1.64E+00 
2.55E-

01 
6.45E+0

0 
1.14E-

10 
2.32E-

07 

HMOX1_3041 3.86E+02 -8.21E-01 
0.18081

5 4.54002 
5.62E-

06 
0.00128

5 

PDLIM1_5041 7.54E+02 -7.80E-01 
0.17154

2 
4.54E+0

0 
5.50E-

06 
0.00127

9 

ORM1_4833 1252.23 -9.81E-01 
2.54E-

01 
3.86E+0

0 
1.14E-

04 
0.01253

9 

UBE2L6_7483 2.95E+02 -5.93E-01 
1.51E-

01 
3.92E+0

0 
9.03E-

05 
0.01065

9 

APOC3_356 4.22E+02 -1.40E+00 
1.61E-

01 
8.70E+0

0 
3.22E-

18 
1.52E-

14 

PDGFB_5026 3.90E+01 -7.90E-01 
1.99E-

01 3.96959 
7.20E-

05 
0.00886

7 

TP53INP2_729
1 2.91E+02 -5.86E-01 

1.58E-
01 

3.71E+0
0 

0.00021
1 

0.01867
4 

VTN_7690 1.95E+02 -1.12E+00 
1.51E-

01 7.43066 
1.08E-

13 
3.83E-

10 

HP_3085 8.96E+02 -1.28E+00 
1.44E-

01 
8.93E+0

0 
4.20E-

19 
2.97E-

15 

SERPINE1_625
3 1.18E+03 -7.71E-01 

2.01E-
01 

3.84E+0
0 

0.00012
3 

0.01306
6 

MYOF_10516 1.75E+01 -1.37731 
0.35297

2 
3.90E+0

0 
9.54E-

05 
0.01098

4 

CYP1A1_10775 1.53E+02 1.35E+00 
2.12E-

01 
6.36819

1 
1.91E-

10 
3.39E-

07 
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SERPINC1_110
69 6.72E+02 -5.97E-01 

0.11152
7 5.35216 

8.69E-
08 

5.13E-
05 

ISG20_11135 4.11E+01 -9.03E-01 
0.25323

5 
3.56E+0

0 
0.00036

5 0.02797 

LGALS7B_1114
7 1.06E+01 -2.26E+00 

6.31E-
01 

3.59E+0
0 

0.00032
9 

0.02614
2 

COL16A1_1131
9 4.87E+02 -1.01E+00 

0.23719
4 4.24164 

2.22E-
05 

0.00369
8 

IDNK_11284 2.64E+01 -1.20E+00 
2.92E-

01 
4.13E+0

0 
3.62E-

05 
0.00522

9 

 

Supplementary Table 13 - HepG2 Niacinamide 2400uM 
 

gene 
Base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

AGPAT2_163 2.05E+01 -1.34E+00 
3.11E-

01 
4.32E+0

0 
1.58E-

05 0.00448 

ELAC2_2114 3.33E+01 8.93E-01 
0.21880

7 
4.08E+0

0 
4.52E-

05 
0.00721

8 

ADGRE5_1154 1.86E+01 -9.14E-01 
2.82E-

01 
3.24E+0

0 
1.18E-

03 
0.04355

3 

CDH1_1186 7.61E+01 -1.34004 
0.24950

7 
5.37E+0

0 
7.84E-

08 
0.00027

1 

DPM2_1947 3.92E+01 1.136696 
3.27E-

01 
3.48E+0

0 
0.00050

3 
0.02962

8 

DYNLL1_1997 9.48E+02 -1.24E+00 
3.48E-

01 
3.55E+0

0 
0.00038

9 0.02554 

MYLK_4414 2.71E+01 -1.07E+00 
3.12E-

01 
3.44E+0

0 0.00059 
0.03186

2 

KLHDC3_3631 2.10E+02 8.35E-01 
2.03E-

01 
4.11E+0

0 
4.00E-

05 0.00688 

MCEE_4067 4.36E+01 -9.15E-01 
0.21537

5 
4.25E+0

0 
2.16E-

05 
0.00511

4 

MT2A_4334 3.61E+02 1.71E+00 
5.22E-

01 
3.28330

8 
0.00102

6 
0.04136

4 

NT5DC2_4737 6.39E+00 1.17E+00 
0.35815

4 
3.28E+0

0 
1.06E-

03 
0.04175

3 

PDLIM1_5041 7.54E+02 -6.44E-01 
1.71E-

01 
3.76E+0

0 
1.70E-

04 
0.01697

6 

PAIP1_4909 8.27E+01 -7.41E-01 
2.10E-

01 3.5225 
0.00042

7 
0.02667

7 

TRIB3_7337 2713.657 -0.67079 
2.02E-

01 
3.33E+0

0 
0.00087

5 
0.03864

8 

ELMO3_2123 1.05E+01 1.24E+00 
0.32161

3 
3.86E+0

0 
1.16E-

04 
0.01386

2 

PPARA_5300 4.35E+01 -0.63815 
0.19561

8 
3.26E+0

0 
1.11E-

03 
0.04239

3 

TMEM184B_71
92 2.02E+01 0.710841 

2.14E-
01 

3.32132
3 

0.00089
6 0.03872 

ERCC8_2220 1.94E+02 -8.55E-01 
2.35E-

01 3.64498 
0.00026

7 
0.02053

6 

APOC3_356 4.22E+02 -0.61615 
0.15824

3 
3.89E+0

0 
9.87E-

05 
0.01278

8 

TMC7_7154 1.62E+01 -1.32E+00 
3.62E-

01 
3.64E+0

0 
0.00027

7 
0.02085

8 
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Supplementary Table 14 – HepG2 Niacinamide 480uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

APOC3_356 4.22E+02 -7.42E-01 1.59E-01 
-

4.68E+00 2.91E-06 0.032645 

APOL1_20931 8.32E+02 1.450616 2.68E-01 5.42E+00 5.96E-08 0.001336 

 

 

Supplementary Table 15 - HepG2 Niacinamide 96uM 
 

gene 
base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

CPNE1_1529 1.46E+03 -6.03E-01 
1.53E-

01 
3.94E+0

0 
8.06E-

05 
0.027

6 

TMEM203_7196 50.09829 -1.27E+00 
2.59E-

01 
4.91E+0

0 
9.29E-

07 
0.003

8 

TP53INP2_7291 2.91E+02 -6.93E-01 
1.59E-

01 4.3677 
1.26E-

05 
0.016

7 

ABCE1_32 211.5218 -6.86E-01 
1.65E-

01 4.1476 
3.36E-

05 
0.021

2 

ARHGEF2_423 8.92E+01 5.95E-01 0.165 3.5951 
0.00032

4 
0.049

9 

CRYZ_1586 2.18E+02 -8.01E-01 0.193 4.1449 
3.40E-

05 
0.021

2 

KPNA3_3672 7.94E+01 -9.04E-01 0.243 3.7148 
0.00020

3 
0.041

6 

MSMO1_4315 5.56E+03 -6.83E-01 
1.88E-

01 3.6266 
0.00028

7 
0.049

9 

PCBP2_4957 921.751 6.80E-01 
1.75E-

01 3.8949 
9.82E-

05 
0.028

7 

POT1_5287 6.77E+0 0.980593 0.230 4.2458 
2.18E-

05 
0.019

7 

SF3B1_6268 893.622 -7.18E-01 
1.80E-

01 -3.993 
6.52E-

05 
0.025

6 

TATDN2_6963 3.10E+01 9.12E-01 
2.31E-

01 3.9426 
8.06E-

05 
0.027

6 

USO1_7576 2.62E+02 -0.82798 0.2112 3.9196 
8.87E-

05 
0.028

7 

RALGAPA2_1082
9 6.02E+01 -9.35E-01 0.2607 3.5878 

0.00033
3 

0.049
9 

LRCH4_11541 20.8846 1.14E+00 
3.02E-

01 3.7805 
0.00015

6 
0.037

5 

SLC7A6OS_1199
8 350.579 -8.87E-01 

2.19E-
01 4.0472 

5.18E-
05 

0.023
0 

TMEM169_1232
5 2.31E+01 0.974671 0.2552 3.8181 

0.00013
4 

0.035
0 

ACADSB_13280 5.26E+02 -0.68797 0.1711 4.0201 
5.82E-

05 
0.024

0 

RAB11FIP5_133
49 116.6166 6.24E-01 

1.53E-
01 4.0868 

4.37E-
05 

0.021
2 

TMEM131_1354
6 5.18E+01 1.61E+00 0.389 4.1242 

3.72E-
05 

0.021
2 
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Supplementary Table 16 - HepG2 Niacinamide 19.2uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

COQ9_11694 2.93E+02 -1.68E+00 3.43E-01 4.90E+00 9.39E-07 0.01053 

APOL1_20931 8.32E+02 1.54E+00 2.68E-01 5.77E+00 8.11E-09 0.000182 

 

Supplementary Table 17 - HepG2 Niacinamide 3.84uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

APOL1_20931 8.32E+02 1.48E+00 2.68E-01 5.51E+00 3.50E-08 0.000784 

 

Supplementary Table 18 – MCF-7 Doxorubicin 1uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

CHAC1_1279 3.19E+01 2.06E+00 2.77E-01 7.44E+00 1.03E-13 8.88E-13 

GLRX_2674 5.17E+01 8.97E-01 1.81E-01 4.944021 7.65E-07 3.32E-06 

MEFV_4116 5.431577 2.74E+00 0.427015 6.428306 1.29E-10 8.53E-10 

AKAP8L_196 35.53614 1.73E+00 0.218079 7.952083 1.83E-15 1.81E-14 

CTSL_1645 752.1987 2.431977 0.188362 12.9112 3.89E-38 1.25E-36 

RAP1GAP_5729 1.784273 1.77E+00 0.658025 2.685288 0.007247 0.016241 

COQ8A_114 109.9445 1.287839 0.114887 11.20963 3.66E-29 7.84E-28 

AGRN_165 2463.815 1.029802 0.358162 2.875241 0.004037 0.009624 

ABCG1_37 4.357605 1.56E+00 0.477774 3.265766 0.001092 0.00294 

COPS3_1496 1485.223 -7.88E-01 0.263966 -2.98634 0.002823 0.006944 

TSC22D3_7366 523.9508 2.09E+00 0.149985 13.91652 5.03E-44 2.04E-42 

ERBB3_2206 1051.834 -8.27E-01 0.119058 -6.94814 3.70E-12 2.81E-11 

SQLE_6736 372.5088 -1.73E+00 0.141966 -12.1809 3.93E-34 1.05E-32 

MUC1_4366 90.27375 -1.66656 0.202262 -8.2396 1.73E-16 1.83E-15 

TOP2A_7277 571.08 -2.45312 0.147268 -16.6576 2.67E-62 1.90E-60 

ALDH18A1_218 70.60763 -9.50E-01 0.270824 -3.50737 0.000453 0.0013 

AARS_3 1245.21 -1.44637 0.174272 -8.29951 1.05E-16 1.13E-15 

RPS5_6011 1640.987 -6.81E-01 0.287237 -2.36953 0.017811 0.036328 

CHD1L_1283 568.6987 -1.11E+00 0.110605 -10.0412 1.00E-23 1.66E-22 

GNS_2725 580.2582 1.52E+00 0.193846 7.8352 4.68E-15 4.48E-14 

 

Supplementary Table 19 - MCF-7 Doxorubicin 0.2uM 
 

gene 
Base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

AKAP8L_196 3.55E+01 7.92E-01 
2.24E-

01 
3.53E+0

0 
4.12E-

04 
0.00425

4 

CTSL_1645 7.52E+02 5.94E-01 0.1890 
3.14E+0

0 
1.67E-

03 0.01383 

COPS3_1496 1.49E+03 -0.91464 0.2639 
3.47E+0

0 
5.30E-

04 
0.00525

1 

TSC22D3_736
6 5.24E+02 1.185531 0.1504 

7.88E+0
0 

3.28E-
15 

2.72E-
13 

MUC1_4366 90.27375 -1.41522 0.1921 
7.37E+0

0 
1.74E-

13 
1.17E-

11 



135 

 

AARS_3 1.25E+03 -0.58011 0.1729 3.35467 
0.00079

5 
0.00740

9 

GNS_2725 580.258 0.739432 0.1942 
3.81E+0

0 
1.40E-

04 
0.00167

8 

RFC5_5812 155.511 -1.15692 0.2042 5.66292 
1.49E-

08 
4.80E-

07 

CDK4_1203 7.41E+03 -0.82674 0.1395 5.92413 
3.14E-

09 
1.15E-

07 

ACD_60 6.42E+01 -0.61353 0.1630 3.76192 
0.00016

9 
0.00197

6 

CDC25A_1158 7.81E+01 -1.37636 0.2578 
5.34E+0

0 
9.42E-

08 
2.65E-

06 

CD320_1116 9.24E+01 -0.85037 0.1727 
4.92E+0

0 
8.52E-

07 
1.93E-

05 

CBR3_1007 1.29E+02 -0.75863 0.1274 
5.95E+0

0 
2.64E-

09 
9.81E-

08 

CDCA5_1184 159.497 -1.65034 0.2906 
5.68E+0

0 
1.36E-

08 
4.44E-

07 

CCND1_1062 197.579 0.823447 0.2679 
3.07E+0

0 
2.12E-

03 
0.01689

1 

AURKB_587 4.35E+02 -0.90396 0.2450 3.68836 
0.00022

6 0.00254 

APOO_361 296.546 -0.73083 0.1329 
5.50E+0

0 
3.84E-

08 
1.14E-

06 

CGA_1272 1.19E+01 1.615526 0.564 
2.86440

9 
0.00417

8 
0.02882

7 

CDK2_1202 4.32E+02 -0.8603 0.0875 
9.83E+0

0 
8.24E-

23 
1.38E-

20 

DEPDC1B_184
7 6.38E+02 -1.18129 0.1507 

7.84E+0
0 

4.64E-
15 

3.81E-
13 

 

Supplementary Table 20 - MCF-7 Doxorubicin 0.04uM 
 

gene 
Base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

RFC5_5812 1.56E+02 -7.00E-01 
2.01E-

01 

-
3.48E+0

0 0.0005 0.02586 

AURKB_587 4.35E+02 -0.82439 
2.45E-

01 

-
3.37E+0

0 
0.00076

5 
0.03485

1 

CKLF_1359 127.2494 -0.71994 
2.20E-

01 

-
3.27E+0

0 
0.00106

1 
0.04440

5 

FEN1_2387 217.5066 -0.60437 
1.26E-

01 

-
4.80E+0

0 
1.57E-

06 
0.00032

4 

HIST1H4J_2959 150.9058 -1.81067 
5.12E-

01 

-
3.54E+0

0 
4.05E-

04 
0.02232

5 

HIST1H3H_295
7 1255.967 -1.0643 

0.22997
7 -4.62786 

3.69E-
06 

0.00063
3 

HIST1H2BH_29
54 140.7993 -1.15347 

2.92E-
01 

-
3.95E+0

0 
7.68E-

05 
0.00638

9 
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HIST1H1C_2950 1135.832 -0.99287 
0.18229

4 

-
5.45E+0

0 
5.14E-

08 
2.21E-

05 

HIST1H4E_2958 974.6977 -1.02962 
0.21617

5 

-
4.76E+0

0 
1.91E-

06 
0.00038

4 

HIST1H2BM_29
56 824.9539 -1.73839 0.38178 -4.55339 

5.28E-
06 0.00082 

HIST1H2BG_29
53 38.73987 -1.42413 

4.31E-
01 

-
3.30E+0

0 
9.57E-

04 
0.04094

9 

SPC25_6704 410.7606 -0.62989 
1.15E-

01 

-
5.48E+0

0 
4.34E-

08 
2.04E-

05 

SOX2_6683 80.52757 -0.76009 
1.96E-

01 

-
3.87E+0

0 
1.09E-

04 
0.00844

2 

GDF15_2621 253.8098 0.960226 
1.89E-

01 
5.07E+0

0 
4.02E-

07 
0.00013

5 

GREB1_2778 488.13 0.761046 
2.30E-

01 
3.31E+0

0 
0.00092

9 
0.04042

1 

BBC3_640 51.01453 0.728915 
0.22006

3 
3.31230

1 
0.00092

5 
0.04040

6 

H2AFX_2861 4662.36 -0.76677 
1.70E-

01 

-
4.51E+0

0 
6.38E-

06 
0.00090

7 

GADD45G_257
1 34.98628 0.652624 

0.18762
1 

3.47841
6 

0.00050
4 

0.02586
2 

SYTL1_6923 100.6078 0.744213 
1.62E-

01 
4.61E+0

0 
4.10E-

06 
0.00068

7 

HIST1H4K_2960 1739.456 -1.51227 
3.24E-

01 

-
4.66E+0

0 
3.14E-

06 
0.00055

6 

 

 

Supplementary Table 21 -  MCF-7 Doxorubicin 0.0016uM 
 

gene 
Base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

HRAS_310
1 1.40E+03 -8.20E-01 1.63E-01 -5.024 5.06E-07 0.002269 

 

 

Supplementary Table 22 - MCF-7 Niacinamide 60000uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

CHAC1_1279 3.31E+01 2.96E+00 0.29401 1.01E+01 7.19E-24 1.68E-22 

MEFV_4116 6.42E+00 3.81E+00 0.448476 8.496452 1.95E-17 2.93E-16 

STXBP1_6866 1.27E+02 1.34E+00 0.133069 10.07775 6.93E-24 1.63E-22 

AKAP8L_196 3.31E+01 1.21E+00 2.25E-01 5.403116 6.55E-08 3.59E-07 

IGFBP4_3271 1.74E+02 -1.84E+00 2.21E-01 -8.32443 8.47E-17 1.20E-15 

ERBB3_2206 1022.544 -0.91039 1.38E-01 -6.59124 4.36E-11 3.50E-10 

CLN3_1392 7.82E+00 -1.34E+00 5.05E-01 -2.65203 0.008001 0.018283 
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MUC1_4366 88.33541 -1.96E+00 2.19E-01 
-

8.95E+00 3.66E-19 6.39E-18 

ALDH18A1_218 67.71459 -1.55E+00 2.79E-01 -5.5563 2.76E-08 1.59E-07 

ECH1_2022 29.64415 -1.97453 4.60E-01 -4.29241 1.77E-05 6.73E-05 

GRK2_152 2.98E+02 -1.13E+00 1.34E-01 -8.40174 4.40E-17 6.40E-16 

CHD1L_1283 5.63E+02 -1.00E+00 1.09E-01 
-

9.22E+00 2.97E-20 5.58E-19 

GNS_2725 5.67E+02 9.99E-01 1.98E-01 5.048617 4.45E-07 2.16E-06 

MFAP1_4142 6.09E+01 1.18E+00 2.27E-01 5.198993 2.00E-07 1.02E-06 

AKT1_210 1.41E+03 -9.11E-01 0.21773 -4.18301 2.88E-05 0.000106 

APOE_358 1.254733 2.676592 0.992311 2.697331 0.00699 0.016202 

RFC5_5812 1.53E+02 -8.19E-01 2.02E-01 -4.0637 4.83E-05 0.000172 

CDK4_1203 7122.304 -1.50375 0.140164 -10.7285 7.48E-27 2.23E-25 

FOS_2461 1.31E+01 2.65E+00 3.66E-01 7.245988 4.29E-13 4.25E-12 

STOML2_6858 1.60E+02 -8.68E-01 2.43E-01 -3.5736 0.000352 0.001076 

 

Supplementary Table 23 - MCF-7 Niacinamide 12000uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

GLRX_2674 5.13E+01 1.349971 2.12E-01 6.36E+00 2.01E-10 4.44E-08 

MEFV_4116 6.42E+00 1.359591 0.485396 2.80E+00 5.09E-03 0.040439 

STXBP1_6866 1.27E+02 0.810678 0.135659 5.98E+00 2.29E-09 3.13E-07 

IGFBP4_3271 1.74E+02 -8.08E-01 0.209837 
-

3.85E+00 1.18E-04 0.002431 

GNS_2725 5.67E+02 8.98E-01 0.197978 4.54E+00 5.72E-06 0.000216 

RFC5_5812 153.3336 -6.96E-01 0.200563 
-

3.47E+00 5.21E-04 0.007592 

MRPS2_4292 1.69E+02 -9.43E-01 0.307065 -3.07109 0.002133 0.02159 

CD320_1116 8.87E+01 -7.79E-01 1.66E-01 
-

4.69E+00 2.76E-06 0.000123 

CBR3_1007 1.23E+02 -7.09E-01 0.14479 
-

4.90E+00 9.70E-07 5.11E-05 

CCND1_1062 180.8657 -9.49E-01 0.280169 
-

3.39E+00 7.04E-04 0.00944 

ALDOC_233 1.79E+01 9.57E-01 0.341151 2.81E+00 5.01E-03 0.039889 

CAPN1_957 1.87E+02 -5.87E-01 1.60E-01 
-

3.66E+00 2.52E-04 0.004353 

CYP46A1_1732 3.16E+00 1.78E+00 0.53248 3.34E+00 8.26E-04 0.010591 

CGA_1272 1.51E+01 4.20E+00 0.695414 6.04E+00 1.59E-09 2.49E-07 

CFLAR_1269 8.18E+01 -0.60008 0.158082 
-

3.80E+00 0.000147 0.002873 

COL5A1_1480 44.57019 0.695042 0.190336 3.651663 0.000261 0.004456 

CTSD_1642 3.03E+03 -1.13E+00 0.22872 
-

4.96E+00 7.20E-07 4.02E-05 

CYP2E1_1722 4.703489 1.325203 0.48436 2.74E+00 6.22E-03 0.046387 

CEBPD_1242 1.77E+01 -1.50E+00 0.362078 
-

4.14E+00 3.43E-05 0.000893 

GDPD5_2628 2.20E+00 1.87E+00 0.640642 2.922542 0.003472 0.030441 
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Supplementary Table 24 - MCF-7 Niacinamide 2400uM 
 

gene 
Base 
Mean 

log2Fold 
Change lfcSE stat pvalue padj 

PSME2_5535 414.2825 -6.90E-01 
1.90E-

01 

-
3.63E+0

0 
2.87E-

04 0.04162 

RASL10B_5744 20.04721 -1.0838 
2.59E-

01 

-
4.19E+0

0 
2.79E-

05 
0.00928

7 

MATK_4040 163.6744 -0.67588 
1.51E-

01 

-
4.49E+0

0 
7.11E-

06 
0.00373

2 

GJB2_2653 9.48E+01 -0.62839 
1.67E-

01 

-
3.76E+0

0 
0.00016

7 
0.03171

5 

MGST3_10518 1.76E+02 0.627795 
1.75E-

01 
3.59E+0

0 0.00033 
0.04590

9 

QPCT_10614 4.70E+01 0.679338 
1.89E-

01 
3.59E+0

0 
0.00033

5 
0.04590

9 

LRFN4_11101 6.30E+01 -0.63001 
0.15570

3 -4.04622 
5.21E-

05 0.01531 

NAALADL2_114
68 3.00E+01 9.20E-01 

1.92E-
01 

4.80E+0
0 

1.55E-
06 

0.00178
3 

TSPAN1_11441 4.00E+01 -1.05663 
2.13E-

01 

-
4.96E+0

0 
6.99E-

07 
0.00133

1 

AASS_11850 1.86E+01 1.381702 
3.13E-

01 
4.42E+0

0 
1.00E-

05 
0.00476

7 

LIMA1_12066 1.29E+02 0.642139 
1.67E-

01 
3.85E+0

0 
0.00011

8 0.0251 

DSCC1_12314 2.33E+03 -6.29E-01 
1.61E-

01 

-
3.90E+0

0 
9.44E-

05 
0.02096

1 

CDC14A_12788 3.11E+01 -0.99826 
2.32E-

01 

-
4.30E+0

0 
1.70E-

05 
0.00630

6 

KLHDC1_13148 2.81E+01 0.812348 
2.12E-

01 
3.84E+0

0 
1.23E-

04 
0.02556

9 

MAOB_13383 13.29947 -1.5759 
4.23E-

01 -3.72446 
0.00019

6 
0.03523

3 

SPHK1_13551 439.2118 -0.64929 
0.12672

7 -5.12354 
3.00E-

07 
0.00114

5 

BDH2_14883 1.24E+02 0.787317 
2.06E-

01 
3.83E+0

0 
1.28E-

04 0.02578 

HMGN5_15632 96.17149 0.710803 
1.78E-

01 
3.98E+0

0 
6.78E-

05 
0.01735

8 

HMCN1_15657 3.11E+01 0.742609 
1.99E-

01 
3.73E+0

0 
0.00019

4 
0.03523

3 

ZNF189_15740 1.83E+01 0.88826 
0.24868

6 3.57181 
0.00035

5 
0.04590

9 
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Supplementary Table 25 - MCF-7 Niacinamide 480uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

CCDC9_20830 3.11E+02 1.10E+00 1.90E-01 5.79E+00 6.92E-09 0.000156 

 

Supplementary Table 26 - MCF-7 Niacinamide 96uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

CCDC9_20830 3.11E+02 9.11E-01 1.90E-01 4.79E+00 1.67E-06 0.018786 

ACACA_91463 7.00E+02 -6.43E-01 1.42E-01 -4.53958 5.64E-06 0.04221 

GABPA_92886 2.07E+02 -1.25E+00 2.54E-01 -4.9338 8.06E-07 0.018117 

 

Supplementary Table 27 - MCF-7 Niacinamide 19.2uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

CCDC9_20830 3.11E+02 1.02E+00 1.90E-01 5.37E+00 8.04E-08 0.000602 

ACACA_91463 7.00E+02 -0.82938 1.42E-01 
-

5.83E+00 5.49E-09 0.000123 

GABPA_92886 2.07E+02 -1.40318 2.56E-01 -5.48564 4.12E-08 0.000463 

 

 

Supplementary Table 28 - MCF-7 Niacinamide 3.84uM 
 

gene baseMean log2FoldChange lfcSE stat pvalue padj 

CCDC9_20830 3.11E+02 9.73E-01 1.90E-01 5.11E+00 3.15E-07 0.003542 

MMP10_28510 5.30E+00 -1.58E+01 1.779038 
-

8.89E+00 6.12E-19 1.37E-14 
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APPENDIX 3 
 
Supplementary Figures 1-6 
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Supplementary Figure 1: The six lowest probe BMDL individual curve fits for 
HepaRG doxorubicin. Red points = mean and standard deviation data points, 
first black vertical line = BMDL, secondblack vertical line = BMD, green vertical 
line = BMDU, blue curve = model fit to the data. A - GDNF_24860; response – 
Hill; BMDL = 0.0174935; B - MAST4_13899; RESPONSE – Power; BMDL= 
0.0263351; C - DSE_15124; response – Hill; BMDL = 0.0274406  ;D - 
AKR1B10_19908; response – Power; BMDL = 0.0323136; E - TRIM22_21719; 
response – Hill; BMDL = 0.0324324  ; F - TNFRSF10A; response – Power; BMDL 
= 0.0327428      
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Supplementary Figure 2: The six lowest probe BMDL individual curve fits for 
Hep G2 doxorubicin. Red points = mean and standard deviation data points, 
first black vertical line = BMDL, second black vertical line = BMD, green vertical 
line = BMDU, blue curve = model fit to the data. A - KCTD6_27391; response – 
Power; BMDL = 0.00121298;; B - GOLGA8A_19056; response – Power; BMDL = 
000125679; C - INPPL1_14655; response – Power; BMDL = 0.00185812;D - 
TOR1AIP1_10953; response – Power; BMDL = 0.0020632; E - ARF3_16792; 
response – Power; BMDL = 0.00251049; F - NAGK_23047; response – Power; 
BMDL = 0.00278434      
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Supplementary Figure 3: The six lowest probe BMDL individual curve fits for 
MCF7 doxorubicin. Red points = mean and standard deviation data points, first 
black vertical line = BMDL, second black vertical line = BMD, green vertical line 
= BMDU, blue curve = model fit to the data. A - ULK1_26707; response – 
Power; BMDL = 0.0013132; B - SMAD3_6562; response – Power; BMDL = 
0.00254904; C - HIST1H4E_2958; response – Power; BMDL = 0.00308809;D - 
SYTL1_6923; response – Power; BMDL = 0.00318123; E - RIBC2_10735; 
response – Power; BMDL = 0.00349724; F - HELZ2_10675; response – Power; 
BMDL = 0.00419383 
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Supplementary Figure 4: The six lowest probe BMDL individual curve fits for 
HepaRG niacinamide. Red points = mean and standard deviation of data 
points, first black vertical line = BMDL, second black vertical line = BMD, green 
vertical line = BMDU, blue curve = model fit to the data. A - CCDC_20830; 
response – Power; BMDL = 1.66319e-6; B - CYP1A1_10775; response – Power; 
BMDL = 406.466; C - SDS_25069; response – Power; BMDL = 1044.44; D - 
PCK2_33867; response – Exp2; BMDL = 4542.77; E - TP5313_24981; response 
– Exp2; BMDL = 4680.81; F - SCP2_27826; response – Exp2; BMDL = 4699.41 
 

 

 

 

E 

F 

A 

B 

C 



145 

 

 

 

 
 
 
 
Supplementary Figure 5: The six lowest probe BMDL individual curve fits for 
HepG2 niacinamide. Red points = mean and standard deviation data points, 
first black vertical line = BMDL, second black vertical line = BMD, green vertical 
line = BMDU, blue curve = model fit to the data. A - VTN_7690; response – Hill; 
BMDL = 184.541; B - FAM3B_11565; response – Power; BMDL = 295.221; C - 
APOC1_19115; response – Power; BMDL = 348.788; D ADH4_25100; response 
– Power; BMDL = 356.957; E - APOC3_356; response – Power; BMDL = 
370.622; F - CDH1_1186; response – Power; BMDL = 378.298  
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Supplementary Figure 6: The six lowest probe BMDL individual curve fits for 
MCF-7 niacinamide. Red points = mean and standard deviation data points, 
first black vertical line = BMDL, second black vertical line = BMD, green vertical 
line = BMDU, blue curve = model fit to the data. A - ACOX2_19283; response – 
Power; BMDL = 22.1636; B - PDSS1_22903; response – Hill; BMDL = 102.175; C 
- TNFRSF18_20262; response – Hill; BMDL = 141.107; D - NME2_28197; 
response – Power; BMDL = 243.988; E - MGLL_17894; response – Power; 
BMDL = 287.703; F - ADRAZC_22752; response – Power; BMDL = 300.555. 
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APPENDIX 4  

Supplementary Tables 1-6 

Supplementary Table 1: Summary of top twenty enriched GO terms for HepaRG dosed with doxorubicin. 

Shown are for HepaRG dosed with doxorubicin the top twenty most significantly enriched genes based on 

the Highest Fold Change Absolute  

Probe ID 
Gene 
symbols 

Best 
Model 

Best 
BMD 

Best 
BMDL 

Best 
BMDU 

Max Fold Change Value 
(Absolute) 

SERPINA3_174
87 serpina3 Linear 0.8289 0.5673 1.5379 7.8689 

ITGA10_27364 itga10 Linear 0.3010 0.2537 0.3699 5.5664 

S100A2_21300 s100a2 Linear 0.6615 0.4822 1.0528 4.9837 

TP53I3_24981 tp53i3 Exp 4 0.1188 0.0738 0.2114 4.9545 

ANGPT1_9010
8  Exp 2 0.3630 0.2873 0.4845 4.8920 

TSC22D3_7366 tsc22d3 Exp 2 0.6848 0.4676 1.1886 4.7476 

NPR3_88568  Exp 2 0.2867 0.2368 0.3603 4.7139 

GDF15_18329 gdf15 Poly 2 0.1936 0.1181 0.4296 4.6885 

AKR1B10_199
08 akr1b10 Power 0.1422 0.0323 0.6500 4.4137 

TP53I3_7290 tp53i3 Poly 2 0.1612 0.1051 0.3103 4.1233 

PADI4_23775 padi4 Poly 2 0.1167 0.0839 0.1854 4.1126 

TUBA4A_7404 tuba4a Linear 0.3528 0.2911 0.4475 3.8804 

CDC42BPG_23
788 cdc42bpg Exp 4 0.1597 0.0944 0.3112 3.7222 

GPR87_10766 gpr87 Exp 4 0.2091 0.1049 0.4801 3.6455 

ACTBL2_24968 actbl2 Linear 0.3544 0.2922 0.4500 3.6442 

ZSWIM4_8736
3  Linear 0.6816 0.4930 1.1036 3.6242 

ACER2_17896 acer2 Exp 4 0.1302 0.0755 0.2486 3.5735 

SPHK1_13551 sphk1 Exp 2 0.3772 0.3160 0.4706 3.5684 

HIST1H2BJ_92
661  Exp 2 0.3088 0.2649 0.3711 3.5200 

EGLN3_90114  Linear 0.7297 0.5182 1.2328 3.4683 

Supplementary Table 2: Summary of top twenty enriched GO terms for Hep G2 dosed with doxorubicin. 

Shown are for HepG2 dosed with doxorubicin the top twenty most significantly enriched genes based on 

the Highest Fold Change Absolute 

Probe ID Gene symbols 
Best 
Model 

Best 
BMD 

Best 
BMDL 

Best 
BMDU 

Max Fold Change Value 
(Absolute) 

CSTA_25241 csta Exp 4 
0.0138
2 0.01230 0.01570 716.79669 

PADI4_2377
5 padi4 Hill 

0.0441
8 0.03201 0.06589 121.29038 

WFIKKN2_2
0142 wfikkn2 Exp 5 

0.0242
2 0.01777 0.03324 100.32687 

MAFB_2659
7 mafb Linear 

0.0890
5 0.08085 0.09889 91.22452 

GAST_87534  Hill 
0.0901
8 0.05326 0.18205 82.69598 

TEX37_2209
8 tex37 Hill 

0.0215
3 0.01756 0.03102 82.44215 

ABCA12_18
812 abca12 Exp 4 

0.0236
5 0.02065 0.02750 64.00106 
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UBE2QL1_2
3376 ube2ql1 Hill 

0.0908
3 0.05440 0.18423 58.30764 

TREM2_209
15 trem2 Hill 

0.0151
6 0.01162 0.01950 57.19973 

CGB5_2100
1 

cgb1;cgb2;cgb3;cgb
5;cgb8 Exp 4 

0.0221
8 0.01939 0.02575 54.72734 

TP53I3_249
81 tp53i3 Exp 4 

0.0201
7 0.01665 0.02470 54.51785 

PLTP_18836 pltp Exp 4 
0.0286
6 0.02257 0.03677 53.78918 

GRHL3_912
37  Hill 

0.0129
6 0.01081 0.01848 49.28883 

PXDN_2371
7 pxdn Power 

0.1682
6 0.13209 0.22267 48.37337 

COL7A1_90
501  Hill 

0.0174
1 0.01292 0.02387 47.83280 

ACHE_1399
1 ache Hill 

0.0493
0 0.03177 0.08065 44.44639 

TP53I3_729
0 tp53i3 Exp 4 

0.0314
5 0.02440 0.04102 44.27894 

CGB8_2896
4 cgb5;cgb8 Exp 4 

0.0332
7 0.02818 0.04012 43.56483 

DRAXIN_128
48 draxin Exp 4 

0.0111
1 0.00957 0.01301 43.38172 

GDNF_2486
0 gdnf Hill 

0.0235
3 0.01766 0.03797 42.54195 

Supplementary Table 3: Summary of top twenty enriched GO terms for MCF-7 cells dosed with 

doxorubicin. Shown are for MCF-7 cells dosed with doxorubicin the top twenty most significantly 

enriched genes based on the Highest Fold Change Absolute  

Probe ID 
Gene 
symbols 

Best 
Model 

Best 
BMD 

Best 
BMDL 

Best 
BMDU 

Max Fold Change Value 
(Absolute) 

TP53I3_24981 tp53i3 Exp 4 0.06320 0.05095 0.08152 71.06427 

PGF_5091 pgf Poly 2 0.04023 0.03463 0.04789 62.29139 

TP53I3_7290 tp53i3 Power 0.06019 0.04146 0.08717 61.82729 

NPTX1_18716 nptx1 Power 0.31073 0.20407 0.88476 46.81840 

FOSL1_2463 fosl1 Linear 0.11691 0.10537 0.13103 43.18584 

TP53I3_27999 tp53i3 Exp 4 0.07519 0.05891 0.10042 40.45102 

HIST1H4A_19
159 hist1h4a Exp 4 0.04107 0.03269 0.05298 39.31838 

SLC18A2_124
50 slc18a2 Linear 0.11248 0.10151 0.12587 37.07502 

FSCN1_22817 fscn1 Power 0.32532 0.20573 0.90762 36.56473 

RASD1_17573 rasd1 Exp 4 0.07911 0.06113 0.10808 34.38891 

INSYN2A_236
31  Exp 2 0.15998 0.14637 0.17610 33.72083 

PSG4_25648 psg4 Linear 0.12505 0.11245 0.14059 31.58548 

ACHE_13991 ache Power 0.07719 0.05045 0.11708 30.85504 

ADAMTS7_24
182 adamts7 Linear 0.11045 0.09973 0.12351 30.22548 

GRIN2C_2516
2 grin2c Power 0.01350 0.00732 0.02426 29.21803 

CGA_1272 cga Exp 2 0.18484 0.16895 0.20379 28.93337 

JSRP1_89320  Exp 4 0.03724 0.03085 0.04606 28.64470 

GPR87_10766 gpr87 Power 0.00956 0.00570 0.01589 28.10369 

HAPLN3_2167
6 hapln3 Exp 2 0.16973 0.15465 0.18785 27.96263 

GDNF_24860 gdnf Hill 0.04941 0.03904 0.08021 26.97343 
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Supplementary Table 4: Summary of the top 20 significantly enriched REACTOME pathways. Shown are 

for HepaRG dosed with doxorubicin the top twenty most significantly enriched REACTOME pathways 

(Fisher's Exact Right P-Value < 0.05) based on the lowest mean BMDL values. 

GO/Pat
hway 
ID 

GO/Pathwa
y Name  

All Genes 
(Platform) 

Genes that 
passed all filters  

Fischers Exact 
two tail P value 

BMD 
Mean 

BMDL 
Mean 

BMDU 
Mean 

R-HSA-
563300
8 

TP53 
Regulates 
Transcriptio
n of Cell 
Death 
Genes 44 3 0.0074967 0.1099 0.0606 0.2212 

R-HSA-
166066
1 

Sphingolipi
d de novo 
biosynthesi
s 44 2 0.061151 

0.2537
08 

0.1957
4515 

0.3595
75 

R-HSA-
109581 Apoptosis 179 5 0.024052 

0.3114
3158 

0.2056
1814 

0.5569
162 

R-HSA-
535780
1 

Programme
d Cell Death 209 5 0.042607 

0.3114
3158 

0.2056
1814 

0.5569
162 

R-HSA-
75153 

Apoptotic 
execution 
phase 52 2 0.081828 

0.2912
725 

0.2066
906 

0.4558
61 

R-HSA-
896453
9 

Glutamate 
and 
glutamine 
metabolism 14 2 0.0070179 

0.3025
785 

0.2245
15 

0.4692
075 

R-HSA-
679131
2 

TP53 
Regulates 
Transcriptio
n of Cell 
Cycle Genes 48 2 0.071241 

0.3667
115 

0.2456
5945 

0.6201
215 

R-HSA-
422475 

Axon 
guidance 549 9 0.099314 

0.3755
52967 

0.2611
83967 

0.6580
30222 

R-HSA-
148280
1 

Acyl chain 
remodelling 
of PS 23 2 0.018498 

0.4146
65 

0.2617
54 

0.7726
665 

R-HSA-
179318
5 

Chondroitin 
sulfate/der
matan 
sulfate 
metabolism 50 2 0.076475 

0.4033
5015 

0.2724
123 

0.7212
225 

R-HSA-
680666
7 

Metabolism 
of fat-
soluble 
vitamins 48 2 0.071241 

0.4351
48 

0.2748
488 

0.9390
765 

R-HSA-
975634 

Retinoid 
metabolism 
and 
transport 44 2 0.061151 

0.4351
48 

0.2748
488 

0.9390
765 

R-HSA-
148320
6 

Glyceropho
spholipid 
biosynthesi
s 129 4 0.030458 

0.4230
4075 

0.2752
8625 

0.7936
905 

R-HSA-
428542 

Regulation 
of 
commissura
l axon 
pathfinding 
by SLIT and 
ROBO 10 2 0.003554 

0.4557
71 

0.2806
32 

0.9393
225 

R-HSA-
164017
0 Cell Cycle 687 2 0.093512 

0.5489
89 

0.2890
44 

3.3592
975 
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R-HSA-
109606 

Intrinsic 
Pathway for 
Apoptosis 55 2 0.090065 

0.4491
2225 

0.2909
8335 

0.8567
005 

R-HSA-
114452 

Activation 
of BH3-only 
proteins 30 2 0.030519 

0.4491
2225 

0.2909
8335 

0.8567
005 

R-HSA-
111453 

BH3-only 
proteins 
associate 
with and 
inactivate 
anti-
apoptotic 
BCL-2 
members 9 2 0.0028602 

0.4491
2225 

0.2909
8335 

0.8567
005 

R-HSA-
499943 

Interconver
sion of 
nucleotide 
di- and 
triphosphat
es 29 2 0.028652 

0.5715
33 

0.3046
42 

3.3953
585 

R-HSA-
337149
7 

HSP90 
chaperone 
cycle for 
steroid 
hormone 
receptors 
(SHR) in the 
presence of 
ligand 55 2 0.090065 

0.3812
685 

0.3082
135 

0.4984
35 

Supplementary Table 5: Summary of the top 20 significantly enriched REACTOME pathways. Shown are 

for MCF-7 dosed with doxorubicin the top twenty most significantly enriched REACTOME pathways 

(Fisher's Exact Right P-Value < 0.05) based on the lowest mean BMDL values. 

GO/Pat
hway 
ID 

GO/Path
way 
Name  

All genes 
(Platform) 

Genes that 
passed all filters  

Fischers Exact two 
tail P value 

BMD 
Mean 

BMDL 
Mean 

BMDU 
Mean 

R-HSA-
69478 

G2/M 
DNA 
replicati
on 
checkpoi
nt 5 4 0.012526 

0.0532
9732 

0.02187
3 

0.12181
7775 

R-HSA-
251485
3 

Condens
ation of 
Prometa
phase 
Chromos
omes 11 7 0.0053221 

0.0552
482 

0.02433
1371 

0.11956
63 

R-HSA-
176974 

Unwindi
ng of 
DNA 12 6 4.18E-02 

0.0545
1738 

0.03309
355 

0.11918
56 

R-HSA-
69091 

Polymer
ase 
switchin
g 14 8 0.007064 

0.0842
7262 

0.04365
4087 

0.17641
8225 

R-HSA-
69109 

Leading 
Strand 
Synthesi
s 14 8 7.06E-03 

0.0842
7262 

0.04365
4087 

0.17641
8225 

R-HSA-
69190 

DNA 
strand 
elongati
on 32 16 0.0010128 

0.0873
2631 

0.04418
3894 

0.21272
5619 

R-HSA-
176187 

Activatio
n of ATR 
in 
response 37 18 7.55E-04 

0.0702
7603 

0.05066
2178 

0.10676
8417 
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to 
replicati
on stress 

R-HSA-
69186 

Lagging 
Strand 
Synthesi
s 20 10 9.02E-03 

0.1070
1166 

0.05083
81 

0.26884
963 

R-HSA-
69166 

Removal 
of the 
Flap 
Interme
diate 14 7 2.82E-02 

0.1319
536 

0.06079
0986 

0.34477
4643 

R-HSA-
69183 

Processi
ve 
synthesi
s on the 
lagging 
strand 15 7 4.23E-02 

0.1319
536 

0.06079
0986 

0.34477
4643 

R-HSA-
73728 

RNA 
Polymer
ase I 
Promote
r 
Opening 62 23 0.011544 

0.1024
4335 

0.06915
8907 

0.17729
9765 

R-HSA-
68962 

Activatio
n of the 
pre-
replicati
ve 
complex 33 19 2.79E-05 

0.1082
9501 

0.07012
7341 

0.19112
0805 

R-HSA-
229971
8 

Condens
ation of 
Prophas
e 
Chromos
omes 73 30 6.51E-04 

0.1194
7681 

0.07544
8686 

0.23184
3523 

R-HSA-
971042
1 

Defectiv
e 
pyroptos
is 72 28 0.0026091 

0.1210
9338 

0.07648
4797 

0.24818
2182 

R-HSA-
212300 

PRC2 
methylat
es 
histones 
and DNA 72 26 1.11E-02 

0.1176
4773 

0.07667
4697 

0.23678
1235 

R-HSA-
533411
8 

DNA 
methylat
ion 64 26 1.77E-03 

0.1175
8751 

0.07720
5535 

0.23515
8446 

R-HSA-
562588
6 

Activate
d PKN1 
stimulat
es 
transcrip
tion of 
AR 
(androge
n 
receptor
) 
regulate
d genes 
KLK2 and 
KLK3 66 24 0.013105 

0.1148
3446 

0.07976
062 

0.19169
5358 

R-HSA-
912446 

Meiotic 
recombi
nation 85 37 3.73E-05 

0.1167
3672 

0.08116
8125 

0.19125
6216 

R-HSA-
136230
0 

Transcri
ption of 
E2F 
targets 16 7 0.060342 

0.1360
1206 

0.08744
7314 

0.22899
1314 
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under 
negative 
control 
by p107 
(RBL1) 
and 
p130 
(RBL2) in 
complex 
with 
HDAC1 

R-HSA-
568593
9 

HDR 
through 
MMEJ 
(alt-
NHEJ) 10 6 0.014714 

0.1389
0176 

0.09096
335 

0.23632
875 

Supplementary Table 6: Summary of the top 20 significantly enriched REACTOME pathways. Shown are 

for Hep G2 dosed with doxorubicin the top twenty most significantly enriched REACTOME pathways 

(Fisher's Exact Right P-Value < 0.05) based on the lowest mean BMDL values. 

GO/Pa
thway 
ID 

GO/Pathway 
Name  

All genes 
(Platform) 

Genes that 
passed all 
filters  

Fischers Exact 
two tail P value 

BMD 
Mean 

BMDL 
Mean 

BMDU 
Mean 

R-HSA-
179409 

APC-Cdc20 
mediated 
degradation 
of Nek2A 26 2 0.096225 

0.0814
04 

0.0392
2515 

0.1790
67 

R-HSA-
419408 

Lysosphingoli
pid and LPA 
receptors 14 6 0.094678 

0.0745
3945 

0.0417
311 

0.1425
6993 

R-HSA-
936440 

Negative 
regulators of 
DDX58/IFIH1 
signaling 35 3 0.064156 

0.0926
344 

0.0437
295 

0.2015
17 

R-HSA-
365623
7 

Defective 
EXT2 causes 
exostoses 2 14 6 0.094678 

0.1068
7965 

0.0678
52742 

0.1652
7822 

R-HSA-
365625
3 

Defective 
EXT1 causes 
exostoses 1, 
TRPS2 and 
CHDS 14 6 0.094678 

0.1068
7965 

0.0678
52742 

0.1652
7822 

R-HSA-
884947
0 

PTK6 
Regulates Cell 
Cycle 5 3 0.071574 

0.1196
83667 

0.0763
059 

0.2174
26 

R-HSA-
893923
6 

RUNX1 
regulates 
transcription 
of genes 
involved in 
differentiatio
n of HSCs 128 18 0.039623 

0.1442
12906 

0.0973
24463 

0.2422
4724 

R-HSA-
69615 

G1/S DNA 
Damage 
Checkpoints 67 8 0.053241 

0.1589
14683 

0.1053
2544 

0.2667
4531 

R-HSA-
961622
2 

Transcription
al regulation 
of 
granulopoiesi
s 89 29 0.01914 

0.1524
89442 

0.1067
97463 

0.2441
5795 

R-HSA-
965978
7 

Aberrant 
regulation of 
mitotic G1/S 
transition in 
cancer due to 
RB1 defects 17 7 0.07127 

0.1654
01486 

0.1073
47343 

0.3000
8519 
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R-HSA-
966106
9 

Defective 
binding of 
RB1 mutants 
to E2F1,(E2F2, 
E2F3) 17 7 0.07127 

0.1654
01486 

0.1073
47343 

0.3000
8519 

R-HSA-
885682
5 

Cargo 
recognition 
for clathrin-
mediated 
endocytosis 106 14 0.032766 

0.1661
77182 

0.1085
70561 

0.3250
4439 

R-HSA-
174143 

APC/C-
mediated 
degradation 
of cell cycle 
proteins 87 7 9.76E-04 

0.1786
45571 

0.1141
80914 

0.3129
4379 

R-HSA-
453276 

Regulation of 
mitotic cell 
cycle 87 7 9.76E-04 

0.1786
45571 

0.1141
80914 

0.3129
4379 

R-HSA-
187577 

SCF(Skp2)-
mediated 
degradation 
of p27/p21 58 7 0.079439 

0.1802
36129 

0.1162
857 

0.3120
1983 

R-HSA-
69563 

p53-
Dependent 
G1 DNA 
Damage 
Response 65 6 0.014625 

0.1750
76211 

0.1171
56636 

0.2901
3191 

R-HSA-
69580 

p53-
Dependent 
G1/S DNA 
damage 
checkpoint 65 6 0.014625 

0.1750
76211 

0.1171
56636 

0.2901
3191 

R-HSA-
221432
0 

Anchoring 
fibril 
formation 15 8 0.0070881 

0.1728
83087 

0.1181
44038 

0.2206
5089 

R-HSA-
202409
6 

HS-GAG 
degradation 22 10 0.015569 

0.1820
851 

0.1184
55615 

0.3155
4513 

R-HSA-
885753
8 

PTK6 
promotes 
HIF1A 
stabilization 5 3 0.071574 

0.1573
04667 

0.1228
72867 

0.2264
86 
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Appendix 5 Supplementary Tables 7-12 

Supplementary Table 7. Summary of top twenty enriched GO terms for HepaRG dosed with niacinamide. 

Shown are for HepaRG dosed with niacinamide the top twenty most significantly enriched genes based on 

the Highest Fold Change Absolute 
 

Probe ID 
Gene 
symbols 

Best 
Model 

Best 
BMD 

Best 
BMDL 

Best 
BMDU 

Max Fold Change Value 
(Absolute) 

UGT1A1_899
49  Linear 6611.47 4528.86 12238.00 4.22 

CYP1A1_107
75 cyp1a1 Power 1540.53 406.47 5911.82 3.59 

S100A2_2130
0 s100a2 Exp 2 7617.74 4747.93 16929.00 3.46 

CYP1A2_824
02  Exp 2 5931.31 4367.74 9609.49 2.77 

ALDH2_225 aldh2 Exp 2 7196.13 4913.14 13991.20 2.25 

SULT2A1_245
13 sult2a1 Linear 7077.59 4746.51 13905.80 2.09 

CCDC9_2083
0 ccdc9 Power 0.000 0.000 0.000 2.04 

 

 

Supplementary Table 8. Summary of top twenty enriched GO terms for HepG2 dosed with niacinamide. 

Shown are for Hep G2 dosed with niacinamide the top twenty most significantly enriched genes based on 

the Highest Fold Change Absolute 
 
 

Probe ID Gene symbols 

Best 
Mode
l 

Best 
BMD 

Best 
BMDL 

Best 
BMD
U 

Max Fold Change 
Value (Absolute) 

UGT1A1_
89949  Power 

1514.
98 

591.0
57 

3517.
19 16.24256516 

CYP1A1_1
0775 cyp1a1 Poly 2 

6649.
46 

4856.
92 

10201
.4 15.49775791 

UGT1A1_
82407  Hill 

3697.
02 

2043.
28 

6596.
71 13.36897564 

MAFB_26
597 mafb Power 

5501
8.1 

20144
.6 

55499
.9 9.473223686 

MLPH_16
389 mlph Exp 3 

3126
1.6 

16960
.2 

55861
.8 9.453998566 

UGT1A10
_28864 

ugt1a6;ugt1a10;ugt1a9;ugt1a1;ugt1a5
;ugt1a7;ugt1a3;ugt1a8;ugt1a4 Power 

1412.
28 

576.3
9 

3179.
21 8.860595703 

CYP1A1_1
698 cyp1a1 Linear 

1686
2.7 

14324
.5 

20478
.4 7.990476131 

LOX_2177
2 lox Linear 

2434
0.1 

19652
.5 

31949
.5 7.487246037 

UGT1A8_
28230 

ugt1a8;ugt1a4;ugt1a6;ugt1a10;ugt1a9
;ugt1a1;ugt1a5;ugt1a7;ugt1a3 Hill 

3081.
42 

1609.
34 

5758.
38 6.84641695 

TMEM141
_12190 tmem141 Exp 2 

1178
7.3 

10078
.3 

14106
.1 6.16596508 

HBEGF_15
347 hbegf Linear 

1734
8.7 

14689
.4 

21167
.9 5.580536842 

TENT5C_2
5075  Exp 2 

1736
6 

15388
.5 

19998
.9 5.38710022 

APOC3_3
56 apoc3 Power 

1023.
84 

370.6
22 

2536.
45 5.107273579 

APOC3_1
5165 apoc3 Power 

1048.
84 

382.0
68 

2588.
86 5.07951498 

DUSP5_92
780  Exp 2 

1426
4.8 12626 

16412
.9 5.029593945 

SESN3_14
278 sesn3 Linear 

1961
4.9 

16355
.9 

24480
.5 4.939711094 

SAA2-
SAA4_284
76  Power 

1508.
34 

455.3
12 

4194.
88 4.929204464 

CDH1_11
86 cdh1 Power 

1487.
54 

378.2
98 

4644.
85 4.902386665 
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OR2J3_22
186 or2j3 Poly 2 

1080
4.4 

6812.
94 

21634
.9 4.68742466 

UNC93A_
88810  Power 

1428
1.7 

5919.
69 

29715
.9 4.681125164 

 

Supplementary Table 9. Summary of top twenty enriched GO terms for MCF-7 dosed with niacinamide. 

Shown are for MCF-7 cells dosed with niacinamide the top twenty most significantly enriched genes 

based on the Highest Fold Change Absolute 

 

Probe ID Gene symbols 
Best 
Model 

Best 
BMD 

Best 
BMDL 

Best 
BMDU 

Max Fold Change Value 
(Absolute) 

ASCL1_1134
5 ascl1 Linear 

9768.0
9 

8677.5
9 

11155.8
0 41.33 

TMPRSS9_2
0419 tmprss9 Hill 

10784.
30 

5327.8
4 

11635.5
0 20.06 

HBEGF_153
47 hbegf Linear 

10598.
80 

9370.3
3 

12181.6
0 16.08 

DHRS2_152
89 dhrs2 Linear 

12829.
60 

11188.
90 

15017.7
0 16.07 

CCDC83_88
508  Power 

22248.
30 

13248.
50 

54818.8
0 14.98 

IQCN_9049
6  Linear 

10879.
80 

9602.7
2 

12532.1
0 14.02 

ACKR3_116
92 ackr3 Linear 

8214.0
5 

7359.2
8 9277.78 12.74 

GOLGA6D_1
8150 

golga6a;golga6d;golga6
b;golga6c Exp 4 

7228.8
0 

4919.9
5 

11767.0
0 12.50 

DHRS2_185
7 dhrs2 Exp 4 

8972.1
1 

5664.8
7 

16220.4
0 12.46 

DKK1_2525
1 dkk1 Exp 3 

49312.
10 

19298.
00 

53821.6
0 12.31 

VHLL_88591  Linear 
12064.
10 

10571.
80 

14030.7
0 12.13 

RGS2_2824
1 rgs2 Linear 

11917.
70 

10452.
90 

13843.5
0 11.79 

SNAI1_2473
4 snai1 Exp 2 

13533.
20 

12195.
40 

15210.1
0 11.63 

LSMEM1_27
464 lsmem1 Linear 

14389.
30 

12424.
50 

17076.1
0 11.52 

C5orf47_22
862 c5orf47 Linear 

12380.
40 

10827.
60 

14436.7
0 11.50 

ESR1_12234 esr1 Power 
54499.
40 

21263.
40 

54926.4
0 11.22 

PYGM_2447
3 pygm Linear 

10461.
20 

9256.1
9 

12010.6
0 11.00 

HIST1H3F_9
3274  Exp 4 

8364.8
2 

4918.6
2 

16007.6
0 10.98 

SLC17A8_19
336 slc17a8 Exp 2 

13190.
50 

11958.
30 

14707.7
0 10.89 

MDM2_274
97 mdm2 Exp 3 

52806.
80 

24482.
90 

55669.6
0 10.82 

Supplementary Table 10. Summary of the top 20 significantly enriched REACTOME pathways. Shown 

are for HepaRG dosed with niacinamide the top twenty most significantly enriched REACTOME 

pathways (Fisher's Exact Right P-Value < 0.05) based on the lowest mean BMDL values. 

GO/Pat
hway 
ID GO/Pathway Name  

All gene 
(platform
) 

Genes that 
passed all 
filters  

Fischers Exact 
two tail P 
value 

BMD 
Mean 

BMDL 
Mean 

BMDU 
Mean 

R-HSA-
556833 Metabolism of lipids 739 2 0.0133 

4309.
0600 

2576.
4880 

9908.
8100 

R-HSA-
198978
1 

PPARA activates gene 
expression 117 2 0.0003 

4309.
0600 

2576.
4880 

9908.
8100 
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R-HSA-
400206 

Regulation of lipid 
metabolism by 
PPARalpha 119 2 0.0004 

4309.
0600 

2576.
4880 

9908.
8100 

R-HSA-
211945 

Phase I - 
Functionalization of 
compounds 106 2 0.0003 

4368.
3300 

2659.
8030 

9951.
5100 

R-HSA-
143072
8 Metabolism 2102 3 0.0073 

5271.
4167 

3355.
3720 

11269
.6067 

R-HSA-
211859 Biological oxidations 222 3 0.0000 

5271.
4167 

3355.
3720 

11269
.6067 

Supplementary Table 11. Summary of the top 20 significantly enriched REACTOME pathways. Shown 

are for MCF-7 cells dosed with niacinamide the top twenty most significantly enriched REACTOME 

pathways (Fisher's Exact Right P-Value < 0.05) based on the lowest mean BMDL values. 

GO/P
athw
ay ID GO/Pathway Name  

All 
Genes 
(Platfor
m) 

Genes 
that 
passed all 
filters  

Fischers 
Exact two 
tail P value 

BMD 
Mea
n 

BMD
L 
Mea
n 

BMD
U 
Mea
n 

R-
HSA-
2299
718 

Condensation of Prophase 
Chromosomes 73 24 0.03335 

1026
6.94
833 

5444
.654
583 

2760
6.56
417 

R-
HSA-
5625
886 

Activated PKN1 stimulates 
transcription of AR (androgen 
receptor) regulated genes KLK2 and 
KLK3 66 24 0.010548 

1156
3.69
833 

5764
.829
583 

2862
1.68
083 

R-
HSA-
7372
8 RNA Polymerase I Promoter Opening 62 25 0.0011469 

1242
3.59
04 

6752
.946
4 

3073
2.15
16 

R-
HSA-
5334
118 DNA methylation 64 27 3.79E-04 

1300
6.36
667 

7340
.405
556 

3195
4.86
63 

R-
HSA-
4273
89 

ERCC6 (CSB) and EHMT2 (G9a) 
positively regulate rRNA expression 75 26 0.011828 

1276
1.43
308 

7366
.265
769 

2998
9.85
154 

R-
HSA-
1103
29 Cleavage of the damaged pyrimidine  60 20 0.042657 

1416
7.08 

7711
.775
5 

3248
3.65
75 

R-
HSA-
7392
8 Depyrimidination 60 20 0.042657 

1416
7.08 

7711
.775
5 

3248
3.65
75 

R-
HSA-
1103
28 

Recognition and association of DNA 
glycosylase with site containing an 
affected pyrimidine 60 20 0.042657 

1416
7.08 

7711
.775
5 

3248
3.65
75 

R-
HSA-
7392
9 

Base-Excision Repair, AP Site 
Formation 62 21 0.03153 

1424
7.83
81 

7990
.505
238 

3184
5.48
333 

R-
HSA-
9710
421 Defective pyroptosis 72 28 0.0014579 

1445
1.45
5 

8221
.722
857 

3490
0.88
893 

R-
HSA-
4273
59 

SIRT1 negatively regulates rRNA 
expression 67 27 9.36E-04 

1446
5.58
741 

8518
.863
333 

3199
5.63
111 

R-
HSA-
3214
842 HDMs demethylate histones 50 22 5.21E-04 

1391
1.12
136 

8561
.191
818 

2564
7.32
909 
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R-
HSA-
2123
00 PRC2 methylates histones and DNA 72 30 2.75E-04 

1432
4.18
467 

8634
.954
667 

3238
7.51
633 

R-
HSA-
9772
25 Amyloid fiber formation 110 35 0.020325 

1502
8.88
229 

8675
.159
743 

3506
5.13
857 

R-
HSA-
9616
222 

Transcriptional regulation of 
granulopoiesis 89 36 9.51E-05 

1525
9.95
25 

8991
.789
63 

3021
3.06
204 

R-
HSA-
2017
22 

Formation of the beta-catenin:TCF 
transactivating complex 90 31 0.0071234 

1502
2.49
29 

9169
.015
161 

3178
1.72
065 

R-
HSA-
9031
525 

NR1H2 & NR1H3 regulate gene 
expression to limit cholesterol uptake  5 3 0.075878 

2415
9.1 

9279
.474
667 

3663
6.73
333 

R-
HSA-
3214
815 HDACs deacetylate histones 94 32 0.0083247 

1578
0.82 

9711
.959
688 

3356
1.81
063 

R-
HSA-
5625
740 RHO GTPases activate PKNs 94 32 0.0083247 

1664
5.55
187 

9849
.819
375 

3761
2.15
75 

R-
HSA-
9124
46 Meiotic recombination 85 31 0.0024084 

1626
2.33
419 

9982
.735
806 

3483
9.07
226 

Supplementary Table 12. Summary of the top 20 significantly enriched REACTOME pathways. Shown 

are for HepG2 cells dosed with niacinamide the top twenty most significantly enriched REACTOME 

pathways (Fisher's Exact Right P-Value < 0.05) based on the lowest mean BMDL values. 

GO/Pat
hway 
ID 

GO/Pathwa
y Name  

All Genes 
(Platform) 

Genes that 
passed all filters  

Fischers Exact 
two tail P value 

BMD 
Mean 

BMDL 
Mean 

BMDU 
Mean 

R-HSA-
844615 

The AIM2 
inflammaso
me 3 2 0.0210 

11468.
3350 

3729.7
675 

30213.
4250 

R-HSA-
966082
6 

Purinergic 
signaling in 
leishmanias
is infection 26 5 0.0681 

14432.
6740 

5046.8
850 

51766.
3300 

R-HSA-
966442
4 

Cell 
recruitment 
(pro-
inflammato
ry 
response) 26 5 0.0681 

14432.
6740 

5046.8
850 

51766.
3300 

R-HSA-
844456 

The NLRP3 
inflammaso
me 16 4 0.0434 

15201.
1675 

5371.4
163 

57314.
9375 

R-HSA-
896389
8 

Plasma 
lipoprotein 
assembly 19 4 0.0753 

16475.
0725 

10169.
9632 

45091.
3488 

R-HSA-
896390
1 

Chylomicro
n 
remodeling 10 4 0.0076 

17613.
7575 

10672.
2088 

46656.
2638 

R-HSA-
425410 

Metal ion 
SLC 
transporter
s 26 5 0.0681 

21371.
1400 

13010.
7780 

41216.
9000 

R-HSA-
896388
8 

Chylomicro
n assembly 10 3 0.0485 

21274.
7133 

13443.
6883 

56997.
9517 
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R-HSA-
896368
4 

Tyrosine 
catabolism 5 2 0.0624 

21233.
5150 

14342.
7765 

36981.
9350 

R-HSA-
300048
0 

Scavenging 
by Class A 
Receptors 19 4 0.0753 

23906.
7500 

16533.
3300 

72871.
6000 

R-HSA-
611105 

Respiratory 
electron 
transport 93 3 0.0629 

26591.
0333 

16973.
3967 

83182.
3667 

R-HSA-
896369
1 

Phenylalani
ne and 
tyrosine 
metabolism 11 3 0.0626 

23862.
3100 

17148.
8843 

38119.
5567 

R-HSA-
381753 

Olfactory 
Signaling 
Pathway 392 6 0.0000 

25881.
8400 

17478.
6150 

48504.
5500 

R-HSA-
70370 

Galactose 
catabolism 5 3 0.0056 

22430.
9333 

18253.
8667 

29226.
6667 

R-HSA-
179933
9 

SRP-
dependent 
cotranslatio
nal protein 
targeting to 
membrane 110 2 0.0056 

32404.
9500 

18500.
7800 

94108.
3500 

R-HSA-
72689 

Formation 
of a pool of 
free 40S 
subunits 99 2 0.0114 

32404.
9500 

18500.
7800 

94108.
3500 

R-HSA-
927802 

Nonsense-
Mediated 
Decay 
(NMD) 113 2 0.0039 

32404.
9500 

18500.
7800 

94108.
3500 

R-HSA-
975956 

Nonsense 
Mediated 
Decay 
(NMD) 
independen
t of the 
Exon 
Junction 
Complex 
(EJC) 93 2 0.0236 

32404.
9500 

18500.
7800 

94108.
3500 

R-HSA-
975957 

Nonsense 
Mediated 
Decay 
(NMD) 
enhanced 
by the Exon 
Junction 
Complex 
(EJC) 113 2 0.0039 

32404.
9500 

18500.
7800 

94108.
3500 

R-HSA-
72764 

Eukaryotic 
Translation 
Terminatio
n 91 2 0.0230 

32404.
9500 

18500.
7800 

94108.
3500 
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