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| Abstract

Climate change, a growing global population and soil degradation put significant
stress on food production and threaten food security, both on a global scale and
in individual agricultural communities. This necessitates studies that explore sus-
tainable agricultural intensification. Traditional farming systems have received
increased attention, as aspects of these systems (such as niche complementarity)
might provide sustainable solutions. This work centers around the three sisters,
a polyculture of maize (Zea mays), bean (Phaseolus vulgaris) and squash (Cu-
curbita spp.), and the milpa, a complex Maya polyculture centered around maize
and bean. Building on an existing functional-structural plant (FSP) model for
maize, a novel FSP model for common bean is developed (in the XL language, on
the GroIMP platform), encompassing twining behaviour and physical plant-plant
interactions. This allows us to simulate maize/bean polycultures, where common
bean climbs upwards around the maize stalk. As the model contains many input
parameters, of which some are difficult or costly to parameterise, a global sensi-
tivity analysis (GSA) is paramount for identifying (un)important parameters in
the model. This decreases dimensionality of the large model parameter space.
Efforts can then be concentrated on accurately estimating the most important
input parameters. GSA is therefore performed on monocultures of maize and
common bean (growing on poles). To this end, the popular Elementary Effects
GSA method is adapted to make it suitable for models with dimensional inputs,
inputs taking values on arbitrary intervals or discrete inputs. Our results show
the benefit of performing GSA on plant models: for both maize and bean, less
than 30% of input parameters where classified as important for most model out-
puts. In addition, performing GSA on plant models leads to new insights about
both the model and the plant developmental processes it describes. The hope is
that this work will inspire more plant modellers to routinely incorporate sensi-
tivity analysis in their research. Subsequently, the model for maize and bean is
used to assess architectural facilitation in light capture in maize/bean polycul-
tures. Simulation results agree with experimental observations in the literature
of overyielding in polycultures including maize and climbing bean. This indicates
that aboveground processes (also) play an important role in the phenomenon
of overperforming. In addition, it confirms that such agricultural systems may
play a role in sustainable agricultural intensification. The maize/bean model pre-
sented in this work is one of the first examples of an aboveground FSP model of
a polyculture with complex physical plant-plant interaction. Our results suggest
that FSP modelling could be a valuable tool to investigate such agricultural sys-
tems. In this work, we have shown that it is possible to model maize/bean crop
mixtures, making an aboveground model of the three sisters only a small step
away.
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1 Introduction

Climate change is arguably the most pressing threat facing humanity today.
Based on the latest IPCC predictions, the world has already crossed the point of
no return (irreversible change), and is heading for 2-4 degrees of global warming,
an increase in extreme weather events, and significant changes in soil moisture
content [1]. As part of the direct effect on people’s lives and livability of many
cities and rural regions around the world, climate change will have a devastating
impact on food production and food security – even in the best-case scenario.
Zhao et al. [2] report that “without effective adaptation and genetic improve-
ment, each degree-Celsius increase in global mean temperature would, on average,
reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean
by 3.1%”. In the worst case, maize production might decline by as much as 24%
by the end of this century, with changes becoming noticeable as early as 2030 [3].
At the same time, the global population is increasing to around 10 billion in 2050,
which means that general food production will need to increase by an estimated
56% to keep the world fed [4]. However, due to intensive agriculture, overuse
of soils and mismanagement, around 25% of agricultural soils are now deemed
to be significantly degraded [4], which has lead to a vicious cycle of decreased
water and nutrient storage capacity, resulting in less soil organic carbon, leading
to reduced yields, which in turn leads to less replenishment of soil carbon by crop
roots and residues, and thus further losses in soil organic matter and yield. To
conclude, it is thus of paramount importance to: a) quantify the effect of climate
change on food production and food security; and b) investigate ways to increase
food production in a sustainable way to overcome the challenge of feeding the
population in a rapidly changing world.

This PhD project is part of a bigger effort to investigate and address the effects
of global change on agricultural systems, called “Palaeobenchmarking Resilient
Agricultural Systems” (PalaeoRAS). PalaeoRAS investigates past, present and
projected agricultural systems in Latin America, the Fertile Crescent, and East
Asia, and explores how plants have responded to climatic stress against the back-
drop of environmental, biological, economic and social variables. It is funded
through the University of Nottingham Future Food Beacon of Excellence, an
open research cluster that explores ways to feed a growing population sustain-
ably within a changing environment. The Beacon centers around four research
themes: i) future proofing agricultural systems; ii) food for health; iii) food for
sustainable livelihoods; and iv) smart manufacturing for food. This thesis covers
themes i) and iii).
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1. Introduction

In recent times, there has been increased interest in sustainable agricultural
systems [5]. These are often systems that share one or more characteristics with
conservation agriculture [5–7]: no to minimal tillage, few inputs (fertilizer, irriga-
tion, pesticides), increased biodiversity to control weeds and pests, and increased
ground cover to reduce soil health degradation and soil evaporation. Interest-
ingly, this has brought many ancient or traditional farming systems back in the
spotlight, as precisely these systems are typically characterised as low-input, both
in terms of labour and management, and in input of fertilizer, irrigation and pes-
ticides [6, 7]. Among these are the three sisters [8], a polyculture of maize (Zea
mays), bean (Phaseolus vulgaris) and squash (Cucurbita spp.), and the milpa [9],
a complex ancient Maya polyculture centered around maize (and typically bean),
that is still used by millions of smallholder farmers in Central-America. While
these systems might not be directly upscaled to large-scale mechanized agricul-
ture, there is significant interest in what could be learned from those systems to
make modern agriculture more sustainable while increasing production. These
systems are the main sources of inspiration and motivation for the work in this
thesis.

One of the tools that is used for investigating such agricultural systems is math-
ematical modelling: the process of describing a (complex) real world problem in
(simpler) mathematical terms. Homogeneous crop fields are typically modelled
using so-called ‘big-leaf’ crop models, in which a field is basically considered to act
as one big leaf, with parameters describing e.g. average light absorption, biomass
accumulation and yield increase. For more complex spatial layouts, such as poly-
cultures like the three sisters or the milpa, functional-structural plant models
(FSP models or FSPMs) are a superior alternative. FSP models are unique in
that they describe both 3D plant architectural development (i.e. production of
new organs at a certain rate with certain geometrical properties like orientation)
and physiological processes like assimilate production and plant growth [10]. Be-
cause this type of model explicitly describes the 3D architecture, it is better suited
to simulating heterogeneous polycultures, where plants might interact physically
(e.g. a bean plant twining around a maize stalk).

An important part of the modelling routine is sensitivity analysis: the study
of how variability in the model output can be attributed to the different sources of
variability in the model inputs. This is especially relevant for plant and crop mod-
els, which typically have many input parameters, of which only a small portion
contributes significantly to model output variability. Moreover, some of the input
parameters might be difficult or costly to measure, while they might not even be
important. Knowledge about what parameters do and do not have a significant
influence on the outputs of interest (e.g. yield), can help simplify the model,
allowing resources to be spent on optimising the most important parameters.

However, modelling crop mixtures is still relatively undeveloped [10,11]. There
have been few attempts to describe development of spatially complex polycultures
in an FSP model. In particular, no plant models of the milpa and hardly any
models of the three sisters currently exist. Moreover, no aboveground model of
common bean has been developed (see [12] for an FSP model of the root system).
Regarding sensitivity analysis, the method used in this work, Elementary Effects,
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was only described for dimensionless models where all input parameters took real
values between 0 and 1. However, many models in the biological and environ-
mental sciences are dimensional (meaning the input parameters have units), and
parameters typically take values on arbitrary intervals and might be integer- or
Boolean-valued. Non-dimensionalisation of such models is typically difficult due
to their size and complexity. As such, the method needs to be adapted if it is
to be applied to the model presented in this work. In this work, the following
research questions are addressed:

• What changes need to be made to the global sensitivity analysis method
of choice to make it suitable for our model, which is dimensional and has
inputs of integer and Boolean type, and arbitrary input ranges?

• What input parameters for bean, maize and the environment are the model
outputs most sensitive to?

• How can climbing/twining behaviour be described within the limitations of
the modelling language and platform?

• How do important input parameters affect light capture in a maize/bean
polyculture, and what are the biological mechanisms explaining these ef-
fects?

Therefore, the aim is to achieve the following key objectives:

• Identify what input parameters have the biggest impact on model outputs
(through global sensitivity analysis);

• Develop a functional-structural plant (FSP) model for climbing bean;
• Incorporate the model for bean into an existing plant model that simulates
maize;

• Investigate how key parameters influence light capture in a maize/bean
polyculture.

This research is valuable for three reasons. Firstly, millions of smallholder
farmers worldwide depend on polycultures like the three sisters or the milpa
[13], but are struggling to cope with the negative effects of unprecedented cli-
mate change. Modelling such agricultural systems will help us understand these
systems in a future without historical analogue, thereby providing subsistence
farming communities with a tool to improve their livelihoods. Secondly, creating
models of polycultures enables one to investigate many more scenarios and envi-
ronments with less effort compared to traditional field experiments. Simulating
polycultures in a new environment, in particular in environments that are typi-
cally dominated by large-scale monocultures (and subsequent land degradation),
can elucidate new pathways to sustainable intensification. Thirdly, performing
sensitivity analysis on plant models leads to new insights about both the model
and the plant developmental processes it describes. It can improve modelling ef-
ficiency, reduce parameterisation workload, and help us understand which plant
traits really matter for plant performance, which can aid plant trait optimisation.

All research has limitations. Here we briefly mention the two most important
ones for this work; more detail can be found in Chapter 7. Firstly, the plant model
used here does not incorporate a number of mechanisms that are important in
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1. Introduction

simulating the effect of climate change on an agricultural system. The model
does not contain a water balance, so rain, soil moisture and water stress are not
modelled. Even if a water balance was included, the lack of detail in the root
module currently prevents effective simulation of water uptake and water stress
by the plant. As such, it is not possible to assess the observed changes in the rain
season in Central-America (shorter, later, but more intense, and more intense
mid-summer droughts [14]) as a consequence of climate change. Moreover, whilst
the benefits of an increase in average temperature can be simulated (increased
thermal time accumulation, which results in faster growth), heat stress experi-
enced by the plant in extreme temperatures (e.g. reduced growth or even (partial)
plant death) is currently not included. Secondly, extreme weather events, such
as tropical storms or hurricanes, and their adverse effects on the plants (damage
or plant death) are not included. This might not be particularly important in
temperate climates such as Northwest Europe, but it can be a significant fac-
tor in Central-America. Initially, the plan was to collect plant and climate data
on-site at several farms in Mexico and Belize. This data would then be used to
parameterise the crops and the environment in the model. Unfortunately, the
untimely occurrence of a series of tropical storms and hurricanes, and the global
COVID pandemic meant that most of the plants that were monitored were swept
from the field, weather stations broke down or were displaced by a hurricane, and
farmers and observers were not able to go into the field to collect data nearly
as often. As a result, there was insufficient data to parameterise the crops and
the environment; instead, values from the literature are used in this work, which
introduces uncertainty into the model. This is in particular the case for common
bean, as the aboveground parts of this crop had not been modelled before using
a functional-structural plant model.

The thesis is structured as follows. In Chapter 2 an extensive background is
provided into five topics: polycultures (Sec. 2.1), mathematical modelling of
plants & crops (Sec. 2.2), the XL language and the modelling platform GroIMP
(Sec. 2.4), the model used in this work (Sec. 2.6), and sensitivity analysis (Sec.
2.5), thereby highlighting the interdisciplinary nature of this work. The sub-
sequent two chapters focus on global sensitivity analysis. Chapter 3 provides
the theoretical framework for the Elementary Effects global sensitivity analysis
method, and presents an adapted version of this method, which makes it suitable
for dimensional models with inputs of arbitrary type and range. This chapter
is based on a paper by the author and colleagues [15], which is currently under
review. In Chapter 4 this method is then applied to our model simulating a mono-
culture of maize, showing that only a small portion of input parameters have a
significant effect on the model outputs. This chapter is based on a paper by the
author and colleagues [16], which is currently in preparation. We then turn our
attention to climbing common bean, presenting a new model for climbing bean
in the context of the XL language and GroIMP modelling platform in Chapter 5.
A global sensitivity analysis of a monoculture of common bean growing on poles
is also included. Chapter 6 marries the previous chapters, investigating architec-
tural facilitation in light capture in a maize/bean polyculture, where bean climbs
upwards around the maize stalk. Finally, Chapter 7 provides general conclusions,
and addresses the limitations of the work.

-8-



2 Background

The work presented in this thesis is of an interdisciplinary nature, encompassing
mathematical modelling, sensitivity analysis, plant science and agronomy. This
background chapter firstly sets the scene by describing several crop polyculture
systems and discussing their potential advantages over monocultures (Sec. 2.1;
also see Ch. 5-6). Then, the plant modelling presented in this work is put in
historical perspective, by presenting an overview of how the field of plant and
crop modelling developed, from the first steps in the 50’s to the state-of-the-art
(Sec. 2.2). Section 2.4 introduces the reader to the concept of L-systems, the
used programming language XL and the modelling platform GroIMP (used in
Ch. 4-6). Subsequently, the plant model is described in Section 2.6 (also see Ch.
4 and 6). Finally, Section 2.5 provides the reader with a concise background in
sensitivity analysis, which will be of use in Chapter 3, 4 and 6.

2.1 Polycultures

Most of the 1.5 billion hectares of cultivated land in the world is planted with
around 70 different crop species (12 species of grain, 23 vegetable crop species,
and 35 fruit and nut crop species) [7]. In addition, genetic variety, e.g. the num-
ber of varieties, is extremely low for many of the worlds major crops [7]. The
vast majority of cultivated land, approximately 80%, is grown in monoculture,
i.e. fields containing a single plant species and variety [17]. This form of agri-
culture leads to a host of issues, including increased soil erosion, susceptibility
to pathogens, and high dependency on inputs such as fertilizer, pesticides and
irrigation (see e.g. [6, 7] and the references contained therein).

However, there is a myriad of farming systems that are based around crop
mixtures or intercrops [7], in particular in the developing world, that exhibit
many potential benefits over monocultures [6]. In this section we present some
common intercropping forms, and discuss some of the reported benefits of these
systems over their corresponding monocultures.

2.1.1 Simple intercropping forms

Commonly used forms of intercropping (typically found in large-scale agriculture)
include row intercrops, where two or more species or cultivars are alternated in
single rows (e.g. “ababab”), row-strip intercrops, where multiple rows of one
species or cultivar are bordered by a single row of a second species or cultivar
(e.g. “baaab”), strip intercrops, where species or cultivars are alternated in mul-
tiple rows (e.g. “aabbbaa”), and the mixed intercrop, where different species
or cultivars are randomly or homogeneously mixed (Fig. 2.1-2.2). If one crop is

9



2. Background

planned to emerge later than the other(s), this is called relay intercropping. In the
literature, most attention is directed to strip or mixed intercrops of two species,
typically major staple crops (wheat, barley, maize, millet, sorghum, etc.) and/or
common cover crops (e.g. pea, alfalfa, soybean). See for example [10,11] and the
references contained therein for mathematical modelling work, and [18,19] for an
ecological perspective.

Mixed Row Row-strip Strip

Figure 2.1: Common forms of intercropping. Different colours represent different
plant species or cultivars.

Figure 2.2: (A) maize soybean relay intercrop (Photo: M. A. Raza, location:
Sichuan province, China); (B) maize soybean row intercrop (Photo: M. A. Raza,
location: Punjab province, Pakistan). Figure taken from [20].

2.1.2 Three sisters

The three sisters, or mesoamerican triple, is a more complex, but much used and
ancient intercropping system (Fig. 2.3). It consists of the three main agricultural
crops of various indigenous peoples of the Americas: maize, squash and climbing
bean [8]. The maize and beans are often planted together in mounds with a hole
in the center; squash is typically planted between these mounds. Bean uses the
maize stalk to climb upwards. There is typically no or little tillage in these fields

-10-



Polycultures

(and if there is, it is by way of hoeing instead of plowing [21]), and no or little
irrigation and fertilizer use.

The three sisters, and maize in particular, plays a bigger role in the Americas
than providing subsistence, both in the past and in the present [13, 22]. As
Cornelius states: “corn, bean, and squash appear in ceremonies and oral texts,
integrating natural cycles with [...] cultural traditions” [23].

For more information about its origins, history, socio-cultural aspects, agro-
nomic characteristics, and agricultural productivity, the interested reader is re-
ferred to [21, 24–29] (which focus on North-America) and [22, 30–32] (which also
consider Central-America and Mexico). In addition, Postma and Lynch [12] inves-
tigated root architectural complementarity in the three sisters using mathematical
modelling, and found the polyculture provides benefits that were not observed in
the respective simulated monocultures (see Sec. 2.1.4).

Figure 2.3: Three sisters: maize, bean and squash. Beans wrap around the maize
stalk, creating a complex intercrop layout. Figure adapted from [33].

The three sisters is in some sense a simpler version of the polyculture system
called the milpa, which provided the initial inspiration for this work via the
overarching PalaeoRAS project (recall Ch. 1).

2.1.3 Milpa

The Maya Yucatex indigenous way of farming is called the milpa system, milpa
roughly meaning “cultivated (maize) field” in Nahuatl, the language of the ancient
Mexica [34]. It is an ancient agroforestry system that has been in use for millennia
[9]. There is no ‘one’ Milpa system; the precise form depends on the soil, local
climate, available varieties, local traditions and knowledge, and on the needs and
wishes of the individual farmer. However, almost all milpa systems have a number
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of characteristics in common: i) crop rotation; ii) complex intercropping (dozens
of different plant species is not uncommon) centered around maize; iii) low inputs
(fertilizer, irrigation, etc.) and iv) little soil disturbance (minimal tillage, plant
residues are not removed).

Traditional milpa The following is adapted from [9]. The traditional milpa
rotation cycle is approximately 20 years long, in which the plot goes through
four main phases (Fig. 2.4). At the start of the cycle, a piece of rain forest -
typically not more than 2 ha - is cut down and the remains are burned to create
an open field. In the first two to three years, an intercrop typically consisting
of the three sisters and a large variety of herbs, tubers and other plants (which
we would often call weeds) is grown. The latter are specifically chosen to deter
pests from the main crops, but also serve other purposes of a cover crop (water
retention, preventing soil erosion). In the second phase, a variety of fruit trees
(e.g. plantain or banana, which bear fruit within a year, and slower yielding
trees such as avocado, mango and citrus) are planted amidst the already existing
intercrop. As these fruit trees grow, their canopies become larger and more dense,
blocking light to the lower maize canopy. This leads the plot into the third phase,
in which the initial intercrop can no longer grow due to a lack of light. The plot
slowly turns into a forest. It is at this point that the milpa farmer starts planting
hardwood trees, which take decades to mature. In the fourth and final phase
of the milpa cycle, the forest evolves into a hardwood forest similar to what the
cycle started with, and the cycle can begin anew. The farmer can use the wood
for personal use or sell it for a profit.

Researchers working with the El Pilar Forest Garden Network found “approx-
imately 370 different species of plants cultivated by the forest gardeners” in 19
forest gardens [9]. As such, Maya forest gardens are among the most biodiverse
domestic ecosystems in the world [9].

Traditional milpa is a low-input farming system [35]. Irrigation is typically
lacking, and chemical fertiliser is not in use. Instead, farmers might make use of
household refuse (compost), organic material (dead weeds), ashes from kitchen
fires, and manure. The precise choice depends very much on the soil, weather
and farmer’s or communities’ preferences. Furthermore, the ground is typically
disturbed as little as possible. Weed control and tillage is only needed at the
beginning of the cycle, until squash leaves cover the soil surface. Plant residues
are usually left on the surface. Crops like squash and beans are harvested when
they are ripe, while maize is harvested over a longer period of time, leaving the
stalks and some cobs to dry, as the farmer and his family require it throughout
several months [35,36].

-12-



P
oly

cu
ltu

res

Figure 2.4: Schematic of the traditional Milpa cycle (taken from [33]).
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Modern milpa The following is based on field work by PhD candidate Karla
Hernández Aguilar, who interviewed 22 small-scale farmers in 8 different com-
munities in Mexico (Yucatan) and Belize (Corozal and Cayo district) in 2020.
She identified 3 different types of farming currently practiced in both Mexico and
Belize: traditional, semi-traditional and mechanized. The first entails that land
preparation, cultivation and harvest are all done manually and that the system
is fully dependent on rain. Semi-traditional farming only differs in that tractors
are used for land preparation. In mechanized farming, specialized equipment is
used for land preparation and irrigation; cultivation and harvest are still done by
hand. In all cases, farming has intensified, and land is typically not put through
the reforestation stages described above (see also [37]).

The size of milpa plots varies from 1 to 2 acres in Belize (approx. 1 hectare)
and 1 to 2 hectares in Mexico. As a rule, the terrain is not flat. In Mexico maize
cultivation is mostly associated with beans, squash and chillies. In Belize, milpa
is typically a combination of maize and vegetables like carrots, onions, potatoes,
cabbage or bell peppers. Maya farmers use a variety of seed types, based on the
length of the growth cycle. Gallito (Nal t’eel in Maya) has the shortest growth
cycle of 1.5 month, followed by short cycle maize (Xmejen nal, 2.5 months),
medium cycle maize (Xchuum ya’/Ch’oob, 3-3.5 months) and finally long cycle
maize (Xnuuk nal, 4-6 months). According to the farmers, the shorter the growth
cycle, the less the crop seems to resist drought. The precise choice of type and
variety depends on multiple factors, including weather, soil type, intended use
and farmer’s preference.

Traditionally, a calendar year would see two growth cycles, winter and sum-
mer, with the summer crop being the most important one. Planting of the summer
crop would start at the first signs of rain between April and May. However, all
farmers in the survey sensed changes in the timing of the rain season; rain can
either stay out until June, or there might be a couple of weeks of rain followed by
an intermittent dry period and a second period of rain starting around October.
Both can be disastrous for the crops, especially for those less resilient to drought.
As a consequence, most farmers have started dropping the winter cultivation and
shifting towards medium- and long-cycle maize for the summer crop. Hardly any
of the farmers in the survey planted short-cycle varieties any more. It has also
been reported that farmers decrease agrobiodiversity, for example by eliminating
bean from the polyculture [31], or switch to more profitable crops such as water-
melon. For further information on the impact of climate change, economical and
social policies, or demographical changes, the reader is referred to [31,37–39].

2.1.4 Reported benefits

Overyielding The main benefit of polycultures from an agricultural perspec-
tive is the potential of overyielding: producing more biomass or a higher yield
per unit land area compared to the equivalent monocultures. There are numer-
ous examples of this (see e.g. [6, 18] and the references therein for an overview);
here we name a few related to maize and beans. Amador and Gliesman [40]
showed that maize yields could be increased by as much as 50% beyond monocul-
ture yields when planted with beans and squash using traditional techniques and
planting on land that had only been managed using local traditional practices.
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In a large multi-year experiment, Tilman et al. [41] showed that higher-diversity
mixtures typically outperformed even the highest producing monocultures, with
some 16-species plots attaining 2.7 times greater biomass than the corresponding
monocultures. In maize/bean strip intercrop systems in South-Africa, it was ob-
served that the total land equivalent ratios for yield and biomass (the ratio of the
area under monocropping to the area under intercropping needed to give equal
amounts of yield/biomass at the same management level) ranged between 1.06
to 1.58 and 1.38 to 1.86 respectively [42]. In addition, the strip intercropping of
maize and beans had both radiation and water use efficiencies as high as maize
monocropping, and higher than bean monocropping [42]. Mt.Pleasant and Burt
[28] likewise found that the three sisters grown as a polyculture were more pro-
ductive than monocultures of individual crops. In field trials in New York state,
maize yields were little affected by competition from bean and squash, but bean
and squash yielded much less in the polyculture compared to monocultures [28].

On a related note, Mt.Pleasant [21] notes the potential benefit of traditional
farming practices (e.g. minimal tillage), even in monocultures. She found that
“Iroquois maize farmers in the seventeenth and eighteenth centuries produced
three to five times more grain per acre than wheat farmers in Europe [mainly by
not plowing].”

Niche complementarity Overyielding is in many cases attributed to niche
complementarity, resulting from interspecific differences in resource requirements
and in spatial and temporal resource and habitat use, or from positive interactions
[41]. As Mt Pleasant [8] puts it: “Each crop [in a polyculture] serves an impor-
tant function; their integration into a single cropping system takes advantage of
their differing and complementary growth habits, plant architectures, agronomic
characteristics, and food values.” See also Figure 2.5. In the three sisters, niche
complementarity is especially apparent. Bean fixes atmospheric nitrogen, making
it directly available to the maize root systems through mycorrhizal fungi connec-
tions. In fact, it has been shown that in a polyculture with maize, beans contain
more nitrogen fixing nodules and potentially fix more nitrogen compared to in
a bean monoculture (see [6] and the references therein). Net gains of soil nitro-
gen have even been observed when maize and bean are associated, despite their
removal at harvest [6]. The maize architectural skeleton, consisting of a sturdy
upright stem, provides the structural support for bean to climb upwards, thereby
capturing more light. Bean, by twining around the maize stem, provides pro-
tection against high winds. There can also be complementarity in crop mixture
root systems; maize, bean and squash have contrasting root architectures, which
may allow more effective exploration of the soil and increase nutrient uptake [12].
In addition, exchange of nutrients can take place between root systems in poly-
cultures that might not be possible in monocultures: besides the aforementioned
nitrogen fixation by bean, it is known that bean produces amino-acids that maize
requires but cannot produce itself, and vice versa; squash produces vitamins that
are not produced by maize and bean [22].

Soil health Increased ground cover caused by planting e.g. squash, alfalfa or
clover between the main crop (e.g. maize or wheat) results in decreased evapo-
ration from the soil and increased water retention capacity by the soil (e.g. less
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(which could include increasing WUE, e.g. in irrigated systems)
rely on utilizing at least one crop with a low water demand: if all
crops have high water demands, then the opportunities for
increasing effective water use through intercropping might be
limited, especially in irrigated relay intercropping systemswhen the
ground is sparsely occupied.

In intercropping systems with restricted N supply, legumes can
increase agricultural productivity (Seran & Brintha, 2010; Altieri
et al., 2012). Legumes are pivotal in many intercropping systems
(Table S1), and of the top 10 most frequently used intercrop
species listed by Hauggaard-Nielsen & Jensen (2005), seven are

legumes. Increased N availability in legume intercrops occurs
because competition for soil N from legumes is weaker than from
other plants, or the nonlegumes obtain additional N from that
released by legumes into the soil (Li et al., 2013; White et al.,
2013b) or via mycorrhizal fungi (Van der Heijden & Horton,
2009). Although there may be a general shortage of information
on the circumstances under which legume N is transferred to
nonlegume plants, particularly that N component which is
derived from air (Iannetta et al., 2013), legumes can contribute up
to 15% of the N in an intercropped cereal (Xiao et al., 2004; Li
et al., 2009).

Fig. 2 Facilitation, resource sharing and niche complementarity enable polyculture systems to yield more than their corresponding monocultures. Certain
facilitative interactions can be associatedwith particular soil types (either acid soils or alkaline and calcareous soils), andwhenpresent can be either strong (solid
lines) or weak (dashed lines). Facilitation is achieved by combining plants that increase the phytoavailability of water, phosphorus (P) or micronutrients (iron
(Fe), zinc (Zn), copper (Cu)) or the nitrogen (N) available to the system through N2 fixation either directly or indirectly (Zhang et al., 2010; Shen et al., 2013;
White et al., 2013a,b; Li et al., 2014), through the attraction of beneficial organisms, such as natural enemies and pollinators, the deterrence of pests and
pathogens, and the suppression of weeds. Facilitative interactions between plant roots can also afford protection against mineral toxicities in saline, sodic or
metalliferous soils (Inal &Gunes, 2008;White&Greenwood, 2013). Resource sharing can be affected through commonmycorrhizal fungal networks (Van der
Heijden &Horton, 2009;Walder et al., 2012; Babikova et al., 2013) or recycling of nutrients through leaf senescence and root turnover (Zhang et al., 2010; Li
et al., 2014). Niche complementarity, which allowsmaximal exploitation of light and soil resources, is observed between specieswith contrasting short and tall
shoot architectures, or shallow and deep root architectures (Hauggaard-Nielsen et al., 2001; Zhang et al., 2010; Postma & Lynch, 2012). It is also apparent
whenplants acquiremineral elements in different chemical forms. The net benefits are crop protection, pollination, greater photosynthetic carbon assimilation,
greater acquisition of N, P, micronutrient andwater, and sharing of these resources temporally to increase yield. These benefits lead to enhanced resource-use
efficiencies for P (PUE), N (NUE), other mineral nutrients (MUE), water (WUE), light (LUE) and assimilates (RUE).
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Figure 2.5: Facilitation, resource sharing and niche complementarity enable poly-
culture systems to yield more than their corresponding monocultures. Figure
taken from [19].

water runoff). Moreover, oxidation of soil organic matter and soil erosion can
strongly decrease in such systems, preserving soil fertility [21,43]. This also holds
for traditional cropping systems (such as the three sisters) characterised by a lack
of tillage [21, 43]. If the added crops are not (fully) removed at harvest, it can
even lead to an increase in soil organic matter. Wang et al. [44] found that even if
all crops are removed, “[maize-based] intercropping [...] maintained the majority
of soil fertility properties for at least three to four years, especially at suitable P
application rates.”

Weeds & pests Besides reducing soil evaporation, increased ground cover de-
creases the amount of light that reaches the soil surface, and thereby inhibits
weed growth. This is especially apparent in the three sisters, where the the
thick, broad, horizontal squash leaves block sunlight [6, 12]. In addition, it has
been reported that “leachates in rains washing the leaves [of e.g. squash] con-
tain allelopathic compounds that can inhibit weeds” (see [6] and the references
contained therein).

A more biodiverse crop mixture can also reduce the presence of pests. In the
Milpa, certain plant species are specifically included to attract pest predators or
to deter pests [9]. Regarding the former, Gliessman [6] notes beneficial insects
are attracted by “such factors as the availability of more attractive microclimatic
conditions and the presence of more diverse pollen and nectar sources.” Risch
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[45] observed less beetles in maize/bean/squash polycultures compared to their
respective monocultures, as a result of different movement patterns by the beetles
with the inclusion of non-host species; the host species are more difficult to find
for the pests.

Reduced inputs It has been reported that growing the three sisters required
less time and labour than planting the crops individually at the beginning of the
20th century [29], but with the increase in mechanisation since that time, this no
longer seems to hold in the present day [38]. Nevertheless, since there is generally
less water runoff and soil evaporation in intercrops such as the three sisters, this
means there is less need for irrigation. The same holds for pesticides, as pests are
typically less abundant with increased biodiversity, and for fertilizer in intercrops
with nitrogen fixing legumes.

Nutritional completeness & food security Finally, besides the variety of
agricultural benefits mentioned so far, crop mixtures can also provide nutritional
diversity and caloric completeness, thereby increasing food security. This is in
particular relevant in less developed countries, where smallholder farmers still
(partly) rely on their crops for self-subsistence [37,38]. As an example, the milpa
(and to a lesser extent the three sisters) can be a nutritionally complete farming
system [22], producing all nutrients and vitamins (except for B12) required by
humans [38]. Conversely, Novotny et al. found that “monocultures of maize
lack vitamins A, B9, B12, and C, and [monocultures of] common bean lacked
vitamins A, B12, and C.” Mt. Pleasant [8] showed that the three sisters yielded
more energy and more protein than any of the crop monocultures or mixtures of
monocultures planted to the same area, feeding “more than 13 people per hectare
per year” with energy and protein.

2.1.5 Drawbacks

Although total productivity can be higher in polycultures compared to their re-
spective monocultures (Sec. 2.1.4), it should be stressed that growing in polycul-
tures can at the same time negatively impact the productivity of some individual
species. In the case of maize/bean or three sisters systems, it has been reported
that maize yields are not affected by the presence of bean (and squash), but
bean (and squash) yields are greatly reduced when grown with maize compared
to in monoculture [6, 28, 46, 47]. As an example, Francis et al. [46] found that
“maize yield generally was unaffected by the undersown beans, but that the beans
produced only 25–50% of their monocrop yield potential at comparable bean den-
sities” [47]. Hence, even though total yields may be higher, production of certain
species may be lower in a polyculture, which could be an important consideration
when the goal is not to maximise total yield/biomass/protein, but e.g. balanced
productivity among the intercropped species.

Furthermore, polycultures are (at least currently) difficult so scale up to the in-
tensity of modern-day large-scale monocultures. Because of the increased spatial
and temporal complexity, with different species requiring harvesting at different
times, one cannot harvest the whole field all at once. As such, specialised equip-
ment is required that can harvest specific plants whilst leaving others untouched.
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For many species this equipment does not yet exist, and if it does, it is (currently)
typically more expensive than large-scale monoculture machinery.

2.2 A brief history of plant & crop modelling

1910 - 1970 According to Keating & Thorburn [48], crop models are currently
evolving towards the 5th generation, depicted by the timeline in Figure 2.6. The
first generation (approx. 1910-1970) consisted of classical plant growth and soil
analysis models. These were typically descriptive, static models of an individual
process (e.g. biomass accumulation, soil water evaporation, photosynthesis); the
principal purpose was thus research, while practical applications were sparse in
this time period. One of the first attempts at quantifying plant growth was made
in the late 1910’s (in separate works) by Blackman [49], Gregory [50], West et
al. [51] and Fisher [52], who described biomass accumulation in terms of net
assimilation rate and leaf area development, i.e., RGR = NAR × LAR, where
RGR is the relative growth rate (fraction of transformed plant weight between two
harvests by the time interval between those harvests), NAR is the net assimilation
rate (increase in weight per unit of leaf area and time) and LAR is leaf area ratio
(leaf area/total plant weight) [48]. Likewise, the origins of soil models can be
traced back to the second half of the 19th century and the beginning of the
20th; see for example the overview by Russell [53]. Soil models followed a similar
evolutionary path as crop models. A later (1948) but well-known example is
Penman’s work on soil water evaporation [54].

Over time, the focus shifted from direct calculation of growth parameters
from observed data to fitting curves to data and subsequently deriving parameter
values from these curves (functional growth analysis). Keating & Thorburn note
that it is clear that no “universal equation of plant growth” emerged, but it
did lay the foundations for crop modelling efforts to follow. One of the prime
examples of such a principal parameter is Leaf Area Index. We know now that
LAI is one of the key parameters describing plant growth, but it took until 1947
before it was first introduced by Watson [55] as an alternative for LAR, which did
not translate well from single plants to canopies. A second foundation quickly
followed. In 1953, Monsi and Saeki [56] used the concept of LAI to describe the
attenuation of light with depth in crop canopies (using an expressing reminiscent
of the Bouguer-Lambert law [57]): I = I0e

−kL, where I0 is the irradiance above
the canopy, I is irradiance beneath a canopy of LAI = L and k is an extinction
coefficient determined by canopy characteristics.
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1950 - 1970 The second generation (50’s - 60’s) is characterised by the emer-
gence of dynamic crop models. The first steps in dynamic crop modelling are
ascribed to a Dutch physicist based at Wageningen University, named C. T. de
Wit [48]. Keating & Thorburn mention a quote by De Wit, which nicely depicts
the state of the field in the 50’s. De Wit: “In agronomy, nobody could tell me
how much a crop could maximally yield if you remove all constraints, and I found
that a reasonable question. It cannot have infinite growth - it has to have a limit,
and I thought we needed to know the limit. But this question was not even asked,
let alone answered, and I was especially fascinated with it.”

De Wit’s PhD thesis set out a physical theory of fertilizer placement [59], fol-
lowed by work on transpiration and crop yield (1958), competition in intercrops
(1960) and ionic balance and crop growth (1963). Analogously to De Wit, Van
Bavel - also trained at Wageningen - was investigating the soil water balance from
a mathematical modelling perspective [60]. Other efforts to simulate soil water
balance followed, notably from Australia by Slatyer, which eventually resulted in
the FORTRAN-based simulation model WATBAL (1969); see [48] and the refer-
ences contained therein. In the related field of (economic) agricultural systems
modelling, work was done by Heady et al. “to optimize decisions at a farm scale
and evaluate the effects of governmental policies on the economic benefits of rural
development [61,62]” [63].

De Wit published his first computer simulation programs for calculating the
light distribution and photosynthesis in canopies in 1965 [64]. However, it would
take a few more years before the full computing power of the day would be
employed [48]. Nevertheless, De Wit and Van Bavel’s early computational work
showed the potential of crop modelling and inspired many others, ushering in
the third generation of crop models, characterised by a proliferation in coupled
crop-soil models.

In 1968, Lindenmayer [65, 66] introduced parallel rewriting systems, that are
now known as L-systems or Lindenmayer systems. In short, an L-system consists
of an alphabet, an initial state, and a set of production rules (or replacement
rules) that act on the letters of the alphabet (see Section 2.4.2 for an example).
Originally developed to study cellular interactions (such as bacterial growth or
interactions between yeast cells), this formalism would later become one of the
main ingredients of modern structural plant models (e.g. models that explicitly
simulate the plant architecture).

As soon as sufficient computational power was available, from the late 60’s
onward, the first individual-based plant models were developed [67]. In contrast
to existing crop models, which typically modelled a field as a homogeneous entity
(the so-called big leaf approach), individual based models allowed investigation
of things such as crop mixtures, local plant-plant and plant-environment inter-
actions, plant plasticity, and the effect of variation in a population. Grimm and
Railsback [67] note that among these early models, the JABOWA forest model
[68], aimed to model succession in mixed-species forests, was highly influential,
leading to “a full pedigree of related models”. These models did not yet take the
full three-dimensional architecture into account, and adaptive traits were typi-
cally absent; competition simply resulted in reduced growth, not in a change in
behavioural response [67]. Moreover, mechanisms of interaction were typically
highly simplified, modelling competitive interaction simply as a function of geo-
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metric distance or spatial overlap [67].

1970 - 1990 In the 70’s and 80’s crop and soil models came together to form
the first comprehensive ‘big leaf’ crop models as we know them today. These
efforts were driven or instigated by a number of specific events [63]. Arguably
the most important event is the invention of the internet and the development
of personal computers, which provided researchers with sufficient computational
power to run models at their own working stations. In many cases, some sacrifices
had to be made in terms of the level of mechanistic detail of the earlier models in
favour of computational tractability. Models thus shifted from purely mechanistic
models with a high level of detail to a symbiosis of mechanistic and data-driven
approaches. The goal was to capture the essential mechanisms for crop growth
in detail, while keeping the model as simple as possible. A prime example is the
modelling of canopy photosynthesis. Where the models by De Wit contained a
lot of leaf-scale detail, the models that eventually found widespread usage went
back to the simpler description by Monsi and Saeki [56] (see above), multiplying
it by a efficiency measure ϵ – empirically measured – to obtain a measure of crop
growth rate CGR = I0(1− e−kL)ϵ.

Around this period, efforts to combine crop growth simulation models with
soil water balances and/or nitrogen dynamics models were emerging, and interest
was growing rapidly in simulating a wide variety of abiotic stresses including
other nutrients than nitrogen, water, soil salinity, soil strength and temperature
[48]. The CERES models had one of the most significant impacts in this period
[48, 63]. Spurred on by the purchase of US wheat reserves by the Soviet Union
in the early 70’s, which led to shortages on the world market and steep price
increases, the US government was anxious to learn more about the dynamics
of world crop production. The USA henceforth initiated research programs to
create crop models integrated with newly-available remote sensing information
to predict production of major crops grown anywhere in the world. CERES-
Wheat and CERES-Maize were some of the longer-term results of this effort
and released in the mid-80’s [69–71]. Keating & Thorburn state that “A critical
achievement of the CERES effort was to link up comprehensive models of plant
growth and development with a similar level of functional detail and explanatory
power in the soil water and nitrogen balance.” Eventually, the CERES-models
became part of DSSAT [58] (see below), and still play a role in many of today’s
simulation tools.

At the same time, Farming Systems Resarch (FSR) emerged as an effort to
better connect station-based technical research with ‘on-farm’ adaptive research
[72]; it was more and more thought that agricultural research was losing its rele-
vance to the needs of ‘real world’ farmers, either because researchers misperceived
farmers’ needs or because farmers did not perceive the relevance of research re-
sults [48]. We do not go into more detail here, but refer the reader to Keating
& Thorburn [48]. Let it suffice to say that FSR generated awareness that the
constraints farmers operate under go well beyond the technical issues in crop and
soil that had thus far been the focus of research. In reality they also include
human systems issues, such as governmental policies and other socio-economic
factors, management and strategies. FSR consequently helped shape the next
generation of crop models.
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1990 - 2000 The fourth generation of (‘big leaf’) crop models (90’s) saw the
evolution from crop models to comprehensive cropping systems models. While
late third generation models included comprehensive descriptions of crop growth
given a water and nutrient supply, each crop still had its own model, with its own
modelling choices and assumptions. A general crop simulation model based on
crop-independent water and nutrient routines did not exist yet. An attempt was
made with the release of DSSAT [58], which made several models accessible via a
single user interface (including the CERES model), but in the beginning DSSAT
was not much more than that: a way to access a collection of models. However,
the need for a robust systems model based on crop-independent soil and water
modules grew together with an increasing interest in also incorporating afore-
mentioned human systems issues. A prime example is given by CMKEN [73], the
adapted (and in some ways improved) version of CERES-Maize, developed to ex-
plore strategies to increase productivity in low-input maize based farming systems
(e.g. in Kenya). A long list of functionality was added to CMKEN in comparison
to CERES-Maize, including crop death due to extreme stress, enhanced man-
agement dynamics and conditional management practices (e.g. sowing date as a
function of weather conditions), but ultimately the focus was on soil dynamics
and the impact of crops and management on soil health (see [48] and the ref-
erences contained therein). Part of the new functionality was simply added as
an extra layer to the CERES-Maize structure, which eventually led to a highly
complex and intractable code. It thus became evident that software developers
had to go back to the drawing board, and rethink the desired structure of crop
models. Robust, modular architecture based on crop-independent base modules
(for e.g. soil dynamics) was required to deal with the increase in scope and func-
tionality of crop growth simulation models. As McCown et al. [74] put it: “Crops
come and go, each finding the soil in a particular state and leaving it in an altered
state.”

APSIM - Agricultural Production Systems sIMulator - was one of the efforts
to answer the need for a modular platform [75]. Again based on the CERES
models, it was developed in the early 90’s as a soil-centered, modular and flexible
tool, with key abilities including simulation of intercrops, weeds, crop-livestock
interactions, complex crop rotations and agroforestry at the field- or farm-scale.
Nowadays, it is one of the most-used (‘big leaf’) cropping systems simulators,
with tens of thousands of users. A host of other crop models - notably DSSAT,
CropSyst [76] and STICS [77] - have since then moved towards modularity as
well, and have introduced cropping systems functionality.

As paradigms like L-systems (see Sec. 2.4.2) further developed and gener-
alised, they found their way into plant modelling, and as adequate computers
became available to simulate the full spatial distribution of plant organs, the first
functional-structural (FSP) models appeared in the 90’s [78]. This subclass of
individual-based models not only modelled the underlying physiological processes,
but also explicitly took the architecture into account. L-systems were a helpful
tool for the latter, as it enabled the translation of complex spatial structures to
relatively simple alphabets (the characters being plant organs, for example) and
replacement rules (e.g. replacing an apex (the growing tip of a stem) with an
internode (the stem segment between two nodes from which leaves emerge) and a
new apex). Compared to previous individual-based models, FSP models offered
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more capabilities to model plant-environment interactions, as most of these in-
teractions (e.g. light capture) depend for the most part on the 3D distribution
and orientation of plant organs [78]. The same held for simulating competition,
since the plant ability for resource capture mainly depends on the spatial dis-
tribution of the source organs. Finally, FSP models allowed investigation of a
wide variety of plant growth experiments which would be impossible to set in the
real world due to cost or time restraints. On the other hand, however, increasing
model complexity inherently led to the challenge of an increased computer simu-
lation complexity, restricting e.g. detailed simulation of light capture by means of
ray tracing. In addition, including more physiological and structural detail also
hindered model parameterisation and calibration.

2000 - present Keating & Thorburn [48] argue that real innovation by the
(‘big leaf’) crop modelling community has somewhat stagnated since the turn of
the century. Instead, the scope of cropping systems models has been enlarged and
many new applications have been found, spurred on by the sustainable agriculture
movement (00’s - present), the molecular genetics revolution (90’s - present),
the increased attention for climate change mitigation and recent advances in
several data-related technologies, including big data, internet of things and remote
sensing using autonomous vehicles (see e.g. the multitude of references in [79]).

In FSP modelling, however, an argument could be made that there has been
serious progress. Since the turn of the century numerous new model platforms
have been released, including GroIMP [80] (2003), OpenAlea [81] (2007), Open-
SimRoot [82] (made open source in 2017), CPlantBox [83] (2019) and most re-
cently Virtual Plant Lab (https://virtualplantlab.com, currently under de-
velopment; using the Julia programming language [84]). Various hereto underex-
posed topics have received more attention, such as indoor (vertical) farms [85], cut
rose production [86], and pruning practices in cocoa and mango [87,88]. Further-
more, significant advances have been made in the use of LiDAR (a remote sensing
method that uses light in the form of a pulsed laser to collect measurements),
point clouds and in incorporating machine learning techniques to reconstruct ob-
served plant architectures in FSP models [89]. Another recent avenue of research
is the study of digital twins, exemplified by the work by Streit et al. [90], who
built a virtual copy of a tomato greenhouse with real-time feedback loops to and
from the real-life greenhouse.

Finally, a relatively recent initiative worth mentioning is the Agricultural
Model Intercomparison Project, or AgMIP [91]. The AgMIP community aims to
“significantly improve agricultural models and scientific and technological capa-
bilities for assessing the sustainability of agricultural systems, including impacts
of climate variability and change and other driving forces on agriculture, food
security, and poverty at local to global scales.” The modus operandi is the com-
parison of models and quantification of intra- and inter-model uncertainty.

Challenges While there are certainly examples of modelling intercrops in the
literature, review papers by Gaudio et al. [11] and Evers et al [10] both con-
clude that in 2019, modelling crop mixtures (as opposed to monocrops) was still
in its infancy, “despite the potential shown for mixed-species systems as well as
cultivar mixtures” [10]. Existing works are typically of one of two categories:
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either they use a (‘big leaf’) crop model adapted from sole crop models, or they
employ an individual-based (in particular FSP) model. Crop models are mainly
used to address issues related to both crop mixtures management and the in-
tegration of crop mixtures into larger scales such as the rotation [11]. One is
typically restricted to relatively simple layouts, such as strip intercrops or homo-
geneous mixtures, and cannot take plant-plant interaction into account in great
detail. Individual-based models are mainly used to identify plant traits involved
in intercrop performance and to quantify the relative contribution of the different
ecological processes (niche complementarity, facilitation, competition, plasticity)
to crop mixture functioning [11]. Gaudio et al. [11] conclude that “work is now
necessary [...] to identify the most relevant parameters for crop mixtures, includ-
ing those linked to trait plasticity”. Furthermore, opportunities lie in bridging
the gap between ‘big leaf’ crop models and individual-based models: FSP models
can, for example, be used to derive relations between different species in a vari-
ous spatial layouts (e.g. the effect on crop development rate), which can then be
incorporated into crop models to extend their applicability beyond monocultures
[10].

2.3 Modelling climbing plants

In the three sisters and in milpa a climbing variety of common bean is typically
used, where the bean climbs upwards around the maize stalk (Sec. 2.1). This
leads to a complex architectural layout in both time and space. This section
provides an overview of existing models of climbing plants (some twining and
some not), and discusses the difficulties in translating these models to the GroIMP
platform. This then motivates the development of our own climbing bean model
in Chapter 5.

The most notable detailed biomechanical description of twining or climbing
is found in the 2020 paper by Moulton et al. [92], who presented a complete
multi-scale description for plant tropisms, from hormone distributions at the cell
level, to global stem deformation. With their model, they were able to simulate a
wide range of plant tropisms, including climbing and twining behaviour. See also
[93–95] and the references therein for a broader background. However, describing
bean twining and physical plant-plant interactions in an FSP model (or more
particularly on the GroIMP platform) in such an amount of biomechanical detail
is typically prohibited by two bottlenecks. First, the programming languages used
to implement FSP models (in our case Java or the XL language) typically have
limited suitability for complex numerical computations (e.g. solving (partial)
differential equations). Java has no standard built-in capacity to manipulate
matrices or solve differential equations; one can load external libraries for this, but
even so other languages (most notably Julia [84]) are much more computationally
efficient. In 2013, GroIMP was extended with capabilities to solve linear ordinary
differential equations (and by extension certain partial differential equations that
can be transformed to ODEs) [96], but one typically cannot solve more complex
ODEs or PDEs. The second bottleneck is computational expense. FSP models
of plant stands typically operate at the organ scale and describe each plant in
the stand and each organ of that plant individually. As such, processes like light
capture, photosynthesis, resource allocation and growth need to be calculated
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for potentially thousands to tens of thousands or organs. Adding a detailed
biomechanical computation of the bean twining behaviour might very well lead
to unreasonable simulation times (if using the GroIMP platform).

On the other hand, efforts have been made to model climbing plants with a
focus on visual realism (e.g. for game design), without worrying about biophysical
realism. Among these are FSP models for common ivy [97] and grape [98], an
L-system implementation for climbing plants [99], and a procedural approach for
modelling climbing plants with tendrils [100] (see [101–104] and the references
therein for more information). However, most of these do not include twining
behaviour. The ones that do (e.g. [100]), are not easily transferable to our
model because they are based on different model paradigms: (i) the stem is
often modelled as a flexible string of particles, where (biomechanical) rules on
the particles determine the shape of the string (and thus the stem) [99,101,102];
(ii) for collision detection, the 3D space is often divided into many small cubes
(voxels), and collisions are resolved at the voxels that are intersected by two or
more objects [100, 104]; (iii) in addition, bounding volume hierarchies have been
used [99,100], where geometric objects are encased in a simpler bounding volume
(e.g. a sphere or box), and collision detection is performed on those bounding
volumes first; only those objects whose bounding volume intersects with another
volume are then further investigated in detail.

To conclude, considering the difficulties in translating existing descriptions
(either with a large amount of biomechanical realism, or with a focus on visual
realism) to our model, we argue it is best to develop our own climbing bean
model in this work, in line with the capabilities of GroIMP, and with a focus on
simplicity (compared to e.g. the model in [92]).
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2.4 The XL language

The model used in this thesis is written in the XL language [105]. As some of
the subsequent chapters and appendices (in particular Ch. 5-6 and App. D &
E) make use of detailed and specific features of this language, and because the
learning curve for the XL language can be rather steep due to fragmented or in-
complete documentation (especially for readers who might not have programming
experience), a concise but comprehensive introduction is given in this section.

The XL language, or eXtended L-system language, is a programming language
which makes relational graph grammars accessible in a simple way. As the name
suggests, XL extends the notion of L-systems. Furthermore, it is an extension
of Java, which enables the user to make use of all the existing Java machinery
and libraries. The XL language is a synthesis of three programming paradigms
(Fig. 2.12). Java supports both imperative programming and object-oriented
programming. With the extension of L-systems, XL also incorporates the rule-
based paradigm. In the following paragraphs, we briefly discuss the benefits
and limitations of each paradigm, thereby elucidating the natural formation of
a synthesis language like XL in the context of FSP modelling. Subsequently,
the features that make XL different from Java and L-systems are given, with a
focus on new functionality and syntax. For a more detailed description of the XL
language and its uses, the reader is referred to [80,105,106].

2.4.1 Java

In the imperative paradigm (also dubbed control flow paradigm or von-Neumann
paradigm), a computer is a machine for the manipulation of values of variables.
A computer program is like a recipe, describing what calculations to perform (the
commands) and in what order (the control flow). To keep the program compact
loops can be used, as is visualized in this simple example:

x = 0;
while (x < 10)

x = x + 1;

While imperative programming is a powerful tool for calculating effects of certain
(biological) processes (e.g. nutrient uptake), one drawback (at least in a language
like Java) is that simultaneous parallel assignment is not supported. Suppose we
would like to solve a coupled discrete-time system

xi+1 = f(xi, yi),

yi+1 = g(xi, yi), (2.1)

which could for example describe a discrete predator-prey system. One could be
tempted to solve this using

x = x0; y = y0;
for (i=1:N)

x = f(x,y);
y = g(x,y);

However, this feeds the new value for x (i.e. xi+1) in the right-hand side for y,
where the old value is needed. One can overcome this issue by initializing addi-
tional dummy variables (e.g. xold, yold), but this can quickly become unworkable
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in a typical complex biological process.

In the object-oriented paradigm, a computer can be used to create and store
virtual objects. A computer program consists of classes describing the character-
istics of these virtual objects (i.e. objects are instances of classes) and of methods
(functions) that can be applied to the objects. In addition, relationships can be
created between objects, e.g. objects can inherit characteristics from other ob-
jects. A textbook example:

class Vehicle {
protected Int seats; // Vehicle attribute
public void show() { // Vehicle method
System.out.println("This vehicle has" + seats + "seats.");
}

}

class Car extends Vehicle {
seats = 4; // Car attribute

...

One of the principal advantages of object-oriented programming (OOP) over
purely imperative programming, is its modularity. In simple terms, OOP al-
lows for a greater level of ‘plug and play’ and maintainability because one can
recycle (super)classes and methods. Instead of having to define the full set of
characteristics of a Car, Bike and Motorcycle, they can all make use of the in-
herited attributes of Vehicle (number of seats, colour, etc.). OOP is in particular
useful in plant modelling, because plants have a natural object hierarchy: leafs,
flowers, internodes and roots are clearly distinct organs, but they all share some
attributes (such as dimensions, biomass or age; see Figure 2.7). In other words,
they can all be seen as subclasses of the general organ superclass. The same holds
for e.g. main roots and higher order roots, which are subclasses of the general
root superclass.

Plant organ

Leaf Shoot Root Flower

Internode

Petiole

Main root

Lateral root

Broad leaf

Needle

Root hair

Figure 2.7: Natural plant hierarchy. Adapted from [106].

2.4.2 L-systems & turtle interpretation

With the combination of the imperative and object-oriented paradigms, the func-
tional side of plant growth can be modelled. However, for the purpose of also
describing the structural part, i.e. the evolution of plant architecture, a third
paradigm is needed. From a rule-based viewpoint, a computer is a machine that
transforms a structure (e.g. a string or graph), according to rules laid down in a
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program. The computer goes through a process of matching and application, i.e.
it looks for the substructures it can apply a rule to, and subsequently applies the
rules on these substructures. Lindenmayer systems [65,66] (L-systems for short)
are the prevailing rule-based formalism in structural plant modelling [105]. Only
a very brief overview is presented here, for more details we refer to [105] and the
references contained therein, in particular [107–109].

L-systems were originally developed to model filamentous algae, but have
over time found applications in plant modelling, space-filling curves, computer
graphics and architecture. Paraphrasing Kniemeijer [105], L-systems operate on
a string of symbols (a word) by replacing substrings with other strings according
to a set of productions (rules). Crucially, rules are applied in parallel, i.e., every
symbol is rewritten at each step of the rewriting process. The motivation for
this parallelism lies in biology: cell division and other growth processes in nature
happen in exactly this way.

Mathematically speaking, denoting an alphabet (i.e. a set of characters) by
Σ, the set of all words over Σ by Σ∗, an L-system is a triplet (Σ, α, R), where
α ∈ Σ is the start word or axiom, and R ⊆ Σ × Σ∗ is a set of rules of the form
a 7→ χ for some a ∈ Σ and χ ∈ Σ∗. The rewrite step of a word consists of the
replacement of all left-hand sides of the rules in R by their respective right-hand
sides. It is convention to leave the substrings for which there is no rule as they
are. As an example, consider the simple L-system given by

Σ = {A, B, C},
α = AC,

R = {A 7→ B, B 7→ AB}.

Repeated application of the rules yields a chain of strings:

AC → BC → ABC → BABC → ABBABC → BABABBABC → . . . .

The visual interpretation of an abstract L-system, which is indispensable in mod-
elling biological structures in space (e.g. plant architecture), is typically provided
by so-called turtle graphics [110]. It roughly works as follows - for details see [105].
The turtle acts as a drawing device, linking the abstract derivation chain to a ge-
ometrical representation of the transforming structure (Fig. 2.8). It maintains a
turtle state containing its current position and heading (among other things). The
turtle interpretation adds a command set to the system which assigns a 3D space
interpretation to characters in the L-system alphabet (symbols for which there
is no command are simply ignored by the turtle). In this way, the turtle forms
a geometrical interpretation to each string in the derivation chain.1 Let us give
some examples using common commands in the XL-syntax as listed in Table 2.1.
Firstly, Figure 2.9 depicts rotations with respect to the turtle’s local coordinate
system given by the left-, up- and head-axis (or x-, y- and z-axis, respectively).
Note that these rotations only change the value of the heading in the current tur-
tle state; they do not in themselves rotate an object, but rather cause the next
object to be drawn under a different heading. Secondly, Figure 2.10 depicts the

1Lin [111] gives an accessible alternative interpretation of turtle graphics. Paraphrased: A
turtle is sitting in 3D space, facing a certain direction. The tail of the turtle is a bit dirty. Thus,
as it moves according to the L-system string, it leaves a trail, creating a geometric version of
the current string.
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α → σ1 → σ2 → σ3 → . . .

↓ ↓ ↓
S1 S2 S3 . . .

Figure 2.8: Turtle graphics provide a geometrical interpretation of abstract L-
system derivation chains. The Si represent 3D space interpretations of the ab-
stract strings σi. Figure and caption adapted from [106].

(a) Default orientation. (b) Rotation by −30◦ about up axis.

(c) Rotation by −30◦ about left axis. (d) Rotation by +30◦ about head axis.

Figure 2.9: Rotations around the turtle’s local axes. Red: up axis with associated
rotation command RU(·), green: left axis with associated rotation command RL(·)
, yellow: head axis with associated rotation command RH(·). Graphic reproduced
from [106].
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Figure 2.10: Turtle interpretation of XL-code F0 RU(90)F0 RU(90)L(0.5)M0 RU

(-90) F0.

turtle interpretation of the following string in the XL alphabet: F0 RU(90)F0

RU(90)L(0.5)M0 RU(-90)F0. When encountering F0, the turtle draws a cylinder
with the dimensions stored in its current turtle state (1 in Fig. 2.10). RU(90)

rotates the turtle by 90 degrees over the local up-axis (y-axis). L(0.5) changes
the length stored in the turtle state to the given value, and M0 does the same as
F0, but without constructing an object. (In terms of Lin’s metaphor, the turtle
lifts its dirty tail when moving according to M0.) Finally, we present a ‘botanical’
example called Schoute’s tree architecture model [112] (Eqs. (2.2)-(2.5) and Fig.
2.11). In Schoute’s model, “growth is from meristems which produce [...] trunks
forking at regular but distant intervals by equal dichotomy [i.e. in two branches
at equal angles], but otherwise producing no vegetative lateral branches” [113].
The corresponding XL-code is given by

module Shoot(float len) extends F(len);

module Bud(float strength) extends Sphere(0.2)
{{ setShader(RED); setTransform(0, 0, 0.2); }};

protected void init ()
[

Axiom ==> Bud(5);
]

public void run ()
[

Bud(x) ==> Shoot(x) [ RU(35) Bud(0.7*x) ] [ RU(-35) Bud(0.7*x)
];

]

We discuss the XL-syntax in detail in the corresponding section. For now, it
suffices to note that Bud is a user-defined object which extends the primitive (i.e.
built-in) object Sphere; likewise, Shoot extends the primitive cylinder F. The
symbols [ and ] in the right-hand side of the rule in run denote stack operations
and are used for creating branches. The first one pushes the current turtle state
onto a stack and creates a branch. The commands within brackets are then
executed. The second one pops the top from this stack and restores the current
turtle state to the popped value (i.e. the value before the turtle encountered the
[-symbol.

Note that the buds are not on top of each other because the command
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setTransform in the definition of Bud moves them a small amount in the turtle’s
heading. The XL-description of the structure evolves as follows (abbreviating Bud
to B, Shoot to S, RU(35) and RU(-35) to RU+ and RU-, respectively, and using
x=0.5). It is clear that a visual interpretation (Fig. 2.11) is indispensable, as the
abstract strings grow exponentially in length.

B(x) → S(x)[RU+ B(0.7*x)] [RU- B(0.7*x)] (2.2)

→ S(x)[RU+ S(0.7x)[RU+ B(0.7ˆ2*x)] [RU- B(0.7ˆ2*x)]]

[RU- S(0.7x)[RU+ B(0.7ˆ2*x)] [RU- B(0.7ˆ2*x)]] (2.3)

→ S(x)[RU+ S(0.7x)[RU+ S(0.7ˆ2*x)[RU+ B(0.7ˆ3*x)]

[RU- B(0.7ˆ3*x)]] [RU- S(0.7ˆ2*x)[RU+ B(0.7ˆ3*x)]

[RU- B(0.7ˆ3*x)]]] [RU- S(0.7x)[RU+ S(0.7ˆ2*x)

[RU+ B(0.7ˆ3*x)] [RU- B(0.7ˆ3*x)]] [RU- S(0.7ˆ2*x)

[RU+ B(0.7ˆ3*x)] [RU- B(0.7ˆ3*x)]]] (2.4)

→ S(x)[RU+ S(0.7x)[RU+ S(0.7ˆ2*x)[RU+ S(0.7ˆ3*x)

[RU+ B(0.7ˆ4*x)] [RU- B(0.7ˆ4*x)]] [RU- S(0.7ˆ3*x)

[RU+ B(0.7ˆ4*x)] [RU- B(0.7ˆ4*x)]]] [RU- S(0.7ˆ2*x)

[RU+ S(0.7ˆ3*x)[RU+ B(0.7ˆ4*x)] [RU- B(0.7ˆ4*x)]]

[RU- S(0.7ˆ3*x)[RU+ B(0.7ˆ4*x)] [RU- B(0.7ˆ4*x)]]]]

[RU- S(0.7x)[RU+ S(0.7ˆ2*x)[RU+ S(0.7ˆ3*x)

[RU+ B(0.7ˆ4*x)] [RU- B(0.7ˆ4*x)]] [RU- S(0.7ˆ3*x)

[RU+ B(0.7ˆ4*x)] [RU- B(0.7ˆ4*x)]]] [RU- S(0.7ˆ2*x)

[RU+ S(0.7ˆ3*x)[RU+ B(0.7ˆ4*x)] [RU- B(0.7ˆ4*x)]]

[RU- S(0.7ˆ3*x)[RU+ B(0.7ˆ4*x)] [RU- B(0.7ˆ4*x)]]]] (2.5)

2.4.3 XL

Despite their widespread adoption and application, traditional L-systems are
somewhat limited in their use for FSP modelling for a number of reasons [105].
Firstly, L-systems can only operate on strings. Hence, any (3D) structure has
to be represented by a string of symbols in order to make them interpretable,
which can be a limiting factor when dealing with complex (e.g. non-tree-like)
topologies. In fact, in biology, the structures one wishes to model are often more
complex, taking the shape of a tree or even a general graph, where the nodes
can be arbitrary objects (e.g. an organ or organism). Secondly, the necessary
turtle interpretation adds an extra layer between the rewriting formalism in the
background and the visual 3D structures. This can become computationally in-
efficient and opaque, especially when there are complex interactions based on
the 3D geometry, e.g. for light capture by plants or plant-plant interaction. A
more modern and more direct representation of 3D structures and their parame-
ter values is desirable [105]. Thirdly, the number of relations one can model with
a L-system is limited to only successor and branch relations. Particularly for
multi-scaled models it is desirable to have more relation types at ones disposal.
Finally, L-systems provide little underpinning for computations on the created
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(a) Schoute tree after 1 step. (b) Schoute tree after 2 steps.

(c) Schoute tree after 3 steps. (d) Schoute tree after 4 steps.

Figure 2.11: Turtle interpretation of Schoute’s tree architecture model [112].

structure (e.g. light capture, determination of mass of a stem/leaf/root, etc.). A
broader process-based computational foundation is thus key.

Hence, in order meet the requirements above, L-systems need to be extended
to work on general topologies with arbitrary node and edge types and require the
addition of an improved process-based computational toolbox. XL is the result
of this. Recall that XL is an extension of L-systems and Java, hence a synthesis
of imperative, object-oriented and rule-based programming (Fig. 2.12). Instead
of a string of symbols, XL considers graphs in which the nodes are objects in the
object-oriented programming sense and edges can be of an arbitrary type. Note
that these objects can carry information besides their parameters, such as their
location in 3D space. Branches are now explicit in the graph structure instead of
as brackets in a string; the turtle interpretation (Table 2.1) translates naturally
to the graph structure, as they become nodes of the graph; replacement rules
in XL (relational graph grammars) are applied to subgraphs. Java provides the
process-based computational functionality.

The XL language has some additional functionality with respect to L-systems
and Java. In what follows, the most important new features are discussed. It
must be stressed that this is but a brief and incomplete overview of the language.
For the details, we refer to Kniemeijer [105].
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imperative object oriented rule-based

Java L-systems

XL

Figure 2.12: The XL language. Figure adapted from [106].

Turtle Command Description

F(x, d, c) Draw cylinder of length x, diameter d and color c.
(d and c are optional.)

F0 Draw cylinder using parameter values of current
turtle state.

FAdd(x)/FMul(x) Draw cylinder using length of current turtle state,
incremented/multiplied by x.

M(x), M0, MAdd(x), MMul(
x)

Same as above, but only movement, no objects are
drawn.

RL(a), RU(a), RH(a) Rotation over a degrees w.r.t. the local left-, up-
or head-axis (or x-, y- or z-axis), respectively.

AdjustLU Rotate around local head-axis such that local up-
axis points in global z-direction as far as possible.

RV(e), RV0, RVAdd(e),
RVMul(e)

Gravitropism, strength given by e and/or current
turtle state.

RG Maximal gravitropism such that local head-axis
points downwards.

L(x), L0, LAdd(x), LMul(
x)

Modify value of length in turtle state: set to x

/default value, add x to current value or multiply
current value by x, respectively.

RD(v, e) Directional tropism towards direction v with
strength e.

RO(v, e) Directional tropism towards projection of current
moving direction on plane orthogonal to v with
strength e.

RP(p, e) Positional tropism towards position p with strength
e.

RN(n, e) Positional tropism towards location of node n with
strength e.

Translate(x, y, z) Translation by (x, y, z) in reference to the global
coordinate system.
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Rotate(x, y, z) Rotation by (x, y, z) degrees; equivalent to RL(

x) RU(y) RH(z).

Scale(x, y, z), Scale(

s)

Scaling by (x, y, z) and uniform scaling by s,
respectively.

Table 2.1: Most common turtle commands in XL.

Scene graph Recall that XL operates on graphs, where the nodes are OOP
objects or turtle commands and the edges may be of various different types.
While it may seem tempting to look mainly at the 3D rendering of the structure,
the most important processes are in fact happening in the background, where the
graph structure is changing as a direct consequence of the programmed graph-
replacement rules. The 3D visualisation is merely a translation of the abstract
graph to an object that is more easily interpretable. Hence, studying both the
underlying graph (called a scene graph) and the visual interpretation thereof is
key. In particular when writing queries it can be beneficial to consult the scene
graph, as can be seen in the paragraph “Queries” below. As an example of the
scene graph versus the visual object, Figure 2.13 revisits the Shoute tree and
shows both the visualisation and the underlying graph.

Operators XL provides three types of graph operators: ==> denotes an L-
system graph replacement rule, of which an example can be seen in Figure 2.14.
Secondly, ==>> denotes a single push-out (SPO) rule, depicted in Figure 2.15.
The essential difference between the two is that the L-system rule conserves in-
coming and outgoing edges, while the SPO rule deletes these edges. The third
type of graph operator is the execution rule denoted by ::>. It is used to exe-
cute imperative statements or update attribute values of objects, without making
changes to the graph structure. As an example, i:Internode ::> {i[length]
+= 1;} increments the length of the object Internode by 1.

Edge notation As mentioned above, arbitrary edge types may be used in a
XL model. An overview is given in Table 2.2. The most common ones are the
successor edge (typically denoted by a whitespace between two objects) and the
branch edge (typically a consequence of the stack operation [), but users can also
define their own edge types. Edges can be one- or two-sided directed.

Queries Often a rule needs to be applied to all instances of an object that
adhere to certain conditions, e.g. all leafs that are further up in the plant structure
than a certain internode. Queries provide a way to find all these instances. A
query consists of a graph pattern (i.e. a combination of nodes and edges) possibly
combined with the operations described in Table 2.3 and an additional boolean
condition. Some examples:

1. Simple abstract example. The query A +> B yields all pairs A and B that
are connected by a branching edge from A to B.

2. Schoute’s tree revisited. Consider Schoute’s tree and the corresponding
scene graph depicted in Figure 2.13. The query with boolean condition
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(a) (b)

Figure 2.13: Visualisation (left) versus scene graph (right) of Schoute’s tree [112]
after two steps. In the scene graph, dashed arrows denote branches, solid arrows
are successor edges.

==> B A

C

A B

C

ABA AB

B

D

C C

D

B

A

Figure 2.14: Simple L-system graph replacement rule (top) and the effect on a
graph (bottom). Adapted from [106].
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Edge notation Description

Whitespace or > Connect subsequent node with previous (if any) by
a successor edge

< Connect node with previous by a reverse successor
edge

<-> Connect node with previous by successor edges in
both directions

--- Connect node with previous by a successor edge
if there does not yet exist such an edge in either
direction

+>, <+, <+>, -+- As before, but branch instead of successor edges

[ and ] Stack operations; [ pushes turtle state on stack and
connects subsequent node with branch edge, ] pops
top of stack and restores turtle state to popped
state

Table 2.2: Edge types in XL.

==>> B A

C

A B

C

ABA AB

B

D

C C

D

B

A

Figure 2.15: Simple SPO graph replacement rule (top) and the effect on a graph
(bottom). Adapted from [106].
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Notation Description

-->, <--, <-->, -- Arbitrary edge type in forward, backward, both or
any direction(s), respectively

()+ 1-n repetitions of the graph pattern in brackets

()* 0-n repetitions of the graph pattern in brackets

()? 0-1 repetitions of the graph pattern in brackets

(){a} a repetitions of the graph pattern in brackets

(){a,b} a-b repetitions of the graph pattern in brackets

(){a,} a-n repetitions of the graph pattern in brackets

:() Minimal element, i.e. search stops once a match
has been found. Example: A (pattern):(B),
where A and B are nodes

ˆ Go to graph root

Table 2.3: Syntax for writing queries in XL.

(separated by a comma) given by b:Bud (<--)+ Shoot, (b.ID==24) yields
all nodes of type Shoot that are connected to the Bud with ID 24 (i.e. the
one in the bottom left in the scene graph) via a directed path of arbitrary
length (denoted by ()+) consisting of arbitrary edges (denoted by -->).
Hence, the query will return Shoot 20 and 10. Likewise, b:Bud (<--)+ :(

Shoot), (b.ID==24) looks for the same objects, but only returns the first
match, i.e. Shoot 20.

3. More complex abstract example. Repetition patterns may be nested. The
query (adapted from [106]) given by (+> a:A (>)*, (a.length > 0))*
matches all paths which traverse a branch edge and a possibly empty se-
quence of successor edges alternatingly. In addition, target nodes of branch
edges have to be of type A and fulfil the condition a.length > 0.

General RGG rule A complete RGG rule can have 5 parts [106]:

(* context/query *), left-hand side, (condition)
==> right-hand side {imperative XL code}

The sequence of the different parts is not fixed - see e.g. the third example above
with boolean conditions nested in queries - and hence RGG rules are not unique.
An example:

(* i:Internode *), i, (i[length] < 1)
==> i Bud {i[length] += 0.1;}

replaces all internodes with a length less than one by a new internode followed
by a bud, and increments the length of the internode by 0.1.
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Object name Description Attributes

F/Cylinder Cylinder length, radius

Sphere Sphere radius

Box Box length, width, height

Cone Cone length, radius

Frustum Parallel truncation of a cone length, base radius, top

radius

Supershape Generalisation of superel-
lipses, which can produce a
myriad of shapes [114]

Abstract parameters a, b, m1,
n1, n2, n3 (for 2D shape) and
additionally m2, n4, n5, n6 for
a 3D shape

Parallelogram (2D) Parallelogram length, width

Line (1D) Line dx, dy, dz

Null To be used when an object re-
quires spatial referencing, but
none of the other attributes of
the above

x, y, z

Table 2.4: List of primitive objects contained in XL.

Primitive objects The XL language provides some built-in, or primitive, spa-
tial objects, which are listed in Table 2.4. These primitive objects are particularly
convenient to use as parents (in OOP sense) for defining plant organs: the cylin-
der can naturally be extended to an internode or root segment, a sphere may
be extended to a bud, etc. For more complex shapes, one can make use of the
Supershape class, which employs the Superformula [114] to generate a wide vari-
ety of natural shapes. Alternatively, NURBS (non-uniform rational basis splines)
surfaces [115] can be used. Null is a special parent class which can be used when
one wants to give an object spatial referencing, but does not require any other
attributes to be inherited.

2.4.4 GroIMP

The following is adapted from [105]. GroIMP (Growth Grammar-related Interac-
tive Modelling Platform) is designed as an integrated platform which incorporates
modelling, visualization and interaction. It exhibits several features which make
it suitable for functional-structural plant modelling:

• The modelling backbone consists of the XL programming language. It is
fully integrated, e. g., the source code is edited in an integrated text editor
(Fig. 2.16) and automatically compiled by the XL compiler.
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Figure 2.16: Screenshot of GroIMP’s graphical user interface.

• GroIMP provides a complete set of 3D-geometric classes for modelling and
visualization. This includes turtle commands, primitives like spheres, cones
and boxes, NURBS surfaces, and polygon meshes.

• In addition, GroIMP provides a shader system for the definition of 3D
shaders. Shaders can be built by combining image textures and procedural
textures.

• The outcome of a model can be visualized by several options, including
a real-time display based on OpenGL, the built-in raytracer Twilight and
the free raytracer POV-Ray. A light-model based on the built-in raytracer
computes the distribution of light within a scene.

• GroIMP also contains a 2D view that shows the underlying graph structure
of the scene.

In this work, GroIMP version 1.6 is used, built on Eclipse Luna (4.4.1) using the
Amazon Coretto 8.222 Java development kit. All this software is freely available.

2.5 Sensitivity analysis

One of the aims of this thesis is to perform global sensitivity analysis on our FSP
model, in order to identify the input parameters that have the biggest impact on
model outputs and are thus of interest to investigate in further experiments (Ch.
3-4). Therefore, a concise literature review of popular sensitivity analysis tech-
niques is provided here. This section is an extended version of the introduction
in Rutjens et al. [15], that is further reproduced in Chapter 3.

Models in the biological and environmental sciences typically have many pa-
rameters [116–118]. Calibration of these often requires empirical data, which can
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be costly or simply impossible to obtain (see [116] and the references therein).
However, often only a small subset of factors in a system have a significant influ-
ence on a specific system output [119,120]. As such, it can be beneficial for model
development to identify unimportant parameters, so they can be set to a fixed
value. Efforts can then be concentrated on accurately estimating the most im-
portant factors. This can greatly decrease dimensionality of the model parameter
space, while increasing trust in the model. Sensitivity analysis (SA), the study of
how uncertainty in the model output can be attributed to the different sources of
uncertainty in the model inputs, is a common tool for this [117, 121]. Moreover,
SA methods can be used for a variety of other objectives [117,121], including:

• Assessment of Similarity : testing whether the model sensitivity structure
agrees with that of the underlying system (i.e. theory versus experiment);

• Regions of Sensitivity : location and characterisation of regions in the pa-
rameter space where the model is most sensitive to changes in inputs (in-
strumental in model calibration);

• Factor Interdependence: estimating the nature (e.g. intensification, cancel-
lation or compensation) and strength of interactions between input param-
eters;

• Uncertainty Apportionment : quantitative attribution of the uncertainty in
model output to different inputs.

But what is sensitivity exactly? In a local context an unambiguous definition
is readily available for continuous deterministic models in terms of partial deriva-
tives: given an output y dependent on inputs x1, . . . , xn, the local sensitivity of
y to an input xi at a point x⋆ in the parameter space is given by

si =
∂y

∂xi

∣∣∣∣
x⋆

, (2.6)

supposing y is differentiable at x⋆. Here, si is also known as the sensitivity
coefficient, and characterizes the independent effect of xi, when all other inputs
are held constant.

If the inputs and outputs are dimensional, the sensitivity coefficient tends to
be scaled in one of two ways [116, 122, 123]. Multiplying by a ratio of reference
values x0

i /y
0 yields a relative sensitivity index. This index is normalized and

enables comparisons between factors with different units or values at different
orders of magnitude, but it fails to account for the variability in the input and
output [116]. Alternatively, multiplying by the ratio of standard deviations σx/σy

gives a variance sensitivity index, but this approach requires information about
the spread of each input and output.

Local interaction effects are typically defined in a similar way to first-order
local sensitivity, by considering mixed higher order partial derivatives. In general,
interaction effects can be defined at different scales, and no single method or scale
is capable of fully characterizing interactions in numerical simulators [124].

One-at-a-time (OAT) methods, changing one parameter at a time from a fixed
base point and assessing the effect on the model output, are commonly used local
sensitivity analysis techniques. This assessment may be by use of (discretized)
derivatives (i.e. Eq. (2.6)), or might simply involve visual inspection of the model
outputs [121]. Although OAT methods are still popular, it has been suggested
that local SA methods may only prove informative in very specific situations (e.g.
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inverse problems, or approximating a model output in a small region of output
space) [125]. In general, OAT is therefore not recommended for rigorous SA;
global sensitivity analysis methods (GSA) should be used instead [125,126].

A variety of approaches have been proposed for GSA, based on different
philosophies and theories, leading to different notions of (global) sensitivity [117,
127]. Razavi et al. [119] distinguish four categories of GSA:

• Derivative-based: this class of methods utilizes the local derivative approach
to obtain a global measure of sensitivity through some process of averaging
many of such local measurements. The Elementary Effects method (EE)
[128] is an example, where the derivative is replaced by a finite difference,
and the global measures of sensitivity are the sample mean and standard
deviation of these finite differences. It has been noted that these type of
methods focus on small-scale perturbations, while distribution-based ap-
proaches focus on large-scale perturbations and variogram-based methods
cross perturbation scales [129]. However, as we will see later, the opti-
mal perturbation step to ensure equal sampling probabilities in EE is more
than half the input’s range; one can hardly make the argument this is a
small-scale perturbation.

• Distribution-based: distribution-based methods base the analysis on the
distributional properties of the output itself (which follows from interpreting
varying input values as samples from a distribution), and try to disentangle
how different inputs contribute to these properties [119]. The most common
method decomposes the output variance into portions attributed to single
inputs or interactions between groups of inputs. While variance-based SA
dates back as far as the early 1900’s [119], the most well-known framework
was developed by Ilya Sobol (Sobol’s method) [130]. Later, links drawn
to derivative-based approaches showed the relationship between variance-
based sensitivity indices and for example EE sensitivity measures [131,132].
See Section 3.5 and e.g. [131, 133] for more detail. For other distribution-
based approaches, e.g. PAWN, PRCC or RSA, we refer the reader to [119,
134] and the references therein.

• Variogram-based: a relatively new development in the field of SA is the
use of variograms (VARS) [135,136]. Variograms can characterize the spa-
tial dependency structure of model outputs by quantifying the variance
of change in the output as a function of perturbation size in individual
inputs. Variogram-based sensitivity measures can be considered more com-
prehensive than other approaches in the sense that they integrate global
sensitivity information across a range of perturbation scales [119]. VARS
bridges derivative- and variance-based approaches, as the measures of EE
analysis or the Sobol sensitivity index can be derived from the variogram
[129,135]. We refer to [118,135,136] for further reading.

• Regression-based: Traditionally, regression-based SA referred to (general-
ized) linear regression models fitted to a sample of output data. While
having merit from a local point of view, e.g. for order reduction, these
early methods have been criticised for relying heavily on prior assumptions
about the model response form and for the unreliability under a poor fit
[119]. However, more recently machine learning techniques have reinvigo-
rated this area, giving rise to new ways to identify (un)important parame-
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ters (see [119] and the references therein).
Sensitivity is often described as the influence of a parameter on a model output

(see e.g. [134]), but the precise form of ‘influence’ is not always stated. The
‘correct’ notion may vary on a case-to-case basis, depending on the specific goal
one wants to achieve. For example, consider the simple output Y = X1 + X2,
where X1 takes values in [0, 10] and X2 in [100, 101] uniformly. X2 contributes
most to the mean magnitude of the output Y (= 5+100.5), so it could be argued
this parameter is most important. Alternatively, X1, having a larger range, has
the most significant contribution to the variability in the output (variance of Y
= 1

12
(102 + 12)).
In this work the following notion of global sensitivity is considered, which

is the prevalent one in GSA: the sensitivity of output Yj to input parameter Xi is
the relative contribution of the variability in the input parameter to the variance
of the output. The (finite) range of an input is used here as input variability.
Other notions of input and output variability can be used, e.g. mean, standard
deviation or interquartile range.

Although SA typically considers continuous inputs, inputs may also be dis-
crete. For example, one may have integer-valued inputs representing different
scenarios. Sensitivity for models with categorical (i.e. discrete) input variables
has been considered for some approaches, such as variance-based SA [137,138].

In this work we focus on the Elementary Effects method (EE) [128], a quali-
tative screening method for (un)important parameters, where the space of model
outputs is characterized by a relatively low number of strategically placed simula-
tion points. From these points, finite differences (called Elementary Effects) can
be calculated as a measure of how the output changes when one input changes.
Finally, by aggregating these effects for each combination of input and output,
measures of (global) sensitivity of the outputs for the inputs are obtained. EE is
also capable of detecting non-linearity or interaction effects.

2.6 Model description

The models used in Chapters 4-6 are versions of a general modular FSP model
using the modelling platform GroIMP [80]. This general model simulates above
ground plant growth and architectural development, driven by competition be-
tween plants for light and nutrients. It is an evolution of the model presented in
Evers and Bastiaans [139], and was developed at Wageningen University (with
the exception of the contributions to the model explicitly mentioned in this work,
which were developed by the author of this thesis). The following plant species
are currently implemented: Arabidopsis thaliana, hemp, sunflower, maize, quinoa,
tulip, pea, soy bean, faba bean, basil, common bean (see Ch. 5), and a generic
cereal, grass, and weed. In this work we only consider maize and common bean.
Figure 2.17 shows an example of the simulated architecture generated by the
model.

Plants are simulated at a daily time step based on the principles of assimilate
supply and demand (Fig. 2.18). Plant organs serve either as a pure sink for
assimilates (the generative organs and the roots), using assimilates for growth or
storage, or both as a source (through photosynthesis) and a sink depending on
their age and surface area (the leaves and the stem segments).
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Figure 2.17: Simulated architecture of maize plants (green) and common bean
(red).

Figure 2.18: Source–sink interactions of photosynthate production and utiliza-
tion. Figure taken from [140].

This section is an extended version of the corresponding section in Rutjens
et al. [16], which is a paper in preparation by the author of this thesis and
colleagues, that is further reproduced in Chapter 4. A file-by-file description of
the model code is given in Appendix A.

2.6.1 Environment

To accurately represent a realistic light field, a mix of direct and diffuse light
sources are placed in the scene. 72 diffuse light sources are configured in 6 rings at
different heights, where the strength of each light source depends on the location,
but is fixed throughout a simulation [139]. 24 direct light sources describe an
arc in the sky to emulate the sun’s path [139]. The angle and orientation of
the arc, and the power of the direct light sources depend on the day of the
year and latitude. Details of diffuse/direct radiation calculation can be found in
[141–143]. At each time step, rays of photosynthetically active radiation (PAR)
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Figure 2.19: Temperature profiles used in this thesis, representing the Netherlands
(NL), the Aquitaine region in France (FR) and the Yucatán peninsula in Mexico
(MEX).

cast by the light sources are absorbed, reflected or transmitted by leaves and
stems according to organ-independent optical coefficients, using the stochastic
ray tracer capabilities of GroIMP [80].

The average daily temperature follows one of three yearly patterns (Fig. 2.19).
In Chapter 4 a sinusoidal pattern over the year is used, mimicking the Dutch
climate:

tav,NL = tava + tavb · sin
(
2π(DOY− 111)

365

)
, (2.7)

where the minimum value is reached around day 20, the mean at day 111, and
the maximum around day 202. It is characterised by a mean value (tava) and
the amplitude of the deviation around that mean (tavb). DOY ∈ {1, 2, . . . , 365}
denotes the day of the year. Alternatively, in Chapters 5-6, a beta-distribution
profile is used, given by:

tav,MEX = tava + tavb

(
DOY

365

)100/49(
1− DOY

365

)4

, (2.8)

which better represents the location of the temperature maximum (day 120)
for the region of interest, the Yucatán peninsula in Mexico, but might slightly
underestimate temperatures in the third quartile of the year [144]. Finally, in
Chapter 6 the following profile is also considered, which represents the yearly
temperature in the Aquitaine region of (South-West) France (polynomial fitted
to empirical data [145]):

tav,FR =8.987 · 10−11DOY5 − 7.350 · 10−8DOY4 + 1.855 · 10−5DOY3

− 1.621 · 10−3DOY2 + 1.006 · 10−1DOY+ 9.902. (2.9)

Note that four significant figures and inclusion of the first term are required
to ensure a good fit later in the year. Other atmospheric parameters such as
CO2 level, vapour pressure deficit and O2 level are kept constant throughout a
simulation.

2.6.2 Physiology

At the organ level, the absorbed PAR is used to calculate photosynthesis rate as a
function of organ nitrogen level [139]. Assimilated CO2 is converted into growth
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substrates, and maintenance costs are deducted. This leads to a daily pool of
substrates available for organ growth.

Photosynthesis is described by the Farquhar-von Caemmerer-Berry (FvCB)
model as in Yin and Struik [146]. The FvCB model implemented here predicts the
net photosynthesis rate as the minimum of the Rubisco-limited and the electron
transport-limited rates of CO2 assimilation. The FvCB model is the standard in
relating photosynthetic carbon assimilation to the concentration of intercellular
CO2 and absorbed photosynthetically active radiation [147]. For common bean
the original C3 model is used, for maize a C4-equivalent is used. While parameter
values for the original C3 model have been calibrated fairly precisely, there are a
number of parameters in the C4-equivalent with more uncertainty [146]. This is
further explored in Chapter 4.

Potential organ growth rate is defined as the organ demand for growth sub-
strates (its sink strength), implemented using the first derivative of a beta growth
function [139, 148]. To determine actual growth rate, the relative sink strength
concept is used [149], in which the sink strength of an organ is expressed as a
fraction of total plant sink strength. Depending on substrate availability and
relative sink strength, organs grow at or below their potential rate. Any excess
growth substrates stored from all organs are made available for growth in the
next time step.

Finally, organ size is updated based on the substrates received by each organ,
using parameters for leaf mass per unit of leaf area (LMA) for the leaves, and spe-
cific internode length (SIL) for the internodes. Specifically for maize internodes,
additional extension due to shade avoidance [150] is implemented by making SIL
dependent on the level of competition experienced by the plant [139].

2.6.3 Plant development

Plant development is temperature driven, with a daily thermal time increment
depending on the average daily temperature (see Sec. 2.6.1) and the species base
temperature. Subsequent leaves are initiated at a constant thermal time interval
(plastochron) and appear at a constant thermal time interval (phyllochron). For
species with a determinate growth habit (i.e. growth ceases during the natural
lifespan of an individual), the total number of phytomers produced during a
plant’s lifespan is taken as constant and equal for all plants. If a leaf reaches a
certain age (expressed as a number of times, e.g. 2−10 the leaf growth duration,
in degree days) or receives less light over a day than a given threshold (e.g.
20− 100 µmol m−2 s−1), it will be shed.

2.6.4 Plant architecture

Maize architecture is based on [139]. The first given number of internodes do
not elongate, resulting in the corresponding leaves visually emerging from the
soil level. Leaves are represented by narrow oblong surfaces (see [139] and Fig.
4.6-4.7). Consecutive leaves appear along the stem at a constant phyllotactic
angle.

The model for common bean is developed in this work (Ch. 5). Common bean
exhibits helix-like upwards growth around a climbing medium (pole or maize in-
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ternode). The helix inclination (i.e. steepness) is constant and equal for all
plants, but inclination for internodes with a phytomer rank larger than 1 is per-
turbed randomly (±10◦ uniformly) to capture natural variation (based on [151];
no data was found on climbing bean). Branching is modelled as a simple stochas-
tic process: at each time step throughout a bud’s lifetime, it may break with a
fixed probability. In the model, internodes (represented by cylinders) of other
plant species typically elongate over time. For a twining plant, since internode
orientations do not change once they are initiated, lengthening leads to a worse
(looser) fit of the helix, and potentially to collisions. Bean internode elongation
is therefore set to zero, and new internodes are initiated with their final length.
This implies that it is assumed that bean only experiences tip growth. Internode
length varies according to

L = 0.03 +
Lmax − 0.03

(1 + 2e−(rank−1))
3 , (2.10)

where rank denotes the phytomer rank of the internode, 0.3 is the minimum
internode length and Lmax is the maximum internode length, i.e. internodes
that appear later are longer. The other constants in the denominator have been
determined empirically, based on [152–154].

Leaves are trifoliate, with the central petiolule being longer than the other
two (×1.5), and the central leaflet being slightly wider (×1.5) and longer (×1.2)
than the other leaflets (Fig. 5.27-5.28). The side leaflets are inserted in the same
plane as the central leaflet, but rotated 60 degrees outwards. Leaves appear on
the stem under such a phyllotactic angle that the petiole points outwards of the
helix. Bean pods are represented by grey rectangular boxes, the size of which is
determined by the pod weight.

As the focus is on aboveground processes and interaction in this work, for
simplicity the root system architecture is not explicitly modelled for either species,
but treated as a single sink characterised by weight and sink strength.

2.6.5 Key models used in this work

To summarise, the following variants of the general model described above are
used in this work. Firstly, there is the (already existing) monoculture model for
maize. This is used in Chapter 4 to analyse sensitivity of the general model (for
which the required theory is derived in Ch. 3), including generic sub-models for
e.g. photosynthesis. Secondly, there is the monoculture model for common bean,
which is developed in Chapter 5. Sensitivity analysis is also performed on this
variant, but with a focus on a smaller set of input parameters, including several
parameters specific for climbing bean. Finally, there is the combination of the
two, a maize/bean polyculture model, which is used to investigate light capture
in this system (Ch. 6).

2.7 Summary

There are many different polyculture systems, where multiple crop species are
planted on the same field, ranging from simple row intercrops to the spatially
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and temporally complex three sisters and milpa systems. Polycultures generally
provide a number of benefits, including overyielding, improved weed and pest
management and reduced water loss, decreasing input dependency.

Modelling plants and crops has come a long way since the first attempts in
the 1910’s. With the advent of functional-structural plant modelling in more
recent times, it has become possible to model plants and crops (and their inter-
actions) in more detail. Nevertheless, modelling intercrops, in particular complex
polycultures like the three sisters, is arguably still in its infancy; one is typically
restricted to relatively simple layouts and cannot take plant-plant interaction into
account in great detail.

The model used in this work is written in the XL language, which combines
object-oriented programming, imperative programming (provided by the Java
language) and rule-based programming (provided by L-systems). By describing
plant architecture in a graph structure (where the nodes represent e.g. plant
organs), graph replacement rules can be used to describe and visualise plant
development in an easy and general way.

To identify which input parameters have the biggest effect on the model out-
puts (and which input parameters thus deserve further investigation), sensitivity
analysis techniques are used. Global sensitivity analysis approaches are to be
preferred over local one-at-a-time ones, as they capture sensitivity on the whole
parameter space instead of only in a neighbourhood of a single point. A popular
global method is Elementary Effects, which uses aggregated discretised deriva-
tives to come to a sensitivity index for each combination of input parameter and
model output; this method is used in this work.
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3 Elementary Effects for general models:

Theory

This chapter is an adaptation of:

R. J. L. Rutjens1, L. R. Band1,2, M. D. Jones3 and M. R. Owen1. Elementary
Effects for models with dimensional inputs of arbitrary type and range: Scaling
and trajectory generation Plos one, 18(10), 2023.

1 School of Mathematical Sciences, University of Nottingham, United Kingdom

2 School of Biosciences, University of Nottingham, United Kingdom

3 School of Geography, University of Nottingham, United Kingdom

For the sake of providing clarity and context to this chapter (being a mix of
review elements and new work), original content developed by the author of this
thesis is highlighted in blue.
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3.1 Introduction

Models in the biological and environmental sciences typically have over 100 pa-
rameters [116–118]. Calibration of these often requires empirical data, which can
be costly or simply impossible to obtain (see [116] and the references therein).
However, often only a small subset of parameters have a significant influence on
a specific system output [119,120]. As such, it can be beneficial for model devel-
opment to identify unimportant parameters, so they can be set to a fixed value.
Efforts can then be concentrated on accurately estimating the most important
factors. This can greatly decrease dimensionality of the model parameter space,
while increasing trust in the model.

The Elementary Effects method (EE) [128] is a global sensitivity analysis
approach for identifying (un)important parameters in a model. However, it has
almost exclusively been used where inputs are dimensionless and take values on
[0, 1] (see e.g. [128,155–162]). Here, we consider models with dimensional inputs,
inputs taking values on arbitrary intervals or discrete inputs. Such models are
commonplace in biology or environmental sciences. In those cases, models are
typically not dimensionless, as it is difficult to find all the dimensionless quantities
due to the large number of parameters. Even if the dimensionless groups are
known, in the context of sensitivity analysis it can be difficult to translate their
sensitivity back to sensitivity of the original parameters.

We show that scaling effects by a function of the input range is essential
for correct ranking results. We therefore propose two alternative dimensionless
sensitivity indices by normalizing the scaled mean or median of absolute effects.
Testing these indices with 9 trajectory generation methods on 4 test functions
(including the Penman-Monteith equation for evapotranspiration) reveals that:
i) scaled elementary effects are necessary to obtain correct parameter importance
rankings; ii) small step-size methods typically produce more accurate rankings;
iii) it is beneficial to compute and compare both sensitivity indices; and iv) spread
and discrepancy of the simulation points are poor proxies for trajectory generation
method performance.

For a more detailed introduction into the field of sensitivity analysis, the
reader is referred to Section 2.5 and the references contained therein.

3.2 Elementary Effects method

3.2.1 Original formulation (extended to general models)

Let Xi, i = 1, . . . , k be dimensional input parameters with units [Xi], taking
values in [mini,maxi] uniformly. If the parameter can only take integer values, it
takes values in the set {mini,mini + 1, . . . ,maxi}. The same holds for Boolean
parameters, but then mini = 0 and maxi = 1, where 0 encodes false and 1 stands
for true. xi denotes the dimensionless equivalent scaled to the unit interval, i.e.

xi =
Xi −mini

maxi −mini

, (3.1)

henceforth referred to as scaled dimensionless parameters. The assumption of uni-
formly distributed inputs can be relaxed to include arbitrary distributions. Scal-
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ing the sampled parameter values from [0, 1] to the [mini,maxi]-interval should
then be done using the corresponding inverse cumulative density function (CDF).
The dimensional outputs of interest are denoted by Yj, j = 1, . . . , q with corre-
sponding unit [Yj].

The parameter points used for the analysis are sampled from a regular discrete
subset of the complete scaled dimensionless parameter space (typically called
Ω ⊂ [0, 1]k) containing pi regularly spaced points in the xi-direction, and are
then transformed to the actual parameter space. pi is also called the number of
levels for parameter xi. The scaled dimensionless parameter xi thus takes values
in the set

xi ∈
{

j

pi − 1
: j = 0, 1, . . . , pi−1

}
, (3.2)

see Fig 3.1, while (using Eq. (3.1)) the actual parameter value is an element of

Xi ∈
{
mini +

j(maxi −mini)

pi − 1
: j = 0, 1, . . . , pi−1

}
. (3.3)

This formulation restricts the choice of parameter bounds and number of levels
for Boolean and integer parameters; for the former one must set pi = 2, while
for the latter, the following relation must be satisfied to ensure integer parameter
values:

maxi −mini = m(pi − 1), for some m ∈ N. (3.4)

If a parameter xi takes values on the unit interval, an elementary effect of xi

on an output Yj is given by the finite difference

eenij =
Yj(x1, . . . , xi−1, xi + δi, xi+1, . . . , xk)− Yj(x)

δi
, (3.5)

where x = (x1, . . . , xk). Here, the superscript n is an index to distinguish different
x, to emphasize that the elementary effect can be calculated at numerous points in
the parameter space. δi is a predetermined value in the set {±1/(pi−1),±2/(pi−
1), . . . ,±1} such that xi + δi still lies in [0, 1] (see Appendix B.1).Morris [128]
argues the optimal value for the step size |δi| is pi/[2(pi − 1)], where pi is chosen
to be even. This ensures equal sampling probabilities for all discrete parameter
values, as shown in Fig 3.1. Note that this may necessitate the use of parameter-
dependent values of δ and p; for Boolean parameters, one must choose pi = 2,
δi = 1, but for real and integer inputs a higher number of levels (hence δi ̸= 1)
is typically preferred. In some cases, e.g. for an integer input parameter xi with
mini = 1 and maxi = 3, Eq (3.4) shows it is not possible to use the optimal value
for δ as pi must be odd. To our knowledge, the current literature assumes a fixed
(even) value of p and the optimal value for δ for all parameters.

For dimensional inputs and arbitrary input ranges we introduce the following
generalized form of the elementary effect:

EEn
ij =

Yj(X1, . . . , Xi−1, Xi +∆i, Xi+1, . . . , Xk)− Yj(X)

∆i

. (3.6)

Here ∆i = (maxi − mini)δi. The effect EEn
ij given by Eq (3.6) is dimensional

with units [EEn
ij] = [Yj]/[Xi].
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|δi| = 2
3

0 1
3

2
3 1

1 1 1 1

1 2 2 1

|δi| = 1
3

Figure 3.1: Schematic representation of parameter sampling probabilities for a
parameter xi on [0, 1] with pi = 4 levels. The starting point of an arrow (circle)
represents a sampled parameter value, the end point (triangle) represents the
perturbed value. Together they lead to an Elementary Effect (e.g. Eq. (3.6)).
Equal sampling probability means that each discrete parameter value has an equal
number of incoming arrows (indicated in red). Above: optimal choice for the step
size |δi| = pi/[2(pi − 1)] = 2/3 leads to equal sampling probabilities. Below: non-
optimal choice for |δi| leads to a higher probability of sampling interior points.

Note that the dimension of ∆i is equal to the dimension of Xi. Hence, even
if all pi’s and all input parameter ranges are equal, thereby equalizing the mag-
nitude of each ∆i, one should still refrain from dropping the index, because the
units of the ∆i’s might be different.

The total number of elementary effects associated with input Xi (and output
Yj) is equal to the number of parameter points for which xi ≤ 1− |δi|. Those are
the points for which an increase by |δi|, the other point needed for the calculation
of an effect, still lies in the parameter space (see Fig 3.1). There are pi−|δi|(pi−1)
discrete values that xi may take that fulfil xi ≤ 1 − |δi| (all values except those
larger than |δi|) and ∏

j=1,...,k
j ̸=i

pj (3.7)

combinations for the other parameter values, so the total number of elementary
effects for input Xi is equal to

(pi − |δi|(pi − 1))
∏

j=1,...,k
j ̸=i

pj. (3.8)

This result reduces to the one in [128] (pk−1[p− |δ|(p− 1)]) if all the pi’s and δi’s
are equal. The goal in the original formulation is to estimate the distributions of
these effects for each combination of input and output. Following Morris [128],
these distributions are denoted by Fij, where the first index depicts the input and
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the second the output. If there is only one output under consideration, we simply
write Fi. It is generally not feasible (nor desirable) to calculate every possible
effect; for k = 50 input parameters and p = 4 and δ = 2/3 for each input, this
would amount to ∼ 1029 simulations (Eq. (3.8)). Instead, the goal is to generate
a small set of Q = r(k + 1) simulation points, typically Q ∼ 1000, that still
provide good coverage of the parameter space. Each Fij is then characterized by
its sample mean and sample standard deviation over r effects [128] (see Sec. 3.3
for more detail).

3.2.2 Trajectory generation using an optimized winding
stairs design and fixed step sizes

The most naive way of sampling a set of r effects for each of the k inputs would
be to randomly sample r base points in Ω. Since the calculation of each effect
requires two output values, this would require a total number of 2rk simulations.
However, by generating trajectories in parameter space (Fig. 3.2-3.3) and using
each point (except for the start and end) for the calculation of not one, but two
effects, the number of required simulations decreases to r(k + 1). This approach
is an example of a ‘winding stairs’ design (Fig. 3.2). Alternatively, one can use a
‘radial design’ (Fig. 3.4), leading to star-shaped trajectories in parameter space
(described further in Section 3.2.3).

The following is an adaptation of the description by Morris [128]; notation
differs slightly, and we account for allowing parameter-dependent step sizes δi.
All calculations in this section are done on Ω, the discrete unit hypercube, using
the scaled dimensionless quantities (xi, δi, etc.). After a trajectory is generated
on Ω, one simply transforms it to the actual parameter space using Eq (3.1). A
winding stairs trajectory is a semi-random walk through Ω which has the following
properties:

• there is exactly one value change in each dimension;

• the value in dimension i changes from xi to xi+ δi or vice versa, with equal
probability;

• the order in which dimension steps are taken is semi-random. Starting
with the order sequence [x1, x2, . . . , xk] (meaning the first step is in the
x1-direction, the second in the x2-direction, and so forth), all elements are
randomly permuted, but only with other elements that have the same cor-
responding δi and pi. For example, if we have 3 input parameters, where
δ1 = δ2 ̸= δ3 and p1 = p2 ̸= p3, there are two (2!) possible sequence orders:
[x1, x2, x3] and [x2, x1, x3].

A winding stairs trajectory Tn can be fully characterized by the matrix B⋆
n, given

by:

B⋆
n =

(
Jk+1,1xinit +

1

2
[B0D+ Jk+1,k] diag(|δ|)

)
P. (3.9)

Row j represents the j-th scaled dimensionless parameter point in the trajectory,
while column i refers to the value of scaled dimensionless parameter xi. Jn,m is the
n×m matrix of ones, diag(|δ|) is the k×k diagonal matrix containing the (scaled
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dimensionless) step sizes |δi| and P is a k×k random column permutation matrix
in which columns i and j may be permuted only if the corresponding parameters
have the same number of levels, i.e. if pi = pj. D is a k×k diagonal matrix where
each diagonal element is either +1 or -1 with equal probability. xinit is a 1 × k
row vector containing an initial scaled dimensionless parameter point, randomly
sampled from the restricted subset of Ω denoted by {0, 1/(pi − 1), . . . , 1 − |δi|}k
(to ensure that xi + |δi| still lies in the unit interval), where the power denotes a
Cartesian product. Finally, the (k + 1)× k matrix B0 is given by

B0 =



−1 −1 −1 · · · −1

1 −1 −1 · · · −1

1 1 −1 · · · −1

1 1 1
. . . −1

...
...

...
. . . −1

1 1 1 · · · 1


. (3.10)

Note that 1
2
[B0D+Jk+1,k]diag(|δ|) is a (k+1)×k matrix where column i is given

by either 

|δi|
...

|δi|
0
...

0



 i times

or



0
...

0

|δi|
...

|δi|



 i times

(3.11)

with equal probability and independent of the other columns, i.e. if we ignore
the random permutation matrix P, the value of scaled dimensionless parameter
i would either start at xinit,i or xinit,i + |δi|, change to xinit,i + |δi| or xinit,i after
the i-th step in the trajectory, respectively, and then remain the same in the
rest of the steps. Thus, the permutation matrix randomly changes the sequence
of parameter steps. Fig 3.2 depicts two trajectories, without and with random
column permutations. Multiple trajectories can be put in matrix form by simply
concatenating the r B⋆

n-matrices:

B̃ =


B⋆

1

B⋆
2
...

B⋆
r

 . (3.12)

The question now is how to create a good coverage of the parameter space with a
relatively low number of trajectories. Campolongo et al. [155] introduced a simple
but effective strategy called ‘optimized trajectories’, (OT) which is described here,
as it is commonly used: M random trajectories are generated, typically M ≈
1000, and the subset of size r ≪ M with the largest dispersion in the input space is
selected. Typically, r ranges between 4-20 (likely due to historical computational
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Figure 3.2: Realisation of trajectories in a winding stairs design with (red) and
without (green) random column permutations. Here, k = 3 and we set p = 4
and δ = 2/3 for all parameters. Effects are calculated using both endpoints of
the arrows, as indicated in green. a) Trajectories in the discrete unit hyperspace
Ω. Green is without column permutation, red is with column permutation. b)
Trajectory (with column permutation) in the actual parameter space. X1, X2

and X3 take values in [0, 4/3], [1/3, 1] and [0, 1], respectively.

limitations), although recent papers [163,164] indicate it might be worthwhile to
increase this number at the expense of additional runtime. The notion of spread
of a set of trajectories is defined via the following measure of distance between
two trajectories:

dml =


k+1∑
i=1

k+1∑
j=1

∥∥xm
i − xl

j

∥∥
2
, for m ̸= l;

0 otherwise,

(3.13)

where xm
i denotes the i-th point of the m-th trajectory, i.e. dml is the sum of the

geometric distances between all the couples of points of two trajectories [155].
The optimal set of trajectories is then found using a brute force approach, by
considering the measure of spread given by1

Dk1...kr =
r∑

i,j=0
i ̸=j

d2kikj (3.14)

for all combinations of r trajectories out of M , denoted by the vector of trajectory
indices (k1, . . . , kr), where ki ∈ {1, . . . ,M} and k1< . . . <kr. Finally the set of
r trajectories with the highest value of Dk1...kr is selected. We simply call this
maximal value D in what follows, i.e.,

D = max[Dk1...kr ; {k1, . . . , kr} ⊂ {1, . . . ,M}]. (3.15)

1Campolongo et al. [155] use the square root of this quantity, but that does not affect the
location of the maximum.
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Fig 3.3 depicts a realisation of the optimized trajectories approach containing
r = 4 trajectories for k = 2 scaled dimensionless parameters with p = 4 levels.
This process is computationally taxing, since it involves calculating

(
r
2

)
distance

x1

x2

Figure 3.3: Example of an optimal set of trajectories for k = 2, r = 4, p = 4 and
|δ| = 2/3 for both parameters.

measures dml and the spreadDk1...kr

(
M
r

)
times. Especially the latter figure quickly

becomes prohibitively large; for M = 1000 and r = 25,
(
1000
25

)
∼ 1049 values of

Dk1...kr need to be calculated. Little computer memory is needed, since only
the maximum value D thus far and the new value of Dk1...kr need to be stored,
and optimal sets of trajectories can be generated beforehand and independently
of the actual model simulations. Nevertheless, the brute force approach is not
feasible in practice. Khare et al. [157], although they use the tag ‘OT’, actually
employ a different method, which we call Efficient Optimized Trajectories (EOT):
for each of M initially generated trajectories, generate a set of r trajectories by
successively adding those with the highest spread w.r.t. to those already in the
set. This leads to M sets of r trajectories from which the set with the highest
total spread is selected. In algorithmic terms:

EOT:
Step 1: Generate M trajectories {T 1, ..., TM}
Step 2: for i = 1 to M

Set Si
1 = T i;

for j = 2 to r

Si
j = T k, where k = argmaxn=1,...,M (D(Si

1, ..., S
i
j−1, T

n));

end
Save spread Di = D(Si

1, ..., S
i
r).

end
Step 3: Pick the set of trajectories {Si

1, ..., S
i
r} with the highest

spread Di.

This produces a local spread maximum, which may be less than the global maxi-
mum, but greatly reduces computational cost; see Table 3.1. With this approach,
we were able to replicate the computation times reported in Fig 3 of [157]. While
none of the well-known papers (such as [155, 165]) explicitly mention this more
efficient algorithm, it is likely that most papers have in fact employed EOT in-
stead of the brute force OT approach (Ruano et al. [156] being the exception).We
employ EOT in this study.

In (E)OT, the trajectory starting points are sampled randomly. Selecting
these points through Latin Hypercube Sampling (LHS) or a quasi-random (QR)
sequence should increase the spread and coverage of the r selected trajectories.
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Runtime (seconds)

k r OT† EOT† EOT∗ ‘Std’ Sob. rad.

10 4 14 2.9 11 <0.001

20 8 n/a 5.5 25 0.001

50 20 n/a 21 165 0.002

100 40 n/a 91 1130 0.006

Table 3.1: Runtime for generating the set of trajectories for different combina-
tions of k (number of parameters) and r (number of trajectories). †: M = 200
trajectories. ∗: initial pool of M = 500 trajectories. ‘n/a’: these take many
weeks to complete (extrapolated from the k = 10, r = 4 case) and are thus not
shown. ‘Standard’ Sobol Radial is representative for all QR-based approaches
as listed in Section 3.5. All computations were done on a HP Zbook Studio G4
computer.

However, exploratory numerical experiments (using the QR sequences presented
in Section 3.2.3; not shown here) showed no significant change compared to a
random sample (see also [155]). Apparently, the benefits of generating a large
pool of M trajectories outweigh those of LHS or QR sampling.

3.2.3 Trajectory generation using a radial design and a
QR-sequence (extended to general models)

A popular alternative to generating trajectories in a ‘winding stairs’ approach is
to use a radial design [133]. The key difference is that in a radial design steps are
taken from the same base point (Table 3.2). This approach is essentially r OAT-
designs with different base points. Each point unequal to the base point differs
in exactly one (unique) coordinate from the base point (Fig. 3.4). An important
difference between the radial design as described here and in e.g. [133, 165] and
the standard winding approach for EE ((E)OT) is that the former no longer
makes use of fixed step sizes |δi|. Instead, a step size may take any value in
(0, xi] (step to the left) or (0, 1 − xi] (step to the right), and step sizes in the
same direction may differ in magnitude for different base points. As such, the
number of levels pi are obsolete in this method. The steps δi (now a function of
the specific trajectory) are not predefined, but calculated a posteriori.

To ensure a uniform distribution of the r base points in the parameter space,
a quasi-random (QR) or low-discrepancy sequence is typically used; see e.g. [133,
165] for examples in radial EE, and [166, 167] and Section 3.5.1 for more on
QR sequences in general. QR sequences are designed to produce point sets that
cover a space both efficiently (i.e. with a low amount of points) and evenly (i.e.
approximating a uniform distribution).

Sobol sequences are the most popular choice of QR sequence. These sequences
use polynomials over the field Z2 to form successively finer uniform partitions of
the unit interval and then reorder the coordinates in each dimension. To initialize
the algorithm, a set of so-called direction numbers is required; we use those
provided by Joe and Kuo [168]. The built-in function SobolSequenceGenerator

-56-



Elementary Effects method

x2

x1

x3

x1

x2
x3

x4

Figure 3.4: Radial design sample in the unit cube with k = 3 parameters.

Radial Point Winding

a1, a2, a3, . . . , ak x1 a1, a2, a3, . . . , ak

b1, a2, a3, . . . , ak x2 b1, a2, a3, . . . , ak

a1, b2, a3, . . . , ak x3 b1, b2, a3, . . . , ak

a1, a2, b3, . . . , ak x4 b1, b2, b3, . . . , ak

. . . . . . . . .

a1, a2, a3, . . . , bk xk+1 b1, b2, b3, . . . , bk

Table 3.2: Radial sampling design versus winding stairs sampling design without
random column permutations. k inputs are considered here, resulting in k + 1
points in parameter space. The base point is given by (a1, a2, . . . , ak). In OT the
ai are elements from a discrete set and bi = ai ± |δi|, whereas in the radial design
(as in [133]) ai and bi can take any value in [0, 1]. Table taken from [133].

in the Apache Commons Math 3.6.1 Java library is used to generate QR vectors.
We do not give a detailed description here, but refer to [168, 169] and [170],
Chapter 5, for details.

We also consider the recently presented Rd sequences [171], which may have
more favourable properties of rapid and uniform coverage [171,172]. As far as we
are aware, this sequence has not been used in GSA so far.The Rd sequence in k
dimensions {zn}n∈N+ is simply given by

zn = α0 + nα mod 1, n = 1, 2, 3, . . . , (3.16)

where α0 is a fixed offset (1
2
in this work) and

α =

(
1

ϕk

,
1

ϕ2
k

, . . . ,
1

ϕk
k

)
,

in which ϕk is the unique positive root of the generalized golden ratio equation

xk+1 = x+ 1.
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For numerical purposes, ϕk can either be estimated through Newton iteration, or
by truncating the identity

ϕk =
k+1

√
1 +

k+1

√
1 +

k+1

√
1 + k+1

√
1 + . . . .

The QR sequence of choice is used to generate a set of r base points (as r× k
matrix A) and a set of r perturbation vectors (r×k matrix B). In principle, there
are two ways of filling the matrices A and B. One can generate a r× 2k-matrix,
where each row is an element of a 2k-dimensional QR sequence, and subsequently
set A to be the left half of the matrix and B the right half. This is the correct
approach, and is used in [133, 165] and in this work. Alternatively, one can
generate a 2r × k-matrix by concatenating 2r elements of a k-dimensional QR
sequence, and use the top half for A and the bottom half for B. However, we found
that this leads to erratic and non-converging behavior (errors in preliminary tests
(not shown here) did not decrease with increasing r), so this approach should be
avoided. It is not exactly clear why this happens, but it is likely to be related
to the fact that subsequent points in a QR sequence (hence, subsequent rows in
A and B) are dependent.In the case of Sobol QR, Campolongo et al. [165] note
it might be worthwhile to use a shifted perturbation vector, i.e. to generate a
(r + q) × 2k-matrix, and match base point Ai (i = 1, . . . , r) with perturbation
vector Bi+q, i.e.,

A1 B1

...
...

A1+q B1+q

...
...

Ar+q Br+q




.

In particular q = 4 is reported to give “good results” [165], which is adopted in
this work. Nevertheless, in Sobol QR it may happen that one of the elements of
the perturbation vector coincides with its base point counterpart, i.e. Aij = Bi+q,j

for some j = 1, . . . , k. The row vector [Ai+q, Bi+q] is discarded and regenerated
when this happens.

For integer and Boolean inputs, arbitrary step sizes are not allowed, since
they may lead to non-integer/Boolean sampling points (Eq. (3.4)). To ensure
allowable base points, we propose using the number of levels pi and step size
|δi| from the OT approach to pin the base point coordinates for integer/Boolean
inputs to a discrete value as in Eq. (3.2) and then use corresponding step size
|δi|. That is, given a base coordinate xi in [0, 1] generated by a QR sequence, we
transform the coordinate to a discrete value x̃i by:

x̃i =

 1 if xi = 1;

⌊pixi⌋
pi−1

else.
(3.17)
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While this quantity is not necessarily integer/Boolean, the coordinate in the
actual parameter space is (using Eq. (3.4)):

Xi = (maxi −mini)x̃i +mini

= n(pi − 1)x̃i +mini

=

maxi if xi = 1;

n⌊pixi⌋+mini else,

for some n ∈ N, which is an integer/Boolean. Pinning the perturbed coordinate
does not work, because there is a high probability (1/pi) the pinned perturbed
coordinate will coincide with the base point coordinate (leading to a step size of
0 and an undefined elementary effect in that direction). For example, if p = 4
the base coordinate xi = 0.3 will be pinned to x̃i = 1/3, but any perturbed
coordinate in [1/4, 1/2] will be pinned to this same value. Therefore, we step
with fixed step size |δi| (or |∆i|) (in the direction that keeps the perturbed point
in the parameter space).

To distinguish the sampling strategies described here when testing them in
Section 3.5, we refer to the radial design where all points are generated with a
Sobol QR sequence by ‘standard’ Sobol radial and the equivalent using an Rd QR
sequence by ‘standard’ Rd radial. Corresponding winding designs are indicated
by the postfix winding instead of radial :‘standard’ Sobol winding and ‘standard’
Rd winding. Moreover, as a computationally efficient alternative to EOT (see
Table 3.1), one could use QR sequences to generate the base points, and then
transform them regardless of type (real, integer, Boolean) to a discrete value as
in (3.2) (for a given chosen pi) and step with fixed step size |δi| in a radial or
winding design, as described above. These approaches are denoted by the prefix
‘pinned’ instead of ‘standard’.

3.2.4 Alternative approaches to trajectory generation

To further address the computational expense of the combinatorial optimization
problem in Campolongo’s optimal trajectory strategy [155], to enhance uniform
coverage of the parameter space and to further increase accuracy in sensitivity
rankings, a number of alternative sampling designs have been proposed, discussed
here for completeness.

Ruano et al.’s modified optimal trajectories scheme (MOT) [156] checks only
a subset of all possible trajectory sets, leading to a considerable reduction of
computation time (compared to OT and EOT) but at the cost of deteriorating
parameter space coverage (compared to both OT and EOT) [157]. Khare et al.
[157] introduce Sampling for Uniformity (SU), which aims to generate simula-
tion points that are close to the asserted input parameter distributions, whilst
also maximizing trajectory spread. SU outperforms EOT and MOT in some
benchmark tests on computation time, uniformity and screening effectiveness,
but scores lower on maximizing trajectory spread. Khare et al. [157] also list a
number of older approaches.
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3.3 Sensitivity measures

In the original formulation, each distribution of effects Fij (as presented in Sec.
3.2) is characterized by its sample mean and sample standard deviation over r
effects [128]:

µij =
1

r

r∑
n=1

EEn
ij; (3.18)

σij =

√√√√ 1

r − 1

r∑
n=1

(EEn
ij − µij)2. (3.19)

A large magnitude of the mean µij indicates a great influence of input Xi on
output Yj, while a large standard deviation σij indicates substantial interaction
terms and/or non-linearity are present in output Yj. While this may not provide a
full characterisation of the distribution (e.g. if it is not symmetric), the typical low
number of observations (r ∼ 6− 20) [155–157] generally prohibits more detailed
specification. Campolongo et al. [155] proposed to also consider the mean of the
absolute effects, µ⋆

ij to filter out potential cancelling of terms:

µ⋆
ij =

1

r

r∑
n=1

|EEn
ij|. (3.20)

This measure has become one of the most prevalent, and is used in one of our
new measures (Sec. 3.4.4).

In recent years, a number of alternative sensitivity measures or ways to ag-
gregate effects have been proposed. These aim to provide more stable results (i.e.
fewer changes in parameter importance ranking as the number of trajectories (r)
is varied), allow for different interpretations of the effects, or produce results that
better align with the notion of sensitivity.

Menberg et al. [164] obtained more stable ranking results by using the median
value of the absolute effects, χij, instead of the mean (Eq. (3.20)). The idea is
that this measure is less sensitive to outliers (or a lack thereof) if the effects have
a skewed and/or long-tailed distribution, since the number of effects per input
parameter in EE is typically low [155–157].

In their 2008 primer on GSA [126], Saltelli et al. argue that one should always
take the scaled dimensionless step size δi (∈ [0, 1]) instead of the actual step size
∆i (∈ [mini,maxi]) to calculate elementary effects (reiterated in 2018 by Feng
et al. [132]) to avoid erroneous results. This amounts to a multiplication of the
effect in Eq (3.6) by maxi −mini. This relevant observation is further explored
in Section 3.4, and a more detailed treatise of effect scaling is given there.

To remove output scale effects, Wang et al. [173] introduce the normalized
absolute effect for dimensionless parameters

P n
ij =

|EEn
ij|∑k

l=1 |EEn
lj|
, (3.21)

where the normalization is over the inputs at the n-th trajectory. This leads to
a normalized global sensitivity index for the i-th parameter given by

τij =
1

r

r∑
n=1

P n
ij =

1

r

r∑
n=1

|EEn
ij|∑k

l=1 |EEn
lj|
. (3.22)
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In other words, τij is obtained by first normalizing effects and then averaging over
trajectories. Finally, by averaging over different outputs, Wang et al. [173] argue
a measure for the average sensitivity of a parameter on multiple output variables
is found as:

βi =
1

J

J∑
j=1

τij =
1

rJ

J∑
j=1

r∑
n=1

|EEn
ij|∑k

l=1 |EEn
lj|
, (3.23)

where J is the number of outputs. We would argue the use of this last measure
is questionable for most practical applications; suppose two parameters exhibit
opposite sensitivities for two outputs, being very sensitive for one output but not
sensitive for the other, the average measure would attribute a moderate impor-
tance to both factors, while in practice both are important.

Alternatively to Eq (3.22), Wu [174] first averages the absolute effects, and
then normalizes these quantities, leading to the relative importance evaluation
index for dimensionless parameters

Sij =
µ⋆
ij∑k

l=1 µ
⋆
lj

=

∑r
n=1 |EEn

ij|∑k
l=1

∑r
n=1 |EEn

lj|
, (3.24)

where µ⋆
ij is the mean of the absolute effects (Eq. (3.20)). To determine what

parameters are important and unimportant (for a given output Yj), the Sij’s are
sorted in ascending order leading to a sequence Si1j < Si2j < . . . < Sikj. The q
non-influential parameters (inactive variables in [174]) are then those for which

q∑
m=1

Simj <
h

100
,

q+1∑
m=1

Simj ≥
h

100
, (3.25)

where h is a predefined percentage, e.g. 30%. A higher (lower) unimportance
threshold h therefore leads to more (less) unimportant parameters. Influential
parameters on a given output (active variables in [174]) are those with a relative
importance evaluation index above a pre-determined threshold S0j. Following
[174],

S0j(h) = µ̂0j + 3σ̂0j (3.26)

is used, where µ̂0j and σ̂0j are the sample mean and standard deviation of the q
Sij’s corresponding to inactive variables, (i.e. variables that correspond to Simj

that satisfy Eq (3.25)). Thus,

µ̂0j =
1

q

q∑
m=1

Simj; (3.27)

σ̂0j =

√√√√ 1

q − 1

q∑
m=1

(Simj − µ̂0j)
2. (3.28)

This means that the importance threshold S0j is a function of the q unimportant
Sij’s, and consequently a function of the threshold h through Eq (3.25). This
ensures a significant difference between important and unimportant parameters.
Changing the importance threshold S0j(h) (given h), e.g. by increasing (decreas-
ing) the number of standard deviations, will decrease (increase) the number of

-61-
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important parameters, but does not influence the number of unimportant pa-
rameters. Both Wu [174] and Wang et al. [173] do not consider the standard
deviation of the effects σij, but purely base parameter importance rankings on
mean effects.

Finally, several papers use the ratio of (absolute) mean and standard de-
viation of the effects instead of their separate magnitudes to characterize pa-
rameter sensitivity, e.g. [156, 164, 175]. As an example, Menberg et al. [164]
define four regions: if for a given output µ⋆

ij/σij < 0.1, the effects are linear, if
0.1 < µ⋆

ij/σij < 0.5 they are considered monotonic, 0.5 < µ⋆
ij/σij < 1 constitutes

the ‘almost monotonic’ region and finally if µ⋆
ij/σij > 1, the effects are non-linear

and/or non-monotonic. Yang et al. [175] consider parameters to have non-linear
effects if |µij/σij| > 2/

√
r, where r is the number of independent samples for each

parameter. We do not use these ratios in this work.

3.4 Scaling of effects

The Elementary Effects method as described above works well for dimensionless
models where all inputs take values in [0, 1]. In practice, however, many models
are dimensional and/or their inputs take values on non-unit intervals. This may
lead to erroneous ranking results, as is shown in the examples below. To alleviate
this issue, the effects must be scaled or the model must be made dimensionless.
The latter is not always a feasible option, especially in biology or environmental
sciences where models may have over 100 parameters. In that case, it is difficult
to find all the dimensionless quantities, and even if those are known, it may be
very difficult to translate the sensitivity of the dimensionless quantities back to
sensitivity of the original parameters. In this section, we present new results to
demonstrate what types of scaling work and which do not.

Following Sin and Gernaey [163], we split the scaling of the effects in two,
considering separately scaling in the input- and output direction. We denote the
scaled effects by

ÊE
n

ij = EEn
ij

cxi

cyj
, (3.29)

where cxi
and cyj are the scaling of model factors and outputs, respectively. Since

the mean (median) of the scaled absolute effects is the same as the scaled mean

(median) of the absolute effects (e.g. for the mean 1
r

∑r
n=1 |ÊE

n

ij| = µ⋆
ij · cxi

/cyj),
we will simply write the latter in what follows.

3.4.1 Scaling effects in Xi-direction

The necessity of scaling the effects in the Xi-direction becomes evident with the
following two examples. The first shows the necessity of scaling in dimensional
models. Let Y (X1, X2) = X2

1 + X2 be the output of interest. Assume both X1

and X2 are dimensional. It follows from the form of Y that their dimensions are
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EEn
i · ckxi

, k = 1, 2, 3

EEn
i c

(1)
xi (input mean) c

(2)
xi (input std) c

(3)
xi (input range)

i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

(Scaled) elementary effect (Eq. (3.6)), 1 1 10 10 6.06 0.82 20 2

µi (Eq. (3.18)) or µ
⋆
i (Eq. (3.20))

Table 3.3: The right scaling must be chosen so that the results agree
with the notion of sensitivity. EE applied to Y = X1 +X2, with X1 ∈ [0, 20]
and X2 ∈ [9, 11], p1 = p2 = 4 and |δ1| = |δ2| = 2/3. Four trajectories are

considered, as depicted in Fig 3.3. The effects are scaled by c
(1)
xi = (maxi+mini)/2,

c
(2)
xi = ([(maxi −mini + 1)2 − 1]/12)1/2 or c

(3)
xi = maxi −mini. In all cases σi = 0.

[X1] and [X1]
2, respectively. By definition of an elementary effect we have

EEn
1 =

Y (X1 +∆1, X2)− Y (X1, X2)

∆1

=
(X1 +∆1)

2 +X2 − (X2
1 +X2)

∆1

(3.30)

= ∆1 + 2X1

and similarly

EEn
2 =

Y (X1, X2 +∆2)− Y (X1, X2)

∆2

= 1, (3.31)

where X1 and X2 are arbitrary values. The first effect has dimension [X1], so
the magnitude of the effect depends on the chosen units. On the other hand, the
effect of the second parameter is a dimensionless constant. The same holds for
the measures by which parameters are typically ranked (effect mean (Eq. (3.18))
and standard deviation (Eq. (3.19))): µ2 = 1 and σ2 = 0, while the measures for
X1 depend on the units of that parameter. In other words, if one does not scale
the effects, one can choose units such that µ1 ≪ µ2 (e.g. km), making it appear
like a parameter is relatively unimportant, but one can just as well select units
such that the opposite is true (e.g. mm), indicating the parameter is in fact the
most important one.

The second example shows the importance of scaling in models where param-
eters take values on non-unit intervals. Let Y = X1 +X2, with X1 ∈ [0, 20] and
X2 ∈ [9, 11], so that the inputs have equal mean but different standard deviation.
Clearly X1 contributes most significantly to the variability in the output. How-
ever, the unscaled effects for both parameters equal 1. Only by scaling can we
obtain results consistent with our notion of sensitivity; see Table 3.3.

3.4.2 What scaling to use in Xi-direction?

It is important to note that the following does not require dimensionality of the
model, but only supposes that the inputs take values on non-unit intervals.

Again let Y = X1 + X2, with X1 ∈ [0, 20] and X2 ∈ [9, 11] uniformly. Take
p1 = p2 = 4 and |δ1| = |δ2| = 2/3 and consider the 4 trajectories as depicted
in Fig 3.3. As is shown in Table 3.3, scaling by the distributional mean of the
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input and the distributional standard deviation of the input or parameter range
results in different rankings. Scaling by the distributional mean gives that both
parameters contribute equally to the output mean, when our notion of sensitivity
should require that Y is more sensitive to X1. On the other hand, scaling by the
distributional standard deviation or input parameter range does show that X1

contributes most significantly to the variation in the output. We thus conclude,
based on the examples presented here and existing literature (e.g. [126, 132]),
that scaling by a function of the input range (cxi

= cxi
(maxi − mini)) gives the

desired results.
The simplest such scaling is cxi

= maxi − mini, which is used here. There
might be cases where another scaling might be preferred. For instance, if the
input parameter is normally distributed (∼ N (µ, σ)), it might make more sense
to scale by the standard deviation. Alternatively one could think about how to
systematically set maxi/mini, e.g. as µ± 2σ. This is not further explored in this
work.

Importantly, there is a significant drawback of scaling by a property of the
input distribution, thereby making the effects directly dependent on this property,
when there is uncertainty about that distribution.

3.4.3 Scaling effects in output direction

Scaling in the output direction does not affect relative results for a given output,
since it just amounts to a multiplication of all effects by the same constant.
Reasons for scaling nevertheless are i) to non-dimensionalize the effects and/or
ii) to normalize the effects or measures to enable comparisons between outputs.

The key difference between scaling in the input and output direction is that
the inputs have a known (albeit assumed) distribution, while the outputs have an
unknown distribution. This means that one can use sample-independent scalings
for the inputs, such as the range, distributional mean or standard deviation, which
is desirable when constructing a consistent sensitivity measure. For the outputs,
one is limited to scalings that depend on sample-dependent values. One can
think of mean or standard deviation of the model outputs at the sampled points,
or the difference between smallest and largest output value across the sampled
space. Alternatively, scalings based on empirical data may exist; for a crop model,
biomass could be scaled by the mean biomass from field trials, but also this type
of scaling is sample-dependent. As such, sensitivity measures involving scaling in
the output-direction are best avoided. In the setting of Eq (3.29) this is equivalent
to taking

cyj = 1, (3.32)

which is done in this work.

3.4.4 A new sensitivity measure

Many of the alternative measures described in Section 3.3 (e.g. those proposed
in [173] and [174]), involve averaging or normalisation over elementary effects or
effect measures. While this may be logical for dimensionless models, the summa-
tion of quantities with potentially different dimensions – i.e. elementary effects,
effect means or effect standard deviations, which have dimension [Yj]/[Xi] – such
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as those in Eqs (3.21)-(3.24), cannot be interpreted. Moreover, most measures
mentioned in Section 3.3 lack any scaling of the effects, potentially leading to
erroneous ranking results.

We therefore propose a synthesis of existing measures, resulting in a scaled,
dimensionless and normalized measure agreeing with our notion of sensitivity,
whilst preventing erroneous ranking results in dimensional models or models with
inputs of arbitrary type and range. Taking either the mean of the absolute effects
(µ⋆

ij; Eq. (3.20)) or the median of the absolute effects (χij, following [164]), we
scale (following [126]) by

cxi
= maxi −mini, (3.33)

and normalize (following [174]), leading to the sensitivity measures

Sµ⋆(i, j) =
µ⋆
ijcxi∑k

l=1 µ
⋆
ljcxl

, (3.34)

or
Sχ(i, j) =

χijcxi∑k
l=1 χljcxl

(3.35)

respectively, where k denotes the number of parameters. Note that [χijcxi
] =

[µ⋆
ijcxi

] = [Yj]. Hence, the measures (3.34) and (3.35) are dimensionless, indepen-
dent of scaling in the output direction and are consistent with our notion of sensi-
tivity. Furthermore, the measures take values in [0, 1] and sum to unity (for each
output). This allows for the standardized way of identifying the (un)important
parameters as described by Wu [174] (Eq. (3.25)). Note that the measures (3.34)
and (3.35) resemble a discretized version of the differential importance measure
introduced by Borgonovo and Apostolakis [176].

Fig 3.5 shows a visualization of this approach for an example set of 50 sen-
sitivity indices under different unimportance levels (i.e. h-values in Eq. (3.25)).

We do not use the standard deviation of the effects in this work, but instead
focus on the median or mean of the absolute effects. Nevertheless, an interesting
open question is how one should integrate the standard deviation into the analysis.
One could for example consider a quantity analogous to the normalized sensitivity
measures in Eqs (3.34)-(3.35):

Sσ(i, j) =
σi,jcxi∑k
l=1 σl,jcxl

. (3.36)

where σi,j is as in Eq (3.19). The question is how one should reconcile the two
rankings (Sµ⋆(i, j) or Sχ(i, j) and Sσ(i, j)), especially when parameters score high
on one but low on the other.The work by Borgonovo and Rabitti [177] might be
of interest, as they show σ2

ij is a biased estimator of the Sobol total sensitivity
index (in the case of fixed step sizes). We leave this question for further research.
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Figure 3.5: Toy example: visualisation of (un)important parameters
and ranking. Sensitivity indices for 50 input parameters, ordered based on
Sχ (Eq. (3.35)). Vertical lines show unimportance threshold for h = 5 and 25%
using Eq (3.25), i.e. all parameters to the left of said line are unimportant. Hori-
zontal lines show the corresponding importance thresholds S0(h) = µ̂0+3σ̂0 (Eqs.
(3.27)-(3.28)) for these h-values, i.e. parameters above this line are deemed im-
portant. For h = 5%, all parameters are either important or unimportant; for
h = 25%, there is one parameter that is neither.

3.5 Comparing trajectory generation strategies

& sensitivity measures

In this section we investigate which trajectory generation method, in combina-
tion with which of the sensitivity measures (Eqs. (3.34)-(3.35)), is best for EE.
Nine trajectory generation methods can be distilled from Section 3.2. First, five
winding stairs designs:

w1. EOT (Enhanced optimized trajectories as employed by Khare et al. [157]);

w2. ‘standard’ Sobol winding (for real-valued inputs: generate all points by
Sobol QR [168]; for integer/Boolean type inputs: generate base value by
Sobol QR, transform to nearest discrete value as in Eq (3.2), then step by
δi in a winding design);

w3. ‘pinned’ Sobol winding (for all inputs: generate base value by Sobol QR,
transform to nearest discrete value as in Eq (3.2), then step by δi in a radial
design);

w4. ‘standard’ Rd winding (w2., but with Rd QR sequence);

w5. ‘pinned’ Rd winding (w3., but with Rd QR sequence);

and secondly four radial designs:

r1. ‘standard’ Sobol radial (w2., but using a radial design);

r2. ‘pinned’ Sobol radial (w3., but using a radial design);

r3. ‘standard’ Rd radial (r1., but with Rd QR sequence [171]);

r4. ‘pinned’ Rd radial (r2., but with Rd QR sequence).
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Saltelli et al. [133] showed that ‘standard’ Sobol radial is the better strategy
(compared to ‘standard’ Sobol winding) when estimating the Sobol total sen-
sitivity index (App. B.3, Eq. (S19)) for a selected set of test functions with
k = 10 input parameters. Campolongo et al. [165] showed for a maximum of
20 factors (and r = 2-8) that ‘standard’ Sobol radial is also more accurate than
OT in identifying (un)important parameters. In Section 3.5.3 and 3.5.4 we ex-
tend these results by estimating Sobol total senstivity indices and computing
parameter rankings, respectively.

Furthermore, even though most trajectory generation approaches are based on
maximizing spread and/or minimizing discrepancy (i.e. maximizing uniform pa-
rameter space coverage), the relation between spread/discrepancy and ability to
correctly rank parameters, identify (un)important factors or calculate sensitivity
indices has not yet been ascertained as far as we are aware. We therefore investi-
gate to what extent spread and discrepancy can be used as proxies for sampling
technique performance. We do this by calculating the spread and discrepancy of
the set of simulation points generated by several trajectory generation methods,
and comparing these with the results in Section 3.5.3 and 3.5.4.

We do not need to compare all 9 trajectory generation strategies in all experi-
ments. First of all, w3 and w5 (‘pinned’ Sobol/Rd winding) are extremely similar
to w1 (EOT), the only difference being the way the base points are sampled,
hence we only look at w1 (whenever computationally feasible) in what follows
and assume the results hold for w3 and w5 as well. Secondly, to compare the
performance of designs using Sobol sequences versus those using Rd sequences, it
suffices to include only a subset of variants; here w2, r1, r2 and r3 are considered.
To summarize, in Section 3.5.1-3.5.4 below we consider trajectory generation
methods w1 (whenever computationally feasible), w2, r1, r2 and r3. In addition
we include r4 in Section 3.5.1 and w4 in Section 3.5.3.

3.5.1 Spread and discrepancy of sampling strategies

The spread D (Eqs. (3.13-3.14)) measures how far apart trajectories are, but
does not necessarily indicate how well the points uniformly cover the parameter
space. Discrepancy is a quantity that measures the uniformity of finite point sets
[166]. It originated in the field of QR sequences (or low-discrepancy sequences),
where the goal is to generate sequences with high uniformity. More information
is provided in Appendix B.2. In this work we use the L2-based wrap-around
discrepancy W2 [178,179], given in closed form by

W 2
2 (N, k) = −

(
4

3

)k

+
1

N2

N∑
n=1

N∑
m=1

k∏
i=1

(
3

2
−
[
|x(n)

i − x
(m)
i |

·(1− |x(n)
i − x

(m)
i |)

])
, (3.37)

where N denotes the number of points and k is the dimension of the parameter
space. The lower the discrepancy, the better the set of points covers the space
uniformly.
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For sampling strategies w1, w2, r1, r2, r3 and r4, the spread (3.13)-(3.14) and
discrepancy (3.37) are calculated for various combinations of k (the number of
input parameters) and r (the number of trajectories). In particular, we vary r
between 4 and 100 while fixing k to 50 (Fig. 3.6), and vary k between 10 and 150
while fixing r to 6, 10, 20 or 35 (Fig. 3.7). This covers the range of numbers of
inputs and trajectories which are used in practice whilst being computationally
feasible. Runtime restricts the number of initial trajectories in EOT (especially
for large k); in Fig 3.6 the pool therefore contains M = 500 elements, while in
Fig 3.7 it contains only M = 200 elements; preliminary experiments (not shown
here) showed a negligible difference in spread and discrepancy upon enlarging this
pool.

The spread (Eq. (3.15)) is scaled by the number of elements in its expression,
i.e.,

D̃ =
D(

r
2

)
k[(k + 1)4 + (k + 1)2]

. (3.38)

The discrepancy (Eq. (3.37)) is scaled by the number of points in a trajectory
times the expected squared discrepancy of a random uniform sample of size r(k+
1), i.e.,

W̃ 2
2 (r(k + 1), k) =

rW 2
2 (r(k + 1), k)(
3
2

)k − (4
3

)k
=

W 2
2 (r(k + 1), k)

(k + 1)E[W 2
2 (Ur(k+1), k)]

. (3.39)

These scalings ensure that all results are the same order of magnitude.

Results

Our simulations (Fig. 3.6 and 3.7) reveal the following orderings for spread and
discrepancy:

Ordering of sampling strategies based on spread: The different sam-
pling strategies are ordered (from largest to smallest spread) as follows: 1) EOT;
2) ‘pinned’ Sobol/Rd radial; and with a significant margin 3) ‘standard’ Sobol/Rd

radial and ‘standard’ Sobol winding.

Ordering of sampling strategies based on discrepancy: ‘standard’
Sobol winding is always among the strategies with smallest discrepancy. The
ordering of the other sampling strategies depend on the number of input factors
k (and to a lesser extent on the number of trajectories r). Nevertheless, for suffi-
ciently large k (≳ 50), they are ordered (from smallest to largest discrepancy) as
follows: 1) ‘standard’ Sobol winding & EOT; 2) all others. For low k (≲ 15), they
are ordered as follows: 1) ‘standard’ Sobol winding; 2) ‘standard’ Sobol/Rd radial
3) ‘pinned’ Sobol/Rd radial; 4) EOT. In the intermediate range for k, ‘standard’
Sobol winding is the strategy with the lowest discrepancy, with the other tech-
niques following in a k- and r-dependent order.

It is worth noting that the scaled discrepancy (for fixed r and varying k) seems
to exhibit limiting behavior as k grows large (Fig. 3.7).
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Figure 3.6: Discrepancy W̃ 2
2 (left) and spread D̃ (right) for different

sampling strategies. The number of model inputs k = 50, while the number of
trajectories r varies. ‘Standard’ Sobol winding has the overall lowest discrepancy,
EOT has the overall highest spread.

3.5.2 Test functions

In the subsequent two sections, four test functions are used. The K- and G∗-
functions are two commonly used dimensionless test functions, and are considered
in Saltelli et al. [133], whose experiment we revisit. The six-dimensional test
function f6 has been previously presented in [118, 135]. The Penman-Monteith
equation [180] is a dimensional equation describing evapotranspiration.

The K-function with k inputs is given by

K(x) =
k∑

i=1

(−1)i
i∏

j=1

xj, (3.40)

where x ∈ [0, 1]k uniformly. The G∗-function is given by

G∗(x, a,α,η) =
k∏

i=1

(1 + αi)|2(xi + ηi − I[xi + ηi])− 1|αi + ai
1 + ai

, (3.41)

where I[·] is the integer part, ai, αi > 0 and ηi ∈ [0, 1] for i = 1, . . . , k. The xi are
assumed to be uniformly distributed in [0, 1]. Table 3.4 lists the values for a and
α for different k.

The K-function contains less non-linearity than the G∗-function. Likewise,
the low-dimensional versions (i.e. with k = 10) are more ‘difficult’ than their
high-dimensional counterparts (i.e. k = 75 for the K-function and k = 50 for the
G∗-function) because the additional parameters are all relatively unimportant;
for the G∗-function, this is in part due to the choice of constants in Table 3.4. As
both test functions only contain multiplications of inputs, this has a dampening
effect on the output.
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Figure 3.7: Discrepancy W̃ 2
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sampling strategies. In these figures, the number of model inputs k varies,
while the number of trajectories r is fixed. ‘Standard’ Sobol winding has the
overall lowest discrepancy, EOT and ‘pinned’ Sobol/Rd radial have the overall
highest spread.
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k a α

10 {0, 0.1, 0.2, 0.3, 0.4, 0.8, 1, 2, 3, 4} αi = 2 for

i = 1, . . . , 10.

50 {0, 0.1, 0.2, 0.3, 0.4, 0.8, 1, 2, 3, 4, αi = 2 for

0, 0.1, 0.2, 0.3, 0.4, 0.8, 1, 2, 3, 4, i = 1, . . . , 10;

0, 1, 2, 3, 4, 8, 10, 20, 30, 40, αi = 0.2 for

0, 2, 4, 6, 8, 16, 20, 40, 60, 80, i = 11, . . . , 50.

0, 5, 10, 15, 20, 40, 50, 100, 150, 200}

Table 3.4: Values of a and α for the G∗-function (Eq. (3.41)) for different numbers
of inputs k.

The six-dimensional test function f6 [118,135] is given by:

g1(x1) = − sin(πx1)− 0.3 sin(3.33πx1); (3.42)

g2(x2) = −0.76 sin(π(x2 − 0.2))− 0.315; (3.43)

g3(x3) = −0.12 sin(1.05π(x3 − 0.2))

− 0.02 sin(95.24πx3)− 0.96; (3.44)

g4(x4) = −0.12 sin(1.05π(x4 − 0.2))− 0.96; (3.45)

g5(x5) = −0.05 sin(π(x5 − 0.2))− 1.02; (3.46)

g6(x6) = −1.08; (3.47)

f6(x) =
6∑

i=1

gi(xi), (3.48)

where x ∈ [0, 1]6 uniformly. Note that this model is purely additive, which causes
QR radial and winding methods to produce identical results: f6(x+δi)−f6(x) =
gi(xi + δi)− gi(xi), so effects are the same for a radial and winding design (given
the underlying QR sequences are the same).

As an example of an environmentally relevant dimensional test case with non-
unit input ranges, we consider the Penman-Monteith equation for evapotranspi-
ration [180], given in energy flux rate form by:

ET =
∆ETAET + ρacpgaVPD

∆ET + γ(1 + ga/gs)
[Wm−2], (3.49)

where ∆ET is the rate of change of saturation specific humidity with air temper-
ature, AET is the difference between net irradiance and ground heat flux (i.e. the
available energy), ρa is the dry air density, cp is the specific heat capacity of air,
VPD denotes the vapor pressure deficit, ga represents air conductivity, γ is the
psychromatic constant and gs represents stomatal conductivity. The units and
ranges of the input parameters are listed in Table 3.5.

3.5.3 Comparing trajectory generation methods for esti-
mating Sobol total sensitivity indices
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Param. Units mini maxi STi
Source

∆ET kPa C◦−1 0.05 0.4 0.0225 [181]

AET W m−2 0 400 0.0467 [182]

ρa kg m−3 1.1 1.3 0.0081

cp J kg−1 C◦−1 1000 1050 0.0007

VPD kPa 0.3 3 0.6420

ga m s−1 0.0133 0.25 0.1108 [182]

γ kPa C◦−1 0.065 0.07 0.0013

gs m s−1 0.005 0.02 0.2929 [182]

Table 3.5: Units, input ranges and Sobol total indices STi
of the input parameters

of the Penman-Monteith equation for evapotranspiration (Eq. (3.49)).

Here we compare the ability of different trajectory generation methods to esti-
mate the Sobol total sensitivity index STi

(see App. B.3 for details) for the K-,
G∗-, and Penman-Monteith functions presented in Section 3.5.2. While this pa-
per focuses on EE, not Sobol/variance-based SA, this test is valuable because
analytical values for the Sobol total indices are readily available (or can easily be
approximated) and we may expect results to carry over to ranking parameters
in the EE framework (see Appendix B.3).Related work has recently been pub-
lished by Hoyt and Owen [183], who compare radial and winding schemes in the
context of computing the mean dimension (which can be expressed as a sum of
Sobol indices).

Numerical estimation of Sobol indices

The STi
of an output Y are estimated from a set of sample points using the Jansen

estimator [184,185]:

ŜTi
(Y ) =

1
2r

r∑
j=1

[
Y (Aj)− Y (A

(i)
Bj
)
]2

V̂ (Y )
, (3.50)

where V̂ (Y ) approximates the total variation, and is given by (following [133]):

V̂ (Y ) =
1

2r − 1
·

·

(
r∑

j=1

[Y (Aj)− Y0]
2 +

r∑
j=1

[Y (Bj)− Y0]
2

)
; (3.51)

Y0 =
1

2r

(
r∑

j=1

Y (Aj) +
r∑

j=1

Y (Bj)

)
. (3.52)

Here Y (Aj) is the value of Y at the j-th base point, Y (Bj) is the value of Y at

the j-th row of B, and Y (A
(i)
Bj
) is the value of Y at the perturbed value in the

xi-direction. The perturbed points are not taken into account for the estimated
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total variance V̂ (Y ), because that would lead to a biased estimate. Appendix
B.3 lists an alternative common estimation procedure for V̂ (Y ).

Test setup

Performance of the sampling techniques is measured by the mean absolute error
(MAE) of the absolute difference between the estimated (Eq. (3.50)) and ana-
lytical Sobol total sensitivity indices over 50 replications of the full experiment2

with r trajectories, given by

MAE =
1

50k

50∑
j=1

k∑
i=1

∣∣∣ŜTi
− STi

∣∣∣ . (3.53)

The analytical Sobol total indices STi
for the K- and G∗-function are given in

Appendix B.3 (Eqs. (B.20) and (B.22)). For the Penman-Monteith equation
(3.49), they are approximated using the Sensobol package [186] in R (default
settings) on a base sample size of 217 (see Table 3.5).

Uniqueness of the replicates is ensured in the following ways. For the K-
function and Penman-Monteith equation, a different part of the QR-sequence
is used in each replicate, i.e. the first replicate uses elements 1 to r, the second
replicate uses elements r+1 to 2r, etc. For the G∗-function, we use the same part
of the QR sequence each time, but randomly sample the values of ηi in Eq (3.41),
i = 1, . . . , k, since the total sensitivity index is independent of ηi. Differences
with the experiment in [133] are listed in Appendix B.3.

For the low-dimensional K- and G∗-function (k = 10), the MAE is calculated
for r = 186, 372, 745 and 1489 trajectories, as in [133]. In the higher-dimensional
tests (i.e. K-function with k = 75, G∗-function with k = 50 inputs), the number
of trajectories is lowered to r ∈ [3, 100] to keep the experiment computationally
feasible. For the Penman-Monteith equation, we use r ∈ [2, 100], allowing inclu-
sion of EOT. It was not computationally feasible to apply EOT in the K- and
G∗-function tests, but its behavior is expected to resemble the ‘pinned’ Sobol
radial method as these methods are very similar (see start of Sec. 3.5).

To assess the variability in estimating STi
caused by the randomness in the

G∗-function (as the ηi’s are randomly sampled), the MAE is calculated five times
for k = 10 (resulting in a total of 5 · 50 = 250 replicates of the full experiment)
and 9 times for k = 50 (450 replicates).

Results

For the K-function (k = 10; Fig. 3.8(a)) differences between our ‘standard’
Sobol results and Saltelli et al.’s are caused by using improved direction vec-
tors [168] in the Sobol QR sequence (the equivalent of a pseudo random seed).
‘Pinned’ Sobol radial is not visible in the plot, as the MAEs of this approach
were much larger than the plot range. Our results do not show that a radial
design unconditionally outperforms a (Sobol) winding design, which is reported
in [133]. In this case it depends on the chosen QR sequence. The only conclusion
we may draw is that for this test function, sampling techniques with a small step

2By (full) experiment we mean the set of simulations and corresponding outputs required
to calculate all k Sobol total sensitivity indices once.
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Figure 3.8: MAE for Sobol total sensitivity index of K-function (a) and
G∗-function (b); k = 10 parameters. (a): MAE (Eq. (3.53)) of 50 replicates
of the complete experiment with r = 186, 372, 745, 1489 trajectories applied to
the K-function (Eq. (3.40)). Green lines show results obtained by Saltelli et
al. [133]. In (a), ‘pinned’ Sobol radial produced larger errors than the plot range
shown here. (b): Mean MAE (Eq. (3.53)) ± 1 std bounds of 250 (5 ·50) replicates
of the complete experiment applied to the G∗-function (Eq. (3.41) and Table 3.4
with k = 10).

size (QR radial/winding) are better than those with a large step size (‘pinned’
Sobol, EOT).Although there is significant variation present in the G∗-function
(k = 10, Fig. 3.8(b)), indicating that 50 replicates might be low, it is clear that
the ‘pinned’ method employing a large step size performs worse. Moreover, for
this more non-linear function radial designs have lower errors than their winding
counterparts, which is consistent with [133]. For both the K- and G∗-function
(k = 10), the Rd sequence performs similar to or worse than Sobol sequences.

In the higher-dimensional tests (i.e. K-function with k = 75, G∗-function
with k = 50 inputs; Fig. 3.9), we discard the Rd-based sampling strategies as
these performed equal to or worse than their respective equivalent using a Sobol
sequence in the lower-dimensional tests. Surprisingly, ‘pinned’ Sobol radial seems
to perform slightly better than ‘standard’ Sobol winding for the G∗-function with
50 inputs (as opposed to the k = 10 case), although the standard deviation
bounds overlap for low r. Nevertheless, ‘standard’ Sobol radial still results in
the lowest MAE. In the 75-dimensional K-function differences between ‘standard’
Sobol radial and ‘standard’ Sobol winding are negligible, but ‘pinned’ Sobol radial
again shows a significantly higher MAE. Results for the K-function with k = 50
and k = 100 are not shown, but are similar to the k = 75 case.

Results for the Penman-Monteith function (Fig. 3.10) show a negligi-
ble difference between a radial and winding design and between a Sobol or Rd

QR-sequence, but significantly larger errors for large step-size methods (‘Pinned’
Sobol radial and EOT).
Finally, our results suggest spread and discrepancy are not useful proxies of tra-
jectory generation strategy performance. Comparing the ordering of the different
strategies based on spread/discrepancy (Sec. 3.5.1, Fig 3.6-3.7) with those based

-74-



Comparing trajectory generation strategies & sensitivity measures

0

0.01

0.02

0.03

0.04

0.05

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

r

M
A

E

K(x);
k=75

0

0.5

1

1.5

2

2.5

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

r

G*(x);
k=50

'Standard' Sob. rad. 'Standard' Sob. wind.

'Pinned' Sob. rad.

(a) (b)

Figure 3.9: MAE for Sobol total sensitivity index of K-function (k = 75
parameters; (a)) and G∗-function (k = 50; (b)). (a): MAE (Eq. (3.53)) of
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Figure 3.10: MAE (Eq. (3.53)) for Sobol total sensitivity indices of the Penman-
Monteith function for evapotranspiration (k = 8 parameters; Eq. (3.49)).
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Figure 3.11: Correlations ρkendall (Eq. (3.54)) and ρpearson (Eq. (3.56))
between estimated and actual parameter rankings for the K-function
(Eq. (3.40); (a)-(b)) and G∗-function (Eq. (3.41) and Table 3.4; (c)-
(d)) with k = 10 parameters. The Pearson correlation assigns more weight
to important parameters. The means of the correlation coefficients are shown,
based on 50 replicates of the full experiment.

on the MAE (Fig. 3.8-3.10), it is clear that the orderings are almost opposite in
the case of spread, and there is only a partial agreement in the case of discrepancy
(for low k, ‘pinned’ methods are correctly estimated to exhibit higher errors).

3.5.4 Comparing parameter importance rankings from es-
timated Elementary Effects and rigorous Sobol sen-
sitivity

While it may be expected that the ability to accurately estimate STi
(of one

approach relative to others) generally translates to an equal ability to rank pa-
rameters and/or identify (un)important parameters [187], the latter should be
tested separately. Furthermore, estimating Sobol sensitivity indices does not give
any information about the performance of EE aggregation methods (e.g. µ⋆

i or
χi). Therefore, we revisit the aforementioned test functions and sampling strate-
gies, but now with a focus on the ability of the EE-based sensitivity measures Sµ⋆

and Sχ to correctly rank the inputs when compared to Sobol sensitivity rankings.
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Correlation coefficients

Following [185], the following coefficients are used to ascertain how well the pre-
dicted EE-based rankings match with the analytical rankings. The analytical
rankings are based on the (approximated) analytical values of the Sobol total
sensitivity indices (Appendix B.3, Eqs. (B.20) and (B.22); Table 3.5). Firstly,
the Kendall (τ -a) correlation coefficient3 [188], given by

ρkendall(x,y) =
(# concordant pairs)−(# disconcordant pairs)

(k2)

=
2

k(k − 1)

∑
i<j

sign(xi − xj)sign(yi − yj), (3.54)

where x and y are sets of observations (in our case analytical and estimated
ranks), is a measure of correlation between estimated and actual ranking. It
gives equal weight to all ranks.

For the second coefficient, the ranks are transformed to Savage scores. The
score of a parameter with rank j becomes [185]

sj =
k∑

i=j

1

i
, (3.55)

e.g. if k = 3 and the parameters are ranked from most to least important as
x1, x2, x3, the respective Savage scores are

11
6
, 5

6
and 1

3
. Subsequently the Pearson

correlation coefficient of these transformed quantities (here again denoted by x
and y) is calculated, which is given by [185]

ρpearson(x,y) = (3.56)

n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
i=1 yi√

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
√

n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2
.

ρpearson assigns more weight to correctly identifying the most important parame-
ters. Both ρkendall and ρpearson take values in [−1, 1], with 0 indicating no correla-
tion at all, and 1 meaning the estimated and actual rankings are identical.

Test setup

Uniqueness of the 50 replicates is obtained as in Section 3.5.3. The number of
trajectories is restricted to practical values, i.e. r = 2, 4, 6, 10, 15, 25, 40, 100.
EOT is not shown for models with k = 50 out of computational considerations.

Results

As expected, almost all sampling strategies are capable of accurately ranking the
input parameters of the K-function (both for k = 10 and k = 50) with a low
number of trajectories (Fig. 3.11(a)-(b) and 3.12(a)-(b)). The only exceptions
are EOT and ‘pinned’ Sobol radial based on the mean of absolute effects µ⋆

i for
k = 10, which nevertheless still reach Pearson correlations over 0.9.

3[185] uses the τ -b coefficient, which accounts for ties. Ties do not occur in these rankings,
however, so here the simpler τ -a variant is used.
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Figure 3.12: Correlations ρkendall (Eq. (3.54)) and ρpearson (Eq. (3.56))
between estimated and actual parameter rankings for the K-function
(Eq. (3.40); (a)-(b)) and G∗-function (Eq. (3.41) and Table 3.4; (c)-
(d)) with k = 50 parameters. The Pearson correlation assigns more weight
to important parameters. The means of the correlation coefficients are shown,
based on 50 replicates of the full experiment.

The case of the G∗-function is more interesting (Fig. 3.11(c)-(d) and 3.12(c)-
(d)). Approaches based on the median χi generally perform equal or better than
their counterparts based on µ⋆

i , especially in ranking important parameters. For
k = 10 (Fig. 3.11(c)-(d)) EOT consistently yields among the lowest correlations,
both based on µ⋆

i and χi. Interestingly, ‘standard’ Rd radial gives among the
highest correlations for both k = 10 and k = 50, while it was inferior in estimating
total sensitivity indices.

For the f6-function the methods employing small step sizes (‘standard’ Sobol/Rd

radial or winding) clearly outperform large step size methods (EOT and ‘pinned’
Sobol radial) (Fig. 3.13). There are no clear differences between Sobol and Rd

QR sequences. Median-based approaches result in higher Pearson correlations,
but roughly equal Kendall correlations.

Results for the Penman-Monteith equation paint a different picture (Fig.
3.14). Approaches based on the mean µ⋆

i clearly outperform their counterparts
based on the median χi. Differences between sampling strategies are small, al-
though EOT generally results in the lowest correlations and ‘Pinned’ Sobol radial
performs best. Fig 3.14 also highlights the need for scaling the effects; without
scaling, no strategy is capable of accurately ranking the input parameters.
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Figure 3.13: Correlations ρkendall (Eq. (3.54)) and ρpearson (Eq. (3.56))
between estimated and actual parameter rankings for the f6-function
(Eq. (3.48)). The Pearson correlation assigns more weight to important param-
eters. The means of the correlation coefficients are shown, from 50 replicates
of the full experiment. Note that ‘standard’ Sobol radial (yellow) and winding
(green) produce identical results (given a sensitivity measure), as the test func-
tion is purely additive; only the yellow line is visible.

To summarize, small step size methods (‘standard’) generally perform better
than or equal to large step size methods (EOT/‘pinned’). There is no one sensi-
tivity measure that always results in the highest correlations; our results indicate
Sµ⋆ (based on the mean of absolute effects) might in some cases be preferable,
but in other cases Sχ (based on the median of absolute effects) yields higher
correlations between analytical and calculated rankings. Notably, ‘standard’ Rd

radial performs well across the range of r tested for the G∗-function, making it
an interesting trajectory generation method for further research.

Finally, the results in this section are further proof that spread and discrep-
ancy are poor proxies of trajectory generation method performance (see Sec. 3.5.1
and Fig 3.6-3.7).

3.6 Conclusion

In this work, we looked at the Elementary Effects (EE) sensitivity analysis method
in the context of unscaled dimensional models with potentially arbitrary input
types (real, integer, Boolean). Such models are commonplace in biology, environ-
mental sciences and building engineering [116–118].

We showed that where model parameters are dimensional or take values on
non-unit intervals it is necessary to scale the effects in the input direction by
a function of the input parameter range, e.g. maxi − mini, to avoid erroneous
ranking results. Existing descriptions, software implementations and numerous
(including very recent) applications of elementary effects methods do not take
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Figure 3.14: Correlations ρkendall (Eq. (3.54)) and ρpearson (Eq. (3.56))
between estimated and actual parameter rankings for the Penman-
Monteith function for evapotranspiration (Eq. (3.49)). The Pearson cor-
relation assigns more weight to important parameters. The means of the correla-
tion coefficients are shown, from 50 replicates of the full experiment. The middle
figure shows ρkendall using unscaled effects, leading to incorrect rankings.

scaling or parameter units into account, which may yield results that are wrong.
However, scaling by (a function of) the input parameter range has the significant
drawback of making the effects directly dependent on the input range, making it
of paramount importance to choose parameter bounds with care. Scaling in the
output direction is not required to ensure consistent rankings, and is best avoided
since these scalings are necessarily dependent on sampled simulation points or ex-
perimental data. We propose two new dimensionless normalized measures based
on existing literature (similar to the differential importance measure in [176]): Sχ

(Eq. (3.35), based on the median of absolute effects) and Sµ⋆ (Eq. (3.34), based on
the mean of absolute effects). Because the measures are normalized, they allow
for a standardized way of identifying (un)important parameters (as described in
[174]).

Prior to testing these new sensitivity indices, we evaluated the ability of 9
trajectory generation methods to calculate Sobol total sensitivity indices for 4
different test functions (extending the experiment in [133] (Fig. 3.8-3.10)). We
then assessed the ability of the new EE-based sensitivity indices (given a tra-
jectory generation method) to rank parameters for the 4 different test functions
(Fig. 3.11-3.14). This revealed:

• Methods employing the mean-based measure Sµ⋆ (Eq. (3.34)) can perform
approximately equal to (Fig. 3.11-3.12), better than (Fig. 3.14), or worse
than (Fig. 3.13(c)) those using the median-based measure Sχ (Eq. (3.35)).
In contrast, [164] finds that median-based measures result in more stable
ranking results.

• Small step size methods (i.e. those using step sizes dictated by QR se-
quences) generally perform equal to or better than large step size methods
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(e.g. EOT, ’pinned’ versions) (Fig. 3.8-3.10 and 3.13).
• There is no consistent and clear difference between methods employing a
Sobol QR sequence versus those using the new Rd sequence. Neverthe-
less, the performance of the Rd sequence in the G∗- and f6-functions (Fig.
3.12(c)-(d) and 3.13) in combination with its simple description merits fur-
ther research into its potential applications.

• While [133] concludes a radial design is the preferred choice over a winding
design, our results show no consistent and clear distinction between the two,
except in the G∗-function (Fig. 3.8(b)) where radial designs are slightly
better.

• The Penman-Monteith evapotranspiration example clearly shows the im-
portance of scaling EE-based sensitivity indices to obtain correct rankings
(Fig. 3.14).

Our recommendation is to always compute both sensitivity measures (since it
does not require additional simulations), and to further investigate the output
data if the resulting rankings differ significantly. Furthermore, a small step size
method is preferred, but it does not seem to be important whether one uses a
Sobol or Rd QR sequence, or whether one uses a winding or radial design.

Finally, we showed that trajectory spread and discrepancy of the set of simu-
lation points are poor predictors for the ability of a trajectory generation method
to correctly rank parameters, identify (un)important inputs or calculate sensitiv-
ity indices. This raises the question of what are good proxies of performance,
and whether basing sampling techniques on spread maximisation (e.g. EOT) or
discrepancy minimization should be avoided. The recent work by Lo Piano et al.
[189] on the trade-off between explorativity (the fraction of non-repeated coor-
dinates in the design) and economy (the number of elementary effects obtained
from a given number of simulations) could be an alternative to considering spread
and discrepancy, although the designs considered in our work have both equal ex-
plorativity and economy.

In the future, it would be interesting to investigate more QR-sequences than
Sobol and Rd, and to investigate further the performance of small versus large
step size methods. Nevertheless, this work provides modellers with an up-to-date
formulation of EE for general models, thereby aiding model development in the
biological and environmental sciences.
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4 Elementary Effects for general models:

Application

This chapter is an adaptation of:

R. J. L. Rutjens1, J. B. Evers2, L. R. Band1,3, M. D. Jones4 and M. R. Owen1.
Scaled Elementary Effects for global sensitivity analysis of functional-structural
plant models, In preparation, 2023.

1 School of Mathematical Sciences, University of Nottingham, United Kingdom

2 Centre for Crop Systems Analysis, Wageningen University & Research, the Netherlands

3 School of Biosciences, University of Nottingham, United Kingdom

4 School of Geography, University of Nottingham, United Kingdom

Sections 4.4-4.6 fully consist of original work by the author of this thesis. Other
sections are a mix of original work by the author of this thesis, contributions by
co-authors, and existing work by other authors.
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4.1 Introduction

Performing global sensitivity analysis on functional-structural plant models (FSP
models) can greatly benefit both model development and analysis by identifying
the relevance of parameters for specific model outputs. Setting unimportant
parameters to a fixed value decreases dimensionality of the typically large model
parameter space. Efforts can then be concentrated on accurately estimating the
most important input parameters. This is in particular true for FSP models [139,
190, 191], which simulate growth and development of plants in 3D as a function
of environmental factors such as light, temperature and nutrition. Calibration
of these parameters often requires empirical data, which can be costly or simply
impossible to obtain.

While there are certainly examples of GSA in FSP modelling [192–196], in
other cases SA has not yet been applied, or analyses may consist solely of OAT
or visual inspection of model outputs [190,197–204]. This does not invalidate the
modelling exercise, but does highlight that GSA is not yet typically incorporated
as standard into the study of FSP models.

The objective of this chapter is to show the benefit of performing GSA in
FSP models. We therefore apply the Elementary Effects method, as described in
Chapter 3, on an FSP model simulating a maize stand for 160 days of growth,
adapting the method to models with inherent randomness. Three outputs are
considered: yield, peak biomass and peak leaf area index (LAI).

4.2 Elementary Effects method

Here we only state the key settings of our EE analysis; for a detailed treatise of
the Elementary Effects for general models the reader is referred to Chapter 3.

A radial trajectory design is used, where the base and perturbed points (to-
gether forming the set of simulation points) are generated using the Rd quasi-
random (QR) sequence [171]. Following Chapter 3, we scale the elementary effects
of input parameter i by their corresponding input range:

cxi
= maxi −mini. (4.1)

Subsequently, we consider the dimensionless normalized sensitivity measure based
on the median of scaled absolute effects

Sχ(i, j) =
χijcxi∑k
l=1 χljcxl

, (4.2)

where k denotes the number of input parameters, and j denotes the output.
To identify (un)important parameters, we follow the procedure outlined in [174]
and further detailed in Chapter 3, with unimportance threshold h = 30%, and
importance threshold

S0j(h) = µ̂0j + 3σ̂0j, (4.3)

where µ̂0j and σ̂0j are given in Equations (3.27)- (3.28).
Finally, to gain insight in the non-linear response of outputs to inputs and

detect potential interaction effects, we consider the relative standard deviation
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(RSD) defined by

RSDij =
σij

µ⋆
ij

· 100%, (4.4)

where σij is the standard deviation of the (non-absolute) effects {EEn
ij}n=1,...r

and µ⋆
ij is the mean of the absolute effects {|EEn

ij|}n=1,...r. In other works [156,
164,175], ratios of µ⋆ and σ are used to classify levels of non-linearity, interaction
effects or general importance, but in this work RSD is purely used as a tool to
inform which parameters might deserve a more detailed analysis (for example
those with a small sensitivity index Sχ but a high RSD).

4.3 Model description

A complete description of how the environment, physiology, plant development
and plant architecture are modelled is provided in Section 2.6.

4.4 Simulations and analysis

For each of the selected simulation points (as described in Section 4.2) we simulate
a field of 100 maize plants until harvest at day 159. The field is cloned 10
times in each direction to reduce border effects. Three outputs are taken into
consideration: yield at the final simulation day (grain biomass per m2), peak
above ground biomass (biomass per m2) and peak leaf area index (LAI, in m2 of
leaf area per m2 of ground area).

4.4.1 Model parameters

A number of model parameters are fixed throughout the analysis as they have
known and fixed values (e.g. latitude) or concern management practices (e.g. row
distance). Their values and a description are given in Table 4.1.

More importantly, 52 parameters are taken into account in this analysis. Their
input ranges and brief descriptions are included in Table 4.2. Inputs are grouped
into four categories: architectural, developmental, environmental and physiolog-
ical (Table 4.2). For each parameter, 40 effects are considered in a radial design
as described in Chapter 3, leading to a total of 40 · (52 + 1) = 2120 simulations
per replicate. For determining what parameters are (un)important, an h-level
(Eq.(3.25)) of 30% is used.

Table 4.1: Input parameters with fixed values in the GSA for maize.

Parameter Value Unit Description

nrRows 10 - Number of rows in stand

nrPlants 10 - Number of plants per row

rowDistance 0.6 m Distance between rows

Continued on next page
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Parameter Value Unit Description

plantDistance 0.2 m Distance between plants within a
row

delay 0 days Germination delay in days, to rep-
resent late sowing

harvest 160 days Harvest time in days after emer-
gence

offspotIntraRow 0 m Distance plant seed is off-spot in
row-direction

offspotInterRow 0 m Distance plant seed is off-spot per-
pendicular to row-direction

maxWidthInt 0.02 m Maximum internode width

plantDeath False - If true, entire plants are taken
from scene in case of very low
source/sink ratio

rfrIncoming 1.2 - red/far-red ratio of the incoming
radiation

depth 10 - maximum number of reflections/-
transmissions of a ray in light
model

nrRays 2 M - Number of rays in light model

nrClones 10 - Number of cloned canopies in x
and y direction to eliminate bor-
der effects

latitude 52 ◦ Latitude of scene location

startingDayOfYear 90 - Simulation starting day of year

O2 210 ppm Atmospheric oxygen level

Transmissivity 0.3548 - Fraction of light that transmitted
through atmosphere on a day of
clear sky

FractionDiffuseLightDaily 0.8 - Fraction of diffuse light in the total
radiation on a day of clear sky

tilt 23.45 ◦ Tilt of the earth axis

c 0.4 - Parameter for collecting radiation
transition related with elevation
angle

n 24 - Number of direct light sources dur-
ing the day
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Table 4.2: Parameters included in EE analysis, which belong to the indicated categories (A: architec-
tural; D: developmental; E: environmental; P: physiological). All parameters are real numbers except
15, 18, 29 and 51 which are integers; in those cases the description includes the number of levels
pi and step size |δi|. The right-most three columns indicate whether a parameter is unimportant
(x), important (number indicates rank, 1 being most important) or neither (-) for three outputs.
∗: maximum plant biomass (before final simulation day); †: maximum leaf area index (before final
simulation day).
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1 Ca E Atmospheric CO2 level ppm 300 600 x x x

2 VPD E Vapour pressure deficit kPa 0.3 3 12 12 x

3 tav a E Average daily
temperature (Eq. (2.7))

°C 9.095 12.305 4 4 14

4 tav b E °C 6.4175 8.6825 9 10 -

5 specificInter-
nodeLength

A Internode length per unit
biomass (SIL)

m·g−1 0.025 0.075 x - x

6 LMA A Leaf mass per unit area mg·cm−2 4 7 7 6 1

7 lwRatio A Ratio of leaf blade length
and width

- 9.18 11.22 x x x

8 maxWidth A Location where leaf width
is maximal

- 0.6 0.7 x x x

9 shapeCoeff A Leaf shape coefficient - 0.7 0.8 x x x

10 leafAngle-
Lower

A Insertion angle of leafs
with rank equal to or
below rankLower

° 40 75 x x x

11 leafAngle-
Upper

A Insertion angle of leafs
with rank above
rankLower

° 20 60 x x 11

12 leafCurve A Leaf curvature - angle
between bottom and top
of leaf blade

° 10 100 x x 10

13 petioleFrac-
tion

A Fraction of biomass
partitioned to the petiole

- 0.0425 0.0575 x x x

14 specificPeti-
oleLength

A Petiole length per unit
biomass

m·g−1 2.125 2.875 x x x

Continued on next page
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15 rankLower A Number of lower
phytomers that contain
nrLeavesLower leaves;
this partitions a plant in
an lower and upper part
with (potentially)
different architectural
properties
Integer-valued, pi = 3,
δi = 1/2

- 2 4 x x x

16 phyllotaxis A Angle between
consecutive leaves along
the stem

° 110 250 x x x

17 sheathscale-
factor

A Determines sheath width - 20 40 x x x

18 nrShortInter-
nodes

P Number of bottom
internodes that do not
elongate
Integer-valued, pi = 3,
δi = 1/2

- 3 5 x x x

19 wmaxRoot P Maximal root system
biomass (under ideal
no-stress conditions)

mg 10000 50000 11 x 7

20 wmaxFlower P Maximal flower biomass mg 200000 400000 8 x x

21 wmaxInt P Maximal internode
biomass

mg 3000 5000 x x x

22 wmaxLeaf P Maximal leaf biomass mg 4000 6000 x x 9

23 teRoot P Growth duration in
thermal time of root
system (no growth after
this time)

°C day 1620 1980 x x x

24 teFlower P Growth duration in
thermal time of flower

°C day 900 1100 x x x

25 teInt P Growth duration in
thermal time of internode

°C day 450 550 x x x

26 teLeaf P Growth duration in
thermal time of leaf

°C day 450 550 x x 13

27 nitro P Nitrogen content of fully
lit leaf

g·m−2 1.5 4 2 1 3

28 leafLife P Life span of leaf since
appearance (expressed as
number of times teLeaf)

- 2 4 x x x

Continued on next page
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29 varDelay P Max variation in
germination delay
Integer-valued, pi = 5,
δi = 2/4

day 2 6 x x x

30 seedMass P Seed endosperm mass mg 250 300 x x x

31 SASmax P Shade avoidance
syndrome amplitude
factor
(cSAS = 1 + (SASmax−
1) exp(−SASk · sr), where
sr is the plant source/sink
ratio)

- 10 30 x x x

32 SASk P Shade avoidance
syndrome exponent factor

- 1 15 x x x

33 reflectance-
PAR

P Reflectance of PAR by
leaves and stem (fraction
of incoming PAR)

- 0.07 0.15 x x x

34 transmitt-
ancePAR

P Transmittance of PAR by
leaves (fraction of
incoming PAR)

- 0.04 0.15 x x x

35 k2ll a P In calculation of
conversion efficiency of
incident light into
electron transport at
strictly limiting light

mol· mol−1 0.0396 0.0484 x x x

36 k2ll b P mol· mol−1 0.1845 0.2255 x 11 x

37 Vcmax25 a P In calculation of
maximum rate of Rubisco
activity-limited
carboxylation

µmol m−2s−1 27.36 33.44 x x x

38 Vcmax25 b P µmol m−2s−1 3.924 4.796 - x x

39 Jmax25 a P In calculation of
maximum rate of e-
transport under saturated
light

µmol m−2s−1 89.442 109.318 x x x

40 Jmax25 b P µmol m−2s−1 5.175 6.325 x x x

41 Rd25 P Day respiration
(respiratory CO2 release
other than by
photorespiration)

µmol m−2s−1 1.08 1.32 x x x

42 TPU25 a P For calculation of
triose-phosphate
utilization

µmol m−2s−1 4.8303 5.9037 x x x

Continued on next page
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43 TPU25 b P µmol m−2s−1 0.837 1.023 x x x

44 rg P Growth respiration g·g−1 day−1 0.255 0.345 10 9 12

45 kNkL P Ratio of leaf nitrogen and
light extinction
coefficients (kN/kL)

- 0.2 1 6 5 5

46 rm P Maintenance respiration g·g−1 day−1 0.01275 0.01725 x - x

47 fCO2 P Conversion factor of CO2
to biomass

- 0.51 0.69 5 3 6

48 tb D, P Base temperature for
thermal time calculation

°C 6 10 1 2 8

49 plastochron-
const

D Plastochron (thermal
time between creation of
two phytomers) is this
constant (∈ [0, 1]) times
phyllochron, to ensure
that plastochron is
smaller than phyllochron

- 0.8 0.95 x x x

50 phyllochron D Thermal time between
appearance of two leaves

°C day 25 35 x x x

51 finalPhytNum D Final number of main
stem vegetative
phytomers
Integer-valued, pi = 6,
δi = 3/5

- 10 20 3 8 4

52 fallPAR D Light level below which
leaf drops

µmol m−2s−1 20 100 x 7 2
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4.4.2 Inherent model randomness

EE is designed for deterministic models. Our model, however, contains inher-
ent randomness, not caused by the input parameters, but for example by small
random perturbations in internode orientation or leaf angle (to capture the nat-
ural variation of a species population) or by inherent randomness in the light
submodel. To address this, we repeat each of the simulations three times, and
average the outputs of the three replicates at each simulation point. We then cal-
culate effects and sensitivity indices of these averaged values. Since the relative
standard devation (RSD) of the output values of the different replicates at each
simulation point – the standard deviation of three replicates divided by the mean
– is low (Fig. 4.1), we argue three replicates is sufficient in this case.

RSD
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Peak biomass
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Figure 4.1: Relative standard deviation (RSD, in %, Eq. (4.4)) over 3 replicates
of outputs at each simulation point.

4.4.3 Effect outliers

Because we use a quasi-random (QR) sequence [171] to generate the simulation
points, in a small number of cases the distance from base point to perturbed
point is relatively very small (Fig. 4.2). This is not a problem if the model is
deterministic, but since our model contains inherent randomness it causes effect
outliers, which could cause changes in the sensitivity indices. This can be seen
as follows. We split the output Y in a deterministic part (i.e. the value if the
model was deterministic) and a random part, which leads to the (unscaled) effect
for input xi and trajectory n = 1, . . . , r given by:

EEn
i =

EEn
det,i

δni
+

EEn
rnd,i

δni
. (4.5)

A problem arises if there are a few n for which |δni | ≪ 1. The deterministic

part
EEn

det,i

δni
should be the same order of magnitude for all n, but for the n with

a very small (relative) step size the stochastic part
EEn

rnd,i

δni
may blow up and

become dominant (relative to the other n with larger step sizes). In preliminary
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Figure 4.2: Scaled dimensionless step sizes (on [0,1]) for each input parameter.
Effects corresponding to step sizes smaller than the threshold (red line) are labeled
as outliers and removed from the analysis. Threshold is described in Section 4.4.3.
The label colours represent the parameter categories. Black: architectural; red:
developmental; green: environmental; blue: physiological. See Table 4.2 for more
information about the input parameters.

experiments (not shown here) we found up to a thousandfold increase in the
elementary effect compared to the mean for that parameter. To remedy this issue,
we remove effect outliers. Specifically, assuming coordinates generated by a QR
sequence are identical and independent uniformly distributed (so xn

i ∼ U([0, 1]),
the scaled dimensionless step size |δni | follows a triangle distribution with CDF
F (|δni |) = 2|δni | − |δni |2 for 0 ≤ |δni | ≤ 1. Outliers are then those effects for which
the step size is an extreme value of this distribution, here defined as those for
which F (|δni |) < 0.005. It follows that all effects for which |δni | < 1−

√
398/20 ≈

0.0025 are classified as outliers, and are thus removed from the analysis. In the
results presented below, we removed 13 effects distributed over 12 inputs out of
a total of 40 · 52 = 2080 elementary effects (Fig. 4.2).

4.5 Results

Under the unimportance threshold of h = 30% and the importance threshold
in Equation (4.3), 12 out of 52 parameters were classified as important (39 as
unimportant) for the outputs yield and peak biomass, and 14 parameters were
found to be important (37 unimportant) for peak LAI (Fig. 4.3 and Table 4.2).
This leaves one parameter for each output that is neither unimportant nor im-
portant. A visualisation of all field-level output data, and plots of the sensitivity
index Sχ (not shown in this section) over time for several outputs can be found
in Appendix C.
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4.5.1 Important parameters

A number of parameters in the model are currently set to a fixed value for all
species and/or organs, although it is known these are actually species- or even
organ-specific. The fact that some of these – for example growth respiration
(parameter 44: rg) or the conversion factor for CO2 to biomass (parameter 47:
fCO2) – are identified as important indicates it might be worthwhile to make
these parameters species- or organ-dependent. Likewise, average temperature
parameters being identified as important for yield and peak biomass indicates
that i) it is important to have accurate temperature data or predictions; and ii)
it might be worthwhile to add a more detailed description (in time and/or space)
of temperature.
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Figure 4.3: Sensitivity indices Sχ(i, j) (Eq. (4.2)) for different outputs. See Table
4.2 for more information about the input parameters.

This sensitivity analysis also suggests the description of some species-dependent
parameters is too simplistic. As an example, leaf mass per unit area (parameter
6: LMA) is currently modelled as homogeneous in space and constant in time. In
reality, this quantity is likely heterogeneous in both space and time [205]. This
input is among the most important ones for all outputs, which implies it may be
useful to include more detail in this aspect of the model.
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Interestingly, some of the important parameters cannot generally be measured
in an experimental setting, or at best can only be roughly estimated. Among these
are theoretical maximum biomass of the root system, flower and leaf (parameters
19: wmaxRoot, 20: wmaxFlower and 22: wmaxLeaf).

4.5.2 Unimportant parameters

While two architectural parameters are identified as important for the output
peak LAI (leaf curvature (parameter 12: leafCurve) and insertion angle of upper
leaves (parameter 11: leafAngleUpper)), the vast majority are deemed unim-
portant for all outputs (Fig. 4.3). This suggests that for the current maize
model, parameters such as internode length per unit biomass (parameter 5: speci-
ficInternodeLength), petiole length per unit biomass (parameter 14: specificPeti-
oleLength), angle between consecutive leaves (parameter 16: phyllotaxis), and
a number of leaf shape parameters (parameters 7: lwRatio, 8: maxWidth, 9:
shapeCoeff), which might be time-consuming or costly to measure, can be fixed
or estimated superficially.

Furthermore, the parameters governing the strength of the shade avoidance
syndrome (SAS; parameters 31 and 32) (in this case shade-induced internode
extension) are identified as unimportant, even though the range for these pa-
rameters was quite wide. This does not mean that the SAS mechanism itself is
irrelevant, as plant architecture changes significantly depending on the amount of
competition [150], but instead our analysis suggests that variation in the strength
of the SAS response does not lead to significantly different LAI, yield or biomass.

Surprisingly, phyllochron (parameter 50) and plastochron (parameter 49) are
also classified as unimportant. Simulations with phyllochron set to the minimum
and maximum values of its input range show a noticeable effect on the architecture
(Fig. 4.7), but, like SAS, our analysis suggests that this does not translate to a
significant impact on field-level outputs yield, peak biomass or peak LAI (Fig.
4.5).

4.5.3 Relative standard deviation

A number of inputs have a low sensitivity index but high RSD (Eq. (4.4)), such as
PAR reflectance (parameter 33: reflectancePAR) and transmittance (parameter
34: transmittancePAR) by leaves and stem, and a photosynthesis parameter used
in the calculation of the maximum rate of Rubisco activity-limited carboxylation
(parameter 37: Vcmax25 a) (Fig. 4.4). While the mean response of an output
to changes in such an input is low, there are high fluctuations around this mean,
which would indicate non-linearity or interaction effects. This makes it unclear
whether these parameters are actually unimportant. We found that there can be
a variety of reasons for a high RSD (see Fig. C.1). On one end of the spectrum
are inputs with a single (absolute) effect that is much larger than the others,
solely causing a high standard deviation of effects. This might indicate very
local non-linearity or interaction effects, or suggest important parts of parameter
space have not been sufficiently covered by the chosen number of trajectories.
On the other end are the inputs for which effects are evenly distributed around
the mean, indicating a more general non-linear trend or more global interaction
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Figure 4.4: Sensitivity index Sχ (Eq. (4.2)) and RSD (Eq. (4.4)) for the three
outputs ordered to the Sχ for yield. The label colours represent the parameter
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physiological.

effects. There does not seem to be a clear correlation between large effects and
small step sizes for such effects (Fig. 4.2 and Fig. C.1).

4.5.4 Illustrative OAT simulations

We performed an illustrative OAT study for three parameters that were identified
as important (nitrogen content of fully lit leaf (parameter 27: nitro), maize base
temperature (parameter 48: tb), conversion factor of CO2 to biomass (parameter
47: fCO2)) and three inputs found to be unimportant for all outputs (leaf shape
coefficient (parameter 9: shapeCoeff), phyllochron (parameter 50: phyllochron),
PAR reflectance by stem and leaves (parameter 33: reflectancePAR)) (Fig. 4.5).
The baseline is taken to be the mean of each input’s range, and the six inputs
are then varied over their ranges uniformly. Consistent with the results from
the GSA, the OAT method shows that the three important parameters have a
significant effect on the outputs, while the unimportant parameters have neg-
ligible effects (Figure 4.5). This is purely an illustrative example; OAT is not
a replacement for rigorous GSA, and the output response could be different at
another baseline in parameter space. Figures 4.6 and 4.7 show the effect of vary-
ing leaf nitrogen content (parameter 27: nitro) and phyllochron (parameter 50:
phyllochron), respectively, on the plant architecture.
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Input parameter value

shapeCoeff[maize] phyllochron[maize] reflectancePAR

Nitro[maize] tb[maize] fCO2_SA

Min Mean Max
450

550

650

750

850

Min Mean Max
750

900

1050

1200

1350

Min Mean Max
2.2

2.6

3

3.4

3.8
LAIBiomYield

Figure 4.5: OAT simulations of 3 important parameters (red) and 3 unimportant
parameters (grey). Each parameter is uniformly varied over its input range (Table
4.2), while the other parameters are set to the mean of their input ranges.

4.5.5 Further observations

While maximum biomass is typically attained at the last simulation day, there
is a large variation in the time when maximum LAI is achieved, as the precise
pattern of leaf senescence hardly plays a role for biomass accumulation, while it
does for LAI (Fig. 4.8). The simulation day at which maximum LAI is achieved
approximately follows a normal distribution with mean 103 (days) and standard
deviation 17.74 (days), hereby noting that all the simulations where the maximum
was achieved at or after the final simulation day are grouped in the bin for day
159.

Plotting the sensitivity indices for yield against those for peak biomass (Fig.
4.9; R2 = 0.8946) shows that for only 6 out of 52 parameters do the sensitivity
indices lead to different conclusions, and in only 3 cases are the classifications
opposite (e.g. important for yield but unimportant for peak biomass), indicating
biomass and yield are correlated. This agrees with previous findings from field
trials [206].

4.6 Discussion & Conclusion

Over recent decades, many modellers have developed functional structural plant
models to gain understanding of plant development. However, as these models
become more detailed, they are typically involving huge parameter sets, making
it challenging to explore the parameter space and infer how the choice of param-
eters influences the model predictions. Furthermore, the size of the parameter
space makes it impractical to identify optimal parameter regions that would be
predicted to maximise crops yields. Modelling studies are therefore typically lim-
ited to using a defined parameter set and exploring the influence of a handful of
plant traits. While models will use parameter values estimated from the experi-
mental literature, it is unclear whether any errors in measurement or differences
between species would influence in the model predictions and where more detailed
measurements would be beneficial.
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To address the challenge of the large parameter spaces of FSP models, we have
explored the use of global sensitivity analysis, which identifies important (and
unimportant) parameters for a given model output. Our study has demonstrated
that GSA provides novel insights both for our biological understanding of plant
development and for guiding further model development and parameterisation.

Modelling insights In terms of model development, GSA enables us to iden-
tify unimportant parameters, so that they may be set to a fixed value, thereby
decreasing dimensionality of the typically large model parameter space. Efforts
can then be concentrated on accurately estimating the most important input
parameters. In addition, identifying the most important parameters can signifi-
cantly ease the task of finding the optimal set of plant characteristics for a given
trait.

(a) nitro = 1.5 g/m2; lower bound of input range. Yield = 516 g/m2, peak biomass
= 777 g/m2, peak LAI = 2.2.

(b) nitro = 4 g/m2; upper bound of input range. Yield = 884 g/m2, peak biomass
= 1401 g/m2, peak LAI = 3.8.

Figure 4.6: Architectural differences in a stand of maize caused by a difference in
leaf nitrogen content (parameter 27) (which is deemed an important parameter)
at the end of simulation day 99. The other parameters are set to the mean of
their input ranges (Table 4.2). See also Figure 4.5.
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Out of 52 input parameters, only 12 were identified as important for yield and
peak biomass (14 for LAI), while over 70% of inputs were deemed unimportant,
including most parameters related to crop architecture (Fig. 4.3). This high-
lights the benefit of incorporating GSA in the modelling routine, as it suggests
a rough estimate suffices for the majority of input parameter values. Notable
important parameters included leaf nitrogen content (parameter 27: nitro), base
temperature (parameter 48: tb), conversion factor of CO2 to biomass (parameter
47: fCO2) and leaf mass per unit area (parameter 6: LMA). Interestingly, some
of the important parameters cannot generally be measured in an experimental
setting, or at best can only be roughly estimated. Among these are theoretical
maximum biomass of the root system, flower and leaf (parameters 19: wmaxRoot,
20: wmaxFlower and 22: wmaxLeaf).

(a) Phyllochron = 25 °C day; lower bound of input range. Yield = 700 g/m2, peak
biomass = 1185 g/m2, peak LAI = 3.2.

(b) Phyllochron = 35 °C day; upper bound of input range. Yield = 700g/m2, peak
biomass = 1133 g/m2, peak LAI = 3.3.

Figure 4.7: Architectural differences in a stand of maize caused by a difference
in phyllochron (parameter 50) (which is deemed an unimportant parameter) at
the end of simulation day 99. The other parameters are set to the mean of their
input ranges (Table 4.2). See also Figure 4.5.

The FvCB photosynthesis model is calibrated fairly precisely for C3 species,
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but as Yin and Struik [146] note, several parameter estimates in the C4-equivalent
contain more uncertainty. None of the FvCB parameters taken into account
(parameters 35-43) are classified as important in our analysis, which suggests the
C4 model can be reliably used with the values proposed in [146].

Some inputs identified as unimportant due to their low sensitivity index have
a relatively high standard deviation of effects (Fig. 4.4, e.g. parameters 33:
reflectancePAR; 34: transmittancePAR; 37: Vcmax25 a), with high fluctuations
around a low mean, which could indicate non-linearity or interaction effects. To
quantify the importance of these fluctuations there is no one rule that fits all,
but instead one should investigate those parameters with low sensitivity indices
but high RSD further on an ad hoc basis as described in Section 4.5.3. Expert
knowledge of the biological processes or model equations related to such inputs
can help identify likely interaction effects and quantify their importance.

We expect several conclusions to extend to different crop species, crop de-
signs or environmental conditions within this model. Parameters that are part
of major conserved mechanisms such as photosynthesis and growth, are likely to
be equally insensitive independent of the species or conditions (within biologi-
cally sensible ranges). For stress events like drought or heat, GSA specific for
such conditions would need to be done. Interestingly, we found that several ar-
chitectural parameters were unimportant for model output and might therefore
be equally unimportant for other crops. This contradicts with some model-aided
trait analyses that show the relevance of architectural parameters [207–210]. This
discrepancy might have been caused by the difference in the output under consid-
eration. We focused on leaf and biomass growth and yield, whereas the studies
cited analysed the effect of architectural traits on light capture and photosynthesis
without feedback on plant growth.

Finally, although this is not the focus of this work and the model has not
been calibrated to mimic a specific maize variety, it can be noted that the yields
found in the OAT simulation at simulation day 99 (Fig. 4.5) could be in line
with Dutch agronomic values [211] of 10-13 t/ha, considering the yields recorded
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COPY FOR TRIANGLE OUTLIERS DATA

Figure 4.9: Peak biomass as proxy for yield, with indications of which
sensitivity indices agree and which do not. Green area: indices agree; or-
ange area: input (un)important for one output, neither for the other; red area:
input important for one output, unimportant for the other. Markers: grey: pa-
rameter unimportant for both outputs; red: important for both outputs; blue:
disagreeing classifications for different output.

in [211] are typically recorded at a later date, e.g. 110− 130 days after planting.

Biological insights Parameters governing shade avoidance response were iden-
tified as unimportant. This is not surprising, since the relatively uniform maize
canopy we simulated leads to approximately the same response in all plants.
This would likely be different in more heterogeneous mixed-species stands where
performance depends on plastic plant responses to local conditions [210].

Leaf appearance rate (phyllochron) is known to have a significant impact
on plant architecture, is typically deemed as an important parameter in crop
models, and has received significant interest as a potential breeding target to bring
forward the flowering date [212–216]. Interestingly, phyllochron was classified as
unimportant. Variations in phyllochron – as expected – did lead to visible changes
in plant architecture (Fig. 4.7). However, these architectural changes did not lead
to significant changes in field-level outputs yield, biomass or LAI. We hypothesize
that the expected increase in total leaf area as a result of lower phyllochron is
counteracted by increased competition between the higher number of leaves. This
leads to a near-constant peak LAI, which subsequently does not lead to significant
changes in peak biomass and yield.

To conclude, this work shows that including global sensitivity analysis in the
modelling routine for FSP models can lead to a variety of new insights about
both the model and the biological processes it describes. GSA is applicable to
any model, and should therefore become a standard consideration for any FSP
modeller.
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Introduction

5.1 Introduction

In the three sisters and in milpa a climbing variety of common bean is typically
used, where the bean climbs upwards around the maize stalk (Sec. 2.1). This
leads to a complex architectural layout in both time and space (Fig. 5.1). De-
scribing a system like this in an FSP model is difficult, because of the complex
physical plant-plant interactions between maize and bean, and the complex twin-
ing behaviour of the bean plants. In this chapter an FSP model for common bean
is presented. The twining behaviour of common bean is described in a simple way,
while still capturing the main architectural characteristics. It should be stressed
that this is a proof of principle, and one of the first examples of (FSP) modelling
intercrops with this level of complexity. Ultimately, to the best of our knowl-
edge no attempts have yet been made at modelling the aboveground parts of a
spatially complex intercrop like the three sisters. Models of climbing plants do
exist, with varying degrees of biomechanical detail, but these are not easily trans-
latable to GroIMP; Section 2.3 provides more background information regarding
existing models of climbing plants, and discusses the difficulties in translating
such models to the GroIMP environment. The idea in this chapter is to describe
climbing around a pole or maize stem by an approximate (discrete) helical trajec-
tory, where the lengths of the discrete helix parts are given by the bean internode
lengths. For simplicity, we ignore twining around non-cylindrical objects such as
leaves or flowers, and do not incorporate bean stems twining around themselves
or other bean stems.

It has been reported that final internode lengths for climbing bean can reach
10-15 cm (and in extreme cases even more than 20 cm) [218–220], while the diam-
eter of the climbing medium is typically just a few centimeters. Approximating
a continuous helix by a discrete one with such long internodes might therefore
lead to a poor representation of the climbing bean plant, with the leaves (situated
at the internode end points) emerging relatively far from the climbing medium.
Therefore, it could be important to decompose the bean internodes in a number of
smaller sub-internodes. This can improve visual realism and, more importantly,
potentially increase model accuracy. In this section we therefore also extend the
bean model to include sub-internodes.

The chapter is structured as follows. The general plant architecture for com-
mon bean is not repeated here, but can be found in Section 2.6.4. Likewise,
physiology and plant development of common bean are described in Section 2.6;
the parameter values used for common bean are listed in Appendix F. A detailed
description of how the helix-like climbing behaviour is modelled is given in Sec-
tion 5.2, paying particular attention to the capabilities and limitations of the XL
language and the modelling platform GroIMP. In Section 5.3 the model is ex-
tended to include sub-internodes. This extension is put to the test in Section 5.4,
where it is investigated whether the improved visual realism also leads to signifi-
cant changes in model outputs such as LAI or biomass production. In addition, a
global sensitivity analysis is performed in Section 5.4 to identify the parameters
most deserving of further investigation in subsequent experiments. Section 5.5
concludes the chapter.
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Figure 5.1: Common bean climbing around a pole. Figure taken from [217].

5.2 A model for helix-like climbing in GroIMP

The parametric description of a standard right-handed helix with radius r and
pitch 2πb is given by

x(t) = r cos t;

y(t) = r sin t;

z(t) = bt,

where t ∈ [0, T ] for some T . In terms of the standard orthogonal unit vectors,
the position at time t is given by

p(t) = r cos ti+ r sin tj+ btk. (5.1)

This can be extended to helices centered around an arbitrary vector W, by deriv-
ing a local orthogonal coordinate system (U,V,W), e.g. by setting U = W × i
and V = U×W. The helix is then described by

p(t) = r cos tU+ r sin tV + btW. (5.2)

In our model, the helix consists of a chain of concatenated cylinders instead
of a continuous line (Fig. 5.2). Although one could a discretised version of
Equation (5.2) to determine the starting point of a cylinder, i.e. pi := p(ti), it is
not immediately clear what the heading of that cylinder should be, given a length
L, such that the next cylinder again lies on the helix and such that no collisions
occur.

The most intuitive approach in the context of GroIMP’s capabilities and built-
in functionality would arguably be to use the AvoidIntersection class (App. D)
and directional tropisms to generate new head directions for the bean apex that
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η up

left

head

Figure 5.2: Schematic depiction of the discrete helix with inclination η in the (left,
up, head)-coordinate system. Shown in the (left, up)-plane are the projection of
the idealised (continuous) helix (black circle) and the projection of the discrete
helix (red polygon circumscribed to the circle).

ensure coiling behaviour whilst avoiding collisions with other objects. Unfor-
tunately, this approach has several significant drawbacks. First and foremost,
specifying the head direction makes it very difficult (and in some cases impos-
sible) to control the radius and pitch of the helix (App. E). Secondly, because
the model uses instantiated volumes (i.e. geometry declared in an implicit way
instead of using direct production rules) the AvoidIntersection methods can-
not detect intersections with these volumes. Instead, one has to add explicitly
declared copies of all volumes in the scene, greatly increasing model complexity,
graph size and potentially runtime (see App. D for more detail). Finally, because
directional tropisms represent a change in direction towards a new direction with
a certain strength, and because of the way these tropisms are implemented in the
XL language, one does not know a priori what the resulting new direction vector
will be. This might become problematic if one requires, for example, the location
of the new apex (after insertion of an internode). To overcome the limitations
of the previously described approach, a different strategy is presented here. Us-
ing global-to-local (and local-to-global) transformation matrices and geometrical
identities, one can specify a set of transformations and rotations at each step,
which allows for easy control of the radius. The downside of this approach is that
it is more descriptive, and as such less flexible; as an example, switching from one
climbing medium to the next, or ensuring the stem stays close to the object it
coils around becomes non-trivial. In addition, a collision detection routine has to
be written. In short, given a climbing medium F (e.g. a pole or maize internode)
and a bean apex A, bean growth in this approach consists of the following phases
(Fig. 5.3):
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Optional:
tighter coiling:

set

Find free angle: set

Insert new
internode using

positional tropism
towards F

Insert new
internode

under angle

Collision under
current angle

*?

Try angle

Collision under

initial angle ?

Calculate initial

angle , set
initial apex
orientation

Close enough
to F?

Find closest
pole/maize
internode F

Yes;

Yes

Yes

No

No

No

For each new internode

Figure 5.3: Algorithm for inserting a new bean internode under the correct head-
ing for twining around a pole or maize internode.
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i) if A is too far from F, the bean grows towards F using a positional tropism
(Sec. 5.2.1);

ii) if A is sufficiently close to F, the following steps are taken. First, A is given
the correct orientation (Sec. 5.2.2). Subsequently the bean twines around
F, describing a polygon in F’s (x, y)-plane (Sec. 5.2.3) and with constant
pitch. Whenever necessary (e.g. when changing from one climbing medium
to the next, when encountering a collision (Sec. 5.2.4), or when taking a
larger turn to grow closer to the climbing medium), A will be reoriented
again on the next step to ensure the proper heading for the helix.

5.2.1 Growing towards a climbing medium

The closest climbing medium (e.g. pole or maize internode, in what follows simply
denoted by pole) is found by looping over all poles in the scene, calculating the
minimal Euclidean distance from the current apex to said pole (Fig. 5.4), and
subsequently selecting the one with the lowest distance.

F

A

Figure 5.4: Finding the closest climbing medium: minimal Euclidean distance
between climbing medium F and apex A is indicated by the dotted line in 3
cases.

If this distance is larger than some predefined threshold, the bean grows to-
wards the pole F using a positional tropism (i.e. a change in the head direction of
apex a with a certain strength towards a specified point). The point the tropism
is directed towards is given (in global coordinates) by:

ptrop = (Fx, Fy, Fz) +

(
|Az − Fz|
sin(θ)

+ ζ cos(θ) + L sin(η)

)
dirF ; (5.3)

ζ =
√

(Ax − Fx)2 + (Ay − Fy)2 −
|Az − Fz|
tan(θ)

;

θ = angle(dirF , proj(dirF )),

where (Fx, Fy, Fz) are the coordinates of the centerpoint of the bottom of F (Fig.
5.5a), (Ax, Ay, Az) are the global coordinates of the apex A, dirF denotes the
direction vector (head vector) of F, proj() is the projection to the (x, y)-plane, L
is the length of the new internode and η is the helix inclination. The coloured
terms correspond to the line segments of the same colour in Figure 5.5a. Note
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F
A

(Fx, Fy, Fz)

dirF

|Az − Fz|

η

L

θ

θ ζ

z

dirproj(dirF )

(a) Interpretation of Equation (5.3).

F
A

(Fx, Fy, Fz)

dirF

|Az − Fz|

η

L

θ

ζ ′

θ

z

dirproj(dirF )

(b) Interpretation of Equation (5.4).

Figure 5.5: When the apex A is too far from a climbing medium F, it grows
towards F by use of a positional tropism.

the above can also be written as

ptrop = (Fx, Fy, Fz) + (|Az − Fz| sin(θ) + ζ ′ cos(θ) + L sin(η)) dirF ; (5.4)

ζ ′ =
√

(Ax − Fx)2 + (Ay − Fy)2;

θ = angle(dirF , proj(dirF )),

The visual interpretation for this form is given in Figure 5.5b, where the coloured
terms again correspond to the line segments of the same colour.

5.2.2 Initial reorientation

At the start of a simulation, after a non-standard turn (caused by either a tight-
ening or a collision on the previous step) or when changing from one climbing
medium to the next (e.g. when growing above a maize internode), assuming the
apex is sufficiently close to the climbing medium, the apex must be reoriented
to ensure it has the correct heading to continue on a helical trajectory. This is
done using global-to-local and local-to-global transformation matrices (Fig. 5.6).
Recall that left, up and head are the typical names for the local x-, y- and z-axes,
respectively (Sec. 2.4). A local-to-global transformation matrix of a node A is of
the form

T(A) =


Rot(A)

A.x

A.y

A.z

0 0 0 1


, (5.5)

where Rot(A) is a rotation matrix of A and A.i denotes the i-th global coordinate
of A. The corresponding global-to-local transformation matrix is the inverse of
T .

We start with an apex A and a climbing medium F, both with some arbitrary
local coordinate system. Applying the local-to-global transformation matrix of
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Figure 5.6: (a): local coordinate system of F ((left, up, head)-axes in colour)
and global coordinate system ((x, y, z)-axes in grey); (b) initial (arbitrary) local
coordinate system of A; (c) transformationM1 rotates A’s local coordinate system
to the global system; (d) subsequently applying transformation M2 rotates A’s
local coordinate system to that of F.

A to this apex transforms A’s local coordinate system to the global coordinate
system (e.g. A’s head axis equals the global z-axis, A’s up axis equals the global
y-axis, and A’s left axis equals the global x-axis). Subsequently applying the
global-to-local transformation matrix of F to the apex A transforms A’s local
coordinate system to that of F (e.g. A’s head axis equals F’s, A’s up axis equals
F’s, and A’s left axis F’s). Since the coordinate system of A is then fully known in
terms of F’s coordinate system, a number of fixed local rotations can be applied
to A to ensure the correct heading (Fig. 5.7-5.8).

Firstly, a rotation is applied to account for A’s relative position to F, i.e. A’s
position in F’s (left,up)-plane (Fig. 5.7). After this rotation RH(γ) A’s up-axis
points towards F. The angle γ is given by

γ = i · 90◦ + γ′ (5.6)

γ′ = tan−1

(
p1.x

p1.y

)
· 180

◦

π
, (5.7)

where i denotes the quadrant in F’s (left, up)-plane A is in.
Secondly (Fig. 5.8), we rotate around the head axis by an angle β, where β

is half of the inner polygon angle, so

β = 90◦ − α/2. (5.8)

This aligns A’s up-axis with the polygon edge that was added in the previous
step ((b) in Fig. 5.8). Subsequently rotating around the left-axis by 90◦ puts
A’s head-axis in F’s (left, up)-plane, while the up-axis points upwards (i.e. in
F’s head direction) ((c) in Fig. 5.8). Finally we rotate around the up-axis by
the outer polygon angle α and rotate around the left-axis by the helix inclination
η, thereby pointing upwards out of F’s (left, up)-plane ((d) in Fig. 5.8). To
summarise, in total the following rotations are applied after A’s coordinate system
is transformed to that of the climbing medium F:

RH(γ) RH(β) RL(90◦) RU(α) RL(η). (5.9)
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γ′

A

F

RH (0◦)

RH (90◦)

RH (180◦)

RH (−90◦)

γ′
RH (γ)

upF

leftF

leftA

upA

P1.x

P1.y

(a)

(b)

γ′ = tan−1
(

p1.y
p1.x

)
· 180◦

π

γ = i·90◦ + γ′

Figure 5.7: : left; : up; : head. Top-down view of F, showing the
(left,up)-plane of F. (a) configuration after the transformations in Figure 5.6, in
which A’s axes point in the same direction as F’s; (b) after RH(γ) A’s up-axis
points towards F. Here γ = i · 90◦ + γ′ with γ′ = tan−1(|p1.y/p1.x|) · 180◦/π and
i denoting the quadrant A is in.
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α
A

F
β = 90◦ − α/2

A

upA

α

β

headA

RH(β)

RL(90◦)

(a)
(b)

(c)

RU(α) RL(η)

(d)

β

Figure 5.8: : left; : up; : head. Top-down view of F, showing the
(left,up)-plane of F. (a): configuration after RH(90◦ + γ) (Fig. 5.7); (b) RH(β)
rotates A’s up-axis to align with a side of the polygon; (c) RL(90◦) rotates A’s
head-axis into F’s (left,up)-plane; (d) finally, RU(α) RL(η) aligns A’s head axis
with the next section of the polygon and ensures the proper helix inclination.
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5.2.3 Rotation angle (normal, tightening, collision)

The angle of the turn in the plane orthogonal to the climbing medium (α in Fig.
5.8) is equal to

α = 360◦/n, (5.10)

where n is the number of sides of the polygon in F’s (left,up)-plane (Fig. 5.8).
In our model, n is approximated by either

n = max

(
3,

⌊
π/ tan−1

(
L cos(η)

2R

)⌉)
, (5.11)

yielding a polygon circumscribed to the circle with radius R, or

n = max

(
3,

⌊
π/ sin−1

(
L cos(η)

2R

)⌉)
, (5.12)

yielding a polygon inscribed to the circle with radius R. We use Equation (5.11),
unless explicitly stated. In the above, ⌊·⌉ means rounding to the nearest integer.
L cos(η) is the length of the projection of the new internode to the (left,up)-plane.
To summarise, to initiate a turn, we first rotate down to the plane orthogonal to
the climbing medium. Then we turn with angle α (which for a normal turn equals
360◦/n), and turn back up by an angle η to ensure the proper helix inclination:

RL(−η) RU(α) RL(η) (5.13)

If a collision is detected under the current angle α, new angles are tried (from
max(α, 90◦) to −90◦ in steps of 1◦) until an angle is found which does not lead
to a collision. This new angle is then used instead of α (see Fig. 5.3). In the
next step, the transformations for reorienting the apex need to be applied as a
different angle than α was used, which changes the helix centerline orientation.

Even if no collision is detected under the current angle α, it might be possible
to increase this angle without resulting in a collision, leading to tighter coiling.
To this end, at each step (assuming no collision was detected under angle α) we
try an increased angle (from α + 25◦ to α◦ in steps of 1◦). If the increased angle
does not result in a collision, it is used instead of α. Again, in this case the
transformations for reorienting the apex need to be applied in the next step.

5.2.4 Collision detection

Collisions between the newly inserted bean internode and poles should be avoided,
as they constitute non-physical behaviour. Unfortunately checking for collisions
is not trivial, as both the bean internode and the pole are cylinders; detecting
cylinder-cylinder intersections is not easy (see [221] and the references therein),
and in fact very difficult to implement in the XL language. We therefore employ
an approximate method, making use of GroIMP’s capability of calculating line-
volume intersections. Four lines are placed equidistant on the cylinder wall of
the internode that is to be inserted under the new heading (characterised by the
calculated angle α) (Fig. 5.9), and intersections are calculated between these
lines and any climbable object in the scene. If no intersections are detected, the
internode is placed under this heading. If one or more intersections are detected,
a new heading is tried as described in Section 5.2.3.
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F
A

Figure 5.9: Collision detection between pole F and bean apex A: four lines (red)
are placed equidistantly on the cylinder wall of the prospective new bean intern-
ode. Intersections are then computed between these four lines and the cylinder
F.

5.3 Decomposing internode into sub-internodes

As stated in Section 5.1, approximating a continuous helix by a discrete one with
long internodes (10−15 cm for common bean) might lead to a poor representation
of the climbing bean plant (Fig. 5.10; left), with leaves (situated at the internode
end points) emerging relatively far from the climbing medium. Therefore, it could
be important to decompose the bean internodes in a number of smaller internodes.
In this section we therefore develop the bean model to include sub-internodes. At
each global time step, a number of smaller internodes are sequentlially inserted
instead of a single one, and the reorientation, collision detection and/or tightening
steps are executed for each of these smaller internodes (if required). The location
and direction of a sub-internode thus depend on the location of the previous one.
Leaves only emerge at the the top of the last sub-internode. This improves visual
realism (Fig. 5.10; right) and could increase model accuracy. The latter is tested
in this section.

The mathematical derivation is given in Subsection 5.3.1; a proof of principle
is then given in Subsection 5.3.2 and 5.3.3, where the implementation of the sub-
internode routine is verified in a test case. The extended bean model is evaluated
in Subsection 5.4.1, where a monoculture of common bean climbing around poles
is simulated for varying numbers of sub-internodes.

5.3.1 Rotation angle revisited

As described in Subsection 5.2.2, one can easily switch from global to local coordi-
nate systems if one has access to the location and complete orientation of a node
by just inverting the transformation matrix. This is necessary when checking for
collisions under a given angle or when tightening (taking a larger turn than the
standard angle, thereby growing closer to the pole). The main issue with using
sub-internodes is that one only has access to the transformation matrix of the
starting node A (Eq. (5.5)), but not of the rest of the intermediate nodes (see
Fig. 5.11). This is because GroIMP cannot calculate the location or direction
of the latest sub-internode without taking a step in time. Taking a time step
is prohibited, however, as we only want to step in time once all sub-internodes
have been added (together with the right transformations and rotations). This
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Figure 5.10: Example of how using sub-internodes can improve (visual) twining
realism. Same internode lengths, non-decomposed internode on the left versus 8
sub-internodes on the right.

means that it is difficult to transform from the local coordinate system of an
intermediate node (say pi) to the global coordinate system (and vice versa). One
has to manually calculate the location and head direction vector of each of the
intermediate nodes in parallel to inserting a new sub-internode.

A

p1

p2

p3

p4

up

left

head

Figure 5.11: Discrete helix in the (left, up, head)-coordinate system using four
sub-internodes (red). The transformation matrix of the node A is known, but the
rotation matrices for the other points are unknown.

Unfortunately, local rotation commands (such as RU or RL; see Sec. 2.4) cannot
be used, as these cannot be evaluated without stepping in time (thereby updating
the graph); only global rotation matrices, i.e. rotations around the global x-, y-
and z-axes, can be used. However, it turns out this suffices. Using the global-to-
local and local-to-global transformations of the pole (which we do have access to),
we can transform rotations around the global z-axis to rotations around the local
head-axis of the pole. Given an initial direction vector dir(A), and supposing we
know the rotation around the local head-axis of pole F (say ξ degrees), the new
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direction vector dirnew is given by

dirnew = M1 RotZ(ξ) M2 dir(A), (5.14)

where M1 is the global-to-local transformation of F and M2 is its inverse. It then
follows that the location of node p1, loc(p1), is given by

loc(p1) = loc(A) + L · dirnew, (5.15)

where L is the internode length. Iteratively, the locations and the directions
of the subsequent intermediate nodes can then be calculated. Hence the parallel
calculations correspond to calculating the required rotations around the head axis
of the pole in terms of known angles.

If there is no need to reorient on the current step, i.e. if the previous step
was a standard turn, the rotation angle ξ is simply given by the standard angle
α (see left side of Fig. 5.8), a larger angle α′ > α when tightening, or a smaller
angle α′ < α when encountering a collision.

When there is reorientation of the apex on the current step, the situation is
more complex. The rotation angle then depends on several factors of both the
current and previous step. In principle there are eight cases to consider, based
on three times two possibilities:

• reoriented at the start of previous step (yes/no);

• collision detected or tightened on previous step; or more precisely: angle
at previous step smaller than standard angle (yes/no), meaning moving
further away from climbing medium;

• collision detected or tightened on current step (yes/no); or more precisely:
angle at current step smaller than standard angle (yes/no).

In practice, the only one that leads to a different geometric situation is whether
there was a collision or tightening on the previous step. However, as shown below,
all different cases can be covered by a single expression for the rotation angle.

Tightened on previous step Because of a turn angle larger than the standard
angle used in the previous step (i.e. α′ > α in Fig. 5.12), the apex is now closer
to the pole. As a result, the new polygon has fewer sides and potentially a new
standard angle α′′ ≥ α. Without loss of generality, it is assumed that the current
trajectory is a hexagon, and after a tightening on the previous step the trajectory
moves onto a square; see Figure 5.12. It should however be stressed that no use
is made of specific properties of a hexagon or square. The quantity of interest is
the angle x in Figure 5.12, which is the angle that aligns the new sub-internode
starting at pn with a side of the new polygon, given that there was a tightening
(α′ − α > 0) at pn−1. Using basic geometrical identities, the following can be
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α′′

α

pn

F

β”

x γ”

α′ − α

F

upF

leftF

pn−1
headF

x

α′ − α

β

γ∗

Figure 5.12: Parallel calculations of sub-internode locations/directions;
tightened on previous step. Because of the larger angle α′ > α used in the
previous step, the apex is now closer to the pole. As a result, the new polygon has
fewer sides and a new standard angle α”. γ” and β” are defined as γ (Eqs. (5.6)-
(5.7)) and β (Eq. (5.8)), respectively, but at the new location and with α” instead
of α. γ∗ adjusts for previous steps taken without reorienting. For the values of
the angles, see Equations (5.16)-(5.21).
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calculated:

=
180◦ − (α′ − α)

2
; (5.16)

= γ∗ − β; (5.17)

= 2β − ; (5.18)

= 180◦ − − ;

= 180◦ − γ∗ − β + ; (5.19)

= 180◦ − − ;

= 180◦ − 180◦ + γ∗ + β − 2· ;

= γ∗ + β − 180◦ + α′ − α; (5.20)

x = γ′′ − β′′ − ;

= γ′′ − β′′ − γ∗ − β + 180◦ − α′ + α;

= γ′′ − (90− α′′

2
)− γ∗ − (90− α

2
) + 180◦ − α′ + α;

= γ′′ − γ∗ +
α′′

2
− α′ +

3α

2
, (5.21)

where the symbols refer to the angles marked in Figure 5.12. Importantly, in
the above γ∗ denotes the corrected γ-value, accounting for the number of turns
taken since this γ-value was last calculated (at the last reorientation); see Equa-
tion (5.30).

Collision on previous step Analogously to the previous case, but now moving
from a square to a (larger) hexagonal trajectory because of a turn angle smaller
than the standard angle used in the previous step (i.e. α′ < α). Using Figure
5.13), it can be verified that the angle x equals:

=
180◦ − (α− α′)

2
; (5.22)

= γ′′ − β′′; (5.23)

= 360◦ − γ∗ − β − ; (5.24)

= 180◦ − −
= γ∗ − γ′′ + β′′ + β − 180◦+ ; (5.25)

x = 180◦ − −

= γ′′ − γ∗ +
α′′

2
− α′ +

3α

2
. (5.26)

This is - perhaps surprisingly - exactly the same result as in the other case. The
following interpretation can be given to this: the last two terms in Equation (5.21)
or (5.26) can be rewritten in two ways:

−α′ +
3α

2
= −(α′ − α) +

α

2
(5.27)

= +(α− α′) +
α

2
. (5.28)

The first form denotes a correction to the extra ‘inwards’ turn due to a tightening
(by (α′ − α) degrees) on the previous step, whereas the second form denotes a
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α

α′′

pn

F

F

upF

leftF
headF

x

α− α′

γ∗

β

α− α′

β”

x γ”

Figure 5.13: Parallel calculations of sub-internode locations/directions;
collision on previous step. Because of the smaller angle α′ < α used in
the previous step, the apex is now further from the pole. As a result, the new
polygon has more sides and a new standard angle α”. γ” and β” are defined as
γ (Eqs. (5.6)-(5.7)) and β (Eq. (5.8)), respectively, but at the new location and
with α” instead of α. γ∗ adjusts for previous steps taken without reorienting. For
the values of the angles, see Equations (5.22)-(5.26).
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correction for the extra ‘outwards’ turn due to a collision (by (α − α′) degrees)
on the previous step.

Implementation in XL In the code, the following values are stored, with the
index n denoting the n-th sub-internode (starting count at 1):

1. γ each time a reorientation happens; stored in the array γarray. Note that
γ′′ = γarray[n], but γ

∗ needs to be corrected by a special bit of code; we do
have that γ at the previous reorientation is given by γ = γarray[n− 1];

2. the standard turn angle (so without collision or tightening) at each step;
stored in the array αorig;

3. the actual used turn angle αact[i] (so ∈ [−90◦,max(αorig[i], 90
◦)] if a collision

is detected and ∈ [αorig, αorig+25◦] if tightening) at each step; stored in the
array αact.

The last two arrays allow us for example to classify collision/tightening on a given
step, and to calculate e.g. α′ − α as αact[n − 1] − αorig[n − 1]. Hence, the angle
x can be expressed (see Eq. (5.21) or (5.26)) in terms of the arrays mentioned
above as:

x = γarray[n]− γ∗ +
1

2
αorig[n]− (αact[n− 1]− αorig[n− 1]) +

1

2
αorig[n− 1];

(5.29)

γ∗ = γarray[n− 1] +

j<n−1∑
i=n−1

αorig[i], (5.30)

where j denotes the last time γ was calculated (i.e. the last reorientation step).
By rotating over this angle, one ends up on the new polygon. However, if there
is a collision or tightening on the current step, one needs to correct for this
by adding −(αorig[n] − αact[n]) or +(αact[n] − αorig[n]), respectively. Note that
these expressions are again identical, with a similar interpretation as for Equa-
tions (5.27)-(5.28). Hence the total rotation angle is

ξ = γarray[n]− γ∗ +
1

2
αorig[n]− (αact[n− 1]− αorig[n− 1])

+
1

2
αorig[n− 1] + (αact[n]− αorig[n]); (5.31)

γ∗ = γarray[n− 1] +

j<n−1∑
i=n−1

αorig[i]. (5.32)

Exception: An extra correction needs to be made if there is a reorientation
on both the current and the previous step (this means that there was a colli-
sion/tightening on the previous step and the step before that). In that case, the
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total rotation angle is given by (difference with normal case in red):

ξ = γarray[n]− γ∗ +
1

2
αorig[n]−

1

2
(αact[n− 1]− αorig[n− 1])

+
1

2
αorig[n− 1] + (αact[n]− αorig[n]); (5.33)

γ∗ = γarray[n− 1] +

j<n−1∑
i=n−1

αorig[i]. (5.34)

It is not yet clear what the geometrical interpretation of this correction is (i.e.
why is it needed and why does it have this form?).

5.3.2 Design of analytical test case

To confirm our implementation correctly predicts the locations and directions of
intermediate points, we consider the following test case (Fig. 5.14). The idea is
to start on a square trajectory around a pole, take two normal steps, then collide
with an object, moving to a hexagonal trajectory, and then either collide again,
tighten, or make a normal turn on step 4. We therefore take a full internode length
of 1, consider 7 sub-internodes (so each subinternode has length L = 1/7), take
a helix inclination of 45 degrees (so the subinternode projected to the horizontal
plane has length L̃ =

√
2/14) and place the pole at the origin. The helix is started

at (
− L̃√

2
, 0

)
= (−1/14, 0), (5.35)

which ensures that the number of sides equals four, as the number of sides (of
the inscribed polygon) is given by (Eq. (5.12))

n = max

3,

 π

sin−1
(

L̃
2R

)

 = max

3,

 π

sin−1
(

1√
2

)

 = 4, (5.36)

where R = L̃/
√
2 is the radius (i.e. the distance of p0 to the origin). ⌊·⌉ means

rounding to the nearest integer. It then follows (since we are on a square) that
the coordinates of the next two points are p1 = (0,−1/14) and p2 = (1/14, 0). If
p3 lies on a hexagon, we should have |Fp3| = |p3p4| (since the triangles that make
up the hexagon are equilateral). We also have |p2p3| = |p3p4| = L̃, so we find
|Fp3| = L̃. Furthermore, we can deduce that (using that △Fp2p3 is a isosceles
triangle and Fp2 is horizontal):

|Fp3| =
√

p23x + p23y

=

√(
1

2
R

)2

+
(
L̃ sin(∠Fp2p3)

)2
= L̃

√
1

8
+ sin2(∠Fp2p3) (5.37)
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Putting everything together, we find that the following holds for the angle ∠Fp2p3:

1 =
1

8
+ sin2(∠Fp2p3) (5.38)

∠Fp2p3 = sin−1

( √
7

2
√
2

)
≈ 69.295◦

≈ 69◦(= 45◦ + 24◦). (5.39)

The coordinates of the point p3 are then given by (again using that △Fp2p3 is a
isosceles triangle)

p3 =

1

2
R,

√
|Fp3|2 −

(
1

2
R

)2


=

(
L̃

2
√
2
,
L̃
√
7

2
√
2

)

=

(
1

28
,

1

4
√
7

)
(5.40)

≈ (0.0357, 0.0945). (5.41)

Two impenetrable walls are placed in the scene (with sufficient height in the z-
direction). The right-most wall ensures a collision on step 3 and the transition
from square to hexagon. Depending on the length of the left-most wall (i.e. the
maximum y-coordinate), there will be a collision, a normal step, or a tightening
on step 4. The right-most wall is defined by the start and end coordinates

(1/28 + 1/56,−0.1), (1/28 + 1/56, 1/(8
√
7)) (5.42)

respectively. The start coordinates of the left wall are (0,0); the end coordinates
to ensure a collision are such that x = 0, y > 1/(4

√
7).
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Figure 5.14: Test case for sub-internodes: (a) collision on step 3, normal step
or tightening on step 4; (b) collision on step 3 and step 4. The red lines denote
impenetrable walls. Crosses indicate equal lengths. The coordinates of the points
are given by: p0 = (−1/14, 0) ≈ (−0.07, 0), p1 = (0,−1/14), p2 = (1/14, 0) and
p3 ≈ (1/28, 1/(4

√
7)) ≈ (0.036, 0.095). The coordinates of p4 depend on the

length of the left-most impenetrable wall.

5.3.3 Results for analytical test case

The following cases are considered:

1. Collision on step 3, normal step 4, tightening on step 6. On the
last step, a collision occurs, leading to an extra turn outwards (Fig 5.15a).

2. Collision on step 3, tightening on step 4. This leads to a tightening
of 8 degrees, after which the internodes are on a pentagon (Fig 5.15b).

3. Collision on step 3, collision step 4, tightening on step 6. This leads
to a collision, and an extra turn outwards (Fig 5.15c).

4. Tightening on step 1, 2 and 3. Tightening on the first 3 steps actually
leads to a collision on step 3 and step 7. Between step 3 and step 7 the
helix describes a pentagon (Fig 5.15d).

5. Circumscribed polygon, tightening on step 4, tightening on step
6. The difference with tests 1-4 is that the projected helix is approximated
by a circumscribed polygon (see Eq. (5.11)) instead of an inscribed polygon
(Eq. (5.12)). We now start on a pentagon, and there is no collision on the
third step (Fig 5.15e).

The full results (turn angles, coordinates and directions of the sub-internodes)
are available in Appendix G. Here only the mean Euclidean distance between pre-
dicted and actual simulated locations and directions of the seven sub-internodes
are listed (Table 5.1) and 3D model outputs are shown (Fig. 5.15). The mean
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Euclidean distance MED between predicted and actual simulated locations or
directions ((pipred.x, p

i
pred.y, p

i
pred.z) and (piact.x, p

i
act.y, p

i
act.z), respectively) of the

seven sub-internodes is given by

MED(ppred,pact) =
1

7

7∑
i=1

∥∥(pipred.x, pipred.y, pipred.z)− (piact.x, p
i
act.y, p

i
act.z)

∥∥
2
.

(5.43)
In all cases, the predictions are accurate up to 7 or 8 decimals, confirming the
implementation is correct.

MED

Test Location Direction

1 5.48 · 10−9 1.48 · 10−8

2 5.97 · 10−9 2.21 · 10−8

3 6.14 · 10−9 1.33 · 10−8

4 5.16 · 10−9 1.33 · 10−8

5 4.22 · 10−9 6.91 · 10−9

Table 5.1: Mean Euclidean distance (MED; Eq. (5.43)) between predicted and
actual simulated locations and directions of the seven sub-internodes in five test
cases.
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(a) Test 1 (b) Test 2

(c) Test 3 (d) Test 4

(e) Test 5

Figure 5.15: 3D model outputs of five test cases using sub-internodes.
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5.4 Simulations

In Subsection 5.4.1 we evaluate whether using sub-internodes results in meaning-
ful differences in three main field-level model outputs (LAI, aboveground biomass
and assimilated CO2) and three plant-level outputs (leaf area, biomass and accu-
mulated PAR per plant). Subsequently, global sensitivity analysis is performed
on a monoculture of bean in Subsection 5.4.2.

5.4.1 Evaluating sub-internodes

Test setup A field of 100 bean plants on poles was simulated with varying
number of sub-internodes (1 (i.e. the standard setting), 2, 4, and 8). We tighten
(if applicable) at step 2, 4, 6 and 7 (noting that this choice is rather arbitrary).
3 replicates of each simulation were ran and the mean was taken to filter out in-
herent randomness. The maximum internode length Lmax = 0.1, helix inclination
η = 60◦, the branching constant is set to 0.9, time before flowering can commence
is 35 days. The rest of the bean parameters are set to the values in Table F.3 or
to the mean of their input range in Table F.4.

Results and discussion Overall, results for several field-level outputs (LAI,
assimilated CO2 and aboveground biomass) and plant-level outputs (leaf area
per plant, total biomass per plant and accumulated PAR per plant) are very
similar for the different numbers of sub-internodes (Fig. 5.16-5.17). A higher
number of sub-internodes typically leads to slightly smaller leaves and a higher
proportion of small leaves (Fig. 5.17), resulting in a generally slightly lower LAI,
and subsequently in slightly lower values in all outputs under consideration. This
is arguably due to tighter twining around the pole, leading to increased self-
shading. Visually, differences in stem architecture are visible, as shown in the
close-ups in Figure 5.18.

Furthermore, this test uncovered a limitation of the GroIMP platform: run-
ning simulations with sub-internodes causes a stack overflow error to occur at
some point during the simulation. This is likely due to the length of the internode-
transformation chains in the RGG graph: instead of having a single internode
node in the graph, this is now replaced by (the number of sub-internodes times)
a series of transformations (described in previous sections) and a smaller intern-
ode. At some point these chains become too long, making it apparently impos-
sible for GroIMP to loop through them (which is needed for queries). This is
quite surprising, as the chains only contain O(1000) nodes. The issue can be
ameliorated by merging chains of transformation nodes to single nodes using the
mergeTransformations method, significantly shortening the total node chains,
but one is still quite limited (e.g. 8 sub-internodes and about 100 simulation
days).

Since sub-internodes did not lead to meaningful differences in field-level out-
puts, we argue the benefit of increased realism does not outweigh the increased
model complexity, scene graph size and computational cost. Sub-internodes are
therefore not used in the rest of this work.
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Figure 5.16: LAI, assimilated CO2 and aboveground biomass over time, using
different numbers of sub-internodes. Lines depict the mean over 3 simulations.
Max. relative differences (1 vs. 8 sub-internodes): LAI +16% (day 23), CO2

+19% (day 24), biomass +18% (day 27). Relative differences at final day (1 vs.
8 sub-internodes): LAI +3.5%, CO2 +0.2%, biomass +3.2%.
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a) Leaf area per plant b) Biomass (incl. root 
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Figure 5.17: Box and whisker plots of leaf area, biomass and accumulated PAR
per plant (total of 3 · 100 = 300 plants) at simulation day 80, using different
numbers of sub-internodes.
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(a) 1 sub-internode. (b) 1 sub-internode.

(c) 2 sub-internodes. (d) 2 sub-internodes.

(e) 4 sub-internodes. (f) 4 sub-internodes.

(g) 8 sub-internodes. (h) 8 sub-internodes.

Figure 5.18: Architectural differences at simulation day 80 caused by using dif-
ferent numbers of sub-internodes. Pole in red; leaves in green; bean internode in
yellow; pods are represented by grey rectangular boxes. Leaves removed in right
hand side panels.
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5.4.2 Global sensitivity analysis of the model for climbing
bean

To gain insight into what parameters are most important in climbing bean de-
velopment, and what parameters would thus merit further investigation in sub-
sequent experiments, the Elementary Effects global sensitivity analysis method
(Ch. 3) is applied to a monoculture of climbing bean growing on poles (using
the version of the model without sub-internodes). As the parameterisation for
bean consists of values measured for common bean with different growth habits
(e.g. bush bean), or values measured for climbing beans of a different variety
(i.e. not common bean), as data for climbing common bean was not available,
the GSA can in addition be used to investigate how important it is to improve
this parameterisation.

Methods The same Elementary Effects methodology is used as described in
Chapters 3 and 4, e.g. a radial trajectory design is used, and r = 20 trajectories
are generated using the Rd QR sequence. Both sensitivity indices Sχ (Eq. (3.35))
and Sµ⋆ (Eq. (3.34)) are computed, and the relative standard deviation of effects
(Eq. (4.4)) is considered. Like before, an unimportance threshold of h = 30%
is used (Eq. (3.25)), but the importance threshold (Eq. (4.3)) is increased to
S0j = 3µ̂0j/2 + 3σ̂0j. Whenever the two sensitivity measures do not lead to
significantly different classifications of important parameters, only results for Sχ

are used. As in Chapter 4, to deal with inherent model randomness, at each
simulation point the average is taken over three replicates, and effect outliers are
systematically removed.

To keep the analysis computationally feasible, only the first 60 days of de-
velopment are simulated. A field consists of 100 bean plants growing on poles,
spaced 0.2 m within rows and 0.5 m between rows. Table F.3 lists all other rele-
vant values that are kept fixed throughout the analysis. Appendix F.2 also lists
the parameters that are varied, their type and input ranges (Tab. F.4). Several
parameters that were included in the sensitivity analysis for maize have been ex-
cluded here for one of three reasons. Either such a parameter is not applicable to
common bean (e.g. sheath scale factor), or it is not applicable because of the way
we describe climbing bean (e.g. shade avoidance mechanisms are not present in
our bean model), or it was identified as having a negligible effect on model outputs
for maize, and is expected to extend to other crops (e.g. several photosynthesis
sub-model parameters). On the other hand, we include three parameters that
were not present in the maize sensitivity analysis: bean helix inclination, maxi-
mal internode length and a constant related to branching probability. In total, we
consider 31 parameters, leading to a total number of 20(31+1) = 640 simulation
points.

Five outputs are the main focus in this section: LAI, (aboveground) biomass,
accumulated CO2, the fraction of incoming radiation that is absorbed by the
canopy, and the average red/far-red light ratio in the canopy (average perceived
by internodes). Some results for yield are also shown, but yield is not the most
relevant output, since fruit growth starts after day 35, and only 60 days are
simulated. The same holds for the harvest index, which is therefore not considered
here.
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Unimportant Neither Important

LAI 21 4 6

Aboveground biomass 23 3 5

Yield 27 0 4

Assimilated CO2 25 1 5

Fraction of radiation absorbed 25 2 4

Canopy red/far-red ratio 22 2 7

Table 5.2: Classification of 31 input parameters for different outputs, using the
sensitivity measure Sχ.

Finally, OAT simulations were run for three parameters that are classified
as important for most outputs (parameter 4: leaf mass per area, parameter 15:
theoretical maximal leaf mass and parameter 19: leaf nitrogen content), and the
three new parameters for describing bean (parameter 8: helix inclination, param-
eter 9: maximal internode length, parameter 10: branching constant), which are
generally not among the most important parameters. The baseline is given in
Appendix F.3. The six parameters were varied over 21 equidistant points from
minimum to maximum value.

Results A full overview of the evolution of the model outputs over time at all
640 points in parameter space is given in Figure 5.19. Most outputs cover a wide
range.

The results show that the value of the sensitivity measures changes over time
as well (Fig. 5.21-5.22); in extreme cases (such as parameter 22: seed mass)
parameters might change from important to unimportant (further discussed in
“Discussion”). However, in general most important parameters seem to be quite
stable at later points in time (e.g. for times after day 40). In general, the sensitiv-
ity measure based on the absolute mean of effects Sµ⋆ identifies more parameters
as important, less parameters as unimportant, and leaving more parameters that
are neither (Fig. 5.20). However, there are typically no significant differences in
rankings between the two sensitivity measures Sµ⋆ and Sχ. For the peak values of
the outputs (except for average canopy red/far-red ratio, where the value at day
60 is used) and the sensitivity measure Sχ, the input parameters classifications
are listed in Table 5.2.

Several input parameters are classified as important for multiple outputs, most
notably parameter 4: leaf mass per area, parameter 15: theoretical maximal leaf
mass and parameter 19: leaf nitrogen content. Furthermore, parameter 27: base
temperature is important for 3 outputs according to Sχ (2 for Sµ⋆), parameter
29: phyllochron is important for 3 (also 3 for Sµ⋆), and parameter 24: ratio of
leaf nitrogen and light extinction coefficients is important for 2 (4 for Sµ⋆). The
newly introduced parameters to describe climbing bean are generally not among
the most important parameters: helix inclination (param. 8) is only important
for 2 outputs, maximal internode length (param. 9) is only important for the
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fraction of radiation absorbed according to Sχ (and also to canopy red/far-red
ratio according to Sµ⋆), and the branching constant (param. 10) is not important
for any output.

Some parameters (e.g. parameter 3: specific internode length and parameter
7: leaf curvature) have a low sensitivity index for most or all outputs, but a high
RSD value for some or all outputs (Fig. 5.23). For parameters 3 and 7, the high
RSD seems to be caused by a few relatively large effects (Fig. 5.24). We did
not find a correlation between RSD value and step size, input parameter value or
region of parameter space.

Finally, for the OAT simulations, results for simulation day 60 (Fig. 5.25)
and simulation day 100 (Fig. 5.26) are shown. Snapshots of the 3D output at
simulation day 60 for the minimum and maximum input values are shown for the
inputs LMA and helix inclination in Figures 5.27 and 5.28.
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GSA bean
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Figure 5.21: Sensitivity indices Sχ for several field-level outputs over time. Pa-
rameters with a sensitivity index Sχ > 0.10 at some point after day 10 are high-
lighted. Simulation outputs for the remaining parameters are shown in grey.
Corresponding parameter names and descriptions are listed in App. F.2.
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GSA bean
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Figure 5.22: Sensitivity indices Sχ for several field-level outputs over time. Pa-
rameters with a sensitivity index Sχ > 0.10 at some point after day 10 are high-
lighted. Simulation outputs for the remaining parameters are shown in grey.
Corresponding parameter names and descriptions are listed in App. F.2.
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Figure 5.25: OAT simulations of 60 days of development for 6 parameters
with varying importance to different outputs (peak LAI, fraction of radiation
absorbed, biomass and assimilated CO2; red/far-red ratio and yield at day 60),
confirming their importance classification. Each parameter is uniformly varied
over its input range (20 samples; Table F.4), while the other parameters are set to
the mean of their input ranges. The six parameters considered are characterised
by line and marker type (see top of figure); colours denote importance at 60 days
(red: important for that output, grey: unimportant, blue: neither).
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Figure 5.26: OAT simulations of 100 days of development for 6 parameters
with varying importance (at day 60) to different outputs (peak LAI, fraction of
radiation absorbed, biomass and assimilated CO2; red/far-red ratio and yield at
day 100), showing that sensitivity indices are generally stable over time, but not
in all cases (see e.g. yield). Each parameter is uniformly varied over its input
range (20 samples; Table F.4), while the other parameters are set to the mean
of their input ranges. The six parameters considered are characterised by line
and marker type (see top of figure); colours denote importance at 60 days (red:
important for that output, grey: unimportant, blue: neither).
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(a) LMA = 2.25 g/m2; upper bound of input range. LAI = 6.5, aboveground
biomass = 1577 g/m2, yield = 154 g/m2, assimilated CO2 = 2.1 mol/m2, fraction of
radiation absorbed = 0.73, canopy red/far-red ratio = 0.44.

(b) LMA = 6.75 g/m2; upper bound of input range. LAI = 3.4, aboveground
biomass = 646 g/m2, yield = 149 g/m2, assimilated CO2 = 1.6 mol/m2, fraction of
radiation absorbed = 0.57, canopy red/far-red ratio = 0.52.

(c) Close-up of Figure 5.27a. (d) Close-up of Figure 5.27b.

Figure 5.27: Architectural differences in a stand of common bean caused
by a difference in leaf mass per area (LMA; parameter 4) (which is
deemed an important parameter for all outputs except yield) at the end of sim-
ulation day 60. The other parameters are set to the mean of their input ranges
(Table F.4). See also Figure 5.25.
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(a)Helix inclination = 35◦; lower bound of input range. LAI = 4.5, aboveground
biomass = 792 g/m2, yield = 95 g/m2, assimilated CO2 = 1.7 mol/m2, fraction of
radiation absorbed = 0.57, canopy red/far-red ratio = 0.45.

(b) Helix inclination = 65◦; upper bound of input range. LAI = 4.5, above-
ground biomass = 1020 g/m2, yield = 150 g/m2, assimilated CO2 = 1.8 mol/m2,
fraction of radiation absorbed = 0.67, canopy red/far-red ratio = 0.50.

(c) Close-up of Figure 5.28a. (d) Close-up of Figure 5.28b.

Figure 5.28: Architectural differences in a stand of common bean caused
by a difference in helix inclination (parameter 8) (which is deemed an
unimportant parameter for most outputs) at the end of simulation day 60.
The other parameters are set to the mean of their input ranges (Table F.4). See
also Figure 5.25.
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Discussion The OAT simulation results at day 60 confirm the importance clas-
sification at day 60 of the 6 inputs for the 6 outputs considered. By extending
the OAT simulations to 100 days, we find that results of the GSA at 60 days
can likely reliably be extended to later points in time for the outputs peak LAI,
peak aboveground biomass, peak assimilated CO2 and peak fraction of radia-
tion absorbed by the canopy. However, the results for yield and average canopy
red/far-red ratio at the final day change significantly between day 60 and day
100, with some input parameters likely changing from unimportant to important
(e.g. leaf nitrogen content for yield) or vice versa (e.g. leaf mass per area for
average canopy red/far-red ratio). For yield, this is clearly linked to the typical
time path of plant development; pod formation only starts after 35 days in our
simulations. The increased importance of LMA and leaf nitrogen content for
yield at 100 days (compared to 60 days) might be because the canopy reaches an
equilibrium between new leaf appearance and old leaf senescence at some point
after day 60. The LMA value influences the size of this equilibrium canopy, e.g.
the amount of assimilates produced, whereas leaf nitrogen content directly relates
to the available nitrogen for yield production. We hypothesise that the decrease
in importance of LMA for canopy red/far-red ratio results from the bean canopy
reaching a sufficiently large size at day 100, regardless of LMA value, causing
the average canopy red/far-red ratio to fluctuate less. Further research would be
required to confirm these hypothesis, but this is outside the scope of this work.
The sensitivity index over time plots (Fig. 5.21-5.22) provide further evidence of
time-stable sensitivity indices in most cases, but changing sensitivities in some.
This highlights the limitations of extrapolating GSA results in a time-dependent
model.

Based on the results, we would argue it is most sensible to further investigate
the following input parameters in a polyculture setting: parameter 4: LMA (leaf
mass per area), parameter 15: WmaxLeaf (theoretical maximal leaf mass), pa-
rameter 19: nitro (leaf nitrogen content), parameter 27: tb (base temperature),
parameter 29: phyllochron and parameter 8: helixIncl (helix inclination).

Certain parameter combinations lead to unrealistic outputs. See e.g. Figure
5.27c where leaves are unrealistically large (more than 20 cm width of the widest
leaflet at the widest point) [222–224]. This indicates some parameter ranges may
be incorrect or too large. This is further addressed in Section 6.2.1.

Finally, as noted before, there is uncertainty in a number of parameter values,
for example because the only found values in the literature were for common bean
with a determinate growth habit, or for climbing plants of a different variety, or
because no data was available in the literature. Relatively wide parameter ranges
were therefore chosen for such parameters. If such a parameter is nevertheless
identified as unimportant, it means it is also unimportant in a subrange. However,
if it is classified as important, this might be due to the wide input range instead
(the elementary effects might only be large for parameter values close to the
extremes of the input range), suggesting it is important to refine the input range
first, before concluding the parameter itself is important. This is for example the
case for parameter 15: WmaxLeaf (theoretical maximum leaf weight).
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5.5 Conclusion

In this chapter, a FSP model for climbing bean was presented. The twining be-
haviour is modelled as helix-like climbing around a pole (or maize stem), and
consists of two phases: if the bean apex is too far from a pole, the bean grows
towards the closest pole using a positional tropism. If it is sufficiently close to
a pole, it twines around that pole. Using global-to-local (and local-to-global)
transformation matrices, one can describe the helical growth explicitly in terms
of local rotations, which allows for easy control of the helix radius. To avoid col-
lisions (e.g. growing through the pole or maize stem), a simple collision detection
method is implemented which makes use of GroIMP’s built-in line-volume in-
tersection detection capabilities. Finally, the ability to ‘tighten’ is implemented,
which allows the bean to grow successively closer around the pole.

The model was then extended to increase realism and thereby model accu-
racy. By decomposing the bean internodes into several smaller sub-internodes,
and by performing a tightening or collision at each of the sub-internodes, the bean
stem more accurately represents the actual smooth 3D curve observed in the real
world. In addition, it causes leaves to emerge closer to the pole or maize stem
the bean is climbing around, which might have an effect on light capture by the
bean plant. A major downside is that parallel calculations are required of the lo-
cations and directions of the intermediate sub-internodes, as these are not readily
available in GroIMP; without these parallel calculations, the collision detection
and tightening steps are not possible. This leads to extra computations, and can
cause memory issues due to long chains of rotation nodes in the scene graph.
The use of sub-internodes was tested to quantify the effect on main (non-visual)
model outputs. While the results show some small differences in model outputs,
the variation caused by e.g. uncertainty in common bean parameterisation, and
oversimplification of certain processes (such as a constant leaf nitrogen content
across canopy layers) is likely to be larger than the observed differences. Taking
also into account the added complexity and runtime of using sub-internodes, and
the computational limitations regarding scene graph size mentioned above, the
conclusion is that using sub-internodes in this model is not merited. As such,
sub-internodes will not be used in the rest of this work.

We then proceeded with a global sensitvity analysis and a number of OAT
simulations. Like in Chapter 4, only a small portion of parameters was identified
as important. In particular, parameter 4: LMA (leaf mass per area), parameter
15: WmaxLeaf (theoretical maximal leaf mass), parameter 19: nitro (leaf nitro-
gen content), parameter 27: tb (base temperature), parameter 29: phyllochron
and parameter 8: helixIncl (helix inclination) are investigated in more detail in
Chapter 6. The newly introduced parameters that govern the climbing behaviour
for bean (helix inclination (param. 8), maximal internode length (param. 9) and
the branching constant (param. 10)) were not classified as important for most
model outputs, although e.g. helix inclination and branching constant do lead
to visual differences. We showed that sensitivity indices are stable over time for
most model outputs, with the vast majority of input parameter classifications
(important, unimportant, neither) staying the same between approximately 15
and 100 simulation days.
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6.1 Introduction

In this chapter, the climbing bean model developed in Chapter 5 is combined with
the model for maize. We can now simulate common bean climbing around maize
stalks, which means that we can investigate questions concerning maize/bean
polycultures (and potentially the complete three sisters in a future work). As
the model only simulates aboveground architecture explicitly, the focus will be
on the aboveground process of light capture and subsequent carbon assimilation,
leading to biomass increase. For modelling work on the belowground architecture
in the three sisters, we refer to Postma and Lynch [12].

It has been shown in several field experiments that maize/bean polycultures
(such as the three sisters) lead to higher yield and biomass compared to the
crops grown in monoculture (see [6, 41, 42] and Sec. 2.1.4). Postma and Lynch
[12] showed that this is at least partly due to niche complementarity in the root
system (e.g. different root architectures and different nutrient requirements and
uptake rates). The aim of this chapter is to investigate to what extent above-
ground complementarity contributes to overyielding in these polycultures. As an
example, differences in shoot and leaf architecture, such as the small bean leaves
close to the maize stem versus the thin and long maize leaves pointing away from
the maize stem, might enable common bean to fill the gaps between maize leaves,
capturing light without hindering maize development. The hypothesis tested in
this chapter is therefore the following: Architectural facilitation in the bean/maize
polyculture leads to enhanced light capture (hence improved biomass production)
when compared to growing these crops in isolation.

The chapter is structured as follows. Section 6.2 describes the experimental
design, which consists of several OAT designs (for different values of bean planting
delay (w.r.t. maize)) in which the six input parameters identified in Section 5.4.2
are varied. Section 6.3 presents the results, showing the effect of varying the
OAT input parameters, the effect of varying bean planting delay, the differences
between the maize/bean polyculture and the corresponding monocultures, and
the effect of environmental conditions. Section 6.4 discusses the results in light
of experimental results found in the literature.

6.2 Experimental design

6.2.1 Reparameterisation of common bean based on GSA
results

There are three main potential causes of the unrealistically large leaves found
in Section 5.4.2: too low values of specific leaf mass (leaf mass per area; LMA),
too high values of the theoretical maximal leaf mass, or imprecision in the 3D
representation of a leaf in the XL language. Regarding the first two points, the
literature was revisited to sharpen the parameter ranges for parameter 4: LMA
(2.25 – 6.75 mg/cm2 in Sec. 5.4.2) and parameter 15: WmaxLeaf (1 – 3 g in Sec.
5.4.2). Based on the newly found sources, the range for LMA is increased to 3
– 8 mg/cm2 in this section [225–229], and the range for WmaxLeaf is decreased
to 0.2 – 2 g [224, 225, 230, 231]. Regarding the last point, a slight change was
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made to the implementation of leaf shape in our model. For common bean, the
central leaflet is larger than the two other leaflets. To incorporate this, given some
maximal leaf width at time t, Wt (calculated by the model based on the biomass
increase in that time step, which depends on carbon availability and sink strength
at that point in time), previously the two smaller leaflets were given width Wt at
the widest point, whereas the central leaf was given width 3/2 ·Wt at the widest
point (and similarly for the leaf length). Now the central leaf is given width Wt,
and the two smaller leaflets are given width 2/3 · Wt (and similarly for the leaf
length). This does not change the shape of the leaves, but decreases the leaf
size at any given time, including the maximal leaf size, as Wt is a function of
LMA and WmaxLeaf through the weight of the leaf, and that mechanism is not
changed. Exploratory simulations (not shown here) confirm these changes bring
leaf sizes in line with values reported in the literature [222–224].

6.2.2 OAT design

100 bean/maize pairs are simulated on a 10-by-10 grid, with a row distance of 0.5
m and a plant distance of 0.2 m. The field is cloned 10 times in each direction
to reduce border effects (as in Ch. 4). Both bean and maize are simulated for
at least 100 days of development. As the focus is on architectural facilitation in
light capture, there is no need to simulate the full development cycle of maize
and bean.

The total number of simulated days depends on the value of bean ‘planting
delay’. This parameter however refers to germination time, and determines how
much later bean germinates than maize. This can be both interpreted as simul-
taneous planting followed by delayed germination, or delayed planting followed
by equal germination time after planting. It is known (e.g. through the fieldwork
of colleagues mentioned in Sec. 2.1) that in some cases bean is planted simul-
taneously with maize, but does not germinate for a long time after maize. For
simplicity, throughout this chapter we talk about ‘planting delay’ to cover both
of these cases.

Four outputs are considered for each plant species separately, and for the
total field: LAI (per unit land area), aboveground biomass (per unit land area),
assimilated CO2 (per unit land area) and fraction of radiation that is absorbed
by the canopy. Note that outputs like the number of leaves per plant or the
average leaf size are not useful to consider, as the number of leaves only depends
on the number of accumulated degree days (via phyllochron and plastochron),
which is deterministic and the same for all plants and each simulation (given a
set of environemntal input parameters). As a result, average leaf size is directly
related to LAI (which is already considered).

For five bean planting delay values (7, 17, 27, 47 and 100 days after maize),
six bean parameters are varied in a OAT design (based on results in Sec. 5.4.2)
consisting of 11 uniformly spaced simulation points per parameter:

• maximal leaf mass (WmaxLeaf): ∈ [200, 2000] mg;

• leaf nitrogen content (nitro): ∈ [1, 3] g/m2;

• leaf mass per area (LMA): ∈ [3, 8] mg/cm2;
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• base temperature (tb): ∈ [8, 14] ◦C;

• phyllochron: ∈ [50, 75] ◦C days.

• helix inclination (helixIncl): ∈ [35, 75] ◦;

All maize parameters are fixed. See Appendix F.4 for a full list of all parameter
values. Note: a planting delay of 7 days is approximately the earliest possible
germination date for bean; maize internodes (the climbing medium for bean)
generally do not appear until that day with the used maize parameters (see Fig.
6.1-6.2).

As a further means of comparison, bean and maize are simulated in mono-
culture (bean again in the stated OAT design, with a planting delay of 27 days).
Furthermore, it is investigated how plant development changes in a different cli-
matic environment, by simulating bean and maize both in monoculture and in
polyculture in three sets of environmental conditions (e.g. temperature, trans-
missivity of the sky, day length and position of the sun): Mexican (Yucatán
region), France (Aquitaine region) and the Netherlands. Dutch environmental
conditions were chosen for three reasons: i) maize is commonly grown in the
Netherlands for animal fodder (putting the emphasis on biomass accumulation,
and not necessarily yield); ii) maize/bean polycultures have been grown in very
similar environmental conditions (e.g. in Northern Germany [232], Austria [233]
and North-East Switzerland [234]); and iii) detailed environmental data for the
Netherlands was readily available in the GroIMP model. The Aquitaine region in
the south-west of France was further included to serve as an intermediate between
the more extreme Mexican and Dutch environments: the latitude and tempera-
ture profile lie between the Dutch and Mexican values. For transmissivity of a
clear sky no values were found in the literature, so a value in between the Mexican
and Dutch values was chosen (see App. F.4). Furthermore, in this region maize
and some bean species are also grown [235].
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Figure 6.1: Illustrative example of 3D output over time, taking a snap-
shot (front view) of the scene every 10 days. Green: maize leaves; red:
common bean leaves. Bean planting delay is 7 days. Day of snapshot is indicated
in text boxes. Note: results are from a different simulation than in Fig. 6.2.
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Figure 6.2: Illustrative example of 3D output over time, taking a snap-
shot (top view) of the scene every 10 days. Green: maize leaves; red:
common bean leaves. Bean planting delay is 7 days. Day of snapshot is indicated
in text boxes. Note: results are from a different simulation than in Fig. 6.1.

6.3 Results

Effect of bean OAT parameters In general, maize exhibits a very minor
response to the presence of bean, regardless of the precise bean input parameter
values; even if bean is planted as soon as the first maize internodes emerge (Fig.
6.6-6.8; left column), changes in maize LAI due to aboveground competition are
small. Maize peak output values respond most strongly to a change in bean leaf
mass per area when maize and bean germinate in quick succession (Fig. 6.3-6.5;
third row, first column, Fig. 6.6-6.8; top-left panel), but even then changes in
maize peak values are relatively small compared to bean.

In OAT simulations of the polyculture under Yucatán environmental condi-
tions, bean base temperature is least impactful, followed by phyllochron and helix
inclination. Leaf nitrogen content and the theoretical maximum leaf weight have
a bigger impact, but not as big as leaf mass per area, which is clearly the most
influential parameter (Fig. 6.3-6.8).

Effect of bean planting delay As stated in the previous paragraph, peak
maize values over the first 100 days of development hardly vary with a changing
bean planting delay (Fig. 6.6-6.8; left column). For bean, output values typically
decrease with an increase in bean planting delay up to some point, but outputs
increase for longer delays. This complex dependence of peak bean output values
over 100 days of development on bean planting delay can be divided into five
distinct time periods (Fig. 6.9-6.10). The regions I-V in Figure 6.9 distinguish
different behaviour of the peak values (bottom panel), and are related to maize
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Figure 6.3: LAI over time of OAT simulations for maize/bean polyculture at
different planting delays for bean (from left to right: 7, 17, 27, 47 and 100 days).
Dashed vertical lines indicate 100 days of development. Arrows indicate the
direction of change of the different curves with increasing parameter value. For
definitions of the varied input parameters, see Appendix F.

-147-



6. Maize/bean polyculture

Figure 6.4: Aboveground biomass over time of OAT simulations for maize/bean
polyculture at different planting delays for bean (from left to right: 7, 17, 27, 47
and 100 days). Dashed vertical lines indicate 100 days of development. Arrows
indicate the direction of change of the different curves with increasing parameter
value. For definitions of the varied input parameters, see Appendix F.
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Figure 6.5: Assimilated CO2 over time of OAT simulations for maize/bean poly-
culture at different planting delays for bean (from left to right: 7, 17, 27, 47
and 100 days). Dashed vertical lines indicate 100 days of development. Arrows
indicate the direction of change of the different curves with increasing parameter
value. For definitions of the varied input parameters, see Appendix F.
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Figure 6.6: Peak LAI over 100 days of development for each crop in a
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LAI at the day bean is planted (top panel). In the first phase (bean delay between
7 and 21 days), the peak values for bean clearly decrease. Maize LAI increases
more than linearly in this phase. In the second phase (21 to 30 days delay),
bean peak output values remain approximately constant, even though maize LAI
increases linearly (over time). Phase III (30 to 45 days) seems to be a transition
phase for bean peak values from constant to increasing. In phase IV (45 to 70
days) a linear increase in peak bean output values is observed, which accelerates
in the last phase (70 to 100 days). Over the whole time period, temperature and
day length do not vary nearly as much as maize LAI, and are thus unlikely to
influence bean output values. The biological interpretation of these observations
is discussed in Section 6.4.
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Figure 6.9: The effect of bean planting delay on model outputs. Top: maize LAI,
temperature and day length over time. Bottom: peak LAI, fraction of radiation
absorbed (fAbs) and aboveground biomass (biom)for bean and maize at different
bean delay values (7-100 days). The horizontal axis denotes the starting day of
the year for bean germination. The regions I-V distinguish different behaviour
of the peak values (bottom), and are related to maize LAI at the day bean is
planted (top). See also Fig. 6.10.
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Figure 6.10: LAI over time for five delay values shown in Figure 6.9 (bottom).
Each of the panels corresponds to a different phase (I-V) in Figure 6.9. Dashed
lines mark the first 100 days of development.

Effect of environmental conditions Both maize and common bean are sig-
nificantly affected by a change in environmental conditions, both in a polyculture
(Fig. 6.16 and 6.17) and in their respective monocultures (Fig. 6.14-6.15). In the
monoculture, both maize and bean assimilate less CO2 in French conditions, and
even less in Dutch conditions, and produce less biomass as a result, most likely
due to lower temperatures and less incoming radiation. This effect is more severe
for bean (80% less biomass under Dutch conditions at the final simulation day)
than for maize (55% less) (Fig. 6.14-6.15). Leaf area production in maize starts
slower in French conditions and Dutch conditions, but peak LAI is higher than
in Mexican conditions (Fig. 6.14). For bean, LAI follows a similar trend to CO2

assimilation, producing much less leaf area in French conditions, and even less in
Dutch environmental conditions (Fig. 6.15).

The same holds for the polyculture (with a bean planting delay of 27 days):
maize peak LAI increases from approximately 1.4 (Yucatán) to just under 2
(Netherlands), maize peak aboveground biomass drops from 1.2 to under 0.5
kg/m2, and maize assimilated CO2 drops from approximately 1.3 to approxi-
mately 0.6 mol/m2 (Fig. 6.17). Bean performs poorly in the polycultures in
French and Dutch conditions, with all peak output values barely above zero for
almost all combinations of input parameters (Fig. 6.16 and 6.17).

The baseline value for bean base temperature in the OAT simulations is 11◦C.
The same OAT simulations were also run for French environmental conditions
and a lower bean base temperature of 8◦C, but the output values were mostly
indistinguishable from the ones in Figure 6.16; they are therefore not shown.
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Monoculture bean, 27 days delay
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Figure 6.11: OAT simulations for a monoculture of common bean growing on
poles in Mexican environmental conditions (Yucatán region). Bean planting de-
lay is 27 days. For definitions of the varied input parameters, see Appendix F.
Compare with the center panels in Fig. 6.6-6.8.
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Figure 6.12: OAT simulations for a monoculture of common bean growing on
poles in French environmental conditions (Aquitaine region). Bean planting de-
lay is 27 days. For definitions of the varied input parameters, see Appendix F.
Compare with the center panels in Fig. 6.6-6.8.
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Figure 6.13: OAT simulations for a monoculture of common bean growing on
poles in Dutch environmental conditions. Bean planting delay is 27 days. For
definitions of the varied input parameters, see Appendix F. Compare with the
center panels in Fig. 6.6-6.8.
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Monoculture versus polyculture In maize there is hardly any change be-
tween output values for the monoculture and polyculture (compare the green lines
with the black lines in Fig. 6.3-6.5, and the black lines in Fig. 6.6-6.8 with the
peaks of the black solid lines in Fig. 6.14). This is not surprising, as maize barely
responded to the presence of common bean. Bean on the other hand shows sig-
nificant changes between monoculture and polyculture, performing much worse
in the polyculture than in a monoculture (compare Fig. 6.6-6.8 with Fig. 6.11).

In most cases, the polyculture outperforms the maize monoculture (right hand
columns in Fig. 6.6-6.8), in the sense that the total peak LAI, aboveground
biomass and assimilated CO2 over 100 days of maize and bean development (re-
spectively) is higher than the highest peak maize values over all simulations.
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Figure 6.14: Three field-level outputs over time for a monoculture of maize in
different environments: Mexico (Yucatán region), France (Aquitaine region) and
the Netherlands. The environmental parameters are listed in Appendix F.4.
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Figure 6.15: Three field-level outputs over time for a monoculture of common
bean growing on poles in different environments: Mexico (Yucatán region), France
(Aquitaine region) and the Netherlands. The environmental parameters are listed
in Appendix F.4.
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Figure 6.16: Maize/bean polyculture under French environmental conditions
(Aquitaine region). Bean planting delay is 27 days. Base temperature for bean
at the baseline value is 11◦C; simulations with a value of 8◦C were also run, but
produced approximately identical results, and are therefore not shown separately.
Compare with the center panels in Fig. 6.6-6.8.
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Figure 6.17: Maize/bean polyculture under Dutch environmental conditions.
Bean planting delay is 27 days. Compare with the center panels in Fig. 6.6-
6.8.
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Figure 6.18: Left: average (red) and maximum (black) leaf width at widest
point of the central bean leaflet after 100 days of development in a maize/bean
polyculture (see middle row in Fig. 6.6). Average and maximum are taken over
all leaves in the field. Right: average number of branches per bean plant after
100 days of development. Bean planting delay is 27 days. For definitions of the
varied input parameters, see Appendix F.

6.4 Discussion

Effect of bean OAT parameters The two most influential parameters in
these OAT experiments were clearly leaf mass per area (LMA), followed by the
maximal leaf weight under ideal conditions (WmaxLeaf). Compared to the base-
line value, peak bean LAI increased as much as twentyfold for the lowest LMA
value, and sixfold for the highest value of WmaxLeaf. Figure 6.18 (left panel)
shows (for the case of a bean planting delay of 27 days) that these increases in
peak LAI cannot be explained by an increase in leaf size alone, as leaf increases
by less than 150%. For LMA a significant increase in branching (±3.5 times
baseline value) can be observed for lower LMA values (Fig. 6.18; right panel), in
combination with an average leaf size increase (average leaf width: ±1.5 times
baseline value). The lower the value for LMA, the ‘cheaper’ it is to produce new
leaf tissue. More resources can then be allocated to other organs, such as intern-
odes, leading to increased branching. The increased branching in turn results in
more leaves (as only one leaf can emerge from a single internode). But this still
does not fully explain the increase, as the resulting increase in leaf area would
only be approximately 1.52 · 1.4 · 3.5 ≈ 11 times the base value (length increase
is width increase times length/width ratio (=1.4)). For WmaxLeaf there is no
noticeable increase in branching (and thus in the number of leaves): as leaves
are not ‘cheaper’ to produce (as was the case with LMA), there is no surplus
of resources with a higher WmaxLeaf value. The only difference is that more
resources may be allocated to a leaf, leading to an increased surface area of that
leaf. Again, the increase in average leaf size (average leaf width: ±1.2 times base-
line value) is not sufficient to fully explain the strong increase in LAI with larger
WmaxLeaf. It is not clear what other factors contribute to the steep increase in
peak LAI.

The fact that maize is hardly affected by bean is likely because it typically
outgrows bean from the start (based on own simulations; not shown here), so
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only the bottom few leaves experience some extent of shading from the bean
(depending on the bean planting delay). By the time bean reaches the top of the
maize plant, in most cases all maize leaves have dropped (not shown here). Since
that is the only competition we modelled, this results in a very minor negative
effect on maize light capture. This agrees broadly with experimental findings by
Clark and Francis [236], who write: “in climbing bean intercrops, half to two-
thirds of the maize leaf area was located above 150 cm, when averaged over the
bean pod filling interval. Differences in bush and climbing bean leaf area display
were apparent only in [...] the bottom and middle strata.”

Effect of bean planting delay Recall that the effect of bean planting delay
on peak bean values over 100 days of development can be divided into five dis-
tinct time periods (Fig. 6.9-6.10). Phase I shows the exponential propagation of
early competition by shading: although maize LAI is low thoughout this phase, a
small increase in maize LAI at the day of emergence of bean leads to a significant
decrease in bean performance, leading to a much more pronounced decrease of
peak bean outputs. See also [237], who observed a similar decrease in biomass
during field experiments in Germany (but for larger delay values), and [238], who
performed field trials with varying (but lower) relative bean planting delays in
Colombia. This decrease in bean performance holds to some point (indicated by
the transition of phase I into phase II), where bean apparently experiences maxi-
mal shading; bean peak values become nearly constant in this phase, even though
maize LAI is still increasing. The additional maize leaf area at bean emergence
apparently does not contribute to additional shading of the bean plant. This
behaviour continues in Phase III, where maize attains a fully grown canopy. The
peak values for bean show a slight bump in this phase, first increasing slightly,
but decreasing again with later planting dates. It is not clear if this has a biologi-
cal meaning, or is simply caused by model randomness. In phase IV and V, bean
is already experiencing the maximum amount of shading at emergence. From
that point onward, it is beneficial to emerge even later (although the day length
and temperature, and thus thermal time accumulation, drop slightly), as bean
then spends less time growing under a full maize canopy, and more time under
a declining maize canopy. Since the bottom maize leaves shed first, the opposite
effect to that in zone I is visible: a decline in maize LAI at bean emergence leads
to an increase in bean peak values. The sharp change in steepness of the bean
peak curves on the interface of phase IV and V is likely smooth in practice, and
caused by the sparsity of sample points in that region. At the end of phase V the
bean peak curves flatten; at this point, the overlap (in time) between maize and
bean becomes so small (it takes typically less than 10 days from that point on-
wards before maize sheds its final leaf), so that the peak bean values only depend
on accumulated thermal time, which varies much more slowly.

Effect of environmental conditions Differences in simulated maize develop-
ment under Dutch environmental conditions compared to the Yucatán peninsula
can be explained as follows. The slower onset of leaf area, and the lower peak
values of assimilated CO2 and aboveground biomass are caused by a decrease in
incoming radiation, and lower temperatures and less hours of daylight, leading
to less thermal time accumulation. The fact that peak LAI is nevertheless higher
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under Dutch conditions can be attributed to a change in resource allocation ratios
to the different organs. Under Dutch conditions the maize shoot/root biomass ra-
tio (ratio of leaf plus stem mass and root mass at the day peak LAI was reached)
was found to be six times higher than under Mexican conditions (based on own
simulations; not shown here), suggesting that although the total plant biomass
was lower, there were still more resources allocated to the stem and leaves than
in the Mexican case. Plant height was found to be roughly equal in both environ-
ments (based on own simulations; not shown here), indicating that the number of
leaves was equal in each case, hence the individual leaves were larger under Dutch
conditions. This means that under Dutch conditions, leaves got closer to their
theoretical maximal weight. The same explanation holds for the differences be-
tween Mexican and French, and French and Dutch environments, but to a lesser
degree. It has to be noted that these results feel counter intuitive; one would
expect a decrease in average leaf area at higher latitudes and with lower average
temperatures [239,240].

The fact that common bean hardly performed under French and Dutch con-
ditions can likely be attributed to two causes. Firstly, as common bean has a
higher base temperature than maize (11◦C versus 8◦C), it is disproportionally
affected by the lower temperatures and shorter days, as thermal time is defined
as the difference between average temperature and base temperature times the
day length. This means that the decrease in resource assimilation will be rela-
tively more severe than for maize. However, the fact that OAT simulations in
French conditions for a lower bean base temperature (8◦C) did not lead to differ-
ent results, casts doubt on this argument. Secondly, bean internodes are initiated
with their final length (to prevent ‘loosening’ of the helix; see Sec. ??), whereas
maize internodes elongate over time in our model, and bean internodes likely do
so as well (to a certain extent) in the real world. This means that the initial
resource cost for initiating a bean internode is higher than what it would be if
internode elongation would have been implemented. Consequently, there are less
resources available for leaf growth directly after appearance of an internode, and
thus these smaller leaves will not be able to capture as much light. This effect
then propagates and grows over time, potentially leading to underestimation of
assimilated CO2 (and hence LAI and aboveground biomass).

Monoculture versus polyculture Burt and Mt Pleasant [28] found in exper-
iments that maize yields were not affected by the presence of bean (and squash)
in a three sisters polyculture, yielding as well in the polyculture as in monocul-
ture. However, bean (and squash) yields were greatly reduced when grown with
maize compared to in monoculture. This is further confirmed in field trials by
e.g. Francis et al. [46] and in observations reported by Gliesmann [6]. Francis
et al. [46] found that “maize yield generally was unaffected by the undersown
beans, but that the beans produced only 25–50% of their monocrop yield po-
tential at comparable bean densities” [47]. Moreover, Gliessman [6] states that
maize/bean(/squash) polycultures typically yield higher than the corresponding
monocultures, although bean and squash yield significantly lower in a polycul-
ture. Our simulation results agree with these findings for maize and bean, showing
overperforming in LAI, aboveground biomass and CO2 assimilation (likely lead-
ing to overyielding) in Mexican environmental conditions for a variety of input
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parameter combinations, and all bean planting delay values (Fig. 6.6-6.8). So
even though our model does not include defining characteristics such as plant
root architecture or nitrogen fixation by legumes, and even though stresses like
water deficiency or heat stress are not incorporated in the model, key charac-
teristics of this polyculture are still recovered. This indicates that aboveground
processes (also) play an important role in the phenomenon of overperformance
(overyielding).

6.5 Conclusion

This chapter explored how architectural facilitation in maize/bean polycultures
can lead to increased light capture, and subsequently increased biomass produc-
tion, compared to growing these crops in isolation. For several bean planting/ger-
mination delay values, six bean parameters were varied in an OAT design (based
on the sensitivity analysis for common bean in Sec. 5.4.2): maximal leaf mass
(WmaxLeaf); leaf nitrogen content (nitro); leaf mass per area (LMA); base tem-
perature (tb); phyllochron and helix inclination (helixIncl). As a further means
of comparison, bean and maize were simulated in monoculture (bean again in
the stated OAT design). Furthermore, it was investigated how plant develop-
ment changes in different climatic environments, by simulating bean and maize
both in monoculture and in polyculture in three sets of environmental conditions
(e.g. temperature, transmissivity of the sky, day length and position of the sun):
Mexican (Yucatán region), France (Aquitaine region) and the Netherlands.

In general, our results agreed with reports in the literature of overyielding
in polycultures including maize and climbing bean [6, 28, 46]. Our simulations
showed overperforming in LAI, aboveground biomass and CO2 assimilation (likely
leading to overyielding) in Mexican environmental conditions for a variety of
input parameter combinations, and all bean planting delay values (Fig. 6.6-6.8).
Maize was typically hardly affected by the presence of bean. So even though the
model used here did not include certain important characteristics such as plant
root architecture and heat or water stress, key characteristics of this polyculture
were still recovered. This indicates that aboveground processes (also) play an
important role in the phenomenon of overperformance (overyielding).

The two most influential parameters were leaf mass per area (LMA) and
maximal leaf mass under ideal conditions (WmaxLeaf). Compared to the baseline
value, peak bean LAI increased as much as twentyfold for the lowest LMA value,
and sixfold for the highest value of WmaxLeaf. These increases could not be
explained by an increase in leaf size alone. For LMA a significant increase in
branching (±3.5 times baseline value) was observed for lower LMA values, in
combination with an average leaf size increase (average leaf width: ±1.5 times
baseline value). However, this still did not fully explain the increase in peak LAI.
For WmaxLeaf there was no such increase in branching (and thus in the number
of leaves). Again, the increase in average leaf size (average leaf width: ±1.2 times
baseline value) was not sufficient to fully explain the strong increase in LAI with
larger WmaxLeaf. It is currently not clear what other factors contribute to the
steep increase in peak LAI.

The reason why maize was hardly affected by bean is likely because it typically
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outgrew bean from the start, so only the bottom few leaves experienced some
extent of shading from the bean (depending on the bean planting delay). By the
time bean reached the top of the maize plant, in most cases all maize leaves had
dropped. Since shading was the only competition we modelled, this resulted in a
very minor negative effect on maize light capture.

Environmental conditions had a significant effect on model outputs, most no-
tably on the behaviour of common bean. Bean only performed in Mexican condi-
tions, and hardly grew in South-French or Dutch conditions. This might suggest
bean is more sensitive to climatic conditions than maize, i.e., if one wants to grow
bean in France, one should use a particular variety suitable for European climatic
conditions, where the same maize variety would grow in all environments. It could
also suggest that bean grows poorly because of an inaccurate parameterisation,
which currently depends on values for other, non-climbing, bean varieties, and
other climbing bean species, or because of inaccurate modelling, for example by
initiating internodes with their final length.

Nevertheless, the results of this first proof of principle of an FSP model of
a polyculture with complex plant-plant interaction suggest that FSP modelling
could be a valuable tool to investigate such agricultural systems. With this work,
we have shown that it is possible to model maize/bean polycultures, making an
aboveground model of the three sisters only a small step away.
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Climate change is arguably the most pressing threat facing humanity today. The
world is heading for 2-4 degrees of global warming, an increase in extreme weather
events, and significant changes in soil moisture content [1]. This will have a
devastating impact on food production and food security; e.g. maize production
is projected to decrease by as much as 24% [2, 3]. At the same time, general
food production will need to increase by an estimated 56% by 2050 to keep the
growing world population fed [4]. However, around 25% of agricultural soils
are now deemed to be significantly degraded [4], which has lead to a vicious
cycle of decreased soil organic carbon, leading to reduced yields, which in turn
leads further losses in soil organic matter and yield. It it therefore of paramount
importance to: a) quantify the effect of climate change on food production and
food security; b) investigate ways to increase food production in a sustainable
way to overcome the challenge of feeding the population in a rapidly changing
world.

In recent times, there has been increased interest in sustainable agricultural
systems [5]. This has brought many ancient or traditional farming systems back
in the spotlight, as precisely these systems are typically characterised as low-
input, both in terms of labour and management and fertilizer, irrigation and
pesticides [6, 7]. Among these are the three sisters [8], a polyculture of maize
(Zea mays), bean (Phaseolus vulgaris) and squash (Cucurbita spp.), and the
milpa [9], a complex ancient Maya polyculture centered around maize, that is
still used by millions of smallholder farmers in Central-America. These systems
were at the center of this thesis.

This work aimed to address the following questions:

• What changes need to be made to the global sensitivity analysis method
of choice to make it suitable for our model, which is dimensional and has
inputs of integer and Boolean type, and arbitrary input ranges?

• What input parameters for bean, maize and the environment are the model
outputs most sensitive to?

• How can climbing/twining behaviour be described within the limitations of
the modelling language and platform?

• How do important input parameters affect light capture in a maize/bean
polyculture, and what are the biological mechanisms explaining these ef-
fects?

and had the following goals:

• Identify what input parameters have the biggest impact on model outputs
(through global sensitivity analysis);

• Develop a functional-structural plant (FSP) model for climbing bean;
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• Incorporate the model for bean into an existing plant model that simulates
maize;

• Investigate how key parameters influence light capture in a maize/bean
polyculture.

7.1 Main results

7.1.1 A plant model for climbing bean

Starting from an existing functional-structural plant model for maize (developed
at Wageningen University & Research, based on [139]), the model was extended
with an FSP model for (climbing) common bean, where the bean twines around
a pole or maize stem to grow upwards. The twining behaviour was modelled as
helix-like climbing around a pole (or maize stem), and consists of two phases: if
the bean apex is too far from a pole, the bean grows towards the closest pole
using a positional tropism. If it is sufficiently close to a pole, it twines around
that pole. Using global-to-local (and local-to-global) transformation matrices, the
helical growth was explicitly described in terms of local rotations, which allows
for easy control of the helix radius. To avoid collisions (e.g. growing through the
pole or maize stem), a simple collision detection method was implemented which
makes use of GroIMP’s built-in line-volume intersection detection capabilities.
Finally, the ability to ‘tighten’ was implemented, which allows the bean to grow
successively closer around the pole. While the focus was on common bean in this
work, the twining framework is general, and could be used for other climbing
plant species as well.

The model was then extended to increase realism. By decomposing the bean
internodes into several smaller sub-internodes, and by performing a tightening or
collision at each of the sub-internodes, the bean stem more accurately represents
the actual smooth 3D curve observed in the real world. In addition, it causes
leaves to emerge closer to the pole or maize stem the bean is climbing around,
which might have an effect on light capture by the bean plant. However, it also
increases computational cost and model complexity, as in order to enable collision
detection, for each sub-internode the location and direction need to be predicted
before a new sub-internode can be added. Since our results suggested that using
sub-internodes does not lead to meaningful differences in field-level outputs, we
argued the benefit of increased realism does not outweigh the increased model
complexity and computational cost. Sub-internodes were therefore not used in
the rest of this work.

7.1.2 Sensitivity analysis

Performing sensitivity analysis on (functional-structural) plant models can greatly
benefit both model development and analysis by identifying the relevance of pa-
rameters for specific model outputs. Setting unimportant parameters to a fixed
value decreases dimensionality of the typically large model parameter space. Ef-
forts can then be concentrated on accurately estimating the most important input
parameters. In addition, performing sensitivity analysis on plant models leads
to new insights about both the model and the plant developmental processes it
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describes. It can improve modelling efficiency, reduce parameterisation workload,
and help us understand which plant traits really matter for plant performance.

The Elementary Effects method is a global sensitivity analysis approach for
identifying (un)important parameters in a model. However, it has almost exclu-
sively been used where inputs are dimensionless and take values on [0, 1]. Here,
we considered models with dimensional inputs, inputs taking values on arbitrary
intervals or discrete inputs. We showed that in such cases scaling effects by a
function of the input range is essential for correct ranking results. We proposed
two alternative dimensionless sensitivity indices by normalizing the scaled mean
or median of absolute effects. Testing these indices with 9 trajectory generation
methods on 4 test functions (including the Penman-Monteith equation for evap-
otranspiration) revealed that: i) scaled elementary effects are necessary to obtain
correct parameter importance rankings; ii) small step-size methods typically pro-
duce more accurate rankings; iii) it is beneficial to compute and compare both
sensitivity indices; and iv) spread and discrepancy of the simulation points are
poor proxies for trajectory generation method performance.

We applied the Elementary Effects method to our model simulating a mono-
culture of maize and a monoculture of bean, adapting the method to models with
inherent randomness by systematically removing effect outliers. We simulated a
maize stand, considering three outputs: yield, peak biomass and peak leaf area in-
dex (LAI). Of 52 input parameters, only 12 were identified as important for yield
and peak biomass and 14 for LAI, while over 70% of parameters were deemed
unimportant for the outputs under consideration, including most relating to crop
architecture. Parameters governing shade avoidance response and leaf appear-
ance rate (phyllochron) were also unimportant; variations in these physiological
and developmental parameters did lead to visible changes in plant architecture,
but not to significant changes in yield, biomass or LAI. Some inputs identified as
unimportant due to their low sensitivity index had a relatively high standard de-
viation of effects, with high fluctuations around a low mean, which could indicate
non-linearity or interaction effects. Consequently, parameters with low sensitivity
index but high standard deviation should be investigated further on an ad hoc
basis.

Our study demonstrated that global sensitivity analysis can reveal which pa-
rameter values have the most influence on key outputs, predicting specific pa-
rameter estimates that need to be carefully characterised. For a monoculture
of common bean, again only a small portion of the 31 input parameters was
identified as important (approx. 20%). LMA (leaf mass per area), WmaxLeaf
(theoretical maximal leaf mass) and nitro (leaf nitrogen content) were identified
as the most important parameters. The newly introduced parameters that gov-
ern climbing behaviour for bean (helix inclination, maximal internode length and
the branching constant) were not classified as important for most model outputs,
although helix inclination and branching constant did lead to visual differences.
We showed that sensitivity indices are stable over time for most model outputs,
with the vast majority of input parameter classifications (important, unimpor-
tant, neither) staying the same between approximately 15 and 100 simulation
days.
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7.1.3 Light capture in a maize/bean polyculture

For five bean planting/germination delay values (between 7 and 100 days after
maize), six bean parameters were varied in a one-at-a-time (OAT) design (based
on the sensitivity analysis for common bean): maximal leaf mass (WmaxLeaf);
leaf nitrogen content (nitro); leaf mass per area (LMA); base temperature (tb);
phyllochron and helix inclination (helixIncl). As a further means of comparison,
bean and maize were simulated in monoculture (bean again in the stated OAT
design). Furthermore, it was investigated how plant development changes in dif-
ferent climatic environments, by simulating bean and maize both in monoculture
and in polyculture in three sets of environmental conditions (e.g. temperature,
transmissivity of the sky, day length and position of the sun): Mexican (Yucatán
region), France (Aquitaine region) and the Netherlands.

In general, our results agreed with reports in the literature of overyielding
in polycultures including maize and climbing bean [6, 28, 46]. Our simulations
showed overperforming in LAI, aboveground biomass and CO2 assimilation (likely
leading to overyielding) in Mexican environmental conditions for a variety of input
parameter combinations, and all bean planting delay values. Maize was typically
hardly affected by the presence of bean. So even though the model used here did
not include certain important characteristics such as plant root architecture and
heat or water stress, key characteristics of this polyculture were still recovered.
This indicates that aboveground processes (also) play an important role in the
phenomenon of overperformance (overyielding).

The two most influential parameters were leaf mass per area (LMA) and
maximal leaf mass under ideal conditions (WmaxLeaf). The strong increases in
bean peak LAI for optimal choices for these two input parameters could not be
explained by an increase in leaf size alone. For LMA a significant increase in
branching (and thus in the number of leaves) was observed for lower LMA values,
in combination with an average leaf size increase. For WmaxLeaf there was no
such increase in branching. In both cases, the increase in average leaf size (and
branching for LMA) was not sufficient to fully explain the strong increase in LAI
for optimal values for LMA or WmaxLeaf. This requires further work.

The reason why maize was hardly affected by bean is likely because it typically
outgrew bean from the start, so only the bottom few leaves experienced some
extent of shading from the bean (depending on the bean planting delay). By the
time bean reached the top of the maize plant, in most cases all maize leaves had
dropped. Since shading was the only competition we modelled, this resulted in a
very minor negative effect on maize light capture.

Environmental conditions had a significant effect on model outputs, most
notably on the behaviour of common bean. Bean only performed in Mexican
conditions, and hardly grew in South-French or Dutch conditions. This might
suggest bean is more sensitive to climatic conditions than maize, but it could
also suggest that bean grows poorly because of inaccurate parameterisation or
because internodes are initiated with their final length, which might disrupt the
normal source-sink balance.
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7.2 Limitations

There are three main limitations in this work. The first is a limitation of scope.
Even though this work was heavily motivated by the three sisters polyculture and
the milpa and their users, a number of key plant species were not incorporated,
such as squash and for the milpa a number of other crops including chillies.
Instead, we focused on the two crops with the most complex interaction: maize
and climbing bean. Secondly, even though (the effects of) climate change was a
strong motivator for this work, and for the broader PalaeoRAS project in general,
this is expressed in a limited way in the model, with heat stress and rainfall (or
the lack thereof) not being included. This is not a major issue for this work,
as the focus is on light capture, not water or heat stress, but it does mean that
there currently is limited capability to fully address questions related to changes
in the rain season, and the best way to deal with this as a farmer. Thirdly, as has
been mentioned several times throughout this thesis, parameterisation of common
bean is of limited quality. As we were not able to gather sufficient data in the
field because of adverse weather and global developments, and since there does
not appear to be complete data available for climbing varieties of common bean,
the parameterisation is based on values for multiple varieties of common bean,
with some being non-climbing bush bean, and on values of other climbing bean
species, such as runner bean (Phaseolus coccineus). This might have introduced
errors in the parameterisation, which increase uncertainty in the model outputs.

Some further, more minor limitations are the following. All virtual experi-
ments took place on a flat field, whereas plots in Mexico can be significantly more
hilly. In these cases, hills can block a significant amount of sunlight, and make the
orientation (and potentially spacing) of the rows more important. Furthermore,
grain filling and fruit development is modelled in a rudimentary way, with maize
cobs and bean pods simply acting as a sink for assimilates. In the case of maize,
cobs are not modelled explicitly in the 3D architecture, but are simply batched
into a single flower node. If one would be interested in questions regarding grain
filling or pod filling, a more detailed description would be welcome.

Finally, a caveat about drawing conclusions from sensitivity analyses. One
should be careful with generalising conclusions drawn from SA results, as there is
always the question of whether the analysis says something about the real world
the model describes, about the model itself (it might indicate certain processes
are modelled too simplistic), or about the assumptions made in the analysis itself
(e.g. too wide or incorrect parameter ranges). One should be sufficiently certain
that conclusions that seem to say something about e.g. plant biology are not
caused by model uncertainty or uncertainty in SA assumptions before stating
such conclusions are generally true in the real world.

7.3 Future directions

A number of general model improvements and extensions could be valuable to
better simulate the effects of climate change. Firstly, inclusion of a water balance
and water-related processes in the plant (including the effect of water shortage)
would enable studies into the effect of a change in rain season due to climate
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change. Secondly, to properly model water uptake it would be a major improve-
ment to either simulate the root architecture and assimilate uptake by the roots
explicitly, or couple the aboveground model used in this work to e.g. the below-
ground OpenSimRoot model of the three sisters developed by Postma and Lynch
[12]. Thirdly, a description of the negative effects of extreme heat (heat stress)
on a plant, such as a decrease in photosynthesis rate, leaf senescence or even
plant death, would be very welcome to better assess the impact of higher average
temperatures and more frequent extreme temperatures.

For common bean specifically, the two most important extensions would be
to include nitrogen fixation, i.e. the ability of certain legumes to capture at-
mospheric nitrogen and convert it to usable forms, and to adapt the twining
framework to include bean internode elongation. The former is important as this
is a defining form of niche complementarity of maize and bean, and is known to
significantly influence maize development. The latter is motivated by our simula-
tion results of the polyculture, which suggested that fixed length bean internodes
might cause underestimation of bean performance. Furthermore, an interesting
avenue of future research would be to incorporate more biomechanical underpin-
ning of twining, for example by incorporating aspects of the mathematical model
by Moulton et al. [92].

Field trials that could be used to improve parameterisation for common bean
with actual climbing bean data, or to validate (some of) the simulation results and
corresponding biological conclusions drawn in this work would be very welcome.
In particular, it would be very useful and interesting to revisit the data collection
attempts that were made in Mexico and Belize, but which were unsuccessful
due to adverse weather and a global pandemic. This would not only improve
the model, but could also positively impact the local communities depending on
milpa.

To complete the three sisters, and to take the next step in modelling the milpa,
squash could be included in the model. This should be relatively straightforward
using the tools presented in this work (assuming one can obtain the necessary data
for parameterisation): squash ‘crawls’ over the soil surface, and grows towards
‘open’ (uncovered) spaces. This can be modelled using the AvoidIntersection
class in GroIMP. With this class, one can both describe growth parallel to the
soild surface, and avoid collisions with other plants. Similarly to the extending
internodes for bean mentioned above, one would have to think about collision
avoidance if squash internodes elongate over time.

Finally, noteworthy recent developments are two attempts to develop a functional-
structural modelling platform in the Julia language. The project that is most sim-
ilar to, and in fact strongly influenced by, GroIMP is Virtual Plant Laboratory
(VPL; https://virtualplantlab.com), developed by A. Morales Sierra at Wagenin-
gen University & Research. Julia excels at certain aspects of programming that
no other language does. For example, Python sacrifices speed for being flexible
and dynamic, while languages like C and Java are strictly static to increase run-
time speed. The Julia language has a Matlab-like syntax, is entirely dynamic
(both types and values can be changed), and is still as fast as C. As such, VPL
might offer significant benefits (over e.g. GroIMP) in terms of computional effi-
ciency, user control and user-friendliness, and would be an interesting alternative
to consider for those thinking about using FSP modelling in the future.
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7.4 Software & data availability

The numerical results in this thesis were obtained using code in the XL language
[105] (an extension of Java), compiled on the freely available modelling environ-
ment GroIMP [80]. Included in the code is a stand-alone implementation of our
formulation of the Elementary Effects method which can easily be converted to
the Java language. The data - including additional figures - are available in the
form of Microsoft Excel spreadsheets. All code and data that support the findings
of this thesis are openly available at the following repositories:

• https://github.com/pmxrr3/EE theory 2023 (Chapter 3);
• https://github.com/pmxrr3/EE apply 2023 (Chapter 4);
• https://github.com/pmxrr3/maizebeanpolyculture 2023 (Chapters 5 and 6).

7.5 Concluding remarks

What started as a quest to model the milpa with an existing crop model, turned
out to be more involved than expected. Modelling complex polycultures was
not as far developed as expected, and a complete plant model of the milpa, or
even of the three sisters, did not exist yet. Moreover, no FSP model of common
bean had been developed yet. Building on an existing general FSP model that
could simulate maize, we were able to describe the twining behaviour of climbing
common bean within the confines of the XL language and the GroIMP platform.

As the model contained many input parameters, of which some were diffi-
cult to parameterise, a global sensitivity analysis was paramount. However, the
method of choice, the Elementary Effects method, although it had been fre-
quently applied to dimensional models with arbitrary input parameter ranges
in the past, was not suitable for such models. We updated the Elementary Ef-
fects method, making it applicable for general models. Subsequently applying
this method to our model showed the use and benefit of applying sensitivity
analysis in (functional-structural) plant models. The hope is that this work will
inspire more plant modellers to routinely incorporate sensitivity analysis in their
research.

The maize/bean model presented in this work is one of the first examples of
an aboveground FSP model of a polyculture with complex physical plant-plant
interaction. Our results suggest that FSP modelling could be a valuable tool to
investigate such agricultural systems, and could be used to test hypotheses about
e.g. architectural facilitation. In this work, we have shown that it is possible
to model maize/bean crop mixtures, making an aboveground model of the three
sisters only a small step away.

To close off, I believe science and research should be accessible. All data and
code in this work is therefore publicly available on GitHub (see data availabil-
ity statements in Ch. 3-6), and papers are and will be published open-source
whenever possible.

-169-

https://github.com/pmxrr3/EE_theory_2023
https://github.com/pmxrr3/EE_apply_2023
https://github.com/pmxrr3/maizebeanpolyculture_2023


| Bibliography

[1] IPCC. Climate Change 2023: Synthesis Report. Contribution of Working
Groups I, II and III to the Sixth Assessment Report of the Intergovernmen-
tal Panel on Climate Change. 2023. Summary for Policymakers.

[2] C. Zhao et al. Temperature increase reduces global yields of major crops
in four independent estimates. Proceedings of the National Academy of
sciences, 114(35):9326–9331, 2017.
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A Description of model files

Figure A.1 shows the model structure, detailing the links between the different
.rgg files. A full list of parameters can be found in Appendix F. In what follows,
the workings of each individual .rgg file are described.

Main Contains methods to i) initiate an experiment (see Initiation), ii) set up
multiple simulations in series, iii) run these simulations, iv) step through time
within a single simulation and v) export relevant data.

Initiation This file is used to initiate the scene for a new simulation. It contains
methods to reset relevant counters (e.g. time, day of year), clear and (re-)initiate
datasets (e.g. field-level output data). Most importantly, the method initiate

() builds the actual scene, i.e. it inserts lights, tiles, sensors, plants (in the
form of seeds), weeds (if applicable) and soil boxes (if applicable) at pre-specified
locations.

Environment Calculations for environmental context. Average temperature
is calculated here. Day length is calculated following a diurnal model by A.
Morales (Wageningen University; unpublished). Furthermore this file contains
the set-up of the light sources. To accurately represent a realistic light field, a
mix of direct and diffuse light sources are placed in the scene. Environment.rgg
contains methods to calculate the appropriate angles, locations and intensities of
these light sources.

Parameters The vast majority of general settings and options are set here,
including: visualisation options, data collection options, species present in simu-
lation, spatial field layout (e.g. strips, mixed, random), root/soil parameters (if
applicable), weed parameters, general plant settings, light model & sensor options
and environmental parameters (latitude, starting day of year, etc.). This file also
contains simulation time management and instantiates the datasets.

Parameters x Each species has a specific file with plant-specific parameter
values. Some of these are fixed within a species (e.g. C3 or C4 photosynthesis),
some may vary within species (e.g. seed mass). Other parameters are more
context/environment/management dependent, e.g. the number of plants in a
field.

Modules Base This file contains several modules that form the foundation
of the model. FieldBase is module that contains field-wide variables (leafArea,
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Environment

Parameters_0-16

Parameters

Photosynthesis

Modules_organs

Modules_Base

Modules_Light

InitiationRewrites
Updates

Main

Milpa

ElementaryEffects

Figure A.1: Dependency graph of model files, indicating dependencies between
different .rgg files (excluding RootModule and SimpleSoilModule). An arrow from
x to y means x is imported by y.

189



DepletedSoil

RichSoilExploredSoil

RootApex

SecondaryRootOrgan

PrimaryRootOrgan

ExtendingRootOrgan

OldRootOrgan

GrowingRootOrganRootOrgan

Leaflet

Seed Leaf

Internode

RootBase

RootSystem

FlowerApex

VisibleOrganGrowingOrganOrgan

Figure A.2: Overview of modules in Modules Organs.rgg (black), RootMod-
ule.rgg (green) and SimpleSoilModule.rgg (brown). An arrow from x to y means
y extends x.

LAI, biomass, etc.) and the methods that update these. PlantBase is module
that contains plant-wide variables (age, ID, organ biomass, height, etc.). It in-
cludes methods for calculation of plant source and sink strength, based on organ
sink/source strengths. Finally BranchBase contains branch-level variables (ID,
dormancy, number or phytomers, etc.) and is used to perform branch abortion.

Modules Organs This file contains modules for organs on different levels of
specificity. As an example, the Internode module is a child of VisibleOrgan,
which is in turn a child of the more basic Organ. Figure A.2 provides a schematic
overview of the relation between different modules. The source/sink strength of
organs and assimilate allocation is based on Yin et al. [146]. Other methods
include calculation of light absorption, leaf nitrogen levels, and growth.

Modules Light Here the light sources and the objects to measure light inter-
ception (tiles and sensors) are defined.

RootModule Currently under development and not used in this work. If dis-
abled, root system is a abstract sink. If enabled, root architecture and root
growth are explicitly modelled. See also Figure A.2.

SimpleSoilModule Currently under development; works in tandem with RootModule

and therefore not used in this work. See also Figure A.2.

Photosynthesis Photosynthesis is either based on a relatively simply Thorn-
ley response curve [241], or the more detailed Farquhar-von Caemmerer-Berry
(FvCB) model [242], as described in Yin et al. [146]. This model “predicts net
photosynthesis (A) as the minimum of the Rubisco-limited rate of CO2 assim-
ilation (Ac) and the electron transport-limited rate of CO2 assimilation (Aj)”
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[146]. The Thornley model does not distinguish between C3 and C4 plants, the
implemented FvCB model does.

Updates Contains a single method, renew(), which updates certain variables.
This method is called after each time step (i.e. a day).

Rewrites Contains a single method, develop(), which contains rewrite rules,
e.g. for germination, flowering, leaf shedding, branch abortion and harvesting.
Whether these actions are performed depends on other state variables such as
l.shouldfall() (should a leaf be shed?).

Milpa Changes/additions to the model made by the author for simulating
(climbing) common bean. Includes methods to describe helical bean twining
and bean branching. Discussed in more detail in Chapter 5. In addition the
methods that enable use of the AvoidIntersection class (as discussed in App.
D) are included here.

ElementaryEffects Standalone implementation for doing Elementary Effects
sensitivity analysis. More information in Chapter 3.
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B Appendices Elementary Effects for gen-

eral models: Theory

B.1 Elementary effects

An elementary effect is typically defined as

eenij =
Yj(x+ eiδi)− Yj(x)

δi
, (B.1)

where δi ∈ {1/(pi−1), 2/(pi−1), . . . , 1}. However, this does not properly account
for steps in the negative direction, in which case the effect is actually

eenij =
Yj(x)− Yj(x− eiδi)

δi
. (B.2)

Both expressions can however be combined into a single equation

eenij =
Yj(x+ eiδi)− Yj(x)

δi
, (B.3)

by letting δi ∈ {±1/(pi − 1),±2/(pi − 1), . . . ,±1}. If the step is in the pos-
itive direction (so δi ∈ {1/(pi − 1), 2/(pi − 1), . . . , 1}), Equation (B.3) equals
Equation (B.1). On the other hand, for a step in the negative direction (so
δi ∈ {−1/(pi − 1),−2/(pi − 1), . . . ,−1}), Equation (B.3) can be written as

eenij =
Yj(x)− Yj(x− ei|δi|)

|δi|
(B.4)

which equals Equation (B.2).

B.2 Discrepancy

Following Morokoff and Caflisch [166], discrepancy of a sequence {x(i)}Ni=1 ⊂ [0, 1]d

centers around the quantity

RN(J) =
1

N
#[x(i) ∈ J ]− Vol(J), (B.5)

where J ⊆ [0, 1]d, #[x(i) ∈ J ] is the number of points in J and Vol(J) is the
volume of J . RN(J) gives the deviation of the sequence from complete uniformity
in the sub-region J . Different kinds of discrepancies can then be obtained by
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restricting the sub-region J to a certain class of sets and by taking a certain
norm of RN over this class [166].

The L∞ (or sup) and L2 discrepancy of a sequence {x(i)}Ni=1 are defined as

D∞(N, d) = sup
I⊂E

∣∣∣∣ 1N#[x(i) ∈ I]− Vol(I)
∣∣∣∣ (B.6)

and

T 2
2 (N, d) =

ˆ

[0,1]2d,
yi<zi

[
1

N
#[x(i) ∈ [y, z]− Vol([y, z])

]2
dydz, (B.7)

respectively, where Vol(V ) is the volume of region V and E is the set of all
sub-rectangles of [0, 1]d. Similarly, the star variants (D⋆

∞ and T ⋆
2 ) are defined by

restricting the sub-region J to E⋆, the class of sub-rectangles with a corner at 0,
i.e.

D⋆
∞ = sup

I⊂E⋆

∣∣∣∣ 1N#[x(i) ∈ I]− Vol(I)
∣∣∣∣ ; (B.8)

(T ⋆
2 (N, d))2 =

ˆ

[0,1]d

[
1

N
#[x(i) ∈ [0,y]− Vol([0,y])

]2
dy. (B.9)

In practice, it is typically not feasible to calculate the L∞ measure (B.6). Even

(a) T2 (Eq. (B.10)). (b) T ⋆
2 (Eq. (B.11)).

(c) CN (Eq. (B.12)). (d) WN (Eq. (B.13)).

Figure B.1: Visual interpretation of different kinds of L2 discrepancies. The blue-
shaded area depicts the sub-region J for that discrepancy. Figure reproduced from
[167].

in the case of OT, there are [r(k + 1)]k sub-regions to consider. It is therefore
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common to use an L2-based discrepancy, the main advantage being that closed
expressions are readily available (Eq. (B.10)-(B.13)).

T 2
2 (N, d) = 12−d +

1

N2

N∑
n=1

N∑
m=1

d∏
i=1

[1−max(x
(n)
i , x

(m)
i )] ·min(x

(n)
i , x

(m)
i )

− 21−d

N

N∑
n=1

d∏
i=1

x
(n)
i (1− x

(n)
i ); (B.10)

(T ⋆
2 (N, d))2 = 3−d +

1

N2

N∑
n=1

N∑
m=1

d∏
i=1

[1−max(x
(n)
i , x

(m)
i )]

− 21−d

N

N∑
n=1

d∏
i=1

(1− (x
(n)
i )2); (B.11)

C2
2(N, d) =

(
13

12

)d

− 2

N

N∑
n=1

d∏
i=1

(
1 +

1

2
|x(n)

i − 1
2
| − 1

2
|x(n)

i − 1
2
|2
)

+
1

N2

N∑
n=1

N∑
m=1

d∏
i=1

(
1 +

1

2
|x(n)

i − 1
2
|+ 1

2
|x(m)

i − 1
2
| − 1

2
|x(n)

i − x
(m)
i |
)
;

(B.12)

W 2
2 (N, d) = −

(
4

3

)d

+
1

N2

N∑
n=1

N∑
m=1

d∏
i=1

(
3

2
− |x(n)

i − x
(m)
i |(1− |x(n)

i − x
(m)
i |)

)
;

(B.13)

Besides T2 and T ⋆
2 , two other commonly used L2 discrepancies are the centered

(C2) and wrap-around (W2) discrepancy [178, 179, 243]. Figure B.1 depicts the
different kinds of sub-regions (i.e. restrictions of J) for each of the L2-based
discrepancies. W2 discrepancy is less sensitive to boundary effects by wrapping
the hypercube for each dimension [179]. For that reason, the wrap-around dis-
crepancy is used in this work, since (E)OT and the ‘pinned’ methods naturally
generate many parameter points on the boundary of the hypercube (i.e. xi = 0
or xi = 1). Indeed, from the closed expressions for TN (Eq. (B.10)) and T ⋆

N

(Eq. (B.11)) it is clear that they are not suitable for examining uniformity of
such simulation point sets; by construction there is always at least one term in
each product that will vanish if the number of levels p = 4 and the optimal step
size |δ| = p/(2[p− 1]) are chosen.

Typically the expected discrepancy of a uniform random sample is used as
a benchmark (see [167] for a closed expression for the W2 benchmark); if the
discrepancy of the QR sequence is significantly lower than the benchmark, the
sequence is deemed good; if there is no significant decrease in discrepancy, or even
an increase compared to the benchmark, the sequence is deemed poor. In all cases,
the discrepancies of our point sets are much larger than the benchmark. In other
words, our trajectories have a worse uniform coverage than a completely random
sample. This is caused by the inherent clustering in the form of trajectories (OT)
or stars (radial) and, in the case of OT or radial with integer/Boolean inputs, the
fact that an input can only take one of pi discrete values. One thus cannot use
this benchmark to assess the quality of the set of trajectories.
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B.3 Sobol total sensitivity indices

Given that the factors are independent, the output variance V (Y ) for a model
output Y with k scaled dimensionless input factors can be decomposed as [133]:

V (Y ) =
k∑

i=1

Vi +
k∑

i=1

∑
j>i

Vij + . . .+ V12...k, (B.14)

where the first two terms are given by

Vi = VXi
(EX∼i

[Y |Xi]); (B.15)

Vij = VXiXj
(EX∼ij[Y |Xi, Xj])− Vi − Vj, (B.16)

and the higher orders can be derived similarly [131]. Here X∼i denotes the mean
is taken over all factors exceptXi. Vi can be interpreted as the expected reduction
in variance that would be obtained if Xi could be fixed. The associated sensitivity
coefficients for the first two orders are [133]:

Si =
VXi

(EX∼i
[Y |Xi])

V (Y )
; (B.17)

Sij =
VXiXj

(EX∼ij[Y |Xi, Xj])

V (Y )
− Si − Sj; (B.18)

higher order indices are derived in a similar way. Note that these coefficients
are normalized and sum to unity, i.e.,

∑
i Si +

∑
i

∑
j>i Sij + . . . + S12...k = 1.

Alternatively, the total effect index, here also referred to as Sobol total (sensitivity)
index, ST i measures the total effect, i.e. first order and interactions, of input Xi

[133]. It is given by

STi
=

EX∼i
[VXi

(Y |X∼i)]

V (Y )
= 1− VX∼i

(EXi
[Y |X∼i])

V (Y )
. (B.19)

One way of interpreting this quantity is by noting that VX∼i
(EXi

[Y |X∼i]) is the
first order effect of X∼i, so V (Y ) minus this quantity must give the contribution
of all terms in the variance decomposition which do include Xi (see [131,133] for
more detail). The total sensitivity index STi

is linked to the EE absolute mean
effect µ⋆

i in the following way [131]. µ⋆
i is an approximation of the functional

µ̃i =
´
Ω
|∂f/∂xi|dx, where f is the output of interest. In [131] it is shown that

STi
≤ Cµ̃i/π

2V , where |∂f/∂xi| ≤ C and V is the total variance of f(x). Hence,
small µ⋆

i imply small STi
. The reverse is not necessarily true1, i.e. ranking fac-

tors based on STi
might give different results [131]. Nevertheless we expect that

sampling strategies that are able to accurately estimate total sensitivity indices
will also be able to accurately rank parameters (based on e.g. [187]).

1Lower bounds on STi in terms of µ̃i do exist [244], but from these one cannot conclude that
the ranking based on STi

is the same as the ranking found in EE.
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Analytical values Sobol indices of test functions

The analytic STi
for the K-function (Eq. (41)) can be shown to equal

STi
(K) =

1
40

(
1
3

)k
+ 1

8

(
1
3

)i
+ 1

10
(−1)k+i

(
1
2

)k−i (1
3

)i
V (K)

, (B.20)

with

V (K) =
1

10

(
1

3

)k

+
1

18
− 1

9

(
1

2

)2k

− 2

45
(−1)k

(
1

2

)k

. (B.21)

This expression is equivalent to the one given in [133], but in a more compact
form.

Likewise, the analytical STi
for the G∗-function (Eq. (42) and Table 4) equal

[133]:

STi
(G∗) =

Vi

∏
j ̸=i

(1 + Vj)

k∏
i=1

(1 + Vi)− 1

, (B.22)

where

Vi =
α2
i

(1 + 2αi)(1 + ai)2
. (B.23)

The analytical total sensitivity indices for the f6-function (Eq. (49)) are
[0.404365, 0.565778, 0.0148933, 0.012522, 0.002442, 0] [118].

Alternative numerical estimation of Sobol indices

A commonly used alternative to approximating the total variation V̂ (Y ) in Equa-
tion (51) is given by [185]:

V̂ (Y ) =
1

r

r∑
j=1

[Y (Aj)− Y0]
2 ; (B.24)

Y0 =
1

r

r∑
j=1

Y (Aj). (B.25)

Here Y (Aj) is the value of Y at the j-th base point and Y (A
(i)
Bj
) is the value of

Y at the perturbed value in the xi-direction.

Differences in test setup with Saltelli et al.

Note that [133] does not divide by k in their definition of MAE (Eq. (54)), since
in all their experiments k = 10. Furthermore, in [133] the input labels were ran-
domly shuffled for the G∗-function (Eq. (42)), possibly to account for differences
in uniform coverage of the QR sequence in higher dimensions. However, because
we felt this potential effect is far outweighed by sampling the ηi’s, we have not
done this in our experiments. Finally note that Saltelli et al. [133] plot ‘total
cost’ on the horizontal axis, which is defined as r(k+1) (regardless of the number
of experiment replicates). To increase reproducibility, we show the number of
trajectories per replicate in Figures 8-9.
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C Additional results for Elementary Effects

for general models: Application

This appendix shows additional results related to Chapter 4, where the Elemen-
tary Effects method was applied to an FSP model simulating maize. The figures
that follow provide more insight about the relation between relative standard de-
viation and sensitivity index (Fig. C.1), the evolution of sensitivity indices over
(simulated) time (Fig. C.2), and the general spread in output values over time
(Fig. C.3).
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Figure C.1: Absolute (unscaled) effects for 40 trajectories for three inputs which
are classified as unimportant, but have a high RSD (see Fig. 4.4). Primary ver-
tical axis depicts absolute effects for the output peak biomass, secondary vertical
axis depicts absolute effects for the outputs yield and peak LAI.

197



0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

Simulation day

S
_c

hi

Leaf area index

Param.

19
6
48
52
3

(a) LAI.

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

Simulation day

S
_c

hi

Aboveground biomass

Param.

27
30
48
3

(b) Aboveground biomass.

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

Simulation day

S
_c

hi

Yield

Param.

51
48
3

(c) Yield.

Figure C.2: Exploratory data analysis; sensitivity indices Sχ for several field-level
outputs over time. Parameters with a sensitivity index Sχ > 0.10 at some point
after day 10 in time are highlighted.
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Figure C.3: Exploratory data analysis; plots over time of several field-level out-
puts at all 2120 simulation points. Average over 3 replicates. Red line depicts
average over all simulations.
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D AvoidIntersection class

This section describes the workings of the AvoidIntersection class, and mentions
some minor improvements this project has brought forth.

A simple way of checking whether there are objects in the growth direction
of an organ is by using the geometric object of a cone. As an example in the XL
language,

a ==> if( empty(
(* f:F, ((distance(a, f) < 1 &&
(f in cone (a, false, 75))) *)

)
)(

// Do
...

)

only executes the actions described after // Do if there are no objects of type F

in the infinite cone with opening angle of 75 degrees and centerline heading equal
to the heading of the object a that also have a distance to a smaller than one.
Here a can represent an apical meristem, while F is an internode, for instance.
However, this does not provide growth directions that are free and close to the
initial direction.

The GroIMP class AvoidIntersection is designed to calculate tropisms (i.e.
new growth directions) to avoid other objects or align with selected objects. The
most important methods and parameters are:

AvoidIntersection ai = new AvoidIntersection(numRays); \\ Create
instance of class with numRays number of test rays

ai.setRange(Width, Height, PredictedLength); \\ Set dimensions
and anchor point of test space

ai.setDistance2Surface(Dist2Surf); \\ Set minimum distance to
other volumes

ai.addFavorNode(Node n); \\ Mark a node as 'friendly'
ai.look(a, LengthRays, Strength, ShowRays); \\ Main method;

explores the test space around node a and computes new growth
direction

The main method look() involves the following steps:

• Prepare the scene by constructing a graph of the 3D space;

• Define the origin node a and corresponding volume;

• Shoot a number of test rays randomly into the scene. These rays lie in a
pyramid with a rectangular base defined by two parameters Width and Height

and is centered around the direction vector of the origin node. The starting
point (i.e. the pyramid tip) is shifted from the location of the origin node along
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said direction vector by an amount PredictedLength. More precisely, rays are
generated as follows: given the direction of the origin node (originDir), a local
orthonormal coordinate system is constructed; see Figure D.1. Let us call the
other basis vectors a and b. In GroIMP version 1.5, a random ray lying within
the pyramid described above is then constructed by setting the direction of this
ray (newDir) to

newDir = random(-Width,Width)a + random(-Height,Height)b + originDir.
(D.1)

However, when either Width and/or Height is (much) larger than one, this
leads to clustering near the corresponding pyramid boundaries; originDir has
unit length, but the probability of sampling a vector in the (a,b)-plane of
magnitude (much) larger than one is large, thereby resulting in a set of vectors
that favour aligning with the (a,b)-plane (Fig. D.2a). This is remedied by
adding originDir (i.e. the heading vector) more times, depending on the
value of Width and Height (Fig. D.2b):

newDir =random(-Width,Width)a+ random(-Height,Height)b

+ random(1,max(Width, Height))originDir. (D.2)

This improvement has been suggested by the author to the developers of
GroIMP, together with an improvement for shooting rays in all directions
(which is used when no free growth direction is found). These have been
adopted into version 1.6 and later releases. Finally, newDir is normalised, and
a ray of a pre-specified length is drawn, starting at the origin node - possibly
shifted by an amount PredictedLength - with heading given by newDir.

• For each ray, determine whether it intersects with another object, and if so,
whether the hit is friendly, meaning that a growth direction tangential to the
hit object is preferred, or unfriendly, meaning that a growth direction pointing
away from this object should be computed.

• Weighing the type of intersection (friendly/unfriendly) and geometric distance
between intersection point and origin node for each test ray, a new direction
vector is calculated. If there are no friendly intersections, the new growth
direction is a weighted sum of all free directions, i.e. the headings of all test rays
that did not intersect another object, minus a weighted sum of all unfriendly
directions; a larger weight is attributed to unfriendly intersections closer to the
origin node. If there is at least one friendly intersection, a growth direction
tangential to the friendly object is calculated such that it is as close as possible
to the old growth direction, while keeping a pre-specified distance to the friendly
volume surface.

• Finally, this direction vector is converted into a tropism of a user-specified
strength and the transformation node is inserted into the graph. Note that the
actual new direction vector depends on the tropism strength, and is generally
not identical to the calculated new direction vector.
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Figure D.1: Generation of a test ray in the class AvoidIntersection. (a):
the heading of the object volume (red cylinder) determines a local orthogonal
Cartesian coordinate system. (b): test rays are then created in this local coor-
dinate system; here one realisation of the triplet a'= random(-Width,Width)a,
b'= random(-Height,Height)b and orignDir' = random(1,max(Width, Height

))originDir is shown, leading to a test ray anchoring at the local origin with
direction newDir given by Equation (D.2).

(a) Each ray is a realisation of Equa-
tion (D.1)

(b) Each ray is a realisation of Equa-
tion (D.2).

Figure D.2: Realisations of 200 test rays generated by the class
AvoidIntersection. (a): newDir is constructed according to Equation (D.1),
leading to clustering near the angle boundaries. (b): newDir is given by Equa-
tion (D.2), resulting in an even spread across the test space.
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Problem with instantiated geometry In our model - and in fact, in many
FSP models - most of the geometry (i.e. volumes) is generated using so-called
instantiation rules. Instead of producing volumes in a direct way in a replacement
rule, such as

a ==> Sphere(1) a;

which adds a unit sphere to the scene, geometry - plant organs in particular - is
typically added to the scene implicitly, by using modules with the following form:

Module A {
// Imperative code: variables and/or methods

}
==> Sphere(1)

The main advantage of using modules like this is that it prevents one from having
to specify the geometry explicitly each time the module is inserted. This can
become very cumbersome, for example if a module represents a compound leaf
consisting of many parallelograms and cylinders. In addition, it only adds a single
node to the graph (in the example above a node of type “A”) instead of separate
nodes for each geometric object, which can save a significant amount of memory.
However, this benefit turns into a drawback when using the AvoidIntersection

class. The module nodes do not carry any information about the geometric
objects that were implicitly added to the scene. Because the AvoidIntersection
class relies on graph nodes of the type of base geometric objects, it cannot detect
those implicitly added volumes, and can therefore not identify collisions between
the test rays and those volumes.

As a workaround, one should manually add copies of all geometric objects in a
direct way to the graph before each look() step and remove them afterwards. To
continue the example above, one should add the following method using the built-
in function makeGraph, where the graph is searched for the first instance of the
module A, and a sphere is added behind it via a branch edge (with a translation
in the negative head-direction to give it the correct position) in a direct way.

private void makeRealA() {
makeGraph ==> first((* A *)) [M(-0.5) Sphere(1)];

}

This sphere is then identifiable by the AvoidIntersectionmachinery. Needless to
say, this is very cumbersome for complex geometries, adds significant complexity
and clutter to the graph, and adds computational cost.
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E Describing discrete helices by specifying

head direction

The parametric description of a standard right-handed helix with radius a and
pitch 2πb is given by

x(t) = a cos t;

y(t) = a sin t;

z(t) = bt,

where t ∈ [0, T ] for some T . In terms of the standard orthogonal unit vectors,
the position at time t is given by

p(t) = a cos ti+ a sin tj+ btk. (E.1)

This can be extended to helices centered around an arbitrary vector W, by deriv-
ing a local orthogonal coordinate system (U,V,W), e.g. by setting U = W × i
and V = U×W. The helix is then described by

p(t) = a cos tU+ a sin tV + btW. (E.2)

In the FSP model, the helix consists of a chain of concatenated cylinders instead
of a continuous line. It is therefore not possible to feed the model the parametri-
sation above. Instead, one has to either describe a rotation w.r.t. the current
cylinder’s heading, or specify the head direction of the next cylinder to be added
to the chain. The latter is easier to implement, but causes a significant issue in
controlling the radius and pitch of the helix, as is shown here.

The direction vector di+1 (in global coordinates) of the (i+ 1)-th cylinder in
the helix chain orbiting the arbitrary vector W is given by

di+1 = cos(i/a)U+ sin(i/a)V + bW, (E.3)

(E.4)

or, in normalized form,

di+1
norm =

di+1

√
1 + b2

, (E.5)

(E.6)

where a and b are constants linked to the radius and pitch. Supposing each
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cylinder in the chain has length L, the radius r and pitch p approximately1 equal

r =
L

2
√
1 + b2

[
1− cos

(
1

a

⌈
1

2
πa

⌉)
+ cot

(
1

2a

)
sin

(
1

a

⌈
1

2
πa

⌉)]
; (E.7)

p =
Lb√
1 + b2

[
4

(⌈
1

2
πa

⌉
− 1

)
+ 1

]
. (E.8)

This can be derived as follows (see Fig. E.1). W.l.o.g. assume that the helix
starts in the origin (i.e. x(0) = (0, 0, 0)), is a standard right-handed helix (i.e.
grows around the vector (0,0,1)) and the first - not normalized - direction vector
is given by d(1) = (1, 0, b). The coordinates of the bottom of the second cylinder
are then

x(1) =
L√

1 + b2
(1, 0, b). (E.9)

Taking another step, but with the new normalized direction vector given by

d(2)
norm =

1√
1 + b2

(cos(1/a), sin(1/a), b), (E.10)

yields the coordinates of the bottom of the third cylinder:

x(2) = x(1) +
L√

1 + b2
(cos(1/a), sin(1/a), b) (E.11)

=
L√

1 + b2
[(1, 0, b) + (cos(1/a), sin(1/a), b)] . (E.12)

Repeating this procedure reveals that the location of the bottom of the n+1-th
cylinder equals

x(n) =
L√

1 + b2

n−1∑
i=0

(cos(i/a), sin(i/a), b). (E.13)

Now, since we started in the origin, and start our movement to the right, the
radius of the helix is given by the maximum x-coordinate. Since this coordinate
is a sum of cosines with increasing argument, we can find the cylinder where the
maximum is attained by choosing n as the lowest integer that yields a negative
value for cos(n/a). Hence, we must take

n =

⌈
1

2
πa

⌉
. (E.14)

The approximate radius is then given by

r = x(n)
x =

L√
1 + b2

⌈
1
2
πa

⌉
−1∑

i=0

cos(i/a), (E.15)

1The helix is not a smooth curve, but a sequence of oriented cylinders. It is thus not straight-
forward what the radius of such a helix is. Furthermore, we only have the coordinates at a
discrete number of points (the cylinder centerline bottoms), so the found maximum value might
differ slightly from the theoretical value with an infinite amount of cylinders of infinitesimal
length. The same holds for the pitch.
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which can be shown to equal (E.7). The pitch of a helix is defined as the vertical
height of one full helix turn. This is achieved after four times the number of steps
required to find the radius (⌈aπ/2⌉ − 1) plus one step. At each step, this height
increases by Lb/

√
1 + b2. Hence, the pitch approximately equals

p =
Lb√
1 + b2

[
4

(⌈
1

2
πa

⌉
− 1

)
+ 1

]
. (E.16)

(a) Side view. (b) (x, y)-plane.

Figure E.1: Schematic depiction of a discrete helix, showing the approximate
radius is given by the x-coordinate of the ⌈1

2
πa⌉-th cylinder.

The found values highlight the difficulty in controlling radius and pitch; be-
cause of the appearance of the discontinuous ceiling function (⌈·⌉), it is impossible
to analytically determine the values of a and b, given a desired radius and pitch
and given the length L of each cylinder. In fact, in what follows it is shown that
a solution (a, b) is not even guaranteed for all combinations of radius, pitch and
cylinder length.

For each i = 0, . . . ,∞, consider a ∈ (2i/π, 2(i+1)/π]; then ⌈aπ/2⌉ = i. Given
a desired pitch and a length L, for each i Equation (E.8) can then be solved for
b (for example using Newton’s method), leading to a set {bi}∞i=0. For each bi, the
simplified version of Equation (E.7) (using ⌈aπ/2⌉ = i, given a radius r, length
L and solution bi), is then given by

r̃(a; bi, i) :=
L

2
√

1 + b2i

[
1− cos

(
i

a

)
+ cot

(
1

2a

)
sin

(
i

a

)]
= r. (E.17)

This can be solved for a ∈ (2i/π, 2(i+1)/π], increasing i until a solution is found.
However, it can be shown that[
1− cos

(
i

a

)
+ cot

(
1

2a

)
sin

(
i

a

)]
∈
(
1 + cot

( π
4i

)
, 1− cos

(
iπ

2(i+ 1)

)
+ cot

(
π

4(i+ 1)

)
sin

(
iπ

2(i+ 1)

))
=: Ii,

(E.18)
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where Ii ∩ Ij = ∅ for i ̸= j, meaning that r̃ is not surjective (in a). (In fact,
sup(Ii) < inf(Ii+1) for all i.) Hence there might be combinations of r, p and L
that do not have a solution (a, b).
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F Parameter values (climbing) common bean and maize

F.1 Parameter values for Elementary Effects of maize

monocrop

This appendix relates to Chapter 4.

Table F.1: Input parameters with fixed values in the GSA for maize.

Parameter Value Unit Description

nrRows 10 - Number of rows in stand

nrPlants 10 - Number of plants per row

rowDistance 0.6 m Distance between rows

plantDistance 0.2 m Distance between plants within a row

delay 0 days Germination delay in days, to represent late sow-
ing

harvest 160 days Harvest time in days after emergence

offspotIntraRow 0 m Distance plant seed is off-spot in row-direction

offspotInterRow 0 m Distance plant seed is off-spot perpendicular to
row-direction

maxWidthInt 0.02 m Maximum internode width

plantDeath False - If true, entire plants are taken from scene in case
of very low source/sink ratio

rfrIncoming 1.2 - red/far-red ratio of the incoming radiation

depth 10 - maximum number of reflections/transmissions of
a ray in light model

nrRays 2 M - Number of rays in light model

nrClones 10 - Number of cloned canopies in x and y direction
to eliminate border effects

Continued on next page
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Parameter Value Unit Description

latitude 52 ◦ Latitude of scene location

startingDayOfYear 90 - Simulation starting day of year

O2 210 ppm Atmospheric oxygen level

Transmissivity 0.3548 - Fraction of light that transmitted through atmo-
sphere on a day of clear sky

FractionDiffuseLightDaily 0.8 - Fraction of diffuse light in the total radiation on
a day of clear sky

tilt 23.45 ◦ Tilt of the earth axis

c 0.4 - Parameter for collecting radiation transition re-
lated with elevation angle

n 24 - Number of direct light sources during the day

Table F.2: Parameters included in EE analysis, which belong to the indicated categories (A:
architectural; D: developmental; E: environmental; P: physiological). All parameters are real
numbers except 15, 18, 29 and 51 which are integers; in those cases the description includes
the number of levels pi and step size |δi|. The right-most three columns indicate whether a
parameter is unimportant (x), important (number indicates rank, 1 being most important)
or neither (-) for three outputs. ∗: maximum plant biomass (before final simulation day); †:
maximum leaf area index (before final simulation day).
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1 Ca E Atmospheric CO2 level ppm 300 600 x x x

2 VPD E Vapour pressure deficit kPa 0.3 3 12 12 x

3 tav a E Average daily
temperature (Eq. (2.7))

°C 9.095 12.305 4 4 14

4 tav b E °C 6.4175 8.6825 9 10 -

5 specificInter-
nodeLength

A Internode length per unit
biomass (SIL)

m·g−1 0.025 0.075 x - x

6 LMA A Leaf mass per unit area mg·cm−2 4 7 7 6 1

7 lwRatio A Ratio of leaf blade length
and width

- 9.18 11.22 x x x

8 maxWidth A Location where leaf width
is maximal

- 0.6 0.7 x x x

9 shapeCoeff A Leaf shape coefficient - 0.7 0.8 x x x

Continued on next page
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10 leafAngle-
Lower

A Insertion angle of leafs
with rank equal to or
below rankLower

° 40 75 x x x

11 leafAngle-
Upper

A Insertion angle of leafs
with rank above
rankLower

° 20 60 x x 11

12 leafCurve A Leaf curvature - angle
between bottom and top
of leaf blade

° 10 100 x x 10

13 petioleFrac-
tion

A Fraction of biomass
partitioned to the petiole

- 0.0425 0.0575 x x x

14 specificPeti-
oleLength

A Petiole length per unit
biomass

m·g−1 2.125 2.875 x x x

15 rankLower A Number of lower
phytomers that contain
nrLeavesLower leaves;
this partitions a plant in
an lower and upper part
with (potentially)
different architectural
properties
Integer-valued, pi = 3,
δi = 1/2

- 2 4 x x x

16 phyllotaxis A Angle between
consecutive leaves along
the stem

° 110 250 x x x

17 sheathscale-
factor

A Determines sheath width - 20 40 x x x

18 nrShortInter-
nodes

P Number of bottom
internodes that do not
elongate
Integer-valued, pi = 3,
δi = 1/2

- 3 5 x x x

19 wmaxRoot P Maximal root system
biomass (under ideal
no-stress conditions)

mg 10000 50000 11 x 7

20 wmaxFlower P Maximal flower biomass mg 200000 400000 8 x x

21 wmaxInt P Maximal internode
biomass

mg 3000 5000 x x x

22 wmaxLeaf P Maximal leaf biomass mg 4000 6000 x x 9

Continued on next page
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23 teRoot P Growth duration in
thermal time of root
system (no growth after
this time)

°C day 1620 1980 x x x

24 teFlower P Growth duration in
thermal time of flower

°C day 900 1100 x x x

25 teInt P Growth duration in
thermal time of internode

°C day 450 550 x x x

26 teLeaf P Growth duration in
thermal time of leaf

°C day 450 550 x x 13

27 nitro P Nitrogen content of fully
lit leaf

g·m−2 1.5 4 2 1 3

28 leafLife P Life span of leaf since
appearance (expressed as
number of times teLeaf)

- 2 4 x x x

29 varDelay P Max variation in
germination delay
Integer-valued, pi = 5,
δi = 2/4

day 2 6 x x x

30 seedMass P Seed endosperm mass mg 250 300 x x x

31 SASmax P Shade avoidance
syndrome amplitude
factor
(cSAS = 1 + (SASmax−
1) exp(−SASk · sr), where
sr is the plant source/sink
ratio)

- 10 30 x x x

32 SASk P Shade avoidance
syndrome exponent factor

- 1 15 x x x

33 reflectance-
PAR

P Reflectance of PAR by
leaves and stem (fraction
of incoming PAR)

- 0.07 0.15 x x x

34 transmitt-
ancePAR

P Transmittance of PAR by
leaves (fraction of
incoming PAR)

- 0.04 0.15 x x x

35 k2ll a P In calculation of
conversion efficiency of
incident light into
electron transport at
strictly limiting light

mol· mol−1 0.0396 0.0484 x x x

36 k2ll b P mol· mol−1 0.1845 0.2255 x 11 x

Continued on next page
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37 Vcmax25 a P In calculation of
maximum rate of Rubisco
activity-limited
carboxylation

µmol m−2s−1 27.36 33.44 x x x

38 Vcmax25 b P µmol m−2s−1 3.924 4.796 - x x

39 Jmax25 a P In calculation of
maximum rate of e-
transport under saturated
light

µmol m−2s−1 89.442 109.318 x x x

40 Jmax25 b P µmol m−2s−1 5.175 6.325 x x x

41 Rd25 P Day respiration
(respiratory CO2 release
other than by
photorespiration)

µmol m−2s−1 1.08 1.32 x x x

42 TPU25 a P For calculation of
triose-phosphate
utilization

µmol m−2s−1 4.8303 5.9037 x x x

43 TPU25 b P µmol m−2s−1 0.837 1.023 x x x

44 rg P Growth respiration g·g−1 day−1 0.255 0.345 10 9 12

45 kNkL P Ratio of leaf nitrogen and
light extinction
coefficients (kN/kL)

- 0.2 1 6 5 5

46 rm P Maintenance respiration g·g−1 day−1 0.01275 0.01725 x - x

47 fCO2 P Conversion factor of CO2
to biomass

- 0.51 0.69 5 3 6

48 tb D, P Base temperature for
thermal time calculation

°C 6 10 1 2 8

49 plastochron-
const

D Plastochron (thermal
time between creation of
two phytomers) is this
constant (∈ [0, 1]) times
phyllochron, to ensure
that plastochron is
smaller than phyllochron

- 0.8 0.95 x x x

50 phyllochron D Thermal time between
appearance of two leaves

°C day 25 35 x x x

51 finalPhytNum D Final number of main
stem vegetative
phytomers
Integer-valued, pi = 6,
δi = 3/5

- 10 20 3 8 4

Continued on next page
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52 fallPAR D Light level below which
leaf drops

µmol m−2s−1 20 100 x 7 2

F.2 Parameter values for Elementary Effects of common

bean monocrop

This appendix relates to Section 5.4.2.

Table F.3: Input parameters with fixed values in the GSA for common bean.

Parameter Value Unit Description (source)

nrRows 10 - Number of rows in stand

nrPlants 10 - Number of plants per row

rowDistance 0.5 m Distance between rows

plantDistance 0.2 m Distance between plants within a row

delay 0 days Germination delay in days, to repre-
sent late sowing

offspotIntraRow 0.05 m Distance plant seed is off-spot in row-
direction

offspotInterRow 0.1 m Distance plant seed is off-spot per-
pendicular to row-direction

maxWidthInt 0.005 m Maximum internode width

lwRatio 1.4 - Ratio of leaf blade length and width
([224])

maxWidth 0.8 - Location where leaf width is maxi-
mal

shapeCoeff 0.5 - Leaf shape coefficient

specificPetioleLength 0.25 m g−1 Petiole length per unit biomass

specificPetioluleLength 0.25 m g−1 Petiolulelength per unit biomass

Continued on next page
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Parameter Value Unit Description (source)

rankLower 1 - Number of lower phytomers that
contain nrLeavesLower leaves; this
partitions a plant in an lower and up-
per part with (potentially) different
architectural properties

timeToFlower 36 days Flowering can only occur after simu-
lation time > timeToFlower ([245])

plantDeath False - If true, entire plants are taken from
scene in case of very low source/sink
ratio

rfrIncoming 1.2 - red/far-red ratio of the incoming ra-
diation

reflectancePAR 0.11 - Reflectance of PAR by leaves and
stem (fraction of incoming PAR)

transmittancePAR 0.095 - Transmittance of PAR by leaves and
stem (fraction of incoming PAR)

depth 10 - maximum number of reflections/-
transmissions of a ray in light model

nrRays 2 M - Number of rays in light model

nrClones 10 - Number of cloned canopies in x and y
direction to eliminate border effects

latitude 20 ◦ Latitude of scene location

startingDayOfYear 170 - Simulation starting day of year

O2 210 ppm Athmospheric oxygen level

Ca 420 ppm Atmospheric CO2 level

VPD 1.65 kPa Vapour pressure deficit

Transmissivity 0.770639 - Fraction of light that transmitted
through atmosphere on a day of clear
sky ([246])

FractionDiffuseLightDaily 0.8 - Fraction of diffuse light in the total
radiation on a day of clear sky

tilt 23.45 ◦ Tilt of the earth axis

Continued on next page
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Parameter Value Unit Description (source)

c 0.4 - Parameter for collecting radiation
transition related with elevation an-
gle

n 24 - Number of direct light sources during
the day

k2ll a 0.044 mol mol−1 In calculation of conversion efficiency
of incident light into electron trans-
port at strictly limiting light

k2ll b 0.205 mol mol−1

Vcmax25 a 30.4 µmol m−2 s−1 In calculation of maximum rate of
Rubisco activity-limited carboxyla-
tion

Vcmax25 b 4.36 µmol m−2 s−1

Jmax25 a 99.38 µmol m−2 s−1 In calculation of maximum rate of e-
transport under saturated light

Jmax25 b 5.75 µmol m−2 s−1

Rd25 1.2 µmol m−2 s−1 Day respiration (respiratory CO2 re-
lease other than by photorespiration)

TPU25 a 5.367 µmol m−2 s−1 For calculation of triose-phosphate
utilization

TPU25 b 0.93 µmol m−2 s−1

Table F.4: Parameters included in EE analysis. All parameters are real numbers except 21
(p21 = 4, δ21 = 2/3) and 30 (p30 = 6, δ30 = 3/5) which are integers. The right-most columns
indicate whether a parameter is unimportant (x), important (number indicates rank, 1 being
most important) or neither (-) for six outputs at simulation day 60. †1 : peak leaf area index; †2 :
peak aboveground biomass; †3 : peak assimilated CO2;

†4 : peak fraction of radiation absorbed;
†5 : canopy red/far-red ratio at final simulation day. For the category, description and units of
the parameters, see Table 4.2.

Parameter (source) m
in
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†5

1 tav a 21.33 26.07 5 x 2 x x x

2 tav b 253.2465 309.5235 x x x x x x

3 specificInternodeLength 0.05 0.15 x x x x x x

Continued on next page
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4 LMA ([227,247]) 2.25 6.75 1 3 x 3 2 1

5 leafAngleLower 63 117 x x x x x x

6 leafAngleUpper 63 117 x x x x - x

7 leafCurve 21 39 x x x x x x

8 helixIncl 35 75 - x x - 4 2

9 Lmax 0.05 0.15 x x x x 5 -

10 branchConst 0.6 0.9 - x x x x x

11 petioleFraction 0.0425 0.0575 x x x x x x

12 wmaxRoot ([245,248]) 5000 15000 x x x x x x

13 wmaxFlower ([247]) 1000 3000 - x 4 x x 5

14 wmaxInt ([247]) 150 450 x x x x x x

15 wmaxLeaf ([224]) 1000 3000 3 5 x 4 1 4

16 teRoot 1620 1980 x x x x x x

17 teFlower 225 275 x x x x x x

18 teLeaf 225 275 x x x x x x

19 nitro ([226]) 1 3 - 1 x 1 - x

20 leafLife 4 12 x x x x x x

21 varDelay 0 3 x x x x x x

22 seedMass ([228]) 150 600 x - x x x x

23 rg ([249]) 0.289 0.391 x - x x x x

24 kNkL 0.2 1 x 2 x 2 x x

25 rm ([249]) 0.01445 0.01955 x x x x x x

26 fCO2 0.51 0.69 x 4 x x x x

27 tb ([250]) 8 14 6 x 3 x x 7

28 plastochronconst 0.8 0.95 x x x x x x

29 phyllochron ([251]) 50 75 4 x x 5 3 -

30 finalPhytNum 4 14 x - 1 x x 3

31 fallPAR 20 100 2 x x x x 6
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F.3 Parameter values for OAT simulations of common

bean monocrop

This appendix relates to Section 5.4.2. The input parameters with fixed values in the GSA for
common bean (Table F.3) have the same values in the OAT simulations. The input parameters
that were varied in the GSA are set to the values in Table F.5 in the OAT simulations. For a
description of the parameters, see the tables above.

Index Parameter Value Index Parameter Value

1 tav a 23.7 17 teFlower 250

2 tav b 281.385 18 teLeaf 250

3 specificInternodeLength 0.1 19 nitro 2

4 LMA 4.5 20 leafLife 8

5 leafAngleLower 90 21 varDelay 2

6 leafAngleUpper 90 22 seedMass 375

7 leafCurve 30 23 rg 0.34

8 helixIncl 55 24 kNkL 0.6

9 Lmax 0.1 25 rm 0.017

10 branchConst 0.75 26 fCO2 0.6

11 petioleFraction 0.05 27 tb 11

12 wmaxRoot 10000 28 plastochronconst 0.875

13 wmaxFlower 2000 29 phyllochron 62.5

14 wmaxInt 300 30 finalPhytNum 9

15 wmaxLeaf 2000 31 fallPAR 60

16 teRoot 1800

Table F.5: OAT Baseline values for bean parameters that were varied in GSA.

F.4 Parameter values for bean/maize polyculture OAT

simulations

This appendix relates to Chapter 6. For a description of the parameters, see the tables above.
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F.4.1 Maize

Parameter Value Parameter

delay 0 lwRatio 10.2

offspotIntraRow 0 maxWidth 0.65

offspotInterRow 0 shapeCoeff 0.75

plastochronconst 0.875 leafAngleLower 60

phyllochron 30 leafAngleUpper 30

finalPhytNum 15 leafCurve 55

nrShortInternodes 4 nrLeafletsLower 1

wmaxRoot 30000 nrLeafletsUpper 1

wmaxFlower 300000 petioleFraction 0.05

wmaxInt 4000 specificPetioleLength 2.5

wmaxLeaf 5000 nrLeavesLower 1

teRoot 1800 nrLeavesUpper 1

teFlower 1000 rankLower 3

teInt 500 phyllotaxisLower 180

teLeaf 500 varDelay 4

maxWidthInt 0.02 seedMass 275

specificInternodeLength 0.05 SASmax 20

nitro 2.75 SASk 8

LMA 5.5 srAbortThresh 0.2

leafLife 3 tb 8

Table F.6: OAT baseline values for maize in polyculture simulations.
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F.4.2 Common bean

Parameter Value Parameter

delay 27 leafAngleLower 90

offspotIntraRow 0.05 leafAngleUpper 90

offspotInterRow 0.1 leafCurve 30

plastochronconst 0.875 nrLeafletsLower 1

phyllochron 62.5 nrLeafletsUpper 3

finalPhytNum 9 petioleFraction 0.05

nrShortInternodes 0 petioluleFraction 0.1

wmaxRoot 10000 specificPetioleLength 0.25

wmaxFlower 1500 specificPetioluleLength 0.25

wmaxInt 300 nrLeavesLower 2

wmaxLeaf 1100 nrLeavesUpper 1

teRoot 1800 rankLower 1

teFlower 250 phyllotaxisLower 180

teLeaf 250 varDelay 2

maxWidthInt 0.005 seedMass 375

specificInternodeLength 0.1 SASextend FALSE

nitro 2 srAbortThresh 0.2

LMA 5.5 tb 11

leafLife 8 HelixIncl 55

lwRatio 1.4 Lmax 0.1

maxWidth 0.8 Branching constant 0.75

shapeCoeff 0.5

Table F.7: OAT baseline values for common bean in polyculture simulations.
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F.4.3 Other (not species-specific)

Parameter Value Parameter

nrRows 10 k2ll b 0.205

nrPlants 10 Vcmax25 a 30.4

rowDistance 0.5 Vcmax25 b 4.36

plantDistance 0.2 Jmax25 a 99.38

rootModule FALSE Jmax25 b 5.75

weeds FALSE Rd25 1.2

plantDeath FALSE TPU25 a 5.367

leafSenescence TRUE TPU25 b 0.93

fallPAR 60 rg 0.34

FvCB TRUE kNkL 0.6

timeToFLower 36 rm 0.017

rfrIncoming 1.2 fCO2 0.6

reflectancePAR 0.11 tav a 23.7 (MEX); n/a (FR);
10.7 (NL)

transmittancePAR 0.095 tav b 281.385 (MEX);
n/a (FR); 7.55 (NL)

latitude 20◦ (MEX); 45◦ (FR);
52◦ (NL)

Transmissivity 0.770639 (MEX);
0.55 (FR); 0.3548 (NL)

startingDayOfYear 170 FractionDiffuseLight 0.8

Ca 420 tilt 23.45◦

VPD 1.65 c 0.4

O2 210 n 24

k2ll a 0.044

Table F.8: OAT baseline values for non-species specific parameters in polyculture simula-
tions. MEX: Mexican environmental values (Yucatán region); FR: French environmental values
(Aquitaine region) NL: Dutch environmental values.
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G Results for analytical test case multiple

sub-internodes

Test 1: Collision on step 3, normal step 4, tightening on step 6 .

Actual simulated angles of taken turns
[90.0, 90.0, 66.0, 60, 60, 85.0, 110]

Predicted (x,y)-coordinates

(-0.07142857291868754, 0.0)
(-1.4901160999558627E-9, -0.07142857142857141)
(0.07142856993845532, 2.7755575615628914E-17)
(0.03522794032654098, 0.09430586433702867)
(-0.06439704816003136, 0.07760426855388902)
(-0.09974553617137953, -0.017024300218784677)
(-0.008557881399667622, -0.06048569975777959)

Actual simulated (x,y)-coordinates
(-0.07142857291868754, 0.0)
(1.702989846363856E-9, -0.07142857462167737)
(0.07142857632466725, 2.7755575615628914E-17)
(0.035227945094458694, 0.09430586855282938)
(-0.0643970486254268, 0.07760427667415365)
(-0.0997455426347965, -0.017024294678470248)
(-0.0085578858157139, -0.06048570041751988)

Predicted direction vectors
(0.5000000000000001, -0.4999999999999999, 0.7071067811865476)
(0.5, 0.5000000000000002, 0.7071067811865475)
(-0.2534044072834004, 0.6601410503592007, 0.7071067811865475)
(-0.6973749194060065, -0.11691117048197756, 0.7071067811865476)
(-0.2474394160794372, -0.6623999814087158, 0.7071067811865476)
(0.6383135834019834, -0.3042297967729644, 0.7071067811865476)
(0.5259210040268955, 0.472659600054143, 0.7071067811865476)

Actual simulated direction vectors
(0.5000000000000001, -0.4999999999999999, 0.7071067811865476)
(0.5000000000000002, 0.5000000000000002, 0.7071067811865472)
(-0.2534044072834002, 0.6601410503592009, 0.7071067811865472)
(-0.69737492486411, -0.11691113792439509, 0.7071067811865475)
(-0.2474394470041826, -0.662399969856781, 0.7071067811865477)
(0.638313569198738, -0.3042298265732143, 0.7071067811865476)
(0.5259210070366651, 0.4726595967052191, 0.7071067811865472)

Test 2: Collision on step 3, tightening on step 4 The y-coordinate of the
left-most box is 0.08. This leads to a tightening of 8 degrees, after which the
internodes are on a pentagon.
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Actual simulated angles of taken turns
[90.0, 90.0, 66.0, 68.0, 72.0, 72.0, 72.0]

Predicted (x,y)-coordinates
(-0.07142857291868754, 0.0)
(-1.4901160999558627E-9, -0.07142857142857141)
(0.07142856993845532, 2.7755575615628914E-17)
(0.03522794032654098, 0.09430586433702867)
(-0.06110309174433708, 0.06390168875516952)
(-0.07215729820869034, -0.03650690725182834)
(0.01992101365899797, -0.07804804488971433)

Actual simulated (x,y)-coordinates
(-0.07142857291868754, 0.0)
(1.7029898741194316E-9, -0.07142857462167738)
(0.0714285763246673, 2.7755575615628914E-17)
(0.035227945094458736, 0.09430586855282938)
(-0.061103092702198596, 0.06390169610909971)
(-0.07215729388782154, -0.036506905022062594)
(0.01992102448445414, -0.07804803922303163)

Predicted direction vectors
(0.5000000000000001, -0.4999999999999999, 0.7071067811865476)
(0.5, 0.5000000000000002, 0.7071067811865475)
(-0.2534044072834004, 0.6601410503592007, 0.7071067811865475)
(-0.6743172244961465, -0.2128292290730141, 0.7071067811865476)
(-0.07737944525047274, -0.7028601720489851, 0.7071067811865477)
(0.6445481830738182, -0.2907879634652019, 0.7071067811865477)
(0.47573212977708207, 0.5231433271081277, 0.7071067811865476)

Actual simulated direction vectors
(0.5000000000000001, -0.4999999999999999, 0.7071067811865476)
(0.5000000000000002, 0.5000000000000002, 0.7071067811865472)
(-0.2534044072834002, 0.6601410503592009, 0.7071067811865472)
(-0.6743172344322719, -0.21282919759190108, 0.7071067811865476)
(-0.07737940484023165, -0.7028601764978377, 0.7071067811865478)
(0.6445481997923799, -0.29078792640755, 0.7071067811865475)
(0.4757320996994805, 0.5231433544598687, 0.7071067811865471)

Test 3: Collision on step 3, collision step 4, tightening on step 6 The
y-coordinate of the left-most box is 0.12. This leads to a collision, and an extra
turn outwards by 50 degrees.

Actual simulated angles of taken turns
[90.0, 90.0, 66.0, 10.0, 36.0, 61.0, 32.727]

Predicted (x,y)-coordinates
(-0.07142857291868754, 0.0)
(-1.4901160999558627E-9, -0.07142857142857141)
(0.07142856993845532, 2.7755575615628914E-17)
(0.03522794032654098, 0.09430586433702867)
(-0.041603932528685376, 0.15988745433156445)
(-0.14173523361138818, 0.14655313109646248)
(-0.17861738978127806, 0.0525117136841706)

Actual simulated (x,y)-coordinates
(-0.07142857291868754, 0.0)
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(1.7029898741194316E-9, -0.07142857462167738)
(0.0714285763246673, 2.7755575615628914E-17)
(0.035227945094458736, 0.09430586855282938)
(-0.041603928133683556, 0.15988746506605664)
(-0.1417352335771389, 0.14655314036780073)
(-0.17861739058146028, 0.05251171843215763)

Predicted direction vectors
(0.5000000000000001, -0.4999999999999999, 0.7071067811865476)
(0.5, 0.5000000000000002, 0.7071067811865475)
(-0.2534044072834004, 0.6601410503592007, 0.7071067811865475)
(-0.5378231099865846, 0.4590711299617506, 0.7071067811865475)
(-0.7009191075789197, -0.09334026264571368, 0.7071067811865476)
(-0.25817509318922915, -0.6582899218860432, 0.7071067811865477)
(-0.29905062566694274, -0.6407563681214647, 0.7071067811865477)

Actual simulated direction vectors
(0.5000000000000001, -0.4999999999999999, 0.7071067811865476)
(0.5000000000000002, 0.5000000000000002, 0.7071067811865472)
(-0.2534044072834002, 0.6601410503592009, 0.7071067811865472)
(-0.5378230885544304, 0.45907115507051105, 0.7071067811865474)
(-0.7009191067706616, -0.09334026871515627, 0.7071067811865475)
(-0.2581750874889238, -0.6582899241216489, 0.7071067811865477)
(-0.29905066932515606, -0.6407563477455183, 0.7071067811865478)

Test 4: Tightening on step 1, 2 and 3 Tightening on the first 3 steps
actually led to a collision on step 3 and step 7. Between step 3 and step 7 the
helix describes a pentagon. The y-coordinate of the left-most box is 0.06.

Actual simulated angles of taken turns
[115.0, 115.0, 82.0, 72.0, 72.0, 72.0, 58.0]

Predicted (x,y)-coordinates

(-0.07142857291868754, 0.0)
(0.023494716279694586, -0.0345492518068536)
(0.0029805972565656695, 0.06436107401081806)
(-0.08506983012567063, 0.014851439893218327)
(-0.05537209380919164, -0.08169971799900971)
(0.04563061927631215, -0.08329144097128444)
(0.07835599260262828, 0.012275978023403827)

Actual simulated (x,y)-coordinates
(-0.07142857291868754, 0.0)
(0.02349472052309627, -0.03454925335132551)
(0.002980598167763804, 0.06436107638707708)
(-0.0850698315237217, 0.014851437162842818)
(-0.055372095668595966, -0.08169972559581197)
(0.045630621902588764, -0.08329145051066827)
(0.07835599846256147, 0.012275972149865338)

Predicted direction vectors

(0.6644630243886749, -0.24184476264797522, 0.7071067811865476)
(-0.14359883316190242, 0.6923722807237017, 0.7071067811865474)
(-0.6163529916756542, -0.3465674388231981, 0.7071067811865476)
(0.2078841542153529, -0.6758581052455963, 0.7071067811865476)
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(0.7070189915985265, -0.011142060805923056, 0.7071067811865475
(0.22907761328421292, 0.668971932962818, 0.7071067811865474)
(-0.44592773384733325, 0.5487699483260562, 0.7071067811865474)

Actual simulated direction vectors
(0.6644630243886748, -0.24184476264797522, 0.7071067811865475)
(-0.14359885006795844, 0.6923722772173654, 0.7071067811865472)
(-0.6163529802872733, -0.3465674590768672, 0.7071067811865476)
(0.20788414169273486, -0.6758581090973717, 0.7071067811865477)
(0.7070189913920812, -0.011142073905904645, 0.7071067811865474)
(0.22907762567924103, 0.6689719287183595, 0.7071067811865472)
(-0.445927723679464, 0.5487699565884157, 0.7071067811865475)

Test 5: Circumscribed polygon, tightening on step 4, tightening on
step 6 The difference with the first test is that we use a circumscribed polygon
instead of an inscribed polygon. We now start on a pentagon, and there is no
collision on the third step. The y-coordinate of the left-most box is 0.08.

Actual simulated angles of taken turns
[72.0, 72.0, 72.0, 68.0, 59.99999999999999, 85.0, 72.0]

Predicted (x,y)-coordinates
(-0.07142857291868754, 0.0)
(-0.012053296093337044, -0.08172305754538346)
(0.084017919901514, -0.05050762722761051)
(0.08401791990151401, 0.05050762722761057)
(-0.009641793094322712, 0.08834860758212251)
(-0.09112767920781849, 0.02864825584989686)
(-0.038756468265635745, -0.057730780363194)

Actual simulated (x,y)-coordinates
(-0.07142857291868754, 0.0)
(-0.01205329343905532, -0.08172306119868879)
(0.08401792685051379, -0.050507629485477365)
(0.0840179268505138, 0.05050762948547749)
(-0.009641790332238345, 0.08834861153161308)
(-0.09112767896499113, 0.02864825559716594)
(-0.0387564640561453, -0.057730783491843116)

Predicted direction vectors
(0.41562693777745346, -0.5720614028176843, 0.7071067811865476)
(0.6724985119639574, 0.2185080122244106, 0.7071067811865475)
(8.235731501080182E-17, 0.7071067811865477, 0.7071067811865474)
(-0.6556179909708572, 0.2648868624815836, 0.7071067811865475)
(-0.5704012027944705, -0.4179024621255796, 0.7071067811865476)
(0.3665984765952792, -0.604653253491636, 0.7071067811865476)
(0.7066203685790852, 0.026223171226189435, 0.7071067811865475)

Actual simulated direction vectors
(0.4156269377774535, -0.572061402817684, 0.7071067811865476)
(0.6724985119639575, 0.2185080122244106, 0.7071067811865474)
(1.1775693440128312E-16, 0.7071067811865476, 0.7071067811865472)
(-0.6556179909708569, 0.26488686248158355, 0.7071067811865475)
(-0.570401194930349, -0.4179024728594336, 0.7071067811865477)
(0.3665984879736913, -0.6046532465929569, 0.7071067811865475)
(0.7066203693854902, 0.02622314949645491, 0.7071067811865475)
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