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Abstract

In a wide range of engineering and biological applications, processes at a stationary or
moving surface affect the dynamics in the bulk material. Examples of these processes
include cellular migration caused by protein interactions at cell membranes, or the de-
crease in surface tension due to the presence of surface active compounds in cleaning
products. Computational models are essential to gain insight into these bulk-surface
interactions and to make accurate predictions about the behaviour of these complex
systems. From a mathematical perspective, models proposed for the study of these
phenomena are based on either a sharp or diffuse interpretation of the surface. Yet, the
exact coupling of the bulk and surface dynamics is challenging due to its non-linear
character, and many of the current bulk-surface models lack a comprehensive contin-
uum theory as a foundation.

This thesis aims to arrive at fundamental theories for bulk-surface interactions. To
this end, it first outlines several frameworks used for the construction of models for
moving surfaces. Although each framework offers distinct insights and motivation for
the system’s dynamics, it is demonstrated that for particular modelling choices the same
models can be established.

Secondly, a framework is proposed to describe adhesive interactions between sur-
faces. This framework is based on a diffuse description of the moving surfaces. The
form of the system’s underlying energy is key to establishing the adhesive interaction,
more specifically, it includes terms that only play a role in the diffuse region represent-
ing the surface. In a novel way, equilibrium states of the adhesion model are character-
ized, which connect the proposed diffuse framework with a sharp theory for adhesion.
Numerical experiments provide further geometrical insights into the proposed adhe-
sion model.

As a third contribution, a continuum theory based on a sharp description of the sur-
face is presented for bulk-surface fluids. In particular, a bulk fluid coupled to a surface
fluid is considered, which both deform in an incompressible way. This framework also
accounts for additional mechanics, such as phase separation and species transport in
the bulk-surface material. Here, the framework is founded on a so-called bulk-surface
principle of virtual power, which reflects the energetic structure of the coupled system.
Another energy-based argument provides the dynamic coupling conditions between
the bulk and surface fluid, thereby complementing the framework in a consistent man-
ner.

Finally, the frameworks developed within this thesis can be tailored to diverse bulk-
surface applications. In combination with efficient computational tools, these frame-
works are capable of improving our understanding of the interplay between bulk and
surface within complex materials.
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Chapter 1

Introduction

Coupled bulk-surface partial differential equations arise in systems involving an active
interface, such as cellular dynamics in biological applications or surfactant transport
in two-phase fluid flows. Yet, the exact coupling of the bulk and surface dynamics
is far from trivial, both in its thermodynamical foundation and its numerical treat-
ment. However, if we approach these coupled moving boundary problems from the
right mathematical perspective, we are able to formalise fundamental insights in these
bulk-surface interactions and their thermodynamics. In combination with appropriate
numerical techniques, these mathematical frameworks can provide valuable insights in
biological and engineering applications in which active interfaces are key.

1.1 Background

From a mathematical perspective, bulk-surface interactions are challenging problems
due to their multiscale and multiphysics nature. Moreover, oftentimes these problems
are also characterized as free-boundary problems, as in many applications the surface
evolves due to the bulk-surface interplay. Various classes of models and numerical tech-
niques have been developed to address the challenges associated with these problems.
Here, we distinguish between sharp-interface approaches and diffuse-interface methods,
which we further introduce in the following subsections, before arriving at a compre-
hensive overview of the current state of bulk-surface models in literature.

1.1.1 Moving boundary problems

A wide variety of computational mechanics problems involve moving interfaces, e.g.
free surfaces1 or internal material boundaries. Well-studied examples of these moving-
boundary problems are the Stefan problem (phase transformation driven by heat diffu-
sion) [145, 109], fluid-structure interaction [11] and crack propagation in solids [99, 124].
Mathematically, this class of problems is typically formulated as a set of partial differ-
ential equations on a moving domain. The moving boundary is described as a sharp
interface with zero thickness, thereby allowing for discontinuities in quantities across
the interface (e.g. stresses and energies). The key characteristic of a moving boundary
problem is that the evolution of the boundary is not known a priori and is driven by the
coupling of the interface dynamics to the dynamics of the material, oftentimes in the
form of dynamic boundary conditions [109].

The complex nature of moving-boundary problems makes its analysis challenging,
as it encompasses multiple time and length scales, as well as geometric non-linear terms

1In physics, a free surface is subject to zero shear stress, e.g. the interface between two immiscible fluids
or the interface between gas and liquid.

1



Chapter 1. Introduction 2

resulting from the moving domain. Analytical solutions can only be found for a few
special cases. The natural alternative is numerical methods, which also poses difficul-
ties, especially in case of topologically complex three-dimensional interfaces that are
subject to interactions resulting in branching, merging or pinching-off of the interface
[138].

On the basis of the mathematical description of the moving boundary, we can dis-
tinguish between two classes of numerical techniques to solve moving boundary prob-
lems: interface-tracking and non-interface tracking techniques. Interface-tracking methods
employ an explicit parametrization of the interface, leading most naturally to compu-
tations being performed on a moving grid, such as the Arbitrary Lagrangian-Eulerian
(ALE) method [41] and Lagrangian methods. Also, the Front Tracking (FT) method
[166] and the immersed boundary approach [134] are examples of interface-tracking
techniques. The second class of numerical techniques, consisting of the non-interface
tracking methods, can be further subdivided into two subclasses (i) volume tracking
methods, which are based on a characteristic function defining the volume of the ma-
terials from which the interface can be reconstructed, e.g. the Volume of Fluid (VOF)
methods [92], Simple Line Interface Calculation (SLIC) [128] and Piecewise Linear In-
terface Construction (PLIC) [143], and (ii) interface-capturing approaches, which employ
a function to capture the interface and require additional information to describe its
temporal evolution, e.g. the level-set method [132].

1.1.2 Computational phase-field modelling

The phase-field method [51, 138, 157] can be used as an alternative approach to the sharp-
interface theory and overcomes some of the limitations associated with sharp-interface
methods. In the phase-field formulation, an additional time-dependent variable, viz.
the so-called phase field, is introduced, which acts as the positional marker of the dif-
ferent phases2. The phase field is designed in such a way that it takes on a distinct value
in each phase, e.g. for a problem involving two phases φ = −1 in one phase and φ = +1
in the other. Since it is smoothly defined on the domain of interest, it gives rise to in-
ternal transition layers, thereby substituting the sharp interface of the original moving-
boundary problem for an interface with a small yet finite width. This diffuse interface3 is
the key difference between phase-field theories and moving-boundary problems, and
is hence the reason that phase-field methods are also called diffuse-interface models,
whereas moving-boundary problems are referred to as sharp-interface theories (see Fig-
ure 1.1). By smoothing the interface and its properties phase-field modelling avoids the
complex interfacial conditions used in sharp-interface theories. Instead, evolution of the
diffuse interface becomes part of the solution of the phase-field equations, thereby cir-
cumventing the explicit tracking of the interface as is required for many sharp-interface
methods.

In particular cases, it can be proven by means of the theory of matched asymptotic ex-
pansions that a phase-field model converges to a sharp-interface model, see for instance
[25, 22, 49, 51, 138]. This sharp-interface counterpart is also referred to as the sharp-
interface limit of the phase-field model, as the limiting case is achieved by letting the

2Although the phase-field theory was originally developed for phase separation problems [27, 28, 26],
here phase should be interpreted broadly. It may for instance refer to one of the types of fluids present
in a multi-phase fluid flow, but it may also indicate the position of a fracture in a solid or of a tumour in
soft tissue. In summary, it should be understood as a compositional marker, which can be used to locate
regions rich or low in the constituent of interest, and be thought of as a mass fraction, volume fraction,
concentration or order parameter.

3The concept of a diffuse interface can be traced back to van der Waals’s thermodynamic considerations
(1979) [167] on the change in density between a liquid and its vapour.
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(a) Sharp-interface approach.
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(b) Diffuse-interface approach.

Figure 1.1: Schematic of a (a) sharp and (b) diffuse interface: the phase-field variable
ϕ is a function of the spatial coordinate x and marks the interface.

parameter controlling the interface width go to zero. Apart from validating the phase-
field model, this method of asymptotic analysis can serve to gain insight in restrictions
on the phase-field model’s parameters [51]. Conversely, a phase-field model may be
derived from a moving-boundary problem by means of diffusification4, i.e. regulariza-
tion of the moving-boundary problem by smoothing out its sharp interface into a thin
interfacial layer with finite thickness.

Notwithstanding their correspondence to sharp-interface models, phase-field meth-
ods are more than a mere computational trick to overcome certain numerical difficul-
ties. It should be understood that phase-field models do not per se require a regularized
moving-boundary problem as origin. Phase-field equations may be derived using the
variational principles from the theory of thermodynamics [86, 78]. A phenomenologi-
cal phase-field description starts by defining a free-energy functional as function of the
phase field and other continuum fields (e.g. temperature, concentration, strain mea-
sures). It is supplemented with fundamental balance equations, as well as constitutive
laws reflecting the materials’ behaviour. The phase-field model’s equations are then de-
rived by restricting constitutive choices in such a way that the model’s energy structure
is consistent with the second law of thermodynamics. This framework justifies the use
of phase-field formulations thermodynamically, and additionally can be used to obtain
phase-field models of phenomena for which no sharp-interface theory is (yet) available.

Over the last several decades, phase-field modelling has proven to be a powerful the-
oretical and computational approach. Using the phase-field approach, significant pro-
gress has been made in the modelling and prediction of interfacial phenomena in nu-
merous fields of research, e.g. in fracture mechanics [1, 2, 17, 15, 119], (fluid-mechanical
instabilities such as) viscous [68] or gravitational fingering [75], multiphase flow [76,
156], cellular migration [127, 149], vesicle dynamics [13, 88], tumour growth [89, 170,
112, 131, 175] and image inpainting [12].

4The term diffusification has only recently been introduced by Gomez & van der Zee (2017) [78] and
does not occur in phase-field literature before 2017. For an example of the diffusification procedure, viz. for
a generalized Stefan problem describing the solidification of pure materials, the reader is referred to [78].
It should be noted that the diffusification procedure does not per se yield a thermomechanically-consistent
phase-field model.
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1.1.3 Bulk-surface modelling

Systems involving mixed-dimensional dynamics, such as bulk-surface dynamics, have
been studied extensively due to their numerous applications in engineering, chemistry
and biology. Yet, no uniform definition exists for a bulk-surface model. Different classes
of bulk-surface models can be identified based on the used description for the (moving)
boundary, that is, whether the interface has a diffuse or sharp nature.

In sharp-interface approaches, short-range interactions between the bulk and sur-
face dynamics can be established through dynamic boundary conditions at the surface.
Early work on these coupling conditions considers phase separation in a bulk material
where one component is favoured by an impenetrable surface [14]. This way the dy-
namics in the bulk is enriched through its interaction with an interface. In the context
of mixed-dimensional phase-field equations, that is, a set of phase-field equations liv-
ing on the bulk and surface, the boundary conditions coupling the phase-field variables
in the bulk and surface are also known as transmission conditions, see for instance
[36, 111, 96] and references therein. Depending on the application many other types
of coupling conditions have been proposed, although these have been predominantly
presented for reaction-diffusion type of processes [117, 116, 115, 67]. Further applica-
tions are found for instance in bulk-surface systems involving adsorption-desorption
of surfactants at the sharp interface [79], asymmetric stem cell division [58, 57], crystal
growth [100], electro-reaction-diffusion systems [74], receptor-ligand interactions in cell
signalling dynamics [69, 8], and multi-phase flows [73]. The main difficulties encoun-
tered within this class of bulk-surface problems arise from the presence of the non-linear
coupling through the boundary conditions, especially within the context of moving do-
mains. Many works address these difficulties and focus on numerical treatment of the
bulk-surface equations. However, the presented mathematical models often include
ad-hoc terms, and lack a rigorous continuum framework through which the coupling
terms are formulated.

In the diffuse-interface community, bulk-surface models typically include a regular-
ization term constricting the sharp-interface dynamics to a diffuse interface, a method
in literature focussing on surface partial differential equations known as the diffuse-
interface approach. Essentially, the surface equation of interest is approximated by a bulk
equation with coefficients which rapidly tend to zero outside the diffuse-interface re-
gion. This way a coupled bulk-surface system with a sharp interface can be written
as a single bulk-system with an additional bulk equation accounting for the (moving)
diffuse interface. This diffuse-interface approach has been used to solve surface partial
differential equations on stationary surfaces [140], as well as moving interfaces [141, 47,
113, 50]. Alternatively, when particular bulk dynamics are restricted to subregions in
the domain using a suitable regularizing function, we speak of the diffuse-domain ap-
proach. Such an approach is in particular useful for complex stationary [98, 107, 59] and
evolving domains [108, 146, 81]. For both type of regularizations, it has been demon-
strated that the reformulated partial differential equations asymptotically converge to
the sharp-interface system as the interfacial thickness goes to zero, see for instance
[108, 105, 137, 178]. Using these regularization approaches bulk-surface models have
been developed with applications in cellular migration [125, 127], multi-phase flows
[142], signalling networks [139], surfactant flow [161], transport processes including
the adsorption and desorption of species [160], and inextensible vesicles in flows [5].
Here, the use of the diffuse method is mainly motivated by its ease in numerical imple-
mentation: standard numerical methods can be used to include the complex (moving)
geometries on which the quantities of interest live. The mathematical models presented
in literature oftentimes take a sharp-interface model as a starting point, which is then
diffusified and rewritten using appropriate regularizing functions. Such approaches are
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then made rigorous by asymptotic arguments. Yet, knowing that phase-field theories
can be derived in a consistent manner without the need for a sharp-interface counter-
part, a fundamental framework for bulk-surface interactions would benefit from taking
a diffuse-interface interpretation as a point of departure. Such a framework may pave
the way for novel types of bulk-surface interactions, that could not have been estab-
lished using a diffusification procedure.

1.2 Aims and main contributions

The aim of this thesis is to develop general bulk-surface frameworks, and subsequently
propose and study novel bulk-surface models within these frameworks. In particular,
we define three main objectives

• To investigate the main characteristics of the different frameworks available for
the modelling of evolving interfaces;

• To construct a thermomechanically-consistent phase-field model for adhesion, and
to propose an asymptotics framework to characterize its steady states;

• To develop a general continuum framework starting from a comprehensive vir-
tual power principle for mixed-dimensional multi-phase fluid flows, and to pro-
pose new models within this framework in which microscopic variations in the
surface fluid’s thickness are allowed.

As a first contribution, we provide an overview of four different frameworks that form
the foundation of many models encountered in the study of interfacial phenomena. In
the overview of these perspectives, we focus on the description of the interface, the un-
derlying (energy) functional and the postulated dissipative mechanism, which together
establish the evolution equations for the interface. Oftentimes proposed models are de-
rived and studied within one of these frameworks. Yet, by making the connection to
another one of these perspectives, new interpretations of the model and valuable in-
sights in its governing mechanics can be obtained. The objective here is to present the
machinery and theoretical background of these perspectives, which will be employed
and expanded on in the remainder of this work.

Secondly, using a thermodynamically-consistent approach to phase-field modelling,
we develop phase-field models that describe adhesive interactions between interfaces.
These models are based on a class of energy functionals which include terms that are
restricted to the diffuse interface, yielding bulk-surface type of interactions. Through
formal asymptotic analysis we characterize the model’s steady states, thereby exploit-
ing the connection between the sharp-interface and diffuse-interface approaches. Using
the finite element method and an energy-stable time-discretization scheme known as
the scalar auxiliary variable approach, we arrive at numerical results reflecting the ge-
ometrical insights obtained through the asymptotic analysis. Such characterization of
the adhesion model is key, before it can be further extended to describe more complex
dynamics, such as dynamic surface species transport governing the adhesive strength
or its coupling to fluid flow.

As a third contribution, we present a continuum theory for bulk-surface materials
undergoing deformation and phase separation. In this mixed-dimensional setting, we
consider an immiscible bulk fluid enclosed by a thin immiscible binary fluid film. We
detail the implications of the dependency of the apparent surface density on the surface
thickness. The governing equations are derived by means of a coupled bulk-surface
postulate for the virtual power balance. Aside from this systematical treatment based
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on the virtual power principle, we consider free-energy imbalances for bulk-surface
theories to arrive at classes of consistent constitutive response functions. Additionally,
we complement the framework by detailing the boundary conditions, including a set of
mixed dissipative coupling conditions on the dynamic surface. This complete contin-
uum framework can be used and further extended to model bulk-surface applications.

1.3 Thesis overview

This thesis is divided into three Parts, with each Part dedicated to addressing one of the
three objectives outlined in the previous Section. An overview per Chapter is detailed
below. We wish to emphasize that the theory presented in Part I is based on existing
literature, whereas Part II and III feature novel results that either have been accepted
[16] or are in preparation for publication.

Part I (Four Perspectives on the Modelling of Evolving Interfaces) contains an introduc-
tion to the fundamental theories for moving interfaces and their dynamics. It details
four perspectives, each with their own characteristics, yet which for particular mod-
elling choices may produce evolution equations describing the same dynamics.

Chapter 2 (Geometric Flows) presents a geometrical description of moving interfaces
and demonstrates how shape functionals can be used to establish geometric gradient-
descent flows of sharp interfaces.

Chapter 3 (Phase-Field Gradient Flows) presents gradient flows using a phase-field
description for the interface, and details how these are based on a choice of energy
functional and an operator reflecting a dissipative mechanism.

Chapter 4 (Variational Framework for Phase-Field Models) details how phase-field equa-
tions can be derived in a thermomechanically-consistent manner by postulating a free-
energy functional as function of the phase field and other continuum fields. This energy
is supplemented with balance laws, as well as constitutive response functions that de-
scribe the materials’ behaviour. The evolution equations are then derived by restricting
the constitutive choices such that its energy structure is consistent with the second law
of thermodynamics.

Chapter 5 (Microkinetic Framework) details how phase-field equations can be derived
using an additional balance law, i.e. the balance of microforces. Together with con-
stitutive response functions consistent with the second law of thermodynamics for the
microkinetic quantities, such as the microstress and microforces, generalized evolution
equations for the transition layers in a material can be established.

Part I is closed in Chapter 6 (Summary of Perspectives) in which the previously dis-
cussed perspectives on the modelling of evolving interfaces are summarized.

In Part II (Phase-Field Modelling of Adhesive Interfaces), we apply the variational
framework for thermomechanically-consistent phase-field models presented in Chap-
ter 4 to study adhesive interactions between steady and moving interfaces.

Chapter 7 (Introduction and Background) motivates the development of a phase-field
adhesion model. Furthermore, we present related literature for the asymptotic study
into the model’s equilibrium states.

In Chapter 8 (Phase-field Models for Adhesion), we propose a phase-field based ap-
proach to study adhesive interactions between moving interfaces. Following the vari-
ational principles presented in Chapter 4, we demonstrate that these phase-field adhe-
sion models are thermodynamically consistent.

Chapter 9 (Sharp-Interface Limit of the Cahn-Hilliard Energy) focusses on the charac-
terization of equilibrium solutions of the well-known Cahn-Hilliard phase-field model
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through formal asymptotics. The methods presented in this Chapter are extendable to
other phase-field problems. Moreover, they provide the foundation for the convergence
study of the adhesion energy in Chapter 10.

Chapter 10 (Sharp-Interface Limit of the Adhesion Energy) aims to characterize equi-
librium solutions of the phase-field model for adhesion. By employing asymptotic
expansions in the adhesion energy functional, we arrive at a sharp-interface energy
counterpart. Minimizers of the sharp-interface energy connect the phase-field adhesion
problem to an equivalent geometrical problem, in which curvature and contact angle
characterize the shape of the equilibrium solutions.

In Chapter 11 (Numerical Results), the scalar auxiliary variable approach is applied to
the adhesion theory to produce energy-stable numerical results of the phase-field adhe-
sion equations. In various numerical examples, we investigate the adhesive interactions
between steady and moving interfaces. In particular, the effect of curvature, adhesion
strength and interfacial thickness on the equilibrium shapes are studied.

Chapter 12 (Concluding Remarks) summarizes the main contributions in Part II, and
presents some ideas for future research involving the adhesion theory.

In Part III (A Bulk-Surface Continuum Theory for Fluid Flows and Phase Separation),
we propose a mathematical framework to study the mechanical interplay of bulk-surface
materials undergoing deformation and phase separation.

Chapter 13 (Introduction and Preliminaries) motivates the development of such a bulk-
surface continuum theory. Furthermore, we present the preliminary definitions re-
quired to establish this framework.

In Chapter 14 (Isochoric Motion and Mass Balance), we detail the assumption that the
bulk material and enclosing thin layer of fluid are only allowed to undergo isochoric
motions, that is, we consider that both flows are incompressible. Based on this hypoth-
esis, we derive the balance of mass for the bulk and surface material. Additionally, we
derive the balances accounting for the mass transport of the two species present in the
bulk-surface system.

In Chapter 15 (Principle of Virtual Power), we provide readers new to the principle of
virtual power with an introduction to this formalism, after which we postulate a virtual
power balance to arrive at the field equations for the bulk-surface material. In addition,
we show the consequences of frame indifference and derive relevant partwise balance
laws.

Chapter 16 (Free-Energy Imbalance and Constitutive Response Functions) presents the
free-energy imbalance for the coupled bulk-surface material. Its implications in terms
of the constitutive response functions are discussed and general thermodynamically-
consistent classes of response functions are detailed.

In Chapter 17 (Boundary Conditions and Dissipation Inequalities), we supplement the
system with appropriate boundary conditions, including a set of mixed boundary con-
ditions that allow for slip between the surface and the bulk material, which are dissi-
pative in nature. These boundary conditions are employed to arrive at the Lyapunov
decay relation for the coupled bulk-surface material, which characterizes the dissipative
nature of the bulk-surface system and its interaction with the environment.

Lastly, Chapter 18 (Concluding Remarks and Future Directions) summarizes the main
results of Part III and provides some directions for future research involving this con-
tinuum theory.

Finally, Chapter 19 (Final Reflections) closes this thesis. Here, we reflect on the main
achievements and future research.





Part I

Four Perspectives on the Modelling
of Evolving Interfaces





Chapter 2

Geometric Flows

As illustrated in Chapter 1, bulk-surface phenomena arise in a wide variety of appli-
cations. An elementary way of modelling these moving boundary problems takes a
geometric description of the interface as a starting point. By prescribing the movement
of the individual points that constitute the sharp interface, evolution of the interface
is established. The corresponding transformation is referred to as the flow of the pre-
scribed velocity field. In Section 2.1, we introduce the reader to these geometric flows
and discuss two well-known examples: mean curvature flow and surface diffusion. In
Section 2.2, we study shape functionals, which provide some quantitative measure of
geometric properties, and in Section 2.3 we define their shape derivatives. These shape
derivatives offer insight into the sensitivity of shape functionals to shape variations. In
Section 2.4, we employ these shape functionals and their derivatives to establish geomet-
ric gradient-descent flows and discuss their dissipative nature. We conclude this Chapter
by demonstrating that the earlier presented mean curvature flow and surface diffusion
are both geometric gradient-descent flows.

2.1 Geometric evolution of interfaces

We consider a sufficiently smooth compact hypersurface Γ(t) ⊂ D ⊆ Rndim oriented by
the normal vector field n. The initial configuration is given by Γ0 := Γ(0). A straightfor-
ward way to evolve the interface Γ is by directly prescribing its velocity, that is for each
each time t ∈ (0, T]

v(x) = v̂t(x), ∀x ∈ Γ(t), (2.1)

where v̂t(x) : Γ(t) → Rndim is a given function, see Figure 2.1. Moreover, the solution of

D

v(x)

Γ(t)

Figure 2.1: Geometric evolution of an interface Γ(t).

11
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the differential equation

∂x
∂t

(x0, t) = v(x(x0, t)), ∀t ∈ (0, T], (2.2)

x(x0, 0) = x0, (2.3)

captures the interfacial motion.
Alternatively, we can introduce a transformation T t, a diffeomorphism for each t ∈

[0, T], describing the interfacial motion. Then, let T t : Γ0 → Γ(t) be the transformation
corresponding to the flow of v, that is T t(x0) = x(x0, t), so that

v(x) :=
(

∂T t
∂t

)
◦ T−1

t (x), ∀x ∈ Γ(t), (2.4)

where T0 = 1. In other words, starting in x0, each point x(x0, t) = T t(x0) moves along
the trajectory t 7→ x(x0, t) with velocity v(x(x0, t)).

Well-studied examples of geometric evolution of Γ(t) include motion by mean cur-
vature and surface diffusion. These geometric flows are both based on a particular
choice for the velocity v = Vn, with V the magnitude of the normal velocity, see Figure
2.2. Additionally, for both flows the prescribed velocity is dependent on the curvature
Ka := ∇Γ · n, see Remark 2.1.

In mean curvature flow, a closed interface moves proportionally to its curvature,
thereby decreasing the interfacial area (resp. curve length), until the interface (resp.
curve) reaches a point of extinction in finite time. For this reason, two-dimensional
mean curvature flow is also called curve-shortening flow.

Surface diffusion is a flow in which the surface area (resp. curve length) is minimized
while the enclosed volume (resp. area) remains constant. In this process, the velocity of
the interface is proportional to the surface Laplacian of the mean curvature. This choice
of velocity leads to the redistribution of material on the surface, resulting in a gradual
evolution towards a shape with minimized surface area (resp. curve length).

D

V = −Ka

Γ0

(a) Mean curvature flow.

D

Γ0

V = ∆ΓKa

(b) Surface diffusion.

Figure 2.2: Examples of geometric flows.

Remark 2.1 (Mean and additative curvatures) Although, the flow depicted in Figure
2.2a is referred to as the mean curvature flow in literature, oftentimes the sum of the
ndim − 1 principal curvatures is used instead of its average value. Thus, it is more correct
to speak of an additive curvature Ka := ∇Γ · n, instead of the mean curvature K :=
(ndim − 1)−1∇Γ · n. □
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2.2 Shape functionals

Shape functionals are functionals that quantify geometric properties of shapes, such as
interfaces or (sub)domains. To define these functionals in a more precise manner, we
consider a hold-all domain or universe D ⊆ Rndim . Furthermore, let F denote an admis-
sible family of domains in D.

Definition 2.2 (Shape functional) A shape functional is a map J : F → R from an
admissible family F of domains into R. □

In Definition 2.2, we establish that for a given domain Ω ∈ F , a shape functional J (·)
returns the value J (Ω) ∈ R, which typically measures a specific geometric feature of
the given domain. Elementary examples of shape functionals are the domain measure

Jdom(Ω) := |Ω| =
∫

Ω
dΩ, (2.5)

and its boundary measure

Jbnd(Ω) := |Γ| =
∫

Γ
dΓ, (2.6)

where Γ := ∂Ω. For ndim = 3, Jdom(Ω) measures the volume of the domain Ω and
Jbnd(Ω) the interfacial area Γ, whilst for ndim = 2 these correspond to the domain area
and its perimeter, respectively.

To define the derivatives of shape functionals in Section 2.3, we first need to consider
changes or perturbations in the domain itself. In Definition 2.2, the shape functional is
defined on a shape space F , which represents the admissible family of domains or sub-
sets in the hold-all domain D. The construction of these shape spaces can be achieved
through various methods. In this Chapter, we use the velocity method [155, 40], also
known as the speed method or artificial velocity method, to construct the admissible family
of domains F . In particular, we consider an autonomous velocity field v : D → Rndim

that we can use to define one-parameter families of transformations of a fixed domain, pro-
vided that the changes in the domain do not alter the domain’s topology. Essentially,
this method should be thought of as an extension of the theory presented in Section 2.1
here accounting for a deforming domain instead of a moving interface.

D

Ω0

Γ0

v

Figure 2.3: A one-parameter family of domains {Ωt} constructed using the velocity
method, where Ωt ⊂ D. The parameterized outer boundary is given by Γt := ∂Ωt.

We proceed by considering the transformation map induced by an admissible velocity
field v : D → Rndim . For each t ∈ [0, T], the associated transformation T t is a diffeomor-
phism that maps a point x0 ∈ Ω0 onto x(x0, t) = T t(x0) ∈ Ωt, where t is the (artificial)
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time parameter governing the domain transformation. Similar to (2.2), the evolution of
the domain is given by the solution x(x0, t) to the initial value problem

∂x
∂t

(x0, t) = v(x(x0, t)), ∀t ∈ (0, T], (2.7)

x(x0, 0) = x0. (2.8)

Starting in its reference position x0 ∈ Ω0, each point x(x0, t) = T t(x0) ∈ Ωt moves
along the trajectory t 7→ x(x0, t) with current velocity v(x(x0, t)), thereby capturing the
flow of v. Thus, the family of {T t} generates the family of domains {Ωt}, where

Ωt = T t(Ω) := {x ∈ Rndim : x = T t(x0), ∀x0 ∈ Ω0}. (2.9)

with T t mapping interior (resp. boundary) points of Ω0 onto interior (resp. boundary)
points on Ωt, see Figure 2.3. This continuous perturbation of the initial domain is the
main characteristic of the velocity method.

2.3 Shape derivatives

To define shape derivatives of shape functionals, we consider the velocity field v : D →
Rndim and associated transformation T t defined in Section 2.2, generating the perturbed
domain Ωt = T t(Ω). Formally, shape differentiability should be understood as in Defi-
nitions 2.3 and 2.4.

Definition 2.3 (Eulerian semiderivative of a shape functional) The Eulerian semideriva-
tive of the shape functional J (·) at Ω in the direction of v is defined as the one-sided
limit

J ′(Ω; v) = lim
t↘0

J (Ωt)−J (Ω)

t
, (2.10)

if the limit exists in R. □

Definition 2.4 (Shape differentiability) The functional J : F → R is shape differen-
tiable at Ω ∈ F if (i) the Eulerian semiderivative J ′(Ω; v) exists for all admissible direc-
tions v and (ii) the mapping v → J ′(Ω; v) is linear and continuous. □

Theorem 2.A (Hadamard5 formula) If the shape functional J (·) is shape differentiable
at Ω, then its shape gradient J ′(Ω; ·) is supported on Γ. Moreover, if Γ is sufficiently
smooth, we can write

J ′(Ω; v) =
∫

Γ
g(Γ)v · n dΓ, (2.11)

for some g(Γ) ∈ L1(Γ). We call g(Γ) the Hadamard shape-gradient. □

Proof. See [40] (page 479) for the unconstrained case (D = Rndim) and [38] for the con-
strained case (D ⊂ Rndim). ■

The first part in Theorem 2.A states that the shape derivative J ′(Ω; ·) is supported on
Γ (as a distribution), which implies that J ′(Ω; v) = 0 if v|Γ = 0. Thus, changes in the

5The origin of this theorem can be attributed to Hadamard [87], who studied in 1907 displacements
along the normal of the boundary of a C∞-domain to compute the eigenvalues of a clamped plate. The
structure theorem in (2.A) for the Eulerian shape derivative of smooth domains was first given by Zolesio
[183], and later generalized to nonsmooth domains by Delfour & Zolesio [38].
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shape functional are primarily influenced by variations in the velocity at the bound-
ary, i.e. non-zero v|Γ. This validates our choice for an autonomous velocity, as for a
nonautonomous velocity v(x, t) only its value at t = 0 would be relevant.

Next to the contribution from the (v · n)|Γ term, we also learn that Hadamard’s
shape gradient g(Γ)|Γ contributes to the shape derivative J ′(Ω; v). The choice of shape
functional J(·) determines the form of the Hadamard shape-gradient g(Γ)|Γ.

In the remainder of this section, we consider the shape derivatives of two fundamental
shape functionals: domain integrals (Subsection 2.3.1) and boundary integrals (2.3.2).
We employ Hadamard’s formula (Theorem (2.A)) and derive the Hadamard shape-
gradient for each type of shape integral.

2.3.1 Shape derivative of domain integrals

In the following, we consider the open bounded Lipschitz domain Ω in Rndim and let
the domain integral of a global function ϕ : Rndim → R be given by

Jϕ(Ω) :=
∫

Ω
ϕ dΩ. (2.12)

Furthermore, let v : D → Rndim be an admissible velocity field. The associated trans-
formation T t maps Ω := Ω0 onto Ωt := T t(Ω) with Γt = ∂Ωt, so that the family
of domains {Ωt} consists of bounded open Lipschitz domains in D, which all have a
piecewise smooth boundary. In Theorem 2.B, the shape derivative of Jϕ(Ω) in (2.12) is
derived by differentiating t 7→ Jϕ(Ωt) at t = 0.

Theorem 2.B (Shape derivative of domain integral) For ϕ ∈ W1,1(Rndim), the shape
derivative of the domain integral in (2.12) is given by

Jϕ
′(Ω; v) =

∫
Ω
∇ · (ϕv)dΩ =

∫
Γ

ϕ v · n dΓ. (2.13)

for sufficiently smooth Γ. □

Proof. Using a change of variables, we write

Jϕ(Ωt) =
∫

Ωt

ϕ dΩt =
∫

Ω
ϕ ◦ T t Jt dΩ, (2.14)

where Jt := |DT t| > 0 denotes the Jacobian of T t, with |DT t| the determinant of the
Jacobian matrix. Next, we obtain the shape derivative as follows

Jϕ
′(Ω; v) =

d
dt

Jϕ(Ωt)

∣∣∣∣
t=0

=
∫

Ω

∂

∂t
(ϕ ◦ T t Jt)

∣∣∣∣
t=0

dΩ

=
∫

Ω

((
∇ϕ(T t(x0)) ·

∂

∂t
T t(x0)

)
Jt + (ϕ ◦ T t)

∂

∂t
Jt

)∣∣∣∣
t=0

dΩ

=
∫

Ω
(∇ϕ · v + ϕ∇ · v) dΩ, (2.15)

where we have used that

∂

∂t
(ϕ ◦ T t)|t=0 =

(
∇ϕ(T t(x0)) ·

∂

∂t
T t(x0)

)∣∣∣∣
t=0

= ∇ϕ(x0) · v(x0), (2.16)
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as well as
∂

∂t
Jt|t=0 = Jttr(∇v)|t=0 = ∇ · v, (2.17)

with Jt|t=0 = 1. Application of the divergence problem finishes the proof. For further
details, the reader is referred to [40] (Theorem 4.1 on page 482) and [168] (Section 4.3.3
starting on page 67). ■

In view of Theorem 2.B, we confirm that the shape derivative of Jϕ(Ω) given in (2.13)
is supported on Γ and scales with ϕ|Γ. Thus, for domain shape functionals of the form
(2.12), we find gϕ(Γ) := ϕ|Γ as the associated Hadamard shape-gradient.

2.3.2 Shape derivative of boundary integrals

Consider the global function ψ : Rndim → R and its corresponding boundary shape
functional

Jψ(Ω) =
∫

Γ
ψ dΓ. (2.18)

Similar to Section 2.3.1, we let v : D → Rndim denote an admissible velocity field, which
is sufficiently smooth, and let T t denote the associated transformation generating the
domain Ωt = T t(Ω) with boundary Γ(t) = ∂Ωt. The shape derivative of the boundary
shape functional (2.18) for a sufficiently smooth and closed Γ is given in Theorem 2.C.

Theorem 2.C (Shape derivative of boundary integral) For ψ ∈ W2,1(Rndim), the shape
derivative of the boundary integral in (2.18) is given by

Jψ
′(Ω; v) =

∫
Γ

(
∂ψ

∂n
+ Kaψ

)
v · n dΓ, (2.19)

for sufficiently smooth and closed Γ. □

Proof. Using a change of variables, we write

Jψ(Ωt) =
∫

Γt

ψ dΓt =
∫

Γ
ψ ◦ T t jt dΓ, (2.20)

where jt := Jt|DT−⊤
t n| > 0 denotes the areal Jacobian. In view of

∂

∂t
(ψ ◦ T t)|t=0 =

(
∇Γψ +

∂ψ

∂n
n
)
· v, on Γ, (2.21)

and
∂

∂t
jt|t=0 = ∇Γ · v, (2.22)

we write shape derivative of Jψ as

Jψ
′(Ω; v) =

d
dt

Jψ(Ωt)

∣∣∣∣
t=0

=
∫

Γ

∂

∂t
(ψ ◦ T t jt)

∣∣∣∣
t=0

dΓ

=
∫

Γ

(
∇Γψ · v +

∂ψ

∂n
v · n + ψ∇Γ · v

)
dΓ. (2.23)

For sufficiently smooth and closed Γ, we may use the tangential identity

ψ∇Γ · v +∇Γψ · v = Kaψv · n, on Γ, (2.24)
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to arrive at

Jψ
′(Ω; v) =

∫
Γ

(
∂ψ

∂n
+ Kaψ

)
v · n dΓ, (2.25)

with Ka = ∇Γ · n the additive curvature. See [39] (Theorem 4.3 on page 486) and [168]
(Section 4.3.4 on page 70) for further details. ■

In view of Theorem 2.C, the Hadamard shape-gradient for Jψ reads

gψ(Γ) =
(

∂ψ

∂n
+ Kaψ

)
|Γ, (2.26)

where the first term reflects the changes in ψ normal to the boundary Γ and the second
implies that changes in the length (or area) of the boundary are proportional to the
boundary’s curvature.

2.4 Geometric gradient flows

A geometric gradient(-descent) flow is an evolving interface which minimizes a shape
functional J (Ω) according to

V(x) = Gg(Γ(t))(x) ∀x ∈ Γ(t), (2.27)

where g(Γ) is the Hadamard shape-gradient introduced in Theorem 2.A, and V de-
notes the normal velocity, i.e. V := v · n|Γ. The non-positive operator G reflects the
mechanism driving the minimization process. In Proposition 2.5, we demonstrate how
the geometric evolution equation in (2.27) establishes minimization (dissipation) of the
shape functional.

Proposition 2.5 (Dissipation in geometric gradient flows) A geometric gradient flow
is dissipative in nature, i.e.

dJ (Ω(t))
dt

=
∫

Γ(t)
g(Γ(t))Gg(Γ(t))dΓ

≤ 0, (2.28)

for all geometric evolution laws given by

V(x, t) = Gg(Γ(t))(x), ∀x ∈ Γ(t), (2.29)

where G is a non-positive operator. □

Proof. By combining Theorem (2.A) with the geometric evolution equation in (2.27), we
derive

dJ (Ω(t))
dt

= J ′(Ω(t); v)

=
∫

Γ(t)
g(Γ(t))v · n dΓ

=
∫

Γ(t)
g(Γ(t))Gg(Γ(t))dΓ

≤ 0, (2.30)

where G is a non-positive operator, which completes our proof. ■
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2.4.1 Mean curvature flow

Under mean curvature flow, a closed hypersurface Γ(t) ⊂ D ⊆ Rndim moves according
to

V(x, t) = −Ka(Γ(t))(x), ∀x ∈ Γ(t), (2.31)

where Ka = ∇Γ · n denotes the curvature. This equation states that Γ(t) evolves in time
by moving in the direction opposite to the curvature Ka at each point x ∈ Γ(t), with a
velocity proportional to Ka. This flow causes the hypersurface to contract, ultimately
leading to its extinction within a finite time, see Figure 2.2a. Motion by mean curvature
has been extensively investigated and finds applications in material science and image
processing. Noteworthy are the studies into the singularities that can occur under the
flow, and the topological changes these singularities may induce, see [34] and references
therein.

In the following, we demonstrate that the geometric equation for mean curvature flow
(2.31), is a geometric gradient flow for the area shape functional Jbnd(Ω) in (2.6) and
non-positive operator G = −1. Noting that Jbnd(Ω) corresponds to Jψ=1(Ω) in (2.18),
and by employing Theorem (2.C) we obtain the following dissipation associated with
the mean curvature flow (2.31)

dJbnd(Ω(t))
dt

= Jbnd
′(Ω(t); v)

=
∫

Γ(t)
Ka(Γ(t))v · n dΓ

= −
∫

Γ(t)
Ka(Γ(t))

2 dΓ

≤ 0, (2.32)

as the Hadamard shape derivative is given by gψ=1 = Ka(Γ(t)). Thus, in line with
Proposition 2.5, we may call (2.31) a geometric gradient descent flow for Jbnd(Ω) and
operator G = −1. Minimizers are called shrinkers or extinction points.

2.4.2 Surface diffusion

Surface diffusion, similar to mean curvature flow, also minimizes the interfacial area
Jbnd(Ω) of a closed hypersurface Γ(t) ⊂ D ⊆ Rndim . However, a different mechanism
is governing the dissipation, viz. the operator G = ∆Γ, which is the surface Laplacian.
Thus, the geometric evolution law for surface diffusion is

V(x, t) = ∆Γ (Ka(Γ(t))(x)) , ∀x ∈ Γ(t), (2.33)
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where we have used the associated Hadamard shape derivative gψ=1 = Ka(Γ(t)). The
dissipation structure of this flow is given by

dJbnd(Ω(t))
dt

= Jbnd
′(Ω(t); v)

=
∫

Γ(t)
Ka(Γ(t))v · n dΓ,

=
∫

Γ(t)
Ka(Γ(t))∆ΓKa(Γ(t))dΓ

= −
∫

Γ(t)
|∇Γ (Ka(Γ(t)))|2 dΓ +

∫
Γ(t)

∇Γ · (Ka(Γ(t))∇ΓKa(Γ(t))) dΓ

≤ 0, (2.34)

where we note that
∫

Γ(t) ∇Γ · (Ka(Γ(t))∇ΓKa(Γ(t))) dΓ = 0.
As graphically represented in Figure 2.2b, surface diffusion preserves the volume of

the domain Ω enclosed by the interface Γ := ∂Ωt, whilst minimizing the surface area,
thereby forcing the interface to form a spherical shape with constant curvature.





Chapter 3

Phase-Field Gradient Flows

In this Chapter, we consider phase-field gradient flows which govern the evolution of one
or more phase-field variables. These phase-field variables capture the diffuse transition
layers in the system of interest, representing its ordering or physical structure. Phase-
field gradient flows have a similar form to the geometric gradient-descent flows pre-
sented in Chapter 2. Instead of a choice for a shape functional, they involve a choice for
a functional that depends on the phase-field variable(s). Again, providing the system
with a suitable operator is key to achieving dissipation.

This Chapter is organized as follows: In Section 3.1, the general gradient flow struc-
ture for phase-field models is presented. Section 3.2 demonstrates how two classical
phase-field equations, that is the Allen-Cahn and Cahn-Hilliard equations, can be de-
rived within the gradient flow framework. Originally, both equations were not derived
using a gradient flow approach, but via physical arguments, which we detail in Chap-
ter 4.

3.1 Gradient flow structure for phase-field models

Generally, a gradient flow is defined as an evolution process in which a functional de-
creases along its gradient until a local minimum is found. In the following, we demon-
strate that this process is determined by specifying both (i) the functional of interest and
(ii) the dissipation mechanism.

For phase-field gradient flows defined on a bounded domain Ω ⊂ Rndim , the governing
functional depends on the phase-field variable φ : Ω → R, and can be denoted as
F : V → R

F (φ) :=
∫

Ω
ψ(φ(x),∇φ(x))dx, (3.1)

for a choice of the function6 ψ : R × Rndim → R. Here, V is an appropriate Sobolev
space and ψ is chosen such that F is bounded. The Sobolev space is equipped with
norm ∥ · ∥V . In physical applications, the functional F is often referred to as the free-
energy functional, and choices for ψ may include a smooth function W(φ) : R → R that
is non-negative and has equal minima at φ = φ− and φ = φ+ = −φ−.

To establish a gradient flow for the time-dependent φ(·, t) ∈ V we need to define
the derivative of the functional F in the direction δφ. For this purpose, we introduce
the Gâteaux derivative of F : V → R as

F ′(φ; δφ) = lim
s→0

(F (φ + sδφ)−F (φ)

s

)
, ∀δφ ∈ X ⊆ V , (3.2)

6A broader class of functions for ψ may be considered. Here, we focus on the general class given by
ψ : R × Rndim → R.
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if the limit exists for the considered φ(·, t) ∈ V and all δφ ∈ X . Here, the constrained
space X may be used to limit the directions δφ, which can for instance be used to ac-
count for certain boundary conditions.

Next, suppose that F is Gâteaux differentiable at φ. In addition, let W be an inner
product space such that V ⊆ W , and let (·, ·)W to denote the inner product. Following
[37], suppose that there exists a unique DF (φ) ∈ W such that

F ′(φ; δφ) =
(

DF (φ), δφ
)
W

, ∀δφ ∈ X ⊆ V ⊆ W , (3.3)

where DF (φ) is called the Riesz representative of the map F ′(φ, ·) or the Gâteaux gra-
dient.

Then, the evolution of the phase field φ(x, t) is driven by the energy functional F in
the direction opposite to its gradient, that is

∂φ

∂t
= −mDF (φ), (3.4)

with m ≥ 0. The form of the phase-field gradient flow (3.4) guarantees free-energy-
dissipation in time. Specifically, we find that

d
dt

F (φ) = F ′
(

φ;
∂φ

∂t

)
=
(

DF (φ),
∂φ

∂t

)
W

= −m∥DF (φ)∥2
W ≤ 0. (3.5)

Thus, the dissipation mechanism in the system depends on the choice of m ≥ 0 and
the considered inner product space W . We shall see in Section 3.2 how the choice of a
physically relevant space is affects this dissipation structure.

In this Chapter, we restrict ourselves to functionals that only depend on the phase-field
variable. Nevertheless, this framework can be expanded to depend on more state vari-
ables, allowing for further generalizations and extensions to other applications. Exam-
ples of these involve elasticity [147], flow through (deformable) porous media [29, 159],
and reaction-diffusion systems [120]. A further introduction to gradient flows can for
instance be found in [172, 133].

3.2 Examples of phase-field gradient flows

This Section aims to demonstrate how the classical phase-field equations, that is, the
Allen-Cahn and Cahn-Hilliard equations, can be derived within the gradient flow frame-
work for phase-field models.

For both systems, the governing functional is the so-called free-energy functional
F : V → R, that is

F (φ) :=
∫

Ω

(
W(φ) +

ε2

2
|∇φ|2

)
dx, (3.6)

where ε > 0 is a small parameter and W(φ) the smooth double-well function intro-
duced in Section 3.1. Depending on the exact growth rate of W(φ), V = H1(Ω) could
be sufficient. Throughout this Section, we consider suitable homogeneous boundary
conditions, and therefore let X := C∞

0 ⊆ W . Thus, the Gâteaux derivative (3.2) be-
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comes

F ′(φ; δφ) = lim
s→0

(F (φ + sδφ)−F (φ)

s

)
=
∫

Ω
(∂φψ δφ + ∂∇φψ · ∇(δφ))dx

=
∫

Ω
(∂φψ −∇ · (∂∇φψ))δφ dx

=
∫

Ω
(W ′(φ)− ε2∆φ)δφ dx, (3.7)

which holds for all δφ ∈ C∞
0 .

3.2.1 Allen-Cahn equation

In the following, we derive the L2-gradient flow of the functional (3.6). This gradient
flow is also known as the Allen-Cahn equation, which physical background we further
detail in Section 4.2. Using W := L2 in expression (3.3), we find

F ′(φ; δφ) =
(

DF (φ), δφ
)

L2(Ω)
=
∫

Ω
DF (φ)δφ dx. (3.8)

Then, in view of (3.7), we arrive at the expression for the Gâteaux gradient

DF (φ) = W ′(φ)− ε2∆φ. (3.9)

By substitution of the expression (3.9) in the general form of the evolution law (3.4), we
arrive at the L2-gradient flow

∂φ

∂t
= −m(W ′(φ)− ε2∆φ), (3.10)

which is the Allen-Cahn equation [7]. The corresponding dissipation structure is given
by

d
dt

F (φ) =
(

DF (φ),
∂φ

∂t

)
L2(Ω)

= −m∥DF (φ)∥2
L2(Ω) ≤ 0, (3.11)

where we have used that m ≥ 0.

3.2.2 Cahn-Hilliard equation

The Cahn-Hilliard equation is defined as the H−1-gradient flow. Using W := H−1 in
the expression for the Gâteaux gradient (3.3), we derive

F ′(φ; δφ) =
(

DF (φ), δφ
)

H−1(Ω)
=
∫

Ω
∇(∆−1DF (φ)) · ∇(∆−1δφ)dx. (3.12)

Here, the inverse Laplacian operator −∆−1 : H−1 → H1
0 is defined through the equiva-

lent problems

∆−1 f = v ⇐⇒ (∇v,∇η)L2(Ω) =< f , η >H−1,H1
0
, ∀η ∈ H1

0 , (3.13)

where the pairing < f , η >H−1,H1
0

can be written as the linear form

< f , η >H−1,H1
0
= f (η) :=

∫
Ω

f η dx, (3.14)
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if f is smooth enough. Thus, using v := ∆−1δφ and η := ∆−1DF (φ), we arrive at

F ′(φ; δφ) = −
∫

Ω
∆−1(DF (φ))δφ dx. (3.15)

Combining (3.7) and (3.15), we arrive at

F ′(φ; δφ) =
∫

Ω
∆−1(DF (φ))δφ dx =

∫
Ω
(W ′(φ)− ε2∆φ)δφ dx, (3.16)

and hence in weak sense

DF (φ) = −∆(W ′(φ)− ε2∆φ). (3.17)

Thus, the evolution equation reads

∂φ

∂t
= −m∆(W ′(φ)− ε2∆φ), (3.18)

which is the Cahn-Hilliard equation [27], subject to suitable homogeneous boundary
conditions. The corresponding dissipation structure reads

d
dt

F (φ) =
(

DF (φ),
∂φ

∂t

)
H−1(Ω)

= −m∥DF (φ)∥2
H−1(Ω) ≤ 0, (3.19)

where we have used that m ≥ 0.
Finally, by integrating the H−1-gradient flow (3.18) over the domain Ω, we obtain

d
dt

∫
Ω

φ dx =
∫

Ω

∂φ

∂t
dx

= − m
∫

Ω
∆(W ′(φ)− ε2∆φ)dx

= − m
∫

∂Ω
∇(W ′(φ)− ε2∆φ) · n da. (3.20)

This implies that the phase-field variable is conserved during its gradient flow. For
further (technical) details, please see [60, 37, 104].



Chapter 4

Variational Framework for
Phase-Field Models

This Chapter details how thermodynamically-consistent phase-field models can be de-
rived using a variational approach. In Section 4.1, we outline the general framework
following Gomez & van der Zee [78]. Section 4.2 shows how the classical phase-field
equations, that is, the Allen-Cahn and Cahn-Hilliard equations, can be derived using
this variational framework. In addition, we reflect on the physical interpretation of
these equations.

4.1 General framework

The foundation of the variational framework for phase-field models presented in this
Chapter rests upon the rational approach to thermodynamics by Truesdell and Noll
[165]. In this rational approach, a strict distinction between balance laws and constitu-
tive equations is made. Balance laws are the fundamental physical laws that govern the
conservation of quantities in systems, i.e. the conservation of mass, linear momentum,
angular momentum, energy, electric charge and magnetic flux, whereas constitutive
equations specify the material behaviour of the system of interest.

Following Gomez & van der Zee [78], the central idea of this thermomechanical
framework is that the postulate for the free-energy density ψ depends on the phase-field
variable and gradients thereof. This free-energy density is also known as the Helmholtz
free energy and describes the state of a system. The canonical class for the Helmholtz
free energy may thus be defined as

ψ = ψ̂(φ,∇φ), (4.1)

and the corresponding energy functional E : V → R reads

E =
∫

Ω
ψ̂(φ,∇φ)dx, (4.2)

defining the total free energy in the domain Ω ⊂ Rndim occupied by the material of
interest. Here, the vector space V is an appropriate Sobolev space on Ω for the choice of
the free energy ψ.

The second principle of the framework states that constitutive response functions
are allowed to depend on the variational derivative of the total free energy with respect
to the phase-field variable, as well as gradients of these variational derivatives. In the
style of Landau [102], we define the chemical potential as the variational derivative of
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the total free energy. In particular, for the class of free energy densities given in (4.1) the
chemical potential reads

µ :=
δE
δφ

= ∂φψ −∇ · (∂∇φψ), (4.3)

where the variational derivative is defined through the Gâteaux derivative, see Remark
4.1.

Remark 4.1 (The variational derivative as the Gâteaux gradient) The variational deriva-
tive of a functional can be found via the Gâteaux derivative, and is also known as the
Gâteaux gradient. Given the energy functional defined (4.2), the corresponding Gâteaux
derivative reads

E ′(φ; v) = lim
s→0

(E(φ + sv)− E(φ)

s

)
=
∫

Ω
(∂φψv + ∂∇φψ · ∇v)dx,

=
∫

Ω
(∂φψ −∇ · (∂∇φψ))v dx, (4.4)

which holds for all v ∈ C∞
0 . The Gâteaux gradient is then defined as

δE
δφ

:= ∂φψ −∇ · (∂∇φψ). (4.5)
□

Lastly, to ensure that the phase-field theory is thermomechanically-consistent, all con-
stitutive equations are restricted in a manner that yields an energy-dissipative (or entropy-
productive) phase-field model, that is, a model that is consistent with the second law of
thermodynamics.

To illustrate this, we consider an arbitrary part P ⊂ Ω in the domain occupied by
the material This part P is fixed in time, as we do not consider any deformation of the
material here. In general, the energy-dissipation property has the form

d
dt

E(P) = W(P)−D(P), (4.6)

where E(P) denotes the total energy of the system in P , D(P) ≥ 0 the dissipation and
W(P) the work from external forces or energy supplies across the boundary of P on the
material. Given the class of free energy functions in (4.1), energy-dissipation property
can be written as

d
dt

∫
P

ψ̂(φ,∇φ)dx =
∫
P

(
∂t φ(∂φψ̂ −∇ · (∂∇φψ̂)) +∇ · (∂t φ ∂∇φψ̂)

)
dx

=
∫
P

µ∂t φ dx +
∫

∂P
∂∇φψ̂ · ν∂t φ da, (4.7)

where ν denotes the outward normal to the boundary ∂P of the part P .
Finally, the energy-dissipation property (4.7) should be supplemented with the bal-

ance laws governing the problem of interest. Specifically, expression (4.7) requires a
balance law stating how the phase-field variable should evolve in time. After substitu-
tion of such a balance law, the external work W(P) and dissipation D(P) in the system
can be identified. Subsequently, following a Coleman-Noll type of procedure [35], any
constitutive relations present in the inequality should be restricted such that D(P) ≥ 0.
Furthermore, in case no external work is performed onto the system, i.e. W(P) = 0, the
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framework demands that the total free energy of the system in (4.7) decreases over time.

By extending this framework, a description for various classes of physical phenomena
involving a diffuse moving interface can be found. More specifically, these theories
can be established by (i) introducing new dependencies in the constitutive class for
the free energy, e.g. strain measures, and (ii) subsequently supplying the conservation
postulates relevant to the problem of interest. Again, (iii) constitutive relations should
be restricted by demanding that a non-negative dissipation term D can be identified.
The reader is referred to Gomez & van der Zee (2017) [78] for further examples and
derivations of such extensions, which includes models for immiscible two-fluid flow,
brittle fracture in solids, tumour growth and liquid-vapour phase transformations.

4.2 Classical thermodynamically-consistent equations

Two classic phase-field theories are the Allen-Cahn and the Cahn-Hilliard equation.
Both phase-field equations are used in material science to describe the evolution of mi-
crostructure over time. The Cahn-Hilliard equation was originally derived as a model
for phase separation of immiscible fluids [27, 28], while the Allen-Cahn equation7 was
proposed as a model for antiphase domain coarsening in Fe-Al alloys [7]. Both phase-
field theories are based on the same choice for the free-energy density function, which
physical background we detail in Subsection 4.2.1. The principal difference between the
two theories is that the Cahn-Hilliard equation accounts for conserved phase-field dy-
namics, whereas the phase-field variable is not conserved in the Allen-Cahn equation.
Using the variational framework in Section 4.1, we demonstrate that different postu-
lates for the mass balance are required to arrive at the Allen-Cahn (Section 4.2.2) and
Cahn-Hilliard (Section 4.2.2) equations.

4.2.1 Physical background

Let B be a body occupying a region of Euclidean point space E . More specifically, we
consider a material body B that is composed of two constituents, Bα and Bβ, which
comprise the entire region of B. In what follows, we assume that the body does not
undergo any deformation. Furthermore, we let ϱ(x, t) denote the local mass density of
the mixture. Then, the total mass in an arbitrary part P of the material is given by

M :=
∫
P

ϱ dx =
∫
P
(ϱα + ϱβ)dx = Mα + Mβ, (4.8)

where ϱi denotes the mass of each species per unit volume of the mixture, and Mi the
total mass of each species in the part, with i = α, β. The local mass fraction of each
component is then defined as

wi :=
ϱi

ϱ
, i = α, β. (4.9)

We postulate that the following balance law holds for each species in the material

d
dt

∫
P

ϱwi dx = −
∫

∂P
ȷi · ν da +

∫
P

Ri dx, i = α, β, (4.10)

with ȷi denoting the species mass flux and Ri the kinetic rate supplying species mass due
to internal interactions with the other constituent. For the sake of simplicity, we assume

7In literature, the Allen-Cahn equation is also referred to the Ginzburg-Landau equation, which is also
attributed to Landau and Ginzburg, and was proposed as a phenomenological model of superconductivity
[102].
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that the local density is constant, more specifically, let ϱ = 1, so that the pointwise mass
balance is given by

∂wi

∂t
+∇ · ȷi = Ri, i = α, β, (4.11)

as P is independent of time. Bearing in mind that wα + wβ = 1, we can write the
pointwise mass balances (4.11) as a single mass balance. For this purpose, we let the
phase-field variable be defined as φ := wα − wβ, which yields

∂φ

∂t
+∇ · ȷ = R, (4.12)

with ȷ := ȷα − ȷβ and R := Rα − Rβ. Furthermore, mixture theory arguments provide
us with Rα + Rβ = 1, as well as ȷα + ȷβ = 1 [89]. Thus, the phase-field variable φ here
denotes the local difference in mass fraction of the two species, and we have that

φ(x, t) :=


φα, in phase α,

φβ, in phase β,

∈ (φα, φβ), in the interfacial region,

(4.13)

where φα and φβ are the constant values the phase-field variable takes on in the pure
phases.

A classical choice for the free-energy density dates back to Cahn & Hilliard (1958) [27]
and is of the form

ψ = G(φ) +
ε2

2
|∇φ|2, (4.14)

for some function G(φ) and parameter ε. This classical function for the Helmholtz free
energy belongs to the class (4.1) and the corresponding energy functional reads

E =
∫
P

(
G(φ) +

ε2

2
|∇φ|2

)
dx, (4.15)

which is oftentimes referred to as the Ginzburg-Landau functional. The first term in
Equation (4.15) accounts for the homogeneous energy of the system, and is also known
as the free energy of mixing. The second term is also referred to as the interfacial energy.
It depends on the gradient of the phase-field variable and is scaled by the non-negative
parameter ε, which is a measure of the interfacial thickness. Following its definition
(4.3), the chemical potential corresponding to the canonical free-energy functional (4.15)
is given by

µ = G′(φ)− ε2∆φ, (4.16)

where ∆(·) denotes the Laplace operator, i.e. ∆(·) = ∇2(·) = ∇ · ∇(·).
In view of the classical energy functional (4.15), minimization of the system’s energy

can be achieved in two ways, namely (i) by reducing the contribution of homogeneous
energy term, meaning that the mixture’s composition shifts towards the equilibrium
mass fractions, a process also known as phase separation [176], and (ii) by minimizing
the interfacial energy via a coarsening process, thereby diminishing interfaces.

Various forms have been adapted for the homogeneous free-energy function G(φ)
governing the phase separation process, each with its own smoothness properties. For
a two-phase system, oftentimes a non-convex double-well potential W(φ) is used. A
general form for such a double-well potential [77] reads

W(φ) =
α

4

(
φ2 − β

α

)2

, (4.17)
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for positive constants α and β, which local minima are located at

φα = −
√

β

α
, and φβ =

√
β

α
, (4.18)

see Figure 4.1. Typically, one finds φα = −1 and φβ = 1 as the chosen equilibrium mass
fraction values in literature.

φα φγ φδ φβ

φ

W(φ)

Figure 4.1: Classical double-well potential governing phase separation. The equilib-
rium mass fractions are denoted by φα and φβ. They are also known as the binodal
points and mark the boundaries of the miscibility gap (φα, φβ), that is, the region in
which the mixture is unstable. Only in the spinodal region φ ∈ (φγ, φδ), in which
holds that ∂2W/∂φ2 < 0, small perturbations will lead to decomposition into the two
equilibrium mass fractions, a process known as phase separation driven by spinodal
decomposition [21]. The double-well potential is oftentimes a function of the tempera-
ture [138], which is not depicted here as we only consider isothermal processes in this
work.

4.2.2 Allen-Cahn equation

The Allen-Cahn equation accounts for non-conserved phase-field dynamics. Therefore,
we postulate that the following mass balance holds

∂φ

∂t
= R, (4.19)

with R being the mass supply. Notice, that we have obtained the above balance by
choosing ȷ = 0 in the general mass balance (4.12). Furthermore, by restricting the kinetic
rate R to the following constitutive class

R = R̂(φ,∇φ, µ). (4.20)

we aim to establish a thermodynamically-consistent phase-field model. Next, substitu-
tion of the mass-balance postulate (4.19) in the energy-dissipation law (4.7) yields

d
dt

∫
P

ψ dx =
∫
P

µR dx +
∫

∂P
∂∇φψ · ν∂t φ da. (4.21)

In the above expression (4.21), we identify the following terms

D(P) := −
∫
P

µR dx, and W(P) :=
∫

∂P
∂∇φψ · ν∂t φ da, (4.22)

as dissipation and external work, respectively. To ensure that D(P) ≥ 0, and thus that
the model is thermomechanically consistent, we further restrict the reaction term to the
following choice

R = −m(φ)µ, (4.23)
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with m(φ) ≥ 0 the so-called mobility8. Thus, for the constitutive choices ȷ = 0 and
R = −m(φ)µ, the mass balance (4.12) is given by

∂φ

∂t
= −m(φ)µ. (4.24)

Then, in view of the chemical potential (4.16), we arrive at the Allen-Cahn equation

∂φ

∂t
= −m(φ)

(
G′(φ)− ε2∆φ

)
, (4.25)

which is a reaction-diffusion type of partial differential equation [78]. The underlying
dissipation structure of the Allen-Cahn equation becomes clear for W(Ω) = 0, that is,
the total energy in the system decreases over time in case no external work is performed
on the system. Thus, when the system is subject to natural or periodic boundary condi-
tions for φ and µ, we find D(Ω) ≥ 0, see Theorem 4.A.

Theorem 4.A (Energy dissipation structure of the Allen-Cahn equation) Let ∇φ · ν
= ∇µ · ν = 0 be on ∂Ω, or assume periodic boundary conditions for φ and µ on ∂Ω.
Furthermore, let m(φ) ≥ 0. Then, the Allen-Cahn equation (4.25) ensures that its total
energy (4.15) decreases over time. In particular, the dissipation is given by

D(Ω) =
∫

Ω
m(φ)|µ|2 dx. (4.26)

□

Proof. Take P = Ω. In view of the boundary conditions, the energy-dissipation law
(4.21) reads

d
dt

E = −
∫

Ω
m(φ)|µ|2 dx +

∫
∂Ω

ε2(∇φ · ν)∂t φ da

= −
∫

Ω
m(φ)|µ|2 dx ≤ 0, (4.27)

with E (4.15) the Ginzburg-Landau energy functional and R = −m(φ)µ the kinetic
rate. ■

4.2.3 Cahn-Hilliard equation

For the derivation of the Cahn-Hilliard equation, we assume that mass is conserved,
implying that

∂φ

∂t
+∇ · ȷ = 0, (4.28)

which corresponds to setting R = 0 in (4.12). Let the constitutive class for the species
mass flux ȷ be given by

ȷ = ȷ̂(φ,∇φ, µ,∇µ). (4.29)

Using the mass-balance postulate (4.28) in the energy-dissipation law (4.7) yields

d
dt

∫
P

ψ dx = −
∫
P

µ∇ · ȷ dx +
∫

∂P
∂∇φψ · ν∂t φ da, (4.30)

8The mobility is often assumed to be constant, although the degenerate mobility defined by m(φ) =
1
4
(
1 − φ2) agrees better to experimental results, especially in case of Ostwald ripening, viz. a process

where particles smaller than a characteristic length scale vanish, so that larger particles can grow. The
underlying idea is that in the pure phases (here φα = −1 and φβ = 1), the mobility vanishes and transport
is thus restricted to the interfacial region.
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which can be rewritten as

d
dt

∫
P

ψ dx =
∫
P

ȷ · ∇µ dx +
∫

∂P
(∂∇φψ · ν∂t φ − µȷ · ν)da. (4.31)

The following terms can then be identified as the dissipation and work from external
forces, respectively,

D(P) = −
∫
P

ȷ · ∇µ dx, and W(P) =
∫

∂P
(∂∇φψ · ν∂t φ − µȷ · ν)da, (4.32)

where the last term in the integrand of (4.32)2 can be interpreted as the free-energy flux.
The following constitutive choice for the species mass flux ȷ guarantees free-energy
dissipation

ȷ = ȷ̂(φ,∇µ) = −m(φ)∇µ, (4.33)

with m(φ) ≥ 0 being the mobility. Thus, the mass-balance postulate (4.28) for the Cahn-
Hilliard phase-field theory reads

∂φ

∂t
= ∇ · (m(φ)∇µ). (4.34)

The Cahn-Hilliard equation is then given by

∂φ

∂t
= ∇ · (m(φ)∇(G′(φ)− ε2∆φ)), (4.35)

which is a fourth-order, non-linear partial differential equation describing so-called up-
hill or backwards diffusion, i.e. diffusion against the phase-field gradient, while con-
serving the system’s mass [78]. The underlying energy dissipation structure becomes
clear in absence of any external work on the system, that is, when natural or periodic
boundary conditions are used for φ and µ, see Theorem 4.B.

Theorem 4.B (Energy dissipation structure of the Cahn-Hilliard equation) Let ∇φ · ν
= ∇µ · ν = 0 be on ∂Ω, or assume periodic boundary conditions for φ and µ on ∂Ω.
Furthermore, let m(φ) ≥ 0. Then, the Cahn-Hilliard equation (4.35) ensures that its
total energy (4.15) decreases over time. In particular, the dissipation is given by

D(Ω) =
∫

Ω
m(φ)|∇µ|2 dx. (4.36)

□

Proof. Consider P = Ω. For the natural (or periodic) boundary conditions, the energy-
dissipation law in Equation (4.31) can be written as

d
dt

E = −
∫

Ω
m(φ)∇µ · ∇µ dx +

∫
∂Ω

(ε2∇φ · ν∂t φ + m(φ)µ∇µ · ν)da

= −
∫

Ω
m(φ)|∇µ|2 dx ≤ 0, (4.37)

with E (4.15) the Ginzburg-Landau energy functional and ȷ = −m(φ)∇µ the species
mass flux. ■





Chapter 5

Microkinetic Framework

In this Chapter, we present the microkinetic framework for phase-field theories. This
framework was developed by Fried & Gurtin [64, 63], and further generalized by Gurtin
(1996) [84]. In Section 5.1, a general introduction to the framework is given. In Section
5.2, we demonstrate how the classical phase-field equations can be derived within this
framework, that is the generalized Allen-Cahn and Cahn-Hilliard equations.

5.1 General microkinetic framework

Following Gurtin (1996) [84], we here present the microkinetic framework for phase-
field models. Central to this framework are that (i) balance laws are distinguished from
constitutive equations; and that (ii) the governing equations are based on a balance
law for microforces. The motivation for this microforce balance is based on the idea
that energy-based physical laws should account for the expenditure of power (work),
associated with the kinematical processes. For phase-field theories, these kinematical
processes are given by temporal changes in the phase-field variable, which represents
the ordering of the system of interest, or its so-called microstructure.

Fried & Gurtin postulated that changes in the microstructure, e.g. the rearrangement
of molecules of densities, can be accredited to so-called microforces. These microforces,
that is the internal microforce π and external microforce γ, are scalar quantities, which
are related to a vector quantity ξ, also known as the microstress. Together, these physical
quantities form the balance of microforces, which reads∫

P
(π + γ)dx = −

∫
∂P

ξ · ν da, (5.1)

for each part P in a material body B. Here, ν denotes the outward normal to the bound-
ary ∂P of P . Using the divergence theorem, followed by the localization argument, we
find that the pointwise balance of microforces is given by

∇ · ξ + π + γ = 0. (5.2)

Then, the second law of thermodynamics states that the rate in free energy can not
exceed the external work, and thus that the following dissipation inequality should
hold

D(P) = Wext(P)− d
dt

∫
P

ψ dx ≥ 0, (5.3)

with D the non-negative dissipation term and ψ the free-energy density. Here, the ex-
ternal work Wext(P) is given by

Wext(P) =
∫
P

γ∂t φ dx +
∫

∂P
(ξ · ν)∂t φ da. (5.4)
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where the first term represents the power expended on the atoms within P by sources
external to the body, whereas the second term reflects the power expended across the
boundary ∂P by configurations exterior to P , yet neighbouring its boundary ∂P .

Following a similar procedure to the one outlined in Chapter 4, constitutive classes
chosen for physical quantities need to be restricted so that they are compatible with the
dissipation inequality (5.3). Using this approach, thermodynamically-consistent phase-
field theories can be derived.

The framework outlined above has been extended by Espath & Calo (2021) [55] and
also by Espath (2023) [54]. In these works, phase-field gradient theories for enriched
continua are proposed, based on Fosdick’s approach [62, 61]. In addition to the mi-
crostress and external microforce, these theories account for a surface-couple micro-
traction, a boundary-edge and a internal-edge microtractions emerging from internal
surface interactions. Again, the balance equations are first derived in a general manner
independent of constitutive laws. Then, thermodynamical considerations constrain the
constitutive choices, thereby providing foundation for second-grade phase field equa-
tions such as the Swift-Hohenberg equation and the phase-field crystal equation [55].

5.2 Classical phase-field equations

Similar to the variational framework discussed in Chapter 4, we start by considering
the free energy in the system of interest, which defined on an arbitrary part P in the
material body takes the following form

E =
∫
P

ψ(φ,∇φ)dx. (5.5)

In the following Subsections, we will use this total free-energy to establish the general-
ized Allen-Cahn equation and Cahn-Hilliard equation.

5.2.1 Generalized Allen-Cahn equation

To derive the Allen-Cahn equation, we postulate that the following dependencies are
allowed

ξ = ξ̂(φ,∇φ), and π = π̂(φ,∇φ, ∂t φ). (5.6)

Then, in view of (5.5), the pointwise dissipation inequality can be written as

−(π + ∂φψ)∂t φ + (ξ − ∂∇φψ) · ∂t(∇φ) ≥ 0, (5.7)

from which follows that
ξ := ∂∇φψ. (5.8)

Additionally, we conclude from inequality (5.7) that

π := −∂φψ + πdis, (5.9)

with πdis ≤ 0 a dissipative internal microforce, which can be of the class

πdis = −β(φ,∇φ, ∂t φ)∂t φ, (5.10)

provided that the constitutive modulus β(φ,∇φ, ∂t φ) ≥ 0. Finally, using the quantities
(5.8) and (5.9) in the microforce balance (5.2), we arrive at the generalized Allen-Cahn
equation

β(φ,∇φ, ∂t φ)
∂φ

∂t
= ∇ · (∂∇φψ)− ∂φψ + γ. (5.11)
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5.2.2 Generalized Cahn-Hilliard equation

Using a procedure similar to the one used to derive the generalized Allen-Cahn equa-
tion in Section 5.2.1, we here establish a generalized form of the Cahn-Hilliard equation.
In addition to the balance of microforces, we also require a species mass balance, which
is given by

∂φ

∂t
+∇ · ȷ = R. (5.12)

Now, apart from the external work (5.4), the following contributions arise in the dissi-
pation inequality due to the species transport

T (P) =
∫
P

µR dx −
∫

∂P
µȷ · ν da, (5.13)

where µ denotes the chemical potential. Next, let the constitutive classes be given by

ξ = ξ̂(φ,∇φ, µ,∇µ), (5.14)

π = π̂(φ,∇φ, µ,∇µ), (5.15)

ȷ = ȷ̂(φ,∇φ, µ,∇µ). (5.16)

Taking into account the energy transfer due to species transport (5.13), the pointwise
dissipation inequality reads

(µ − π − ∂φψ)∂t φ + (ξ − ∂∇φψ) · ∂t(∇φ)− ȷ · ∇µ ≥ 0. (5.17)

From this inequality follows that

ξ := ∂∇φψ, and π := µ − ∂φψ. (5.18)

Furthermore, let
ȷ := −A(φ,∇φ, µ,∇µ)∇µ, (5.19)

with A(φ,∇φ, µ,∇µ) the mobility tensor consistent with the inequality

∇µ · A(φ,∇φ, µ,∇µ)∇µ ≥ 0. (5.20)

Thus, in view of expressions (5.2), (5.12), (5.18) and (5.19), the generalized Cahn-Hilliard
equation reads

∂φ

∂t
= ∇ · A∇

(
∂φψ −∇ · (∂∇φψ)− γ

)
+ R. (5.21)





Chapter 6

Summary of Perspectives

In this Chapter, we provide a summary of the various frameworks for the modelling of
moving interfaces detailed in Chapters 2 - 5.

Geometric gradient-descent flows A geometric gradient-descent flow consists of a
choice for a shape functional J (Ω(t)) and a non-positive operator G. Together these
establish a geometric gradient-descent flow, in which an interface Γ(t) = ∂Ωt evolves
with the normal velocity

V(x, t) = Gg(Γ(t))(x), ∀x ∈ Γ(t), (6.1)

where the Hadamard shape gradient g(Γ(t)) follows from the choice for J (Ω). This
motion ensures minimization of the shape functional, that is

dJ (Ω(t))
dt

= −
∫

Γ(t)
g(Γ(t))Gg(Γ(t))dΓ ≤ 0. (6.2)

Phase-field models as gradient flows A phase-field gradient flow is a process in
which the steepest descent of a phase-field dependent functional F : V → R is fol-
lowed. Here, the dissipation mechanism is characterised by the gradient DF (φ) ∈ V ⊆
W , which may be subject to constraints arising from boundary conditions. Thus, to de-
velop a phase-field model within this gradient flow framework suitable choices should
be made for the (i) functional F (φ) and (ii) the dissipation mechanism characterized by
the norm ∥DF (φ)∥2

W . The phase-field variable evolves in the direction opposite to its
gradient DF (φ), that is

∂φ

∂t
= −mDF (φ), (6.3)

with m > 0. The associated dissipation structure reads

d
dt

F (φ) =
(

DF (φ),
∂φ

∂t

)
W

= −m(φ)∥DF (φ)∥2
W ≤ 0. (6.4)

Variational framework for phase-field models Derivation of a phase-field theory
within this framework requires (i) a choice for the energy functional E(φ) through the
energy density function ψ = ψ̂(φ,∇φ, ·), which defines (ii) a chemical potential i.e. µ :=
δE/δφ, and (iii) a postulate for the (mass) balance law, in which thermodynamically-
consistent choices for the response functions are made, e.g. for the flux ȷ = ȷ̂(φ,∇φ, µ,
∇µ, ·) and kinetic rate R = R̂(φ,∇φ, µ,∇µ, ·). Here, the mass balance postulate forms
the foundation of the evolution equation for the phase-field variable, which reads

∂φ

∂t
+∇ · ȷ̂ = R̂, (6.5)
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and can be supplemented with balance laws for other state variables (·). The choice for
ψ determines the form of the work W(P) and dissipation D(P) terms appearing in the
second energy law, which is given by

d
dt

(∫
P

ψ̂ dx
)
= W(P)−D(P), ∀P ∈ Ω. (6.6)

Then, a Coleman-Noll type of procedure restricts the classes of the constitutive response
functions (ȷ, R, ·), so that a non-negative dissipation term, i.e. D(P) ≥ 0, can be identi-
fied for all conceivable processes.

Microkinetic framework Central to phase-field theories derived within the micro-
force framework is a postulate for the balance of microforces, which reads

∇ · ξ + π + γ = 0, (6.7)

in addition to a free-energy density function ψ, that defines the free-energy in a part P
as

E =
∫
P

ψ dx. (6.8)

By accounting for the power expenditures in the system as a result of the temporal
changes in the phase-field variable, the partwise free-energy imbalance or dissipation-
inequality reads

D(P) = Wext(P)− d
dt

∫
P

ψ dx ≥ 0, (6.9)

where Wext(P) accounts for the external work by the microforces. This dissipation-
inequality is used to restrict the constitutive response functions in a suitable way. Sub-
stitution of these restrictive classes into the considered balance laws produces a phase-
field theory. Note that this framework can be further extended by supplementing it
with additional balance laws and by accounting for the related power expenditures in
the free-energy imbalance.
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Chapter 7

Introduction and Background

This second Part of this thesis focusses on phase-field models describing adhesion be-
tween moving interfaces. Motivation for the theoretical and computational study into
adhesive interactions is presented in Section 7.1. Related literature on sharp-interface
limits and equilibrium states is detailed in Section 7.2. In Section 7.3, we summarize the
main aims and provide an outline of the contents in this Part.

7.1 Adhesion and its application in cell biology

Material behaviour is determined by its molecular arrangement and interactions. These
intermolecular interactions are governed by electromagnetic forces, which may be weak
or strong in nature depending on the type of molecules interacting. When these forces
result in an attractive and binding effect between two distinct materials, we refer to it
as adhesion. This adhesive interaction is often dependent on the local surface proper-
ties, such as its roughness or specific intermolecular forces, which may play a role in
the contact between the interfaces [94]. Understanding and control of these adhesive
properties is important in material design, manufacturing, and development of new
technologies in various disciplines.

An application of adhesion that we wish to highlight here, as it involves an active
interface, can be found within the field of cell biology, namely the interaction between
two cell membranes. Such adhesive interactions can also be present between a cell
membrane and the extracellular matrix (ECM) or substrate material, respectively. Pro-
teins expressed at the cell membrane establish bonds, thereby effectively adhering the
two interfaces. At the inside of the cell these transmembrane proteins are connected to
the cytoskeleton, a network of filaments responsible for the cell’s spatial organisation
and structure. On the outside of the cell, the proteins are either connected to proteins
expressed at another membrane or to the extracellular matrix material, which contains
a network of fibers and macromolecules providing the ECM its structure and elasticity.
This way these transmembrane proteins play a primary role in the transfer of mechani-
cal forces and the regulation of cell attachment and movement [6].

A cell’s adhesion onto a substrate material or another cell membrane can be de-
scribed in three stages: (i) sedimentation (a process of initial attachment which is usu-
ally driven by electrostatic interactions); (ii) flattening of the cell onto the substrate ma-
terial regulated by membrane protein bonding; and (iii) subsequent spreading of the
cell and internal reorganization of the cell’s cytoskeleton, see Figure 7.1. In this last
stage, the formation of so-called focal adhesions, i.e. transmembrane proteins linked to
both the ECM and the cytoskeleton, is key to establishing stable bonds. In general, the
transmembrane proteins mediate the adhesion strength, in particular during the last
two stages of adhesion, as their interactions with the exterior substrate or cell triggers
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cellular responses such as cytoskeleton rearrangements and production, as well as the
expression of more transmembrane proteins [93, 95].

(a) Sedimentation. (b) Cell attachment. (c) Stable adhesion.

Figure 7.1: Schematic representation of three different stages of cellular adhesion:
(a) sedimentation, (b) cell attachment and (c) cell spreading and stable adhesion. The
transmembrane proteins regulate the adhesive interaction with the substrate material.
This Figure is based on [93, 95].

Over the recent years, phase-field modelling has been used intensively for the study of
biological problems, for instance in tumour modelling [112, 89] and angiogenesis (the
formation of new blood vessels) [170, 171, 154]. On cell level, phase-field variables have
been introduced to describe cellular movement, including adhesive dynamics and cell
polarization [130, 182, 180, 42, 181, 126], as well as cell morphodynamics (shape change)
[150]. Apart from certain computational benefits, a main advantage of using phase-
field modelling is that extension to multiple phases is often straightforward, so that for
instance the study of multi-cellular migration and multicellular interactions [127, 130]
are within reach.

7.2 Sharp-interface limit and equilibrium states

Phase-field solutions are transition layers marking the diffuse interface. Through the
small, yet finite, parameter ε controlling the thickness of the diffuse interface, phase-
field models are intrinsically connected to geometric problems. While for some phase-
field models it is known what steady states look like geometrically, e.g. for the Cahn-
Hilliard equation steady states are perimeter (resp. area in 3-D) minimizers such as
circles in 2-D (resp. spheres in 3-D), for complex phase-field models these equilibrium
states may be much more nontrivial, and are generally not known a priori.

Standard approaches for proving the convergence of phase-field models are based
on the theory of matched asymptotic expansions, see for instance [24, 91, 103]. The main
focus of this type of analysis is on the partial differential equations, that is, to relate the
equations evolving the diffuse-interface on a fixed domain to a set of partial differential
equations communicating via boundary conditions at a moving sharp interface. In these
standard approaches, however, the behaviour in the sharp limit of the diffuse-interface
energy functional, on which basis the phase-field equations are derived, is often not
considered.

Equilibrium configurations of a fluid within the Van der Waals-Cahn-Hilliard the-
ory of phase-transitions, and the corresponding sharp-interface limit have been studied
extensively [123, 114, 56, 23, 32]. The connection of the governing diffuse-interface en-
ergy, i.e. the Ginzburg-Landau functional E ε

GL(φ), to the interfacial area and surface
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tension in the sharp limit is well established. Moreover, it is known that geometrically,
the variation of interfacial area is related to the mean curvature of the surface. These
convergence results can be summarized in the following diagram

E ε
GL(φ) =

∫
Ω

( 1
4ε
(φ2 − 1)2 +

ε

2
|∇φ|2

)
dx −−−−−−−→

ε→0
EGL(Γ) =

∫
Γ

da

variation of φ

y y variation of Γ

δE ε
GL(φ)

δφ
=

1
ε

φ(φ2 − 1)− ε∆φ
at {φ=0}→Γ−−−−−−−→

ε→0

δEGL(Γ)
δΓ

· n = K

where φ denotes the phase-field variable, K the mean curvature, Γ the sharp interface
and n the unit normal.

More recently, similar approaches have been applied to a newer class of phase-field
models, in which the diffuse interfaces are governed by curvature-dependent energies.
Such models and their asymptotic analysis are relevant in the study of vesicle dynam-
ics and their equilibrium configurations [43]. In the sharp-interface limit, the phase-
field formulation is found to be connected to the Willmore problem, with the diffuse-
interface energy converging to the bending energy and the variational derivative of the
phase-field based energy to the Willmore stress, respectively. The following diagram
shows these connections

E ε
B(φ) =

ε

2

∫
Ω

(
∆φ − 1

ε2 (φ2 − 1)φ
)2

dx −−−−−−−→
ε→0

EB(Γ) =
∫

Γ
K2 da

variation of φ

y y variation of Γ

δE ε
B(φ)

δφ
= ε∆ f − 1

ε
(3φ2 − 1) f

at {φ=0}→Γ−−−−−−−→
ε→0

δEB(Γ)
δΓ

· n = −∆ΓK − 2K(K2 − G)

thereby summarizing the analysis in [44, 144, 174]. Here G denotes the Gaussian curva-
ture, and f (φ) := ∆φ − 1

ε2 (φ2 − 1)φ.

7.3 Aims and outline

The objective of this second Part is to develop a phase-field theory for adhesive inter-
actions and to further characterize the proposed adhesion model through asymptotic
methods and numerical studies.

To this end, we consider the variational framework presented in Chapter 3 to ensure
thermodynamical-consistency of the models for adhesion. The phase-field adhesion
framework is based on a postulate for the energy functional, which includes a term
representing the adhesive interaction between one diffuse interface and another. This
framework is detailed in Chapter 8, in which we present two type of adhesion models:
the first describing the interaction of a moving phase-field with a steady substrate field,
and the second describing these adhesive interactions between multiple moving phase
fields.

To characterize the steady states of the proposed adhesion phase-field problem, we
first consider a simpler problem, i.e. the Cahn-Hilliard phase-field model. In Chapter
9, we develop an asymptotics framework for the characterization of its equilibrium so-
lutions. For this purpose, we exploit the connection between the diffuse-interface and
sharp-interface energy functional, as illustrated in the first diagram in Section 7.2, to
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finally arrive at a description of the sharp-interface steady states of the Cahn-Hilliard
problem.

The formal asymptotics detailed in Chapter 9 form the foundation of the conver-
gence study for the adhesion problem presented in Chapter 10. In Chapter 10, we
demonstrate that the adhesion model’s diffuse-interface energy converges to a sharp-
interface energy in the sharp-interface limit. We conclude the Chapter by characterizing
the minimizers of this sharp-interface energy, which provides a geometrical interpreta-
tion of the phase-field adhesion problem and insight into the role of the parameters.

In Chapter 11, we study the adhesive interactions between steady and moving inter-
faces numerically. To this end, we employ an energy-stable time-discretization scheme
exploiting the gradient flow structure of the phase-field adhesion models. The pre-
sented results demonstrate the effect of curvature, adhesion strength and interfacial
thickness on the equilibrium shapes.

Chapter 12 concludes this second Part by summarizing the main contributions, and
discusses future directions for the phase-field adhesion theory.



Chapter 8

Phase-Field Models for Adhesion

In this Chapter, we present a novel phase-field based approach to study adhesive inter-
actions between moving interfaces. The models presented here are developed within
the variational framework discussed in Chapter 4, thereby making these models ther-
modynamically consistent. In Section 8.1, we present the phase-field equations of adhe-
sive interactions between a moving phase-field and a steady substrate, which we refer
to as the single-phase adhesion model. Section 8.2 presents a multi-phase adhesion model, in
which multiple phase-fields can undergo adhesive interactions with each other. In both
Sections, the model’s energetic structure and underlying mechanics are detailed.

8.1 Single-phase adhesion

Following the variational framework for phase-field models detailed in Section 4.1, we
postulate a free-energy density function, which describes the state of the system. Here,
we consider a phase-field φ(x, t) that can interact with a steady substrate field φs(x) in
the domain Ω. In Figure 8.1 the configuration of this adhesion problem is depicted.

Then, given a sufficiently smooth φs(x) marking the diffuse interface of the adhesive
substrate, the single-phase adhesion energy density reads

ψsingle(φ,∇φ) :=
1
ε

W(φ) +
ε

2
|∇φ|2 + εσB(φ)B(φs)∇φ · ∇φs, (8.1)

where ε > 0 denotes a small parameter governing the thickness of the diffuse interface.
Here, we consider a double-well potential W(φ) of the class in (4.17), with equilibrium
phase φ− = −1 and φ+ = 1. Furthermore, σ is a non-negative constant controlling
the adhesive interaction. In the single-phase adhesion free-energy density (8.1), the
function B(φ) is any function subject to

lim
|ξ|→∞

B(ξ)ξ = 0, and B(φ) ∈ L∞(R), 9 (8.2)

such that B(φ) vanishes outside the diffuse interface of the respective field. Thus, the
terms B(φ) and B(φs) ensure that the adhesive interaction is regularized to the shared
diffuse interface of the phase-field φ and the substrate field φs. Such regularizing func-
tions have been used before to solve partial differential equations on stationary [140],
as well as moving interfaces [141, 47, 113, 50].

Then, the energy functional defined on the domain Ω corresponding to the free-
energy density reads

E ε
single(φ) :=

∫
Ω

(
1
ε

W(φ) +
ε

2
|∇φ|2 + εσB(φ)B(φs)∇φ · ∇φs

)
dx, (8.3)

9Alternatively, we may use B ∈ L∞([φ−, φ+]) such that B(φ) has a truncated extension to L∞(R).
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φ = 1

φs = −1

φs = 1

φ = −1

φ ∈ (−1, 1)

φs ∈ (−1, 1)

n

ns Γs

Γ

Figure 8.1: Configuration of the single-phase adhesion problem. The material of in-
terest is defined through the phase-field variable φ(x, t), and the adhesive substrate is
represented by a steady field φs(x). In the sharp-interface representation of this prob-
lem the material’s interface is denoted by Γ, whereas the substrate’s interface is denoted
by Γs. Here, we have used φ− = −1 and φ+ = 1 to illustrate the fully separated phases.

To distinguish between the different contributions in the total energy functional (8.3),
we introduce the following functionals

Ehom(φ) :=
∫

Ω

1
ε

W(φ)dx, (8.4)

Eint(φ) :=
∫

Ω

ε

2
|∇φ|2 dx, (8.5)

Eadh(φ) :=
∫

Ω
εσB(φ)B(φs)∇φ · ∇φs dx. (8.6)

The homogeneous energy Ehom and the interfacial energy Eint form the classical Ginzburg-
Landau energy functional (4.15). These contributions ensure that stable configurations
consist of fully-separated phases, which are separated by the least amount of interface.
The interface is diffuse in nature and its thickness scales with ε. The postulated adhe-
sion energy Eadh implies that the system favours states in which the diffuse interfaces of
the phase-field and the substrate field overlap. From a sharp-interface viewpoint, one
could say that the lowest contributions from the adhesion energy correspond to con-
figurations in which the normal fields orienting the interfaces Γ and Γs are aligned in
opposite direction, that is ns · n = −1, see also Figure 8.1. Relating this sharp-interface
interpretation to the diffuse-interface approach, we find that these normal fields scale
with gradient of the respective phase-fields, that is ns ∼ ∇φs and n ∼ ∇φ. Lastly,
the regularizing terms B(φ) and B(φs) restrict this adhesive interaction to the region in
close proximity of both interfaces. Following the procedure discussed in Chapter 4, we
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define the chemical potential for this system as

µ :=
δE ε

single

δφ
= ∂φψsingle −∇ · (∂∇φψsingle)

=
1
ε

W ′(φ)− ε∆φ − εσB(φ)∇ · (B(φs)∇φs)

=
1
ε

W ′(φ)− ε∆φ − εσB(φ)(B(φs)∆φs + B′(φs)|∇φs|2), (8.7)

Next, we supply the energy functional with postulate for the constituent mass bal-
ance. Similar to the Cahn-Hilliard model presented in Section 4.2.3, we assume that the
phase-field variable is conserved. This implies that no new material is locally produced
in the system of interest, and thus the pointwise mass balance reads

∂φ

∂t
= −∇ · ȷ. (8.8)

Furthermore, we employ the following constitutive choice for the species mass flux

ȷ = ȷ̂(µ) = −∇µ. (8.9)

Substituting the constitutive choice for the species mass flux (8.9) into the pointwise
mass balance (8.8) yields the phase-field equations for the single-phase adhesion model.
In their mixed formulation, these read

∂φ

∂t
= ∆µ,

µ =
1
ε

W ′(φ)− ε∆φ − εσB(φ)(B(φs)∆φs + B′(φs)|∇φs|2),
(8.10)

which are subject to appropriate initial and boundary conditions, and require a suitable
function for the adhesive substrate φs.

This model is a thermodynamically-consistent phase-field model, as the constitutive
choice (8.9) ensures energy dissipation, i.e. we can identify a dissipation term D ≥ 0 in
absence of any external work, see Theorem 8.A.

Theorem 8.A (Energy dissipation structure of the single-phase adhesion model) Let
∇φ · ν = ∇φs · ν = ∇µ · ν = 0 on ∂Ω, or assume periodic boundary conditions for φ,
φs and µ on ∂Ω. Then, the single-phase adhesion equations (8.10) ensure that its total
energy (8.3) decreases over time. In particular, the dissipation is given by

D(Ω) =
∫

Ω
|∇µ|2 dx, (8.11)

for the chemical potential specified in (8.7). □

Proof. For the single-phase adhesion energy functional E ε
single (8.3), the energy-dissipation

law (4.31) becomes

d
dt

E ε
single =

∫
Ω

µ∆µ dx +
∫

∂Ω
ε(∇φ · ν + εσB(φ)B(φs)∇φs · ν)∆µ da

= −
∫

Ω
|∇µ|2 dx ≤ 0, (8.12)

where we have used that ȷ = −∇µ and that ∇φ · ν, ∇φs · ν and ∇µ · ν vanish on ∂Ω.■
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8.2 Multi-phase adhesion

In this Subsection, we introduce a model for adhesion between multiple phase-field
variables, i.e. φ1(x, t), . . . , φk(x, t), with k being the number of constituents in the do-
main Ω. We arrive at this model by extending the theory presented in Section 8.1 to
multiple phase-field variables. Thus, in view of the single-phase energy density func-
tion (8.1), the multi-phase adhesion energy density function reads

ψmulti(φ1, . . . , φk,∇φ1, . . . ,∇φk) :=
k

∑
i=1

(
1
ε

W(φi) +
ε

2
|∇φi|2

)

+
k

∑
i=1

k

∑
j ̸=i

εσij

2
B(φi)B(φj)∇φi · ∇φj, (8.13)

where, for the sake of simplicity, we have assumed that the thickness of the diffuse
interface of each phase-field variable scales with the same ε > 0. Again, we consider
a double-well potential W(φ) of the class in (4.17), with equilibrium phase φ− = −1
and φ+ = 1 for each constituent. Furthermore, the adhesion strength of each adhesive
interaction is governed by σij > 0, where we have assumed that the adhesive interaction
is symmetric, that is, constituent i interacts as strongly with j as constituent j with i,
and hence σij = σji. Lastly, the regularization functions B(φ) are again defined as in
expressions (8.2).

The multi-phase adhesion energy functional corresponding to this free-energy den-
sity function is given by

E ε
multi(φ1, . . . , φk) :=

∫
Ω

( k

∑
i=1

(
1
ε

W(φi) +
ε

2
|∇φi|2

)

+
k

∑
i=1

k

∑
j ̸=i

εσij

2
B(φi)B(φj)∇φi · ∇φj

)
dx, (8.14)

which contains the following contributions

Ehom(φi) :=
∫

Ω

1
ε

W(φi)dx, (8.15)

Eint(φi) :=
∫

Ω

ε

2
|∇φi|2 dx, (8.16)

Eadh(φi) :=
∫

Ω

k

∑
j ̸=i

εσij

2
B(φi)B(φj)∇φi · ∇φj dx. (8.17)

for each constituent i. Then, the chemical potential associated with each φi is defined as

µi :=
δE ε

multi
δφi

= ∂φi
ψmulti −∇ · (∂∇φi

ψmulti),

=
1
ε

W ′(φi)− ε∆φi −
k

∑
j ̸=i

εσijB(φi)∇ · (B(φj)∇φj),

=
1
ε

W ′(φi)− ε∆φi −
k

∑
j ̸=i

εσijB(φi)(B(φj)∆φj + B′(φj)|∇φj|2), ∀i = 1, . . . , k. (8.18)
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Following the single-phase adhesion model’s derivation, we use the pointwise mass
balances

∂φi
∂t

= −∇ · ȷi, ∀i = 1, . . . , k. (8.19)

Furthermore, we employ the following constitutive choice for the species mass flux

ȷi = ȷ̂i(µi) = −∇µi. (8.20)

Finally, by substituting the constitutive choice for the species mass flux (8.20) into the
pointwise mass balances (8.19), we obtain the phase-field equations for the multi-phase
adhesion model. In their mixed formulation, these are given by

∂φi
∂t

= ∆µi, ∀i = 1, . . . , k,

µi =
1
ε

W ′(φi)− ε∆φi

−
k

∑
j ̸=i

εσijB(φi)(B(φj)∆φj + B′(φj)|∇φj|2), ∀i = 1, . . . , k,

(8.21)

which are subject to suitable initial and boundary conditions. This model can also be
classified as a thermodynamically-consistent model, see Theorem 8.B.

Theorem 8.B (Energy dissipation structure of the multi-phase adhesion model) Let
∇φi · ν = ∇µi · ν = 0 on ∂Ω, or assume periodic boundary conditions for φi and µi on
∂Ω. Then, the multi-phase adhesion equations (8.21) ensure that the energy functional
(8.14) decreases over time. In particular, the dissipation is given by

D(Ω) =
∫

Ω

k

∑
i=1

|∇µi|2 dx, (8.22)

for the chemical potentials specified in (8.18). □

Proof. The energy-dissipation law for the multi-phase adhesion energy functional E ε
multi

(8.14) can be written as

d
dt

E ε
multi =

∫
Ω

k

∑
i=1

(
(∂φi

ψmulti −∇ · (∂∇φi
ψmulti))∂t φi +∇ · (∂t φi ∂∇φi

ψmulti)
)

dx

=
∫

Ω

k

∑
i=1

µi∆µi dx +
∫

∂Ω

k

∑
i=1

(
ε∇φi · ν +

k

∑
j ̸=i

εσij

2
B(φi)B(φj)∇φj · ν

)
∆µi da

= −
∫

Ω

k

∑
i=1

|∇µi|2 dx ≤ 0, (8.23)

where we have used the phase-field equations (8.21) and that the terms involving ∇φi ·
ν and ∇µi · ν vanish on ∂Ω, for all i = 1, . . . , k. ■





Chapter 9

Sharp-Interface Limit of the
Cahn-Hilliard Energy

This Chapter investigates the shapes of steady states of the Cahn-Hilliard equation.
For this purpose, we study the sharp-interface limit of the Ginzburg-Landau energy
functional under evolution of the Cahn-Hilliard dynamics. In particular, we exploit
the connection between the minimizers of both energies. In Section 9.1, we further
introduce the problem and outline the approaches used. Section 9.2, focusses on the
diffuse-interface energy minimization, while Section 9.3 introduces the Lagrange mul-
tiplier to enforce the mass constraint associated with the Cahn-Hilliard problem. Next,
Section 9.4 details the key assumptions and machinery for the convergence study. Then,
through asymptotic expansions in Section 9.5, we recover insights in the structure of the
diffuse-interface minimizers. These insights are used in Section 9.6 to recover the sharp-
interface limit of the diffuse-interface energy functional associated with the Cahn-Hilliard
problem. Using the sharp-interface energy functional, we find its sharp-interface min-
imizers in Section 9.7, which provide insight in the geometrical properties of the equi-
librium states of the Cahn-Hilliard problem.

Lastly, we emphasize that the main results presented in this Chapter focus on the
characterization of minimizers through formal asymptotics. In related work by Modica
(& Luckhaus) [123, 114] and Sternberg [158], the existence of these minimizers using
Γ-convergence is shown, in addition to further characterization of the sharp-interface
energy. Moreover, the methods presented in this Chapter also form the foundation
for the convergence study of the diffuse-interface adhesion energy, which results are
presented in Chapter 10.

9.1 Problem statement

Central in this Chapter is the Ginzburg-Landau free-energy functional

E ε
GL(φ) :=

∫
Ω

(
1
ε

W(φ) +
ε

2
|∇φ|2

)
dx, (9.1)

which governs the Cahn-Hilliard equation (4.35) and is here defined on a smooth and
bounded domain Ω ⊆ Rndim (with ndim = 2, 3). Let ν denote the outer unit normal
vector to the Lipschitz continuous boundary ∂Ω. Here, W(φ) denotes a double-well
potential, which we define as W(φ) = (1/4)(1 − φ2)2. Furthermore, ε > 0 is a small
parameter controlling the thickness of the interface separating the two phases. The
roots of W(φ) are φ+ = 1 and φ− = −1 for our choice of double-well potential, and
correspond to the fully separated phases. The zero-level set, that is {φ(x) = 0}, defines
the diffuse interface between these two equilibrium phase values.

51
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As illustrated in the first diagram in Section 7.2, the aim of this Chapter is to relate
the diffuse-interface energy functional (9.1) to the following sharp-interface energy

ECH(Γ) := CW

∫
Γ

da, (9.2)

as the interfacial thickness goes to zero, i.e. ε → 0. In the above definition, CW is a
coefficient oftentimes referred to as the surface tension, which is given by

CW =
∫ φ+

φ−

√
2W(s)ds. (9.3)

For our choice of double well potential, namely W(φ) = (1/4)(1 − φ2)2, we demon-
strate in this Chapter that the surface-energy coefficient CW corresponds to 2

√
2

3 . Here,
the sharp interface Γ ⊂ Ω is a sufficiently smooth hypersurface that separates the do-
main Ω into two subdomains, such that Ω = Ω+ ∪ Ω−. These subdomains are de-
scribed by the characteristic function

χΩ(x) =

{
φ+, on Ω+,

φ−, on Ω−.
(9.4)

Next, we consider a system in which the phase-field variable, for instance repre-
senting the species mass per domain volume, is conserved for all time t ∈ (0, T], i.e.

M(φ) :=
1
|Ω|

∫
Ω

φ dx = M0, (9.5)

where |Ω| denotes the domain size. This consideration is consistent with the Cahn-
Hilliard dynamics, see Section 4.2.3. Here, the mean-field of the phase-field variable
M(φ) is specified through its initial condition, i.e. M0 = M(φ0(x)) = M(φ(x, 0)) ∈ R.
For M0 to have a meaningful interpretation, we require that M0 ∈ (φ−, φ+). In other
words, the initial data φ0(x) should ensure that M0 takes on a realistic value. We will
discuss this requirement in more detail in Remark 9.6 in Section 9.3.

In this Chapter, we employ the following approach to relate the diffuse-interface energy
(9.1) to the sharp-interface energy (9.2):

(i) First, we define the diffuse-interface energy minimization problem (Section 9.2).
Through the Lagrange multiplier method we characterize the saddle points, which
correspond to the constrained minimizers (Section 9.3).

(ii) Next, through asymptotic expansions (Section 9.4), we determine the leading or-
der solution to the diffuse-interface minimization problem, and thereby obtain the
form of the global minimizers (Section 9.5);

(iii) Third, the leading order solution is substituted into the expanded diffuse-interface
energy. We employ the co-area formula to arrive at the sharp-interface energy (Sec-
tion 9.6).

(iv) Lastly, we find the minimizers of the sharp-interface energy, which provide us
with a geometrical interpretation of the equilibrium states of the Cahn-Hilliard
model (Section 9.7).

In summary, we wish to verify, through asymptotic expansions, that the zero-level set
of minimizers of E ε

GL(φ∗), which we denote as {φ∗ = 0}, converges to the critical surface
Γ∗ as ε → 0, with Γ∗ denoting the minimizer of the sharp-interface energy EGL(Γ∗).
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9.2 Diffuse-interface energy minimization

In Problem 9.1 we present the minimization problem for the diffuse-interface energy,
which has as objective to find minimizers φ∗ of the diffuse-interface energy E ε

GL (9.1). To
arrive at Problem 9.1, we restrict φ∗ to a sensible class, which includes the mean-field
constraint in Equation (9.5).

Problem 9.1 (Diffuse-interface energy minimization problem) For an arbitrary, yet fixed
ε > 0, find φ∗ ∈ LM such that

E ε
GL(φ∗) = inf

φ∈LM

E ε
GL(φ), (9.6)

over the admissible class LM := {φ ∈ H1(Ω) | M(φ) = M0, φ = φ− at ∂Ω, ∇φ · ν =
0 at ∂Ω}. □

Remark 9.2 (Analogous minimizers to the Cahn-Hilliard problem) The minimizers in
Problem 9.1 are analogous to the steady-state solutions of the Cahn-Hilliard equation, as
well as the equilibrium solutions of the conserved Allen-Cahn equation. In literature,
one can also find the stable configurations of a fluid within the Van der Waals-Cahn-
Hilliard theory of phase-transitions, see for instance [123, 114], which are also analo-
gous to the minimizers of 9.1. Because the minimizers correspond to the steady states
of the system, we can neglect the system’s dynamics: only the governing free-energy
functional and its variation with respect to the phase-field variable are relevant. □

9.3 Lagrange-multiplier method and saddle points

Problem 9.1 is a constrained minimization problem, as we are looking for minimizers
within a specific class LM, that is, minimizers that satisfy the mass constraint (9.5).
We can remove this constraint from LM using the Lagrange-multiplier technique. The
principal idea is that we introduce a scalar variable λ ∈ R, which is called the Lagrange
multiplier. In addition, we define the Lagrangian L (·, ·), which for Problem 9.1 reads

L (φ, λ) = E ε
GL(φ) + λ(M(φ)− M0), (9.7)

bearing in mind that

M(φ) =
1
|Ω|

∫
Ω

φ dx. (9.8)

Here, the main idea is that for a given φ the Lagrangian satisfies

sup
λ∈R

L (φ, λ) =

{E ε
GL(φ), if M(φ) = M0, ∀λ ∈ R,

∞, otherwise.
(9.9)

This leads us to the saddle-point problem in Problem 9.3, which is equivalent to the con-
strained minimization problem in Problem 9.1.

Problem 9.3 (Diffuse-interface saddle-point problem) For an arbitrary, yet fixed ε >
0, find (φ∗, λ∗) ∈ L× R such that

L (φ∗, λ∗) = inf
φ∈L

sup
λ∈R

L (φ, λ), (9.10)

with the admissible class L := {φ ∈ H1(Ω) | φ = φ− at ∂Ω, ∇φ · ν = 0 at ∂Ω}. □
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Solutions to Problem 9.3 are called saddle points and require that the directional deriva-
tives vanish at (φ∗, λ∗), that is{

0 = L ′(φ∗, λ∗; δλ), ∀δλ ∈ R,

0 = L ′(φ∗, λ∗; δφ), ∀δφ ∈ L.
(9.11)

In view of the Lagrangian (9.7), we can write (9.11) as
0 = M(φ∗)− M0,

0 =
δE ε

GL(φ∗)
δφ∗ + λ∗ δM(φ∗)

δφ∗ =
1
ε

W ′(φ∗)− ε∆φ∗ + λ∗.
(9.12)

Integration of (9.12)2 over the domain Ω, yields the following expression for the La-
grange multiplier

λ∗ = − 1
ε|Ω|

∫
Ω

W ′(φ∗)dx, (9.13)

where we have used that ∇φ∗ · ν = 0 at ∂Ω.

9.4 Minimizers of the diffuse-interface energy

Let φ∗ = φε solve the constrained minimization problem in Problem 9.1 for an arbitrary
but fixed ε. Furthermore, let {φε}ε≥0 denote the one-parameter family of functions in
the admissible solution space LM, which approach a singular limit denoted by φ0. Sup-
pose the following assumptions on φε hold:

(A.1) There exists a family of smooth and compact hypersurfaces embedded in Ω, which
we denote by {Γε}ε≥0. These hypersurfaces converge uniformly to Γ0 as ε → 0.
For each ε > 0, the signed distance function dε(x) : Ω → R measures the distance
of a point x to the interface Γε. The function dε(x) takes on positive values in the
interior subdomain Ωε

+ and negative values in the exterior subdomain Ωε
−. Note

that the interface is defined through the distance function by Γε := {dε(x) = 0};

(A.2) The solution φ∗ to Problem 9.1 takes on the form

φ∗(x) = φε(x) = ψ

(
dε(x)

ε

)
+ εh(x) + g(x), (9.14)

where ψ : R → R and h : Ω → R are sufficiently smooth functions, independent
of ε. Furthermore, we assume that ∥∇kg∥L∞ = o(ε) for sufficiently many k;

(A.3) Let the leading order term ψ(ξ) in the asymptotic expansion (9.14) with ξ :=
dε(x)/ε solve the following problem:

ψ′′(ξ) = W ′(ψ(ξ)), ∀ξ ∈ R, (9.15)

subject to ψ(−∞) = φ−, ψ(0) = 0 and ψ(∞) = φ+.

The asymptotic expansion in (A.2) implies that φ∗ is a perturbed transition layer mark-
ing the free interface. In Section 9.5, we will see that the problem in Assumption (A.3)
is in fact the leading order problem of the expanded and unconstrained Euler-Lagrange
equation of the diffuse-interface energy functional E ε

GL. Furthermore, Assumption (A.1)
leads to an important lemma involving functions of dε on the ε-scale, which is known
as the co-area formula [56], see Lemma 9.4. In this Lemma we demonstrate that a cer-
tain class of integrable functions, namely functions of ξ := dε(x)/ε that are smoothly
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decaying for |ξ| → ∞, can be viewed as a δ-sequence of the limiting surface Γ0. In
other words, by introducing a change of coordinates in the small neighbourhood of the
interface we can split a domain integral of a function weighted by a suitably decaying
function into (i) a line integral in direction normal to the interface; and (ii) a surface in-
tegral over the limiting surface Γ0, provided that Assumption (A.1) holds. Furthermore,
in Section 9.5 and 9.6, we need a bound on the order of convergence for odd functions
within the class of functions for which the co-area formula is valid. We show in Lemma
9.5 that this particular class of integrals belongs to O(ε2). Lastly, in Remark 9.6, we re-
flect on the consistency of Assumption (A.1) with the class of admissible solutions LM
defined in Problem 9.1.

Lemma 9.4 (Co-area formula) Let Γε and dε be given as in (A.1). Furthermore, given
are the functions f ∈ C0(Ω) and p ∈ L1(R), that satisfy

max
|t|>s

|p(t)t| ≤ C
sm , m > 1. (9.16)

with C > 0. Then, we have that

lim
ε→0

1
ε

∫
Ω

p
(

dε(x)
ε

)
f (x)dx =

∫ ∞

−∞
p(t)dt

∫
Γ0

f da. (9.17)
□

Proof. The following proof is based on [44] and [91]. Let the hypersurface Γε be param-
eterized by a function αε. For this hypersurface, there exists an open set W of R(ndim−1)

such that the mapping αε from W onto Γε is smooth and the inverse mapping (αε)−1 is
continuous from Γε onto W. For ndim = 2, the mapping αε is written as

αε(z) = (αε
1(z), αε

2(z)), ∀z ∈ W, (9.18)

whereas for ndim = 3 we have

αε(z1, z2) = (αε
1(z1, z2), αε

2(z1, z2), αε
3(z1, z2)), ∀(z1, z2) ∈ W. (9.19)

For the sake of simplicity, we will consider ndim = 2 in what follows. Therefore, we
will continue writing αε(z), but it should be understood that extension to the three-
dimensional case (ndim = 3) is straightforward, see [91] for more details.

Let Oε be the neighbourhood of Γε in which ∇dε is Lipschitz continuous. Let δ > 0
be a small parameter and let ηε(z, τ) : W × [−δ, δ] → Rndim denote the integral curves
of ∇dε, which satisfy 

∂ηε(z, τ)

∂τ
= ∇dε(ηε(z, τ)),

ηε(z, 0) = αε(z).
(9.20)

Bearing in mind that we consider ndim = 2 here, we write ηε(z, τ) = (ηε
1(z, τ), ηε

2(z, τ))

with ηε
i : W × [−δ, δ] → R. We define Uε := ηε({W × [−δ, δ]}) and choose δ small

enough so that Uε ⊂ Oε. In view of (9.20), we have that

d
dτ

dε(ηε(z, τ)) = ∇dε(ηε(z, τ))
∂ηε(z, τ)

∂τ
= |∇dε(ηε(z, τ))|2 = 1, (9.21)

and
dε(ηε(z, 0)) = dε(αε(z)) = 0. (9.22)

Therefore, by integrating over τ we recover

dε(ηε(z, τ)) = τ, ∀ z ∈ W. (9.23)
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Furthermore, let Jε(z, τ) denote the determinant of the Jacobian matrix of ηε at (z, τ),
i.e.

Jε(z, τ) := |∇z,τηε(z, τ)|. (9.24)

Then, bearing in mind that

∂ηε(z, τ)

∂z
=

(
∂ηε

1(z, τ)

∂z
,

∂ηε
2(z, τ)

∂z

)
,

∂ηε(z, τ)

∂τ
=

(
∂ηε

1(z, τ)

∂τ
,

∂ηε
2(z, τ)

∂τ

)
,

(9.25)

we find at z ∈ W that

τε :=
∂ηε(z, 0)

∂z
=

(
∂ηε

1(z, 0)
∂z

,
∂ηε

2(z, 0)
∂z

)
,

nε :=
∂ηε(z, 0)

∂τ
=

(
∂ηε

1(z, 0)
∂τ

,
∂ηε

2(z, 0)
∂τ

)
,

(9.26)

with nε the outward normal vector to Γε and τε the vector spanning the tangent space,
both defined at a point ηε(z, 0) = αε(z). Thus, the determinant of the Jacobian (9.24)
satisfies

Jε(z, 0) := |∇z,τηε(z, 0)| = 1, (9.27)

as nε and τε form an orthonormal basis.
Recalling that Uε := ηε({W × [−δ, δ]}) ⊂ Oε, we perform the change of coordinates

x = ηε(z, τ) on the following integral and write∫
Uε

p
(

dε(x)
ε

)
f (x)dx =

∫ δ

−δ

∫
W

p
(

dε(ηε(z, τ))

ε

)
f (ηε(z, τ))Jε(z, τ)dzdτ

=
∫ δ

−δ
p
(τ

ε

) ∫
W

f (ηε(z, τ))J(z, τ)dzdτ. (9.28)

Next, from application of the change of coordinate τ = εt follows∫
Uε

p
(

dε(x)
ε

)
f (x)dx = ε

∫ δ/ε

−δ/ε
p (t)

∫
W

f (ηε(z, εt))Jε(z, εt)dzdt. (9.29)

By continuity and convergence of Γε to Γ0, see Assumption (A.1), we arrive at

lim
ε→0

1
ε

∫
Uε

p
(

dε(x)
ε

)
f (x)dx = lim

ε→0

∫ δ/ε

−δ/ε
p (t)

∫
W

f (ηε(z, εt))Jε(z, εt)dzdt

=
∫ ∞

−∞
p (t)

∫
W

f (η0(z, 0))J0(z, 0)dzdt

=
∫ ∞

−∞
p (t)dt

∫
Γ0

f da. (9.30)

Outside the neighbourhood Uε, i.e. (Uε)c = {dε(x) > δ}, we find

lim
ε→0

1
ε

∫
(Uε)c

p
(

dε(x)
ε

)
f (x)dx ≤ lim

ε→0

1
ε

∥∥∥∥p
(

dε(x)
ε

)∥∥∥∥
L∞((Uε)c)

∥ f (x)∥L1(Ω)

= lim
ε→0

max
|dε|>δ

∣∣∣∣1ε p
(

dε(x)
ε

)∣∣∣∣ ∫Ω
| f (x)|dx, (9.31)



57 9.4. Minimizers of the diffuse-interface energy

where we have used Hölder’s inequality. Introducing t = dε(x)/ε yields

lim
ε→0

max
|dε|>δ

∣∣∣∣1ε p
(

dε(x)
ε

)∣∣∣∣ ∫Ω
| f (x)|dx = lim

ε→0
max

|t|>(δ/ε)

∣∣∣∣ 1
εt

p(t)t
∣∣∣∣ ∫Ω

| f (x)|dx

≤ lim
ε→0

max
|t|>(δ/ε)

1
δ
|p(t)t|

∫
Ω
| f (x)|dx

≤ lim
ε→0

1
δ

Cεm

δm

∫
Ω
| f (x)|dx = 0, (9.32)

as p is a suitably decaying function, see expression (9.16). Combining the integrals (9.30)
and (9.32) completes our proof. ■

Lemma 9.5 (Co-area formula for odd functions) In addition to Lemma 9.4, assume that
f ∈ C1(Ω) and dε ∈ C2(Uε). If p is odd, then

lim
ε→0

1
ε2

∫
Ω

p
(

dε(x)
ε

)
f (x)dx < ∞. (9.33)

□

Proof. The following proof is based on Lemma 2.2 in [44]. First, recall that Uε :=
ηε({W × [−δ, δ]}) ⊂ Oε. Performing the change of coordinates x = ηε(z, τ) on the
following integral, we obtain∫

Uε
p
(

dε(x)
ε

)
f (x)dx =

∫ δ

−δ

∫
W

p
(

dε(ηε(z, τ))

ε

)
f (ηε(z, τ))Jε(z, τ)dzdτ

=
∫ δ

−δ
p
(τ

ε

) ∫
W

f (ηε(z, τ))J(z, τ)dzdτ

=
∫ δ

−δ
p
(τ

ε

)
Fε(τ)dτ. (9.34)

where Fε is defined as follows

Fε(τ) :=
∫

W
f (ηε(z, τ))Jε(z, τ)dz. (9.35)

In addition, Fε(τ) is continuous in ε and continuously differentiable for τ ∈ (−δ, δ).
Given that p is odd, we may write∫

Uε
p
(

dε(x)
ε

)
f (x)dx =

∫ δ

−δ
p
(τ

ε

)
Fε(τ)dτ −

∫ δ

−δ
p
(τ

ε

)
Fε(0)dτ, (9.36)

with Fε(0) constant. Then, let Gε(τ) = (Fε(τ) − Fε(0))/τ, so that the above can be
written as ∫

Uε
p
(

dε(x)
ε

)
f (x)dx =

∫ δ

−δ
p
(τ

ε

)
Gε(τ)τdτ. (9.37)

Next, Hölder’s inequality learns us that∣∣∣∣∫Uε
p
(

dε(x)
ε

)
f (x)dx

∣∣∣∣ ≤ max
τ∈(−δ,δ)

|Gε(τ)|
∫ δ

−δ

∣∣∣p (τ

ε

)
τ
∣∣∣dτ,

= ε max
τ∈(−δ,δ)

|Gε(τ)|
∫ δ

−δ

∣∣∣p (τ

ε

) τ

ε

∣∣∣dτ, (9.38)
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Performing the change of coordinates τ = εt on the last integral, we find

∣∣∣∣∫Uε
p
(

dε(x)
ε

)
f (x)dx

∣∣∣∣ ≤ ε2 max
τ∈(−δ,δ)

|Gε(τ)|
∫ δ/ε

−δ/ε
|p(t)t| dt

≤ ε2 max
τ∈(−δ,δ)

|Gε(τ)|
∫ ∞

−∞
|p(t)t| dt. (9.39)

In expression (9.39) the term involving Gε is finite, as Fε is continuous in ε and contin-
uously differentiable for τ ∈ (−δ, δ). Furthermore, the integral involving p(t) is finite
as well, given that p ∈ L1(Ω) and for |τ| > (δ/ε) we have that p is a suitably decaying
function, see (9.16). Thus, we arrive at

lim
ε→0

1
ε2

∣∣∣∣∫Ω
p
(

dε(x)
ε

)
f (x)dx

∣∣∣∣ < ∞, (9.40)

which concludes our proof. ■

Remark 9.6 (Consistency of Assumption (A.1) with class LM) Assumption (A.1) is con-
sistent with the class of admissible solutions LM used in Problem 9.1. The existence
of an embedded hypersurface in Ω ensures that the mean-value of φ is written as
M(φ) ∈ (φ−, φ+), and can not be equal to one of the binodal values, that is φ+ or φ−.
Furthermore, the embedding of the interface in Ω implies that any solution to Prob-
lem 9.1 should equal the binodal value φ− at the domain boundary ∂Ω. Alternatively,
one could opt to prescribe the other binodal value φ+ (where φ+ > φ−) at ∂Ω. Note
that such a choice would result in a sign change in the definition of the signed distance
function dε(x), as well as reformulation of the characteristic function χΩ (9.4). □

9.5 Asymptotic expansion and leading order problem

In the following, we employ the asymptotic expansion ansatz in Assumption (A.2),
namely φ∗ = φε, to further characterize the structure of the diffuse-interface minimizers
of Problem 9.1. This implies that (9.11)2 becomes

0 =
1
ε

W ′(φε)− ε∆φε − 1
ε|Ω|

∫
Ω

W ′(φε)dx, (9.41)

for a given ε. Here, we have used the expression for the Lagrange multiplier (9.13).
Next, using Assumption (A.2), we compute the following identity

∇φε(x) =
1
ε

ψ′
(

dε(x)
ε

)
∇dε(x) + ε∇h(x) +∇g(x). (9.42)
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Then, bearing in mind that ∥∇kg∥L∞(Ω) = o(ε) and omitting the dependencies for the
sake of brevity, we derive the following identities

|∇φε|2 =
1
ε2 (ψ

′)2 + 2ψ′∇dε · ∇h +
2
ε

ψ′∇dε · ∇g

+ ε2|∇h|2 + 2ε∇h · ∇g + |∇g|2, (9.43)

∆φε =
1
ε2 ψ′′ − 2

ε
Kψ′ + ε∆h + ∆g, (9.44)

W(φε) = W(ψ) + εW ′(ψ)
(

h +
1
ε

g
)

+
ε2

2
W ′′(ψ)

(
h +

1
ε

g
)2

+
ε3

6
W ′′′(ψ)

(
h +

1
ε

g
)3

+O(ε4)

= W(ψ) + εW ′(ψ)h + W ′(ψ)g +
ε2

2
W ′′(ψ)h2 + εW ′′(ψ)hg +

1
2

W ′′(ψ)g2

+
ε3

6
W ′′′(ψ)h3 +

ε2

2
W ′′′(ψ)h2g +

ε

2
W ′′′(ψ)hg2 +

1
6

W ′′′(ψ)g3 +O(ε4), (9.45)

W ′(φε) = W ′(ψ) + εW ′′(ψ)h + W ′′(ψ)g

+
ε2

2
W ′′′(ψ)h2 + εW ′′′(ψ)hg +

1
2

W ′′′(ψ)g2 +O(ε3), (9.46)

λε = − 1
ε|Ω|

∫
Ω

W ′(ψ)dx − 1
|Ω|

∫
Ω

W ′′(ψ)h +
1
ε

W ′′(ψ)g dx

− 1
|Ω|

∫
Ω

ε

2
W ′′′(ψ)h2 + W ′′′(ψ)hg +

1
2ε

W ′′′(ψ)g2 dx +O(ε2), (9.47)

where we have used that |∇dε|2 = 1. In addition, we have that ∆dε(x) = −2K(x), with
K the mean curvature for any x ∈ Γε [174]. Thus, using the above identities, we write
expression (9.41) as

1
ε

(
W ′(ψ) + εW ′′(ψ)h + W ′′(ψ)g +

ε2

2
W ′′′(ψ)h2 + εW ′′′(ψ)hg +

1
2

W ′′′(ψ)g2 +O(ε3)
)

− ε

(
1
ε2 ψ′′ +

1
ε

ψ′∆dε + ε∆h + ∆g
)
+ λε = 0. (9.48)

Then, substituting the expansion for λε (9.47) and collecting terms of the same order, we
obtain

0 =
1
ε

(
W ′(ψ)− ψ′′ − 1

|Ω|
∫

Ω
W ′(ψ)dx

)
+

(
W ′′(ψ)h − ψ′∆dε − 1

|Ω|
∫

Ω
W ′′(ψ)h dx

)
+O(ε). (9.49)

Following Assumption (A.3), we consider the leading order problem in Problem 9.7.
This problem is based on the leading order term in (9.49) except that we omit the contri-
bution from the Lagrange multiplier expansion. In Theorem 9.A, we demonstrate that
the solution to this problem is given by ψ(ξ) = tanh

(
ξ√
2

)
. Lastly, in Remark 9.8 we

use Lemma 9.5 to demonstrate why Assumption (A.3), and thus the omission of the
Lagrange multiplier contribution in the leading terms, leads to consistent results for the
leading order solution.
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Problem 9.7 (Leading order problem) Let ψ solve the differential equation

ψ′′(ξ) = W ′(ψ(ξ)), ∀ξ ∈ R, (9.50)

subject to the conditions ψ(−∞) = φ−, ψ(∞) = φ+ and ψ(0) = 0. □

Theorem 9.A (Leading order solution) Suppose that φε solves Problem 9.1 and satis-
fies Assumptions (A.1) - (A.3), then ψ(ξ) = tanh

(
ξ√
2

)
. □

Proof. To obtain the leading order solution, we have to solve Problem 9.7, i.e.

ψ′′(ξ) = W ′(ψ(ξ)), ∀ξ ∈ R, (9.51)

bearing in mind that W ′(ψ) = −ψ(1 − ψ2), because of our choice of double-well poten-
tial in Section 9.1. Through multiplication with 4ψ′, followed by integration, we obtain

2(ψ′)2 = ψ4 − 2ψ2 + C, (9.52)

where C denotes the constant of integration. From the boundary conditions follows
that ψ is non-decreasing. Also, for ξ → ±|∞| the leading order solution converges
to one of the binodal values, i.e. the constants φ− = −1 and φ+ = 1, implying that
ψ′(−∞) = ψ′(∞) = 0, and thus C = 1. Therefore, we can write

ψ′ =
1√
2
(1 − ψ2). (9.53)

This is a separable ordinary differential equation with solution ψ(ξ) = tanh
(

ξ√
2

)
, see

also [56, 20, 44].

Remark 9.8 (Consistency of Assumption (A.3) with the Lagrange multiplier) The con-
tribution from the Lagrange multiplier λε in the leading order term of expression (9.49)
is given by

− 1
ε|Ω|

∫
Ω

W ′(ψ(ξ))dx, (9.54)

where W ′(ψ) is an odd function. In view of Lemma 9.5, we may conclude that

− 1
|Ω|

∫
Ω

W ′(ψ(ξ))dx = O(ε2). (9.55)

Thus, no contributions from the Lagrange multiplier expansion appear in the leading
order Problem 9.7. □
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9.6 Convergence to the sharp-interface energy

Expansion of Ginzbug-Landau energy functional using the expansion φε for the mini-
mizer formulated in Assumption (A.2) gives

E ε
GL(φε) =

∫
Ω

(
1
ε

W(φε) +
ε

2
|∇φε|2

)
dx,

=
1
ε

∫
Ω

(
W(ψ) + εW ′(ψ)

(
h +

1
ε

g
)
+

ε2

2
W ′′(ψ)

(
h +

1
ε

g
)2
)

dx

+
1
ε

∫
Ω

(
ε3

6
W ′′′(ψ)

(
h +

1
ε

g
)3

+O(ε4)

)
dx

+
ε

2

∫
Ω

(
1
ε2

(
ψ′)2

+ 2ψ′∇dε · ∇h +
2
ε

ψ′∇dε · ∇g
)

dx

+
ε

2

∫
Ω

(
ε2|∇h|2 + 2ε∇h · ∇g + |∇g|2

)
dx

=
1
ε

∫
Ω

(
W(ψ) +

1
2
(ψ′)2

)
dx +

∫
Ω

W ′(ψ)h dx +O(ε), (9.56)

Next, we provide two types of convergence results for the diffuse-energy functional
E ε

GL(φ∗) to its sharp-interface counterpart EGL(Γ∗). The first is presented in Theorem
9.B and makes use of the leading order solution for the diffuse-interface minimizer.
The second approach, detailed in Theorem 9.C, does not require an explicit form for
the leading order solution of the diffuse-interface minimizer. Instead it makes use of an
equivalent differential equation, which is presented in Lemma 9.9. The result, the sharp-
interface energy functional EGL, consists of a surface integral weighted by a constant CW .
Here, CW is also known as the surface tension coefficient, and its value depends on the
choice of double-well potential. For our choice of double-well potential, it is equal to
2
√

2
3 .

Theorem 9.B (Convergence to sharp-interface energy EGL: approach I) If φ∗ solves Prob-
lem 9.1 and satisfies (A.1) - (A.3), then,

E0
GL(Γ

0) := lim
ε→0

E ε
GL(φε) = CW

∫
Γ0

da, (9.57)

with CW := 2
√

2
3 . □

Proof. From Theorem 9.A follows that the leading order solution is given by ψ(ξ) =
tanh(dε(x)/

√
2ε). Then, in view of the expansion (9.56) and by Lemma 9.4, we find

lim
ε→0

E ε
GL(φε) = lim

ε→0

(
1
ε

∫
Ω

(
W(ψ) +

1
2
(
ψ′)2

)
dx +

∫
Ω

W ′(ψ)h dx +O(ε)

)
=

1
2

∫ ∞

−∞
sech4

(
ξ√
2

)
dξ
∫

Γ0
da

+
∫ ∞

−∞
tanh

(
ξ√
2

)(
1 − tanh2

(
ξ√
2

))
dξ
∫

Γ0
h da

= CW

∫
Γ0

da, (9.58)

where we have used that W(φ) = 1
4 (φ2 − 1)2 and ξ = dε(x)/ε. In addition, the surface-

energy coefficient CW corresponds to 2
√

2
3 . ■
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Lemma 9.9 The solution to Problem 9.7 also satisfies the differential equation

ψ′(ξ) =
√

2W(ψ). (9.59)

As a result, we can write∫ ∞

−∞
(ψ′(ξ))2 dξ =

√
2
∫ φ+

φ−

√
W(ψ)dψ. (9.60)

□

Proof. We follow the proof in [91], and start by multiplying the differential equation in
Problem 9.7 by ψ′(ξ), which gives

ψ′′(ξ)ψ′(ξ) = W ′(ψ(ξ))ψ′(ξ), (9.61)

The latter equation can be rewritten into(
(ψ′(ξ))2

2

)′
= W ′(ψ(ξ))ψ′(ξ) = (W(ψ(ξ)))′ . (9.62)

Integrating the above equation gives

(ψ′(ξ))2

2
= W(ψ(ξ)), (9.63)

where we have used that W(φ(ξ)) and ψ′(ξ) vanish for ξ → ±|∞|. From the boundary
conditions in Problem 9.7, we deduce that ψ(ξ) is non-decreasing, hence

ψ′(ξ) =
√

2W(ψ(ξ)). (9.64)

We complete the proof by writing∫ ∞

−∞
(ψ′(ξ))2 dξ =

∫ ∞

−∞
ψ′(ξ)

√
2W(ψ(ξ))dξ =

∫ φ+

φ−

√
2W(ψ)dψ. (9.65)

■

Theorem 9.C (Convergence to sharp-interface energy EGL: approach II) If φ∗ solves Prob-
lem 9.1 and satisfies (A.1) - (A.3), then,

E0
GL(Γ

0) := lim
ε→0

E ε
GL(φε) = CW

∫
Γ0

da, (9.66)

with CW := 2
√

2
∫ φ+

φ−

√
W(ψ)dψ. □

Proof. Using Lemma 9.4 and 9.9, we write

lim
ε→0

E ε
GL(φε) = lim

ε→0

(
1
ε

∫
Ω

(
W(ψ) +

1
2
(ψ′)2

)
dx +

∫
Ω

W ′(ψ)h dx +O(ε)

)
= lim

ε→0

(
1
ε

∫
Ω
(ψ′)2 dx +O(ε)

)
=
∫ ∞

−∞
(ψ′(ξ))2 dξ

∫
Γ0

da

=
√

2
∫ φ+

φ−

√
W(ψ)dψ

∫
Γ0

da. (9.67)

Additionally, we have used that W ′(ψ) is an odd function, and applied Lemma 9.5.
Note that for W(φ) = 1

4 (1 − φ2)2, the constant CW corresponds to the one computed in

Theorem 9.B, as
√

2
∫ φ+

φ−

√
W(ψ)dψ =

√
2

2

∫ 1
−1(1 − ψ2)dψ = 2

√
2

3 . ■
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9.7 Minimizers of the sharp-interface energy

Using the sharp-interface energy functional derived in Theorems 9.B and 9.C for the
Cahn-Hilliard problem, we formulate the associated constrained minimization Problem
10.7. In this problem, the size of the domain enclosed by the sharp interface is fixed by
the initial configuration of the system.

Problem 9.10 (Sharp-interface adhesion minimization problem) Find Γ∗ such that

Esingle(Γ
∗) = inf

Γ
EGL(Γ), (9.68)

subject to |Ω+| :=
∫

Ω+
dx = M+,0, with M+,0 :=

∫
Ω+(t=0) dx and ∂Ω+ := Γ. □

Next, we define an equivalent saddle-point problem, which Lagrangian reads

L (Γ, λ) = CW

∫
Γ

da + λ(|Ω+| − M+,0). (9.69)

For a given Γ, the Lagrangian satisfies

sup
λ∈R

L (Γ, λ) =

{EGL(Γ), if |Ω+| = M+,0, ∀λ ∈ R,

∞, otherwise,
(9.70)

which leads us the saddle-point Problem 9.11.

Problem 9.11 (Sharp-interface saddle-point problem) Find (Γ∗, λ∗) such that

L (Γ∗, λ∗) = inf
φ∈L

sup
λ∈R

L (Γ, λ). (9.71)
□

Saddle points (Γ∗, λ∗), and therefore minimizers Γ∗, should then satisfy the following
expressions {

0 = L ′(Γ∗, λ∗; δλ), ∀δλ ∈ R,

0 = L ′(Γ∗, λ∗; v), ∀v ∈ Lv.
(9.72)

where we have used the velocity method introduced in Chapter 2 to take the directional
derivative. Here, Lv denotes the admissible class of velocity perturbations, which are
Lipschitz continuous. By employing the shape derivatives of domain and boundary
integrals defined in Theorem 2.B and Theorem 2.C, respectively, we arrive at

0 = |Ω+| − M+,0,

0 =
∫

Γ∗
(CWK + λ∗)(v · n)da.

(9.73)

The velocity field v ̸= 0, so that v · n ̸= 0, is an admissible choice, and hence we find

K = − λ∗

CW
, ∀x ∈ Γ∗. (9.74)

This implies that the minimizer Γ∗ is a hypersurface with a constant curvature, which
exact value is determined by the domain-size constraint. Thus, steady states of the
Cahn-Hilliard problem are respectively, spherical phase-field shapes in three dimen-
sions, and circular shapes in two dimensions.

Lastly, an appropriate mechanism to decrease the sharp-interface energy functional
whilst maintaining constant domain size enclosed by the surface would be to consider
the normal velocity

V := v · n = ∆ΓK, ∀x ∈ Γ(t), (9.75)

with K the mean curvature of Γ. This choice would establish surface diffusion, which is
a geometric gradient flow discussed in more detail in Section 2.4.2.





Chapter 10

Sharp-Interface Limit of the
Adhesion Energy

This Chapter focusses on the convergence of the adhesion energy functional presented
in Chapter 8 to a sharp interface energy. For this purpose, similar approaches to those
used in Chapter 9 are employed. The recovered sharp-interface energy functional pro-
vides meaningful insights in the equilibrium states of the adhesion problem. Moreover,
minimizers of this energy characterize the geometric behaviour of the adhesion model.

This Chapter is organized as follows: Section 10.1 details the adhesion problem that
is considered for this convergence study. In Section 10.2, the diffuse-interface energy
minimization problem is stated, while Section 10.3 introduces the equivalent saddle-
point problem. Next, Section 10.4 details the principal assumptions and machinery for
the convergence study. Then, through asymptotic expansions in Section 10.5, we charac-
terize the structure of the diffuse-interface minimizers. These results are subsequently
employed in Section 10.6 to recover the sharp-interface limit of the diffuse-interface
adhesion energy functional. In Section 10.6, we close this Chapter by studying sharp-
interface minimizers of the sharp-interface energy, which helps us to understand the
phase-field adhesion model geometrically.

10.1 Problem statement

In this Chapter, we aim to define a sharp-interface corresponding to the diffuse-interface
energies and the phase-field adhesion problem detailed in Chapter 9. For this purpose,
we consider the single-phase adhesion energy functional (8.3) presented in Section 8.1,
which reads

E ε
single(φ) :=

∫
Ω

(
1
ε

W(φ) +
ε

2
|∇φ|2 + εσB(φ)B(φs)∇φ · ∇φs

)
dx, (10.1)

for a given external field φs representing the adhesive substrate. Here, σ is a non-
negative constant controlling the adhesive strength, while the small parameter ε > 0
governs the interfacial thickness. Furthermore, we consider the following truncated
double-well potential

W(φ) :=


1
4 (1 − φ2)2, φ ∈ [φ−, φ+],

0, otherwise,
(10.2)
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with φ− = −1 and φ+ = 1 as its equilibrium values. Next, let B(φ) denote the regular-
izing function, which throughout this Chapter is defined as

B(φ) :=


√

W(φ) = 1
2 (1 − φ2), φ ∈ [φ−, φ+],

0, otherwise,
(10.3)

such that B(φ) ≥ 0 everywhere. Similar to previous Chapter, we consider a system that
is subject to the mean phase-field constraint in Equation (9.5) for all time t ∈ (0, T], that
is

M(φ) :=
1
|Ω|

∫
Ω

φ dx = M0, (10.4)

as the adhesion model (8.10) conserves the phase-field variable. Again, |Ω| denotes the
domain size and M0 ∈ (φ−, φ+) the initial mean-field phase field.

Following a similar approach to the one presented in Chapter 9, we relate the diffuse-
interface energy functional (10.1) to a sharp-interface energy:

(i) First, we define the diffuse-interface energy minimization problem (Section 10.2).
Using the Lagrange multiplier method the structure of the saddle points is char-
acterized. These saddle points correspond to the constrained minimizers in the
diffuse-interface minimization problem (Section 10.3).

(ii) Next, we detail some additional assumptions on the adhesive field ϕs, which allow
us to define the co-area formula for shared interfaces (Section 10.4). Via the method of
asymptotic expansions, the leading order solution to the minimization problem is
determined. Although no analytical solution can be obtained for this problem, an
equivalent integral identity can be derived, which provides information about the
properties of the global minimizers (Section 10.5);

(iii) Third, the leading order solution is substituted into the expanded diffuse-interface
energy. Application of the co-area formulas yields the sharp-interface energy (Sec-
tion 10.6).

(iv) Finally, we find the minimizers of the sharp-interface energy, which provide us
with geometrical insights in the equilibrium states of the adhesion model (Section
10.7).

In conclusion, using asymptotic expansions, we aim to verify that the zero-level set of
minimizers of E ε

single(φ∗), that is {φ∗ = 0}, converges to the critical surface Γ∗ as ε → 0,
where Γ∗ denotes the minimizer of the sharp-interface energy Esingle(Γ

∗). Furthermore,
it should be understood that the approaches applied in this Chapter for the single-phase
adhesion energy functional E ε

single can be extended to multi-phase energy functional
(8.14).

10.2 Diffuse-interface energy minimization

Let φ∗ denote the minimizers of the single-phase adhesion energy functional (10.1),
which satisfy the mass-conservation constraint (10.4). The corresponding constrained
minimization problem is defined in Problem 10.1.
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Problem 10.1 (Single-phase adhesion energy minimization problem) Given are an ar-
bitrary, yet fixed ε > 0 and an admissible adhesive phase-field ϕs ∈ Ls, with Ls :=
{φs ∈ H1(Ω) | φs = φ− at ∂Ω, ∇φs · ν = 0 at ∂Ω}. Then, find φ∗ ∈ LM such that

E ε
single(φ∗) = inf

φ∈LM

E ε
single(φ), (10.5)

over the admissible class LM := {φ ∈ H1(Ω) | M(φ) = M0, φ = φ− at ∂Ω, ∇φ · ν =
0 at ∂Ω}. □

10.3 Lagrange-multiplier method and saddle points

In this Section, an equivalent minimization Problem to the constrained minimization
Problem 10.1 is presented in which the mass constraint (10.4) is removed from the re-
stricted class LM. For this purpose, let λ ∈ R be the Lagrange multiplier and let the
Lagrangian L (·, ·) be defined as follows

L (φ, λ) = E ε
single(φ) + λ(M(φ)− M0), (10.6)

Now, for a given φ the Lagrangian satisfies

sup
λ∈R

L (φ, λ) =

E ε
single(φ), if M(φ) = M0, ∀λ ∈ R,

∞, otherwise,
(10.7)

which leads us the saddle-point Problem 9.3

Problem 10.2 (Diffuse-interface saddle-point problem) For an arbitrary, yet fixed ε >
0 and a given admissible adhesive phase-field ϕs, find (φ∗, λ∗) ∈ L× R such that

L (φ∗, λ∗) = inf
φ∈L

sup
λ∈R

L (φ, λ), (10.8)

with the admissible class L := {φ ∈ H1(Ω) | φ = φ− at ∂Ω, ∇φ · ν = 0 at ∂Ω}. □

Solutions of the Problem 10.2 are called saddle points and require that the directional
derivatives vanish at (φ∗, λ∗), that is{

0 = L ′(φ∗, λ∗; δλ), ∀δλ ∈ R,

0 = L ′(φ∗, λ∗; δφ), ∀δφ ∈ L.
(10.9)

Using the expression for the Lagrangian (10.6), we can now write

0 = M(φ∗)− M0,

0 =
δE ε

single(φ∗)

δφ∗ + λ∗ δM(φ∗)
δφ∗

=
1
ε

W ′(φ∗)− ε∆φ∗ − εσB(φ∗)(∇ · (B(φs)∇φs)) + λ∗.

(10.10)

Integration of (10.10)2 over the domain Ω, yields the following expression for the La-
grange multiplier

λ∗ = − 1
ε|Ω|

∫
Ω
(W ′(φ∗) + σε2B(φs)B′(φ∗)∇φ∗ · ∇φs)dx, (10.11)

where we have used that ∇φ∗ · ν = ∇φs · ν = 0 at ∂Ω.
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10.4 Minimizers of the diffuse-interface energy

For an arbitrary yet fixed ε, let φ∗ = φε be the constrained minimizer of Problem 10.1,
or equivalently, let (φε, λ∗) be the solution to the saddle-point Problem 10.2. Again,
{φε}ε≥0 denotes the one-parameter family of functions in the admissible solution space
LM, which approach a singular limit denoted by φ0. In addition to Assumption (A.1)
and (A.2) presented in Section 9.4, suppose that the following assumptions on φε and
φs hold:

(A.4) There exists a sufficiently smooth and differentiable hypersurface Γs, which is here
taken independent of time, as we are interested in steady state solutions. It sepa-
rates the domain Ω into two subdomains, such that Ω = Ωs,+ ∪ Ωs,−. Thus, there
exists a characteristic function

χs(x) :=

{
φ+, on Ωs,+,

φ−, on Ωs,−.
(10.12)

In addition, we require that Ωs,+ ⊂ Ω−, which has implications on the choice
for the initial condition φ0(x). Next, we introduce the signed distance function
ds(x) : Ω → R, which determines the geometrical properties of Γs. Furthermore,
let the function φs(x) := φε

s(ξS) be the diffuse interpretation of the interface Γs,
with ξS = ds(x)/ε. We obtain φε

s(ξS) by smearing the limiting function φ0
s out in

the direction normal to Γs. In the limit of ε → 0, we have

lim
ε→0

φε
s

(
ds(x)

ε

)
= φ0

s , (10.13)

in addition to

lim
ε→0

φε
s

(
ds(x)

ε

)
=

{
φ+, if ds(x) > 0,

φ−, if ds(x) < 0,
(10.14)

and limε→0 φε
s
′(ξS) = 0 for ξ → ±|∞|. For completeness, we state that Γs :=

{ds(x) = 0} = {φε
s(x) = 0};

(A.5) Let Us = {ds ≤ δ} denote the neighbourhood of Γs, and let the neighbourhood
Uε ⊂ Oε of Γε be defined using the integral curves ηε, see Lemma 9.4 for details.
If for a particular δ the neighbourhoods Us and Uε overlap, we assume that there
exists a shared limiting interface Γadh := Γ0 ∩ Γs, which is sufficiently smooth.
As a consequence, we have Γ0 = Γadh ∪ Γc

adh, where the non-adhered part of the
limiting interface is defined as Γc

adh := (Γ0\Γadh). Furthermore, we assume that
Γadh has a neighbourhood Uε

adh in which we can employ a single coordinate sys-
tem, through which we redefine ξS as −ξ, by setting ds(x) = −dε(x). In addition,
we assume that φε

s behaves as the leading order term ψ in Uε
adh, and therefore

φε
s(ξS) = ψs(ξS) = ψs(−ξ) = −ψ(ξ). Lastly, we assume that for Problem 10.4 a

shared limiting interface exists, that is Γadh ̸= ∅.

(A.6) Let the leading order term ψ(ξ) in the asymptotic expansion (9.14) with ξ =
dε(x)/ε solve the following problem:

ψ′′ = W ′(ψ)− σB(ψ)(B′(φs)(φs
′)2 + B(φs)φs

′′), ∀ξ ∈ R, (10.15)

subject to ψ(−∞) = φ−, ψ(0) = 0 and ψ(∞) = φ+.
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In the above, Assumption (A.4) states that the diffuse-interface φε
s marks the sharp-

interface Γs. Similar to Assumption (A.3), Assumption (A.6) implies that the leading or-
der solution solves an unconstrained problem associated with the minimizers of E ε

single.
This Problem is further detailed in Problem 10.4 in Section 10.5. Lastly, Assumption
(A.5) allows us to define the co-area formula for shared interfaces in Lemma 10.3.

Lemma 10.3 (Co-area formula for shared interfaces) Let Γs, Γε, ds and dε be given as in
(A.1), (A.2), (A.4) and (A.5). Suppose that f ∈ C0(Ω) and let pi(t) ∈ L∞(Ω) (i = 1, 2)
satisfy

max
|t|>s

|pi(t)t| ≤
C
sm , m > 1, (10.16)

with C > 0. Then

lim
ε→0

1
ε

∫
Ω

p1

(
dε(x)

ε

)
p2

(
ds(x)

ε

)
f (x)dx =

∫ ∞

−∞
p1(t)p2(−t)dt

∫
Γadh

f da, (10.17)

with Γadh := Γs ∩ Γ0. □

Proof. Following the proof of Lemma 9.4 closely, we write

lim
ε→0

1
ε

∫
Uε

adh

p1

(
dε(x)

ε

)
p2

(
ds(x)

ε

)
f (x)dx =

∫ ∞

−∞
p1(t)p2(−t)

∫
W

f (η0(z, 0))J(z, 0)dzdt

=
∫ ∞

−∞
p1(t)p2(−t)dt

∫
Γadh

f da. (10.18)

where we have used the coordinate change εt = τ = ds(η(z, τ)) = −dε(η(z, τ)).
Let the outside of the neighbourhood Uε

adh be denoted by
(
Uε

adh

)c
= {x ∈ Ω | dε(x) >

δ or ds(x) > δ}. First, we consider

lim
ε→0

1
ε

∫
Uc

s

p1

(
dε(x)

ε

)
p2

(
ds(x)

ε

)
f (x)dx

≤ lim
ε→0

1
ε

∥∥∥∥p1

(
dε(x)

ε

)
p2

(
ds(x)

ε

)∥∥∥∥
L∞(Uc

s )

∫
Ω
| f (x)|dx

≤ lim
ε→0

max
|ds|>δ

∣∣∣∣1ε p2

(
ds(x)

ε

)∣∣∣∣ ∥∥∥∥p1

(
dε(x)

ε

)∥∥∥∥
L∞(Ω)

∫
Ω
| f (x)|dx

= lim
ε→0

max
|ts|>(δ/ε)

∣∣∣∣ 1
εts

p2 (ts) ts

∣∣∣∣ ∥∥∥∥p1

(
dε(x)

ε

)∥∥∥∥
L∞(Ω)

∫
Ω
| f (x)|dx

≤ lim
ε→0

max
|ts|>(δ/ε)

1
δ
|p2 (ts) ts|

∥∥∥∥p1

(
dε(x)

ε

)∥∥∥∥
L∞(Ω)

∫
Ω
| f (x)|dx

≤ lim
ε→0

1
δ

Cεm

δm

∥∥∥∥p1

(
dε(x)

ε

)∥∥∥∥
L∞(Ω)

∫
Ω
| f (x)|dx = 0, (10.19)

with Uc
s = {ds(x) > δ}. Similarly, for (Uε)c = {dε(x) > δ}, we find

lim
ε→0

1
ε

∫
(Uε)c

p1

(
dε(x)

ε

)
p2

(
ds(x)

ε

)
f (x)dx = 0. (10.20)

Thus, we arrive at

lim
ε→0

1
ε

∫
(Uε

adh)
c p1

(
dε(x)

ε

)
p2

(
ds(x)

ε

)
f (x)dx = 0, (10.21)

which together with (10.18) completes our proof.
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10.5 Asymptotic expansion and leading order problem

In view of the asymptotic expansion ansatz in Assumption (A.2), we characterize the
structure of the diffuse-interface minimizers of Problem 10.1. Substitution of the ansatz,
namely φ∗ = φε, and the diffuse-interface interpretation for φs = φε

s into (10.10)2, yields

0 =
1
ε

W ′(φε)− ε∆φε − εσB(φε) (∇ · (B(φε
s)∇φε

s)) + λε

=
1
ε

W ′(φε)− ε∆φε − εσB(φε)
(

B′(φε
s)|∇φε

s|2 + B(φε
s)∆φε

s
)
+ λε, (10.22)

for a given ε. Then, using the identities (9.42) - (9.46), we obtain

0 =
1
ε

W ′(ψ) + W ′′(ψ)
(

h +
1
ε

g
)
− 1

ε
ψ′′ + 2Kψ′

− 1
ε

σB(ψ)(B′(φε
s)(φε

s
′)2 + B(φε

s)φε
s
′′ − 2εKsB(φε

s)φε
s
′)

− σB′(ψ)
(

h +
1
ε

g
)
(B′(φε

s)(φε
s
′)2 + B(φε

s)φε
s
′′ − 2εKsB(φε

s)φε
s
′)

+ λε +O(ε), (10.23)

bearing in mind that ψ(ξ) := ψ
(

dε(x)
ε

)
and φε

s(ξS) := φε
s

(
ds(x)

ε

)
. Furthermore, at the

sharp-interface Γs we have ∆ds(x) = −2Ks(x) with Ks the mean curvature [174]. In
addition, λε represents the expanded form of (10.11), which reads

λε =
1

ε|Ω|
∫

Ω
(σB(φε

s)B′(ψ)φε
s
′ψ′∇dε · ∇ds − W ′(ψ))dx +O(1). (10.24)

For brevity, we keep writing λε in what follows. Thus, collecting terms of the same
order, we arrive at

0 =
1
ε
(W ′(ψ)− ψ′′ − σB(ψ)(B′(φε

s)(φε
s
′)2 + B(φε

s)φε
s
′′))

+ W ′′(ψ)h − 2Kψ′ − σB′(ψ)h
(

B′(φε
s)(φε

s
′)2

+ B(φε
s)φε

s
′′) + 2σKsB(φε

s)φε
s
′

+ λε +O(ε). (10.25)

The unconstrained leading order term in the above expression defines Problem 10.4.
In Lemma 10.5, we demonstrate that an equivalent differential equation exists for this
problem, when φε

s(ξS) = −ψ(ξ) is considered. Furthermore, in Remark 10.6 we show
that the results in Lemma 10.5, which are based on the omission of the Lagrange mul-
tiplier contribution in the leading order, establish that the leading order term of the
Lagrange multiplier becomes zero. This implies that its omission in Problem 10.4 is
consistent.

Problem 10.4 (Leading order problem) Bearing in mind that ψ(ξ) := ψ
(

dε(x)
ε

)
and also

that φε
s(ξS) := φε

s

(
ds(x)

ε

)
, let ψ solve the differential equation

W ′(ψ)− ψ′′ = σB(ψ)(B′(φs)(φε
s
′)2 + B(φε

s)φε
s
′′), ∀ψ(ξ) ∈ R, (10.26)

subject to the conditions ψ(−∞) = φ−, ψ(∞) = φ+ and ψ(0) = 0 . □
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Lemma 10.5 Suppose that ξS = −ξ, so that φε
s(ξS) = −ψ(ξ), φε

s
′(ξS) = ψ′(ξ) and

φε
s
′′(ξS) = −ψ′′(ξ). Furthermore, consider 0 ≤ σ < 4. Then, the solution to Problem

10.4 also fulfills the differential equation

ψ′(ξ) =
√

2 fσ(ψ(ξ)), (10.27)

with

fσ(ψ) :=


(1 − ψ2)2

4 − σ(1 − ψ2)2 , ψ ∈ [φ−, φ+],

0, otherwise.

(10.28)

Consequently, we can write∫ ∞

−∞
|ψ′(ξ)|2 dξ =

∫ φ+

φ−

√
2 fσ(ψ)dψ. (10.29)

□

Proof. Substituting φε
s(ξS) = −ψ(ξ), φε

s
′(ξS) = ψ′(ξ) and φε

s
′′(ξS) = −ψ′′(ξ) into the

differential equation (10.26), multiplying the result by ψ′, followed by integration over
ξ ∈ R, yields∫ ∞

−∞
(W ′(ψ)ψ′ − ψ′′ψ′)dξ = −σ

∫ ∞

−∞
B(ψ)ψ′ (B′(ψ)(ψ′)2 + B(ψ)ψ′′) dξ

= −σ
∫ ∞

−∞
B(ψ)ψ′(B(ψ)ψ′)′ dξ. (10.30)

Here, we have used the definition of the regularizing function (10.3) to write B(ψ) =
B(−ψ) and B′(ψ) = −B′(ψ). Next, we write∫ ∞

−∞
(W(ψ))′ dξ −

∫ ∞

−∞

1
2
((ψ′)2)′ dξ = −σ

2

∫ ∞

−∞
((B(ψ)ψ′)2)′ dξ, (10.31)

and, recalling that W(ψ) = (B(ψ))2, obtain

W(ψ)− 1
2
(ψ′)2 = −σ

2
W(ψ)(ψ′)2. (10.32)

where the constant of integration is zero, as W(φ(ξ)) and ψ′(ξ) vanish for ξ → ±|∞|.
From the above follows that

(ψ′(ξ))2 = 2 (1 − σW(ψ(ξ)))−1 W(ψ(ξ)) = 2 fσ (ψ(ξ)) , (10.33)

and using the choice of W(ψ) in (10.2) we recover definition (10.28) for fσ(ψ). Notice
that fσ is a truncated double-well function for 0 ≤ σ < 4. Furthermore, we have that
fσ(φ−) = fσ(φ+) = 0 and fσ(0) =

1
4−σ . Since ψ(ξ) is non-decreasing, we deduce that

ψ′(ξ) =
√

2 fσ(ψ(ξ)). (10.34)

As a result, we can now write∫ ∞

−∞
|ψ′(ξ)|2 dξ =

∫ ∞

−∞

√
2 fσ(ψ(ξ))ψ

′(ξ)dξ =
∫ φ+

φ−

√
2 fσ(ψ)dψ, (10.35)

which completes our proof. ■
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Remark 10.6 (Consistency of Assumption (A.6) with the Lagrange multiplier) Suppose
that we are in the neighbourhood Uε

adh, with dε = −ds and ξS = −ξ, so that φε
s(ξS) =

−ψ(ξ), φε
s
′(ξS) = ψ′(ξ) and φε

s
′′(ξS) = −ψ′′(ξ). Then, the leading order of the expanded

Lagrange multiplier (10.24) can be written as

1
ε|Ω|

∫
Ω
(σB(φε

s)B′(ψ)φε
s
′ψ′∇dε · ∇ds − W ′(ψ))dx

= − 1
ε|Ω|

∫
Ω
(σB(ψ)B′(ψ)(ψ′)2 + W ′(ψ))dx, (10.36)

Expression (10.30) in Lemma 10.5 leads us to the following equation

W ′(ψ) = ψ′′ − σB(ψ)
(

B′(ψ)(ψ′)2 + B(ψ)ψ′′)
= (1 − σW(ψ))ψ′′ − σB(ψ)B′(ψ)(ψ′)2 (10.37)

where we have used that W(ψ) = (B(ψ))2. In addition, by taking the derivative of
expression (10.27) with respect to ξ, we also obtain

ψ′′(ξ) =
fσ

′(ψ)√
2 fσ(ψ)

ψ′(ξ), (10.38)

where fσ is defined in (10.28). Applying equation (10.37), followed by substitution of
expression (10.38), the leading order term of the Lagrange multiplier becomes

− 1
ε|Ω|

∫
Ω
(σB(ψ)B′(ψ)(ψ′)2 + W ′(ψ))dx

= − 1
ε|Ω|

∫
Ω
(1 − σW(ψ))ψ′′ dx

= − 1
ε|Ω|

∫
Ω
(1 − σW(ψ))

fσ
′(ψ)√

2 fσ(ψ)
ψ′ dx. (10.39)

Lastly, in view of the co-area formula for shared interfaces (10.17), we establish that

lim
ε→0

(
− 1

ε|Ω|
∫

Ω
(1 − σW(ψ))ψ′′ dx

)
= − 1

|Ω|
∫ ∞

−∞
(1 − σW(ψ))

fσ
′(ψ)√

2 fσ(ψ)
ψ′ dξ

∫
Γadh

da

= − 1
|Ω|

∫ φ+

φ−
(1 − σW(ψ))

fσ
′(ψ)√

2 fσ(ψ)
dψ

∫
Γadh

da = 0, (10.40)

noting that an integral of an odd function over a symmetric interval equals zero. □

10.6 Convergence to the sharp limit

To study the convergence of the diffuse-interface adhesion energy E ε
single(φ∗), we ex-

pand E ε
single(φ∗) using the ansatz for φ∗ in Assumption (A.2) and the diffuse-interface
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interpretation of φs in Assumption (A.4). This yields

E ε
single(φ∗) =

∫
Ω

(
1
ε

W(φε) +
ε

2
|∇φε|2 + εσB(φε)B(φε

s)∇φε · ∇φε
s

)
dx

=
1
ε

∫
Ω

(
W(ψ) + εW ′(ψ)

(
h +

1
ε

g
)
+O(ε2)

)
dx

+
ε

2

∫
Ω

(
1
ε2 (ψ

′)2 +O(1)
)

dx

+ ε
∫

Ω

(
σ

(
B(ψ) + εB′(ψ)

(
h +

1
ε

g
)
+O(ε2)

)
B(φε

s)(
1
ε

ψ′∇dε + ε∇h +∇g
)
·
(

1
ε

φε
s
′∇ds

))
dx

=
1
ε

∫
Ω

(
W(ψ) +

1
2
(ψ′)2 + σB(ψ)B(φε

s)ψ
′φε

s
′∇dε · ∇ds

)
dx

+
∫

Ω

(
W ′(ψ)h + σB′(ψ)hB(φε

s)ψ
′φε

s
′∇dε · ∇ds

)
dx +O(ε), (10.41)

Using the above result, we demonstrate in Theorem 10.A that the diffuse-interface en-
ergy converges to a sharp-interface energy, as ε → 0.

Theorem 10.A (Convergence to sharp-interface energy) If φε solves Problem 10.1 and
additionally satisfies (A.1), (A.2) and (A.4) - (A.6), then,

E0
single(Γ

0) := lim
ε→0

E ε
single(φε) = CW

∫
Γc

adh

da + Cσ

∫
Γadh

da, (10.42)

bearing in mind that Γadh := Γ0 ∩ Γs and Γc
adh := Γ0\Γadh. Furthermore, the constants

are defined as follows

CW :=
√

2
∫ φ+

φ−

√
W(ψ)dψ, and Cσ :=

∫ φ+

φ−
gσ(ψ)dψ, (10.43)

with

gσ(ψ) :=


√

2
(

1 − 3
2

σW(ψ)

)√
(1 − σW(ψ))−1 W(ψ), ψ ∈ [φ−, φ+],

0, otherwise.

(10.44)
□
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Proof. Using Lemmas 9.4, 10.3 and 10.5, we write

lim
ε→0

E ε
single(φε)

= lim
ε→0

(
1
ε

∫
Ω

(
W(ψ) +

1
2
(ψ′)2 + σB(ψ)B(φε

s)ψ
′φε

s
′∇dε · ∇ds

)
dx

+
∫

Ω

(
W ′(ψ)h + σB′(ψ)hB(φε

s)ψ
′φε

s
′∇dε · ∇ds

)
dx +O(ε)

)
=
∫ ∞

−∞
(ψ′(ξ))2 dξ

∫
Γc

adh

da

+
∫ ∞

−∞

(
W(ψ(ξ)) +

1
2
(ψ′(ξ))2 − σW(ψ(ξ))(ψ′(ξ))2

)
dξ
∫

Γadh

da

=
√

2
∫ φ+

φ−

√
W(ψ)dψ

∫
Γc

adh

da

+
∫ ∞

−∞

(
1
2
(1 − σW(ψ(ξ))) (ψ′(ξ))2 +

(
1
2
− σW(ψ(ξ))

)
(ψ′(ξ))2

)
dξ
∫

Γadh

da

= CW

∫
Γc

adh

da +
∫ ∞

−∞

(
1 − 3σ

2
W(ψ(ξ))

)√
2 fσ(ψ(ξ))ψ

′(ξ)dξ
∫

Γadh

da

= CW

∫
Γc

adh

da +
∫ φ+

φ−
gσ(ψ)dψ

∫
Γadh

da

= CW

∫
Γc

adh

da + Cσ

∫
Γadh

da,

with Γadh := Γ0 ∩ Γs and gσ(ψ) as defined in (10.44). Note that the O(1) terms vanish,
because of arguments earlier presented in Remark 10.6 and Lemma 9.5. ■
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Figure 10.1: Constants in the sharp-interface energy plotted against the adhesion
strength for the truncated double-well potential (10.2).

In Theorem 10.A, we have shown that the sharp-interface energy (10.42) is composed
of two surface integrals, essentially splitting the outer boundary of the material into
an adhered and non-adhered part. Each of the integral contributions is weighted by
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a constant. These constants depend on properties of the diffuse-interface problem. In
particular, the constant weighting the non-adhered part of the limiting surface, that is
CW , has the same form as the constant CW derived for the Cahn-Hilliard problem in
Chapter 9, and represents the surface tension of the non-adhered boundary. The con-
stant weighting the shared interface between material and substrate, that is Cσ, takes on
a different form, and decreases for increasing values of σ. In Figure 10.1, both constants
are plotted as a function of the adhesive strength σ, in which the truncated double-well
potential (10.2) is considered. From this Figure, we can conclude that in absence of
any adhesive interaction, that is for σ = 0, the sharp-interface energy functional (10.42)
reduces to the sharp-interface energy functional for the Cahn-Hilliard problem (9.66).
Furthermore, as σ approaches its limiting value, i.e. σ → 4, the constant Cσ → −∞.

10.7 Minimizers of the sharp-interface energy

Using the sharp-interface energy functional derived in Theorem 10.A for the single-
phase adhesion problem, we formulate the associated constrained minimization Prob-
lem 10.7. In this problem, the initial configuration of the system constrains the domain
size enclosed by the sharp interface.

Problem 10.7 (Sharp-interface adhesion minimization problem) Find Γ∗ such that

Esingle(Γ
∗) = inf

Γ
Esingle(Γ), (10.45)

subject to |Ω+| :=
∫

Ω+
dx = M+,0, with M+,0 :=

∫
Ω+(t=0) dx and ∂Ω+ := Γ. □

Next, we define an equivalent saddle-point problem, using the following Lagrangian

L (Γ, λ) = CW

∫
Γc

adh

da + Cσ

∫
Γadh

da + λ(|Ω+| − M+,0), (10.46)

where the constants CW and Cσ are specified through the associated diffuse-interface
problem. Now, for a given Γ the Lagrangian satisfies

sup
λ∈R

L (Γ, λ) =

{Esingle(Γ), if |Ω+| = M+,0, ∀λ ∈ R,

∞, otherwise,
(10.47)

which leads us the saddle-point Problem 10.8.

Problem 10.8 (Sharp-interface saddle-point problem) Find (Γ∗, λ∗) such that

L (Γ∗, λ∗) = inf
φ∈L

sup
λ∈R

L (Γ, λ). (10.48)
□

To find the saddle points which solve Problem 10.8, and additionally minimize the en-
ergy in Problem 10.7, we consider the following expressions{

0 = L ′(Γ∗, λ∗; δλ), ∀δλ ∈ R,

0 = L ′(Γ∗, λ∗; v), ∀v ∈ Lv,
(10.49)

where we have used the velocity method introduced in Chapter 2 to take the Hadamard
shape derivative. Bearing in mind that Γ is a piecewise smooth boundary, we con-
sider perturbations in the tangential direction at the points where the boundary loses its
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Ω+

Ωs,+

Γs

Γc
adh

Γadh

α τadh
τc

adh

D

Figure 10.2: Shape of minimizers of the sharp-interface energy. The minimizer is
a piecewise smooth surface, that is, Γ∗ = Γc

adh ∪ Γadh, where the adhered part of the
surface is shared with the substrate surface Γs. At the edges ∂Γ the tangential vectors to
Γadh and Γc

adh are shown, which are denoted by τadh and τadh and define the angle α.

smoothness, see Figure 10.2. In particular, we define τadh as the outward unit tangent-
normal to Γadh and τc

adh as the outward unit tangent-normal to Γc
adh at such points. At

the non-adhered interface, we also consider perturbations given by the normal velocity
V := v · n.

Using the shape derivatives of the domain and boundary integral defined in Theo-
rem 2.B and Theorem 2.C, respectively, we arrive at

0 = |Ω+| − M+,0,

0 =
∫

∂Γ
v · (CWτc

adh + Cστadh)ds +
∫

Γc
adh

(CWK + λ∗)(v · n)da,
(10.50)

where ∂Γ are the points where Γadh and Γc
adh meet. If we consider the class of admissible

velocity fields for which holds that v · n ̸= 0, we find that

CWτc
adh = −Cστadh, ∀x ∈ ∂Γ, (10.51)

and also that

K = − λ∗

CW
, ∀x ∈ Γc

adh. (10.52)

Here, expression (10.52) implies that the non-adhered part of the minimizing surface
has a constant curvature, which value depends on the domain-size constraint. Further-
more, we can write (10.51) so that it defines the angle α, see Figure 10.2, that is

α = arccos
(
− τc

adh · τadh
|τc

adh||τadh|

)
= arccos

(
− Cσ

CW

)
, ∀x ∈ ∂Γ. (10.53)

From expression (10.53) follows that for Cσ = CW , the angle is given by α = π radians,
meaning that the limiting surface Γ∗ is not adhered. For Cσ = −CW , the angle α → 0,
implying that the surface Γ∗ is in its most adhered state. Thus, the values of the con-
stants Cσ and CW put a geometrical restriction on the angle between the adhered and
non-adhered parts of the limiting surface.
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In the following, we consider the two-dimensional configuration depicted in Figure
10.2 to further characterize the shapes of the minimizers of the sharp-interface energy
functional for different adhesive strengths σ. For this purpose, we employ a geomet-
rical approach, motivated by the results in (10.51) and (10.52), that is that minimizers
can be geometrically parameterized by the combination of an adhesive curve length
Ladh := |Γadh|, a non-adhesive curve length Lc

adh := |Γc
adh| and an adhesion angle α. In

our two-dimensional setting, the substrate is flat, and thus the adhesive curve length
corresponds to the length of a straight line, whereas the non-adhesive curve length is
part of the perimeter of an auxiliary circle with radius R. In its non-adhered configura-
tion, the area of the domain enclosed by Γ∗ is given by

A0 = πR2
0, (10.54)

which we refer to as the initial area, as A0 represents the constraint M+,0. In what
follows, let the initial radius be given by R0 = 0.45. Then, for a given adhesion angle
α ∈ (0, π], its corresponding lengths Ladh and Lc

adh can be found using

Ladh = 2R sin(π − α), and Lc
adh = 2αR, (10.55)

where the radius R of the auxiliary circle reads

R =

√
A0

α − 1
2 sin(2α)

. (10.56)

Next, we use the following numerical procedure to find for each adhesive strength
σ ∈ [0, 4) the geometric parameters (Ladh, Lc

adh, α) associated with the minimizer Γ∗ of
the sharp-interface energy functional:

(I) Looping over all α ∈ (0, π], the lengths Ladh and Lc
adh (10.55) are determined using

the initial area (10.54). These computed pairs (Ladh, Lc
adh) represent the allowable

geometries for the minimizers;

(II) Then, for each σ ∈ [0, 4):

(i) The value of the constant Cσ (10.43)2 is determined, see Figure 10.1;

(ii) Subsequently, the values of the adhesion energy

E = CW Lc
adh + CσLadh, (10.57)

for all allowable pairs (Ladh, Lc
adh) are computed;

(iii) Finally, the minimum energy over all values E is determined. Its associated
geometric parameters (Ladh, Lc

adh, α) define the minimizer Γ∗.

Using the above approach, we find the values of the sharp-interface adhesion energy
and plot these against the adhesive lengths, see Figure 10.3. In Figure 10.3, the mini-
mum energies are marked for various σ, which demonstrate that (i) in the non-adhered
case (σ = 0), the length of the adhesive part of Γ∗ is zero; and that (ii) for σ tending to 4
the adhesive length tends to +∞. Furthermore, the energy associated with the minimiz-
ers decreases for higher values of σ, yet seems bounded for σ → 4. Lastly, in Figure 10.4
the values of the geometric parameters characterizing the minimizers for all σ ∈ [0, 4)
the are shown. We clearly observe that for σ → 4, the material of interest spreads out
over the flat substrate.
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Figure 10.3: Sharp adhesion energy for different geometries using various σ. The
adhered length Ladh represents the geometry. Minimizers Γ∗ for the various adhesive
strengths σ are indicated by the round markers.
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Chapter 11

Numerical Results

In this Chapter, we numerically solve the phase-field adhesion models presented in
Chapter 8. To this end, we discretize the mixed form of the equations in space using
the Finite Element method and in time using the so-called scalar auxiliary variable (SAV)
approach. This SAV approach produces energy-stable results. An introduction to the
scheme and the time-discretized version of the adhesion equations are provided in Sec-
tion 11.1. In Section 11.2, we study the behaviour of the single-phase adhesion model
in various numerical experiments. In particular, the effect of the curvature of the sub-
strate’s diffuse interface, the adhesion strength and the thickness of the diffuse interface
on the steady states are numerically investigated. Lastly, Section 11.3 focusses on the
multi-phase adhesion model and presents the numerical results of the adhesive interac-
tion between two moving phase-field variables.

11.1 Time-discretization of the adhesion problem

In computational phase-field modelling, the time integration of the phase-field equa-
tions can be numerically challenging, as naively chosen time-discretization schemes
may lack stability. In the first part of this Section, we introduce the reader to the no-
tion of time-discrete energy-stability. In particular, we detail in Section 11.1.2 a recently
proposed class of efficient and robust energy-stable schemes, known as the scalar auxil-
iary variable (SAV) approach. A first-order SAV scheme for a general class of phase-field
based gradient flows is presented (Section 11.1.3), before it is applied to the single-phase
adhesion (Section 11.1.4). Extension of this scheme provides us with an appropriate
time-discretization scheme for the multi-phase adhesion problem (Section 11.1.5). These
energy-stable systems are used to produce the numerical results in subsequent Sections.

11.1.1 Time-discretization methods for phase-field models

Phase-field theories are generally based on a free-energy functional that involve a non-
convex term. These terms locally produce so-called uphill or backward diffusion, which
standard time-integration schemes can not always adequately deal with. For this rea-
son, the phase-field modelling community has taken much interest in the study and
development of time-discretization methods.

To evaluate and compare the numerical performance of different time-discretization
schemes, usually the following aspects are considered:

1. The order of accuracy of the scheme, i.e. whether the scheme is convergent and
what error bounds can be established;

79
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2. The stability of the scheme, i.e. whether the time-integration conserves the energy
structure of the model;

3. The solvability of the time-discrete system, i.e. whether a solution exists and if
that solution is unique;

4. The efficiency and the ease of implementation of the scheme.

For phase-field problems, the stability of the used time-discretization scheme is inher-
ently dependent on the problem’s energetic structure. In particular, we can say that a
time-discretization scheme preserves the energy-dissipative property of the underlying
phase-field model, if it dissipates10 energy at each time step, see Definition 11.1. For
a comprehensive overview of existing time-discretization schemes and their energy-
dissipative properties, the reader is referred to Gomez & van der Zee (2017) [78].

Definition 11.1 (Energy stability of a time-discretization scheme) Let tn, n = 0, 1, . . . ,
denote discrete time instances, τ = tn+1 − tn define the time-step size, and φn ≈ φ(·, tn)
the approximate solution at these discrete time instances. A numerical scheme for a
phase-field model with an energy structure given by functional E : V → R is said to be
unconditionally energy-stable if

E(φn+1)− E(φn) ≤ 0, ∀ n ≥ 0, (11.1)

independent of the time-step size τ. If the stability holds under some constraint, e.g. for
some τ, the scheme is said to be conditionally energy stable. □

In this work, we consider a time-discretization technique known as the scalar auxiliary
variable (SAV) approach. The SAV scheme was originally proposed by Shen et al. (2018)
[151] as an efficient and robust approach to construct energy-stable schemes for a gen-
eral class of phase-field models. More specifically, it is based on the invariant energy
quadratization (IEQ) approach, see recent work by [177, 179]. The IEQ approach is a
generalization of the method of Lagrange multipliers, which act as auxiliary variables,
and was first developed for phase-field models in [10, 80]. The IEQ method has made
it possible to construct linear, unconditionally stable, as well as second-order uncondi-
tionally stable schemes for a large class of phase-field based gradient flows. Whilst the
SAV approach enjoys all the advantages of the IEQ scheme, it also overcomes some of
IEQ’s shortcomings11, thereby making it the more efficient and versatile approach of
the two.

11.1.2 The SAV approach for gradient flows

Recall from Chapter 3 that phase-field gradient flows are evolutionary systems driven
by a free-energy functional E : V → R and a dissipation mechanism. Here, we consider
energy functionals E of the following class

E(φ) =
1
2
⟨Lφ, φ⟩V∗,V + E1(φ), (11.2)

10Here, we additionally assume that no external work is acting on the system. Natural or periodic
boundary conditions yield such a system.

11Using the SAV approach (i) the model’s equations can be reduced in such way that a linear system
with constant coefficients needs to be solved at each time step, instead of a linear system with variable co-
efficients; (ii) gradients flows with multiple variables no longer lead to IEQ’s coupled system with variable
coefficients, instead a system of decoupled linear equations with constant coefficients should be solved for
each variable, and (iii) the class of gradient flows for which the scheme works is slightly larger, as certain
restrictions on the bound of terms in the energy-functional are relaxed in the SAV scheme.
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with V∗ the dual of the vector space V and ⟨·, ·⟩V∗,V the dual pairing V∗ × V → R. In
the above, L is a symmetric non-negative linear operator, which is independent of φ.
Furthermore, E1 : V → R is non-linear and typically only contains derivatives of lower
order than L. In addition, we assume that E1 is bounded from below as follows: there
exists a constant C such that E1 ≥ C > 0. Alternatively, we may add a constant CE to E1
so that E1 + CE ≥ C > 0 without altering the gradient flow. In contrast to Chapter 3, we
here formulate the dissipation mechanism explicitly using the non-positive symmetric
operator G : W → W∗. Then, the general structure of the gradient flows considered in
this Chapter is given by

∂φ

∂t
= Gµ, (11.3)

subject to suitable boundary conditions. Here, the variational derivative reads µ :=
δE/δφ, which we refer to as the chemical potential. Moreover, the operator G deter-
mines the dissipation mechanism of the gradient flow, which is characterized by the
following energy-dissipation property

dE
dt

= E ′(φ;
∂φ

∂t
) = ⟨∂φ

∂t
, DE(φ)⟩W∗,W = ⟨Gµ, µ⟩W∗,W ≤ 0. (11.4)

Following Shen et al. (2019) [152], we introduce an auxiliary scalar variable r =
√E1

to construct an energy-stable time-discretization scheme for the gradient flow (11.3).
In case E1 is bounded by CE > 0, we may write r =

√E1 + CE , without altering the
structure of the gradient flow. Using this auxiliary variable, we rewrite the gradient
flow (11.3) as 

∂φ

∂t
= Gµ,

µ = Lφ +
r√

E1(φ)
U(φ),

dr
dt

=
1

2
√
E1(φ)

∫
Ω

U(φ)
∂φ

∂t
dx,

(11.5)

where auxiliary function

U(φ) =
δE1
δφ

, (11.6)

denotes the variational derivative of the non-linear part of the energy functional. In
Theorem 11.A, we establish that the system presented in (11.5) dissipates energy for the
modified energy

Emod(φ, r) =
1
2
⟨Lφ, φ⟩V∗,V + r2, (11.7)

and thus also for the general energy functional (11.2).

Theorem 11.A (Energy-dissipation of a SAV based gradient flow) Let E(φ) be of the
class of energy-functionals defined in (11.2), where E1(φ) is bounded from below. For
a symmetric non-negative linear operator L and a non-positive symmetric operator G,
the system in (11.5) is energy-dissipative. □

Proof. In view of the mixed system (11.5), we arrive at the following dissipation law for
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the energy functional (11.2)

dE(φ)

dt
=

d
dt

(1
2
⟨Lφ, φ⟩V∗,V + r2

)
= ⟨Lφ,

∂φ

∂t
⟩V∗,V + 2r

dr
dt

= ⟨Gµ, µ⟩W∗,W −
(∂φ

∂t
,

r√
E1(φ)

U(φ)
)

L2(Ω)
+

r√
E1(φ)

∫
Ω

U(φ)
∂φ

∂t
dx

= ⟨Gµ, µ⟩W∗,W ≤ 0, (11.8)

bearing in mind that the energy functional E(φ) in (11.2) with r =
√E1 corresponds to

the modified energy functional Emod(φ, r) in (11.7). ■

11.1.3 First-order SAV scheme

To arrive at a time-discrete system, we apply a first order time-integration scheme to
the (φ, µ, r)-system in (11.5). The resulting system reads

φn+1 − φn

τ
= Gµn+1,

µn+1 = Lφn+1 +
rn+1√
E1(φn)

U(φn),

rn+1 − rn

τ
=

1

2
√
E1(ϕ

n)

∫
Ω

U(φn)
φn+1 − φn

τ
dx,

(11.9)

with U(φn) = δE1(φn)/δφ. This discrete system (11.9) is unconditionally energy-stable
for the modified energy Emod (11.7), see Theorem 11.B. Moreover, the system that needs
to be solved to find the solution (φn+1, µn+1, rn+1) is linear, making it an efficient and
scheme, which is easy to implement.

Theorem 11.B (Unconditional energy stability of the first-order SAV scheme) For the
modified energy Emod(φ, r) in (11.7), the scheme in (11.9) is unconditionally energy sta-
ble. □

Proof. To arrive at the discrete modified energy dissipation, we multiply the expres-
sions in (11.9) by µn+1, (φn+1 − φn)/τ and 2rn+1, respectively, followed by integration
over the domain of the first two expressions. Via these newly obtained identities, we
find

1
τ

(
Emod(φn+1, rn+1)− Emod(φn, rn)

)
=

1
2τ

⟨Lφn+1, φn+1⟩V∗,V − 1
2τ

⟨Lφn, φn⟩V∗,V +
(rn+1)2 − (rn)2

τ

= ⟨Gµn+1, µn+1⟩W∗,W

− 1
2τ

⟨L(φn+1 − φn), (φn+1 − φn)⟩V∗,V − (rn+1 − rn)2

τ
≤ 0, (11.10)

where we have used that a2 − b2 = 2a(a − b) − (a − b)2. Here, last term represents
artificial dissipation of O(τ2). ■
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11.1.4 Time-discretization of single-phase field adhesion problem

In this Section, we present a first-order SAV scheme for the single-phase field adhe-
sion problem. To write the single-phase adhesion energy functional Esingle (10.1) as a
functional of the class (11.2), we consider the operators

L := −ε∆, and G := ∆. (11.11)

For these operators, the first-order scheme (11.9) reads

φn+1 − φn

τ
= ∆µn+1,

µn+1 = −ε∆φn+1 +
rn+1√
E1(φn)

U(φn),

rn+1 − rn

τ
=

1

2
√
E1(ϕ

n)

∫
Ω

U(φn)
φn+1 − φn

τ
dx,

(11.12)

with

E1(φn) :=
∫

Ω

(
1
ε

W(φn) + σεB(φn)B(φs)∇φn · ∇φs

)
dx, (11.13)

so that the auxiliary function U(φn) is given by

U(φn) :=
δE1(φn)

δφ
=

1
ε

W ′(φn)− σεB(φn)(B(φs)∆φs + B′(φs)|∇φs|2). (11.14)

11.1.5 First-order SAV scheme for the multi-phase field adhesion problem

The SAV approach presented for a gradient flow involving a single phase-field variable
in Section 11.1.2-11.1.4 can be extended to multi-phase field gradient flows, see Section
2.2 in [152] for more details. Here, we present the first-order SAV scheme for the multi-
phase adhesion problem. First, we write the multi-phase adhesion energy functional
E ε

multi (8.14) into the following general form

Emulti(φi, . . . , φk) =
k

∑
i=1

(
1
2
⟨Li φi, φi⟩V∗,V

)
+ E1(φi, . . . , φk), (11.15)

using that Li := −ε∆ and

E1(φi, . . . , φk) :=
k

∑
i=1

k

∑
j ̸=i

∫
Ω

εσij

2
B(φi)B(φj)∇φi · ∇φj dx. (11.16)

Furthermore, for the adhesion problem we have that Gi = ∆ for all i = 1, . . . , k. Then,
using the SAV approach, a first-order scheme is given by

φn+1
i − φn

i
τ

= ∆µn+1
i ,

µn+1
i = −ε∆φn+1

i +
rn+1√

E1(φn
i , . . . , φn

k )
Ui(φn

i , . . . , φn
k ),

rn+1 − rn

τ
=
∫

Ω

k

∑
i=1

(
Ui(ϕ

n
i , . . . , ϕn

k )

2
√
E1(ϕ

n
i , . . . , ϕn

k )

φn+1
i − φn

i
τ

)
dx,

(11.17)
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for all i = 1, . . . , k. Here, the auxiliary function Ui reads

Ui(φn
i , . . . , φn

k ) :=
δE1(φk

i , . . . , φn
k )

δφi

=
1
ε

W ′(φn)−
k

∑
j ̸=i

εσijB(φn
i )(B(φn

j )∆φn
j + B′(φn

j )|∇φn
j |2), (11.18)

bearing in mind that we consider symmetric adhesion strengths, that is σij = σji.

11.2 2-D single phase-field adhesion

In this Section, we present two-dimensional numerical results for the single-phase ad-
hesion model detailed in Section 8.1. First, we present the results of a numerical exper-
iment involving the interaction of the phase field with a flat steady substrate in Section
11.2.1. In Section 11.2.2 and 11.2.3, we consider the effect of curvature, as we study the
interaction of the phase-field with a convex and concave substrate field, respectively.

All numerical results in this Section are obtained using the first-order SAV schemes
presented in Section 11.1. Furthermore, we employed the standard Galerkin Finite El-
ement Method for the discretization in space. More specifically, we used linear basis
functions (p = 1) on quadrilateral elements and a uniform mesh size h := L/nelem.
Here, L is the (larger) domain length and nelem denotes the number of elements along
the (longer) domain boundary, chosen so that ϵ ≥ 2h for all experiments. Lastly, the re-
sults were computed using Nutils: a free and open source Python programming library
for Finite Element Method computations [169].

11.2.1 Flat substrate

In this Section, we consider a flat substrate field onto which a moving phase-field ad-
heres. Let the computational domain be given by Ω = [−L, L]2 with L = 1.0, and let
t ∈ [0, T] with final time T = 0.8. Furthermore, we consider the initial configuration
depicted in Figure 8.1. Then, the initial condition of the phase-field variable is given by

φ(x, 0) = tanh
(R0 − |x|√

2ε

)
, (11.19)

whereas the steady substrate field reads

ϕs(x) = − tanh
(hs + y√

2ε

)
, (11.20)

so that at t = 0 the only point of contact between the phase-field’s and substrate’s 0-
level sets is the origin. Here, the initial radius of this circular shape of the phase field is
given by R0 = 0.45. Furthermore, hs = R0 is the translation of the substrate field in the
negative y-direction.

In the numerical experiments presented in this Section, the following double-well
function is employed

W(φ) =
1
4
(1 − φ2)2, (11.21)

with minima located at φ− = −1 and φ+ = 1. Additionally, we use

B(φ) :=


√

W(φ) = 1
2 (1 − φ2), φ ∈ [−1, 1],

0, otherwise,
(11.22)
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as regularizing function.

We solve the single-phase field adhesion problem for various values of the interfacial
thickness ε and also use different values for the adhesive strength σ. The simulation
parameters used for each of these simulations are provided in Table 11.1.

Figures 11.1, 11.3, and 11.5 show the evolution of the phase-field variable over time
for σ = 1.0 and σ = 2.0, using ε = 0.10, ε = 0.05 and ε = 0.025, respectively. Then,
Figures 11.2, 11.4, and 11.6 show the evolution of the phase-field variable over time for
higher values of the adhesion strength, that is σ = 3.0 and σ = 4.0, again using ε = 0.10,
ε = 0.05 and ε = 0.025, respectively. At the final time T = 0.8, the adhered length Ladh
is depicted in these Figures, which exact value is based on the sharp-interface results in
Section 10.7 and varies for different values for the adhesive strength σ. In general, we
observe that for each interfacial thickness ε, the phase-field adheres onto the substrate:
the domain enclosed by the diffuse interface moves closer to the substrate field and
flattens on top of it, thereby increasing the overlapping area between the diffuse regions
of the two fields. In the numerical limit, the diffuse interpretation of the adhesive length
(at T = 0.8) corresponds well with the predicted Ladh by the sharp-interface analysis in
Section 10.7, especially for lower values of σ. However, for σ = 4.0 no fully adhered
configuration is recovered by the phase-field model, while this was predicted by the
sharp-interface analysis. Furthermore, a comparison between the results for different
ε reveals that ε scales the adhesive effect, as the diffuse interpretation of the adhesive
length gets larger for smaller values of ε.

In Figures 11.7, 11.8, 11.9, the energy results over time for ε = 0.10, ε = 0.05 and
ε = 0.025, respectively, are plotted. These results show that the phase field results at
T = 0.8 can indeed be considered as steady states, as the energies converge to constant
values over time. Furthermore, we see that the adhesive process is mainly associated
with a (strong) decrease in adhesive energy, lowering the total energy in the system.
In the numerical limit, we see that hardly any changes in the homogeneous part of the
energy functional should be expected over time, whereas changes in interfacial energy
reflect the changes in adhesive energy, as the diffuse interpretation of the perimeter
grows due to the adhesive effect.

Table 11.1: Simulation parameters used in the flat substrate simulations.

interfacial thickness ε time step size τ number of elements along
the domain boundary nelem

0.10 2 · 10−4 80
0.05 2 · 10−4 (1 · 10−4 for σ = 1.0) 80
0.025 25 · 10−6 (125 · 10−7 for σ ≥ 3.0) 160
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Figure 11.1: Adhesion on a flat substrate for ε = 0.10. 2-D results at various times for
lower values of the adhesive strength σ. The 0-level set of the adhesive phase-field φ
and the substrate ϕs are plotted as dotted lines.
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Figure 11.2: Adhesion on a flat substrate for ε = 0.10. 2-D results at various times for
higher values of the adhesive strength σ. The 0-level set of the adhesive phase-field φ
and the substrate ϕs are plotted as dotted lines.
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Figure 11.3: Adhesion on a flat substrate for ε = 0.05. 2-D results at various times for
lower values of the adhesive strength σ. The 0-level set of the adhesive phase-field φ
and the substrate ϕs are plotted as dotted lines.
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Figure 11.4: Adhesion on a flat substrate for ε = 0.05. 2-D results at various times for
higher values of the adhesive strength σ. The 0-level set of the adhesive phase-field φ
and the substrate ϕs are plotted as dotted lines.



Chapter 11. Numerical Results 90

Figure 11.5: Adhesion on a flat substrate for ε = 0.025. 2-D results at various times for
lower values of the adhesive strength σ. The 0-level set of the adhesive phase-field φ
and the substrate ϕs are plotted as dotted lines.
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Figure 11.6: Adhesion on a flat substrate for ε = 0.025. 2-D results at various times for
higher values of the adhesive strength σ. The 0-level set of the adhesive phase-field φ
and the substrate ϕs are plotted as dotted lines.
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Figure 11.7: Adhesion on a flat substrate for ε = 0.10. Energy results showing the total
energy Etot, modified energy Emod, adhesive energy Eadh, homogeneous energy Ehom
and interfacial energy Eint over time for various adhesive strengths σ.
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Figure 11.8: Adhesion on a flat substrate for ε = 0.05. Energy results showing the total
energy Etot, modified energy Emod, adhesive energy Eadh, homogeneous energy Ehom
and interfacial energy Eint over time for various adhesive strengths σ.
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Figure 11.9: Adhesion on a flat substrate for ε = 0.025. Energy results showing the
total energy Etot, modified energy Emod, adhesive energy Eadh, homogeneous energy
Ehom and interfacial energy Eint over time for various adhesive strengths σ.
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11.2.2 Convex substrate

In this Section, we present the numerical results for a convexly shaped substrate field.
Here, we consider a steady substrate field

ϕs(x) = tanh

(
Rs −

√
x2 + (Cy − y)2

√
2ε

)
, (11.23)

with Rs governing the curvature and Cy = −(Rs − R0). The rest of the parameters and
settings are taken from the experiment described in Section 11.2.1, except that for all
simulations here τ = 2 · 10−4 is used for ε = 0.05 and τ = 25 · 10−6 for ε = 0.025.

Figures 11.10 and 11.14 shows the phase field at T = 0.8 for lower values of Rs
and various σ, using ε = 0.05 and ε = 0.025, respectively. Then, Figures 11.11 and
11.15 show the steady states for higher values of Rs, again using ε = 0.05 and ε =
0.025, respectively. Furthermore, in Figures 11.12, 11.13, 11.16 and 11.17 the energetic
contributions over time are plotted.

Similar effects to the ones discussed in Section 11.2.1 can be observed in these Fig-
ures. For this numerical experiment involving a convex substrate, however, the part of
the diffuse interface of the phase field that adheres onto the substrate has to become con-
cave. We observe that the diffuse adhesion lengths increase for larger values of σ. The
energy plots show that higher values of Rs are associated with lower adhesion energies
(and thus also total energies). Furthermore, larger interfacial energies are found, hint-
ing at larger diffuse perimeters, for larger values of Rs, in other words, for less curved
substrate fields.
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Figure 11.10: Adhesion on a convex substrate for ε = 0.05. 2-D results at T = 0.8 for
lower values of Rs and for various adhesive strengths σ. The 0-level set of the adhesive
phase-field φ and the substrate ϕs are plotted as dotted lines.
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Figure 11.11: Adhesion on a convex substrate for ε = 0.05. 2-D results at T = 0.8 for
higher values of Rs and for various adhesive strengths σ. The 0-level set of the adhesive
phase-field φ and the substrate ϕs are plotted as dotted lines.
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Figure 11.12: Adhesion on a convex substrate for ε = 0.05. Energy results showing
the total energy Etot, modified energy Emod, adhesive energy Eadh, homogeneous energy
Ehom and interfacial energy Eint over time for various adhesive strengths σ and for lower
values Rs governing the substrate’s curvature.
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Figure 11.13: Adhesion on a convex substrate for ε = 0.05. Energy results showing
the total energy Etot, modified energy Emod, adhesive energy Eadh, homogeneous en-
ergy Ehom and interfacial energy Eint over time for various adhesive strengths σ and for
higher values Rs governing the substrate’s curvature.
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Figure 11.14: Adhesion on a convex substrate for ε = 0.025. 2-D results at T = 0.8 for
lower values of Rs and for various adhesive strengths σ. The 0-level set of the adhesive
phase-field φ and the substrate ϕs are plotted as dotted lines.
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Figure 11.15: Adhesion on a convex substrate for ε = 0.025. 2-D results at T = 0.8 for
higher values of Rs and for various adhesive strengths σ. The 0-level set of the adhesive
phase-field φ and the substrate ϕs are plotted as dotted lines.
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Figure 11.16: Adhesion on a convex substrate for ε = 0.025. Energy results showing
the total energy Etot, modified energy Emod, adhesive energy Eadh, homogeneous energy
Ehom and interfacial energy Eint over time for various adhesive strengths σ and for lower
values Rs governing the substrate’s curvature.
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Figure 11.17: Adhesion on a convex substrate for ε = 0.025. Energy results showing
the total energy Etot, modified energy Emod, adhesive energy Eadh, homogeneous en-
ergy Ehom and interfacial energy Eint over time for various adhesive strengths σ and for
higher values Rs governing the substrate’s curvature.
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11.2.3 Concave substrate

In this Section, we present the numerical results for a concave substrate field. Here, we
let the steady substrate field given by

ϕs(x) = − tanh

(
Rs −

√
x2 + (Cy − y)2

√
2ε

)
, (11.24)

with Rs as a measure of its curvature and Cy = (Rs − R0). The rest of the settings are
copied from Section 11.2.1, except that for the results presented here τ = 2 · 10−4 is used
for ε = 0.05 and τ = 25 · 10−6 for ε = 0.025. For the simulations involving Rs = 1.0 and
ε = 0.025, we used CE = 1.0 for σ = 3.0 and CE = 0.5 for σ = 4.0.
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In Figures 11.18 and 11.22, the phase field at T = 0.8 is plotted for lower values of Rs and
various σ, using ε = 0.05 and ε = 0.025, respectively. Figures 11.19 and 11.23 show the
steady states for higher values of Rs, again using ε = 0.05 and ε = 0.025, respectively.
Furthermore, in Figures 11.20, 11.21, 11.24 and 11.25 the energetic contributions over
time are plotted.

In these results for a concave substrate field, we again observe similar trends to the
ones described in Section 11.2.1 and 11.2.2. Here, the adhered part of the diffuse surface
follows the curvature of the concave substrate field. Lower values of Rs are associated
with longer adhered lengths of the diffuse interface, as well as lower adhesive energies.
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Figure 11.18: Adhesion on a concave substrate for ε = 0.05. 2-D results at T = 0.8 for
lower values of Rs and for various adhesive strengths σ. The 0-level set of the adhesive
phase-field φ and the substrate ϕs are plotted as dotted lines.
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Figure 11.19: Adhesion on a concave substrate for ε = 0.05. 2-D results at T = 0.8 for
higher values of Rs and for various adhesive strengths σ. The 0-level set of the adhesive
phase-field φ and the substrate ϕs are plotted as dotted lines.
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Figure 11.20: Adhesion on a concave substrate for ε = 0.05. Energy results showing
the total energy Etot, modified energy Emod, adhesive energy Eadh, homogeneous energy
Ehom and interfacial energy Eint over time for various adhesive strengths σ and for lower
values Rs governing the substrate’s curvature.
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Figure 11.21: Adhesion on a concave substrate for ε = 0.05. Energy results showing
the total energy Etot, modified energy Emod, adhesive energy Eadh, homogeneous en-
ergy Ehom and interfacial energy Eint over time for various adhesive strengths σ and for
higher values Rs governing the substrate’s curvature.
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Figure 11.22: Adhesion on a concave substrate for ε = 0.025. 2-D results at T = 0.8 for
lower values of Rs and for various adhesive strengths σ. The 0-level set of the adhesive
phase-field φ and the substrate ϕs are plotted as dotted lines.
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Figure 11.23: Adhesion on a concave substrate for ε = 0.025. 2-D results at T = 0.8 for
higher values of Rs and for various adhesive strengths σ. The 0-level set of the adhesive
phase-field φ and the substrate ϕs are plotted as dotted lines.
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Figure 11.24: Adhesion on a concave substrate for ε = 0.025. Energy results showing
the total energy Etot, modified energy Emod, adhesive energy Eadh, homogeneous energy
Ehom and interfacial energy Eint over time for various adhesive strengths σ and for lower
values Rs governing the substrate’s curvature.
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Figure 11.25: Adhesion on a concave substrate for ε = 0.025. Energy results showing
the total energy Etot, modified energy Emod, adhesive energy Eadh, homogeneous en-
ergy Ehom and interfacial energy Eint over time for various adhesive strengths σ and for
higher values Rs governing the substrate’s curvature.
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11.3 2-D two phase-field adhesion

We consider the multi-phase adhesion problem presented in Section 8.2 for two phase-
field variables (k = 2) on the domain Ω = [−1.5, 1.5] × [−1.0, 1.0] for t ∈ [0, T], with
final time T = 0.8. We supply the system with the following initial condition

φi(x, 0) = tanh
(

R − |Ci − x|√
2ε

)
, i = 1, 2. (11.25)

with R = 0.45, C1 = (−R, 0) and C2 = (R, 0). In addition, we consider the double-
well function (11.21) and regularizing function (11.22) in Section 11.2.1. The simulation
parameters used to obtain the numerical results presented in this Section are provided
in Table 11.2.

Table 11.2: Simulation parameters used in the two-phase adhesion simulations.

interfacial thickness ε time step size τ number of elements along the
(longer) domain boundary nelem

0.05 2 · 10−4 120
0.025 25 · 10−6 240
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In Figures 11.26 and 11.27 the phase-field variables over time are plotted on a subregion
of the domain Ωsub = [−0.4, 1.0]× [−0.7, 0.7] for ε = 0.05. The 0-level sets show that
the shared part of the diffuse interface becomes larger for larger values of the adhesive
strength σ := σ12 = σ21. Similar results can be found in Figures 11.28 and 11.29, where
the phase-field variables over time are plotted for ε = 0.025 on Ωsub. From the energy
plots in Figure 11.30 for ε = 0.05 and in Figure 11.31, we conclude that the solution at
t = 0.8 has reached its steady state. Again, similar to the results presented in Section
11.2, we find that the adhesive interaction is stronger for smaller ε in terms of diffuse
adhesion length, yet that this does not per se imply lower absolute values in adhesion
(and total) energy. Lastly, although only a subregion of the domain is shown in Figures
11.26, 11.27, 11.28 and 11.29, both phase-field variables show the same shape evolution
over time in a reflected manner about the y-axis.
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Figure 11.26: Adhesion between two phase fields for ε = 0.05. 2-D results at various
times for lower values of the adhesive strength σ. The 0-level set of both phase fields
are plotted as dotted lines.
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Figure 11.27: Adhesion between two phase fields for ε = 0.05. 2-D results at various
times for higher values of the adhesive strength σ. The 0-level set of both phase fields
are plotted as dotted lines.
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Figure 11.28: Adhesion between two phase fields for ε = 0.025. 2-D results at various
times for lower values of the adhesive strength σ. The 0-level set of both phase fields
are plotted as dotted lines.
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Figure 11.29: Adhesion between two phase fields for ε = 0.025. 2-D results at various
times for higher values of the adhesive strength σ. The 0-level set of both phase fields
are plotted as dotted lines.
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Figure 11.30: Energies over time for adhesion between two phase fields for ε = 0.05.
Energy results showing the total energy Etot, modified energy Emod, adhesive energy
Eadh, homogeneous energy Ehom and interfacial energy Eint over time for various adhe-
sive strengths σ.
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Figure 11.31: Adhesion between two phase fields for ε = 0.025. Energy results show-
ing the total energy Etot, modified energy Emod, adhesive energy Eadh, homogeneous
energy Ehom and interfacial energy Eint over time for various adhesive strengths σ.





Chapter 12

Concluding Remarks

In this Part, we developed phase-field models that capture adhesive interactions be-
tween steady and moving diffuse interfaces. The mathematical framework of this the-
ory is based on the variational framework detailed in Chapter 4. The adhesion model is
founded on the classical Ginzburg-Landau energy functional with an additional contri-
bution accounting for the adhesive effect between the two interacting interfaces. This ef-
fect is restricted to the shared diffuse interfaces using regularizing terms. By making ap-
propriate choices for the constitutive equations, we arrive at a set of thermodynamically-
consistent phase-field equations.

To characterize the behaviour of steady states, we presented a formal asymptotic
framework, which is extendable to a wider class of phase-field problems. Within this
framework, we studied the adhesion energy functional and its associated minimizers in
the sharp-interface limit. In particular, we established bounds on the parameter regu-
lating the adhesive interaction. Furthermore, we demonstrated that the sharp-interface
minimizers are piecewise smooth surfaces consisting of a non-adhered boundary part
and a non-trivial adhered boundary part. The adhesion angle and curvature of the non-
adhered part are determined by the adhesion strength and the mass constraint. The
effect of the adhesion strength, curvature and interface thickness have also been nu-
merically investigated using energy-stable schemes, which can efficiently deal with the
underlying gradient-flow structure of these phase-field adhesion models.

We envision that the phase-field theories presented in this work may particularly be
interesting to use in the context of active interfaces. The current framework can be
extended in a straightforward manner to allow for additional surface dynamics through
regularized surface partial differential equations [140]. It is known that heterogeneities
on the surface may lead to contact angle and adhesion hysteresis. [94]. Furthermore, in
cellular biomechanics, transmembrane proteins are essential for the formation of bonds
between the cell membrane they live on and entities exterior to the cell membrane [93,
95]. An additional surface partial differential equation could be introduced accounting
for the transport and dynamics of these transmembrane proteins. Then, the adhesion
strength parameter should be made dependent on the surface concentration of these
membrane proteins in an appropriate manner, so that the local adhesive interactions
are induced by the presence of the dynamics of these proteins.
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Chapter 13

Introduction and Preliminaries

The last Part of this work focusses on bulk-surface materials undergoing deformation
and phase separation. The motivation to develop a continuum framework for these
coupled materials is presented in Section 13.1. The main objectives and outline of this
last Part are detailed in Section 13.2. In Section 13.3, preliminary concepts are defined,
which are relevant for the development of the continuum theory presented in the sub-
sequent Chapters.

13.1 Bulk-surface systems with material interfaces

Bulk-surface models have been developed to study a wide range of interfacial phenom-
ena, from flows of emulsions, foams stabilized by surfactants to cell dynamics governed
by proteins at the cell membrane. Key to these models is the idea that the dynamics
are not solely restricted to a bulk material, but that an active surface coating the bulk
material, that is, a surface with its own dynamics, also dictates the overall material be-
haviour. Typically, these systems involve species adsorption from a bulk material onto
a surface, giving rise to the particular dynamics on the surface. These interactions may
result in the motion of the surface, which in turn can cause bulk material deformation
and vice versa. This bulk-surface reciprocal interplay is the focus of this Part.

In modelling approaches, these interfaces are either treated as material surfaces or as
non-material surfaces that migrate with the bulk material. Non-material interfaces are
defined through a microscopic viewpoint of the surface, in which the surface is seen
as a thin diffuse three-dimensional transition region between two relatively homoge-
neous bulk phases. The material approach, on the other hand, considers a macroscopic
viewpoint, in which the surface appears as a two-dimensional, singular surface. Char-
acteristic of the material approach is that it does not allow for bulk mass transfer across
the material surface, yet, diffusive transport of solute species is still possible.

There is a vast literature on the physics and thermochemistry of these surfaces, in-
cluding studies into adsorption phenomena, see for instance the works by Adam [3],
Adamson & Gast [4] and Edwards, Brenner & Wasan [48]. Key contributions, in which
the underlying rational mechanics of material surfaces were systematically derived us-
ing modern continuum mechanics, were made by Gurtin & Murdoch (1975) [82]. They
developed a mathematical framework to study the elastic behaviour of material sur-
faces. According to Gurtin & Murdoch, arguments for the validity of such a macro-
scopic approach and its use in understanding surface behaviour were already presented
by Herring (1953) [90].

Another important contribution to the study of surface dynamics is the work by
Scriven (1960) [148] on fluid films. In this work, a general formulation for the dynamics
of a Newtonian fluid interface is derived. In line with Boussinesq’s stipulations (1913)
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[18], a linear dependence of stress on the rate of strain in the interface is considered,
resulting in interfacial fluid behaviour characterized by Boussinesq’s two coefficients of
surface viscosity, as well as a coefficient representing its interfacial tension. In addition,
consideration of the coupling between the surface and bulk material by Scriven yields
dynamic boundary conditions for two-phase bulk flows. Later, Levich (1962) [106] pro-
posed that surface stresses may be induced by surface tension gradients, which are in
turn due to the presence of surfactants.

Motivation for these bulk-surface continuum theories can for instance be found in
biological systems. Cells may mathematically be described as a bulk material (cyto-
plasm) enclosed by a surface (cell membrane). Their mechanobiology involves various
complex processes, as Ladoux & Mège [101, Figure 1a] illustrate, which in turn deter-
mine the shape of these cells. In particular, during adhesion cells may take saucer-
shaped forms. To fully understand the underlying mechanical behaviour of these cells
and such adhesive processes, the tractions developed on the edges need to be accounted
for. Considering arbitrary geometries, including those with a boundary that may lose
its smoothness, requires certain modifications and further generalization of continuum
theories, as shown by Espath [52] for the Navier-Stokes equations. Furthermore, Brang-
wynne [19] and Shin & Brangwynne [153] suggest that membrane-less organelles are
formed by regulated phase-segregation processes within the cytoplasm. In these works,
the authors capitalize on the physics of polymer phase separation. Current frame-
works that may capture the dynamics of these biological cells to some extent include
the work by Madzvamuse et al. [117], who present a reaction-diffusion for bulk-surface
systems suitable to model cell polarization but do not include phase segregation and
motion. Similarly, Duda et al. [45] investigate bulk-surface systems for cell adsorp-
tion/desorption and chemical reactions for classical diffusion.

13.2 Objectives and outline

The objective of this work is to present a comprehensive continuum theory for bulk-
surface materials undergoing deformation and phase separation. In particular, we con-
sider an immiscible binary bulk fluid enclosed by a thin immiscible binary fluid film.
We treat this thin film as a material surface with a small, yet finite, surface thickness.
This surface fluid exhibits its own dynamics, and as a result the mechanical laws ruling
the bulk and surface dynamics are coupled.

Both the bulk fluid and the enclosing thin film of fluid are only allowed to undergo
isochoric motions, that is, both flows are incompressible. Isochoric motion within the
bulk implies no change in volume. In addition, the pressure found in the bulk fluid
does not affect the stress power. However, isochoric motion within the surface fluid
does not impose the same restrictions on changes in surface area, as the thickness of
the thin fluid film may change. Based on this hypothesis, we derive the mass balance
equations for the bulk and surface material. This formalism is detailed in Chapter 14, in
which we also present the balances accounting for the mass transport of the two species
present in the bulk-surface system.

Next, in Chapter 15, we extend the principle of virtual power presented for phase-
fields with bulk-surface dynamics by Espath [53, 54], and present the coupled bulk-
surface principle of virtual power for systems undergoing deformation. We postulate
the virtual power balance assuming that the material surface may lose smoothness,
viz. the normal field may be discontinuous at an edge, thereby accounting for power
expenditures across edges.

In Chapter 16, the thermodynamics of the system and its implications in terms of
constitutive equations are discussed. Among other things, we derive the general form
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for the bulk and surface fluid stresses depending linearly on the rate of strain in the
bulk or surface material, respectively. We conclude this Chapter by presenting the spe-
cialized equations for a bulk-surface system undergoing phase separation.

In Chapter 17, we supplement the system with appropriate boundary conditions, in-
cluding a set of mixed boundary conditions that allow for slip between the surface and
the bulk material, which are dissipative in nature. These boundary conditions are em-
ployed to arrive at the Lyapunov decay relation for the coupled bulk-surface material,
which characterizes the dissipative nature of the bulk-surface system and its interaction
with the environment.

Lastly, Chapter 18 bears concluding remarks and directions for future research.

13.3 Preliminary definitions

In the following Subsections, we present the preliminary definitions used to the de-
velop the mathematical framework in the subsequent Chapters. In Subsection 13.3.1,
we define the differential operators on surfaces, and in Subsection 13.3.2 the integral
theorems on surfaces are presented. Lastly, in Subsection 13.3.3 the material and spatial
time derivatives of both bulk and surface fields are defined.

13.3.1 Differential operators on surfaces

Consider the smooth scalar, vector, and tensor fields denoted by κ, κ, and K, respec-
tively, defined on a smooth surface S oriented by the outward unit normal n at x ∈ S .
In what follows, we define the differential operators. Bear in mind that we allow the
fields κ, κ, and K to have smooth normal extensions, enabling us to define the relevant
differential operators in a neighbourhood of S along all directions. The gradients can
be written in the following form

gradκ = ∂nκ n + ∂pκ ep, with p = 1, 2, (13.1)

and
gradκ = ∂nκ ⊗ n + ∂pκ ⊗ ep, with p = 1, 2, (13.2)

where ep are tangential to S and defined by ep = ∂px for all x ∈ S . Next, let Pn := Pn(n)
denote the projector onto the plane defined by n at x ∈ S , which reads

Pn := 1 − n ⊗ n = P⊤
n , (13.3)

where (·)⊤ represents the transposition. In view of (13.3) and the expressions (13.1) and
(13.2), the surface gradient of a scalar and vector field are, respectively, written as

gradSκ := ∂pκ ep = Pn gradκ, with p = 1, 2, (13.4)

and
gradSκ := ∂pκ ⊗ ep = (gradκ)Pn , with p = 1, 2. (13.5)

Furthermore, the surface divergence for a vector field reads

divSκ := ∂pκ · ep = gradκ : Pn , with p = 1, 2, (13.6)

and is for a tensor field given by

divSK := ∂pK · ep = gradK : Pn , with p = 1, 2. (13.7)

Lastly, the Laplace–Beltrami operator may be written as

△Sκ := divSgradSκ = grad (Pn gradκ) : Pn , (13.8)

and
△Sκ := divSgradSκ = grad ((gradκ)Pn) : Pn . (13.9)
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13.3.2 Integral theorems on surfaces

On a smooth, closed and oriented surface S , the surface divergence theorem for the
smooth vector and tensor fields κ and K states that∫

S
divS(Pn κ)da = 0, and

∫
S

divS(KPn)da = 0, (13.10)

whereas, on a smooth, open and oriented surface S , the surface divergence theorem
reads∫

S
divS(Pn κ)da =

∫
∂S

κ · ν dσ, and
∫
S

divS(KPn)da =
∫

∂S
Kν dσ, (13.11)

with ν the outward unit tangent-normal at the boundary ∂S .
Lastly, consider a non-smooth oriented surface S for which smoothness of the nor-

mal vector field is lost on an edge C. The edge C is defined by the limiting outward unit
tangent-normals ν+ and ν−, yet we only consider smooth C. The surface S has to be
understood as the union of open sets S := S+ ∪ S−, or in general S :=

⋃
α Sα. Addi-

tionally, we abandon the smoothness hypotheses of κ and K and allow these fields to
be discontinuous across C, and denote by κ± and K±, respectively, the limiting values
of κ and K when approaching C from S±. Owing to the lack of smoothness on the edge
C, the surface divergence theorem exhibits a surplus, that is,∫

S
divS(Pn κ)da =

∫
C
{{κ · ν}}dσ, and

∫
S

divS(KPn)da =
∫
C
{{Kν}}dσ, (13.12)

where {{κ · ν}} := κ+ · ν+ + κ− · ν− and {{Kν}} := K+ν+ + K−ν−. Conversely, for open
non-smooth oriented surfaces, the surface divergence theorem (13.12) is extended, that
is, for the vector field κ we have∫

S
divS(Pn κ)da =

∫
∂S

κ · ν dσ +
∫
C
{{κ · ν}}dσ, (13.13)

and for the tensor field K∫
S

divS(KPn)da =
∫

∂S
Kν dσ +

∫
C
{{Kν}}dσ. (13.14)

13.3.3 Material and spatial time-derivatives

Given are the material scalar and vector fields kP(x, t) and kP(x, t) defined in a bulk
material body P that occupies a region of a three-dimensional point space E . Further-
more, we consider the smooth motion yP(xP , t) of the material body, so that the region
of space occupied by the body at a time t = τ is denoted by Pτ = yP(P). Given any
material fields kP(xP , t) and kP(xP , t), their respective bulk material time-derivatives are
defined as

k̇P :=
∂kP(xP , t)

∂t
, and k̇P :=

∂kP(xP , t)
∂t

, (holding xP fixed). (13.15)

We introduce κP(yP , t) and κP(yP , t) as the spatial scalar and vector fields defined on
the spatial bulk part Pτ. The corresponding spatial time-derivatives read

κ′P :=
∂κP(yP , t)

∂t
, and κ′

P :=
∂κP(yP , t)

∂t
, (holding yP fixed). (13.16)
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The material and spatial time-derivatives for the spatial bulk fields κP(yP , t) and κP(yP , t)
are related through the following time-derivative identities

κ̇P = κ′P + gradκP · υP , and κ̇P = κ′
P + (gradκP)υP , (13.17)

where υP(yP , t) = ẏP(yP
−1(yP , t), t) denotes the spatial description of the bulk veloc-

ity. More information on material and spatial descriptions of fields and their time-
derivatives can be found in [86].

For fields defined on moving surfaces, special attention should be paid to their time
derivatives. To arrive at the surface counterparts of the spatial and material time-
derivatives in (13.16) and (13.17), we follow the theory presented by Cermelli et al.
[31].

First, let κ∂P(y∂P , t) and κ∂P(y∂P , t) be the smooth spatial scalar and vector fields de-
fined on a surface ∂Pτ, with ∂Pτ the region occupied by the deformed surface material
at t = τ. Furthermore, let υ∂P(y∂P , t) denote the migrational velocity of the surface ∂Pτ,
and let its corresponding trajectory z(t) through a fixed x∂P ∈ ∂P at time t0 be defined
as

dz(t)
dt

= υ∂P(z(t), t), z(t0) = x∂P . (13.18)

Then, the normal trajectories, which are the trajectories corresponding to the normal
velocity, read

dzn(t)
dt

= (υ∂P(zn(t), t) · n(y
∂P , t))n(y

∂P , t), zn(t0) = x∂P . (13.19)

Next, we introduce κ̂∂P(y∂P , t) and κ̂∂P(y∂P , t) as the normally constant extensions of the
fields κ∂P(y∂P , t) and κ∂P(y∂P , t), respectively. That is, the fields κ̂∂P(y∂P , t) and κ̂∂P(y∂P , t)
are constant on the lines in the normal direction n(y

∂P , t) of any y
∂P ∈ ∂Pτ. Then, given

any scalar field κ∂P(y∂P , t), the normal time-derivative reads

□
κ∂P :=

d
dt

κ∂P(zn(t), t) =
d
dt

κ̂∂P(zn(t), t) =
∂κ̂∂P(y∂P , t)

∂t

∣∣∣
y∂P=zn(t)

, (13.20)

and, similarly, for any vector field κ∂P(y∂P , t), it is defined as

□
κ∂P :=

d
dt

κ∂P(zn(t), t) =
d
dt

κ̂∂P(zn(t), t) =
∂κ̂∂P(y∂P , t)

∂t

∣∣∣
y∂P=zn(t)

. (13.21)

Lastly, the migrationally normal time-derivative of the fields κ∂P(x∂P , t) and κ∂P(x∂P , t)
following the moving material surface ∂Pτ at a time t0 and a point x∂P are defined as

κ̊∂P :=
d
dt

(
κ∂P(z(t), t)

)∣∣∣
t=t0

, and κ̊∂P :=
d
dt

(
κ∂P(z(t), t)

)∣∣∣
t=t0

. (13.22)

In view of relations (13.20) - (13.22), we obtain the identities

κ̊∂P =
□
κ∂P + (Pn υ∂P) · gradSκ∂P , and κ̊∂P =

□
κ∂P + (gradSκ∂P)(Pn υ∂P), (13.23)

which are analogous to the bulk time-derivative identities in (13.17). Notice that we can
also write expression (13.23)1 as

κ̊∂P =
□
κ∂P + υ∂P · gradSκ∂P . (13.24)





Chapter 14

Isochoric Motion and Mass Balance

In this Chapter, we focus on the motion and mass transfer in a binary immiscible bulk
fluid enclosed by a thin film of surface fluid. We assume that both the bulk and surface
material undergo isochoric motion, and present the implications of this assumption in
Section 14.1. Using these results, we derive the mass balance equations in the coupled
bulk-surface material in Section 14.2. In Section 14.3, we consider the mass transport of
species in the bulk-surface system and present a partwise species mass balance.

14.1 Isochoric motion

In this Section, we consider the motion of a coupled bulk-surface material and present
its kinematics. To this end, we consider the material body P occupying a region of a
three-dimensional point space E as the reference configuration. Furthermore, we let ∂P
denote its closed surface boundary, which may lose smoothness along a curve, namely
an edge ∂2P . In the neighbourhood of an edge ∂2P two smooth surfaces ∂P± are de-
fined. The limiting unit normals of ∂P± on ∂2P are denoted by the pair {n+, n−}, which
characterize the edge ∂2P . Similarly, the limiting outward unit tangent-normal of ∂P±

on ∂2P are {ν+, ν−}. Additionally, ∂2P is oriented by the unit tangent σ := σ+ such
that σ+ := n+ × ν+. Following the notational agreement in Section 13.3.3, we use the
subscript τ to refer to spatial entities in the current configuration. More specifically,
Pτ denotes the spatial part, we write ∂Pτ for the boundary of Pτ and use ∂2Pτ for the
boundary of ∂Pτ. Note that P , ∂P and ∂2P are reserved for their counterparts in the
reference configuration, respectively.

In this continuum theory, the bulk and surface material are endowed with two dis-
tinct kinematic descriptors, namely, the fluid velocities υP in the bulk and υ∂P on the
surface. Furthermore, let the density of the bulk material be given by ϱP , and let ϱ∂P
denote the apparent surface density of the surface material endowed with a finite thick-
ness ℓτ. The bulk-surface framework developed in this Part is based on two important
assumptions. That is, we assume that:

(A.1) The bulk-surface motion is isochoric. For the bulk material, this means that motion
preserves volume. For the surface material, we assume that isochoric motion im-
plies volume conservation on a microscopic scale;

(A.2) The normal components of the velocities are continuous, i.e.

υP · n
∣∣
∂P = υ∂P · n. (14.1)

Notice that we do not impose such a continuity assumption on the tangential
velocities Pn υP

∣∣
∂P and Pn υ∂P .
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Remark 14.1 (On the kinematical assumption (A.2)) The kinematic constraint (14.1) is
imposed to guarantee that the bulk and the surface material’s boundary coincide at
all times and never detach from one another. As we do not endow edges with their
own kinematic descriptors, it is not needed to define additional kinematic constraints.
Moreover, as a consequence of the kinematic constraint (14.1), we find on ∂2P that

υP · n+
∣∣
∂2P = υ∂P · n+

∣∣
∂2P , and υP · n−∣∣

∂2P = υ∂P · n−∣∣
∂2P . (14.2)

□

Bearing in mind Assumptions (A.1) - (A.2), let the bulk and surface deformation
gradient be denoted by

FP := gradx yP , and F∂P := gradx
S y

∂P , (14.3)

where yP represents the motion of Pτ and y
∂P the motion of ∂Pτ, such that Pτ = yP(P)

and ∂Pτ = y
∂P(∂P), respectively. In expression (14.3), the gradients are defined with re-

spect to the reference configuration, either xP ∈ P or x∂P ∈ ∂P , respectively. If not made
explicit, differential operators are computed with respect to the current configuration,
either yP or y

∂P .
As F∂P is rank deficient, we introduce the pseudo-inverse of the surface deformation

gradient as
F−1

∂P := Pn(x∂P)(F∂P + n(y
∂P)⊗ n(x∂P))

−1, (14.4)

where we explicitly show the dependency on either the reference configuration x∂P ∈
∂P or the current configuration y

∂P ∈ ∂Pτ. Note that F∂P + n(y
∂P)⊗ n(x∂P) is full rank

since n(y
∂P) is not in the range of F∂P . Additionally, we have that

F−1
∂P F∂P = Pn(x∂P), F∂PF−1

∂P = Pn(y∂P), and F−1
∂P n(y

∂P) = F−⊤
∂P n(x∂P) = 0. (14.5)

For further details on this pseudo-inverse, the reader is referred to the work by Šilhavý
[173] on interactions of shells with bulk matter, and also to the more recent work by
Tomassetti [162] on a coordinate-free description for thin shells.

Next, we introduce LP := gradυP and L∂P := gradSυ∂P as the bulk and surface ve-
locity gradient, respectively. We consider the following classical identity in continuum
mechanics (c.f. Gurtin [83, Eq. (8) on page 23]), also known as Jacobi’s formula,

˙|FP | = |FP |tr(ḞPF−1
P ), (14.6)

where |FP | denotes the determinant of FP . In addition, the dot over the line indicates the
derivative of the quantity under the line. The surface counterpart of expression (14.6)
reads

˚|F∂P | = |F∂P |tr(F̊∂PF−1
∂P ). (14.7)

Furthermore, we have the volumetric and areal Jacobian of deformation, respectively,
defined as

JP :=
dvτ

dv
= |FP |, (14.8)

and

J∂P :=
daτ

da
= |F∂P |. (14.9)

where dvτ and dv are the differential of the volume at the current and reference config-
uration, while daτ and da denote the differential of the area at the current and reference
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configuration. Finally, in view of (14.6) and (14.7) and bearing in mind that ḞP = LPFP
and F̊∂P = L∂PF∂P , we arrive at

J̇P = JP tr(ḞPF−1
P )

= JP tr(LPFPF−1
P )

= JP divυP ,

(14.10)

and
J̊∂P = J∂P tr(F̊∂PF−1

∂P )

= J∂P tr(L∂PF∂PF−1
∂P )

= J∂P divSυ∂P .

(14.11)

Next, following Assumption (A.1), we consider the isochoric motion of the bulk
material

˙|Pτ| := ˙vol(Pτ) = 0, (14.12)

Assuming that expression (14.12) holds for any Rτ ⊆ Pτ, we are led to

0 =
˙∫

Rτ

dvτ =
∫
R

J̇P dv =
∫
Rτ

divυP dvτ, (14.13)

where we have used expression (14.10). Thus, it follows by localization that

divυP = 0, in Pτ, (14.14)

which is a well-known constraint for incompressible bulk materials.
In view of Assumption (A.1), microscopic isochoric motion for the surface material

∂Pτ with current thickness ℓτ implies

˙|ℓτ∂Pτ| := ˙area(ℓτ∂Pτ) = 0. (14.15)

Let the above expression (14.15) hold for any Sτ ⊆ ∂Pτ. This leads us to the following

0 =
˙∫

Sτ

ℓτ daτ

=
∫
S

˚ℓτ J∂P da

=
∫
S
(ℓ̊τ J∂P + ℓτ J̊∂P)da

=
∫
Sτ

(ℓ̊τ + ℓτdivSυ∂P)daτ, (14.16)

where we have used the result in (14.11). Localization of (14.16) renders

ℓ̊τ + ℓτdivSυ∂P = 0, on ∂Pτ. (14.17)

Thus, the microscopically incompressible surface body can only undergo microscopic
isochoric motion, a requirement which imposes the constraint (14.17) on all motions
the surface material may undergo. Further motivation for this microscopic viewpoint
leading to the definition in (14.15) and the corresponding constraint (14.17) is based on
the partwise mass balance for the surface, which is defined in the next Section.
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14.2 Mass Balance

In this Section, we present the bulk and surface mass balances of the bulk-surface material
undergoing isochoric motion. Using the transport theorem, the partwise bulk balance
of mass is given by

˙∫
Rτ

ϱP dvτ =
∫
Rτ

(ϱ̇P + ϱP divυP)dvτ = 0, (14.18)

and by localization we arrive at the pointwise bulk mass balance

ϱ̇P + ϱP divυP = 0, in Pτ, (14.19)

In terms of specific volume νP := ϱ−1
P , the pointwise bulk balance of mass (14.19) reads

ν̇P = νP divυP , in Pτ. (14.20)

Using the isochoric constraint (14.14), divυP = 0, we obtain

ϱ̇P = 0, and ν̇P = 0, (14.21)

implying that the bulk mass density ϱP and specific bulk volume νP are constant on
particle paths. Moreover, we further restrict ϱP and νP by assuming that

ϱP = constant, and νP = constant, (14.22)

which means that applications in which spatial variations of the density are important,
such as oceanic and mantle convection, are excluded [86]. Based on these results for
the bulk material, it would be natural to assume that the surface density ϱ∂P is constant
as well for all motions. However, this would imply that the only motions possible are
those of the class in which both the volume and surface area do not change. This hy-
pothesis for the material motion is far too restrictive, and provides the main motivation
for employing a microscopic approach for the surface material’s motion.

Thus, from a microscopic viewpoint, we consider that the surface fluid has a con-
stant density ρ, defined as

ρ :=
dmτ

dvτ

= constant, (14.23)

where dmτ and dvτ are the differential of mass and volume, and the subscript τ refers
to the deformed configuration. When the surface fluid deforms the actual thickness
should change to maintain the constant microscopic volume. Accordingly, we define
the apparent surface density ϱ∂P , a macroscopic quantity, as

ϱ∂P :=
dmτ

daτ

=
dmτ

dvτ

ℓτ = ρ ℓτ, (14.24)

where ℓτ and daτ are the current thickness and current differential of area, respectively.
Furthermore, let ℓ be the initial thickness and da denote the differential area. Given
that the microscopic surface motion is isochoric, we have that

daτ × ℓτ = da × ℓ, (14.25)

leading us to the definition for microscopic isochoric motion

˙|ℓτ∂Pτ| := ˙area(ℓτ∂Pτ) = 0, (14.26)
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which we already defined in (14.15) to arrive at the constraint ℓ̊τ + ℓτdivSυ∂P = 0 in
(14.17).

In view of (14.24), we have that

ϱ∂P

ℓτ

= ρ, ϱ∂P × daτ = ρ × da × ℓ, and ν × daτ = ν∂P × da × ℓ, (14.27)

where ν := ρ−1 is the constant microscopic specific volume and ν∂P := ϱ−1
∂P is the appar-

ent specific area. Moreover, (14.27) yields

ν∂P =
J∂P

ℓ
ν. (14.28)

Additionally, in view of (14.25) and the areal Jacobian (14.9), we have

J∂P =
ℓ

ℓτ

. (14.29)

Lastly, the balance of mass for a spatial convecting region Sτ ⊆ ∂Pτ is given by

0 =
˙∫

Sτ

ϱ∂P daτ

=
∫
S
(ϱ̊∂P J∂P + ϱ∂P J̊∂P)da

=
∫
Sτ

(ϱ̊∂P + ϱ∂PdivSυ∂P)daτ, (14.30)

and thus, after localization, we arrive at the pointwise balance of surface mass

ϱ̊∂P + ϱ∂PdivSυ∂P = 0, on ∂Pτ, (14.31)

where divSυ∂P = divS(Pn υ∂P)− 2K υ∂P · n, in which K := − 1
2 divSn denotes the mean cur-

vature. Notice that the definition for density ρ (14.23) is consistent with the pointwise
balance of surface mass (14.31) and the isochoric constraint (14.17): combining both ex-
pressions leads to ρ̊ℓτ = 0. Hence, one can also arrive at the pointwise balance of mass
(14.31) through multiplication of the isochoric constraint (14.17) by ρ. Alternatively, we
can write (14.31) in terms of the specific area, that is,

ν̊∂P = ν∂P(divS(Pn υ∂P)− 2K υ∂P · n), on ∂Pτ. (14.32)

14.3 Conserved species transport

In this Section, we consider two diffusing species in the coupled bulk-surface material,
and characterize their transport by means of a partwise bulk-surface balance of species mass.
We define φP as the bulk mass fraction of one of the species in the bulk, and let φ∂P be
its surface counterpart. Moreover, since the sum of the mass fractions of both species in
the bulk is one, we write φP for one of the bulk mass fraction and 1 − φP for the other
bulk mass fraction. Similarly, on the surface, the surface mass fraction of one species is
φ∂P and the other one is 1 − φ∂P .

Bearing in mind that ϱ∂P = ρℓτ (14.24), the partwise bulk-surface balance of species
mass is given by

˙∫
Pτ

ϱP φP dvτ +
˙∫

∂Pτ

ρℓτ φ∂P daτ =
∫
Pτ

sP dvτ +
∫

∂Pτ

s∂P daτ −
∫

∂2Pτ

{{ȷ
∂P · ν}}dστ, (14.33)
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where sP and s∂P are the bulk and surface species mass supply, respectively, and ȷ
∂P

denotes the surface species mass flux across the edge.
Letting ȷP denote the bulk species mass flux, we stipulate that the partwise bulk-

surface species mass balance (14.33) can be uncoupled into

˙∫
Pτ

ϱP φP dvτ =
∫
Pτ

ϱP φ̇P dvτ =
∫
Pτ

sP dvτ −
∫

∂Pτ

ȷP · n daτ, (14.34)

and

˙∫
∂Pτ

ρℓτ φ∂P daτ =
∫

∂Pτ

ρℓτ φ̊∂P daτ +
∫

∂Pτ

ρφ∂P(ℓ̊τ + ℓτdivSυ∂P)daτ

=
∫

∂Pτ

ρℓτ φ̊∂P daτ

=
∫

∂Pτ

ȷP · n daτ +
∫

∂Pτ

s∂P daτ −
∫

∂2Pτ

{{ȷ
∂P · ν}}dστ. (14.35)

Next, we apply the divergence and surface divergence theorems to the uncoupled part-
wise balance of species mass (14.34) and (14.35), respectively. After localization, we are
led to the following pointwise balance of bulk species mass

ϱP φ̇P = sP − div ȷP , in Pτ, (14.36)

and for the surface holds

ρℓτ φ̊∂P = ȷP · n + s∂P − divS(Pn ȷ
∂P), on ∂Pτ. (14.37)

Note that the pointwise bulk species mass balance (14.36) has a standard form, motivat-
ing our choice for the uncoupling. However, the pointwise balance of surface species
mass (14.37) contains a contribution from the bulk in the form of the term ȷP · n. Addi-
tionally, the term divS(Pn ȷ

∂P) may be split as divS(Pn ȷ
∂P) = divS ȷ

∂P + 2Kȷ
∂P · n. Then, we

arrive at the following expression for the pointwise balance of surface species mass

ρℓτ φ̊∂P = ȷP · n + s∂P − divS ȷ
∂P − 2Kȷ

∂P · n, on ∂Pτ. (14.38)



Chapter 15

Principle of Virtual Power

The aim of this Chapter is to derive the governing equations for a bulk-surface mate-
rial undergoing motion and phase separation within a framework that is independent
of constitutive equations. For this purpose, we use the principle of virtual power. For
readers unfamiliar with the principle of virtual power, a general introduction to this
formalism is presented in Section 15.1, detailing its use and illustrating its implications
by applying the principle to a simple material. In Section 15.2, we employ the principle
of virtual power to determine the structure of the microtractions and tractions, as well as of
the pointwise balance of microforces and forces in our coupled bulk and surface material. In
Section 15.3, we demonstrate how the requirement of frame indifference for the internal
virtual power implies symmetry for the stresses in the bulk-surface material. Lastly, in
Section 15.4 we present the partwise balance of microforces, forces, microtorques, and torques,
which complement the theory.

15.1 Introduction to the principle of virtual power’s formalism

The principle of virtual power is a powerful and natural approach to formulate contin-
uum theories for standard and complex materials. In this Subsection, we provide the
reader with an introduction to this method. To this end, we discuss the use of the vir-
tual power formalism and its application in literature in Subsection 15.1.1. To illustrate
this approach in more detail, we apply the principle to a simple material and discuss
its consequences in Subsection 15.1.2. The statement of virtual power in Section 15.2
for the bulk-surface material can be seen as an extension of the theory presented for the
simple material in Subsection 15.1.2.

15.1.1 From balance laws to the virtual power principle

Classical continuum mechanics is based on balance equations, such as the balance laws
of linear and angular momentum, which form the fundamental postulates on which
theory for classical continua resides. In particular, the balance laws of linear and angular
momentum can be combined to form an integral relation: the so-called equation of virtual
power or virtual power balance. This integral identity represents the weak formulation of
the equations of motion.

The approach outlined above lacks generality, and can not be easily extended to non-
classical continua, i.e. continua with a particular microstructure. Difficulties encoun-
tered in postulating new balance equations for these non-standard continua involve the
choice of the structure of these balance laws, as well as their underlying motivation. To
address this, more novel approaches take the virtual power balance as a fundamental
principle, rather than to deduce it from the balance laws. This alternative perspective
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is known as the virtual power principle and proves valuable in formulating generalized
balance laws for non-classical continua.

There exists a large set of literature on the principle of virtual power. In the following,
we provide an incomplete overview of the main and more recent contributions to the
development and application of the principle of virtual powers’ formalism. Although
it is not our aim to present a literature overview of recent developments in continuum
theories of enriched continua12, much of the more modern virtual power machinery
has been developed and applied within this field. For further historical background,
the reader is referred to Capecchi’s study (2012) [30] into the history of virtual work
laws. Capecchi discusses the law of virtual work from its early Greek formulations
(fourth century BC) to its evolved state in the contributions of Pierre Duhem (late 19th
century/early 20th century) to thermodynamics.

In the early 1960s, Toupin [163, 164] was one of the first to base a continuum theory
for non-simple materials on the virtual power principle. Using the principle of virtual
power machinery, Toupin derived the general balance equations and associated traction
relations for an elastic body. In Toupin’s theory, the strain energy of the elastic body de-
pends on first and second gradients of the deformation, thereby equipping the material
with a so-called couple stress, in addition to the regular Cauchy stress.

Using the virtual work machinery, Mindlin (& Eshel) [121, 122] applied Toupin’s
work on second-grade materials with couple-stresses to linear elastostatics. In the early
1970s, Germain [70, 71, 72] extended these ideas even further. For this purpose, Germain
formalized the principle of virtual work and demonstrated its use by applying it to
second-gradient and micropolar continua.

Antman & Osborn (1979) [9] show in their fundamental work that the principle of
virtual work and the integral laws of motion are equivalent and independent of con-
stitutive equations. Around the same time, Maugin (1980) [118] presented the formal
structure underlying the principle of virtual power before applying it to the study of
coupled electro-magneto-mechanical effects in electronic components.

Further generalization of Toupin’s theory was achieved by Fried & Gurtin (2006)
[65], who developed general balance equations and boundary conditions for second-
grade materials, including fluid flows. They employed a nonstandard form of the prin-
ciple of virtual power based on Gurtin (2002) [85], where a microforce and force balance
describing single-crystal viscoplasticity with geometrically necessary dislocations are
derived using the principle of virtual power on arbitrary subregions deforming with
the material. Fried & Gurtin’s work [65] was followed up by a paper by Podio-Guidugli
& Vianello (2010) [136], who strengthen and generalize the virtual power principle ma-
chinery by demonstrating that hyperstresses and hypertractions convey the same me-
chanical information.
Two more recent overviews of the virtual power principle are the works by DelPiero
(2009) [135] and Lidström (2010) [110]. DelPiero presented a broad overview of the
principle, including first and second gradient continuum theories, whereas Lidström
includes the possibility of jump discontinuities (shocks) in its formulation, as well as
internal and external constraint conditions.

Most recently, Espath (2023) [54] has presented a comprehensive and geometric
framework for the theoretical description and modelling of enriched continua using
the principle of virtual work machinery. The work presented in this Chapter is an ex-
tension of the principle of virtual power for phase-fields with bulk-surface dynamics by
Espath [53, 54].

12Continua which contain a type of enrichment, for instance due to their underlying microstructure.
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Remark 15.1 (Note on nomenclature) In literature, the principle of virtual power is
also called the principle of virtual work, the principle of virtual velocities, or even the prin-
ciple of virtual displacements. Usually, the term virtual work is encountered when the
principle describes an equilibrium, whereas the notion of virtual power is used when
the principle describes the kinematic processes for an evolving body, thereby allowing
for inertia. Throughout this work, we use the term principle of virtual power to refer to
the formalism, as we account in our theory for an evolving body and corresponding in-
ertial effects. Furthermore, we disregard the notion of virtual velocity or displacement,
as this is coupled to the constitutive response of the material, i.e. whether the material
behaves as a solid or fluid. □

15.1.2 Principle of virtual power for a simple material

In this Subsection, we consider a material body B occupying a three-dimensional re-
gion of space and let Bτ denote its deformed state at some fixed time τ. Let Pτ denote
an arbitrary subregion of the deformed body Bτ with n the outward unit normal on
the boundary ∂Pτ of Pτ. In the following, we present a continuum theory for a simple
material, in which a single vector field field describes the kinematics. For this purpose,
we introduce the admissible virtual vector field χ on Pτ, which should be thought of
as a virtual displacement or velocity field. Furthermore, we wish to emphasize that
our choice of arbitrary parts is restricted to those with continuous outward unit normal
fields, meaning that additional interactions at points where the boundary ∂Pτ loses its
smoothness are not considered, and thus do not appear in the virtual power principle
presented in this Subsection.

In classical continuum mechanics, the power expended within an arbitrary part Pτ mi-
grating with the deformed body of a simple material reads

Vint(Pτ; χ) :=
∫
Pτ

T : gradχ dvτ, (15.1)

where T denotes the Cauchy stress. Notice that we have replaced the classical displace-
ment or velocity field by the virtual vector field χ, thereby arriving at the internal virtual
power in (15.1). In the above expression (15.1), the term T : gradχ represents the stress
power, in which T is acting on gradχ, and we say that T is power conjugate to gradχ.
To complement the internal power expenditure (15.1), we postulate that the external
virtual power expenditure is defined as

Vext(Pτ; χ) :=
∫
Pτ

b · χ dvτ +
∫

∂Pτ

tS · χ daτ, (15.2)

where b = bni + bin denotes the inertial and non-inertial body force acting within the
body [129], while tS represents the traction acting on the boundary ∂Pτ of Pτ. We can
say that both tS and b are power conjugate to the virtual vector field χ.

Now, the principle of virtual power is the requirement that the postulated internal
(15.1) and external (15.2) power expenditures are balanced, that is, that the virtual
power balance

Vext(Pτ; χ) = Vint(Pτ; χ), (15.3)

is satisfied for all admissible virtual fields χ and any spatial part Pτ.
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To elucidate the consequences of the principle (15.3), we apply the divergence theorem
to the internal power expenditure (15.1), which yields the following expression for the
internal power

Vint(Pτ; χ) =
∫
Pτ

T : gradχ dvτ = −
∫
Pτ

divT · χ dvτ +
∫

∂Pτ

Tn · χ daτ. (15.4)

Thus, in view of (15.2) and (15.4), the virtual power balance (15.3) becomes∫
Pτ

(divT + b) · χ dvτ +
∫

∂Pτ

(tS − Tn) · χ daτ = 0. (15.5)

The arbitrary choice of spatial part Pτ and virtual field χ allows us to call upon the
fundamental lemma of the calculus of variations. As a result, we arrive at the pointwise
field equations

divT + b = 0, in Pτ, (15.6)

which we recognize as the pointwise balance of forces. Moreover, writing the inertial
body force as bin := −ϱP v̇ results in the classical balance

divT + bni = ϱP v̇, in Pτ, (15.7)

with ϱP being the material’s mass density. A second consequence of the localization of
(15.5) is that the surface traction is given by

tS(n) = Tn, on ∂Pτ, (15.8)

which is Cauchy’s classical relation for traction across a surface with unit normal n [62].
Notice that the pointwise balance of forces (15.6) and surface traction condition

(15.8) are independent of constitutive choices, and hence valid for both solids and flu-
ids. Most importantly, since the choice of the part Pτ is arbitrary, these results must
hold throughout the deformed material body Bτ.

Remark 15.2 (Additional requirement: frame indifference) The virtual power princi-
ple, i.e. the requirement that the virtual power balance holds, is often accompanied
by an additional requirement: the requirement of frame indifference of the expended
power. The latter requirement has important consequences. For instance, for the simple
material considered in this Subsection, requiring frame indifference of the virtual power
expenditure (15.1) implies that the Cauchy stress is symmetric, i.e. T = T⊤, which rep-
resents the pointwise balance of angular momentum. The reader is referred to [86] for
more details. In Section 15.3, we detail the consequences of the requirement of frame
indifference for the coupled bulk-surface material. □

15.2 Statement of the virtual power principle

The aim of this Section is to derive the field equations of the continuum framework for
bulk-surface materials undergoing motion and phase separation. For this purpose, we
devise a principle of virtual power on the material part Pτ, where the surface ∂Pτ may
lose smoothness along a curve, viz. the edge ∂2Pτ. In our principle, kinematical pro-
cesses in the form of scalar and vector fields in the deformed bulk and surface material
are considered. Then, the principle of virtual power requires that the following virtual
power balance holds

Vext(Pτ, ∂Pτ; χP , χP , χ∂P , χ∂P) = Vint(Pτ, ∂Pτ; χP , χP , χ∂P , χ∂P), (15.9)
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where χP and χP are, respectively, sufficiently smooth scalar and vector fields represent-
ing the kinematical processes on Pτ, and similarly, χP and χP denote sufficiently smooth
scalar and vector fields representing the kinematical processes on ∂Pτ. We consider the
following internal virtual power

Vint(Pτ, ∂Pτ; χP , χP , χ∂P , χ∂P) :=
∫
Pτ

T : gradχP dvτ +
∫

∂Pτ

H : gradSχ∂P daτ

−
∫
Pτ

πχP dvτ −
∫

∂Pτ

ϖχ∂P daτ

+
∫
Pτ

ξ · gradχP dvτ +
∫

∂Pτ

τ · gradSχ∂P daτ, (15.10)

where T and H denote the stresses in the bulk and surface material, respectively, and
similarly, ξ and τ represent the bulk and surface microstresses. In the above, the scalar
fields π and ϖ are internal microforces acting on the bulk and surface material, respec-
tively. To complement the internal virtual power (15.9), we define the external virtual
power as

Vext(Pτ, ∂Pτ; χP , χP , χ∂P , χ∂P) :=
∫
Pτ

b · χP dvτ +
∫

∂Pτ

(g − tS) · χ∂P daτ

+
∫

∂Pτ

tS · χP daτ +
∫

∂2Pτ

h∂S · χ∂P dστ

+
∫
Pτ

γχP dvτ +
∫

∂Pτ

(ζ − ξS)χ∂P daτ

+
∫

∂Pτ

ξSχP daτ +
∫

∂2Pτ

τ∂Sχ∂P dστ, (15.11)

where b is the external body force acting on the bulk material, while g − tS represents
the effective external force acting on the surface material, with g being the external
surface body force and the surface traction tS representing the contribution from the
bulk material. Furthermore, h∂S denotes the edge traction. Similarly, for the scalar fields,
we have that γ denotes the external microforce acting on the bulk material via the scalar
bulk field χP , whereas (ζ − ξS) is power conjugate with χ∂P . Here, ζ is the contribution
from the environment and referred to as the surface external microforce, whereas ξS is
the surface microtraction across the surface originating from the bulk. Lastly, the field
τ∂S in the external virtual power expenditure (15.11) represents the edge microtraction.

Next, by combining the external (15.11) and internal (15.10) virtual power through
the virtual power balance (15.9), we are led to∫

Pτ

χP · (divT + b)dvτ +
∫

∂Pτ

χP · (tS − T · n)daτ

+
∫
Pτ

χP(divξ + π + γ)dvτ +
∫

∂Pτ

χP(ξS − ξ · n)daτ

+
∫

∂Pτ

χ∂P · (divS(HPn) + g − tS)daτ +
∫

∂2Pτ

χ∂P · (h∂S − {{Hν}})dστ

+
∫

∂Pτ

χ∂P(divS(Pn τ) + ϖ + ζ − ξS)daτ +
∫

∂2Pτ

χ∂P(τ∂S − {{τ · ν}})dστ = 0, (15.12)

where we have used the divergence theorem and surface divergence theorem for non-
smooth closed surfaces (13.12).
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Bearing in mind that the virtual power principle (15.9), and thus (15.12), holds for
all admissible kinematical processes, we arrive at the following consequences for the
continuum theory. First, the field equations read

divT + b = 0, in Pτ, and divS(HPn) + g − tS = 0, on ∂Pτ, (15.13)

and

divξ + π + γ = 0, in Pτ, and divS(Pn τ) + ϖ + ζ − ξS = 0, on ∂Pτ. (15.14)

In the above, we recognize the pointwise force balances (15.13) and the pointwise mi-
croforce balances (15.14) on the bulk and surface parts. Secondly, as a result of the
variational arguments, the tractions are given by

tS = Tn, on ∂Pτ, and h∂S = {{Hν}}, on ∂2Pτ, (15.15)

while the microtractions read

ξS = ξ · n, on ∂Pτ, and τ∂S = {{τ · ν}}, on ∂2Pτ. (15.16)

Lastly, decomposition of the external bulk and surface forces into an inertial and
non-inertial part allows us to write

b := bni + bin, and g := gni + gin. (15.17)

Furthermore, we consider the following expressions for the inertial body forces

bin := −ϱ∂P υ̇P , and gin := −ϱ∂P υ̊∂P = −ρℓτ υ̊∂P , (15.18)

so that the pointwise force balances in (15.13) can be written as

ϱP υ̇P = divT + bni, in Pτ, (15.19)

and
ρℓτ υ̊∂P = divS(HPn) + gni − tS , on ∂Pτ. (15.20)

In addition, by splitting divS(HPn) = divSH + 2KHn and divS(Pn τ) = divSτ + 2Kτ · n,
the field equation (15.20) can be written as

ρℓτ υ̊∂P = divSH + 2KHn + gni − tS , on ∂Pτ, (15.21)

while equation (15.14)2 becomes

divSτ + 2Kτ · n + ϖ + ζ − ξS = 0, on ∂Pτ. (15.22)

Remark 15.3 (Discontinuous surface microstress and stress) Note that the surface mi-
crostress and stress may be discontinuous across the edge ∂2Pτ. In what follows, we
further motivate what allows for these discontinuities. In literature on higher-order
continua, edge tractions and edge microtractions can be written as

h∂S := {{(Gn)ν}}, and τ∂S := {{(Σn) · ν}}, (15.23)

where G and Σ are the hyperstress and the hypermicrostress, respectively, see for in-
stance [61, 55]. Therefore, although one assumes that G and Σ are continuous, it is ex-
pected that Gn+ ̸= Gn− and Σn+ ̸= Σn− on ∂2Pτ. Conversely, in bulk-surface systems,
edge tractions (15.15)2 and edge microtraction (15.16)2 take the form

h∂S := {{Hν}}, and τ∂S := {{τ · ν}}, on ∂2Pτ. (15.24)

Thus, one may argue that the surface stress H and surface microstress τ have a similar
role as the fields Gn± and Σn±. Therefore, we consider that the surface stress H and
surface microstress τ are piecewise smooth, but can be discontinuous on an edge ∂2Pτ.□
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15.3 Frame indifference principle

Here, we discuss the consequences of the frame indifference requirement of the virtual
powers. Consider a change of frame given by the following mappings

χP 7→ χP + β + ΩyP , in Pτ, and χ∂P 7→ χ∂P + β + Ωy
∂P , on ∂Pτ, (15.25)

where β denotes the velocity of frame and the skew-symmetric tensor Ω represents the
rotation of frame, both independent of time. From (15.25) follows that

gradχP 7→ gradχP + Ω, in Pτ, and (15.26)

gradSχ∂P 7→ gradSχ∂P + ΩPn , on ∂Pτ. (15.27)

We emphasize that scalar vector fields are not affected by a change in observer, i.e.

χP 7→ χP , in Pτ, and χ∂P 7→ χ∂P , on ∂Pτ. (15.28)

We now postulate that the internal virtual power defined in (15.10) is indifferent to
the changes in frame specified in (15.25). This implies that

Vint(Pτ, ∂Pτ; χP ,χP , χ∂P , χ∂P)

= Vint(Pτ, ∂Pτ; χP + β + Ωy, χP , χ∂P + β + Ωy, χ∂P), (15.29)

with y ∈ Pτ ∪ ∂Pτ. Using expressions (15.26) and (15.27), we arrive at∫
Pτ

T : gradχP dvτ +
∫

∂Pτ

H : gradSχ∂P daτ

=
∫
Pτ

T : (gradχP + Ω)dvτ +
∫

∂Pτ

H : (gradSχ∂P + ΩPn)daτ. (15.30)

Equation (15.30) holds for

T : Ω = 0, in Pτ, and H : ΩPn = 0, on ∂Pτ, (15.31)

where (15.31)2 can be written as

H : Ω = Hn · Ωn, on ∂Pτ, (15.32)

using Pn := 1 − n ⊗ n. As (15.31)1 holds for all skew-symmetric tensors Ω, we find that
the bulk stress T is symmetric, i.e.

T = T⊤, in Pτ. (15.33)

Similarly, from (15.31)2 follows

HPn = (HPn)
⊤ = Pn H⊤, on ∂Pτ. (15.34)

Moreover, expression (15.34) implies that the surface stress tensor is symmetric, that
is H = H⊤ and requires simultaneously that it annihilates the normal, i.e. Hn = 0.
Thus, the symmetry implications for the bulk and surface stress in (15.33) and (15.34),
respectively, are consequences of the frame indifference postulate for the internal virtual
work (15.29).

Lastly, frame indifference of the internal virtual power also implies that the external
virtual power is frame indifferent, see Remark 15.4.
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Remark 15.4 (Frame indifference of the external virtual power) Frame indifference of
the external virtual power in (15.11) is the requirement that

Vext(Pτ, ∂Pτ; χP ,χP , χ∂P , χ∂P)

= Vext(Pτ, ∂Pτ; χP + β + Ωy, χP , χ∂P + β + Ωy, χ∂P), (15.35)

holds under all changes of frame (15.25). This requirement is satisfied through the frame
indifference postulate for the internal virtual power (15.29) and the virtual power prin-
ciple (15.9), that is

Vext(Pτ, ∂Pτ; χP + β + Ωy,χP , χ∂P + β + Ωy, χ∂P)

= Vint(Pτ, ∂Pτ; χP + β + Ωy, χP , χ∂P + β + Ωy, χ∂P)

= Vint(Pτ, ∂Pτ; χP , χP , χ∂P , χ∂P)

= Vext(Pτ, ∂Pτ; χP , χP , χ∂P , χ∂P). (15.36)
□

15.4 Complementary partwise balances

The aim of this Section is to construct the partwise integral balances using the field
equations (15.13) and (15.14) presented in Section 15.2. We present the partwise balances
of microforces and forces in Subsection 15.4.1, and in Subsection 15.4.2 we derive the
partwise balances of microtorques and torques.

15.4.1 Partwise balance of microforces and forces

To arrive at the partwise bulk-surface balance of forces, we integrate the field equations,
namely the pointwise balance of forces (15.13), on their respective parts, and find∫

Pτ

(divT + b)dvτ +
∫

∂Pτ

(divS(HPn) + g − tS)daτ = 0. (15.37)

Next, using the divergence theorem and the divergence theorem on non-smooth closed
surfaces (13.12), we arrive at∫

Pτ

b dvτ +
∫

∂Pτ

Tn daτ +
∫

∂Pτ

(g − tS)daτ +
∫

∂2Pτ

{{Hν}}dστ = 0. (15.38)

In view of the expression (15.15)1 for the surface traction, we find the partwise bulk-
surface balance of forces

F ♯(Pτ, ∂Pτ) :=
∫
Pτ

b dvτ +
∫

∂Pτ

g daτ +
∫

∂2Pτ

h∂S dστ = 0. (15.39)

Similarly, for the remaining field equations, viz. the pointwise balances of micro-
force (15.14), emulating the above procedure, we arrive at the partwise bulk-surface
balance of microforces

F ♭(Pτ, ∂Pτ) :=
∫
Pτ

(π + γ)dvτ +
∫

∂Pτ

(ϖ + ζ)daτ +
∫

∂2Pτ

τ∂S dστ = 0. (15.40)
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15.4.2 Partwise balance of microtorques and torques

To arrive at the partwise bulk-surface balances of microtorques and torques of the bulk-
surface material, we introduce the position vector r := y − o identifying each point
y ∈ Pτ ∪ ∂Pτ, where the origin o ∈ E is arbitrarily chosen and fixed.

First, we construct the partwise bulk-surface balance of microtorques. For this pur-
pose, we multiply the pointwise balance of microforces in (15.14) by the position vector
r, integrate the resulting expressions over their respective parts, and obtain∫

Pτ

r(divξ + π + γ)dvτ +
∫

∂Pτ

r(divS(Pn τ) + ϖ + ζ − ξS)daτ = 0. (15.41)

Bearing in mind that gradr = 1 and gradSr = Pn , we employ the following identities

div (r ⊗ ξ) = ξ + r divξ, and divS(r ⊗ Pn τ) = Pn τ + r divS(Pn τ), (15.42)

followed by the application of the divergence theorems, to write (15.41) as∫
Pτ

(r(π + γ)− ξ)dvτ +
∫

∂Pτ

(r ⊗ ξ) · n daτ +
∫

∂Pτ

(r(ϖ + ζ − ξS)− Pn τ)daτ

+
∫

∂2Pτ

{{(r ⊗ τ) · ν}}dστ = 0. (15.43)

Then, in view of the expression for the surface and edge microtraction (15.16), the part-
wise bulk-surface balance of microtorques reads

T ♭(Pτ, ∂Pτ) :=
∫
Pτ

(r(π + γ)− ξ)dvτ

+
∫

∂Pτ

(r(ϖ + ζ)− Pn τ)daτ +
∫

∂2Pτ

rτ∂S dστ = 0. (15.44)

To derive the partwise bulk-surface balance of torques, we take the tensor product
between r and the pointwise balances of force in (15.13). The resulting expressions are
integrated over the respective parts, yielding the balance∫

Pτ

r ⊗ (divT + b)dvτ +
∫

∂Pτ

r ⊗ (divS(HPn) + g − tS)daτ = 0, (15.45)

Next, we consider the identities

div (r ⊗ T) = T + r ⊗ divT, (15.46)

and
divS(r ⊗ HPn) = Pn HPn + r ⊗ divS(HPn) = HPn + r ⊗ divS(HPn), (15.47)

where we have used the frame-indifference result for the surface stress, i.e. HPn =
Pn H⊤ in (15.34), as well as Pn Pn = Pn . The use of these identities in (15.45), followed
by application of the divergence theorem and the divergence theorem on non-smooth
closed surfaces (13.12), yields∫

Pτ

(r ⊗ b − T)dvτ +
∫

∂Pτ

r ⊗ Tn daτ +
∫

∂Pτ

(r ⊗ (g − tS)− HPn)daτ

+
∫

∂2Pτ

{{r ⊗ Hν}}dστ = 0. (15.48)
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Then, using the definitions for the surface traction and edge traction (15.15), we arrive
at ∫

Pτ

(r ⊗ b − T)dvτ +
∫

∂Pτ

(r ⊗ g − HPn)daτ +
∫

∂2Pτ

r ⊗ h∂S dστ = 0. (15.49)

Lastly, by taking (15.49) and subtracting its transposed form, we obtain the partwise
bulk-surface balance of torques

T ♯(Pτ, ∂Pτ) :=
∫
Pτ

r ∧ b dvτ +
∫

∂Pτ

r ∧ g daτ +
∫

∂2Pτ

r ∧ h∂S dστ = 0, (15.50)

where we have used the implications of frame-indifference, i.e. T = T⊤ in (15.33) and
HPn = (HPn)⊤ in (15.34). Additionally, we used the wedge product defined as a ∧ b :=
a ⊗ b − b ⊗ a.



Chapter 16

Free-Energy Imbalance and
Constitutive Response Functions

The objective of this Chapter is to present the thermodynamics of the coupled bulk-
surface material and to consider its implications in terms of constitutive equations.
In Section 16.1, we present the free-energy imbalance for this system. Guided by the
free-energy imbalance, we discuss thermodynamically-consistent constitutive response
functions in Section 16.2. We conclude this Chapter in Section 16.3 by using a canonical
form for the free-energy densities and arrive at the specialized equations for a bulk-
surface system undergoing phase separation.

16.1 Free-energy imbalance

In Section 15.2, we presented the internal (15.10) and external power (15.11) for the
virtual fields χP , χP , χ∂P and χ∂P describing the kinematical processes in the coupled
bulk-surface material. To obtain the actual external power for a bulk-surface material
exhibiting fluidic material behaviour, we need to replace χP and χ∂P by the velocity
fields υP and υ∂P , respectively. Furthermore, we substitute the scalar fields χP and χ∂P
by φ̇P and φ̊∂P , respectively, which capture changes in the underlying microstructure of
the materials. From this follows that the actual external power is given by

Wext(Pτ, ∂Pτ) := Vext(Pτ, ∂Pτ; υP , φ̇P , υ∂P , φ̊∂P). (16.1)

Furthermore, we introduce the conventional power Wconv
ext (Pτ, ∂Pτ), as the actual exter-

nal power that does not include inertial effects, i.e.

Wconv
ext (Pτ, ∂Pτ) :=

∫
Pτ

bni · υP dvτ +
∫

∂Pτ

(gni − tS) · υ∂P daτ

+
∫

∂Pτ

tS · υP daτ +
∫

∂2Pτ

h∂S · υ∂P dστ

+
∫
Pτ

γφ̇P dvτ +
∫

∂Pτ

(ζ − ξS)φ̊∂P daτ

+
∫

∂Pτ

ξS φ̇P daτ +
∫

∂2Pτ

τ∂S φ̊∂P dστ. (16.2)

Lastly, the actual internal power in the system reads

Wint(Pτ, ∂Pτ) := Vint(Pτ, ∂Pτ; υP , φ̇P , υ∂P , φ̊∂P). (16.3)

149
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Now, the free energy in the bulk-surface material is given by

F (Pτ, ∂Pτ) :=
∫
Pτ

ϱPψP dvτ +
∫

∂Pτ

ρℓτψ∂P daτ, (16.4)

where ψP and ψ∂P denote the bulk and surface specific free-energy, respectively, while
the kinetic energy reads

K(Pτ, ∂Pτ) :=
∫
Pτ

1
2 ϱP |υP |2 dvτ +

∫
∂Pτ

1
2 ρℓτ|υ∂P |2 daτ. (16.5)

Then, for isothermal processes, the dissipation is given by

D(Pτ, ∂Pτ) := Wconv
ext − ˙F (Pτ, ∂Pτ) +K(Pτ, ∂Pτ)

+
∫
Pτ

µPsP dvτ −
∫

∂Pτ

µP ȷP · n daτ

+
∫

∂Pτ

µ∂P ȷP · n daτ +
∫

∂Pτ

µ∂Ps∂P daτ −
∫

∂2Pτ

{{µ∂P ȷ
∂P · ν}}dστ, (16.6)

where we have accounted for the species production of energy. Here, µP denotes the
bulk chemical potential and µ∂P is the surface chemical potential. Moreover, the dissipa-
tion is required to be non-negative, i.e. D(Pτ, ∂Pτ) ≥ 0. Thus, the partwise free-energy
imbalance reads

˙F (Pτ, ∂Pτ) +K(Pτ, ∂Pτ)−Wconv
ext (Pτ, ∂Pτ)−

∫
Pτ

µPsP dvτ +
∫

∂Pτ

µP ȷP · n daτ

−
∫

∂Pτ

µ∂P ȷP · n daτ −
∫

∂Pτ

µ∂Ps∂P daτ +
∫

∂2Pτ

{{µ∂P ȷ
∂P · ν}}dστ

= −D(Pτ, ∂Pτ) ≤ 0. (16.7)

Introducing the pointwise species mass balances (14.36) and (14.37) in the above in-
equality, followed by application of the divergence theorems on the terms accounting
for species transport, we obtain

˙F (Pτ, ∂Pτ) +K(Pτ, ∂Pτ)−Wconv
ext (Pτ, ∂Pτ)−

∫
Pτ

(ϱ∂P φ̇PµP − ȷP · gradµP)dvτ

−
∫

∂Pτ

(ρℓτ φ̊∂Pµ∂P − ȷ
∂P · gradSµ∂P)daτ ≤ 0, (16.8)

bearing in mind that Pn ȷ
∂P · gradSµ∂P = ȷ

∂P · gradSµ∂P . Next, in view of the virtual power
balance (15.9) and the decomposition of the bulk and surface external body force (15.17),
the conventional external power expenditure (16.2) can be written as

Wconv
ext (Pτ, ∂Pτ) = Wint(Pτ, ∂Pτ)−

∫
Pτ

bin · υP dvτ −
∫

∂Pτ

gin · υ∂P daτ

=
∫
Pτ

T : gradυP dvτ +
∫

∂Pτ

H : gradSυ∂P daτ

−
∫
Pτ

πφ̇P dvτ −
∫

∂Pτ

ϖφ̊∂P daτ

+
∫
Pτ

ξ · grad φ̇P dvτ +
∫

∂Pτ

τ · gradS φ̊∂P daτ +
˙K(Pτ, ∂Pτ), (16.9)
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where we have used the relations for the inertial body forces (15.18) and the actual
internal power (16.3). Using the free energy definition (16.4) and the above expression
for the conventional external power (16.9), we arrive at the following partwise free-
energy imbalance∫

Pτ

(ϱP ψ̇P − T : gradυP)dvτ +
∫

∂Pτ

(ρℓτψ̊∂P − H : gradSυ∂P)daτ

+
∫
Pτ

(πφ̇P − ξ · grad φ̇P)dvτ +
∫

∂Pτ

(ϖφ̊∂P − τ · gradS φ̊∂P)daτ

−
∫
Pτ

(ϱ∂P φ̇PµP − ȷP · gradµP)dvτ −
∫

∂Pτ

(ρℓτ φ̊∂Pµ∂P − ȷ
∂P · gradSµ∂P)daτ ≤ 0. (16.10)

The following uncoupled pointwise imbalances satisfy the above partwise free-energy
imbalance, that is the pointwise bulk free-energy imbalance reads

ϱP ψ̇P − T : gradυP + (π − ϱPµP)φ̇P − ξ · grad φ̇P + ȷP · gradµP ≤ 0, in Pτ, (16.11)

while the pointwise surface free-energy imbalance is given by

ρℓτψ̊∂P − H : gradSυ∂P + (ϖ − ρℓτµ∂P)φ̊∂P − τ · gradS φ̊∂P

+ ȷ
∂P · gradSµ∂P ≤ 0, on ∂Pτ. (16.12)

Lastly, using the following identities

grad φ̇P = (grad φP )̇ + (gradυP)
⊤grad φP , (16.13)

and
gradS φ̊∂P = (gradS φ∂P )̊ + (gradSυ∂P)

⊤gradS φ∂P , 13 (16.14)

the pointwise free-energy imbalances become

ϱP ψ̇P − (T + grad φP ⊗ ξ) : gradυP + (π − ϱPµP)φ̇P

− ξ · (grad φP )̇ + ȷP · gradµP ≤ 0, in Pτ, (16.15)

and

ρℓτψ̊∂P − (H + gradS φ∂P ⊗ τ) : gradSυ∂P + (ϖ − ρℓτµ∂P)φ̊∂P

− τ · (gradS φ∂P )̊ + ȷ
∂P · gradSµ∂P ≤ 0, on ∂Pτ. (16.16)

16.2 Constitutive response functions

Guided by the pointwise free-energy imbalances (16.15) and (16.16) in Section 16.1, we
here present the constitutive response functions, specifying the class of processes that
the bulk-surface fluid may undergo. The set of independent variables is given by {ϱ∂P ,
φP , φ∂P , grad φP , gradS φ∂P , µP , µ∂P , gradυP , gradSυ∂P}, whereas the set of dependent
constitutive functions reads {π, ϖ, ξ, τ, ȷP , ȷ

∂P , T, H}. Thus, we find that the pointwise
inequalities (16.15) and (16.16) are satisfied in all processes if:

13This identity may be obtained from the previous one in (16.13) by premultiplying by Pn and assuming
a normal constant extension of υ∂P and φ∂P , while noting that ∂n φ∂P = 0.
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• The bulk and surface free-energy densities ψP and ψ∂P are, respectively, given
by constitutive response functions that are independent of µP , µ∂P , gradµP , and
gradSµ∂P , gradυP , gradSυ∂P , i.e.

ψP := ψP(φP , grad φP), and ψ∂P := ψ∂P(ϱ∂P , φ∂P , gradS φ∂P). (16.17)

Thus, with
ψ̇P = ∂φP

ψP φ̇P + ∂grad φP
ψP · (grad φP )̇, (16.18)

and through (14.27)1 and (14.31) also

ψ̊∂P = ∂ϱ∂P
ψ∂P ϱ̊∂P + ∂φ∂P

ψ∂P φ̊∂P + ∂gradS φ∂P
ψ∂P · (gradS φ∂P )̊

= −ℓτ∂ℓτ
ψ∂P divSυ∂P + ∂φ∂P

ψ∂P φ̊∂P + ∂gradS φ∂P
ψ∂P · (gradS φ∂P )̊, (16.19)

the pointwise free-energy imbalances in (16.15) and (16.16) become

(T + grad φP ⊗ ξ) : gradυP + (ϱPµP − π − ϱP∂φψP)φ̇P

+ (ξ − ϱP∂grad φP
ψP) · (grad φP )̇− ȷP · gradµP ≥ 0, in Pτ, (16.20)

and

(H + gradS φ∂P ⊗ τ) : gradSυ∂P + ρℓ2
τ∂ℓτ

ψ∂P divSυ∂P

+ (ρℓτµ∂P − ϖ − ρℓτ∂φ∂P
ψ∂P)φ̊∂P

+ (τ − ρℓτ∂gradS φ∂P
ψ∂P) · (gradS φ∂P )̊− ȷ

∂P · gradSµ∂P ≥ 0, on ∂Pτ. (16.21)

From a microscopic viewpoint, one expects to have a constant microscopic free-
energy density for a fixed φ∂P and gradS φ∂P in the thin film of fluid surrounding
the bulk fluid. However, since the thickness may change, one may stipulate that
the surface free-energy density, therefore, a macroscopic quantity, depends lin-
early on thickness ℓτ. That is, we may define the surface free-energy density as

ψ∂P(ϱ∂P , φ∂P , gradS φ∂P) :=
ϱ∂P

ρ
ψ(φ∂P , gradS φ∂P) = ℓτψ(φ∂P , gradS φ∂P), (16.22)

where ψ is the microscopic free-energy density in the thin film of the fluid. The
corresponding pointwise free-energy imbalance is given by

(H + gradS φ∂P ⊗ τ) : gradSυ∂P + ρℓ2
τψ divSυ∂P + (ρℓτµ∂P − ϖ − ρℓ2

τ∂φ∂P
ψ)φ̊∂P

+ (τ − ρℓ2
τ∂gradS φ∂P

ψ) · gradS φ̊∂P − ȷ
∂P · gradSµ∂P ≥ 0. (16.23)

• The bulk and surface microstress ξ and τ are, respectively, given by

ξ := ϱP∂grad φψP , and τ := ρℓτ∂gradS φ∂P
ψ∂P . (16.24)

• The internal bulk and surface microforces π and ϖ are, respectively, given by
constitutive response functions that differ from the bulk and surface chemical po-
tential by a contribution derived from the response functions ψP and ψ∂P , i.e.

π := ϱP(µP − ∂φP
ψP), and ϖ := ρℓτ(µ∂P − ∂φ∂P

ψ∂P). (16.25)
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• Granted that the species bulk and surface fluxes ȷP and ȷ
∂P depend smoothly on

the gradient of the bulk chemical potential, gradµP , and the surface gradient of
the surface chemical potential, gradSµ∂P , these fluxes are, respectively, given by a
constitutive response function of the form

ȷP := −MPgradµP , and ȷ
∂P := −M∂PgradSµ∂P , (16.26)

where the mobility tensors MP and M∂P must obey the residual dissipation in-
equalities

gradµP · MPgradµP ≥ 0, and gradSµ∂P · M∂PgradSµ∂P ≥ 0. (16.27)

Oftentimes one finds in the literature that MP := mP1 and M∂P := m∂PPn , where
mP and m∂P denote the scalar bulk and surface mobilities, respectively. With this
choice for M∂P , the surface flux ȷ

∂P remains proportional to gradSµ∂P and therefore
tangential to ∂Pτ. As a result of the vanishing contributions of M∂P to the normal
component of ȷ

∂P , the pointwise surface species balance (14.38) can be rewritten
as follows

ρℓτ φ̊∂P = ȷP · n + s∂P − divS ȷ
∂P , on ∂Pτ. (16.28)

• The bulk and surface stress are, respectively, given byT := Tvis(DP)− pmech
P 1 − grad φP ⊗ ξ, and

H := Hvis(ϱ∂P , D∂P)− ptherm
∂P Pn − gradS φ∂P ⊗ τ,

(16.29)

where the rate of deformation is defined as DP := sym gradυP and D∂P := sym
gradSυ∂P , with sym being the symmetric operator. Furthermore, pmech

P denotes
the mechanical bulk pressure and ptherm

∂P the thermodynamical surface pressure,
which is also oftentimes called the surface tension. In what follows we discuss
these pressures in more detail. We consider linearly viscous response functions,
that is we consider a viscous bulk and surface stress Tvis and Hvis that are linear
in DP and D∂P , respectively, which we write as{

Tvis := 2µ̄P DP ,

Hvis := 2µ̄∂P Pn D∂PPn + (κ̄∂P − µ̄∂P)(divSυ∂P)Pn ,
(16.30)

where µ̄P and µ̄∂P(ϱ∂P) denote the bulk and surface dynamic viscosities14, and
κ̄∂P(ϱ∂P) is the surface dilatational viscosity15. Next, we decompose DP and D∂P
into a deviatoric and spherical part, i.e. DP = D0

P + 1
3 (trDP)1 and D∂P = D0

∂P +
1
2 (trD∂P)Pn , with tr(D0

P) = tr(D0
∂P) = 0. Then, we may compute the viscous dissi-

pation as

Tvis : DP =
(

2µ̄P DP

)
:
(

D0
P +

1
3 (trDP)1

)
= 2µ̄P |D0

P |2,

Hvis : D∂P =
(

2µ̄∂P Pn D∂PPn + (κ̄∂P − µ̄∂P)(divSυ∂P)Pn

)
:
(

D0
∂P +

1
2 (trD∂P)Pn

)
= 2µ̄∂P |Pn D0

∂P |2 + κ̄∂P(divSυ∂P)
2,

(16.31)

14 µ̄P and µ̄∂P (ϱ∂P ) are also referred to as the bulk and surface shear viscosities, respectively.
15κ̄∂P is also referred to as the bulk viscosity of the surface fluid.
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where we have taken into account that tr(DP) = divυP = 0 and tr(D∂P) =

divSυ∂P =− ℓ̊τ
ℓτ

. In view of the free-energy inequalities in (16.20) and (16.21), we
conclude that µ̄P ≥ 0, µ̄∂P(ρℓτ) ≥ 0 and κ̄∂P(ρℓτ) ≥ 0.

• The total pressure in the bulk and surface fluids are, respectively, given byptot
P := − 1

3 tr(T) = pmech
P + pcap

P ,

ptot
∂P := − 1

2 tr(H) = ptherm
∂P + pmech

∂P + pcap
∂P .

(16.32)

In the above, the mechanical bulk pressure pmech
P is indeterminate, whereas the

bulk capillary-like pressure is defined as pcap
P := − 1

3 tr(grad φP ⊗ ξ). For the sur-
face, we find pcap

∂P := − 1
2 tr(gradS φ∂P ⊗ τ). In view of the surface free-energy im-

balance (16.23) and the viscous surface dissipation (16.31)2, the thermodynamical
surface pressure is given by

ptherm
∂P := ρℓ2

τψ, (16.33)

and, lastly, pmech
∂P := − 1

2 tr(Hvis) = −κ̄∂PdivSυ∂P . Thus, the total bulk and surface
pressure read ptot

P := pmech
P − 1

3 tr(grad φP ⊗ ξ),

ptot
∂P := ρℓ2

τψ − κ̄∂PdivSυ∂P − 1
2 tr(gradS φ∂P ⊗ τ).

(16.34)

• In view of (16.30) and (16.33), we conclude that stresses in (16.29) can be rewritten
as T := 2µ̄P DP − pmech

P 1 − grad φP ⊗ ξ, and

H := 2µ̄∂P Pn D0
∂PPn − (ρℓ2

τψ − κ̄∂PdivSυ∂P)Pn − gradS φ∂P ⊗ τ.
(16.35)

Notice that the surface stress in (16.35)2 is symmetric, i.e. H = H⊤, and annihilates
the normal, i.e. Hn = 0, which makes it consistent with the frame-indifference
result in (15.34).

Lastly, we use the above results to present the explicit form of the bulk and surface
chemical potentials. Substitution of (15.16) and (15.14) in (16.25) yields

ϱPµP = −divξ − γ + ϱP∂φP
ψP , in Pτ, (16.36)

and
ρℓτµ∂P = −divS(Pn τ)− ζ + ξ · n + ρℓτ∂φ∂P

ψ∂P , on ∂Pτ. (16.37)

In view of (16.24), these expressions take the following form

ϱPµP = ϱP∂φP
ψP − div

(
ϱP∂grad φψP

)
− γ, in Pτ, (16.38)

and, bearing in mind (16.22), we obtain

ρℓτµ∂P = ρℓ2
τ∂φ∂P

ψ − divS
(

ρℓ2
τ∂gradS φ∂P

ψ
)
− ζ + ϱP∂grad φψP · n, on ∂Pτ. (16.39)

Additionally, the term divS(ρℓ2
τ∂gradS φ∂P

ψ) may be split as follows

divS(ρℓ
2
τ∂gradS φ∂P

ψ) = ρℓ2
τdivS(∂gradS φ∂P

ψ) + 2ρℓτ∂gradS φ∂P
ψ · gradSℓτ. (16.40)

Finally, using (16.40) in expression (16.39), we arrive at

ρℓτµ∂P = ρℓ2
τ∂φ∂P

ψ − ρℓ2
τdivS(∂gradS φ∂P

ψ)

− 2ρℓτ∂gradS φ∂P
ψ · gradSℓτ − ζ + ϱP∂grad φP

ψP · n, on ∂Pτ. (16.41)
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16.3 Specialized equations

To exemplify our bulk-surface continuum theory for fluid flow undergoing phase sep-
aration, we consider the following free-energy densities

ψP :=
1
ϵ

f (φP) +
ϵ

2
|grad φP |2, and ψ∂P := ℓτ

(1
δ

g(φ∂P) +
ιδ

2
|gradS φ∂P |2

)
, (16.42)

so that the total free-energy functional reads

F (Pτ, ∂Pτ) :=
∫
Pτ

ϱPψP dvτ +
∫

∂Pτ

ρℓτψ∂P daτ

=
∫
Pτ

ϱP

(1
ϵ

f (φP) +
ϵ

2
|grad φP |2

)
dvτ

+
∫

∂Pτ

ρℓ2
τ

(1
δ

g(φ∂P) +
ιδ

2
|gradS φ∂P |2

)
daτ, (16.43)

which describes the phase separation in our bulk-surface system. Here, ϵ, δ, and ι are
real positive constant parameters, while f and g denote the bulk and surface potentials,
respectively. With this choice for the free-energy densities (16.42), the bulk and surface
microstress (16.24) specialize to

ξ := ϵϱPgrad φP , and τ := ιδρℓ2
τgradS φ∂P , (16.44)

while the internal bulk and surface microforce (16.25) become

π := ϱP

(
µP −

1
ϵ

f ′(φP)
)

, and ϖ := ρℓτ

(
µ∂P − ℓτ

1
δ

g′(φ∂P)
)

. (16.45)

Furthermore, we consider the following bulk and surface species fluxes

ȷP := −MPgradµP , and ȷ
∂P := −M∂PgradSµ∂P , (16.46)

where, for the sake of simplicity, we use MP := mP I and M∂P := m∂PPn with scalar
functions mP , m∂P ≥ 0 to ensure that bulk and surface mobilities satisfy the residual
dissipation inequalities (16.27).

Thus, in view of expressions (16.44) and (16.46), the bulk field equation (15.14)1 takes
on the following form

ϱPµP =
1
ϵ

ϱP f ′(φP)− ϵϱP△φP − γ, in Pτ, (16.47)

where △ := divgrad denotes the Laplace operator. Additionally, for the above choices
the surface species equation (15.22) can be written as

ρℓτµ∂P =
1
δ

ρℓ2
τg′(φ∂P)− ιδρℓτ(ℓτ△S φ∂P

+ 2 gradS φ∂P · gradSℓτ) + ϵϱP grad φP · n − ζ, on ∂Pτ, (16.48)

with △S := divSgradS denoting the Laplace-Beltrami operator, see also definition (13.8).
Note that we have arrived at equation (16.48) using the surface microtraction (15.16)1,
as well as gradS φ∂P · n = 0. Note that we could also have obtained expression (16.48) by
substitution of the free-energy densities (16.42) into the equation for the surface chemi-
cal potential (16.41).
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Next, we derive the specialized equations of motion. First, using the surface free-
energy density (16.42)2 and the microstresses (16.44), the bulk and surface stresses (16.35)
specialize to

T := 2µ̄P DP − pmech
P 1 − ϵϱPgrad φP ⊗ grad φP , and

H := 2µ̄∂P Pn D0
∂PPn −

(
ρℓ2

τ

(1
δ

g(φ∂P) +
ιδ

2
|gradS φ∂P |2

)
+ κ̄∂P

ℓ̊τ

ℓτ

)
Pn

− ιδρℓτ gradS φ∂P ⊗ gradS φ∂P ,

(16.49)

recalling that DP := symgradυP , D∂P := symgradSυ∂P and that D0
∂P is the deviatoric part

of D∂P . Using these bulk stress (16.49)1, the bulk equation of motion (15.19) takes on the
form

ϱP υ̇P = divT + bni (16.50)

= 2 div (µ̄P DP)− grad pmech
P − ϵϱP div (grad φP ⊗ grad φP) + bni, in Pτ.

Conversely, we arrive at the specialized surface equation of motion by using the surface
traction (15.15)1 into surface equation (15.21), followed by substitution of the stresses
(16.49), yielding

ρℓτ υ̊∂P = divSH + 2KHn + gni − Tn

= 2 divS(µ̄∂PPn D0
∂PPn)− ρℓ2

τ gradS

(1
δ

g(φ∂P) +
ιδ

2
|gradS φ∂P |2

)
− 2ρℓτ

(1
δ

g(φ∂P) +
ιδ

2
|gradS φ∂P |2

)
gradSℓτ − gradS

(
κ̄∂P

ℓ̊τ

ℓτ

)
− ιδρℓτ divS

(
gradS φ∂P ⊗ gradS φ∂P

)
− ιδρ gradSℓτ ·

(
gradS φ∂P ⊗ gradS φ∂P

)
+ gni − 2µ̄P DPn + pmech

P n + ϵϱP grad φP ⊗ grad φPn, on ∂Pτ, (16.51)

where we have additionally used that Pn n = 0.
Lastly, supplementing the specialized field equations (16.47), (16.48), (16.50), and

(16.51) with the isochoric constraints in (14.14) and (14.17) renders a system of equations
that describes the dynamics of the bulk-surface system in terms of the state variables φP ,
φ∂P , υP , υ∂P , pmech

P and ℓτ.



Chapter 17

Boundary Conditions and
Dissipation Inequalities

In this Chapter, we supplement the system with appropriate boundary conditions, so
that we can further characterize its thermodynamics. In Section 17.1 of this Chap-
ter, we postulate an environmental surface imbalance, which we employ to formulate
thermodynamically-consistent boundary conditions. These boundary conditions de-
scribe the dynamic coupling of the bulk and surface fluid at the surface (Section 17.2),
as well as the interaction of the surface fluid with the environment across the edges
(Section 17.3). In Section 17.4, we use these boundary conditions to derive the Lyapunov
decay relation, which characterizes the dissipative nature of our bulk-surface system and
its interaction with the environment.

17.1 Environmental surface imbalance

In the following, we use a similar approach to the surface imbalance presented by Espath
[54] based on arguments presented by Fried & Gurtin in [65, Equation (92)] to define
dynamic boundary conditions on the migrating boundary ∂Pτ. Procedures based on
analogous mechanical and thermodynamical arguments can be found in [66, 55, 46, 54].
In this work specifically, we stipulate that

Tsurf(−∂Pτ) + Tenv(∂Pτ) ≥ 0, (17.1)

where Tsurf(−∂Pτ) represents the power expended on ∂Pτ by the material inside Pτ

and ∂Pτ, as well as the rate at which energy is transferred from Pτ to ∂Pτ. In addition,
Tenv(∂Pτ) combines the power expended by the environment on ∂Pτ and the rate at
which energy is transferred from the environment to ∂Pτ. Therefore, we define

Tsurf(−∂Pτ) :=−
∫

∂Pτ

(υP − υ∂P) · tS daτ −
∫

∂2Pτ

h∂S · υ∂P dστ

−
∫

∂Pτ

(φ̇P − φ̊∂P)ξS daτ −
∫

∂2Pτ

τ∂S φ̊∂P dστ

−
∫

∂Pτ

(µ∂P − µP)ȷP · n daτ +
∫

∂2Pτ

{{µ∂P ȷ
∂P · ν}}dστ, (17.2)

where Tsurf(−∂Pτ) = −Tsurf(∂Pτ), see Remark 17.1.
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Remark 17.1 (Action-reaction principle and its consequences) As a result of (15.15) and
(15.16), all tractions and microtractions are locally defined, i.e. for the bulk material we
have that

tS = Tn

ξS = ξ · n

}
on ∂Pτ, (17.3)

whilst for the surface material holds

h∂S = {{Hν}}
τ∂S = {{τ · ν}}

}
on ∂2Pτ. (17.4)

Then, let −∂Pτ denote the surface adjacent to ∂Pτ and be oriented by −n(x, t). At this
surface −∂Pτ, we find

t−S = −Tn = −tS

ξ−S = −ξ · n = −ξS

}
on − ∂Pτ, (17.5)

whereas at the opposite edge −∂2Pτ, which is oriented by −ν(x, t), we have that

h−∂S = −{{Hν}} = −h∂S

τ−∂S = −{{τ · ν}} = −τ∂S

}
on − ∂2Pτ. (17.6)

The relations in (17.5) and (17.6) represent the action-reaction principles for oppositely
oriented surfaces and edges, respectively. More details on these principles in the context
of enriched continua can be found in [65, 54].

As a consequence of the action-reaction principles in (17.5) and (17.6), the surface
power acting on −∂Pτ can be rewritten as follows

Tsurf(−∂Pτ) =
∫
−∂Pτ

(υP − υ∂P) · t−S daτ +
∫
−∂2Pτ

h−∂S · υ∂P dστ

+
∫
−∂Pτ

(φ̇P − φ̊∂P)ξ−S daτ +
∫
−∂2Pτ

τ−∂S φ̊∂P dστ

+
∫
−∂Pτ

(µ∂P − µP)ȷP · n daτ −
∫
−∂2Pτ

{{µ∂P ȷ
∂P · ν}}dστ

=−
∫

∂Pτ

(υP − υ∂P) · tS daτ −
∫

∂2Pτ

h∂S · υ∂P dστ

−
∫

∂Pτ

(φ̇P − φ̊∂P)ξS daτ −
∫

∂2Pτ

τ∂S φ̊∂P dστ

−
∫

∂Pτ

(µ∂P − µP)ȷP · n daτ +
∫

∂2Pτ

{{µ∂P ȷ
∂P · ν}}dστ

=− Tsurf(∂Pτ). (17.7)

Thus, Tsurf(∂Pτ) + Tsurf(−∂Pτ) = 0 constitutes a balance at the surface. □

Furthermore, we define the contribution from the environment as follows

Tenv(∂Pτ) :=
∫

∂2Pτ

henv
∂S · υenv

∂2P dστ +
∫

∂2Pτ

τenv
∂S φ̇env

∂2P dστ −
∫

∂2Pτ

µenv
∂2P ȷenv

∂2P dστ. (17.8)

Next, on ∂2Pτ, we set henv
∂S = h∂S , υenv

∂2P = υ∂P , τenv
∂S = τ∂S , φ̇env

∂2P = φ̊∂P , µenv
∂2P = µ∂P , and

ȷenv
∂2P = {{ȷ

∂P · ν}}. Granted this, the surface free-energy imbalance (17.1) becomes

−
∫

∂Pτ

(
(υP − υ∂P) · tS + (φ̇P − φ̊∂P) ξS + (µ∂P − µP) ȷP · n

)
daτ ≥ 0. (17.9)
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Uncoupling the above expression provides us with∫
∂Pτ

(υP − υ∂P) · tS daτ ≤ 0, (17.10)

∫
∂Pτ

(φ̇P − φ̊∂P) ξS daτ ≤ 0, (17.11)

∫
∂Pτ

(µ∂P − µP) ȷP · n daτ ≤ 0. (17.12)

17.2 Dynamic surface boundary conditions

Using the inequalities in (17.10) - (17.12), we formulate three types of dynamic boundary
conditions on ∂Pτ: essential, natural and mixed boundary conditions, which we present
in the upcoming subsections.

17.2.1 Essential boundary conditions

Essential (Dirichlet) boundary conditions result from the prescription of the surface
fields onto the bulk fields, i.e.

υP = υ∂P

φP = φ∂P

µP = µ∂P

 on ∂Pess
τ . (17.13)

Note that there is no dissipation contribution from the normal components of υP and
υ∂P at ∂Pess

τ : this can only be the result of any non-zero tangential components. Thus,
because of assumption (A.2), we arrive at (17.13)1.

17.2.2 Natural boundary conditions

Natural (Neumann) boundary conditions arise by specifying that the normal compo-
nent of the bulk stress (given by the surface traction) and the normal component of
the bulk microstress (described by the surface microtraction) are equal to the normal
components of the surface stress and surface microstress, respectively. In addition, the
normal component of the bulk species flux equals the normal component of the surface
species flux on ∂Pnat

τ . Thus, the natural boundary conditions read

tS = Hn

ξS = τ · n

ȷP · n = ȷ
∂P · n

 on ∂Pnat
τ . (17.14)

However, H annihilates the normal, i.e. Hn = 0, in view of (16.35)2, in addition to the
frame-indifference requirement (15.34). Furthermore, we have τ · n = 0 and ȷ

∂P · n = 0
as a result of adopting tangential surface fields for the microstress and species mass flux
in (16.24)2 and (16.26)2, respectively. Consequently, the natural boundary conditions
read

tS = 0

ξS = 0

ȷP · n = 0

 on ∂Pnat
τ , (17.15)

which satisfy the requirements in (17.10) - (17.12). Notice that any tangential compo-
nents of the bulk species flux ȷP do not contribute to the dissipation inequality in (17.12).
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17.2.3 Mixed boundary conditions

In view of (17.10) - (17.12), we formulate a set of mixed (Robin) boundary conditions,
which are dissipative in nature. These are given by

tS = 1
Lv

Pn(υ∂P − υP) =
1

Lv
(υ∂P − υP)

ξS = 1
Lφ
(φ̊∂P − φ̇P)

ȷP · n = − 1
Lµ
(µ∂P − µP)

 on ∂Pmix
τ , (17.16)

with scalars Lv, Lφ, Lµ > 0. The expressions in (17.16) should be understood as a surface
traction, surface microtraction and bulk species mass flux defined across ∂Pmix

τ , which
are driven by the difference in velocity, microstructure (described by the phase field),
and chemical potential, respectively, between the bulk and surface material. Here, we
assume that the dependency is linear and that the parameters Lv, Lφ and Lµ act as
relaxation parameters. Furthermore, notice that the rightmost expression in (17.16)1
arises in view of Assumption (A.2).

In [97], a mixed type of boundary condition similar to (17.16)3 was proposed for the
chemical potential. The theory for mixed dynamic boundary conditions for phase-field
models was further extended and presented for both the microstructure and chemical
potential in [53, 54].

17.3 Static edge boundary conditions

In this Section, we complement the dynamic boundary conditions on ∂Pτ (in Section
17.2) by a set of static boundary conditions on ∂2Pτ. Here, static refers to the fact that the
edge ∂2Pτ does not have any dynamics on its own. In particular, we present both essen-
tial and natural boundary conditions resulting from the action of a static environment
on the edge ∂2Pτ, i.e. the curve where the dynamic surface ∂Pτ loses its smoothness. It
is also possible to formulate mixed type of boundary conditions on static environments,
for which the reader is referred to [55, 54].

17.3.1 Essential boundary conditions

The essential boundary conditions on static edges ∂2Pess
τ read

υ∂P = υenv
∂2P

φ∂P = φenv
∂2P

µ∂P = µenv
∂2P

 on ∂2Pess
τ , (17.17)

where υenv
∂2P is the action of the velocity, φenv

∂2P is the assignment of the microstructure, and
µenv

∂2P is the action of the chemical potential, all originating from a static environment
acting on the edge ∂2Pess

τ .

17.3.2 Natural boundary conditions

On natural edges ∂2Pnat
τ , we prescribe the following boundary conditions

h∂S := {{Hν}} = henv
∂S

τ∂S := {{τ · ν}} = τenv
∂S

ȷ
∂2P := −{{ȷ

∂P · ν}} = ȷenv
∂2P

 on ∂2Pnat
τ , (17.18)
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where henv
∂S and τenv

∂S are the assigned edge traction and edge microtraction of the static
environment across ∂2Pnat

τ . Furthermore, ȷenv
∂2P represents the transfer of species from the

static environment to ∂2Pnat
τ .

17.4 Lyapunov decay relation

In this Section, we are interested in understanding the behaviour of the total energy
variation of the coupled bulk and surface material. Using the constitutive response
functions formulated in Section 13.2, we derive the relation for the temporal change
in the free-energy functional in Subsection 17.4.1. In Subsection 17.4.2, we present the
temporal variation in the kinetic energy of the bulk-surface system. Then, by employing
the boundary conditions formulated in Section 17.2, we arrive at the Lyapunov decay
relation in Subsection 17.4.3.

17.4.1 Free-energy rate

First, we restrict our attention to the bulk and surface material’s free-energy rate, and
write

˙F (Pτ, ∂Pτ) :=
˙∫

Pτ

ϱPψP dvτ +
˙∫

∂Pτ

ρℓτψ∂P daτ

=
∫
Pτ

ϱP ψ̇P dvτ +
∫

∂Pτ

ρℓτψ̊∂P daτ

=
∫
Pτ

ϱP

(
∂φP

ψP φ̇P + ∂grad φP
ψP · (grad φP )̇

)
dvτ

+
∫

∂Pτ

ρℓ2
τ

(
∂φ∂P

ψφ̊∂P − ψ divSυ∂P

)
daτ

+
∫

∂Pτ

ρℓ2
τ∂gradS φ∂P

ψ · (gradS φ∂P )̊ daτ, (17.19)

where we have used the constitutive dependencies of ψP and ψ∂P formulated in (16.17)
and (16.22). Next, we use the constitutive response functions for the internal micro-
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forces (16.25) and microstresses (16.24) to rewrite the above as

˙F (Pτ, ∂Pτ) =
∫
Pτ

(
ϱPµP φ̇P − πφ̇P + ξ · (grad φP )̇

)
dvτ

+
∫

∂Pτ

(
ρℓτµ∂P φ̊∂P − ϖφ̊∂P − ρℓ2

τψ divSυ∂P + τ · (gradS φ∂P )̊
)

daτ

=
∫
Pτ

(ϱPµP φ̇P − πφ̇P + ξ · grad φ̇P − (grad φP ⊗ ξ) : gradυP) dvτ

+
∫

∂Pτ

(
ρℓτµ∂P φ̊∂P − ϖφ̊∂P − ρℓ2

τψ divSυ∂P
)

daτ

+
∫

∂Pτ

(τ · gradS φ̊∂P − (gradS φ∂P ⊗ τ) : gradSυ∂P) daτ

=
∫
Pτ

(ϱPµP − π − divξ) φ̇P dvτ −
∫
Pτ

(grad φP ⊗ ξ) : gradυP dvτ

+
∫

∂Pτ

(ρℓτµ∂P − ϖ − divS (Pn τ)) φ̊∂P daτ −
∫

∂Pτ

ρℓ2
τψ divSυ∂P daτ

−
∫

∂Pτ

(gradS φ∂P ⊗ τ) : gradSυ∂P daτ

+
∫

∂Pτ

φ̇Pξ · n daτ +
∫

∂2Pτ

φ̊∂P{{τ · ν}}dστ, (17.20)

where we have expanded (grad φP )̇ and (gradS φ∂P )̊ using identities (16.13) and (16.14),
respectively, and subsequently applied the divergence theorems. We now introduce
the external microforces γ and ζ into relation (17.20) through the microforce balances
(15.14), and use the definition of the surface and edge microtraction (15.16) to obtain

˙F (Pτ, ∂Pτ) =
∫
Pτ

(ϱPµP + γ) φ̇P dvτ −
∫
Pτ

(grad φP ⊗ ξ) : gradυP dvτ

+
∫

∂Pτ

(ρℓτµ∂P + ζ) φ̊∂P daτ −
∫

∂Pτ

ρℓ2
τψ divSυ∂P daτ

−
∫

∂Pτ

(gradS φ∂P ⊗ τ) : gradSυ∂P daτ −
∫

∂Pτ

(φ̊∂P − φ̇P) ξS daτ

+
∫

∂2Pτ

φ̊∂Pτ∂S dστ. (17.21)

Finally, we employ the pointwise bulk and surface balances of species mass (14.36) and
(14.37), and subsequently the divergence theorem and the constitutive response func-
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tions for the bulk and surface species fluxes (16.26), to arrive at

˙F (Pτ, ∂Pτ) =
∫
Pτ

(µPsP + γφ̇P − µPdiv ȷP) dvτ −
∫
Pτ

(grad φP ⊗ ξ) : gradυP dvτ

+
∫

∂Pτ

(µ∂Ps∂P + ζ φ̊∂P − µ∂PdivS(Pn ȷ
∂P)) daτ −

∫
∂Pτ

ρℓ2
τψ divSυ∂P daτ

−
∫

∂Pτ

(gradS φ∂P ⊗ τ) : gradSυ∂P daτ −
∫

∂Pτ

(φ̊∂P − φ̇P) ξS daτ

+
∫

∂Pτ

µ∂P ȷP · n daτ +
∫

∂2Pτ

φ̊∂Pτ∂S dστ

=
∫
Pτ

(µPsP + γφ̇P) dvτ −
∫
Pτ

gradµP · MPgradµP dvτ

−
∫
Pτ

(grad φP ⊗ ξ) : gradυP dvτ

+
∫

∂Pτ

(µ∂Ps∂P + ζ φ̊∂P) daτ −
∫

∂Pτ

gradSµ∂P · M∂PgradSµ∂P daτ

−
∫

∂Pτ

ρℓ2
τψ divSυ∂P daτ −

∫
∂Pτ

(gradS φ∂P ⊗ τ) : gradSυ∂P daτ

−
∫

∂Pτ

(φ̊∂P − φ̇P) ξS daτ −
∫

∂Pτ

(µP − µ∂P)ȷP · n daτ

+
∫

∂2Pτ

(φ̊∂Pτ∂S − µ∂P{{ȷ
∂P · ν}}) dστ. (17.22)

17.4.2 Kinetic-energy rate

In this Subsection, we are interested in understanding the temporal changes in the ki-
netic energy of the bulk and surface material. We use the pointwise force balances
(15.19) and (15.20) to arrive at the following relation for the kinetic-energy rate

˙K(Pτ, ∂Pτ) :=
˙∫

Pτ

1
2 ϱP |υP |2 dvτ +

˙∫
∂Pτ

1
2 ρℓτ|υ∂P |2 daτ

=
∫
Pτ

ϱPυP · υ̇P dvτ +
∫

∂Pτ

ρℓτυ∂P · υ̊∂P daτ (17.23)

=
∫
Pτ

υP · (bni + divT)dvτ +
∫

∂Pτ

υ∂P · (gni − tS + divS(HPn))daτ.

Lastly, application of the divergence theorems, followed by substitution of the relations
for the surface and edge traction (15.15), the kinetic energy rate reads

˙∫
Pτ

1
2 ϱP |υP |2 dvτ +

˙∫
∂Pτ

1
2 ρℓτ|υ∂P |2 daτ

=
∫
Pτ

(υP · bni − T : gradυP)dvτ +
∫

∂Pτ

(υ∂P · gni − HPn : gradSυ∂P)daτ

−
∫

∂Pτ

(υ∂P − υP) · tS daτ +
∫

∂2Pτ

υ∂P · h∂S dστ. (17.24)

Note that the above procedure is also captured by expression (16.9) in Section 16.1.
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17.4.3 Lyapunov decay relation

In view of the free- and kinetic-energy rates in (17.22) and (17.24), and by the symmetry
of T and H due to frame indifference (15.31), the temporal variation in total energy reads

˙F (Pτ, ∂Pτ) +K(Pτ, ∂Pτ) =
∫
Pτ

(µPsP + γφ̇P) dvτ −
∫
Pτ

gradµP · MPgradµP dvτ

−
∫
Pτ

(T + grad φP ⊗ ξ) : DP dvτ +
∫
Pτ

υP · bni dvτ

+
∫

∂Pτ

(µ∂Ps∂P + ζ φ̊∂P) daτ −
∫

∂Pτ

gradSµ∂P · M∂PgradSµ∂P daτ

−
∫

∂Pτ

ρℓ2
τψ divSυ∂P daτ −

∫
∂Pτ

(HPn + gradS φ∂P ⊗ τ) : D∂P daτ

+
∫

∂Pτ

υ∂P · gni daτ −
∫

∂Pτ

(φ̊∂P − φ̇P) ξS daτ

−
∫

∂Pτ

(µP − µ∂P)ȷP · n daτ −
∫

∂Pτ

(υ∂P − υP) · tS daτ

+
∫

∂2Pτ

(φ̊∂Pτ∂S − µ∂P{{ȷ
∂P · ν}}+ υ∂P · h∂S) dστ, (17.25)

where we recall that the rates of deformation are defined as DP := symgradυP and
D∂P := symgradSυ∂P . We now employ the constitutive response functions for the bulk
and surface stresses (16.35) and the definition for ptherm

∂P (16.33), which specializes (17.25)
to the following expression

˙F (Pτ, ∂Pτ) +K(Pτ, ∂Pτ) =
∫
Pτ

(µPsP + γφ̇P) dvτ −
∫
Pτ

gradµP · MPgradµP dvτ

−
∫
Pτ

2µ̄P |D0
P |2 dvτ +

∫
Pτ

υP · bni dvτ

+
∫

∂Pτ

(µ∂Ps∂P + ζ φ̊∂P) daτ −
∫

∂Pτ

gradSµ∂P · M∂PgradSµ∂P daτ

−
∫

∂Pτ

(
2µ̄∂P |Pn D0

∂P |2 + κ̄∂P(divSυ∂P)
2) daτ +

∫
∂Pτ

υ∂P · gni daτ

−
∫

∂Pτ

((φ̊∂P − φ̇P) ξS + (µP − µ∂P)ȷP · n + (υ∂P − υP) · tS) daτ

+
∫

∂2Pτ

(φ̊∂Pτ∂S − µ∂P{{ȷ
∂P · ν}}+ υ∂P · h∂S) dστ, (17.26)

where we have used the viscous dissipation identities in (16.31), the isochoric constraint
trDP = divυP = 0 in (14.14), as well as the identity tr(Pn D∂P) = divSυ∂P .

In the following, we split the boundary into different parts. In particular, we con-
sider ∂Pτ := ∂Pess

τ ∪ ∂Pnat
τ ∪ ∂Pmix

τ , and let ∂Pess
τ ∩ ∂Pnat

τ = ∂Pnat
τ ∩ ∂Pmix

τ = ∂Pess
τ ∩

∂Pmix
τ = ∅. Also, let the edge be partitioned as follows ∂2Pτ := ∂2Pess

τ ∪ ∂2Pnat
τ , with

∂2Pess
τ ∩ ∂2Pnat

τ = ∅. We account for the static contributions from the environment act-
ing on ∂2Pτ and introduce the essential and natural boundary condition formulated in
Section 17.3 into the total energy variation (17.26). Furthermore, in view of the essential
(17.13), natural (17.15) and mixed (17.16) dynamic boundary conditions, as well as the
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essential (17.17) and natural (17.18) static boundary conditions on the edge, we obtain

˙F (Pτ, ∂Pτ) +K(Pτ, ∂Pτ) =
∫
Pτ

(µPsP + γφ̇P) dvτ −
∫
Pτ

gradµP · MPgradµP dvτ

−
∫
Pτ

2µ̄P |D0
P |2 dvτ +

∫
Pτ

υP · bni dvτ

+
∫

∂Pτ

(µ∂Ps∂P + ζ φ̊∂P) daτ −
∫

∂Pτ

gradSµ∂P · M∂PgradSµ∂P daτ

−
∫

∂Pτ

(
2µ̄∂P |Pn D0

∂P |2 + κ̄∂P(divSυ∂P)
2) daτ +

∫
∂Pτ

υ∂P · gni daτ

−
∫

∂Pmix
τ

(
1

Lφ
(φ̊∂P − φ̇P)

2 + 1
Lµ
(µP − µ∂P)

2 + 1
Lv
|υ∂P − υP |2

)
daτ

+
∫

∂2Pess
τ

(
φ̇env

∂2P τ∂S − µenv
∂2P {{ȷ

∂P · ν}}+ υenv
∂2P · h∂S

)
dστ

+
∫

∂2Pnat
τ

(
φ̊∂Pτenv

∂S + µ∂P ȷenv
∂2P + υ∂P · henv

∂S

)
dστ. (17.27)

Thus, the Lyapunov decay relation is given by

˙F (Pτ, ∂Pτ) +K(Pτ, ∂Pτ) ≤
∫
Pτ

(µPsP + γφ̇P) dvτ +
∫
Pτ

υP · bni dvτ

+
∫

∂Pτ

(µ∂Ps∂P + ζ φ̊∂P) daτ +
∫

∂Pτ

υ∂P · gni daτ

+
∫

∂2Pess
τ

(
φ̇env

∂2P {{τ · ν}} − µenv
∂2P {{ȷ

∂P · ν}}+ υenv
∂2P · {{Hν}}

)
dστ

+
∫

∂2Pnat
τ

(
φ̊∂Pτenv

∂S + µ∂P ȷenv
∂2P + υ∂P · henv

∂S

)
dστ, (17.28)

where we have used the residual dissipation inequalities in (16.27). For a passive envi-
ronment, we arrive at

˙F (Pτ, ∂Pτ) +K(Pτ, ∂Pτ) ≤ 0. (17.29)

Thus, in (17.28), we identify the following environmental contributions

• µPsP represents the rate at which energy is transferred to Pτ due to the production
of species, and µ∂Ps∂P represents the rate at which energy is transferred to ∂Pτ due
to species production;

• γφ̇P represents the power expended on the microstructure of Pτ by sources exter-
nal to the body Pτ, whereas ζ φ̊∂P denotes the power expended on the microstruc-
ture of ∂Pτ by sources external to the boundary of the body ∂Pτ, which do not
originate from Pτ;

• υP · bni represents power expended in Pτ by the environment, whereas υ∂P · gni

represents the power expended on ∂Pτ by the environment;

• φ̇env
∂2P τ∂S denotes the power expended by the static environment acting on the mi-

crostructure of ∂2Pess
τ , and φ̊∂Pτenv

∂S represents the power expended across ∂2Pnat
τ

by edge microtractions from the environment exterior to both ∂Pτ and Pτ;
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• −µenv
∂2P {{ȷ

∂P · ν}} represents the energy exchange induced by species transport across
∂2Pess

τ via an assigned environmental chemical potential, and µ∂P ȷenv
∂2P represents

the energy exchange across ∂2Pnat
τ induced by a tangent-normal species mass flux

from the exterior of ∂Pτ and Pτ;

• υenv
∂2P · h∂S represents the power expended by an external velocity field acting on

∂2Pess
τ , whereas υ∂P · henv

∂S represents the power expended across ∂2Pnat
τ by edge

tractions from the environment.

Lastly, the following terms may contribute to the total dissipation D(Pτ, ∂Pτ) in the
bulk-surface system

• gradµP · MPgradµP and gradSµ∂P · M∂PgradSµ∂P represent dissipation due to species
diffusion in Pτ and ∂Pτ, respectively;

• the term 2µ̄∂P |Pn D0
∂P |2 represents the viscous dissipation in Pτ, while 2µ̄∂P |Pn D0

∂P |2+
κ̄∂P(divSυ∂P)

2 denotes the viscous dissipation in ∂Pτ;

• 1
Lφ
|φ̊∂P − φ̇P |2 represents power expended across ∂Pmix

τ driven by the difference
in microstructure (as described by the phase field) between ∂Pτ and the adjacent
Pτ;

• − 1
Lµ
|µ∂P − µP |2 represents energy exchange across ∂Pmix

τ due to the difference in
chemical potential between ∂Pτ and the adjacent Pτ;

• 1
Lv
|υ∂P − υP |2 = 1

Lv
|Pn(υ∂P − υP)|2 represents power expended across ∂Pmix

τ driven
by the difference in the tangential velocity components between ∂Pτ and the ad-
jacent Pτ.



Chapter 18

Concluding Remarks and Future
Directions

In this Part, we developed a continuum theory for bulk-surface materials undergoing
deformation and phase separation. In particular, we focussed on an immiscible binary
bulk fluid enclosed by a thin film of another immiscible binary fluid. We treated this
thin film as a material surface with a small, yet finite, surface thickness.

In this theory, the bulk-surface material was only allowed to undergo isochoric mo-
tions, and is thereby behaving as an incompressible body. This assumption implied
no volume change for the bulk material, as well as no volume change for the surface
material from a microscopic viewpoint. The isochoric constraints and pointwise mass
balances that were derived reflect these implications. To account for diffusive species
transport in the bulk-surface material, we supplemented the theory with pointwise bal-
ances of species mass, and recovered a contribution from the bulk in the pointwise
balance of surface species mass.

The mathematical framework of this theory is based on the principle of virtual pow-
ers. To account for the deformation and phase separation, we extended the principle of
virtual power presented for phase-fields with bulk-surface dynamics by Espath [53, 54].
We arrived at the field equations for the kinematical processes in the bulk and surface
captured by scalar and vector quantities, as well as expressions for the surface and edge
(micro)tractions. We established symmetry of both the bulk and surface stress using the
frame-indifference requirement for the internal virtual power. Furthermore, the part-
wise balances of (micro)forces showed that the surface (micro)traction and the normal
component of the bulk (micro)stress cancel across the dynamic surface, respectively.
Thus, the environmental contributions, such as the external body bulk (micro)force and
external surface body (micro)force, form a partwise balance with the external edge con-
tributions, namely the edge (micro)traction. Similar results were obtained for the part-
wise balance of torques, where only the external fields appeared in the partwise balance
due to the symmetry of the bulk and surface stress. Aside from the external contri-
butions, a contribution from the microstresses does appear in the partwise balance of
microtorques.

To ensure thermodynamical consistency, we presented a suitable set of constitutive
response functions guided by the pointwise free-energy imbalances. We treated the
free-energy density function of the surface material in a microscopic way, and pos-
tulated that it is linearly dependent on the surface thickness. By considering a lin-
ear dependence of stress on the rate of strain in the surface material, we recovered
a Boussinesq-Scriven surface stress, which includes two surface viscosity coefficients
and a thermodynamical pressure representing surface tension, in addition to a capil-
lary stress contribution. The final set of equations governing the bulk-surface system
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show resemblance to a Navier-Stokes-Cahn-Hilliard equation for the bulk and surface.
Lastly, we supplemented the system with appropriate boundary conditions. Using

a free-energy imbalance for the dynamic surface, we presented essential, natural and
mixed conditions for the coupling between the bulk and the surface. By deriving the
Lyapunov decay relation, we characterized the dissipative nature of the system and the
environmental contributions acting on it.

Limitations of the current work include considerations about more restrictive choices
for the constitutive response functions. As these can be highly dependent on the appli-
cation, they are in this work left to future users of this continuum theory to decide upon.
We wish to emphasize that extra caution might be necessary when making particular
modelling choices for the dilatational viscosity κ̄∂P . This function is allowed to depend
on the thickness of the thin layer of surface fluid, but not all relations may be consistent
with the framework presented here.
Furthermore, in this Part we have demonstrated that the virtual power formalism is
a useful tool to establish bulk-surface continuum theories. In future research, the pre-
sented framework could be extended to more complex bulk-surface materials, for in-
stance to those exhibiting viscoelastic behaviour. Such a continuum theory has applica-
tions in areas studying vesicle dynamics and compartmentalized transport processes in
cell biology. As a point of departure for such a framework, the results presented here
and the continuum theory for pure elastic bulk-surface materials established by Gurtin
& Murdoch [82] should be considered. Another non-trivial, yet useful, extension would
be to include reaction dynamics at the surface and bulk. In addition, Larché-Cahn based
gradient energies could be considered in such multicomponent bulk-surface systems.
For bulk materials, a theoretical framework for such a reactive multicomponent system
with phase transformations is presented by Clavijo et al. [33]. In the thermochemical
theory of such a bulk-surface system, special care has to be taken with where the result-
ing products of a chemical reaction at the dynamic surface end up living, that is, in the
bulk or in the surface material. Again, applications of such theory can be found in more
complex systems, which involve active surfaces with their own dynamics.

Finally, it is non-trivial to solve the equations that follow from this continuum theory
numerically. Numerical implementation requires parametrization of the sharp dynamic
surface boundary, whose tangential velocity may not match the bulk material’s tangen-
tial velocity at the dynamic boundary. Thus, numerical studies would require the use
of advanced numerical techniques developed for moving boundary problems.



Chapter 19

Final Reflections

In this work we have navigated through the world of diffuse and sharp representations
of interfaces to formulate fundamental theories for bulk-surface interactions.

What framework can be used to base such a bulk-surface theory upon? In Part I, we demon-
strated that different perspectives can be employed to base these fundamental theories
upon. Although each of the four perspectives has its own characteristics, they all cap-
ture interfacial evolution using a functional representing the state of the system and a
dissipation mechanism.

Modelling interfacial movement using a geometric approach, as presented in Chap-
ter 2, is a natural way of dealing with (closed) sharp interfaces. Shape calculus allows
for the definition of geometric gradient-descent flows. However, this approach is lim-
ited in its application, as certain physics is difficult to describe within this framework,
e.g. dynamics involving topological changes, such as merging or pinching of interfaces
and mixture theory related effects.

Phase-field variables acting as indicators of diffuse transitions layers in the material
of interest form a natural alternative to this sharp-interface description, as they are able
to capture the additional physics, whilst allowing for efficient computation. Phase-field
models can be derived as gradient flows (Chapter 3), as they embody processes that
follow the path of steepest descent in an energy landscape. In this phase-field gradient
flow perspective, mathematical insights in the wellposedness, numerical error analysis
and time-discretization schemes are made accessible, yet physical interpretation and
motivation for the phase-field equations remains difficult.

The variational framework presented in Chapter 4 provided such physical inter-
pretation, as it is based on a rational approach to thermodynamics. Balance laws, in
particular a mass balance law involving the phase-field variable, are key to establishing
the phase-field equations.

Then, the final perspective in Chapter 5 introduced an additional balance law, that
is the balance of microforces, motivated by a microkinetic interpretation of the phase
field. Again, using rational arguments phase-field equations can be derived that are
consistent with the second law of thermodynamics.

In Part II, we saw that bulk-surface coupling can be established in phase-field models
by introduction of a regularizing function in the underlying energy functional of the
system, which restricts the interaction to the diffuse interface. Using the variational
framework in Chapter 4, we proposed a phase-field theory for adhesion, extendable
to applications in which local surface dynamics regulate the adhesive interactions. In
addition, we developed an asymptotic framework to characterize steady states of the
phase-field problem, thereby connecting the diffuse-interface theory to the geometrical
perspective presented in Chapter 2.
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In Part III, we proposed a continuum theory for bulk-surface materials undergoing de-
formation and phase separation. Here, the material surface is described by a sharp
interface, yet we allow for local variations in its thickness. The mathematical frame-
work of this theory is based on a bulk-surface principle of virtual power. Based on a
free-energy imbalance for the surface, we presented dynamic conditions for the cou-
pling between the bulk and the surface.

Finally, the methods and frameworks presented in this thesis can, with or without fur-
ther extension, be used for a variety of bulk-surface applications. To use these frame-
works for specific applications, more detailed modeling choices are required, which
should be tailored to the material of interest and may require expertise knowledge about
the application of interest. In these cases, it is essential to validate the model’s predic-
tions through comparison with real-world (experimental) data. This way, using appro-
priate numerical techniques, the mathematical frameworks presented in this work can
provide valuable insights in biological and engineering applications that involve active
interfaces.
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