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Abstract 

In recent years, the field of vehicular automation has undergone rapid 

development thanks to advancements in technology, extensive marketing efforts, 

and regulatory pressure for electrification. Numerous manufacturers have 

introduced models with varying degrees of autonomy. Among the developments, 

the technology known as Vehicle-to-Vehicle (V2V) communication holds great 

promise for further enhancing the capabilities of autonomous vehicles, such as 

improved traffic safety, efficiency, and environmental benefits. 

This thesis investigates the performance of 802.11p-based V2V communication in 

real-life scenarios, and explores potential practical applications such as GNSS 

correction data broadcasting to improve the positioning accuracy of nearby 

vehicles, and enhancing communication robustness by preemptively predicting 

potential disruptions with the assistance of Machine Learning (ML) models. A 

custom V2V On-board Unit (OBU) hardware platform was developed, and real-

world multi-vehicle outdoor experiments were planned and carried out. The 

collected data was examined and used to train a number of ML models, and their 

performance was compared.  

The experiments revealed that the custom OBU was fully functional, and signal 

quality and communication range were observed to be affected by real-world 

imperfections. The GNSS correction data broadcasting was shown to notably 

increase the positioning accuracy of nearby vehicles, and the ML models trained 

from Key Performance Indicators (KPIs) demonstrated excellent prediction 

accuracy, allowing pre-emptive actions to be taken to reduce the downtime from 

communication disruption. 
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Chapter 1:  Introduction 

1.1. Research Motivations 

The rapid growth in vehicular traffic worldwide has led to an increasing demand 

for Intelligent Transportation Systems (ITS) to address the problems of 

congestion, road safety, and environmental sustainability. In this context, 

Connected and Autonomous Vehicles (CAVs) have emerged as a promising 

technology for revolutionizing the future of transportation. One of the key 

enabling technologies for CAV is Vehicle-to-Vehicle (V2V) communication, which 

allows vehicles to exchange information with each other via short-range radio or 

cellular networks [1].  

By allowing vehicles to share information about their surroundings, V2V 

communication can be expected to significantly improve road safety by reducing 

the likelihood of collisions, as well as enhance traffic efficiency by enabling better 

coordination among vehicles [2]. Additionally, V2V communication can 

contribute to minimising environmental impact by optimising driving patterns 

and reducing fuel consumption and emissions [3]. 

Numerous studies over the past 40 years have envisioned the benefits of widely 

deployed V2V networks, however, it was only in the recent decade that 

technological advancement has made V2V communication feasible in the real 

world. Numerous pilot projects and field trials have been carried out across the 

globe to assess the feasibility and effectiveness of V2V networks, such as the 

European Union's Cooperative Intelligent Transport Systems (C-ITS) initiatives [4], 

the United States' Connected Vehicle Pilot Deployment Program [5], and China's 

Intelligent and Connected Vehicles (ICV) demonstrations [6]. These projects have 

provided valuable insights into the technical, regulatory, and social aspects of 

V2V communication deployment, helping to pave the way for broader 

implementation. 
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To facilitate the deployment of V2V communication systems, several 

standardisation bodies, such as the Institute of Electrical and Electronics 

Engineers (IEEE) and the European Telecommunications Standards Institute 

(ETSI), have developed standards and specifications for V2V communication 

technologies. For instance, the IEEE 802.11p standard provides the technical 

foundation for DSRC-based V2V communication, while the ETSI ITS-G5 standard 

defines the requirements for C-ITS applications in Europe. Additionally, 

regulatory authorities worldwide have been working on establishing legal and 

regulatory frameworks to govern the deployment of V2V communication 

systems, addressing issues such as spectrum allocation, security, and privacy. 

The automotive industry has also been looking into gradually integrating V2V 

communication capabilities into their vehicles, forging partnerships between 

technology providers, infrastructure developers, and governing bodies. Several 

automotive manufacturers have already released vehicles with V2V capability in 

certain parts of the world such as China and Japan [7], and more manufacturers 

are planning to equip their future models with V2V communication capabilities 

[8].  

While there has been numerous existing research on V2V communication, a 

notable portion of these studies have primarily been conducted within simulated 

environments. These investigations, though instrumental in providing insights 

into V2V systems performance, are inherently constrained by the assumptions 

and simplifications built into the simulation models, which might fail to 

accurately represent the unique complexities and challenges associated with 

deploying V2V systems in real-world situations. 

This thesis seeks to bridge this gap in existing research by conducting a 

comprehensive evaluation of V2V communication systems under real-world 

conditions. It focuses not only on assessing the performance of these systems 

but also the process of their development, setup, and deployment in practical 
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scenarios. Many aspects of this technology are investigated, including cost, 

specification, availability, procurement, and the feasibility of developing custom 

experimental hardware platform with off-the-shelf communication modules. 

Detailed outdoor experiments are carried out with road-legal vehicles on public 

roads, and performance data is collected, analysed, and evaluated. Additional 

applications of V2V are also explored, such as broadcasting GNSS correction data 

to nearby vehicles, and using performance data to train machine learning models 

for pre-emptive mitigation of communication disruptions. 

By focusing on these aspects, the research aims to provide a comprehensive 

understanding of the practical challenges and performance characteristics of V2V 

communication systems in realistic settings. This will help bridge the gap 

between simulation-based studies and real-world deployments and contribute to 

the development and implementation of more effective V2V communication 

solutions for connected and autonomous vehicles. 

1.2. Research Objectives 

The primary aim of this PhD study is to investigate the development, 

deployment, and the performance of V2V communication using Dedicated Short-

Range Communications (DSRC) technology under real-world conditions, and to 

explore the potential use of machine learning models to classify and predict 

possible upcoming communication interruptions by monitoring Key Performance 

Indicators (KPIs) of V2V systems.  

Objectives of this research are outlined below: 

• Conduct a review of V2V communication, including history, method of 

operation, benefits, challenges, competing standards, deployment status, 

performance parameters, as well as current literatures, in order to gain an 

understanding of the current state of development and identify gaps and 

limitations of existing research. 
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• Investigate the functionality and key components of V2V On-Board Units 

(OBU), and to design, produce, and assemble a custom OBU for the real-

world experiments. 

• Plan and conduct comprehensive planning of real-world V2V experiments 

involving multiple vehicles on public roads, including route planning, 

logistics, data path structure, and data collection. 

• Execute the outdoor experiments according to plan, perform data 

processing, visualisation, and analysis of collected data, identify and 

discuss the trends and observations in the results. 

• Use the KPI from the experiment dataset to train a number of Machine 

Learning models in order to classify and predict communication 

interruption scenarios. Evaluate different models and identify the one 

with optimal performance. 

• Summarise and discuss the outcome of the project, identify areas for 

improvements and topics for further research. 

1.3. Research Methods and Procedures 

The initial phase of this research will involve a comprehensive literature review, 

focusing on understanding the underlying principles of V2V communication, 

existing standards, and relevant research in the field. This will include a thorough 

examination of academic publications, technical reports, and standardisation 

documents, as well as a critical evaluation of the current state of knowledge and 

the identification of research gaps and opportunities. 

Following the literature review, the research will proceed with the development 

of custom V2V hardware tailored to the specific requirements of this project. 

Including research and comparison to identify suitable hardware components, 

such as communication modules, antennas, processing units, peripheral devices, 

and the form factor of the device. Based on the selected components, Printed 
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Circuit Board (PCB) design will be developed, fabricated, assembled, and 

debugged to create a functional V2V communication hardware platform. 

The next phase of the research will involve conducting real-world outdoor 

experiments to evaluate the performance of the custom V2V hardware. This will 

encompass detailed test planning, including the selection of test locations, 

definition of test routes, and planning of logistics and safety protocols, contents 

of payloads, and the performance parameters to collect for the dataset. 

After the conclusion of the experiment, the research will focus on data 

processing, visualisation, and analysis. The collected data will be processed and 

analysed using appropriate statistical techniques and data visualisation tools to 

facilitate the identification of trends, patterns, and anomalies. The results will be 

discussed and compared to existing documents and literatures to assess the 

performance and reliability of the custom V2V hardware and to identify potential 

areas for improvement. 

The final phase of the research will involve exploring the feasibility of using the 

machine learning models to identify and predict imminent communication 

interruption scenarios, so that action can be taken to switch to alternative means 

of communication preemptively. Suitable models will be suggested, parameters 

from the dataset will undergo preprocessing before being used to train the 

models, and their performance is evaluated and compared. 

1.4. Contributions of the Research 

This research project offers several unique contributions to the fields of V2V 

communication and CAVs.  

A significant contribution of this research is the design of a novel experimental 

hardware platform that combines a wide range of wireless connectivity options, 

high-accuracy positioning, sensors, and physical interfaces in a compact and 



 Introduction    6 

modular form factor. The device is able to communicate wirelessly via DSRC, 

cellular network, RFID, Wi-Fi, and Bluetooth.  

The device also features Real-Time Kinematics (RTK) capable GNSS receiver for 

high-accuracy positioning, inertial measurement units (IMU) to provide dead-

reckoning, Controller Area Network (CAN) for communicating with vehicle 

internal networks, along with additional physical interface options. 

This versatile hardware platform, custom designed for this project, is proven to 

be functional, reliable, and stable, and is suitable for a wide range of research 

activities and experiments involving V2V communication, as well as CAV 

positioning and control. The potential for commercialising the product further 

highlights its value to both academic and industrial applications. 

Another contribution is the collection and analysis of data from real-world 

experiments, which provides valuable insights into the performance of V2V 

communication systems under real-world situations. The analysis of Key 

Performance Indicators (KPIs) such as communication range, effects of vehicle 

speed, following distance, presence of obstacles, data throughput, and latency 

offers a more comprehensive understanding of V2V performance, addressing the 

limitations of simulation-based studies. 

This research also demonstrates that broadcasting GNSS correction data over 

V2V channels can notably improve the positioning accuracy of nearby vehicles, 

even if they do not have internet connections of their own. This finding illustrates 

one of the many practical benefits of V2V communication, enabling cost savings 

in data connection fees and highlighting the potential for further applications in 

real-world scenarios. 

Additionally, by identifying the characteristics of KPIs during communication 

dropouts resulting from signal degradation due to obstacles or excessive 

following distances, a machine learning model has been developed to predict 

and detect communication disruptions before they occur. This innovative 



 Introduction    7 

approach reduces communication disruptions by enabling the system to switch 

to alternative communication methods, such as cellular networks or satellite 

communication, thereby enhancing the overall reliability of V2V communication 

systems. 

In summary, this research project provides numerous unique ideas and findings, 

demonstrating the versatility and potential of V2V communication systems in 

real-world applications. These contributions serve as a solid foundation for 

further research, advancing the knowledge and understanding of V2V 

communication and its role in the development of more effective and reliable 

connected and autonomous vehicle systems. 

1.5. Thesis Structure 

The rest of this thesis is arranged as follows. 

Chapter 2 provides a comprehensive review of the existing literature on V2V 

communication, including its background, operational principles, advantages, 

competing standards, infrastructure requirements, and future challenges. 

Furthermore, the chapter evaluates the strengths and weaknesses of several 

popular machine learning classification algorithms, laying the theoretical 

groundwork for the chapters that follow. 

Chapter 3 details the design and development process of a custom on-board unit 

(OBU) hardware platform. It discusses design goals, hardware requirements, 

justification for the development of custom hardware, and key design 

considerations. It also presents the innovative incorporation of the PC/104 form 

factor to enhance modularity and upgradeability. 

Chapter 4 introduces various software packages and digital tools used for data 

processing, visualisation, and analysis. It also defines the Key Performance 

Indicators (KPIs) for assessing system performance, setting the stage for the 

upcoming experimental chapters. 



 Introduction    8 

Chapter 5 reports on the preliminary outdoor test utilising the OBU hardware. 

This includes a detailed description of the test plans and procedures, and a 

discussion of the observed KPIs. The chapter validates the OBU hardware's 

functionality and stability, highlighting a maximum communication range of 

nearly 900 meters in open-air, line-of-sight conditions. 

Chapter 6 details a more comprehensive outdoor experiment involving multiple 

road-legal vehicles navigating public roads under diverse traffic conditions and 

speeds. It presents and discusses the results, and investigates various parameters 

to find a practical communication range. This chapter also explores V2V's 

capability to transmit and broadcast GNSS correction data, and examines the 

cellular environment along the test route. 

Chapter 7 delves into the use of machine learning classification models to predict 

potential disruptions in V2V communication. It outlines the dataset 

preprocessing and the training of five models, and discusses the feasibility of the 

idea, as well as the potential for improvements. 

Finally, Chapter 8 presents the conclusion of the thesis, including a summary of 

the work completed, the contributions to the field, the identification of research 

limitations, and proposals for areas of further investigation. 
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Chapter 2:  Literature Review 

2.1. Vehicle-to-Everything Communications 

2.1.1. Background 

As we move towards an increasingly interconnected society thanks to the 

advance of the Internet and smart devices, much attention have been turned to 

the relatively untapped field of automobiles in recent years. It is believed that 

allowing vehicles on the road to exchange information with each other about 

their dynamics, such as position, speed, and heading, can lead to beneficial 

outcomes in terms of increased safety and efficiency. 

It was pointed out that in the past decades there has been significant progress in 

the “passive safety” of automobile design, where new materials and structures 

were utilised to strengthen the passenger cell in the event of a collision [9]. In 

evolution, the next big step up in automotive safety was envisioned to rely on 

active, in-vehicle sensors to assist drivers in potentially dangerous situations. 

Real-world examples include the Electronic Stability Program, which can reduce 

the risk of losing traction, and radar sensors that provide automated emergency 

braking without user intervention [10]. 

Despite the capabilities of such sensors and the reduction of casualties as the 

result, most of the existing safety technologies focus more on “crash-imminent 

situations” rather than warning drivers ahead of time, and the majority of 

currently fitted safety sensors have a similar “range of vision" as a human driver. 

It was envisioned that it would be of great advantage if vehicles were able to 

exchange information with each other over longer distances [11]. This ability of 

communication can relay information about events beyond drivers “line of sight” 

and allow cooperation between vehicles in order to assist their decision making. 

This Vehicle-to-Vehicle communication, or V2V, would be ideal to further 

increase the safety of automobiles [9]. 
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2.1.2. Working Principle and Benefits 

Vehicle-to-Vehicle Communication can be described as “[using] on-board 

dedicated short-range radio communication devices to transmit messages about 

a vehicle’s speed, heading, brake status, and other information to other vehicles, 

and receive the same information”. The communication range can be up to 300 

meters, allowing vehicles to “see” around corners or “through” other vehicles to 

locate potential hazards sooner than using human eyes or traditional sensors like 

cameras and radars. By allowing vehicles to communicate with each other, V2V 

can help prevent accidents by providing drivers with real-time information about 

potential hazards on the road ahead. Additionally, V2V system tends to be 

unaffected by weather and lighting conditions [9]. 

V2V communication can be also extended to include other entities such as 

roadside infrastructures (V2I), pedestrians (V2P) and networks (V2N). With the 

additional capabilities, the system can then be referred to as Vehicle-to-

Everything (V2X) communication [2]. 

There are several notable scenarios where V2X communication can greatly 

reduce the risk of a traffic accident, such as where a driver is approaching an 

unseen disabled vehicle. With V2V, the offending vehicle can broadcast its 

information and warn other drivers hundreds of meters away, allowing them to 

take action much earlier. This would be especially beneficial in high-speed 

situations where radar and camera-based systems might not be able to provide a 

timely warning. 

Another example is Blind Intersection Warning, where two cars approach an 

intersection but cannot see each other. Existing vision-based safety systems 

might not be able to address this scenario, while V2X-equipped vehicles can 

easily warn each other by communicating beyond “line of sight”. All in all, it was 

estimated that if deployed widely in United States, V2X technology has potential 

to prevent up to half a million crashes, and save tens of thousands of lives [10]. 
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Another advantage of V2V is improved efficiency. It was proposed that with 

proper coordination, CAVs can travel in closed groups on high-speed motorways, 

reducing air resistance and improving energy efficiency. By communicating with 

the infrastructure, CAVs can also theoretically travel at an optimal speed to avoid 

decelerating for traffic lights, again improving comfort, and reducing energy 

consumption [12]. 

V2V also has the potential to enhance mobility by providing new transportation 

options for individuals who are unable or unwilling to drive themselves. For 

example, V2V-capable vehicles could provide safe and reliable transportation for 

individuals who are unable to drive due to age or disability [13]. 

2.1.3. Early History 

The vision of enhanced driving autonomy using V2V communication can be dated 

back to as early as 1980s, with the concept being explored in notable research 

projects both in Europe and in North America. 

The EUREKA Prometheus Project (Programme for a European Traffic of Highest 

Efficiency and Unprecedented Safety), from 1987 to 1995, was an early venture 

in the realm of autonomous vehicles, holding the record as the largest R&D 

project in its field, and saw the collaboration of numerous universities and car 

manufacturers. The project was organized into seven sub-projects, including 

driver assistance by computer systems (PRO-CAR), vehicle-to-vehicle 

communication (PRO-NET), and vehicle-to-environment communication (PRO-

ROAD), artificial intelligence methods and systems (PRO-ART), custom hardware 

for intelligent processing in vehicles (PRO-CHIP), communication methods and 

standards (PRO-COM), and developing new traffic scenarios for the assessment 

and introduction of new systems (PRO-GEN). 

A number of demonstrations was carried out in 1994 to showcase the result of 

the research project, including innovations such as vision enhancement, lane-

keeping support, collision avoidance, cooperative driving, autonomous intelligent 
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cruise control, and several others. A highlight was the vehicles VaMP and VITA-2, 

developed by Ernst Dickmanns and his team, which autonomously navigated 

more than 1,000 kilometres on a Paris highway in heavy traffic at speeds up to 

130 km/h. Later in 1995, a heavily automated Mercedes S-Class successfully 

completed a 1,758 km journey from Munich to Copenhagen and back, managing 

significant portions of the drive without human intervention, reaching speeds 

over 175 km/h, and performing overtaking manoeuvres in real-world traffic 

under human supervision [14]. 

As a result, this project was seen as one of the foundational moments in the 

development of connected and autonomous vehicles, setting the stage of the 

rapid developments of various Advanced Driver-Assistance Systems (ADAS) 

features, including Intelligent Cruise Control (ICC), Lane Departure Warning 

(LDW), and Automatic Emergency Braking (AEB) systems that have become 

commonplace on passenger vehicles decades later [15]. 

While the EUREKA Prometheus Project was a pioneering effort in autonomous 

vehicle technology, there were a number of limitations and research gaps 

reflecting the technological and theoretical constraints of its time, such as the 

lack of satellite-based navigation and mapping services, limited sensor options 

and computation power, lack of machine learning and AI integrations, and the 

ambiguous legal and ethical frameworks at the time. These gaps have guided 

subsequent research, and has led to the more sophisticated systems and robust 

frameworks in use today. 

Similarly in United States, the Automated Highway System (AHS) project was 

initiated in 1992 as part of the Federal Highway Administration's Intelligent 

Vehicle-Highway Systems (IVHS) initiative, aiming to address the increasing 

demand and inefficiency of the U.S. highway system. The AHS focuses on 

developing a prototype for a future fully automated, intelligent vehicle-highway 

system, and involves leveraging sensors and communication devices to enhance 
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driving performance and reduce driver error, leading to increased highway 

efficiency in order to reduce fuel consumption and accommodate more vehicles 

on highways, ensure safer driving irrespective of weather conditions, and provide 

enhanced mobility for all drivers [16]. 

A crucial demonstration in San Diego in 1997 showcased the technical feasibility 

of the concept. Vehicles operated on a 7.6-mile stretch of Interstate 15 under 

automated control, suggesting the potential for an operational system by 2002. 

Despite these efforts, the program faced significant obstacles. The legislation 

lacked clear direction for research and did not precisely define what a "fully 

automated highway system" entailed. This ambiguity, coupled with the project's 

technical and logistical complexities, led to its premature termination in 1998 

[17]. 

However, despite the promising early results, technical limitations at the time 

such as the lack of low-cost radios and computing power prevented practical 

implementations of V2V communication in passenger vehicles, and many of 

those early experiments implemented their own wireless communication 

protocols. However, for a successful mass-market deployment of V2X systems, 

standardisation and interoperability would be of crucial importance. As a result, 

there have been efforts to standardise the V2V communications protocol, and 

several V2X standards have been proposed in recent years [12]. 

2.1.4. Dedicated Short-Range Communications (DSRC) 

Dedicated Short-Range Communications (DSRC) is a wireless communication 

technology specifically designed for automotive use. In short, “DSRC-equipped 

vehicle broadcasts its basic state information […] several times per second over a 

range of a few hundred meters” [12]. The vehicle also receives other vehicles’ 

messages and uses them to determine possible collision risk, and take actions 

accordingly by warning the driver or provide assistance in controlling the vehicle. 
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The Federal Communications Commission (FCC) in United States has allocated a 

75MHz spectrum at the 5.9GHz wireless frequency band for DSRC applications. 

IEEE 802.11p Wireless Access for Vehicular Environments (WAVE), modified from 

the popular IEEE 802.11 standard widely used for Wi-Fi, was used as the low-

level communication stack for DSRC [18]. The network stack supports WAVE 

Short Message Protocol, a special messaging protocol optimised for single-hop 

transmissions with reduced overhead, as well as traditional protocols such as 

IPv6, TCP and UDP. The SAE J2735 standard at the top of the stack specifies a set 

of common message formats to be used for communication between different 

vehicles. Since the chance of communication might be fleeting in high-speed 

vehicular environments, several traditional 802.11 functions such as access point 

beaconing, clock synchronisation and authentication were removed to allow a 

greater chance of data exchange. 

The most important message is the Basic Safety Message, which contains 

information such as position, speed, heading, steering angle, acceleration, brake 

status, and vehicle size. It is broadcast frequently and used for safety critical 

calculations. A consensus has been reached to send all safety critical messages 

on Channel 175 [19]. For increased security, certificates are used to authenticate 

each user, and both symmetric and asymmetric cryptographies are used to 

encrypt messages [12]. 

An updated next-generation DSRC standard was proposed by IEEE Task Group 

802.11bd in 2019. Improvements include doubling the throughput at MAC and 

enabling longer communications ranges by reducing the noise sensitivity level. 

Some key changes in the physical layer of the next-gen involve the inclusion of 

Orthogonal frequency-division multiplexing (OFDM) carrier modulation system of 

IEEE 802.11ac for better efficiency, adoption of Low-Density Parity Check forward 

error correction codes to enable higher coding density, utilisation of midambles 

for improved channel estimation, adoption of higher modulation and coding 

schemes such as 256-QAM with reduced overhead [20]. In optimal conditions, 
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DSRC is claimed to support communication data rate up to 27Mbps, while in real 

world tests, the average data rate was found to be around 6Mbps [21]. 

A European counterpart of DSRC named ITS-G5 also exists. Published by 

European Telecommunications Standards Institute (ETSI) with contributions from 

German vehicle manufacturers, the ETSI ITS-G5 standard is similar to DSRC as it 

also operates around 5.9GHz using IEEE 802.11p for communication stack, 

although the messaging stack is different, thus making them incompatible [4]. 

ITG-G5 contains two message types for vehicle safety: Cooperative Awareness 

Message (CAM) and Decentralized Environmental Notification Message (DENM). 

CAM broadcasts real-time vehicle data, including position and sensor 

information, at a rate adjustable based on vehicle dynamics, constrained by 

Decentralized Congestion Control (DCC) to reduce channel congestion. It also 

includes a security system with certificates to ensure trusted message sources. 

On the other hand, DENM, event-driven and not regularly broadcast, 

communicates urgent road events like accidents, with a mechanism for message 

updating and cancellation. In the meantime, the U.S., the Society of Automotive 

Engineers (SAE) defines the Basic Safety Message (BSM) for vehicle-to-vehicle 

safety, broadcasting vehicle operational data at a set frequency including general 

vehicle information and application-specific data, with a linear message rate 

control system. Both regions also contain additional message classes for specific 

functions [21]. 

It was observed that while V2X technology in United States mainly focuses on 

reducing crashes, European Union takes a slightly different approach as it focuses 

on driver safety advisories, driver support messages, and commercial 

applications such as toll and insurance. The EU standard also covers a broader set 

of applications and has a more market-driven approach [12] [4]. 
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2.1.5. Cellular V2X (C-V2X) 

Cellular Vehicle-to-Everything (C-V2X) is a similar technology that leverages 

standardised 3rd Generation Partnership Project (3GPP) 4G LTE or 5G mobile 

cellular network to provide communication capabilities in vehicular systems. It is 

promoted by multiple industry organisations, such as 5G Automotive Association, 

Qualcomm, and Autotalks [22] [23] [24] [25]. 

The operation of C-V2X primarily involves two modes of communication. First is 

the direct communication mode, or Device-to-Device mode, which functions 

independently of any cellular network infrastructure. The User Equipment (UE) 

directly communicates with another UE over a wireless link known as PC5 

interface, enabling vehicles to communicate directly with each other, 

pedestrians, and traffic infrastructure [26]. The PC5 interface was originally 

designed to address safety-critical situations where infrastructure is unavailable. 

However, its functionality has been expanded in later releases to cater to 

general-purpose V2X applications [27]. 

In addition to direct communication between UEs over PC5, C-V2X also allows 

devices to use the cellular data connection to transfer information over the 

internet, also known as Vehicle-to-Network communication [28]. This mode 

relies on traditional cellular networks, facilitating the sending and receiving of 

information from cloud-based services, other vehicles not within direct range, 

and any other entities connected to the cellular network [29], with performance 

goals of sub 100ms latency and 10Hz message frequency [30]. 

Although 3GPP defines the data transport features for cellular V2X, it does not 

cover the semantic content of V2X. Instead, it suggests employing ITS-G5 

standards such as CAM, DENM, BSM, with C-V2X transport instead [31]. 

C-V2X is claimed to have several advantages over 802.11p-based V2X solutions. 

By utilising the cellular data network, C-V2X can provide longer-range 

communications, better non-line-of-sight performance, as well as provide more 



 Literature Review    17 

functionality with cloud-based services [32]. C-V2X can also take advantage of 

existing cellular infrastructures, and is claimed to be scalable, evolvable, and less 

costly to deploy. C-V2X might also have better performance under congestion 

conditions [33] [34]. 

Despite the perceived advantages of C-V2X, this communication standard is still 

in its early stages of deployment. As a result, many of its performance claims and 

assessments are based on simulation models instead of real-world tests [22] [33]. 

While a number of manufacturers have expressed interest in the C-V2X 

technology and have announced plans of producing compatible equipment, 

many C-V2X devices are not yet commercially available as of April 2020 [23] [24] 

[35]. Additionally, some automotive manufacturers have expressed doubt about 

the reliability of the C-V2X system [36], and some potential disadvantages have 

been pointed out. 

While C-V2X can operate without a cellular network for direct communication, 

many of its benefits come from network communication, which requires a 

reliable cellular network. In areas with poor cellular coverage, its performance 

may be degraded. Also, although 5G networks promise single-millisecond 

latency, in existing 4G networks the latency may be noticeably higher, which 

could be problematic for safety-critical applications. C-V2X may also require more 

expensive hardware to support both Device-to-Device and Device-to-Network 

modes, and potentially recurring network fees, depending on the usage of 

cellular communication.  

2.1.6. Comparison and Integration of DSRC and C-V2X 

A number of publications examined the ongoing debate over the competing 

standards. They based their analyses on metrics such as Packet Delivery Ratio 

(PDR), End-to-End Delay (EED), throughput, range, interference tolerance, 

scalability, security, and cost-effectiveness, as well as the performance in 

different traffic environments such as urban areas, highways, tunnels, and 
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intersections. In [1], it was discovered that both technologies demonstrate 

unique strengths and weaknesses depending on the specific application 

scenarios. 

For example, DSRC presented similar-to-higher PDR than LTE-based C-V2X in low-

to-medium vehicle densities. It also demonstrated good scalability, as it can 

support up to thousands of vehicles in a single cell via ad-hoc networking. 

However, DSRC suffers from interference issues in high-density scenarios due to 

its use of the 5.9 GHz band which is very close to the frequency used by certain 

Wi-Fi network communication bands.  

On the other hand, LTE-V2X showed better range than DSRC due to its use of 

licensed cellular bands. It also supports higher data rates of up to 1 Gbps and has 

better interference tolerance due to its use of advanced interference mitigation 

techniques such as beamforming and power control. However, LTE-V2X suffers 

from higher latency than DSRC due to its reliance on cellular network protocols 

such as IP-based communication. LTE-V2X also has limited scalability compared 

to DSRC, as it can only support up to hundreds of vehicles in a single cell. Most of 

all, cellular infrastructure is required for C-V2X operation, which may not always 

be available in rural areas. 

Cost-effectiveness is another important factor when comparing these two 

technologies. DSRC requires dedicated roadside infrastructure for operation, 

which can be costly to deploy. C-V2X can leverage existing cellular networks for 

operation, which can simplify and reduce deployment costs. However, C-V2X also 

requires ongoing subscription to a cellular network provider, which can add 

ongoing operational costs, especially if the communication involves frequent high 

data rate exchange. 

In terms of security, both technologies provide similar levels of protection against 

eavesdropping and message tampering through the use of encryption and digital 
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signatures. However, DSRC has been criticised for its lack of privacy protection 

since it uses static pseudonyms that can be easily tracked by third parties. 

Due to the unique nature of both technologies, researchers have looked into 

combining those two types of V2V communication in a hybrid approach to 

overcome the individual limitations, and achieve more consistent connectivity, 

lower latency, higher throughput, and improved reliability and redundancy. DSRC 

is well-suited for short-range, high-priority safety messages, while C-V2X can 

provide longer-range communications for infotainment and other non-safety-

critical applications. Furthermore, the use of both technologies can help mitigate 

potential interference issues that may arise from the coexistence of multiple 

wireless communication systems in the same frequency band. 

In [37], the author proposed a novel architecture and protocol stack for Radio 

Access Technology (RAT) selection and Vertical Handover (VHO) by taking into 

account various network parameters such as signal strength, interference, and 

traffic load. A dynamic channel model (DCM) was constructed to predict future 

network conditions based on historical data. This scheme enables proactive RAT 

selection and VHO decisions that can improve network performance and user 

experience. Simulation results show that the proposed approach outperforms 

existing approaches in terms of network throughput, delay, packet loss rate, and 

handover success rate. 

Another study proposed a Traffic Differentiated Clustering Routing (TDCR) 

mechanism for vehicular data collection in a hybrid DSRC and C-V2X network 

[38]. The TDCR mechanism is designed to address the challenge of low data rate 

and long end-to-end delay in Vehicular Ad-hoc Networks (VANETs), while also 

reducing cellular bandwidth costs. The proposed TDCR algorithm consists of two 

main components: a centralised one-hop clustering approach and a data delivery 

optimisation method.  
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The clustering approach involves dividing the network into clusters, with each 

cluster having a Cluster Head (CH) responsible for collecting and aggregating data 

from the vehicles within the cluster. The CHs are selected based on their 

proximity to other vehicles and their ability to communicate with Road-Side-

Units (RSUs). The CHs then transmit their aggregated data to RSUs either through 

multi-hop V2V transmissions or through cellular networks. 

The data delivery optimisation method is used to determine the optimal delivery 

method for each CH, based on a trade-off between cellular bandwidth cost and 

end-to-end delay. The optimisation problem is formulated as a joint optimisation 

problem of delivery method selection and routing, which is solved using CPLEX 

software and a proposed heuristic algorithm. 

The TDCR algorithm also includes mechanisms for handling different types of 

traffic, such as delay-sensitive and non-delay-sensitive traffic. Delay-sensitive 

traffic is given priority in the routing process, while non-delay-sensitive traffic is 

routed through less congested paths. 

Simulation results show that the TDCR algorithm provides an efficient 

mechanism for collecting and delivering vehicular data in a hybrid SDN-enabled 

DSRC and C-V2X vehicular network, while ensuring Quality of Service (QoS) for 

delay-sensitive services and reducing cellular bandwidth costs. 

2.1.7. On-Board Unit 

An essential component of V2V communication systems is the On-board Unit 

(OBU). OBUs are specialised devices installed within vehicles that play a central 

role in V2V communication by receiving, processing, and transmitting 

information such as position, speed, direction, and other sensor data to nearby 

vehicles, enhancing the situational awareness of the driver or the vehicle control 

system [39]. The OBU can also facilitate communication with infrastructure 

(Vehicle-to-Infrastructure, V2I) and pedestrians (Vehicle-to-Pedestrian, V2P), 

although those applications are beyond the scope of this project. 
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OBUs are designed to support one or more V2V communication protocols, such 

as DSRC, C-V2X, or even satellite-based messaging. OBUs are equipped with 

embedded microprocessors that can process and fuse data from multiple 

sources. This data fusion enables vehicles to have a comprehensive 

understanding of their surroundings, thereby supporting advanced driver 

assistance systems (ADAS) and autonomous driving capabilities [39]. 

To ensure secure and trustworthy V2V communication, OBUs may employ 

cryptographic mechanisms for authentication, encryption, and non-repudiation. 

Moreover, to protect sensitive user information while still allowing vehicles to 

share necessary data, OBUs may implement privacy-preserving techniques [35]. 

OBUs can also integrate with Global Navigation Satellite System (GNSS) receivers, 

such as GPS, GLONASS, and Galileo, to provide accurate positioning information. 

This information is essential for cooperative localisation, lane-level navigation, 

and other location-based services. 

Some OBUs can also communicate relevant information and warnings to drivers 

or passengers through various Human-Machine Interface (HMI) elements, 

including auditory, visual, and haptic feedback [40]. This interface ensures that 

users can understand and react to time-critical safety warnings promptly. 

As intelligent transportation systems continue to evolve, OBUs are expected to 

become increasingly sophisticated, incorporating advancements in fields such as 

machine learning, sensor technology, and cyber-physical systems, thereby 

enhancing the safety, efficiency, and sustainability of road transport. 

2.1.8. Deployment Status 

With the established V2V standards, a number of real-world trials were planned 

and conducted in Europe and the United States. One such example was “Sichere 

Intelligente Mobilität – Testfeld Deutschland” (simTD), the first large-scale V2X 

communication field test in Europe, from 2008 to 2013. Unique aspects of this 
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test involve the large number of V2X equipped vehicles, as well as the fact that 

they were driven by members of the public who were unaware of the 

technological details, in order to simulate the situation of real-life deployment. 

Different traffic environments were considered, including high-speed motorway 

sections, rural roads, and inner-city streets [10]. The SimTD project provided 

successful testing and validation of V2X systems, as well as gaining insight into 

user acceptance, feasibility of large-scale implementation, guidance for future 

policy and regulatory frameworks. 

More recently, with the advance of technology and push from governmental 

bodies, a number of commercial products for V2X communication have been 

made available in the form of ready-to-use devices [41] as well as bare 

transceiver modules [25] [42]. Additionally, a number of vehicle manufacturers 

have already introduced new car models with V2X capability, such as the 2016 

Mercedes-Benz E-Class, 2017 Cadillac CTS, and 8th generation Volkswagen Golf 

[43] [44] [8]. The United States Department of Transportation has also proposed 

to mandate DSRC capability on all new cars and light trucks [6]. 

However, despite the recent developments, the rollout of V2X technology has 

not been as brisk as many hoped. As of 2019 only three car manufacturers have 

V2X capable models in the United States and Europe [17] [18] [19], and in 

November 2017 it was reported that the push for mandating DSRC capability in 

United States has been delayed by the new administration [45]. In early 2020, 

Federal Communications Commission (FCC) proposed to reallocate the lower 

45MHz portion of the 5.9GHz band for unlicensed operations such as Wi-Fi [5]. In 

response, lawmakers expressed “concern” and “alarm” over the proposal, 

commenting that the changes could undercut the potential to prevent a claimed 

37,000 traffic fatalities each year by “impeding the development and deployment 

of safety-critical technologies” [46]. In April 2020, FCC unanimously voted to 

open up the 6GHz band for unlicensed Wi-Fi use, greenlighting the next 

generation of Wi-Fi specification of IEEE 802.11ax with improvements in data 
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transfer speed and throughput [47] [24]. Some have expressed concern that this 

might erode the effectiveness of the neighbouring 5.9GHz band reserved for V2X 

communications [48]. 

Despite the setbacks, several car manufacturers have started to self-mandate the 

V2V capability in new vehicle models. Toyota has been selling DSRC-equipped 

vehicle in Japan since 2015, and is planning a large deployment in United States 

in the early 2020s [26]. Volkswagen also has a similar plan, aiming to start fitting 

its new vehicles with V2V technology in 2019 [8] [49]. 

In the meantime, the upcoming C-V2X technology is starting to gain traction 

among automobile manufacturers, with Ford announcing a “definitive timeline 

for introduction of C-V2X” starting in 2022 with the backing of additional 

technology partners including Qualcomm and Intel [50] [51]. BMW is also 

reported to be pushing the adoption of C-V2X in Europe with telecommunication 

partners [52]. 

2.1.9. Potential Issues 

Despite the promising safety and commercial outlook of V2X applications, a 

number of issues need to be addressed to ensure a successful deployment in 

real-world situations. 

One such issue is the wireless spectrum of the communication band. Currently 

both 802.11p-based and cellular-based V2X system use the 5.9 GHz frequency 

band. With the potential large-scale deployment, in addition to the continued 

expansion of Wi-Fi networks that operates at a similar frequency, there is a 

concern of wireless channel congestion in dense urban vehicular environments, 

which could adversely affect the safety intent of V2X communications [12]. 

Privacy is also a major concern of such technology. Since all V2X-equipped 

vehicles broadcast their dynamic information wirelessly within a large range, 

there are obvious risks of individuals or government entities unlawfully tracking 
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or logging such sensitive and private information. Additionally, it might be 

possible for malicious entities to interfere with the normal operation of vehicles 

by broadcasting spoofed safety messages. Therefore, cybersecurity measures 

should be of great importance to prevent abuse of V2X systems, such as 

unauthorized data collection, eavesdropping on V2V communications, and 

manipulating traffic data. [9]. 

Liability is another concern expressed by automotive manufacturers. Some argue 

that V2X might burden them with more legal risks since the safety system 

depends on the information from other vehicles outside their control and of 

unknown quality. On the contrary, it can be argued that V2X should be viewed 

more as safety warning system instead of autonomous driving aid, and its liability 

should be similar to existing safety warning systems today [1].  

Since the V2X can only benefit cars equipped with such systems, there are 

reservations that its effectiveness might be limited at the initial stage of 

deployment, where most vehicles on the road do not yet have V2X capability. 

Some people have also expressed concerns that DSRC technology might become 

outdated before the completion of mass deployment [53]. 

Another area of concern is the fragmentation of standards. Two competing V2X 

communication methods exist, 802.11p-based (DSRC, ITS-G5) and cellular-based 

(C-V2X). DSRC enjoys a more established presence with existing products and 

infrastructures already in place in certain parts of the world, as well as support 

from numerous automotive manufacturers. By contrast, C-V2X claims a number 

of advantages over 802.11p-based communication, and is favoured in certain 

countries such as China, with increasing interest in the United States [12] [51] [6]. 

However, some argue that the cellular infrastructure is not yet sufficiently 

mature in United States for mass deployment of C-V2X [8]. With manufacturers 

and researchers taking side in the competing standards, there are concerns that 

valuable development time and resources might be wasted over the format war 
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[54]. Attempts and researches have also been conducted over integrating the 

two methods of V2V communication together, although the experiments are still 

mostly inside simulations. 

2.1.10. Summary 

V2V communication is poised to revolutionise the automotive industry by 

significantly enhancing safety and efficiency. By enabling vehicles to 

communicate with each other and their surroundings, V2V systems can react 

more rapidly to potential hazards, even in situations where those threats are 

beyond the line of sight of human drivers and conventional vision-based sensors. 

Over the years, there have been numerous research efforts and collaborations 

aimed at realising the potential of V2V communication. However, it was only in 

recent years that large-scale testing and the development of proper 

communication standards have accelerated the adoption of V2V technologies. 

The introduction of Dedicated Short-Range Communications (DSRC), Intelligent 

Transportation Systems-G5 (ITS-G5), and Cellular Vehicle-to-Everything (C-V2X) 

has led to the emergence of V2V-equipped vehicles, as well as various 

aftermarket products. Moreover, an increasing number of automotive 

manufacturers are planning to incorporate V2V technology into their upcoming 

models. 

Historically, V2V communication has been primarily focused on safety 

applications, such as collision avoidance, intersection safety, and vulnerable road 

user detection. However, the potential benefits of V2V extend far beyond safety, 

as the technology can also improve traffic flow, reduce fuel consumption, and 

contribute to more efficient use of existing transportation infrastructure. 

Furthermore, V2V communication is expected to play a crucial role in the 

adoption of CAVs, as it can significantly enhance their perception and decision-

making capabilities. 
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Despite the promise of V2V communication, the deployment of this technology is 

still in its nascent stages, and several challenges need to be addressed. One of 

the concerns is wireless channel congestion, as an increasing number of 

connected vehicles and devices compete for limited bandwidth. This issue 

necessitates the development of efficient communication protocols and 

spectrum management strategies to ensure reliable and low-latency V2V 

communication. 

Privacy and liability concerns are another challenge facing V2V deployment. As 

vehicles continuously transmit and receive data about their location, speed, and 

other parameters, ensuring the privacy of this information is of utmost 

importance. Moreover, the legal and regulatory framework surrounding V2V 

communication needs to be developed to address questions of liability in the 

event of accidents or system failures. 

Another challenge involves the uncertain outlook of competing communication 

standards, such as DSRC/ITS-G5 and C-V2X. The coexistence of multiple standards 

may impede the interoperability of V2V systems, and limit the technology's 

adoption rate. This issue highlights the need for ongoing collaboration between 

industry stakeholders, standardisation bodies, and policymakers to establish a 

unified V2V communication framework. 

Lastly, it is important to note that the full safety benefits of V2V communication 

may only become apparent after mass deployment. As such, a notable period of 

time may be needed before the technology's real-life impact can be accurately 

evaluated. In the meantime, continued research, development, and large-scale 

pilot projects are necessary to refine V2V communication systems, address the 

challenges mentioned above, and pave the way for the widespread adoption of 

this transformative technology. 
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2.2. Machine Learning Applications 

Machine learning is a subfield of computer science that focuses on the study and 

construction of algorithms that are able to learn from data, and make predictions 

or decisions as a result, all without being explicitly programmed [55]. A multitude 

of machine learning algorithms have been developed over the years, each with 

strengths and weaknesses for particular use cases. The algorithms of interest in 

this study are the ones that perform classification, where categorical class labels 

of new instances are predicted based on past observations [56]. 

A selection of popular classification algorithms will be considered for this study, 

and a brief introduction and their strengths and weaknesses are discussed in the 

following sections. 

2.2.1. ZeroR and OneR 

ZeroR is one of the simplest classification methods, as it labels all unknown input 

data as the most common class in the training dataset. While it is apparent that 

this method is oversimplified and will likely have poor accuracy, it serves as a 

useful baseline to compare the performance of more complex algorithms. 

Building on the ZeroR algorithm, OneR makes use of only a single parameter in 

the training dataset to make predictions. The algorithm examines each feature in 

the dataset independently and constructs rules to predict the target variable. It 

then evaluates the effectiveness of these rules based on their error rate. The rule 

with the lowest error rate is selected as the model's rule. While it still runs the 

risk of oversimplification in complex datasets, OneR is often effective in a 

surprising number of real-life situations due to its simplicity, interpretability, and 

fast training speed [57]. As such, it is often used during the exploratory phase of 

data analysis or as a benchmark for other models. 

2.2.2. k-Nearest Neighbour 

The k-Nearest Neighbour (k-NN) is an instance-based learning algorithm that 

classifies an unknown data instance based on the majority vote of its 'k' nearest 
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neighbours in the feature space [58]. The primary parameter 'k' determines the 

number of neighbouring data points to consider during classification. 

An intuitive example of k-NN is shown in Figure 1, where two classes, star and 

triangle, are present in the existing dataset, and the model is tasked with 

classifying an unknown point at the yellow rectangle. 

The k-NN algorithm calculates the distance between the unknown point to each 

existing data point, finds its k-nearest neighbours, and classifies the unknown 

point as the class with the most frequent occurrence. 

In the example, with k = 1, the nearest neighbour is of class star, therefore the 

unknown point will be classified as star. With k = 3, its three nearest neighbours 

comprise two triangles and one star, leading to the classification of the unknown 

point as a triangle. Similarly, the classification result is star when k = 6. 

 

Figure 1: Example of k-NN classification 

It can be observed that the classification result may change depending on the 

value of k. The optimal choice depends on the specifics of the dataset, although 

larger 'k' value tends to yield smoother classification boundaries, reducing noise 

and potential overfitting [59].  

k-NN is a straightforward algorithm that is intuitive to understand and 

implement. It is particularly effective given sufficiently large training data. The 

algorithm does not make strong assumptions about the distribution of the data. 

Instead, it operates under the premise that similar instances are close to each 

other in the feature space, even when the data patterns are non-linear [56]. 
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However, k-NN also has several limitations. Determining the 'k' value often 

requires experimental tuning. Being a lazy learning algorithm, k-NN does not 

perform generalisation or abstraction during the training phase. This makes k-NN 

computationally inexpensive to train but can be resource-intensive during 

prediction, as the entire training dataset is stored in the model, which can 

become problematic for large datasets. In high-dimensional datasets, k-NN can 

also be computationally expensive due to the increased distance calculations. 

Furthermore, an unbalanced training set might bias the output towards the more 

popular class. [59]. All in all, while k-NN is a simple and effective classification 

algorithm, it comes with potential pitfalls that require consideration. 

2.2.3. Decision Tree 

Decision Tree algorithm has been described as “a classifier expressed as a 

recursive partition of the instance space” [60]. It is a popular model used in many 

domains for knowledge discovery and pattern recognition. 

A decision tree can be viewed as a directional and acyclic graph, featuring a finite 

and non-zero number of nodes and edges. Exactly one node is referred to as root 

node and has no incoming edges. A node with outgoing edges is referred to as 

internal node, while others are called leaf nodes [61]. Root and internal nodes 

represent a test on a certain attribute. The connection edges represent the 

possible outcomes of the test, and leaf nodes commonly hold the classification 

information. 

A decision tree can be constructed by splitting the learning data into subsets 

while achieving the maximum information gain. This process is repeated 

recursively until all instances at a node belong to the same class [62]. A sample 

dataset for a decision tree is shown in Table 1, and the constructed tree can be 

seen in Figure 2. 

In order to predict the class of an unknown instance, one can start from the root 

node and travel along the edges according to the results of the test over 



 Literature Review    30 

attributes at each node. When a leaf node is reached, the information at that leaf 

node corresponds to the prediction outcome [63]. 

Table 1: Sample decision tree dataset 

Colour Height (m) Class 

Grey 3 Elephant 

Yellow 5 Giraffe 

Brown 1 Monkey 

Yellow 1 Tiger 

 

 

Figure 2: A sample decision tree 

Decision Tree algorithm is a white box model, where the construction of the tree 

and the reason for splitting at each node is directly observable. This also makes 

the model simple to understand and interpret even for non-experts, where one 

only needs to start from the root node, follow the directions and arrive at a 

prediction on a leaf node. Decision tree can handle both numerical and 

categorical data, performs well with large datasets, and requires little data 

preprocessing [64]. 

Despite the numerous advantages, a decision tree can also be very rigid, where a 

small change in the training data might lead to a large change in the tree 

structure and the quality of final predictions. There is also a possibility for 

Decision Tree algorithm to create an overly complex tree that does not generalise 
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well when presented with unknown data, although mechanisms such as pruning 

can be used to avoid this problem [64]. 

2.2.4. Random Forest 

Building upon the Decision Tree algorithm, Random Forest provides classification 

by constructing a large number of different decision trees and letting them vote 

for the most popular classification. By merging the result from multiple decision 

trees, random forest tends to offer a more accurate and stable prediction [65]. 

Random Forest is created by bootstrapping data samples from the original 

dataset. Various samples from the original dataset are selected with 

replacement, and the new subset of data is used to create a decision tree. This 

process is repeated several times, resulting in an ensemble of decision trees, 

each created with knowledge of a random set of training data [66] [67].  

Another distinct feature of the Random Forest algorithm is evident during the 

construction of the individual decision trees. Instead of searching for the most 

important feature while splitting a node, the algorithm randomly selects a subset 

of features and find the best split point based on those. It is believed that a 

random forest performs best when its internal trees have low error rates, and are 

uncorrelated with each other [65]. 

By introducing randomness during the construction of the model, the Random 

Forest algorithm is reported to be more resilient to overfitting [68]. And the 

increased diversity of the internal decision trees often leads to a more robust 

predictive performance. 

This algorithm is also relatively simple to use, with few hyperparameters that is 

straightforward to understand. This model is fast to train compared to more 

complex algorithms, generally has good predictive performance, and can handle 

different feature types [46]. Although the large number of trees might slow down 

the algorithm and render it ineffective for real-time predictions. 
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2.3. Machine Learning in Intelligent Transportation Systems (ITS) 

A number of existing literatures in the field of ITS utilise Machine Learning in 

their research efforts. In [69], an in-depth exploration of the application of 

Artificial Intelligence and Machine Learning in ITS was carried out, particularly 

focusing on their role in the Internet of Vehicles and V2X systems, where they 

can optimise traditional data-driven approaches, enhance edge computing and 

caching, facilitate efficient multimedia communication and location-based 

services, and implement robust security mechanisms for routing protection 

against various threats and attacks, all while effectively addressing challenges 

related to traffic congestion, dynamic communication topology, resource 

allocation management, and vehicular communication in the evolving field of 

wireless communication technology.  

In [70], the article provides an overview of the scientific and technological 

advances that have the potential to shape future 6G V2X communications. The 

author envisions that machine learning will play an instrumental role in advanced 

vehicular communication and networking by enabling more effective resource 

provisioning and improved network operation, handling situations where 

traditional communication systems might fail, and aiding in decision-making 

processes for autonomous driving using multiple data streams from various 

sensors. The article emphasizes the physical layer, radio resource allocation, and 

system security, and discusses the implementation of promising technologies 

such as federated learning. 

In [71], Darlan et al. explored the use of machine learning to predict Quality of 

Service (QoS) in cellular vehicular-to-everything (C-V2X) communication. The 

article discusses various ML techniques, particularly supervised learning, along 

with the autoregressive integrated moving average filter, for predicting packet 

delivery within specific latency windows. Using simulated dataset, the prediction 

of QoS levels two seconds ahead of time was achieved with 85% reliability. The 
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work also addresses the challenges of handling class imbalance in ML models for 

more accurate predictions in C-V2X scenarios. 

Article [72] presents a novel approach for reliable routing in vehicular ad-hoc 

networks (VANETs). It addresses challenges in VANETs such as dynamic mobility 

and limited connectivity by leveraging decision tree-based routing, focusing on 

predicting the most reliable routing paths. Machine learning techniques including 

decision tree and random forest, are evaluated, with decision tree found to be 

most efficient in terms of accuracy and time consumption. The proposed model 

significantly improves packet delivery ratios and connectivity, achieving up to 

16% PDR with a 99% accuracy rate, outperforming existing solutions and 

demonstrating the effectiveness in high mobility scenarios. 

A more hands-on application of ML in ITS is explored in [73], where the article 

acknowledges the increasing importance and potential benefits of CAVs, but also 

highlights the risks of cyber security threats. The article focuses on devising a 

robust framework for improving CAV cyber security through machine learning-

based anomaly detection, with the objectives of defining and assessing potential 

attacks on CAVs, collecting new CAV cyber security datasets, developing and 

evaluating machine learning models for CAVs, and improving these models' 

performance via feature selection methods. 

The article examines a wide set of potential attacks within the CAV Cyber Security 

(CAVCS) framework, assessing their severity based on target assets, risks, and 

consequences. Notably, it identifies Denial of Service (DoS) and Fuzzy attacks as 

the most severe cyber threats. 

The study gathers four datasets of CAVCS for simulating and assessing potential 

attacks, covering different attack scenarios in both simulated and real-world 

environments. Machine learning models, specifically Decision Tree and Naive 

Bayes classifiers, are applied to each of the four datasets. These models' 

performance is evaluated based on accuracy, false-positive rate, and runtime. 
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While Decision Tree outperforms Naive Bayes, the results show a need for 

enhanced performance improvements, especially in terms of runtime. 

Feature selection methods, including Info Gain, Gain Ratio, Correlation-based 

Feature Selection, and Pearson method, are employed to improve the machine 

learning models' performance. These methods reduce runtime while preserving 

accuracy. Although their impact is more pronounced on datasets with a large 

number of features, the Decision Tree model consistently offers the best 

performance. This study contributes to CAVCS by providing an effective method 

for assessing and detecting CAV cyber-attacks and setting a baseline for future 

CAVCS research. 

In summary, the integration of Machine Learning in ITS across various research 

studies highlights its pivotal role in transportation technologies. ML's data 

processing capabilities can enable significant advancements in vehicular 

communications, network security, and predictive analytics in transportation. 
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Chapter 3:  V2V OBU Design 

3.1. Overview 

The work undertaken in this thesis contributed to the CoDRIVE (Cooperative 

Development of a Roadmap for Initial V2X Implementation in Europe) project, a 

European Space Agency (ESA) funded demonstration project focusing on 

infrastructure and smart cities [74], with the goals of: 

• Assessing smart infrastructure and network requirements for future 

Connected Autonomous Vehicles. 

• Implementing seamless V2X communication to support high frequency 

and low latency data sharing. 

• Evaluating EU radio navigation and national digital data services. 

• Developing a reliable, robust, and resilient absolute positioning system for 

intelligent mobility services, enabled by localisation and V2X 

communications based on GNSS and communication capabilities. 

• Building a cloud-based platform for the initiatives of transitioning towards 

the Mobility-as-a-Service (MaaS) in the near future. 

CoDRIVE is a collaborative project between UbiPOS UK Ltd, University of 

Nottingham Geospatial Institute (NGI), Low Level Earth Observation Ltd (LLEO), 

and Chang’an Motors UK Ltd. 

Commencing in late 2019, the CoDRIVE project saw steady and significant 

progress from all participating parties over two years and concluded successfully 

in early 2022 with outstanding ratings. The project was demonstrated at the 

European Centre for Space Applications and Telecommunications (ECSAT) in 

Oxfordshire, United Kingdom to the ESA Director General Mr Josef Aschbacher in 

July 2022. 
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3.2. Design Goals and Requirements 

As a major part of the CoDRIVE project is dedicated to examining various aspects 

of V2V communication in real-world scenarios, with a particular focus on its 

integration into smart infrastructure and MaaS applications, a dependable 

hardware OBU platform would be a crucial element in carrying out the 

investigations of this project. Several requirements, which the OBU should satisfy, 

were identified at the early stage of its development: 

• Supports current V2V standards such as DSRC and ITS-G5. 

• High-accuracy GNSS receiver for positioning and localisation applications. 

• Cellular connectivity for data link and potential C-V2X investigations. 

• Additional wireless interfaces such as RFID, Wi-Fi, and Bluetooth for novel 

positioning augmentation experiments in GNSS-denied environments. 

• CAN bus interface for communication with vehicle internal networks. 

• Reliable and dependable performance. 

• Ease of use with clear documentations and streamlined development 

workflow. 

A number of commercially available OBU options were examined [41] [75] [76] 

[77]. However, most of them were newly announced at the time of the 

investigation, with low availability and long lead time as well as significant cost, 

often reaching thousands of US dollars per unit [78]. They also tended to have 

closed and proprietary development stacks, limited documentation, and did not 

have the additional sensors and interfaces needed for this project [79]. Due to 

the availability, cost, and capability constraints of the existing commercial 

options, the decision was made to develop a custom experimental V2V OBU 

hardware platform for the CoDRIVE project, which offers numerous advantages 

that is beneficial to the execution of this project. 

Among the most apparent benefits is the level of flexibility and customisation. 

Custom designing an OBU enables the team to build a solution tailored precisely 
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to the project's requirements, as well as integrate seamlessly with the specific 

use-cases and investigation topics of the CoDRIVE project. 

This approach also provides valuable insights into the design and implementation 

process of V2V communication systems. It offers a unique opportunity to gain 

first-hand experience in constructing and troubleshooting these systems. This not 

only enhances the team's technical understanding but also empowers them to 

devise innovative solutions to potential challenges. 

Moreover, a custom developed OBU contributes to the creation of unique 

intellectual properties for this project. This enriches the project's value 

proposition, allows the team to maintain control over the technology's evolution, 

and can serve as a basis for further development, upgrades, and 

commercialisation. Custom-built hardware can also facilitate future vertical 

integration, as the team has the full knowledge and authority to modify or 

expand the system as necessary. 

Lastly, cost-effectiveness is another important advantage of the custom 

development approach. As every element is developed and assembled internally, 

there is no need to account for the markups typically associated with commercial 

products. 

In conclusion, the OBU plays an important role in achieving the goals of the 

CoDRIVE project, and the development of a custom OBU offers significant 

advantages in terms of customisation, educational value, intellectual property 

generation, future development possibilities, and cost management. 

3.3. Component Selection 

With the decision to develop a custom OBU, this section describes the major 

components used in this project, including the background information, the roles 

they play in the product, design requirements, available options, and the 

reasoning for the final choice. 
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3.3.1. Processor 

The main processor plays a crucial role in determining the rest of the system 

design, as each processor architecture exhibits their own software and hardware 

strengths and limits. Many processor options are available for embedded 

applications, with two major architectures considered for this project. 

The first category is x86-based development boards, such as the UDOO x86, Rock 

Pi X, or Odroid H2. The advantage of x86 processors includes their relative ease 

of setup and operation, due to the close architectural resemblance to 

conventional desktop computers. These processors can also deliver 

commendable performance and offer compatibility with popular operating 

systems such as Windows 10 or Ubuntu. In addition, manufacturers of various 

sensor modules often provide support and drivers for x86 systems, simplifying 

integration into the existing setup and facilitates the validation of their 

functionality, thereby making them an appealing option for this project. Some 

example x86 single-board computers are shown in Figure 3 and Figure 4.  

On the other hand, x86 architecture does present certain drawbacks for 

embedded computing applications. Notably, x86 development boards tend to be 

more expensive and larger in size compared to other alternatives, which could 

pose challenges in terms of hardware integration and sourcing, especially for 

high-volume production. Moreover, these boards are often associated with 

increased power consumption and heat output, which can present additional 

challenges in terms of thermal management. Furthermore, depending on the 

manufacturer, these boards may not have comprehensive documentation or 

strong community support, which can impact troubleshooting and development 

efforts. There are also concerns for the longevity of supply, as the assurance of 

continued availability of low-power x86 processors and development boards 

might not be as strong as for some other architectures. 
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Figure 3: UDOO x86 Computer 

 

Figure 4: Odroid-H2 Computer 

 

ARM-based development boards represent another major choice in the field of 

embedded systems. Examples encompass a broad range from high-performance 

devices such as Nvidia Jetson to more affordable options such as Raspberry Pi 

and its numerous clones. It is even possible to design a custom processor board 

from scratch, using the bare chip coupled with a minimal amount of supporting 

circuitry. ARM-based platforms predominantly run on variations of the Linux 

operating system, and the diversity of Linux distributions offer a multitude of 

customisation options catered to certain design priorities, such as computational 

performance, security, real-time responsiveness, energy efficiency, and many 

others. 

ARM-based architecture plays a prevalent role in the embedded computing 

market today, and underpins a wide range of devices from virtually all 

smartphones and tablets [80], to deeply embedded applications found in 

appliances, network routers, and microcontroller chips. 

The ubiquity of ARM-based processors offers several compelling advantages. The 

highly competitive landscape and the open-source ARM GNU toolchain without 

licensing cost makes this architecture a very cost-effective proposition, and the 

resulting popularity has fostered a vibrant community producing a wealth of 

detailed documentation and resources that can significantly simplify the 

development process. The competitive landscape also offers a variety of vendors 
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with a wide range of features and price points, allowing a robust selection of 

options when it comes to integrating custom designs into the hardware. 

However, the ARM architecture does come with its challenges. There can be a 

somewhat steep learning curve, particularly when it comes to setting up the 

development environment, especially when working with barebone Linux. 

Nevertheless, the flexibility and cost-effectiveness of the ARM-based architecture 

can still make it worthwhile for many projects. 

The Nvidia Jetson TX2 module was initially considered for this project due to its 

impressive specifications. This embedded system-on-module is equipped with a 

quad-core ARM Cortex-A57 processor, 8GB 128-bit LPDDR4 memory, and an 

integrated 256-core Pascal GPU [81]. These components lend themselves to 

computationally intensive tasks such as real-time video processing and machine 

learning applications. While the system specification is impressive, a few 

drawbacks were identified. This device was announced only a few months prior 

to the start of this project, as a result, the availability of documentation and 

online resources at the time was relatively limited, potentially complicating the 

development process. The cost of the development board was also fairly high, at 

over £300 per module. As the primary function of the OBU involves mostly data 

processing, logging, and telemetry, the advanced specifications might be 

excessive for this project. As a result, the decision was made to explore other 

potentially more suitable and cost-effective alternatives. 

The Raspberry Pi (RPi), seen in Figure 5, is another highly popular single-board 

computer (SBC) often used in embedded applications. Although its specifications 

are relatively modest compared to the alternatives discussed previously, its 

popularity and widespread use since its introduction in 2012 give it some distinct 

advantages. It is available from a wide range of distributors, and a large online 

community has been built up with detailed instructions available regarding 

hardware integration, software troubleshooting, as well as interfacing with 
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external peripherals. The popularity also results in a comprehensive collection of 

open-source software libraries and pre-compiled package repositories. The RPi's 

popularity coupled with its robust support system contributes significantly to its 

appeal, making it an effective and user-friendly starting point for embedded 

applications, and it has been utilised in a number of research projects in the field 

of V2V communication. Examples include implementing a secure wireless 

message propagation protocol for Internet of Vehicles (IoVs) [82], acting as the 

processor of a low-cost OBU unit using off-the-self components along with Wi-Fi, 

ZigBee, and nRF24L01 wireless communication [83], as well as for implementing 

a lightweight mutual authentication protocol for IoV communication [84].  

One potential drawback of the Raspberry Pi board is its form factor. Originally 

conceived as a low-cost single-board computer, its physical dimensions are 

relatively large, comparable to the size of a credit card. In addition, the board 

provides limited General-Purpose Input/Output (GPIO) connections for additional 

sensors and peripherals, which could pose integration challenges when pairing 

with other components in the OBU. 

Fortunately, Raspberry Pi Foundation offers an alternative product in the form of 

the Raspberry Pi Compute Module, shown in Figure 6. Retaining the same system 

architecture as its larger counterpart, the Compute Module presents a 

significantly more compact footprint, comprising of only the processor itself and 

a minimal amount of supporting circuitry in the form factor of a 200-pin SO-

DIMM laptop memory module, while having a lower retail cost compared to the 

regular Raspberry Pi. This format is explicitly designed to be embedded into 

custom-designed commercial products, while still preserving the user-friendly 

development environment characteristic of the standard Raspberry Pi. This 

makes it an excellent choice for projects requiring a more streamlined design 

without compromising processing capability, and the official documentation 

offers detailed instructions on hardware integration [85]. Given these factors, the 
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Raspberry Pi Compute Module was selected as the processor base for this 

project due to its balance of size, cost, functionality, and ease of integration. 

  

3.3.2. V2X Transceiver 

The V2X transceiver is a critical component of the OBU design, as it is responsible 

for sending and receiving wireless V2X signals. As the main component of this 

project, the V2X transceiver needs to meet several requirements such as stable 

and reliable operation, support for major V2X bands such as ITS-G5 and DSRC, 

availability during the project timeframe, reasonable pricing, and comprehensive 

documentation and support. Moreover, it is crucial for the transceiver to provide 

a high degree of compatibility and interoperability with other V2X-enabled 

devices, ensuring seamless communication and data exchange in various traffic 

scenarios. 

At the onset of this project, V2X transceiver modules were still not widely 

available, and research and inquiries were carried out to investigate the available 

options. The u-blox THEO-P173 was chosen due to the manufacturer's reputation 

and immediate availability, accompanied by an evaluation kit, documentation, 

and sample codes [86]. The THEO-P173 module was also used by Cohda Wireless 

in their OBU and Road-side Unit (RSU) commercial products [87] [88], as well as a 

major component in a recent study on implementing a Vehicle Approaching 

Reminder Device for CAVs [89]. The THEO-P173 module supports both ITS-G5 

and DSRC standards, thereby covering European and US markets. It comprises a 

Figure 5: Raspberry Pi 3 Model B+ 
Figure 6: Raspberry Pi Compute Module 

3+ 
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dual-channel radio operating in the 5.9 GHz band with up to +23 dBm output 

power, ensuring efficient and robust communication. 

The open-air communication range of the THEO-P173 is claimed to exceed 1000 

meters, with data rates of up to 54 Mbps. The module interfaces with the host 

computer through a USB 2.0 or Serial Peripheral Interface (SPI) link, facilitating 

efficient data transfer and integration [90]. An evaluation kit containing two 

modules was procured to verify the specifications and evaluate the quality of 

documentation and ease of development.  

3.3.3. GNSS Receiver 

A Global Navigation Satellite System (GNSS) receiver is another essential 

component of the OBU, as it provides geographical positioning information as 

part of the payload to be transmitted over V2V communication, as well as for 

trajectory telemetry and logging purposes. 

However, a standard GNSS receiver without using any augmentation techniques 

typically can only achieve meter-level precision [91]. While this might suffice for 

generic navigation applications, it falls short of the precision requirements of 

advanced applications associated with CAVs, where much higher accuracy is 

needed for critical functions like lane-level navigation, collision avoidance, and 

cooperative manoeuvring. Therefore, a high-accuracy GNSS receiver compatible 

with augmentation methods is needed for the OBU. 

Real-time Kinematic Positioning (RTK) is a technique often employed to 

significantly improve the level of GNSS positioning accuracy, often attaining 

centimetre or even millimetre precision, depending on factors such as equipment 

setup, atmospheric conditions, and receiver movement patterns. RTK positioning 

utilises a network of fixed reference stations with precisely known coordinates. 

These reference stations continuously monitor the phase of the GNSS signal’s 

carrier wave as well as the code and pseudorange data. By comparing the 

measured position with the known position, the reference station can generate 
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correction data, which is then transmitted to the RTK-enabled GNSS receiver, 

either via radio or cellular communication, allowing mitigation of a number of 

sources of inaccuracies such as clock drift, atmospheric delays, and multipath 

effects [92]. 

Some GNSS receivers can perform RTK calculations internally, necessitating only 

an antenna and a correction data stream input. In contrast, other receivers are 

designed to output raw measurement data and delegate the RTK processing to 

the host computer. 

Opting for external RTK calculation on the host computer was considered to be a 

more flexible approach in this project, as it enables the fine-tuning and testing of 

different processing configurations. Additionally, the GNSS receiver itself can be 

more cost-effective without the requirement for on-board RTK processing. 

Numerous GNSS receiver modules are available from various vendors. In this 

project, the u-blox NEO-M8T was chosen due to its reputable manufacturer, 

reasonable pricing, comprehensive documentation, extensive online resources, 

robust software and hardware support, as well as prior experience with the 

device. As the name implies, the NEO-M8T is primarily designed to deliver high-

accuracy timing and frequency reference for high-sensitivity equipment. It 

supports all major GNSS constellations, including GPS, GLONASS, BeiDou, Galileo, 

as well as satellite-based augmentation systems (SBAS), and boasts an unaided 

horizontal position accuracy of 2.5 meters [91]. 

The NEO-M8T module has been assessed and evaluated in a number of studies, 

and has been observed to achieve up to 1 meter of horizontal accuracy in single 

positioning mode [93], and under "Where in Lane" accuracy level (0.5m) for CAV 

applications [94]. As a result, it has been selected as a low-cost high-accuracy 

GNSS receiver in many research projects, such as building a cost-effective multi-

purpose GNSS platform [95], developing novel algorithms to improve its 
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performance in urban environments [96], and to provide localisation for a V2V 

OBU in a real-word trial in Korea [97]. 

Although the NEO-M8T does not offer built-in RTK processing support, it can 

output raw GNSS measurement data through various interfaces for utilisation on 

the host computer. This functionality is particularly useful when employing open-

source libraries such as RTKLIB, which enables the experimentation with different 

configurations and the logging of raw data for post-processing if required.  

3.3.4. Cellular Modem 

The inclusion of a cellular modem in the OBU design allows internet connectivity 

in areas with cellular network coverage. This connectivity enables several crucial 

use cases, and enhances the overall functionality and performance of the OBU. 

One key application of the cellular modem is the streaming of GNSS RTK 

correction data, which can significantly improve positioning accuracy. By 

leveraging precise GNSS corrections provided by reference stations, the OBU may 

achieve centimetre-level accuracy, which is vital for advanced driver assistance 

systems, autonomous driving applications, and other location-based services. 

Another important use case is the provision of real-time telemetry updates to a 

cloud-based database. This capability allows the OBU to transmit critical vehicle 

data, such as speed, position, and sensor information, to a remote server for 

analysis, monitoring, and decision-making purposes. Consequently, this feature 

supports fleet management operations, traffic management systems, and other 

intelligent transportation applications. 

Additionally, the cellular modem enables over-the-air updates and bug fixes for 

the OBU's system software, ensuring that the device remains up-to-date and 

secure. This remote update capability is crucial for maintaining system stability, 

addressing vulnerabilities, and adding new features as required. 
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For this project, the Quectel EC20 module was selected due to previous 

experience and its popularity in several similar studies requiring cellular 

connectivity, being able to maintain stable cellular data connection for real time 

data streaming [98] [99]. The EC20 offers support for cellular voice and data 

communication, with up to 100 Mbps downlink and 50 Mbps uplink speeds 

[100]. The module's comprehensive English documentation ensures ease of 

integration, while the existing experience with the module allows for the reuse of 

proven, reliable code, minimising the need for developing new code from 

scratch. The EC20 module connects to the host computer via a USB interface, 

simplifying the integration process and offering flexibility in the overall OBU 

design. 

3.3.5. Wi-Fi / Bluetooth 

Wi-Fi and Bluetooth are wireless communication technologies that have become 

essential components in modern electronic devices, providing various 

advantages in terms of connectivity and data exchange. The integration of both 

of those technologies offers numerous benefits and enhances the overall 

functionality of the system. 

Wi-Fi, a set of wireless network protocols based on the IEEE 802.11 family of 

standards, enables local area networking and internet access for compatible 

devices. The incorporation of Wi-Fi in an OBU design not only allows for seamless 

software updates and data transmission to and from the internet but also 

facilitates remote management and diagnostics of the device during 

development and deployment. 

Bluetooth, another short-range wireless technology, operates on the 2.4 GHz 

frequency band and is primarily used for data exchange between devices in close 

proximity. Integrating Bluetooth into an OBU design offers several advantages, 

such as enabling real-time data exchange with other in-vehicle devices (e.g., 

smartphones, tablets, or head units), supporting wireless peripherals (e.g., 
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keyboards, mice, or sensors), and facilitating remote diagnostics and firmware 

updates. 

A miniature USB Wi-Fi/Bluetooth adapter was used to add those capabilities. 

Benefits of doing so include allowing the efficient utilisation of space on the 

printed circuit board for the inclusion of other essential components or more 

compact designs. Also, as these adapters are mass-produced and can be acquired 

at a relatively low cost, using them is a cost-effective alternative to embedding 

individual Wi-Fi and Bluetooth chipsets. 

Moreover, the modular design of the USB adapter facilitates straightforward 

upgrades and replacements as new Wi-Fi and Bluetooth standards emerge, or as 

the performance requirements of the OBU evolve over time. Lastly, the operating 

system's native support for the adapter eliminates the need for developing 

specialised drivers for custom hardware, further streamlining the design process 

and reducing overall development time and effort. 

3.3.6. CAN Bus Transceiver 

The Controller Area Network (CAN) is a communication bus standard 

predominantly employed in vehicular environments. This system facilitates 

seamless communication between in-car microcontrollers and other electronic 

devices using a message-based protocol. The CAN bus architecture employs 

twisted pair wiring and differential signalling to enable high-speed data 

transmission while maintaining robustness and reliability, even in the challenging 

conditions typical of vehicular environments. Additionally, it reduces the number 

of conductors in the wiring harness, saving material costs and weight. 

A crucial component of the OBU is the CAN bus transceiver, which serves as a 

gateway to the vehicle's internal control network. This device allows the OBU to 

access a wide range of information, such as vehicle speed, pedal position, 

steering input angle, and diagnostic data. The acquired information can be 

employed for a variety of purposes, including for data logging and subsequent 
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analysis, telemetry, and broadcasting through Vehicle-to-Vehicle (V2V) 

communication systems. 

Among the numerous CAN bus transceivers available on the market, the 

MCP2561 chip from Microchip Technology is a popular choice for projects 

involving CAN bus and embedded processors, such as error code readout for 

vehicle maintenance [101] and real-time vehicle status monitoring and 

management [102]. This preference is primarily attributed to the substantial 

amount of existing software libraries and sample codes available for the 

MCP2561 chip [103]. These resources enable developers to set up a functioning 

prototype with relative ease and efficiency, greatly reducing the time and effort 

typically required for such endeavours, ensuring efficient setup and 

implementation. 

3.3.7. Inertial Measurement Unit 

The Inertial Measurement Unit (IMU) is an electronic device designed to 

measure the specific force, angular rate, and orientation of an object using a 

combination of sensors such as accelerometers, gyroscopes, and 

magnetometers. IMUs have wide-ranging applications, from mundane tasks such 

as providing orientation information in smartphones, digital photo and video 

stabilisation, to mission critical roles such as acting as control references for 

aircraft and spacecrafts. In the context of this project, the IMU is expected to 

complement the GNSS receiver by providing dead-reckoning positioning results 

when GNSS signals are unavailable, as might be the case in tunnels, dense urban 

environments, or under electronic interference. 

IMUs are available in a diverse array of designs, ranging from purely mechanical 

devices to solid-state microelectromechanical systems (MEMS) packages. MEMS-

based IMUs are generally preferred for their compact size, energy efficiency, and 

reliability. The market offers IMUs at various price points, with options catering 

to different size, accuracy, and interface requirements, from less than 1 GBP to 
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tens thousands of pounds for tactical-grade components. Key performance 

parameters that define IMUs include Bias (the IMU reading when stationary), 

Bias repeatability (consistency between measurements), Bias stability (change in 

Bias over time), Random Walk (noise in the output), and Vibration sensitivity. 

Two IMUs are selected for this project, ADIS16460 and ADIS16488, both from 

Analog Devices. ADIS16460 is a Six Degrees of Freedom MEMS IMU with built-in 

gyroscope and accelerometer. It features excellent Bias stability and Random 

Walk figures, and is capable of high-speed sampling from SPI communication bus 

[104]. The ADIS16460 was evaluated and utilized in a number of studies such as 

implementing velocity-based optimization-based alignment (VBOBA) algorithm 

to reduce the heading angle alignment error [105], and the development of a 

tightly coupled inter-system RTK model, where the inclusion of this IMU brought 

about notable improvements to the positioning performance both in simulation 

and real-life environments [106], demonstrating excellent performance for 

vehicular applications. 

ADIS16488 is an even more feature-rich IMU with slightly superior specifications, 

and ten degrees of freedom with the addition of a magnetometer and air 

pressure sensor [107], and was used in several Unmanned Aerial Vehicle (UAV) 

positioning studies [108] [109]. Further improvements in accuracy can also be 

achieved by compensating for temperature and acceleration effects [110]. 

Both IMUs use similar connectors and communication interfaces, therefore it was 

decided to include both to explore their suitability for this application. 

3.3.8. Physical Interfaces 

Additional physical interfaces are also included on the OBU for development 

activities, data logging, connecting with external devices, and expanding the 

overall functionality of the OBU. 
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Two USB Type-A connectors are included, allowing the attachment of external 

storage, Wi-Fi and Bluetooth adapters, mice and keyboards, and any compatible 

devices, allowing straightforward and flexible expansion of the OBU's capabilities. 

The OBU can be powered by either a USB Type-C connector or a 5V barrel jack 

power adapter. 

The OBU also features a High-Definition Multimedia Interface (HDMI) connector. 

This digital interface supports high-resolution video output and can be utilised to 

connect an external monitor, beneficial during development phases, testing, and 

for demonstrations. 

For reliable and high-speed data transmission, an Ethernet port is included. This 

provides a wired internet connection, offering greater stability and data 

throughput compared to wireless alternatives, especially during the 

development process. 

Furthermore, two Secure Digital (SD) card slots are integrated into the OBU. One 

hosts the SD card containing the Linux operating system from which the OBU 

boots. The second slot can hold an extra SD card for additional removable data 

storage. 

A micro-SIM card slot is included for users to insert their own SIM card to be 

used with the on-board cellular module. 

Finally, six SMA antenna connectors are available for attaching external antennas. 

This includes one connector for the GNSS receiver, one for the RFID module, two 

for the cellular module, and two for the V2V module. 

3.4. Printed Circuit Board 

Printed Circuit Board (PCB) serves as the foundation of the OBU hardware, 

hosting the electrical connections of all the aforementioned components. This 

section gives a detailed look into a few key aspects of PCB design and production, 

including the working principle, construction and manufacturing, and areas in 
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need of special attention for the performance requirements of the OBU. This 

discussion allows a better understanding of the design and routing 

considerations needed to achieve optimal performance of the hardware.  

3.4.1. Overview 

A printed circuit board is a flat electronic assembly that uses metal conductors 

(usually copper) on top of an insulated substrate to create electrical connections 

between components in a controlled manner [111]. Electronic components are 

typically installed on a PCB through a process known as soldering. With the 

circuit board itself providing mechanical support, the assembly process can be 

dramatically simplified compared to earlier methods of circuit construction such 

as point-to-point wiring or wire wrapping. This allows for a highly automated 

production process and large-scale, cost-effective manufacturing of electronic 

devices today. 

3.4.2. PCB Elements 

A typical PCB consists of a flat sheet of insulating material, known as the 

substrate, and a layer of thin copper foil laminated to its surface [111]. A diagram 

of a simple two-layer PCB is shown in Figure 7.

 

Figure 7: A Typical Two-layer PCB Construction 

The copper is chemically etched away into separate conducting lines, known as 

traces, which function as connecting wires between components. Additional 

features might be added to the board, such as vias to connect traces between 
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different layers of copper, pads for component connections, and holes for 

mechanical mounting. 

To protect the copper from corrosion and reduce the chance of a short circuit, a 

non-conductive coating known as the solder mask is often added to the surface 

of the PCB. Green is a very popular colour for the solder mask and is often 

associated with the distinct appearance of circuit boards, but other colours are 

often used as well, mostly for aesthetic reasons. 

Finally, text might be printed on the PCB, showing the component types, value, 

and descriptive and identifying information. This is known as the silkscreen.  

Figure 8 shows the production steps of a simple PCB, the schematics and board 

design are created using an Electronic Design Automation (EDA) software. The 

finalised files are sent to the manufacturer, who etch away the copper according 

to the design. After additional mechanical processing, the circuit board is coated 

with solder mask, coloured white in this case, to protect from oxidation and short 

circuit. Text markings are printed via silkscreen, and the PCB is populated with 

components to form a functional product. 
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Figure 8: Production Process of a Simple PCB 

While the basic principles and construction of a simple PCB may appear 

straightforward, there are design considerations that are critical in ensuring 

optimal performance and functionality of a device, especially when dealing with 

sensitive high-speed or low-noise signals. The following sections will cover a 

number of those topics that contribute to high-quality PCB design and the overall 

effectiveness of the device.  

3.4.3. Layer Stack-up 

PCB layer stack-up refers to the arrangement of the different layers that make up 

a PCB. A well-designed stack-up can simplify signal routing and impedance 

control, minimise unwanted electromagnetic radiation, reduce vulnerability of 

external electromagnetic interference (EMI), and potentially reduce the cost of 

production [112]. 
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Many low-cost PCBs have two conducting copper layers on each side of the 

substrate. Typically, the top copper layer is employed for the majority of signal 

and power trace routing, while the bottom copper layer is dedicated to serving as 

a ground plane, providing a low-resistance current return path and shielding 

from external interference. Signal traces that cannot be optimally routed on the 

top layer can also travel on the bottom layer through vias, but the continuity of 

the ground plane should be maintained as much as possible to optimise current 

carrying capacity and maximise EMI shielding effects.  

However, for more complicated circuits, two copper layers might be insufficient 

due to the complexity of trace routing or EMI requirements. In such cases, 

additional copper layers can be incorporated at the expense of extra cost of 

fabrication. For the custom OBU in this project, 4-layer PCBs were used. 

The four copper conducting layers allow additional functionality of each layer, 

although the standard practice remains largely the same. Typically, one layer will 

remain as ground plane, providing EMI shielding and current return path. 

Another layer can be allocated as a power plane to distribute required voltages 

to all necessary components. With these needs catered for, the remaining two 

layers can be exclusively dedicated to signal traces, leading to much more 

freedom and flexibility in signal routing. 

With four copper layers stacked on top of each other, there are 24 permutations 

to consider, and it is important to choose the most optimal configuration. As with 

the 2-layer stack-up, signal and ground (or power) planes should be closely 

coupled in order to minimise EMI emission in high-speed signals, reduce input 

signal noise, and contribute to effective impedance control. This criterion 

reduces the viable combinations to mainly two, with the two signal layers on the 

outside and the power and ground plane on the inside, or having this 

arrangement in reverse. The first arrangement was chosen due to the advantages 

of easier routing with fewer vias, and the ease of inspection and repair due to 



 V2V OBU Design    55 

the exposed traces. Of course, compared to the other option, the exposed 

outward-facing traces may be more susceptible to EMI with limited shielding and 

may be prone to physical damage. However, this stack-up remains a very popular 

choice for 4-layer PCBs, and the trade-offs were deemed appropriate for an 

experimental prototype device like this. The stack-up is visualised in Figure 9, and 

additional copper layers can be observed on the inside of the circuit board. Both 

Core and Prepreg (resin pre-impregnated glass fibre) are insulating substrates, 

although prepreg is typically significantly thinner to allow easier impedance 

control, discussed in the next section. 

 

Figure 9: Four-layer stack-up used in this project. 

3.4.4. Impedance Control 

Another important aspect of PCB design, especially when high-speed signal is 

involved, is the careful optimisation of trace impedance. In the context of digital 

circuit design, the impedance is the sum of all the resistance and reactance 

components of an electrical signal path. Copper, being an excellent conductor, 

generally offers negligible resistance to direct-current (DC) signals. However, the 

copper trace on a PCB also possesses a small amount of inductance and 

capacitance due to the imperfect nature of the material as well as the coupling 

effect of the adjacent layers and traces. The combined effect of the inductance 

and capacitance, known as reactance, can appear as additional resistance when a 

high-speed alternating current (AC) signal is applied [113]. Therefore, it is very 

important to match the impedance of the signal source to the impedance of the 

PCB trace, in order to maximise power transfer and minimise signal loss or 
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distortion. An unmatched impedance can cause a portion of the signal to be 

reflected back towards the source and cause destructive interference, leading to 

signal degradation and increased electromagnetic emissions. 

Careful PCB design practices are necessary to maintain a controlled impedance 

environment, and many factors can influence the impedance of a PCB 

transmission line, such as trace width, trace thickness, substrate thickness, and 

the dielectric constant of the substrate material. Numerous models have been 

developed to approximate the impedance value given those factors. Although in 

recent years, this process has been automated in many EDA software [114], and 

PCB manufacturers have also started providing in-house online calculators [115], 

allowing designers to accurately estimate impedance tailored to their specific 

production processes. 

3.4.5. Differential Signals 

Many high-speed signals use a technique known as differential signalling, in 

which data is transmitted over two complementary signals sent on two separate 

conductors as a differential pair. One conductor carries the regular signal, and the 

other carries an inverted version of the same signal. An example can be seen in 

Figure 10. This arrangement allows double the signal voltage swing between the 

differential pair, and improves noise immunity as the interference affecting both 

conductors can be cancelled out at the receiver. The equal and opposite current 

in the two conductors can also significantly reduce EMI, as their magnetic fields 

are closely coupled with much lower radiation leakage [116]. The advantages 

allow notably higher signal frequency, and in turn, data throughput, to be 

achieved. 
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Figure 10: Illustration of Differential Signalling 

Of course, there are additional elements to consider for valid and effective 

routing of differential signal traces on a PCB. The two traces should be routed in 

parallel at a consistent spacing in close proximity at all times, in order to maintain 

the required differential impedance. The differential pair should also be kept well 

away from other differential pairs to prevent crosstalk. Both conductors should 

be of equal length to ensure their signals reach the receiver inputs at the same 

time, otherwise issues such as signal glitching or unwanted EMI emission might 

occur [117].  

Discontinuities in the signal path, where trace impedance deviates from the 

specified value, should be reduced as much as possible to minimise signal 

reflections and attenuation at those locations. This can be achieved by avoiding 

sharp bends in signal routing, avoiding using unnecessary vias and in-line 

components, and maintaining consistent trace width and spacing [113]. 

Connectors and input/output pins on an integrated circuit (IC) chip are also 

sources of discontinuities. Although they cannot be entirely avoided, thoughtful 

routing should still be performed to ensure the signal integrity across the whole 

signal path. 

3.5. All-in-One OBU 

With the understanding of important PCB design practices covered in the 

previous section, the first iteration of OBU was designed on a single PCB 

containing all the required components using the Autodesk Eagle EDA software. 

The circuit design is shown in Figure 11. The sections coloured red represent the 
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copper traces and pads on the top signal layer, while sections coloured blue refer 

to those on the bottom signal layer. The internal ground and power planes are 

not shown. The Raspberry Pi compute module is mounted on the centre of the 

PCB to facilitate connection of other components. The GNSS receiver can be 

found on top left of the PCB, shared with a CR1210 battery holder, allowing 

preservation of configuration and satellite orbit information when the system is 

powered off. The battery backup is also connected to the Real-time Clock (RTC) to 

maintain system time and date. The V2X communication module and cellular 

modem can be found on the left-middle and left-bottom of the PCB, respectively.  

The antennas from the GNSS receiver, V2X module, and cellular module are 

located on the left edge of the device using SMA male connectors, with traces 

matched to 50 Ohm impedance as specified in product documentation. 

The lower edge of the PCB hosts the micro-SIM card slot for the cellular module, 

the two SD card slots for operating system and additional storage, and the DB9 

CAN bus connector for interfacing with vehicle internal networks. The right edge 

contains two USB-A connectors, Ethernet port, and a micro-USB port for 

powering the OBU. Finally, the HDMI connector can be found on the top edge for 

digital video output. 

Due to the amount of USB devices and ports required, a LAN9514 USB Hub and 

Ethernet Controller chip was used to extend the single USB port on the 

Raspberry Pi Compute Module to four downstream USB ports. Two are used 

internally for the V2X and Cellular module, and two are made available for 

external devices. This chip also supports Ethernet and makes it available as 

another USB device to the system [118]. 

A pair of prototype circuit boards were assembled by hand, shown in Figure 12, 

using stencils and reflow oven to achieve a reliable solder connection. The official 

Debian Linux-based operating system was loaded to the SD card, and the system 

was able to boot without complications, although additional drivers and software 
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packages were needed to enable the functionality of the multitude of on-board 

peripherals. Each major component was then individually tested to ensure their 

functionality, which all appeared to be operational. 

 

Figure 11: All-in-one OBU Circuit Design 

 

Figure 12: All-in-one OBU assembled PCB. 

3.6. Modular OBU 

While the all-in-one design proved to be fully functional and was used in the real-

world preliminary outdoor experiment which will be discussed in the next 

chapter, the progress of the CoDRIVE project soon dictated additional sensors 

and components to be included, such as the IMU modules and RFID transceiver. 
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A new design iteration was decided upon, taking into consideration aspects of 

modularity and upgradability instead of simply adding the new components to 

the existing circuit board, in order to future-proof the device and facilitate more 

straightforward updates and modifications. An analysis of existing standards for 

compact and modular computer form factors were conducted. Miniature 

computer motherboards standards exist such as Mini, Nano, and Pico-ITX form 

factors, with dimensions as small as 75mm x 45mm. However, their expansion 

options are limited, often providing only a single slot, if at all. Another miniature 

PC form factor known as PC/104 was investigated, which appears to better suit 

the modularity and upgradability requirements. 

PC/104 is a family of standards, devised by the PC/104 Consortium, that defines 

both form factors and connection pinouts for embedded computers. The circuit 

boards measure 90 x 96mm in size, and are designed to be stacked on top of 

each other. Layers are interconnected via a 104-pin header on one side of the 

circuit board and secured by screws and standoffs on each corner [119]. This 

design offers advantages such as modularity and upgradability, compact 

footprint, and more rugged construction with better resistance to shock and 

vibration due to the additional fasteners and reduced circuit board flex, making it 

ideal for vehicular environments. With this form factor, the new OBU hardware 

can be easily upgraded via additional circuit board layers, allowing it to remain 

relevant and adaptable to emerging technologies and use-cases. 

With the aforementioned advantages in mind, the second revision of the OBU is 

designed in accordance with the electrical and physical dimensions of PC/104 

format. The new revision consists of three stackable layers, each with a particular 

function in mind.  

The bottom layer handles computation, and contains the hardware of the 

embedded computer itself, including the Raspberry Pi Compute Module, Real-
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time Clock, power supply circuits, SD card slots, Ethernet port, USB port, and 

HDMI video output. 

The middle layer handles communication, and contains the V2X transceiver, 

cellular module, their respective antenna connectors, micro-SIM card slot, CAN 

Bus transceiver and controller, as well as an additional USB port. 

The top layer is responsible for positioning, and contains the newly added IMU 

modules and RFID transceiver, the GNSS receiver, and the respective antennas. 

Numerous quality-of-life upgrades were also introduced, such as removal of 

unused parts, USB-C power connector instead of Micro-USB, and a new barrel-

jack power connector for a sturdier power connection. 

By splitting the system into three functionally distinct layers, the footprint of the 

OBU is approximately reduced by half compared to the previous iteration, and 

the platform is now easily upgradable by adding or replacing circuit boards on 

the stack. The individual layers and the complete stack are shown in Figure 13. A 

summary of hardware specifications is listed in Table 2. 
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Figure 13: The PC/104 OBU 
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Table 2: OBU Specification 

Component Model Specification 

Processor ARM Cortex A53 Quad-core 1.2GHz 

DSRC Transceiver u-blox THEO-P173 

IEEE 802.11p 
-97dBm RX sensitivity 

+25 dBm TX power 
Up to 54 Mbps data rate 

GNSS Receiver u-blox NEO-M8T 
2.5cm CEP with RTK 

5Hz update rate 
All major constellations 

Cellular modem Quectel EC20 
LTE/CDMA/EDGE/GSM 

Up to 100Mbps download 
50Mbps upload 

Wi-Fi / Bluetooth Realtek RTL8723BS 
IEEE 802.11 b/g/n 

Bluetooth 2.1/3.0/4.0 + EDR 

CAN Bus Transceiver MCP2515 
CAN V2.0B at 1Mb/s 

High Speed SPI Interface 

IMU 
ADIS16488 
ADIS16460 

Tactical Grade 10 DoF 

RFID ThingMagic M6E 
EPC Global Gen 2 Tags Read/Write 

Up to 27dBm output power 
Up to 200 tags/sec reading 

3.7. Initialisation Procedures 

Upon power-up, the On-Board Unit (OBU) executes an initialisation script to set 

up the various modules, making them ready for use. First, the system clock is 

synchronised to the date and time from the GNSS receiver, ensuring that the 

timestamps of the data and logs collected during the experiments are accurate. 

This is followed by the execution of a shell script to clean up data and temporary 

files from previous experiments, ensuring a clean environment for the new 

setup. Subsequently, the GNSS receiver is initialised to provide raw measurement 

data while observing all major constellations, including GPS, GLONASS, BeiDou, 

and Galileo. 
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To establish a data connection, the user employs a Point-to-Point Protocol (PPP) 

through the ttyUSB3 interface. Following this, power is supplied to the EC20 

cellular module by executing the ec20_poweron script. The system’s routing 

table is updated to allow data to flow through the PPP interface, and connectivity 

is verified by pinging Google’s DNS server at 8.8.8.8. A keep-alive script 

periodically checks to ensure the connection remains active and attempts to 

reconnect if the cellular data connection is interrupted. 

Subsequently, RTKLIB is set up using a predefined configuration file, establishing 

the RTK correction data stream and the required data path for the experiments. 

The data logging for the Inertial Measurement Unit (IMU) is then initiated to 

provide a source of data for dead reckoning applications. Lastly, the DSRC 

transceiver is activated, and data transmission commences. 

This detailed initialisation process ensures that all the necessary modules and 

components of the OBU are properly configured and ready for data collection 

and transmission during the experiments, which is critical for the success and 

integrity of the experimental results. 
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Chapter 4:  Essential Tools and Metrics 

With the completion of the OBU hardware platform design, multiple outdoor 

experiments were planned in order to verify its functionality and to assess the 

performance of V2V communication in real-world conditions. This chapter 

introduces the software packages and digital tools that were utilised for data 

processing, visualisation, and analysis, as well as outlining a selection of Key 

Performance Indicators (KPI) which serve as the metrics to gauge the 

performance of the system in a quantifiable manner. By doing so, this chapter 

provides an overview of the concepts which will be essential for the discussions 

in later chapters of this thesis. 

4.1. Software Packages and Services 

This project makes extensive use of Free and Open-Source Software (FOSS) 

packages and services during the development of the OBU hardware and the 

subsequent experiments, including data gathering, processing, visualisation, and 

creation and training of machine learning models.  

This section provides an overview of the key software components and services 

used in this project. The benefits of these FOSS selections include not just cost-

effectiveness, but also the flexibility and customisability to adapt to project-

specific needs, as well as comprehensive community support during 

development and troubleshooting. These elements greatly helped in optimising 

the project's resources and the realisation of its objectives in an efficient manner. 

4.1.1. Python 

Python is a popular general-purpose programming language, known for its 

comprehensive standard library, uncluttered syntax, and a design philosophy that 

emphasises readability and simplicity.  
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Python is often used for general-purpose scripting, network programming, data 

analysis, machine learning modelling, scientific computing, and more due to its 

versatility and gentle learning curve [120]. Its popularity has resulted in an 

expansive community and the development of a comprehensive collection of 

high-quality third-party libraries. 

Python is used inside the OBU for configuring various sensors and 

communication modules on start-up, as well as reading and logging their output 

to onboard storage. The devices include the DSRC Transceiver, GNSS receiver, 

cellular modem, and IMU. 

NumPy and Matplotlib are also used for data processing and visualisation after 

the experiments. They are two important libraries in the Python ecosystem. 

NumPy, short for Numerical Python, provides support for large, multi-

dimensional arrays and matrices, along with a collection of mathematical 

functions, serving as the backbone for numerical computations in Python [121]. 

Matplotlib is a plotting library that generates a static, animated, and interactive 

plots in a highly customisable manner [122].  

When used together, NumPy's numerical capabilities and Matplotlib's 

visualisation tools form a powerful basis to manipulate, analyse, and visualise 

large datasets efficiently, and they play a significant role in machine learning and 

scientific computing using Python. 

4.1.2. QGIS 

QGIS is a free and open-source geographic information system (GIS) application 

that facilitates viewing, editing, and analysis of geospatial data. QGIS supports a 

wide variety of vector, raster, and database formats as well as map composition 

and georeferencing, making it a comprehensive tool for managing and analysing 

geographical data [123].  
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Compared to paid and proprietary software such as ArcGIS, QGIS allows free and 

open access to a comprehensive suite of GIS tools without the financial burden 

of licenses, in addition to the robust support and regular updates from the 

community. As a result, QGIS is used in a wide range of geospatial applications 

and studies, from ecosystems modelling and traffic simulation [124] [125], to 

usage in governmental institutions such as US National Security Agency (NSA) 

[126] and Land Information New Zealand [127]. 

QGIS is used in this project to provide visualisation of GNSS trajectories, 

categorical data, and magnitude of variables of the data collected from the 

outdoor experiments. 

4.1.3. OpenStreetMap 

OpenStreetMap is a free and open-source project committed to generating a 

comprehensive, freely accessible, and editable map of the world, involving a 

diverse community of contributors who gather data through means such as 

manual surveys, GPS devices, aerial imagery, and other freely available sources. It 

operates on a premise similar to Wikipedia, allowing users globally to contribute 

and amend the map database. 

Unlike its commercial counterparts, OpenStreetMap operates under the Open 

Database License, eliminating the usual restrictions associated with proprietary 

mapping services. This allows individuals and organisations to use its data in 

innovative ways without the constraints of licensing fees or usage limitations, 

and ensures geospatial information is not only limited to those who can afford it, 

making it a valuable resource for non-profit organisations and researchers alike. 

The community can also continuously update and refine the data, ensuring its 

timeliness and accuracy, especially in rapidly changing environments such as 

during natural disasters [128]. The data from OpenStreetMap has been utilised in 

commercial mapping and navigation services such as Facebook Map and Apple 
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Maps [129] [130], and many corporate sources and government agencies have 

also made notable contributions back to the map database [131]. 

OpenStreetMap also forms the cornerstone of a large portion of geospatial 

research studies, where the open-source mapping data is used in many different 

topics, such as humanitarian mapping [132], Machine Learning training [133], 

socio-economic mapping [134], and autonomous vehicle navigation [135]. 

In this project, OpenStreetMap is used extensively during route planning, 

distance measurement, as well as the overlay for visualisation of GNSS 

trajectories and related data inside QGIS. 

4.1.4. RTKLIB 

RTKLIB is an open-source software package dedicated to GNSS positioning 

processing. It provides a powerful suite of applications for single-point and 

differential positioning (DGPS/DGNSS), Precise Point Positioning (PPP), and Real-

time kinematic positioning (RTK), offering accuracy up to centimetres or 

millimetres with suitable equipment under appropriate conditions [136]. Tools 

for data conversion, visualisation, and post-processing analysis are also included, 

both in command-line and graphical user interfaces. 

RTKLib has been extensively used in studies to provide high-accuracy positioning 

output using its RTK or PPP capabilities. Examples include achieving centimetre-

accuracy using low-cost GNSS receiver in UAV applications [137], precise 

positioning in real-time embedded systems [138], and improving smartphone 

localization accuracy [139]. 

In this project, RTKLIB is used to perform real-time RTK processing during the 

outdoor experiments by combining the raw measurement data from the GNSS 

receiver with the correction data stream received from either cellular network or 

DSRC communication to improve the positioning accuracy. The highly 
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customisable nature of the software allows the configuration to be fine-tuned to 

the specific setup for the equipment and environments during the tests. 

4.1.5. Weka 

Weka is a free and open-source software suite developed at the University of 

Waikato, New Zealand. It contains a comprehensive collection of tools suitable 

for tasks involving machine learning, data analysis, and data mining, such as 

preprocessing, clustering, classification, regression, visualisation, and feature 

selection [140]. 

The tools are presented in intuitive graphical user interfaces, and are designed to 

work seamlessly with one another, allowing users to conduct complex analytical 

tasks on a cohesive and integrated platform from start to finish. As a result, Weka 

is used extensively in teaching and research, and enjoys a broad user base from 

beginners to seasoned academic researchers, and is used in a wide range of 

applications such as data mining [141], medical classification [142], and ML 

model training. 

In this project, Weka is used to visualise collected data from the V2V 

communication module during the outdoor experiments to identify trends and 

correlations between related parameters. It is also used to pre-process and 

perform machine learning experiments with the relational data, with different 

algorithms, training parameters, selected features, and verification methods, in 

an attempt to explore the possibilities of using machine learning models to 

predict and prevent communication interruptions in V2V communication. 

4.2. Key Performance Indicators 

Key Performance Indicators (KPIs) serve as quantifiable measurements that 

assess the performance of a system during its testing phase, allowing 

ascertainment of whether the system is meeting the predetermined objectives 

and requirements, as well as to identify areas of improvement or optimisation 
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[97]. In the scope of this project, a selection of specific KPIs has been identified 

to evaluate the OBU's performance. 

4.2.1. Received Signal Strength Indicator (RSSI) 

In the context of telecommunications, the Received Signal Strength Indicator 

(RSSI) serves as a vital metric for measuring the power level received by a 

wireless radio. A higher RSSI value typically corresponds to a stronger received 

signal, and thus a higher likelihood of successful communication between two 

radio units [143]. 

Although the relationship between the value of RSSI and specific physical 

parameters is not universally standardised, most manufacturers opt to represent 

the RSSI value in terms of power level measured in milliwatts (mW), or decibels 

referenced to one milliwatt (dBm), as is the case for the V2V transceiver utilised 

in this project. 

The decibel-milliwatt (dBm or dBmW) is a unit of measurement that expresses 

power levels in decibels (dB) relative to a single milliwatt (mW). Given its 

logarithmic properties, dBm efficiently represents values spanning a wide range 

in a compact format, and therefore is the preferred unit for quantifying absolute 

power in various communication networks, including radio, microwave, and 

fiber-optic systems. The logarithmic nature of the dBm scale means that a power 

level of 0 dBm corresponds to a power of 1 mW, and a change of 3 dBm 

approximately doubles or halves the power level. 

The uBlox P173 V2V communication module has maximum transmit power of 23 

dBm, which is approximately 200 mW, and a minimum receiving sensitivity of -97 

dBm, as it is the weakest signal it can successfully decode [42]. RSSI can also be 

affected by external factors such as quality of antenna, quality and length of 

cabling, antenna trace on the printed circuit board, and interference with other 

signals in the environment. To improve RSSI, a high-quality antenna, short and 

low-loss antenna cables, impedance-matched PCB trace, and ground shielding, 
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and a more sensitive receiver itself can be utilised. These measures can 

contribute to improved communication reliability, reduced transmission errors, 

and an overall more robust communication system. 

4.2.2. Signal-to-Noise Ratio 

The signal-to-noise ratio (SNR) measures the relationship between the power of 

a desired signal and the power of background noise. SNR is defined as the ratio 

of signal power to noise power. A ratio higher than 1 indicates that there is more 

signal than noise. 

A high SNR indicates that the desired signal is clear, distinct, and readily 

detectable or interpretable. Conversely, a low SNR suggests that the signal is 

corrupted or obscured by noise, making it difficult to differentiate or recover. SNR 

can be improved by increasing transmission power, reducing the noise level, 

filtering out unwanted noise, or implementing error correction techniques. In 

this project, the V2V transceiver reports both the received signal power and 

received noise power in dBm. Consequently, the SNR can be easily computed by 

subtracting the noise power from the signal power. 

In [144], Wang et al. examined the impact of communication system and 

environmental variables on spectrum efficiency and data rate within a DSRC and 

Wi-Fi shared spectrum environment. Their analysis highlighted that SNR and 

DSRC node density are critical factors affecting the communication 

performances. 

4.2.3. Packet Error Rate (PER) 

Packet Error Rate (PER) is another important parameter in evaluating the 

performance and reliability of wireless communication systems. It represents the 

ratio between the number of transmitted packets that are either missed or 

contain errors, and the total number of transmitted packets. 
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Each DSRC message packet contains a unique sequence number that increments 

linearly with each successive transmission. By examining the received sequence 

numbers at the receiving end, it is possible to identify missing or out-of-order 

packets, which can then be used to calculate the PER. In [145], M. Shi et al. found 

that a higher PER indicates a less reliable and effective wireless link, potentially 

affecting the quality and reliability of the transmitted information. 

A variety of factors can contribute to packet errors in wireless communication 

systems, including signal attenuation due to distance, interference from other 

radio signals, multipath propagation interference, and fading effects caused by 

changes in the environment or the relative positions of the transmitting and 

receiving devices. In V2V communication, these factors can be exacerbated by 

the dynamic nature of vehicular environments, where vehicles are constantly in 

motion and potentially experiencing rapidly changing communication conditions. 

The impact of PER on V2V communication performance can be significant. High 

PERs may lead to increased latency, reduced throughput, and a greater likelihood 

of communication failures, which can undermine the safety and efficiency 

benefits provided by V2V communication systems. 

4.2.4. Packet Reception Rate (PRR) / Communication Range 

Similar to PER, Packet Reception Rate (PRR) is defined as the ratio of successfully 

received packets to the total number of transmitted packets, which can be 

expressed as PRR = 1 - PER. 

PRR is a valuable tool for determining the effective communication range 

between two transceivers in a V2V communication system, as it defines the 

maximum distance over which reliable communication can be maintained. As the 

distance between the transmitter and receiver increases, the signal strength 

diminishes, resulting in a higher likelihood of packet errors and a decrease in 

PRR. 
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The maximum communication range is typically considered to be reached when 

the PRR drops below a specified threshold, as a lower PRR could increase the 

likelihood of communication failures, which would undermine the safety and 

efficiency benefits provided by V2V systems. The choice of an appropriate 

threshold may depend on the specific application requirements and the desired 

balance between communication range, available alternative channels, cost of 

operation, and reliability.  

In practical scenarios, the PRR threshold is often set between 90% to 99%, 

depending on the type of the payload, where safety critical messages have a 

higher threshold [97] [146]. 

4.2.5. Interpacket Gap (IPG) 

IPG is defined as the time interval, typically measured in milliseconds, between 

the reception of two consecutive packets at the receiving end of the 

communication system. It provides valuable insights into the performance and 

reliability of the wireless communication link.  

In DSRC communication, the transmitter typically broadcasts messages at a 

regular interval, maintaining a constant flow of information between vehicles. 

When the communication link is functioning optimally, the IPG remains relatively 

stable. However, when a packet is lost or delayed due to interference or lost 

signal, the IPG at the receiver increases, indicating deteriorating communication 

conditions, which could eventually lead to communication failures or reduced 

performance. 

In [97], Jeong et al. pointed out that IPG is correlated to the PRR indicator, and in 

their real-world test the IPG remained around 100ms until the space between 

the test vehicles exceeds the maximum communication distance, where the IPG 

increases rapidly to over 1000ms. Therefore, the authors deemed IPG an 

important metric in evaluating the performance of a wireless communication 

system. 
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By monitoring IPG performance, the transceivers can identify potential issues 

and take appropriate measures to optimise the communication link or mitigate 

the effects of interference and other adverse factors. 
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Chapter 5:  Preliminary Test at Wollaton Park 

Following the completion of the first OBU hardware prototype, a preliminary 

outdoor experiment was planned and carried out at a local park (Wollaton Park) 

with wide open outdoor spaces, to validate the functionality and observe the 

performance of the device. This chapter covers the test objectives, plan, 

procedures, data visualisation and analysis, and a discussion of the outcome of 

the experiment. 

5.1. Test Objectives 

The primary objectives of this real-world experiment included assessing the 

functionality of the key components, such as the processor, the DSRC 

communication module, and the GNSS receiver module, as well as determining 

the communication range, stability, and reliability of the entire system under 

near-ideal conditions. By comparing the performance parameters obtained 

during the test with the values claimed in the respective datasheets, the 

experiment aims to establish a baseline for the system's performance in an 

environment characterised by line-of-sight communication and minimal 

obstructions. This initial assessment will not only provide valuable insights into 

the effectiveness of the hardware prototype but also lay the foundation for 

further experiments and refinements in the development of a robust V2V 

communication system. 

5.2. Test Plan and Procedures 

A test plan and set of procedures were devised to evaluate the performance of 

the newly assembled OBU. The experiment utilised two identical prototype 

devices, one configured as a transmitter and the other as a receiver. The 

transmitter was mounted at a fixed location, remaining stationary throughout the 

test. The receiver was mobile, allowing for free movement relative to the 

transmitter. Each OBU was equipped with two manufacturer-recommended 

omnidirectional 5.9GHz DSRC rod antennas. 
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Operating at its maximum output power of 23dBm, the transmitter broadcast 

DSRC messages with both antennas set to transmit mode. The receiver, in turn, 

listened for the DSRC broadcasts, with both its antennas set to receive mode. 

This configuration aimed to maximise the potential for optimal signal reception 

and transmission. 

The test starts with the transmitter and the receiver next to each other in close 

proximity. Once the DSRC link is confirmed, the receiver is gradually moved away 

from the transmitter in a straight line. The GNSS receiver onboard the receiver, 

operating in an unassisted standard mode without the aid of RTK or satellite-

based augmentation systems, recorded its coordinates. Concurrently, the KPIs 

were logged for subsequent processing and analysis. Both GNSS and KPI data 

were logged at a rate of 1Hz. The test continued until the receiver could no 

longer detect any signal from the transmitter. Once the DSRC wireless link is lost, 

the receiver begins the return trip to the transmitter along the same route, until 

it reaches the starting point. The gathered data is processed, visualised, and 

discussed in the next section. 

Photos of the test environment are shown in Figure 14. 

 

Figure 14: Wollaton Park test environment 
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5.3. Dataset Visualisation and Analysis 

This section presents a detailed analysis and visualisation of the data gathered 

from both outwards and return trip of the outdoor experiment.  

For the outwards portion of the experiment, Figure 15 provides a map overlay of 

the GNSS positioning data, with colours representing the received signal power 

levels in dBm. Figure 16 to Figure 18 show scatter plots of the received power 

level, noise level, and signal-to-noise ratio for both Antennas A and B in dBm, 

against the distance between the transmitter and receiver in meters. These 

figures also include a red line that shows the running average of the latest 10 

consecutive data points, providing a visual aid for understanding the average 

trends in the data. The statistics of the collected data are shown in Table 3, 

including mean, median, max, min, range and standard deviation of all attributes. 

 

Figure 15 : Visualisation of Test Route 

 

Figure 16: Received Power Level, Outward Trip. 
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Figure 17: Received Noise Level, Outward Trip. 

 

Figure 18: Signal-to-Noise Ratio, Outward Trip. 

Table 3: Outward Trip Statistics 

 
Power (dBm) Noise (dBm) SNR 

ANT A ANT B ANT A ANT B ANT A ANT B 

Mean -75 -81 -104 -101 30 21 

Median -78 -82 -101 -101 23 19 

Max -31 -37 -95 -95 91 85 

Min -96 -98 -125 -122 5 -2 

Range 65 61 30 27 86 87 

SD 12.51 9.51 6.48 4.34 18.27 13.10 

 

It can be observed that as the distance between the transmitter and receiver 

increases, the received power decreases proportionally, with the communication 
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interruption occurring at around -95 dBm. The maximum communication 

distance in this experiment appears to be around 890 meters. 

The received noise power level appears to increase with distance, demonstrating 

a trend similar to logarithmic growth. This trend plateaus at around -101 dBm for 

the majority of the distance, with a sharp increase to around -95 dBm just before 

communication disruption. At this point, the received power level and the noise 

level are almost the same, leading to an SNR close to 1, indicating that the useful 

signal is being overwhelmed by noise. 

Evaluating the performance of the two antennas, it appears that Antenna A 

presents a higher average received power level and a lower noise level compared 

to antenna B, resulting in a higher average signal-to-noise ratio. However, the 

range between the maximum and minimum values appears to be similar for both 

antennas. 

Antenna B's statistics demonstrate less variance and standard deviation 

compared to Antenna A, indicating a tighter clustering around the mean value. 

This can be observed in the plots where the received power level, noise level, 

and SNR for Antenna B exhibit a more rapid decline and stabilisation compared 

to Antenna A with increasing distance. 

Similar analyses are performed on the data collected during the return trip of this 

experiment. The received power levels, noise levels, and the signal-to-noise ratio 

for both Antenna A and B in dBm are charted against distance between the 

transmitter and receiver in meters in Figure 19 to Figure 21, with the red line 

indicating a 10-element running window average. The plots use the same x and y 

axis scales as the outward trip. The statistics are presented in Table 4. 
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Figure 19: Received Power Level, Return Trip. 

 

Figure 20: Received Noise level, Return Trip. 

 

Figure 21: Signal-to-Noise Ratio, Return Trip. 
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Table 4: Return Trip Statistics 

 
Power (dBm) Noise (dBm) SNR 

ANT A ANT B ANT A ANT B ANT A ANT B 

Mean -83 -89 -101 -101 18 12 

Median -84 -90 -101 -101 17 10 

Max -55 -61 -95 -98 64 52 

Min -97 -100 -119 -113 1 -2 

Range 42 39 24 15 63 54 

SD 8.65 7.12 3.41 2.15 11.08 8.20 

 

The patterns observed during the return trip largely echo those seen during the 

outward trip. The received power level decreases as the distance between the 

transmitter and receiver increases. Similarly, the received noise level on both 

antennas increases with distance, resembling a logarithmic growth, and 

eventually stabilises around -101 dBm. Antenna A continues to outperform 

Antenna B in terms of higher average received power levels and lower noise 

levels, resulting in a superior average signal-to-noise ratio overall. Data from 

Antenna B still demonstrates less variance and standard deviation compared to 

Antenna A, and clusters more closely around its mean value, although this 

difference is less distinct than it was on the outward trip. 

However, some differences can be observed when compared to the outward trip. 

Most notably, the overall average received power level is lower compared to the 

outward trip, at about 8 dBm less. Additionally, the noise level seems to be 

higher when the transmitter and receiver are relatively close, approximately less 

than 200 meters apart. As a consequence, the overall signal-to-noise ratio is 

approximately 8 units lower. 

Several potential factors could be responsible for the discrepancy observed in the 

average received power between the outward and return trip. One possible 

factor could be the orientation of the antenna. The employed omnidirectional 

antenna is designed to distribute radio power equally in all directions orthogonal 

to the antenna axis. However, any deviation from the optimal position, such as 
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tilting or off-axis movements, could impact the amount of signal the antenna can 

receive [147]. If the antenna orientation was not maintained consistently during 

the return trip, it could have contributed to a lower average received power. 

Another plausible explanation may be the obstruction caused by the human 

body, given that the unit was handheld during the test. Human bodies, 

composed predominantly of water, can absorb radio frequency waves, thus 

acting as a barrier that weakens the signal strength reaching the antenna. 

The influence of the surrounding environment and terrain is another factor to 

consider. The physical landscape can affect the propagation of radio waves, 

leading to reflection, refraction, or diffraction off various obstacles. The interplay 

of these multiple signal paths can lead to either constructive or destructive 

interference, thereby affecting the strength of the received signal. 

5.4. Summary  

This preliminary outdoor evaluation signifies a milestone in the assessment of 

the newly developed OBU hardware prototype. The primary objective of this 

experiment was to confirm the functionality of the hardware and evaluate the 

performance of components including the embedded processor, which is 

responsible for controlling the overall system, the GNSS receiver, responsible for 

receiving and processing satellite signals to determine precise location 

information, and the V2V module, which handles the transmission and reception 

of DSRC communication. 

The experiment demonstrates that the hardware design is not only functional, 

but also capable of operating in a stable and reliable manner. The data collected 

during the experiment indicates that a maximum communication range close to 

900 meters can be achieved under close-to-ideal conditions. Furthermore, it was 

observed that the two antennas exhibited slight differences in their performance, 

and the received signal power level are likely to be sensitive to antenna 

placement, orientation, and environmental obstructions. 
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The information and insights derived from this experiment offer valuable 

understanding of how DSRC technology performs in real-life environments, and it 

will be instrumental in guiding the planning and execution of future testing 

phases.  
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Chapter 6:  Multi-Vehicle Road Test 

Upon the satisfactory conclusion of the preliminary test outlined in the previous 

chapter, a new and more extensive outdoor experiment was soon set in motion, 

with the objectives closely aligning with the primary goal of this thesis of 

evaluating the real-world performance of V2V communications. 

This upcoming experiment was designed to be considerably more comprehensive 

than its predecessor, featuring real-world driving scenarios with multiple road-

legal vehicles navigating public roadways under a diverse range of traffic 

conditions, road environments, and vehicular speeds. 

This chapter covers the details of the objectives of this experiment, the planning 

process, the implemented procedures, and the parameters of the data collected. 

It further explores the methods employed for data visualisation and analysis, and 

discusses observations made during the experiment. 

6.1. Test Objectives 

The primary aim of this experiment is to thoroughly assess the performance of 

the OBU under realistic conditions, specifically, on public roads with real vehicles. 

To achieve a comprehensive evaluation, several objectives have been identified 

and are outlined as follows: 

• Careful planning of a test route with longer distance and diverse 

environments, using road-legal vehicles under various traffic situations 

and road conditions at different speeds. 

• Organising the logistics of the experiment, including the selection of 

suitable vehicles for the test, coordinating with team members to 

determine an appropriate date for the experiment, and the development 

of safety protocols to ensure that the experiment is conducted in a safe 

manner. 
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• Collecting KPI data from the V2V communication module. This data will 

provide valuable insights into the functionality and reliability of the OBU 

hardware in operation. 

• Transmit and receive DSRC data at a higher frequency to mirror real-world 

application conditions more closely. 

• Transmission of GNSS correction data stream as payload via DSRC. This is 

intended to enhance the positioning accuracy of the vehicle that is 

receiving the DSRC data. This is particularly advantageous for vehicles 

that are not equipped to receive the GNSS correction data stream 

directly, presenting a practical and innovative use of DSRC. 

• Gathering data on the cellular environment along the test route. The data 

will help in understanding the potential C-V2X communication as an 

alternative to DSRC. 

• Processing, visualisation, and analysis of the collected data, a detailed 

discussion of the results, and a summary of the outcomes of the 

experiment. 

The objectives outlined here are designed to ensure the smooth and successful 

execution of the new outdoor experiment. By providing clear guidance and 

defining the target outcomes, a robust assessment of OBU's performance under 

real-world driving conditions can be expected to be achieved. 

6.2. Test Plan and Procedures 

A detailed test plan was formulated in order to cover each objective in a 

thorough and comprehensive manner. This section provides a description of 

different aspects of the plan and procedures involved in the execution of the 

experiment. 

6.2.1. Route Planning 

Given the primary objective of evaluating OBU performance under real-world 

circumstances, it is crucial to select an appropriate test route featuring a variety 
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of road types and driving conditions representative of typical road environments 

in UK. 

Considering the points above, as well as time and personnel requirements, a test 

route approximately 30 miles in length was proposed. The route forms a 

counterclockwise loop, beginning and ending at the same location, and should 

take around 2 hours to complete in moderate traffic.  

The test commences from the village of Plumtree in Nottinghamshire, UK. The 

vehicles start by travelling northwest following the A606, then continues on the 

A52 dual carriageway, leading into the city of Nottingham. The route traverses 

westward through the residential area of Wollaton, then heads north via the 

A6002 to the town of Bulwell. This is the halfway point of the test route, and a 

short break can be taken if needed. The return journey takes the vehicles back 

along the A6002, although this time through additional residential areas of 

Wollaton Vale. The final stretch of the route travels through the town of Beeston 

before merging back onto the A52 and returning to Plumtree. A visualisation of 

the proposed route is shown on Figure 22, coloured according to the speed limit. 

This test route features a diverse blend of typical road types and driving 

environments in UK, including dual carriageways with a speed limit of 70MPH, 

single carriageways with speed limits from 40 to 60 MPH, city streets with 

30MPH limit, and residential streets with 20MPH speed limit, optimising the 

opportunity of obtaining insightful and valid data on the performance of the OBU 

in a real-world context. 
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Figure 22: Proposed Test Route 

6.2.2. Vehicles and Equipment 

Two road-legal vehicles will take part in this experiment by traveling along the 

predetermined route in a normal manner, obeying the speed limit as well as all 

other traffic rules, while carrying the necessary equipment. One vehicle will 

always stay in front, hereby referred to as the "leading vehicle", and the other 

vehicle will always be following behind, hereby referred to as "following vehicle". 

The leading vehicle's equipment includes an OBU configured as a transmitter for 

V2V communication, a Leica GS10 RTK GNSS receiver serving as the reference for 

GNSS positioning, and a laptop containing software for the purposes of device 

initialisation and data collection. A number of accessories were also included, 

such as a power inverter, backup battery pack, and a dash-mounted front-facing 

camera for a video record of the experiment's duration. 
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The OBU and Leica receiver's GNSS antennas are installed at the centre of the 

leading vehicle's roof, maintaining an approximate separation of 40 centimetres 

from one another. Moreover, the OBU is situated on the parcel shelf at the rear 

of the vehicle, employing the manufacturer-provided 5.9GHz DSRC antenna. The 

DSRC module is configured to operate at its maximum transmission power of 

23dBm, using both antennas for broadcasting. 

Similarly, the following vehicle is also equipped with an OBU, functioning as the 

receiver, a Leica GS10 GNSS reference receiver, and a laptop for device 

initialisation and data collection, as well as similar supporting accessories. The 

GNSS antennas are also mounted in a similar fashion on the roof of the following 

vehicle. However, the OBU and its DSRC antennas are positioned on the 

dashboard of the vehicle, and the two antennas on the DSRC module are both 

configured for signal reception to ensure optimal signal quality. 

Beyond V2V communication, each OBU is also equipped with an active cellular 

data connection with the same service provider, EE. This allows real-time GNSS 

correction data stream to be fetched from the internet, as well as logging a range 

of cellular environment parameters for later examination of the feasibility of 

Cellular V2V as a potential alternative to radio based V2V communications. 

Photos of the equipment setup during the experiment are shown in Figure 23. 
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Figure 23: Road trial equipment setup 

6.2.3. Logistics and Safety 

As this experiment involves multiple vehicles and personnel, arranging the 

logistics plan plays an important role in ensuring the safety and efficiency during 

the test. 

In preparation for this experiment, the detailed test plan was formulated in 

advance and disseminated to all involved parties. A meeting was scheduled to 

update all team members with the test objectives, route, equipment operation, 

as well as selecting a convenient date and time. A dress rehearsal with a shorter 

test route was planned to familiarise the team members with the setup process, 

verify functionality of the equipment, as well as to identify any areas worthy of 

special attention during the main experiment. 

Additionally, a comprehensive risk assessment was undertaken to pre-emptively 

identify any potential hazards that could arise during the experiment. A 

mandatory safety briefing was also conducted before the start of the test, serving 
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to familiarise all team members with the safety protocols, and emphasize the 

importance of adhering to these guidelines at all times. 

The leading vehicle was manned by two individuals: a driver, who focused solely 

on navigating the test route, and the author, responsible for monitoring 

equipment to ensure correct operation. In contrast, the following vehicle was 

operated by a single individual, the driver. The team was also equipped with two-

way radios allowing for real-time communication and updates. 

A significant advantage of V2V communication is its potential to enhance safety, 

enabling vehicles to detect each other's presence beyond the line of sight, thus 

allowing earlier warnings and more time to react to possible hazards. However, 

as this experiment will be taking place on public roads, a high standard of safety 

must be maintained at all times, therefore the decision was made against 

executing any specific driving manoeuvres that could pose potential risks, and 

the devices have been configured to passively gather data for detailed analysis 

later. 

6.2.4. Payload Structure and Data Path 

In addition to the longer test route in a more diverse driving environment, this 

experiment also features an enhanced data transmission and logging 

methodology, integrating information from a wide range of data sources. A chain 

of data pathways was also devised, through which data is captured, processed, 

transmitted, received, and utilised. This section offers a detailed discussion of 

those topics. 

The payload of the DSRC communication is configurable, allowing flexible 

integration of various types of data as needed. For this particular test, the DSRC 

message from the leading vehicle to the following vehicle contains the following 

components: 
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• Sequence number. This is an integer that increases in a sequential 

manner with each transmitted message. It can be used to synchronise 

data between the transmitter and receiver during post-processing, as well 

as to keep track of any packets that might be delayed or lost. 

• GNSS positioning results. Including location in latitude and longitude, 

velocity in knots, heading in degrees, as well as GNSS time and date. This 

data plays a crucial role in monitoring the location and behaviour of 

nearby vehicles, as well as performing safety-related actions and 

manoeuvres. 

• Real-time GNSS correction data. This is the data stream produced from a 

nearby Continuous Operating Reference Station (CORS) obtained via 

cellular internet connection. This correction data allows compatible GNSS 

receivers to enhance positioning accuracy by minimising the impact of 

various sources of inaccuracies [148]. By broadcasting this correction data 

over V2V, it is hoped that further improvement in positioning accuracy of 

nearby vehicles can be achieved, especially in challenging road 

environments. 

The frequency of the DSRC communication is set to 10Hz, and each individual 

message carries a fixed-size payload of 2048 bytes or 2KB of data.  

The GNSS receiver is configured to observe all major satellite constellations, 

including GPS, GLONASS, BeiDou, and more. However, instead of relying on its 

built-in positioning engine, the GNSS receiver is configured to output its raw 

measurement data, containing information such as carrier phase, code phase, 

Doppler measurements, and pseudorange measurements. 

The CORS data are then sent to the STRSVR utility as part of the RTKLIB software 

suite. This splits the single data stream into two separate streams. 

One stream of the raw GNSS measurement data, along with the real-time GNSS 

correction data sourced from a nearby CORS through the cellular network via the 
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on-board cellular modem, is sent to RTKNAVI utility for real-time RTK calculation 

onboard the OBU at the same frequency as the DSRC communication. The 

resulting enhanced-accuracy location information, as well as related parameters 

such as velocity, heading, and time and date, are then sent to the DSRC 

transceiver to be included as part of the outgoing DSRC message. The other 

stream of raw GNSS measurement data is also sent directly to the DSRC receiver 

to be included in the payload. Copies of the outgoing DSRC packets are also 

archived in the onboard storage for post-experiment analysis. 

The data path for the DSRC transmitter can be seen in Figure 24. 

 

Figure 24: Data Path of DSRC Transmitter 

The GNSS receiver on the following vehicle is configured identically to that of the 

leading vehicle, observing all the major satellite constellations, and programmed 

to output raw measurement data. 

Once a DSRC message is received from the leading vehicle, the payload is 

extracted, and the GNSS correction data is provided to the RTKNAVI utility along 

with the raw GNSS measurement data stream. This allows RTK positioning with 

increased accuracy even in the absence of an active on-board internet 

connection, enhancing the positioning performance of vehicles within the 

vicinity. The positioning result, raw DSRC message contents, as well as other KPIs, 

are also saved to the on-board storage to ensure a comprehensive dataset for 

subsequent review and analysis.  

The data path for the DSRC receiver can be seen in Figure 25. 
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Figure 25: Data Path of DSRC Receiver 

The internal clocks of both OBUs are synchronised to the GNSS clock once a valid 

positioning fix has been obtained. This allows the two devices to operate on the 

same timebase, allowing valid and accurate comparison of their timestamps in 

the logged data entries. 

The Leica GS10 receivers, one in each vehicle, will also be performing RTK 

positioning during the duration of the experiment with dedicated antennas and 

cellular data connections, their positioning results will act as the reference 

against which the OBU results will be compared to. 

6.2.5. Cellular Environment 

While C-V2V communication is not the primary focus of this research, it was 

deemed appropriate and beneficial to log several performance indicators from 

the cellular module for the duration of the test, including cellular signal quality, 

service type, latency, and data transmission speed. By collecting and analysing 

these metrics, they can be used to form an initial observation regarding the 

behaviour and feasibility of C-V2V communication systems, contributing to a 

more comprehensive understanding of the different methodologies available for 

facilitating V2V communication. 

6.2.6. Data Processing and Visualisation 

A critical aspect of this experiment is the processing and effective visualisation of 

the collected data, as it allows important insights to be identified and observed, 

and further actions to be planned as a result. 
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Python is used to perform the tasks outlined in this section. Initial preprocessing 

involves performing data cleaning to identify and address missing values, faulty 

data, and outliers. This is used to establish a credible starting point before further 

analysis and processing of the data. 

Next, raw DSRC packets from both the transmitting and receiving vehicles are 

matched together based on the sequence numbers. Missing packets can be 

identified from unmatched sequence numbers. Existing KPIs such as received 

power level and background noise level will be incorporated into the dataset. 

New KPIs, including inter-packet gap, packet reception ratio, and signal-to-noise 

ratio, are calculated and added into the dataset as well. Data from certain part of 

the experiment, such as during the equipment setup and mid-point break, are 

removed so the unintended stationary period will not skew the distribution of 

related parameters. 

The data are transformed into Comma Separated Values (CSV) format, where 

each column signifies an attribute, and each row represents the values at a 

specific moment in time. This standardised format ensures data interoperability 

in different applications, and enables ease of exploration in machine learning 

experiments in a later chapter. 

Subsequent stages involve performing detailed statistical analyses on the dataset, 

as well as visualising the data using tools such as Matplotlib. Those steps aim to 

identify significant trends and correlations to ensuring accurate interpretation as 

well as the achievement of the experiment objectives. 

6.3. Test Results 

The outdoor experiment was carried out according to the test plan without 

complications thanks to the careful planning as well as the prior rehearsal. The 

acquired data was retrieved, processed, and formatted in accordance with the 

methods previously mentioned. 
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This section gives a thorough examination of the dataset by employing statistical 

analysis and visualisation techniques to explore relevant parameters. 

Additionally, notable trends and features identified are discussed and 

commented. 

6.3.1. Driving Environments 

The selected test route features a diverse blend of driving environments with 

different speed limits and road conditions. To ensure an accurate understanding 

of the OBU's performance, the data analysis will include both an overall 

assessment and examinations of three distinct driving scenarios when applicable. 

Namely: 

• Built-up Area, as defined by the UK Highway Code, with the presence of 

streetlights at regular intervals and speed limit under 30 MPH [149]. This 

scenario is characterised by the dense infrastructure such as urban 

buildings and narrow residential streets can often lead to signal multipath 

and blockages. 

• Inter-Urban. This scenario covers the roadway with a speed limit of 40 

and 50 MPH, with a blend of open spaces and moderate urban structures. 

This environment presents a mix of challenges including variable signal 

availability and occasional interference. 

• High-Speed. This scenario covers the roadway with a speed limit above 

60MPH, and is primarily found on dual carriageways and open roads with 

minimal obstructions, offering a clear view of the sky, but can be a 

challenging environment for timely and accurate positioning results. 

6.3.2. Dataset Overview 

The processed dataset consists of 21 parameters and 47983 instances of data 

points. 13912 data points, or 29% of the test route, were of Built-up areas. 29801 

data points, or 62% of the test route, were of Inter-Urban areas. 4720 data 



 Multi-Vehicle Road Test    96 

points, or 9% of the test route, were of High-Speed driving. The parameters are 

listed and described in Table 5. 

Table 5: Parameters of road trial dataset 

Parameter Name Unit Description 
Timestamp - Timestamp in HH:MM:SS 
Seqnum Integer Sequence Number 
PowerA 

dBm 
Received power and background noise 
level of antenna A and B on the OBU 

PowerB 

NoiseA 

NoiseB 

SNRA 
Integer 

Signal-to-noise ratio of antenna A and B 
on the OBU SNRB 

TX_OBU_LAT 

Decimal 
Degrees 

Latitude and longitude of OBU 
positioning result on both vehicles 

TX_OBU_LON 

RX_OBU_LAT 

RX_OBU_LON 

TX_REF_LAT 

Latitude and longitude of Leica 
reference receiver on both vehicles 

TX_REF_LON 

RX_REF_LAT 

RX_REF_LON 

TX_OBU_speed 
MPH Speed of both vehicles 

RX_OBU_speed 

Distance Meters 
Distance between two vehicles at this 

moment in time 

IPG Seconds 
Inter-packet gap between transmission 

and reception of this packet 
PER Percentage Packet Error Rate 

Road_type String One of the three driving scenarios 

IS_DROPPED Boolean 
True if this packet is not received by the 

receiver. False otherwise. 

 

6.3.3. Signal Quality  

A strong wireless signal is essential for ensuring robust and stable V2V 

communication. Unlike the previous test performed in near-ideal conditions, 

where the transmitter remained stationary and the receiver travelled in a linear 

path at a consistent speed in open-air conditions, this trial involved both the 

transmitter and receiver in motion at varying speeds, with the distance between 
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the two vehicles changing throughout the route. Moreover, the physical 

environments along the route, characterised by the presence of nearby buildings, 

foliage, curves in the road that breaks line-of-sight, and possible obstruction of 

other vehicles, may further affect the signal strength and communication range. 

This section thus aims to provide an examination of the signal quality data, the 

correlations to other parameters, and how these factors influence 

communication effectiveness under real-world conditions.  

The variations in the following distance and vehicle speed can notably influence 

signal quality, therefore it is logical to begin the investigation with these two key 

parameters. statistical analysis is shown in Table 6 and Table 7. 

Table 6: Statistics of vehicle following distance (meters) 

 All Built-up Areas Inter-Urban High-Speed 

Mean 54.89 32.99 54.99 131.43 

Median 35.26 30.72 37.27 49.07 

Max 689.20 138.36 477.29 689.20 

Min 4.52 4.52 7.42 14.6 

Range 684.68 138.84 469.87 674.60 

SD 71.03 19.74 54.23 171.44 

 

Table 7: Statistics of vehicle Speed (MPH) 

 All Built-up Areas Inter-Urban High-Speed 

Mean 22.63 17.14 23.61 36.20 

Median 24.30 20.34 27.11 45.44 

Max 72.40 31.38 53.15 72.40 

Min 0 0 0 0 

Range 72.40 31.38 53.15 72.40 

SD 15.14 10.52 14.04 23.53 

 

Over the entire test route, the two vehicles maintained an average proximity of 

55 meters, with a median distance of 35 meters. The maximum separation that 

still allowed DSRC communication was recorded at 689 meters. In built-up areas, 

the mean and median following distances were notably shorter, approximately 
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30 meters, indicative of closer spacing in low-speed environments. The maximum 

distance achieved in Built-up Areas was 138 meters. The standard deviation is 

also the lowest of all scenarios, suggesting a more consistent following distance 

in urban areas. In Inter-Urban areas, mean and median following distance saw a 

moderate increase, and a maximum distance of 477 meters was achieved. High-

Speed scenario exhibited the largest amount of vehicle separation, average 

distance, and the range of the following distance, aligning with the expectation of 

longer following distances at higher speeds for enhanced safety and response 

time.  

The vehicle speed during the experiment exhibited similar variations in different 

scenarios, spanning a wide range from stationary to 72MPH, reflecting the typical 

driving speeds in UK. The average speed overall was around 22MPH, with Built-

up Areas showing the lowest median and average speed, but also the lowest 

variation. High-speed environments demonstrated the highest mean and median 

vehicle speed and the overall top speed, with the largest amount of standard 

deviation. 

With the diverse span of vehicle speed and following distance, Figure 26 to 

Figure 28 show the scatter plots of the received power level, noise level, and 

signal-to-noise ratio for both antenna A and B in dBm, plotted against the 

distance between the transmitter and receiver in meters. The figures also include 

a red line indicating the running window average of 20 most recent data points, 

providing a visual aid for understanding the average trends in the data.  

Similar to what was observed in the preliminary experiment, as the distance 

between the transmitter and receiver increases, the received power decreases, 

with the communication interruption occurring at around -95dBm. The received 

noise level also increases with distance, demonstrating a trend similar to 

logarithmic growth, which plateaus at around -101 dBm once the distance 

between the two vehicles exceeds 150 meters. 
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Figure 26: Road trial received power level 

 

Figure 27: Road trial received noise level 

 

Figure 28: Road trial signal-to-noise ratio 

The statistics of signal quality parameters, both overall and in each driving 

environment, are shown from Table 8 to Table 11.  
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The Built-up Area showcased the most optimal signal quality among the tested 

scenarios, with the strongest average received signal power level, lowest average 

received noise level, and lowest standard deviation, resulting in a strong average 

SNR of approximately 46 with no observed communication interruptions. The 

superior performance can be attributed to slower driving speeds and closer 

vehicular proximity. 

Conversely, the inter-urban areas displayed a marginal reduction in signal quality. 

The average received power was slightly lower, with slightly higher noise levels 

and standard deviation. The average SNR was around 40, with no communication 

disruptions. 

The high-speed driving environments mirrored the inter-urban areas in terms of 

average received power (-68dBm) and SNR (around 40). However, a notable 

increase in the standard deviation was observed, indicating a greater variability 

in signal quality. This inconsistency is likely due to factors such as higher driving 

speeds, increased vehicle separation, and the intermittent presence of other 

vehicles disrupting the line of sight. Notably, this scenario was the only one to 

experience a brief communication interruption from vehicles exceeding the 

communication range. 

Comparison between the two antennas revealed trends similar to the findings in 

the preliminary test. Antenna A outperformed Antenna B across all scenarios, 

demonstrating slightly higher average received power and lower noise levels, 

yielding a marginally higher average SNR. However, the differences were less 

pronounced in this experiment compared to the earlier test. Antenna B also 

showed slightly less variance and standard deviation in its performance, 

suggesting a more stable but slightly less robust communication capability. 
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Table 8: Road trial signal quality statistics: Overall 

 
Power (dBm) Noise (dBm) SNR 

ANT A ANT B ANT A ANT B ANT A ANT B 

Mean -66 -69 -108 -107 41 38 

Median -66 -68 -107 -104 41 37 

Max -43 -47 -83 -73 81 73 

Min -98 -100 -125 -125 1 -3 

Range 55 53 42 52 80 76 

SD 9.36 9.34 6.40 6.07 14.73 14.49 

 

Table 9: Road trial signal quality statistics: Built-up Areas 

 
Power (dBm) Noise (dBm) SNR 

ANT A ANT B ANT A ANT B ANT A ANT B 

Mean -64 -66 -109 -108 46 43 

Median -64 -66 -110 -107 45 41 

Max -45 -47 -86 -73 75 73 

Min -95 -98 -125 -122 6 -2 

Range 50 51 39 49 69 75 

SD 7.16 7.36 6.11 60.4 12.14 12.51 

 

Table 10: Road trial signal quality statistics: Inter-Urban 

 
Power (dBm) Noise (dBm) SNR 

ANT A ANT B ANT A ANT B ANT A ANT B 

Mean -68 -70 -107 -106 40 36 

Median -68 -69 -104 -104 38 36 

Max -43 -50 -83 -74 81 73 

Min -97 -98 -125 -125 2 -3 

Range 54 48 42 51 79 78 

SD 9.7 9.6 6.45 6.07 15.27 14.81 
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Table 11: Road trial signal quality statistics: High-Speed 

 
Power (dBm) Noise (dBm) SNR 

ANT A ANT B ANT A ANT B ANT A ANT B 

Mean -68 -73 -108 -105 40 32 

Median -65 -71 -107 -104 43 34 

Max -46 -49 -95 -98 76 72 

Min -98 -100 -122 -122 1 0 

Range 52 51 27 24 75 72 

SD 11.01 10.22 6.16 5.11 15.91 14.28 

 

The main factor contributing to the observed signal degradation can be 

attributed to free-space path loss (FSPL), referring to the reduction in signal 

strength when it is transmitted over relatively long distances, often hundreds of 

meters or more [150]. As the signal travels through the transmission medium, 

the energy per unit area diminishes, leading to a decrease in the amount of 

energy that ultimately arrives at the receiver, and therefore the reduced signal 

strength.  

For ideal isotropic antennas that radiate energy uniformly in all directions, the 

equation for FSPL can be expressed as:  

𝐹𝑆𝑃𝐿 =
𝑃𝑡

𝑃𝑟
= (

4𝜋𝑑𝑓

𝑐
)

2

 

Where: 

• 𝑃𝑡 and 𝑃𝑟  are the transmitted and received radio power, respectively. 

• 𝑓 is the signal frequency in Hertz. 

• 𝑑 is the distance from the transmitter. 

• 𝑐 is the speed of light in vacuum. 

The formula suggests that the attenuation of the signal strength is proportional 

both to the square of the distance between the transmitter and the receiver and 

to the square of the signal's frequency. As a result, when the distance or 

frequency doubles, the signal strength experiences a four-fold loss. This inverse-
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square relationship can be observed evidently from the visualisations. The 

further the signal needs to travel and the higher the frequency it carries, the 

more significant the reduction in signal strength will result. 

The effect of FSPL can be mitigated through several strategies. One approach is to 

simply increase the transmission power, which would ensure a higher signal 

power reaching the receiver. Another approach can be enlarging the receiver 

antenna's capture area, which would capture more signal and consequently 

increase the signal strength [151]. Utilising directional antennas also serves as an 

effective solution, as they concentrate the radio energy into a tighter, more 

focused beam on the transmitter, and allow less unwanted noise and 

interference to be picked up from the receiver [152]. However, this method 

requires careful alignment of the antennas, which may add to the complexity of 

the device. 

While the overall relationship between signal quality and distance can be 

attributed through the FSPL theory, an examination of the received power level 

visualisation reveals a considerable dispersion of data points on either side of the 

red trend line, especially for distances under 200 meters. At a given distance 

between the two vehicles, a substantial variation in received power levels can be 

found, often reaching a difference of up to 30dBm. This observation indicates 

that there might be additional influences on the amount of power that ultimately 

reaches the receiver, beyond the primary effects FSPL. 

A potential explanation for this phenomenon could be the existence of reflectors 

and scatterers along the path of the radio signal, including flat-sided buildings 

and other vehicles. Such obstacles can exert a detrimental effect on signal energy 

as the original signal deflects and scatters off the objects. This results in multiple 

copies of the transmitted signal, each with random amplitude attenuation and 

phase offsets, reaching the receiving antenna at slightly differing times. These 

multipath components may combine constructively or destructively at the 
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receiver, contributing to signal distortion and leading to signal strength 

fluctuations. This fluctuation in received signal strength over short distances and 

time periods is known as small-scale fading [153]. Additionally, in 802.11-based 

wireless radios, multipath propagation often extends the time required for the 

signal's baseband component to reach the receiver, potentially resulting in signal 

smearing due to intersymbol interference (ISI), in which the energy of a symbol 

spills over into succeeding symbols [154]. 

Techniques such as antenna diversity can be employed to mitigate the errors and 

distortions induced by small-scale fading. The most prevalent approach involves 

the use of multiple antennas at the receiving end. The presence of multiple 

antennas offers the receiver multiple views of the same signal, with each 

antenna being subjected to a distinct interference environment [155]. 

Consequently, even if one antenna undergoes significant signal degradation, 

there would be a high probability that another antenna is receiving a sufficient 

signal. Taken together, such a system can facilitate a more resilient wireless 

communication link. However, it is important to note that for optimal 

functionality, a physical separation of a few wavelengths is required between 

each individual antenna. 

An additional phenomenon known as shadowing can contribute to further 

degradation of signal quality during transmission. Shadowing is characterised by 

fluctuations in the received signal power due to the presence of objects 

obstructing the propagation path between the transmitter and receiver, often 

breaking their line-of-sight (LOS) [156]. When radio waves encounter these 

obstructions, part of the signal power is absorbed and blocked, further 

attenuating the strength of the received signal. 

The extent of signal shadowing is influenced by multiple factors, including the 

frequency of the radio wave and the material composition of the intervening 

objects [157]. In general, the penetrative power of a radio wave is inversely 
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proportional to its frequency. As such, lower-frequency signals typically exhibit a 

better ability to pass through objects with minimal power loss compared to their 

higher-frequency counterparts, although at the cost of lower data rate. 

In the context of V2V communication, signal shadowing is almost inevitable due 

to elements such as blind corners, other vehicles, and foliage. Nevertheless, 

strategies can be employed to mitigate its impact, such as installing the antenna 

in an ideal location, preferably at a higher point on the vehicle's roof, can 

maximise the possibility of maintaining line of sight. This, when combined with 

other mitigation methods previously mentioned, can contribute to achieving the 

best possible signal quality and ensuring stable and reliable communication over 

wireless links. 

6.3.4. Communication Range 

Another important performance metric of the OBU is the communication range. 

Although the experiment recorded a maximum distance of data exchange of 

approximately 684 meters, it is important to note that the service quality at this 

distance is likely to be substantially degraded, with considerable packet loss, 

elevated latency, and frequent disruptions. Therefore, further examination of the 

collected data is necessary to establish a more reasonable usable communication 

range where a stable wireless connection can be consistently sustained. 

Inter-Packet Gap (IPG) and Packet Error Rate (PER) are two such parameters that 

can provide valuable insights into the functionality and stability of a wireless 

network, and can be used to determine the maximum usable range of 

communication distance between a pair of wireless transmitters and receivers 

[158]. 

Packet Error Rate is a metric that quantifies the percentage of transmitted data 

packets that are either lost or contain errors, compared to the total number of 

packets sent. The PER is calculated in this experiment by comparing the 
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sequence number of transmitted and received packets, where unmatched 

sequence numbers indicate missed packets.  

As the distance between the transmitter and receiver increases, the likelihood of 

encountering errors in packet transmission also increases, due to factors such as 

FSPL, multipath propagation, and signal shadowing. A high PER may result in 

higher latency, reduced throughput, and increased risk of communication 

failures. At some point the PER may increase to an unacceptable level, and the 

distance at which this maximum acceptable PER is reached can be considered the 

maximum reliable communication range of the wireless link. 

The threshold for PER that determines the maximum communication range is 

dependent on various factors such as the application requirements, network 

configuration, and environment. However, a common practice for 802.11-based 

wireless network is to consider a PER of less than or equal to 10% to be a usable 

range of the wireless link. At this point, the communication link can still be 

considered stable enough for many applications without requiring excessive 

retransmissions and delays. Of course, the threshold can vary depending on the 

specific needs and tolerance of the system or application. Some mission-critical 

or real-time applications might require a lower PER, sometimes at or less than 

1%, whereas others might be able to tolerate a higher PER. 

Inter-Packet Gap, referring to the time interval between the reception of two 

consecutive packets in a communication system, can also give insights into the 

communication range. A consistent IPG usually indicate normal operation, 

whereas high or fluctuating IPG values may suggest issues such as interference, 

signal loss, or potential communication failures. Similar to PER, a certain 

threshold of IPG can be set based on the system's performance requirements, 

and the distance at which this IPG is reached would give an estimate of the 

maximum communication range. 
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In this experiment, the internal real-time clock (RTC) on the OBU is synchronised 

to the GNSS time once a valid position fix has been obtained, ensuring both 

OBUs are operating on a synchronised and accurate timebase. The DSRC message 

is broadcast 10 times per second, or every 100 milliseconds. The transmission 

and reception timestamp are logged on each OBU's internal storage. These two 

timestamps are then compared to derive the IPG for that specific packet. 

The relationship between following distance and IPG and PER is shown in Figure 

29. 

 

Figure 29 : Road trial IPG and PER 

From the visualisation, it can be observed that the PER remains mostly constant 

near 0% as the distances between the two vehicles increase to approximately 

550 meters. Beyond this point the PER starts to increase rapidly, until wireless 

link between the two vehicle was lost at around 680 meters, at which point PER 

reaches and remains at 100%. The maximum usable communication distance of 

the OBU during this test, using a threshold of 10% PER, is around 571 meters, 

while using the more stringent 1% PER threshold yields the maximum usable 

distance around 484 meters. 

Similarly, the IPG remains predominantly stable at around 100 milliseconds when 

the vehicles are within a range of 400 meters of each other. As the distance 

exceeds 400 meters, a gradual increase in the IPG reaching about 110 

milliseconds can be observed. The increase in IPG becomes significantly more 
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pronounced when the distance between the vehicles extends beyond 534 

meters. Once the vehicles are approximately 680 meters apart, communication is 

completely lost, causing the IPG to exceed the y-axis scale of the graph. 

It is intuitive to observe that the IPG and PER are closely related with the 

received signal quality at the receiver end, as a weaker signal may result in 

missed packets or necessitate re-transmission due to errors in the received 

packets. The signal quality, in turn, is heavily influenced by the distance between 

the wireless transmitter and receiver as well as factors such as signal shadowing 

and multipath interference. Nonetheless, IPG and PER can serve as useful 

parameters to determine the usable communication range between two wireless 

radios, with appropriate thresholds based on specific applications. For this test, a 

usable communication distance of approximately 550 meters was established 

using a 10% PER threshold. 

This distance is notably shorter than the maximum communication range of 680 

meters achieved in this test, and substantially less than the nearly 900-meter 

range reached in the prior test conducted in Wollaton Park. The discrepancy can 

be accounted for by several contributing factors. 

First, the maximum communication range represents a state of barely functional 

connection between the transmitter and receiver, with considerable packet loss, 

high latency, and frequent interruptions, and very little chance of sustained and 

reliable data exchange. The usable range determined by the PER threshold, on 

the other hand, allows for a more stable data exchange with a reduced risk of 

errors. 

Moreover, the real-world road test introduces many imperfections in addition to 

the FSPL that contribute to signal degradation, such as previously discussed 

multipath interference and signal shadowing, as well as potential interference 

from 5GHz Wi-Fi devices operating at nearby frequencies. 
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Finally, the positioning of the antennas may have had an effect. In this 

experiment, the antennas were installed on the OBU inside the vehicles. More 

optimal positioning, such as mounting on the roof of the vehicle, may have 

noticeably improved the results by increasing the likelihood of line-of-sight 

communication. However, appropriate antenna extension cables were not 

available during the test, and there were safety concerns about the roof-

mounted antennas potentially detaching, which could have compromised the 

test results and posed a safety risk. 

6.3.5. GNSS Positioning Accuracy 

One of the major objectives of this experiment was to leverage the capability of 

DSRC to transmit and broadcast GNSS correction data to nearby vehicles. This 

would allow improved positioning accuracy even for vehicles lacking network 

connectivity of their own. The tasks involved in this objective were successfully 

executed during the experiment, and this section presents an examination of the 

collected data to evaluate its impact on the positioning accuracy. 

Highly accurate Leica GS10 receivers were installed on both the transmitting and 

receiving vehicles, and produced their own Real-Time Kinematic (RTK) 

positioning outputs, independent of the operations of the OBUs [159], and the 

positioning results from the Leica receivers serves as a reference to compare the 

results obtained from the OBUs. 

The transmitting OBU broadcasts the real-time GNSS correction data stream as 

part of the payload via DSRC. Upon reception, the correction data, along with the 

raw measurement data from the GNSS receiver, was processed through the 

RTKLIB software suite to perform real-time RTK positioning on the receiver, and 

the results were subsequently stored. 

Consequently, at the conclusion of the experiment, three sets of GNSS 

positioning data were available from the receiving vehicle: 
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• Reference result from the Leica receiver. 

• OBU single-point positioning result without any aiding. 

• OBU RTK positioning result using correction data stream obtained via 

DSRC. 

To enable valid comparison of the GNSS performance, the positioning results 

from all three sources are combined into a single dataset, synchronised by the 

timestamp. The performance of the RTK-over-DSRC on the OBU will be examined 

in three distinct driving environments along the test route, each offering unique 

challenges and conditions. 

Three GNSS solution types are encountered in the dataset: RTK Fixed, RTK Float, 

and Single. RTK Fixed solutions provides the most accurate location data by 

resolving the integer ambiguities in order to determine the exact number of 

wavelengths in the carrier phase signal from the satellite. Centimetre-level 

accuracy can be achieved with RTK Fixed solution under ideal conditions. In 

contrast, with RTK Float, the integer ambiguities have not been fully resolved, 

resulting in a less accurate position solution compared to RTK Fixed. However, 

RTK Float can still offer notable improvements compared to unaided GNSS 

solutions, and can achieve sub-meter accuracy in normal conditions [160]. 

Finally, the Single solution is the simplest form of GNSS positioning, relying on 

the raw pseudorange measurements without any form of differential correction 

or ambiguity resolution, and has the lowest level of accuracy of the three 

solution types, in the range of several meters. 

The visualisation of the GNSS solution quality is shown in Figure 30. It can be 

seen that the OBU on the following vehicle is able to utilise the GNSS correction 

data received via DSRC to perform real-time RTK for the majority of the test 

route, with either RTK Fixed or RTK Float solutions. The GNSS solution also 

reverted to Single for a brief period of time due the lack of correction data 
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stream from an interruption of DSRC communication near the end of the test 

route.  

 

Figure 30: OBU GNSS Solution Type 

A breakdown of OBU GNSS solution types over different driving scenarios is 

shown in Table 12. It can be observed that the OBU successfully achieved RTK 

solution using data transmitted over DSRC for 98.5% of the test route, with 54% 

RTK Fixed, 44% RTK float, and 1.5% single solutions. Looking deeper into each 

category, Built-up Areas with the lowest speed limit achieved 71.75% RTK Fixed 

and 28.25% RTK Float solutions. On the contrary, Inter-Urban scenario resulted in 

more RTK Float solutions compared to RTK Fixed, while high-speed driving 

environment demonstrated roughly equal amount of RTK Fixed and RTK Float 

solutions, with a small number of single solutions due to the temporary loss of 

GNSS correction data, which was the only occurrence during the entire trial. 
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Table 12: OBU GNSS Solution Types 

 Built-up Area Inter-Urban High-Speed All 

RTK Fixed 71.75% 45.32% 46.34% 54.20% 

RTK Float 28.25% 54.67% 46.24% 44.30% 

Single 0% 0% 7.60% 1.51% 

 

To further evaluate the benefit of RTK-over-DSRC in improving the positioning 

accuracy of the OBU, the geodesic distance between the reference GNSS receiver 

and the OBU RTK solutions, as well as the geodesic distance between the 

reference GNSS receiver and OBU Single solutions without any aiding, are 

calculated for each epoch and shown in Figure 31. 

 

Figure 31: OBU GNSS Performance Comparison. 

Observation of the graph reveals notable improvements in positioning accuracy 

with RTK-over-DSRC compared to unassisted single solutions under the same 

experimental conditions. The RTK solution demonstrated superior accuracy and 

reduced fluctuation and noise, which is particularly evident in the significant 

reduction in the deviation of up to 7 meters near the end of the experiment. 

Table 13 shows the statistic comparison between Single solutions and RTK-over-

DSRC over the entire test route. It can be seen that RTK significantly reduced the 

Root Mean Square Error (RMSE) by more than half, from 1.18 to 0.52 meters. The 
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maximum error and error range also witnessed significant reduction of around 

65%. Standard deviation also saw a notable 73% improvement, indicating tighter 

positioning results with less variation and closer clustering around the mean 

value. 

Table 13: OBU GNSS performance statistics, overall. 

 Single (m) RTK via DSRC (m) Percent Change 

RMSE 1.18 0.52 56% 

Mean 0.89 0.47 47% 

Median 0.77 0.43 44% 

Max 7.63 2.73 64% 

Min 0.12 0.10 17% 

Range 7.51 2.6 65% 

StdDev 0.77 0.21 73% 

 

The statistics are further investigated in each of the driving scenarios, and the 

comparisons are shown from Table 14 to Table 16. 

Table 14: OBU GNSS performance statistics, Built-up Area. 

 Single (m) RTK via DSRC (m) Percent Change 

RMSE 1.57 0.51 68% 

Mean 1.07 0.49 54% 

Median 0.78 0.48 38% 

Max 7.63 1.10 86% 

Min 0.12 0.11 8% 

Range 7.51 0.99 87% 

StdDev 1.15 0.13 89% 
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Table 15: OBU GNSS performance statistics, Inter-Urban. 

 Single (m) RTK via DSRC (m) Percent Change 

RMSE 0.91 0.44 52% 

Mean 0.79 0.39 51% 

Median 0.75 0.36 52% 

Max 6.65 2.73 59% 

Min 0.13 0.10 23% 

Range 6.52 2.63 60% 

StdDev 0.45 0.18 60% 

 

Table 16: OBU GNSS performance statistics, High-Speed. 

 Single (m) RTK via DSRC (m) Percent Change 

RMSE 0.96 0.67 30% 

Mean 0.82 0.61 26% 

Median 0.84 0.54 36% 

Max 4.13 1.23 70% 

Min 0.16 0.14 13% 

Range 3.97 1.09 73% 

StdDev 0.49 0.29 41% 

 

It can be seen that RTK-over-DSRC notably improved the GNSS positioning 

performance across all three driving scenarios. However, the highest level of 

improvement occurred in Built-up Areas, characterised by low speed limit, 

narrow streets, and dense buildings. The RMSE decreased by more than 1 meter, 

an almost 70% improvement. The maximum error and error range also saw 85% 

improvement, as well as an almost 90% reduction in Standard Deviation, 

signifying significant reduction in noise and variation in the positioning results. 

Indeed, the enhanced performance can be readily observed in the map 

visualisation, with Figure 32 demonstrating the improvements in the town centre 

of Beeston along the test route, where GNSS single solutions exhibited significant 

variations and drift in the presence of narrow lanes and close by buildings. In 

contrast, both RTK Fixed and RTK Float solutions resulted in a much more stable 
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trajectory, likely due to the improved mitigation of multipath signals with the use 

of more advanced algorithm and additional correction data.  

 

Figure 32: Accuracy improvements in Built-up Areas 

RTK-over-DSRC also brought about improvements in Inter-Urban environments, 

however, the percentage change is not as significant as in Built-up Areas, with 

around 50% reduction in RMSE and 60% reduction in error range and standard 

deviation. Finally, the lowest amount of accuracy enhancement occurred during 

high-speed driving scenarios, with only around 30% of improvements in RMSE 

and mean errors. 

Among the three scenarios, both RTK and Single solutions exhibited smallest 

RMSE error in Inter-Urban environments, with moderate speed limit and access 

to open sky. Single solutions fared the worst in Built-up Areas, likely due to 

multipath interference, while RTK solutions performed worst in High-Speed 

driving, possibly due to the high-dynamic environments and the large amount of 

processing required. 

However, despite the enhancements in overall performance, there is still room 

for improvement. While the RTK results show an overall improved performance 

compared to unaided positioning, the mean error remains at approximately 0.5m 

away from the reference receiver. Moreover, there were instances where the RTK 

result exhibited more error than the unassisted positioning. Fluctuations in the 

data also remain noticeable even after the implementation of RTK processing. 
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Several factors have been identified that could contribute to the performance 

deficit between the OBU and the reference receiver. The most obvious factor is 

the placement of the GNSS antennas of OBU and the Leica receiver. The spatial 

separation of approximately 40 centimetres between these antennas may have 

played a role in the observed discrepancies in positioning. 

Another factor might be the multipath errors where the GNSS signal bounces off 

nearby objects and arrives at a slightly different time, amplitude, and phase 

compared to the original signal, distorting the original signal, and reducing the 

accuracy [161]. This is similar to the small-scale fading that may have caused 

similar reduction in quality in DSRC signals. 

Additionally, physical obstructions such as buildings and foliage can attenuate the 

signals reaching the GNSS antenna, as well as reduce the number of satellites in 

the receiver's field of view. This not only degrades signal quality but also 

compromises the satellite-receiver geometry, contributing to the reduction of the 

accuracy.  

However, possibly the most important factor might be the quality of the GNSS 

antenna. A typical ceramic puck antenna was used with the OBU [162], whereas 

a professional-grade Leica AS10 antenna was used for reference receiver. High-

quality antennas usually have a superior gain, reduced noise, and less cable loss 

due to improved construction, amplifiers, and shielding [163]. This improves the 

sensitivity and allows them to pick up weaker signals more effectively and 

acquire signals from a higher number of satellites. Such antennas also often have 

improved multipath rejection capabilities, as they are designed to receive signals 

coming directly from the satellites overhead and reject signals coming from other 

angles, which are likely to be the multipath signals. Compatibility with both L1 

and L5 GNSS satellite bands further enhances performance by mitigating sources 

of inaccuracies such as ionospheric delay, and providing more signal availability 

and continuity [164]. 
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Another promising avenue for improvement lies in upgrading from the single-

frequency GNSS receiver to a multi-frequency GNSS receiver, which allows better 

correction of ionospheric delays, better distinction between direct and reflected 

signals, and increased signal robustness and satellite availability [165]. 

The quality of signal processing algorithms can also influence performance. 

These algorithms aid in tracking satellite signals, mitigating multipath errors, 

correcting ionospheric delays, resolving carrier phase integer ambiguity, and 

modelling potential sources of error. Different manufacturers often employ 

proprietary algorithms tailored to their specific products, and there might have 

been room for fine-tuning the RTKLIB algorithms to optimise and improve its 

performance for this particular setup. 

In summary, an analysis of the visualisations and statistics indicates that the OBU 

is capable of receiving GNSS correction data over DSRC and perform real-time 

RTK processing to significantly improve its positioning accuracy compared to 

unaided single point solutions, and broadcasting correction data can indeed be 

an effective method of improving CAV positioning performance in real-world 

environments. However, the performance can potentially be further improved by 

utilising a higher-quality antenna and fine-tuning the open-source signal 

processing algorithms.  

6.3.6. Cellular Environment 

Cellular Vehicle-to-Everything (C-V2X) is a similar technology that allows 

communications between vehicles and other entities. C-V2X can operate in 

Device-to-Device mode, allowing direct communication without the need for 

cellular infrastructure, similar to DSRC, or in Device-to-Network mode, allowing 

communication via cellular network to reach out-of-range vehicles and accessing 

cloud-based services [29].  

Advantages of C-V2X include proposed longer communication range, network 

scalability, non-line-of-sight performance, and value-added cloud-based services. 
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Although it also faces challenges such as infrastructure requirements, cost of 

device and deployment, and doubts about the maturity of the technology. 

While it was not possible to test C-V2X Device-to-Device direct communication 

mode in this experiment due to hardware incompatibility, the onboard cellular 

modem was able to collect potentially useful data points for evaluating the 

performance for Device-to-Network mode. Collected parameters include cellular 

service type, signal quality, latency, and data transmission speed. 

While C-V2X is not the main focus of this research, those data points may help 

form an initial observation regarding the behaviour and feasibility of C-V2V 

communication systems. The visualisation for cellular signal type and signal 

quality is shown in Figure 33 and Figure 34, and corresponding statistics are 

shown in Table 17 and Table 18. 
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Figure 33: Road Trial Cellular Service Type 

 

Figure 34: Road Trial Cellular Signal Quality 

 

 

Table 17: Cellular Service Type Statistics 

Service 
Type 

Count Percentage 
Mean 

Latency 
(ms) 

Mean 
DL 

(Mbit/s) 

Mean 
UL 

(Mbit/S) 

EN-DC 2953 60.5% 21 188.7 56.8 

LTE 1748 35.8% 28 49.2 23.1 

WCDMA 180 3.7% 48 9.01 0.51 

No 
Service 

3 0.06% - - - 

Total 4884 100% - - - 
 

Table 18: Cellular Signal Quality 
Statistics 

 
Cellular 
Signal 

Quality 

Mean 13.80 

Median 13 

Max 31 

Min 0 

Range 31 

SD 6.18 
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Four categories of service type were recorded during the experiment. EN-DC, LTE, 

WCDMA, and NO SERVICE. 

EN-DC, or E-UTRAN New Radio - Dual Connectivity, is a technology allowing 

cellular device to connect to a 4G network and 5G NR (New Radio) network at 

the same time, and utilise the bandwidth of both for data transmission [166]. 

This allows cellular providers to launch 5G services using existing 4G 

infrastructure as the backbone, also known as the non-standalone (NSA) 

architecture, which is the basis of most 5G deployments around the world. 

LTE, or Long-Term Evolution, is commonly referred to as 4G cellular network, 

while WCDMA (Wideband Code Division Multiple Access) is used for 3G mobile 

networks. 

Cellular Received Signal Strength Indicator (RSSI) provides an approximation of 

signal strength and reception quality. In the cellular modem used in this 

experiment, the RSSI value ranges from 0 to 31. A value of 0 corresponds to -

113dBm of received signal power, while a value of 31 indicates -51 dBm [167]. 

Therefore, a higher RSSI value correspond to a stronger received signal, and may 

reduce the latency and increase data transfer rate. 

The graph illustrates a diverse range of cellular services experienced throughout 

the test route. The dominant service was 5G, which was available for 

approximately 60.5% of the route. This was followed by 4G coverage, which was 

present for about 35.8% of the route. 3G-only service was available for a small 

portion (3.7%) of the route. Additionally, there was a brief span where no cellular 

service was detected at all. 

Certain correlation between the type of cellular service available and the 

geographical location of the vehicle during the test can be observed from the 

map. Notably, 5G coverage appears to be predominantly located within or close 

to the city boundary, while 4G service becomes more prevalent when the vehicle 
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is outside the city limits. Furthermore, the cellular service tends to downgrade to 

3G as the vehicle moves even further away into the rural areas.  

Notable data transfer speed improvements between 3G, 4G, and 5G can be 

observed, although the network latency on 5G service was very similar to the 

latency values on 4G during this experiment. This might be explained by the use 

of EN-DC network from which the modem can make its own decisions to use 4G 

and 5G based on the network load demand. For instance, the modem may opt to 

employ the 5G network during speed tests to maximise data transfer speed, 

while during latency tests, it might have used the 4G network to optimise power 

usage. 

The cellular signal quality also demonstrated notable variations during the 

experiment, covering the whole range of possible values, with a mean value of 

13.8. Again, it can be observed that densely populated areas tend to be covered 

with stronger signals, while rural areas tend to have weaker signals. 

It is important to note that the data collected from the cellular modem, and in 

turn, the derived observations, was not meant to be conclusive or 

comprehensive, as it was a secondary objective of the main experiment. The 

cellular network latency and speed can depend on a variety of additional factors 

that was not covered in this investigation, such as the user density in the area, 

network traffic levels, and the performance of the server that OBU was 

connected to. Moreover, the cellular infrastructure is also evolving with time, 

with ongoing upgrades and the construction of new cellular access points. 

Despite the limitations, a few important insights can still be identified. It is clear 

that superior cellular service quality is generally found in urban and built-up 

areas, characterised by fast data transfer speeds and low latency. In contrast, 

rural regions often experience less satisfactory service, with older generation 

service types, weaker signal strength, and consequently diminished network 

throughput. For C-V2X technology to demonstrate robust performance in these 
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circumstances, a comprehensive and efficient cellular infrastructure would be 

very important, especially considering the fact that vehicles tend to travel at 

faster speeds compared to urban areas. 

6.4. Summary 

This chapter gives a detailed description of the second outdoor experiment using 

the custom OBUs developed for this project. The primary objective was to 

evaluate how DSRC communication performs under realistic conditions, 

specifically, on public roads with real vehicles. 

Test plans and procedures were discussed in detail, including planning a longer 

test route with more diverse driving environments, organising logistics, collecting 

KPI data, broadcasting GNSS correction data stream via DSRC to enhance 

positioning accuracy, and a look at cellular environment to understand the 

potential for C-V2X communication as an alternative to DSRC. 

The experiment was carried out without complications, the hardware proved to 

be functional and stable, and all planned objectives were achieved. The collected 

data was processed, visualised, analysed, and discussed to achieve a 

comprehensive understanding of the experiment's outcomes. 

It was discovered that the received DSRC signal quality is largely inversely 

proportional to the square of the distance between the two vehicles, as outlined 

in FSPL and inverse-square law. However, unlike under ideal conditions, 

additional factors play a big role in further attenuating the signal quality, such as 

small-scale fading and signal shadowing. Potential mitigation methods were 

discussed. 

The Inter-Packet Gap and Packet Error Rate during the experiment were 

examined to determine a realistic usable communication range between the two 

vehicles. With a 10% PER threshold, the communication range was approximately 

550 meters, while the maximum range was approximately 680 meters. The 
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several contributing factors to the shortfall of communication range compared to 

the preliminary test were discussed. 

GNSS positioning data from the reference receiver and OBU were compared, and 

it was evident that transmitting GNSS correction data over DSRC can indeed be 

an effective way to increase the positioning accuracy of surrounding vehicles. A 

number of avenues of possible improvements were identified that might lead to 

even better results. 

Finally, cellular environment data collected along the test route was examined. It 

was found that urban and built-up areas typically exhibit higher cellular service 

quality, while rural areas often experience older generation service types, weaker 

signal strength, and diminished network throughput. As a result, for satisfactory 

C-V2X performance in rural areas, overhauls and upgrades to the infrastructure 

might be needed. 

In conclusion, this outdoor experiment has demonstrated that the custom OBU is 

capable of operating in a stable and performant manner, and the collected data 

provided valuable insights into the real-world performance of V2V 

communications using DSRC technology. The findings from this experiment will 

be crucial in informing further research and development efforts in this field. 
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Chapter 7:  Interruption Mitigation with Machine Learning 

7.1. Overview 

This chapter investigates how machine learning models can be utilised to 

effectively predict and manage potential interruptions in V2V communication.  

Predicting the loss of radio-based V2V communication before it occurs, as 

opposed to waiting until the actual loss of data link, would allow a larger time 

window to take appropriate actions such as switching to alternative means of 

communication, including cellular or satellite-based connection. This, in turn, can 

minimise communication downtime, a factor especially crucial when dealing with 

safety-related situations.  

Machine learning has proven to be an effective tool in V2V communication 

research. In [71], Darlan et al. utilised machine learning to determine whether a 

data packet can be delivered within a desired latency window in cellular V2X 

scenarios, achieving 85% reliability in predicting Quality of Service (QoS) levels 

two seconds in advance using a supervised learning approach with an 

autoregressive integrated moving average filter. Additionally, Qiyi He's study [73] 

introduced an Anomaly Detection Framework for CAV Cyber Security, employing 

datasets from multiple CAV attack scenarios to evaluate classifiers like Decision 

Tree and Naive Bayes, with the Decision Tree algorithm showing superior 

performance after optimizations to reduce ML model time complexity. 

While those studies provided valuable insights, they are limited by their reliance 

on datasets derived from simulated models, which may not accurately reflect 

real-world scenarios. This chapter's ML experiments build upon these previous 

findings, employing real-world experimental data to enhance the validity and 

applicability of its approach, while also investigating additional models. 

First, suitable data preprocessing techniques are identified, introduced, and 

applied to the KPI dataset from the outdoor experiment. Steps involved include 
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class variable creation, data cleaning, attribute binning, and class balancing, in 

order to ensure the optimal input for model training. 

Evaluation metrics such as confusion matrix, accuracy, recall, precision, F1 score, 

and training time are also introduced. These metrics will serve as the basis for 

the performance comparison between the machine learning models. 

Finally, the pre-processed dataset will be used to train a number of machine 

learning algorithms, and their performance are compared and discussed. 

7.2. Dataset Preparation 

Before utilising the collected data from the outdoor experiment to train machine 

learning models, it is essential to perform several pre-processing steps on the 

dataset, including removing unneeded parameters, creating class variables, and 

addressing imbalanced class instances. These steps ensure the training data is 

clean and well-structured to reduce the likelihood of errors and biases during the 

training process, improving the accuracy, efficiency, and performance of the 

model.  

7.2.1. Class Variable Creation 

In the context of classification models, a class variable with multiple possible 

labels needs to be created and assigned to each entry in the outdoor experiment 

dataset, in order to facilitate the training of the model to make accurate 

predictions. 

Given the objective of predicting imminent communication interruption, three 

class labels are devised for the dataset: 

• Disconnected: This label is assigned to the entries in the dataset where 

transmitted packets did not reach the receiver. 

• Marginal: This label is used to denote the entries where the 

communication quality is notably degraded, and interruption might be 

likely. This label is assigned to the entries in the dataset where Packet 



 Interruption Mitigation with Machine Learning    126 

Error Rate (PER) exceeds 10%. This is the same PER threshold used to 

determine the useful communication range in the previous chapter. 

• Functional: This label denotes a normal communication quality with a low 

risk of communication interruption, and is assigned to all entries in the 

dataset that do not correspond to either of the two previously mentioned 

labels. 

The categorisations will be instrumental in training the ML models, as the 

prediction output will correspond to one of the defined labels, and the 

performance and accuracy of the models can be subsequently analysed. 

7.2.2. Parameter Selection 

As the original dataset contains a relatively large number of parameters, shown 

in Table 5, optimisations will be carried out to reduce the parameter count, in 

order to improve the model's predictive performance as well as the efficiency 

during the training phase. 

Firstly, parameters that do not contribute to the predictive power of the model 

are removed, such as the sequence number and the positioning result from the 

Leica reference receiver. The coordinates from both OBU's on-board GNSS 

receiver are also removed, as the classification process should not be dependent 

on the location of the device. By eliminating irrelevant parameters, the models 

can focus on the more meaningful features, improving the accuracy and 

predictive power, as well as decreasing the computational cost. 

Furthermore, as PER was used to determine one of the class labels, it will also be 

removed to avoid potential bias or overfitting, where the model exhibits good 

performance during training but fails to generalise on new and unseen data. 

With the PER removed, the models are encouraged to learn from a broader 

range of features, enhancing its predictive capacity and generalisability. 
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Finally, the Pearson product-moment correlation coefficients (PPMCC) between 

received power, received noise, and SNR parameters are calculated. PPMCC is a 

statistical measure that evaluates the strength and direction of the linear 

relationship between two variables, producing a value between -1 and 1 [168]. A 

value close to 1 indicates a strong positive relationship, meaning as one variable 

increases, so does the other. Conversely, a value close to -1 indicates a strong 

negative relationship, signifying that as one variable increases, the other 

decreases. A coefficient close to 0 indicates a weak or no linear relationship. The 

correlation values between signal quality parameters are shown in Table 19. 

Table 19: Correlation coefficient between signal quality parameters. 

 PowerA PowerB NoiseA NoiseB SNRA SNRB 

PowerA 1 - - - - - 
PowerB 0.847 1 - - - - 
NoiseA -0.739 -0.645 1 - - - 
NoiseB -0.664 -0.758 0.737 1 - - 
SNRA 0.956 0.819 -0.903 -0.742 1 - 
SNRB 0.824 0.961 -0.725 -0.907 0.838 1 

 

It can be observed that the received signal power on antenna A and B 

demonstrates strong positive correlation, with a PPMCC of 0.84. Similarly, the 

values of received noise and SNR also exhibit strong correlation between the two 

antennas. Furthermore, there is an almost perfect correlation between the 

received power and the SNR value, with a PPMCC of 0.956 for antenna A and 

0.961 for antenna B. This is not surprising given that SNR is calculated as the 

difference between the received power value and the received noise value. 

Visualisations of relationships between several signal quality parameters are 

shown in Figure 35. As the PPMCC value suggests, strong linear correlation 

between the parameters can be observed. The drop-off of the trend line in graph 

a and c reflects the observation that antenna B tends to exhibit lower average 

received power compared to antenna A during the two outdoor experiments. 
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Figure 35: Visualisation of correlation between signal quality parameters. 

Overall, strong correlations are observed over parameter pairs between antenna 

A and B, as well as between received power and SNR. Therefore, it would be 

beneficial to remove some of the parameters, as the redundant information may 

not improve the models' predictive power, and can even lead to negative effects 

including overfitting, difficult to interpret results, and unstable outputs [169]. By 

consolidating highly correlated parameters, the training models can be simplified 

with easier to understand results, improved training efficiency with reduced 

computational cost, memory footprint and faster training time. 

Given the strong correlation observed between antenna A and B, the parameters 

from antenna B are excluded from the dataset. Additionally, considering that the 
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average noise level from the outdoor experiment was -108dBm compared to the 

average received power level of -66dBm, the received signal power overpowers 

the noise by a large margin, over 15848 times in this instance. Thus, the received 

noise levels for both antennas A and B are deemed insignificant and discarded as 

well. Finally, as the SNR was calculated by subtracting signal noise level from 

received power level and therefore demonstrate almost perfect correlation, it 

was determined that the SNR parameters will also not be used for training the 

models. Consequently, only the received power level from antenna A will be 

incorporated into the training dataset. This parameter effectively represents the 

information from all other signal quality indicators without adding unnecessary 

complexity to the dataset. 

The updated training dataset parameters for the machine learning experiments 

are shown in Table 20, the number of parameters was reduced from 21 to 5, 

allowing more efficient training and reducing the chance of overfitting.  

Table 20: Updated parameters of the training dataset. 

Parameter Name Unit Description 
PowerA dBm Received power on antenna A 

TX_OBU_speed 
MPH Speed of both vehicles 

RX_OBU_speed 

Distance Meters Distance between two vehicles  
IPG Seconds Inter-packet Gap 

IS_DROPPED Integer 
1 if this packet did not reach the 

receiver. 0 otherwise. 

Class Text 
Functional 
Marginal 

Disconnected 

 

7.2.3. Class Balancing 

After determining the appropriate class labels, discarding irrelevant parameters, 

and consolidating strongly correlated parameters, the next pre-processing step 

involves examining the distribution of each class instances. In Figure 36, the test 
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route is coloured with class labels and overlayed on the map for an intuitive 

visual representation of the dataset. 

  

 

Figure 36: Class labels visualisation 

It is apparent that for the majority of the test route, the communication quality is 

labelled as "functional", with stable connection and low risk of interruption. 

Most of the communication dropouts during the outdoor experiment occurred 

on a single stretch of dual carriage way with relatively high vehicle speed, 

extended following distance, as well as obstructing vehicles that may have 

further contributed to the signal degradation. It can be observed that the 

instances that are labelled as "Marginal" almost always precede and follow the 

instances that are labelled "Disconnected", reflecting the pattern of signal quality 

deterioration and recovery. This pattern makes the “Marginal” label an ideal 

predictor for imminent V2V communication interruption, suggesting its potential 

utility in making the decision to switch to alternative communication methods. 
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Figure 37: Histogram of class labels 

Table 21: Statistics of class labels 

 Count Percentage 

Functional 47121 98.20% 

Marginal 195 0.41% 

Disconnected 667 1.39% 

Total 47983 100% 
 

 

The histogram of class labels is shown in Figure 37, with the Y-axis in logarithmic 

scale. The statistics regarding the distribution of class labels are shown in Table 

21. It is evident that the "Functional" class dominates the dataset, constituting 

over 98% of all entries. Conversely, the "Marginal" class has the lowest number 

of instances, with only 195 entries taking up 0.41% of the dataset, while the 

"Disconnected" class has 667 instances and comprises 1.39% of the training data. 

It is apparent that dataset under examination presents a clear and pronounced 

imbalance across its three classes. This uneven distribution can notably affect the 

performance of machine learning models, as the algorithms are overexposed to 

the majority class during training, in turn making them more likely to predict the 

majority class, resulting in inflated accuracy and lower predictive performance 

for the underrepresented classes. A balanced dataset ensures a fair 

representation of all classes during the model training phase, thereby promoting 

the model's ability to generalise and predict each class accurately. Therefore, 

steps need to be taken to balance the class in this dataset [170]. 

There are a number of strategies available to address the issue of class imbalance 

in a dataset, each with their own strengths and limitations [171]. Under-Sampling 

is one of the easiest methods to alleviate class imbalance, which involves 

discarding instances from the majority class in an attempt to balance out the 
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class distribution. The primary advantage of under-sampling is its simplicity and 

speed. However, there is also a risk of discarding potentially useful data from the 

majority class, which could affect the model's performance. 

Similarly, over-sampling can be used to increase the number of minority classes 

instead, which is often achieved by duplicating the instances from the minority 

class until a more balanced distribution is attained. Over-sampling can help to 

improve the model's performance on the minority class in a simple and 

computationally inexpensive manner, but it may also increase the risk of 

overfitting due to the repetition of instances. 

Weighted Sampling is another method used to handle class imbalance, where 

different weights are assigned to each class based on their representation in the 

dataset. The minority class is usually assigned a higher weight, thereby 

encouraging the learning algorithm to pay more attention to it. This technique 

does not usually result in loss of data or overfitting, but careful tuning of the 

weights might be required. 

Advanced techniques such as SMOTE (Synthetic Minority Over-sampling 

Technique) and ADASYN (Adaptive Synthetic Sampling) offer more sophisticated 

ways of handling class imbalance [172] [173]. Rather than simply duplicating 

instances, these methods generate synthetic instances of the minority class, 

adding more diversity to the data and helping the model to learn more complex 

patterns. 

For this experiment, a combination of oversampling and undersampling will be 

used to balance the classes in the dataset, due to their straightforward nature to 

implement and compute. Additionally, those methods generally do not introduce 

additional hyperparameters to be fine-tuned, and the new dataset will be 

compatible with all the algorithms as before, unlike more complex techniques 

that introduce additional hyperparameters. 
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The majority class "Functional" will be undersampled, reducing its size via 

random discards until it matches the quantity of "Disconnected" instances. At the 

same time, the "Marginal" class will be oversampled, where its instances will be 

randomly duplicated until the total matches that of the "Disconnected" class as 

well. As a result, each of the three classes in the training dataset will possess an 

equal number of instances, specifically 667 each. This balanced distribution 

should result in a more equitable learning process, potentially improving model’s 

performance and reduce the risk of bias towards the dominant class. 

7.3. Evaluation Methods 

To ensure a systematic and accurate assessment of the machine learning 

algorithms involved in this experiment, a number of commonly used evaluation 

metrics are discussed in this section. These metrics provide a quantitative 

understanding of how well an algorithm can predict or classify data points, and 

offer insights into the strengths and weaknesses of each model, aiding the 

decision-making in selecting the most optimal model for this experiment. 

7.3.1. Prediction Outcomes 

The prediction generated from classification algorithms may yield four possible 

outcomes, characterised as True Positive (TP), True Negative (TN), False Positive 

(FP), and False Negative (FN) [174]. 

A True Positive denotes when a model correctly predicts the positive class. For 

example, in a model trying to predict if a patient has a certain disease, a True 

Positive signifies that the model predicts the patient has the disease, and the 

patient does have the disease. 

Similarly, a True Negative occurs when the model correctly predicts the negative 

class. Here, the model asserts the patient is disease-free, and it was indeed the 

case in reality. 
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A False Positive occurs when the model incorrectly identifies a negative instance 

as positive. With the disease example, the model would predict a patient of 

having a disease, while in reality the patient is disease-free. 

Finally, False Negative is when the model incorrectly classifies a true positive 

instance as negative. With the example, the model would predict the patient is 

disease-free, while the patient does have the disease. 

These four outcomes form the foundation of many additional performance 

metrics used to evaluate machine learning models, and offers detailed insights 

into a model's performance. Therefore understanding these outcomes is integral 

to the development and tuning of effective and accurate machine learning 

models. 

7.3.2. Validation Methods 

Testing and validation are critical steps in the machine learning pipeline, allowing 

the estimation of predictive performance, and helps to ensure that the model 

generalises well and performs effectively on unseen data. Two common 

validation techniques are Holdout and Cross-Validation. 

The Holdout method involves splitting the available data into a training set and a 

test set. The model is trained on the training set, and then its performance is 

evaluated on the unseen test set [175]. This method is straightforward and 

computationally inexpensive, however, the assessment of the model using this 

method can depend heavily on how the data is split, which can lead to high 

variance in model performance. Additionally, a less optimised model might result 

from the fact that a portion of the data is not being utilised during training, 

especially when dealing with datasets with small number of instances. 

Cross-Validation, or ‘k-fold cross-validation’ is a more robust method of 

evaluating the performance of a model. The process involves dividing the dataset 

into 'k' equally sized folds or subsets. The model is then trained 'k' times, each 
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time using a different fold as the test set and the remaining fold as the training 

set. The model's performance is evaluated as the average of the performance 

measures from the 'k' iterations [176]. This method reduces the variance 

associated with holdout method, providing a more reliable measure of how the 

model is expected to perform on unseen data. It also features an efficient use of 

data, as every instance is used in training and validation. Although as the model 

needs to be trained multiple times, more computational resources and time is 

often required, especially when the dataset is large, and the model is complex. 

7.3.3. Confusion Matrix 

The confusion matrix is a table that gives comparison between actual and 

predicted values from a classification model. It is a very popular method to 

visualise and summarise the results of a classification algorithm [177]. A sample 

confusion matrix is shown in Table 22. 

Table 22: A sample confusion matrix 

Disease Healthy 
← Predicted As 
↓ Actual Class 

88 12 Disease 

5 95 Healthy 

 

Each row of the table represents the instances of an actual class, while each 

column represents the instances of a predicted class. The diagonal elements of 

the matrix represent correct predictions, while the off-diagonal elements are 

incorrect predictions. By summing all the diagonal elements and dividing by the 

total, we can calculate the overall accuracy of the model. 

The confusion matrix can also help in identifying the weakness in predicting 

certain classes in a model, where more mistakes were made compared to other 

classes. Such insights can help in identifying where additional training data or a 

different algorithm or model configuration might increase the performance. 
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The confusion matrix allows the calculation of several other important metrics 

like precision, recall, and the F1 score, which will be discussed below. These 

metrics provide a more nuanced understanding of the model's performance, 

especially in scenarios where the data might be imbalanced. 

7.3.4. Accuracy, Recall, and Precision 

Accuracy, Recall, and Precision are important concepts in understanding and 

assessing the performance of a machine learning model [178]. 

Accuracy is one of the simplest and most intuitive performance metrics in the 

context of classification model results. It is defined as the number of all correct 

predictions, including True Positive and True Negative, divided by total number of 

instances. Accuracy gives an overview of the classification performance, and 

works best when the dataset is balanced in terms of the number of instances in 

each class. However, a high accuracy does not always indicate a good overall 

performance of a model, and a number of other metrics need to be examined for 

a comprehensive evaluation of an algorithm.  

Accuracy =
TP + TN

TP + TN + FP + FN
 

Recall, also known as sensitivity or true positive rate, represents the model's 

ability to correctly identify all positive instances from the total actual positives. It 

is calculated by dividing the number of true positives by the sum of true positives 

and false negatives. Recall answers the question of “For a given class, how often 

does the algorithm correctly predict it?” A high recall implies a low rate of false 

negatives, meaning the model is good at detecting positive instances. 

Recall =
TP

TP + FN
 

Precision quantifies the model's ability to correctly identify positive instances out 

of all instances it classified as positive. It is calculated by dividing the number of 

true positives by the sum of true positives and false positives. Precision answers 

the question of “When the model predicts an instance as positive, how often is it 
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correct?” A high precision score signifies a low false positive rate, meaning when 

the model predicts an instance to be positive, it is likely to be correct. 

Precision =
TP

TP + FP
  

A model with high recall but low precision may make many positive predictions, 

but many of them may be incorrectly labelled. Conversely, a model with low 

recall but high precision might make fewer positive predictions, but a higher 

proportion of those predictions are likely to be correct. An ideal system should 

have both high precision and recall, but in real life, a trade-off between the two 

metrics is often needed based on the specific requirements of the problem at 

hand. 

7.3.5. F1 Score 

F1 score, also known as F-measure, is a metric that combines both Precision and 

Recall through their harmonic mean. When the Precision and Recall are similar, 

this measure is approximately the average of the two. However, if either 

precision or recall is significantly lower, the F1 score will decrease significantly, 

reflecting potential issues with the model's performance. 

F1 = 2 ∙
Precision ∙  Recall

Precision +  Recall
 

A F1 Score of 1.0 means that the model has perfect precision and recall, while a 

score of 0 suggests that the model has zero precision, zero recall, or both. This 

makes the F1 score a robust metric for scenarios where both precision and recall 

are crucial to the model's performance. 

7.3.6. Training Time 

Training time refers to the amount of time it takes for a machine learning model 

to learn patterns from a given training dataset. This metric can vary based on the 

complexity of the algorithm, parameter settings, the number of attributes and 

instances in the dataset, and the capabilities of the computing hardware. A 
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shorter training time can indicate a more efficient algorithm and lower usage of 

computational resources. However, a short training time does not necessarily 

lead to a better model, as its quality is ultimately determined by its ability to 

make accurate predictions. Therefore, training time is typically considered 

alongside other performance metrics when evaluating a model's effectiveness.  

7.4. Model Training and Evaluation 

In this section, several machine learning models are trained and evaluated using 

the prepared dataset. The predictive capabilities of these algorithms are 

investigated based on the evaluation measures introduced in the previous 

section. 

The balanced dataset is saved in comma-separated values (CSV) format, a simple 

file format often used to store tabular data. A header at the beginning of the file 

defines the names of attributes at each column, and the data is organised into 

rows, with each attribute separated by commas. Its uncomplicated nature and 

compatibility with different data analysis tools have made CSV a popular choice 

for storing training datasets for machine learning experiments. 

The dataset contains 7 parameters and a total of 2001 instances, with 667 

instances in each of the three classes. Each row in the CSV file corresponds to a 

unique data point, and each column represents a specific parameter. The final 

parameter, as per machine learning customs, is the 'class' which the algorithms 

aim to predict. The values of all other parameters are in floating point numerical 

format. A snippet of the dataset, showing its structure and content, is illustrated 

in Figure 38. 
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Figure 38: Instances in the training dataset 

Weka software suite is employed in this experiment for model training, 

validation, and analysis, due to its free and open-source nature, extensive 

collection of different machine learning models, friendly user interface, and 

robust community support from its widespread use in the machine learning 

community. 

During the experiment, each machine learning model undergoes training using 

the identical dataset, and 10-fold cross validation is used for assessing the 

performance of each predictive model. Data is randomly partitioned into 10 

equal sized subsamples, where 9 of them will be used to train the model, and the 

remaining one for validation. This process is then repeated 10 times, and the 

results are averaged to produce a single estimation. The confusion matrix is 

shown, and the performance is evaluated and discussed via the metrics including 

precision, recall, F1 score, accuracy, and training time. 

7.4.1. ZeroR 

ZeroR is one of the simplest classification algorithms that predicts all unseen 

instances as the majority class from the training dataset. Despite being simple 

and fast, its inability to leverage any features from the training set results in a 

lack of predictive power, typically leading to very low accuracy. Although ZeroR is 

not commonly used for practical applications due to its limitations, it is often 



 Interruption Mitigation with Machine Learning    140 

used to establish a baseline performance measure [179]. Any well-functioning 

classifier should surpass ZeroR's performance, otherwise it could indicate 

potential issues with the model or data.  

Table 23 presents the training results obtained using the ZeroR method. 

Table 23: ZeroR Classification Results 

Functional Disconnected Marginal 
← Predicted As 

↓ Actual Class 
  Precision Recall F1 Score 

667 0 0 Functional  Functional 0.333 1 0.5 

667 0 0 Disconnected  Disconnected - - - 

667 0 0 Marginal  Marginal - - - 

     Accuracy 33.33% 

     Training Time 0 Seconds 

 

Given the equal distribution of classes, the algorithm arbitrarily selected 

"Functional" as the most common class, and subsequently classifying all 

instances as "Functional". 

As a result, for the "Functional" class, ZeroR demonstrated perfect recall rate as it 

identified all instances of this class correctly. However, it also exhibited low 

precision due to classifying every single instance as "Functional", when only 667 

were truly "Functional", resulting in a low F-1 score. For the remaining two 

classes, precision and F-1 score could not be calculated as all their instances were 

misclassified. Consequently, those classes have a recall rate of zero. 

Overall, the ZeroR classifier achieved an accuracy of 33.3%, a sub-optimal 

outcome for this project, and typical of its performance. However, the training 

time was extremely short, and its result can serve as the baseline for the other 

models. 
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7.4.2. OneR 

The OneR algorithm is another simple yet effective classification algorithm in 

machine learning. It generates a rule for each parameter in the dataset, and 

calculates the error rate of classifying instances based on that parameter's 

values. The parameter with the smallest total error rate is selected, and the rules 

generated from that parameter are used for classification of unknown data [180]. 

Despite its simplicity, OneR often demonstrates good performance in real-world 

situations. However, by only focusing on a single parameter, it may overlook 

complex relations between parameters in the dataset. 

The rules generated by OneR method are shown in Figure 39, and the training 

results are shown in Table 24. 

 

Figure 39: OneR model rules 

Table 24: OneR Classification Results 

Functional Disconnected Marginal 
← Predicted As 

↓ Actual Class 
  Precision Recall F1 Score 

622 0 45 Functional  Functional 0.909 0.933 0.921 

0 667 0 Disconnected  Disconnected 1 1 1 

62 0 605 Marginal  Marginal 0.931 0.907 0.909 

     Accuracy 94.65% 

     Training Time 0 Seconds 

 

It can be observed that the OneR model selected the "received power level 

antenna A" parameter as the basis for its classification rules. Out of the 667 
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instances of the "Functional" class, it accurately predicted 622 of them, while 

misclassifying 45 instances as "Marginal". For the "Marginal" class, 605 out of the 

667 instances were correctly classified, with 62 instances incorrectly labelled as 

"Functional". 

The OneR model also correctly predicted all instances in the "Disconnected" class 

without making any mistakes. This level of accuracy can be explained by the 

nature of the chosen parameter, as when the V2V communication is interrupted, 

the received signal strength has no valid values, and the model capitalised on this 

fact to make a perfect prediction for this class. 

Looking at statistics, the "Disconnected" class exhibits perfect precision, recall, 

and F1 score, due to its flawless prediction. 

For the "Functional" class, a precision of 0.909 suggests that when the model 

predicts an instance to be "Functional", it is correct about 90.9% of the time. A 

recall of 0.933 indicates that the model identifies 93.3% of all actual "Functional" 

instances correctly. The F1 score of 0.921 suggests a balanced performance 

between precision and recall for the "Functional" class. 

Similarly, for the "Marginal" class, a precision of 0.931 means that when the 

model predicts an instance to be "Marginal", it is correct approximately 93.1% of 

the time. A recall of 0.907 means the model correctly identifies 90.7% of all 

actual "Marginal" instances. The F1 score for the "Marginal" class is 0.909, again 

showing balanced performance between precision and recall. 

The statistics suggest that the OneR model exhibits excellent result on all classes. 

However, a more detailed inspection of the generated rules indicates some 

counterintuitive classifications. As the signal strength increased from -83.5dBm 

to -78.5dBm, the model transitioned from labelling instances as "Marginal", to 

"Functional", back to "Marginal", and then finally to "Functional" again for signals 

stronger than -78.5dBm. 
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This pattern contradicts the expectation that a stronger signal would correlate 

with a lower likelihood of communication quality degradation. One possible 

explanation for this could be a minor instance of overfitting, where the model 

learns specific patterns in the training data so well that it performs poorly when 

applied to unseen data due to its inability to generalise. 

This behaviour also highlights a potential limitation of the OneR method. By 

relying on a single parameter for decision-making, the method might have 

overlooked the complex relationships among other parameters in the dataset, 

generating rules that might be oversimplified and lack generalisability.  

Despite the observed limitations, the OneR model's nearly 95% overall accuracy 

is notably impressive. Coupled with its extremely short training time, similar to 

the ZeroR model, it serves a strong benchmark for comparing the performance of 

other algorithms. 

7.4.3. K-Nearest Neighbour 

The k-Nearest Neighbour (k-NN) algorithm classifies unknown instances based on 

the majority vote of their 'k' nearest neighbours. k-NN is computationally 

inexpensive to train, but can be resource-intensive during prediction, especially 

with large, high-dimensional datasets, as the entire training dataset is stored in 

the model [181]. 

The number of neighbours, denoted by 'k', plays a crucial role in determining the 

predictive performance of a K-NN model. A small k value can lead to a 

fragmented decision boundary, causing the model to be highly sensitive to noise 

and outliers in the dataset, potentially resulting in overfitting. 

Conversely, a large k value tends to produce a smoother decision boundary, 

which can help to reduce overfitting. However, this may cause the model to 

overlook finer details and patterns in the data, leading to over-generalisation or 

underfitting. 
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The selection of 'k' is often an experimental process. A common starting point is 

the square root of the number of instances in the dataset. This provides a 

balance between overfitting and underfitting, offering a solid foundation for 

further fine-tuning of the k value. 

A range of k values were tested with the dataset, and the accuracy results are 

presented in Table 25. 

Table 25: Influence of K value on KNN model accuracy 

K 1 5 15 25 35 45 55 65 75 85 

Accuracy 

(%) 
98.00 96.50 95.80 96.10 95.25 95.35 94.05 92.85 92.70 93.20 

 

The result suggests that a k value of 1 provides the best performance with an 

accuracy of 98.00%. While the result is impressive, it may indicate a potential risk 

of overfitting. As the k value increases, a gradual decrease in accuracy can be 

observed, reaching 93.20% when k is 85. This trend illustrates a reduction in 

overfitting and the enhanced generalisation of the model as the k-value 

increases. Table 26 presents the KNN training results with a more balanced K 

value of 45. 

Table 26: KNN Classification Results with K = 45 

Functional Disconnected Marginal 
← Predicted As 

↓ Actual Class 
  Precision Recall F1 Score 

620 0 47 Functional  Functional 0.931 0.930 0.930 

0 667 0 Disconnected  Disconnected 1 1 1 

46 0 621 Marginal  Marginal 0.930 0.931 0.930 

     Accuracy 95.35% 

     Training Time 0 Seconds 
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For the "Functional" class, the model accurately classified 620 out of 667 

instances, while 47 instances were incorrectly identified as "Marginal". Similarly, 

for the "Marginal" class, out of 667 instances, 621 were correctly labelled, and 46 

were misclassified as "Functional". Again, the model correctly identified all 

instances in the "Disconnected" class, with no errors made. 

The statistics reveal that the precision, recall, and F1 score for both "Functional" 

and "Marginal" classes are approximately 0.930, indicating a more balanced 

performance compared to the OneR method. The overall accuracy has also 

improved slightly to 95.35%. The training time for the KNN model remained 

minimal, consistent with the expectation that KNN requires minimal computation 

during the training phase. 

7.4.4. J48 Decision Tree 

The Decision Tree algorithm constructs a tree-like model by recursively 

partitioning data into subsets based on attribute values. The resulting tree 

consists of root, internal, and leaf nodes. To make a prediction, one traverses the 

tree from the root following branches according to the attribute values, and 

arrives at a leaf node, which represents the decision. The output of a decision 

tree algorithm is easily interpretable and can handle both numerical and 

categorical data. It can also perform well with large datasets [182]. 

However, decision trees can be sensitive to minor changes in the training data, 

which may significantly alter the tree structure. They also risk overfitting the 

training data by creating overly complex trees. Techniques like pruning are used 

to combat overfitting, improving the tree's performance on unseen data. 

Many algorithms can be used to construct decision trees. The ID3 algorithm, as 

one of the earliest, primarily handles categorical attributes and utilises 

information gain for decision-making. This was later enhanced by C4.5 algorithm, 

which supports to both categorical and numerical data, can handle missing 
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values, and uses gain ratio for node splitting [183]. The model in Weka uses the 

J48 algorithm, which is a java implementation of C4.5. 

The tree generated by J48 algorithm is shown in Figure 40, and the training 

results are shown in Table 27.  

Figure 40: Constructed J48 Decision Tree 
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Table 27: J48 Decision Tree Classification Results 

Functional Disconnected Marginal 
← Predicted As 

↓ Actual Class 
  Precision Recall F1 Score 

637 0 30 Functional  Functional 0.974 0.955 0.964 

0 667 0 Disconnected  Disconnected 1 1 1 

17 0 650 Marginal  Marginal 0.956 0.975 0.965 

     Accuracy 97.65% 

     Training Time 0.2 Seconds 

 

It can be seen that unlike OneR, the J48 algorithm is able to discern relationships 

among the parameters, and utilises all parameters for decision making. As a 

result, this approach increases the predictive performance with an overall 

accuracy of 97.65%. Only 30 instances in the "Functional" class were 

misidentified, and 17 instances in the "Marginal" class were misidentified. The 

training time has a slight increase to 0.2 seconds due to the computational load 

associated with the more sophisticated algorithm. 

However, despite the impressive accuracy, it is easy to observe the complexity of 

the tree that it generated, with a depth of 9 levels, 19 internal nodes and 20 

leaves. This is a very visual representation of overfitting, where the model over-

learns the training data, and the overly complicated and rigid tree might limit the 

model's ability to generalise effectively to unseen data. 

A technique known as pruning can be used to simplify and reduce the size of 

decision trees, in order to make them more efficient and to help mitigate 

overfitting. This is done by removing sections of the tree that provide little 

predictive power. The J48 algorithm incorporates pruning, and a parameter 

known as "confidenceFactor" can be adjusted to change aggressiveness of the 

pruning [184]. However, despite setting this parameter to its most aggressive 

level, the resulting tree remains complex. 
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7.4.5. REPTree 

The REPTree (Reduced Error Pruning Tree) is another decision tree learning 

algorithm for classification and regression tasks. Similar to J48, REPTree builds a 

tree-like model of decisions, with each node representing a test on an attribute, 

branches representing the outcome of the test, and leaf nodes corresponding to 

class labels. 

However, one of the major differences between REPTree and J48 lies in the 

pruning techniques. While J48 constructs a full decision tree before applying a 

post-pruning step, REPTree employs a strategy known as reduced-error pruning. 

This involves pruning the tree during its construction by removing subtrees if 

doing so reduces the estimated error rate. This bottom-up pruning is performed 

as the tree is being built, rather than as a separate step after the tree is fully 

constructed [185]. 

By incorporating pruning during tree construction, REPTree can reduce 

complexity and potentially reduce training times compared to J48. Additionally, 

the continuous pruning can lead to simpler, more understandable trees which 

are less prone to overfitting. 

An additional benefit of the REPTree implementation in Weka is the ability to set 

a maximum tree depth. Unrestricted, REPTree yields a tree of similar complexity 

to the J48 algorithm, with a maximum depth of 11, 43 internal nodes, and a 

similar accuracy of 97.05%. However, by imposing a maximum tree depth, a 

simpler and more generalisable model can be achieved. 
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The tree generated by REPTree algorithm with a depth limit of 4 is shown in 

Figure 41, and the training results are shown in Table 28. 

Figure 41: REPTree with depth limit of 4 
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Table 28: REPTree with depth limit of 4 classification results 

Functional Disconnected Marginal 
← Predicted As 

↓ Actual Class 
  Precision Recall F1 Score 

625 0 42 Functional  Functional 0.915 0.937 0.926 

0 667 0 Disconnected  Disconnected 1 1 1 

58 0 509 Marginal  Marginal 0.935 0.913 0.924 

     Accuracy 95.00% 

     Training Time 0.3 Seconds 

 

Similar to the J48 decision tree, multiple parameters were used to construct the 

REPTree, so the maximum amount of information from the dataset can be 

extracted. However, with a depth limit of 4, the tree was pruned to be much 

simpler and more intuitive to interpret. Initially the model checks the 

"is_dropped" parameter to assess if the connection is interrupted. If not, it 

proceeds to verify the received power level, labelling anything weaker than -

85.5dBm as "Marginal". Subsequent checks are made on distance and IPG, and it 

only deems a scenario as "Marginal" if the distance between the vehicles 

exceeds 49.69 meters and the IPG is greater than 0.1 seconds. This reflects the 

intuitive expectation that longer distances and a deteriorating IPG could indeed 

compromise communication. 

The REPTree model with depth limit of 4 has an overall accuracy of 95%, with 42 

misidentified instances in the "Functional" class, and 17 misidentified instances 

in the "Marginal" class. The training time is similar to the J48 tree. Although it 

exhibits a slightly lower accuracy compared to J48 tree's 97.65%. The marked 

simplification of the model and mitigation of overfitting enhance its real-world 

applicability. This is achieved by providing more understandable results, easier 

interpretation, and greater generalisability. 
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Attempts to reduce complexity and overfitting were carried out by further 

limiting the tree depth. A depth limit of 2 and 3 both produced the same tree, 

shown in Figure 42, and the training results are shown in Table 29. 

 

Figure 42: REPTree with depth limit of 2 

Table 29: REPTree with depth limit of 2 classification results 

Functional Disconnected Marginal 
← Predicted As 

↓ Actual Class 
  Precision Recall F1 Score 

610 0 57 Functional  Functional 0.905 0.915 0.910 

0 667 0 Disconnected  Disconnected 1 1 1 

64 0 603 Marginal  Marginal 0.914 0.904 0.909 

     Accuracy 93.95% 

     Training Time 0.3 Seconds 

 

The updated REPTree is only two levels deep, and utilised only two parameters. 

The "is_dropped" parameter is checked first to determine if the connection is 

interrupted, then the model labels all instances with a signal stronger than -

85.5dBm as "Functional", and otherwise "Marginal". Compared to the previous 

tree with a depth limit of 4, it is apparent that the branch involving distance and 

IPG checks has been pruned, leading to further simplification and intuitive 

comprehension. The pruning of the branch also led to a minor decrease in 

predictive performance, resulting in an overall accuracy of 93.95%. However, the 

approximately 1% difference may be an acceptable trade-off for a simpler and 

more flexible model. 
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7.5. Summary 

Following the successful execution of the outdoor V2V communication 

experiment, this chapter investigates the potential use of machine learning to 

effectively mitigate potential disruptions. By utilising classification models to 

predict potential communication dropouts before they occur, timely action to 

switch to alternative communication channels, such as cellular or satellite, can be 

facilitated, minimising downtime particularly in safety critical scenarios. 

Several data pre-processing steps were carried out. Class labels were created for 

the training dataset, and the large number of parameters were reduced by 

discarding irrelevant parameters, consolidating parameters with strong 

correlations to each other, and balancing the dataset with a combination of 

undersampling and oversampling. Those steps ensured a balanced and robust 

dataset for the best possible performance in model training. A number of 

evaluation metrics were also introduced to provide a quantitative understanding 

of the effectiveness of each algorithm. 

The investigation subsequently trained five machine learning models: ZeroR, 

OneR, KNN, J48 decision tree, and REPTree, using the pre-processed dataset. 

Excluding ZeroR, all models demonstrated impressive levels of performance, 

exceeding 90% accuracy. The J48 decision tree exhibited highest level of accuracy 

at 97.65%, at the expense of significant overfitting, a tendency also observed in 

KNN and, to a lesser extent, OneR. Initially, the REPTree algorithm also displayed 

similar overfitting behaviours, but upon adjusting the tree depth limit, much 

more simplified and generalised trees were produced with minimal accuracy loss, 

and it was deemed to be the most robust choice among the models investigated, 

due to its excellent performance, tunable tree complexity, and intuitive and 

interpretable output format. 

In conclusion, the original objective of this chapter indeed appears to be viable. 

The machine learning model can effectively interpret real-time key performance 
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indicators data to predict early signs of communication interruption. While the 

results have been generally positive, there are several areas identified for 

improvement. The communication disruption during the on-road experiment was 

relatively brief, lasting less than two minutes, providing a limited dataset. 

Moreover, most of the communication dropouts during the experiment occurred 

during relatively high-speed driving on dual carriageways, leading to a potential 

gap in data from urban areas. Another observed limitation was the insignificant 

difference in training times across the models, likely attributable to the modest 

size of the dataset. Therefore, gathering additional data from diverse scenarios in 

future experiments could significantly refine and optimise the model, enabling it 

to perform at its highest potential.  
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Chapter 8:  Conclusions 

8.1. Main Contributions 

The rapid growth of global vehicular traffic has necessitated intelligent 

transportation systems to combat congestion, ensure road safety, and maintain 

environmental sustainability. In light of this, the Connected and Autonomous 

Vehicles (CAV) stand out as a promising technology for the future of 

transportation, with Vehicle-to-Vehicle (V2V) communication serving as a critical 

component. V2V communication allows vehicles to share dynamic information 

amongst one another, allowing increased road safety through reduced collision 

risks, improved traffic flow via enhanced vehicle coordination, and a minimised 

environmental footprint by optimising driving habits, fuel consumption, and 

emissions. 

Although the potential of widespread V2V networks have been theorised over 

the past 40 years, it was only in the recent decades that technological progress 

has made real-world V2V deployments feasible. Numerous pilot projects and 

field trials have been carried worldwide to evaluate the practicality and efficacy 

of V2V networks, interoperable standards have been proposed and developed by 

regulatory bodies, and automotive manufacturers are increasingly adopting V2V 

capabilities in their new vehicles. 

However, while there has been numerous research on V2V communication, a 

significant portion has been conducted within simulated environments. While 

these studies provide important insights into V2V performance, the results may 

be limited by the assumptions and simplifications inherent in simulation models, 

and may not accurately reflect the realities and challenges associated with V2V 

system deployment in real-world conditions. 
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This thesis aims to bridge the gap by performing an in-depth evaluation of V2V 

communication systems in real-world scenarios, involving a comprehensive 

review of existing literature, investigation and development of a custom OBU 

hardware platform with wide range of connectivity capabilities and modular form 

factor, planning and execution of outdoor experiments with road-legal vehicles 

on public roads, processing, examination, and discussion of collected data, and 

experimentation with machine learning algorithms for the proactive prediction of 

communication disruptions. 

A detailed review of existing literature regarding V2V communication was carried 

out in Chapter 2, including its background and history, working principle and 

benefits, competing standards of DSRC and C-V2X and their strengths and 

weaknesses, infrastructure requirements, and its deployment status and future 

challenges. The working principle and the merits and weaknesses of several 

popular machine learning classification algorithms were also discussed. The 

literature review provides an enhanced understanding of the topics involved, and 

establishes a theoretical foundation for subsequent chapters. 

Chapter 3 documents the development process of a custom OBU hardware 

platform. The design goals and requirements were first identified, with a 

discussion of the benefits of developing the custom hardware to suit the exact 

needs of this project. The purpose, requirements, and justification of the major 

components of the OBU were discussed, as well as an introduction of Printed 

Circuit Boards and several important design considerations for optimal 

performance involving high-speed signals. The design of two iterations of the 

custom OBU board was introduced, including the novel incorporation of PC/104 

form factor to improve modularity and upgradeability. 

With the completion of the OBU hardware and in anticipation of the outdoor 

experiments, Chapter 4 introduced a number of software packages and digital 

tools to be used for data processing, visualisation, and analysis, as well as a 
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selection of Key Performance Indicators for quantifiable assessment of system 

performance, laying the groundwork for concepts in later chapters. 

Chapter 5 documents the first outdoor test utilising the completed OBU 

hardware with the goal of confirming the OBU and its subsystems were 

performing in a stable and reliable manner. Test plans and procedures were 

described in detail, and the data collected from the preliminary test was 

visualised, and the observed KPI characteristics are discussed. The experiment 

validated the hardware design's functionality and stability, and the KPI data 

revealed a maximum communication range nearing 900 meters under open-air 

conditions with line of sight. 

After the successful preliminary experiment, Chapter 6 documents the planning, 

execution, and the results of a new outdoor experiment that was considerably 

more comprehensive than its predecessor, featuring real-world driving scenarios 

with multiple road-legal vehicles navigating public roadways under a diverse 

range of traffic conditions, road environments, and vehicular speeds. 

The experiment was carried out successfully according to plan, and the test 

results were examined and discussed. It was found that the two vehicles were 

able to maintain stable V2V communication for the majority of the experiment, 

although compared to the preliminary test in near-ideal conditions, the signal 

quality in this test exhibited noticeably more variance due to the real-world 

imperfections such as buildings, foliage, curves, and obstruction of other 

vehicles. FSPL was responsible for most of the signal degradation, although 

additional factors such as small-scale fading and signal shadowing also 

contributed to the power loss. 

Inter-Packet Gap (IPG) and Packet Error Rate (PER) parameters were also 

investigated, and a usable communication range of the V2V setup was 

determined to be approximately 550 meters, with a 10% PER threshold. This was 
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notably shorter than maximum communication range due to the aforementioned 

factors. 

Another important part of the experiment was to leverage the capability of V2V 

to transmit and broadcast GNSS correction data to nearby vehicles, allowing 

improved positioning accuracy even if they lack network connectivity of their 

own. The collected data was compared to the reference positioning result from a 

Leica receiver, and improvements of 25% in median accuracy and 80% in 

standard deviations were observed, validating the feasibility of this objective. 

Finally, cellular environment data along the test route was examined, revealing 

more optimal cellular service quality in urban and built-up areas, and outdated 

service types, weaker signals, and reduced network throughput in rural areas, 

suggesting that infrastructure improvements may be required in order to achieve 

optimal Cellular V2X performance. 

Chapter 7 covers the experiments to investigate the potential use of machine 

learning classification models to mitigate potential V2V communication 

disruptions. The dataset was pre-processed, and five models were trained, with 

REPTree displaying the most optimal balance between accuracy and 

generalisability, demonstrating the feasibility of the objective.  

Overall, this research project features a multidisciplinary approach for a detailed 

investigation of the construction, deployment, and performance of V2V 

communication system in real-world environments, while also exploring 

additional areas of innovation such as GNSS correction data broadcasting, and 

machine learning-based pre-emptive interruption prediction. The results of this 

research project make valuable contributions to the field of V2V research, and 

provides a robust foundation for further explorations.  
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8.2. Limitations and Areas for Improvement 

While this research project has yielded meaningful and valuable results, several 

limitations and areas for improvement have been identified, which might further 

enhance the completeness and quality of this project. 

A notable area for improvement involves broadening the quantity and diversity 

of data collection. While the test route incorporated a variety of driving 

scenarios, including different speed limits, following distances, and road types, it 

did not cover several other typical scenarios such as congested urban traffic, rural 

areas, motorway driving, and weather conditions such as rain, fog, or snow. 

Additional experiments incorporating these scenarios could provide further 

insight into system performance. Moreover, during the on-road experiment, 

communication disruptions were brief and mostly occurred during high-speed 

travel on dual carriageways. Gathering more data on communication interruption 

scenarios in urban environments could also offer deeper understanding of V2V 

performance and improve the effectiveness of machine learning models. 

Another potential improvement involves the use of higher-quality equipment, 

such as professional-grade, dual-frequency GNSS antennas to enhance 

positioning accuracy, and 5.9GHz DSRC antennas for improved signal strength 

and extended communication range. The incorporation of such upgrades may 

have enhanced the results even further. 

Finally, a closer and more detailed exploration of C-V2X technology could 

potentially yield more insights into the evolving V2V landscape. As an emerging 

technology, C-V2X offers both device-to-device and device-to-infrastructure 

communication options, attracting the attention of many automobile 

manufacturers. Therefore, it would have been beneficial to evaluate and 

compare the performance of both C-V2X and DSRC-based V2V systems across 

various real-world scenarios, in order to provide valuable perspectives on the 
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respective strengths and limitations of these technologies, and inform the 

strategies for future V2V system development and deployment. 

8.3. Future Work 

As this research project concludes, the achieved goals set a robust groundwork 

for future investigations. 

As previously suggested, conducting additional experiments in diverse driving 

environments, as well as comparing DSRC-based V2V communication with C-V2X, 

would contribute to a deeper understanding of V2V performance in real-world 

settings. Gathering more data would also encourage the development of more 

accurate and robust machine learning models capable of predicting 

communication disruptions, as well as developing plans to observe how they 

perform in real time during experiments. 

The OBU hardware can also benefit from upgrades to keep pace with the latest 

technology, such as updating to the faster and more capable Raspberry Pi 

Compute Module 4, integrating a new C-V2X transceiver, adding 5G cellular 

capability, upgrading to a dual-frequency GNSS receiver, and incorporating 

additional sensors. The PC/104 stackable and modular form factor of the OBU 

ensures these upgrades can be easily incorporated by adding or replacing the 

relevant circuit boards. 

Moreover, the experience gained from the hardware design process, along with 

the intellectual property accrued, lays a strong foundation for the potential 

commercialization of the device. Additional steps, such as designing an 

appropriate enclosure, performing further testing, and obtaining necessary 

certifications, may be needed to make the device market-ready. This research 

thus not only contributes to academic knowledge but also holds promise for 

tangible, real-world impact. 
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8.4. Summary 

This research project features a multidisciplinary approach of a detailed 

investigation of the construction, deployment, and performance of V2V 

communication system in real-world environments, while also exploring 

additional areas of innovation such as GNSS correction data broadcasting, and 

machine learning-based pre-emptive interruption prediction.  

The project began with an extensive literature review on V2V communication, 

considering its historical development, functioning, benefits, competing 

standards, and future challenges, serving as a foundation for the investigation. 

The research then covered the development of a custom on-board unit (OBU) 

hardware platform designed to meet the project's specific requirements. 

Subsequently, outdoor experiments were planned and carried out using the 

custom OBU. Various software packages and tools were selected for data 

processing, visualisation, and analysis. Key Performance Indicators (KPIs) were 

outlined to assess the system's performance quantitatively. 

Comprehensive experiments were planned and carried out, testing the OBU 

under real-world driving scenarios. Additionally, the experiment explored a 

custom implementation of GNSS correction data broadcasting that allows nearby 

vehicles to improve their positioning accuracy. The feasibility was confirmed by a 

significant improvement in positioning accuracy. 

The research also investigated the application of machine learning classification 

models to predict and mitigate potential V2V communication disruptions, testing 

a number of classification models with excellent results. 

This project delivers a detailed investigation into V2V communication systems, 

with an emphasis on practical application and real-world scenarios. It features 

important aspects of the design, deployment, and performance of these systems 

while also exploring innovative concepts such as GNSS correction data 

broadcasting and disruption prediction through machine learning.  
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Furthermore, the research led to the development of substantial intellectual 

property, including the custom OBU hardware platform and the machine learning 

models, which holds potential not only for further academic progression, but 

also for potential commercialisation, as well as making a contribution to the 

future of intelligent transportation systems.  
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