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Abstract 

Additive Manufacturing (AM), also known as 3D printing, refers to a 

family of manufacturing technologies that use a layer-by-layer approach 

to converting digital models into physical components. The adoption of 

AM has offered significant sustainability benefits such as improved 

resource efficiency, extended product life, and reconfigured value 

chains. However, despite these prospective benefits, the full potential of 

the sustainable aspects of AM has not been explored, due to a lack of 

knowledge regarding environmental sustainability improvement in AM. 

This thesis documents work on investigating the environmental 

sustainability improvement in polymer Laser Powder Bed Fusion 

(LPBF) from a production planning perspective. Three studies were 

performed to understand how to improve the environmental 

sustainability of AM: modelling, optimisation, and network effects 

investigation. 

The modelling study revealed environmental sustainability elements in 

polymer LPBF and their share in the environmental impacts of polymer 

LPBF. To do this, a layer-based environmental sustainability model was 

established. In this model, the build time, energy consumption, 

embedded energy, material consumption, and risk of build failure were 

considered. It was shown that embedded energy dominated the total 

energy consumption (approximately 40 to 60%). Meanwhile, the energy 

relevant to risk of build failure contributed to approximately one third of 

expected total energy consumption at full capacity utilization. 

The study of optimisation demonstrated that integrated optimisation 

plays a significant role in improving energy efficiency during the additive 

process. In this study, an exploratory simulation was used to investigate 

integrated optimisation through the system (or computational tool) 

development. Building on this, a new framework of integrated 

optimisation was established. Build volume packing and scheduling 

were jointly optimized. Specifically, a bottom-left heuristic, capacity 
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aggregation algorithm and exhaustive search were used to support 

integrated optimisation. Specific energy consumption was regarded as 

the optimisation objective. It was found that integrated optimisation 

approach had a significant effect on improving energy efficiency of 

polymer LPBF at higher demand profiles. The developed system 

allowed a lower specific energy consumption during the additive 

process than the results in extant literature. 

The study of network effects revealed the extraordinary potential for 

environmental sustainability improvement in polymer LPBF by 

investigating the environmental network effects in the AM platform. 

Environmental network effects reflect the mutual impact regarding 

quantity and benefits (i.e., energy efficiency and lead time) between 

customers and machine operators (or manufacturers) in AM platform.  

Specifically, machine operators are assumed to care about energy 

efficiency (i.e., specific energy consumption) and customers are 

assumed to concern lead time (i.e., schedule attainment). Another 

computational tool was developed to support this investigation. A build 

volume-based capacity aggregation algorithm was developed in this 

system. Specific energy consumption and schedule attainment were 

considered as the metrics to uncover environmental network effects in 

the AM platform. It was shown that there were indirect network effects 

embedded in the AM platform. These powerful effects are likely to help 

manufacturers improve energy efficiency and help customers reduce 

waiting time. Based on integrated optimisation, using network effects in 

the AM platform shows greater performance in improving the 

environmental sustainability of AM. 
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Glossary of terms 

3DIP 3D Irregular Packing   

AM Additive Manufacturing  

BJ Binder Jetting  

BL Bottom-Left  

CAD Computer Aided Design 

CNC Computer Numerical Control  

C&P Cutting and Packing  

DED Directed Energy Deposition   

DLD Direct Laser Deposition 

DMD Direct Metal Deposition 

FDM Fused Deposition Modelling  

GA Genetic Algorithm 

GHGs Greenhouse Gases   

IPCC Intergovernmental Panel on Climate Change  

LENS Laser-Engineered Net Shaping 

LCA Life-Cycle Assessment  

LPBF Laser Powder Bed Fusion  

ME Material Extrusion 

MTBF Mean Time Before Failure  

MJ Material Jetting 

MIP Mixed-Integer Programming   

OM Operations Management   

OLS Ordinary Least Squares   

P-LPBF Polymer Laser Powder Bed Fusion   

PBF Powder Bed Fusion   

RP Rapid prototyping   

SA Schedule Attainment   

SEC Specific Energy Consumption 

SL Sheet Lamination    

SLA Stereolithography  

WAAM Wire and Arc Additive Manufacturing  
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Chapter 1: Introduction 

1.1 Background 

Global warming, reaching 1.5°C in the near-term (2021-2040), would 

create unavoidable increases in multiple climate hazards and pose 

multiple risks to ecosystems and humans (Figure 1.1). Following the 

2018 Intergovernmental Panel on Climate Change (IPCC) report 

"Global Warming of 1.5 ◦C”, the global CO2 emission must be reduced 

by 50% by 2030 to 2040 (IPCC, 2018). 

 

 

Figure 1.1: The interactions among the coupled systems of climate, 

ecosystems, and human society 

(image source: adapted from IPCC (2022)) 

The share of fossil fuels in the global energy mix has been stubbornly 

high, at approximately 80%, for decades. In the Stated Policies 

Scenario (STEPS), this share decreases below 75% by 2030 and to just 

above 60% by 2050. A high point for global energy-related CO2 

emissions is reached in the STEPS in 2025 shown in Figure 1.2, at 

37 billion tonnes (Gt) per year, and then fall back to 32 Gt by 2050 (IEA, 

2022). 
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Figure 1.2: Fossil fuel demand in the Stated Policies Scenario, 1900-2050 

(image source: adapted from IEA (2022)) 

In the US, the manufacturing sector accounts for approximately 33.3% 

of the nation’s primary energy usage and 30% of energy-related GHG 

emissions in 2021 (Nelson et al., 2022). It is expected that global industry’s 

resource demand will double by 2050. An urgent need, cutting 75% of 

emissions per unit output to realize the target — of 50% of emissions 

reduction, needs to be addressed (Allwood and Cullen, 2009, Cassettari et al., 

2017, Gutowski et al., 2005, Gutowski et al., 2006). 

Additive Manufacturing (AM) holds great potential for curbing 

emissions, improving environmental impacts, costs as well as 

increasing production flexibility and quality of products by improving 

resource efficiency, extending the life span of products, and 

reconfiguring value chains  (Baumers et al., 2017a, Efstathiades et al., 2002, 

Ford and Despeisse, 2016, Huang et al., 2013, Oettmeier and Hofmann, 2017). 

Additive manufacturing, which has emerged as a manufacturing 

technology recently, was originally invented for the manufacture of 

prototypes automatically. Such technologies were developed in the 
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1980s and 1990s (Levy et al., 2003). They allow adopters to create objects 

with minimal technological constraints. In other words, Maruthi and Rashmi 

(2015) say, "Implementing tools and techniques in production and 

service makes a better manufacturing sector". A definition embedding 

the characteristics of AM technology is provided by (ASTM, 2015): 

 

 

 

 

 

This definition stresses that AM features both an innovation in product 

creation and development. An example of an available commercial AM 

system, Figure 1.3 presents a type of Polymer Laser Powder Bed 

Fusion (P-LPBF) technology (model EOSINT P 100) by the equipment 

manufacturer EOS GmbH. The standard formulated by American 

Society for Testing and Materials (ASTM) group “ASTM F42 – Additive 

Manufacturing” classifies AM processes into seven categories, which 

include Powder Bed Fusion (PBF) (ASTM, 2009). This research used P-

LPBF to describe the specific technology referring to in this category. 

As one of the most common AM technology variants, the fabrication of 

parts on this machine occurs in an enclosed internal build volume (Singh 

et al., 2020). In this chamber, parts are printed layer by layer. However, 

the physical dimensions of parts are subject to the size of the 

workspace. In most AM technology variants, the additive process can 

be observed through a window, which can be seen on the left side of 

the machine shown in Figure 1.3. A computer is usually contained 

within the AM system for system control and information exchange. 

“A process of joining materials to make parts 

from 3D model data, usually layer upon layer, 

as opposed to subtractive manufacturing and 

formative manufacturing methodologies.” 
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Figure 1.3: An example of an AM technology 

Compared to the conventional manufacturing processes, for example, 

machining and injection moulding, P-LPBF is embedded with two 

distinguishing features: (1) P-LPBF is capable of effectively producing 

complex product geometry and part shapes; (2) P-LPBF is able to print 

multiple parts contemporaneously in a build (Baumers, 2012, Ruffo et al., 

2006). 

Based on the mentioned features, P-LPBF technologies are allowed to 

create novel products and reduce the complexity of supply chains by 

manufacturing products in a single production step (Tuck et al., 2007). 

Specifically, P-LPBF adoptions tend to save costs in transportation and 

inventory, resulting in impacts throughout the supply chain. As stated by 

Thomas (2016), it is challenging to gather and estimate the supply chain 

costs for a specific part, and a comprehensive understanding of the 

impacts of P-LPBF adoption on supply chain cost is required to address 

these issues. In addition, the overwhelming features of P-LPBF 

technologies allow the possibility for the mass production of varied 
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products. Hashemi et al. (2020) suggested that a mix of subtractive 

manufacturing and additive manufacturing (e.g., P-LPBF) techniques 

would be the most likely scenario for the mass production, for example 

in the production of electrochemical reactors. 

It has been identified that P-LPBF holds four main advantages: (1) 

printing parts without many geometric constraints; (2) allowing highly 

customized production in small quantities at a relatively low cost; (3) 

lower environmental impacts during the use phase with lightweight 

design; and (4) reducing supply chain costs by localized logistics 

(Attaran, 2017, Tuck et al., 2008, Van Sice and Faludi, 2021) 

While it is occasionally claimed that P-LPBF is able to generate parts 

without geometric constraints, this does not mean it could remove all 

manufacturing restrictions. Diegel et al. (2010) suggested four principal 

design considerations: (1) enclosed voids. Designing a small opening 

for a part to allow to remove the internal power when hollow structures 

are required; (2) surface finish. Considering the orientation and angle 

when designing and printing the component due to the "staircase" effect 

on horizontally sloping surfaces of the component; (3) strength and 

flexibility. Parts should be printed to offer the most favourable results 

based on the orientation; and (4) machine and material costs. 

Considering the ratio of value and quantity of the product that needs to 

be manufactured. 

Owing to its unique advantages, adopting P-LPBF is likely to enable 

new business models (Tuck et al., 2007, Holmström et al., 2016). As 

summarized by Savolainen and Collan (2020), there are two streams of 

literature on how P-LPBF technologies will form the business of 

manufacturing: (1) incremental change stream — adopting P-LPBF 

technologies will help current manufacturers increase their profits and 

the position on the markets; (2) disruptive change stream — P-LPBF 

has a significant role to play in the current distribution of economic 

value in the manufacturing sector. Concerning the role of P-LPBF in 

future business, they anticipated that LPBF technologies will still be a 
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complementing technology for the selected set of products and found 

that AM manufacturers will be likely to support spare parts service via 

OEM-based digital platforms in closed business environments. 

However, some limiting factors hinder the application of P-LPBF, for 

example, dimensional accuracy, quality of surface finish, and 

repeatability problem (Ruffo and Hague, 2007). In addition, some AM 

processes (e.g., metal LPBF) may need post-processing, for instance, 

thermal post-processing, laser peening, laser polishing, machining, and 

abrasive finishing (Peng et al., 2021a). Considering these factors, LPBF 

becomes less sustainable than conventional manufacturing 

technologies, e.g., machining and injection moulding processes (Kellens 

et al., 2017a). 

As with any manufacturing process, the sustainability performance of 

AM is determined by a multitude of factors. Such factors include all 

stages in the product life cycle including design, manufacturing, use, 

maintenance, and end-of-life stages, which could be evaluated from 

environmental, economic, and social aspects (Mohd Ali et al., 2019, 

Taddese et al., 2020). Due to the scope of the study, this thesis mainly 

focuses on the sustainability of environmental aspects in P-LPBF, i.e., 

environmental impacts in the form of energy consumption and closely 

related aspects. The factors considered include waste material streams, 

post-processing energy consumption, process energy consumption, 

and ancillary energy consumption. As the existing literature has shown, 

the importance of these factors on the environmental impacts of P-

LPBF can be significant (Kellens et al., 2017a, Faludi et al., 2017). Figure 1.4 

shows a breakdown of selected environmental impacts for P-LPBF 

(Kellens et al., 2017a). 
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Figure 1.4: Environmental impacts of P-LPBF 

(image source: adapted from Kellens et al. (2017a)) 

 

Depending on the LPBF technology adopted, energy consumption 

characteristics can vary significantly in LPBF. Approximately 60% of 

energy is consumed during the warm up stage in the Powder Bed 

Fusion (PBF) system (Yoon et al., 2014). In metal LPBF printing, the major 

environmental contributor is process energy consumption for most 

scenarios (Faludi et al., 2017). Concerning material consumption, 

approximately 90% of powder remains in the build volume without being 

converted into parts and roughly 10-50% of such remaining powder is 

discarded in P-LPBF (Baumers and Holweg, 2019). In addition, some ill-

structured aspects, for example, the risk of build failure has a strong 

effect on the environmental impacts of metal LPBF (Baumers et al., 2017a). 

One particularly interesting facet in the development and spread of 

technologies, particularly of telecommunication and information 

technologies, has been the emergence of network effects. In this 

context, networks represent the collections of points joined together in 

pairs by lines, which can be found in many systems of interest including 

the physical, biological, and social sciences (Newman, 2018). In general 

terms, network effects arise when an increase in the numbers of 
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participants, i.e., the network members, improves the performance of 

the network (Banton, 2023). This phenomenon is central to the rise and 

dominance of consumer-facing internet services such as Google and 

Facebook, but can be applied to other areas as well, such as systems 

of manufacturing technologies. 

One intriguing question is whether such network effects can be 

harnessed to reduce the environmental burden of manufacturing 

technologies (Baumers, 2019). In the context of groups, or networks, of 

AM machines, this relates to the question of whether there is a 

performance increase when the number of AM manufacturers and 

customers increases. 

In practice, networks of AM technology would rely on a number of 

different functions. As stated by d’Aveni (2015), this would require 

systems, referred to as platforms that can: 

 

 

 

 

 

Building on such a platform, multiple connections can be established 

between manufacturers and customers through the Internet. This can 

also be called cloud manufacturing — a service-oriented business 

model to share manufacturing capabilities and resources in a cloud 

platform (Velling, 2019). 

Adopting cloud platforms, manufacturing companies are likely to gain 

economic benefits by removing essential elements in traditional IT and 

enhancing manufacturing business with improved operational efficiency 

(Xu, 2012). Due to the lower cost of computing and the pervasive 

broadband networking, cloud manufacturing is potentially cost-effective 

for manufacturers and provides a technological alignment with the 

“Orchestrate printer operations, quality 

control, real-time optimization of printer 

networks, and capacity exchanges.” 
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needs of smart manufacturing systems (Knapp and Langill, 2014, Thames and 

Schaefer, 2016). 

As a type of direct digital manufacturing technology, the implications of 

P-LPBF’s digital nature have so far not been understood and 

appreciated in the operational practice, especially in terms of their 

sustainability implications. It has been observed that there are three 

sustainability challenges of in P-LPBF adoption: (1) lacking 

understanding of the environmental performance of P-LPBF 

technologies; (2) automation of P-LPBF systems and process planning 

to improve manufacturing efficiency; (3) improving energy efficiency at 

higher production volumes (Ford and Despeisse, 2016, Hegab et al., 2023). In 

consequence, this thesis is motivated by the opportunity to investigate 

whether innovative production planning approaches can be adopted in 

P-LPBF operations to reduce its environmental burden. 

1.2 Aim and objectives 

The main aim of this thesis is to investigate the scope for environmental 

sustainability improvement in P-LPBF operations. Four specific 

research objectives that are designed to understand and improve the 

environmental sustainability of P-LPBF are as follows: 

1. Create a new model to increase understanding of the energy 

consumption and performance of P-LPBF process. Many elements 

consume energy during the additive process. Understanding each 

element and its share in the total energy consumption is a prerequisite 

for the establishment of a precise energy consumption model and, 

hence, investigation of the performance of AM process (Baumers et al., 

2011a, Watson and Taminger, 2018). 

2. Quantify the impact of the risk of build failure on the energy 

consumption of P-LPBF process. The risk of build failure poses a threat 

to the production cost of metal LPBF, and it is important to investigate 

such an effect on the energy consumption of polymer LPBF process 

(Baumers et al., 2017a). 
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3. Create and apply an exploratory simulation to support sustainability 

improvements improvement in P-LPBF via workflow optimisation. 

Exploratory simulation has a significant part to play in realizing the 

automation of process planning and manufacturing efficiency 

improvement  (Gopalswamy and Uzsoy, 2018, Irdem et al., 2010). 

4. Investigate and uncovering network effects in terms of environmental 

impacts in the AM platform. Network effects have been shown to 

enhance the performance of technologies and operations (Reddy, 2018) 

and may have the potential to reduce the environmental impacts of an 

AM platform (Baumers, 2019). 

1.3 Research methodology 

Building on the research objectives stated above, this thesis presents a 

study of how to improve the environmental sustainability of P-LPBF 

from the development of modelling techniques, application of process 

optimisation, and an investigation of network effects. An experimental 

methodology was used to develop models for determining build time 

and energy consumption. This methodology included part design, 

printing experiments, data preparation and processing. This allowed for 

the generation of precise estimating models. 

Once the predictive models in terms of build time and energy 

consumption were established, the exploratory simulations were used 

to improve the energy efficiency of P-LPBF. In these simulations, a 

computational tool (or system) was developed to enable the integrated 

optimisation of build volume packing and scheduling across multiple P-

LPBF machines and multiple production days. 

Build volume packing was used to optimize the placement of parts 

within the available build space of AM machines. Scheduling methods 

were developed to arrange, control and optimize work and workloads in 

an AM production process. Finally, a system was developed to 

investigate the environmental network effects in the AM platform. The 

mutual impact and relationship between manufacturers and customers 
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were studied through an exploratory simulation. This system helped to 

identify and understand environmental network effects in an AM 

platform, as well as to investigate its significant potential for 

environmental sustainability improvement in P-LPBF. 

1.4 Structure of the thesis 

A description of the content of each chapter is given below. 

Chapter 2 provides an overview of background theory relevant to the 

thesis, consisting of additive manufacturing, sustainability, and 

operations management. Following this, there is a detailed focal 

literature review from three aspects: sustainability of AM, workflow 

optimisation, and environmental network effects. 

Chapter 3 outlines the methodology used in this thesis. It describes test 

part design, printing experimentation, data preparation and processing, 

theoretical descriptions, and simulation implementation. 

Chapter 4 outlines the details of the environmental sustainability 

investigation and reports the results. An environmental sustainability 

model is established. In this model, a set of environmental impact-

related models were constructed. In addition, predictive models of build 

time and energy consumption are developed, and the environmental 

impact results of P-LPBF are presented. 

Chapter 5 develops an integrated packing and scheduling optimisation 

method and present results from its application to P-LPBF. Detailed 

experimental setting and parameters are provided and it is shown that 

the developed method can be used to the improve energy efficiency for 

P-LPBF. 

Chapter 6 describes the method developed to study environmental 

network effects and presents the results obtained. An exploratory 

simulation was used to investigate network effects in P-LPBF and their 

effects on improved environmental sustainability demonstrated. 



12 

 

Chapter 7 discusses this study from five aspects: build volume packing, 

risk of build failure, equilibrium of material consumption, integrated 

optimisation, and environmental network effects. 

Chapter 8 makes conclusions for the work, outlines limitations and 

makes recommendations for future work. 

To aid in understanding the structure of this thesis, Figure 1.7 provides 

an overview of the content of the chapters. 
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Figure 1.7: Structure of thesis chapters  
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Chapter 2: Literature review 

2.1 Introduction and structure 

This literature review aims to identify and evaluate the published work 

on the environmental sustainability of Additive Manufacturing (AM), the 

impact of risk of build failure on the energy consumption of AM, how 

workflow optimisation can be used to improve the energy efficiency of 

AM, and what are the network effects in the AM platform and how such 

effects may improve the environmental sustainability of AM. 

This research merges interdisciplinary theories and methods from 

various fields, with AM technologies, environmental sustainability, and 

operations management, forming the background theory of the thesis, 

as presented in Section 2.2. 

The following sections of this chapter present a summary and analysis 

of the literature in the areas of the environmental sustainability of AM, 

workflow optimisation, and environmental network effects. The 

relationship between the background theory and the focus of this work 

is shown in Figure 2.1. Specifically, Section 2.3 presents the current 

status of research on the environmental sustainability of AM; including 

energy consumption, material consumption, waste and pollution, life 

cycle analysis, and risk of build failure in AM. Section 2.4 provides an 

overview of workflow optimisation in AM, consisting of build volume 

packing, production scheduling, and integrated optimisation. Section 2.5 

introduces concepts such as environmental network effects in AM, 

including industry platforms and network effects. Finally, a summary of 

this chapter is provided in Section 2.6. 
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Figure 2.1: Areas of literature reviewed, indicating the focus of this study 

2.2 Background theory 

2.2.1 Additive manufacturing 

Rapid prototyping (RP) technologies were initially developed in the 

1980s for creating models and prototype components, however, when 

these technologies were further developed for end-use manufacture the 

term Additive Manufacturing (AM) was introduced (Wong and Hernandez, 

2012). The basic principle of these technologies is that a digital model, 

generated through a three-dimensional Computer Aided Design (CAD) 

software application, can be fabricated directly (Gibson et al., 2021). From 

this viewpoint, AM is a computer-controlled process of converting the 

digital CAD model to the physical part as shown in Figure 2.2. 

 

Figure 2.2: Generic process of AM process  

(image source: adapted from Gibson et al. (2021)) 
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Specifically, AM parts are designed and represented using CAD 

software or reverse engineering equipment, for example, laser 

scanning. Once the CAD model is finished, the following step is to 

output an STL file format, which can be read by AM machines. The STL 

contains the external closed surface information of the original CAD 

model, supporting the calculation of slices. Then, some manipulating 

operations are implemented to ensure the correct size, position, and 

orientation for printing when transferring the STL file to the AM 

machine. Prior to the printing process, the AM machine must be set up 

properly, for example by the selection of appropriate material, energy 

source, and layer thickness. The deposition process is then 

automatically conducted. Once the build is finished, the parts must be 

removed from the bed. The next step is to clean up the printed parts 

before they are ready for use, which may require time and experienced 

manual manipulation because parts may be weak at this stage. Before 

using printed parts, an additional treatment, e.g., heat treatment, 

polishing, priming and painting may be carried out. This ensures 

acceptable properties, surface texture and finish. 

Depending on the focus, AM is sometimes called other terms including 

Automated Fabrication (Autofab), Freeform Fabrication or Solid 

Freeform Fabrication, Layer-based Manufacturing, or 3D printing. 

Compared to conventional manufacturing, adopting AM has two main 

advantages: first, AM is likely to generate products with fewer geometric 

constraints. The product could be a complex geometry and multiple 

functions could be integrated into a single component. Second, AM 

allows customized production at a relatively low cost (Tuck et al., 2008, 

Pérez et al., 2020). However, the application of AM is still restricted by a 

set of limitations (Ruffo and Hague, 2007, Divakaran et al., 2022): 

▪ Limited material availability 

▪ Relatively low productivity 

▪ Dimensional accuracy issues 

▪ Poor surface finish 
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▪ Problems with repeatability 

▪ Non-economical production at medium and large volumes 

 

A number of AM technology variants are capable of producing end-use 

products. In these technologies, Polymer Laser Powder Bed Fusion (P-

LPBF) is one of the most widely used techniques (Tuck et al., 2008, Ruffo 

and Hague, 2007). A schematic diagram of P-LPBF is presented to 

introduce the main components of this system as shown in Figure 2.3. 

 

 

Figure 2.3: A schematic diagram of P-LPBF 

(image source: Baumers et al. (2011a)) 

(a) Laser system; (b) powder feeding system; (c) infrared heaters; (d) powder 

deposition wiper; (e) build volume; (f) platform; (g) resistance heating elements; (h) 

overflow containers 



19 

 

This system is equipped with (a) a laser system, used to control a CO2 

laser beam to selectively sinter the preheated surface of the powder 

bed. This is situated at the top of the build volume (e). Polymer powder, 

for example, PA2200, is heated to a below-melting point in the build 

volume. Once the chamber temperature reaches the target level, a 

layer of 0.1 mm powder is spread on the bed. Consequently, a laser 

fuses the powder layer-by-layer based on the corresponding cross-

section area of the part. The platform (f) is then dropped by the layer 

height and a wiper movement is implemented to deliver a new layer of 

powder. During this process, the unused powder is removed to an 

overflow container (h) for reuse. Layer by layer, the same procedures 

take place repeatedly until parts are finished in the build volume. 

Due to its layer-upon-layer feature, AM allows the possibility of 

producing a variety of parts in a build and having a higher level of 

freedom of geometry for designers (Yang et al., 2015). This leads to wide 

industrial applications, for example, aerospace, automotive, jewelry, 

and pharmacy (Ben-Ner and Siemsen, 2017). 

2.2.2 Sustainability 

Sustainability is defined by the World Commission on Environment and 

Development (WCED, 1987) as “the economic-development activity that 

meets the needs of the present without compromising the ability of 

future generations to meet their own needs”. 

Attention should be paid to the environment not just due to its intrinsic 

value, but to save resources for future generations (Kuhlman and 

Farrington, 2010). To be a meaningful concept, Wilkinson et al. (2001) 

indicated that sustainability must involve maintaining, renewing, or 

restoring something specific. In addition, sustainability should also 

include ethical considerations, for example, the fairness of trade-off 

between current economic pressures and the future needs of the 

environment (Wilkinson et al., 2001). 
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Since then, the concept of sustainability has developed further (Kuhlman 

and Farrington, 2010) with the interpretation of sustainability from three 

aspects: economy, society, and environment, which is shown in Figure 

2.4 (Helming et al., 2008, Robert et al., 2005, Tracey and Anne, 2008). 

 

 

Figure 2.4: The “three-pillars” model of sustainability  

(image source: adapted from (Caradonna, 2014)) 

In one variant of this so-called “three-pillars” model, the environment is 

viewed as the foundation of sustainability, and society and economy are 

nested inside. Victor (2021) argued that without the environment, society 

and the economy could not be supported. In other words, the 

environment should always be taken as the conceptual priority in any 

model of sustainability. 

Due to its significance and research scope, this thesis concentrates on 

the environmental aspect of sustainability and a more detailed review of 

environmental sustainability of AM is provided in Section 2.3. 

2.2.2.1 Environmental sustainability  

According to Goodland (1995), promoting environmental sustainability is 

defined as seeking “to improve human welfare by protecting the 
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sources of raw materials used for human needs and ensuring that the 

sinks for human wastes are not exceeded, in order to prevent harm to 

humans”. Generally, the term environmental sustainability tends to be 

seen as a detailed expression of sustainable development by specifying 

the needs as "resources and services" from an ecosystem's 

perspective. Specifically, environmental sustainability could also be a 

condition of keeping balance, resilience, and interconnectedness that 

allows human society to meet its needs from two aspects (Morelli, 2011): 

• Without exceeding the capacity of its supporting ecosystems to 

continue to regenerate the necessary services. 

• Without diminishing biological diversity through human activities. 

The development of an accepted definition of environmental 

sustainability forms an important part of efforts to organize future 

human and economic development in a sustainable way. To do so, 

Morelli (2011) summarized 15 guidelines to provide more clarity of 

purpose and direction, as shown in Table 2.1. 
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Table 2.1 Fifteen guidelines to support the development of environmental 

sustainability (Morelli, 2011) 

Dimensions  Guidelines 

Societal needs • Fabricating nothing will need further generations to 

maintain vigilance. 

• Delivering goods and services that facilitate a 

sustainable economy. 

• Supporting regional employment. 

• Supporting fair business. 

• Selecting the raw materials for new products and 

services based on environmental sustainability. 

Preservation of 

biodiversity 

• Choosing raw materials that sustain the biodiversity of 

natural resources. 

• Applying environmentally friendly and renewable energy 

sources. 

Regenerative 

capacity 

• Maintaining harvest rates of renewable source inputs 

within the regenerative capacities of the natural system. 

• Keeping depletion rates of nonrenewable resources 

inputs below the rate at which renewable substitutes are 

developed. 

Reuse and 

recycling 

• Designing for reusability and recyclability. 

• Designing manufacturing and business processes based 

on a circular economy, reducing emissions, and 

achieving zero waste. 

Constrains of 

nonrenewable 

and waste 

generation 

• The scale of the human economic subsystem should be 

constrained to a level. 

• Keeping waste emissions within the assimilative 

capacity. 

• Developing low-impact modes for transportation criteria. 

• Considering product development and management 

decisions from a complete cycle perspective. 

 

The system’s perspective is particularly helpful when considering the 

sustainability of a process or technology. When considering 

sustainability as an activity or system, three significant questions need 

to be addressed including (Bell and Morse, 2012): (1) what is the system to 
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be protected and where is the system boundary? (2) what is the time 

scale? (3) what is the system quality that would be improved? 

Forming a general framework for the assessment of a system’s quality, 

Smeets and Weterings (1999) identified five indicators of environmental 

sustainability shown in Figure 2.5. 

 

 

Figure 2.5: Five indicators of environmental sustainability 

(image source: adapted from Smeets and Weterings (1999)) 

In this figure, each indicator represents a specific type of environmental 

impact, and five indicators form the Driver-Pressure-State-Impact-

Response (DPSIR) framework. Starting from D, "driver" reflects the 

resource needs of individuals and industrials. This leads to human 

activities that put "pressure" (e.g., GHG and chemical emissions) on the 

environment. Consequently, the "state" of an environment may be 

changed and pose a threat to the environment ("impact"), for example, 

biodiversity loss and human health damage. This finally triggers the 

"response" from the government including regulations and taxes. 

Environmental sustainability refers to varied elements from different 

aspects, for example, emissions, resources, and regulations. Due to the 
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scope of the investigation, this thesis only considered energy 

consumption, resource consumption (e.g., material), and waste to study 

the environmental sustainability of additive manufacturing. A more 

detailed literature review is presented in Section 2.3. 

2.2.3 Operations management 

Operations Management (OM) is associated with the activity of 

managing resources to produce and deliver products and services (Slack 

et al., 2010). OM can also be considered as the design, operation, and 

improvement of productive systems that are designed for getting work 

done. Operations are more than planning and controlling; it's doing. 

Whether it's superb quality, customization or low cost, excellence in 

operations is crucial to a company's success (Russell, 2011). 

Operations is usually defined as a transformation process as shown in 

Figure 2.6. 

 

 

Figure 2.6: Overview of operations management 

Specifically, inputs (e.g., material and information) are transformed into 

outputs (e.g., products and services) (Holweg et al., 2018). In OM, the 

transformation process is required to perform efficiently so that the 

output is of greater value than the sum of inputs. Therefore, operations 

has a significant role to play in creating value. This allows us to view the 

transformation process as a sequence of activities along a value chain 

extending from supplier to customer (Russell, 2011). The transformation 
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process consists of three OM activities (i.e., design, planning and 

control, and improvement) and an operations strategy. 

Importantly, the view of an operations system as transforming inputs 

into outputs also identifies it as the focus of environmental impacts and 

sustainability-related factors. This implies that OM approaches and 

methods can also have a significant effect on the performance of 

industrial systems such as AM technologies. 

2.2.3.1 Planning and control 

Planning and control are associated with the reconciliation between the 

market requirements and the operation’s resources that can be 

delivered (Chapman, 2006). Specifically, planning is a formalization of 

what is intended to happen at some time in the future. Control is the 

process of handling changes in these variables. It may mean that plans 

need to be redrawn. 

Planning and control require the reconciliation of supply and demand in 

terms of volume, timing, customer contact, and quality (Chapman, 2006). 

This literature review focuses on an overview of volume and timing 

because the main part of this study focused on these issues. According 

to Olhager (2013), four overlapping activities related to planning and 

control can be identified, as shown in Figure 2.7. 

 

 

Figure 2.7: Planning and control activities 
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Loading means the amount of work that is arranged for a workshop. 

For instance, a machine on the shop floor of a manufacturing business 

is available 84 hours a week. However, this does not mean that 84 

working hours would be loaded onto that machine due to the subject of 

the production tasks and situations (Slack et al., 2010). 

When work arrives, decisions must be made on the order in which the 

work will be handled. This activity is called sequencing. The priorities 

given to work in an operation are often determined by some predefined 

set of rules, for example, due date, last-in-first-out, and first-in-first-out 

(Pinedo, 2012). 

Once the sequence of work has been determined, the next step is to 

allocate the available jobs on machines based on a detailed timetable 

showing the start time/date and end time/date of jobs. This process is 

called scheduling (Parente et al., 2020). 

Having formulated a plan for the operation through loading, sequencing, 

and scheduling, the final step is monitoring and control. Each part of 

the operation needs to be monitored to ensure the progress of the 

planned activities. Any deviation from the plans can be rectified through 

some interventions in the operation, which itself will probably involve 

replanning (Jones et al., 2001). 

2.2.3.2 Operations performance objectives 

OM can have a significant role in a business by affecting financial 

performance. Even when compared with the effects of other parts of the 

business, the contribution of operations can be considerable. To 

understand the strategic contribution of the operations, it is important to 

understand and measure its performance (Jacobs et al., 2004). According 

to Slack et al. (2010) and de Burgos Jiménez and Céspedes Lorente (2001), six 

operations performance objectives have been identified, as shown in 

Figure 2.8. 
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Figure 2.8: Operations performance objectives  

Quality is consistent conformance to customer's expectations, but the 

things which the operation needs to do right will vary according to the 

type of operation. All operations view quality as a particularly significant 

objective. In some ways, quality is the most visible part of what an 

operation does (Akkerman et al., 2010). 

Speed indicates the elapsed time between customers requesting 

products or services and receiving them. The main benefit to the 

operation’s customers of speedy delivery of goods and services is that 

the faster they can have the product/service, the more likely they are to 

buy it, or the greater the benefit they receive (Powell and Schmenner, 2002). 

Dependability is delivering products or services on time for customers 

exactly when they need them. 

Flexibility represents being capable of changing the operation in some 

way. This may need to change what the operation does, how the 
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operation does it, or when the operation does it (Slack, 2005). According 

to customers' needs, four types of requirements in terms of operational 

flexibility can be provided: (1) product or service flexibility – the 

operation's ability to produce new or improved products and services; 

(2) mix flexibility – the operation’s ability to produce a wide range of 

products and services; (3) volume flexibility – the operation’s ability to 

change its level of output to produce different quantities or volumes of 

products and services over time; (4) delivery flexibility – the operation’s 

ability to change the timing of the delivery of its services or products. 

Cost competes directly with the price of the companies, which will be 

the companies' major operations objective (Bettley and Burnley, 2008). The 

lower the cost of producing goods and services, the lower can be the 

price to the customers. Every pound reduced from an operation’s cost 

base is a further pound added to its profits. In essence, low cost is a 

universally attractive objective. 

Environmental performance is an objective towards sustainable 

development by products and processes innovation in firms in order to 

efficiently use raw materials and reduce the risks derived from 

environmental responsibility (de Burgos Jiménez and Céspedes Lorente, 2001). 

2.3 Environmental sustainability of AM 

OECD (2008) estimated that industrial users are the largest consumers of 

energy and that their consumption will continue to grow until 2050. In 

this context, it has been stressed that the energy consumption of 

manufacturing processes is a key determinant of sustainability for 

manufacturers (Baumers et al., 2013, Bourhis et al., 2013, Cappucci et al., 2020, 

Peng et al., 2019a, Peng et al., 2019b, Wang et al., 2017, Wang et al., 2018a, Wang 

et al., 2019a). 

To measure the ecological impact of manufacturing activities, Kellens et 

al. (2012) stressed that information relating to manufacturing energy 

consumption, process productivity, and emissions is essential. 

However, it has been noted that the long supply chains and complex 
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distribution networks in manufacturing increase the challenge of 

registering the resource flows (Surana et al., 2005). In this context, an 

important role falls to the measurement of carbon emissions originating 

from electricity consumption (Jeswiet and Kara, 2008). Building on such 

data, the main goal of "design for environment" methodologies is to 

minimize resource consumption during the manufacturing process 

(Telenko et al., 2008). 

Compared to conventional manufacturing (e.g., machining, injection 

moulding), AM affords new possibilities in product design (Hague et al., 

2004), digital supply chain deployment (Tuck et al., 2007), and the use of 

new build materials (Huang et al., 2013). In addition, AM has the potential 

for creating a positive impact on sustainability. The energy footprint of 

AM activities can be low, especially for those processes that do not 

involve long-term processing at elevated temperatures. Furthermore, 

there is no need for AM process to use cutting fluids, casting release 

compounds and forging lubricants, which pose a threat to the 

environment and health. 

Some AM processes, particularly those based on metallic powder 

deposition methods, for example, Direct Metal Deposition (DMD) and 

Laser-Engineered Net Shaping (LENS) are particularly well suited for 

automated part repair. A significant amount of energy can be saved 

when a part is repaired or remanufactured and returned to working 

condition rather than being disposed of or sent to a landfill. Using AM, 

the entire production chain of tooling is eradicated.  Since AM is 

characteristic of being regional or delocalized, transportation can be 

reduced. This lessens carbon footprint and overall environmental 

impacts. Finally, the advantage of AM on design freedom allows parts 

to be fabricated with superior energy consumption in service. Examples 

include gas flow paths, streamlined geometry and lightweight parts 

(Herrmann et al., 2008). 

In summary, AM offers the potential for process sustainability 

improvement by improving resource efficiency (Despeisse et al., 2017), 
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extending the lifecycle of products and eliminating the use of harmful 

ancillary process enablers (Gong et al., 2019, Jiang et al., 2019a, Sreenivasan et 

al., 2010, Verboeket and Krikke, 2019, Wang et al., 2018b). To complement 

sustainable AM, there is a need to improve manufacturing efficiency via 

less impactful supply chains (Huang et al., 2013), efficient processes and 

resource recycling (Despeisse et al., 2017, Kohtala, 2015). 

2.3.1 Energy consumption of AM 

An interesting topic to manage the growing global energy demand and 

the global CO2 emissions requirement seemingly impossible balance 

was proposed at the "MIT A + B Applied Energy Symposia" conference 

(Li et al., 2020). This event aimed to emphasize the socio-economic and 

technical solutions with "A-Action before 2040" and "B-Beyond 2040 

technologies", without irrevocable environmental and socio-economic 

impacts in the next decades (Sun et al., 2021). AM technologies hold great 

potential for saving energy embodied in the manufacturing process by 

reducing material waste and eliminating complex machining steps. It is 

reported that an extensive application of AM technologies is likely to 

lead to a significant saving of global energy use by as much as 27% 

(Verhoef et al., 2018). 

A body of literature has investigated the energy consumption of various 

AM technology variants. Several studies have investigated the energy 

consumption of metal AM. Mognol et al. (2006) proposed a process 

capability criterion (i.e., topological and geometrical criteria) based 

method to manufacture the mould in multiple components using Laser 

Powder Bed Fusion (LPBF). Kellens et al. (2010) investigated the overall 

environmental impact of metal LPBF and Polymer LPBF (P-LPBF) in 

productive and non-productive modes. Baumers et al. (2010) presented a 

comparative assessment of the energy consumption of metal LPBF 

based on standardized geometry. Baumers et al. (2011b) provided an 

overview of energy consumption across different AM technology 

variants and suggested that the effect of capacity utilization on energy 

efficiency varies significantly across different platforms. Peng et al. (2021b) 
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studied the impact of process parameters on part quality, electrical 

energy consumption, and corresponding energy effectiveness of 

AlSi10Mg specimens fabricated by metal LPBF. These studies provide 

a guideline for investigating the energy consumption of metal AM based 

on modelling, manufacturing modes, comparative research, and 

parameters. 

In addition to metal AM, polymer-based AM also received much 

attention. Luo et al. (1999) presented a method to analyse the 

environmental performance of Stereolithography (SLA), P-LPBF, and 

Fused Deposition Modelling (FDM) considering the material, energy 

consumption, processes wastes, and disposal. Sreenivasan and Bourell 

(2009) and Sreenivasan et al. (2010) presented a sustainability analysis of 

the P-LPBF process from an energy standpoint using a LabVIEW 8.6 

circuit. Faludi et al. (2015) performed a Life-Cycle Assessment (LCA) 

approach to compare the environmental impacts of FDM and 

inkjet/polyjet with a traditional Computer Numerical Control (CNC) 

milling machine to determine the most sustainable manufacturing 

method. Wiese et al. (2021) developed a model for the evaluation of 

energy and resource utilization based on a case study with an 

automotive exterior series part using P-LPBF and Multi-Jet Fusion 

(MJF) technologies. Lopes et al. (2022) intended to evaluate the impact of 

energy density on the dimensional, geometric, mechanical, and 

morphological properties of P-LPBF parts produced with Polyamide 12 

material. The aforementioned literature lays a foundation for studying 

energy consumption in polymetric AM from modelling, LCA adoption, 

and comparative research perspectives.  

Sun et al. (2021) reported that the AM processes and printed products 

must be validated and qualified to satisfy the standards of critical parts 

in energy production (e.g., nuclear energy, oil, and gas), conversion, 

and storage systems (e.g., battery and fuel cell). Di and Yang (2022) 

investigated the economic and environmental benefits of the integrated 

Production-Inventory-Transportation (PIT) supply chain structure and 



32 

 

suggested that this structure enabled by AM allows a reduction of 

approximately 26% of Greenhouse Gases (GHGs) emissions. 

Additionally, the energy embedded in the used raw materials and the 

process energy consumption is considered in some studies. Morrow et al. 

(2007) calculated the energy consumption of DMD in this way for virgin 

H13 steel powder. Baumers et al. (2017b) measured the energy embedded 

in recycled Ti-6Al-4V cast material. Gao et al. (2021) analysed the energy 

consumption of raw metal material extraction and subsequent AM 

processes. Liao and Cooper (2020) investigated the embedded energy of 

feedstock material (powder and any inert shielding gas) in metal powder 

bed processes. Van Sice and Faludi (2021) compared the environmental 

impacts of AM and conventional manufacturing, showing that metal AM 

has a significantly higher environmental footprint than some 

conventional processes (e.g., metal machining, and casting). Monteiro et 

al. (2022) undertook a literature review in terms of metal AM and 

summarized four aspects of resource efficiency strategies including 

design, material, process, and end-of-life extension.  

2.3.2 Material consumption of AM 

AM has a great potential for improving materials use, alleviating 

environmental issues, and enabling greater engineering utility 

compared to conventional manufacturing technologies. This can be 

attributed to factors such as freedom from special tooling or moulds in 

fabrication, rapid tooling manufacturing and, significantly compared to 

extractive processes, material waste reduction. Taking advantages of 

these sustainability opportunities, AM has the potential to exert a 

positive influence on the performance of a part from "gate to grave" 

which is a significant part of the complete life cycle (i.e., “cradle to 

grave”) (Sreenivasan et al., 2010). A creative design, for example combining 

multiple components into a single part is likely to facilitate recycling and 

disposal in AM, particularly for plastics and metals. 

Though LPBF is 97% material-efficient in theory and wasting only a 

small amount of raw material in the form non-reusable powder (Allwood 
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et al., 2011, Achillas et al., 2015, Peng et al., 2018), the material efficiency 

reached is usually much less than this in practice due to failed parts and 

material loss. Investigating material losses, Ruffo et al. (2006) modelled 

material wastage by applying a waste factor, between 0 and 1, to 

unprocessed powder in a study of polymeric laser sintering. Similarly, 

Kellens et al. (2011) applied a refresh rate of around 45%, as suggested by 

Dotchev and Yusoff (2009), to quantify the waste streams occurring in laser 

sintering. For polymeric powder bed fusion, Baumers and Holweg (2019) 

found that approximately 90% of powder remains in the build space 

without being converted into parts, and approximately 10% to 50% of 

this remaining powder is typically discarded depending on the material 

used. 

In addition to the refresh rate, a set of literature has studied the impact 

of material on environmental impacts. Kerbrat et al. (2016) presented a 

new methodology to accurately evaluate the environmental impacts of 

an AM part and the results indicated that material consumption should 

be taken into consideration for a complete environmental impact 

assessment. Similar research can be found in references (Kellens et al., 

2017a, Kamps et al., 2018), to support the argument that materials have 

significant effects on the environmental impacts of AM since the energy 

embedded in the material is the largest contributor to the energy 

footprint. To mitigate its impact on the environment, the reduction in 

material use has been investigated based on model analysis, 

assessment approach, process planning, and optimisation. 

In terms of model analysis and assessment, Meteyer et al. (2014) created 

a Unit-Process (UP) level model to analyse energy and material flows in 

the Binder Jetting (BJ) process. Le Bourhis et al. (2014) presented a new 

resource consumption assessment methodology including electricity, 

fluids, and raw material for the DMD process to help engineers obtain 

an environmentally friendly design for AM parts. Yosofi et al. (2018) 

presented a generic method for the acquisitions and characterization of 

inventory data for parts made by AM processes to accurately assess 
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the environmental impact of a product, including energy consumption 

and material use. These studies allow the possibility of lessening the 

environmental impacts of material aspects in AM by using modelling 

and assessment approaches. 

Regarding process planning, Jin et al. (2017a) proposed a design strategy 

relevant to process planning focusing on the material consumption of 

relatively large-volume solid parts in AM. Jiang et al. (2019b) proposed a 

new support generation strategy considering both interior and exterior 

support through AM process planning to reduce the total amount of 

material use, production time, and process energy consumption. Jiang et 

al. (2019c) presented a support generation method to reduce the use of 

support material through printing path planning in AM. Jiang et al. (2019d) 

constructed a four-step strategy to reduce the use of support material in 

AM for multi-part production and the results indicated that this strategy 

can significantly reduce the support waste and total build time. Jiang and 

Ma (2020) offered a review and discussion in terms of path planning 

strategies from three aspects: improving printed qualities, saving 

materials or time, and achieving objective printed properties. These 

investigations offer an angle of view to reduce material use by using 

process planning approaches. 

It is reported that machine chips account for a large share (e.g., 13.7% 

aluminium and 14.6% steel) of the waste produced from all 

conventional manufacturing processes globally (Cullen and Allwood, 2013). 

A promising area of research could be the exploration of AM feedstock 

generated from other manufacturing processes (Huang et al., 2013, Frosch 

and Gallopoulos, 1989, Sutherland et al., 2020). This might involve some 

examples including taking machined chips either directly or after 

modest processing as the raw material of AM process, leading to less 

material consumption and environmental impacts. Such materials need 

further treatment to ensure that are intrinsically environmentally friendly, 

including the requirement to be non-ecotoxic and biodegradable. 
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2.3.3 Waste and pollution of AM 

To make a product, subtractive manufacturing is likely to generate a 

large amount of waste. This may be reduced by as much as 90% when 

using AM instead (Janicke and Jacob, 2013). Although AM seems to be 

more resource-efficient than conventional manufacturing processes, it 

still produces a small portion of waste. Examples of AM waste include 

powder materials that cannot be recyclable, scraped material due to 

build failure, unexpected defects, and support structures used in 

metallic additive processes (Huang et al., 2013, Baumers et al., 2017b). These 

either generate material waste or introduce extra raw material 

consumption. 

To date, only a small research effort has been directed at optimizing the 

printing path and support structure for raw material reduction, and this 

particularly for FDM (Jin et al., 2017b). Research on assessing metallic 

and ceramic AM waste is rare. One reason could be that no actions or 

regulations have been conducted to investigate the management of 

material waste, even at the frontline of upgrading sustainable 

manufacturing, which might be due to the fact that the current AM 

industry still accounts for a relatively small share of industrial 

manufacture (Drizo and Pegna, 2006). Data is missing to showcase the total 

amount of waste generated through AM technologies (Dotchev and Yusoff, 

2009). 

Concerning material waste, Jiang et al. (2018a) presented a new support 

strategy including Printable Threshold Overhang Angle (PTOA) and the 

Longest Printable Bridge Length (LPBL) to reduce material use. Jiang et 

al. (2018b) investigated the parameters of printable overhang angle size 

to reduce build time and material waste by reducing support structures. 

The results found that a lower threshold overhang angle tends to 

reduce support waste. Mohammed et al. (2018) demonstrated that using a 

nanogrid device to power instrumentation for melt extrusion of waste 

polymers into 3D printer filaments is beneficial to supporting near-zero 

carbon footprint. Jiang et al. (2019d) offered a four-step strategy of multi-
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part production to reduce material waste for a support structure in AM. 

Romani et al. (2021) explored the interdisciplinary relationship among 

design, material science, and AM in the context of the circular economy. 

Ferreira et al. (2021) provided a literature review in terms of industrial 

symbiosis and AM to identify the use of waste as input material during 

AM processes and the resource exchanges in an industrial symbiosis 

environment. In all this work it was shown that support structures have 

a significant role in material waste in AM. 

In addition to material waste, the research on the pollution of AM also 

received much attention. Sun et al. (2021) stated that advanced 

manufacturing technologies, such as AM, are capable of extensively 

cutting GHGs emissions, and pollution, and shortening the time-to-

market. Huang et al. (2013) mentioned that it is necessary to investigate 

particulate matter formation during the printing process and the 

explosive hazard of powder material during the handling and use 

processes. Byard et al. (2019) adopted the Gigabot X, an open-source 

industrial 3D printer for a wide array of recyclables, to assess the 

economic potential of AM. Based on these studies, it is suggested that 

some efforts should be put into mitigating pollution problems during the 

additive process. 

However, study of the toxicity and damage impact of AM materials is 

rare (Dotchev and Yusoff, 2009). Compared to conventional manufacturing, 

AM rarely use potentially hazardous consumables, such as cutting 

fluids, forging lubricants, and casting release compounds. For example, 

FDM produces parts with non-toxic thermoplastic materials, e.g., 

polylactic acid, and polyethylene terephthalate, which are processed 

under the melting temperature (Tabone et al., 2010), which has less 

demand on heating energy for the nozzle and worktable (Peng and Sun, 

2017). The emission of Ultra-Fine Particles (UFPs) has raised many 

concerns, and Stephens et al. (2013) suggested that attention should be 

paid to the operating process, particularly in an unvented or unfiltered 

indoor environment. 
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2.3.4 Life cycle analyses of AM 

Although adopting AM has great potential for improving processing 

sustainability, the sustainability of other stages in AM (e.g., raw material 

extraction and use) should not be ignored (Ford and Despeisse, 2016). 

These include “cradle to gate” and “cradle to grave” life cycle analysis 

and the development of green supply chains. As suggested by 

Sreenivasan et al. (2010), it is important when predicting and assessing the 

sustainability of AM products to include life cycle perspectives. 

The origins of life-cycle centric product development can be traced back 

to the 1960s when the environmental movement provoked some 

designers to consider some environmental issues, for example, 

resource depletion and environmental damage from material production 

into product design (Fuller, 1963, Fuller, 2008). To this end, the concept of 

sustainable product development was formally introduced in the 

Brundtland report (Haapala et al., 2013, van Weenen, 1995). This led to the 

development of many design tools to support sustainable product 

development (Bovea and Gallardo, 2006, Luttropp and Lagerstedt, 2006, Ramani 

et al., 2010). Most of these tools, particularly those adopted by 

companies, are in the form of checklists and guidelines that were 

largely established based on expert viewpoints. However, Hocking (1991) 

judged that the environmental performance of products is rather a 

complex choice since energy or material consumption and emissions 

over the complete life cycle of the product must be considered. This 

insight raised many concerns about the effectiveness of sustainable 

design approaches because only isolated recommendations are 

available from the checklists and guidelines. Fortunately, LCA 

methodologies have been developed over a similar timeline to that of 

sustainable product development (Standardization, 2006). 

LCA investigates resource exchanges and flows, such as material and 

energy flows from and to the environment across the complete life cycle 

of a product ("cradle to grave"). As a widely used tool for environmental 

impact assessment, LCA offers a large amount of information to support 
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sustainable product development. This approach has received much 

attention in AM-related research, which could be divided into two 

categories including review and technical comparison. 

Regarding the review of LCA in AM, Frazier (2014) provided a 

comprehensive review of the state-of-the-art of metallic AM from the 

technology, mechanism, business, and environmental perspectives. 

Agrawal and S (2019) reviewed sustainable additive manufacturing 

considering energy consumption, design optimisation, and LCA 

aspects. Colorado et al. (2020) offered a comprehensive review in terms of 

the sustainability of AM from the circular economy and recycling of 

materials to other environmental challenges involving the safety of 

materials and manufacturing. Gao et al. (2021) reviewed the life cycle of 

metal parts printed by AM technologies and provided a comprehensive 

and timely discussion in terms of energy efficiency. The above literature 

offers a detailed review of LCA adoptions in AM from an environmental 

sustainability perspective. 

Other research in this area focuses on a comparison of environmental 

impacts of AM with conventional manufacturing technologies. Faludi et al. 

(2015) adopted LCA to compare the environmental impact of two AM 

machines with a traditional CNC machine. Bours et al. (2017) established a 

framework that combines LCA with sustainable design metrics, 

including the considerations of both human health and environmental 

impact in the later stages of AM life cycle. Bekker and Verlinden (2018) 

performed a cradle-to-gate LCA to compare Wire and Arc Additive 

Manufacturing (WAAM) with green sand casting and CNC milling, 

developing a new insight into the environmental impact of WAAM. 

Stieberova et al. (2022) quantified the environmental and economic benefits 

across the entire life cycle of the application of DMLS in the production 

of metal moulds compared with their die casting. Landi et al. (2022) 

analysed and compared the environmental impact between CNC and 

LENS technologies using LCA. These studies provide comparative 

investigations between conventional manufacturing and additive 
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manufacturing, aiming to support the selection of environmentally 

friendly manufacturing technology in production. 

2.3.5 Risk of build failure in AM 

Build failure poses a risk to product quality and further influences the 

energy and material flow in AM through the need for reprinting. This 

failure may change energy demand, material supply, and the nature of 

production planning (Holmström et al., 2016). The existing literature 

investigating build failure in AM is divided into four categories: software-

based simulation (Bresson et al., 2022, Chakraborty et al., 2022, Ge and Flynn, 

2022), design optimisation (Misiun et al., 2021, Xu et al., 2022), data-based 

estimation (Jirandehi et al., 2022, Wang et al., 2021), and mechanism 

exploration (Osswald et al., 2021, Roh et al., 2021). 

Baumers and Holweg (2019) conducted build failure-related experiments and 

observed four types of failure: outright build failure, permanent part 

rejection, reparable part rejection, and mechanical property failure. 

Table 2.2 compares each type of build failure, including assumed 

consequence, model element, assumption, and probability. 
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Table 2.2: Overview of build failure modes 

Failure mode Outright build 

failure 

Permanent part 

rejection 

Reparable 

part rejection 

Mechanical 

property 

failure 

Consequence Loss of the 

entire build 

Loss of 

individual parts 

Remedial 

work to the 

affected part 

Loss of the 

entire build 

Model 

element 

Probability of 

build failure 

as a function 

of the 

cumulative 

number of 

printable 

layers 

Constant 

probability of 

part rejection 

due to identical 

test geometries 

Constant 

probability of 

part rejection 

due to 

identical test 

geometries 

N/A 

Assumption The 

probability of 

build failure is 

subject to a 

constant 

probability of 

failure per 

layer 

(𝑃𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

Fixed 

probability  

(𝑃𝑛𝑜𝑛−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑏𝑙𝑒) 

Fixed 

probability  

(𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑏𝑙𝑒) 

N/A 

Probability 𝑃𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

= 0.016% 

𝑃𝑛𝑜𝑛−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑏𝑙𝑒

= 2.500% 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑏𝑙𝑒

= 0.833% 

N/A 

 

Outright build failure, the first failure mode, is seen as an unforeseen 

event that happens at some point during operation, resulting in the 

failure of all parts contained in a build and the premature termination of 

the printing process. Adopting a variant of the Mean Time Before 

Failure (MTBF) metric, this failure can be estimated in the form of the 

reliability of AM process (Hopp and Spearman, 2011). Specifically, it is 

represented by a ratio of the number of outright build failure events and 

the total printed layers in the experiments. In this failure mode, each 

build layer is assumed as an independent additive process and the 

failures are randomly distributed per layer. 

The second failure mode, permanent part rejection, is relevant to 

localized events appearing during the printing process and causes the 
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loss of individual parts. As the classical manufacturing defect, it might 

occur, for example, when foreign objects appear in the build volume 

and impact the printing process, resulting in part deformation. 

Reparable part rejection, the third failure mode, occurs when an 

individual part is rejected but it is possible to be corrected after the build 

has been finished. This type of failure can be identified by visually 

inspecting and the dimensional measurement of test geometries. 

The fourth failure mode, mechanical property failure, is identified as an 

unacceptable variation in the mechanical properties of the product. The 

feature of this mode is determined via the test of tensile specimens 

contained in each build experiment. In practice, this failure may be 

derived from insufficient refreshment of the powder remaining in the AM 

machine. 

According to Baumers et al. (2017a), risk-related costs account for 

approximately 26% of total cost in the real AM build configuration. 

However, such impact on the environmental performance of AM, in 

terms of both process energy consumption and the energy embedded 

in the used raw materials, has not yet been investigated directly and in 

combination. This forms a significant omission in the currently available 

literature on AM. 

Although AM supply chains can use significantly less energy, due to the 

shorter transportation and less material use, the high energy needs of 

some AM processes and material preparation should not be 

underestimated (Li et al., 2017a). Due to the risk of build failure, which can 

be substantial in AM (Baumers and Holweg, 2019), it is likely that the 

available methodologies for measuring the energy impact of AM 

understate the actual levels of energy consumption. 

2.4 Workflow optimisation for sustainable AM 

As discussed, the application of AM may form a route to enhance 

manufacturing sustainability. For example, such improvements may 

occur through improvements in resource use efficiency (Allwood et al., 
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2022, Duflou et al., 2012) or by prolonging the in-service life of parts (Wang 

et al., 2017, Verboeket and Krikke, 2019, Govindan, 2022, Ijomah et al., 2007, Jiang 

et al., 2020). To realize sustainability benefits from AM, complementary 

innovation is required in terms of new supply chain configurations 

(Huang et al., 2013) as well as more efficient process and resource 

recycling practices (Despeisse et al., 2017, Kohtala, 2015). 

The process flow in AM is dependent on a set of activities relevant to 

the design, printing process, and downstream considerations. To better 

understand the scope, this research formulated a general framework by 

combining the digital manufacturing process with the generic workflow 

of AM and downstream, which is shown in Figure 2.9. 

 

Figure 2.9: Scope of workflow optimisation in the overall process flow of AM  

(image source: adapted from Baumers et al. (2016)) 

According to Baumers et al. (2016), the combination of production planning 

and machine setup in a single optimisation-based framework is capable 

of maximizing the performance of AM execution and determining 

appropriate supply chain configurations. 

This study operated from the premise that how the AM workflow is 

managed has a strong and underappreciated bearing on the 

sustainability of the additive process. The management of AM workflow 

chiefly requires the tasks of machine scheduling over time and 

assembling individual AM build operations, also referred to as builds, by 

allocating and placing in geometries within the build space internal to 

AM machines. This task is known as build volume packing and is 
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usually executed to maximize capacity utilization (Che et al., 2021). In this 

context, it has been shown that the manufacturing process of AM 

dominates its environmental impacts (Kellens et al., 2017a) and that 

improvements in the pattern of operation can reduce AM's energy 

footprint as well as its financial costs. Increasing the capacity utilization 

ratio of machines tends to reduce unit costs and energy consumption 

(Baumers et al., 2017a, Baumers et al., 2011b). 

The combinatorial problems of optimizing the workflow in AM, which 

can be labelled capacity aggregation, have been studied extensively. In 

the extant literature, four distinct categories of research are identifiable 

in the literature. These are: packing optimisation, schedule optimisation, 

separate optimisation of scheduling and packing, as well as integrated 

optimisation of scheduling and packing. 

To illustrate the function of a workflow optimisation system that deals 

with scheduling and packing in sequence, Figure 2.10 summarizes the 

system that composes a workflow from P parts for M AM machines with 

a fixed sequence of build volume packing and then scheduling. 

 

Figure 2.10: Workflow of scheduling and packing  

(image source: adapted from Chergui et al. (2018)) 
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2.4.1 Build volume packing in AM 

AM, a parallel manufacturing process, is capable of processing different 

part geometries in a single build volume simultaneously (Ruffo and Hague, 

2007). There arises a build volume packing problem resulting from the 

machine setup process, which is best addressed through computational 

approaches (Hur et al., 2001, Nyaluke et al., 1996). 

Romanova et al. (2019) studied a packing problem in AM for ellipses that 

are placed into an arbitrary disconnected polygonal domain. Araújo et al. 

(2019) reviewed existent general cutting and packing taxonomies and 

provided a new specification to classify the problems that appeared in 

AM. Yılmaz (2020) established an optimisation model for the problem of 

AM build processes and vehicle scheduling in a two-stage supply chain, 

where parts are processed on AM machines and delivered to 

customers. Altekin and Bukchin (2022) addressed the simultaneous 

allocation of parts to jobs and jobs to the AM machines as well as 

considered the cost and makespan (i.e., the time difference between 

the start and finish of a sequence of jobs or tasks) as objectives for the 

Direct Metal Laser Sintering (DMLS) technology. These studies offer an 

understanding of packing issues and the solutions to solve them. 

Before arranging the parts on the bed, the representation of the parts to 

be produced is required. This can be achieved, for example by 

projecting geometric information onto the horizontal plane or by a 

Boolean union of all slices of parts after a slicing process (Canellidis et al., 

2013, Zhang et al., 2016). In other cases, 3D geometry can be extracted 

directly from a CAD software package, for example in the STL format. 

After obtaining the required geometrical data, geometries are usually 

converted into a format that can be used by packing algorithms. The 

simplest method is to use the bounding rectangle based on the 

projection of the part on the horizontal plane to represent the real part. 

In this way, such a problem is named 2D packing (Bennell and Oliveira, 

2008). This kind of method tends to be efficient and accurate to 
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represent some kinds of polygons but may add some complexity when 

dealing with curves or more irregular shapes. 

Furthermore, the geometric shape of parts may not easily 

representable, for example if it has a complex internal structure. In this 

situation, the aforementioned projection method may not be able to 

precisely represent the geometries when meeting special features, for 

example, cavities inside a geometry. 

In practice, the implementation and use of such computational tools 

must balance solution efficiency and quality. Nevertheless, the 

bounding box of geometry is often used to represent the real part. 

Depending on the ways of packing parts in a build volume, such a 

problem is named 2D or 2.5D packing (Novak et al., 2019). 

In addition to the above approaches that have been used to build 

volume packing in AM, many other possible solutions for the 3D 

Irregular Packing (3DIP) problem, for example, pixel/raster and Deepest 

Bottom-Leftfill Packing (DBLF) (Bennell and Oliveira, 2008, Araújo et al., 2020). 

In summary, current approaches to build volume packing problems in 

AM include one dimensional (Yılmaz, 2020, Altekin and Bukchin, 2022, 

Kucukkoc, 2019, Ransikarbum et al., 2020), two-dimensional (Che et al., 2021, Hu 

et al., 2022, Oh et al., 2018a, Tafakkori et al., 2022), and three-dimensional 

packing (Araújo et al., 2020, Wu et al., 2014, Yau and Hsu, 2022). 

A variety of packing approaches have been investigated to achieve the 

specific objectives. The selection of the best packing technique is 

dependent on the attributes of the problem, the production constraints 

of the AM technology used, and material requirements (Hur et al., 2001, 

Canellidis et al., 2006, Ikonen et al., 1997). 

Some algorithms, for example, address the free allocation of parts 

within the build volume. This may result in an unwanted configuration in 

that one part is placed on top of others (Araújo et al., 2019). These 

approaches tend to be used for relatively unconstrained AM 

technologies such as P-LPBF where a support structure is not required 
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(Gibson, 2015). Other AM technology variants may need more 

consideration of the need of support structures, for example, SLA, SLM, 

and EBM. 

Cutting and Packing (C&P) algorithms have been a long-standing 

subject of investigation in the field of Operations Research (Chernov et al., 

2010, Côté and Iori, 2018, ElShishtawy et al., 2022, Gomes et al., 2016). From this 

viewpoint, build volume packing forms a type of combinatorial 

optimisation problem where a set of arbitrarily shaped items must be 

packed into given build volumes or chambers. In this way, the total 

empty room between parts is minimised (Wäscher et al., 2007). Such 

optimisation problems are classified as NP-Hard (Garey and Johnson, 

1979). To this end, the packing algorithms have been investigated 

extensively. 

Some studies have investigated the Genetic Algorithm (GA) for build 

volume packing optimisation. Wodziak et al. (1994) employed GA to obtain 

a near-optimal arrangement of parts by considering their bounding 

boxes to make the utmost use of the available build space and minimize 

the build time. Hur et al. (2001) developed a hybrid BL and GA approach 

to determine the best build layout considering the orientation and 

packing of multiple parts in P-LPBF. Canellidis et al. (2006) adopted the GA 

technique to identify the satisfied fabrication orientations and packing 

arrangements of parts in conjunction with a new improved packing rule. 

Canellidis et al. (2010) combined GA, Bottom-Left (BL), and effective 

placement rules as a means of optimizing the build volume of AM. Zhang 

et al. (2018) proposed an integrated strategy including AM feature-based 

orientation optimisation and parallel nesting with GA to solve the 2D 

packing optimisation of multiple parts. These investigations allow build 

volume packing improvement by using metaheuristics, facilitating the 

shift from digitalization to intellectualization in AM. 

Local search methods for packing optimisation have also received 

much attention. Egeblad (2009) adopted a local search algorithm to obtain 

an optimized placement of irregular shapes in 2D or 3D in a build 
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without shapes overlap. Egeblad et al. (2009) used an efficient approach to 

pack d-dimensional polytopes within the bounds of a polytope build 

volume using local search, aiming to minimize the volume of overlap 

with all other polytopes. Lee et al. (2009) developed a local search-based 

method to allow an efficient implementation of key operations, including 

wall overlapping detection of particle–particle and particle–container, 

accurate identification of the overlapping region, as well as particle 

shifting and rotation. Lutters et al. (2012) proposed a local search-based 

algorithm for 3D packing of complex-shaped geometries, including the 

determination of the preferred orientation of a part and actual packing 

stages. Liu et al. (2015) proposed a local search-based algorithm for the 

3D packing of irregularly shaped parts with minimum total energy. The 

above literature lays a basis for obtaining optimized solutions through a 

computational way in build volume packing. 

A set of studies have been conducted on Tabu Search (TS), a heuristic 

method to various combinatorial problems, for addressing 3D packing 

optimisation problems. Lodi et al. (2004) used a tabu search method to 

address 2D and 3D bin packing problems, as well as exhibited virtually 

any of their variants requiring the minimization of the number of bins. 

Crainic et al. (2009) utilized a two-level tabu search approach to solve the 

3D orthogonal bin packing problem where a set of boxes must be 

orthogonally packed into the minimum number of bins. 

Compared to using heuristics, mathematical modelling, a conventionally 

analytical approach, has also been used in build volume packing 

optimisation. Stoyan et al. (2005) developed a mathematical model to 

address the problem of packing convex polytopes into a parallelepiped 

of minimal height. Chernov et al. (2010) established mathematical models 

and used practical algorithms to solve C&P problems. 

In summary, it has been found that there are many approaches to 

address build volume packing problems in AM. A feasible way is to 

select those methods based on the attributes of the specific problems 

(Jian and Wang, 2014). 
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2.4.2 Production scheduling in AM 

As outlined previously in this review, AM systems are capable of 

producing multiple parts simultaneously, subject to the capacity and 

printing area for parts. This characteristic benefits AM in settings which 

require the manufacture of medium/low volume or small batch products 

with complex structures and geometric designs and in mixed 

configurations (Li et al., 2017b, Mellor et al., 2014). 

In AM machine scheduling, a job is defined as a group of parts to be 

printed in the same batch, i.e., forming a single build operation. Any part 

allocated in a job cannot be removed until the whole job is finished. To 

begin with, in a new job on an AM machine, a sequence of operations is 

implemented to set up the machine, for example, parameters setting, 

powder material filling, machine adjustment, and atmosphere creation, 

as shown in the relevant parts of Figure 2.11. 

The problem of production scheduling in AM was treated by Kucukkoc et 

al. (2016)  who established that complex packing problems need to be 

addressed by assembling tasks into different jobs and implementing 

jobs on various AM machines. The authors defined the structure of the 

production scheduling problem and provided a numerical example for 

the verification of the proposed heuristics. Following this seminal 

research, Li et al. (2017b) introduced the problem of production planning in 

AM and 3D printing. They integrated a mathematical model in CPLEX 

and proposed two heuristics: 'best-fit' and 'adapted best-fit' rules 

developed in JavaScript to address the above problems. 

Due to its significance in production, scheduling optimisation has been 

studied considerably. Fera et al. (2018) offered a mathematical model to 

investigate production scheduling in metal LPBF. Kucukkoc (2019) 

proposed a mixed-integer linear programming model to achieve 

scheduling optimisation in single and multiple AM machine scenarios. 

Kapadia et al. (2022) developed a random keys-based GA method to 

address production schedule issues, satisfying all technological 

constraints, including orientation and rotation of parts within the build 
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volume. Arık (2022) proposed a Mixed-Integer Programming (MIP) model 

and adopted a local search-based heuristic to address the single-

machine batch scheduling problem. Wu et al. (2022) constructed a mixed 

integer linear programming model to minimize the average cost per 

volume of material in AM scheduling. These studies provide solutions to 

solve scheduling optimisation problems based on modelling and 

metaheuristics methods, laying a basis for sustainable production in 

AM. 

2.4.3 Integrated optimisation in AM 

To achieve a high degree of production efficiency and resource 

utilization in AM, both build volume packing and scheduling must be 

executed to a high standard in AM (Aloui and Hadj-Hamou, 2021). The 

available literature investigating both aspects simultaneously can be 

divided into two categories: (1) separate optimisation of scheduling and 

packing; and (2) integrated optimisation of scheduling and packing. 

Concerning separate optimisation, Freens et al. (2015) proposed a two-

stage approach to automatically generate batches for multiple AM 

machines including (1) allocating parts to a batch, an extension of the 

bin packing problem; and (2) determining the positions of planned parts 

using 3D packing software from the provider Shapeways (Shapeways, 

2023). Li et al. (2017b) formulated the problem of production planning of 

AM with a mathematical model incorporating Best-Fit (BF) and Adapted 

Best-Fit (ABF) heuristics. Chergui et al. (2018) converted the multi-parts 

production planning and scheduling in AM into two stages: parts 

assignment and jobs scheduling. Oh et al. (2018b) developed an AM-

based production plan for the scenario of multiple parts and multiple 

machines. This consisted of three stages: (1) determining build 

orientation; (2) 2D packing of parts within the available build space; and 

(3) scheduling parts on multiple AM machines. Karimi et al. (2021) 

proposed a systematic approach to realize energy-aware production 

scheduling for AM and address process-level and scheduling-level 

controls. These studies offer a way of improving resource utilization 



50 

 

from the production planning perspective, facilitating the mitigation of 

environmental impact of additive processes. 

With respect to integrated optimisation, Zhang et al. (2020) developed an 

improved evolutionary algorithm to address scheduling and packing 

integrally in AM by combining GA with a heuristic placement strategy. 

Ransikarbum et al. (2020) proposed a decision-support tool to integrate 

production scheduling and distribution planning in Material Extrusion 

(ME), SLA, and P-LPBF. Aloui and Hadj-Hamou (2021) used a mixed linear 

programming to solve the packing and scheduling problem on powder-

based laser and multi-jet fusion platforms. Tafakkori et al. (2022) proposed 

a novel integrated framework for packing and scheduling in AM. 

To better address the packing and scheduling problems in AM, some 

studies have investigated alternative solution approaches, including 

mathematical models and heuristics. In terms of the mathematical 

models, Chergui et al. (2018) formalised the packing and scheduling 

problem in AM to satisfy the orders received from different distributed 

customers by due dates. Kucukkoc (2019) proposed mathematical models 

to address scheduling problems in single and multiple AM machine 

scenarios. Hu et al. (2022) established a mixed integer linear programming 

model to address AM scheduling problem considering unrelated parallel 

machines. 

However, when relying on mathematical models (Alicastro et al., 2021), the 

relevant scheduling approaches can often not be executed with 

reasonable run time. To speed up the identification of optimized 

solutions, considerable research has been implemented on heuristics 

(Zhang et al., 2020, Fera et al., 2020, Gopsill and Hicks, 2018, Griffiths et al., 2019, 

Kim, 2018, Kapadia et al., 2019, Rohaninejad et al., 2022). 

Compared to separate optimisation, integrated optimisation of 

scheduling and packing has been shown to allow higher utilization of 

capacity utilization and a more flexible production mode (Tafakkori et al., 

2022). 
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Alongside the study of optimisation methods, a body of literature has 

investigated the objective criteria used in the scheduling and packing of 

AM. While some studies have studied time-related optimisation criteria 

(Chergui et al., 2018, Araújo et al., 2020, Oh et al., 2018b, Dvorak et al., 2018) or 

cost criteria (Li et al., 2017b, Freens et al., 2015, Ransikarbum et al., 2017) on 

their own, other studies have combined cost and time criteria (Fera et al., 

2020, Griffiths et al., 2019, Feraa et al., 2018, Zhang et al., 2017). Additionally, 

some technical characteristics originating from the resulting workflow 

have been proposed as criteria. These include build height (Araújo et al., 

2020, Wu et al., 2014, Attene, 2015, Chen et al., 2015, Zhang et al., 2002) and 

nesting rate (Canellidis et al., 2013, Canellidis et al., 2006, Wodziak et al., 1994, 

Canellidis et al., 2016, Wang et al., 2019b, Yang et al., 2008). 

Sustainability-related criteria have so far only received little attention. 

Karimi et al. (2021) studied production scheduling towards the minimum 

energy cost of AM. Tafakkori et al. (2022) constructed a multi-objective 

model including financial profit, energy consumption, and losses to 

investigate the sustainability of AM. Baumers et al. (2013) showed the 

extent to which the available build volume is filled is an important 

determinant of the overall level of process energy consumption. An 

important gap in the extant literature is thus that there are so far no 

realistic studies that combine integrated scheduling and packing 

approaches with sustainability-related optimisation criteria. 

2.5 Platforms, network effects and AM platforms 

When investigating the efficiency of systems that consist of multiple 

elements, such as telephone networks and manufacturing operations 

featuring multiple AM systems, the concept of the platform has emerged 

as extremely helpful. 

2.5.1 Industrial platforms 

Platforms exist in various industry sectors, particularly in high-tech 

companies driven by information technology. Examples include the tech 

giants such as Apple, Google, and Microsoft, hardware and software 
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producers for computers, phones, and consumer electronics devices. 

Such companies in one form or another serve as what are called 

industry platforms (Gawer and Cusumano, 2014). 

The term, platform, appeared in the following three aspects: (1) the new 

product development and OM (Harland and Uddin, 2014, Wang et al., 2019c); 

(2) technology strategy (Cusumano, 2008, Cusumano, 2010a); and (3) 

industrial economics (Jiang, 2021, Xiao, 2022). 

Concerning industry platforms, innovations and integration have 

become growingly common in daily lives. An instance is 

microprocessors embedded within laptops or smartphones that access 

the Internet, on top of which search engines such as Google exist. 

Through a variety of analyses for industrial cases, Gawer and Cusumano 

(2014) suggested two forms of platforms, including internal (company-

specific) platforms and external (industry-wide) platforms. The internal 

platforms represent a set of assets operating in a structure that a 

company is capable of efficiently developing and making a family of 

products (Muffatto and Roveda, 2002). The external platforms mean a 

cluster of products, services or technologies offering the foundation 

upon which outside companies can develop their complementary 

products, services, or technologies (Gawer and Cusumano, 2002, Gawer, 

2011). 

Internal platforms are referred to that a firm can produce a family of 

products or a set of new characteristics on products. It is reported that 

product designers and engineers tend to be trained to systematically 

reuse patterns, styles, and design rules based on previous work and 

improve upon prior art and others' work (Baldwin and Clark, 2000, Le Masson 

et al., 2010, Le Masson et al., 2011). However, the creation of a reusable 

feature for new product development needs specific planning and 

management. To this end, Guide (2000) identified and discussed seven 

complicating features that need major changes in production planning 

and control activities, as well as described the research opportunities of 
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the complex features. Asif et al. (2021) proposed a methodological 

approach to support product design for multiple lifecycles to keep 

products and components as well as materials at their highest utility and 

value. Wang et al. (2022a) investigated the barriers to circular product 

design. 

The above studies have identified that some potential benefits can be 

obtained from internal platforms including savings in fixed costs, 

efficiency gains in product development via the reuse of parts and 

modular design, and design flexibility of product features. One of the 

significant objectives of new product development on the platform is 

likely to be the ability to increase the product variants and satisfy 

various consumers’ requirements, business needs, and technical 

advancements. At the same time, it needs to keep the economies of 

scale and scope within manufacturing processes. This renders an 

approach relevant to mass customization (Bregazzi et al., 2021, Hu, 2013). 

Like internal platforms, external platforms can offer a foundation of 

reusable common elements or technologies. The difference lies in that 

external platforms are open to outside companies. The degree of such 

openness is dependent on a set of dimensions, for example, the level of 

access to information on the interface to connect the platforms or use 

its capabilities, rules of using the platform, or costs of accessing the 

platform (Anvaari and Jansen, 2010, Broekhuizen et al., 2021). 

The early research on industry platforms mostly focused on 

telecommunications, computing, and other information technology-

based industries. For example, Bresnahan and Greenstein (1999) considered 

computers as platforms and stressed the significance of technological 

competition between computer platforms. Levin and Iansiti (2004) named a 

keystone principle that a firm facilitates industrywide innovation for an 

evolving system of separately developed components. Cusumano (2010b) 

considered Software as a Service (SaaS) and cloud computing as new 

platforms for business and personal computing. 
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These studies suggest several generalizations regarding the factors to 

produce the best industry platform and the anticipated effects on the 

competitive dynamics. Industry platforms are likely to promote and 

increase the degree of innovation on complementary products and 

services (Gawer and Cusumano, 2014). The more innovation in the 

complementary products and services, the more value they produce for 

the platform and its users under network effects. Retrospectively, this 

may form cumulative advantages for the platforms. As users grow, the 

platforms become more difficult to be supplanted by competitors or new 

entrants. 

2.5.2 Network effects and AM platforms 

One key characteristic of platforms is that they generate what is known 

as network effects, also known as network externalities. Network effects 

represent a phenomenon that “the membership to one user is positively 

affected when another user joins and enlarges the network in the 

markets” (Katz and Shapiro, 1994, Shapiro and Varian, 1999). The majority of 

models consider network effects as exogenous and fixed, triggering 

platform competition. Such effects form a self-reinforcing feedback loop 

to amplify the members' early benefits. In this situation, according to 

Eisenmann (2006), strong network effects are capable of stimulating 

competition between platforms to a "winner-take-all" result. 

Based on the extant literature, there are three types of network effects: 

direct network effects, cross-group network effects, and indirect network 

effects, which are illustrated in Table 2.3. Direct network effects, also 

called same-side network effects, appear when the benefit of a platform 

or technology to a member is positively dependent on the number of 

other members in this platform, for example, telephone network and 

Skype network. The cross-group network effect, as defined by Hagiu and 

Wright (2015), arises if the benefit to members in at least one group (for 

example A) relies on the number of other members in another group 

(for example B) in a single direction. Building on the cross-group 

network effect, the indirect network effect indicates that the decision of 
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one group can be affected by the number of members in the opposite 

group. This means B's participation decision relies on the number of 

members in group A and vice versa. In other words, the benefit to a 

member in group B is dependent on the number of members in group 

A. 

Table 2.3: Types of network effects  

Name Types of network effects 

Direct Cross-group Indirect 

Description The more 

members, the 

more benefits for 

each member in 

this group. 

The more members in 

Group A, 𝑁𝐴, the more 

benefits for each 

member in Group B, 𝑉𝐵 

single direction. 

The more members in 

Group A, 𝑁𝐴, the more 

benefits for each 

member in Group B, 

𝑉𝐵 vice versa. 

Diagram 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 ∝ 𝑁𝑚𝑒𝑚𝑏𝑒𝑟𝑠 

 
 

Examples The telephone 

network, Skype 

Hardware Microsoft 365 

 

Alongside the types of network effects, to narrow down the scope to the 

manufacturing sector, a body of literature has investigated its effects in 

manufacturing platforms. Atrostic and Nguyen (2005) first adopted data from 

approximately 30,000 U.S. manufacturing plants to investigate the 

effect of computer networks on productivity and found that there is a 

positive and important relationship between computer networks and 

plant labour productivity. Sung and Carlsson (2007) analysed the 

determinants of firms' innovative activity focusing on the role of external 

networks and technological opportunity in performing innovative 

activities. Park et al. (2010) studied the effects of firm size, age, and 

industrial networking on determining firm growth and found that the size 

and age of firms have significant negative effects on firm growth and 

significant positive impacts on firm survival. Mai et al. (2016) developed a 

cloud platform to improve the efficiency of AM resources and the variety 
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of AM services. Wang et al. (2019c) proposed a cloud platform to integrate 

AM resources (e.g., equipment and materials) and test data, supporting 

design and process planning as well as printing. 

However, there are some limitations to network effects. Boudreau (2012) 

investigated the ecosystems of mobile computing and communications 

platforms and found that the positive feedback loop to the number of 

complementors does not perpetuate itself ad infinitum. At the same 

point, most complementors tend to discourage extra companies from 

investing to participate in the ecosystem. 

Network effects provide the potential for exponential growth on 

platforms and "winner-take-all" market result. However, there are 

several challenges to measuring and managing platform performance. 

As indicated by Cusumano (2022), the prerequisite for understanding 

platform performance, operations, and strategic management is to 

obtain a larger sample of companies. However, the size of such a 

number is a question. It is found that the measurement of network 

effects from publicly existing data is extraordinarily difficult. 

Based on the aforementioned literature, network effects play a key role 

in increasing the benefits of each member in such a network and 

facilitating new product development and business innovation (Banton, 

2023, Farrell and Klemperer, 2007). Baumers (2019) conducted an exploratory 

study in terms of network effects in AM platforms. It has been identified 

that cloud-based AM platforms have great potential on resource 

efficiency improvement at network level (Mai et al., 2016, Simeone et al., 

2020). However, the network effects of environmental aspects have yet 

to be studied, which forms a significant knowledge omission in the 

currently available literature on sustainable AM. 

2.6 Summary of the literature review 

This chapter provided a systematic review of several relevant areas of 

the published literature, including sustainability, operations 

management, and additive manufacturing. As identified in this review, 
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there are still important limitations regarding knowledge in the 

sustainability performance of AM processes. (Kellens et al., 2017a, Faludi et 

al., 2017, Liao and Cooper, 2020, Peng et al., 2018, Kerbrat et al., 2016). Building 

on this, the key gaps in research are outlined as follows. 

Firstly, the impact of ill-structured aspects, for example, the risk of build 

failure has a significant effect on costs in AM (Baumers et al., 2017a). 

However, it is rarely considered to assess the environmental impacts of 

P-LPBF (Baumers et al., 2017a, Son, 1991). This omission limits the realism 

of existing studies on P-LPBF resource consumption. 

Secondly, there are so far no realistic studies that combine integrated 

scheduling and packing approaches with sustainability-related 

optimisation criteria (Che et al., 2021, Tafakkori et al., 2022, Karimi et al., 2021, 

Lee and Kim, 2023). Thus, so far it has remained unclear what 

sustainability improvements can be obtained by employing 

computation-based production planning methods in the context of P-

LPBF. 

Last but not least, the platform perspective and the concept of network 

effects may have a significant role to play. For the commercial 

performance of many manufacturing processes, network effects have 

proved decisive (Banton, 2023, Katz and Shapiro, 1994, Farrell and Klemperer, 

2007). However, the interaction between network effects and 

environmental sustainability, perhaps in the form of environmental 

network effects, has so far not been investigated beyond exploratory 

work by Baumers (2019). 
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Chapter 3: Methodology 

The following sections detail the methodology used for geometry 

design, data processing as well as the simulation method applied in this 

study. A diagrammatic description of the methodology is presented in 

Figure 3.1. It mixes experimental and computational methods.  

Three knowledge gaps were summarized in section 2.6. Firstly, the 

impact of risk of build failure is rarely considered on the environmental 

impact of P-LPBF. This could be done by factoring build failure into the 

environmental impact model based on the model in Ashby and Cebon 

(2005) and Baumers et al. (2017a). Four experimental steps in Figure 3.1 are 

implemented to achieve the objectives 1 and 2. Secondly, there is a 

lack of studies that combine integrated scheduling and packing 

approaches with sustainability-related optimisation criteria. Integrated 

optimisation of scheduling and packing is an NP-hard combinatorial 

optimisation problem, and it needs computational methods to address 

(Hu et al., 2022, Dvorak et al., 2018). The simulation work was conducted to 

accomplish objective 3. Thirdly, the network effects in terms of 

environmental impacts in AM platforms has so far not been investigated 

beyond exploratory work by Baumers (2019). Building on production 

planning, this needs to be uncovered by computational approaches. 

Another simulation work was used to accomplish objective 4. 

 

Figure 3.1: A diagram of the methodology followed to deliver objectives 



59 

 

3.1 Introduction 

This section presents an integrated methodology combining 

experimental and computational elements. It contains six main steps: 

designing parts, implementing printing experiments, collecting 

experimental data, analysing data, formulating models, and conducting 

simulations. 

The methodology used in this research aims to implement a simulation 

for workflow optimisation in AM, which can be broken down to the 

following parts: 

1. Designing a standardized test part. 

2. Implementing printing experiments based on the test part. 

3. Collecting experimental data during the additive process. 

    a. Monitoring build time based on standardized test parts. 

    b. Monitoring real power consumption based on standardized test 

parts. 

4. Analysis of experimental data regarding build time and power 

consumption. 

5. Formulating build time and energy consumption predictive models. 

6. Implementing simulation based on the build time and energy 

consumption predictive models. 

Step 1 was based on reviewing the literature and dimensional 

constraints of AM machine. The aim of designing a standardized test 

part was to investigate the parameters of the environmental 

sustainability model. 

Step 2 was carried out using an EOSINT P 100 AM machine (EOS, 

Germany) to obtain raw data of build time and energy consumption and 

then to establish predictive models regarding build time and energy 

consumption. The AM machine was used to print a number of 

standardized test parts. 
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Steps 3a and 3b were based on a series of stages during the additive 

process, including warm up, material deposition, and cool down. 

Specifically, the elapsed time and energy consumption of these stages 

were recorded. 

Step 4 was implemented based on the machine log files and Excel 

datasheet. The machine log files were obtained from the operating 

system of EOSINT P 100. The datasheet was generated from a CW240 

digital power meter (Yokogawa, Japan) when monitoring the real power 

consumption of the additive process. 

Step 5 was conducted using an Ordinary Least Squares (OLS) 

regression method based on the data in Step 4, which was consistent 

with the method in Baumers et al. (2013). After this, the build time and 

energy consumption predictive models were established. 

Step 6 was implemented using the systems were developed using 

MATLAB (version R2019b) (MathWorks, USA). These systems were 

computational tools designed to conduct the simulation and optimisation 

for workflow in AM. The predictive models constructed in Step 5 were 

embedded in these systems. Optimized results can be obtained after 

implementing the simulation. 

The following sections provide more detail on the steps listed above. 

3.2 Test part design 

The test part was designed to frame the formulas of build time and 

energy consumption in LPBF and was created using Creo (PTC, USA) 

software. It should have a relatively complex geometric shape within the 

boundaries of the build volume. An example of such a test part can be 

found in Baumers et al. (2011b) shown in Figure 3.2. The “spider” shape of 

the test specimen restricts the attainable overall packing density, 

leading to a realistic level of build volume utilization. It has a relatively 

complex shape that could represent a general part for testing. In 

addition, the feasible dimensions allow the AM machine to pack multiple 

parts on the bed. 
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Figure 3.2: An example of the standardized test part  

(image source: adapted from Baumers et al. (2011b)) 

3.3 Printing process 

Once the test part was designed, the next step was to implement the 

printing experiments. This study used an EOSINT P 100 machine, a 

typical Polymer Laser Powder Bed Fusion (P-LPBF) technology used to 

build parts from polymeric powders. The raw material used in these 

experiments was PA2200. A number of test parts were packed on the 

build platform of the AM machine. The experimental setup was 

consistent with the setup in Baumers et al. (2015). 

LPBF process 

The LPBF processes use the laser as a heating source to melt and fuse 

the material powder layer by layer. This process consists of five main 

steps, as discussed below and a schematic of the process is shown in 

Figure 3.3. 
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Figure 3.3: A schematic of a generic LPBF process 

1. A layer of material (typically 0.1 mm thickness) is spread over the 

build platform. 

2. A laser fuses the first layer or cross-section of the digital model. 

3. A new layer of powder is spread based on the previous layer using a 

roller. 

4. Further layers or cross-sections are fused and added. 

5. The above steps repeat until the entire part is created. 

Raw material 

The raw material used in this study is PA2200 (Evonik, Germany), also 

known as Nylon 12 powder. The parts fabricated from nylon are robust, 

stable for long periods, chemically resistant and extremely versatile. It 

has been proven that printed end products are just as strong, flexible, 

and durable as moulded parts (EOS GmbH, 2021). The melting 

temperature of PA2200 is 176°C in environmental conditions (20°C) 

and its density is 930 kg per m3. 
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3.4 Data collection 

The data in terms of build time and energy consumption were obtained 

from the warm up, deposition, and cool down stages of the printing 

process. The activities and operations during the additive process were 

recorded in the machine log files. The real power consumption data 

were recorded in an Excel datasheet. The information in the two 

documents was regarded as the source data of build time and energy 

consumption. The real power consumption data were monitored once 

per second and presented in machine log files and an Excel datasheet. 

Monitoring process 

To date, four methods are available to measure build time, as shown in 

Table 3.1. 

Table 3.1: Methods of measuring build time 

Methods System-embedded methods Device supported methods 

Build report Machine log 

files 

Digital power meter 

data 

Manual 

recording 

Accuracy N/A 1 s 0.1 s~1 s varied 

Description A report is 

generated 

from the 

control system 

of AM 

platform. 

The files are 

compiled by 

the AM 

machine 

operating 

system.  

Build time during 

the printing is 

obtained by 

analysing the 

recorded energy 

consumption data.  

The time is 

recorded by 

the operator 

using a 

timer.  

 

This study combined the information from machine log files and digital 

power meter data. In terms of machine log files, once an AM machine is 

turned on, a real-time data file is compiled by its operating system. In 

this file, the information on activities and operations within an operating 

system is recorded per second. Concerning power measurements, a 

CW240 power meter was used to monitor the real power consumption 

per second and recorded in an Excel datasheet. The measurement 

procedures were in line with the experimental implementations in 

Baumers et al. (2015). 
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3.5 Data processing 

Once the experimental data were obtained, the following step was used 

to prepare the data for use by classifying and aggregating the raw data. 

Firstly, combining machine log files and Excel datasheet, the raw data 

were classified into three categories based on the three main stages of 

the additive process: warm up, deposition and cool down. Secondly, the 

data were aggregated. LPBF is a layer-by-layer industrial process. A set 

of data points per layer was created when implementing depositing 

operations. Building on this, data points per layer were regarded as a 

unit. A series of units of data were aggregated into several sections 

according to the activities recorded in the machine log files, for 

example, adding a layer of powder on the build platform and fusing a 

layer of powder. 

Specifically, the elapsed time of an activity (e.g., fusing a layer of 

powder and moving the platform down by a layer thickness) was 

obtained based on the end time and start time of such an activity in the 

machine log files. The accumulated power consumption of an activity 

was gained through a sum of the real power consumption of this activity 

based on the Excel datasheet. Therefore, the energy consumption of 

this activity was obtained by multiplying the elapsed time and 

accumulated real power consumption. As a result, the elapsed time and 

energy consumption data per activity during the additive process were 

obtained. The procedures of data processing were in line with the 

method of Baumers et al. (2013). 

Building on this process, the elapsed time and energy consumption per 

layer can be obtained. The handled data were prepared for framing 

linear regression formulas in terms of build time and energy 

consumption. 

3.6 Theoretical description 

Once the processed data were obtained, the next step was to frame the 

data into formulas. OLS, one of the most popular regression methods, 
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was used to generate linear regression formulas in terms of build time 

and energy consumption (Abdi and Williams, 2013). This was in line with 

the method of Baumers et al. (2013). According to Wang et al. (2022b), the 

build time consists of job-dependent time, layer-dependent time, and 

geometry-dependent time. The time related to the job and layer is fixed 

and can be obtained through a calculation of the time consumption data 

directly. The geometry-dependent time is relevant to the geometric 

shape of parts. To determine this, OLS was adopted to investigate the 

relationship between geometry-relevant time and geometric shape. 

The energy consumption includes job-dependent energy, layer-

dependent energy, time-dependent energy, and geometry-dependent 

energy (Wang et al., 2022b). Building on the build time model, the time-

dependent energy consumption can be determined. Energy 

consumption associated with the job and layer is fixed and this can be 

obtained based on the energy consumption data. Likewise, OLS was 

adopted to investigate the relationship between geometry-relevant 

energy and geometric shape. As a result, the build time and energy 

consumption formulas can be framed. 

Ordinary least squares 

OLS is a type of linear least squares method in statistics. It is usually 

used to find a linear model to fit to data. An example of the simple linear 

regression model is presented below. 

𝑦𝑖 = 𝛼 + 𝛽 ∙ 𝑥𝑖 + 𝜀                                       (3.1) 

Where 𝑦𝑖  is the dependent variable; 𝑥𝑖  represents the independent 

variable; 𝛼  is the constant of intercept; 𝛽  is the slope or coefficient; 𝜀 

represents the error term. 

Therefore, the least squares estimate of parameters in this example can 

be framed as: 

�̂� =
∑ (𝑥𝑖−�̅�)𝑛

𝑖=1 ∙(𝑦𝑖−�̅�)

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

                                         (3.2) 
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�̂� = �̅� − �̂� ∙ �̅�                                              (3.3) 

Where �̅� and �̅� represent the mean value of 𝑥𝑖 and 𝑦𝑖 in the dataset. 𝑛 

means the number of data points. 

Building on this example, the principle of least squares lies in 

minimizing the sum of the squares of the difference between the 

observed dependent variable 𝑦𝑖 in the input dataset and the output of 

the linear function of the independent variable 𝑥𝑖. In general, the smaller 

the differences, the better the model fits the data. 

3.7 Simulation implementation 

Based on the predictive models obtained in Section 3.6, an exploratory 

simulation was adopted. This includes three main phases: designing 

sample parts, measuring information, and developing systems. 

The simulation method used in this study was based on a development 

of manufacturing execution systems, aiming to improve the 

sustainability of AM through workflow optimisation, as shown below. 

1. Design a number of sample parts. 

2. Measure geometric information of parts. 

    a. Measure volume and total cross-section area of parts. 

    b. Measure dimensions of parts. 

3. Develop the system based on the obtained information and the 

predictive models. 

Phase 1 was implemented using Creo CAD software (PTC, USA). This 

software package was used to design a number of sample parts and 

generate STL files of these parts. 

Phases 2a and 2b were carried out using the Netfabb software 

program (version Premium 2019) (Autodesk, USA) and the Meshmixer 

software application (Autodesk, USA). Netfabb was used to identify 

volumetric information and the total cross-sectional area of parts. 

Meshmixer was used to obtain the dimensional information of parts. 
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Phase 3 was conducted when the required information of parts in 

Phases 2a and 2b had been obtained. The systems were developed 

using MATLAB (version R2019b) (MathWorks, USA). MATLAB is 

allowed to maintain full application portability and is suitable for the 

development of most operating systems (Etter, 1993). Compared to C++ 

and Python, MATLAB is more user-friendly because many functions or 

algorithms are available to use directly, for example, GA in the toolbox 

of this software package (Andrews, 2012). In these systems, the predictive 

models and dimensional information of parts were embedded. A 

number of functions (e.g., input demand, output results, optimisation) 

were designed and realized. In addition, the implementation of 

simulation was based on two stages: solution space generation and 

optimized solution exploration. 
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Chapter 4: Investigation of the environmental 

sustainability model of P-LPBF 

4.1 Introduction 

This Chapter presents work aimed at modelling the environmental 

sustainability of P-LPBF. To do so, a set of experimental specifications 

are made in Section 4.2. Section 4.3 establishes the environmental 

sustainability model. The results from application of the predictive 

models and environmental impacts of P-LPBF are presented in Section 

4.4. The developed models support the investigation of integrated 

optimisation in Chapter 5 and environmental network effects in Chapter 

6. Finally, a summary of this chapter is provided in Section 4.5. 

4.2 Experimental specifications 

4.2.1 Process map 

Due to the research scope as discussed in Section 2.2, the 

environmental sustainability of AM in this study is dependent on 

resource consumption (e.g., material use, energy consumption). 

Understanding the consumption of resources plays a key role in any 

investigation of the commercial and environmental performance of AM. 

In the construction of such resource consumption models, the first step 

is usually to establish a process map representing the elements of the 

process under investigation. Process maps are specific to individual AM 

systems and this study constructed a model for the EOSINT P 100 

system, which is a widely used industrial polymeric AM machine. The 

technology variant, Polymer Laser Powder Bed Fusion (P-LPBF), was 

chosen because it is frequently adopted in the manufacture of end-use 

products (Ruffo and Hague, 2007). However, the model and methodology 

introduced in this thesis can easily be extended to other machines and 

processes. A summary of modifications required to translate this work 

to other types of AM is shown in Table 4.1. The modifications contain 

three aspects: predictive models, process parameters and bounding 

boxes. Due to the different energy performance of different AM 
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technologies, it is necessary to determine the predictive model 

regarding build time and energy consumption for the specific AM 

machine. In addition, the configuration of process parameters for each 

AM process may be different and should be modified. Finally, the 

bounding box related parameters (e.g., dimensions of bounding box, 

orientation of bounding box) need to be changed based on the packing 

pattern of the specific AM process. 

Table 4.1: Modifications to fit other categories of AM processes 

AM 

processes 

SLA MJ BJ ME Metal 

LPBF 

SL DED 

Predictive 

models 

modification 

Yes Yes Yes Yes Yes Yes Yes 

Process 

parameters 

modification 

Yes Yes Yes Yes Yes Yes Yes 

Bounding 

box 

modification 

No No No Yes Yes Yes Yes 

 

The general operating process in P-LPBF is shown as follows. A layer 

of material is deposited on the printing platform. Following this, the 

system selectively scans the surface of the powder bed with a laser, 

generating a thin, planar slice of solid part geometry surrounded by 

unfused powder. Once the sintering of a layer is finished, a fresh layer 

of powder is added, and this process repeats layer by layer until the 

part is completed. It is important to note that P-LPBF systems of this 

kind allow the construction of multiple parts per build and do not require 

the deposition of auxiliary supporting structures (Mueller, 2012). Figure 

4.1 summarizes the general activity flow of P-LPBF, identifying the 

material, energy, and information flows investigated in this research. 
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Figure 4.1: Process map of P-LPBF  

As seen in Figure 4.1, the P-LPBF process consists of a sequence of 

steps beyond the deposition operations described above. The initial 

steps cover file preparation and preparation for printing (e.g., control 

system setup, machine preparation, and build release). Following this, 

the build process takes place, involving machine warm up, the actual 

material deposition cycle and machine cool down. The next steps are 

retrieval of the parts and machine cleaning. After this, should the build 

process have failed, the process re-initiates at the file preparation step; 

otherwise, the final step is the post-processing of the parts. Figure 4.1 

also shows that energy inputs are modelled as flowing into the raw 

material, alongside the machine warm up, deposition process, and 

machine cool down steps. The energy consumption during the removal 

and post-processing is not included in the scope of the modelling 

because it is related to the geometric complexity, and investigation of 

this is not an aim of the thesis (Baumers et al., 2017b). To this end, a single 

geometry was used in the printing experiments and analysis. 

4.2.2 Designing a standardized test part and parameters setting 

A standardized part, as shown in Figure 4.2, was designed to 

investigate the build time elements and energy consumption 

compositions. This test part has a relatively complex shape (i.e., 

multiple slices and multiple cuboids). The feasible dimensions allow the 

AM machine to pack multiple test parts on the bed. The build time 

elements consist of layer-dependent time and geometry-dependent 

time. Energy consumption compositions include job-dependent energy 

consumption, layer-dependent energy consumption, time-dependent 
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energy consumption, and geometry-dependent energy consumption. 

This experiment aimed to construct layer-based predictive models 

including build time and energy consumption during the warm up, 

deposition, and cool down stages. 

 

 

Figure 4.2: The standardized test part  

In many other AM technologies, parts can only be packed in 2D on the 

print bed, however, in LPBF parts can also be packed in the Z-direction 

in bands, known as 2.5D packing. In this experiment, five bands of test 

parts in the Z-orientation were adopted. Considering the build volume 

constraints, each band can only contain two standardized test parts. 

Therefore, ten test parts were packed for the energy consumption 

experiment. 

As can be seen in Figure 4.2, the standardized test part contains four 

slices, which follow a 2.5 mm increment in Z-orientation. The top slice, 

second slice, and third slice are cuboids with different dimensions. After 

that, six small cuboids are situated on the left and right sides of the 

bottom slice. In addition, ten small cuboids are tied to the front and back 

of the bottom slice. The dimensions of the above cuboids and cross-

sections per layer are presented in Table 4.2. 
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Table 4.2: Detailed information on each slice of the standardized part 

Name Dimension Cross-section area per 

layer 

Top slice cuboid  10𝑚𝑚 × 10𝑚𝑚 × 2.5𝑚𝑚 100 mm2 

Second slice cuboid 40𝑚𝑚 × 25𝑚𝑚 × 2.5𝑚𝑚 1,000 mm2 

Third slice cuboid 80𝑚𝑚 × 62.5𝑚𝑚 × 2.5𝑚𝑚 5,000 mm2 

Bottom slice and 

surrounded cuboids  

17.5𝑚𝑚 × 10𝑚𝑚 × 2.5𝑚𝑚 

13.75𝑚𝑚 × 8𝑚𝑚 × 2.5𝑚𝑚 

7,150 mm2 

Once the standardized test part was designed, the following step was to 

implement the printing experiments. The measurement procedures and 

parameters setting of this study were in line with the processes in 

Baumers et al. (2015). The set of experimental parameter values used with 

the EOSINT P 100 are shown in Table 4.3. 

Table 4.3: The specifications and parameters of the EOSINT P 100 machine 

Parameter Value 

Layer thickness 0.1 mm 

Scan paths overlap 0.25 mm 

Contour scanning speed 1500 mm/s 

Contour beam power 16 W 

Outer skin scanning speed and beam power 3000 mm/s 

Outer skin beam power 25 W 

Post-contour scanning speed 1500 mm/s 

Post-contour beam power 16 W 

Processing chamber temperature 172.5 ℃ 

Removable build chamber temperature 150 ℃ 

4.3 Environmental sustainability model 

The environmental sustainability of AM was investigated in this study, 

focusing on material use and energy consumption. The energy 

consumption model is established based on the extant model in Baumers 

et al. (2013). The difference is that the model in this work considered the 

risk of build failure and embedded energy. Material use refers to the 

mass of material fused into parts and the mean fresh virgin material 
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introduced into the system that is used to offset the material waste and 

unaccounted-for powder losses. The material consumption model is 

constructed based on the static resource equilibrium model in Gutowski 

et al. (2009). The embedded energy consumption model is constructed 

based on the model in Morrow et al. (2007). The impact of risk of build 

failure on energy consumption can be quantified by factoring build 

failure into the energy consumption model, which is based on the extant 

model in Ashby and Cebon (2005) and Baumers et al. (2017a). Building on this, 

an environmental sustainability model was developed including build 

time, energy consumption, material consumption, and embedded 

energy models as well as other factors, for example, risk of build failure. 

In addition, an environmental network effects model was established 

based on two targets: specific energy consumption and schedule 

attainment. 

4.3.1 Build time model 

Once the build configuration was determined, the next step was to 

estimate the total build time, this being a prerequisite for energy 

consumption. Based on the build time predictive models in Baumers et al. 

(2013), the total build time, 𝑇𝑡𝑜𝑡𝑎𝑙, as shown in Eq. (4.1), consists of job-

dependent time, 𝑇𝑗𝑜𝑏 and build time, 𝑇𝑏𝑢𝑖𝑙𝑑. The build time contains the 

layer-dependent time and geometry-dependent time as shown in Eq. 

(4.2). 

 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑗𝑜𝑏 + 𝑇𝑏𝑢𝑖𝑙𝑑                                       (4.1) 

 

𝑇𝑏𝑢𝑖𝑙𝑑 = (𝑇𝑙𝑎𝑦𝑒𝑟 × 𝑙) + (𝑇𝑎𝑟𝑒𝑎 × 𝐴𝑐𝑟𝑜𝑠𝑠)                          (4.2) 

 

▪ Job-dependent time, 𝑇𝑗𝑜𝑏, fixed time per build operation including 

warm up and cool down. 



74 

 

▪ Layer-dependent time, derived from multiplying the fixed time per 

layer 𝑇𝑙𝑎𝑦𝑒𝑟 by the total number of deposited layers in builds 𝑙. 

▪ Geometry-dependent time, obtained by multiplying the fixed time 

per mm2 𝑇𝑎𝑟𝑒𝑎 by the total cross-sectional area in builds 𝐴𝑐𝑟𝑜𝑠𝑠. 

4.3.2 Energy consumption model 

Building on the energy consumption model in Baumers et al. (2013), the 

energy embedded in the material and the impact factors including the 

risk of build failure and capacity utilization were considered in this study. 

A scheme of the conceptual model of energy consumption developed in 

this thesis is presented in Figure 4.3. 

 

Figure 4.3: Scheme of the energy model  

As can be seen in Figure 4.3, the total energy consumption in 

megajoules (MJ), 𝐸𝑏𝑢𝑖𝑙𝑑, is composed of the energy embedded in the 

material, 𝐸𝑒𝑚𝑏𝑒𝑑, and the process energy, 𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠, which are both 

affected by the risk of build failure 𝑃(𝑁), and capacity utilization, 𝑞, 

expressing the number of parts in builds. The total energy embedded in 

the material depends on the material consumption during the process 

and the mean embedded energy of that material, 𝑚. The material 

consumption in grams includes the mass of the parts, 𝑀𝑝𝑎𝑟𝑡, waste 

material, 𝑀𝑤𝑎𝑠𝑡𝑒, and material losses, 𝑀𝑙𝑜𝑠𝑠. The process energy 

consists of build job energy, for example, warm up, 𝐸𝑤𝑎𝑟𝑚 𝑢𝑝 and cool 

down, 𝐸𝑐𝑜𝑜𝑙 𝑑𝑜𝑤𝑛 as well as deposition process energy, 𝐸𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 
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The sub-model adopted to represent the elements of process energy 

consumption of the AM systems 𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is shown in Eq. (4.3). 

 

𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝐸𝑗𝑜𝑏 × 𝑀 + (�̇�𝑡𝑖𝑚𝑒 × 𝑇𝑏𝑢𝑖𝑙𝑑) + (𝐸𝑙𝑎𝑦𝑒𝑟 × 𝑙) + (𝐸𝑎𝑟𝑒𝑎 × 𝐴𝑐𝑟𝑜𝑠𝑠)          

(4.3) 

 

In this model, job-dependent energy consumption, 𝐸𝑗𝑜𝑏 represents the 

fixed energy consumption during the warm up and cool down processes 

per build. The value of 41.65 MJ was taken for this based on 

experimental measurements on the machine EOSINT P 100. 𝑀 

represents the number of AM machines or builds used for printing. The 

time-dependent energy consumption is relevant to the continuous 

operation of the machine with minimum power consumption, which is a 

product of energy consumption rate �̇�𝑡𝑖𝑚𝑒 (measured in MJ/s) and build 

time consumption 𝑇𝑏𝑢𝑖𝑙𝑑. Analogous to build time estimation, 𝐸𝑙𝑎𝑦𝑒𝑟 

indicates the fixed energy consumption per layer, for a total number of 

layers, 𝑙, which forms the layer-dependent energy consumption. 

Further, the geometry-dependent energy is denoted by the energy 

consumption associated with the deposited area, 𝐸𝑎𝑟𝑒𝑎 (measure in 

MJ/mm2), which is multiplied by the total cross-sectional area of parts 

on beds, 𝐴𝑐𝑟𝑜𝑠𝑠. The empirical data on 𝐸𝑎𝑟𝑒𝑎 and 𝐸𝑙𝑎𝑦𝑒𝑟 is determined by 

monitoring energy consumption during the printing and then subtracting 

the time-dependent energy consumption. The total cross-sectional area 

of parts, 𝐴𝑐𝑟𝑜𝑠𝑠 is obtained using the Netfabb software program with a 

configuration of 0.1 mm on layer thickness. The above energy 

consumption data was measured with a digital power meter (Yokogawa 

CW240). 

4.3.3 Material consumption model 

In P-LPBF, the powder that is not fused during the printing process can 

be, in principle, recycled for use in future builds. However, the recycled 
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powder may be thermally degraded due to exposure to the high-

temperature environment during the printing process. Therefore, virgin 

powder is normally added and mixed with the used powder, both to 

replace the consumed powder and to improve the powder's 

processability (Ruffo et al., 2006). 

To simplify the estimation of material consumption, this model assumes 

that the AM system operates in a steady state in which, on average, the 

mass of the virgin powder introduced into the system is in equilibrium 

with the mass of the material exiting the system. Therefore, the amount 

of fresh powder material introduced into the system, 𝑀𝑖𝑛𝑝𝑢𝑡, equates to 

the mass of powder fused as parts, 𝑀𝑝𝑎𝑟𝑡, the powder waste due to 

degradation, 𝑀𝑤𝑎𝑠𝑡𝑒, and any other unaccounted-for powder losses, 

𝑀𝑙𝑜𝑠𝑠, for example, due to powder evaporation during the sintering 

process or powder losses during machine cleaning. Figure 4.4 and Eq. 

(4.4) summarize this model. All subsequent material-specific values in 

this research refer to PA2200, which is a nylon 12 polymer powder. 

 

 

Figure 4.4: A material process model of AM  

 

𝑀𝑖𝑛𝑝𝑢𝑡 =  𝑀𝑝𝑎𝑟𝑡 + 𝑀𝑤𝑎𝑠𝑡𝑒 + 𝑀𝑙𝑜𝑠𝑠                           (4.4) 

 

Eq. (4.5) can be used to determine the mass of the material fused, 

where 𝜌1 is the density of the material as fused (0.93 g/cm3, (EOS GmbH, 
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2021), 𝑉𝑝𝑎𝑟𝑡 is the volume of single geometry fused, and 𝑞 is the number 

of parts contained in a build. 

 

𝑀𝑝𝑎𝑟𝑡 = 𝜌1 × 𝑉𝑝𝑎𝑟𝑡 × 𝑞                                      (4.5) 

 

Eq. (4.6) specifies the waste streams resulting from the printing 

process, where 𝜌2 is the density of the virgin powder (0.45 g/cm3, (EOS 

GmbH, 2021), 𝑉𝑏𝑒𝑑 is the volume of the available build space of the 

machine and 𝛼 is the waste factor, as suggested by Ruffo et al. (2006). As 

suggested by Baumers and Holweg (2019) and Kellens et al. (2011), the waste 

factor is equal to the refresh rate. This value is typically between 10% 

and 50% for polymer LPBF, dependent on the operator's discretion and 

the material used. In this work, a value of 30% was used. 

 

𝑀𝑤𝑎𝑠𝑡𝑒 = 𝜌2 × (𝑉𝑏𝑒𝑑 − 𝑉𝑝𝑎𝑟𝑡 × 𝑞) × 𝛼                        (4.6) 

 

As in the above, the measurement algorithm for the combined estimator 

of build time, energy consumption and material consumption can be 

expressed in pseudo-code, as shown in Appendix A. 

4.3.4 Embedded energy model 

The energy embedded in the material (measured in megajoule, MJ), 

𝐸𝑒𝑚𝑏𝑒𝑑, reflects the total energy required to produce the raw material 

(Morrow et al., 2007), and is specified in Eq. (4.7). A series of studies 

(Kellens et al., 2017a, Wang et al., 2022b) have reported that energy 

embedded in the material dominates the environmental impacts of AM 

and should not be ignored. 

 

𝐸𝑒𝑚𝑏𝑒𝑑 = 𝑚 × 𝑀𝑖𝑛𝑝𝑢𝑡                                      (4.7) 
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In this model, 𝑚 is the mean embedded energy of the raw material 

processed, (148 MJ/kg, according to Ashby and Cebon (2005)) and 𝑀𝑖𝑛𝑝𝑢𝑡 is 

the overall mass of raw material consumed by the build operation, 

according to the steady state assumption shown in Eq. (4.4). 

4.3.5 Risk of build failure model 

In this research, any unrecoverable disturbance during the build 

process is treated as build failure. It is assumed that failure events 

emerge with a given probability in a way that reflects the layer-by-layer 

deposition process. The probability of failure per layer may be dynamic 

due to the number of printed layers and cross-section area etc. 

Considering these factors may help obtain the precise probability of 

failure per layer. However, it will be difficult to obtain the overall 

expected energy consumption with build failure when printing a number 

of layers. Because the expected energy consumption with build failure 

is not only associated with probability failure per layer but the number of 

layers. This work studied the probability of failure per layer from a 

statistical perspective. Multiple printing experiments with thousands of 

layers have been implemented and found that the build failure due to 

the failed layers occurred with a probability. To keep this model as 

simple as possible, it is assumed that the probability of build failure 

occurring with the processing of each layer is a constant, entering the 

model as the probability of failure per layer, 𝑝𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Baumers and Holweg 

(2019) investigated a similar build failure model and reported that the 

constant probability of failure per layer, on average, is 0.016% for the P-

LPBF machine investigated in this research. To obtain the overall 

probability of successfully finishing a build, a discrete probability tree 

model is established (Figure 4.5). 

Following the approach by Baumers and Holweg (2016), the probability of 

completing a build can be specified as a function of the total number of 

layers, 𝑁: 
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𝑃(𝑁) = (1 − 𝑝𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)𝑁                                      (4.8) 

 

 

Figure 4.5: Probability tree model  

(image source: adapted from Baumers et al. (2017a)) 

4.3.6 Expected total energy consumption model 

Building on the model in Ashby and Cebon (2005), this probability can then 

be attached to the estimators, 𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠 and 𝐸𝑒𝑚𝑏𝑒𝑑 , to form a model of 

expected total energy consumption with failure, 𝐸𝑏𝑢𝑖𝑙𝑑: 

 

𝐸𝑏𝑢𝑖𝑙𝑑 =
𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠+𝐸𝑒𝑚𝑏𝑒𝑑 

𝑃(𝑁)
                                    (4.9) 

 

4.3.7 Environmental network effects model 

Environmental network effects aim to investigate the network effects in 

terms of environmental impacts in the AM platform. This concept 
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reveals the environmental benefits gained by changing the number of 

machine operators and customers. 

Environmental impact of AM can be indicated to material use, energy 

consumption, waste material etc. According to Faludi et al. (2017), Specific 

Energy Consumption (SEC) is used to reflect the energy performance 

of additive processes. To investigate the operational performance of 

AM, Schedule Attainment (SA) was adopted in this study (Bozarth et al., 

2009). Therefore, SEC and SA were chosen to uncover the 

environmental network effects in the AM platform.  

Once the process energy, 𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠 and material consumption of parts, 

𝑀𝑝𝑎𝑟𝑡𝑠 has been determined, the specific energy consumption, 𝑆𝐸𝐶, of 

P-LPBF can be obtained, as shown in Eq. (4.10). 

 

𝑆𝐸𝐶 =  
𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑀𝑝𝑎𝑟𝑡𝑠
                                          (4.10) 

 

Schedule attainment, 𝑆𝐴, is defined as a ratio of the number of 

completed planned geometries packed on a specified day 𝑛𝑝𝑎𝑐𝑘 and the 

total number of geometries planned to be packed on this day 𝑛𝑡𝑜𝑡𝑎𝑙: 

 

𝑆𝐴 =
𝑛𝑝𝑎𝑐𝑘

𝑛𝑡𝑜𝑡𝑎𝑙
× 100%                                 (4.11) 

 

4.4 Application of predictive models and investigation of 

environmental impact 

4.4.1 Build time and energy consumption predictive models 

Building on the layer-by-layer nature of AM, the correlation of build time, 

energy consumption, and total cross-section area was investigated. The 

OLS method was used to handle the data points. The data were 
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recorded during the printing of each layer of the standardized test part 

shown in Section 4.2.2. This test part is of layered design, leading to 

five different build time and energy consumption levels, as shown in 

Figures 4.6 and 4.7. Compared to the study by Baumers et al. (2013), this 

research has one more level of build time and energy consumption due 

to the considerations of data generated from the warm up stage to 

depositing the first layer of the test part. As a result, these models are 

more accurate in predicting the build time and energy consumption of 

AM. 

 

 

Figure 4.6: Regression cross-section area against build time 
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Figure 4.7: Regression cross-section area against energy consumption 

 

𝑦1 = 0.0015 ∙ 𝑥 + 24.094                                      (4.12) 

 

𝑦2 = 1.754 × 10−6 ∙ 𝑥 + 0.028                                  (4.13) 

Where 𝑦1 and 𝑦2 represent the time consumed per layer and energy 

consumed per layer respectively. 𝑥 is the area of cross section. 

The correlation between build time per layer and cross-section area is 

demonstrated in Figure 4.6. Figure 4.7 reveals the correlation between 

energy consumption per layer and cross-section area. R-Squared (𝑅2) 

is a statistical measure to show how well the data fit the regression 

model. This measurement was used in this study and the results show 

that the data fit the regression models well by approximately 93%. The 

two regression models, as shown in Eq. (4.12) and Eq. (4.13), 

constituted the geometry-dependent time and geometry-dependent 

energy consumption respectively. These can be done by combining the 

regression models with the total cross-section area of parts in a build. 

The total cross-section area of parts was obtained by using the Natfabb 

software program. 
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4.4.2 Breakdown of P-LPBF energy consumption 

As displayed in Section 4.2.1, one focus of this study was to investigate 

the energy consumption during the warm up, deposition, and cool down 

stages, which was in line with Baumers et al. (2011a). In addition, the 

impact of the risk of build failure on energy consumption was quantified 

for both single and full-capacity build configurations. 

Figures 4.8 (a) and (b) show the energy consumption for the single part 

(q=1) and full capacity build (q=40) configurations considering the risk 

of build failure. The total expected energy consumption is broken down 

into the model components. Comparing both pie charts, it is evident that 

the composition of the energy consumption changes with the build 

capacity utilization. The energy embedded in the material is the largest 

contributor in both the single-part build (57.40% in Figure 4.8 (a)) and 

the full capacity build (47.93% in Figure 4.8 (b)), which is in line with the 

results in Kellens et al. (2017a) and Faludi et al. (2017). This emphasizes that 

a significant share of the overall energy consumption in P-LPBF is due 

to the energy embedded in the raw material. However, compared to P-

LPBF, the largest environmental contributor is process energy 

consumption (51.90%) in metal LPBF (Kellens et al., 2011). 

The risk-related energy consumption is obtained for both levels of 

capacity utilization by subtracting 𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠 and 𝐸𝑒𝑚𝑏𝑒𝑑  from 𝐸𝑏𝑢𝑖𝑙𝑑 . The 

results suggest that the energy associated with the risk of build failure is 

substantial at high levels of capacity utilization, at 31.06% of the total 

expected energy consumption. However, this is decreased when the 

available capacity is not fully utilized. For the single part build 

configuration, the share of the total energy consumption falls to 22.75%. 

The reason for this pattern is the increase in the number of deposited 

layers in line with higher levels of capacity utilization, which leads to an 

accumulating risk of build failure. An interesting point is that the risk of 

build failure has a similar level of effect on the unit cost (26.00%) as 

reported by Baumers et al. (2017a). 
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Excluding the risk-related energy consumption and the energy 

embedded in the material, the energy for warm up is the major 

contributor to the process energy consumption (51.08%) in the single 

part build configuration, followed by the deposition process energy 

(26.19%) and energy for cool down (22.73%). Based on the identical 

AM machine and test part, this result shows a similar share distribution 

of process energy consumption in Baumers et al. (2015) in single part build 

configuration. 

However, in the full capacity build scenario, the deposition process 

consumes the most energy (84.67%) during the printing process, and 

warm up and cool down processes use smaller amounts of energy, at 

10.61% and 4.72% respectively. While Baumers et al. (2015) indicated that 

energy for warm up (43.37%) dominates the process energy 

consumption, followed by deposition process energy (33.87%) and 

energy for cool down (22.76%). This is because five parts on the bed 

represented the full capacity build in their experimental setup while this 

thesis used fifty-five parts in the full capacity build configuration. 

 

Figure 4.8: (a) Breakdown of total expected energy consumption (MJ) in the 

single part build configuration (q=1)  
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Figure 4.8: (b) breakdown of total expected energy consumption (MJ) in the full 

capacity build configuration (q=40) 

4.4.3 Energy consumption per unit of P-LPBF 

To further investigate the effects of capacity utilization on energy 

consumption, four unit-based models of energy consumption were 

established, as shown in Eqs. (4.14) -(4.17). The capacity utilization, 𝑞, 

is represented by the number of parts in a build and ranges from 1 to 

55. 

 

𝐸𝑝𝑎𝑟𝑡_𝑎 =
𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠+𝐸𝑒𝑚𝑏𝑒𝑑

𝑞×𝑃(𝑁)
                                          (4.14) 

 

𝐸𝑝𝑎𝑟𝑡_𝑏 =
𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠+𝐸𝑒𝑚𝑏𝑒𝑑

𝑞
                                         (4.15) 

 

𝐸𝑝𝑎𝑟𝑡_𝑐 =
𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑞×𝑃(𝑁)
                                               (4.16) 
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𝐸𝑝𝑎𝑟𝑡_𝑑 =
𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑞
                                              (4.17) 

 

In addition, the specification of the total expected energy consumption 

model, 𝐸𝑏𝑢𝑖𝑙𝑑, is adjusted to separate the contributions of embedded 

energy and risk-related energy consumption. Four model specifications 

arise: model a as in Eq. (4.14) originally, model b with embedded 

energy but excluding build failure as in Eq. (4.15), model c with build 

failure but excluding embedded energy as in Eq. (4.16), and model d 

covering process energy consumption with no embedded energy and 

build failure as in Eq. (4.17). The unit-based model allows these energy 

consumption behaviours to be explored across the entire range of build 

capacity utilization, depicted in Figure 4.9. 

 

 

Figure 4.9: Relationship between energy consumption per unit (MJ) and quantity  

As can be seen in Figure 4.9, the unit energy consumption follows a 

non-monotonously decreasing saw-tooth pattern across all four model 

specifications, which is a result of packing five parts in each band of 

build space. This effect is caused by the layer-wise filling of the 
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available build capacity, as documented for P-LPBF production costs by 

Baumers and Holweg (2019) and Ruffo and Hague (2007). 

Figure 4.9 also shows that increasing capacity utilization generally 

results in decreasing per-unit energy consumption in sparsely filled 

builds. Interestingly, though, the model specifications that include failure 

(models a and c), show that an accumulating risk of build failure begins 

to overwhelm aforementioned efficiency gains at higher levels of 

capacity utilization. This results in a U-shaped pattern of energy 

consumption in which the minimal per-unit energy consumption occurs 

at q=40 in the full model (model a). A similar U-shaped pattern of unit 

cost can be found in Baumers and Holweg (2016). At this level of capacity 

utilization, the total energy consumed for the manufacture of a sample 

part is 15.05 MJ. 

A pairwise comparison of models a to c, and b to d, shows that the 

energy embedded in the material leads to a dramatic increase in the 

per-unit energy consumption as the quantity increases. The increase in 

total energy consumption is from approximately 210% to 390% across 

the entire range of capacity utilization. 

4.5 Summary 

This chapter describes the process of modelling the environmental 

sustainability of AM and shows the results on predictive models and 

environmental impact of AM consistent with the published paper. It has 

found that: 

(1) The energy associated with the risk of build failure accounts for 

approximately 31% of overall expected energy consumption at full 

capacity utilization. 

(2) Inclusive of the risk of build failure, the expected minimum energy 

consumption is likely to appear at a middle-high level of capacity 

utilization in AM. 

(3) Embedded energy dominates the total energy consumption in both 

single part build and the full capacity build configurations in AM. 
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(4) Embedded energy contributes a dramatic increase in total energy 

consumption from approximately 210% and 390% across the entire 

range of capacity utilization. 
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Chapter 5: Investigation of integrated optimisation in P-

LPBF 

5.1 Introduction 

This Chapter details the methods and results of integrated optimisation 

of scheduling and packing. The experimental setup is presented in 

Section 5.2. Section 5.3 provides the details of the integrated 

optimisation method. Following this, an implementation of the method is 

presented in Section 5.4. Section 5.5 presents and discusses results 

from the implementation of the integrated optimisation method. Finally, 

a summary is presented in Section 5.6. 

5.2 Experimental setup 

5.2.1 Designing a number of sample parts 

To understand system applications in predicting process energy 

consumption and build time, five sample parts were designed. The 

shape complexity of parts has a weak correlation with the energy 

consumption of AM process (Baumers et al., 2017b). In other words, the 

design of parts has little impact on the measurement of process energy 

consumption and build time during the additive process. 

To cover a wide range of applications for polymeric parts, one part with 

long and slim features, two parts with complex inner structures, and two 

parts with aerodynamic functionality were designed using Creo. The 

details of the designed parts are described below. 

Table 5.1: Part 1 — Headphone holder  

Geometry Part 1 
 

Name Headphone holder 

Length  127 mm 

Width  67 mm 

Height  42 mm 

Volume 126640.00 mm3 

Table 5.2: Part 2 — Semi-circular fan duct  
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Geometry Part 2 
 

Name Semi-circular fan duct 

Length  58 mm 

Width  56 mm 

Height  36 mm 

Volume 4687.57 mm3 

 

Table 5.3: Part 3 — Vent ring 

Geometry Part 3 
 

Name Vent ring 

Length  49 mm 

Width  51 mm 

Height  17 mm 

Volume 3901.75 mm3 

 

Table 5.4: Part 4 — Motor cooling fan  

Geometry Part 4 
 

Name Motor cooling fan 

Length  59 mm 

Width  59 mm 

Height  22 mm 

Volume 8755.38 mm3 

 

Table 5.5: Part 5 — Jet turbine blade  

Geometry Part 5 
 

Name Jet turbine blade 

Length  84 mm 

Width  84 mm 

Height  24 mm 

Volume 18582.00 mm3 
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A basket of parts was designed for the build experiments performed on 

the EOSINT P 100. Detailed information on these parts is shown in 

Tables 5.1-5.5. In these tables, part 1, part 2, part 3, and part 4 were 

selected to support the development of System 1: integrated 

optimisation of scheduling and packing. To satisfy the requirements for 

the simplifications in environmental network effects, all five parts were 

chosen to support the development of System 2: investigating 

environmental network effects. 

Once a basket of parts was selected, the next step was to import the 

STL file of these parts into Meshmixer to obtain the dimensional 

information. In addition, the same importing operations were conducted 

to obtain the volumetric value and total cross-section area of parts by 

using the Netfabb software program. 

To implement packing efficiently, this research converted the part into a 

bounding box, a rectangle that surrounds an object as shown in Figure 

5.1 (Oh et al., 2018a). A gap of 2 mm is required between the adjacent 

parts to avoid them fusing during the printing process (Baumers et al., 

2013). Therefore, the dimensions of a bounding box were larger than the 

real part's size by 2 mm, which was adopted in the developed system 

for computation and optimisation during the packing and scheduling 

processes. 

 

Figure 5.1: Bounding box of a sample part   
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The first part is a headphone holder used in daily life. Compared to 

other parts, part 1 is the largest part in terms of dimensions and 

geometric volume. Therefore, this part was regarded as the first 

insertion precedence into the system. The second part is a semi-circular 

fan duct with similar length and width. However, the geometric volume 

of this part is not as large as part 1. A vent ring, part 3, shows a similar 

geometric shape to part 2. Part 2 and Part 3 have complex inner 

structures but with relatively small geometric volumes. The next part is 

a motor cooling fan, part 4, with equal length and width. The last part is 

part 5, a jet turbine blade, which has similar dimensional features to part 

4. Part 4 and Part 5 have aerodynamic characteristics with complex 

surfaces and symmetrical shapes. 

It can be seen that the designed parts reflect common features during 

the practical printing of a variety of five parts, for example, tall and slim 

geometric shapes, and complex inner characteristics. 

5.2.2 Rotating operations for parts 

Converting parts into bounding boxes enables efficient implementation 

of the packing procedure. To effectively use the available space of 

chambers, it is necessary to implement a rotating operation for parts 

(Zhang et al., 2018, Oh et al., 2020). However, with more rotating operations 

for parts, particularly geometries with 3D irregular shapes, there is 

higher computational complexity, and more CPU time (Araújo et al., 2020). 

To mitigate computational burden during the optimisation process whilst 

improving the capacity utilization ratio, the rotating operations for each 

part were set to rotate along the axis with an increment of 0o and 90o, 

which was based on the rotating method in Zhang et al. (2018). An 

example of one rotating operation is shown in Figure 5.2. 
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Figure 5.2: Schematic of rotating operations and vertex coordinate of the 

bounding box  

As can be seen in Figure 5.2, the coordinate, e.g., (X, Y, Z) represents 

the position of a sample bounding box in the 3D coordinate system. 

When implementing a rotating operation, the position of the sample 

bounding box is changed. In other words, the new position of the 

sample bounding box can be represented by the updated vertex 

coordination. 

Building on this, a series of rotating operations are summarized. To 

reveal this change, the updated vertex coordinates of the sample 

bounding box under all feasible rotating operations are presented in 

Table 5.6. 
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Table 5.6: Rotating operations and updated vertex coordinate 

No rotation 

Rotating 

operation 
No rotation   

Updated 

coordinate 
(X, Y, Z)   

Single rotating operation 

Rotating 

operation 
Along X-axis 900 Along Y-axis 900 Along Z-axis 900 

Updated 

coordinate 
(X, Z, Y) (Z, Y, X) (Y, X, Z) 

Two rotating operations 

Rotating 

operation 

Along X-axis 900 first 

and then Y-axis 900  

Along Y-axis 900 

first and then X-axis 

900  

Along Y-axis 900 

first and then Z-axis 

900  

Updated 

coordinate 
(Y, Z, X) (Z, X, Y) (Y, Z, X) 

Rotating 

operation 

Along Z-axis 900 first 

and then Y-axis 900  

Along X-axis 900 

first and then Z-axis 

900 

Along Z-axis 900 

first and then X-axis 

900 

Updated 

coordinate 
(Z, X, Y) (Z, X, Y) (Y, Z, X) 

Three rotating operations 

Rotating 

operation 

Along X-axis 900 first 

and then Y-axis 900 

and finally Z-axis 900  

Along X-axis 900 

first and then Z-axis 

900 and finally Y-

axis 900  

Along Y-axis 900 

first and then X-axis 

900 and finally Z-

axis 900  

Updated 

coordinate 
(Z, Y, X) (Y, X, Z) (X, Z, Y) 

Rotating 

operation 

Along Z-axis 900 first 

and then X-axis 900 

and finally Y-axis 900 

Along Y-axis 900 

first and then Z-axis 

900 and finally X-

axis 900  

Along Z-axis 900 

first and then Y-axis 

900 and finally X-

axis 900 

Updated 

coordinate 
(X, Z, Y) (Y, X, Z) (Z, Y, X) 

 

As can be seen in Table 5.6, sixteen types of rotating operations were 

identified in this research. However, multiple rotating operations 

generated the same coordinates for the bounding box, for example, 

rotating along Y-axis 900 first and then Z-axis 900 option is equivalent to 
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rotating along Z-axis 900 first and then X-axis 900 option. To avoid 

redundant rotating operations for the bounding box, a filtering procedure 

was implemented. The filtered results are shown in Table 5.7. 

Table 5.7: Filtered rotating operations and updated vertex coordinate of the 

bounding box 

Rotating 

operation  
No rotation Along X-axis 900 Along Y-axis 900 

Updated 

coordinate 
(X, Y, Z) (X, Z, Y) (Z, Y, X) 

Rotating 

operation  Along Z-axis 900 

Along X-axis 900 

first and then Y-axis 

900 

Along Y-axis 900 

first and then X-

axis 900 

Updated 

coordinate 
(Y, X, Z) (Y, Z, X) (Z, X, Y) 

 

Six rotating operations can be seen in Table 5.7. These six rotating 

rules were embedded in the developed systems to enable effective 

packing of parts in the build volume. 

5.2.3 Demand profiles 

To implement System 1, four types of geometry were chosen in this 

study as shown in Tables 5.1-5.4 in Section 5.1.1. The basic 

information on the parts, including dimensions, volume, and total cross-

sectional area, was hard coded in the system. 

The following step was to input the demand for parts on Day One and 

Day Two separately. A similar implementation procedure can be found 

in Baumers et al. (2013). However, this study focused on the integrated 

optimisation of scheduling and packing, which is an extension of the 

previous work in scheduling and packing jointly or separately (Araújo et 

al., 2020, Li et al., 2017b, Zhang et al., 2020). To demonstrate the advantages 

of integrated optimisation, a comparison with separate optimisation was 

implemented in this study, keeping in line with the procedure of Little et 

al. (2013). The difference between integrated optimisation and separate 

optimisation was the adoption of a capacity aggregation algorithm in 



96 

 

this study. To trigger the integrated optimisation, a series of demand 

profiles were designed. These demand profiles allow the capacity 

aggregation to be involved in scheduling and packing operations 

including within-capacity and out-of-capacity scenarios. A similar 

instance scale for optimisation implementation in AM can be found in 

Zhang et al. (2020). The details of the demand profiles are shown in Table 

5.8. 

Table 5.8: Demand profiles for System 1 

Demand 

profile 

Day One Day Two Total 

no. 

of 

parts 

Part 

1 

Part 

2 

Part 

3 

Part 

4 

No. 

of 

parts 

Part 

1 

Part 

2 

Part 

3 

Part 

4 

No. 

of 

parts 

S1 30 30 30 30 120 20 20 20 20 80 200 

S2 35 35 35 35 140 20 20 20 20 80 220 

S3 40 40 40 40 160 20 20 20 20 80 240 

S4 45 45 45 45 180 20 20 20 20 80 260 

S5 50 50 50 50 200 20 20 20 20 80 280 

S6 55 55 55 55 220 20 20 20 20 80 300 

S7 60 60 60 60 240 20 20 20 20 80 320 

S8 65 65 65 65 260 20 20 20 20 80 340 

S9 70 70 70 70 280 20 20 20 20 80 360 

S10 75 75 75 75 300 20 20 20 20 80 380 

S11 80 80 80 80 320 20 20 20 20 80 400 

S12 85 85 85 85 340 20 20 20 20 80 420 

 

The energy consumption across multiple AM machines through 

exploratory simulation was studied in this thesis, which is an extension 

of the energy consumption study in a single AM machine as reported in 

Wang et al. (2022b). 

5.3 Integrated optimisation method 

Scheduling and packing were investigated in this study to fulfil demands 

from individual customers. Due to the research scope, this study only 
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considered identical AM machines. The method could be easily 

extended to a range of different machines, however, many print 

bureaus operate with a bank of the same machines so this is a 

reasonable assumption. The production process of P-LPBF operates on 

a build-by-build basis. Depending on the maximum available build 

space of the chamber, the capacity of the AM machine can be regarded 

as one of the constraints in production. The selected P-LPBF machine 

was also assumed to operate with fixed warm up and cool down energy 

consumptions as well as fixed processing parameters, for example, 

layer thickness and scanning speed. The fixed job energy consumption 

was obtained from the experimental data. Warm up energy 

consumption is fixed due to the fixed operations in the control systems 

of P-LPBF. The cool down energy consumption is dependent on the 

cool down time entered by machine operators. This research used a 

relatively long cool down time to cover most production scenarios (i.e., 

a large number of parts in a build) in P-LPBF. The experimental results 

in the lab have shown that the difference in cool down time/energy 

consumption has little impact on the overall process energy 

consumption of P-LPBF. As for fixed processing parameters, these 

follow the configurations in extant literature and form a feasible 

comparison with published work. The processing sequence of these 

parts was generated in descending order based on the volumetric value 

of the parts. The problem was formulated as: how to allocate and place 

parts on AM machines based on the customer demands with minimal 

energy consumption. 

The process of assembling individual builds, whether considered on its 

own or together with other builds, is complex and can be formulated as 

an NP-hard combinatorial optimisation problem (Hu et al., 2022, Dvorak et 

al., 2018). Specifically, the problems are intrinsically very difficult in 

computation, and these require using heuristics to choose the best 

solution from a finite or countably infinite number of alternatives. 
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One way to begin characterizing this problem is by viewing it as a 

machine allocation problem in which a flow of production parts is 

allocated to a stream of available builds. Figure 5.3 illustrates this 

problem formalization by expressing AM capacity as a stream of 

available builds on M machines in a sequence of N consecutive 

production days, where one build operation can be completed per day. 

In this sense, AM machines can be regarded as proving a set of 

available builds to be filled with product geometry to meet some 

demand profile (Araújo et al., 2019). Since the actual machine allocation is 

dependent on some measures of the goodness of build volume 

packing, the scheme shown in Figure 5.3 shows that the problems of 

build volume packing and scheduling can be investigated as a joined-up 

problem, which is reflected in the approach chosen to address the 

problem. In this context, it is important to note that computationally 

addressing any build volume packing problem of a useful size, results in 

a very large solution space (Baumers et al., 2013). This means that all such 

problems are NP-hard and require heuristic solutions (Burke et al., 2006, 

Fleszar and Hindi, 2002). 

 

Figure 5.3: Production scheduling decision in AM  

(image source: adapted from Baumers (2012)) 

An integrated optimisation problem was investigated in this study, which 

is different from the separate optimisation of scheduling and packing in 

AM addressed previously. According to Chergui et al. (2018), production 
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scheduling and packing can be divided into two sub-problems: (1) 

parts/jobs assignment; and (2) jobs scheduling, as shown in Figure 5.4. 

 

Figure 5.4: Separate optimisation of scheduling and packing in AM  

(image source: adapted from Chergui et al. (2018)) 

In this case, the packing and scheduling were optimized individually. 

However, compared to an integrated/joint optimisation, separate 

optimisation is unlikely to achieve the best solution due to being subject 

to a local optimum rather than the global optimum (Tan et al., 2018, Tao, 

2004). To this end, a new framework for integrated optimisation of 

scheduling and packing was established in this work, as shown in 

Figure 5.5. 

 

Figure 5.5: Integrated optimisation of scheduling and packing in AM   
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Figure 5.5 presents an integrated optimisation process of scheduling 

and packing from P parts for M AM machines on N production days. A 

set of parts are regarded as input with various geometric volumes and 

dimensions. The demand for each type of part is specified by the 

operator. According to the production plan, parts are regrouped into 

several categories. Multiple groups of parts are packed in AM machines 

over multiple production days. Orientations of parts were considered in 

packing strategy for this study. Specifically, each type of part was 

subjected to rotating operations around the  𝑥, 𝑦 and 𝑧-axes. Each type 

of AM machine has its specification, including production capacity, 

operation costs, and energy consumption. 

In some previous approaches (Baumers et al., 2013, Araújo et al., 2020), the 

sequence in which part geometries are fed into the AM workflow 

optimisation scheme is fixed. This sequence can be determined, for 

example, by measurement of part size or by the date at which the part 

is required. For working implementations that involve build volume 

packing, for example using 1D, 2D, or 3D irregular packing approaches, 

further functions for insertion, collision checking, translation, and 

rotation are normally required (Baumers et al., 2017b). Moreover, different 

orientations and positions of parts will lead to different dispersions of 

parts in the available build volumes and variation in the vertical height, 

also known as Z-height, of a build, which, in turn, may have an effect on 

the prospect of successfully executing the build at all (Baumers and 

Holweg, 2019, Oh et al., 2018b). Importantly for this thesis, different 

configurations and allocations of parts will lead to different levels of 

resource consumption and process efficiency (Baumers et al., 2013). 

Specifically, different orientations and positions of parts are likely to 

cause different Z-height and total deposition areas in a build (Oh et al., 

2018b). Furthermore, different combinations of parts in a group with 

specific production dates tend to result in different resource 

consumption and delivery dates. This is because the total energy 

consumption of printing a group of parts is influenced by the total 
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volume of parts and Z-height of the build rather than the geometric 

shape complexity of parts (Baumers et al., 2011a, Baumers et al., 2011b, 

Baumers et al., 2017b). Due to the varied properties of each type of AM 

machine, some parts may not be produced in some specific machines. 

For example, if the maximum dimension of a part is out of the boundary 

of the available build space. 

On a practical level, the problem may further be complicated by the 

presence of technical constraints dictating that certain parts cannot be 

made on certain machines. For example, if a particular machine's build 

volume size is inadequate or certain orientations are not allowed to 

safeguard product quality. 

To efficiently optimize scheduling and packing, it is necessary to reduce 

the size and complexity to a manageable level through several 

simplifications in the form of system design decisions (Wu et al., 2013). 

The core of this problem is that parts should be allocated and packed to 

make full use of the available build space of AM machines within their 

capacity (Oropallo and Piegl, 2016). 

The starting point for developing a system is the development of a 

computationally efficient packing algorithm for use in offline workflow 

optimisation scenarios. Taking inspiration from Baumers and Holweg (2019), 

the packing algorithm developed in this work follows a 2.5-dimensional 

(2.5D) approach to the problem, which is addressed by filling up 

machine space successively in stacked, horizontal portions, referred to 

as bands, of build space. Within each band, the developed algorithm 

follows the logic of the bottom-left heuristic — attempting to fill machine 

available build space near the origins of the XY coordinate system 

(Burke et al., 2006, Chazelle, 1983). A fixed horizontal gap of 2 mm is placed 

between bands to ensure horizontal separation of parts. In this band-by-

band manner, the parts are inserted until the Z-height of the build 

exceeds the maximum available Z-height of build volume. Figure 5.6 

illustrates such an algorithm by showing a vertical cross-section of a 

packing layout with inserted parts denoted by p1, p2, etc. 
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Figure 5.6: Scheme of 2.5D packing in a build from a front view  

5.4 Implementation of integrated optimisation 

Integrating scheduling and packing in AM refers to allocating parts to 

machines according to the due date and placing parts on the bed. This 

forms an opposite situation, i.e., the separate optimisation of scheduling 

and packing in Lee and Kim (2023). "Optimal packing does not guarantee 

optimal scheduling. The packing and scheduling must be considered 

simultaneously to ensure feasibility", says Kucukkoc (2021). 

P-LPBF is a typical AM technology variant with the capability of a single 

build per day. The available build space represents the capacity of each 

AM machine. Taking P-LPBF as an example, two production days (Day 

One and Day Two) and two P-LPBF machines (Build A and Build B) 

were considered to implement the integrated optimisation of scheduling 

and packing, which are presented in Figure 5.7. The pseudo-code of 

integrated optimisation of the scheduling and packing algorithm is 

shown in Appendix B. “AM adopters may find it profitable to pool 

demand to realize maximum capacity utilization”, says Baumers (2012). 

Building on this, a capacity aggregation algorithm was developed in this 

research. Specifically, there were two available machines (i.e., two 

builds) per day to print parts. Integrating the capacity of two machines 

on two production days, when demand on a specific day meets the 

situation — out of capacity, the excess parts will be moved to another 
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day, forming the updates on demand. This may impact the delivery 

date. However, by virtue of capacity aggregation, the build volume of 

AM machines can be fully used. More detail is shown in Figure 5.7. 

 

Figure 5.7: Scheme of capacity aggregation in P-LPBF  

Exploratory simulations are a popular way to solve production planning 

problems in AM operations (Gopalswamy and Uzsoy, 2018, Irdem et al., 2010, 

Bueno et al., 2020, Liu et al., 2011). To achieve this in this work, a 

manufacturing execution system, also called a computational tool in this 

study, was developed to handle the integrated optimisation of 

scheduling and packing in AM. This system (System 1: integrated 

optimisation of scheduling and packing) was developed and 

implemented using MATLAB. 

Figure 5.8 presents the brief logic of System 1. This system is initialised 

by inputting the demand information for parts. Following this, System 1 

attempts to insert parts into the available build space using a Bottom-

Left heuristic and capacity aggregation algorithm, leading to well-

packed workflows. Bottom-Left heuristic, a universal approach for 2D 

parking in AM, is used to pack parts on the bed, laying a basis of 2.5D 

packing in this system (Wu et al., 2014). The capacity aggregation 

algorithm attempts to pick a build date that corresponds to the part's 

due date but allows for overspilling into the other time period where 

necessary, supporting capacity aggregation across all builds. This 

algorithm facilitates the interconnection between scheduling and 

packing through part allocation, forming one of the novelties of this 

system. A more detailed flowchart of the integrated optimisation 

process can be found in Appendix C. 
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Figure 5.8: Flowchart of System 1 — Integrated optimisation of scheduling and 

packing 

This system is re-run for all rotational instances of each type of part 

based on 90 degrees increments around the X, Y and Z axes, which is 

an extension of the rotating method in Zhang et al. (2016), i.e., rotation with 

90 degrees increments on the plane (only X and Y axes). This facilitates 

the maximum capacity utilization for each build. Building on this, a 
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solution space is created by permutating all combinations of rotations, 

which forms one of novelties of the System 1. The pseudo-code for the 

solution space generation is presented in Appendix D. 

Energy consumption is considered the optimisation objective and 

relevant energy-based scheduling in AM can be found in extant 

literature (Tafakkori et al., 2022, Karimi et al., 2021). An exhaustive search is 

then conducted to find the ‘best’ solution, which in this case is the 

energy-minimal scheduling and packing scheme. Together with the 

solution space generation approach, using exhaustive search reduces 

the complexity of the solution process to a finite number of solutions 

(Williams, 2010). Once the insertion procedure is finished, the system 

outputs the optimized results in terms of the layout of builds and the 

value of parameters and variables. 

To evaluate the energy performance when applying the integrated 

optimisation developed in this work, a set of experiments using different 

problem configurations were conducted and the results compared to a 

scenario with the scheduling and packing optimized individually. In the 

latter, the capacity aggregation algorithm was not implemented. This 

meant that the computational tool only allowed AM machines to pack 

parts within the capacity on each production day. 

5.5 Results of integrated optimisation 

Following the demand profiles in Table 5.8, the SEC result of each 

demand profile is presented as follows. The obtained SEC results are 

optimized solutions because scheduling and packing are typical NP-

hard combinatorial optimisation problems. It is impossible to 

exhaustively list all the solutions to these problems. To this end, 

heuristics are usually applied to obtain the satisfactory solutions within a 

feasible time (Tafakkori et al., 2022, Colorni et al., 1996). Combining the 

developed capacity aggregation algorithm, a BL heuristic and the 

exhaustive search algorithm were used to generate optimized SEC 

results. 
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Figure 5.9 illustrates the change of SEC under different demand profiles 

with integrated and separate optimisation approaches. 

 

Figure 5.9: SEC comparison between integrated and separate optimisation 

Overall, SEC results show a decreasing trend with quantity of units in 

build in Figure 5.9. Using the integrated optimisation approach helps to 

reduce approximately 0.63-14.88% of energy consumption when the 

number of parts is over 260 (demand profile S4 in Table 5.8). 

The minimum SEC value (77.40 MJ/kg) occurs at q=360 when using the 

integrated optimisation method. While adopting the separate 

optimisation method, the minimum SEC value (88.92 MJ/kg) is 

observed at q=320. 

A special demand profile S4 was studied because this is a turning point 

for choosing an integrated or separate optimisation approach to achieve 

minimal energy consumption in AM. Figure 5.10 presents the optimized 

part allocation results of demand profile S4. The part allocation results 

on Day One are the same using integrated or separated optimisation 

methods while the results on Day Two show different. The allocation 

results show a similar scenario although the demand on Day One 

dramatically exceeds the capacity of AM machines. As can be seen in 
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Figure 5.10, using integrated optimisation allows AM machines to pack 

more parts by 25.69% compared to using separated optimisation (181 

parts vs. 144 parts). Table 5.9 illustrates the results of this demand 

profile. 

 

Figure 5.10: The optimized allocation of parts to the machines in demand profile 

S4  

 

Table 5.9: Results comparison in demand profile S4 

Experiment 
Integrated 

optimisation  

Separate 

optimisation  

No. of builds 4 4 

Total height of builds 1101 mm 961 mm 

Total number of layers deposited 11010 9610 

Model overall energy estimate  745.30 MJ 677.77 MJ 

Model overall material estimate  8392 g 7584 g 

Model overall SEC 88.81 MJ/kg 89.37 MJ/kg 

Overall capacity utilization ratio 21.32% 19.26% 

Mean probability of a successful 

build 
64.39% 68.61% 
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Specifically, four builds were designed to pack parts for integrated and 

separate optimisation use. Applying the integrated optimisation 

approach tends to generate taller builds (1101 mm vs. 961 mm). The 

layer thickness is fixed (0.1mm in this study), which is in line with 

Baumers and Holweg (2016). As a result, there are more depositing layers 

(11010 vs. 9610) by adopting the integrated optimisation approach. This 

leads to a lower mean probability of a successful build when using the 

integrated optimisation method (64.39% vs. 68.61%). This is because 

adopting the integrated method allows more parts to be allocated and 

packed in AM machines, which can be verified by determining the 

overall capacity utilization ratio. This is the mean ratio of the volume of 

parts packed and the volume of available build space and was 

calculated at 21.32% vs. 19.26%, for the individual against integrated 

optimisation methods respectively. The capacity utilization ratio in this 

research is approximately double compared to the 10% for a well-

packed build volume reported by Baumers and Holweg (2019). 

More importantly, thanks to the effective optimisation algorithms for 

packing and scheduling in the system, the minimum SEC value 

generated by using either the integrated or separate optimisation 

approaches developed in this work (see Figure 5.9), on average, is 

lower than the results in the extant literature at full capacity build 

configuration (Kellens et al., 2010, Luo et al., 1999, Baumers et al., 2015). 

5.6 Summary 

This chapter describes the development and implementation of an 

integrated packing and scheduling optimisation method and presents 

the results for a number of scenarios of AM parts and machines. It was 

found that: 

(1) The integrated optimisation method allows approximately 0.63-

14.88% savings in energy in AM at higher demand profiles than the 

implementation of separate scheduling and packing methods. 
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(2) The integrated optimisation approach allows the AM machines to 

pack more parts by 25.69% than using separate scheduling and 

packing methods. 

(3) The SEC value obtained in this study is lower than the energy 

performance level in extant literature due to the adoption of the 

integrated optimisation approach developed in this work. 
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Chapter 6: Investigation of environmental network 

effects in P-LPBF 

6.1 Introduction 

As established in the literature review, network effects are an important 

phenomenon as part of value creating processes in industry in the 

present. Relevant for the growth of businesses, they also serve as an 

important tool to explain the commercial success of many businesses. 

So far, however, the question of if and how network effects impact the 

sustainability performance of industrial processes and machinery has 

not received much attention. 

In this research, the exploratory simulation approach is employed to 

address the previous research questions and a modified version of the 

workflow optimisation system is applied in an investigation of the impact 

of network effects on the process energy consumption of P-LPBF 

technology. In its structure and its results, this investigation builds on 

the methodology presented by Baumers (2019), who identified the concept 

of “environmental network effects” occurring at the machine level when 

groups of AM systems are organized in conjunction with each other. 

As outlined in the literature review, the general logic of network effects 

is that they result in a technical advantage resulting from the growth of 

the size of the network, as measured in the discrete number of its 

nodes. As shown by Baumers (2019), this idea is applicable to networks of 

AM machines and their customers or users; both groups can equally 

grow in numbers. Figure 6.1 summarizes the core logic of how such 

network effects arise as the consequence of the growth of networks. 

The figure also identifies the two main groups this investigation focused 

on, the machine operators, who are each assumed to operate a single 

AM machine, and the customers, who are each assumed to require a 

number of parts of the same type. It should be noted that both Figure 

6.1 and the remainder of this chapter investigate very small networks 

with very few, three to five, nodes in order to keep complexity to a 
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manageable level. Actual networks of this kind encountered in industry 

are likely to be far larger. 

 

Figure 6.1: Illustration of network growth in an AM network 

(image source: adapted from Baumers (2019)) 

Addressing the identified research question (Ford and Despeisse, 2016, 

Hegab et al., 2023), this chapter describes the use of the developed 

workflow optimisation functionality to measure network effects in terms 

of actual or potential gains in the efficiency of AM processes. To this 

end, Section 6.2 provides an account of how the simulation was set up, 

including the definition of network performance metrics and a summary 

of the modifications to the workflow optimisation system to measure 

efficiency gains arising in these metrics. Section 6.3 summarizes the 

execution of the modified system. Section 6.4 provides the results of 

this analysis. Finally, a summary is presented in Section 6.5. 

6.2 Experimental approach 

6.2.1. Network performance metrics 

In order to assess any changes to the performance and efficiency of AM 

technology resulting from growth of the network, either in terms of AM 
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machine operators or in terms of customers, it is first necessary to 

define a set of performance metrics for each group.  

In this exploratory study, a major assumption is made that the operators 

of AM systems are interested in process efficiency, for example in 

terms of cost and energy performance. The product users, however, are 

assumed to be interested in minimizing lead time. As discussed in the 

introduction, assessing the performance of the workflow optimisation in 

the presence of more than one group in this way can provide an insight 

into the type of network effects created by the AM platform. 

Building on the model in Baumers (2019), this study assumed that 

machine operators only focus on Specific Energy Consumption 

(SEC) (i.e., the lower SEC, the higher competitiveness among peers 

and customers only concern Schedule Attainment (SA) (i.e., the 

higher SA, the shorter the lead time). As discussed in Section 4.3.7, the 

two metrics were used to reflect the energy and operational 

performance of AM respectively. 

Assessing the energy and operational efficiency of the overall AM 

platforms, for example in the form of the SEC and SA metrics 

respectively as outlined in this thesis, provides an insight into whether 

environmental network effects arise through network growth if multiple 

AM systems and product users join such platforms. 

6.2.2 Experimental assumptions and selecting sample parts 

As outlined in the literature review, network effects, particularly cross-

group or indirect network effects, are phenomena that arise from the 

interaction of two groups operating as part of the same platform. As 

shown elsewhere, such phenomena can be observed by recognizing 

the change of the overall network performance in one group as the size 

of another group increases, for example from new members joining 

(Briscoe et al., 2006). 

For simplicity, this study focused on small networks with initially three 

operators of AM technology, which operate one identical AM system 
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each, and three customers, who require a single component each, 

which can be seen in Figure 6.2. In this investigation, m represents the 

number of machine operators present as members of the platform and 

c indicates the number of customers present as members of the 

platform. 

 

Figure 6.2: The growth cases and the number of group members 

(image source: adapted from Baumers (2019)) 

As can be seen Figure 6.2, this model is able to assess three types of 

network growth: (1) unilateral growth in the number of customers (c); (2) 

unilateral growth in the number of machine operators (m); and (3) 

combined growth in both groups. 

This analysis results in the investigation of nine instances, each of 

which is analysed for process efficiency and lead time, using the 

identified metrics. Due to the computational complexity inherent to the 

workflow optimisation problem, a set of simplifications is made in this 

study. These simplifications include: 

1. One AM machine represents one manufacturer, and one 

geometry represents one customer. 

2. It is assumed that the AM machines used by the machine 

operators, of which there are three to five, are identical 

(EOSPINT P 100). 

3. There are up to five customers and at least three join the AM 

platform to provide demand at one time. 
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4. The demand for each customer is fixed, e.g., 100, and occurs 

only at one time. 

To support this model and in order to assign a type of part demanded 

by each customer, a basket of five parts, as shown in Section 5.2.1 was 

selected. The types of parts were chosen based on the sequence of 

numbers. For example, selecting four types of parts means part 1, part 

2, part 3, and part 4 were chosen to study the environmental network 

effects. 

To proceed with the simulation, a series of demand profiles were 

devised, as shown in Table 6.1. As can be seen, each customer can 

demand a different quantity of components. 

Table 6.1: Demand profiles for System 2 

No. of 

machine 

operators 

Customer 

1 

Customer 

2 

Customer 

3 

Customer 

4 

Customer 

5 

Cases 

3 100 100 100 0 0 Case 1 

100 100 100 100 0 Case 2 

100 100 100 100 100 Case 3 

4 100 100 100 0 0 Case 4 

100 100 100 100 0 Case 5 

100 100 100 100 100 Case 6 

5 100 100 100 0 0 Case 7 

100 100 100 100 0 Case 8 

100 100 100 100 100 Case 9 

 

Each instance contains specific configurations (e.g., capacity utilization 

ratio and the total height of builds), leading to specific energy footprint 

(i.e., SEC) and operational performance (i.e., SA). In other words, there 

are nine specifications in terms of SEC and SA in this research. 



115 

 

6.3 Executing the workflow optimisation system to investigate 

network effects 

The start of running System 2 is from inputting demand and forms a 

matrix but only for a single production day as shown in Figure 6.3. 

 

Figure 6.3: Flowchart of System 2 — Investigating environmental network 

effects  
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System 2 consists of three algorithms: BL heuristic, build volume-based 

capacity aggregation algorithm and exhaustive search. BL heuristic was 

used to pack parts on beds. A build volume-based capacity aggregation 

algorithm was developed to effectively use the available build space of 

each machine, supporting the exploration of environmental network 

effects. Compared to the capacity aggregation algorithm in System 1, 

the build volume-based capacity aggregation algorithm just focuses on 

aggregating the capacity of multiple AM machines without considering 

the capacity in terms of production days. Unlike the build volume 

packing for a single build (Calabrese et al., 2022, De Antón et al., 2022), the 

build volume-based capacity aggregation algorithm was designed to 

aggregate the capacity of a maximum of five builds, allowing to make 

use of capacity utilization of those AM machines (Baumers, 2012). The 

pseudo-code for the build volume-based capacity aggregation algorithm 

is shown in Appendix E. 

The system was initialized by inputting the demand information of parts. 

Based on the BL heuristic, a set of parts can be packed on the bed. A 

build volume-based capacity aggregation algorithm was developed to 

maximize the capacity utilization of five builds. This study considered 

minimization of energy consumption as the optimisation objective, 

subject to the capacity of builds. To obtain the optimized results, an 

exhaustive search was adopted to search the solution space, which 

was generated by permutating all combinations of rotations. The 

solution space generation and solution searching processes were in line 

with the procedures in System 1 as presented in Section 5.3. Once the 

insertion procedure is finished, the system outputs the optimized results 

in terms of the layout of builds as well as the value of parameters and 

variables. To understand more details of this system, a flowchart 

presents the logical structure of the packing procedure shown in 

Appendix F. 
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6.4 Results of environmental network effects 

As introduced at the beginning of this chapter, this investigation is 

based on the assumption that there are two groups in the AM platform 

in this study: machine operators and customers. Gaining insights from 

Baumers (2019), a three-dimensional column chart, also called a cube-

based model, was selected to suitably present the resulting network 

effects along with the identified performance metrics in the AM platform. 

In this chart, the value of each indicator is reflected by the height of the 

column. There are thus nine cases in total, as shown in Figures 6.4 and 

6.5, reflecting the different permutations of network growth. 

Figure 6.4 and Figure 6.5 depict the SEC and SA value of the nine 

cases illustrated in Table 6.1 respectively. The vertical axis in Figure 6.4 

represents the SEC of each instance. The results can be interpreted 

that the more SEC diminishes, the greater the benefit from 

environmental network effects for machine operators. 

It is noted that the SEC value, overall, is much lower than the results in 

the published literature at full capacity configuration (Kellens et al., 2010, 

Luo et al., 1999, Baumers et al., 2015). Specifically, the energy efficiency can 

be improved by approximately, on average 33% at full capacity 

configuration through network effects investigation in the AM platform. 

This is explained through the use of a build volume-based capacity 

aggregation algorithm. In addition, the minimum SEC value (76.70 

MJ/kg) is very close to or even lower than the result (77.40 MJ/kg) 

presented in Section 5.4. This reflects the performance of the 

developed algorithms (i.e., capacity aggregation algorithm and build 

volume-based capacity aggregation algorithm) functioning in 

conjunction to improve the energy efficiency of the additive process. 

However, compared to the algorithm developed in System 1, adopting 

the build volume-based capacity aggregation algorithm tends to need 

more CPU time due to an increase in the size of the solution space, 

resulting from multiple loops of packing algorithms including the BL 

heuristic and the developed algorithms. It should be noted at this point 
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that a feasible way to streamline the computing process would be to 

parallelize the computing process by executing many calculations or 

processes simultaneously (Skillicorn and Talia, 1998), noting that exhaustive 

search optimisation is readily parallelizable. 

 

Figure 6.4: SEC with multiple machine operators and customers  

As can be seen from Figure 6.4, network growth in terms of customer 

numbers improves SEC in all cases. This was to be expected as the 

developed workflow optimisation system is able to configure the work 

better as the volume and variety of products increases. In other words, 

more customers joining the AM platform helps each machine operator 

save energy consumption during production. Assuming that the 

machine operators are the group concerned with SEC and using the 

categories of network effects presented in Section 2.5.2, this points 

towards a cross-group network effect in which growth in the customer 

group results in benefits for the machine operators. 

To reflect the impact of increasing customers on energy performance, 

the degree of mean SEC decline was calculated. As can be seen Table 

6.2, the mean SEC of operator numbers was obtained by fixing 
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customers and calculating the average SEC value. It shows that 

increasing one customer reduces 1-2% of energy consumption. 

Table 6.2: Decline rate of mean SEC with increased customers 

Specific Energy 

Consumption (SEC) 

(MJ/kg) 

Machine operators 
Mean 
SEC 
(MJ/kg) 

Percentage 
decrease of 
mean SEC m=3 m=4 m=5 

Customers 

c=3 78.52 78.52 79.82 78.95 

1.60% 

c=4 77.40 77.40 78.28 77.69 

1.28% 

c=5 76.70 76.70 76.70 76.70 

 

Growth in the number of machine operators appears to have a negative 

effect on SEC. This is explained by having more build capacity 

available, which results in the workflow optimisation system allocating 

products less efficiently. The result is not as clear as in the case of 

growth in the number of customers, however, with network growth in 

terms of machine operators decreasing energy efficiency in two of the 

nine cases. 

Beyond energy consumption, using a workflow system that is able to 

allocate production over time allows an investigation of Schedule 

Attainment (SA), a metric to represent the operational performance of 

AM. As outlined in this chapter, this analysis makes the simplifying 

assumption that the customers primarily care about SA. 

The vertical axis in Figure 6.5 represents the SA of each permutation of 

network growth. As can be seen, an increase in the number of machine 

operators increases SA in each instance. In other words, more machine 

operators joining results in more customers receiving their orders on 

time. 
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Figure 6.5: Schedule attainment under multiple machine operators and 

customers 

In terms of the categories of network effects presented in Section 2.5.2, 

this again points towards a cross-group network effect in which growth 

in the group of the machine operators results in a benefit for the 

customers. 

Analogous to the case of SEC, unilateral growth in the number of 

customers appears to have a negative effect on SA. This result can be 

explained by the fact that more customers are competing for the 

available machine capacity if the network grows in this way. 

To reflect the impact of increasing machine operators on SA, the 

percentage increase of mean SA was used. As shown in Table 6.3, the 

mean SA of customers was obtained by fixing machine operators and 

calculating the mean SA value. It shows that increasing one machine 

operator increases approximately, on average 37.52% of schedule 

attainment. 
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Table 6.3: Growth rate of mean SA with increased machine operators 

Schedule Attainment (SA) 

Machine operators 

m=3 m=4 m=5 

Customers 

c=3 20.00% 26.67% 39.33% 

c=4 19.50% 26.00% 38.50% 

c=5 14.40% 19.20% 24.00% 

Mean SA 17.97% 23.96% 33.94% 

Percentage increase of mean 

SA  
33.34% 41.69% 

 

The results of this exploratory investigation involving the application of 

the developed system to model the effects of a growing AM platform 

with two user groups thus point to the existence of network effects. At 

least one of these effects, leading to the reduction of SEC, suggests 

that the label of environmental network effects can be meaningfully 

applied. More specifically, the investigation suggests that there are 

indirect network effects. This forms a very interesting result due to the 

importance of this type of effect. The literature on network effects 

identifies indirect network effects as the most powerful due to their 

ability to generate positive feedback loops, in turn leading to rapid 

growth of networks (Gawer, 2014). Overall, this investigation thus 

combines the ideas of network effects with sustainability performance at 

the machine level. 

It is important not to overplay the significance of these results since they 

originate from the use of a limited model with only three to five 

members in each group. Moreover, as the result of an exploratory 

simulation methodology, the model is also artificial and simplistic in its 

assumptions, for example suggesting that machine operators primarily 

care about SEC whereas customers primarily care about schedule 

attainment. Empirical research involving a more advanced 

conceptualization of network effects will be needed to establish these 
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results more reliably. Ideally this would be done by subjecting a real-

world dataset of AM platforms to statistical inference. 

6.5 Summary 

This chapter has applied an extended version of the workflow 

optimisation system to an investigation of the existence and magnitude 

of network effects in AM platforms. Despite being conceptually limited 

and based on an exploratory simulation method, it suggests that: 

• A distinction should be made between customers and machine 

operators with respect to the performance of workflow 

optimisation methods. 

• The use of SEC as a performance criterion in such an 

investigation leads to the concept of environmental network 

effects, which may be a meaningful and important conceptual 

tool in exploring the environmental impact of platforms and 

digitally networked industrial systems. 

• Using the exploratory simulation method, it is possible to 

measure these network effects, albeit in a limited way and for a 

small AM platform. 

• Increasing customers is beneficial to a 1-2% savings in energy 

consumption and increasing machine operators facilitates 

approximately 37.52% reduction of lead time. 

Overall, the presented results serve as new indication that AM supply 

chains, in which multiple AM machines and multiple products are 

present, should be understood as networks. As shown, there is 

evidence for improvements in sustainability performance from network 

growth, which may form an important, so far unappreciated, additional 

benefit from participating in such networks. 

This complements the current literature on platforms and network 

effects, which concentrates on profits and private value as a measure of 

the impacts of operating platforms. It may also produce a valuable new 

perspective on how digital information interchange systems can be 
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leveraged to create sustainability benefits when operated together with 

manufacturing systems. 
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Chapter 7: Discussion 

This chapter discusses the research results in five sections. Section 7.1 

covers the impact of build failure on energy consumption in AM. Section 

7.2 discusses the equilibrium of material consumption in AM including 

material deposited into parts, material waste, and material loss. A 

discussion of the new approach for optimizing scheduling and packing 

in AM is offered in Section 7.3. Section 7.4 discusses the implications of 

workflow optimisation on improving the sustainability of AM. A final 

discussion is conducted to understand the implications of investigating 

network effects in the AM platform in Section 7.5. 

7.1 Impact of build failure on energy consumption in P-LPBF 

The results presented in Chapter 4 demonstrate a realistic and practical 

way to model the energy footprint of P-LPBF, extending previous work 

on P-LPBF energy consumption by studying the energy embedded in 

the material, the effect of capacity utilization, and the expected impact 

of the risk of build failure. 

The results can be compared with the literature by assessing SEC, 

which is the energy consumed by the P-LPBF process per unit mass of 

product geometry deposited (mostly measured in or convertible to MJ 

per kg). 

In terms of energy consumption, this research also explored the effects 

of embedded energy on SEC of P-LPBF process by adding the energy 

embedded in the material 𝐸𝑒𝑚𝑏𝑒𝑑 into the numerator of SEC model, 

which is shown in Eq. (7.1). Table 7.1 provides an overview of SEC 

results. 

 

𝑆𝐸𝐶𝑖𝑛𝑐𝑙𝑢𝑑𝑒 =  
𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠+𝐸𝑒𝑚𝑏𝑒𝑑

𝑀𝑝𝑎𝑟𝑡𝑠
                                          (7.1) 
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Table 7.1: Specific energy consumption comparison for P-LPBF processes 

Literature 

Luo et 

al. 

(1999) 

Kellens 

et al. 

(2010)  

Baumers 

et al. 

(2010) 

Baumers 

et al. 

(2015) 

This research 

Excl. 

embedded 

energy 

Incl. 

embedded 

energy 

AM variant P-LPBF P-LPBF 
Metal 

LPBF 
P-LPBF P-LPBF P-LPBF 

Material 

used 
Polymer PA2200 

SAE 

316L 
PA2200  PA2200  PA2200 

SEC 

(Single part 

build) 

(MJ/kg) 

N/A N/A 139.50 1122.09 1304.10 6203.96 

SEC (Full 

capacity 

build) 

(MJ/kg) 

107.39; 

144.32 
130.12 111.60 113.66 161.42 542.45 

 

The comparison in Table 7.1 shows that the energy consumption levels 

estimated in this research are higher than the available literature, 

suggesting that previous work has understated the energy consumption 

of AM. The results confirm, as expected, that the degree of capacity 

utilization has a significant effect on the energy consumption of the 

process (Baumers et al., 2017a), highlighting its importance for operating 

the process efficiently. However, the relationship between capacity 

utilization and efficiency gains in per-unit energy consumption is non-

linear, the U-shaped pattern (models a and c) in Figure 4.9, with the 

most energy-efficient builds occurring at intermediate levels of capacity 

utilization. This is due to the accumulating risk of build failure as the Z-

height in the builds becomes large. Increasing the capacity utilization 

further, improved the amortization of fixed job energy consumption but 

this was insufficient to offset the increased risk of build failure and 

waste in embedded energy. Therefore, in practice, the risk of build 

failure and energy embedded in the material should not be overlooked 

when assessing the environmental performance of AM systems. This 

argument is analogous to existing research on the financial cost of AM 

(Baumers and Holweg, 2019). 
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It is also important to note that accounting for embedded energy is 

paramount for improving the degree of transparency in understanding 

the total energy consumption of the manufacturing process. AM already 

has an inherent advantage in this regard as it is possible to produce 

complex geometries in a single manufacturing step; this contrasts with 

conventional manufacturing, which often requires multiple operations 

spread across different sites (Baumers et al., 2013). This research expands 

the scope of the energy consumption analysis, using well-documented 

methods to offer an even more realistic picture of the true energy 

footprint of AM. These addressed objectives 1 and 2 as presented in 

Chapter 1. 

Moreover, the results of this work underline the considerable impact of 

material waste streams on the environmental footprint of P-LPBF. 

Against the popular narrative, many AM processes create significant 

waste streams that need to be taken into account when evaluating the 

environmental performance of AM, for instance via life cycle 

assessment (Kellens et al., 2017a, Kellens et al., 2012, Faludi et al., 2015, Kellens 

et al., 2017b). Excluding the risk of the build failure, the SEC values for 

the single part build (5859.50 MJ/kg) and full capacity build (337.25 

MJ/kg) are significantly different from the situation excluding waste 

streams (1231.69 MJ/kg vs. 107.80 MJ/kg, respectively). The 

comparison of SEC values in Table 7.1 suggests that waste streams 

have a bigger impact on environmental performance than the risk of 

build failure. 

The difference in energy consumption behaviour between additive and 

conventional manufacturing processes, such as injection moulding, 

requires acknowledgement. In P-LPBF, since the build volume is fully 

packed at q=55, there is no improvement in the unit energy 

consumption in choosing to build a marginally higher quantity of parts. 

This is because producing one more part would need a new build cycle, 

resulting in a repeat of the full, fixed job energy consumption. Moreover, 

the minimum achievable energy consumption in P-LPBF is subject to 



127 

 

the most energy-efficient operation for one build. Whereas the energy 

consumption curve in conventional manufacturing decreases 

asymptotically as the volume increases, continually improving the per-

unit energy consumption. 

Finally, sustainable AM requires greener supply chains, more efficient 

manufacturing processes and high-quality resource recycling (Huang et 

al., 2013, Despeisse et al., 2017, Kohtala, 2015, Allwood et al., 2022). Additionally, 

the impacts of build failure on the complexity of the supply chain 

structure should not be underestimated (Holmström et al., 2016, Li et al., 

2017a). Moreover, the recycling and reuse of wasted material have a key 

role to play in improving resource efficiency in AM (Huang et al., 2013), 

while the combination of digitalization, interconnection, and automation 

is likely to facilitate resilient and efficient AM implementation. 

7.2 The equilibrium of material consumption 

This study established a model to study the equilibrium of material 

consumption during the additive process, as shown in Figure 4.4. This 

model assumes that the P-LPBF system operates in a steady state. 

Specifically, the mass of the virgin powder introduced into the system is 

in equilibrium with the mass of the material exiting the system. 

Therefore, the amount of fresh powder material introduced into the 

system equates to the mass of powder fused as parts, the powder 

waste due to degradation, and any other unaccounted-for powder 

losses. 

Building on the steady state of the P-LPBF system, the established 

equilibrium model provides a theoretical way to understand the material 

consumption compositions and material flow as well as the 

measurement of material used in practice. 

It has been identified that the measurement of material consumption 

during the additive process is difficult (Peng et al., 2018, Mukherjee et al., 

2016). The proposed material consumption model offers a practical or 

even precise measurement method of material use during the additive 
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process. This model tends to help operation managers accurately 

estimate the material consumption during the AM process, facilitating 

resource supply and management in production. Building on this, 

thanks to the localized feature of logistics in AM, the material suppliers 

are likely to gain benefits in terms of supply efficiency by interacting with 

manufacturers (Ben-Ner and Siemsen, 2017). A deep interaction or 

collaboration among manufacturers, customers, and suppliers is 

acknowledged to promote technology innovation in additive 

manufacturing (Ahuja et al., 2015, Zairi, 1998). 

The constructed material consumption model affords a possibility of 

environmental sustainability improvement in P-LPBF. "If you can't 

measure it, you can't improve it", says Prince (2018). In other words, the 

measurement of material consumption has a significant role to play in 

improving the environmental sustainability of AM. The results in Section 

4.4.2 have shown that the energy embedded in the raw material 

dominates the total energy consumption in both single-build and full-

capacity configurations. The established model helps operations 

managers estimate the embedded impact of P-LPBF process, allowing 

them to adopt sustainability improvement measures/strategies. To do 

so, Monteiro et al. (2022) suggested an array of resource efficiency 

strategies in AM from four aspects: product design, materials extraction 

and production, processes, and end-of-life extension. Building on 

improving material efficiency, Girdwood et al. (2017) suggested that a 

better understanding of process parameters and efficient utilization of 

machine capacity would acknowledge further savings in material use 

during the additive process compared to conventional manufacturing. 

This puts stress on the significance of adopting optimisation 

approaches to improve resource efficiency, which would be discussed 

further in Section 7.3. 

The proposed model may provide insight into environmental 

sustainability improvement in P-LPBF by estimating material waste. It is 

suggested to reuse waste material by converting material waste (e.g., 
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support structure) into functional powder or wires in metal additive 

manufacturing (Monteiro et al., 2022). However, there are some 

uncertainties about the waste material, for example, volume and 

situation (Stieberova et al., 2022). A precise estimation of material waste is 

likely to facilitate recycling operations. Although it benefits resource 

efficiency, Ford and Despeisse (2016) stated that it is challenging to 

implement this conversion process into raw material for reuse in 

additive manufacturing. To this end, for polymer waste, Shanmugam et al. 

(2020) suggested that it is necessary to handle, and separate polymers 

based on their properties (e.g., physical and chemical) to support 

effective polymer waste management. These disposal methods include 

incineration, recycling, landfilling, and carbonization (Chen et al., 2020). 

7.3 New approach for packing and scheduling optimisation 

AM, as a parallel manufacturing process, enables the manufacture of 

different parts in a build volume simultaneously (Ruffo and Hague, 2007). 

This gives rise to the build volume packing problems during the 

machine setup stage. Such packing problems are classified as NP-hard 

(Kaaouache and Bouamama, 2015), which could be solved by adopting 

computational approaches (Hur et al., 2001). 

This study considered all orientations of parts to support the generation 

of solution space, allowing the computer to exhaustively search all 

feasible packing solutions.  However, as the parts increased, the 

optimisation process would be challenging because the problem 

instance size exponentially surged, resulting in a considerable amount 

of CPU time (Tao, 2004). Such computational challenges tend to occur 

particularly in the mass production of AM. To this end, it is necessary to 

choose specific mathematic models and algorithms that fit the problems 

(Jian and Wang, 2014). 

A new framework was developed in this study to realize the integrated 

optimisation of scheduling and packing. It contains two main stages: 

solution space generation and optimal solution identification. Compared 

with the extant optimisation approaches regarding addressing 
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production planning in AM, for example, metaheuristics (Tafakkori et al., 

2022, Zhang et al., 2020), the optimisation method developed in this 

research supported a robust generation of optimized solutions. 

Specifically, a set of simplifications have been made in this study, for 

example bounding box adoption. Converting the part into a bounding 

box is usually used to implement 2D packing, which ensures productive 

packing in AM (Tafakkori et al., 2022). In addition, scheduling and packing 

were integrated at a part level in this study rather than at the production 

run level (job or batch) (Tafakkori et al., 2022). This has led to a higher 

level of capacity utilization particularly in multiple build volumes, 

allowing effective use of machine resources in AM. As a result, 

objective 3 was accomplished. 

When considering business use, the developed system is likely to help 

operations managers rapidly generate a satisfied packing and 

scheduling solution with minimal energy consumption, gaining 

competitive advantages in terms of sustainability (Barreto et al., 2010). 

However, it requires further development to satisfy specific 

requirements for business use, for example, one system for all types of 

AM technologies use, the deployment of AM machines (e.g., quantity, 

model) and the kind of parts. 

The established integrated optimisation system in this study may 

provide insight into the advancement of digital manufacturing platforms 

in P-LPBF. It is noted that digital platforms for manufacturing have a 

significant role in improving product quality, reducing prototyping costs, 

and reducing time to market (Chryssolouris et al., 2009). The developed 

system in this thesis allows a small scale of interconnections between 

P-LPBF machines through capacity aggregation, facilitating the efficient 

utilization of production resources including machines, material, and 

power. It is acknowledged that digital manufacturing platforms have a 

broad role in offering manufacturing services, for example, data 

collection, storage, processing, and delivery (EFFRA, 2023). However, it is 

challenging to enable manufacturing businesses, particularly small and 



131 

 

medium-sized enterprises, to satisfy the requirements of evolving 

supply chains (Gerrikagoitia et al., 2019). 

7.4 Implications for sustainable AM through integrated 

optimisation 

Compared to conventional manufacturing, AM holds great potential in 

minimizing the carbon footprint in product and production development, 

and whole life cycle stages. Its capability to involve in sustainable 

manufacturing for example repair, upgrade, and remanufacture tooling 

shows an opportunity for significant savings in energy consumption, 

costs, and emissions (Morrow et al., 2007). Regarding integrated 

optimisation of scheduling and packing, the AM equipment is allowed to 

use interchangeable documents, i.e., CAD models in STL format. It may 

be profitable to pool demand to achieve capacity utilization (Baumers, 

2012). 

The results in Section 5.5 have shown that the integrated optimisation 

approach is likely to facilitate a more energy-efficient production, 

particularly in higher volume scenarios. This approach allows AM 

system to pack more parts on the bed compared to the separate 

optimisation method. This raises higher energy consumption and 

materials use. However, it has less environmental impact, measured 

using SEC when compared with separate optimisation. 

To further assess the performance of the developed system, the SEC 

value of this study is compared with the literature. In a single build, the 

energy consumption levels (107.77 MJ/kg) estimated in this study are 

very close to the available literature (Luo et al., 1999, Baumers et al., 2015, 

Wang et al., 2022b), indicating the effectiveness of the developed system 

in SEC estimation. A notable point that should be mentioned is that, as 

estimated by this research, the SEC value is lower in full builds (i.e., 

four builds in this research) than in one build scenario (79.54 MJ/kg vs. 

107.77 MJ/kg). This is due to that the higher degree of capacity 

utilization ratio has a positive effect on the SEC of additive process for 

example 107.80 MJ/kg vs. 1231.69 MJ/kg (Wang et al., 2022b). 
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This study extended the previous research on the integrated 

optimisation of scheduling and packing in AM (Ransikarbum et al., 2020, 

Tafakkori et al., 2022, Aloui and Hadj-Hamou, 2021, Zhang et al., 2020). This has 

been done by investigating the integrated optimisation mechanism and 

energy consumption predictive model. Specifically, the proposed 

optimisation approach allows multiple AM machines to efficiently utilize 

available build space. One reason is that the 2.5D packing allows AM 

systems to fill the build volume rather than pack a single floor of parts 

on the bed with 2D packing methods (Oh et al., 2018b). Another reason 

can be found that building on 2.5D packing, the capacity aggregation is 

capable of effectively employing the available build space of multiple 

AM machines rather than tightly packing parts in a single AM machine 

with a 3D packing approach (Araújo et al., 2020). 

The adopted approach aims to improve the environmental sustainability 

of P-LPBF process from the production planning perspective. However, 

the effects of process parameters on sustainable manufacturing need to 

be concerned (Hao et al., 2010, Siva Rama Krishna and Srikanth, 2021). In Direct 

Laser Deposition (DLD), many process parameters have an effect on 

the microstructure, and residual stress of parts, for example, powder 

feed rate, laser power, and laser scanning strategy (Shamsaei et al., 2015). 

This would affect the quality of parts and the probability of build failure, 

resulting in extra consumption of energy and material. From the 

perspective of equipment utilization, the developed system would help 

to use P-LPBF machines environmentally friendly by making use of 

each machine and aggregating the capacity of all P-LPBF machines. To 

some extent, this would reduce waste of equipment utilization and 

therefore improve production efficiency as well as manufacturing 

sustainability (Ford and Despeisse, 2016). 

The study provides a digital solution for production planning and 

scheduling in P-LPBF. In this system, the parts and additive process 

can be traced using data, laying a base for realizing digital 

transformation for companies. This offers opportunities for innovation by 
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combining established logistics and supply chain management 

(Holmström and Partanen, 2014). Interacting real-time data with other 

equipment (e.g., robots) and the environment by embedding sensors, 

more benefits in terms of sustainability and cost reduction of AM can be 

gained further (Syafrudin et al., 2017). 

7.5 Implications for investigating network effects in the AM 

platform 

The network effects in terms of environmental impacts in the AM 

platform were investigated in this study. Considering specific energy 

consumption and schedule attainment as metrics, the network effects in 

the AM platform were identified, addressing objective 4. 

The results in Section 6.4 indicate that network effects do exist in the 

AM platform — indirect network effects. This means that more 

customers joining the network allow lower environmental impacts for 

each machine operator. More machine operators joining the network 

helps less waiting time for each customer. This is due to the mechanism 

of capacity aggregation embedded in the developed computational tool. 

In addition, it is partially because of the economics of scale, i.e., cost 

advantages companies experience when production becomes efficient 

(Baumers and Holweg, 2019). However, it cannot be completely attributed to 

the economics of scale because, as suggested by Petrick and Simpson 

(2013) and Weller et al. (2015), the economics of AM are fundamentally 

different to conventional manufacturing. The tool-free manufacturing 

allows an elimination of temporal and monetary investment in designing 

and fabricating the necessary tooling and fixtures, featuring AM as an 

enabler to produce individual parts in small batches without any set-up 

time concerning the resources (Atzeni and Salmi, 2012). Instead of capital-

intensive and machine-intensive production locations, AM is able to 

manufacture based on demand. This allows the possibility of separating 

product design and production, providing new business models that 

relies either on product services or manufacturing resources (Thiesse et 

al., 2015). 
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Investigating network effects in the AM platform may offer a view of 

understanding the relationship between the demand side and supply 

side as well as improving the sustainability of AM, i.e., adopting the 

economic theory to study environmental behaviour in the AM platform. 

Indeed, AM is capable of design freedom, on-demand production for 

tooling, and remanufacturing of metal parts (Knofius et al., 2019, Rahito et 

al., 2019, Yi et al., 2019). These features allow AM an enabler for 

redistributed manufacturing and a technological facilitator in the fourth 

industrial revolution (Arifin et al., 2022, Turner et al., 2019). The investigation 

of environmental network effects is exploratory and tentative, and this 

adds in a number of new concepts and framework to the study of 

workflow optimisation systems in AM. 

Taking into account the potential of environmental benefits via 

exploiting network effects, AM tends to contribute to the construction of 

Smart Manufacturing Systems (SMSs). This will offer much more 

effective production, sustainability, agility, globalization, and mass 

customization and give a glimpse into the future of how AM technology 

will be operated in the industry (Qu et al., 2019). 
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Chapter 8: Conclusions and recommendations for further 

work 

8.1 Conclusions 

A workflow optimisation approach was developed to improve the 

environmental sustainability of P-LPBF. This has been done by 

establishing an environmental sustainability model and using 

exploratory simulation. Using this model, the basic elements of 

environmental sustainability were studied. In addition, the impact of the 

risk of build failure and capacity utilization on energy consumption was 

quantified. In the exploratory simulation, two computational tools were 

developed to realize the integrated optimisation of scheduling and 

packing as well as to uncover environmental network effects in the AM 

platform respectively. Detailed conclusions are presented below. 

8.1.1 Factoring build failure into energy consumption 

The effects of the risk of build failure on the energy consumption of P-

LPBF were investigated in this thesis. This has been achieved by 

modelling the expected energy consumption per unit across the entire 

range of build capacity utilization. Embedded energy was also 

considered as part of the total energy consumption to assess the overall 

energy footprint of P-LPBF. 

In many existing AM studies, the effects of the risk of build failure on 

AM energy consumption are ignored. The model proposed in this study 

allows researchers and manufacturers to obtain the expected energy 

and material consumption information and shows how more realistic 

models can be constructed. It can thus facilitate further research to 

mitigate the environmental impacts of AM through product and process 

design (Baumers et al., 2013). Without consideration of build failure, 

process energy consumption estimates may not be realistic and 

resource consumption may be underestimated, resulting in overly 

optimistic assessments of energy demands and the environmental 

impacts of P-LPBF. 
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The results also show that, for the investigated P-LPBF system, the 

energy embedded in the material has a greater impact on the total 

energy consumption than the AM process itself. Moreover, the impacts 

of waste streams have an outsized effect on the ecological impact of 

AM compared to the risk of build failure. 

8.1.2 Integrated optimisation of scheduling and packing 

A manufacturing execution system (or a computational tool) has been 

developed to achieve minimal energy additive manufacturing through 

integrated optimisation. Overall, this system provides a new 

optimization framework and new integrated optimization algorithms to 

address integrated optimization problems in P-LPBF. The energy 

consumption estimator was embedded into this system. In addition, a 

capacity aggregation algorithm was developed. BL heuristic and 

exhaustive search algorithms were adopted in this system. The existing 

studies have not yet investigated the integrated optimisation of 

scheduling and packing through aggregating the capacity of multiple 

builds in P-LPBF. The developed system provided a precise resource 

estimation (e.g., energy consumption and material use) under minimal-

energy configurations and optimized layout of build(s). This would help 

further research to identify the resource consumption of additive 

processes and support sustainability-related considerations in the 

design (e.g., product and process) (Diegel et al., 2010). 

An emphasis is placed on the integrated optimisation approach that was 

developed at a part level in this study, which is different from the 

integration methods in extant literature (Tafakkori et al., 2022, Zhang et al., 

2020). Furthermore, aggregating the capacity of builds has a positive 

effect on improving the capacity utilization ratio and energy efficiency at 

a high level of demand profiles during the additive process. This helps a 

tighter and more realistic integration of scheduling and packing in AM, 

leading to the improvement of environmental sustainability in terms of 

energy consumption, material consumption, and equipment utilization 

(Ford and Despeisse, 2016). Without a deep understanding and 
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implementation of integrated optimisation, the additive process is 

unlikely to be environmentally friendly, resulting in equipment utilization 

waste, higher energy consumption and more material use, as discussed 

in Sections 7.3 and 7.4. 

8.1.3 Environmental network effects 

The purpose of the environmental network effects study is to uncover 

the network effects between machine operators and customers in the 

AM platform. This has been realized by establishing another 

computational tool to estimate the specific energy consumption and 

schedule attainment under a set of demand profiles. 

This thesis has investigated environmental network effects from the 

economics perspective, i.e., taking the AM platform as a market and 

creating value based on the economies of scope in demand (Gawer, 

2014). Building on the main framework of System 1 shown in Section 

5.3, a new build volume-based capacity aggregation algorithm was 

developed in System 2. This contributed to the maximum capacity 

utilization ratio across multiple AM machines and minimal energy 

consumption for each specific demand profile as well as the optimized 

layout of builds. 

Specific energy consumption and schedule attainment were regarded 

as indicators to characterize the environmental network effects in AM. 

Results indicated that there are indirect network effects between 

machine operators and customers in the AM platform. In other words, 

increasing customers allows each machine operator to gain 

environmental competitiveness during the additive process. Increasing 

machine operators facilitates each customer less waiting time for 

product delivery. 

AM holds great potential for improving sustainability, for example, 

energy efficiency and complete time. Without such an investigation, this 

potential cannot be fulfilled further. This study offered an understanding 

of the mutual impacts between the supply and demand sides in the AM 
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platform, affording an opportunity for the improvement of product 

services (e.g., rapid product delivery) and manufacturing resources 

(e.g., aggregation, sharing, and allocation) in business via the AM 

platform (Thiesse et al., 2015). Furthermore, due to its performance in 

improving the energy efficiency of AM as presented in Section 6.4, the 

developed system may provide a way of investigating environmental 

sustainability improvement by discovering the effects that are existed in 

manufacturing systems. 

8.2 Limitations and recommendations for further work 

8.2.1 Limitations 

There are three main aspects of limitations for this study: risk of build 

failure, integrated optimisation, and environmental network effects. 

In terms of build failure, this study investigated the effects of risk of build 

failure based on single-machine cases only. When considering mass 

production using AM, process failure on individual AM machines is likely 

to affect the operation of other machines and the overall resource 

consumption. Operating multiple AM machines allows further 

optimisation. For example, when operating two machines, the 

production time of splitting jobs equally into two builds tends to be 

shorter than filling one and running another at lower capacity, therefore, 

influencing appropriate job scheduling. In addition, build failure is 

explored in the context of build configurations containing identical parts 

in the form of a fixed probabilistic value for each layer. This might not be 

reflective of common practice for the technology as mixed-part builds 

are often used (Ruffo and Hague, 2007, Baumers et al., 2017b). The effect of 

shape complexity, design complexity, process parameters, and parts 

orientation may, in reality, affect the probability of build failure. 

The second main limitation is to do with the integrated optimisation 

investigated in this study. This thesis only focused on identical AM 

machines, and the number of machines used as well as the number of 

production days are relatively small. To satisfy the needs of customers, 
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real production may involve various AM machines. In addition, some 

unexpected events, for example, breakdowns and rush orders may 

occur. These would make integrated optimisation more challenging. As 

the problem instance size increases, more CPU time will be required 

(Tao, 2004). When the problem instance size is fixed, many factors have 

impacts on the computational efficiency and solution quality, for 

example, algorithms/heuristics used and the way of formulating the 

problem. Baumers (2012) argued that the user's capability of filling the 

build volume is the major determinant of cost and energy efficiency in 

AM. In other words, the heuristics applied for addressing build volume 

packing issues have an effect on the benefits of AM. This thesis 

developed a 2.5D packing framework, a simplification of 3D irregular 

packing but an upgrade of 2D packing. Computational efficiency may be 

ensured in complex and large problem instance size situations. 

However, there is still room to improve performance, for example, 

specific energy consumption and capacity utilization in this study, 

through formulating 3D irregular packing problems and developing 

algorithms for 3D irregular packing. 

The environmental network effects from an engineering design 

perspective are not investigated, which constitutes the third limitation of 

this study. Taking the AM platform as the two-sided market, this thesis 

studied network effects based on the economies of scope in demand. 

This offers a static and demand-side view of platform competition but 

does not solve the issues of platform evolution and innovation by 

investigating technological architectures. Considering the technological 

aspects of AM platform, it is likely to contribute more opportunities for 

sustainability improvements in AM through a comprehensive 

combination of production planning optimisation and platform 

innovation. 

8.2.2 Recommendations for further work 

To address the above limitations in terms of the build failure, further 

research could expand the presented energy consumption model. One 
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important consideration would be to systematically consider the role of 

product geometry and other layer-based characteristics. Such an 

investigation could be done in the context of part design, multiple 

machines, mixed part geometries, build volume packing and production 

scheduling. Although energy accounts for only a small portion of total 

production costs (Ruffo et al., 2006, Baumers et al., 2013), the energy-efficient 

operation of AM is crucial to improve its environmental friendliness. It is 

shown that the total expected energy consumption of AM is reduced by 

operating AM at intermediate levels of capacity utilization. Monitoring 

manufacturing processes is conducive to reducing parts scrappage (Rao 

et al., 2015, Wuest et al., 2014). Moreover, this thesis suggests that 

processes and product designs should be leveraged to minimize the Z-

height of builds, to decrease the possibility of build failure and its 

adverse impact on the environmental performance of additive 

processes. 

In terms of integrated optimisation, three aspects for further research 

have been identified: (1) deep integration of information technology, for 

example, AI, machine learning, cloud computing, and digital twin. To 

deal with large-scale production optimisation problems in AM, adopting 

information technology would facilitate less computational time and 

high-quality solutions; (2) self-adaptive optimisation on processing 

parameters based on production tasks and conditions of AM machine. 

Depending on various production tasks and conditions of the machine, 

the processing parameters of AM machine may be different. Printing 

parameters optimisation is one of the main factors affecting the 

accuracy of 3D printing (Feng et al., 2019, Lyu et al., 2021). There is a need 

to adjust the parameters during the production planning stage to ensure 

the best performance of printing; and (3) intelligent decision-making of 

algorithms based on the attributes of packing problems in AM. The 

capability of algorithms has an impact on the searching efficiency and 

solution quality in addressing the build volume packing problems 

(Hopper and Turton, 2001). Considering the attributes of packing problems, 

intelligent decision-making of packing algorithms could be investigated. 
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When considering business use, further work could be done by 

developing a deployable system based on the optimisation framework 

developed in this study. This may require high-performance computing 

technologies to support large-scale computation of workflow 

optimisation as well as a large memory to record and save the value of 

parameters and variables, and optimized results. In addition, other 

objectives (e.g., production costs, and production time) could also be 

included to support multiple production choices for operations 

managers. Furthermore, it is promising to establish a deep connection 

between the developed system with some modelling software, for 

example, AutoCAD, facilitating the conversion of digital models of 

objects into data required by the developed system. Further work could 

be done by developing a system fits all categories of AM technologies, 

which may be beneficial to its commercialization. 

Environmental network effects have just been studied from an 

economics perspective. Such effects allow the understanding of 

environmental impact in AM from the demand side. Further research 

could be done to investigate environmental network effects from an 

engineering design perspective, taking the AM platform as a 

technological architecture. This would be complementary research of 

this study by considering the engineering aspect of environmental 

network effects, helping to understand the mutual effects between 

supply innovation (i.e., machine operators) and demand competition 

(i.e., customers) in the AM platform (Gawer and Cusumano, 2014). This 

research investigated network efforts in small-scale scenarios using 

exploratory simulation. When considering a large-scale scenario or 

even business use, it is necessary to consider some other important 

functions (e.g., interaction among machine operators, customers, and 

platform owners) and computational requirements (e.g., usage of high-

performance computing, cloud computing). In addition, choosing the 

level of openness of the platform has an effect on the adoption of 

complementary developers, and diversity of complementary 

applications by platform owners (Soto Setzke et al., 2019). In this sense, 
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further research could be investigated by studying how the degree of 

platform openness drives AM platform evolution over time and its 

consequences (Gawer, 2014). 
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Appendices 

Appendix A Pseudo-code for the layer-based estimators 

This pseudo-code presents the sequence of estimation procedures 

including build time, energy, and material consumption. 

1. Begin program. 

2. Begin build time estimation. 

2.1 Start build time estimation loop assessing each build. 

2.1.1 If the packing of the build is finished, then: 

2.1.1.1 Add layer-dependent time contribution, based 

on total number of layers and fixed time per layer. 

2.1.1.2 Add geometry-dependent time contribution, 

based on total cross-sectional area in a build and fixed 

time per mm2. 

2.2 Move on to energy estimation. 

3. Begin energy estimation. 

3.1 Start energy estimation loop assessing each build. 

3.1.1 If the packing of the build is finished, then: 

3.1.1.1 Add fixed job-dependent energy contribution 

including energy use during warm up and cool down 

stages. 

3.1.1.2 Add time-dependent energy contribution, 

based on build time and fixed minimum power 

consumption. 

3.1.1.3 Add layer-dependent energy contribution, 

based on total number of layers and fixed energy per 

layer. 

3.1.1.4 Add geometry-dependent energy contribution, 

based on total cross-sectional area in a build and fixed 

energy per mm2. 

3.2 Move on to material estimation. 

4. Begin material estimation. 

4.1 Start material estimation loop assessing each build. 
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4.1.1 If the packing of the build is finished, then: 

4.1.1.1 Obtain total material based on the number and 

geometric volume of each type of parts inserted in a 

build. 

5. Output and record the build time, energy, and material 

consumption estimates in each build. 

6. End program. 

 

Appendix B: Pseudo-code for an integrated optimisation of 

scheduling and packing algorithm 

The below pseudo-code expresses the structure and logic of 

implementing integrated optimization of scheduling and packing in P-

LPBF. 

1. Begin program. 

2. Obtain input from user on instantaneous demand profile on Day 

One and Day Two to contract a demand matrix. 

3. Create a precedence vector based on the geometric volume of 

parts. 

4. Generate an insertion precedence based on the demand matrix, 

dimension of parts and precedence vector. 

5. Start inserting procedure loop based on the insertion precedence 

using bottom-left heuristic. 

5.1 If choose Day One, then: 

5.1.1 If the inserted parts on Day One within the capacity of 

machines, then: 

         5.1.1.1 Record the parameters of parts. 

5.1.2 Move the excess parts from Day One to Day Two and 

update      demand on Day Two. 

5.1.3 If the inserted parts on Day Two are within the capacity 

of machines under the updated demand, then: 

                         5.1.3.1 Record the parameters of parts. 
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                5.1.4 Output out of capacity and record the parameters. 

5.2 If choose Day Two, then: 

5.2.1 If the inserted parts on Day Two within the capacity of 

machines, then: 

         5.2.1.1 Record the parameters of parts. 

5.2.2 Move the excess parts from Day Two to Day One and 

update demand on Day One. 

5.2.3 If the inserted parts on Day One are within the capacity 

of machines under the updated demand, then: 

                         5.2.3.1 Record the parameters of parts. 

5.2.4 Output out of capacity and record the parameters. 

5.3 If all parts are inserted or the inserted parts are out of 

capacity, then: 

5.3.1 Record the parameters of builds. 

6. End program. 

 

Appendix C: Flowchart of Integrated optimisation of scheduling 

and packing 

This flowchart reflects a detailed procedure the exploratory simulation 

adopted in this thesis to address the integrated optimization of 

scheduling and packing problem. This approach contains the Bottom-

Left heuristic, capacity aggregation algorithm and exhaustive search 

algorithm. 
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Appendix D: Pseudo-code for the solution space generation 

This pseudo-code describes the procedure of solution space 

generation, supporting the generation of optimized solution and layout 

of builds. 

1. Begin program. 

2. Start solution generation loop 

2.1  Obtain input from user on instantaneous demand profile on 

Day One and Day Two. 

2.2  Adopt precedence vector, dimensions of parts and insertion 

precedence. 
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2.3  Create a solution space based on the permutations of 

rotating operations for parts. 

2.4  Insert parts based on the insertion precedence with capacity 

aggregation algorithm and bottom-left heuristic. 

2.5  Record the parameters of builds. 

2.6  If the generation of the solution space is completed, then: 

3. Exhaustive search of the solution space. 

4. Output the optimum result and layout of builds. 

 

Appendix E: Pseudo-code for a build volume-based capacity 

aggregation algorithm 

The pseudo-code for build volume packing algorithm presents the flow 

of investigating environmental network effects.  

1. Begin program. 

2. Obtain input from user on instantaneous demand profile to 

contract a demand matrix. 

3. Create a precedence vector based on the geometric volume of 

parts. 

4. Generate an insertion precedence based on the demand matrix, 

dimension of parts and precedence vector. 

5. Start inserting procedure loop based on the insertion precedence 

using bottom-left heuristic. 

5.1 If the inserted parts are within two machines’ capacity, then: 

5.1.1 Input the demands of parts again. 

5.2 If the inserted parts are over two machines of but within three 

AM machines’ capacity, then: 

5.2.1 Record the parameters of parts within three builds. 

5.3 If the inserted parts are over three machines but less than 

four machines’ capacity, then: 

5.3.1 Record the parameters of parts within four builds. 
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5.4 If the inserted parts over four machines but less than five 

machines’ capacity, then: 

5.4.1 Record the parameters of parts within five builds. 

5.5 If the inserted parts are over five machines’ capacity, then: 

5.5.1 Record the parameters of parts with five builds. 

5.6 If all parts are inserted or the inserted parts are out of 

capacity, then: 

                5.6.1 Record the parameters of builds. 

6. End program. 

 

Appendix F: Flowchart of packing procedure for investigating the 

environmental network effects 

This flowchart illustrates a detailed process of build volume packing 

across multiple machines and multiple parts for the investigation of 

environmental network effects in the AM platform. This tool is consisted 

of Bottom-left heuristic, a build volume-based capacity aggregation 

algorithm and exhaustive search algorithm. 
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