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Abstract

With the development of Industry 4.0, the manufacturing industry has revolutionised a lot.

Product manufacture become more and more customised. This trend is achieved by innovative

techniques, such as the reconfigurable manufacturing system (RMS). This system is designed

at the outset for rapid change in its structure, as well as in software and hardware components,

to respond to market changes quickly. Robots are important in these systems because they

provide the agility and precision required to adapt rapidly to new manufacturing processes and

customisation demands.

Despite the importance of applying robots in these systems, there might be some challenges.

For example, there is data from multiple sources, such as the technical manual sensor data. Be-

sides, robot applications must react quickly to the ever-changing process requirements to meet

customer’s requirements. Furthermore, further optimisation, especially layout optimisation, is

needed to ensure production efficiency after adaptation to the current process requirements.

To address these challenges, this doctoral thesis presents a framework for reconfiguring robotic

assembly cells in manufacturing. This framework consists of three parts: the experience data-

bank, the methodology for optimal manufacturing asset selection, and the methodology for

layout optimisation.

The experience databank is introduced to confront the challenge of assimilating and processing

heterogeneous data from numerous manufacturing sources, which is achieved by proposing a

vendor-neutral ontology model. This model is specifically designed for encapsulating infor-

mation about robotic assembly cells and is subsequently applied to a knowledge graph. The

resulting knowledge graph, constituting the experience databank, facilitates the effective or-

ganisation and interpretation of the diverse data.
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An optimal manufacturing asset selection methodology is introduced to adapt to shifting pro-

cesses and product requirements, which focuses on identifying potential assets and their sub-

sequent evaluation. This approach integrates a modular evaluation framework that considers

multiple criteria such as cost, energy consumption, and robot manoeuvrability, ensuring the

selection process remains robust in changing market demands and product requirements.

A scalable methodology for layout optimisation within the reconfigurable robotic assembly

cells is proposed to resolve the need for further optimisation post-adaption. It introduces a

scalable, multi-decision modular optimisation framework that synergises a simulation environ-

ment, optimisation environment, and robust optimisation algorithms. This strategy utilises the

insights garnered from the experience databank to facilitate informed decision-making, thereby

enabling the robotic assembly cells to not only meet the immediate production exigencies but

also align with the manufacturing landscape’s evolving dynamics.

The validation of the three methodologies presented in this doctoral thesis encompasses both

software development and practical application through three distinct use cases. For the ex-

perience databank, an interface was developed using Protégé, Neo4j, and Py2neo, allowing for

effective organisation and processing of varied manufacturing data. The programming interface

for the asset selection methodology was built using Python, integrating with the experience

databank via Py2neo and Neo4j to facilitate dynamic and informed decision-making in asset

selection. In terms of software for the layout optimisation framework, two different applications

were developed to demonstrate the framework’s scalability and adaptability. The first applica-

tion, combining Python and C# programming with Siemens Tecnomatix Process Simulate, is

geared towards optimising layouts involving multiple machines. The second application utilises

Python programming alongside the RoboDK API and RoboDK software, tailored for layout

optimisation in scenarios involving a single robot.

Complementing these software developments, the methodologies were further validated through

three use cases, each addressing a unique aspect of the framework. Use Case 1 focused on imple-

menting asset selection and system layout optimisation based on a single objective, leveraging

the experience databank. The required assets are selected, and the required cycle time for

executing the whole robotic assembly operation has been reduced by 15.6% from 47.17 seconds

to 39.83 seconds. Use Case 2 extended the layout optimisation to single-robot operations with

an emphasis on multi-criteria decision-making. The energy consumption was minimised to
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5613.59 Wh after implementing optimisation strategies, demonstrating a significant enhance-

ment in energy efficiency. Compared with the baseline of 6164.98 Wh, this represents an 8.9%

reduction in energy usage. For minimised cycle time, a reduction of 6.0% from the baseline

of 57.11 s is achieved, resulting in a cycle time of 53.15 s. Regarding the pursuit of a max-

imised robot manoeuvrability index, an increase of 140.8% from the baseline of 0.4891235 is

achieved, resulting in a maximised value of 1.1786125. Lastly, Use Case 3 tested the modular

and multi-objective asset selection methodology, demonstrating its efficacy across diverse op-

erational scenarios. Evaluations conducted with two multi-objective optimisation algorithms,

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Strength Pareto Evolutionary

Algorithm II (SPEA-II), revealed interesting implications for selecting and optimising robotic

assets in response to new customer requests. Specifically, SPEA-II identified a Pareto solution

that was more cost-effective (£20,920) compared to NSGA-II (£21,090), while maintaining a

competitive specification efficiency score (0.865 vs. 0.879). Consequently, SPEA-II is preferred

for optimising robotic asset selection in scenarios prioritising cost. However, should the re-

quirement shift towards maximising specification efficiency, the NSGA-II would be the more

suitable choice.

These use cases not only showcased the practical applicability of the developed software but

also underlined the robustness and adaptability of the proposed methodologies in real-world

manufacturing environments.

In conclusion, this doctoral thesis presents a methodology for reconfiguring robotic assem-

bly cells in manufacturing. By harnessing the capabilities of artificial intelligence, knowledge

graphs, and simulation methodologies, it addresses the challenges of processing data from di-

verse sources, adapting to fluctuating market demands, and establishing further optimisations

for enhanced operational efficiency in the modern manufacturing landscape. To affirm the via-

bility of this framework, the thesis integrates software development procedures tailored to the

proposed methodologies and furnishes evidence through three use cases, which are evaluated

against well-defined criteria.
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Chapter 1

Introduction

1.1 Background and Motivation

Digital manufacturing, also known as Industry 4.0, brings in a new era for production. The

integration of cutting-edge technologies into the industrial ecosystem, including the Internet of

Things (IoT), big data analytics, artificial intelligence, and state-of-the-art robotics [1, 2, 3].

Fundamentally, Industry 4.0 makes it possible to collect and analyse data in real time, thereby

improving and accelerating industrial operations.

The increased efficiency and flexibility in design and production processes, which result in sig-

nificant cost savings, is a direct result of this digital revolution [4]. For instance, advanced

analytics can analyse manufacturing data to identify inefficiencies and facilitate prompt in-

terventions. Additionally, virtual prototyping and testing tools are available in technology to

shorten design cycles and reduce dependency on physical prototypes.

A salient feature of this digital era is the active involvement of the end-user in the manufac-

turing process. Advanced digital platforms empower customers to mould products according

to their requirements, ushering in an age of mass customisation. This shift is underpinned by

technological innovations, notably reconfigurable manufacturing systems (RMSs) [5], that fa-

cilitate seamless configuration modifications. The recent COVID-19 pandemic underscored the

indispensability of such adaptable manufacturing systems. For example, during the pandemic,

the Office for National Statistics (ONS) data for February 2021 suggests that monthly man-
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ufacturing grew by 1.3% but remains 4.2% below its February 2020 level. A UK-wide survey

by Make UK suggests that 52% of manufacturing firms had to make redundancies due to the

pandemic, and there was a 57% drop in apprenticeships around manufacturing technologies.

Approximately 80% of manufacturing firms used furlough to some extent, highlighting the re-

liance on government support to sustain operations. Over the past 12 months, manufacturing

output contracted by 23.1%. Major automotive manufacturers like Nissan and Jaguar Land

Rover faced significant challenges, with all major car plants closing at the start of the pandemic

and some remaining closed for months [6].

These challenges highlight the potential benefits of RMSs in such crisis situations. The RMS, by

design, offers flexibility and adaptability in manufacturing operations. They could have enabled

manufacturers to rapidly reconfigure production lines to meet changing demands, such as the

shift to producing essential items like personal protective equipment (PPE) or medical devices

during the pandemic. This flexibility might have mitigated some of the negative impacts,

like the reduction in manufacturing output and the need for redundancies. Furthermore, the

adoption of RMS could have facilitated quicker resumption of operations post-lockdown by

allowing manufacturers to implement social distancing measures on the factory floor efficiently.

Essentially, RMS could have served as a critical tool in enabling manufacturers to maintain

production levels and adapt to new market demands amidst the unprecedented challenges posed

by the pandemic [6].

Robots are crucial in modern manufacturing, and their importance in RMS cannot be over-

stated. In the realm of manufacturing science and technology, the evolution of robotic assem-

bly systems within RMSs brings forth distinct challenges. Scientifically, a primary challenge

is the efficient processing and integration of heterogeneous data originating from the diverse

systems and technologies intrinsic to modern robotic assembly cells [7]. Achieving a unified

understanding from this varied data is critical for real-time decision-making and requires so-

phisticated models that can handle the complexity and variability inherent in manufacturing

data. From a technological perspective, this translates into developing robust data processing

frameworks that can seamlessly integrate and interpret information from varied sources, en-

suring that robotic assembly cells can rapidly respond to changes with minimal latency. This

requires not only advanced algorithms for data analysis and interpretation but also innovative

approaches to data architecture and management.
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Another significant challenge lies in the consistent adaptability of these systems to the ever-

changing consumer landscape, reflecting the market’s dynamic demands [8]. Scientifically,

this involves understanding and predicting how changes in process requirements will affect the

system’s performance and devising strategies to enable quick and efficient reconfiguration. This

is particularly challenging in a market characterised by rapid and often unpredictable changes.

Technologically, enabling such adaptability involves creating modular and flexible systems that

can be quickly reconfigured without extensive downtime.

Lastly, achieving optimal operational efficiency through continuous optimisation, especially

concerning layout and post-assembly processes, is a multifaceted challenge [5]. Scientifically,

it requires a deep understanding of the factors that contribute to operational efficiency and

the development of models that can identify opportunities for optimisation in a constantly

changing environment. Technologically, this involves implementing sophisticated optimisation

algorithms that can work in real time, making quick adjustments that improve efficiency with-

out disrupting ongoing operations. It also involves designing flexible systems to be reconfigured

or adjusted on the fly as new information becomes available or conditions change.

Addressing these challenges necessitates a comprehensive and multidisciplinary approach, merg-

ing insights from various fields to enhance the adaptability and efficiency of robotic assembly

cells in contemporary manufacturing. By tackling these issues, the research sets a pathway

towards more responsive, flexible, and efficient manufacturing systems capable of adapting to

the fast-paced and ever-evolving market demands.

1.2 Aim and Objectives

1.2.1 Research Questions

Based on these challenges, this research seeks to answer the following questions:

1. Research Question 1 (RQ1)

How can data from various sources be efficiently processed by integrating diverse systems

and technologies into robotic assembly cells?

2. Research Question 2 (RQ2)
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How can robotic assembly cells adeptly adjust to ever-shifting process requirements,

reflecting the changing consumer market?

3. Research Question 3 (RQ3)

How can a reconfigurable robotic assembly system efficiently optimise its operations,

especially in layout, after adapting to current process requirements?

1.2.2 Aim

This PhD research aims to develop a framework for reconfiguring robotic assembly cells, focus-

ing on the efficient processing of heterogeneous manufacturing data, adaptation to changing

product requirements, and post-adaptation layout optimisation, with validation through soft-

ware development and use cases.

1.2.3 Objectives

The primary research aim is supported by the following objectives, which are aimed at ad-

dressing the research questions:

• Objective 1: To develop an integrative approach for effectively managing heterogeneous

manufacturing data within robotic assembly cells, which addresses RQ1 and supports

informed decision-making.

• Objective 2: To design a reconfigurable robotic assembly cell system that exhibits agility

and responsiveness to changing market demands and product requirements, thereby an-

swering RQ2.

• Objective 3: To formulate a post-adaptation optimisation process for robotic assembly

cells, focusing on layout optimisation using artificial intelligence, knowledge graphs, and

simulation methodologies, in response to RQ3.

• Objective 4: To validate the strategies of the preceding three objectives through software

development and testing within use cases.
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These objectives, while addressing the respective research questions, collectively underpin the

central aim of the research: to develop a framework for the reconfiguration of robotic assem-

bly cells that meets the challenges of the robotic assembly reconfiguration cell and validate it

through software development and use case testing. These challenges include, for example, the

need to process and integrate heterogeneous manufacturing data efficiently, the requirement

for rapid adaptation to changing market demands and product specifications, and the imper-

ative for continuous optimisation of the system layout to maintain operational efficiency and

productivity. Each of these challenges represents a significant hurdle in the path to creating

more flexible, efficient, and responsive manufacturing systems, and the proposed framework

aims to provide robust solutions to these issues.

1.3 Thesis Structure

The structure of this thesis is shown in Figure 1.1.

In more detail, the contents per chapter are as follows:

• Chapter 1: This chapter describes the background, motivation, research aims, research

questions and objectives of this PhD thesis.

• Chapter 2: This chapter offers an extensive literature review on critical concepts and

technologies pertinent to the proposed methodology. Topics covered include a comprehen-

sive examination of RMSs, ontology modelling in the manufacturing domain, knowledge

graphs, asset selection, layout optimisation, simulation software, and multi-objective op-

timisation. Additionally, it delves into the limitations and gaps in existing approaches,

setting the context for the need for the proposed methodology.

• Chapter 3: This chapter offers an overview of the proposed methodology concerning

reconfiguration information within the robotic assembly process. It outlines the primary

contributions of the PhD thesis, emphasising their interrelation and significance. More-

over, criteria set out for validation are introduced to ensure the methodology’s robustness

and relevance.

• Chapter 4: This chapter addresses RQ1 and also contributes to fulfilling Objective 1 of
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Chapter 1

Chapter 1 begins with an introduction 

and the describe the research 

questions, aim and objectives of this 

PhD thesis

Chapter 2

Chapter 2 provides a critical review of 

the literature, identifying the 

limitations of current technologies 

within the field

Chapter 3

Chapter 3 describes the overview of 

the proposed methodology, which 

includes the methodology of building 

experience databank, asset selection 

and layout optimisation

Chapter 4

Chapter 4 describes the methodology 

of building  the experience databank 

for robotic assembly reconfiguration

Chapter 5

Chapter 5 describes the methodology 

of manufacturing asset selection in 

detail

Chapter 6

Chapter 6 describes the methodology 

of  layout optimsation in detail

Chapter 7

Chapter 7 describes the software 

development process and 

implementation of the proposed 

methodology

Chapter 8

Chapter 8 describes the three use 

cases to validate the methodology and 

test the software 

Chapter 9

Chapter 9 concludes the thesis, 

describes the potential application 

sectors of the proposed methodology 

and outline the future work

Figure 1.1: Structure of this PhD thesis

the PhD thesis. It delves into an ontology model tailored for robotic assembly reconfig-

uration and elaborates on its application in knowledge graphs. The chapter introduces

the ontology model and delineates the construction of the experience databank via the

knowledge graph, utilising the ontology model.

• Chapter 5: This chapter addresses RQ2 and concurrently aims to meet Objective 2 of

the PhD thesis. It delves into the methodology for asset selection, detailing the criteria

and objectives used to pinpoint candidate assets and to determine the most suitable

assets for specific manufacturing processes.
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• Chapter 6: In addressing RQ3 and meeting Objective 3, this chapter focuses on the de-

velopment of a modular methodology for layout configuration optimisation, characterised

by its multi-objective and scalable nature.

• Chapter 7: This chapter marks the shift from theory to practice, highlighting the

software implementation aspect of the RMS methodology, which is a key component of

Objective 4. It outlines the development processes for three core components: the expe-

rience databank interface, the asset selection tool, and the layout optimisation solution.

The progression from design to refinement is detailed, demonstrating the transformation

of abstract concepts into tangible software tools for contemporary manufacturing.

• Chapter 8: This chapter evaluates the proposed methodology through three distinct use

cases to fulfil the remaining aspects of Objective 4. The first use case tests asset selection

and system layout optimisation using the experience databank. The second assesses lay-

out optimisation for a single robot with multi-criteria, and the third investigates modular

asset selection with multiple criteria, both utilising the experience databank. These cases

collectively validate the methodology’s adaptability and efficiency in diverse manufactur-

ing contexts.

• Chapter 9: This chapter provides a holistic summary of the research’s pivotal contri-

butions within the realm of RMSs. It candidly addresses the study’s limitations, offering

a balanced perspective on its findings. Moreover, identifying potential research avenues

sets the stage for future explorations in this dynamic field.
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Chapter 2

Literature Review

This chapter presents a comprehensive literature review, beginning with the exploration of RMS

and their integration into robotics. The structure of this chapter is depicted in Figure 2.1.

Section 2.1: 

Reconfigurable 

Manufacturing 

System

Section 2.2: Ontology 

Model

Section 2.4: Asset 

Selection

Section 2.5: Layout 

Optimisation

Section 2.6: 

Simulation Software

Section 2.7: DH 

Parameter

Section 2.3: 

Knowledge Graph

Background information

Current solutions to solve 

the research question 1

Current solutions to solve 

the research question 2

Current solutions to solve 

the research question 3

Section 2.8: Multi-

Objective 

Optimisation

Related technology to solve 

the research question 1

Related technology to solve 

the research question 2

Related technology to solve 

the research question 3

Figure 2.1: Structure of the literature review chapter

The challenges associated with implementing RMS in robotics are detailed in Section 2.1. This

sets the stage for a deeper investigation into the various research questions posed in this thesis.
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Section 2.2 addresses the RQ1, focusing on proficient data management within robotic assembly

cells. It delves into existing knowledge representation techniques, particularly ontology models,

and discusses their limitations and applications in the manufacturing domain.

Building upon the foundational concepts of ontology models, Section 2.3 introduces knowl-

edge graphs to enrich the representation and understanding of complex data structures. This

section elucidates how knowledge graphs can be leveraged to enhance data management and

interpretation in manufacturing systems.

In Section 2.4, attention shifts to the RQ2, which scrutinises the current methodologies em-

ployed in asset selection. This section outlines the prevailing techniques and their inherent

limitations, setting the stage for potential improvements.

To address the RQ3, Section 2.5 reviews the existing solutions for layout optimisation in manu-

facturing systems. It critically assesses these solutions and highlights their limitations, paving

the way for the development of more efficient and effective optimisation strategies.

Section 2.6 discusses the role of simulation software in facilitating layout optimisation. It

reviews the current simulation tools used in manufacturing and outlines the criteria for selecting

appropriate software for this thesis.

The Denavit-Hartenberg (DH) parameters, fundamental for determining robot manoeuvrabil-

ity, are explored in Section 2.7. These parameters are crucial for the optimisation objectives

of layout configuration optimisation discussed in this thesis.

Finally, Section 2.8 introduces the concept of multi-objective optimisation, which is employed

for both asset selection and layout optimisation. This section sets the stage for the subsequent

chapters, which will delve into the application of these concepts in addressing the research

questions.
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2.1 Reconfigurable Manufacturing Systems and Robotic

Assembly

2.1.1 Reconfigurable Manufacturing Systems

RMS embodies the vision of a flexible and adaptive manufacturing landscape. By definition,

an RMS is designed with a quick-change capability, ensuring that it can be reconfigured in real

time to address dynamic production requirements. As manufacturing paradigms shift towards

more customer-centric models, the systems that can rapidly adjust to new production needs

have become of paramount importance.

The idea behind RMS arose from the limitations of traditional manufacturing setups, which

were either too rigid (dedicated systems) or too flexible (flexible manufacturing systems) but

with high retooling times. An RMS, as proposed by Koren et al. [5], aims to strike a balance

by offering the speed of dedicated systems and the versatility of flexible systems.

However, while the concept of an RMS is promising, its real-world implementation is not with-

out challenges. A primary challenge is the seamless integration of various modular components,

ensuring that the system can genuinely respond in real time to production shifts. Furthermore,

as Morgen et al. [9] noted, while the modularity of RMSs offers advantages in terms of adapt-

ability, it also presents complexities in system planning, especially when predicting future

production needs.

Another significant aspect is the cost associated with RMSs. While such systems should,

theoretically, lead to cost savings in the long run due to their adaptability, the initial investment

can be substantial [10].

In summary, while RMSs offer a transformative approach to modern manufacturing, ensuring

their seamless integration, scalability, and cost-effectiveness remains an active area of research.

2.1.2 Robotic Assembly in Reconfigurable Manufacturing Systems

In the dynamic realm of modern manufacturing, integrating robotics into RMSs offers adapt-

ability and efficiency [11]. Robots, built with sophisticated reconfigurability features, have
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emerged as vital cogs in the machinery, enabling manufacturers to adapt swiftly to changing

production needs without undergoing extensive overhauls. Given fluctuating market demands

and rapid technological shifts, this adaptability is not a mere luxury but a necessity.

The evolution of robots in RMS highlights the significant leaps in technological advancements.

Enhanced sensors give these robots a heightened sense of their environment, leading to more

precise operations. Merging machine learning and artificial intelligence has taken these robots

a step further than being mere programmable entities: they are now adaptive systems capable

of learning and evolving in real time. As Lee et al. [12] highlighted, the reprogramming capa-

bilities of these robots allow for adaptability, thus ensuring minimal downtime, which, in turn,

maximises production efficiency.

However, the evolution of robotic assembly systems has inherent challenges. Key among them

is the task of processing data that originates from many sources. This challenge arises due

to the integration of diverse systems and technologies intrinsic to modern robotic assembly

cells [7]. The heterogeneity of the resulting data can create difficulties in achieving a unified

understanding, which is essential for instantaneous decision-making.

Additionally, the ever-changing consumer landscape requires the consistent adaptability of

these systems to diverse process requirements [8]. The market’s demands are in constant flux,

evolving, shifting, and, at times, undergoing rapid changes.

Lastly, the pursuit of optimal operational efficiency requires continuous tweaks, especially con-

cerning layout optimisation processes [5]. It is also difficult to find a scalable optimisation

framework to do the layout optimisation.

2.2 Ontology Models in the Manufacturing Domain

To answer the RQ1, emphasis on proficient data management within robotic assembly cells

becomes key. This underscores the need for an in-depth understanding of knowledge represen-

tation within the manufacturing realm. Recent trends in the manufacturing sector reflect ampli-

fied engagement with knowledge representation technologies. Specifically, ontologies [13, 14],

semantics [15, 16], and semantic web technologies [17, 18] have been increasingly adopted.

These tools not only provide collaboration and interoperability but also offer adaptability —
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essential attributes for addressing the changing intricacies of the manufacturing landscape.

Historically, one of the pioneering manufacturing ontologies was the Process Specification Lan-

guage (PSL), developed to provide a neutral language for representing process-related knowl-

edge, thereby supporting application integration [19]. However, while Extensible Markup Lan-

guage (XML)-based methodologies primarily addressed the structural description of manu-

facturing processes, they often overlooked the implicit semantic content, making them less

versatile [20].

In more recent advancements, Lu et al. [21] introduced an ontology-centric approach, envi-

sioning the enhancement of semantic interoperability throughout the service provision in the

cloud. Similarly, Wang et al. [22] proposed an ontology model to describe task semantics

in cloud manufacturing systems. This model, however, lacks a vendor-neutral resource de-

scription, posing challenges for interoperability. Ontologies play a crucial role in facilitating

proficient data management within robotic assembly cells, primarily due to their capabilities

in knowledge representation. However, a significant gap emerges: the practical application and

potential of the method in complex decision-making scenarios remain vaguely defined.

Järvenpää et al. made a noteworthy contribution to developing the MaRCO information

model [14]. This model offers resource vendors a standard, vendor-independent descriptor

for resource capabilities, proving instrumental in capability matching. Its primary utility lies

in assessing the suitability of a manufacturing process or equipment relative to specific pro-

duction requirements. However, its current scope of application remains constrained due to

a lack of widespread adoption in the industry. Moreover, its inability to consider dynamic

parameters or reconfiguration nuances is a limitation. My proposed methodology in this PhD

thesis overcomes these.

While the literature offers various models and methodologies, persistent challenges and gaps

underscore the need for further research:

• Many prevailing resource description methods are domain-specific, offering solutions tai-

lored to particular applications and lacking a broader, more holistic perspective.

• Several models either lack practical applications or neglect the necessity of vendor-neutral

descriptions [21, 22].
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• The development of models that can incorporate static and dynamic parameters is es-

sential.

• A universally accepted industry standard or framework for ontology models in manufac-

turing remains elusive.

In conclusion, considerable progress has been achieved in the field of ontology models within

manufacturing. Nonetheless, tackling the highlighted gaps, especially the creation of compre-

hensive, dynamic, and vendor-neutral models, is crucial for the onward direction of ontology

applications in the sector.

2.3 Knowledge Graph

Building upon the foundational concepts established by ontology models in the manufacturing

domain, knowledge graphs further enrich the understanding and representation of complex data

structures. These graphs, with their intricate connections, serve as an extension and evolution

of the principles of ontology models.

In 2012, Google introduced its Knowledge Graph project, which the company leveraged to

improve the relevance of search results and enrich the user experience. This announcement

spurred a wave of developments, with a plethora of knowledge graphs emerging, propelled by

the increase in online resources and the advent of linked open data (LOD) initiatives. The

application spectrum of knowledge graphs is vast, encompassing domains such as question-

answering systems [23, 24] and recommendation systems [25, 26, 27], to information retrieval

[28, 29, 30]. Knowledge graphs methodically structure data about the real world, delineating

entities and their extensive networks of relations [31]. Within these graphs, data is articulated

as a triple (h, r, t), which signifies that there is a relationship r connecting a head entity h to a

tail entity t, exemplified by (Milling machine, hasTools, Milling cutter). Diverging from tradi-

tional data storage, which is often static and not well-suited for dynamic updates, knowledge

graphs are predicated on the accumulation, governance, and interpretation of unstructured,

heterogeneous data. This architecture enables them to dynamically adjust to new data and

relations, rendering them exceptionally pertinent for perpetually evolving sectors such as man-

ufacturing.
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The inherent capacity of knowledge graphs to delineate and process interconnections is a fun-

damental advantage, facilitating intricate associative analyses and the deduction of novel in-

sights [32]. Knowledge graphs possess the flexibility to incorporate additional entities and

relations without necessitating alterations to their foundational schema. This makes them

particularly effective for complex query resolution involving numerous entities and their inter-

relations [33]. For instance, answering a question such as “How to produce the fuselage of an

aircraft?” would pose a challenge for conventional relational databases or flat file structures.

A knowledge graph is structured into two primary layers: the schema layer and the entity

layer [34]. The former encompasses the abstract concepts, attributes, and the interplay be-

tween these concepts. The latter layer is populated with distinct entities derived from the

schema layer’s conceptual framework. For example, the relationship (Milling machine, has-

Tools, Milling cutter) illustrates an entity relationship within the entity layer, where both

the milling machine and milling cutter are instances of the “Asset” category from the schema

layer, connected by the semantic relationship (Asset, hasTools, Asset). Knowledge graphs’

data structures are well-aligned with the underlying frameworks used in various artificial in-

telligence (AI) applications, such as those dealing with diverse, multi-relational big data. This

alignment offers robust support for advanced applications in intelligent searching, interac-

tive Q&A systems, smart recommendation engines, and comprehensive data analytics [35].

Knowledge graphs can be housed in two predominant storage systems: Resource Description

Framework (RDF)-based systems and graph databases. The former is adept at facilitating

data interchange and distribution, while the latter excels in executing efficient graph-based

queries and exploration. Furthermore, RDF storage systems manage data as triples without

encompassing attributes, whereas graph databases typically employ attribute graphs, enabling

them to embed attributes within entities and relationships, thus providing a more nuanced

representation of complex business scenarios [36].

2.3.1 Applications in Manufacturing

Recently, knowledge graphs have been used in the industrial industry. Zhou et al. [37] intro-

duced a unified knowledge graph-driven production resource allocation approach that facilitated

quick decisions on resource allocation for a specified task order, taking into account device as-

sessment strategy and resource machining information. An industrial knowledge graph-based
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multi-agent reinforcement learning technique for creating a Self-X cognitive manufacturing

network was presented by Xia et al. [38]. The relationships between entities can be expressed

effectively using knowledge graphs. They enable individuals to analyse issues using the relation-

ships between knowledge. Despite the numerous benefits of knowledge graphs in manufacturing,

some limitations must be considered, including the following:

• Data Integration: Integrating data from multiple sources can be challenging and time-

consuming. The quality and format of the data may also vary, making it difficult to

standardise and integrate the information into a knowledge graph [39].

• Expertise: Building and maintaining a knowledge graph requires specialised skills and

expertise, making it challenging for organisations to implement one themselves [40].

• Lack of Standardisation: The lack of standardisation in knowledge graph technology

and data representation can limit interoperability and integration with other systems [41].

2.3.2 Tools to Implement a Knowledge Graph

The generation of knowledge graphs, premised on ontology models, has been significantly

advanced by a variety of methods and software tools. These encompass both open-source

platforms and proprietary solutions, each offering distinct capabilities:

• Neo4j: This open-source graph database management system enables efficient storage,

querying, and visualisation of graph-structured data. Its powerful Cypher query lan-

guage facilitates intricate and effective graph operations and navigations between node

relationships [42].

• Protégé: Protégé is an open-source ontology editor and knowledge-based framework

that supports the creation, editing, and visualisation of ontology models. It accommo-

dates several ontology languages, including Web Ontology Language (OWL), and RDF,

and RDF Schema (RDFS), and it provides a comprehensive set of plugins for ontology

reasoning, querying, and visualisation [43].

• Apache Jena: This open-source Java-based framework is designed for building Seman-

tic Web and Linked Data applications. It delivers Application Programming Interfaces
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(APIs) for reading, writing, and querying RDF data, along with support for reasoning

with OWL ontologies. A SPARQL query engine is included for executing complex queries

over RDF data [44].

• GraphDB: GraphDB manages semantic information effectively with on-the-fly data

transformations. It offers robust consistency, reasoning, and semantic similarity search

algorithms. Furthermore, its user-friendly cluster management interface and semantic

graph visualisation tools make it an appealing choice [45].

• Stardog: Stardog is an enterprise graph database platform offering data unification,

data integrity, and data discovery. It supports RDF and SPARQL standards, and it can

manage vast volumes of triples in a graph while providing advanced security features and

high availability [46].

• Blazegraph: Blazegraph is an ultra-high-performance graph database supporting the

RDF data model. It is well-suited to large-scale RDF data sets and offers optional support

for quad-store and provenance models. Its graphics processing unit (GPU) acceleration

makes it capable of managing exceptionally large graphs [47].

• RDFlib: RDFlib is a Python library devised for working with RDF data structures. It

encompasses parsers and serialisers for a plethora of RDF formats, including RDF/XML,

Notation3, NTriples, N-Quads, Turtle, and TriX, and it furnishes a graph interface un-

derpinned by various storage back-ends [48].

• Virtuoso: Virtuoso is a high-performance and scalable multi-model relational database

management system (RDBMS), serving as data integration middleware, a linked data

deployment facility, and an Hypertext Transfer Protocol (HTTP) application server plat-

form. It is distinguished for its capacity to expedite the transformation of basic business

data into valuable insights [49].

• Grakn: Grakn is a knowledge graph database to manage complex data. It utilises a

schema to model data that incorporates the inherent structure of the domain. Its query

language, Graql, allows users to define, query intuitively, and reason over the knowledge

graph [50].

• Py2neo: Serving as both a client library and a toolkit, Py2neo facilitates interaction

with the Neo4j database from Python-based applications as well as via the command line.
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This library is compatible with Bolt and HTTP, offering a comprehensive Application

Programming Interface (API) for higher-level operations. Additionally, it encompasses

administrative tools, an interactive shell, and a dedicated Cypher lexer compatible with

Pygments, alongside a suite of other advanced features [51].

In summary, the comparison of various knowledge graph implementation tools is concisely pre-

sented in Table 2.1. This table offers a clear and structured overview of each tool, detailing its

unique capabilities and potential limitations, thus providing valuable insights for those seeking

to implement knowledge graphs in their respective domains, particularly in manufacturing.

This comprehensive comparison serves as a useful guide for selecting the most appropriate tool

based on specific project requirements and constraints.

Table 2.1: Comparison of Knowledge Graph Implementation Tools

Tool Capabilities Limitations

Neo4j
Efficient graph operations,
Cypher query language,

suitable for large datasets
Steep learning curve for Cypher language

Protégé Supports multiple ontology
languages

Complex for beginners, plugin
dependency

Apache Jena Semantic Web and Linked
Data applications Java-based, limited to Java developers

GraphDB Semantic information
management

Complex setup, cost for enterprise
features

Stardog Data unification,
RDF/SPARQL support Cost, specialised knowledge needed

Blazegraph High-performance, GPU
acceleration Limited community support

RDFlib Python-based, flexible storage
back-ends

Limited to Python, requires programming
knowledge

Virtuoso Multi-model database, data
integration Complex for non-experts

Grakn Schema-based modelling,
Graql query language Limited adoption

Py2neo Toolkit for Neo4j, Python
compatibility Specific to Neo4j and Python

2.4 Asset Selection in Robotic Assembly Cells

The RQ2 concerns the main problem in the complex world of production, namely guaranteeing

that robotic assembly cells can quickly adapt to constantly changing process requirements.

Asset selection, a procedure long recognised as a cornerstone of effective production systems,

is inextricably tied to this problem. As production environments evolve due to technological
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advancements and changing consumer preferences, the significance of selecting the right assets,

whether machines, robots, or other essential tools, becomes paramount. Such decisions histor-

ically relied significantly on professional intuition, accumulated experience, and fundamental

data analysis. However, the digital revolution in the industrial industry has triggered a move

towards more advanced, data-driven processes.

Contemporary asset selection methodologies in the broader manufacturing context lean heav-

ily on predictive analytics. The emergence of Industry 4.0 has underscored the importance

of harnessing data for smarter decision-making [52]. Predictive models, particularly those un-

derpinned by machine learning algorithms, have provided game-changing insights into asset

performance, life-cycle costs, and potential bottlenecks [8]. Tools such as the “Analytic Hierar-

chy Process (AHP)” [53] and “Technique for Order of Preference by Similarity to Ideal Solution

(TOPSIS)” [54] have become indispensable. These frameworks allow manufacturers to evaluate

and rank assets systematically based on multifaceted criteria, thereby optimising performance

and costs.

The stakes and complexities of asset selection are further heightened in robotic assembly.

Robots are multifunctional entities that can perform various tasks, from simple pick-and-place

operations to intricate assembly routines. As highlighted by Kadir et al. [55], selecting the

right robotic assets in assembly cells is not only about performance but also about flexibility,

adaptability, and integration with other systems. The challenge is compounded by the sheer

variety of robotic assets available today, each with unique capabilities, limitations, and cost

implications.

The existing approaches, while powerful, have certain limitations. For instance, while the

models offer insights based on historical data, they sometimes struggle with scenarios that

deviate from past patterns [56]. The dynamic nature of an RMS, with its unpredictable and

ever-changing environment, often results in such deviations. This calls for more adaptive and

real-time decision-making frameworks that swiftly recalibrate based on new data and emerging

scenarios.

Moreover, as noted by Bi et al. [57], there is a critical need for comprehensive frameworks that

consider both the individual performance of assets and their synergy when incorporated into an

assembly cell. This synergy can be quantified through methodologies such as performance met-

rics analysis, which includes the concept of cost-efficiency. For instance, when different robotic
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assets are combined, the total cost of operation may decrease due to improved efficiency and

reduced redundancy. This cost synergy arises not just from the individual assets’ capabilities

but also from how they complement each other in operation, leading to a more cost-effective

production process. The interdependencies between robotic equipment and other industrial

system components significantly impact output and overall effectiveness. Manufacturers can

make more informed decisions by evaluating both the individual and collective cost implica-

tions alongside other performance metrics. This integrated approach, assessing individual asset

performance in conjunction with their combined cost and operational efficiencies, is crucial in

optimising the overall system efficiency. It also ensures adaptability and flexibility within the

dynamic environment of reconfigurable manufacturing systems. In summary, gaps remain de-

spite noteworthy developments in asset selection for robotic assembly cells. The ever-evolving

nature of RMS demands continuous innovation in asset selection methodologies to ensure that

these systems remain relevant, adaptive, and holistic.

2.5 Layout Optimisation in Robotic Assembly Cells

Understanding the complexities of layout optimisation in robotic assembly systems is essential

for answering RQ3, which asks how the need for more optimisation, especially regarding layout

and operating efficiency, can be determined post-assembly cell changes. Layout optimisation is

crucial in the present dynamic industrial scene. Adaptability is needed throughout a business

as market demands change quickly. This calls for more streamlined material flows, improved

inventory efficiency, and significant cost savings in material handling. Beyond these quantifiable

indicators, the broader goal is to ensure flexibility, safety, and the overall productivity of the

assembly process.

Historically, layout optimisation heavily relied on heuristic strategies, steered predominantly by

the expertise of plant engineers [58, 59]. However, as the complexities of modern manufacturing

burgeoned, the limitations of these traditional human-centric methods became evident.

With the development of computational algorithms, evolutionary algorithms and machine

learning algorithms have recently been used in layout optimisation. Caputo et al. [60] pre-

sented a method based on a genetic algorithm for optimising a process plant layout. Klar

et al. [61] proposed a framework for automated multi-objective factory layout planning using
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reinforcement learning. Souilah [62] proposed a methodology to group resources into manu-

facturing cells, design the intra-cell layout, and place the manufacturing cells on the available

shop-floor surface.

Yet, the algorithms are not without their gaps:

• Although powerful, many algorithms require vast and diverse datasets for training, which

poses a challenge in rapidly evolving manufacturing sectors [63].

• Many algorithms, while adept at handling specific optimisation scenarios, struggle when

faced with multi-objective problems where goals might conflict [64].

When examining the scope of layout optimisation, contemporary research predominantly fo-

cuses on two distinct levels: the machine and the system. At the machine level, studies focus

primarily on the modification of individual machine configurations. Such studies aim to op-

timise specific units within a larger system, as highlighted by Liu et al. [65]. Conversely,

system-level studies adopt a broader perspective: they emphasise both machine selection and

their subsequent spatial configuration within the layout. The objective is to strategically posi-

tion chosen machines within a predefined area, ensuring optimal operational flow and efficiency.

Seminal works in this domain include studies by Haddou et al. [66] and Ghanei et al. [67].

However, these focused approaches present evident limitations:

• The lack of integration between machine-level and system-level optimisation constitutes

a significant gap in current methodologies. This siloed approach potentially overlooks

the synergistic benefits that a combined perspective might offer.

• Most current research mainly focuses on the machining of parts. Other areas of the

industry, which might present new opportunities, do not receive as much attention, as

noted by Yelles-Chaouche [68].

2.6 Simulation Software for Robotic Assembly Cells

In the Industry 4.0 landscape, simulation tools have become integral to the functioning of

robotic manufacturing. These tools, which echo the digital twin concept, provide a crucial
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platform for analysis, optimisation, and testing within a virtual environment that accurately

reflects real-world setups. They offer a risk-free milieu for experiments and validations, which

is particularly valuable given the growing complexities in industrial automation and the need

for dependable and flexible simulation solutions.

The field of industrial robotics is replete with a variety of simulation methodologies, ranging

from all-encompassing commercial software suites to bespoke, task-specific Python libraries.

Each of these comes with its own set of features and foundational principles. The examination

of these simulation tools is not merely for theoretical enrichment; it is essential for tackling

the RQ3, which zeroes in on the critical need for post-assembly cell adjustments and the push

for ongoing layout optimisation. Significantly, these simulation resources are indispensable for

refining layout designs, allowing for continuous iteration and evaluation without the need for

physical alterations or incurring real-world costs.

Siemens Tecnomatix Process Simulate [69, 70] stands out for its exhaustive functionality that

supports an entire manufacturing ecosystem. As indicated in the literature, it is especially

adept at handling intricate systems involving multiple machines at the system level.

On the other hand, when focusing on robot-centric applications, platforms such as ABB Robot-

Studio [71, 72], FANUC Roboguide [73, 74], and RoboDK [75] are notable contenders. While

RobotStudio and Roboguide are proficient in their domain, they are vendor-specific and op-

timised for use with their own brand’s equipment. This specialisation ensures seamless in-

tegration but could restrict versatility when dealing with robots from various manufacturers.

RoboDK, however, stands out for its brand-agnostic approach, enabling quick simulation of a

wide range of robots from different vendors.

Siemens Tecnomatix Process Simulate is noted for its extensive capabilities, catering to a com-

prehensive manufacturing ecosystem. As referenced by Hovanec [76], it is particularly suitable

for complex setups involving multiple machines at a system level. However, when consider-

ing robot-centric software, ABB RobotStudio, FANUC Roboguide, and RoboDK emerge as

prominent choices. As highlighted by Neto [77] and Bulej [78], RobotStudio and Roboguide,

while proficient, are vendor-specific platforms, optimised primarily for their respective brands.

This specificity ensures impeccable integration but may offer limited flexibility across multiple

brands.
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Conversely, RoboDK, as cited by Chakraborty [79], offers versatility. It isn’t anchored to a

specific robot brand, allowing for the rapid simulation of various robots from different man-

ufacturers. Its capability to efficiently handle individual robot simulations, coupled with a

straightforward approach, makes it an apt choice for projects emphasising multi-brand flexi-

bility and a single robot focus.

Open-source Python tools, such as PyBullet [80], have brought about a new level of customi-

sation in technology. These tools are highly adaptable and can be tailored to users’ specific

requirements. However, utilising them in complex scenarios or integrating them with existing

systems can be time-consuming and requires expertise.

The variety of simulation tools for industrial robotics caters to diverse requirements. The

appropriate choice depends on the intricate details and complexities of the simulation objective.

This study adopts a simulation-centric methodology to explore RQ3 concerning the framework

for layout optimisation.

2.7 Denavit-Hartenberg Parameters

The DH parameters, attributed to Jacques Denavit and Richard S. Hartenberg, provide a struc-

tured and efficient means of defining the geometry of a robot manipulator. First introduced

in a foundational 1955 paper, the DH parameters have since become a standard approach in

robotics engineering [81]. In this PhD thesis, these parameters are fundamental for determin-

ing robot manoeuvrability, which is used as one of the optimisation objectives of the layout

configuration optimisation.

The DH parameters offer a standardised method to define and connect coordinate frames for

each joint in a robotic system, which helps to simplify the kinematic equations governing the

movement and operation of the robot. The fundamental idea is to attach a coordinate system

to each joint of the robot and then define the transformations between these coordinate systems

using only four parameters:

• Link length (a) - the distance between two consecutive joint axes.

• Link twist (α) - the angle between two consecutive joint axes.
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• Link offset (d) - the perpendicular distance from the origin of the current coordinate

frame to the previous frame, measured along the current joint axis.

• Joint angle (θ) - the angle between two consecutive x-axes, measured about the common

normal or current z-axis.

By systematically applying these parameters to each joint in a robot’s kinematic chain, it is pos-

sible to develop a comprehensive mathematical model that represents the spatial relationship

and movements between all parts of the robot.

Overall, the DH parameters provide a robust and consistent way to describe a robot’s structure

and motion, and they are widely used in both academic research and practical applications of

robotics.

Two types of DH parameters exist: the standard DH parameters and the modified DH param-

eters. In the next subsections, the details of these two types will be explained.

2.7.1 Standard Denavit-Hartenberg Parameters

The standard DH parameters provide an efficient method to describe the geometric relation-

ship between neighbouring links in a robotic manipulator. The system employs four parameters

to characterise each link: two parameters capture the link’s length and twist (describing dis-

placement), while the other two specify the joint angle and offset (describing rotation). A key

characteristic of the standard DH parameters is the placement of reference frames. The frame’s

origin is aligned with the joint axis, and the z-axis follows the direction of the joint’s motion.

The x-axis, by contrast, is positioned along the common normal between two consecutive joint

axes, effectively defining the link. For the standard DH parameter, the related parameters are

depicted below according to Figure 2.2.

1. The link length ai represent the distance along the xi axis, from zi−1 to zi.

2. The link twist αi represent around the xi axis, the rotation degree from zi−1 axis to zi

axis.

3. The link offset di, represents the distance along the zi−1 axis from xi−1 axis to xi axis.
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4. The joint angle, denoted as θi, represents the specific rotation around the zi−1 axis that

causes the xi−1 axis to rotate and align with the xi axis.

Figure 2.2: Standard DH parameters

To obtain the mathematical relationship between the coordinate system at the end of the robot

and the world coordinate system, a coordinate system is established at the end of each link.

Then, the DH parameter method is used to determine the mutual relationship between the

links. The homogeneous transformation matrix in the standard DH parameter between link

coordinate systems can be described as follows:

i−1Ti = Rotzi−1
(θi) · Transzi−1

(di) · Transxi
(ai) ·Rotxi

(αi) (2.1)


cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1

 (2.2)

where Rotzi−1
(θi) represents the rotation by θi degrees about the Zi−1 axis; Transzi−1

(di)

denotes the translation of di along the zi−1 axis from the xi−1 axis to the xi axis. Similarly,

Transxi
(ai) indicates the translation of ai along the xi axis from the zi−1 axis to the zi axis,

and Rotxi
(αi) signifies the rotation by αi degrees about the xi axis from the zi−1 to the zi axis.
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2.7.2 Modified Denavit-Hartenberg Parameters

The modified DH parameters were developed after the introduction of the standard DH pa-

rameters. These variants modify the placement of the x-axis and, consequently, the frame

assignment. This adjustment simplifies the description of certain manipulators and can of-

fer computational efficiencies. By allowing the joint and link axes to coincide, the modified

DH parameters provide a more intuitive definition of the link and robotic structure than the

standard parameters do. For the modified DH parameters, the following parameters should

be considered. The related parameters for the standard DH parameter are depicted below,

according to Figure 2.3.

Figure 2.3: Modified DH parameters

1. The link length ai−1 represent the distance along the xi−1 axis, from zi−1 to zi.

2. The link twist αi−1 represent around the xi−1 axis, the rotation degree from zi−1 axis to

zi axis.

3. The link offset di, represents the distance along the zi axis from xi−1 axis to xi axis.

4. The joint angle, denoted as θi, represents the specific rotation around the zi axis that

causes the xi−1 axis to rotate and align with the xi axis.
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The transformation matrix between coordinate i− 1 and i can be described below:

i−1Ti = Rotxi−1
(αi−1) · Transxi−1

(ai−1) ·Rotzi−1
(θi) · Transzi−1

(di) (2.3)

i−1Ti =


cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 − sinαi−1di

sin θi sinαi−1 cos θi sinαi−1 cosαi−1 − cosαi−1di

0 0 0 1

 (2.4)

where Rotxi−1
(αi−1) denotes a rotation of αi−1 degrees about the xi−1 axis; Transxi−1

(ai−1)

signifies translation by ai−1 along the xi−1 axis, moving from zi−1 to zi axis; Rotzi−1
(θi) indicates

a rotation of θi degrees around the zi−1 axis; and Transzi−1
(di) describes a translation by di

from the xi−1 to the xi axis.

DH parameters have been widely applied in the industry. Klug et al. [82] detailed a compre-

hensive assortment of DH parameters for a prototypical robotic total station. Subsequently,

Flanders et al. [83] subsequently presented an introduction to virtual reality-based educational

instruments. These tools utilise the Virtual Reality Modelling Language and an animation

toolbox for the study of forward kinematics, adhering to the Denavit-Hartenberg convention.

Additionally, Shen et al. [84] proposed a model crafted using the Denavit-Hartenberg param-

eter methodology. This model aims to scrutinise both the forward and inverse kinematics of

the robot, with the ultimate objective of optimising the robot’s trajectory.

2.8 Multi-Objective Optimisation

Multi-objective optimisation, often also termed multi-criteria or multi-attribute optimisation,

addresses problems with multiple conflicting objectives. This approach aims to find solutions

that strike a balance or trade-off, ensuring that optimising one objective does not negatively

impact another. Solutions that achieve this equilibrium are termed Pareto-optimal, a concept

named after Vilfredo Pareto, the Italian economist who introduced it [85].

In the context of manufacturing, multi-objective optimisation becomes particularly relevant for

tasks such as asset selection and layout optimisation. During asset selection, considerations
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such as cost, efficiency, and longevity might conflict, necessitating a balanced approach. Simi-

larly, layout optimisation might require trade-offs between cycle time, energy consumption and

safety. A single optimisation objective often falls short of capturing the multifaceted nature

of these complex problems. Hence, understanding and applying multi-objective optimisation

techniques are pivotal in achieving holistic and effective solutions in these domains.

In a manufacturing scenario, an illustrative example involves balancing the twin objectives

of minimising energy consumption and optimising robotic manoeuvrability, both of which are

crucial. However, achieving harmony between these goals can be challenging. Certain manoeu-

vres intended to enhance robotic efficiency might lead to increased energy usage. On the other

hand, strategies focused on energy conservation could potentially impede the robot’s range of

motion or reduce its operational speed.

In this context, a solution is termed Pareto-optimal if no other feasible solution can improve

one of the objectives without worsening the other. The Pareto front [86], in this case, would

represent the trade-offs between energy efficiency and robot manoeuvrability. Decision-makers

equipped with this range of Pareto-optimal solutions can then make informed choices based on

the specific needs and constraints of the manufacturing setup.

Decision-making in multi-objective optimisation can be broadly categorised into two primary

modes: “a priori” and “a posteriori” [87]. In the “a priori” method, preferences or weights

for each objective are established upfront, and based on these predefined weights, the multi-

objective problem is converted into a single-objective challenge. The solution derived using this

method is expected to align closely with the initial preferences. By contrast, the “a posteriori”

method does not require preferences or weights to be set at the outset. It focuses on finding a

set of Pareto-optimal solutions without a specific preference structure. Once these solutions are

identified, decision-makers can then choose the most suitable one based on their preferences.

Scalarisation is one technique used in this approach, where various weight combinations are

applied to the objectives to generate different solutions. This method allows for a more flexible

and comprehensive exploration of potential solutions, especially when uncertainty arises about

the objectives or when a diverse set of optimal solutions is desired.

Multi-objective optimisation finds extensive applications in manufacturing. For instance, in

the realm of asset selection, multi-objective optimisation has proven to be invaluable [88, 89].

As asset selection significantly influences manufacturing efficiency, costs, and product quality,
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striking a balance among various objectives is essential. These objectives might include min-

imising costs, reducing energy consumption, and ensuring the long-term sustainability of assets.

By harnessing the power of multi-objective optimisation, industries are equipped to make well-

informed decisions regarding which assets to invest in, thereby achieving a harmonious balance

between cost efficiency, energy conservation, and sustainability.

Layout configuration optimisation, another critical aspect of manufacturing, also extensively

employs multi-objective optimisation principles. This area is not solely concerned with the

arrangement of machinery and equipment; it is also about navigating challenges such as opti-

mising space and ensuring efficient material flow, minimising movement distances, maximising

the utilisation of available space, and ensuring robot manoeuvrability. Through multi-objective

optimisation, a holistic solution can be attained that meets these diverse needs [64, 90, 91].

While multi-objective optimisation has shown promise in asset selection and layout optimisa-

tion, its application presents unique challenges. The complex nature of defining and prioritising

objectives in these domains can lead to oversimplification or misrepresentation of the real-world

scenario [92]. The multi-modal nature of the solution space, especially in layout optimisation,

can pose difficulties in effectively navigating the Pareto front, potentially leading to subopti-

mal solutions [93]. Additionally, the computational overhead of evaluating multiple objectives

simultaneously, given the vast combination of assets and layouts, can be prohibitive, especially

for real-time decision-making [94]. Standard benchmarks and performance metrics tailored for

these specific applications are also lacking, making it challenging to assess and compare the

effectiveness of different multi-objective optimisation algorithms [95].

In conclusion, methods such as multi-objective and Pareto optimisation offer invaluable frame-

works for navigating intricate problems marked by multiple conflicting objectives. By pre-

senting an array of optimal solutions, these techniques empower decision-makers to select the

most appropriate solution in line with their distinct requirements and prevailing conditions.

The relevance of these techniques is particularly pronounced in sectors such as manufacturing,

where they play a pivotal role in refining processes and bolstering efficiency.
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2.9 Chapter Summary

Chapter 2 delves into the complexities and challenges of robotic assembly reconfiguration,

building on the foundation presented in Chapter 1, which highlights three pivotal research

questions. The chapter provides an overview of the existing methodologies related to the re-

search questions, highlighting their limitations. It also presents essential techniques to improve

the understanding of the challenges in robotic assembly reconfiguration. The fundamental as-

pects of these research questions, along with the current strategies and their limitations, are

summarised as follows:

1. The RQ1 centres on the efficacious capture and portrayal of knowledge from diverse

sources in robotic assembly reconfiguration. Despite advancements in ontologies, seman-

tics, and, notably, knowledge graphs, discernible gaps persist. Many prevailing resource

descriptions remain domain-specific, lacking the desired breadth and holistic perspective.

A solution that seamlessly amalgamates static and dynamic parameters is also lacking.

Knowledge graphs, symbolic of Industry 4.0, hold promise for integrated and exhaustive

knowledge management. However, challenges loom, notably due to a lack of standardis-

ation and potential integration complexities.

2. The RQ2 explores the nuanced process of asset selection within robotic assembly cells.

The shift from intuition-driven methodologies to predictive analytics is significant. Cur-

rent strategies, while promising, exhibit limitations: an over-reliance on historical data,

limited synergy with broader industrial systems, and potential scalability concerns. Fur-

thermore, multi-objective optimisation emerges as an instrumental paradigm. By balanc-

ing conflicting objectives, such as cost and energy consumption, this approach aims to

provide a robust framework for asset selection. However, the inherently dynamic nature

of these decisions, coupled with the intricacies of setting and harmonising objectives,

introduces inherent challenges.

3. The RQ3 delves into the complexities of layout optimisation in robotic assembly systems.

In the context of Industry 4.0, there’s a growing appreciation for simulation tools due

to their ability to offer virtual testing and adjustments without real-world disruptions.

A key aspect to consider is the DH parameters, which provide detailed insights into a

robot’s movement and flexibility. This level of detail is vital for improving the robotic
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assembly process. However, current methods have their drawbacks: they often depend

heavily on expert knowledge, need large datasets, can face difficulties adapting in real-

time, and sometimes falter with problems that have multiple objectives. Additionally,

research seems to concentrate on either the individual machine or the larger system,

with little integration of the two. Also, while many studies focus on machining processes,

there’s a noticeable gap in research specifically targeting the layout optimisation of robotic

assembly cells.
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Chapter 3

Reconfiguration Framework

To address the three research questions (RQ1, RQ2, and RQ3) and fulfil the objectives pre-

sented in Chapter 1, and to overcome the limitations of existing approaches detailed in Chapter

2, this PhD thesis proposes a reconfiguration framework for robotic assembly cells and investi-

gate its key perspectives in the frame for the robotic assembly cell including synergising ontology

models, knowledge graph and artificial intelligence. This framework mainly comprises three

components: the experience databank component, the optimal manufacturing asset selection

component, and the layout configuration optimisation component, as illustrated in Figure 3.1.

Figure 3.1: Schematic representation of the research’s key components

.
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3.1 The Proposed Methodology

Historically, manufacturing reconfiguration has been navigated using methodologies that lean

heavily on manual insights and human expertise. Recognising the limitations of such an ap-

proach, this PhD thesis introduces the experience databank. This innovative tool is not just

a repository but a transformative solution, capturing the essence of manual knowledge and

offering a streamlined methodology for manufacturing asset selection and layout optimisation.

The experience databank operates on two primary axes: manufacturing asset selection and

layout optimisation. Based on the above context, the major contributions of this PhD research

are four-fold: the methodology of development of the experience databank, the methodology

for optimal manufacturing asset selection, the methodology of layout configuration optimisa-

tion, and the fourth contribution, which involves the practical validation of the aforementioned

methodologies through software implementation and a series of industry use-case examinations.

Examining the interrelation between these components and adapting it in the robotic assembly

cell reconfiguration, a more detailed framework is presented in Figure 3.2.

Figure 3.2: The three contributions to robotic assembly cell reconfiguration

This framework outlines how to incorporate the first three major components into the robotic

assembly cell’s operations to adapt to new process needs. When a new task is introduced, it

is processed to generate the customer requirement, bill of process, and required system con-

figuration. Upon reaching the pivotal component of this PhD thesis, the experience databank

intervenes, furnishing recommendations for optimal manufacturing asset selection. Once assets

are selected, the experience databank provides further guidance for layout configuration optimi-

sation. After the layout is optimised, the real equipment configuration is updated accordingly.

The first three principal contributions of this research are methodically explored and detailed

in Chapters 4, 5, and 6, respectively. The fourth contribution, which focuses on the real-world
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application and validation of these methodologies, is thoroughly discussed in Chapters 7 and 8,

underlining its significance in the practical realm. Figure 3.3 details the UML activity diagram

of the proposed framework.
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Figure 3.3: UML activity diagram of the reconfiguration framework

As mentioned before, the body of work presented in this thesis is composed of three core

methodological contributions, each addressing a distinct challenge in the reconfiguration of

robotic assembly systems for advanced manufacturing. To ensure that these contributions are

not only theoretically sound but also practically viable, a fourth crucial component has been in-

troduced, which encompasses the software implementation and its validation through use cases.
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The four major components (i.e., three methodological contributions and one implementation

and validation component) of this PhD thesis are elaborated below:

1. Building and Updating the Experience Databank (Contribution 1 to Address

Objective 1): The research introduces the concept of an “experience databank” — a

dynamic repository that captures details about tasks, processes, assets, capabilities, and

the nuances of reconfiguration within robotic assembly cells. This databank, a pivotal

element in the infrastructure, supports a continuous evolution and fine-tuning of knowl-

edge. It is developed using an ontology model for a consistent schema and knowledge

graph techniques for nuanced data interrelations. The databank is designed to offer:

• Enhanced data management through efficient algorithms for data capture, storage,

and retrieval. This is achieved via a vendor-neutral ontology model, ensuring a uni-

form approach to data representation and processing. The model’s robust structure

underpins the effective management and utilisation of data within robotic assembly

cells.

• Improved decision-making capabilities by integrating advanced data management

practices. The databank leverages a knowledge graph-centric approach to maintain

data reliability, accuracy, and relevance, thereby facilitating informed and timely

decisions in the manufacturing process.

2. Optimal Manufacturing Asset Selection Methodology (Contribution 2 to Ad-

dress Objective 2):

This methodology aims to identify the most appropriate asset to meet new process re-

quirements. Comprising both the recognition and evaluation of potential assets, it sup-

ports swift adaptations to changing process requirements in flexible manufacturing sys-

tems. Knowledge graphs handle data storage and management, whilst multi-criteria

decision-making algorithms evaluate assets. This methodology is broken down into:

• The initial step involves the creation of selection algorithms accounting for diverse

performance metrics and essential elements such as cost, compatibility, and avail-

ability. Such algorithms ensure the alignment of selected assets with product re-

quirements.

• The assessment process benefits from decision-making algorithms, harmonising var-

ious objectives and limitations. This comprehensive evaluation of potential assets
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draws on their specification, capacity, and reconfiguration model.

3. Layout Optimisation Methodology (Contribution 3 to Address Objective 3):

A methodology for layout optimisation is devised, focusing on ascertaining the opti-

mal placement of assets. Knowledge graphs manage data storage, while multi-criteria

decision-making algorithms identify the optimal layout. The incorporation of simulation

environments and modular artificial intelligence during the reconfiguration phase ensures

accuracy and flexibility. This methodology comprises:

• The phase begins with the optimisation of asset positioning within the assembly

cell, subsequently updating the configuration settings to reflect the optimised lay-

out. This approach considers varied configurations and layout goals such as energy

consumption, robot manoeuvrability, and cycle time.

• A simulation-based strategy is introduced and designed with a strong emphasis on

interoperability. It allows for robust evaluations of layout configurations at both the

machine and system levels prior to their real-world deployment. This interoperable

framework ensures the seamless integration of the simulation environment with var-

ious algorithms, bolstering effective communication and interaction with external

systems. Different simulation software tools have been incorporated to guarantee

scalability. The approach not only promises a holistic insight into assembly envi-

ronments but also aids in the selection of the most efficient layouts.

4. Software Implementation and Use Case Validation (Contribution 4 to Ad-

dress Objective 4):

To validate the proposed methodology encompassing the first three major contributions,

a meticulous software development process is executed, resulting in a bespoke suite that

integrates functionalities for the experience databank, modular manufacturing asset se-

lection, and layout optimisation. This software suite is subjected to rigorous scrutiny

through three distinct use cases, each designed to challenge and assess the robustness

and applicability of the methodologies within real-world manufacturing settings.
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3.2 Validation Methods

Within this chapter, the validation criteria are delineated, serving to ascertain the efficacy of

the three principal methodological contributions of this doctoral thesis. Each contribution,

alongside its ancillary components, is meticulously tethered to specific validation criteria, en-

suring the attainment of the designated objectives. An in-depth exposition of these criteria

and their corresponding use case validations are provided in Chapter 8, wherein three carefully

selected use cases are expounded. Each case has been strategically chosen to satisfy distinct

criteria, thereby affirmatively meeting the collective objectives of the research.

It should be highlighted that the fourth contribution of this thesis, encompassing software

development and use case validation, does not require independent validation against the es-

tablished criteria. This component is pivotal in demonstrating the practical application of the

first three contributions. It functions as the medium through which the developed methodolo-

gies are applied and validated against real-world industrial scenarios, inherently substantiating

the first three objectives rather than being subjected to validation itself.

3.2.1 Validation of Methodology for Building and Updating Experi-

ence Databank

Contribution 1 focuses on developing a vendor-neutral ontology model that effectively de-

scribes manufacturing capabilities, capacities, and reconfiguration strategies. The databank

leverages a knowledge graph-centric approach to maintain data reliability, accuracy, and rel-

evance, thereby facilitating informed and timely decisions in the manufacturing process. The

validation measures to demonstrate that this contribution fulfils Objective 1 are as follows:

• Criterion 1.1: Vendor Neutrality

The vendor neutrality of the ontology model will be validated by building the model

without considering vendor-specific information. It will also be assessed by applying the

model to a diverse set of industry use cases involving multiple vendors. The methodology

to satisfy this criterion is detailed in Section 4.2, and the use cases for validating the

methodology are comprehensively undertaken in Sections 8.1, 8.2, 8.3.
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• Criterion 1.2: Information Modelling

This can be validated by the successful modelling of the robotic assembly reconfiguration-

related information. The methodology to satisfy this criterion is detailed in Section 4.2,

and the use cases for validating the methodology are comprehensively undertaken in

Sections 8.1, 8.2, and 8.3.

• Criterion 1.3: Handling of Data from Diverse Sources

The capability of the methodology to handle data from diverse sources will be confirmed

by showcasing its operation across different data types. The approach for achieving

this is elaborated in Section 4.2, and the use cases for validating this methodology are

comprehensively undertaken in Sections 8.1, 8.2, and 8.3.

• Criterion 1.4: Reasoning Based on the Ontology

This will involve the test of checking if the ontology reasoning works and if the implicit in-

formation can be found via ontology reasoning. The methodology to satisfy this criterion

is detailed in Section 4.2. The use cases for validating this methodology are comprehen-

sively undertaken across multiple sections, namely Section 8.1, Section 8.2, and Section

8.3.

3.2.2 Validation of Optimal Manufacturing Asset Selection Method-

ology

The second contribution is centred on developing an effective manufacturing asset selection

and evaluation methodology. The validation criteria for this contribution are as follows:

• Criterion 2.1: Adapting to New Process Requirement

This criterion can be validated by providing the different process and product require-

ments for the proposed framework. Then, the framework enables the adaptation to the

changing requirements. The methodology to satisfy this criterion is detailed in Section

4.2. The use cases of validating this methodology are comprehensively undertaken across

multiple sections, namely Section 8.1, and Section 8.3.

• Criterion 2.2: Capability Assessment

This criterion evaluates assets’ suitability for specific process requirements. The method-
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ology focuses on a thorough assessment of asset attributes and performance to ensure

that selected assets align with operational needs. Details of this assessment are pro-

vided in Sections 5.2 and Section 5.3. The use cases of validating this methodology are

comprehensively undertaken across multiple sections, namely Section 8.1 and Section 8.3.

• Criterion 2.3: Modular Manufacturing Asset Selection

The modularity of the manufacturing asset selection methodology can be validated by

ensuring that the methodology can be easily integrated into various algorithms. This

will involve testing the methodology with different algorithms and assessing the ease and

effectiveness of the integration. The methodology to satisfy this criterion is detailed in

Section 5.4, and the use case for validating this methodology is presented in Section 8.3.

• Criterion 2.4: Multi-Criteria Manufacturing Asset Selection

The asset prioritisation process employs an multi-criteria decision-making (MCDM) ap-

proach to systematically rank the identified candidate assets based on multiple perfor-

mance criteria. The proposed methodology must be able to support MCDM. The method-

ology to satisfy this criterion is detailed in Section 5.4. The use case for validating this

methodology is presented in Section 8.3.

• Criterion 2.5: Synergies with the Systems

This criterion aims to validate the synergies with other assets in manufacturing asset

selection. In manufacturing asset selection, the single machine and the synergies with

other machines should be considered. The methodology to satisfy this criterion is detailed

in Section 5.4. The use case for validating this methodology is comprehensively examined

in Section 8.3.

3.2.3 Validation of Methodology for Layout Optimisation

The third contribution targets the creation of an optimisation methodology for layout config-

uration. The validation criteria for this contribution are as follows:

• Criterion 3.1: Multi-Criteria Layout Optimisation

This criterion will be validated by providing more than one optimisation objective in the

layout optimisation. The methodology related to this criterion is elucidated in 6.2, and

the use case for validating the methodology is presented in Section 8.2.
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• Criterion 3.2: Modular Layout Optimisation

The modularity of the proposed framework can be validated by verifying the ease of

integration and replacement of different optimisation algorithms. This will involve testing

the framework with different algorithms and evaluating its ability to adapt to changes

in the algorithms. The methodology related to this criterion is elucidated in Section 6.2,

and the use case for validating the methodology is presented in Section 8.2.

• Criterion 3.3: Interoperability

The successful interoperability of the simulation environment with the algorithm and its

ability to communicate effectively with the external world will be validated, ensuring

that they can effortlessly interact. This will entail a series of tests in which the algorithm

is executed within the simulation environment, assessing its capability to communicate

with the environment and utilise its features effectively. The methodology related to this

criterion is elucidated in Section 6.2, and the use cases for validating the methodology

are comprehensively undertaken in Section 8.1 and Section 8.2.

• Criterion 3.4: Scalability

This criterion aims to validate the generalisation of the layout configuration framework.

Validation can be achieved by applying the proposed layout reconfiguration framework

to different layout optimisation problems, not only at the machine level but also at the

system level. The methodology related to this criterion is elucidated in Section 6.2. The

use cases for validating this methodology are comprehensively undertaken across multiple

sections, namely Section 8.1 and Section 8.2.

3.3 Chapter Summary

This chapter introduced a framework for reconfiguring robotic assembly processes. This frame-

work is structured around three core components:

1. Methodology to Build and Update the Experience Databank: This component

introduces the concept of a vendor-neutral ontology model and its synergy with the

knowledge graph.
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2. Methodology for Optimal Manufacturing Asset Selection: This component out-

lines the process of identifying and evaluating candidate assets.

3. Methodology for Layout Configuration Optimisation: This component focuses on

multi-objective and simulation-based optimisation.

The aforementioned three components form the foundational triad of contributions of this PhD

thesis, while the fourth pivotal contribution is the software development process accompanied

by use cases specifically devised to validate the methodologies established by the initial three

contributions.

The ontology model, detailed in Chapter 4, is posited as an instrumental tool in robotic re-

configuration. It is the key element of building the experience databank with a knowledge

graph. The experience databank is intended to streamline decision-making complexities in

manufacturing asset selection, evaluation, and layout optimisation.

The manufacturing asset selection methodology, discussed in Chapter 5, considers various

criteria such as cost, cycle time and energy consumption. Its aim is to identify an efficient

combination of assets to meet process requirements.

The methodology for layout configuration optimisation is tailored to user-defined Key Perfor-

mance Indicators (KPIs) and allows for algorithmic flexibility based on specific use cases. This

will be elaborated upon in Chapter 6.

Representative scenarios, such as robotic manufacturing and industrial production cells, will

serve as the backdrop for the validation process. These scenarios aim to embody the unique

challenges and nuances of reconfiguring robotic assembly processes. Chapter 7 and Chapter

8 describe the software development process and use cases that are fundamental to the three

major contributions of this research.

In conclusion, this chapter has provided an overview of a framework developed for reconfiguring

the robotic assembly process. This framework is intended to enhance both manufacturing asset

selection and layout configuration processes by leveraging an experience databank.
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Chapter 4

Ontology Model and Experience

Databank

This chapter is a crucial thesis component because it addresses the RQ1. It introduces an

ontology model and explains how to build the experience databank through the knowledge

graph with the help of the ontology model, thus achieving Objective 1.

4.1 Introduction

The relationship between experience databank, knowledge graph and ontology model is de-

picted in Figure 4.1. As mentioned in Chapter 2, the knowledge graph consists of the schema

and entity layers. The ontology model is necessary to build the schema layer of the knowledge

graph. This chapter proposes a unified formal ontology model integrating capacity, capability,

and reconfiguration information. Employing this model to represent manufacturing informa-

tion can help make more efficient, accurate, and timely decisions. Furthermore, an approach

to building the entity layer of the knowledge graph has also been proposed. After the entity

and schema layers of the knowledge graph are built, the experience databank is achieved based

on the generated knowledge graph.

To ensure that the ontology model effectively fulfils the needs of the robotic assembly recon-

figuration domain, it must:
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Figure 4.1: Relationship between experience databank, knowledge graph and ontology model

• Be vendor-neutral.

• Accurately represent the capability, capacity, and reconfiguration of the robotic assembly

cell.

• Enable the processing of heterogeneous data through a knowledge graph-based approach

• Facilitate reasoning based on the ontology model.

In the subsequent chapters, the ontology model’s design and the ontology model’s application

with a knowledge graph-based approach to building the experience databank are evaluated

against the above-mentioned requirements to ensure the model’s efficacy and relevance in the

domain.

4.2 Development of Ontology Model and Experience Data-

bank in Knowledge Graph

In this section, the process of how to build the experience databank is proposed. At first, the

knowledge graph-building approach is introduced and chosen to build the knowledge graph

for the robotic assembly reconfiguration. Second, the information required for the ontology

model to construct the knowledge graph is detailed. Additionally, the relationships among the

various pieces of information within the model are described. Then, as the thesis focuses on

the reconfiguration of robots, the robot information and reconfiguration models are described.

Finally, the application of the generated knowledge graph (experience databank) is described.
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4.2.1 Knowledge Graph Building Approach

The creation of a knowledge graph, as identified in the literature, involves articulating both a

schema and an entity layer. A strategic approach is required to develop these layers when the

knowledge graph is tailored towards reconfiguration tasks.

Two primary methodologies exist for constructing knowledge graphs: a top-down and a bottom-

up approach. In the top-down process, domain experts and existing datasets are employed to

define the schema layer a priori, which then guides the population of the entity layer [96].

This method is prevalent for designing knowledge graphs that cater to specific domains or

applications and relies heavily on expert input. On the other hand, the bottom-up approach

initiates the extraction of entities and their relationships from a myriad of data sources, both

structured and unstructured. This is followed by the gradual formulation of the schema layer,

informed by the insights garnered from the entity information [97].

Adopting solely the top-down or bottom-up approach comes with its own set of challenges. The

top-down method, while ensuring the precision of data, often requires significant time and fi-

nancial investment due to its reliance on domain expertise. In contrast, the bottom-up method

is less resource-intensive but hinges on the availability of extensive data, which can pose signif-

icant obstacles, particularly within the manufacturing sector. The approach recommended in

this study aims to synergise the decision-making process and enhance reconfiguration efficacy

by integrating both methods. This hybrid strategy mitigates the limitations inherent in using

each approach in isolation, as elaborated in [98]. Sections 4.2.2 and 4.2.3 detail the methodolo-

gies to build the schema layer and the entity layer of the knowledge graph, respectively. Section

4.2.4 describes the application of the generated knowledge graph (experience databank).

4.2.2 Ontology Model as the Schema Layer of the Knowledge Graph

An ontology model named the “Ontology model of capability, capacity, and reconfiguration

(OCCR)” is developed to construct the schema layer of the knowledge graph. It is based on

Järvenpää’s model [14] but incorporates additional semantic models and refines existing ones;

for example, it incorporates a more detailed capability model, including metrology capabil-

ity, and information regarding reconfiguration, capacity, and tasks. Within the purview of
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the OCCR model is the formal modelling of the capabilities, capacities, and reconfiguration

information of robotic assembly reconfiguration, along with their associated models. This is

achieved through automated analysis of the utilisation of available assets and the autonomous

allocation of capacity to optimise that utilisation in response to fluctuating market demands.

The OCCR model comprises seven semantic models: task, product, process, capability, ca-

pacity, assets, and reconfiguration models, each comprising the relevant ontology classes. The

data is stored as triples in the knowledge graph. A symbolic representation of these semantic

models is presented in Table 4.1, with a more in-depth description of each model provided in

the subsequent sub-sections. The interrelationships among these semantic models are visually

represented in Figure 4.2.

Table 4.1: Seven semantic models and their symbolic representation

Models Symbolic Representation

Task TAS
Product PRT
Process PRS

Capability CAB
Capacity CAP
Assets ASS

Reconfiguration REC

4.2.2.1 Task Model

The task model describes the information about how customer orders and requests that are

initiated internally, within the factory, are processed. It represents the tasks or activities

necessary to complete a customer order or fulfil a request, providing a high-level overview of

the steps involved in the production process. The task model is divided into two sub-models:

non-reconfiguration-related tasks and reconfiguration-related tasks.

1. Non-Reconfiguration-Related Task Model (NRT)

The NRT defines the non-reconfiguration-related task, which typically originates from

the customer and is intended to meet specific requirements for producing the product,

such as quantity and timeline. This task can also be interpreted as a production task.

2. Reconfiguration-Related Task Model (RT)

The RT defines the reconfiguration-related task, typically as an internal factory task.

This model provides information about reconfiguration, which can take different forms,

such as layout reconfiguration, resource selection, and job scheduling.
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Figure 4.2: Linking semantic models in the optimisation and the decision-making process for
the reconfiguration

4.2.2.2 Product Model

The product model plays a pivotal role in robotic assembly cells; it represents information

about the product in the robotic assembly line. The selection of the most efficient production

procedures is heavily influenced by the geometric attributes of the product, such as its size and

shape. For instance, if, on the one hand, a product is large or has a complex shape, then robotic

manufacturing cells equipped with industrial robots that have a large workspace and high

flexibility might be suitable. These robots can manipulate large objects or accurately navigate

around complex shapes, making them ideal for these types of tasks. On the other hand, if a
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product has intricate geometric features or requires precise assembly, then robotic cells with

robots that possess high precision and advanced control features might be a better choice.

These robots can handle delicate assembly tasks and accurately follow complex trajectories,

thereby ensuring the quality of the finished product. In addition, the product’s requirements

for assembly and handling can also influence the choice of robotic cells. For example, if the

product requires specific positioning or orientation during assembly, then robots with advanced

vision systems or force-sensing capabilities might be necessary.

4.2.2.3 Process Model

The process model provides a structured representation of the necessary operations and re-

quirements to complete a manufacturing or reconfiguration task step. It explains the various

steps involved in a manufacturing task or reconfiguration process, defining the inputs, outputs,

and dependencies of each step.

4.2.2.4 Capability Model

A capability model in the manufacturing domain represents the capabilities and constraints of

a factory in terms of its manufacturing processes and technologies, the available resources and

skills, and the regulations and standards with which it must comply. This model provides a

comprehensive view of the factory’s capabilities and aids in making informed decisions about

the products and processes that can be manufactured within the factory. It can also help to

identify areas for improvement, such as the acquisition of new resources or technologies or the

development of new skills, to enhance the factory’s capabilities and competitiveness. It consists

of two subclasses: simple capability and combined capability. In the capability model, simple

and combined capabilities are linked by “hasInputCapability” relations.

1. Simple Capability (SC)

A simple capability is the capability of a single asset. For example, a fixture has the

single capability of “fixturing”.

2. Combined Capability (CC)

Combined capabilities are combinations of two or more (simple or combined) capabilities.
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They could be divided by functional decomposition into simple, lower-level capabilities.

For example, a robot with a finger gripper has the pick-and-place capability, composed

of the “force applying” and “moving” capabilities from the robot and the “grasping” and

“releasing” capabilities from the finger gripper.

4.2.2.5 Capacity Model

The capacity model provides a structured framework that outlines the various KPIs that are

used to understand a manufacturing system’s capacity constraints and potential. Rather than

portraying the performance of the shop floor, the model focuses on illustrating the produc-

tion capacity of a factory or production line. It presents a view of the available resources

(e.g. machines and labour), ongoing production processes, and any existing constraints. This

model merely reflects the current manufacturing scenario. Based on this model, algorithms or

functions can be developed to analyse further and determine optimal production strategies.

4.2.2.6 Assets Model

In the manufacturing domain, assets encompass a broad range of elements vital for produc-

tion, from tangible physical objects such as machinery to intangible elements such as software

solutions. The assets model, therefore, represents these diverse elements to facilitate optimal

management and utilisation by organisations. The model classifies assets into four distinct

categories:

• Hardware: The tangible equipment and tooling used in production processes.

• Software: Digital solutions and tools, excluding specialised reconfiguration solvers.

• Human Workforce: Human resources and their associated skills, training, and experi-

ence.

• Reconfiguration Solver: A distinct category given its critical role in the manufacturing

setup. While it technically falls under software, its importance and specialised nature

merit a separate classification.
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Different asset categories represent distinct attributes. For instance, hardware might have

maintenance history and location details, while the human workforce could have attributes

related to training, skills, and experience. The assets model provides relevant details for each

category, thus ensuring comprehensive insights for informed decision-making.

4.2.2.7 Reconfiguration Model

The reconfiguration model outlines the attributes that allow an RMS to adjust to changes in

customer requests. These attributes include decision variables, optimisation variables, and con-

straints in reconfiguration scenarios. In the current OCCR model, three forms of reconfigura-

tion are defined: layout optimisation, resource selection for reconfiguration, and job scheduling.

4.2.2.8 Relationships between the Seven Semantic Models

The representation in Figure 4.2 provides guidance on the storage of information as triples in

the knowledge graph according to the proposed schema structure. For instance, the relationship

between capability and assets is captured using the triple (Asset, hasCapability, Capability).

Furthermore, Figure 4.3 displays information related to the subclass of layout optimisation,

job scheduling, and resource selection in the reconfiguration model, exemplified by the triple

(Objectives, SCO, Layout Optimisation).

These semantic models work together to achieve the decision-making process and the cost-

effectiveness of the reconfiguration of the manufacturing system. The reconfiguration- and

non-reconfiguration-related tasks have different processes for utilising the semantic models.

When a new task for the manufacturing system arrives, it will be identified by the task model

to determine whether it is a non-reconfiguration- or reconfiguration-related task. The steps for

utilising the semantic model for enhancing decision-making and the reconfiguration process are

different.

For the non-reconfiguration related task, the task model displays the necessary product infor-

mation and connects it with the product model through the relationship “required product”.

The NRT displays details such as product type, quantity, and delivery timeline. Meanwhile,

the product model showcases the product’s features, which are linked to the process model
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Figure 4.3: Structure of the reconfiguration semantic model

through the relationship “required process”. For instance, if the product requires a hole, then

the drilling process must be executed to fulfil this requirement.

In the process model, the relevant production process is selected since the task is not recon-

figurable. The process model also specifies the varying requirements for each process. Once

the process for producing the product is determined, the capability-matching process begins,

where the required capabilities to execute the process are identified using information from the

process model, such as the accuracy and force required for the process “Inserting”.

The asset semantic model links with the capability model, such that once the required capabil-

ities are clear, the candidate assets that meet the specifications can be identified. Additionally,

dynamic parameters from the capacity model, such as utilisation rate, cost, and working sta-

tus, can be considered to optimise the capability-matching process. Finally, the most suitable

assets, which exhibit the required capabilities and specifications, are selected.

In the context of reconfiguration-related tasks, the task semantic model serves as a repository

for the type of reconfiguration involved. The OCCR model defines three types of reconfigu-

ration, which can be either a single type or a combination thereof. The task model is linked

directly to the reconfiguration model, enabling the retrieval of information necessary for recon-

figuration based on the type indicated in the task model. The reconfiguration model provides
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information about the decision variables, optimisation objectives, and constraints that should

be considered during the reconfiguration process. The task model is also linked to the process

semantic model through the relationship “required process”.

For the RT, two types of processes are required: (1) the reconfiguration solution, such as the

“layout reconfiguration process”, “resource selection process”, and “job scheduling process”, and

(2) the current process that needs reconfiguration. For instance, as depicted in Figure 4.4,

consider a work cell consisting of a robot, a profile board storage rack, profile boards, and a

frame on an automated guided vehicle. The robot picks up the profile board from the storage

rack and places it on the frame. If the customer requires the layout of the current work

cell to be optimised, then the semantic model identifies two types of processes. In this case,

the reconfiguration solution process is the “layout reconfiguration process”, and the current

processes that will be subject to the reconfiguration are “pick profile board” and “place profile

board”.

Figure 4.4: Example to show the relationship between the two types of the process in the
reconfiguration-related task

Following the clear identification of the two types of processes, the capability-matching process

commences. If resource selection is one of the reconfiguration types in the reconfiguration-

related task, then the capability-matching process is employed to determine the feasibility and

viability of alternative assets replacing existing assets in the production line. For the capability

matching of the reconfiguration solution, potential assets that can execute the reconfiguration

are sought.
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4.2.2.9 Detailed Information of the Reconfiguration Model

The reconfiguration model describes the features that make an RMS dynamic, with the capac-

ity and functionality to adapt to changes in customer requests. The features can be decision

variables, optimisation variables, and constraints in the reconfiguration scenarios. In the cur-

rent OCCR model, three forms of reconfiguration are defined: layout optimisation, resource

selection for reconfiguration, and job scheduling. As previously mentioned in Section 4.2.2,

a new semantic model has been defined to capture the necessary information for supporting

reconfiguration in manufacturing systems. As described in Chapter 2, various types of re-

configuration exist, represented by the subclasses of layout reconfiguration, resource selection,

and job scheduling in the current model. These subclasses are included in the reconfiguration

semantic model, as shown in Figure 4.2. Decision variables, optimisation objectives and con-

straints are used as the subclasses of each of the three aforementioned subclasses to describe

the reconfiguration information as shown in Figure 4.3.

In manufacturing reconfiguration optimisation, decision variables are values that can be chosen

or adjusted to optimise the objective, such as cost, efficiency, or production rate. Optimisation

objectives are the objectives that can be optimised depending on the specific application and

goals of the reconfiguration optimisation problem in the manufacturing domain. Constraints

in the manufacturing reconfiguration domain refer to limitations or restrictions on the decision

variables that must be adhered to in order to ensure a feasible and practical solution. A subclass

in the asset semantic model is also considered: Reconfiguration solver. This subclass represents

the enabling technology for achieving the reconfiguration, such as the algorithm, the simulation

platform, virtual reality (VR), and augmented reality (AR). These three reconfiguration types

in the reconfiguration semantic model are explained next.

4.2.2.9.1 Layout Optimisation In the field of RMSs, the performance of operations on

products (or product families) according to their operational requirements is crucial. Layout

design and optimisation play a key role in RMSs since these systems require different layout

configurations when switching from one product family to another. The following information

has been identified as essential and is classified as a subclass in the proposed semantic model:

• Decision Variables: Information regarding the pose of assets (e.g. coordinates and
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rotation angles) is considered a subclass of the decision variables in optimising manufac-

turing reconfiguration. This information is classified into coordinates (such as Cartesian

coordinates, cylindrical coordinates, polar coordinates, and spherical coordinates) and

orientation (such as Euler angles and rotation matrices).

• Optimisation Objectives: The optimisation objectives in the semantic model include

cost, quality, cycle time, space utilisation, and robot manoeuvrability.

• Constraints: Constraints include inequality constraints and equality constraints. They

are mathematical relationships used in optimisation problems to ensure that the solutions

satisfy certain requirements or limitations. In the context of layout optimisation in man-

ufacturing, these constraints can represent various physical or operational restrictions:

1. Inequality Constraints: These constraints establish upper or lower bounds on the

values of the decision variables or on functions of the decision variables. In the

layout optimisation problem, inequality constraints may include the following:

(a) Non-Collision Constraint (NC): NC ensures that machines do not overlap or

collude with each other in the layout. These constraints can be formulated by

setting a minimum distance between the edges of any pair of machines.

(b) Reachability Constraint (RC): RC ensures that machines or workstations are

accessible to workers or material handling equipment, such as robots or conveyor

systems. These constraints can be formulated by setting a maximum distance

between machines or specifying a minimum clearance for pathways or aisles.

(c) Area Constraint (ARC): ARC ensures that the total area occupied by the ma-

chines does not exceed a predefined maximum area. These constraints can be

formulated as the sum of the areas of individual machines being less than or

equal to the maximum allowed area.

2. Equality Constraints: These are constraints that require an exact relationship be-

tween the decision variables or functions of the decision variables. In the layout

optimisation problem, some of the equality constraints may include:

(a) Resource Allocation Constraint (RAC): This constraint ensures that the total

number of certain types of machines or resources within the entire layout is

fixed. For example, if a limited number of robotic assembly cells is available,
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the layout optimisation problem should include a constraint that ensures the

exact number of robotic assembly cells is used in the layout.

(b) Grouping Constraint (GC): This constraint ensures that a specified number of

certain types of machines or resources are grouped together within a specific

section of the layout. For instance, if a certain manufacturing process requires

three specific machines to be located close together for efficiency, the layout opti-

misation problem should include a constraint that ensures these three machines

are grouped together in the layout exactly.

Both inequality and equality constraints help to model the physical and operational

limitations of the manufacturing environment and ensure that the resulting layout is

practical, feasible, and efficient.

One example of optimising the layout of a manufacturing system is depicted below. The

optimisation objectives are:

1. Minimise Space Utilisation (SU)

2. Minimise Cycle Time (CT)

3. Minimise Total Distance between Machines (TD)

The decision variables in this problem are the coordinates and orientation of each machine in

the manufacturing system. The optimisation problem can be formulated as:

Minimise f(x) = {SU(x), CT (x), TD(x)}

subject to NCi(x) ≤ 0, i = 1, . . . ,m1

RCj(x) ≤ 0, j = 1, . . . ,m2

ARCk(x) ≤ Amax, k = 1, . . . , n1

RACl(x) = Rl, l = 1, . . . , n2

GCm(x) = Gm, m = 1, . . . , n3

(4.1)

where:

• x: A vector representing the pose of each machine in the manufacturing system, including

both coordinates and orientation.

53



• f(x): A vector containing the objective functions to be minimised, which includes min-

imising space utilisation, cycle time, and the total distance between machines.

• NCi(x): The i-th non-collision constraint function that must be satisfied by the pose x.

• RCj(x): The j-th reachability constraint function that must be satisfied by the pose x.

• ARCk(x): The k-th area constraint function that must be satisfied by the pose x, with

Amax being the maximal allowed area.

• RACl(x): The l-th resource allocation constraint function that must be satisfied by the

pose x, with Rl being the exact number of a certain type of resource required.

• GCm(x): The m-th grouping constraint function that must be satisfied by the pose x,

with Gm being the exact number of a certain type of resource required in a specific group.

• m1: The number of non-collision constraints.

• m2: The number of reachability constraints.

• n1: The number of area constraints.

• n2: The number of resource allocation constraints.

• n3: The number of grouping constraints.

By addressing this optimisation problem, the process of determining the optimal layout for

the manufacturing system becomes dynamic and adaptable. It involves updating the decision

variables – specifically, the coordinates and rotation angles of the assets within the manu-

facturing system. By adjusting these variables, a new layout configuration emerges, which is

then assessed based on updated optimisation objectives. This approach allows for the efficient

reconfiguration of the system’s layout to suit different product families or operational require-

ments. Essentially, each change in the decision variables leads to a potential new layout. The

optimality of this layout is evaluated against the current objectives, ensuring that the system

remains aligned with changing production goals and constraints. This iterative process of ad-

justment and evaluation facilitates the continual adaptation of the manufacturing system to

meet evolving demands.
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4.2.2.9.2 Resource Selection in Reconfiguration Resource selection in reconfiguration

refers to the process of choosing the right assets (e.g. hardware, software, or personnel) to im-

plement changes in a system or to apply to processes to achieve a desired outcome. This

involves evaluating various options based on factors such as cost, compatibility, performance,

and availability and selecting those that best fulfil the needs of the reconfiguration effort. Re-

source selection aims to ensure that the reconfiguration is carried out efficiently and effectively,

with minimal disruption to existing operations. It aims to determine whether the current assets

in the production line meet the requirements and if they need to be replaced. The following

aspects are essential in this chapter, and thus, this information is stored as the ontology model

classes in the model:

• Decision Variables: The resource information, number of product types, product re-

quirements, and job information are considered the decision variables in this model. These

factors are implemented as subclasses of the decision variables in the proposed semantic

model.

• Optimisation Objectives: Resource utilisation, cost (investment cost and capital cost),

workload, running status of the machines, energy consumption, and remaining useful life

are the optimisation objectives.

• Constraints: In the context of resource selection, constraints can be categorised into

equality and inequality constraints:

1. Inequality Constraints

(a) Demand Constraint (DC): DC ensures that the selected resources are sufficient

to meet the demand of the reconfiguration task without exceeding the available

resources.

(b) Investment Constraint (IC): IC ensures that the total investment for the selected

resources does not exceed the budget allocated for the reconfiguration task.

(c) Space Constraint (SC): SC ensures that the selected resources can be accom-

modated within the available space in the production line or facility.

2. Equality Constraints

(a) Total Resource Allocation (TRA): TRA ensures that the total number of re-

quired resources equals the available resources in the system.
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(b) Specific Resource Requirements (SRR): SRR ensures that the selected resources

meet the exact specifications or requirements for the reconfiguration task.

As one example, the goal is to optimise resource selection for reconfiguration, considering the

following objectives:

1. Minimise Resource utilisation (RU)

2. Minimise Cost (C)

3. Minimise Time (T)

The decision variables in this problem are the resources chosen for the reconfiguration effort.

The optimisation problem can be formulated as:

Minimise f(x) = {RU(x), C(x), T (x)}

subject to DCi(x) ≤ 0, i = 1, . . . ,m1

ICj(x) ≤ 0, j = 1, . . . ,m2

SCk(x) ≤ 0, k = 1, . . . ,m3

TRAl(x) = 0, l = 1, . . . , n1

SRRm(x) = 0, m = 1, . . . , n2

(4.2)

where:

• x: A vector representing the resources chosen for the reconfiguration effort.

• f(x): A vector containing the objective functions to be minimised, which includes min-

imising resource utilisation, cost and time.

• DCi(x): The i-th demand constraint function that must be satisfied by the resources x.

• ICj(x): The j-th investment constraint function that must be satisfied by the resources

x.

• SCk(x): The k-th space constraint function that must be satisfied by the resources x.

• TRAl(x): The l-th total resource allocation constraint function that must be satisfied by

the resources x.
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• SRRm(x): The m-th specific resource requirements constraint function that must be

satisfied by the resources x.

• m1: The number of demand constraints.

• m2: The number of investment constraints.

• m3: The number of space constraints.

• n1: The number of total resource allocation constraints.

• n2: The number of specific resource requirements constraints.

By solving this optimisation problem, the optimal resource selection for the manufacturing

system reconfiguration can be determined, considering the objectives and constraints. Resource

reconfiguration can be achieved by adjusting the decision variables (i.e., the types and quantities

of resources) of the assets within the manufacturing system. This process allows the system

to adapt efficiently to different product families or operational requirements while minimising

resource utilisation, cost, and time.

4.2.2.9.3 Job Scheduling In the proposed ontology model, the scheduling problem is

described as a set of decisions concerning the sequence of parts to be released into the system,

the selection of the operation/resource pair, and the sequence of parts assigned to each resource

in the production process. This model includes the following information as subclasses of the

decision variables:

• Decision Variables: Available assets to perform the manufacturing jobs, jobs that must

be performed, and a set of operations for all jobs, which must be performed in a specific

order based on the constraints.

• Optimisation Objectives: Makespan, the workload of the most loaded resource, pro-

duction rate, flow time, tardiness, and resource utilisation.

• Constraints: In the context of job scheduling, constraints can be categorised into equal-

ity and inequality constraints:

1. Inequality Constraints
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(a) Shortest Processing Time (SPT): The job with the shortest processing time

should be processed first.

(b) First In, First Out (FIFO): The job that entered the system first should be

processed first.

(c) Most Work Remaining (MWR): The job with the most work remaining should

be processed first.

(d) Earliest Due Date (EDD): The job with the earliest due date should be processed

first.

2. Equality Constraints

(a) Machine Constraints (MC): A job can only be processed on one machine at a

time.

(b) Job Constraints (JC): A job must be completed before the next job can com-

mence.

(c) Asset Constraints (AC): An asset can only be used by one job at a time.

(d) Precedence Constraints (PC): Certain jobs may have a specific order in which

they must be processed.

For example, if the objective is to optimise job scheduling for reconfiguration, then the following

objectives must be considered:

1. Minimise Makespan (M)

2. Minimise Workload of the Most Loaded Asset (WL)

3. Minimise Tardiness (T)

The decision variables in this problem are the sequence of parts to be released into the system,

the selection of the operation/asset pair, and the sequence of processes assigned to each asset
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in the production process. The optimisation problem can be formulated as follows:

Minimise f(x) = {M(x),WL(x), T (x)}

subject to EDDi(x) ≤ 0, i = 1, . . . ,m1

MCj(x) = 0, j = 1, . . . , n1

JCk(x) = 0, k = 1, . . . , n2

ACl(x) = 0, l = 1, . . . , n3

PCm(x) = 0, m = 1, . . . , n4

(4.3)

where:

• x: A vector representing the decision variables.

• f(x): A vector containing the objective functions to be minimised, which includes min-

imising makespan, the workload of the most loaded asset and tardiness.

• EDDi(x): The i-th earliest due date constraint function that must be satisfied by the

decision variables x.

• MCj(x): The j-th machine constraint function that must be satisfied by the decision

variables x.

• JCk(x): The k-th job constraint function that must be satisfied by the decision variables

x.

• ACl(x): The l-th asset constraint function that must be satisfied by the decision variables

x.

• PCm(x): The m-th precedence constraint function that must be satisfied by the decision

variables x.

• m1: The number of earliest due date constraints.

• n1: The number of machine constraints.

• n2: The number of job constraints.

• n3: The number of asset constraints.
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• n4: The number of precedence constraints.

By solving this optimisation problem, the optimal solution for the job scheduling problem can

be found, considering the objectives and constraints. The decision variables x represent the

allocation of jobs to machines, and the constraints ensure that the schedule satisfies the earliest

due dates, machine capacities, job requirements, asset availability, and job dependencies. The

optimal solution helps to minimise the makespan, balance the workload, and reduce the total

time needed to complete the job schedule.

4.2.2.10 Detailed Information about Robot in the Asset Semantic Model

Within the scope of this PhD research, understanding the robot’s representation in the asset

semantic model is crucial due to the focus on robotic assembly. The “Robot” class, a subclass of

the asset semantic model, encapsulates critical attributes that define its primary characteristics.

While these attributes are flexible and can be expanded upon, core attributes such as robot

reachability, robot payload, and robot DH parameters are integral to the robot semantic model.

This model is illustrated in Figure 4.5.

A distinction must be made between attributes and classes, with the latter encompassing more

intricate details. For instance, the DH parameters are modelled as a class due to their variable

nature across robot types.

4.2.2.10.1 Robot Reachability Reachability in robotics indicates the area a robot arm

can cover from a static pose. Multiple factors influence reachability, including the robot’s arm

length, joint configuration, and orientation. This attribute is pivotal when considering the

optimal pose of the robot within a manufacturing layout, encompassing both the position and

orientation of the robot to maximise its operational efficiency and coverage.

4.2.2.10.2 Robot Repeatability Repeatability pertains to a robot’s consistency in re-

turning to a programmed position. This attribute is significant for ensuring product quality

and operational efficiency in manufacturing.
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Figure 4.5: Robot semantic model

4.2.2.10.3 Robot Axes A robot’s ability to move is based on its axes, similar to how our

joints allow us to perform various movements. The more axes a robot has, the more versatile

its movements can be. Robots can be designed in different configurations based on these axes.

For example, some might move like a human arm, while others might resemble a spider or

crane. Each configuration is suited for specific tasks.

4.2.2.10.4 Robot Payload The payload in robotics refers to the maximum weight a robot

can handle, excluding its own weight. It is a straightforward yet vital attribute ensuring that

the robot can efficiently handle the assigned tasks.

4.2.2.10.5 Robot DH Parameters The breadth of robotics applicability in this research

necessitates understanding each robot’s unique characteristics, particularly the DH parameters,

which have been thoroughly reviewed in previous literature. Additionally, the dimensions and

size of the end effector have been captured within the semantic model. When a specific robot

and its corresponding end effector are chosen, the pose of the end effector can be determined.
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This process involves standardising the robot structure and integrating all pertinent information

into the knowledge graph. In the experience databank, the robots are categorised into three

distinct types: six-axis industrial robots, six-axis collaborative robots, and seven-axis industrial

robots. This classification captures a broad range of robots utilised in manufacturing-related

robotic assembly operations. Despite each robot type employing a unique method to calculate

the end effector’s pose, the required parameters remain consistent across types. Provided the

technical specifications, these parameters can be documented as shown in Figure 4.6.

Figure 4.6: Required parameters for determining the end effector pose

As depicted in Figure 4.6, once the relevant parameters unique to the type of robot are un-

derstood, the pose of the robot’s end effector can be calculated accordingly based on the DH

parameters and joint angles [99]. For instance, with a six-axis industrial robot, knowledge of

the dimensions θ1, θ2, θ3, θ4, θ5, θ6, d1, d4, d6, a2, a3, a4 facilitates the computation of the end

effector pose. This information can be conveniently sourced from the technical documentation

provided with each robot.

The DH parameters are crucial for layout optimisation. They provide a systematic method to

compute the pose of the robot’s end effector. Thus, when the robot changes position, the DH

parameters can accurately calculate the new pose of the end effector, thereby ensuring optimal

operation and efficiency of the robot. However, when these DH parameters are employed, the

definitions of the end effector’s pose, its calculation, and the movement of the robot must be
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considered, all of which can vary significantly across different robot brands. Different robots

and software may use unique conventions for rotation sequences, and understanding the specific

convention in use is vital. Furthermore, the orientation of the end effector’s pose can also

vary, as different Euler angles have different representations. This information is included in

the experience database for future reference. While some systems use extrinsic orientation,

others use intrinsic orientation. In extrinsic rotation, the object is turned based on a static,

unchanged coordinate system, whereas with intrinsic rotation, the object spins based on its own

coordinate system, which evolves with each turn. This distinction is crucial in robotics, as it

directly influences how the robot interprets and executes movement commands. As illustrated

in Figure 4.7, different robot brands possess unique orientation representations, and recognising

these differences is pivotal for improving the accuracy of the work.

Figure 4.7: Orientation definition based on different brands

Euler angles offer a method to represent the orientation of a coordinate frame through a series

of three rotations around distinct axes. The symbols ’ and ” indicate that the rotations are

performed about the newly transformed axes rather than the original axes.

The ABB notation [Z, Y’, X”] demonstrates rotations occurring within the coordinate system

defined by the previous rotation, reflecting the intrinsic nature of Euler rotations.

In contrast, the FANUC notation Rot[X, Y, Z] deg suggests that rotations occur around the

original fixed axes, denoting extrinsic rotations.

While understanding FANUC’s rotation concept is important, comprehending the interaction

between its Joints 2 and 3 is equally crucial. Unlike in many robots where the rotation of Joint

2 affects that of Joint 3, in FANUC systems, Joint 3 rotates specifically in relation to the robot’s

base frame, not in relation to Joint 2. As shown in Figure 4.8, the calculation method for the

end-effector pose of a FANUC robot differs from that of other robots. This ensures that Joint 3’s

reference remains consistent with the base, irrespective of Joint 2’s movement. To illustrate,
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if Joint 2 turns by 10 degrees and Joint 3 by 15 degrees about the base, the total effective

rotation is 25 degrees. This unique interplay between Joint 2 and Joint 3 is fundamental to

FANUC’s design and functionality. A deep comprehension of this interaction is essential for

those programming and operating these robots. Moreover, the experience databank stores

this information for layout optimisation purposes to ensure accurate derivation of the DH

parameters for FANUC robots.

Figure 4.8: FANUC J2 and J3 interaction

Considering these elements, the general dimensions of the DH parameters have been defined

in the ontology model, together with brand-specific information. Even though the proposed

ontology model aims to be vendor-neutral, the unique operational concepts of individual robots

must inevitably be considered in real-world applications, as different brands adhere to distinct

concepts.

4.2.3 Construction of the Entity Layer of the Knowledge Graph

As mentioned in Section 2.3, the knowledge graph consists of a schema layer and an entity

layer. Following the description of the schema layer, the approach to building the entity layer

is now discussed in this section. The creation of the entity layer of the knowledge graph is
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based on the initial schema layer, which, in this case, is the OCCR model. The schema layer

is then continually refined through the integration of bottom-up and top-down methods in

the proposed framework by incorporating valuable information and insights obtained from the

entity layer. Figure 4.9 presents the detailed steps for building the entity layer of the knowledge

graph.

Figure 4.9: Process of construction of the entity layer of the knowledge graph

The implementation of each step will depend on the application domain and organisation.

Information about each step is detailed below:

1. Initial Ontology Construction

The proposed methodology uses the OCCR model as the initial ontology model.

2. Knowledge Source Identification

The next step is to identify the different sources of manufacturing data, which will be used

to tailor the model to the application domain. In manufacturing scenarios, the knowledge

resource usually comprises heterogeneous data sources, including customer requirement

documents, datasets, and Computer-Aided Design (CAD) models. These resources are

multi-modal, with different forms, and hence require separate processing methods.

3. Knowledge Extraction

The knowledge extraction method is applied to extract the source data. For the cus-
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tomer requirement document, natural language processing techniques such as named

entity recognition [100], relation extraction [101], and attribute extraction [102] could be

utilised. The knowledge extraction process combines the manufacturing domain knowl-

edge and terms as the keyword corpus. The time/frequency analysis and pattern recog-

nition process are applied to extract the data for the dataset. For the CAD model data,

a data extraction tool such as API is applied to extract the essential geometric features,

material information, and kinematics [103].

4. Building the Entity Layer of the Knowledge Graph

The entity layer of the knowledge graph is established using the extracted data and the

ontology model described in Section 4.2.2 to construct the schema layer. Despite being

constructed from multiple sources, the generated knowledge graph may still have incom-

plete information – specifically, it may be missing certain triples. To compensate for this,

the knowledge graph undergoes a combination of completion steps: manual completion

by engineers, completion based on established rules, and automatic completion using

either graph structure or embedding-based algorithms [104].

5. Knowledge Storage

Once the entity layer of the knowledge graph is established and updated, it can be

stored in either graph databases [105] or RDF [97] format. These storage solutions

provide efficient querying capabilities and effective management of substantial volumes

of knowledge graph data.

4.2.4 Application of the Generated Knowledge Graph (Experience

Databank)

After the entity layer of the knowledge graph is generated, the experience databank in the

robotic assembly cell is achieved and can be applied to various aspects of RMSs and beyond.

The generated schema layers enable reasoning for capability matching and recommendations

for reconfiguration solutions, as illustrated in Figure 4.10. Capability matching should consider

not only the static requirements, such as the required payload and reachability, but also the ca-

pacity information, such as the cost and utilisation rate. If there are multiple candidate assets

after the capability-matching process, then they are evaluated before an appropriate asset is
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selected, as explained in Section 5.4. Once the reconfiguration model recommends a solution,

the engineer will decide on the criteria for optimising the reconfiguration. Layout optimisation,

resource selection, and job scheduling are typically multi-objective optimisation problems. If

the engineers can decide the objectives’ weights in advance, then the multi-objective optimisa-

tion problem can be converted into a single-objective optimisation problem [106]. Otherwise,

a posteriori method can be used to produce all Pareto-optimal solutions or a representative

subset of those solutions [107].

Figure 4.10: Knowledge inference process in the experience databank (achieved by knowledge
graph): a. Generation of the query. b. Ontology reasoning. c. Generation of the inference
results based on the ontology reasoning

4.3 Chapter Summary

This chapter delves into the resolution of the first research question posed in this PhD study,

specifically RQ1: “How can data from various sources be efficiently processed by integrating

diverse systems and technologies into robotic assembly cells?” A formal and unified ontology

model and a knowledge graph-based method are introduced to address this. While principally

designed for data storage and representation, the ontology model represents information’s ca-
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pabilities, capacities, and reconfiguration in a vendor-neutral manner. Through this repre-

sentation, it aids in the interpretation of data by providing structured insights. The process

efficiency, however, is chiefly derived from the knowledge graph-based approach, which har-

moniously blends top-down and bottom-up methodologies for the construction and periodic

updates of the knowledge graph. This approach not only ensures accurate data representation

but also streamlines its processing. The experience databank is established via the knowledge

graph.

This chapter emphasises the synergy of the ontology model and the knowledge graph in efficient

processing and interpreting robotic assembly data. While the ontology model provides a robust

foundation, the knowledge graph-based method actualises the objectives of efficient processing

and interpretation, aligning with Objective 1.
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Chapter 5

Optimal Manufacturing Asset Selection

This chapter is designed to address RQ2 and fulfil Objective 2. A methodology that effectively

identifies suitable assets using their specifications and production capacity, known as “candidate

asset identification”, is proposed. Furthermore, a methodology for evaluating these assets,

considering their specifications and capacity, called “candidate asset evaluation”, is proposed.

The overarching aim is to ensure that robotic assembly cells can adapt swiftly and appropriately

to any changes in their operational requirements.

5.1 Introduction

In the process of candidate asset identification, two main requirements must be fulfilled. First,

the methodology should enable a swift and effective understanding of and response to new

process requirements. This involves a thorough comprehension of the new requirements. After

adjusting to the new process requirement, a bill of process is created. Second, a capability

assessment procedure must be executed to facilitate matching capabilities. These two require-

ments are essential for the identification of candidate assets.

Given the variety of methods available for asset evaluation, the modularity of the methodology

for candidate asset evaluation must be validated, as modularity increases the flexibility and

scalability of the framework. In addition, the methodology should possess characteristics of

MCDM due to the numerous criteria involved in asset evaluation. Such characteristics greatly

enhance the evaluation process. Finally, the design of the evaluation methodology should
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incorporate recommendations from the experience databank, as suggested in Chapter 4. This

aids in simplifying the candidate asset evaluation process.

5.2 Methodology for Optimal Manufacturing Asset Selec-

tion

In the implemented framework, the experience databank established in Chapter 4 is used for

asset selection and will determine the assets required to enable the creation of the product

(or will lead to the decision that creation of the product is not possible). At this stage, the

product requirements in the form of the bill of process have been decomposed into sub-product

requirements. The core procedures for this decomposition include rule-based, semantic-based,

and semantic-embedding-based methods, which are performed in the product requirements

step of the framework. This methodology will begin with a search of the experience databank

for any existing bill of resources that could be used for the whole product or sub-product

requirements.

If no suitable bill of resources is available or if gaps exist, the experience databank is utilised

to conduct capability matching between the current system configuration and the required

processes to determine the bill of resources. For capability matching, the entity representing

the required system configuration queries the current system configuration entities to check

whether capabilities fulfilling the product requirement are available. If multiple assets meet

the capability requirement simultaneously, the next step is to select the most suitable candidate

assets. Figure 5.1 illustrates the simplified asset selection process.

Algorithm 1 provide detailed information about the asset selection process using the evaluation

method and the experience databank. The final decisions can be as follows:

1. The current system can produce the product. In this case, either one or multiple com-

binations of the assets can be selected during the capability-matching process. If more

than one combination can be applied to produce the product, the most suitable assets

will be selected (in other words, asset evaluation will occur).

2. The current system is unable to produce the product. In this case, the decisions will add
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Figure 5.1: Simplified manufacturing asset selection process.

or update assets to match the product requirement. Information about other potential

assets to be added to the experience databank will be suggested to the user.

In summary, two steps are executed in the candidate asset selection process. The first step is

to identify the candidate assets for the new product and the new process requirements. If more

than one candidate asset is found, then the assets are evaluated in the second step, and those

with the highest scores are selected.

5.3 Methodology for Identifying Candidate Assets

This section explains the methodology for identifying the candidate assets. Figure 5.2 illustrates

the workflow of this methodology, which includes candidate asset identification with static

information and results enhancement with capacity information.

The capability-matching process in the robotic assembly cell should be executed to complete

the candidate asset identification process. Capability matching involves aligning a process’s

requirements with the assets’ capabilities and is fundamental for identifying appropriate can-

didate assets. This comprehensive and logical methodology is key to identifying the optimal

capacity assets to meet specific process requirements. As implemented in Figure 4.10 of Chapter

4, ontology reasoning is utilised for capability matching.

To accomplish effective capability matching, the requirements must be considered. In the
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Algorithm 1 Methodology for Asset Selection
Require: Initialised knowledge graph as experience databank, New Task as NT
Ensure: Decisions at the reconfiguration stage 1 as D
1: Load experience databank and NT
2: ProductRequirement (PR)=Find_requirement(NT )
3: SubProductRequirement (SPR)=Divide_ProductRequirement(PR)
4: Initialise bill of process set (BoPs)
5: for each SPR ∈ PR do
6: BillofProcess (BoP)=Process_search_rule(SPR)
7: if BoP ! = Null then
8: BoPs.add(BoP)
9: Continue
10: else BoP = Process_search_semantic(SPR)
11: if BoP ! = Null then
12: BoPs.add(BoP)
13: Continue
14: else BoP = Process_search_semanticEmbedding(SPR)
15: BoPs.add(BoP)
16: Continue
17: end if
18: end if
19: end for
20: Initialise decisions (D) and score set (ScS)
21: for each Process ∈ BoPs do
22: Required system configuration (RSC ) = Find_required_configuration(Process)
23: Resources (Rs) = Matching_capability(RSC, experience databank)
24: if Rs ! = Null then
25: for each Ri ∈ Rs do
26: Score (Sc) = Evaluation(Ri)
27: ScS.add(Sc)
28: end for
29: Rh = assetSelection(ScS), ▷ where Rh has the highest score
30: D.add(Rh)
31: Continue
32: else D.add(ReconfigurationSuggestions)
33: end if
34: end for
35: return D

robotic assembly process, different types of assets have different requirements – not only static

requirements but also capacity-related information. Static requirements refer to the unchanging

attributes needed for a task, such as essential payload and reachability. This methodology

primarily focuses on employing stringent filtering criteria, often referred to as hard Boolean

limits, to sieve through potential assets. To elaborate, if a particular process requires a robot

to have reachability beyond 2,000 millimetres, only those that meet or exceed this benchmark

are considered; those falling short are instantly ruled out.

Capacity information should also be considered. In robotic assembly cells, capacity information

such as utilisation rate and cost should be considered as extra information to enhance the results

of candidate asset identification.

This approach refines the selection process by incorporating both static specifications and

capacity criteria. Only assets that satisfy all the critical benchmarks are considered viable

candidates for the task. The employed method ensures that the selected assets are theoretically

capable (based on their specifications) and practically feasible, considering aspects such as cost
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Figure 5.2: Workflow of identifying the candidate assets

and utilisation frequency, thereby facilitating an optimal and logical asset selection process.

This information is from the proposed ontology model.

5.3.1 Identifying Candidate Assets Based on Static Information

Identifying candidate assets based on static information is important, as it determines whether

the potential assets can be used to execute the required operations. For a clear and structured

overview, Table 5.1 presents a selection of common static specification criteria for asset iden-

tification in robotic manufacturing cells, as proposed by the generated experience databank.

While not exhaustive, this list serves as a representative example of criteria for specific asset

types.

The table demonstrates that various criteria, including the number of robot axes, reachability,

repeatability, and payload, are used to select robots, as outlined in the experience databank.

These criteria can be tailored to align with customer needs and specifications. These speci-

fications must align with the requirements of the task to guarantee that the robot operates

efficiently within the assembly cell.

Beyond robots, finger grippers play a critical role in robotic assembly. As the end effector of

the robot, finger grippers can be used for pick-and-place tasks. The maximum and minimum
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Table 5.1: Examples of criteria for selecting assets

Asset Type Specification Criteria

Robot Required payload, required number of robot axes,
required reachability, required repeatability

Finger Gripper Allowed maximum grasping force, allowed minimum
grasping force, required number of fingers

Vacuum
Gripper

Allowed maximum grasping force, allowed minimum
grasping force, required number of cups

Metrology
Device

Required measurement frequency, required lateral
offset, required planar offset, required radial offset

Marker Required accuracy, required resolution

Drilling Tool Allowed maximum drilling depth, allowed maximum
hole diameter, allowed minimum hole diameter

allowable grasping force and the required number of fingers are important considerations, as

they dictate the types of objects the gripper can handle. For instance, a higher grasping force

allows the gripper to handle heavier objects, while more fingers can provide better grip and

stability, especially for irregularly shaped objects. Furthermore, the minimum grasping force

is necessary to handle fragile objects without damaging them. Therefore, these specifications

must be considered carefully to ensure effective and safe operation.

A vacuum gripper, similar to a finger gripper, is another type of end effector used for pick-and-

place tasks. It shares some specification criteria with the finger gripper, such as the maximum

and minimum allowable grasping force. However, it also has a unique criterion, namely the

required number of cups. This number is important because it directly influences the surface

area that the gripper can adhere to. A greater number of cups allows the vacuum gripper to

handle larger or heavier objects, as the suction force is distributed over a larger surface area.

Additionally, multiple cups provide redundancy: if one cup fails or cannot establish a secure

seal due to the object’s surface irregularities, the others can still maintain a firm hold.

A metrology device is yet another vital asset in a robotic assembly cell. As a measurement tool,

it is responsible for ensuring the accuracy and precision of the manufacturing process. The

specific criteria for metrology devices in this study’s model include the required measurement

frequency, required lateral offset, required planar offset, and required radial offset. The required

measurement frequency refers to how often the metrology device takes measurements. This is

important because frequent measurements can aid in the early detection of errors or deviations

in the manufacturing process, allowing for timely corrections and ensuring the quality of the

final product. The required lateral, planar, and radial offsets are critical for determining the
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allowable deviation or error in the measurements the metrology device takes. Lateral offset

refers to the allowed side-to-side deviation, while planar offset refers to the allowed deviation in

a flat plane, and radial offset refers to the allowed deviation in a circular path or radius around

a certain point. These offsets are vital because they set tolerance limits for the manufacturing

process. Exceeding these limits could lead to defective products. Therefore, these offsets must

be carefully set according to the precision required for the specific application.

The marker end effector is another crucial component in the robotic assembly cell, particularly

for marking operations. The key specifications for a marker include the required accuracy and

resolution. The required accuracy pertains to the marker’s ability to place marks at precise

locations as the manufacturing process dictates. Any inaccuracy can lead to misinformation

or misinterpretation of the marked data, impacting the overall quality and traceability of the

product. The required resolution refers to the smallest possible mark the end effector can make.

A higher resolution allows for more detailed and intricate markings, which can be particularly

important for products that require detailed instructions, identifiers, or aesthetic designs to be

marked directly onto them.

Similarly, the drilling tool is also an end effector that plays a significant role in the robotic

assembly cell. Drilling is a standard operation in many manufacturing processes, making the

drilling tool’s capabilities crucial. The maximum allowable drilling depth determines the depth

to which the drilling tool can penetrate the material, which is essential when creating holes for

fasteners or other components. The maximum and minimum hole diameters dictate the size

of the holes that the drilling tool can make. These values are vital to ensuring that the holes

are suitable for their intended purpose, such as accommodating specific fasteners or allowing

certain tolerances. Through careful consideration of these criteria, the right drilling tool can

be selected, thus ensuring effective and efficient operation within the robotic assembly cell.

5.3.2 Enhancing the Result Based on the Capacity Information

Capacity information plays a vital role in refining the identifying candidate assets. This infor-

mation extends beyond the static specifications of an asset, providing insights into the dynamic,

operational attributes that can impact an asset’s feasibility for a task. As mentioned in Section

4.2.2, the capacity information is stored in the OCCR model and experience databank. It can
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be used to enhance the result of candidate asset identification.

Cost is a key element of capacity information. Even if an asset technically meets all the

specification criteria required for a task, if its cost exceeds the budget allocation for the project,

it becomes an impractical choice. Therefore, the financial aspect is a crucial consideration in

the selection process.

Availability is another essential component of capacity information. An asset could meet all

the specifications and be within the budget, but if it is not available when required, it cannot

be selected as a candidate. Reasons for unavailability could range from maintenance schedules

and previous commitments to supply chain issues.

The utilisation rate, indicating the proportion of time an asset is in use compared with its total

available time, is also a key aspect of capacity information. An asset with a high utilisation

rate may be less available for new tasks, and its frequent use could lead to higher maintenance

needs. Conversely, an asset with a lower utilisation rate may be more readily available and

potentially have lower maintenance needs due to less wear and tear.

By considering capacity information alongside static specifications, the selection process can be

significantly enhanced. This approach ensures that the chosen assets are not only technically

capable of performing the task but also practically feasible, considering factors such as cost,

availability, utilisation rate, and setup time. This comprehensive approach ultimately leads to

a more effective and efficient asset selection process.

5.4 Methodology for Evaluating Candidate Assets

5.4.1 Introduction

After the initial identification of candidate assets, it is plausible that multiple assets may fulfil

the established specification and capacity criteria. These candidate assets must be evaluated

to find the optimal selection. This section describes the methodology employed for evaluating

candidate assets, ensuring that the chosen assets meet the specifications but are also the best

options within the given constraints. In the implemented framework, asset evaluation entails

an analysis of equipment and technology to enable efficient production. This process requires
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careful consideration of multiple factors, including the asset’s specification information, such

as a robot’s reachability and repeatability, and capacity information, such as cost and resource

utilisation. Traditionally, an engineer manually evaluates the assets. By contrast, the proposed

framework employs evaluators, or evaluation metrics, to inform decisions about asset selection.

These evaluators are not personnel but quantitative or qualitative measures used to assess the

suitability and effectiveness of assets. Examples of evaluators include cost analysis, efficiency

ratings, and reliability measures.

The evaluators play a vital role in asset evaluation in the manufacturing industry. These

metrics guide the optimal choice of equipment and technology, which is important for effective

and efficient production processes. Within the implemented framework, evaluators incorporate

specification information from the capability model and capacity information, as detailed in

Chapter 4. The following section details some of the commonly used evaluators within this

framework.

5.4.2 Evaluators Definition

A comprehensive array of evaluation metrics can be utilised in the proposed methodology.

Specific metrics should be used within a robotic assembly cell, including the specification

efficiency score and reconfiguration costs. The specification efficiency score, one of the primary

evaluators, is derived by tallying scores from several subsidiary evaluators or specifications, such

as reachability, repeatability, and payload. The reconfiguration cost, which includes purchase,

installation, and removal costs, covers the critical cost of robotic assembly reconfiguration.

These two primary evaluation metrics are crucial for directing an optimised asset selection

process. This process is systematically structured to align with the specific objectives and

constraints inherent in the robotic assembly cell.

For clarity, the specification efficiency score and reconfiguration costs should be categorised as

primary evaluators due to their significant role in the methodology. Meanwhile, the metrics

employed in the calculation of the specification efficiency score, including reachability, repeata-

bility, and payload, can be labelled as subsidiary evaluators. This classification clarifies the

different roles of these evaluators within the broader evaluation process.
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5.4.2.1 Specification Efficiency Score

In today’s dynamic and fiercely competitive market landscape, astute resource management

emerges as a linchpin for sustainability and competitiveness. A critical component of this

management is circumventing over-specification, which occurs when an asset boasts capabilities

that are disproportionately superior compared with what is necessitated by a specific task.

This incongruence culminates in inefficiencies and an imprudent expenditure of resources. The

present section offers a discourse on over-specification within resource evaluation, focusing on

robotic assembly cells, and underscores the imperative of harmonising asset capabilities with

task stipulations.

Within robotic assembly cells, robots and other end effectors must be chosen carefully to avoid

unnecessary costs and to boost production. When it comes to robots, over-specification can

lead to higher capital costs and upkeep costs without optimal use of the robots’ natural abili-

ties. Moreover, choosing the right end effectors, such as grippers and vacuum cups, is crucial

because they touch the workpiece directly and affect the system’s accuracy and trustworthi-

ness. Within robotic assembly cells, robots and other end effectors must be chosen carefully to

avoid unnecessary costs and to boost production.

Addressing over-specification involves carefully analysing the differences between task require-

ments and the specifications of available resources. This process involves identifying key as-

pects such as payload, reachability, and precision and then calculating the difference between

the task’s needs and the resources’ capabilities with regard to each aspect. Summing up these

differences results in a specification efficiency score for each resource. This score is essen-

tial for finding a resource that matches the task’s requirements without being unnecessarily

overqualified.

The “specification efficiency score” is a custom metric that evaluates the alignment of a re-

source’s features with the stipulated requirements. A high score indicates that the resource

meets the requirements without superfluous elements. By contrast, a low score suggests that

the resource has many specifications or features that extend beyond or are not aligned with

the defined requirements. In essence, this score aids in determining how efficiently a resource

adheres to the set specifications without unnecessary additions. Reducing over-specification is

essential when allocating resources, particularly in robotic assembly cells. Companies can make

78



intelligent choices that optimise resource use and prevent unnecessary costs by meticulously

comparing task requirements and resource specifications. The specification efficiency score is

vital in this process, providing a measurable value for informed decision-making. Figure 5.3

presents a simple workflow for calculating the specification efficiency score using the developed

framework.

Figure 5.3: Simplified process for calculating the specification efficiency score

This figure illustrates how various sub-evaluators are used to assess candidate assets. The

choice of sub-evaluators depends on the type of assets under consideration and the customer’s

specific needs, as detailed in Table 5.1. For instance, if multiple robots are being evaluated

as potential assets, then reachability, repeatability, and payload can be used as the relevant

sub-evaluators to calculate the specification efficiency score. First, the score for the candidate

asset at each sub-evaluator is calculated. Then, the final specification efficiency score is deter-

mined by considering the weights assigned to each sub-evaluator. This constitutes a clear and

straightforward method to compare candidate assets quantitatively, guiding selection towards

the most suitable option. Figure 5.4 explains how the specification efficiency score is calculated

in the proposed optimal asset evaluation methodology.

Consider a group of processes, denoted as p1, p2, . . . , pj. This group encompasses j distinct

processes that are potential candidates for executing a specific task. In order to systematically

define the candidate assets D for each process, m is introduced to represent the position of

a process in the sequence. Here, m is an integer and belongs to the set [1, j]. Each process

m corresponds to a total of km candidate assets. The set of candidate assets associated with

process m can be mathematically expressed as shown in Equation (5.1). By adopting this

method, a structured representation of the sets of candidate assets associated with each distinct
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Figure 5.4: Detailed process of calculating the specification efficiency score

process can be achieved.

Cm = Dm1 , Dm2 , ..., Dmkm
, (where m ∈ [1, j] ∩ Z) (5.1)

In the aforementioned equation, Cm signifies the group of candidate assets for process m.

Additionally, Dmi
denotes the i-th potential asset that corresponds to the process m. This

mathematical formulation allows for efficient grouping of potential assets for each considered

process.

The weights for each candidate asset in every process, evaluated by a specific sub-evaluator,

can be calculated as shown in Equation (5.2), where wimd represents the weights of the d -th

candidate asset set, evaluated by evaluator i at process m. h denotes the total number of

sub-evaluators. The type of sub-evaluator differs based on the candidate asset sets under con-

sideration. For instance, if the candidate assets are robots, then the distinguishing features or

evaluators could include the type of gripper, capability model, reachability, and repeatability.

These sub-evaluators are used in the proposed approach to calculate the specification efficiency

score. Sub-evaluators can be represented as vectors [108, 109], or they can be defined numer-

ically based on criteria designed by engineers drawing from their experience [110]. Finally,

σmd_eva_i is the deviation between the i -th evaluator set and the corresponding features of the
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d -th asset at process m.

wimd =
σmd_eva_i∑km
n=1 σmn_eva_i

,

(where d = [1, km] ∩ Z, km = [k1, kj] ∩ Z,m = [1, j] ∩ Z, i = [1, h] ∩ Z) (5.2)

In the evaluation process for candidate assets, an essential metric is the deviation between the

property of a candidate asset and the ideal property defined by the sub-evaluator set. This

deviation quantifies the difference between the actual property value of a candidate asset and

the desired property value as specified by the sub-evaluator.

To illustrate, if the required reachability (a sub-evaluator) is 2,000 mm and a candidate asset

(e.g., Robot 1) has a reachability of 2,500 mm, then the deviation amounts to 500 mm. Simi-

larly, for another candidate asset (e.g., Robot 2) with a reachability of 3,000 mm, the deviation

would be 1,000 mm. Here, a smaller deviation implies a better match between the candidate

asset’s properties and the desired properties defined by the sub-evaluator set. Candidate assets

with smaller deviations —indicating a closer alignment with the sub-evaluator set — should

consequently be assigned lower weights.

However, given that the most suitable candidate asset is identified based on the highest score

according to Algorithm 1, using the reciprocal of the weights, wimd, for further evaluation

makes more sense. This allows assets with smaller deviations (and therefore closer matches)

to have higher scores. Therefore, the updated weights, Wimd, can be calculated as follows:

Wimd =
1

wimd

=

∑km
n=1 σmnevai

σmdevai

,

(where d ∈ 1, . . . , km, km ∈ k1, . . . , kj,m ∈ 1, . . . , j, i ∈ 1, . . . , h). (5.3)

Furthermore, the set of updated weights for the asset numbered as d in process m, denoted

by Wmd, can be expressed as a collection of weights across all sub-evaluators. This set is

represented as:

Wmd = [W1md, . . . ,Whmd]. (5.4)

This formalism systematically captures the evaluation criteria and provides a structured ap-

proach to assessing and selecting candidate assets based on defined metrics.
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Take process p1 as an example; there are a total of k1 candidate sets, and the weights of the

candidate sets will be calculated. W111 describes the weights of sub-evaluator 1 of the candidate

asset D11 at Process 1, and σ11_eva_1 is the deviation between Evaluator Set 1 and the asset

accuracy-related information of the above-mentioned asset.

After the weights of different assets at each process are calculated, the scores Si
d of the candidate

assets under the sub-evaluator Ui should be calculated, where d = [1, km] ∩ Z and i = [1, h]∩

Z. This score indicates the candidate assets’ matching ability under a single sub-evaluator.

The score can be defined in numerous ways as long as it conveys the matching ability of the

candidate assets.

Taking the consistent fuzzy matrix as an example, the scores can be calculated as follows [111].

Considering that the most suitable assets from km candidate assets under h sub-evaluators

must be selected, h ∩ Z of single-evaluator fuzzy priority relations can be built.

Bi = (bief )km×km , (where km = [k1, kj] ∩ Z, i = [1, h] ∩ Z) (5.5)

where bief is called the coefficient of the preferred relationship of asset Dme to asset Dmf under

the sub-evaluator Ui. The value of bief is listed in (5.6).

bief =


0, if Dme is worse than Dmf under the factor Ui

0.5, if Dme is equal to Dmf under the factor Ui

1, if Dme is better than Dmf under the factor Ui

(5.6)

Then Bi(i = [1, h]∩Z) will be converted to the consistent fuzzy matrix as listed in (5.7) below.

Ri = (rief )km×km (5.7)

where

rief =
rie − rif
2km

+ 0.5; rie =
km∑
l=1

biel (5.8)

Because for ∀l = 1, 2, . . . , km,

riel − rifl + 0.5 =
rie − ril
2km

+ 0.5− (
rif − ril
2km

+ 0.5) + 0.5 =
rie − rif
2km

+ 0.5 = rief (5.9)
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So the Ri(i = [1, h] ∩ Z) is the consistent fuzzy matrix [110]. The score sid of the candidate

asset Dmi under evaluator Ui can be calculated in Equation (5.10):

sid =
s̄d∑km
l=1 s̄l

, (where s̄d = (
km∏
l=1

riel)
1

km and d = [1, km] ∩ Z) (5.10)

Subsequently, the fuzzy set of weights for each evaluation factor must be calculated, as described

by Zou et al. [112], in order to determine the specification efficiency score. This information

is derived from the rich relatedness data present in the generated knowledge graph, as well as

from the engineer’s experience. Two distinct methodologies for asset evaluation are proposed,

depending on whether the weights of each evaluation factor are known or not.

The evaluation process involves multiple objectives, which correspond to the evaluation factors.

Pareto solution sets will be identified, allowing for the selection of suitable devices accordingly.

It is important to note that operation time is not considered in this analysis. In comparison to

machining centres, which typically consist of a single workstation, robotic operations involve

multiple workstations. As a result, operation time can fluctuate rapidly and exhibit instability.

Factors such as matching and changing location do not significantly affect the operation time,

as it remains relatively constant during these processes.

In the proposed method, the weight set of each sub-evaluator is defined in A, where A is the

weight set of each sub-evaluator in the fuzzy evaluation as shown in Equation (5.11).

A = [a1, a2, . . . , ah] (5.11)

Then, the evaluation matrix should be calculated. Many methods can be employed to define

the evaluation matrix, such as using the weights sets Wmd, consistent fuzzy matrix [110], the

definition of the membership degree function based on the experts’ knowledge [113], historical

data, and knowledge graph [114]. The fuzzy matrix, in general, is described in Equation (5.12):

R =

 r11 r12 ··· r1g
r21 r22 ··· r2g
r31 r32 ··· r3g

...
... ... ...

rh1 rh2 ··· rhg

 (5.12)

where h is the total number of sub-evaluator sets and g is the total number of evaluation

criteria. In terms of utilising a consistent fuzzy matrix to select the most suitable assets

from km candidate assets under h evaluators, the evaluation criteria can be understood as the
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candidate assets, and the fuzzy matrix can then be described as shown in Equation (5.13):

R =


S1
1 S1

2 ··· S1
km

S2
1 S2

2 ··· S2
km

S3
1 S3

2 ··· S3
km

...
... ... ...

Sh
1 Sh

2 ··· Sh
km

 (5.13)

The total specification efficiency score of each candidate asset Sd can be calculated as in

Equation (5.14):

Sd =
h∑

k=1

Ak · sid,

(where d = [1, km] ∩ Z, and A is the evaluator weights set) (5.14)

The ranking of candidate assets can be ascertained by consolidating the influence of h factors,

where each candidate asset is assigned a specification efficiency score, Sd, with d = 1, 2, . . . , km.

The asset possessing the highest specification efficiency score is deemed the most suitable.

To illustrate this concept, consider a hypothetical scenario with three candidate assets (des-

ignated as Asset 1, Asset 2, and Asset 3) and two sub-evaluators. The first evaluator is

reachability, and the second evaluator is repeatability. The degree to which each candidate

asset meets the criteria set by the evaluators is termed the membership degree. This degree

can be defined by an engineer based on expertise or derived from a knowledge graph with

the support of weight sets Wmd. The membership degrees for this example are displayed in

Table 5.2.

Table 5.2: Membership degrees as defined by the engineer

Asset 1 Asset 2 Asset 3

Reachability 0.4 0.6 0.7
Repeatability 0.3 0.7 0.2

From the membership degrees, the fuzzy matrix, R, can be constructed as shown in Equation

(5.15).

R =

0.4 0.6 0.7

0.3 0.7 0.2

 . (5.15)

Additionally, assume that the weight sets for each sub-evaluator are as follows:

A = [0.3, 0.7]. (5.16)
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The specification efficiency scores can then be calculated by multiplying matrix A by matrix

R, as displayed below:

Result = A ·R = [0.33, 0.67, 0.35]. (5.17)

In this scenario, if only specification efficiency scores are taken into account, Asset 2 would be

the most favourable option due to its highest specification efficiency score. This methodology

offers a structured process for the selection of candidate assets, enabling optimal decision-

making based on predefined sub-evaluators.

5.4.2.2 Cost in Robotic Assembly Cell Reconfiguration

As modern manufacturing is characterised by continually evolving customer demands, recon-

figuring robotic assembly cells is indispensable. An evaluation must inform the selection of

resources during the reconfiguration of costs. This section describes three costs inherent in

robotic assembly cell reconfiguration: installation costs, removal costs, and purchase costs,

primarily relating to robots and end effectors. These costs are described below in detail:

• Installation costs, denoted as CostInstallation, are the expenses incurred when adding new

assets to the existing production line to cater to emerging customer demands.

• Removal costs, represented as CostRemoval, are associated with streamlining the produc-

tion line by excising obsolete or unnecessary assets.

• Purchase costs, represented as CostPurchase, are expenses related to buying new assets,

which are assets not currently in the production line but are necessary to meet new

customer demands.

The reconfiguration cost, CostReconfiguration, constitutes a summation of the aforementioned

costs and is vital for providing an all-encompassing view of the financial implications of adopting

a robotic assembly cell. This cost is mathematically represented in Equation (5.18):

CostReconfiguration = CostInstallation + CostPurchase + CostRemoval. (5.18)

The process to determine the reconfiguration cost is depicted in Figure 5.5.
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Figure 5.5: Procedure to determine the reconfiguration costs

This figure indicates that to estimate these costs accurately, the current assembly line must

be compared with the potential new setup, which includes the new assets required to meet

changing customer demands.

5.4.2.3 Additional Evaluators

Further evaluators warrant consideration within the context of asset evaluation in a robotic

assembly cell. One such example is an asset’s remaining lifespan, which is important in a

factory environment due to its potential impact on sustained productivity and maintenance

expenditure. An asset approaching the end of its functional life may necessitate increased

maintenance or risk unexpected failure, thereby causing disruptions in production. Hence,

factoring in the remaining lifespan during the asset selection process aids in making more

informed decision-making.

Additionally, an asset’s estimated energy consumption could be an evaluator. The energy effi-

ciency of machinery has a considerable effect on operational costs in a manufacturing setting.

Energy-efficient machinery can lead to substantial cost savings over time. This methodol-

ogy focuses on selecting assets before actual operation; therefore, real energy consumption is

not considered. Instead, the estimated energy consumption, derived from the manufacturer’s

specifications or performance data of comparable models, is utilised.

Notably, the selection of evaluators depends on the specific requirements and context of the

manufacturing operation. The importance attributed to different evaluators may vary based
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on the circumstances.

5.4.3 Evaluator Weights in Asset Evaluation

In the proposed framework, assigning weights to evaluators is fundamental as it delineates the

importance of each evaluator within the decision-making mechanism. Two types of evaluators

exist: major evaluators and sub-evaluators. Major evaluators primarily concentrate on key

elements such as specification efficiency scores and costs, whereas sub-evaluators contribute to

the calculation of specification efficiency scores, as explained in Section 5.4.2.1.

On the other hand, weights assigned to major evaluators directly impact the final decision-

making process, thus symbolising the priority given to the criteria they evaluate. On the

other hand, sub-evaluators indirectly influence decision-making by aiding in the computation

of specification efficiency scores, which are then used by the major evaluators.

The careful assignment of weights to both major and sub-evaluators is essential for an accurate

and dependable asset evaluation. This procedure must acknowledge the complexity of decision-

making within asset evaluation. An effective balance of weights is key for optimal asset selection

and the achievement of the intended goals.

Practically, four potential scenarios exist regarding the availability of weights for major and

sub-evaluators:

1. Both the weights for major evaluators and sub-evaluators are known.

2. The weights for major evaluators are known, but the weights for sub-evaluators are

unknown.

3. The weights for major evaluators are unknown, but the weights for sub-evaluators are

known.

4. Neither the weights for major evaluators nor those for sub-evaluators are known.

Each of these scenarios requires different strategies and methodologies to manage the infor-

mation available effectively and to maintain the reliability of the decision-making process.
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Subsequent sections provide methodologies for each scenario to improve the evaluation pro-

cess.

5.4.3.1 Scenario with Established Weights for Both Major and Sub-Evaluators

In situations where weights for both major and sub-evaluators are already established, the

problem reduces to a single-objective problem, simplifying the evaluation process.

For major evaluators, known weights allow for the conversion of a multi-objective optimisation

problem into a single-objective problem through the use of scalarisation techniques such as the

weighted-sum method. This method simplifies multi-objective optimisation problems by con-

centrating on a single objective. In the decision-making processes involving asset evaluation

for robotic assembly, the method provides a rapid solution that maximises the specification

efficiency score and minimises costs. Therefore, the application of established weights is fun-

damental for strategic decision-making in this context, ultimately enhancing the efficiency and

performance of the robotic assembly system. Given the known weights for sub-evaluators, the

specification efficiency score can be computed directly using Equation (5.14).

5.4.3.2 Scenario with Known Weights for Major Evaluators and Unknown Weights

for Sub-Evaluators

In a situation where weights for major evaluators are known but weights for sub-evaluators are

not, this presents some hurdles for decision-making. In this scenario, even though the weights

for the major evaluator (including the specification efficiency score) are known, converting this

multi-objective problem into a single-objective optimisation problem is complex because the

calculation of the specification efficiency score is dependent on knowing the weights of the

sub-evaluators.

Without defined weights for the sub-evaluators, calculating an accurate specification efficiency

score becomes difficult. Therefore, trying to find an optimal solution in this scenario could

lead to ineffective outcomes because of missing information. As a result, this situation is not

ideal and can lead to incorrect decisions in the context of asset evaluation in robotic assembly.

This underlines the importance of having known weights for both major and sub-evaluators to
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ensure an accurate and effective optimisation process.

5.4.3.3 Scenario with Unknown Weights for Major Evaluators and Known Weights

for Sub-Evaluators

In contexts where the weights for sub-evaluators are defined but the major evaluator weights

remain ambiguous, the challenge of asset selection morphs into a multi-objective optimisation

problem. As previously discussed in the literature review, Pareto optimisation is a potent

solution to this challenge.

The mathematical embodiment of this optimisation method is encapsulated in Equation (5.19):

f1,opt = min f1(x) f2,opt = min f2(x)... fn,opt = min fn(x) (5.19)

where fi(x) represents each distinct objective function, with the aim being to discern the min-

imal solution for every function. The Pareto method ensures that the elements within solution

vectors maintain their independence during optimisation, enabling a balanced evaluation of

each objective.

Figure 5.6 portrays the intricacies of multi-objective optimisation. The visualisation demon-

strates the simultaneous consideration of myriad objectives, each with its own distinct weight,

collectively contributing to a holistic evaluation of prospective assets.

By employing the Pareto optimisation method in contexts with undefined major evaluator

weights, a balanced evaluation of multiple objectives becomes feasible. This facilitates the

identification of optimal solutions and enhances the overall performance of robotic assembly

systems.

5.4.3.4 Scenario with Unknown Weights for Major and Sub-Evaluators

When both the major and sub-evaluator weights are unknown, the problem becomes more

challenging than in the other scenarios. The optimisation problem turns into a multi-objective

one because there are no defined weights for the major evaluators. With these unknowns, the
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Figure 5.6: Asset selection in the scenario of unknown weights of major evaluators

objectives for optimisation change, as shown in Table 5.3.

Table 5.3: Changed optimisation objectives and targets

Changed Optimisation Objectives Target

specification efficiency score for sub-evaluator 1 Maximise
specification efficiency score for sub-evaluator 2 Maximise
specification efficiency score for sub-evaluator ... Maximise
specification efficiency score for sub-evaluator n Maximise

reconfiguration cost Minimise

On the one hand, the specification efficiency score for each sub-evaluator becomes a separate

objective that should be maximised. On the other hand, the total cost, which is the sum of

the purchase cost and reconfiguration cost, is an objective that should be minimised.

To manage the complexity that arises from not knowing the weights of the sub-evaluators, a

solution could be to calculate the specification efficiency score for each sub-evaluator on its

own. These separate specification efficiency scores can then be treated as different objectives

in the decision-making process.

Although this approach is complex, it yields a possible solution when there are no predefined

weights. However, the results of this method might not be as clear or efficient as when the

weights are known beforehand.

In conclusion, when both the major and sub-evaluator weights are unknown, creative problem-
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solving is required, along with a thorough understanding of the complex nature of decision-

making in asset evaluation for robotic assembly. Even though this scenario is more complex

than the previously described scenarios, it provides an opportunity to trial different methods

for managing the complexity of multi-objective optimisation.

5.5 Chapter Summary

This chapter addresses RQ2 by exploring asset choices in RMSs, focusing on robotic assembly

cells. The approach involved a holistic view, considering a range of factors such as cost, energy

use, the remaining life of assets, changes over time, and resource use. These factors are key

in determining the overall efficiency of the manufacturing process. A crucial point was the

changing and evolving nature of these factors and their significant role in the asset selection

process. Since this problem has many aspects, the process must be continually updated and re-

vised based on new information and changing manufacturing needs. To manage the complexity

and details of this process, this chapter suggests strategic approaches such as multi-objective

optimisation techniques. These strategies are designed to deal with a combination of discrete

and continuous decision variables effectively, thereby improving the efficiency and accuracy of

the asset selection process. In summary, this chapter explains the asset selection process within

the context of reconfigurable manufacturing systems. The suggested approach offers manufac-

turers the necessary tools and knowledge to optimise the asset selection process, allowing for

better flexibility in response to changing needs in today’s manufacturing environment.
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Chapter 6

Layout Configuration Optimisation

This chapter aims to address RQ3: “How can a reconfigurable robotic assembly system effi-

ciently optimise its operations, especially in layout, after adapting to current process require-

ments?” and Objective 3. The primary emphasis is on the development of a modular framework

for enhancing the layout of the robotic assembly cell, which outlines a multi-objective modular

layout optimisation framework designed within a simulation environment.

6.1 Introduction

As introduced in Chapter 5, the initial reconfiguration stage in my proposed methodology in-

volves selecting essential assets for the robotic assembly process. While this sets the foundation,

the subsequent phase—focusing on the intricate details of layout configurations, refinement of

process parameters, and task sequences for each robot—remains a complex challenge. In this

chapter, this critical phase is explored, with an emphasis on layout optimisation, a key factor

in enhancing the efficiency and effectiveness of the assembly process.

To address RQ3, this chapter introduces a modular layout optimisation framework that oper-

ates within a simulation environment, enabling multi-criteria optimisation. This framework is

not just theoretical but grounded in practical implementation details. It systematically navi-

gates through the process of optimising the layout of robotic assembly cells, ensuring that both

individual machine and system-level considerations are integrated. The framework’s adapt-

ability allows it to be utilised with various simulation software, making it a versatile tool for
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different manufacturing contexts.

Central to this framework is the clear and detailed outline of its implementation. This begins

with the identification of decision variables, such as the coordinates and rotation angles of assets

within the manufacturing system. These variables are the levers through which the layout can

be manipulated and optimised. Following this, the framework establishes specific objectives,

like minimising total cycle time or maximising overall throughput, and sets constraints to

ensure practical and feasible solutions. The core of the optimisation process is then carried out

through a carefully selected set of algorithms, each chosen for their suitability to the specific

layout challenges at hand.

This chapter describes each step of the layout optimisation process in detail. It explains

how the simulation environment is used to evaluate potential layouts, how the optimisation

environment processes and analyses this data, and how the chosen algorithms navigate towards

the most efficient layout configuration. By the end of this chapter, the reader will have a

comprehensive understanding of not just the theoretical underpinnings of the modular layout

optimisation framework but also its practical implementation, ensuring that the reconfigurable

robotic assembly system can optimally adapt to varying process requirements.

6.2 Optimisation Framework for Robotic Assembly Cell

In the realm of robotic assembly manufacturing, the development of a coherent and effective

optimisation framework is of paramount importance. Three interconnected components are

central to this framework: the simulation environment, the optimisation environment, and the

optimisation algorithms.

First, the simulation environment is a pivotal tool that emulates real-time assembly processes

with high fidelity. This emulation allows for the precise evaluation of potential reconfigurations

without any interference in ongoing manufacturing operations, making it essential during the

intricate second reconfiguration phase.

Second, the optimisation environment serves as the nexus of this framework. It is designed to

be adaptive, with objectives based on specific criteria such as cycle time, energy consumption,

and cost. Yet, while it ambitiously pursues these objectives, it remains grounded by certain
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constraints, notably budgetary ones. It is a software and programming environment to do the

optimisation tasks.

Lastly, the modular optimisation algorithms form the strategic core of the framework. Stored

diligently within the experience databank, they explore a multitude of configurations, seeking

the most optimal fit for a specific product in the assembly line. The results, which emerge

from the most effective algorithm, lay the foundation for the successful reconfiguration of the

robotic assembly cell.

Figure 6.1 elucidates the symbiotic relationship between the three primary components and

how they coalesce to form the larger framework.

Figure 6.1: Details of utilising the reconfiguration optimisation framework
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6.2.1 Simulation Environment

In the realm of robotic assembly cells within reconfigurable manufacturing systems, the simu-

lation environment emerges as the foundation for grasping and fine-tuning intricate processes.

Such environments act as controlled virtual canvases where scenarios unfold, hypotheses are

rigorously tested, and experiments come to life. An in-depth investigation into the inherent

merits of simulation environments for optimisation reveals several key attributes.

First, these environments champion flexibility. They readily embrace a diverse spectrum of

scenarios and system configurations. While mathematical models might demand significant

revamps when adapting to system modifications, simulation environments often handle these

transitions with more fluidity. Second, these environments prioritise realism. Even though

specific tools, such as Tecnomatix Process Simulate [70], might occasionally grapple with por-

traying stochastic elements or non-linear dynamics, the overarching objective of simulation

environments remains to mirror real-world intricacies.

Beyond flexibility and realism, simulation environments are designed for iterative improvement.

They serve as platforms where strategies undergo repeated testing and fine-tuning to unearth

potential lapses or choke points that might elude purely theoretical frameworks. Lastly, in-

tegration with actual data sets these environments apart. They can resonate with real-world

data streams, churning out feedback and validation in real time. This ensures that the en-

suing results are not merely theoretical constructs but are grounded, relevant, and ripe for

implementation.

6.2.2 Optimisation Environment

A dynamic optimisation environment is decisive for an effective robotic assembly cell frame-

work. The environment, capable of processing and analysing data generated by simulation

setups, can be flexibly deployed both locally and on cloud platforms, contingent on the specific

needs and constraints of the given scenario.

Effective communication between the simulation and optimisation environments is paramount.

Locally, protocols such as Message Queuing Telemetry Transport (MQTT), shared memory,

socket communication, and OPC Unified Architecture (OPC UA) serve the purpose, with
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OPC UA being particularly noteworthy for its industrial ubiquity. In cloud deployments,

technologies such as REST APIs, WebSockets, and services such as Amazon SQS and Azure

Service Bus ensure efficient data exchange, supporting both voluminous data transfers and

real-time communication.

6.2.3 Optimisation Algorithms

The optimisation environment for robotic assembly cell reconfiguration is a critical component

in data-driven decision-making frameworks, enabling the efficient processing and analysis of

data generated by simulation environments. The selection of the optimal algorithm is a critical

component of the optimisation environment, and different categories of optimisation algorithms

can be utilised to optimise the simulation environment and achieve the desired optimisation

targets.

6.2.3.1 Algorithm Types

Optimisation algorithms can be broadly categorised into several types based on their underlying

principles and characteristics. Exact algorithms guarantee an optimal solution but may be

computationally expensive for large problems. Heuristic algorithms provide fast and efficient

solutions but may not guarantee an optimal solution. Meta-heuristic algorithms constitute a

type of heuristic algorithm that can be applied to a wide range of problems and often utilise

search strategies inspired by natural phenomena or social behaviour. Meta-heuristic algorithms

can be further categorised into evolutionary algorithms, swarm intelligence algorithms, and

other meta-heuristics, such as simulated annealing and tabu search. Evolutionary algorithms

use genetic operations such as mutation and crossover to evolve a population of potential

solutions over multiple generations. Swarm intelligence algorithms are inspired by the collective

behaviour of social animals and use a decentralised approach to find optimal solutions. Other

meta-heuristics, such as simulated annealing and tabu search, are based on probabilistic and

memory-based search techniques.
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6.2.3.2 Algorithm Application in the Robotic Assembly Cell

In the context of optimisation environments for robotic assembly cell reconfiguration, the selec-

tion of the appropriate algorithm depends on the specific problem and optimisation target. For

example, exact algorithms may be suitable for problems with small search spaces, while heuris-

tic algorithms may be more appropriate for large-scale optimisation problems. Meta-heuristic

algorithms can be applied to a wide range of problems and have been shown to be effective in the

context of robotic assembly cell reconfiguration, such as optimising layout designs, scheduling,

and routing of materials and parts in the assembly line. Evolutionary algorithms and swarm

intelligence algorithms can be used to optimise the parameters of the robotic assembly cell,

such as robot trajectories, movements, and configurations. Machine learning algorithms, such

as deep learning and reinforcement learning, can be used for highly complex and difficult-to-

represent problems, such as optimising robot movements based on the assembly line layout and

task requirements.

6.2.3.3 Criteria for Selecting the Algorithm

Selecting the best optimisation algorithm for a specific problem is a critical component of

designing an optimisation environment that effectively meets specific requirements and leads

to improved efficiency and productivity. To identify the most suitable optimisation algorithm,

several criteria must be considered, including solution quality, efficiency, robustness, scalability,

adaptability, transparency, and simplicity.

Solution quality is a crucial criterion, as the algorithm should be able to provide high-quality

solutions that are as close to the optimal solution as possible. Efficiency is also an important

criterion, as the algorithm should be able to find a solution within a reasonable time frame,

especially for large-scale optimisation problems. Additionally, robustness is key, as the algo-

rithm should be able to handle noisy, incomplete, or uncertain data and still provide suitable

solutions.

Simplicity is also essential, as the algorithm should be simple to implement and use, thereby

reducing the overall complexity of the optimisation environment. By considering these criteria,

researchers and practitioners can identify the most suitable optimisation algorithm for their

specific problem and optimise the simulation environment accordingly.
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The choice of the appropriate algorithm and parameters can significantly impact the perfor-

mance and effectiveness of the optimisation environment. Therefore, selecting the best algo-

rithm for the problem at hand is essential for achieving optimal performance and ensuring

successful implementation of the optimisation framework. The experience databank stores in-

formation on the desired outputs and the results of the selection of the modular optimisation

algorithm, enabling the optimisation environment to learn and improve over time. In sum-

mary, the selection of the appropriate optimisation algorithm is a critical component of the

optimisation environment for robotic assembly cell reconfiguration, and the various categories

of optimisation algorithms offer different approaches to address specific optimisation problems.

6.2.3.4 Decision Variables for Layout Optimisation

When it comes to layout optimisation, the decision variables in the proposed framework of

robotic assembly cells play a pivotal role in determining the optimal arrangement of manufac-

turing cells, workstations, and equipment. This framework, therefore, adopts a comprehensive

approach to these variables, ensuring that the layout caters to the specific needs of the robotic

assembly cell environment. The position-related information within these decision variables

can be categorised into three main types: coordinates, orientation, and transformation matrix.

Each of these categories is detailed below.

6.2.3.4.1 Coordinates The precise placement of robots, workstations, and other equip-

ment within the assembly cell is essential for production efficiency and material flow. The

spatial arrangement of equipment in the cell can be intuitively described using a 3D Cartesian

coordinate system, represented as (x, y, z).

6.2.3.4.2 Orientation The orientation of equipment within the assembly cell dictates how

the equipment interacts with the environment and other entities. Several methods exist to

represent this orientation:

1. Roll, Pitch, and Yaw: These Euler angles describe the orientation of an object in 3D

space. Denoted as ϕ (roll), θ (pitch), and ψ (yaw), these angles correspond to rotations
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about the principal axes of a body-fixed coordinate system:

ϕ = arctan
y

z
,

θ = arctan
x√

y2 + z2
,

ψ = arctan

√
x2 + y2

z
.

(6.1)

2. Quaternions: Representing orientation, quaternions are a four-dimensional vector q =

(q0, q1, q2, q3) that denotes rotation about an arbitrary axis. The relationship between

the Euler angles and quaternions can be expressed as:
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6.2.3.4.3 Transformation Matrix The transformation matrix is a mathematical repre-

sentation that combines both position and orientation information, allowing for the represen-

tation of linear transformations, including rotations, translations, and scaling. This matrix

provides a comprehensive description of an object’s position and orientation in the assembly

cell. The use of this matrix in the optimisation framework leads to a holistic approach to layout

optimisation, encompassing both spatial and orientational considerations.

By incorporating these three categories of position information into the decision variables,

the optimisation framework can generate layouts that are efficient and adapt to the intricate

requirements of robotic assembly cells.

6.2.3.5 Constraints

In layout optimisation for a robotic assembly cell, the constraints that govern feasible solutions

must be identified and categorised. As mentioned in Section 4.2.2.9, these constraints can be

broadly classified into equality and inequality constraints. Equality constraints impose strict

conditions on the layout configuration that must be satisfied beforehand, while inequality con-
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straints set upper or lower bounds on the variables, ensuring that the optimal layout operates

within these bounds.

A solution can be developed by taking into account these equality and inequality constraints

during the layout optimisation process. This ensures that the robotic assembly cell operates

efficiently and safely while adhering to the specific requirements of the manufacturing environ-

ment. Optimisation objectives, such as minimising cycle time, can then be pursued within the

boundaries established by these constraints.

6.2.3.6 Optimisation Objectives

To effectively optimise the layout of a robotic assembly cell, it’s essential to consider a blend

of various optimisation objectives, as each plays a pivotal role in enhancing the overall per-

formance and efficiency of the manufacturing process. As mentioned in Section 4.2.2.9, layout

optimisation has several optimisation objectives. This section discusses several optimisation

objectives, including cycle time, robot manoeuvrability, and energy consumption. The empha-

sis on specific objectives can vary based on customer requirements and the unique operational

goals of the manufacturing setup. In some cases, a single objective may be the focus, while in

others, a multi-objective approach is required to meet broader operational criteria.

6.2.3.6.1 Cycle Time Cycle time, a critical performance metric in robotic assembly cells,

is the total time a robot needs to complete one operational cycle. It consists of three primary

components: operation time, movement time, and waiting time. Lower cycle times correspond

to higher efficiency. The total cycle time is expressed as shown in Equation (6.3):

tcycle = toperation + tmovement + twait (6.3)

Optimising operation cycles is vital for enhancing efficiency and productivity in the manu-

facturing process. For layout optimisation, two principal methodologies facilitate cycle time

calculation:

1. Mathematical Modelling: This approach utilises analytical methods, including inverse

kinematics and movement equations, to calculate cycle time, and it involves various steps:
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• The operation time refers to the duration a robot takes to actively perform its

designated task, such as picking up an object, assembling a component, welding,

or painting. It contrasts with the time spent moving between tasks or waiting.

Typically, operation time is a predefined or known quantity.

• The movement time correlates with the distance between the layout elements of

the robotic cell. It can be optimised using layout optimisation techniques. With

inverse kinematics, joint angles at the start and endpoints of a robot’s motion can

be calculated, and with the maximal angular velocities of the robot’s joints, the

movement time can be computed.

• The waiting time is influenced by the robot’s arrangement. It can be minimised

using effective scheduling and resource allocation strategies.

If the maximum angular velocity of the robot R is known, denoted as ω1, ω2 ,..., ωn, (where

n is the number of joints), and the coordinates of the robot’s start and end points, the

inverse kinematics at the endpoint coordinates can be solved to obtain f feasible sets of

joint angles.

The joint angle at the starting point is given by Equation (6.4):

θ = [θ1, θ2..., θn] (6.4)

The joint angles at the endpoint are given by Equation (6.5):

θ = [iθ1,
i θ2...

iθn],where i = 1, 2, ..., f (6.5)

Due to the existence of multiple inverse solutions and corresponding joint angles, it is

essential to select the solution that results in the minimum time. This process entails

calculating the motion cost for each inverse solution using Equation (6.6):

V aluei =
n∑

j=1

|θj − iθj|
ωj

(6.6)

Once the motion costs for all solutions are determined, the smallest cost is identified

using Equation (6.7):

V aluemin = min
i=1,...,n

(V aluei) (6.7)
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The solution corresponding to V aluemin represents the most efficient movement, and it

is the one that should be selected for optimal robot operation.

Assuming k is the appropriate solution with the minimum joint motion cost, the move-

ment time can be calculated as in Equation (6.8):

tmovement = max
j=1,...,n

(
|θj − kθj|

ωj

)
(6.8)

2. Simulation Software or Real-Time Data Recording: This method uses sophisti-

cated simulation software or real-time data recording to obtain precise cycle time data.

Digital twin technology is particularly useful, as it provides accurate cycle time informa-

tion directly after the operational points and paths have been determined in the simulated

environment.

6.2.3.6.2 Robot’s Manoeuvrability The manoeuvrability of a robot pertains to the ca-

pability of the robot’s end effector to operate at a specific point in space, demonstrating the

dynamic reversibility of the robot. This ability is critical for a robot’s end effector when per-

forming tasks that require a diverse set of complex actions within a substantial spatial range.

This flexibility can, however, be compromised when the robot is at a singularity, losing one or

more degrees of freedom.

Wrist singularity, elbow singularity, and shoulder singularity are three specific types of singu-

larity that could occur, which are distinguished based on the robot’s configuration and type.

Wrist singularity occurs when the robot’s wrist axes intersect at a single point, resulting in

a loss of one degree of freedom and locking the robot’s wrist. Elbow singularity occurs when

the robot’s arm is either fully extended or fully retracted, thus causing the robot’s end effector

to lose the ability to move in certain directions. Shoulder singularity occurs when the robot’s

shoulder joint is in line with the base joint, causing the robot to lose one degree of freedom

and restricting the movement of the arm in certain directions.

For a six-axis industrial robot, for example, the wrist, elbow, and shoulder singularities are

depicted below.

1. Wrist singularity is a specific type of singularity that can occur in six-axis industrial

robots. It refers to a configuration where the axes of the last three joints of the robot arm,
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often referred to as the wrist joints, become aligned or parallel. This alignment causes

the robot to lose a degree of freedom, leading to limitations in its motion capabilities.

When a six-axis robot enters a wrist singularity, precisely controlling the orientation of

the robot’s end effector becomes challenging. Although the robot can still move and

perform tasks, it may experience difficulties maintaining the desired orientation of the

end effector.

2. Elbow singularity occurs explicitly when the robot’s second and third axes (usually the

shoulder and elbow joints) align with each other in a straight line. This configuration

results in a loss of degree of freedom, as the robot has no unique direction in which to

extend or contract its arm to reach a target point. In this case, the arm can still pivot

around the base joint or rotate around its own axis, but it cannot reach out to different

points in its workspace as effectively as it usually would.

3. Shoulder singularity occurs when the robot’s first axis (usually the rotation of the base or

waist of the robot) and fourth axis (the first axis of the wrist) become aligned or parallel

– in other words, when the wrist centre aligns with the axis of the base rotation. This

results in a loss of a degree of freedom: the robot cannot move freely in all directions and

consequently has difficulty maintaining the orientation of the end effector while moving

its position.

The Jacobian matrix can be a descriptor of a robot’s manoeuvrability. Specifically, the Jacobian

determinant’s value at a given point in space reflects the robot’s ability to manoeuvre around

that point, indicating the robot’s flexibility. For a robot with k joints, the joint vector can be

represented as in Equation (6.9):

θ = [θ1, θ2, θ3, ..., θn]
T (6.9)

The end effector pose of the robot can be denoted as:

X = [x1, x2, x3, ..., xm]
T , (where m represents the degree of freedom of the robot) (6.10)
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The end effector pose is a function of the joint vector, as follows:

X = f(θ) =

 f1(θ)
f2(θ)

...
fm(θ)

 (6.11)

Deriving both sides of the equation results in

Ẋ = J(θ)θ̇ (6.12)

where J(θ) is the Jacobian matrix, Ẋ is the Cartesian velocity vector, and θ̇ is the joint angular

velocity vector. The Jacobian matrix of the function f is an m× n matrix, defined as:

J(θ) =


∂f1
∂θ1

∂f1
∂θ2

··· ∂f1
∂θn

∂f2
∂θ1

∂f2
∂θ2

··· ∂f2
∂θn

...
... ... ...

∂fm
∂θ1

∂fm
∂θ2

··· ∂fm
∂θn

 (6.13)

For any group of joint angles of the robot θ∗, the Jacobian matrix is not of full rank when it

satisfies the following condition:

rank J(θ∗) < m (6.14)

Under this condition, the robot is in a singularity position, and the robot loses some degrees

of freedom, which should be avoided.

The determinant of the Jacobian matrix serves as an indicator for detecting singularities in

the robot. Specifically, when the determinant equals zero, the Jacobian matrix is singular

(not full rank), indicating that the robot is in a singularity. Conversely, when the determinant

approaches zero, it suggests that the robot is nearing a singularity. The value of the determinant

can be calculated using Equation (6.15):

w = | det J(θ)| (6.15)

The total robot manoeuvrability index Wtotal of the entire robotic assembly unit is the sum of

the corresponding Jacobian matrix determinants of all the working points of the equipment,
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expressed as:

Wtotal =
R∑
l

opl∑
j

wl,j (6.16)

where wl,j represents the manoeuvrability index of robot l at the operation point j, R is the

total number of robots in the production cell, and opl represents the number of operations that

robot l must execute.

The following texts provide examples of the manoeuvrability index of a robot. First, the

workspace of the robot, as depicted in Figure 6.2, should be defined.

Figure 6.2: Workspace of the FANUC ER-4iA robot

In the context of a robotic workspace, certain positions can be conducive to the execution

of operations, specifically when the determinant of the Jacobian matrix is sufficiently large.
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Conversely, other positions may prove less effective for operations, particularly when the de-

nominator of the Jacobian matrix approaches zero, or the matrix is not of full rank. To visually

represent this information, the following procedure is followed:

1. Computation of the Absolute Values of the Determinants

Initially, the robot is assigned 10,000 sets of joint values. The determinant of the Jacobian

matrix can be computed using Equations (6.9), (6.10), (6.11), (6.12), (6.13), and (6.15).

The resulting information is stored within the array denoted as J . Subsequently, the

absolute values of these determinants (in other words, robot manoeuvrability index), are

computed and housed in a new array, Jabs. The equation for the i-th element is formulated

as follows in Equation (6.17):

Jabs[i] = |J [i]| (6.17)

2. Identification of the Minimum and Maximum Values of the Absolute Deter-

minants

After the construction of the Jabs array, the minimum and maximum values contained

within this array are identified, represented as Jabsmin
and Jabsmax , respectively. Mathe-

matically, these can be expressed using Equations (6.18) and (6.19):

Jabsmin
= min(Jabs) (6.18)

Jabsmax = max(Jabs) (6.19)

3. Scaling of the Absolute Determinants

At the analysis’ concluding phase, the absolute determinants undergo scaling. This pro-

cess, which normalises the determinants, involves dividing them by an appropriately

chosen scaling factor, thereby ensuring comparability across the dataset:

Jscaled[i] =
Jabs[i]

scaling_factor
(6.20)

Referencing Equation (6.20), the scaling factor is crucial and must be selected to suit the

dataset’s range, preserving the comparability of the results. As an illustrative example,

when the scaling factor is the range between the maximum and minimum determinants,

the scaling operation is described by:
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Jscaled[i] =
Jabs[i]

Jabsmax − Jabsmin

(6.21)

Equation (6.21) demonstrates this specific instance of scaling. However, the primary in-

tent of scaling, as indicated by Equation (6.20), is to facilitate the visual comparison of

the determinants, without altering the inherent relationships among them. It is imper-

ative that the selected scaling factor maintains the original proportionate relationships

and ensures that the scaled values are meaningful and clearly comparable.

Upon completion, Jscaled[i] can be viewed as w, as denoted in Equation (6.15). The Jscaled[i]

is called the robot manoeuvrability index. To visually represent this information, an updated

workspace diagram of the robot is created. This diagram employs a variety of colours to

represent the points based on the value of Jscaled. This process enhances the robot’s workspace

visualisation, as it provides insights into the robot’s manoeuvrability, as depicted in Figure 6.3.

• Jscaled < 0.2, red

• 0.2 ≤ Jscaled < 0.4, orange

• 0.4 ≤ Jscaled < 0.6, yellow

• 0.6 ≤ Jscaled < 0.8, green

• 0.8 ≤ Jscaled, blue

In the context of robot manipulability, the Jacobian matrix determinant is used as a measure of

the manipulability index, indicating the robot’s ability to move in different directions without

encountering a singularity. A larger Jacobian matrix determinant, in absolute terms, implies

superior manipulability, as the robot is able to move more freely in various directions than

robots with a smaller determinant without encountering a singularity. However, a large deter-

minant does not necessarily mean improved manipulability, as the determinant can be affected

by the units used to measure the robot’s joints and end-effector position. Conversely, suppose

the Jacobian matrix determinant equals zero (or near zero). In that case, it indicates that

the robot is in a singular position, where the Jacobian loses rank, and the robot loses certain

degrees of freedom. Thus, the robot’s configuration and joint angles must be accounted for,

with a focus on situations where the determinant nears zero, indicating potential singularity,

rather than solely on the determinant’s absolute size.
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Figure 6.3: Updated workspace of the FANUC ER-4iA robot

6.2.3.6.3 Energy Consumption Energy consumption is a central element in the optimi-

sation of layout configurations for robotic assembly cells within RMSs, targeting both sustain-

ability and operational efficiency. Specifically, two primary methodologies enable the measure-

ment of energy consumption, offering pivotal data for more strategic optimisation decisions:

1. Energy Consumption Estimation: This methodology utilises known parameters,

such as the velocity and acceleration of the robots in the system, to estimate the en-

ergy consumption associated with different layout configurations.

2. Real-Time or Simulated Environment Energy Consumption Measurement:

This alternate methodology facilitates the capture of energy consumption data either in

real time or within a simulated environment. This experiential data yields vital insights

into energy efficiency under actual operational circumstances.

In conclusion, an extensive understanding of energy consumption underpins the optimisation

process of layout configurations in robotic assembly cells within RMS. The collection of ac-

curate energy consumption data, whether via simulation or real-time recording, coupled with
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a comprehensive optimisation strategy, can aid in developing energy-efficient layout configu-

rations. The choice between these methodologies is contingent upon the specific real-world

application.

6.3 Chapter Summary

This chapter explored the development and application of a unique modular optimisation frame-

work tailored to support the design of reconfigurable manufacturing systems to address RQ3,

emphasising robotic assembly cells. The core strength of this framework stems from its intri-

cate and systematic structure, which encompasses three primary components: the simulation

environment, the optimisation environment, and the optimisation algorithms.

A key highlight of this modular framework is the application of layout optimisation in robotic

assembly cells. Addressing crucial equality and inequality constraints that affect the feasible

solutions can ensure that the optimised layout operates efficiently and safely within the specific

requirements of the manufacturing environment.

Incorporating the experience databank into this process yields a significant competitive edge.

This knowledge graph streamlines the decision-making process, offering valuable recommenda-

tions based on the gathered information. The integration of this tool gives this research an

advantage over traditional methods, showcasing the potential of knowledge-aided systems in

modern manufacturing design.
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Chapter 7

Software Implementation

This chapter moves from theoretical concepts to their practical application, focusing on software

development for the proposed methodology as described in Chapter 4, 5 and 6. It begins the

process of fulfil Objective 4, which will continue and be completed in Chapter 8.

7.1 Introduction

In the discussion on the experience databank, a central repository emerged, designed to compile

extensive knowledge that encompasses tasks, processes, assets, and reconfiguration intricacies.

Section 7.2 elaborates on the software interface conceptualised for this databank, utilising

ontology models and knowledge graph methodologies.

Section 7.3 then discusses the asset selection methodology, highlighting its software embod-

iment. Beyond its theoretical underpinning, asset selection in practice involves a blend of

algorithms and decision matrices. A dedicated software tool employing knowledge graphs and

multi-criteria decision-making algorithms is thus developed to facilitate this intricate process.

This chapter wraps up with a discussion on the software approach to layout optimisation,

detailed in Section 7.4. Here, a synergy of knowledge graphs, simulation environments, and

modular artificial intelligence tools becomes evident. Integration with platforms such as Tec-

nomatix Process Simulate and RoboDK ensures that the simulations align with prevailing

industry standards.
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In summary, this chapter connects the theoretical constructs of earlier sections to their tangible,

real-world applications and paves the way for subsequent discussions on real industry use cases.

7.2 Interface Development for Experience Databank

As discussed in Chapter 4, the knowledge graph (experience databank) comprises both the

schema layer and the entity layer. This section details the development of interfaces for these

layers. As depicted in Figure 7.1, the procedure encompasses creating and connecting to

the graph database, uploading the ontology model (which corresponds to the schema layer

described in Chapter 4), loading the dataset, and subsequently generating the knowledge graph

(representing the entity layer as outlined in Chapter 4).

Figure 7.1: UML activity diagram for building the experience databank

7.2.1 Software selection

As described in Section 2.6, among the myriad tools available for designing and refining the

schema layer of a knowledge graph, Protégé was chosen, predominantly for its efficiency, flexi-

bility, scalability, ease of use, and integration capacity, as well as the following reasons:

• Maturity and Adoption: Protégé has been in existence for decades and is one of

the most widely used ontology editors in both academic and industrial domains. Its

long-standing reputation guarantees a reliable and well-tested platform.

• Standard Adherence: Protégé is renowned for its robust support for ontology stan-

dards, especially OWL. This ensures that the ontologies developed are interoperable and
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can be seamlessly integrated with other systems.

• Extensibility: The plugin architecture of Protégé allows users to augment the func-

tionality of the software. The software boasts a vast ecosystem of plugins, ranging from

visualisation tools to reasoners such as Pellet and HermiT.

• Active Community: The vibrancy and supportiveness of the Protégé community, in-

cluding forums, mailing lists, and workshops, ensure that assistance is always at hand.

• Visualisation and Interface: Protégé’s user-centric interface presents a visual rep-

resentation of ontologies, streamlining the comprehension and management of intricate

relationships and hierarchies.

• Reasoning Capabilities: With seamless integration capabilities and a myriad of rea-

soning skills, Protégé is adept at ontology validation, consistency checks, and inferencing,

which are paramount for ensuring the accuracy and robustness of the schema layer.

• Free and Open Source: The open-source nature of Protégé offers unparalleled trans-

parency and flexibility, coupled with the potential for customisation. This also ensures a

transparent cost structure devoid of hidden charges or licensing complications.

• File Storage and Updates: For this research, Protégé was employed to craft the

proposed ontology model, which was stored as a .ttl file. This format facilitated frequent

updates to the ontology model based on emerging information.

The amalgamation of its feature-rich environment, dynamic community, and strict adherence

to standards renders Protégé the quintessential choice for constructing the schema layer of the

knowledge graph in this study.

7.2.2 Development Process

In robotic assembly cell reconfiguration, an adaptive semantic model is of paramount impor-

tance. However, as described in Chapter 4, encapsulating every evolving concept within this

model remains challenging. This is particularly apparent in the realm of reconfigurability,

where both software and algorithms are in perpetual evolution.
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The knowledge graph was designed using the OCCR model, as depicted in Figure 7.2. Insights

from industry experts further refined the model. Protégé, a tool well-regarded in both academic

and industry sectors for its robustness in ontology modelling, was employed to generate the

OCCR model. The completed model was subsequently saved as a “.ttl” file.

Figure 7.2: Ontology model in Protégé

Thereafter, the entity layer of the knowledge graph was constructed, informed by the schema

layer, external data sources, and real-world data. Neo4j was selected for this phase and for the

overall generation and storage of the knowledge graph due to its prowess in efficiently managing

graph data, the versatility of its query language Cypher, and its scalability [115].

To establish a seamless integration between the Neo4j graph database and the broader pro-

gramming environment, Py2neo was incorporated. This decision was informed by Py2neo’s

ability to manipulate the Neo4j database within a Python framework efficiently, streamlining

the construction and modification of the knowledge graph in Neo4j [116].

Python was enlisted to oversee various dataset operations, from data loading to ontology model

updates and knowledge graph generation. The language’s flexibility, vast library ecosystem,

and compatibility with various tools made it an ideal choice. Moreover, the Py2neo library,

113



known for its user interface enhancements and capabilities such as node creation, Cypher query

execution, and graph structure updates, was leveraged.

The procedure involving Py2neo and Neo4j is outlined below:

1. Graph Configurations Initialisation: Within Neo4j, the n10s library, renowned for

its RDF data management capabilities, is employed. The n10s.graphconfig.init func-

tion configures the graph for RDF data, influencing its representation within Neo4j. An

example is provided in Figure 7.3.

Figure 7.3: Graph initialisation in Neo4j

2. Ontology Model Import: After the ontology model is saved as a .ttl file, it is im-

ported into Neo4j using commands such as call n10s.onto.import.fetch.

3. Knowledge Graph Construction: The knowledge graph, encompassing both the

schema and entity layers, is built using Py2neo. An example is displayed in Figure

7.4.

4. Knowledge Graph Refinement: The knowledge graph undergoes precision enhance-

ments to ensure its accuracy and comprehensiveness.

5. Knowledge Graph Storage: Knowledge graphs are archived within Neo4j, ensuring

swift and efficient retrieval, with the added advantage of cloud deployment compatibility.

In summary, the software’s design was tailored to incorporate tools such as Protégé, Neo4j,

Py2neo, and Python. This integration resulted in a powerful platform poised to craft a com-

prehensive experience databank in the manufacturing sector.
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Figure 7.4: Exemplification of a generated knowledge graph

7.3 Interface Development for Asset Selection

Asset selection and evaluation in the domain of advanced manufacturing necessitate an amal-

gamation of computational and reasoning capabilities. To this end, an interface was developed,

leveraging the graph database platform Neo4j and Py2neo, a Python library that interfaces

with Neo4j. The overarching goal was to construct an interface anchored on a knowledge graph,

ultimately to provide data-driven recommendations and facilitate intricate data management

tasks. Figure 7.5 presents a comprehensive UML activity diagram, elucidating the systematic

procedure for optimal asset selection and evaluation.

7.3.1 Software Selection for Asset Selection

The development process for the asset selection interface is rooted in the meticulous selection

of software tools tailored to address the unique challenges inherent in asset selection in the

manufacturing domain. The justification for each tool was based on its individual merits,

compatibility, and the specific demands of each phase of the development process.
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Figure 7.5: UML activity diagram for optimal asset selection

7.3.1.1 Protégé:

Protégé was selected for its proficiency in ontology modelling. Given the ever-evolving nature of

manufacturing demands and the continuous advancement of assets and capabilities, an ontology

model remains in a constant state of flux. It demands periodic updates, refinements, and

augmentations to remain relevant and accurate. The capability of Protégé’s capability to

conveniently update and modify ontologies earmarks it as the tool of choice for this purpose.

7.3.1.2 Neo4j:

Neo4j’s preeminence in graph database management was indispensable. Its powerful query

language, Cypher, played a pivotal role in the capability-matching phase.

7.3.1.3 Python and Py2neo:

Python, known for its adaptability and its vast library ecosystem, combined with Py2neo’s

seamless Neo4j integration, became the backbone of the process. This union permitted intricate

data manipulations, evaluations, and subsequent database queries or updates.
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7.3.2 Development Process

7.3.2.1 Phase 1: Requirement Gathering and Translation

Upon receiving a customer’s specifications, the initial step is to translate these directives into

a processable format. This translation involves converting the customer’s requisition into a bill

of processes, which is subsequently distilled into the requisite capabilities.

7.3.2.2 Phase 2: Capability Matching Using Neo4j

Through Neo4j’s Cypher, these capabilities are juxtaposed against available assets in the knowl-

edge graph. The provided Cypher query illustrates how specific tasks and their prerequisites

align with potential assets that satisfy those demands, culminating in a compilation of candi-

date assets aptly poised to cater to the task’s requirements as shown in Figure 4.10.

7.3.2.3 Phase 3: Candidate Asset Evaluation

With the candidate asset ensemble collated, the next step is their appraisal. Python’s com-

putational prowess is harnessed at this juncture. Each asset undergoes a rigorous evaluation

predicated on various metrics such as specification efficiency score, reconfiguration costs, and

other relevant parameters. The evaluation process can be bifurcated into:

1. Single-Objective Optimisation: When the weights of the decision metrics are pre-

determined, multi-objective dilemmas can be transformed into a single-objective frame-

work, simplifying the prioritisation of candidate assets.

2. Multi-Objective Optimisation: In scenarios bereft of pre-defined weights, Python

utilities manifest a Pareto front, elucidating a spectrum of optimal alternatives. This

offers decision-makers a myriad of assets, empowering them with the autonomy to make

careful selections based on their bespoke needs and strategic preferences. In this scenario,

Pymoo [117] is used to enable multi-objective optimisation.
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7.3.2.4 Phase 4: Integration and Feedback Loop

The symbiosis between Python and Neo4j, catalysed by Py2neo, ensures a cyclical feedback

mechanism. Evaluation outcomes, along with any nascent data or insights, are reincorpo-

rated into the database. This not only rejuvenates the knowledge graph but also fosters an

environment in which the system can evolve and adapt over time.

7.3.2.5 Conclusion

The software development trajectory for the asset selection interface epitomises the synergistic

amalgamation of diverse tools to navigate intricate challenges. With Neo4j orchestrating capa-

bility matching, Python supervising asset evaluation, and Protégé ensuring that the ontology

remains dynamic and contemporaneous, the system emerges as both resilient and malleable.

This development blueprint has been meticulously architected to champion accuracy, efficiency,

and versatility, priming it for validation against tangible industry use cases in subsequent design

courses.

7.4 Implementing Layout Optimisation

This section details the interface development for the modular optimisation environment, fo-

cusing on layout configuration. A UML activity diagram of this framework is depicted in

Figure 7.6.

Figure 7.6: UML activity diagram for layout configuration optimisation
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7.4.1 Software Selection for Layout Optimisation

As detailed in Chapter 6, the layout optimisation framework is composed of three main com-

ponents: the simulation environment, the optimisation environment and modular optimisation

algorithms. The following sections provide an in-depth explanation of each of these compo-

nents.

7.4.2 Simulation Environment Interface Development

7.4.2.1 Selecting Appropriate Tools

The selection of simulation tools was informed by the specific requirements of the framework,

with an emphasis on broad coverage, versatility, and ease of integration with the Layout opti-

misation framework.

On the one hand, the Tecnomatix Process Simulate was identified as the most suitable choice for

the optimisation of multiple asset layouts. This industry-standard software excels at simulating

intricate manufacturing processes at a production-line level. Its comprehensive feature set is

tailored for simulating elaborate process flows, making it ideal for large-scale and multifaceted

manufacturing scenarios.

On the other hand, RoboDK emerged as the tool of choice for scenarios focused on a single

robot, especially those requiring pose optimisation, such as determining optimal operation

points. It offers a streamlined and user-friendly interface tailored for simulating specific robotic

tasks and assessing various robot models. RoboDK’s extensive library of robot models further

bolsters the versatility of the framework.

To clarify, in any given layout optimisation scenario, only one of these software tools is em-

ployed, ensuring that the most appropriate tool is utilised for the task at hand.

7.4.2.2 Integration and Implementation

The integration of these tools into the framework involved creating bespoke interfaces for each,

ensuring their seamless interaction with the layout optimsiation framework. The Tecnomatix
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.NET API was used to develop custom applications within the Tecnomatix Process Simulate en-

vironment, automating tasks, facilitating data exchange, and executing operations. RoboDK’s

Python API was leveraged to establish a direct interface with the Python-based optimisation

engine, allowing for real-time control and feedback from the simulated robots and environment.

Both software packages underwent thorough testing within the framework to confirm their

compatibility and effectiveness. The result is a comprehensive simulation environment that

can address various industrial robot manufacturing scenarios, provide insightful feedback for

the optimisation process, and handle various robot types and setups. Thus, it is a powerful

tool that reduces development time and costs while enhancing efficiency and effectiveness.

7.4.2.3 Development of Simulation Environment in Tecnomatix Process Simulate

The simulation environment within Tecnomatix Process Simulate is pivotal for achieving an

optimised manufacturing layout. This section elucidates the connection and synergies between

the simulation environment and the optimisation framework, with C# serving as the link

between the Python-based optimisation environment and the simulation space.

7.4.2.3.1 Harnessing the Tecnomatix .NET API Tecnomatix offers a .NET API, a

bridge for digital manufacturing integration. Two primary interfaces, namely the Command

and the Viewer interface, are at the core of this API:

1. Command Interface: This interface facilitates task-specific functionalities and allows

for the inclusion of user-defined tasks, extending the software’s operational range.

2. Viewer Interface: This interface provides a continuous graphical user interface (GUI)

essential for intuitive data visualisation and manipulation within the Tecnomatix space.

7.4.2.3.2 Constructing the Simulation Space The Tecnomatix .NET API was em-

ployed to develop a bespoke library tailored for layout optimisation. The development process

encompassed the following:

1. Formulating code within the Visual Studio environment
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2. Establishing a GUI interface in Tecnomatix Process Simulate

3. Crafting a dedicated simulation environment

The persistent and interactive nature of the Viewer interface made it the preferred choice for

the optimisation task.

7.4.2.3.3 Communication Pathway Design Direct communication between the opti-

misation and simulation environments is not inherently feasible. C# acts as an intermediary,

ensuring a streamlined communication process between the Python optimisation environment

and the Tecnomatix Process Simulate, achieved via a socket connection.

7.4.2.3.4 Optimisation Framework Enhancement The optimisation framework intro-

duced in Tecnomatix consists of the following:

1. Viewer Interface: An embedded viewer in Tecnomatix Process Simulate.

2. Command Modules: Specific commands for defined tasks.

3. Movement Function: Facilitating object movement within the simulation.

4. Signal Detection: A tool coordinating with the collision detection signal.

In essence, the use of the Tecnomatix .NET API, paired with a structured communication

methodology, refines the simulation environment, ensuring a seamless and effective user expe-

rience.

7.4.2.4 Simulation Environment Development in RoboDK

RoboDK, which is dedicated to robot simulation and programming, was employed for its inher-

ent advantages, notably its Python API support. This direct support simplifies the integration

process, reducing the requirement for middleware platforms, which is a necessity with Tecno-

matix Process Simulate.
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7.4.2.4.1 Exploiting RoboDK’s Functionalities for the Framework RoboDK’s at-

tributes, including its Python API, robot model library, and advanced visualisation tools, were

harnessed to craft a user-centric simulation environment. The Python API’s direct nature

streamlines robot programming and control, allowing for precise pose optimisation tasks. Ad-

ditionally, RoboDK’s library negated the need for independent model derivations, enhancing

research efficiency.

7.4.2.4.2 RoboDK’s Role in the Simulation Process While Tecnomatix Process Sim-

ulate excels at multi-faceted simulation scenarios, RoboDK is particularly adept at specific

tasks, especially single robot pose optimisation tasks. This distinction underscores the strate-

gic selection of tools based on the simulation’s precise needs.

In summary, the integration of both Tecnomatix Process Simulate and RoboDK within the

proposed framework ensures a holistic, efficient, and precise simulation environment catering

to a diverse range of scenarios.

7.4.3 Optimisation Environment

The optimisation environment is the backbone of the proposed framework. It interacts di-

rectly with the simulation environment to perform iterative optimisation tasks. It is also

responsible for integrating the optimisation objective sets and optimisation algorithms into the

optimisation process. The optimisation environment was developed in Python, leveraging its

comprehensive data handling capabilities and extensive library support for optimisation tasks.

The environment was designed to be modular and extensible, with each component – the op-

timisation objective sets, the optimisation algorithms, and the interfaces with the simulation

environment and the knowledge graph – developed as separate modules. This modular design

ensures that the environment can be easily modified or extended as needed.

In the algorithm, the optimisation objective provides quantitative measures of performance,

which are crucial for the optimisation tasks. The framework includes a collection of optimisation

objective sets tailored to various manufacturing scenarios. These optimisation objective sets,

used as input to the optimisation environment, define the criteria for successful optimisation

tasks.
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The optimisation objective sets were developed in Python, and Py2neo is used to interact with

the Neo4j graph database. This allows for optimisation objective sets to be retrieved from

the Manufacturing Reconfiguration Knowledge Graph, applied to the optimisation tasks, and

updated with new data as necessary.

Additionally, Neo4j’s Cypher Query Language is utilised to interact with the graph database.

Users are able to retrieve suggested optimisation objective sets for a particular problem from

the graph database. The graph database can subsequently be updated with new information

gleaned from recent optimisation tasks.

This continuous data capture, updating, and usage establishes a cyclical learning process. As

the system undertakes more optimisation tasks, it amasses a growing wealth of data that can be

analysed and used to refine future operations. This ability to learn and improve with each cycle

makes the optimisation framework robust and efficient, potentially saving significant resources

and enhancing productivity in the long run.

7.4.4 Optimisation Algorithm

The choice of optimisation algorithm is an important aspect of the optimisation environment.

The optimisation algorithm determines how the optimal solution to a given problem is found.

Some algorithms work better for certain types of problems than others. Therefore, a compre-

hensive collection of optimisation algorithms has been included in the framework, ensuring a

high degree of flexibility and adaptability to diverse optimisation scenarios. The flowchart of

utilising the optimising algorithm is depicted in Figure 7.7.

Figure 7.7: Flowchart of using algorithms suggested from experience databank

The integration of these algorithms with the Neo4j graph database was key in the development

of this component. Each algorithm was coded in Python, and the Py2neo was utilised to

interact with the graph database, retrieving data, executing the optimisation algorithm, and

then updating the graph database with the new data.
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The algorithms’ performance metrics, along with the optimisation objective, decision variables,

and constraints utilised in the optimisation tasks, are also stored in the experience databank.

This enables users to draw upon the lessons from past optimisations to inform future tasks,

facilitating continuous improvement and learning.

7.5 Chapter Summary

This chapter delineates the crucial transition from theoretical models to their practical embod-

iments, marking a strategic move towards accomplishing Objective 4. This objective, while

significantly advanced within the current discussions, awaits its full completion, which is an-

ticipated to occur with the validation of use cases in Chapter 8.

The narrative commenced with an exploration of the experience databank software, a central

repository engineered to encapsulate and organise knowledge spanning various tasks, processes,

assets, and their reconfiguration. The interface for this databank, discussed in Section 7.2,

is underpinned by ontology models and knowledge graph methodologies to facilitate robust

information retrieval and utilisation.

Further, the chapter addressed the translation of the asset selection methodology into its soft-

ware counterpart in Section 7.3. This software instrument employs knowledge graphs alongside

multi-criteria decision-making algorithms, representing a sophisticated synthesis tailored for

complex asset selection challenges.

Section 7.4 revealed the approach to software-driven layout optimisation. It underscored the

convergence of knowledge graphs with simulation tools and artificial intelligence, all calibrated

to mesh with industrial standards set by platforms such as Tecnomatix Process Simulate and

RoboDK.

While the chapter effectively bridges the gap between earlier theoretical discussions and their

practical applications, it also sets the stage for the impending elucidation of real-world use cases.

These cases are poised to provide the empirical substantiation needed to satisfy Objective 4 in

its entirety, as will be expounded upon in Chapter 8.
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Chapter 8

Use Case Studies

This chapter, in conjunction with Chapter 7, contributes to the validation of Objective 4, as

set out in this thesis. It introduces three use cases that serve to test and substantiate the

methodologies developed. The use cases addressed are as follows:

1. Use Case 1 focuses on executing asset selection and system layout optimisation based on

a single objective with the help of the experience databank.

2. Use Case 2 explores the extension of layout optimisation to single-robot operations, em-

phasising multi-criteria decision-making.

3. Use Case 3 assesses modular and multi-objective asset selection using the experience data-

bank, expanding the asset selection validation to include multi-criteria and modularity

aspects.

8.1 Use Case 1 – Asset Selection and System Layout Op-

timisation Using the Experience Databank

Use Case 1 is introduced to validate the methodology for building and updating the experience

databank, optimal manufacturing asset selection, and system layout optimisation as shown in

Figure 8.1.
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Figure 8.1: Validation components of the proposed methodology in Use Case 1

8.1.1 Introduction

The validation procedure was carried out using a dataset procured from the OMNIFACTORY

demonstrator at the University of Nottingham [118], as illustrated in Figure 8.2. OMNIFAC-

TORY, a state-of-the-art £3.8 million facility, is a national testbed for intelligent manufacturing

systems in the UK. Its mission is to expedite accurate shop floor reconfigurations to meet cus-

tomers’ bespoke requirements. Located on the University’s Jubilee Campus, OMNIFACTORY

is fitted with a bespoke flooring system that enables a unique, reconfigurable environment.

Nonetheless, determining the optimal configuration for a new or altered product presents a

considerable challenge.

Figure 8.2: Physical layout of one of the OMNIFACTORY’s test plants

The validation dataset was compiled using technical documents, equipment data, and product
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design files obtained from OMNIFACTORY and its partner organisations. It includes 101

tasks – related and unrelated to reconfiguration – along with their respective requirements and

procedures for each task. The dataset features 161 potential assets with comprehensive details

to facilitate capability matching and reconfiguration. These assets consist of production line

components and resources from the asset pool, such as hardware, software, a human workforce,

and reconfiguration solvers to enhance production and reconfiguration activities. To maintain

confidentiality, all information was anonymised: task names were altered to “Task 1”, “Task

2”, and so on; customer names were altered to “Company A”, “Company B”, and so on; and

product features were replaced with generic terms such as “Feature 1” and “Feature 2”.

This case study emphasises the practical deployment of the methodology within an authentic

industrial setting and its effectiveness in navigating the reconfiguration process by leveraging

the attributes of knowledge graphs to handle data diversity.

8.1.2 Construction of the Knowledge Graph

In this current use case, the experience databank is built based on the implementation described

in Chapter 7. Both top-down and bottom-up approaches are utilised. The OCCR model is

used as the schema layer, and Neo4j is used to build the knowledge graph.

Figure 8.3 showcases the generated knowledge graph featuring explicit relationships. To en-

hance and complete the knowledge graph, an ontology-rule-based methodology is utilised, as

expounded in the work of Chen et al. [104]. An illustrative example is when an entity from the

task node is connected to an entity from the product node, and the corresponding entity from

the product node is linked with an entity from the process node through the “requiredPro-

cess” relationship. A new relationship is then generated, named “taskRequiredProcess” which

connects the entity from the task node to the entity from the process node. This enhanced

knowledge graph can be employed to augment the reconfiguration process. The generated

knowledge graph is the implementation of “Experience Databank”.
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Figure 8.3: Construction of the knowledge graph (experience databank)

8.1.3 Application of the Experience Databank

Once the experience databank is established, its effectiveness and the improvements it brings

to the reconfiguration process can be demonstrated through two specific applications. The first

application addresses the selection of resources for a task characterised as non-reconfiguration-

related, while the second application relates to the provision of reconfiguration recommenda-

tions for a reconfiguration-related task.

8.1.3.1 Application 1: Resource Selection for Non-Reconfiguration-Related Task

In the first application, “Task 100” – a non-reconfiguration-related task – in the knowledge

graph is selected as the demonstration task. The experience databank is used to help the

task find the most appropriate assets. This process consists of two steps: finding the required

process to produce the product from “Task 100” (Step 1) and capability matching between

the required process and the available capability to find the candidate assets based on the

capability information (Step 2). This example demonstrates not only capability matching

based on ontology reasoning but also how to decompose the combined capability to find the
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potential assets for the associated input capability. For the first step, the required process

for “Task 100” can be determined via the query command in Neo4j, as shown in Figure 8.4.

The implemented methodology reveals that Product 100 had two distinct features. Figure 8.5

demonstrates that feature 1 necessitates the “PickAndPlace” and “MarkingAction” processes,

while feature 2 required the “Pressing” and “Metrology” processes.

Figure 8.4: Query command to find the required process for “Task 100” in Neo4j

Figure 8.5: Information about task 100 and its related nodes in the knowledge graph (experience
databank)

In relation to the capability-matching process (Step 2), Figure 8.5 also illustrates that the
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requirements for various processes within the task can be queried using the generated knowl-

edge graph. For example, for Feature 1, “PickAndPlace” and “MarkingAction” are the neces-

sary processes. In the OCCR model, the “MarkingActionCapability” is categorised as a sim-

ple capability, whereas the “PickAndPlaceCapability” is recognised as a combined capability.

This distinction allows for a demonstration of how the model operates with varied capabil-

ity types through the capability-matching process. Specifically, the matching process for the

“MarkingAction” and the “PickAndPlace” processes can be demonstrated.

The specification requirement of “MarkingAction” is “requiredAccuracy: 0.05” and “require-

dResolution: 500”. The capacity requirement is the cost and utilisation rate. The allowed

maximum cost for “MarkingAction” is 1,500, and the allowed maximum utilisation rate is 0.4.

The ontology reasoning approach is used in the use case to find the potential assets based on the

requirements and specifications and the capacity information. As shown in Figure 8.6, with this

ontology reasoning approach, not only the related assets for the “MarkingActionCapability” but

also the assets with the capability of the subclass of “MarkingActionCapability” can be found.

In this figure, SCO means “subclass of”. The subclasses of the “MarkingActionCapability”

are “LaserMarkingCapability”, “InkMarkingCapability”, “PrintingCapability”, “StampMarking-

Capability”, and “LabellingCapability”. The related assets for these subclasses can be found

automatically without extra effort based on the ontology information. The knowledge inference

process (ontology reasoning) in Neo4j is essential because it allows for the representation and

manipulation of complex relationships between entities in a graph database. Using ontologies

or formal models of a particular domain, the system can automatically deduce new information

(in this case, the subclasses of the “MarkingActionCapability”) based on the rules encoded in

the ontology. This can improve data accuracy, consistency, and completeness and help users

make more informed decisions.

The results of the capability-matching process are presented in Figure 8.7. For the “MarkingAc-

tion” process in Task 100, six assets are identified to satisfy the requirement according to the

capability matching process based on the specification requirement (accuracy and resolution)

without considering the capacity information. The capacity model is employed to improve the

resource selection process. In the study, cost and utilisation rate are used to represent the

capacity information of the candidate assets. Only “InkMarker-3” fulfils all the requirements

and is thus chosen.
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Figure 8.6: Capability matching for “MarkingCapability” with the help of ontology reasoning

Regarding the execution of the process for “PickAndPlace”, Figure 8.5 indicates that the spec-

ifications for “PickAndPlace” process include “requiredPayload: 200”, “requiredGraspingForce:

300”, and “requiredReachability: 3,000”. The capacity requirements include “MaximumCost:

4,000” and “MaximumUtilizationRate: 0.5”. Compared with the capability matching process

for a simple capability, this process has an extra process called capability decomposition. Since

the “PickAndPlace” capability is a combined capability, it must be decomposed. The decom-

posed capability is identified based on ontology reasoning, as illustrated in Figure 8.8.

It can be observed that “Moving”, “Releasing”, “Grasping”, and “ForceApplying” are the decom-

posed capabilities (input capabilities). In the OCCR model, “Moving” and “ForceApplying”

are two simple capabilities of the robots. Hence, only one robot is required to execute these

two capabilities. The same applies to “Releasing” and “Grasping”, where only one gripper is

necessary to execute these two capabilities. The capability-matching results, as presented in

Figure 8.9, were obtained using ontology reasoning.
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Figure 8.7: The capacity model enhances the resource selection process

The candidate assets for the “ForceApplying” and “Moving” capability, without considering the

capacity information, are FANUC M-900iB/400L, KUKA KR210 R3300 K ultra, KUKA KR

2100 R3100 ultra, FANUC M-200iA/900L, KUKA KR 240 R3330, KUKA KR 210-2 3100,

FANUC M-2000iA/1700L. Similarly, the candidate assets for the “Grasping” and “Releasing”

capabilities were Vacuum Gripper-6, Vacuum Gripper-5, Finger Gripper-5, Finger Gripper-6,

and Finger Gripper-4. The capacity model is utilised to enhance the capability results, and the

cost information considers both the cost of the robot and the gripper. Based on Figure 8.10, two

combinations satisfy the requirement, namely [KUKA KR210 R3100 ultra, Finger Gripper-4 ],

and [KUKA KR210 R3100 ultra, Vacuum Gripper-5 ]. The candidate assets information from

these two combinations is listed in Table 8.1.
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Figure 8.8: Capability decomposition process for PickAndPlace capabiltiy

Table 8.1: Combination asset information

Assets Payload Reachability
Utilisation

Rate
Cost Force

Combination 1

KUKA KR210

R3100 ultra
210 3,301 0.4 4,500

Finger

Gripper-4
1,000 400

Combination 2

KUKA KR210

R3100 ultra
210 3,301 0.4 4,500

Vacuum

Gripper-5
1,100 340

If the customer’s priority is cost-effectiveness, they should opt for Combination 1, which con-

sists of the KUKA KR210 R3100 ultra paired with the Finger Gripper-4 ; however, a different

evaluation process will be carried out if the customer seeks an optimal solution that avoids

overspecification, which can be referred to the specification efficiency score as described in

Section 5.4.2.1. In this case, for Combination 1 and Combination 2, because the robot is the
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Figure 8.9: Finding candidate assets for “ForceApplying”, “Moving”, “Grasping” and “Releasing”
capability

same, only the specification score of Finger Gripper-4 and Vacuum Gripper-5 should be calcu-

lated. To calculate this score, the requirement should be known; in this case, the requirement

is that the force should be greater than 300. On this basis, the fuzzy priority relations based

on Equation (5.5) are built first. According to an assessment of the value of candidate assets,

the closer the features of the evaluators of the candidate assets are to the evaluators, the higher

the score will be. As the force is the only sub-evaluator, the matrix is defined in Equation (8.1)

according to Equation (5.5).

B1 =

0.5 0

1 0.5

 (8.1)

The consistent fuzzy matrix can be calculated in Equation (8.2) according to Equation (5.10)
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and Equation (5.13).

R1 =

 0.5 0.25

0.75 0.5

 (8.2)

The score s1d (where d = 1, 2) of the two candidate assets (Finger Gripper-4 and Vacuum

Gripper-5) under the factor “force” can be calculated in Equations (8.3) and (8.4) according to

Equation (5.10):

s1d = 0.3660 (8.3)

s2d = 0.6340 (8.4)

Thus, in this case, combination two (KUKA KR210 R3100 ultra, Vacuum Gripper-5 ) should

be chosen because s2d in Equation (8.4) has a higher specification efficiency score.

8.1.3.2 Application 2: Enhancing the Reconfiguration Task with the Semantic

Reconfiguration Model

This application demonstrates, through an application from the OMNIFACTORY project at

the University of Nottingham, the ability of the reconfiguration model to improve the recon-

figuration process. This task is stored in the knowledge graph and marked as “Task 50” – a

reconfiguration task in the aerospace domain, as depicted in Figure 8.11. There are two types

of processes in the reconfiguration task: (1) the current process, which needs to be reconfig-

ured, and (2) the reconfiguration solution, such as the layout reconfiguration process, resource

selection process, and job scheduling process. With these two types of processes, reconfigura-

tion can be better described. Not only information about the current production but also the

solutions required to perform reconfiguration are explained.

In Figure 8.12, a frame is prominently positioned on the automated guided vehicles (AGV).

While there are three candidate robots, only one will be selected to approach the AGV for

a specific assembly task. This robot’s primary responsibility is to retrieve the front and aft

beams from a beam storage rack and assemble them onto the AGV’s frame, preparing it for

further parts assembly. Nearby, an end effector tool stand displays two specialised tools: the

“Metrology” end effector and the “Pick-and-Place” end effector. Below is a detailed description

of the task of this robotic assembly cell.
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Figure 8.10: Detailed process about finding candidate assets for “ForceApplying”, “Moving”,
“Grasping” and “Releasing” capability

1. Mount the Pick-and-Place End Effector

The selected candidate robot first mounts the pick-and-place end effector to enable the

pick-and-place capability.

2. Pick-and-Place the Front Beam

The selected candidate robot picks the front beam and places it on the upper side of the

frame.

3. Pick-and-Place the Aft Beam
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Figure 8.11: Information about Task 50

The selected candidate robot picks the aft beam and places it on the lower side of the

frame.

4. Unmount the Pick-and-Place End Effector

The selected candidate robot unmounts the pick-and-place end effector on the tool stand.

5. Mount the Metrology End Effector

The selected candidate robot mounts the metrology end effector to enable the metrology

capability.

6. Execute the Metrology Operation

The selected candidate robot utilises the metrology end effector for metrology on the

mounted front beam and the after beam.

7. Unmount the Metrology End Effector

At last, the selected candidate robot unmounts the metrology end effector and puts it on

the tool stand.

On the other hand, the reconfiguration solution for this task comprises two main components:

“resource selection” and “layout optimisation”.

Through ontology reasoning in the knowledge graph (experience databank), the resource selec-

tion model offers guidance on the objectives, decision variables, constraints, and reconfiguration

solutions that should be considered for this task, as depicted in Figure 8.13.

In this case, the specification efficiency score guides the selection of the candidate robots.

Based on the experience databank and the engineer’s experience, evaluators are defined and
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Figure 8.12: Initial physical layout of the production cell from the Task 50

used to select the most suitable assets for the applications. Furthermore, fuzzy evaluation is

used to select the optimal resources [119]. The product requirement in the use case is listed in

Table 8.2.

Table 8.2: Requirements

Sub-Evaluators Requirement

Repeatability > 0.05

Payload > 100

Reachability > 2,500

The deviation between the evaluators and the features from the candidate assets (KUKA KR

1000 titan, ABB IRB 6700-150 robot, FANUC M-900iB/360 robot) is then calculated. Based

on the method proposed in Chapter 5, Table 8.3 presents detailed information regarding the

candidate assets from the experience databank.

As mentioned in Chapter 5, an evaluation matrix is defined to evaluate the candidate assets.

In the validation case, the consistent fuzzy matrix is utilised.
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Figure 8.13: Reconfiguration model to enhance the resource selection process

Table 8.3: Candidate asset information

Sub-Evaluators KUKA KR 1000
titan

ABB IRB
6700-150

FANUC
M-900iB/360

Repeatability 0.2 0.06 0.3

Payload 1,000 150 700

Reachability 3,202 3,200 2,832

In this case, the fuzzy priority relation based on Equation (5.5) is built first. Taking “Re-

peatability” as an example, the matrix is defined using Equation (8.5) according to Equation

(5.5).

B1 =


0.5 0 1

1 0.5 1

0 0 0.5

 (8.5)

The consistent fuzzy matrix is calculated using Equation (8.6) according to Equations (5.10)

and (5.13).
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R1 =


0.5 0.333 0.667

0.667 0.5 0.833

0.333 0.667 0.5

 (8.6)

The score s1d(d = 1, 2, 3) of the three candidate assets under factor “Repeatability” is calculated

using Equation (8.7) according to Equation (5.10).

s11 = 0.335, s12 = 0.454, s13 = 0.211 (8.7)

The specification efficiency score of the three candidate assets under other evaluators is cal-

culated using the same approach. Table 8.4 lists each candidate asset’s scores under different

sub-evaluators.

Table 8.4: Specification efficiency score of each candidate asset under single evaluators

Sub-Evaluators KUKA KR
1000 titan

ABB IRB
6700-150

FANUC
M-900iB/360

Repeatability 0.335 0.454 0.211

Payload 0.211 0.454 0.335

Reachability 0.211 0.335 0.454

In this application, equal importance is assigned to each sub-evaluator, which means the weight

of each sub-evaluator is 0.33. The total specification efficiency score (TSES) can be calculated

in Equation (8.8):

TSES =
1

3
× s1d +

1

3
× s2d +

1

3
× s3d (8.8)

Table 8.5 displays the total specification efficiency scores for each candidate asset. Based on the

calculation result, the ABB IRB 6700-150 robot is selected as the candidate robot to execute

the assembly task, as it has the highest total specification efficiency score.

Table 8.5: Total specification efficiency scores of each candidate asset

KUKA KR
1000 titan

ABB IRB
6700-150

FANUC
M-900iB/360

Total specification
efficiency score 0.252 0.414 0.333

The layout optimisation semantic model also assists in this task by providing recommendations
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for layout optimisation via ontology reasoning in the knowledge graph (experience databank).

These recommendations pertain to the objectives, decision variables, constraints, and recon-

figuration solutions in the asset model that should be considered during the reasoning process,

as illustrated in Figure 8.14.

Current Process
Reconfiguration Solution

(Part of the process model)
Task

Ontology modelProduct

Figure 8.14: Reconfiguration model to enhance the layout reconfiguration process

The reconfiguration model acquires recommendations by querying the process model and capa-

bility model as shown in Figure 4.2. The capability model supplies information about potential

assets capable of executing the reconfiguration solution process. For instance, the reconfigura-

tion process necessitates resource selection and layout optimisation, as discussed in Task 50.

The capability model offers potential assets to execute the “ProcessNeedsReconfiguration” and

information regarding the reconfiguration solution required for resource selection. Moreover,

the capability model determines whether it is essential to change the current assets for re-

configuration. The reconfiguration solution for layout optimisation is identified through the

connection between the capability semantic model and the asset semantic model. As shown in

Figure 8.15, various reconfiguration solutions are available to address the layout optimisation

problem.
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Figure 8.15: Recommendations from the knowledge graph to solve the layout optimisation
problem

The optimisation process is executed based on the enhanced information from the reconfigu-

ration, capability, capacity, and process models. The framework of the layout optimisation for

this use case is pictured in Figure 8.16. The simulation environment is created based on the

results from the asset selection (reconfiguration stage 1) and information from the real equip-

ment. The simulation environment sends information to the optimisation environment through

a socket based on the Tecnomatix .NET API. This API is connected to the Tecnomatix Process

Simulate simulation environment with Tecnomatix .NET viewers.

In the given use case, the cycle time is selected as the “user-defined” KPI targeted for improve-

ment. The layout optimisation framework contains a loop of the optimisation process in the

optimisation environment. After one optimisation is completed, the updated robot parameter

is sent to the simulation environment to obtain a new cycle time and then check for collisions.

The Cyclic Event Evaluator (CEE) simulation mode in Tecnomatix Process Simulate is used in

this example [69]. CEE, which functions as a PLC, controls how a typical robotics simulation
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Figure 8.16: Utilisation of the layout optimisation framework in the Use Case 1

progresses using logic. Once the start signal is true, the simulation commences. Initially, no

robot move relocation functions are defined. With the Tecnomatix .NET API, each simula-

tion can generate a move operation. In the first iteration, the optimisation environment sends

random coordinates of both robots to the simulation environment, and then two object flow

operations for relocating the robots in Tecnomatix Process Simulate are generated and linked

with other operations.

Figure 8.17 displays the initial layout of the current production cell. The required cycle time

is 47.17 seconds; after optimisation with the genetic algorithm, the cycle time decreases to

39.83 seconds. In other words, the cycle time has been reduced by 15.6%. The corresponding

optimised layout is shown in Figure 8.18, and the optimisation curve is depicted in Figure 8.19.

In summary, the reconfiguration model can perform tasks to optimise resource selection and

layout optimisation processes:

1. Provide recommendations about the optimisation objectives, constraints, and decision

variables to be considered in the reconfiguration optimisation problem.
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Figure 8.17: Initial work cell layout

2. Aid the reconfiguration-related task in identifying the potential assets to perform the

reconfiguration task (in this case, resource selection and layout optimisation).

8.1.4 Discussion of the Results of Use Case 1

Section 8.1 presents a use case for employing the proposed experience databank for asset

selection and provides recommendations for layout reconfiguration. The proposed methodology,

which combines top-down and bottom-up strategies, streamlines the construction and updating

of the knowledge graph, thereby offering significant advantages for intelligent search, tailored

recommendations, and perceptive query resolution.

The capability of the knowledge graph to manage real-time inquiries and dynamic modifica-

tions is validated through two distinct applications. The first application focuses on a non-

reconfiguration task, which employs the experience databank to identify the most appropriate

assets and requisite processes for product manufacturing. Moreover, this application demon-

strates the process of decomposing combined capabilities to uncover potential assets for the

input capability of the combined capability. The second application examines a reconfigura-

tion task from the OMNIFACTORY project at the University of Nottingham. It involves the

application of the reconfiguration model, illustrating both current processes necessitating re-

configuration and reconfiguration solutions in specific reconfiguration types. In this use case,
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Figure 8.18: Optimised work cell layout

Figure 8.19: Optimisation fitness cure of the genetic algorithm

both asset selection and layout optimisation with the help of the experience databank are dis-

cussed. Asset selection was executed to find the most appropriate candidate assets based on

the specification score, and layout optimisation was performed to identify the optimised layout

based on the optimisation objective cycle time. The criteria in Table 8.6, with check marks for

the objectives, are validated.

For Use Case 1, the validation was methodically executed against a set of predefined criteria

to establish the robustness of the methodology. The details of the validation are summarised

below:
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Table 8.6: Validation according to the criteria in Use Case 1

Validation

Contribution 1

Criterion 1.1 Vendor Neutrality ✓
Criterion 1.2 Information Modelling ✓
Criterion 1.3 Handling of Data from Diverse Sources ✓
Criterion 1.4 Reasoning based on the Ontology ✓

Contribution 2

Criterion 2.1 Adapting to New Process Requirement ✓
Criterion 2.2 Capability Assessment ✓
Criterion 2.3 Modular Asset Selection
Criterion 2.4 Multi-Criteria Asset Selection
Criterion 2.5 Synergies with System

Contribution 3

Criterion 3.1 Multi-Criteria Layout Optimisation
Criterion 3.2 Modular Layout Optimisation
Criterion 3.3 Interoperability ✓
Criterion 3.4 Scalability

• Criterion 1.1 (Vendor Neutrality): The OCCR ontology model effectively captures

robot assembly cell data in a vendor-agnostic manner, resulting in the validation of this

criterion in Use Case 1.

• Criterion 1.2 (Information Modelling): The use of the ontology model to encompass

crucial robotic assembly reconfiguration data, such as capability, capacity, and reconfig-

uration details, validates this criterion.

• Criterion 1.3 (Handling of Data from Diverse Sources): The methodology suc-

cessfully integrates diverse data, including data related to robots, end effectors, processes,

and tasks, into the experience databank, thus validating this criterion.

• Criterion 1.4 (Reasoning Based on Ontology): Demonstrated by the capability

of ontology reasoning to extract inferred knowledge, such as matching capabilities and

decomposing processes. This validation is evident from its application in areas such as

capability matching for marking tasks and decomposition processes for pick-and-place

tasks.

• Criterion 2.1 (Adapting to New Process Requirement): The methodology’s

adaptability to new task requirements, such as tasks 50 and 100, underscores its ability

to cater to new process requirements, thereby validating this criterion.

• Criterion 2.2 (Capability Assessment): In this use case, the examination of capa-

bilities and the subsequent matching of specific capabilities, such as pick-and-place and

marking capabilities, lead to the confirmation of this criterion.

• Criterion 3.3 (Interoperability): Creating a layout optimisation environment facil-
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itated by seamless asset communication is a testament to the methodology’s interoper-

ability, which confirms this criterion is validated.

8.2 Use Case 2 – Multi-Criteria Layout Optimisation in a

Single Robot via Experience Databank

In Use Case 1, several criteria were not satisfied, including Criterion 2.3 (Modular Asset Selec-

tion), Criterion 2.4 (Multi-Criteria Decision Making), Criterion 2.5 (Synergies with System),

Criterion 3.1 (Multi-Criteria Layout Optimisation), Criterion 3.2 (Modular Layout Optimisa-

tion), and Criterion 3.4 (Scalability). This case focused primarily on layout optimisation at a

system level with a singular objective: cycle time. To address these deficiencies, Use Case 2

was introduced. The focus of Use Case 2 is shown in Figure 8.20. Its main aim is to validate

the criteria unmet in Use Case 1 and to refine the validation of others. Unlike the system-level

emphasis of Use Case 1, Use Case 2 concentrates on the machine level. A notable feature is the

optimisation of a single robot’s pose using a multi-objective approach. However, asset selec-

tion is not discussed in Use Case 2; thus, Criterion 2.3 (Modular Asset Selection), Criterion 2.4

(Multi-Criteria Asset Selection), and Criterion 2.5 (Synergies with System) are not validated

in Use Case 2 and are set to be addressed in Use Case 3.

Figure 8.20: Validation components of the proposed methodology
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8.2.1 Introduction

Optimising the layout of industrial robots is an integral facet of production line planning. This

complex task involves the precise determination of the robot’s position and orientation, allowing

for the effective and efficient execution of designated tasks. An optimally laid-out robot ensures

the desired position and orientation of its end effector while circumventing potential collisions,

thereby aiding in achieving operational efficiency and energy conservation targets.

The understanding of a robot’s working range, often termed the “working envelope” [120], is

a fundamental step in robot operations. This workspace is primarily defined by the robot’s

external structure and physical dimensions, serving as a central point for optimisation in many

industrial settings.

In this use case, a specific component of the methodology introduced in the PhD thesis is

examined. The broader methodology entails various elements, but the focus here is on the

centralisation of the experience databank and layout optimisation techniques, particularly for

a single machine with multiple objectives.

The presented use case aims to validate this specific part of the methodology by determining

the optimal position for a single robot pose during particular drilling operations. The scenario

involves a workpiece with 30 fixed-position holes set to be drilled. The goal is to pinpoint

the most suitable placement of the workpiece to ensure efficient robot operations, taking into

account multiple objectives. The drilling depth is established at 5 mm. Potential robot poses,

and positions are displayed in Figure 8.21, and Figure 8.22 offers a view of the workpiece.

Upon validation, this use case has extensive potential for real-world applications in various

industries. By simply altering the operation points for new tasks, the rest of the procedure

remains consistent, thereby demonstrating the versatility and adaptability of the proposed

methodology. The workflow of applying this use case is depicted in Figure 8.23.

8.2.2 Establishment of the Experience Databank

FANUC ER-4iA is an example of a typical six-axis industrial robot that could be used for

drilling applications. Based on information about the drilling hole, the appropriate end effector
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Figure 8.21: Possible poses of doing the drilling operation

is selected.

The experience databank also helps with the layout reconfiguration process; it suggests the

optimisation objectives that should be used and the reconfiguration solver as described in

Section 4.2.2.9. Energy consumption, robot manoeuvrability, and cycle time optimisation are

suggested as the optimisation objectives in this use case. As this use case involves layout

optimisation of a single robot with a single operation (drilling), RoboDK is the simulation

environment of choice.

In summary, the inception of the experience databank constitutes a vital initial stage in the

prescribed methodology. These tools augment the optimisation of robotic layouts while aligning

with the broader goals of operational efficiency and energy conservation. Their adaptability to

various robots showcases the versatility and scalability inherent in the proposed methodology.
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Figure 8.22: Workpiece information
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Figure 8.23: Workflow of the layout optimisation in Use Case 2

8.2.3 Layout Configuration Optimisation

Having utilised the experience databank information for this task, the system recommends a

reference for optimising the layout. The experience databank provides detailed insights for this

150



use case, specifying the necessary robots, the required DH parameters for the robot, and other

related information crucial for layout optimisation.

8.2.3.1 Simulation Environment

The aim of this particular use case is to identify an optimal pose for a single robot engaged in

a singular operation. RoboDK excels in this area and is, therefore, the software chosen for the

simulation environment in this instance.

To affirm the applicability of the suggested framework across a range of scenarios, RoboDK

has been utilised as a digital twin environment, as depicted in Figure 8.24. Some of the many

adaptable features of RoboDK include its ability to offer robot controllers and kinematics

solvers customised to a variety of robot brands. In this instance, the internal solver of this

digital twin environment has been employed to calculate the end effector pose and to verify

the reachability of all drilling points based on the DH parameters.

Figure 8.24: Interface for the RoboDK

8.2.3.2 Optimisation Environment

The environment, in this case, is deployed locally, and the code is written in Python. The

optimisation environment is connected with the simulation environment with the RoboDK

API and with the real robot with FANUCPy [121] via Socket.
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8.2.3.3 Optimisation Algorithm

Given the multi-objective nature of the problem, the NSGA-II, SPEA-II and Non-Dominated

Sorting Genetic Algorithm III (NSGA-III) algorithms are chosen for their suitability in ad-

dressing such challenges. Several reasons underpin this selection:

1. Proficiency in Multi-Objective Problems: NSGA-II, SPEA-II and NSGA-III are

renowned for their capability to handle multi-objective optimisation problems. They

excel in generating a diverse set of Pareto-optimal solutions, ensuring that the solution

space is explored comprehensively.

2. Integration in Experience Databank: A significant advantage of the three algorithms

is their pre-storage within the experience databank. Using pre-stored algorithms in expe-

rience databanks not only offers computational efficiency but also underscores reliability,

given their prior validation and optimisation for analogous tasks.

The parameters pivotal for layout optimisation, such as decision variables, constraints and

optimisation objectives, are detailed in Sections 8.2.3.3.1, 8.2.3.3.2 and 8.2.3.3.3.

8.2.3.3.1 Decision Variables In this use case, the decision variables correspond to the

coordinates of the workpiece’s centre. These coordinates provide the basis for determining each

drilling point. Consequently, the robot’s end effector pose, or the Tool Center Point (TCP), is

influenced during drilling operations. The pose of the end effector is a function of the robot’s

joint angles, which are inherently tied to the DH parameters.

DH parameters offer a standardised method to describe the kinematic structure of robotic arms.

They encapsulate the spatial relationship between adjacent robot links, simplifying the robot’s

mathematical representation. By employing these parameters, a clear connection between the

decision variables (coordinates of the TCP) and the robot’s joint configurations emerges. This

relationship becomes vital for assessing feasible robot movements and achieving desired TCP

positions.

Using inverse kinematics and the end effector pose at each drilling point, whether the robot

can effectively reach all drilling points based on the given decision variables can be ascertained.

152



The FANUC ER-4iA robot’s default DH parameters are outlined in Table 8.7. However, in real-

world drilling scenarios where a drilling gun is integrated into the robot, the DH parameters

need adjustment, notably to account for the drilling tool’s 250 mm length. The adapted

parameters are listed in Table 8.8.

Table 8.7: Modified Denavit-Hartenberg parameters of FANUC ER-4iA

linki αi−1 (°) ai−1 (mm) di (mm) θi (°) joint limits (°)

1 0 0 330 θ1 [-170, 170]
2 -90 0 0 θ2 - 90 [-110, 145]
3 0 260 0 θ3 [-122, 280]
4 -90 20 290 θ4 [-190, 190]
5 90 0 0 θ5 [-120, 120]
6 -90 0 70 θ6 [-360, 360]

Table 8.8: Modified Denavit-Hartenberg parameters of FANUC ER-4iA with considering the
length of the end effector

linki αi−1 (°) ai−1 (mm) di (mm) θi (°) joint limits (°)

1 0 0 330 θ1 [-170, 170]
2 -90 0 0 θ2 - 90 [-110, 145]
3 0 260 0 θ3 [-122, 280]
4 -90 20 290 θ4 [-190, 190]
5 90 0 0 θ5 [-120, 120]
6 -90 0 70 + 250 = 320 θ6 [-360, 360]

The current use case seeks an operation point that is energy efficient, ensures optimal robot

operability, and aims to reduce the cycle time. Potential robot poses aligned with this objective

can be seen in Figure 8.21. As emphasised earlier, the decision variables, defined by the coor-

dinates xc, yc and zc, pinpoint the centre of the workpiece. With this centre point established,

the coordinates of the operation points can be calculated.

8.2.3.3.2 Constraints Various constraints must be taken into account in the optimisa-

tion process, such as joint limits, collision avoidance, and specific task requirements. These

constraints are crucial to ensure the operational feasibility and durability of robotic equipment.

Joint limits represent inherent constraints emanating from the robot’s design. They stipulate

the maximum permissible range of motion for each joint to avoid causing damage. These limits

must be incorporated into the optimisation process to maintain the safety and functionality of

the robot.

The inclusion of collision avoidance as a key constraint is also of paramount importance. Robots

must be programmed to prevent collisions with each other or other objects in the workspace.
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This helps to maintain the integrity of the workflow, prevent damage and ensure a safe working

environment.

There might be other constraints related to workspace limitations, a robot’s operational speci-

fications, or specific task requirements. These constraints, decision variables and optimisation

objectives must be carefully balanced to achieve an optimal layout configuration.

The operation of industrial robots such as FANUC ER-4iA, especially in educational settings

like the FANUC education cell, necessitates a strong emphasis on safety. Establishing a safe

operating space for the robot ensures operator safety and the protection of surrounding equip-

ment. As illustrated in Figure 8.25, a predefined boundary for the robot’s end effector is

demarcated. This boundary constrains the range of the end effector, mitigating potential risks

and preventing unintentional interactions with external objects or personnel. A defined safe

working space ensures a secure environment while enabling the effective performance of the

FANUC ER-4iA robot.

Figure 8.25: Relationship between robot and workspace

A safety range is specified for each axis: x, y, and z. These ranges ensure that objects within

this space adhere to certain constraints or operate within a specific area. The specific safety
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ranges for each axis are as follows:

x ∈ [300, 500], y ∈ [−150, 150], z ∈ [50, 350]

For convenience, it is assumed that the orientation of the end effector pose is (-180, 0, 0) as

depicted in Figure 8.26. Thus, the end effector pose in this case is (xc, yc, zc, -180, 0, 0) to

represent the centre point of the workpiece position.

Figure 8.26: Orientation of the end effector pose

8.2.3.3.3 Optimisation Objectives The primary optimisation objectives in this scenario

are energy consumption, robot manoeuvrability and cycle time.

8.2.3.3.3.1 Energy Consumption Consideration of energy consumption is vital, partic-

ularly in light of sustainable manufacturing practices. A reduction in energy usage diminishes

operational costs and promotes environmental sustainability. The optimisation of joint angles,

therefore, aims to minimise the energy consumed by the robot during its operation.

The energy consumption of the robot is recorded using a robot controller and a robot logger

generated on FANUCPy [121], which makes the robot move and record energy consumption

correspondingly. The method of acquiring real-time energy consumption readings involves a

distinct series of steps, as depicted in Figure 8.27.

The initial stage of this process involves the assignment of input decision variables facilitated
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Figure 8.27: Flowchart of recording energy consumption

through a sampling method. Subsequently, a trajectory corresponding to these variable values

is generated. The initial phase concludes with the activation of the energy consumption logger,

which triggers the recording of energy consumption.

Thereafter, the robot controller assumes control of the robot’s actions, which operate based

on commands relayed from a Python script. This process stage is of utmost importance,

encompassing the logging and recording of instantaneous power consumption. This data is

then relayed from the robot back to the Python script, enabling accurate, real-time recording

of power usage during operation.

In this use case, the recording frequency is set at 50 Hz. This frequency allows for data

recording corresponding to a complete operational cycle, during which the robot navigates to

all the designated drilling points.

Upon completion of one operational cycle, the total energy consumption is calculated based

on the duration of the cycle and the accumulated instantaneous power consumption. The

process concludes with the computation of the overall energy consumption. This systematic

approach allows for detailed energy consumption profiles to be captured during robotic opera-

tions, thereby informing improvements in energy efficiency and operational effectiveness.

8.2.3.3.3.2 Robot Manoeuvrability A robot’s manoeuvrability refers to its efficiency

in movement and positioning within its operational space. Such enhanced capability ensures

adaptability to changes in the environment or tasks, leading to improved efficiency and flexi-

bility in the manufacturing process. This concept has been detailed in Section 6.2.3.6.2.
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In this use case, it is assumed that the robot must navigate to a total of n points. The end

effector pose at the drilling points can be described as per Equation (8.9).

∀a ∈ 1, 2, ..., n, Pa = (xa, ya, za,−180, 0, 0) (8.9)

where Pa denotes the coordinates of the end effector pose at the corresponding operational

point.

According to inverse kinematics, the joint angles of each point can be calculated as follows:

∀a ∈ {1, 2, ..., n}, θa = IK(Pa) (8.10)

where θa is the joint vector for point a.

Pa = f(θa) =


f1(θa)
f2(θa)
f3(θa)
−180
0
0

 (8.11)

Here, Pa denotes the end effector pose at the operation point a, which is a function of the

joint angle vector θa. The function f denotes the forward kinematics of the robot, mapping

the joint angles to the Cartesian coordinates xa, ya, za. The Euler angles remain constant at

(−180, 0, 0) for each operation point as per the given information.

For the computation of robot manoeuvrability in the specific case of n drilling points, the same

principles as described above apply. The differentiation of the end effector pose function, as

presented in Equation (8.11), with respect to the joint angle vector, results in the Jacobian

matrix of the system:

J(θa) =


∂f1
∂θa1

∂f1
∂θa2

∂f1
∂θa3

∂f1
∂θa4

∂f1
∂θa5

∂f1
∂θa6

∂f2
∂θa1

∂f2
∂θa2

∂f2
∂θa3

∂f2
∂θa4

∂f2
∂θa5

∂f2
∂θa6

∂f3
∂θa1

∂f3
∂θa2

∂f3
∂θa3

∂f3
∂θa4

∂f3
∂θa5

∂f3
∂θa6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (8.12)

where θai represents the joint angle of the ith joint of the robot, for i = 1, 2, 3, 4, 5, 6.

The determinant of the Jacobian matrix J(θa) is ascertained for each operation point a. For

cases where the determinant is non-zero, its absolute value is computed using the formula given
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by Equation (6.15) and is denoted as wa = |detJ(θa)|.

If the determinant of the Jacobian matrix is zero or near zero, it indicates that the robot loses

one degree of freedom at the operation point a. This situation is unfavourable and should be

avoided.

To calculate the total robot manoeuvrability over all n operation points, the individual ma-

noeuvrability values wa are summed over all n operation points, as given by the following

equation:

Wtotal =
n∑

a=1

wa (8.13)

where Wtotal represents the total robot manoeuvrability for the entire task, which consists of

reaching all n drilling points.

In this specific case, the robot is tasked with reaching n operation points. As such, the average

manoeuvrability of the robot over these n points is calculated. This calculation is performed by

first summing the individual manoeuvrability values, wa, obtained from each operation point

a, and then dividing the result by the total number of operation points n. The calculation can

be formally represented as follows:

W =
1

n

n∑
a=1

wa (8.14)

where W denotes the average robot manoeuvrability for the entire task, which involves reaching

all n operation points.

The calculation ensures adequate representation of the robot’s ability to move and position

itself effectively, taking into consideration all the operation points in the workspace. The

larger W is, the more manoeuvrability the robot has. The scaling factor for the absolute value

of the determinants of the Jacobian matrix in this use case is set as 1× 107. With this scaling

factor, the scaled robot manoeuvrability index in this use case is calculated.

8.2.3.3.3.3 Cycle Time As mentioned in Equation (6.3), the cycle time comprises the

movement time, operation time, and wait time. In the current use case, there is only one robot

and one operation; thus, the wait time is null. Therefore, in this scenario, the movement time

and operation time must be calculated.
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The movement time is determined by the robot’s traversal across all operation points, while

the operation time pertains to the drilling operation at each point. Two methods are available

for recording time, as shown in Section 6.2.3.6.1. In this instance, a timer in the optimisation

code is used to record the cycle time accurately in real time.

8.2.3.4 Evaluation

Layout optimisation ensues after defining the decision variables, optimisation objectives, and

constraints extrapolated from the experience databank. The process parameters, such as the

precision of the hole and the robot’s rigidity during the drilling operation, are not included in

this optimisation. It considers the appropriate positioning of the robot’s end effector during

the drilling process. Inverse geometry assists in determining the joint angles corresponding to

various drilling points. This optimisation procedure is illustrated in Figure 8.28.
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Figure 8.28: Flowchart of optimisation

The NSGA-II, SPEA-II and NSGA-III are proposed to solve the problem, with a generation

number set to 100. As a baseline, the coordinates of the centre point of the workpiece should

be (xc: 400, yc: 0, zc: 200) as these coordinates fall in the middle of the value range. The

baseline pose can be seen in Figure 8.29.
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Figure 8.29: Baseline pose

When the workpiece is at this position, the energy consumption of the total drilling operation

is 6,164.98 Wh, the cycle time is 57.11 seconds, and the scaled average determinant of the

Jacobian matrix (Robot manoeuvrability index) is 0.4891235.

After the training of the multi-objective algorithms, the Pareto solutions can be identified.

Pareto solutions obtained from NSGA-II are illustrated in Figure 8.30 and detailed in Table

8.9, where seven Pareto solutions are identified using NSGA-II. The following Pareto solutions

are important for identifying the minimised or maximised optimisation objectives:

1. SNSGAII_minE denotes the solution with the minimised energy consumption of 5, 613.59 Wh.

The coordinates of the workpiece centre point for this solution are (xc: 302.96, yc: 76.83,

zc: 303.63).

2. SNSGAII_minCT corresponds to the solution with the minimised cycle time of 53.15 s. The

coordinates of the workpiece centre point for this solution are (xc: 300.34, yc: 87.62, zc:

303.63).

3. SNSGAII_maxRM denotes the solution achieving the maximised scaled robot manoeuvrabil-

ity index of 1.1709163 (after scaling with 107). The coordinates of the workpiece centre

point associated with this solution are (xc: 303.33, yc: 23.64, zc: 260.10).
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Figure 8.30: Pareto solutions obtained via NSGA-II

Table 8.9: Pareto solutions found by NSGA-II

Coordinates of the workpiece
centre point

Energy
consumption (Wh) Cycle time (s)

Scaled robot
manoeuvrability index

(scaled by 107)

(xc: 303.33, yc: 23.64, zc: 260.10) 6,064.71 57.11 1.1709163
(xc: 300.34, yc: 87.62, zc: 303.63) 5,616.36 53.15 0.8033331
(xc: 302.96, yc: 76.83, zc: 303.63) 5,613.59 59.64 0.8483343
(xc: 300.12, yc: 87.62, zc: 260.42) 5,709.41 53.36 0.9626269
(xc: 305.18, yc: 15.17, zc: 260.08) 6,006.82 56.90 1.0591016
(xc: 300.01, yc: 87.62, zc: 260.30) 5,638.30 53.19 0.9610778
(xc: 302.95, yc: 23.64, zc: 260.34) 6,045.36 57.07 1.1566736

Likewise, Pareto solutions obtained from SPEA-II are illustrated in Figure 8.31 and described

in Table 8.10. From this table and figure, it is evident that five Pareto solutions are derived

via SPEA-II. Identifying the following Pareto solutions is crucial to determine the minimised

or maximised optimisation objectives:

1. SSPEAII_minE denotes the solution that minimises energy consumption to 5, 691.68 Wh.

The coordinates of the workpiece centre point for this solution are (xc: 303.73, yc: 111.89,

zc: 247.91).
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2. SSPEAII_minCT corresponds to the solution with the minimised cycle time of 53.62 s. The

coordinates of the workpiece centre point for this solution are (xc: 303.73, yc: 111.89, zc:

256.25).

3. SSPEAII_maxRM denotes the solution achieving the maximised scaled robot manoeuvrabil-

ity index of 1.1662671. The coordinates of the workpiece centre point associated with

this solution are (xc: 334.87, yc: 16.47, zc: 283.90).

Figure 8.31: Pareto solutions obtained via SPEA-II

Table 8.10: Pareto front found by SPEA-II

Coordinates of the workpiece
centre point

Energy
consumption (Wh) Cycle time (s)

Scaled robot
manoeuvrability index

(scaled by 107)

(xc: 334.87, yc: 16.47, zc: 283.90) 6,187.44 57.57 1.1662671
(xc: 300.73, yc: 111.89, zc: 256.25) 5,707.57 53.62 0.8174252
(xc: 303.61, yc: 111.89, zc: 271.02) 5,731.46 53.65 1.0751479
(xc: 302.71, yc: 111.89, zc: 271.02) 5,727.05 53.71 1.0946975
(xc: 300.71, yc: 111.89, zc: 256.25) 5,719.44 53.75 0.8176363
(xc: 300.73, yc: 111.89, zc: 247.91) 5,691.68 53.63 1.0973673
(xc: 335.87, yc: 13.42, zc: 283.90) 6,128.13 57.48 1.1021526
(xc: 334.87, yc: 13.40, zc: 283.90) 6,145.53 57.51 1.0973673

Subsequent to the multi-objective optimisation training, the Pareto solutions derived from

NSGA-III are depicted in Figure 8.32 and detailed in Table 8.11. The table and figure indi-
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cate that six distinct Pareto solutions are identified via NSGA-III. The key Pareto solutions

highlighting the extremities of the optimisation objectives are as follows:

1. SNSGAIII_minE denotes the solution with the minimised energy consumption: 5, 707.75 Wh.

The coordinates of the workpiece centre point for this solution are (xc: 312.18, yc: 97.70,

zc: 238.78).

2. SNSGAIII_minCT corresponds to the solution with the minimised cycle time of 53.67 s. The

coordinates of the workpiece centre point for this solution are (xc: 312.18, yc: 97.70, zc:

238.78).

3. SNSGAIII_maxRM denotes the solution achieving the maximised robot manoeuvrability in-

dex of 1.1786125. The coordinates of the workpiece centre point associated with this

solution are (xc: 324.47, yc: -0.12, zc: 237.42).

Figure 8.32: Pareto solutions obtained via NSGA-III

From comparisons of the three multi-objective algorithms – NSGA-II, SPEA-II, and NSGA-III

– to optimise robotic functions, several observations can be made:

163



Table 8.11: Pareto front found by NSGA-III

Coordinates of the workpiece
centre point

Energy
consumption (Wh) Cycle time (s)

Scaled robot
manoeuvrability index

(scaled by 107)

(xc: 312.18, yc: 97.70, zc: 238.78) 5,707.75 53.67 1.0114668
(xc: 312.24, yc: 97.70, zc: 238.78) 5,733.06 53.78 1.0115362
(xc: 315.93, yc: 97.70, zc: 238.78) 5,788.35 53.72 1.0205584
(xc: 324.46, yc: -5.35, zc: 237.60) 6,092.05 57.41 1.1484128
(xc: 324.47, yc: -0.12, zc: 237.42) 6,148.32 57.54 1.1786125
(xc: 312.24, yc: 97.70, zc: 238.78) 5,760.37 53.73 1.0115374

1. Energy Consumption:

• NSGA-II provides the best results with the lowest energy consumption at 5, 613.59 Wh.

This makes NSGA-II an ideal choice when optimising for energy efficiency.

• SPEA-II and NSGA-III, with 5, 691.68 Wh and 5, 707.75 Wh respectively, have

higher energy consumption. Neither exhibits a prominent advantage over the other

with regard to this metric.

2. Cycle Time:

• NSGA-II offers the best results in terms of cycle time, achieving a minimum of

53.15 s. Operations requiring rapid task completion might benefit most from the

solutions provided by NSGA-II.

• SPEA-II and NSGA-III follow closely with cycle times of 53.62 s and 53.67 s, re-

spectively.

3. Robot Manoeuvrability:

• NSGA-III achieves the highest manoeuvrability index of 1.1786125, making it a

viable choice for tasks requiring precise and agile robot movements.

• While SPEA-II and NSGA-II also offer decent manoeuvrability scores with 1.1662671

and 1.1709163, respectively, they don’t surpass NSGA-III in this regard.

In the overall assessment, the following observation can be made:

• If the primary goal is to minimise energy consumption or minimise the cycle time, then

NSGA-II seems to be the most effective algorithm.

• To ensure the maximised manoeuvrability index, the NSGA-III is the best choice among

these three algorithms.
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In conclusion, the choice of algorithm should be based on the specific optimisation goals of the

robotic application. While each algorithm has its strengths, the decision should align with the

operational priorities to achieve the desired performance outcomes.

When focusing on minimised energy consumption, the NSGA-II is chosen, and the minimised

energy consumption is 5613.59 wh. The energy usage reduces by 8.9% compared with the

baseline of 6, 164.98 Wh. Information on the robot’s pose under these conditions is depicted

in Figure 8.33.

Figure 8.33: Pareto solution (xc: 302.96, yc: 76.83, zc: 303.63) with minimised energy con-
sumption

For minimised cycle time, a reduction of 6.0% from the baseline of 57.11 s is achieved, resulting

in a cycle time of 53.15 s. The corresponding robot pose is illustrated in Figure 8.34.

Figure 8.34: Pareto solution (xc: 300.34, yc: 87.62, zc: 303.63) with minimised cycle time

Regarding the pursuit of a maximised robot manoeuvrability index, an increase of 140.8%
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from the baseline of 0.4891235 is achieved, resulting in a maximised value of 1.1786125. The

associated robot and workpiece positions under these conditions are illustrated in Figure 8.35.

Figure 8.35: Pareto solution (xc: 324.47, yc: -0.12, zc: 237.42) with maximised manoeuvrability
index

8.2.4 Discussion of the Results of Use Case 2

The aim of Use Case 2 is to utilise the experience databank to optimise the layout of a single

robot for a defined pose with the help of a digital twin. Asset selection is not heavily discussed

in this use case. From the result, and according to the proposed methodology, the single robot’s

pose position is optimised based on multi-objectives. Table 8.12 describes the points that have

been covered and validated in this use case.

Table 8.12: Validation according to the criteria in Use Case 2

Validation

Contribution 1

Criterion 1.1 Vendor Neutrality ✓
Criterion 1.2 Information Modelling ✓
Criterion 1.3 Handling of Data from Diverse Sources ✓
Criterion 1.4 Reasoning based on the Ontology ✓

Contribution 2

Criterion 2.1 Adapting to New Process Requirement
Criterion 2.2 Capability Assessment
Criterion 2.3 Modular Asset Selection
Criterion 2.4 Multi-Criteria Asset Selection
Criterion 2.5 Synergies with System

Contribution 3

Criterion 3.1 Multi-Criteria Layout Optimisation ✓
Criterion 3.2 Modular Layout Optimisation ✓
Criterion 3.3 Interoperability ✓
Criterion 3.4 Scalability

Several key criteria are meticulously assessed in this use case to ensure comprehensive validation

of the methodology. A concise summary of this validation is presented below:
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• Criterion 1.1 (Vendor Neutrality): The utilisation of the experience databank for

layout optimisation validates this criterion. The databank, sourced from diverse origins

such as robot-related technical documents and equipment data, ensures an unbiased,

vendor-neutral approach.

• Criterion 1.2 (Information Modelling): Validation is evident in the experience data-

bank, pivotal for optimisation, effectively modelling diverse data types.

• Criterion 1.3 (Handling of Data from Diverse Sources): This criterion is enhanced

by the experience databank’s capability to integrate data from heterogeneous sources,

illustrating the methodology’s proficiency in managing diverse datasets.

• Criterion 1.4 (Reasoning Based on the Ontology): The ability of the methodol-

ogy to update the experience databank dynamically and perform subsequent reasoning

demonstrates the validity of this criterion.

• Criterion 3.1 (Multi-Criteria Layout Optimisation): The optimisation, influenced

by multiple objectives such as cycle time, robot manoeuvrability, and energy consump-

tion, ratifies this criterion.

• Criterion 3.2 (Modular Layout Optimisation): The adaptability in algorithm se-

lection and the flexibility in changing decision variables affirm the modularity of the

methodology, thus validating this criterion.

• Criterion 3.3 (Interoperability): The integration of the RoboDK API, ensuring seam-

less communication between the simulation software and the optimisation environment,

combined with socket communication for real-time equipment data exchange, validates

this criterion.

Significantly, Criterion 3.4 (Scalability) has been validated by optimising single assets in Use

Case 2 and applying this optimisation to multiple assets in Use Case 1. Certain criteria, namely

Criterion 2.1 (Adapting to New Process Requirement), Criterion 2.2 (Capability

Assessment), Criterion 2.3 (Modular Asset Selection), Criterion 2.4 (Multi-Criteria

Asset Selection), and Criterion 2.5 (Synergies with System) are not the focal points of

this use case and consequently, are not validated here.
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To conclude, this use case provides an exhaustive validation of the methodology across multiple

criteria, reinforcing its versatility and applicability in varied scenarios.

8.3 Use Case 3 – Modular Multi-Objective Asset Selection

with Experience Databank

As highlighted in Use Case 1 and Use Case 2, specific criteria remain unvalidated, specifically

Criterion 2.3 (Modular Asset Selection), Criterion 2.4 (Multi-Criteria Asset Selection) and

Criterion 2.5 (Synergies with System). To address this, Use Case 3 has been introduced.

This case focuses on the aerospace manufacturing domain, emphasising the crucial role of the

experience databank in optimising modular asset selection. The process involves identifying

and evaluating potential assets, factoring in both explicit and implicit weight considerations

across various algorithms and objectives. Key components of this use case can be seen in

Figure 8.36.

Figure 8.36: Focus of Use Case 3

8.3.1 Introduction

At the outset, the facility is preoccupied with fabricating a “Product I” component. Given

evolving production requisites, a demand emerges to pivot towards “Product II”. Such a tran-
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sition mandates extensive recalibrations in the prevailing production process, encompassing

alterations in operational protocols and the discerning integration of resources, notably robots

and end effectors. Following the asset realignment, a subsequent phase of optimisation of the

production cell is initiated to harmonise with the newly assimilated resources.

The extant production cell is segmented into two pivotal workstations:

• Workstation 1: Perform assembly tasks for the manufacturing equipment, which are later

used for assembling and processing the product.

• Workstation 2: A versatile unit adept at product assembly and processing.

The emerging challenge arises with the change in production focus from “Product I” to “Product

II”, as this shift represents a transformation in process requirements. The subsequent goal is

to validate the adaptability of the existing production cell in light of these new demands and,

where necessary, initiate asset alterations or replacements. Following this assessment, the

enhanced scenario necessitates careful fine-tuning to guarantee operational excellence, rooted

in insights derived from a knowledge graph and an ontology model. The methodical execution

of this use case proceeds as follows:

1. Developing the experience databank to adapt to changing process requirements.

2. Selecting assets using the information from the ontology model and the experience data-

bank, identifying the best assets considering specification efficiency score and cost.

8.3.2 Generation of the Experience Databank

A dataset is curated to validate the proposed methodology, drawing on insights from the

OMNIFACTORY demonstrator. Despite the inherent adaptability, discerning the optimal

configuration for fabricating a novel or modified product remains an intricate undertaking.

The dataset harnessed for validation amalgamates technical literature, equipment specifica-

tions, and product blueprints sourced from OMNIFACTORY and its affiliate entities. This

dataset catalogues 195 prospective assets, each with information that paves the way for ca-

pability congruence and the reconfiguration exercise. These assets span the gamut from pro-
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duction line constituents to an expansive asset repository, encapsulating hardware, software,

human capital, and reconfiguration algorithms, each playing a pivotal role in the production

and recalibration processes. Analogous to Use Case 1, the imperative for data anonymisation

is acknowledged in Use Case 3 as well. Tools such as Neo4j and Py2neo, as previously alluded

to, facilitate the knowledge graph generation for this specific use case.

Given the extant production cell’s commitment to “Product I”, and in light of the introduction

of “Product II”, the task is to ascertain the feasibility of production line reconfiguration.

8.3.3 Modular Asset Selection Utilising Experience Databank

After the generation of the knowledge graph, the next step is to verify the approach proposed

for asset selection. As per the knowledge graph generated, the preceding product, designated

as “Product I” comprises two features, each necessitating different operations. Feature 1 re-

quires a “Pick and Place” operation (Operation 1), a “Marking” operation (Operation 2), and

a “Metrology” operation (Operation 3) at station 1. Feature 2 calls for a “Pick and Place”

operation (Operation 4), a “Welding” operation (Operation 5), and a “Metrology” operation

(Operation 6) at station 3. As per the proposed ontology model, the required capabilities for

these six operations are all considered to be combined capabilities. Detailed information can

be found in Table 8.13.

Table 8.13: Capability information of “Product I”

Pick and
place

(Operation 1)

Marking
(Operation 2)

Metrology
(Operation 3)

Pick and
place

(Operation 4)

Welding
(Operation 5)

Metrology
(Operation 6)

Required
Capability Pick and place Marking Metrology Pick and place Welding Metrology

Has Input
Capability

Moving,
ForceApplying,

Releasing,
Grasping

Moving,
MarkingElement

Moving,
MetrologyElement

Moving,
ForceApplying,

Releasing,
Grasping

Moving,
EjectFlame

Moving,
MetrologyElement

Based on the information in Table 8.13, the ontology model and the current information on

production, the detailed requirement can be described, as presented in Table 8.14.

Table 8.15 lists the current assets on the production line. At Station 1, the assets employed

are KUKA KR 150 R3700 K ultra, marker 1, and V-stars metrology end effector 1. At Station

3, the related assets are the Fanuc R-2000iB/125L, Arc Welding End Effector, and V-Stars

metrology end effector 2. The specifications of these assets are provided in Table 8.16.

170



Table 8.14: Process requirements for producing “Product I”

Pick and
place

(Operation 1)

Marking
(Operation 2)

Metrology
(Operation 3)

Pick and
place

(Operation 4)

Welding
(Operation 5)

Metrology
(Operation 6)

Allowed
Grasping-

Force
100 100

Required
Grasping-

Type
Finger Grasping Finger Grasping

Required
Reachability 2,000 2,200 2,300 2,000 2,300 1,500

Required
Payload 250 150 100 200 200 180

Required Re-
peatability 0.06 0.10 0.12 0.2 0.3 0.2

Required
LateralOffset 10 20 30

Required
Measure-
mentFre-
quency

50 60

Required
Radius 10 20

Required
Range 50 30

Required
WeldingType Arc Welding

Required
Resolution 2,000

Required
Accuracy 0.03

Required
FlameSize 80

Required
Weld-

ingDepth
0.03

Table 8.15: Current assets to execute the operations

Pick and place
(Operation 1)

Marking
(Operation 2)

Metrology
(Operation 3)

Pick and place
(Operation 4)

Welding
(Operation 5)

Metrology
(Operation 6)

KUKA KR 150
R3700 K ultra ✓ ✓ ✓

Finger gripper-1 ✓ ✓

Marker-1 ✓

Metrology end
effector 1 ✓

Fanuc
R-2000iB/125L ✓ ✓ ✓

Finger gripper-2 ✓

Welding end
effector-1 ✓

Metrology end
effector 2 ✓

8.3.3.1 Identifying the Candidate Assets

As previously mentioned, upon receiving a new customer request for the production of “Product

II”, the experience databank indicates that two new features must be developed. Feature 1

requires both “Pick and Place”, “Marker”, and “Metrology” operations, while Feature 2 demands
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Table 8.16: Related specification information of the current assets

KUKA KR
150

R3700 K
ultra

Pick and
place

effector 1
Marker 1 Metrology

effector 1

Fanuc
R-2000iB/

125L

Pick and
place

effector 2

Arc welding
effector 1

Metrology
effector 2

Allowed
GraspingForce 100 200

Payload 150 125

Reachability 3,701 3,002

Repeatability 0.06 0.3

DrillingDepth 0.25

Allowed
HoleDiameter_-

max
20

Allowed
HoleDiameter_-

min
4

LateralOffset 20 20

Measurement
Frequency 60 80

Radius 15 20

Range 60 70

FlameSize 100

WeldingDepth 0.05

the incorporation of “Pick and Place”, “Drilling”, and “Metrology”, operations as shown in

Figure 8.37.

Figure 8.37: Feature requirement for the new product

The required capability and the description of the operations for the new product, according

to the generated experience databank, are depicted in Table 8.17.

The detailed requirements for the new products are illustrated in Table 8.18. According to the

recommendation from the experience databank, all the above operations described in the table

require combined capabilities. The next section explains the asset selection process for all the

required operations.
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Table 8.17: Capability information of “Product II”

Pick and
place (New
operation 1)

Marking
(New

operation 2)

Metrology
(New

operation 3)

Pick and
place (New
operation 4)

Drilling (New
operation 5)

Metrology
(New

operation 6)

required
capabil-

ity

Pick and
place

Marking Metrology Pick and
place

Drilling Metrology

has
input

capabil-
ity

Moving,
ForceApply-

ing,
Releasing,
Grasping

Moving,
MarkingEle-

ment

Moving,
MetrologyEle-

ment

Moving,
ForceApply-

ing,
Releasing,
Grasping

Moving,
SpinningTool,
DrillBitFunc-

tion

Moving,
MetrologyEle-

ment

8.3.3.1.1 PickAndPlace Operation (New Operation 1) For Operation 1, PickAnd-

Place requires two assets: robots and grippers. The number of the candidate robot is 18, and

the number of the candidate grippers is 26, as shown in Figure 8.38.

Candidate robot for new operation 1 Candidate gripper for new operation 1

Figure 8.38: Candidate assets information of the new Operation 1

8.3.3.1.2 Marking Operation (New Operation 2) As described in the experience data-

bank, executing the marking operation requires one combined capability called MarkingCapa-

bility, which consists of moving and marking element capabilities. The moving capability is

executed by the asset with the type of asset. The marking element capability is executed by

the asset with the type of marker and its subclasses, such as ink marker and stamper. The

number of the candidate assets is presented in Figure 8.39.

8.3.3.1.3 Metrology Operation (New Operation 3) As described in the experience

databank, executing the metrology operation requires one combined capability called Metrol-

ogyCapability, which consists of moving and metrology element capability. The moving capa-

bility is executed by the asset with the type of robot. Metrology element capability is executed

by the asset with the type of metrology device and its subclasses. The number of the candidate

assets can be found in Figure 8.40.
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Table 8.18: Process requirements for producing “Product II”

Pick and
place
(New

operation 1)

Marking
(New

operation 2)

Metrology
(New

operation 3)

Pick and
place
(New

operation 4)

Drilling
(New

operation 5)

Metrology
(New

operation 6)

Allowed
Grasping-

Force
100 100

Required
Grasping-

Type
Finger Grasping Finger Grasping

Required
Reachability 2,000 2,200 2,300 2,000 2,300 1,500

Required
Payload 180 30 20 200 200 180

Required Re-
peatability 0.2 0.2 0.15 0.2 0.3 0.2

Required
LateralOffset 30 30

Required
Measure-
mentFre-
quency

50 60

Required
Radius 10 20

Required
Range 50 30

Required
Resolution 1,000

Required
Accuracy 0.03

Required
DrillingDepth 0.03

Allowed
HoleDiame-
ter_max

0.4

Allowed
HoleDiame-

ter_min
0.35

8.3.3.1.4 PickAndPlace Operation (New Operation 4) As described in the experi-

ence databank, executing the PickAndPlace operation requires one combined capability called

PickAndPlaceCapability, and this PickAndPlaceCapability consist of moving, force applying,

releasing and grasping capabilities. Moving and force applying capabilities are executed by the

asset with the type of robot. Grasping and releasing capabilities are executed by the asset with

the type of Grippers. The number of the candidate assets can be found in Figure 8.41.

8.3.3.1.5 Drilling Operation (New Operation 5) As described in the experience data-

bank, executing the drilling operation requires one combined capability called DrillingCapa-

bility, which consists of moving, spinning tools and DrillBitFunction capability. The moving

capability is executed by the asset with the type of robot. The SpinningTool and DrillBit-

Function capabilities are executed by the asset with the type of drilling tool. The number of

candidate assets can be found in Figure 8.42.
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Candidate robot for new operation 2 Candidate marker for new operation 2

Figure 8.39: Candidate assets information of the new Operation 2

Candidate robot for new operation 3 Candidate metrology device for new operation 3

Figure 8.40: Candidate assets information of the new Operation 3

8.3.3.1.6 Metrology Operation (New Operation 6) As described in the experience

databank, executing the metrology operation requires one combined capability called Metrol-

ogyCapability, which consists of moving and metrology element capability. The moving ca-

pability is executed by the asset with the type of robot. The metrology element capability is

executed by the asset with the type of metrology device and its subclasses. The number of

candidate assets can be found in Figure 8.43.

So, the total number of combinations of the candidate assets n for Product II can be calculated

in Equation (8.15), yielding approximately 2.9 ∗ 1015 possibilities. The proposed methodology

aims to evaluate the combinations and find suitable combinations to adapt to the new process

requirement based on the new product request.

n = 18× 26× 43× 12× 21× 12× 18× 26× 21× 21× 18× 19 =⇒ n ≈ 2.9× 1015 (8.15)
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Candidate robot for new operation 4 Candidate metrology device for new operation 4

Figure 8.41: Candidate assets information of the new Operation 4

Candidate robot for new operation 5 Candidate drilling tool for new operation 5

Figure 8.42: Candidate assets information of the new Operation 5

8.3.3.2 Candidate Asset Evaluation

This section details the method for selecting appropriate assets based on new customer requests.

As outlined in the ontology model section, three major factors must be considered to address

the resource selection issue: decision variables, constraints, and optimisation objectives.

8.3.3.2.1 Decision Variables In the proposed ontology model, decision variables are rep-

resented by resource information, the number of product types, product requirements, and job

details. These elements are not merely standalone variables; they are further subdivided into

subclasses within the semantic model to enhance their granularity and flexibility.

In real-world applications, these decision variables encompass the resource details of every po-

tential asset and the index associated with each candidate group. An index list, denoted as

[a1, a2, . . . , an], is constructed. This list represents an index for each candidate group, facilitat-

ing efficient asset identification and selection. Additionally, the index list can be employed to

generate unique combinations of candidate assets, thereby ensuring that the requirements of

new product requests are met.
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Candidate robot for new operation 6 Candidate metrology device for new operation 6

Figure 8.43: Candidate assets information of the new Operation 6

This methodology ensures a systematic approach to strategic decision-making in product de-

velopment, grounded in a comprehensive analysis of resource availability, product types, re-

quirements, and job specifics.

8.3.3.2.2 Constraints The primary task is to identify suitable assets for Workstations 1

and 2 in the existing production line. Each workstation is designed to operate with multiple

robots, executing up to three operations. The optimal combination of assets should account for

various cost factors, including installation, removal, and procurement. The following notation

can be defined:

• SA: Set of all assets.

• SA1: Set of assets for Workstation 1.

• SA2: Set of assets for Workstation 2.

• O: Original asset list.

• C: Candidate asset list (newly suggested assets).

• CostInstallationa : Installation cost for asset a.

• CostRemovala : Installation cost for asset a.

• CostPurchasea : Installation cost for asset a.

Using the above notation, the constraints can be articulated as follows:
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1. Distinct Assets for Workstations:

SA1 ∩ SA2 = ∅ (8.16)

2. Installation and Purchase Costs: For every asset a that is on the candidate list

but not on the original list, the costs for installation and, if not present in the facility,

purchase are considered.

a ∈ C \O =⇒

 Consider CostInstallationa

a /∈ facility =⇒ Consider CostPurchasea

(8.17)

3. Removal Costs: For every asset a that is on the original list but not on the candidate

list, the removal cost is considered.

a ∈ O \ C =⇒ Consider CostRemovala (8.18)

4. Relocation Costs: If assets are present on both lists but have different workstation

recommendations, both removal and installation costs should be considered.

5. No Duplicate Costs: Ensure that no asset’s costs (installation, removal, and purchase)

are counted multiple times.

8.3.3.2.3 Optimisation Objectives About selecting and evaluating the most appropriate

assets for new customer requests in aerospace manufacturing, several factors should be consid-

ered when selecting evaluators for Product II. In this use case, the specification efficiency score

and cost are chosen as the evaluators. This problem can be regarded as a combinatorial opti-

misation problem; for each operation, one of the candidate assets should be selected to meet

the operation requirement. The problem is converted to find the best asset combination for all

operational requirements while considering some optimisation objectives and constraints.

First, the specification efficiency score is considered, as it is crucial to prevent resource wastage

due to overqualification, especially in the highly specialised field of aerospace manufacturing.

Ensuring that the assets are tailored to the specific requirements of the new hinged product

without unnecessary over-specification results in optimal resource utilisation.
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Second, the cost is considered, encompassing the reconfiguration cost of the robotic assembly

cell and the purchase cost if there are no available assets in the current databank. Aerospace

manufacturing often necessitates high precision and quality; hence, balancing the costs of

acquiring new assets with maintaining high production standards is vital. Ensuring the recon-

figuration cost does not exceed the reconfiguration budget.

The optimisation objectives are depicted in Table 8.19.

Table 8.19: Optimisation objectives and targets

Optimisation Objectives Target

Specification Efficiency Score Maximise

Reconfiguration Cost Minimise

Considering these evaluators, the production line will be better equipped to select the most

suitable assets to meet the new customer requirement, Product II.

8.3.3.2.3.1 Maximising the Specification Efficiency Score To calculate the specifi-

cation efficiency score, this score is defined for all four new operations and their related assets

(robot + end effector). The specification evaluators for each operation are listed in Table 8.20.

Table 8.20: Specification evaluators for each operation

New Operations Robots End effector

New Operation 1 Payload, Reachability,
Repeatability GraspingForce

New Operation 2 Payload, Reachability,
Repeatability Resolution, Accuracy

New Operation 3 Payload, Reachability,
Repeatability

LateralOffset, Mea-
surementFrequency,

Radius, Range

New Operation 4 Payload, Reachability,
Repeatability GraspingForce

New Operation 5 Payload, Reachability,
Repeatability

DrillingDepth,
HoleDiameter_max,
HoleDiameter_min

New Operation 6 Payload, Reachability,
Repeatability

LateralOffset, Mea-
surementFrequency,

Radius, Range

The specification efficiency score is the index related to different evaluators. For example, for

the robot in NewOperation1, the sub-evaluators are payload, reachability, and repeatability.

For the end effector in NewOperation1, the evaluator is GraspingForce. Obtaining information

about the relationship between different evaluators of the same asset in the same operation
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is essential. If the weights of the involved sub-evaluators are known, then the specification

efficiency score is a single objective to optimise. In the current use case, the weights of each

evaluator are assumed to be the same. The optimisation problem thus aligns with the descrip-

tion provided in Table 8.19, referencing the methodology delineated in Section 5.4.3.3.

8.3.3.2.3.2 Minimising the Cost To calculate the cost, different costs should be consid-

ered. The total cost of reconfiguration to meet the new customer request can be calculated

using Equation (5.18). The reconfiguration cost can be calculated as shown in Equation (8.19):

CostReconfiguration =
a∑

i=1

CostInstallationi
+

b∑
j=1

CostRemovalj +
c∑

k=1

CostPurchasek ,

(8.19)

where a is the number of assets that must be installed and, b is the number of assets which

need to be removed, c is the number of assets which need to be purchased.

The process for determining the installation, purchase, and removal costs is depicted in Fig-

ure 8.44.

Figure 8.44: Process for acquiring cost-related information

8.3.3.2.4 Evaluation To solve the above multi-objective optimisation problem, the expe-

rience databank recommends the use of NSGA-II and SPEA-II. These multi-objective opti-

misation algorithms are employed to carry out the optimisation and asset selection processes.

The hyperparameters of NSGA-II and SPEA-II are depicted in Table 8.21.

The optimisation curve of the NSGA-II algorithm for the two objectives is presented in Figure

8.45. The data indicates that for the single-objective cost, the minimal value identified is
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Table 8.21: Comparison of hyperparameters in NSGA-II and SPEA-II

Hyperparameter NSGA-II SPEA-II

Population size 500 500

Sampling method IntegerRandomSampling IntegerRandomSampling

Crossover method SBX with eta=20 and
prob=0.5

SBX with eta=20 and
prob=0.5

Mutation method Polynomial Mutation with
eta=20

Polynomial Mutation with
eta=20

Generation 500 500

£21,090. The maximum specification efficiency score recorded is 0.831.

Figure 8.45: Optimisation result of NSGA-II

The Pareto front it can find is depicted in Figure 8.46, and some Pareto-optimal solutions can

also be found. This study aims to find the Pareto front solution with the lowest cost. The

red point denotes the Pareto solution with the lowest cost needed. At that point, the cost is

£21,090, and the specification efficiency score is 0.8306. The corresponding information for

this solution is listed in Table 8.22. The specification efficiency score information is depicted

in Table 8.23.
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Figure 8.46: Pareto solutions of NSGA-II

Table 8.22: Reconfiguration cost details of NSGA-II

Candidate Assets Cost type Cost Workstation

ABB IRB 6700-245/3.00 Installation 3,300 Workstation 1

FingerGripper-11 Installation 320 Workstation 1

Marker-9 Purchase 3,700 Workstation 1

Marker-9 Installation 460 Workstation 1

Metrology end effector 3 Purchase 4,100 Workstation 1

Metrology end effector 3 Installation 550 Workstation 1

Fanuc M-900ia/350 Installation 3,500 Workstation 2

Drilling Tool-1 Installation 300 Workstation 2

KUKA KR 150 R3700 K ultra Removal 2,700 Workstation 1

Fanuc R-2000iB/125L Removal 2,010 Workstation 2

WeldingEndEffector-1 Removal 150 Workstation 2

The optimisation curve for the two objectives is generated using SPEA-II, as depicted in

Figure 8.47. Analysis reveals that, for the single-objective cost, the lowest identified cost is

£20,920. Additionally, the highest specification efficiency score recorded is 0.865.
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Table 8.23: Specification efficiency score for the solution found by NSGA-II

Operations Updated Assets Specification
Efficiency Score Workstation

NewOperation 1 ABB IRB 6700-245/3.00 0.0735 Workstation 1
FingerGripper-11 0.0573 Workstation 1

NewOperation 2 ABB IRB 6700-245/3.00 0.0484 Workstation 1
Marker-9 0.0973 Workstation 1

NewOperation 3 ABB IRB 6700-245/3.00 0.0503 Workstation 1
Metrology end effector 3 0.0550 Workstation 1

NewOperation 4 Fanuc M-900iA/350 0.0913 Workstation 2
FingerGripper-11 0.0572 Workstation 2

NewOperation 5 Fanuc M-900iA/350 0.0793 Workstation 2
Drilling Tool-1 0.0668 Workstation 2

NewOperation 6 Fanuc M-900iA/350 0.0913 Workstation 2
Metrology end effector 3 0.0628 Workstation 2

Figure 8.47: Optimisation result of SPEA-II

The Pareto front identified is illustrated in Figure 8.48. Several Pareto-optimal solutions are

also discerned, and the objective is to identify the solution with the lowest cost. The red point

represents the Pareto solution with the minimal cost of interest. At that point, the solution’s

cost is £20,920, and the specification efficiency score is 0.8146. The corresponding information

for this Pareto solution is listed in Table 8.24, and information on the specification efficiency
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score is depicted in Table 8.25.

Figure 8.48: Pareto solutions of SPEA-II

Table 8.24: Reconfiguration cost details of SPEA-II

Candidate Assets Cost type Cost Workstation

ABB IRB 6700-245/3.00 Installation 3,300 Workstation 1

FingerGripper-1 Installation 150 Workstation 1

Marker-9 Purchase 3,700 Workstation 1

Marker-9 Installation 460 Workstation 1

Metrology end effector 3 Purchase 4,100 Workstation 1

Metrology end effector 3 Installation 550 Workstation 1

Fanuc M-900ia/350 Installation 3,500 Workstation 2

Drilling Tool-1 Installation 300 Workstation 2

KUKA KR 150 R3700 K ultra Removal 2,700 Workstation 1

Fanuc R-2000iB/125L Removal 2,010 Workstation 2

WeldingEndEffector-1 Removal 150 Workstation 2

In light of the evaluations conducted using the two multi-objective optimisation algorithms,

NSGA-II and SPEA-II, the findings reveal interesting implications for selecting and optimising

robotic assets in response to new customer requests.
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Table 8.25: Specification efficiency score for the solution found by SPEA-II

Operations Updated Assets Specification
efficiency score Workstation

NewOperation 1 ABB IRB 6700-245/3.00 0.0735 Workstation 1
FingerGripper-1 0.0493 Workstation 1

NewOperation 2 ABB IRB 6700-245/3.00 0.0484 Workstation 1
Marker-9 0.0973 Workstation 1

NewOperation 3 ABB IRB 6700-245/3.00 0.0503 Workstation 1
Metrology end effector 3 0.0550 Workstation 1

NewOperation 4 Fanuc M-900iA/350 0.0913 Workstation 2
FingerGripper-1 0.0493 Workstation 2

NewOperation 5 Fanuc M-900iA/350 0.0793 Workstation 2
Drilling Tool-1 0.0668 Workstation 2

NewOperation 6 Fanuc M-900iA/350 0.0913 Workstation 2
Metrology end effector 3 0.0628 Workstation 2

SPEA-II identified a Pareto solution with a lower cost than NSGA-II did (£20,920 vs. £21,090)

and a reasonably competitive specification efficiency score (0.865 vs. 0.879). Hence, SPEA-II

is selected to optimise robotic asset selection based on the comparative evaluation because it

can find the most optimised cost. However, if the customer requires the most optimised asset

with a higher specification efficiency score, then NSGA-II would be selected.

8.3.4 Discussion of the Results of Use Case 3

Use Case 3 utilises the experience databank to perform asset selection and evaluation in more

complicated scenarios. With the help of the proposed experience databank, the asset selection

can be executed clearly based on the new process requirement. The experience databank

enhances the asset evaluation process, and it is modular. An effective solution asset evaluation

method is executed, and the effective solution is found. The criteria in Table 8.26, with check

marks for the objectives, are validated.

In Use Case 3, the emphasis is on validating various criteria to fulfil Objectives 1 and 2. The

initial generated experience databank plays a fundamental role in enabling asset selection and

evaluation. The criteria validated and the justifications for each are as follows:

• Criterion 1.1 (Vendor Neutrality): The use of the OCCR ontology model to build

the experience databank validates this criterion.

• Criterion 1.2 (Information Modelling): This criterion is validated through the mod-
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Table 8.26: Validation according to the criteria in Use Case 3

Validation

Contribution 1

Criterion 1.1 Vendor Neutrality ✓
Criterion 1.2 Information Modelling ✓
Criterion 1.3 Handling of Data from Diverse Sources ✓
Criterion 1.4 Reasoning Based on the Ontology ✓

Contribution 2

Criterion 2.1 Adapting to New Process Requirement ✓
Criterion 2.2 Capability Assessment ✓
Criterion 2.3 Modular Asset Selection ✓
Criterion 2.4 Multi-Criteria Asset Selection ✓
Criterion 2.5 Synergies with System ✓

Contribution 3

Criterion 3.1 Multi-Criteria Layout Optimisation
Criterion 3.2 Modular Layout Optimisation
Criterion 3.3 Interoperability
Criterion 3.4 Scalability

elling of information regarding robotic assembly reconfiguration.

• Criterion 1.3 (Handling of Data from Diverse Sources): Given that data from var-

ious sources, such as technical documents, process requirements, and asset information,

are incorporated, this criterion is validated.

• Criterion 1.4 (Reasoning based on the Ontology): Ontology reasoning is employed

to identify potential assets that meet the process requirements, thus validating this cri-

terion.

• Criterion 2.1 (Adapting to New Process Requirement): In this use case, the

transition from addressing the process requirements of “Product I” to those of “Product

II” is handled effectively, and this criterion is hence validated.

• Criterion 2.2 (Capability Assessment): The process of analysing capability and

performing capability matching in this use case results in the validation of this criterion.

• Criterion 2.3 (Modular Asset Selection): The deployment of different algorithms

(NSGA-II and SPEA-II) for the same task validates this criterion.

• Criterion 2.4 (Multi-Criteria Asset Selection): The use of multiple criteria, such

as specification efficiency score and reconfiguration cost in this use case, establishes the

validity of this criterion.

• Criterion 2.5 (Synergies with Systems): In asset selection, synergies with other

assets prove critical. In this use case, the specification efficiency scores of various assets

are evaluated collectively for asset selection. Furthermore, the cumulative cost of all assets

186



to fulfil varying process requirements is considered, thereby validating the synergies with

the system.

8.4 Chapter Summary

This chapter builds upon the validation work initiated in Chapter 7, further contributing to the

achievement of Objective 4. It presents a concise validation of the proposed methodology via

three use cases, each addressing different scenarios. The integration of this chapter’s findings

with the software development insights from Chapter 7 completes the validation framework.

The specific validation criteria for each use case are itemised in Table 8.27.

Table 8.27: Summary of validated criteria in different use cases

Criterion Description Use Case 1 Use Case 2 Use Case 3

Criterion 1.1 Vendor Neutrality ✓ ✓ ✓
Criterion 1.2 Information Modelling ✓ ✓ ✓
Criterion 1.3 Handling of Data from Diverse Sources ✓ ✓ ✓
Criterion 1.4 Reasoning Based on Ontology ✓ ✓ ✓
Criterion 2.1 Adapting to New Process Requirement ✓ ✓
Criterion 2.2 Capability Assessment ✓ ✓
Criterion 2.3 Modular Asset Selection ✓
Criterion 2.4 Multi-Criteria Asset Selection ✓
Criterion 2.5 Synergies with System ✓
Criterion 3.1 Multi-Criteria Layout Optimisation ✓
Criterion 3.2 Modular Layout Optimisation ✓
Criterion 3.3 Interoperability ✓ ✓
Criterion 3.4 Scalability ⋆ ⋆

Note: ⋆ indicates combined validation from Use Case 1 and Use Case 2.

Use Case 1 is tailored to validate the procedure for constructing and updating the experience

databank, the asset selection methodology, and the layout optimisation framework. However,

it primarily covers the system level, leaving the machine level unexplored. Its focus on single-

objective layout optimisation also highlights potential questions about the scalability of the

methodology.

To address these gaps, Use Case 2 addresses the machine level and expands the lens on layout

optimisation by integrating multi-criteria considerations. Through the use of different types of

simulation software in this scenario, the adaptability of the methodology is examined, adding

rigour to the validation.

Use Case 3 redirects the focus, highlighting a unique aspect of the asset selection methodol-

ogy. It accentuates the need for a holistic asset selection approach in expansive scenarios and
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integrates a multi-objective framework. Both the modularity of the asset selection framework

and its multi-objective aspects receive validation.

Collectively, these use cases provide a comprehensive validation approach. Various levels,

software tools, and objectives meticulously test the adaptability, versatility, and depth of the

methodology. This multi-pronged strategy ensures the scalability of the methodology across

various situations.
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Chapter 9

Conclusions and Future Work

The increasing complexity of modern manufacturing systems brings new challenges and op-

portunities. Quick and efficient adaptability is crucial in an era with fast market changes,

unpredictable supply chains, and varying demand. This highlights the need to adjust and

improve production processes skillfully.

Robots play a crucial and expanding role in the manufacturing process, making them essential

for reconfiguration tasks. Robots are no longer merely tools but vital components of the

production system that require careful management.

In this context, there is a pressing need to reconfigure robots within a robotic assembly system

effectively. As their role in manufacturing tasks expands, efficiently harnessing their capabilities

and adapting them to evolving requirements become essential. This central theme shaped this

PhD research, which explores integrating robots within the broader context of refining and

adjusting manufacturing processes.

9.1 Conclusions

This thesis contributes to the field of robotic assembly systems, focusing on the reconfigura-

tion of these systems to keep pace with the changing demands of advanced manufacturing.

The research addresses essential challenges in reconfiguring these systems, which are vital for

sustaining operational efficiency and competitiveness in a dynamic industrial setting. The key
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challenges explored in this study include:

1. Robotic assembly cells face the challenging task of absorbing and processing diverse data

streams from multiple systems and technologies. This is crucial in order to consolidate

the data into a coherent format that enables real-time decision-making.

2. The second significant challenge is the requirement for systems to continuously adapt

to changing process and product requirements, reflecting the dynamic nature of mar-

ket demands. The capacity to promptly and effectively adjust production processes in

alignment with these changing needs is essential for sustaining a competitive edge.

3. The third challenge entails enhancing operational efficiency through the optimisation of

layouts in robotic assembly cells, particularly after these systems are adapted to new pro-

cess requirements. This involves identifying the optimal times to execute layout improve-

ments and ensuring the framework remains scalable and adaptable to evolving demands.

The research questions for this PhD thesis have emerged from these three pivotal challenges.

They are as follows:

1. RQ1

How can data from various sources be efficiently processed by integrating diverse systems

and technologies into robotic assembly cells?

2. RQ2

How can robotic assembly cells adeptly adjust to ever-shifting process requirements,

reflecting the changing consumer market?

3. RQ3

How can a reconfigurable robotic assembly system efficiently optimise its operations,

especially in layout, after adapting to current process requirements?

In alignment with these research questions, four objectives have been established:

• Objective 1: To develop an integrative approach for effectively managing heterogeneous

manufacturing data within robotic assembly cells, which addresses RQ1 and supports

informed decision-making.
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• Objective 2: To design a reconfigurable robotic assembly cell system that exhibits agility

and responsiveness to changing market demands and product requirements, thereby an-

swering RQ2.

• Objective 3: To formulate a post-adaptation optimisation process for robotic assembly

cells, focusing on layout optimisation using artificial intelligence, knowledge graphs, and

simulation methodologies, in response to RQ3.

• Objective 4: To validate the strategies of the preceding three objectives through software

development and testing within use cases.

To answer RQ1 and fulfil Objective 1, a methodology for aggregating and updating diverse

data through an experience databank and ontology model, enhancing decision-making within

robotic assembly cells, has been established. (Contribution 1)

The approach combines an ontology model and a knowledge graph method. The ontology

model offers a vendor-neutral representation, making sense of capabilities and reconfiguration

aspects, while the knowledge graph improves process efficiency. Merging both top-down and

bottom-up approaches ensures accurate data representation and swift processing. A critical

feature that signifies the system’s adaptability is its ability to accommodate real-time queries.

This synergy between the ontology model and the knowledge graph provides a robust solution

for interpreting robotic assembly data, and the experience databank is built based on this.

Thus, the RQ1 is addressed, and Objective 1 is fulfilled.

To answer RQ2 and fulfil Objective 2, a methodology has been formulated to facilitate modular

asset selection, integrating knowledge graphs and multi-criteria decision-making algorithms,

enabling rapid adaptation to changing manufacturing requirements. (Contribution 2)

It emphasises the importance of factors such as cost, energy consumption, asset longevity,

adaptability over time, and resource utilisation. Acknowledging the evolving nature of these

factors, the chapter highlights the necessity of a dynamic approach to asset selection. Advanced

strategies such as multi-objective optimisation are introduced to navigate the multi-faceted

challenges of this problem. These techniques adeptly manage both discrete and continuous

decision variables, enhancing the precision and effectiveness of the selection process. In essence,

the chapter offers a blueprint for manufacturers, equipping them with methodologies to refine

asset selection and achieve greater agility in the ever-shifting manufacturing landscape.
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To answer RQ3 and fulfil Objective 3, a methodology has been developed to enhance opera-

tional efficiency through layout optimisation in robotic assembly cells, incorporating simulation

tools and multi-objective decision-making, facilitating continuous process improvements post-

adaptation to changing requirements. (Contribution 3)

It focuses on developing and applying a modular optimisation framework for reconfigurable

manufacturing systems, especially robotic assembly cells. This framework is built around three

main components: the simulation environment, the optimisation environment, and the opti-

misation algorithms. A central aspect is the role of layout optimisation in robotic assembly

cells to ensure the layout functions efficiently and within the constraints of the manufactur-

ing environment. The inclusion of the experience databank aids in informed decision-making

based on past data. This research showcases the benefits of using such knowledge-based sys-

tems in modern manufacturing design. This contribution presents a systematic approach to

creating flexible, efficient, and durable manufacturing solutions that adapt to changing market

conditions and customer needs.

To fulfil Objective 4, the realisation of the software suite comprising experienced databank,

asset selection, and layout optimisation has been achieved, and three use cases have been

proposed. This validation demonstrates that the impact of Objective 4 is not solely dependent

on the software’s functionality but also on its proven applicability within real-world industrial

scenarios. (Contribution 4)

The software interface for the experience databank, designed as a central repository, leverages

ontology models and knowledge graph methodologies. This design supports Contribution 1

by enhancing decision-making within robotic assembly cells. For Contribution 2, a specialised

software tool has been developed for asset selection. This tool, utilising decision matrices and

algorithms based on knowledge graphs and multi-criteria decision-making techniques, enables

a flexible asset selection process. It considers varying parameters such as specification effi-

ciency score, energy consumption, and robot manoeuvrability. To support Contribution 3, a

sophisticated software framework for layout configuration optimisation has been implemented.

It integrates simulation tools like Tecnomatix Process Simulate and RoboDK, alongside multi-

objective optimisation algorithms. This framework, drawing insights from the experience data-

bank, continually improves the layout of robotic assembly cells.

The effectiveness and relevance of these software tools have been rigorously evaluated through
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three distinct use cases. Use Case 1 demonstrates the system-level application of the experi-

ence databank, asset selection methodology, and layout optimisation framework. Use Case 2

explores machine-level intricacies, employing detailed multi-criteria evaluations and highlight-

ing the flexibility of the layout optimisation approach with various simulation tools. Use Case 3

emphasises the modular and comprehensive nature of the asset selection methodology through

a multi-objective framework. Use Case 1, Use Case 2, and Use Case 3 collectively serve

to validate the robustness, scalability, and industrial relevance of the contributions, demon-

strating their suitability for practical scenarios. This comprehensive validation confirms that

the methodologies developed are academically sound and ready to enhance the adaptability,

efficiency, and resilience of robotic assembly systems, addressing the manufacturing sector’s

evolving challenges.

9.2 Applications in the Manufacturing Industry

The significant developments in the manufacturing sector highlight the importance and time-

liness of this research’s methodologies and findings. As industries adapt to modern challenges,

the insights from this study serve as essential guidelines.

9.2.1 Automotive Industry

In contemporary manufacturing, particularly within the automotive sector, the establishment of

an experience databank stands as a precursor to informed decision-making. This thesis asserts

the databank’s role as the cornerstone in the aggregation of knowledge — a repository that

meticulously records outcomes and processes, setting the stage for successive optimisations.

Upon the foundation laid by the experience databank, asset selection is approached with an

empirical richness. The detailed records of past performance and operational data guide the

selection of robotic assets, ensuring that the choice is not merely theoretical but grounded in

historical efficacy. Especially within the realm of electric vehicle (EV) production, where novel

challenges, such as the assembly of delicate battery systems and integration of complex electrical

components, are encountered, this informed approach to asset selection is invaluable. The

vendor-neutral ontology model introduced by this thesis further refines this process, facilitating
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the integration of diverse data sources and the discernment of the most apt robotic systems

for the task at hand.

Once the assets are selected, the research progresses to address the spatial dynamics of man-

ufacturing through layout optimisation. In the transition to EV production, where traditional

manufacturing layouts must be rethought to accommodate new processes, this phase gains

amplified significance. The modular layout configuration framework proposed herein enables

manufacturers to rapidly reconfigure assembly lines in response to the ebb and flow of market

demand and technological evolution. Such an adaptive approach to layout optimisation is not

just about spatial economy but is fundamental to maintaining productivity and flexibility in

an industry undergoing a significant paradigm shift towards electrification.

Therefore, it becomes apparent that the systematic approach advocated by this research, start-

ing from the creation of an experience databank through to the meticulous selection of assets

and culminating in the strategic optimisation of layout, provides a comprehensive blueprint

for the automotive industry. It equips manufacturers with the necessary tools to navigate the

intricacies of EV manufacturing, heralding a future where responsiveness and efficiency are

harmoniously balanced.

9.2.2 Aerospace Manufacturing

In aerospace manufacturing, where precision and complexity define the sector, the establish-

ment of a vendor-neutral ontology model as the initial phase of integration is pivotal. This

model centralises the wealth of data from avionics, propulsion, and structural domains, thereby

enabling a nuanced approach to asset selection. Given the sector’s reliance on high-precision

robotics to perform tasks ranging from turbine blade fabrication to fuselage assembly, the

selection of these assets is not merely a matter of choice but of strategic necessity.

Following the initial step of data integration and asset selection, attention turns to the opti-

misation of manufacturing layouts. In an industry characterised by large-scale assembly lines

and complex component integration, the configuration of space is of the essence. The challenge

here differs from the automotive sector as it requires accommodating the assembly of massive

structures and the precise coordination of numerous tasks that are often unique to each air-

craft model. The layout optimisation must not only allow for efficient space utilisation but
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also be flexible enough to accommodate customisations and the incorporation of technological

advancements as they emerge.

This research underlines the importance of a strategic sequence in aerospace manufacturing,

starting with the consolidation of data that informs the selection of robotic assets, and pro-

gressing to the systematic arrangement of manufacturing workflows. The methodologies es-

poused provide a framework that ensures aerospace manufacturers can maintain precision and

adaptability in a domain where the costs of error are high and the demands for innovation

are relentless. Thus, while sharing a common thread with automotive industry applications

in terms of process structure, the application in aerospace manufacturing distinguishes itself

through its focus on precision and customisation at an expansive scale.

9.3 Future Work

Future investigations will extend the optimisation objectives to enrich criteria for selecting

optimal assets and improving layout configuration. The framework will aim to incorporate

manufacturing standards, with a particular focus on adopting the Reference Architectural

Model Industrie (RAMI) for delineating manufacturing knowledge [102]. The intention is to

compile and disseminate a substantial dataset relevant to manufacturing reconfiguration scenar-

ios. This dataset will support extended research into knowledge graphs, link prediction [122],

recommendation systems [31], and reinforcement learning techniques in knowledge graph infer-

ence [123]. Additionally, future work will explore the synergy between control reconfiguration

and the three identified categories of reconfiguration in this thesis, with the goal of integrating

these dimensions into a holistic reconfiguration model, thus enriching the framework’s depth

and utility.
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