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Abstract 

Synthetic aperture radar (SAR) has great potential for land cover/land use (LCLU) 

mapping, especially in tropical regions, where frequent cloud cover obstructs optical 

remote sensing. The use of SAR data derived mapping results plays crucial role in urban 

and suburban extents characterizations, urban services, rice crop distribution delineation, 

and land use changes detection. As the Mekong Delta is a significant location ecologically, 

economically, and socially, food security, forest conservation, natural resource 

management, and urbanization are a matter of great concern. Urban expansion and 

conversion wetland areas to aquaculture have impacts on natural forest and coastal 

ecosystems in the Mekong Delta. Therefore, the use of latest Sentinel-1 C-band SAR data 

characterizing LCLU including urban expansion, aquaculture development, and productive 

land and unproductive lands is essential for natural resource management and land use 

planning.  

This thesis demonstrated the use of Sentinel-1 SAR data and Google Earth Engine to map 

the LCLU of the Mekong Delta. The research in this thesis is divided into three parts: 1) 

the classification of multi-temporal Sentinel-1A C-band SAR imagery for characterizing 

the LCLU to support natural resource management; 2) identifying and mapping persistent 

building structures from coastal plains to high plateaus, as well as on the sea surface; 3) 

detecting and mapping persistent surface water and seasonal inundated LCLU. 

Part 1 of the thesis investigated the classification of multi-temporal Sentinel-1A C-band 

SAR imagery for characterising LCLU to support natural resource management for land 

use planning and monitoring. Twenty-one SAR images acquired in 2016 over Bạc Liêu 

province, a rapidly developing province of the Mekong Delta, Vietnam were classified. To 

reduce the effects of rainfall variation confounding the classification, the images were 

divided into two categories: dry season (Jan–April) and wet season (May–December) and 

three input image sets were produced: 1) a single-date composite image, 2) a multi-

temporal composite image and 3) a multi-temporal and textural composite image. Support 

Vector Machines (SVM) and Random Forest (RF) classifiers were then applied to 
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characterize urban, forest, aquaculture, and rice paddy field for the three input image sets. 

A combination of input images and classification algorithms was tested, and the mapping 

results showed that no matter the classification algorithms used, multi-temporal images 

had a higher overall classification accuracy than single-date images and that differences 

between classification algorithms were minimal. The results demonstrated the potential use 

of SAR as an up-to date complementary data source of land cover information for local 

authorities, to support their land use master plan and to monitor illegal land use changes. 

Part 2 of the thesis developed novel and robust methods using time-series data acquired 

from Sentinel-1 C-band SAR to identify and map persistent building structures from 

coastal plains to high plateaus, as well as on the sea surface. Mapping building structures 

is crucial for environmental change and impact assessment and is especially important to 

accurately estimate fossil fuel CO2 emissions from human settlements. From annual 

composites of SAR data in the two-dimensional VV-VH polarization space, the VV-VH 

domain was determined for detecting building structures, whose persistence was defined 

based on the number of times that a pixel was identified as a building in time-series data. 

Moreover, the algorithm accounted for misclassified buildings due to water-tree 

interactions in radar signatures and due to topography effects in complex mountainous 

landforms. The methods were tested in five cities (Bạc Liêu, Cà Mau, Sóc Trăng, Tân An, 

and Phan Thiết) in Vietnam located in different socio-environmental regions with a range 

of urban configurations. Using in-situ data and field observations, the methods were 

validated, and the results were found to be accurate, with an average false negative rate of 

10.9% and average false positive rate of 6.4% for building detection. The new approach 

was developed to be robust against variations in SAR incidence and azimuth angles. The 

results demonstrated the potential use of satellite dual-polarization SAR to identify 

persistent building structures annually across rural–urban landscapes and on sea surfaces 

with different environmental conditions. 

The final part of the thesis developed a novel method to map persistent surface water and 

seasonal inundated land cover and land use. The super-intensive shrimp culture in the 
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Mekong Delta region brings substantial profits to the local economy but it poses major 

challenges to soil and surface water in wetland areas. The use of geospatial data in 

monitoring the aquaculture areas is necessary but it has been inadequate in aquaculture 

areas in the Mekong Delta. In this study, a new algorithm was developed to address the 

problem of detecting LCLU that contains water such as persistent surface water (permanent 

lake, permanent rivers, persistently denuded unproductive land) and seasonal inundated 

land cover (rice paddy and aquaculture) in different environmental conditions. The three-

dimensional (3-D) space of VV-VH polarization of the SAR data and Season space was 

introduced. This study found that the use of the three-dimensional polarization of the SAR 

and season space is successfully in detecting rice paddy, aquaculture, and persistent surface 

water. Therefore, the novel method can be utilized to monitor aquaculture in other wetland 

regions. 

In conclusion, this thesis demonstrated the potential use of Sentinel-1 C-band SAR data to 

map LCLU across the urban suburban to rural-natural landscape on level terrains. The 

proposed methods can be used for urbanization monitoring, aquaculture development 

monitoring, and illegal land use change. 
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Chapter 1 Introduction 

1.1 Introduction 

The Vietnamese Mekong Delta region, often known as “Vietnam’s rice bowl”, is a 

significant location ecologically, economically, and socially. Tropical climate, fertile soil 

characteristics and the abundant availability of freshwater from the Mekong River facilitate 

agriculture and inland aquaculture production (Sakamoto et al., 2009; Chapman and Darby, 

2016; Dang et al., 2018; Ha et al., 2018). Coastal wetland areas in this region preserve rich 

biological and geological resources and support various ecosystems such as mangrove 

forests, peat wetlands, and marine ecosystems (Nguyen et al., 2013; Tue et al., 2014; Van 

et al., 2015). 

Over the past four decades, land cover and land use (LCLU) in the Mekong Delta has 

changed dramatically. At national and local scales, under industrialization and 

modernization, human activities supported by state policies which promote urbanization 

and agricultural transformation have led to dramatic land cover changes in the region (Li 

et al., 2017; Son and Thanh, 2018). The Vietnamese government has introduced a wide 

range of policies on national-level economic reform and development. In 1986 the Đổi Mới 

(renovation or open door) policy was introduced by The Central Government of Vietnam 

which aimed to industrialize the country by maintaining the substantial control of the 

state’s economic operations and involve the international market (Nguyen, 2013). 

Gradually, freshwater protection dykes, brackish sluice gate, and irrigation and transport 

system were built to improve fresh water supply for intensive rice production (Renaud et 

al., 2015). Structural transformation in agriculture sector, for example, shifting from 

conventional rice cultivation to high-value shrimp farming, has led to a dramatic changes 

in the Mekong Delta landscape and its ecohydrology, from freshwater to saline ecosystems 

(Lan, 2011). 

Rapid development and changes in LCLU have been driven by concerns around food 

security and economic development. These changes have impacts on important nature 

forest and coastal ecosystems which provide vital ecosystem. To ensure self-sufficiency 
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and optimize export earnings the Vietnamese State Government have restricted the shift 

from rice to other land use, commonly aquaculture, by forcing each local province keep 

certain areas for rice cultivation (Vietnamese State Government, 2018). While the state 

desires to make the Mekong Delta into an agricultural and aquaculture production area, 

combined with urban and industrial zones development, biodiversity and conservation 

must be guaranteed for future generation (Rutten et al., 2014). With an awareness of the 

importance of coastal wetland forest in providing estuarine and coastal ecosystem services 

such as coastal protection from storms, local governments in the Mekong Delta have 

endeavoured to maintain and expand forest along the coast (Bac Lieu People Committee, 

2017). LCLU mapping applications have an important role in this region for monitoring 

and mapping of LCLU change to support decision making. 

Of the mapping technologies available, synthetic aperture radar (SAR) has a lot of potential 

for LCLU mapping applications in the tropical and sub-tropical areas, especially in the 

Mekong Delta where frequent cloud cover poses a challenge to the use of optical remote 

sensing. There are two key advantages in the application of SAR in this region: 1) their all-

weather capacity and 2) specific responses from radar backscattering associated with 

inundated vegetation such as rice (Bouvet and Le Toan, 2011; Nguyen et al., 2015; Phan 

et al., 2018).  Recent studies have demonstrated the usefulness of SAR data, at C and X 

band (ENVISAT ASAR, Sentinel-1, COSMO-SkyMed) for mapping rice. Bouvet and Le 

Toan (2011) proposed a novel approach to classify rice cultivation area for whole Mekong 

Delta by using all available Envisat ASAR WSM and showed that time-series SAR 

imagery can allow accurate mapping of spatial distribution of rice area even under adverse 

atmospheric condition. Nguyen, Gruber and Wagner (2016a) demonstrated the potential of 

Sentinel-1A C-band SAR data for mapping regional rice cropping extent and rice 

phenological stages and found that VH polarized backscatter is more sensitive to rice 

growth than VV polarized backscatter. While, Phan et al. (2018) found that the HH/VV 

ratio retrieved from COSMO-SkyMed X-band SAR data can be utilised for mapping of 
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actual rice cultivated area after three image acquisition and discriminating long-cycle and 

short-cycle rice. 

The majority of previous studies using SAR in this region focused exclusively on rice crop 

mapping, however, there is an important role for its application to support LCLU. As land 

use change in the Mekong Delta is very dynamic, resource managers and land use planners 

are required to utilize out-of-date maps which fail to depict current land use trends. There 

are few examples of studies characterising LCLU including urbanization, shrimp farming 

and natural ecosystems especially using the latest freely available Sentinel-1 C-band SAR 

imagery. To address this gap in the literature this thesis will assess the application of the 

recently launched Sentinel-1 C-band SAR imagery, along with the Google Earth Engine 

(GEE) platform to map LCLU. 

In the Mekong Delta and other regions across the world, LCLU maps are utilized as inputs 

in a wide range of applications including urban planning, natural resource management, 

and ecosystem services mapping (Sawaya et al., 2003; Chan and Vu, 2017; Wang, Lechner 

and Baumgartl, 2018; Sorichetta et al., 2020). Up-to-date land cover maps and land cover 

change analysis are useful for detecting long-term land use trends to assist agriculture 

policy making (Tran, Tran and Kervyn, 2015). LCLU mapping is utilised in the Mekong 

Delta to support a range of land use planning activities such as for food security, illegal 

land use monitoring and updating existing land use mapping information. In the Mekong 

Delta a land use master plan is developed in every 10 years and land use planning decisions 

may annually require land use maps be updated and modified by local authorities at the 

district level in accordance with current socio-economic development status (Vietnamese 

State Government, 2018). Supply of current land use information is critical for the land use 

master planning, but presently rely on self-reported data (Ngo, Lechner and Vu, 2020). The 

findings in this thesis will be expected to assist local officials in terms of natural resource 

management and land use planning and monitoring through the development of remote 

sensing LCLU mapping methods 



4 
 

1.2 Research objectives 

The objectives of this thesis are: 1) to demonstrate the utility of multi-temporal Sentinel-

1A C-band SAR images for LCLU mapping in coastal regions of the Mekong Delta, 2) to 

develop a new algorithm to address the problem of detecting persistent building structures 

on land in different environmental and geophysical conditions and on sea surfaces under 

various wind speeds and directions beyond the capability of current methods, 3) to develop 

a novel and robust method using Sentinel-1 SAR data to identify and map LCLU that 

contains persistent surface water and seasonal inundated land cover. 

1.3 Research questions 

The following key research questions are addressed in this thesis: 

1. How can SAR imagery support in LCLU mapping for natural resource management 

in the Mekong Delta (Chapter 2)? 

2. How can persistent building structures on land and on sea surfaces be detected using 

SAR data (Chapter 3)? 

3.  How can persistent surface water and seasonal inundated land cover be identified 

with the use of the 3-D dual-polarization VV-VH-Season space (Chapter 4)? 

1.4 Thesis outline 

The thesis includes five chapters, three of which are research chapters investigating various 

applications of SAR to mapping land cover features, as indicated in the research objectives. 

The thesis is written from the perspective of mapping current environmental and 

socioeconomic challenge in the Vietnamese Mekong Delta. Chapter 2 uses machine 

learning approach to create a general LCLU map. The next two chapters seek to develop 

novel methods to deal with the remaining LCLU misclassification issues, not addressed in 

the previous chapter, associated with mapping structures, and surface water and inundation 

associated with rice-paddies and aquaculture land covers. These research chapters have 

been accepted, submitted or are in preparation for peer-review publication. 

Chapter 2 demonstrates the utility of Sentinel-1A C-band SAR imagery to characterize 

LCLU in Bạc Liêu, a coastal and rapidly developing province in the Mekong Delta.  
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Twenty-one SAR images acquired in 2016 were classified in a four-step process. The SAR 

images were pre-processed to produce texture images. To reduce the effects of rainfall 

variation confounding the classification, the SAR images were divided into two categories: 

dry season and wet season and three input image sets were produced: a single date 

composite image, a multi-temporal composite image, and a multi-temporal and textural 

composite image. Two classification algorithms were applied for the three input image sets 

to find the highest overall classification accuracy. This chapter investigates different LCLU 

supervised classification methods and compares single date versus multi-temporal SAR 

image datasets in terms of classification accuracy. While the approach successfully mapped 

LCLU in the study area, there were misclassification issues associated with mapping 

building structures vs trees, and aquaculture vs rice paddy classes, related to permanent 

water and inundation. In the following chapters (Chapter 3 and Chapter 4) novel LCLU 

classification methods were applied to address these two LCLU mapping issues separately. 

Chapter 3 develops novel methods using time-series data acquired from Sentinel-1 

synthetic aperture radar to identify and map persistent building structures from coastal 

plains to high plateaus, as well as on the sea surface. From annual composites of SAR data 

in the two-dimensional VV-VH polarization space, the VV-VH domain for detecting 

building structures was determined. The methods were tested in five cities (Bạc Liêu, Cà 

Mau, Sóc Trăng, Tân An, and Phan Thiết) in Vietnam located in different socio-

environmental regions with a range of urban configurations. This chapter successfully 

detected persistent building structures and reduced the misclassification between building 

structures vs trees due to water-tree interaction. 

Chapter 4 proposes a novel and robust method to map LCLU that contains persistent 

surface water and seasonal inundated land cover. This chapter used the three-dimensional 

VV-VH-Season space to identify four domains where each domain is either dominated by 

one of the four classes (urban, forest, shrimp farm, and bare surface). The results show that 

the use of the 3-D dual-polarization VV-VH-Season space allowed a robust algorithm to 

be developed to overcome the falsifying effects of variations in incidence and azimuth 
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angles of SAR data. The mapping method can be applied for detecting persistent surface 

water, which can be used to monitor aquaculture in other wetland regions. This chapter 

successfully mapped rice paddy and reduced the misclassification between rice paddy vs 

aquaculture. 

The final chapter 5 summarizes the thesis findings and describes potential future directions 

for the application of SAR data and Google Earth Engine to LCLU mapping in the Mekong 

Delta and globally.  
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Chapter 2 Land cover mapping of the Mekong Delta with Sentinel-

1A synthetic aperture radar to support natural resource 

management 

Published as: 

Ngo, K. D., Lechner, A. M. and Vu, T. T. (2020). Land cover mapping of the Mekong 

Delta to support natural resource management with multi-temporal Sentinel-1A synthetic 

aperture radar imagery’. Remote Sensing Applications: Society and Environment. 17. doi: 

10.1016/j.rsase.2019.100272. 

 

In previous chapter, an overview of this thesis is presented. In this chapter, to leverage the 

usefulness of GEE, an application of land cover mapping using Sentinel-1 SAR data is 

introduced to support natural resource management. 

2.1 Introduction 

During the past two decades, the Vietnamese Mekong Delta has undergone a range of 

dramatic changes primarily shaped by human interactions with the water flow regime of 

the Mekong river (Giri, Defourny and Shrestha, 2003; Käkönen, 2008; Minderhoud et al., 

2018). The availability of freshwater and riverine sediment from the Mekong river and a 

complex canal network have enabled wide-scale agriculture and fisheries to development 

(Dang et al., 2018; Ha et al., 2018). The region is also rich in biological and geological 

resources supporting seasonally inundated grasslands and coastal wetlands which preserve 

and support various ecosystems such as mangrove forests, and peat wetlands which are 

managed for conservation (Do and Bennett, 2009; Nguyen et al., 2013; Tue et al., 2014; 

Van et al., 2015). As Vietnam, and the Mekong Delta in particular, industrializes and 

modernizes, wetland areas have been impacted by conversion to agriculture and urban 

expansion (Käkönen, 2008; Leinenkugel, Oppelt and Kuenzer, 2014). Consequently, 

conservation reserves in the Mekong Delta have declined (Campbell, 2012) and there  are 
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only 68,000 ha remaining of the once widespread swamp forest ecosystem (Huu Nguyen 

et al., 2016). 

Besides the transformation of natural areas to agriculture, largely due to population growth 

and socio-economic development, cultivated lands have also been converted to built-up 

areas (Tran, Tran and Kervyn, 2015). These urban areas are continuing to expand following 

the building of road networks connecting rapidly growing settlements, cities and industrial 

areas (Minderhoud et al., 2018). Uncontrolled urban expansion inevitably leads to 

increased runoff and subsequent flooding (Rizk and Rashed, 2015), and cities in the region 

frequently suffer inundation caused by ocean tides, river-based flooding and heavy rain in 

the wet season threatening local livelihoods and transportation (Van Long and Cheng, 

2018). 

Table 2.1 Land use area in 2015 surveying year and planned land use for the period 

2016-2020 (hectares) (Vietnamese State Government, 2018). Note that the planning 

units can overlap spatially with the same location allocated to one or more land uses. 

Land use type 

Surveyed 

year 

 Planned year 

2015  2016 2017 2018 2019 2020 

Rice cultivation (agriculture 

category) 

59,872  59,864 59,801 59,493 59,060 58,846 

Protected forest (agriculture 

category) 

3,556  3,556 3,539 6,048 8,149 11,249 

Aquaculture (agriculture 

category) 
116,011  116,010 115,072 115,656 116,262 115,452 

Urban 26,302  26,302 26,302 26,302 28,604 48,174 

In Bạc Liêu province - one of the thirteen provinces in the Mekong Delta and the focus of 

this study - food security and forest conservation are a matter of great concern. For instance, 

22 % of the total land in the province must be kept for rice plantation to ensure self-

sufficiency and optimize export earnings (Vietnamese State Government, 2018). In 

addition, natural forest should be maintained and expanded along the coast. The local 

government aims to triple its area of natural forest from 3,556 in 2015 ha to 11,249 ha in 

2020. Natural forests, in particularly mangrove forests, provide estuarine and coastal 
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ecosystem services such as erosion prevention and coastal protection from storms (Bac 

Lieu People Committee, 2017). 

Table 2.2 Summary of SAR and optical remote sensing land cover and land use 

(LCLU) studies conducted in Mekong Delta. 

Locations LCLU types Classification 

methods 

Remote sensing 

data 

Multi-

temporal 

images used 

(Yes/No) 

Reference 

An Giang province Rice crops Random forest and 

support vector 

machines 

Sentinel-1A SAR Yes (Son et al., 2017) 

Mekong Delta (13 

provinces) 

Rice crops Phenology-based 

classification 

Sentinel-1A SAR Yes (Nguyen, Gruber and 

Wagner, 2016a) 

Mekong Delta (13 

provinces) 

Rice crops Phenology-based 

classification 

Envisat ASAR Yes (Nguyen et al., 2015) 

Mekong Delta (13 

provinces) 

Rice crops Vegetation 

trajectories, Random 

forest supervised 

classification 

Landsat 5, 7, 8 Yes (Kontgis, Schneider 

and Ozdogan, 2015) 

Bến Tre and Trà Vinh 

provinces 

Rice, aquaculture, 

settled areas, 

coconut, sugar 

cane and orchard 

ISODATA (manual 

interpretation) 

Envisat ASAR, 

SPOT1, SPOT4, 

Landsat 3, 7 

Yes (Karila et al., 2014) 

Cà Mau province Mangrove 

ecosystems 

Object-based decision 

tree approach 

SPOT5 No (Vo et al., 2013) 

Mekong Delta (13 

provinces) 

Rice crops Phenology-based 

classification 

MODIS Yes (Son et al., 2013) 

Mekong Delta (13 

provinces) 

Rice crops ISODATA SPOT Yes (Thu et al., 2012) 

Cần Thơ province Impervious surface Support vector 

regression 

TerraSAR-X No (Leinenkugel, Esch 

and Kuenzer, 2011) 

Bạc Liêu and Sóc 

Trăng province 

Rice cropping and 

inland aquaculture. 

Time-series analysis MODIS Yes (Sakamoto et al., 

2009) 

There are several existing maps such as cadastral maps, land inventory maps, and land use 

maps at different scales (1/2,000 to 1/50,000) that have been developed for the province, 

district, and village levels in the study area. Land inventory maps are annually made from 
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cadastral data by utilizing the landowner’s annual registry data and land inventory data. 

While land use maps are made every five years through editing, aggregating, and 

generalizing land inventory maps. However, land cover in this region is much more 

dynamic (Table 2.1) and using out-of-date maps may fail to represent current land use. 

Annual surveying for whole province is costly and requires a lot of labor. In addition, if 

landowners illegally convert from one land cover type to another (rice cultivation land or 

forest land to aquaculture) and do not register and report to the Department of Natural 

Resources and Environment; this will affect the land use map accuracy. Remote sensing 

for land use and land cover mapping may address the drawbacks of the current manual and 

labor-intensive approach and can provide a method for dynamic land use monitoring and 

planning. 

As the Mekong Delta is such a significant region ecologically, economically, and socially, 

there have been a number of studies over the years using earth observation data to 

characterize land cover. However, the majority of these studies focused on rice crop 

distribution delineation utilizing optical satellite images (Sakamoto et al., 2006; Son et al., 

2013; Kontgis, Schneider and Ozdogan, 2015) and radar satellite images (Liew et al., 1998; 

Karila et al., 2014; Nguyen, Gruber and Wagner, 2016a; Kontgis et al., 2017). While, 

several studies were conducted to detect shrimp farming expansion using optical remote 

sensing (Tong et al., 2004; Sakamoto et al., 2009; Vo et al., 2013). There are few examples 

of studies characterizing land use and land cover including urbanization, farming and 

natural ecosystems, especially utilizing the latest Sentinel-1 C-band SAR sensor and 

characterizing shrimp farms (Table 2.2). 

SAR plays a crucial role in remote sensing because of its observation capability regardless 

of cloud cover and darkness making it an all-weather sensor (Bouvet and Le Toan, 2011). 

Sentinel-1 SAR system developed by the European Space Agency (ESA) has a 

constellation of two satellites, aiming to respond to the Earth Observation requirements of 

the European Union's ESA Global Monitoring for Environment and Security 

program(Aschbacher and Milagro-Pérez, 2012) and providing frequent revisit times and 
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extensive coverage (Torres et al., 2012). Testing the capability of Sentinel-1 SAR in the 

Mekong Delta is especially relevant to Vietnam and other countries in the tropics as SAR 

can address the frequent cloud cover rendering optical remote sensing difficult. 

Furthermore, thanks to the free and accessible data policy, Sentinel-1 SAR provides a 

valuable resource for lower- and middle-income countries in the tropics with limited 

budgets for buying satellite data. 

Various classification and processing methods have been used with SAR to improve 

classification accuracies. One such pre-processing approach is the application of Grey 

Level Co-occurrence Matrices (GLCM) textures, proposed by Haralick et al. (1973). 

Multiple  studies have utilized GLCM to incorporate texture information derived from both 

optical and radar satellite imagery with original images to improve classification accuracy 

(Su et al., 2008; Zhang and Milanova, 2013; Mishra et al., 2017; Zakeri, Yamazaki and 

Liu, 2017). Mishra et al. (Mishra et al., 2017) demonstrated that single polarized images  

could not effectively distinguish different land cover/land use (LCLU) classes, but in 

combination with texture information derived from these polarized images LCLU 

classification accuracy could be significantly improved. While, two notable classifiers in 

remote sensing are Random Forest (RF) and Support Vector Machines (SVM). The RF 

classifier (Breiman, 2001) has received a lot of attention among the remote sensing 

community due to its processing robustness and good classification results (Belgiu and 

Dragut, 2016; Gómez, White and Wulder, 2016; Pelletier et al., 2016), while, SVM 

(Burges, 1998; Vapnik, 1998) is a powerful machine learning approach for data 

classification and has been widely used for remote sensing (Wang et al. 2017). 

The aim of this study is to characterize LCLU in the Bạc Liêu province, a rapidly 

developing province in the Mekong Delta, with Sentinel-1A SAR. The utility of Sentinel-

1A SAR and multi-temporal imagery has yet to be tested in tropical regions for mapping 

coastal landscapes dominated by a combination of rice and aquaculture farming systems. 

Shrimp farming aquaculture is expected to be one of the most important sources of socio-

economic development in Bạc Liêu province by 2025, while rice farming is considered 
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important for food security (Bac Lieu People Committee, 2018). However, the majority of 

previous applications of SAR and optical remote sensing in the Mekong Delta have focused 

exclusively on mapping rice crops (Table 2.2). The objective of this study is to demonstrate 

the utility of multi-temporal Sentinel-1A C-band SAR images for LCLU mapping in 

coastal regions of the Mekong Delta. In addition, the usefulness of the LCLU mapping for 

updating existing land cover maps and monitoring illegal land use activities for land use 

master planning is also reviewed. In the conclusions, the application of this approach for 

food security and coastal forest monitoring from the perspective of the local authorities is 

remarked. 

2.2 Study area and data 

2.2.1 Study area 

The Vietnamese Mekong Delta region, popularly known by Vietnamese as “Cửu Long” 

(“Nine Dragons” in English), is in the tropics between 8033’-10055’N and 104030’-

106050’E.  It is a huge fertile flat plain covering an area of approximately 3.9 million 

hectares. It is the largest rice production region in Vietnam, providing livelihoods for a 

population of more than 20 million. The climate of the Mekong Delta region is 

characterized as monsoonal and mostly hot and humid. The two seasons, the wet season 

and the dry season, in the Mekong Delta region are well-defined. The mean annual rainfall 

in the Mekong Delta region is approximately 1,800 mm, and 90% of this falls in the wet 

season (from May to November) (Thu et al., 2012). 

The study area covers Bạc Liêu province, a southeastern part of the Mekong Delta region 

(shown in Figure 2.1), approximately 2,500 km2. The area is dominated by rice production, 

shrimp farming inland aquaculture and also includes smaller remnant patches for biological 

conservation (Sakamoto et al., 2009). The National Road 1-A main road divides the study 

region into two environmental sub-regions, a saline sub-region and a fresh water sub-

region. 
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2.2.2 Datasets 

Land cover was identified using Sentinel-1A SAR images covering the Mekong Delta in 

2016 collected by the European Space Agency (ESA). Specifically, the Sentinel-1A C-

band SAR images are Interferometric Wide (IW) swath Level-1 ground-range detected, 

high resolution (GRDH) products. The IW mode was operated in the dual polarization 

mode (VV and VH) with 250 km swath, 5 x 20 m spatial resolution (single look). To avoid 

the effects of rainfall variations confounding the classification by changing the 

characteristics of the land covers (i.e. dry versus shrimp ponds filled with water), the SAR 

images were divided into two categories: dry season (Jan-April) and wet season (May-

December) (Thu et al., 2012). Table 3.3 below presents the summary of Sentinel-1A C-

band SAR IW Level 1 GRDH images used in this study. 

 

Figure 2.1 Study area location in the Mekong Delta (south-eastern of Vietnam). 
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Table 2.3 Sentinel-1A SAR images used in the study. 

Product ID Acquisition date 

S1A_IW_GRDH_1SDV_20160117T224530_20160117T224558_009540_00DDCD_411A 17 Jan 2016 

S1A_IW_GRDH_1SDV_20160210T224529_20160210T224557_009890_00E7FF_F199 10 Feb 2016 

S1A_IW_GRDH_1SDV_20160305T224529_20160305T224557_010240_00F216_F126 05 Mar 2016 

S1A_IW_GRDH_1SDV_20160410T224514_20160410T224539_010765_010140_2B69 10 Apr 2016 

S1A_IW_GRDH_1SDV_20160410T224539_20160410T224604_010765_010140_B3F2 10 Apr 2016 

S1A_IW_GRDH_1SDV_20160516T224518_20160516T224543_011290_0111B7_F5F5 16 May 2016 

S1A_IW_GRDH_1SDV_20160516T224543_20160516T224608_011290_0111B7_E9A2 16 May 2016 

S1A_IW_GRDH_1SDV_20160609T224520_20160609T224545_011640_011CF1_69C1 09 June 2016 

S1A_IW_GRDH_1SDV_20160609T224545_20160609T224609_011640_011CF1_705A 09 June 2016 

S1A_IW_GRDH_1SDV_20160703T224521_20160703T224546_011990_012808_2346 03 July 2016 

S1A_IW_GRDH_1SDV_20160703T224546_20160703T224611_011990_012808_362D 03 July 2016 

S1A_IW_GRDH_1SDV_20160808T224523_20160808T224548_012515_01394B_D4A2 08 Aug 2016 

S1A_IW_GRDH_1SDV_20160808T224548_20160808T224613_012515_01394B_DD8B 08 Aug 2016 

S1A_IW_GRDH_1SDV_20160901T224524_20160901T224549_012865_014504_1409 01 Sept 2016 

S1A_IW_GRDH_1SDV_20160901T224549_20160901T224614_012865_014504_649C 01 Sept 2016 

S1A_IW_GRDH_1SDV_20161007T224525_20161007T224550_013390_0155E8_55BD 07 Oct 2016 

S1A_IW_GRDH_1SDV_20161007T224550_20161007T224615_013390_0155E8_325C 07 Oct 2016 

S1A_IW_GRDH_1SDV_20161112T224525_20161112T224550_013915_016666_7CA2 12 Nov 2016 

S1A_IW_GRDH_1SDV_20161112T224550_20161112T224615_013915_016666_7500 12 Nov 2016 

S1A_IW_GRDH_1SDV_20161218T224524_20161218T224549_014440_0176B7_6929 18 Dec 2016 

S1A_IW_GRDH_1SDV_20161218T224549_20161218T224614_014440_0176B7_22BA 18 Dec 2016 

2.3 Methodology 

2.3.1 Remote sensing method overview 

A range of classification algorithms and input image datasets were systematically tested. 

The method can be divided into three steps: pre-processing, generation of texture images 

using GLCM measure, comparison of classification accuracy (single-date versus multi-

temporal, single-date versus multi-temporal with texture, multi-temporal versus multi-
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temporal with texture as in Table 2.4), and the calculation of the Z-test statistic. The 

flowchart shown in Figure 2.2 summarizes the methods. 

Table 2.4 Input image sets. 

Composite band image Dry season Wet season 

Single date VV and VH composite image. VV and VH composite image. 

Multi-temporal Eight bands composite image of 

VV and VH for four image dates. 

Sixteen bands composite image of 

VV and VH for eight image dates. 

Multi-temporal with 

texture 

Sixteen bands composite image 

made up of the multi-temporal 8-

band composite plus texture 

versions for each. 

Thirty-two bands composite image 

made up of the multi-temporal 16-

band composite plus texture 

versions for each. 

 

 

Figure 2.2 Processing and analysis workflow. 

2.3.2 Land cover class description 

The number of land cover classes chosen in this study was based on the official land 

management documents published by Vietnamese State Government and Bạc Liêu 
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Province People’s Committee (Vietnamese National Assembly, 2013; Bac Lieu People 

Committee, 2017; Vietnamese State Government, 2018), and the practical limitations of 

Sentinel-1 SAR sensor. Coarse-scale resolution land use categories that correspond to the 

key land use classes used for land use management such as for the identification of the 

minimum area of rice cultivation for food security and forests for coastal protection are 

identified. At the coarsest scale, land cover and land use defined by the Vietnamese State 

Government are categorized as agriculture, non-agriculture, and unused land (Vietnamese 

National Assembly, 2013). Agricultural land use type includes rice cultivation, forest, 

aquaculture land while non-agriculture land use types include industrial land, and 

engineering infrastructure land (schools, medical centers, sport complex, cultural sites), 

settlement land (buildings and houses in rural and cities). For this study, four land cover 

classes, three of which - forest, shrimp farming, and rice paddy fields - correspond to 

government land use mapping were mapped. The fourth land cover, representing built up, 

was an aggregation of the engineering infrastructure land and settlement land classes. 

However, small features such as roads and canals are impossible to map due to the spatial 

resolution of Sentinel-1 SAR sensor. For example, linear-shaped features such as small 

irrigation canals and rural roads have widths smaller than 10 m and cannot be clearly 

captured and distinguished by the 10-m spatial resolution of Sentinel-1 SAR sensor (Figure 

2.3). 

In the study area, the landscape mostly consists of built-up, forest, shrimp farming, and rice 

paddy fields. Built-up areas included buildings in urban and in agricultural areas. The forest 

class comprised coastal mangrove trees, riparian trees along rivers, and mangrove trees in 

shrimp ponds, while roads and borders of paddy fields may be included due to their 

backscatter behaviors and the limitation of SAR resolution. The shrimp farming class 

included man-made canals and man-made ponds (typically with a rectangular shape filled 

with sea water) and natural/semi-natural shrimp ponds where mangrove trees are grown 

along the pond borders to produce habitat for shrimp. The paddy field class includes rice 

that may have double or triple rice cycles per year. The number of rice crop cycles and 
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planting time vary from place to place due to weather, economics, subjective decisions at 

a regional scale (Kontgis et al., 2017). 

 

Figure 2.3 Land cover classes: (i) Built-up, (ii) Forest, (iii) Shrimp farming, (iv) Paddy 

field. (a) Optical images (DigitalGlobe’s Vivid 50cm high-resolution imagery 

captured in 09 Nov 2014) extracted from ArcGIS basemap showing the same areas 

with Sentinel 1 subsets in (b). (b) SAR backscatter coefficient images extraction at VH 

polarization. 

2.3.3 Data pre-processing 

The Sentinel-1A images were radiometrically-calibrated, terrain-corrected, and speckle-

filtered using the SNAP 5.0 Sentinel Application Platform toolbox (available at 

http://step.esa.int/main/toolboxes/snap/). The radiometric calibration was conducted to 

convert pixel values of VH and VV amplitude into sigma naught (σ0) values representing 

the radar backscatter from the earth surface. 

The calibrated multi-temporal images were then geometrically corrected using the Range-

Doppler Terrain Correction algorithm with the 3-arc-sec Shuttle Radar Topography 

Mission (SRTM) elevation model. After applying geometric correction, the images were 
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resampled to a 10-m spatial resolution and re-projected to the Universal Transverse 

Mercator (UTM) coordinate system (zone 48N). 

SAR images are effected by inherent speckles in backscatter data, which adversely impact 

image segmentation and classification accuracy (Lee et al., 1999). In this study, a 5 x 5 

adaptive Lee filter was applied to reduce speckle based on the methods described in Lee et 

al. (Lee et al. 1999), who demonstrated such approaches are important for preserving 

polarimetric properties, improve image quality, and boost the classification performance. 

The 5 x 5 kernel was used as it has been found to be suitable in many recent studies of 

similar environments (Son et al., 2017; Oon et al., 2019). Backscatter data in these images 

were in the decibel unit (dB), commonly used in radar remote sensing. Figure 3.4 presents 

a time series of backscatter values for the four classes in the study site for the whole of 

2016. 

 

Figure 2.4 Mean multi-temporal backscatter values of Sentinel-1A VH and VV 

intensity images in 2016 based on 500 ground truth locations. 

2.3.4 Grey level Co-occurrence matrices textures 

To assist the classification, texture based images were computed from the original dataset 

based on Grey Level Co-occurrence Matrices (GLCM) textures, a procedure originally 
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proposed by Haralick et al. (Haralick, Shanmugam and Dinstein, 1973). GLCMs are a 

second order statistical texture measure considering the relationship between groups of two 

pixels and used widely in satellite image interpretation. The GLCM is a matrix of the 

frequencies of pixel pair values within a neighborhood of a given window size. The matrix 

is then normalized based on its co-occurrence probability which can be defined as (Clausi, 

2002) : 

Probability(x) = {Pi,j | (𝛿, 𝜃)} 

Equation 2.1 Normalization of GLCM co-occurrence probability 

where 𝛿 is a pixel distance, 𝜃 is the direction, Pi,j (the co-occurrence probability between 

grey level i and j) which is defined as: 

 𝑃𝑖,𝑗 =  𝑉𝑖𝑗 ∑ 𝑉𝑖,𝑗
𝑁−1
𝑖,𝑗=0⁄        

Equation 2.2 GLCM co-occurrence probability 

in which Vi,j is the number of occurrences of grey level i and j within the given image 

window and N is the quantization level. The selection of the number of texture measures 

and their parameterization of the quantization level, window size, offset distance and 

orientation pose a challenge. However, Hall-Beyer (2017) indicated that texture measures 

within a specific group, for example, contrast group, orderliness group, and descriptive 

statistic groups are highly correlated in most cases and mean texture measure has been 

shown to be independent of other texture measures (r2 <0.1). Therefore, in this study the 

mean texture measure for creating the texture images (Table 3.5) was chosen. 

Table 2.5 GLCM mean texture measure equation. 

Texture measure name Calculation formula 

Mean 𝜇𝑖 = ∑ 𝑖(𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

           𝜇𝑗 = ∑ 𝑗(𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

 

Pi,j is the probability of values i and j in adjacent pixels within the window specifying neighborhood. µi is the mean 

calculation based on the reference pixel and µj is the mean using the neighbor pixel. 
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For the GLCM texture measure parameterization of the quantization level, window size, 

offset distance and orientation, a range of values identified in the literature were selected. 

The value of 32 was selected for grey level quantization since a value of N under twenty-

four or greater than sixty-four can cause unreliable classification outputs or not improve 

the accuracy (Clausi, 2002). The orientation was set to 0 as it has been demonstrated that 

it can improve the results in SAR image classification (Barber and LeDrew, 1991; Clausi, 

2002). The window size was set to 9 x 9 and displacement value was set to 1. All GLCM 

texture images were performed by SNAP 5.0 Sentinel Application Platform toolbox. 

2.3.5 Training samples 

A total of 500 training samples in four classes were collected from the official land use 

map of the Mekong Delta in 2014 (Cantho University, 2017) in combination with the high-

resolution images on Google EarthTM, Planet (Google Earth Pro, 2017; Planet Labs Inc, 

2017), the ArcGIS base map and knowledge of study site. All training samples were 

digitized as single points associated with a single pixel in SAR images and aligned at the 

center of 5 x 5 homogeneous pixels. The locations of the training samples were randomly 

spatially distributed across the study area (Figure 2.5). 

 

Figure 2.5 Training samples distribution map 
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2.3.6 Random forest and support vector machine classifier 

The RF and SVM tools of EnMAP Box platform-independent software were used to 

classify SAR images. Two parameters need to be defined in RF classifier to construct a 

predictive model: the number of desired classification trees k and the number of prediction 

features m used in each split to grow the tree (Rodriguez-Galiano et al., 2012). In this study, 

k was set to 100 and the number of prediction features m was set to square root of all 

features to generate the RF classification (Eisavi et al., 2015). 

The SVM algorithm separates the data training samples based on the optimal hyperplane 

into discrete predefined classes, with the decision boundary located to minimize 

misclassification between classes (Fukuda, Katagiri and Hirosawa, 2002). The SVM 

classification requires the selection of a kernel function. The Gaussian Radial Basic 

Function (RBF) kernel was selected (Lardeux et al., 2009; Trisasongko et al., 2017) in this 

study. To get the most appropriate parameter a grid search approach with default ranges 

that have been demonstrated to be successful was used (van der Linden et al., 2015). 

2.3.7 Post-classification 

To filter out pixel noise and isolated pixels before generating the final classified images, 

an 8-neighbouring cells majority filter was used. Finally, the filtered images were post-

processed further using the class boundary smoothing and region grouping algorithm in 

ArcMap 10.4.1 Spatial Analyst tools. 

2.3.8 Accuracy assessment 

In the final step the quality of the remote sensing products obtained through the 

combination of six datasets and two remote sensing classifiers was assessed. A stratified 

(by land cover) randomly spatial distributed set of 270 validation points were used to test 

accuracy. These points were positioned at the central of 5 x 5 homogeneous pixels. None 

of these points were from pixels used as training data. Like the training data, the validation 

points were informed by the official land use map of the Mekong Delta in 2014 (Cantho 

University, 2017), land use master planning map of Bạc Liêu province in 2013, high 

resolution images on Google EarthTM, Planet (Google Earth Pro, 2017; Planet Labs Inc, 
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2017), and the ArcGIS base map and knowledge of study site. Accuracy was measured and 

described using an error matrix and a variety of measures such as the Z statistic, Kappa and 

producer and user accuracy. The error matrices, Z statistic and overall accuracy reports 

were generated from ArcMap 10.4.1 and calculated using Spyder platform (Scientific 

Python Development Environment). 

In addition, the Z-test statistic was also used to verify whether the classification results 

generated by SVM or RF for the three sets of input data were significantly different. The 

Z statistic is based on the actual agreement in the error matrix between the classified image 

and the reference data from the major diagonal and chance agreement indicated by the row 

and column totals (Congalton and Green, 2009). The following equation was used to 

calculate the Z-statistic. 

𝑍 =  |𝐾1 −  𝐾2| √𝑣𝑎𝑟(𝐾1) + 𝑣𝑎𝑟(𝐾2)⁄      

Equation 2.3 Z-statistic calculation 

where K1 and K2 are the Kappa coefficients calculated from two sets of input image (i.e. 

single-date vs multi-temporal, single-date vs multi-temporal with texture, multi-temporal 

vs multi-temporal with texture), and var(K1) and var(K2) are their associated variances 

respectively. If the test Z statistic absolute value is greater than 1.96 at 95% confident level, 

the result is significant and the difference between two error matrices are not random 

(Congalton and Green, 2009). 

2.4 Results and discussion 

2.4.1 Land cover mapping methods 

The multi-temporal images had a higher overall classification accuracy than single-date 

images no matter which classification algorithms were used. The multi-temporal with 

texture 32 band composite image in wet season using SVM had the highest accuracy with 

an overall accuracy of 94.81% and Kappa coefficient of 0.92 (Figure 2.6). In contrast the 

single-date images in dry season, regardless of classification method had the lowest 

accuracies at 75.19 % and 73.33 % for SVM and RF respectively and a Kappa coefficient 
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of 0.62 and 0.59. Both the overall accuracy and Kappa statistic showed similar patterns 

with SVM performing better than RF and multi-temporal images with texture performing 

better than other input images (Figure 3.6). 

 

Figure 2.6 SVM and RF overall classification accuracy on six input image sets: single-

date, multi-temporal, multi-temporal with texture in dry and wet seasons. 

Table 2.6 shows the results of the Kappa analysis comparing the error matrices of single-

date versus multi-temporal, single-date versus multi-temporal with texture, and multi-

temporal versus multi-temporal with texture input image sets to determine if they are 

significant different. The results indicate that the classification results obtained from 

single-date versus multi-temporal, and single-date versus-multi-temporal with texture for 

both dry and wet seasons were significantly different since the Z statistic values were 

greater than the critical value of 1.96. However, this was not the case for multi-temporal 

versus multi-temporal with texture of both dry and wet season with a Z statistic value 

ranging from 0.6 to 1.54, smaller than the critical value of 1.96. 

While the observed differences in accuracy between SVM and RF in Table 2.6 was small, 

the differences associated with using different image sets (i.e., multi-temporal versus single 

date) was far greater (Figure 2.7), though overall land cover patterns appeared similar 

regardless of input images and land cover classifiers used. For example, Figure 2.7 shows 

that both shrimp farming spatial patterns are correctly mapped as being distributed in the 

western part and the coastal regions of the Bạc Liêu province. In addition, the benefit of 

including texture were small in comparison to the difference between the single date versus 
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multi-temporal. While the results may be case-study specific, they suggest that the 

inclusion of multi-temporal images are the greatest driver for improving overall 

classification accuracies. 

Table 2.6. Kappa analysis results for the pairwise comparison of the error matrices. 

A Z-statistic of greater than 1.96 indicate there is a significant difference between 

two error matrices. 

 Pairwise comparison Z Statistic 

 RF SVM 

Dry season Single date versus multi-temporal 4.55 4.45 

Single date versus multi-temporal with texture 6.08 5.80 

Multi-temporal versus multi-temporal with texture 1.54 1.35 

Wet season Single date versus multi-temporal 3.77 4.37 

Single date versus multi-temporal with texture 4.37 5.00 

Multi-temporal versus multi-temporal with texture 0.60 0.67 

 

Figure 2.7 Land cover classification using SVM on a single-date (a) and a multi-

temporal with texture (b) input image sets in wet season. 
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Out of four land cover classes mapped shrimp farming class tended to have higher accuracy 

than forest, paddy field, and built-up classes for both SVM and RF implemented with the 

same inputs. Table 2.7 summarizes the accuracy assessment results for error matrices using 

RF and SVM classification on a multi-temporal 16-band composite image, however, 

similar patterns in the error matrices were produced for all of the classification outputs 

regardless of classifiers or image sets. Shrimp farming had the highest accuracies as the 

backscatter intensity values and multi-temporal characteristics were unique compared to 

the other land cover classes. Due to the presence of surface water which results in specular 

reflection that directs the radar waves away from the backscatter direction, shrimp farming 

has low backscatter values in both VH and VV band throughout the year. In fact, shrimp-

farm backscatter is far below and thus well distinguished from both the urban and forest 

classes (Figure 2.4). Whereas the rice backscatter may be close to that of the shrimp classes 

at some times in a year, the annual variability of shrimp-farm backscatter is low (~2 dB) 

and distinctively different from that of the very larger seasonal change of rice backscatter 

as much as 7 dB as seen in Figure 2.4, making it well distinguishable between shrimp and 

rice classes too. The forest class has a reasonable accuracy of ~76% given than it has the 

least number of ground-truth points for classification training and for verification accuracy. 

Figure 2.8 shows an example of four field trip photos at four different locations for the four 

land cover classes (shrimp farm, paddy field, forest, built-up) on land cover map derived 

from multi-temporal images. 
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Figure 2.8 Field trip photos (taken on 15 Feb 2019) and land cover classification 

using SVM on a multi-temporal with texture input image set in wet season. 

2.4.2 Characteristics of land cover in the study area 

Table 2.8 presents information on the area and proportion of each land cover class in the 

Bạc Liêu province. The built-up area is 6.7 thousand hectares constituting the smallest 

proportion of land cover. As in other cities in the Mekong Delta, Bạc Liêu city experiences 

frequent flooding in wet season. Urban flooding is driven by uncontrolled urban expansion 

into unsuitable areas (e.g. low land susceptible to subsidence) in combination with heavy 

rainfall and high tide and negatively impacts on local transportation and livelihoods (Chi, 

2018). Forests, covering an area of around 32 thousand hectares, play a crucial role in flood 

mitigation and in coastal erosion reduction. However, the recent growth of intensive shrimp 

farming has endangered the protective function of these coastal forests (Wölcke et al., 

2016). Because of the importance of these coastal wetland ecosystems for conservation and 
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coastal protection, there are several projects focusing on rehabilitation and enhancing 

ecological functionality; e.g., GIZ project supported by German and Australian 

government (GIZ, 2020). 

Table 2.7 Accuracy assessment results for error matrices using RF and SVM 

classification on a multi-temporal 16-band composite image. 

 Classification results (points) 

Ground reference data (pixels) 

(pixels) 

Shrimp 

farmin

g 

Forest Rice Built-up Total 

RF      

Shrimp farming 117 1 1 0 119 

Forest 3 26 0 1 30 

Paddy fields 10 2 79 0 91 

Built-up 0 1 0 29 30 

Total 130 30 80 30 270 

Producer accuracy (%) 90.0 86.67 98.75 96.67  

User accuracy (%) 98.32 86.67 86.81 96.67  

Overall accuracy (%) 92.96     

Kappa coefficient 0.89     

SVM      

Shrimp farming 120 2 0 1 123 

Forest 7 25 0 1 33 

Paddy fields 3 1 80 0 84 

Built-up 0 2 0 28 30 

Total 130 30 80 30 270 

Producer accuracy (%) 92.31 83.33 100 93.33  

User accuracy (%) 97.56 75.76 95.24 93.33  

Overall accuracy (%) 93.7     

Kappa coefficient 0.9     

Table 2.8 Area and proportion of land cover classes. 

Land cover classes Total area (ha) Area proportions (%) 

Built-up 6,711 2.7 

Forest 32,242 13.0 

Paddy fields 58,487 23.6 

Shrimp farming 150,043 60.6 

Within the Bạc Liêu province shrimp farming accounts for the greatest proportion of the 

landscape at approximately 150,000 ha. The second greatest proportion is rice paddy fields 
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at around 58,000 ha. During the 1990s a number of salinity protection systems such as 

irrigation canals, dykes and sluice gates were built to protect freshwater systems for rice 

farming and transform former brackish ecological zones into freshwater zones. Shrimp 

farming has also been supported through development schemes such as the well-known 

Quan Lo Phung Hiep canal project (Hoanh et al., 2012) constructed in Bạc Liêu and its 

two neighboring provinces (Soc Trang and Ca Mau). The large expansion in shrimp 

farming area in Bạc Liêu mainly resulted from the state’s policy of infrastructure 

investment in the construction of a dense network of dikes and embankments and favorable 

loans (Sakamoto et al., 2009). More recently, as a consequence of a policy toward land use 

diversification extensive areas have been converted from freshwater back to brackish 

farming (i.e. shrimp farming) (Käkönen, 2008). 

Shrimp exports in Vietnam have increased from two million dollars in 2010 (Lan, 2013) to 

3.5 million dollars in 2017 (Thu, 2018). However, the ecological and social impacts are of 

great concern. These changes in land cover by intense engineered anthropogenic land uses 

in the Mekong Delta can be readily seen in the results of land cover mapping. 

2.4.3 Challenges of applying SAR and Sentinel-1 for mapping in the Mekong Delta 

One of the greatest challenges in the study area was distinguishing between paddy fields 

and shrimp farming in a given spatial snapshot. SAR backscatter is sensitive to surface 

roughness, soil moisture, and vegetation (Nguyen et al., 2015), and backscattering 

characteristics of these two land cover classes could be quite similar at certain times of the 

year. During the early rice growing season, the images intensities between the two classes 

are similar as the rice paddies are filled with water, similar to the aquaculture ponds (as 

showed in Figure 2.4) resulting in misclassification between those two classes. Hence, the 

inclusion of multi-temporal images results in a large improvement in classification 

accuracies. Studies specifically characterizing rice growing land cover nearly always 

include multi-temporal images (Bouvet and Le Toan, 2011; Karila et al., 2014; Kontgis et 

al., 2017). 
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Another source of error which resulted in misclassification was between shrimp farms and 

paddy fields, as they all include different combinations of vegetation, water, and bare soil 

(Figure 2.9). For example, the shrimp farming class is made up of many shrimp ponds with 

mangroves grown to provide habitat for shrimp. These trees are commonly smaller than 

the pixel size making this class a combination of very different land cover features with 

different backscatter characteristics that are present at below the spatial resolution of the 

sensor. The study found some isolated pixels of shrimp pond class located inside paddy 

field and similarly paddy field class located inside shrimp pond class. As a result, the 

mixed-pixel and boundary effects contributed to mapping errors even though post-

classification smoothing techniques were applied. Despite being an effective classifier for 

LCLU classification, decision tree classifier that are pixel-based and cannot fully suppress 

the influence of mixed pixels during classification process (Yang et al., 2017). 

 

Figure 2.9 SVM (16 bands) misclassification between shrimp farming class and paddy field 

class: (a) isolated pixels of shrimp farming class located inside rice crop, and (b) paddy field 

class located inside shrimp farming class. 

Other sources of error common to SAR classification in general are due to variations of the 

incidence angle of Sentinel-1A satellite and ground truth errors contributed the mapping 
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results. The incidence angle ranged from 30.840 to 45.990 over the study area and may 

influence the variation in backscatter values of land cover classes, leading to errors. Son et 

al. (2017) indicated that the variation of incidence angle could result in slight shifts in rice 

crop patterns. Additional sources of error in this study are due to changes of land cover and 

the difficulty of obtaining ground truth data that coincides with current land cover 

conditions. However, such issues are common to most remote sensing applications 

(Lunetta et al., 1991; Wang and Gertner, 2013), calling for more satellite data coverage 

with more field validations.  

The most problematic issue in the study area for classification was the confusion between 

rice crop and shrimp farming. To eliminate this, potentially additional extraction methods 

based on phenological characteristics of rice crop could be used to distinguish rice crop 

from shrimp-farming class. However, this is likely to not be such an issue in less dynamic 

environments than the Mekong Delta. 

2.4.4 Land use planning with SAR in the Mekong Delta 

This study demonstrated the potential for SAR to provide an up-to-date complementary 

source of information for updating existing land cover maps and for monitoring illegal land 

use activities in land use master planning at the provincial level. This information is 

required for a range of land use planning activities. For example, for food security, 

provinces need to have 22% of the total area as rice plantation. As in other regions of 

Vietnam, a land use master plan in Bạc Liêu province is made every 10 years and the local 

authority at district level may annually update, modify and make land use planning 

decisions in accordance with current socio-economic development conditions (Vietnamese 

State Government, 2018). The issue is that the provision of land use information currently 

depends on self-reported data that are disparate in time and in space. Remote sensing, in 

synergistic combination with existing surveying results from local authorities can provide 

valuable land cover information to local authorities. Up-to-date land cover maps are 

necessary to detect long-term land use trends as well as aid agriculture policy making 
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(Tran, Tran and Kervyn, 2015). This is especially the case in the Mekong Delta where land 

use is very dynamic. 

The Department of Natural Resources and Environment can use remote sensing to annually 

examine and monitor whether actual land use (on the ground) corresponds to planned land 

use. The state government, under regulation 101/NQ-CP (Vietnamese State Government, 

2018) requires that the committee of Bạc Liêu province takes responsibility for specifying 

and publicizing the border and size of rice cultivation and protected forests areas. In 

addition, the local government must investigate and monitor the status of coastal protection 

forests. A comparison of the current state government land use maps and this remote 

sensing maps was undertaken, and the percentage agreement was 85% (Figure 2.10). The 

difference between state government land use map and SAR data primarily occurred 

between parcels of aquaculture and rice. Some parcels were incorrectly labelled as 

aquaculture; although this may be because the land holder has a shrimp-rice rotational 

cropping system. Areas of disagreement can be used to a trigger an effective ground 

assessment of the potential reasons for discrepancy. In some cases, this could be from 

unplanned land use activities, in other cases it could be errors in the land use inventory and 

in some cases, it could be due to remote sensing mapping error so that satellite mapping 

can be further improved. 

Sentinel-1A C-band SAR has a 12-days revisit and 6-day when combined with Sentinel-

1B. The advent of the NASA-ISRO NISAR L- and S-band SAR Mission (NISAR, 2018) 

and the Vietnam National Space Center (VNSC) LOTUSat-1 X-band SAR Mission 

(Vietnam National Space Center, 2019) will bring not only more coverage but also the 

multi-frequency capability. SAR can provide the latest information on land use where 

frequent cloud cover obstructs optical remote sensing. For example, in 2016 there was only 

2 scenes of Landsat-8 with cloud cover less than 10%. While existing optical remote 

sensing land cover studies in the region can provide useful information, that information 

may not be timely as scenes chosen may be determined and thereby biased by periods with 

low cloud cover rather than to coincide with monitoring dates. In addition, the quality of 



32 
 

optical remote sensing for mapping aquaculture will depend very much of the date of the 

image as in dry season when the ponds are empty it may be difficult to detect aquaculture 

from rice paddies. On the other hand, optical/multi-spectral data can offer independence 

data for cross-validation of remote sensing results, and thus the synergy among the 

difference satellite data sources should be utilized. 

The conversion of agriculture land to aquaculture or urban development needs further 

attention in Bạc Liêu province. Converting agricultural to urban land exerts negative effects 

on agriculture-based people (ABP) groups. Research conducted in Cai Rang district, Can 

Tho city, a rapidly urbanizing district of the Mekong Delta, showed that socio-economic 

transformation including urbanization have negative impacts on ABP groups in the peri-

urban areas (Garschagen, Renaud and Birkmann, 2011). While aquaculture is more 

profitable than rice cultivation, the transformation of long-term aquaculture lands to rice 

cultivation is problematic as salinity intrusion become more pervasive and less suitable for 

rice cultivation. Hence for the long-term future of the region, monitoring of land use is 

essentially to ensure the sustainability and food security in this Mekong Delta region. 

2.5 Conclusion 

This study quantified the distribution and area of key land covers in the Bạc Liêu province 

of the Mekong Delta and demonstrated the utility of multi-temporal Sentinel-1A SAR for 

land cover mapping. Overall, the results indicated that multi-temporal Sentinel-1 images 

along with the use of machine learning algorithms especially RF classifier can be used as 

an effective tool for land cover mapping. The results indicated that the overall accuracy 

and Kappa coefficient achieved from multi-temporal images are higher than single date 

regardless of the classification algorithm. 

This study showed that classified Sentinel-1A SAR images can be used as a reference 

source to assess the accuracy of existing cadastral maps and monitor land conversion 

activities in Bạc Liêu province. Discussions with local experts confirmed that in the 

“existing cadastral maps and inventory documents, land use could be recorded as rice 

farming but in reality, the land was converted to aquaculture. The revisit time of 12 days 
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of SAR satellite help[s] track locals’ land use activities and monitor land use conversion 

of the locals” (personal communication, Department of Natural Resources and 

Environment, Bạc Liêu province, Vietnam). They also confirmed that the mapping outputs 

could be used for land use master planning, for example, to monitor increase or decrease 

of aquaculture area. 

The study shows that multi-temporal Sentinel-1A SAR is effective for land cover mapping 

and contributing to a better understanding of spatial-temporal changes in the coastal 

landscapes. This is particularly important, in tropical countries where frequent cloud cover 

hinders optical remote sensing. “To ensure national food security Bạc Liêu province was 

requested to maintain about 60,000 ha of rice by Vietnamese State Government. The land 

use map output derived from SAR imagery could support local land managers to determine 

[the agreement in] increase or decrease of annual rice cultivation areas to allocated rice 

areas by State Government. … Impacts of climate change and sea level rise have caused 

the erosion and loss of coastal forest land and due to socio-economic development, illegal 

forest activities and rural livelihoods have reduced forest land. The mapping outputs could 

help local officials monitor annual and local variation in forest land” (personal 

communication, Department of Natural Resources and Environment, Bạc Liêu province, 

Vietnam). 

This chapter demonstrates the utility of Sentinel-1 SAR time series data in support of the 

activities of natural resources management and detection of illegal land use changes. To 

minimize the LCLU misclassification due to running supervised classification algorithm 

on images all together at once, the next chapters will develop a novel method to detect land 

cover/land use classes on by one separately. 
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Figure 2.10 Disagreement map between state government land use map and SAR data 

Land cover mapping in Bạc Liêu in 2016. 
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In previous chapter, the usefulness of GEE to classify the LCLU using Sentinel-1 SAR 

data to support natural resource management is presented. In this chapter, an innovative 

method to detect and map building structures on land and sea using Sentinel-1 SAR time-

series data is developed. The mapping outcomes are validated with in-situ and field truth 

observations obtained in southern and central regions of Vietnam. 

3.1 Introduction 

Accurately mapping urban infrastructure is considered a high priority, not only for resource 

and service allocation and administration, but also for addressing environmental, 

socioeconomic, and geopolitical issues (Lwin and Murayama, 2009; Mathews et al., 2019). 

Extensive information on urban land use, including urban construction and green coverage, 

helps planners prepare and arrange the structure of the urban transportation, water and 

green system, and determine the scale and directions of future urban development in urban 

master planning processes (Xiao and Zhan, 2009). Moreover, crucial to the successful 

implementation of the Paris Agreement within the United Nations Framework Convention 

on Climate Change (UNFCCC) are accurate mapping and monitoring of greenhouse gases 

such as CO2 (Gaughan et al., 2019). Currently, fossil fuel CO2 (FFCO2) emission is 

estimated with night-time light (NTL) data as a proxy for human settlements, which can be 

improved by maps of physically defined building structures (Sorichetta et al., 2020). SAR 

data have a high spatial resolution ranging from 10 to 100 m, and are collected piecewise 

at different times over different areas of the world regardless of darkness and cloud cover 

conditions (Nghiem et al., 2009). SAR data have been utilized to characterize urban and 

suburban extents with reliable results (Gamba and Lisini, 2013; Ban et al., 2017; Lisini et 

al., 2018). For example, geospatial datasets such as the Global Urban Footprint (GUF) and 

World Settlement Footprint (WSF) products (Esch et al., 2013, 2018) have been 

successfully derived from TerraSAR-X and TanDEM-X SAR data. Ban et al. (Ban et al., 

2017) investigated the use of multi-temporal Sentinel-1A SAR and Sentinel-2A 

Multispectral Instrument (MSI) data for developing pilot global urban services. They found 
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that Sentinel-1A SAR data in association with historical SAR data produced good results 

for new built-up area characterization. 

Here, the objective of this study is to develop novel and robust methods using Sentinel-1 

SAR to identify and map persistent building structures that represent sustained human 

settlement and circumvent the limitations of NTL to improve estimation of FFCO2 

emission. Temporary buildings such as pavilions in festivals or exhibition events exist 

temporarily for a short time (days to weeks) and therefore do not persistently represent true 

human settlements. This particular objective requires the detection of structures that are 

persistently built rather than being temporarily constructed. Such an approach necessitates 

a new development of an innovative method utilizing time-series SAR data to determine 

the building persistency, rather than past methods using data at a given time or at various 

disparate points in time. The new method demands that each pixel in a study area is 

consistently treated with a persistent time-series data record over a time duration (e.g., 

semi-annual, annual, or interannual), instead of using usual change detection methods from 

multi-temporal images acquired on different days in different years (Corbane et al., 2018; 

Holobâcă, Ivan and Alexe, 2019; Manzoni, Monti-Guarnieri and Molinari, 2021; Zhang et 

al., 2021). 

The method developed in this study considers building structures on complex landscapes 

and sea surfaces. In both cases, SAR signatures of the background geophysical media on 

land and sea can widely vary as functions of incidence and azimuth angles (Kong, 1990; 

Nghiem, S.V.; Borgeaud, M.; Kong, J.A.; Shin, 1990; Carswell et al., 1994; Nghiem et al., 

1995; Phung et al., 2020), which need to be accounted for in the development of a robust 

algorithm. On land, complex topography can change the local incidence angle at different 

azimuth looks and cause polarization mixing of transverse electric and transverse magnetic 

fields at the medium interface (Kong, 1990), which alters backscatter signatures and leads 

to false building identification. Another complicated challenge is that strong reflections of 

radar signals from water surfaces of rivers, lakes, reservoirs, or wetlands cause intensive 

scattering from nearby trees that appear similar to building structures. Sea surfaces may 

have a wide range of radar return under different wind speeds and wind directions 

(Carswell et al., 1994; Nghiem et al., 1995), introducing sea clutter and confounding the 

capacity of SAR to detect building structures in the marine environment. 

In view of the above challenges and complexities, a new algorithm was developed to 

address the problem of detecting persistent building structures on land in different 

environmental and geophysical conditions and on sea surfaces under various wind speeds 

and directions beyond the capability of current methods. The algorithm was tested across 

urban, suburban, rural, and natural areas on land and over sea surfaces in Vietnam using 
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Sentinel-1 SAR time series data. First, a novel method to identify building structures using 

the two-dimensional (2-D) space of VV-VH polarization of the SAR data is introduced. 

Next, a method for accuracy assessment is described and the case studies for five cities 

with different developmental and environmental conditions are presented. Moreover, maps 

of man-made structures from small shacks to large oil rigs on sea surfaces are shown. 

Regarding the advances in the new method, (1) the advantage of utilizing the two-

dimensional (2-D) space of VV-VH for building structure mapping is highlighted to 

robustly resolve the issue of radar backscatter incidence and azimuth angle dependence; 

(2) the ability of consistent time-series Sentinel-1 SAR to identify persistent buildings in a 

multitude of environmental conditions across the rural-urban continuum; (3) the utilization 

of multiple SAR signature interactions between trees and water surface to correct for 

building misclassification; (4) the use of the geomorphon concept and its applications 

(Jasiewicz and Stepinski, 2013; Veselský et al., 2015; Silveira et al., 2018; Gawrysiak and 

Kociuba, 2020) to account for effects of complex topography; and (5) the SAR ability to 

detect stationary structures or installations that are maintained on sea surfaces. Finally, in 

the discussion and conclusion, future research extensions with multiple international SAR 

datasets to support the Paris Agreement on climate change are noted, through the potential 

improvement in the estimation of FFCO2 emission using data products of persistent 

building structures to represent true settlements. 

3.2 Methods 

A new robust approach is presented to identify persistent building structures, paying 

particular attention to the effects of the terrain and water-tree radar signal interactions. The 

analysis, including image processing, mapping, and accuracy assessment, was carried out 

using the Google Earth Engine (GEE) platform, Geographic Resources Analysis Support 

System (GRASS), and ArcGIS software. The flow chart in Figure 3.1 summarizes the 

overall methods in which each component is described in further detail below. 

https://www.mdpi.com/2072-4292/13/13/2439/htm#fig_body_display_remotesensing-13-02439-f001
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Figure 3.1 Processing and mapping workflow. 

3.2.1 Image Processing 

All Sentinel-1 SAR images were pre-processed using the GEE platform to derive the 

backscatter coefficient in decibel (dB) for each pixel through the following steps: applying 

orbit file, thermal noise removal, radiometric calibration and terrain correction using the 

Shuttle Radar Topography Mission (SRTM) 30-m topographic data, and then spatial co-

registration of temporal data based on a referenced image so that the time series has the 

same coordinate system. 

To reduce speckle noise in SAR images, a multi-temporal 3-point mean filter (a 

moving average over a given time window) that would be computationally effective for 

noise reduction was used. The calculation was made as follows: 
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pmean(ij at t) = average(pij at t-1:pij at t+1) (1) 

Equation 3.1 Calculation of multi-temporal 3-point mean 

In (1), pmean(ij at t) is the output pixel value at location i,j (i: numbers of image rows, j: 

numbers of image columns) at time t; pij at t–1 is the input pixel value at location i,j at time 

t − 1; and pij at t+1 is the input pixel value at location i,j at time t + 1. 

In this study, the values of t had a range of 1 to 35 (35 being the total number of SAR 

images in the time period under consideration). After the mean calculation, the first and 

last images in the time-series were then removed and only 33 images were used for further 

analysis. This time series spans approximately 1.3 years within which building structures 

need to persistently exist to be detected. 

The calculation was applied to obtain the geometric mean in dB and the arithmetic 

mean in the linear unit (including conversion from dB to linear values). As an example, 

Figure 3.2 shows the raw backscatters, geometric mean, and arithmetic mean. The multi-

temporal 3-point mean filter provided sufficient noise reduction and preserved temporal 

fidelity. The study found that results from the geometric mean in dB and the arithmetic 

mean (converted back to dB) were similar, so the geometric mean was used for effective 

computations without the conversions back and forth between dB and linear units. 

3.2.2 Mapping 

The 2-D space of VV-VH was used to characterize the building domain (Figure 3.3). 

The incidence angle in SAR images may have significant effects on backscatter values 

across the radar swath. To determine how backscatter changes as a function of incidence 

angle for various types of land cover, the VV and VH data were separated for each 

incidence angle bin at 35, 38, and 42 degrees. Then, for each incidence angle bin and 

azimuth direction (ascending versus descending), a scatter plot was made with VV 

polarization for the x-axis and VH polarization for the y-axis using the 3-point mean 

backscatter filter for all types of land cover including buildings, trees, paddy fields (such 

as rice paddies), and aquaculture areas (such as shrimp farms) as shown in Figure 3.2. From 

the scatter plot, the study found that the VV-VH domain for the building type stands out 

clearly and distinctively, independent of the effects of incidence and azimuth angles. 

However, there is a minor overlap between the building and tree domains due to high 

backscatter from water-tree radar signal interactions (to be addressed later in this section). 

Next, the thresholds in the 2-D VV-VH space were determined to define the domain 

specifically pertaining to building structures on land and on the sea surface. A pixel was 

assigned to a building class on land if it satisfied the following conditions: VH backscatter 

greater than −12 dB (VH > −12 dB) or VV backscatter greater than −5 dB (VV > −5 dB). 
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While on the sea, building pixels were assigned where VH backscatter greater than −20 dB 

(VH > −20 dB) or VV backscatter greater than −5 dB (VV > −5 dB). If a pixel did not 

satisfy that condition, it would be assigned to a non-building class. 

 

Figure 3.2 Example of filtering of raw Sentinel-1A SAR time series for (a) VH and 

(b) VV polarizations over Bạc Liêu city. 

 



41 
 

 

Figure 3.3 Multi-temporal backscatters of building structures and other land cover 

classes in the 2-D space for VV on the horizontal axis and VH on the vertical axis in 

dB. 

To account for missing building pixels, the VV and VH thresholds were applied to all 

Sentinel-1A images in the time series (33 images). All output images (with value 1 for 

building pixels, and with value 0 for non-building pixels) were combined to count the 

number of times that each pixel was identified as building. If pixel_ij was detected as a 

building T times out of the 33 images, then the count of pixel_ij was set to T. Each pixel 

in the combined output image could have a value of T from a minimum of 0 (for pixels in 

which buildings were never identified) to 33 (for pixels identified as buildings at all the 

times). To minimize misclassifying building pixels from real non-building pixels, the 

optimal building count threshold (building_count_threshold) with the discrete derivative 

of building pixels (Δm_n) was determined depending on where the Δm_n curve became 

invariant or flattened. Pixel_ij was identified as a building if building_count_ij > 

building_count_threshold where the building_count_threshold could be from 1 to 33. The 

discrete derivative of building pixels was calculated as follows: 

Δm_n = Nthreshold_m – Nthreshold_n (2) 

Equation 3.2 Calculation of discrete derivative of building pixels 

where the terms: Δm_n for the derivative between thresholds m and n, Nthreshold_m for the 

number of building pixels at threshold m (1 ≤ m ≤ 33), and Nthreshold_n for number of 

building pixels at threshold n (1 ≤ n ≤ 33). Based on the formulation given by Equation (2), 

discrete derivative curves were used to determine the optimal building count threshold 
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applicable to all study cases. This method requires a building structure to exist persistently 

for a minimum period of about 4 months (see Appendix A). 

Due to strong radar reflection, such as from water surface (e.g., rivers, lakes, 

reservoirs, or wetlands, etc.), nearby trees can have intense radar returns. Figure 

4 illustrates water-tree radar reflection interactions, where T represents the radar 

transmission direction and R represents the radar return direction. The terms A and B 

represent forward scattering mechanisms, and the terms C and D are backward scattering 

mechanisms. These account for multiple electromagnetic-wave interactions (Nghiem, 

S.V.; Borgeaud, M.; Kong, J.A.; Shin, 1990) involving scatterers (such as leaves, branches, 

and trunks of trees) and the interface between different media (such as the interface 

between water and air). The forward terms (A and B) give rise to strong scattering from 

water-tree interactions, causing backscatter enhancement (Nghiem, S.V.; Borgeaud, M.; 

Kong, J.A.; Shin, 1990) from trees to be similar to the backscatter from building structures. 

These effects result in a common range in the backscatter values of trees and building 

structures, contributing to the overlap of the building and tree backscatter signatures in the 

2-D VV-VH space and thereby leading to some misclassification between these two land 

cover types. 

To address the water-tree problem, the Normalized Different Vegetation Index 

(NDVI) (Zhang et al., 2021) derived from the Multi-Spectral Instrument (MSI) aboard 

Sentinel-2 satellites was used. GEE was used to select Sentinel-2 MSI data on mostly-

clear-sky days (cloudiness < 20%) to compute NDVI in the same time period of the 

Sentinel-1 SAR data acquisition. The NDVI in each 10-m pixel was then calculated and 

the average of N largest values of NDVI (NDVI_avg_Nmax) in each pixel obtained over 

the time period under consideration was computed. For each pixel that was classified as 

building, the building pixels were reclassified as non-building if NDVI_avg _Nmax > 

NDVI_threshold. Multiple cases for N = 3, 5, 10, and 15 were examined and 

NDVI_threshold was found to range from 0.25 to 0.5 in each case. Based on this 

assessment, the parameters to N = 3 and NDVI_threshold = 0.35 were set as these values 

yielded optimal results in reducing most of the misclassified buildings, as seen in Figure 

3.4b before the correction and Figure 3.4c after the correction. This was necessary as many 

human settlements including small towns and big cities may have trees along rivers, lakes, 

and other water bodies. 
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Figure 3.4 Effects of water-tree interactions on radar scattering mechanisms. Panel 

(a) illustrates water-tree radar interactions using a photograph taken on 20 May 2018 

at 10°29′17.37” N and 106°49′41.76” E in the Cần Giờ Biosphere Reserve, a UNESCO 

wetland about 40 km southeast of Hồ Chí Minh City. Panel (b) shows misclassified 

buildings (red pixels) that were mostly removed as seen in Panel (c) after the 

corrections using Sentinel-2 MSI NDVI. Cần Giờ was the worst place for water-tree 

effects to test the efficacy of the correction method, where misclassification occurred 

all over the place as in Panel (b). 

On sloped surfaces in mountainous areas with a complex topography, the local 

incidence angle of radar transmission is not the nominal incidence angle with respect to a 

horizontal level surface. Moreover, a radar transmission signal at a given polarization (e.g., 
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horizontal or vertical polarization) can excite both the transverse-electric (TE) and 

transverse-magnetic (TM) fields causing polarization mixing in the radar return signals 

(Kong, 1990). These effects alter backscatter signatures and cause false building 

identifications. 

To address the misclassification problem due to topography effects, complex 

landforms in mountainous areas were accounted for based on the geomorphon concept 

(Jasiewicz and Stepinski, 2013; Veselský et al., 2015; Silveira et al., 2018; Gawrysiak and 

Kociuba, 2020) to circumvent the ill-posed calculus of taking spatial derivatives from noisy 

topography data. The SRTM digital elevation model (DEM) (JPL, 2020) derived from 

satellite SAR data was employed to calculate geomorphons. A geomorphon represents one 

of the multiple possible landforms in terms of a three-dimensional morphological feature 

in ten different landform classes: flat, peak, ridge, shoulder, spur, slope, pit, valley, foot-

slope, and hollow. The geomorphon approach uses three input parameters: inner search 

radius, outer search radius, and flatness threshold to calculate height differences (Kramm 

et al., 2017). The outer search radius was set to 10 pixels (300 m) and the inner search 

radius was set to 5 pixels (150 m), while the flatness threshold was set to 3 degrees. In the 

algorithm, a building pixel would be retained in the building type only when it was 

represented by a “flat” geomorphon. 

This approach using geomorphons means that structures built on mountain slopes may 

not be detected, while buildings can be identified on flat terrains in the lowlands in coastal 

plains or in valleys, or level plateaus at high altitudes where structures are usually built and 

persistently maintained. To illustrate the ability of the geomorphon method to account for 

topographic effects, Figure 3.5 shows that most of the misclassified buildings on the slopes 

of Hàm Cần Mountains (~17 km northwest of Phan Thiết) were removed, while the true 

building area (a settlement in Lò To Village, Hàm Cần Commune, Hàm Thuận Nam 

District, Bình Thuận Province) was consistently detected on the relatively flat terrain near 

the foothill. 
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Figure 3.5. Detection of building structures (red areas) in an area around Hàm Cần 

Mountains without geomorphon correction (a), and with geomorphon correction (b). 

The ellipse marks a small settlement area (6.4 hectares) in Lò To Village where a built 

area was identified on the relatively flat terrain about 0.5 km from the foothill. The 

building structure map was overlayed on the topography using Google Earth Pro in 

a three-dimensional view. 

3.2.3 Ground Truth Data Collection and Accuracy Assessment 

In-situ ground truth data were collected in four cities (Bạc Liêu, Cà Mau, Sóc Trăng, 

and Tân An) in the Mekong Delta. Field work included traveling along main roads and 

waterways (e.g., rivers and canals) and taking field observations with geotagged 

photographs of different land cover types such as building structures (schools, hospitals, 

commercial centers, residential houses, etc.), trees (coastal forest, perennial trees, 

plantations), paddy fields (rice paddies), and aquaculture areas (shrimp farms). In addition, 

geotagged photographs were taken at different locations from rural to urban areas of Phan 

Thiết in the southern region of central Vietnam. The photographs were imported into 

ArcMap software and converted into points. These points were used as validation points in 

the accuracy assessment. 

Based on in-situ ground truth data and field photographs together with high-resolution 

true color images in Google EarthTM and the ArcGIS base map, the quality of the mapping 

results was assessed. Since the algorithm identified a pixel as building or non-building 

rather than a range of fuzzy values, the accuracy assessment was carried out based on a set 

of four possible ensembles. Each ensemble population was represented by the number of 

counts of all pixel elements within each ensemble set. For these ensembles, the count 

parameters were assessed as: (1) the number of building pixels that were classified 
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correctly as building (N_building), (2) the number of pixels that were misclassified as 

building while they were actually other land cover types (n_um), (3) the number of pixels 

that were misclassified as other land cover types while they were actually buildings 

(n_om), and (4) the number of other land cover types pixels that were classified correctly 

as other land cover types (N_others). Using the results of N_building, n_um, n_om, and 

N_others, the false negative rate and false positive rate were calculated in percentage as 

(Barsi et al., 2018): 

false negative rate = [n_om/(n_om + N_building)] × 100% (3) 

Equation 3.3 False negative rate 

false positive rate = [n_um/(n_um + N_others)] × 100% (4) 

Equation 3.4 False positive rate 

3.2.4 Building Structures on Land 

Multiple cases in different environments on land were examined. This study included 

four cities (Bạc Liêu, Cà Mau, Sóc Trăng, and Tân An) in the Mekong Delta on wet and 

level terrains with a tropical monsoon climate. In a stark contrast, one city (Phan Thiết) in 

dry land extending from mountainous terrain in the west to the coast in the east in Bình 

Thuận was also studied, one of the most arid provinces in Vietnam at risk of desertification, 

making Phan Thiết vulnerable to moving sand dunes. 

As in other cities in the Mekong Delta, due to socioeconomic developments, new 

settlements as well as other public infrastructures have been constructed in Bạc Liêu, Cà 

Mau, Sóc Trăng, and Tân An to meet housing and industrial demand. In recent years, these 

cities have suffered flooding from heavy rain, compounded by high tides in the rainy 

season. Bạc Liêu is a coastal city surrounded by rice farming and shrimp farming areas. 

This city is on a track to be a Class I urban (a regional central city) by 2025 and is likely to 

expand to 4950 ha by 2030 (T. Linh, 2020). Being on a relatively flat terrain, in a landscape 

with a high density of rivers and canals, Cà Mau is planned to expand in all directions to 

adapt to climate change (MoC, 2020a). Sóc Trăng will be a Class II city (a provincial city) 

in 2025 and is expanding toward the east and west (P. Linh, 2020). Located in Long An 
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Province, Tân An is currently a central city and in Class II, and will be a Class I city by 

2025 (MoC, 2020b). 

Famous as a coastal resort city in Bình Thuận Province in the south-central coast of 

Vietnam, Phan Thiết has received substantial investments in building large hotels and 

resorts. As mountains in the west of Phan Thiết can induce orographic effects resulting in 

intensive rains, this city suffers flash flooding compounded by the impacts of sea level rise 

on Cà Ty river, and beach erosion has also become a major issue. Despite transient intense 

rains in the mountains, Phan Thiết is actually located in an arid land region of Bình Thuận 

in a magnificent coastal setting. Surrounded by extensive plantations of dragon fruit 

(Hylocereus undatus in the cactus family Cactaceae) and a beautiful shoreline, authorities 

have attempted to develop Phan Thiết into an environmentally sustainable and friendly city 

(Hai, 2019). This region has been undergoing an intensive agriculture transformation by 

the development of extensive dragon fruit plantations, considered the “Dragon Fruit 

Kingdom” (or the “Dragon Kingdom” in short). The rural areas together with rapid 

urbanization due to the tourism boom in the city are creating the conditions for a dual rural-

urban hotspot where both city areas and farmlands have been intensively and 

contemporaneously developed. 

Generally, in Vietnam, each province has its own urban development strategies, 

depending on its geographical location and certain socioeconomic conditions pertaining to 

different urban classes. Table 3.1  and Table 3.2 below summarize the population and 

infrastructure development standards for each urban class in Vietnam, which are applicable 

to the different cities in different provinces noted above. The study sites were chosen to 

represent a range of urban patterns along the rural–urban continuum, consisting of different 

urban classes listed in Table 3.1 and Table 3.2. 
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Table 3.1 Population scale standard. 

No. Standard Unit 

Urban Class 

Specia

l 

I II III IV V 

State 
Provinc

e 
    

1 
Population in urban 

and suburban 
1000 people 

≥6000 ≥5000 ≥1000 ≥500 ≥200 ≥100 

4–50 
5000 1000 500 200 100 50 

2 Population in urban 1000 people 
≥4000 ≥3000 ≥500 ≥200 ≥100 ≥50 

3000 500 200 100 50 20 

 

Table 3.2. Infrastructure development standard. 

No. Standard Unit 
Urban Class 

Special I II III IV V 

I Infrastructure standard 

I.1 Housing 

1 Average floor area m2 floor/person 
≥29 ≥29 ≥29 ≥29 ≥29 ≥29 

26.5 26.5 26.5 26.5 26.5 26.5 

2 House rate % 
100 ≥95 ≥95 ≥95 ≥90 ≥90 

90 90 90 90 85 85 

I.2 Public infrastructure 

1 Settlement land, open-green land, parks, traffic land m2/person 
61 61 61 78 78 78 

54 54 54 61 61 61 

2 Education buildings 
≥40 ≥30 ≥20 ≥10 ≥4 ≥2 

30 20 10 4 2 1 

3 Culture buildings 
≥20 ≥14 ≥10 ≥6 ≥4 ≥2 

14 10 6 4 2 1 

4 Sports buildings 
≥15 ≥10 ≥7 ≥5 ≥3 ≥2 

10 7 5 3 2 1 
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3.2.5 Building Structures on Sea Surface 

Vietnam has an extensive coastline (>3400 km2) with rich natural resources for 

aquaculture, fisheries, and offshore fossil and renewable energy. In the marine 

environment, this study included two offshore fossil oil fields (Bạch Hổ oil field and Sư 

Tử Đen oil field), a renewable wind power farm off the shore of Bạc Liêu, two islands 

(Hòn Tre and Hòn Sơn in Kiên Giang Province), and a marine aquaculture area for blood 

clam (Tegillarca granosa) farming also in Kiên Giang Province. These cases encompassed 

various types of stationary and persistent building structures on the sea surfaces including 

very large oil platforms, tall wind power towers, smaller power poles, and even very small 

individual guard shacks in the marine farm. On the sea surface, winds and waves can 

generate a large range of radar backscatter signatures that confound the detection of marine 

structures. The algorithm developed in this study accounts for the problem of sea surface 

radar clutter to achieve a robust method for accurately identifying persistent marine 

structures using time-series Sentinel-1 SAR data. 

3.3 Results 

3.3.1 Results for Building Structures on Land 

 Figure 3.6 shows the results of the building classification and Figure 3.7 presents the 

building classification maps at a posting grid size of 10 m for the five cities (Bạc Liêu, Cà 

Mau, Sóc Trăng, Tân An, and Phan Thiết) overlayed on the true-color ArcGIS base map. 

These maps show that most building pixels cluster around cities and disperse along roads 

and waterways emanating outward from urban to rural areas. The results from the building 

classification for each city reveal distinctive spatial patterns associated with their unique 

development history, socio-environmental constraints, population distribution drivers 

(Table 3.1) and infrastructure development standards (Table 3.2). The maps also highlight 

that these spatial patterns were captured by the classification method at a high spatial 

resolution, even identifying the footprint of individual buildings. 

The Bạc Liêu Province Public Administration Center and Bạc Liêu Market in Ward 3 are 

found at the center. Built in the 1920s, Bạc Liêu Market was initially a busy trading place 

among Chinese and Vietnamese. Many old houses and shopping stores are present. In the 

2010s, a wide range of public and private infrastructures such as Bạc Liêu university, 

Coopmart supermarket, Vincom shopping center, and Thanh Vũ hospital were newly built 

and expanded to meet population growth, labor demands, and economic development in 

Bạc Liêu. To comply with the Nation Urban Development Programme 2012–2020 and to 

meet housing demands, four new residential areas (Phường 2, Phường 5, Hoàng Phát, 

Tràng An) have been constructed. Along Trần Phú street and Quốc Lộ 1A street—two 

https://www.mdpi.com/2072-4292/13/13/2439/htm#table_body_display_remotesensing-13-02439-t001
https://www.mdpi.com/2072-4292/13/13/2439/htm#table_body_display_remotesensing-13-02439-t002
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main roads to city center—more houses, shopping stores, banks, and restaurants have also 

been constructed and are visible in the classified map. High building densities can also be 

seen at tourist places like Khu du lịch Nhà Mát on Hoàng Sa Street by the seashore and at 

religious places like Quán Âm Phật Đài pagodas. North of Bạc Liêu city are agricultural 

rice paddy fields while south of the city has aquacultural shrimp farms. In these rural areas, 

fewer buildings were found on the rice paddies while more guard shacks were detected in 

shrimp farms. 

 

Figure 3.6 Classification map of five cities: Bạc Liêu, Cà Mau, Sóc Trăng, Tân An, 

and Phan Thiết. 

For Cà Mau, Tỉnh Ủy Cà Mau (Cà Mau Party Committee) and Ủy ban nhân dân tỉnh Cà 

Mau (Cà Mau Province’s People Committee) in Ward 2 are at the center of Cà Mau. Cà 

Mau is expected to be Class I city in 2025 (see Table 4.1 for Class I population and Table 

4.2 for Class I infrastructure), so many streets have been built and upgraded. The city has 

expanded in all directions with many houses along main roads and rivers in the directions 

https://www.mdpi.com/2072-4292/13/13/2439/htm#table_body_display_remotesensing-13-02439-t001
https://www.mdpi.com/2072-4292/13/13/2439/htm#table_body_display_remotesensing-13-02439-t002
https://www.mdpi.com/2072-4292/13/13/2439/htm#table_body_display_remotesensing-13-02439-t002
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of Bạc Liêu (the east of Cà Mau), Thới Bình District (the north and north-east of Cà Mau), 

U Minh District (the west of Cà Mau), and Đầm Dơi and Cái Nước District (the south of 

Cà Mau). One of the well-known residential areas in Cà Mau is the Gas-Power-Fertilizer 

Complex housing area near the Cà Mau River. West, north, and east of Cà Mau are 

surrounded by extensive shrimp aquaculture where guard shacks can also be identified. 

 

Figure 3.7 Classification map of five cities overlaid on ArcGIS base map: Bạc Liêu, 

Cà Mau, Sóc Trăng, Tân An, and Phan Thiết. 

For Sóc Trăng, Tỉnh Ủy Sóc Trăng (Sóc Trăng Party Committee) and Ủy ban nhân 

dân tỉnh Sóc Trăng (Sóc Trăng Province’s People Committee) in Ward 1 are located at the 

center of the city. Urban development in Sóc Trăng is primarily along main roads to the 

city and along the Maspero river. New residential and commercial areas (Trần Quang Diệu, 

Hạnh Phúc, Lê Duẩn) have been built in Ward 2, Ward 3, and Ward 4 to meet the city’s 

population growth. The city has also expanded toward the south of the Maspero river along 

Trần Hưng Đạo and Lê Hồng Phong street and toward the north of Maspero river along 
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Hùng Vương and Tôn Đức Thắng street. Sóc Trăng city is surrounded by paddy fields, so 

there are houses in small villages along irrigation canals. 

Tân An, Ward 1, is at the center, where Tỉnh Ủy Long An (Long An Party Committee) 

and Ủy ban nhân dân tỉnh Long An (Long An Province’s People Committee) were built. 

From the center, the city has sprawled toward the south of the Vàm Cỏ Tây river. Many 

buildings and houses have been constructed in Ward 1 and Ward 2 along Bảo Định canal. 

As part of its progress toward a Class I city in 2025, the authorities of Tân An are 

constructing a wide range of residential areas (Vàm Cỏ riverside urban area; Tân An, Đồng 

Tâm residential area) along the Vàm Cỏ Tây river in Ward 6. The mapping also shows 

houses along Quốc Lộ 1A street and Đường tỉnh 827 and 828 roads (connecting Tân An 

with other districts in the region). Tân An is surrounded by paddy fields and dragon fruit 

plantations. Unlike Bạc Liêu city, Tân An has more houses in rural areas, but these houses 

are scattered across the landscape and not found in parallel along main roads or rivers. 

For Phan Thiết, Bình Thuận Province Public Administration Centre is at the center of 

the city. From the center, the residential areas have expanded to the north and north-east of 

the city center, such as the An Phú and Phú Tài-Phú Trinh residential areas. Commercial 

and medical service buildings (Coopmart supermarket, An Phước General Hospital) built 

to meet the social and health care demands are also visible in the map of building structures. 

Toward the south of the city center, more houses have been constructed along the Cà Ty 

River since this river is the main waterway connecting the sea and the fishing port at the 

Cà Ty River mouth. In response to the tourism boom in the city, a variety of policies for 

tourism development have been issued. Moreover, many large hotels and resorts have been 

built along the shore toward Mũi Né tourist site. Due to hilly terrain in the rural areas, 

houses are found scattered across the landscape and not along main roads like in Bạc Liêu, 

Cà Mau, and Sóc Trăng. 

Evaluated with in-situ data and field observations, Table 3.3 shows the accuracy of 

building mapping in Bạc Liêu, Cà Mau, Sóc Trăng, Tân An, and Phan Thiết. Within these 

five cities, Bạc Liêu had the highest accuracy with false negative rate = 8.6% and false 

positive rate = 5.2%. Phan Thiết had the lowest mapping accuracy with false negative rate 

= 13.3% and false positive rate = 8.2%. Cà Mau, Sóc Trăng, and Tân An had similar 

mapping accuracies, with the false negative rate ranging from 9.5% to 11.9% and the false 

positive rate from 5.5% to 7.0%. For all cities, the average false negative rate was 10.9%, 

and the average false positive rate was 6.4% after the corrections for water-tree interactions 

and mountain topography effects. 

https://www.mdpi.com/2072-4292/13/13/2439/htm#table_body_display_remotesensing-13-02439-t003
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Table 3.3 Accuracy assessment. 

Cities 
N_building 

(pixels) 

N_others 

(pixels) 

False Negative Rate 

(FNR) (%) 

False Positive Rate 

(FPR) (%) 

Bạc Liêu 320 330 8.6 5.2 

Cà Mau 306 344 9.5 5.5 

Sóc Trăng 310 340 11.4 6.1 

Tân An 318 332 11.9 7.0 

Phan Thiết 338 312 13.3 8.2 

All cities 1592 1658 Average FNR = 10.9% Average FPR = 6.4% 

To illustrate the major difference in the ability of the SAR data product of persistent 

building structures to represent true settlements versus the excessive appearance of NTL 

extent, the case of Phan Thiết city (capital of Bình Thuận Province), surrounded by vast 

dragon fruit plantations in the “Dragon Kingdom” of Vietnam, was examined. For NTL, 

the satellite Visible Infrared Imaging Radiometer Suite (VIIRS) Day and Night Band 

(DNB) data product (in units of nW/cm2/sr) with stray light correction was used (Group, 

2021) for February 2018 when the cloud cover was minimal to allow a good unobstructed 

observation of NTL. Figure 3.8 presents a map of persistent building structures detected 

by Sentinel-1 SAR around the area of Phan Thiết together with VIIRS NTL in Bình Thuận 

Province. 

As shown in Figure 3.8, the extent of building structures around Phan Thiết is only a small 

fraction of what is shown with the NTL over the dragon fruit plantations surrounding Phan 

Thiết. Moreover, the NTL in the city was distinctively dimmer than the NTL from the 

dragon fruit plantation regions. This is because farmers use high-intensity artificial lights 

shining up toward the cactus canopy at night (Figure 3.8) to drive the photoconversion 

process of phytochromes (Group, 2021)and increase the yield of dragon fruit production to 

multiple times per year (Rockwell and Lagarias, 2006). The innovative use of night lighting 

has transformed the agriculture in this arid rural region of Bình Thuận Province, from rags 

to riches, with a dramatic expansion of dragon fruit plantations where earnings from this 

high-value cash crop approach a billion USD (Paull and Chen, 2019). This example 

demonstrates that the vast extent of NTL over the rural regions of Bình Thuận exceeds by 

far the true urban areas and will thereby lead to an excessive overestimation of FFCO2 

emission using NTL as a proxy indicator of human settlements. 
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Figure 3.8 VIIRS NTL observations for Bình Thuận Province together with building 

structures detected by Sentinel-1 SAR represented by the yellow color in the area of 

Phan Thiết City. The insets are aerial (upper inset) and surface (lower inset) 

photographs of the dragon fruit lighting at night. The land-water mask used in this 

figure was obtained from the SRTM Water Body Data (JPL, 2020). 

3.3.2 Results for Building Structures on the Sea Surface 

This section presents the results of building structure mapping on the sea surface from huge 

oil platforms in major oil fields to tiny guard shacks in marine clam farms. The Bạch Hổ 

(White Tiger) oil field and Sư Tử Đen (Black Lion) oil field are two major offshore oil 

production areas in the Cửu Long basin due east of the Mekong Delta of Vietnam. The 

joint Vietnamese–Russian Vietsopetro operates at Bạch Hổ, while PetroVietnam with 

partners from ConocoPhillips, Korean National Oil, and others operates at Sư Tử Đen. 

Figure 3.9 reveals multiple persistent structures including oil platforms or oil rigs detected 

by the method in the period of March 2017 to May 2018 in the areas around Bạch Hổ (7 

structures, within the frame in Figure 3.9a) and Sư Tử Đen (5 structures, within the frame 

in Figure 3.9b). A very rare image from Maxar acquired in 2006 captured an oil rig right 

at the location of Structure 710 in Sư Tử Đen and independently confirmed the SAR 

detection of this oil rig. In the Bạch Hổ and Sư Tử Đen areas, the centroid for each oil field 

structure is listed in Table 3.4. 
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Figure 3.9 Detection of offshore structures (orange pixels inside circles) on the sea 
surface around (a) Bạch Hổ and (b) Sư Tử Đen oil fields. Each structure is assigned 
a unique identification (ID) number. 

Table 3.4 Centroid locations of structures including oil platforms or oil rigs around 
Bạch Hổ and Sư Tử Đen oil fields. The ID of the structures detected in the oil fields 
correspond to those in Figure 3.9. 

Oil Field Structure ID Longitude (o) Latitude (o) 

Sư Tử Đen 709 108.4377899 10.46973133 

710 108.3818665 10.44124126 

714 108.3938675 10.42325497 

716 108.3894806 10.39616489 

721 108.3605118 10.38012123 

Bạch Hổ 731 107.9596634 9.984884262 

734 107.9711685 9.972677231 

738 107.947319 9.923978806 

739 108.0084839 9.901568413 

742 107.9201202 9.878500938 

743 107.9855728 9.877530098 

745 107.9864731 9.86863327 
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In the littoral zone off the shore of Bạc Liêu, the first wind energy farm in southeast Asia 

was developed in an area of 540 ha producing 99.2 MW of electricity. Figure 3.10 shows 

each individual wind tower detected on the sea surface. The towers are aligned in parallel 

rows with a spacing of approximately 800 m as found in the building detection map. Each 

row has a maximum of eight towers with equal spacing between these towers (~250 m). 

The wind tower closest to the sea dike on the shoreline was detected about 600 m away. 

 

Figure 3.10 Wind energy farm off the shore of Bạc Liêu (a) wind-energy tower 
map detected from Sentinel-1 SAR and (b) ground-truth field photograph on 26 
February 2019 at 9°13′49.76′′ N and 105°48′12.12′′ E. 

For the case of the Hòn Tre and Hòn Sơn islands, interestingly, not only houses in a small 

village could be captured on the shore land, but also the lines of power poles on the sea 

surface connecting the two islands to the mainland can be detected, as illustrated in Figure 

3.11. The entire length of power lines connecting Hòn Tre to the mainland is 13 km 

including 27 poles, while the entire length for Hòn Sơn is 24.5 km with 49 poles. Since the 

two islands are close to the mainland, Southern Power Corporation (Tổng Công ty Điện 

lực miền Nam) built the electric power lines above sea surface rather than running power 

cables underwater, which is costly and commonly performed for islands far away from the 

mainland such as Phú Quốc island. The first power cables underwater in Vietnam 

connecting Phú Quốc to the mainland in Hà Tiên is 56 km long and cost approximately 

USD 100 million. 
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Figure 3.11 Detection of building structures on sea surfaces in Kiên Giang: (a) electric 

power line connecting Hòn Tre island to mainland in Kiên Giang, (b) ground-truth 

photograph on 4 January 2021 at 9°59′55.05′′ N and 104°51′32.20′′ E, (c) electric 

power line connecting Hòn Sơn island to mainland in Kiên Giang, (d) ground-truth 

photograph on 14 January 2021 at 9°44′48.99′′ N and 104°51′42.47′′ E. 

The marine aquaculture in Kiên Giang province (in the Mekong Delta, southern Vietnam) 

includes farming of blood clams in shallow areas near the shore as a part of the regional 

development of sustainable fisheries. In 2008, the People Committee of An Biên District 

issued a policy on an economic development plan for shallow areas along the shore by 

leasing land, giving loans, and supporting culture techniques to locals. Thanks to this 

policy, farmers have rented mudflat areas from the local government, and built long wood 

fences and guard shacks on their farm (Figure 3.12). They usually live in guard shack 

month by month to protect their blood clam farm from other fishermen who illegally 

exploit the blood clams. Gradually, the guard shacks become fishing sites, seafood trading 

sites, and aqua-tourism sites. 
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Figure 3.12 Detection of building structures on shallow areas near the shore in Kiên 

Giang: (a) guard shacks in blood clam farms in An Biên, (b) ground-truth photograph 

on 20 February 2021 at 9°53′32.81′′ N and 104°59′1.24′′ E. 

3.4 Discussion 

For the discussion here, the findings presented in this study are related to highlight the 

advances in the innovative SAR methods. First, the use of the 2-D dual-polarization VV-

VH space (Figure 3.3) enabled a robust algorithm to be developed to overcome the 

confounding effects of complex variations in incidence and azimuth angles of satellite SAR 

data. This algorithm is important as it allows the use of SAR modes with wide swaths, and 

therefore more frequent observations with large coverages in comparison with data 

acquired with narrow swaths. The issue with wide-swath modes is that the range of 

incidence angles is large (29.1° to 46.0° for the Sentinel-1 SAR wide swath mode used in 

this study) and changes in backscatter signatures need to be corrected based on the 

backscatter slope as a function of incidence angles for different land cover classes (Phung 

et al., 2020). Such incidence angle corrections demand a priori knowledge of surface types, 

which may not be available to start with. 

For structures aligned preferentially in a specific direction on land (e.g., houses built 

along roads, trees grown along riverbanks, plowed fields in agricultural areas, etc.) and on 

the sea surface (e.g., waves along shores, roughness on sea surface directionally driven by 

wind directions, etc.), backscatter signatures can be strongly dependent on the azimuth 

angles of SAR data acquired in ascending and descending orbit tracks with different 

azimuth looks. The new approach for building structure detection using the 2-D VV-VH 

space is independent of incidence angles and azimuth direction, and thereby resolves the 

problem due to variations in incidence and azimuth angles. 

The 2-D VV-VH space (Figure 3.3) revealed a distinctive domain for SAR backscatter 

signatures of building structures explicitly from the domains of multiple land cover types 

(e.g., trees, paddy fields, aquaculture areas) across the landscape over different regions in 

southern Vietnam, except for some minor overlap in the VV-VH domain for trees that may 
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have high backscatter. This finding demonstrates the ability of SAR to successfully identify 

building structures across urban-suburban to rural-natural landscapes with different 

background environments in wet and dry areas from inland to coastal regions. Furthermore, 

the identification of the overlap between the domains of buildings and trees in the 2-D VV-

VH space led to the recognition that water-tree interactions in reflection and scattering 

processes of transmitted and received SAR signals (Figure 3.4) would cause high 

backscatter from trees. This prompted the development of the approach using NDVI from 

Sentinel 2 as an effective method to correct for the misclassification between buildings and 

trees. 

In mountainous regions, land surfaces vary from steep to flat terrains; however, 

building structures are typically built-in areas that are level. The innovative use of the 

geomorphon concept in the method recognizes this issue, and therefore accounts for the 

misclassification of building structures caused by topographic effects on SAR signatures 

(Figure 3.5). Alternative algorithms that only use land surface height from DEM data 

would not be sufficient, as flat land may be located at different altitudes from coastal areas 

to foothill vicinities, and up on high plateaus. Therefore, the implementation of the full 

landform characterization with geomorphons is necessary in this method. 

On the sea surface, backscatter values in upwind, downwind, and crosswind directions 

can strongly affect backscatter by an order of magnitude, with low and high wind speeds 

creating very different wave conditions (Carswell et al., 1994; Nghiem et al., 1995). These 

wind effects confound the detection of man-made structures with different sizes having 

different backscatter magnitudes. Rather than relying on complicated algorithms such as 

multi-modal signature decompositions or convolution neural networks that may introduce 

non-linearity, non-uniqueness, and/or extraneous outcomes, the method overcomes the 

effects of wind and waves to robustly detect persistent structures on the sea surface, ranging 

from very large oil platforms to small individual guard shacks in blood clam farms (Figure 

3.9, Figure 3.10, Figure 3.11, and Figure 3.12). 

The study has further demonstrated the utility of SAR to map building structures in 

various cities and regions with different environmental and socioeconomic conditions. 

More specifically, it has shown the ability of Sentinel-1 C-band SAR to make building 

maps with a high spatial resolution (10 m) from the SAR data archive since 2014 (Sentinel-

1A and 1B) and potentially from future missions (Sentinel-1C and 1D) (ESA, 2021). Such 

long-term SAR records are crucial to monitor urban expansion that is continuing in most 

cities in Vietnam and other countries from the local and provincial to the state and national 

levels. Moreover, the robust ability to identify structures on the sea surface is important for 
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monitoring coastal developments such as aquacultural farms and both fossil and renewable 

energy industries in the marine environment. 

3.5 Conclusions 

This study has presented an innovative method to detect and map building structures 

on land and sea using times-series records of satellite Sentinel-1 SAR data. The results 

were validated with in-situ and field truth observations obtained in southern and central 

regions of Vietnam. The conclusion from this study includes the following key points: 

• The novel use of satellite Sentinel-1 SAR data in the two-dimensional 

polarization domain enables the method to be robust against confounding factors 

such as variations due to different incidence and azimuth angles, due to water-tree 

radar signal interactions (with synergistic Sentinel-2 MSI data), and due to different 

landforms on complex typography (with the geomorphon concept), without having 

to rely on more complicated methods such as neural networks that may introduce 

non-linearity, non-uniqueness, or extraneous outcomes. 

• A demonstration of the ability of radar backscatter signatures to detect 

building structures is founded on radar responses to true physical structures of 

buildings (Nghiem et al., 2009; Sorichetta et al., 2020), rather than optical colors or 

spectral appearances of land cover types. As this method is based on radar signatures 

of physical building structures, it can successfully capture the characteristics of 

urban building patterns corresponding to different urban development classes and 

socioeconomic status (see Table 3.1 and Table 3.2), and in different rural-urban 

landscapes in both inland and coastal regions with wet and arid environmental 

conditions, or over sea surfaces under different wind and wave effects. 

• Founded on time-series satellite SAR data records consistently tracked at 

each pixel location, the method successfully detects and maps persistent (rather than 

temporary) building structures, which truly represent sustained human settlements 

in order to circumvent the shortfalls of the proxy indicator derived from NTL data 

(Gaughan et al., 2019), as illustrated in the case of Phan Thiết city versus the dragon 

fruit plantations in Bình Thuận (Figure 3.8). Such spatial data products of physical 

building structures are crucial for urban mapping applications, in particular for 

accurate estimations of FFCO2 emission required for the successful implementation 

of the UNFCCC Paris Agreement. In fact, the U.S. National Academies of Sciences, 

Engineering, and Medicine recognizes that the improvement in greenhouse gas 

(GHG, including FFCO2) measurement and monitoring is foundational to the 

control of global GHG emissions (National Academies of Sciences, Engineering, 

2021). 

Regarding future research extension, the algorithm in this study can be modified or 

adapted for use with SAR data at other frequencies such as X band (the current TerraSAR-

X/TanDEM-X and COSMO-SkyMed satellite SAR Missions and the future LOTUSat 1 

and 2 satellite SAR Missions in the 2020s), L band (the current ALOS-2 PALSAR-2 

Mission and the future Copernicus ROSE-L Mission), and combined L band and S band 
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(the NASA-ISRO SAR Mission to be launched in 2022). A synergistic combination of 

satellite SAR datasets offers a great potential to derive global building structure data 

products over a wide range of temporal and spatial scales, not only for two-dimensional 

building footprint, but also potentially for three-dimensional building volume (Mathews 

and Nghiem, 2021). 

This chapter developed the novel method to detect persistent building structures on 

land and sea surface and successfully minimize the misclassification between building 

structure vs trees that are still problems when using supervised classification algorithm in 

Chapter 2. The following chapter (Chapter 4) will develop the novel method to identify 

and map seasonal inundated LCLU (e.g rice paddy) and persistent surface water (e.g 

aquaculture). This novel method will minimize the misclassified pixels between rice paddy 

and aquaculture when running supervised classification algorithm in Chapter 2. 
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Chapter 4 Surface Cover Classification 

In previous chapter (Chapter 3), the novel use of satellite Sentinel-1 SAR data in the two-

dimensional polarization to identify building structures on land and sea surface is 

discussed. This chapter will develop a novel method to identify and map persistent surface 

water and seasonal inundated land cover and land use (LCLU). 

4.1 Introduction 

As a region affected by marine interactions together with an extensive coastal wetland, Bạc 

Liêu province has founded shrimp production to be the leading sector in local economic 

development. In the late 1990s, Bạc Liêu started brackish water shrimp farming. In recent 

years, the high-tech shrimp farming or super-intensive shrimp farming was developed and 

expanded in Bạc Liêu due to high profits (Duc, 2021). The high-tech shrimp farming 

system utilizes shrimp breeding ponds in combination with the installation of aeration 

facilities, anti-sunlight nets on the top of pond, and plastic sheets on the soil bed (Trong, 

2021). 

In 2020, the Bạc Liêu province had more than 25,800 ha of super-intensive and intensive 

shrimp farming areas (VietnamPlus, 2021). This new system aims at offering high 

production values, sustainable to environment, and quality control and food safety to meet 

international export demands. However, the abuse of antibiotics and chemicals in intensive 

shrimp farming is destroying aquatic ecosystems (Binh, 2019), and wastewater from the 

super-intensive shrimp aquaculture poses major challenges to soil and surface water in 

wetland areas in Bạc Liêu province. It is crucial to monitor aquaculture areas by remotely 

sensed data. Nevertheless, the use of geospatial data in monitoring the aquaculture areas, 

particularly Sentinel-1 SAR satellite data, has been inadequate in Bạc Liêu as well as other 

aquaculture areas in the Mekong Delta. 

SAR backscatter is sensitive to soil moisture and surface roughness (Son et al., 2017). This 

SAR backscatter property can advance LCLU classification including water areas such as 

shrimp farms, rice paddies, and persistent surface water (such as lakes, rivers, persistently 

inundated unproductive land). Shrimp ponds, persistent surface water, and rice paddies 
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have similar backscatter at some specific time. Between sowing and the beginning of 

tillering (0-20 days), the rice paddy is mostly wet bare soil and the backscatter has low 

values (Phan et al., 2018). Similarly, shrimp ponds contain water during cultivation period 

and also have low backscatter. This leads to LCLU misclassification in areas such as in 

Bạc Liêu province where rice paddies and shrimp aquaculture are widely cultivated. 

To address the above challenges, the objective is to develop a new innovative algorithm 

for detection of water areas that change seasonally in different environmental conditions. 

The algorithm robustness must be tested across urban, suburban, rural, and natural areas 

on land in Bạc Liêu province using Sentinel-1 SAR time series data. First, a novel method 

is introduced to identify water in various LCLU mixtures using a three-dimensional (3-D) 

composite consisting of VV-VH polarization of the SAR backscatter data (2-D in the dual-

polarization plane) and their seasonal change (1-D in time). This 3-D composite is hence 

denoted as VV-VH-DS, where VV is the vertical co-polarization backscatter, VH is the 

cross-polarization backscatter, and DS is the seasonal change of the backscatter data.  Next, 

how to assess the accuracy of the water classification results is described. Finally, maps of 

persistent surface water, aquaculture field, map of rice paddy together with other LCLU 

(buildings, man-made structures, trees, and forests) in Bạc Liêu province are presented. 

Regarding the advances of the new method, (1) the advantage of using the three-dimension 

(3-D) composite for land cover mapping is highlighted to robustly resolve the issue of 

incidence and azimuth angle dependence, (2) the ability of consistent time-series Sentinel-

1 SAR to detect persistent surface water, and (3) the utilization of time dimension to map 

rice paddies versus shrimp farms. Finally, in the discussion and conclusion, future research 

extension with multi-temporal Sentinel-1 SAR to detect water areas together with LCLU 

classes in other coastal and marine regions in Vietnam in particular and elsewhere in 

general is noted. 

4.2 Methods 

An innovative approach is presented to map LCLU in Bạc Liêu province. The analysis, 

consisting of image processing, mapping, and accuracy assessment, was carried out using 
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the Google Earth Engine (GEE) platform and ArcGIS software. The flow chart in Figure 

4.1 summarizes the overall methods in which each component is depicted in further detail 

below. 

 

Figure 4.1 Processing and mapping workflow 
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4.2.1  Image Processing 

Time series Sentinel-1 SAR images were pre-processed to derive the backscatter 

coefficient in decibel (dB) for each pixel. The pre-processed steps included applying orbit 

file, thermal noise removal, radiometric calibration and terrain correction using the Shuttle 

Radar Topography Mission (SRTM) 30-m topographic data. Then spatial co-registration 

of temporal data based on a referenced image was conducted to obtain the time series data 

in the same coordinate system. All these steps were carried out in the GEE platform. 

To reduce speckle noise in SAR images, a multi-temporal 3-point mean filter (a moving 

average over a given time window) that would be computationally effective for noise 

elimination (Ngo et al., 2021) was utilised. The calculation was implemented as follows: 

pmean(ij at t) = average(pij at t-1:pij at t+1) (1) 

Equation 4.1 Calculation of multi-temporal 3-point mean 

In (1), pmean(ij at t) is the output pixel value at location i,j (i: numbers of image rows, j: 

numbers of image columns) at time t; pij at t-1 is the input pixel value at location i,j at time t-

1; and pij at t+1 is the input pixel value at location i,j at time t+1. 

In this case study, t has a value in the range of 1 to 35 (35 being the total number of SAR 

images in the period under consideration). After the mean calculation, the first and the last 

images in the time series were removed and only 33 images were used for further analysis. 

As an example, Figure 4.2 shows the raw backscatters, geometric mean, and arithmetic 

mean of Sentinel-1A SAR time series for VH and VV polarizations over shrimp farm in 

Bạc Liêu province. 
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Figure 4.2  Example of filtering of raw Sentinel-1A SAR time series for (a) VH and, 

(b) VV polarizations over shrimp farm in Bạc Liêu province. 

4.2.2 Mapping 

The 3-D VV-VH-DS composite is used to identify four domains with each domain 

primarily dominated by one of the four classes (urban, forest, shrimp farm, and bare 

surface) independent of incidence and azimuth angles. The incidence angle in SAR images 
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may influence backscatter values across the radar swath (Ngo et al., 2021). To determine 

how backscatter changes as a function of incidence angle, a scatter plot with VV 

polarization for the x-axis and VH polarization for the y-axis was made. The 3-point mean 

backscatter values of all types of land cover including buildings, trees, paddy fields (such 

as rice paddies), and aquaculture (such as shrimp farms) at each incidence angle bin at 35, 

38, and 42 degrees and azimuth direction (ascending versus descending) are shown in 

Figure 4.3. The thresholds in the 2-D VV-VH plane were determined to identify four 

domains as follows: 

• Urban domain: a pixel was assigned to an urban class containing building structures 

on land if it satisfied the following conditions: VV backscatter greater than −5dB 

(VV > −5dB) or VH backscatter greater than −12 dB (VH > −12 dB). This domain 

almost totally contains the urban class. Thus, it can be used directly to identify and 

map urban areas. 

• Forest domain: a pixel was assigned to a forest class if it satisfied the following 

conditions determined by the condition: VV backscatter smaller than −5dB (VV < 

−5dB) and VH backscatter smaller than or equal to −12 dB and VH backscatter 

greater than −17 dB (−17 dB < VH ≤ −12 dB). This domain primarily contains all 

forest class with a mixture of rice fields. 

• Shrimp domain: a pixel was assigned to a shrimp class if it satisfied the following 

conditions determined by the condition: VV backscatter smaller than −5dB (VV < 

−5dB) and VH backscatter smaller than or equal to −17 dB and VH backscatter 

greater than −25 dB (−25 dB < VH ≤ −17 dB). This domain primarily contains all 

shrimp class with a mixture of rice fields.  

• Bare domain: a pixel was assigned to a bare class if it satisfied the following 

conditions: VV backscatter smaller than −5dB (VV < −5 dB) or VH backscatter 

smaller than or equal to −25 dB (VH < −25 dB). This domain mainly contains the 

rice-field class where both VV and VH are very low due to little or no vegetation 
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cover. Thus, it can be used to identify bare rice fields or bare soil that can be 

inundated or non-inundated. 

 

Figure 4.3 Dual-polarization backscatter plane of land cover classes, and four-domain 

classification in the 2-D space for VV on the horizontal axis and VH on the vertical 

axis in dB. 

Figure 4.3 shows that urban domain and bare domain can be identified and mapped 

independent of incidence and azimuth angles. The issue remains with the forest domain 

and the shrimp domain, where each domain has a mixture with paddy fields. To resolve 

the mixing problem in the forest and shrimp domain, a third dimension is necessary. The 

third dimension can come from the time dimension, in which the seasonal variability of 

rice field can be different from the host domain (either the forest domain or the shrimp 

domain). 

4.2.2.1 Urban mapping 

The result of building structure mapping in previous chapter (Chapter 3) was used as urban 

class. In addition, the mapping result of building structure can be used as a mask for other 

land cover classes. 

4.2.2.2 Rice mapping 

To distinguish aquaculture (mostly shrimp farm) from rice paddy in shrimp domain the 

temporal variation of backscatter in time series was used. In fact, shrimp farm did not have 
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vegetation cover over the year, so the backscatter in time series did not have much change. 

While rice could have a significant seasonal change depending on seasonal rice growth 

cycles (Nguyen, Gruber and Wagner, 2016b). The backscattering coefficients (both 

polarizations) gradually increased during the growing period until they approached their 

maximum at the end of the reproductive state where rice had a dense canopy at the peak 

growth (Nguyen, Gruber and Wagner, 2016a). Thus, to identify shrimp from rice, the 

seasonal maximum backscatter (σmax), the seasonal minimum backscatter (σmin), and the 

seasonal backscatter difference (ΔVH) were used in the following steps: 

• Step 1: Each time series at pixel_ij consisted of about 33 data points in time. Each 

point in shrimp domain in the scatter plot (Figure 4.3) was associated with one 

corresponding series from March 2007 to April 2018. The maximum (σmax) and the 

minimum backscatter (σmin) in each time series of 33 data points were determined. 

• Step 2: The maximum backscatter (σmax) was assigned to each of the 33 data 

backscatter points to have 33 pairs of (σi, σmax) where σi was the backscatter value 

at time i (i= 1, 2, 3… 33).  The maximum backscatter (σmax) was calculated for VH 

polarization at each incidence angle bin at 35, 38, and 42 degrees and azimuth 

direction (ascending versus descending) (Figure 4.3). 

• Step 3: The backscatter difference (ΔVH) was calculated in dB as: 

ΔVH = σmax_VH - σmin_VH 

Equation 4.2 Calculation of the backscatter difference 

• Step 4: The seasonal maximum backscatter (σmax), the seasonal minimum 

backscatter (σmin), and the seasonal backscatter difference (ΔVH) was calculated for 

both shrimp farm and rice paddy in the shrimp domain. 

The threshold in the 3-D VV-VH-DS composite was determined to identify rice paddy. A 

pixel was assigned to a rice paddy class if it satisfied the following conditions: VV 
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backscatter smaller than −5dB (VV < −5dB) and VH backscatter smaller than or equal to 

−17 dB and VH backscatter greater than −25 dB (−25 dB < VH ≤ −17 dB) and the seasonal 

maximum backscatter greater than −16.5 dB (σmax > −16.5 dB) (Figure 4.4) and the 

seasonal backscatter difference greater than 7.5 (ΔVH > 7.5) (Figure 4.5). 

To capture the rice paddy pixels, the condition above was applied to all Sentinel-1A images 

in the time series (33 images). All output images (with value 1 for rice paddy pixels, and 

with value 0 for non-rice paddy pixels) were combined to count the number of times that 

each pixel was identified as rice paddy class. If pixel_ij was identified as a rice paddy T 

times out of the 33 images, then the count of pixel_ij was set to T. Each pixel in the 

combined output image could have a value of T in the range of 0 (for pixels in which rice 

paddies were never detected) to 33 (for pixels detected as rice paddies at all the times). To 

minimize misclassifying rice paddy pixels from real non-rice paddy pixels, the optimal rice 

paddy count threshold (rice_count_threshold) with the discrete derivative of rice paddy 

pixels (Δm_n_rice) were determined depending on where the Δm_n_rice curve became 

invariant of flattened. Pixel_ij was detected as a rice paddy if rice_count_ij > 

rice_count_threshold where the rice_count_threshold could be from 1 to 33. The discrete 

derivative of rice paddy pixels was calculated as follows: 

Δm_n_rice = Nthreshold_m_rice − Nthreshold_n_rice 

Equation 4.3 Calculation of discrete derivative of rice paddy pixels 

where the terms Δm_n_rice is for the derivative between thresholds m and n, Nthreshold_m is for 

number of rice paddy pixels at threshold m (1 ≤ m ≤ 33), and Nthreshold_n is for number of 

rice paddy pixels at threshold n (1 ≤ m ≤ 33). Based on the formulation given by Equation 

4.3, discrete derivative curves were utilised to determine the optimal rice paddy count 

threshold. This method required a rice paddy to exist persistently for a minimum period of 

about 1.5 months (see Appendix A). 
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4.2.2.3 Shrimp mapping 

Similarly, the threshold to map shrimp aquaculture areas was determined. A pixel was 

assigned to an aquaculture class if it satisfied the following conditions: VV backscatter 

smaller than −5dB (VV < −5dB) and VH backscatter smaller than or equal to −17 dB and 

VH backscatter greater than −25 dB (−25 dB < VH ≤ −17 dB) and the seasonal maximum 

backscatter (σmax) smaller than or equal to -16.5 dB (σmax ≤ -16.5 dB) (Figure 4.4) and 

the seasonal backscatter difference greater than 7.5 (ΔVH ≤ 7.5) (Figure 4.5). 

To capture the aquaculture pixels, the condition above was applied to all Sentinel-1A 

images in the time series (33 images). Like rice paddy identification step above, all output 

images (with value 1 for aquaculture pixels, and with value 0 for non-aquaculture pixels) 

were combined to count the number of times that each pixel was identified as aquaculture. 

If pixel_ij was identified as aquaculture T times out of the 33 images, then the count of 

pixel_ij was set to T. Each pixel in the combined output image could have a value of T in 

the range of 0 (for pixels in which aquaculture were never detected) to 33 (for pixels 

detected as aquaculture at all the times). To minimize misclassifying aquaculture pixels 

from real non-aquaculture pixels, the optimal aquaculture count threshold 

(aquaculture_count_threshold) with the discrete derivative of aquaculture pixels 

(Δm_n_aquaculture) was determined depending on where the Δm_n_aquaculture curve became 

invariant of flattened. Pixel_ij was detected as an aquaculture if aquaculture_count_ij > 

aquaculture_count_threshold where the aquaculture_count_threshold could be from 1 to 

33. The discrete derivative of aquaculture pixels was calculated by the following equation: 

Δm_n_aquaculture = Nthreshold_m_aquaculture − Nthreshold_n_aquaculture (3) 

Equation 4.4 Calculation of discrete derivative of aquaculture pixels 

where the terms Δm_n_aquaculture is for the derivative between thresholds m and n, 

Nthreshold_m_aquaculture is for number of aquaculture pixels at threshold m (1 ≤ m ≤ 33), and 

Nthreshold_n_aquaculture is for number of aquaculture pixels at threshold n (1 ≤ m ≤ 33). Based 

on the formulation given by Equation 4.4, discrete derivative curves were utilised to 
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determine the optimal aquaculture count threshold. This method requires an aquaculture to 

exist persistently for a minimum period of about 1.5 months (see Appendix A). 

 

Figure 4.4 Multi-temporal backscatter of paddy field and aquaculture in time 

dimensional space for VH on the horizontal axis and Sigma_max (σmax,VH) on the 

vertical axis in dB. 

 

Figure 4.5 Multi-temporal backscatter of paddy field and aquaculture in time 

dimensional space for VH on the horizontal axis and Delta_VH (ΔVH) on the vertical 

axis in dB. 
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4.2.2.4 Persistent surface water mapping 

To detect persistent surface water in bare domain, the condition VH backscatter smaller 

than or equal to −25 dB (VH ≤ −25 dB) was used (Figure 4.3). To capture the persistent 

surface water pixels, the condition above was applied to all Sentinel-1A images in the time 

series (33 images). Like rice paddy and aquaculture identification step above, all output 

images (with value 1 for persistent water pixels, and with value 0 otherwise) were 

combined to count the number of times that each pixel was identified as persistent surface 

water class. If pixel_ij was identified as a persistent surface water T times out of the 33 

images, then the count of pixel_ij was set to T. Each pixel in the combined output image 

could have a value of T in the range of 0 (for pixels in which persistent surface water were 

never detected) to 33 (for pixels detected as persistent surface water at all the times). To 

minimize misclassifying persistent surface water pixels from real non-persistent surface 

water pixels, the optimal persistent surface water count threshold 

(persistent_water_count_threshold) with the discrete derivative of persistent surface water 

pixels (Δm_n_persistent_water) was determined depending on where the Δm_n_persistent_water 

curve became invariant of flattened. Pixel_ij was detected as a persistent surface water if 

persistent_water_count_ij > persistent_water_count_threshold where the 

persistent_water_count_threshold could be from 1 to 33. The discrete derivative of 

persistent surface water pixels was calculated as follows: 

Δm_n_ persistent_water = Nthreshold_m_persistent_water − Nthreshold_n_ persistent_water 

Equation 4.5 Calculation of discrete derivative of persistent surface water pixels 

where the terms Δm_n_ persistent_water is for the derivative between thresholds m and n, 

Nthreshold_m_persistent_water is for number of persistent surface water pixels at threshold m (1 ≤ 

m ≤ 33), and Nthreshold_n_persistent_water is for number of persistent surface water pixels at 

threshold n (1 ≤ m ≤ 33). Based on the formulation given by Equation 4.5, discrete 

derivative curves were utilised to determine the optimal persistent surface water count 

threshold. This method requires a persistent surface water to exist persistently for a 

minimum period of a year (see Appendix A). 
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4.2.2.5 Forest mapping 

Together with the forest domain defined earlier from the SAR backscatter data, the 

Normalized Different Vegetation Index (NDVI) (Haas and Ban, 2017; Ngo et al., 2021) 

derived from the Multi-Spectral Instrument (MSI) aboard Sentinel-2 satellite was used to 

map tree cover. GEE was utilised to select Sentinel-2 MSI data on mostly-clear-sky days 

(cloudiness < 20%) to compute NDVI from March 2017 to April 2018. NDVI in each 10-

m pixel was then calculated and the average of N largest values of NDVI 

(NDVI_avg_Nmax) in each pixel obtained over the period under consideration was 

computed. A pixel was classified as tree cover class if NDVI_avg_Nmax > 

NDVI_threshold. Multiple cases for N = 3, 5, 10, and 15 were tested and NDVI_threshold 

was found to range from 0.25 to 0.5 in each case. Based on this examination, the parameters 

to N = 3 and NDVI_threshold = 0.4 were set to identify tree cover class as these values 

yielded optimal results. 

4.2.3 Post classification 

A 3x3 window filter was used to clean isolated pixel due to spurious noise in SAR data in 

each binary rice paddy, aquaculture, and persistent surface water classification map. For 

instance, in the 3x3 window if the centre pixel (2,2) was non-rice and the total rice pixel 

count (N_rice_count) in the 3x3 window was greater than or equal to X (X = 5, 6, 7, 8), 

then all non-rice pixels in the 3x3 window were reclassified to be rice pixels. After each 

land cover class was applied isolated pixel filtering, all of them were then mosaicked to 

make final land cover map. 

4.2.4 Ground truth data collection and accuracy assessment 

In-situ ground truth data were collected across the Bạc Liêu province. Fieldwork included 

taking field observation with geotagged photographs of different LCLU types such as 

building structures (school, commercial centres, resident houses, etc.), trees (coastal forest, 

perennial trees, plantation), paddy fields (rice paddies), aquaculture areas (shrimp farms), 

persistent surface water (water treatment and solids settling ponds in shrimp farming zone). 

In addition, geotagged photographs were taken at different locations from rural to urban 
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areas of the Bạc Liêu province (Figure 4.6). The photographs were imported into ArcGIS 

Pro software to get the locations of ground truth points. These points were utilised as 

validation points in the accuracy assessment. 

Based on in-situ ground truth data and field photographs together with high-resolution true 

colour images in Google EarthTM and the ArcGIS Pro base map, the quality of the mapping 

results was assessed. A stratified (by land cover) randomly spatial distributed set of 900 

validations points were used to test accuracy. These points were positioned at the central 

of 3x3 homogeneous pixels. A confusion matrix, Kappa, and producer and user accuracy 

were used to measure the accuracy of mapping results. The error matrices and overall 

accuracy reports were calculated from ArcGIS Pro. 

 

Figure 4.6 Locations of field photographs over Bạc Liêu province surveyed from 01 

Oct 2019 to 05 May 2020. 



76 
 

4.3 Results 

4.3.1 Classification results 

Figure 4.7 shows an example of the classification result of persistent surface water for Bạc 

Liêu province. The map shows that persistent surface water pixels are in the aquaculture 

cultivation areas. Most of persistent surface water pixels are water treatment ponds and 

solids settling ponds in the intensive or super-intensive shrimp farms. In other cases, 

persistent surface water pixels can be abandoned shrimp ponds in which farmers no longer 

cultivate their shrimp farm due to shortage of financial investment or soil pollution. 

 

Figure 4.7 Detection of persistent surface water in Bạc Liêu: (a) water treatment and 

solids settling ponds at CP Bạc Liêu shrimp farm, (b) ground-truth photograph on 05 

Sept 2021 at 9° 11' 25'' N and 105° 38' 15'' E. 

Figure 4.8 shows the result of aquaculture farm detection for Bạc Liêu province. 

Aquaculture farm pixels detected in Bạc Liêu are intensive shrimp ponds where water is 

pumped in and discharged at harvest and between crops.  
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Figure 4.8 Detection of aquaculture farm in Bạc Liêu: (a) shrimp farm at Vĩnh Hậu 

village, Bạc Liêu, (b) ground-truth photograph on 05 Sept 2021 at 9° 12' 01'' N and 

105° 43' 13'' E. 

Figure 4.9 shows an example of the rice paddy detection result for Bạc Liêu province. 

The map shows that rice paddy pixels are surrounded by roads or canals.  

 

Figure 4.9 Detection of rice paddy in Bạc Liêu: (a) rice paddy map detected from 

Sentinel-1 SAR at Vĩnh Phú Đông village, (b) ground-truth photograph on 29 Nov 

2021 at 9° 28' 05'' N and 105° 30' 15'' E, (c) ground-truth photograph on 23 Sept 2021 

at 9° 21' 35'' N and 105° 40' 40'' E. 

Figure 4.10 shows the results of the land cover classification for Bạc Liêu province. The 

map shows that building pixels emanating outward from urban to rural areas. Most building 
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pixels cluster around Bạc Liêu city and disperse along main roads and waterways. Tree 

pixels concentrate in inundated areas by tides along coastline. Most rice paddy pixels are 

identified in North of Quốc Lộ 1A road while aquaculture farms and persistent surface 

water are detected in South of Quốc Lộ 1A road, east of Bạc Liêu city, and west of Bạc 

Liêu province adjacent to Cà Mau province. The classification results reveal the distinctive 

spatial patterns of different LCLU associated with their unique characteristics of fresh 

versus marine water, population distribution drivers, and infrastructure development 

standard. 

 

Figure 4.10 Classification map of all land cover/land use classes in Bạc Liêu. 

4.3.2 Validation 

Assessed with in-situ data and field observation, Table 4.1 summarizes the accuracy of 

land cover mapping in Bạc Liêu province. Generally, the mapping results achieves high 

accuracy with overall accuracy of 91.2% and Kappa coefficient of 0.89. Within five land 

cover classes, building structure had the highest accuracy with producer accuracy of 99.3% 

and user accuracy of 98.6% respectively as the backscatter intensity values were unique 
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compared to the other land cover classes. In contrast, shrimp farming has lowest accuracy 

with producer accuracy of 87.9% and user accuracy of 89.0% as aquaculture cultivation 

activities including water exchange, drainage, and soil conditioning during crops influence 

backscatter values. 

Table 4.1 Accuracy assessment results for error matrices using 900 validations 

points. 

   Classification results (pixels) 

Ground truth data (points) Shrimp farming Tree Paddy Built-up Persistent surface water Non-classified Total 

Shrimp farming 145 1 1 0 4 12 163 

Tree 3 120 12 1 2 1 139 

Paddy 10 2 140 0 3 2 157 

Built-up 0 2 0 144 0 0 146 

Persistent surface water 4 0 1 0 132 3 140 

Non-classified 3 6 2 0 4 140 155 

Total 165 131 156 145 145 158 900 

Producer accuracy (%) 87.9 91.6 89.7 99.3 91.0 88.6  

User accuracy (%) 89.0 86.3 89.2 98.6 94.3 90.3  

Overall accuracy (%) 91.2       

Kappa coefficient 0.89       

4.4 Discussion 

The findings presented in this chapter is related to highlight the advances in the novel SAR 

methods. First, the use of the 3-D VV-VH-DS composite allows a robust algorithm to be 

developed to overcome the confounding effects of variations in incidence and azimuth 

angles of SAR data. This algorithm is crucial because it enables the use of wide swath 

modes of SAR with large coverages compared to data acquired with narrow swath. In wide-

swath modes of Sentinel-1 SAR, the range of incidence angles is between 29.1o to 46.0o, 

so the change in backscatter signature need to be corrected based on the backscatter slope 

as a function of incidence angles for different land cover classes (Phung et al., 2020; Ngo 

et al., 2021). To correct the incidence angle, a priori knowledge of all different surface 

types is required, which may not be available to start with (Ngo et al., 2021). 

The inclusion of time dimension in 3-D VV-VH-DS composite can help resolve the mixing 

issue in forest domain and shrimp domain. The 2-D VV-VH space (Figure 3) reveals that 

the mixing issue remains with the forest domain and the shrimp domain, each has a mixture 
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with rice field. Rice can have a dense canopy at the peak growth in some crops during the 

year. Depending on seasonal rice growth cycles, the seasonal variability of rice field can 

be large and different from the host domain (either the forest domain or shrimp domain). 

In contrast, the seasonal variability of established forest is small and shrimp farms have no 

vegetation cover over the year. Therefore, seasonal backscatter difference and the seasonal 

maximum backscatter can be used to distinguish rice paddy field from aquaculture (shrimp 

farm). 

The mapping method can be applied for detecting persistent surface water, which can be 

used to monitor unproductive lands, which can be considered as fallow wet land. High-

tech shrimp farming is currently expanded in Bạc Liêu province since this farming model 

enables high productive (40-50 tonnes/ha/crop) and success rate above 90% (Duc, 2021). 

However, environment issues are a major challenge because raising shrimp in this farming 

type has high density of shrimp per square meter (250-300 shrimp/m2). This means a large 

amount of untreated waste and wastewater from shrimp ponds is discharged to canals, and 

may have negative impacts on the nearby canals and rivers (Chi, 2020). SAR backscatter 

will vary depending on farming activities at shrimp ponds such as aeration activities, water 

supplies between crops or drainage at harvest. Therefore, if the land is polluted, 

unproductive and not suitable for shrimp farming, farmers will leave the pond inundated 

(persistent surface water). With 12 days revisits of a single Sentinel-1 SAR satellite, the 

mapping method will annually help the relevant authorities monitor productive land and 

unproductive lands. 

4.5 Conclusions 

This chapter has presented a novel method to map persistent surface water and seasonal 

inundated land cover and land use using time-series records of satellite Sentinel-1 SAR 

data. The accuracy of mapping results was accessed with in-situ and field truth 

observations obtained in the Bạc Liêu province. The conclusion from this chapter consists 

of the following key points: 
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• The innovative use of satellite Sentinel-1 SAR data in the three-dimensional 

polarization and seasonal change composite allows the method to be robust and to 

circumvent confounding effects of different incidence and azimuth angles. 

• The use of the three-dimensional composite is successfully in detecting rice paddy, 

aquaculture, and persistent surface water. This novel method can be utilized to 

monitor aquaculture that has contributed to the transformation of the overall 

agriculture and economics in the Bạc Liêu province. 

In terms of future research extension, the algorithm in this chapter can be customized or 

adapted for use with SAR data at other frequencies such as X band, S band, and L band for 

applications not only in Vietnam but also in other countries. A synergistic combination of 

satellite SAR datasets will provide a great potential to derive agriculture and aquaculture 

data product across a wide range of temporal and spatial scales. 

  



82 
 

Chapter 5 Synthesis 

5.1 Summary 

This thesis investigates the utility of satellite Sentinel-1A SAR data to map land cover in 

various cities and regions with different environmental and socioeconomic conditions in 

Vietnam. The importance of SAR data as an up-to-date additional data source of land cover 

information for local authorities is not widely appreciated and rarely addressed, but this 

thesis demonstrates important implications for supporting land use master plan and 

monitoring illegal land use changes (Chapter 2). This thesis demonstrates the novel use of 

satellite Sentinel-1 SAR data in the two-dimensional polarization domain to detect building 

structures that represent sustained human settlements (Chapter 3). This thesis illustrates the 

innovative use of satellite Sentinel-1 SAR data in the three-dimensional polarization and 

seasonal change composite to map persistent surface water and seasonal inundated land 

cover and land use (Chapter 4). Potential future directions for research in the disciplines of 

remote sensing are provided in this synthesis chapter. 

5.2 Research questions 

5.2.1 How can SAR imagery support in LCLU mapping for natural resource 

management in the Mekong Delta? 

Chapter 2 demonstrates the utility of SAR imagery for characterizing LCLU in Bạc Liêu, 

a coastal and rapidly developing province in the Mekong Delta. This chapter examines 

different LCLU classification algorithms and compares single date versus multi-temporal 

SAR image datasets in terms of classification accuracy. The results indicated the potential 

use of multi-temporal SAR imagery as an up-to-date complementary data source of LCLU 

information for local authorities, to support their natural resource management for land use 

planning and illegal land use changes monitoring. 

5.2.2 How can persistent building structures on land and on sea surfaces be detected 

using SAR data? 

Chapter 3 develops a novel method to identify and map persistent building structures on 

land and sea surface using time-series records of satellite Sentinel-1 SAR data. This chapter 

used the two-dimensional (2-D) space of VV-VH polarization to determine the VV-VH 
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domain for detecting building structures from the annual composites of SAR data. The 

persistence of building structures was defined based on the number of times that a pixel 

was identified as a building in time-series data. Moreover, the algorithm accounted for 

misclassified buildings due to water-tree interactions in radar signatures and due to 

topography effects in complex mountainous landforms. The method was tested in five 

cities across urban-suburban to rural-natural landscapes with different back- ground 

environments in wet and dry areas from inland to coastal regions. Using in-situ data and 

field observations, the methods were validated, and the results were found to be accurate. 

The algorithm could also detect small houses in rural settlements and in small islands such 

as in Hòn Sơn and Hòn Tre. Over sea surfaces, the algorithm effectively identified lines of 

power poles connecting islands to the mainland, guard shacks in marine blood clam farms 

in Kiên Giang, individual wind towers in the offshore wind farm in Bạc Liêu, and oilrigs 

in the Vũng Tàu oil fields. The new approach was developed to be robust against variations 

in SAR incidence and azimuth angles. This chapter demonstrates the potential use of 

satellite dual-polarization SAR to identify persistent building structures annually across 

rural–urban landscapes and on sea surfaces with different environmental conditions. 

5.2.3 How can persistent surface water and seasonal inundated land cover be 

identified with the use of the 3-D dual-polarization VV-VH-Season space? 

Chapter 4 proposes a novel and robust method to map LCLU that includes persistent 

surface water and seasonal inundated land cover. This chapter used the three-dimensional 

(3-D) space of VV-VH polarization of the SAR data and Season space to identify four 

domains (urban, forest, shrimp farm, and bare surface). The method was tested in Bạc Liêu 

province where aquaculture areas are expanding. Using in-situ data and field observations, 

the mapping results were validated, and the mapping results achieves high accuracy. The 

results demonstrates that the use of the 3-D dual-polarization VV-VH-Season space 

enabled a robust algorithm to be developed to overcome the issue of incidence and azimuth 

angle dependence of SAR data. The mapping method can be utilized for identifying 

persistent surface water, which can be used to monitor aquaculture areas in wetland 

regions. 
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5.3 Significance, limitations and future research extension 

This thesis demonstrates the potential use of multi-temporal Sentinel-1 SAR land cover 

mapping. The SAR images can be used as a reliable reference source to assess the accuracy 

of existing cadastral maps and to assist land use master plan. The revisit of 12 days of 

Sentinel-1 SAR satellite help track land use activities and monitor illegal land use changes. 

Long-term monitoring of land use will be crucial for decision makers, to ensure 

sustainability and food security in the Mekong Delta region. The study contributed to a 

better understanding of spatial-temporal changes in the coastal landscapes, especially in 

tropical countries where frequent cloud cover obstructs optical remote sensing. The 

application of SAR in mapping LCLU can be applied to other regions having similar 

socioeconomic conditions and background environments as in the Mekong Delta. 

Accurate mapping and monitoring of greenhouse gases is crucial to the successful 

implementation of the Paris Agreement within the United Nations Framework Convention 

on Climate Change (Gaughan et al., 2019). The estimation of fossil fuel CO2 (FFCO2) 

emission is currently based on night-time light (NTL) data as a proxy for human 

settlements (Sorichetta et al., 2020). This thesis produced the maps of physically defined 

building structures derived by the two-dimensional polarization domain, which can 

improve the shortfalls of the proxy indicator derived from NTL data as indicated in the 

case of Phan Thiết city versus the dragon fruit plantations in Bình Thuận. 

One of the limitations of this thesis is the availability of Sentinel-1 satellite data. In fact, 

Sentinel-1 mission originally composed of a constellation of two satellites, Sentinel-1A 

(launched on 3 April 2014) and Sentinel-1B (launched on 25 April 2016). However, due 

to an equipment failure on Sentinel-1B in December 2021, the Sentinel-1B satellite has 

been retired, leaving Sentinel-1A the only satellite of the constellation. European Space 

Agency planned to launch Sentinel-1C into orbit and operational in March 2024 to 

complement the data shortage.  

The second limitation is the accuracy assessment of mapping results. Most in-situ ground 

truth data in this thesis were collected in Bạc Liêu and Sóc Trăng in the Vietnamese 
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Mekong Delta and Phan Thiết in the central in Vietnam. Further in-situ ground truth data 

for accuracy assessment needs to be collected to replicate the approach to other applications 

or elsewhere. However, acquiring ground truth data can be time consuming and labor 

intensive.  

The third limitation is that the algorithm in this thesis determining LCLU classification 

thresholds was dedicated to the Sentinel-1 SAR C-band data. In the future, the approach 

can be adapted to LOTUSat-1 data (Vietnamese satellite) and COSMO-SkyMed data 

(Italian satellite) at other frequencies such as X-band. This will provide greater coverage 

and more data. Although we used a range of remote sensing information from SAR imagery 

to classify LCLU including magnitude, polarization, and seasonal change, there were still 

misclassified pixels, particularly, between rice paddy and aquaculture. Those 

misclassifications can be minimized through a combination of different SAR frequency, 

for example, C-band and X-band. The combinations of different SAR frequencies on 

different platforms may provide much more information for rice paddy and aquaculture 

and minimize the possibility for such misclassifications. 

The thesis demonstrates the utility of SAR for identifying and mapping permanent building 

structures that truly represent sustained human settlements. The novel algorithm effectively 

detected manmade structures on sea surfaces such as lines of power poles, guard shacks in 

marine blood clam farms, wind towers in the offshore wind farm, oilrigs in the oil fields. 

This new approach may be also helpful for those countries having large areas of sea surface 

such as Malaysia and Japan. This method can be applicable to the countries with borders 

on the South China Sea (Biển Đông) to detect whether persistent targets are under 

construction such as military installations (someone is building something on islands). 

The algorithms in this thesis describe the range of SAR applications for describing land 

use change from buildings, agriculture, and windfarms. These approaches can be used for 

mapping key socio-ecological challenges in the region. For example, detecting the 

environmental impacts of Indonesia’s new capital relocation. Indonesia has made 

ambitious plans to relocate its capital to Nusantara - the island of Borneo, expected to take 
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place by 2045. However, environmentalists concerned about the environmental impacts of 

building a sprawling 256,000-hectare city down in Borneo’s East Kalimantan province, 

which is home to orangutans, leopards and a wide range of other wildlife. The method in 

this thesis may support the mapping of the remaining natural forest and building structure 

construction. SARs cloud penetrating ability has great utility and is critical for mapping 

locations, such as tropical Borneo, due to the high frequency of cloud cover. 

5.4 Conclusion 

This thesis has highlighted the ability of radar backscatter signatures and the utility Google 

Earth Engine in mapping LCLU. It demonstrated that the results were validated with in-

situ and field truth data obtained in Vietnam. Several key findings arose from this research. 

Firstly, the novel utility of satellite Sentinel-1 SAR data in the two-dimensional 

polarization domain enables the method to be robust against confounding factors such as 

variations due to different incidence and azimuth angles, due to water-tree radar signal 

interactions (with synergistic Sentinel-2 MSI data), and due to different landforms on 

complex typography (with the geomorphon concept). 

A demonstration of the ability of radar backscatter signatures to detect building structures 

is founded on radar responses to true physical structures of buildings, rather than optical 

colors or spectral appearances of land cover types. As the method is based on radar 

signatures of physical building structures, it can successfully capture the characteristics of 

urban building patterns corresponding to different urban development classes and 

socioeconomic status, and in different rural-urban landscapes in both inland and coastal 

regions with wet and arid environmental conditions, or over sea surfaces under different 

wind and wave effects. 

The innovative use of satellite Sentinel-1 SAR data in the three-dimensional polarization 

and seasonal change composite is successfully in detecting rice paddy, aquaculture, and 

persistent surface water. This novel method can be utilized to monitor shrimp aquaculture 

and support the environmental footprint assessment of shrimp pond in the Bạc Liêu 

province.  
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Appendix A 

Data import into Google Earth Engine script 

In terms of developing a remote sensing application, the first step is to import satellite 

images into Earth Engine script. There are two ways to add satellite images into Earth 

Engine script: users may search the dataset in a searching box on the top or write codes 

into script. Figure A1 shows an example how to import Sentinel-1 SAR into Earth Engine 

script. Users may then filter image collections to meet application criteria such as a certain 

study area at a specific time. The following example codes (Figure A2) illustrate how to 

filter image collection according to area of interest, the acquisition time, orbit, and space 

resolution. 

 

Figure A1 Import remote sensing data into Earth Engine script: (a) search dataset 

in searching box, (b) writing codes into script. 

 

Figure A2 Filtering the image collection 
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Incidence angle normalization 

Since the scene of Sentinel-1 SAR image has a 250 km swath, the incidence angle has an 

effect the radar scattering results. The study area is on incidence angle bin from 35.5 to 

40.5 degree. To reduce the influence of incidence angle on radar scattering, it is necessary 

to normalize to a reference local incidence angle θref = 35.50 using linear relationship: 

σ0
nor = σ0(θ) - β.[θ - θref]       

Equation A1 Incidence angle normalization 

where σ0
nor is the normalized backscatter coefficient, σ0(θ) is the unnormalized backscatter 

coefficient at incidence angle θ, β is the slope parameter of the linear regression between 

σ0(θ) and θ, and θref is the reference incidence angle. 

 

Figure A3 The backscatter values of the (a) VH and (c) VV polarization of water 

surface influenced by incidence angle; and the backscatter values of the (b) VH and 

(d) VV polarization of water surface after incidence angle normalization. 

A total of 5,000-pixel values at each VH and VV polarization band and linear regression 

are used to find the slope parameter β. The results of incidence angle normalization of the 

VH and VV polarization are illustrated in Figure A3. It shows that after normalization the 

backscatters of water surface have stable values corresponding to the incidence angle. 
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Harmonic analysis 

The use of time series SAR data helps reduce the amount of speckle noise, but there are 

still significant variations in the time series of scattering values due to morphology or land 

cover changes. Therefore, interpolation of data gaps and smoothing to minimize noise are 

often used when processing time series data.  

The phenomenon of noise due to abnormal changes to each pixel is identified by applying 

harmonic analysis. To build the harmonic model (or Fast Fourier transformation) a 

frequency domain approach described in Shumway and Stoffer (2017) is applied. A cycle 

is defined as a complete period of a sine or cosine function over a unit time interval as 

xt = Acos(2πωt - ϕ) 

Equation A2 A simple trigonometric function 

For t = 0, ±1, ±2, etc…, where ω is a frequency index defined in cycles per unit time, A 

determining amplitude of the function, ϕ called the phase specifying the beginning point 

of the cosine function. 

To simplify data analysis, using a trigonometric identity the time series xt in the equation 

above can be written as: 

xt = β0 + β1t + β2 cos(2πωt) + β3 sin(2πωt) 

Equation A3 An extended trigonometric function 

where β0 is a constant, β1 is coefficient for the overall trend in t, β2 is a coefficient for the 

sine function at frequency ω of time t, β3 is a coefficient for the cosine function at the 

frequency ω of time t. A total of 33 SAR images at VH polarization was used to apply 

harmonic analysis. The values of time t were estimated by image’s acquisition time. The 

coefficients were derived by linear regression model in Google Earth Engine. The 

harmonic frequency was set to 2 (ω=2). Figure A4 shows the result of harmonic analysis 

on 33 SAR images. The result show that Fast Fourier transform (FFT) has significant effect 

on the backscatter curve of four land cover classes. The result can be used as input data for 

further land cover classification. 
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Figure A4 Harmonic analysis on four LCLU in Bạc Liêu province 
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Appendix B 

Figure B1 shows the plot of number of pixels versus threshold, and the plot of the discrete 

derivative of building pixels versus threshold for Bạc Liêu, Cà Mau, Sóc Trăng, Tân An, 

and Phan Thiết. The plots show that threshold = 9 (i.e., building count = 10 or more) is 

optimal as the derivative curves are flattened for larger threshold values. This means that 

the building detection results converge and become stable so that the inclusion of an 

excessively large threshold count is ineffective and unnecessary. It is noted that threshold 

= 9 is found valid for all cities in various environments from wet to dry regions and from 

in-land areas to coastal zones, across the landscape from natural and rural to urban 

conditions. The building count of at least 10 signifies that the building structure must 

persistently exist for a minimum period consisting of 9 two-week intervals (Sentinel-1 SAR 

revisit time is two weeks), which is equivalent to 18 weeks or 4.15 months. 

Figure B2 shows the plot of number of pixels versus threshold, and the plot of the discrete 

derivative of pixels versus threshold for buildings, paddy fields, aquaculture, and persistent 

surface water in Bạc Liêu city. 
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Figure B1. Discrete derivative of building pixel vs. threshold in (a) Bạc Liêu, (b) Cà 

Mau, (c) Sóc Trăng, (d) Tân An, and (e) Phan Thiết 
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Figure B2. Discrete derivative of pixels vs. threshold of (a) building, (b) rice paddy 

field, (c) aquaculture, and (d) persistent surface water in Bạc Liêu city. 
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Appendix C 

The following geotagged photos were taken at different locations from wetland to urban 

areas of Bạc Liêu province. The photographs were imported into ArcMap software and 

converted into points. These points were used to validate the mapping results. 

 

Figure C1. An intensive shrimp pond (photo taken on 15 Feb 2019 at Vinh My A 

villages, Hoa Binh district, Bạc Liêu province) 
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Figure C2. A patch of coastal forest (photo taken on 15 Feb 2019 at Vinh Hau A 

village, Hoa Binh district, Bạc Liêu province) 
 

 

Figure C3. A rice field (photo taken on 15 Feb 2019 at Hung Hoi Village, Vinh Loi 

district, Bạc Liêu province) 
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Figure C4. A built-up area (photo taken on 15 Feb 2019 at Hung Vuong Square, 

Nguyen Tat Thanh street, Bạc Liêu city, Bạc Liêu province). 

 

Figure C5. A shrimp-rice rotation crop land lot next to extensive shrimp pond 

(photo taken on 18 Feb 2019 near Cau 3000 bridge, Ninh Thanh Loi village, 

Hong Dan district, Bạc Liêu province). 


