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Abstract 

Background 

Alzheimer’s disease (AD), the most common cause of dementia, is one of the most 

studied diseases in the UK due to its impact on quality of life, symptoms of 

neurodegeneration, and burden on health and social care. AD is most common in the 

elderly, as age is a significant risk factor, but can also be found in young people. 

Diagnosis and treatment has developed over the years through improved therapies 

and screening methods, but a cure or definitive disease prevention has not been 

found. 

Polygenic risk scoring is a relatively new approach, enabled by advancements in 

genotyping and sequencing technologies. They are used to quantify individual risk 

based on variants with observed effect within genes associated with the disease, 

calculated from genome-wide association studies of case v control data. Modelling is 

completed at various significance thresholds to identify the threshold at which the 

greatest predictive ability is achieved. Polygenic risk scoring has become increasingly 

popular as a tool for screening cohorts used in research, selecting candidates for 

trials, and further understanding complex genetic diseases and relationships between 

endophenotypes and disease status. 

Methods 

This project investigates polygenic risk scores in Alzheimer’s disease, analysing late-

onset AD (LOAD) cases, controls and undiagnosed samples recruited by the Brains for 

Dementia Research resource; mild cognitive impairment (MCI) cases recruited by the 

Inflammation, Cognition and Stress study; and sporadic early-onset AD (sEOAD) cases 

and controls recruited from research centres across the UK. 



Investigating polygenic risk scores in Alzheimer’s disease 

ii 
 

Genetic data was collected on either the NeuroX or NeuroChip array, quality 

controlled using recommended software and methodology, and imputed using the 

Michigan Imputation Server. Polygenic risk score (PRS) analysis was undertaken using 

PRSice-2 software, to calculate likelihood of developing AD and identify effective 

models for determining disease status in LOAD and sEOAD; the most predictive LOAD 

model was then used to predict likelihood in undiagnosed samples and MCI cases; a 

subset of genes expressed at the synapse were also analysed to understand their 

predictive ability in AD. This method utilised the most up-to-date analysis software 

and improved data sources to build on previously published work. 

Results  

The results for LOAD using updated PRS software identified a model with similar levels 

of predictive ability (AUPRC = 81.5%) as previously reported. Imputation identified 

additional variants within the best model threshold which implicate more genes in AD 

risk. 

The sEOAD model using updated PRS software also confirmed a model with similar 

levels of prediction (AUROC = 73.0%) as previously reported. Analysis of imputed data 

identified a predictive model (AUROC = 72.9%) at a more significant p-value threshold 

and also implicated many more genes in AD risk.  

PRS analysis of synaptic genes using updated PRS software showed greater levels of 

predictive ability for LOAD requiring fewer SNPs (AUPRC = 85.5%) than previously 

reported. A predictive model was also seen when analysing sEOAD (AUROC = 72.5%), 

and when combining LOAD and sEOAD cases (AUROC = 74.2%; AUPRC = 77.5%). 

Utilisation of the best model for LOAD for predicting AD likelihood in MCI cases and 

undiagnosed samples successfully distributed individuals into tiers of risk; when most 

recent conversion status was cross-referenced with MCI samples, distribution was 
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seen across all risk tiers with most converters found to have moderate followed by 

high risk. 

Conclusion 

Identification of predictive models for LOAD and sEOAD which remain consistent with 

changes to methods, successful modelling of synaptic genes for LOAD and sEOAD, and 

moderate success in stratifying risk in undiagnosed samples highlight the utility of PRS 

in AD research. Continuous improvement in these analyses, through access to larger, 

more comprehensive datasets and advancements in software and methods, can 

enable greater accuracy and utility. This can ultimately establish polygenic risk scoring 

as a mechanism for understanding genetic risk for AD and other dementia sub-types, 

but further research in other complex diseases.  
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1 Introduction 

1.1 Background 

Dementia categorises a group of neurodegenerative diseases estimated to affect 

nearly 1 million people in the UK and cost the NHS over £34 billion in health and social 

care by 2020 (Lewis et al., 2014). It is estimated nearly 70% of individuals over the age 

of 65 in the UK thought to have dementia are currently diagnosed, leaving almost one 

third without sufficient support and treatment. This is expected to continue to rise to 

nearly 1.6 million individuals and £94 billion by 2040 (Wittenberg et al., 2019). The 

loss of life due to the Covid-19 pandemic, especially in elderly populations, has 

skewed these projections; in recent years, a consistently lower prevalence of 

dementia has been observed amongst those over 65 in England (Public Health 

England, 2021). 

Dementia is identified by symptoms of impairment through cognitive decline, changes 

in personality and behaviour, the loss of memory as well as language and visuospatial 

skills beyond the limits of normal ageing (Burns & Illife, 2009). 

Whilst there is complex genetic component to dementia, their aetiology is diverse and 

can be caused or affected by historic infection; they can be concomitant with 

vascular, autoimmune and psychiatric disorders; toxic disorders caused by drug abuse 

or chemical exposure, and metabolic disorders can also increase risk (Budson, 2016; 

Gatz et al., 2006). Risk is also increased by environmental factors such as poor 

nutrition, educational attainment, and lack of physical or social activity, especially in 

old age (Budson, 2016; Corrada et al., 2010). These factors allow dementia to 

manifest as degenerative diseases, the most common of which is Alzheimer’s disease 

(AD) (Prince et al., 2015). 
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AD is usually signified by the presence of amyloid beta (Aβ) plaques and 

hyperphosphorylated tau neurofibrillary tangles (NFT) in the brain; these biomarkers 

can be identified from cerebrospinal fluid (CSF) and confirmed by post-mortem 

analysis (Goedert & Spillantini, 2006; W. W. Li et al., 2020; G. McKhann et al., 1984). 

1.1.1 Symptoms 

AD prevalence increases with age, being a correlative risk factor; prevalence before 

the age of 65 is around 5% and reaches 7% at 65, increasing to 16% at the age of 85 

(Corrada et al., 2010; Jorm & Jolley, 1998; Prince et al., 2015; Seshadri & Wolf, 2007).  

Before the onset of AD symptoms, there is often a recognised prodromal stage of 

disease called mild cognitive impairment (MCI), where individuals may suffer mild 

amnesia but not necessarily present with other symptoms (Petersen et al., 1999). 

Once the symptoms of AD become apparent, individuals are likely to progressively 

worsen; the progression of the disease directly affects the severity of symptoms 

(Zanetti et al., 2009).  

It is understood around 10-15% of individuals with MCI convert to AD each year with 

around one third progressing to AD over their lifetime (Adams et al., 2015; Hansson et 

al., 2010; Pyun et al., 2021; Rodríguez-Rodríguez et al., 2013). However, AD symptoms 

progress from mild to moderate to severe dementia; individuals may live decades 

with mild AD, however, with more severe cases of dementia, fatality is likely within 

years; the average time until death from disease onset is estimated as 8 years (X. L. Li 

et al., 2014; Zanetti et al., 2009). 

Early stages of AD are classified by a struggle with short- and long-term memory 

recall, identified difficulty following conversation, disorganisation, and disorientation. 

When the disease progresses from mild to moderate severity, clinical symptoms 

worsen and individuals show signs of confusion: unable to recognise friends and 
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family, loss of spatial awareness with mood swings and other behavioural changes. 

The final stages of dementia are described as severe loss of memory, cognition, 

communication and the ability to walk, talk or swallow is almost completely lost; full-

time care is required for the rest of their life (Förstl & Kurz, 1999). 

1.1.2 Pathogenesis 

In post-mortem examination of brains of patients with AD, the primary observations 

are of cortical shrinkage throughout many regions of the brain known as brain 

atrophy. Lesions are present in post-mortem tissue, caused by neuronal cell death 

which leads to the enlargement of the fluid-filled ventricles. Neuroimaging of patients 

with AD identifies correlation between the regions affected by AD pathology and the 

presentation of symptoms (Whitwell, 2010).  

The first region affected by the disease is the hippocampus, which is involved in the 

formation and application of memories; the degeneration of the hippocampus leads 

to symptoms of amnesia. The temporal lobe, associated with communication and 

comprehension, is often the next region affected by disease and understood to cause 

the symptoms observed in mild to moderate AD (Wenk, 2003). Symptoms of 

moderate severity, such as changes in behaviour, mood swings, and further cognitive 

impairment, occur during the deterioration of the cingulate gyrus at a later stage of 

disease progression (Whitwell et al., 2007). The parietal lobe is associated with 

visuospatial skills and spatial awareness, and affected during the stages of moderate 

AD. The disease progresses to the occipital lobe alongside these regions and elevates 

symptoms of confusion and can lead to hallucinations and difficulties with recognition 

(Förstl & Kurz, 1999). The cerebellum is the region least affected by AD, which may be 

due to a protective nature of the region or the last region the disease reaches; before 



Introduction 

4 
 

the cerebellum exhibits atrophy, patients’ exhibit symptoms of late-stage, severe AD 

as the brainstem begins to deteriorate (Thal et al., 2002).  

The process by which brain atrophy occurs is complex and multifaceted. In post-

mortem examination of patients with dementia, a diagnosis of AD as opposed to 

other dementia subtypes, is confirmed by the presence of pathological hallmarks of 

extracellular plaques of Aβ and NFTs of intracellular hyperphosphorylated tau protein 

(P-tau) (Goedert & Spillantini, 2006). The presence of these hallmarks, as well as 

symptoms of neurodegeneration are required for diagnosis of AD, however, they can 

also be present in individuals without symptoms of dementia and even absent in 

individuals with dementia (Villemagne et al., 2008; Whitwell, 2010). Why these 

hallmarks occur and their involvement in neuronal cell death has been studied since 

they were first identified in 1907 by Alois Alzheimer (G. McKhann et al., 1984). 

1.1.2.1 Amyloid β deposition 

The aggregates of Aβ found in diseased brain tissue are found to consist of higher-

than-normal levels of an insoluble form of the peptide, produced during subsidiary 

processing of extracellular amyloid precursor protein (APP), Aβ42 (Pozueta et al., 

2013). The predominant, non-amyloidogenic pathway for APP processing involves 

cleavage by α-secretase resulting in a soluble Aβ40 peptide (Hampel et al., 2021; 

Lichtenthaler, 2012; Postina, 2012). But when APP is initially cleaved by β-secretase 

instead of α-secretase, and then by γ-secretase peptides of varying lengths, Aβ36-43, 

can result (Bird, 2018; Hampel et al., 2021; Marsden et al., 2011). The presence of Aβ 

in its many isoforms can be measured in CSF, blood plasma and brain interstitial fluid 

(Jan et al., 2008). 

As hydrophobic, insoluble peptides of Aβ build up within the brain they begin to form 

oligomers, which are thought to disrupt synaptic transmission (Gu & Guo, 2013; Klein, 
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2013; Pozueta et al., 2013). The immune response, coordinated by microglia, acts to 

breakdown the Aβ oligomers and clear them from the central nervous system (CNS) in 

healthy individuals (Pozueta et al., 2013). Aβ plaques are hypothesised to form when 

the oligomers are not successfully cleared by the microglial response, which may lead 

to an apoptotic response and therefore loss of neurones (Hardy & Allsop, 1991; 

Karran et al., 2011). 

1.1.2.3 Tauopathy 

Microtubule-associated protein tau (MAPT) is the gene which codes for the soluble 

protein, tau, found within the axon and known to modulate stability of microtubules 

and therefore maintain cell structure and transport of organelles and nutrients within 

the neuron (Ballatore et al., 2007; Spillantini & Goedert, 2013). The protein can be 

translated into many isoforms with a varying number of microtubule binding domains, 

where a greater number of domains is associated with greater stabilisation (Ballatore 

et al., 2007). Stabilisation of microtubules by tau is also controlled by protein kinases, 

as hyperphosphorylation of tau reduces its microtubule binding affinity (Ballatore et 

al., 2007; Churcher, 2006). 

When tau is hyperphosphorylated, the protein aggregates in the somatodendritic 

compartment instead of the axon and forms paired helical filaments which lead to 

NFT formation (Sato-Harada et al., 1996; Spillantini & Goedert, 2013). The NFTs 

disrupt the activity of tau and the effectiveness of nutrient transport along the axons, 

which eventually result in neuronal cell death (Goedert et al., 1995; Nussbaum et al., 

2013; Roy et al., 2005; Spillantini & Goedert, 2013). Tauopathies are the collective 

term for the presence and pathological effect of tau NFTs in disease; tauopathies can 

occur in other dementia sub-types, like frontotemporal dementia (FTD), as well as 
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other neurological disorders like Down’s syndrome (Hutton et al., 1998; Neumann et 

al., 2009; Spillantini & Goedert, 2013). 

The spread of tau tangles across different regions of the brain is also concordant with 

disease progression (Spires-Jones & Hyman, 2014). The regions within which tau NFTs 

are found are classified by Braak staging, which acts as an indicator of the disease 

severity and progression (Braak et al., 2006; Braak & Braak, 1991). Tau first 

propagates in the transentorhinal layer of the brain, where the severity of neuronal 

alteration ranges between stage I or II; tau pathology in these Braak stages is either 

symptomatically unobserved or prodromal (Braak & Braak, 1991; Spires-Jones & 

Hyman, 2014). The tauopathy spreads to the limbic layer of the brain, and its severity 

is classed as stage III or IV; the damage caused by tau NFTs in this region occurs 

alongside mild and moderate dementia (Spires-Jones & Hyman, 2014). The final 

stages, V and VI, occur in the neocortex and are associated with the most disease 

severity (Knopman et al., 2003).  

Tau pathology and Aβ plaque formation have been studied to identify correlation or 

relationship (Nussbaum et al., 2013). Evidence suggests Aβ may induce tau misfolding 

as well as observed positive correlation of the two disease hallmarks (Nussbaum et al., 

2013). Like Aβ, tau NFTs are observed in elderly individuals without AD; individuals 

may have up to Braak stage III without disease (Braak et al., 2006). 

1.1.2.3 Alternative hypotheses 

Aβ and tau NFTs are considered hallmarks of AD, observed as the effect of disease on 

the brain (Goedert & Spillantini, 2006). Nevertheless, the presence of these hallmarks 

in non-diseased brains suggests other factors lead to disease symptoms; this could 

mean these hallmarks could mark the consequence of disease rather than the 

pathological cause (Villemagne et al., 2008). The alternative mechanisms by which AD 
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symptoms could be presenting were hypothesised and explored; these hypotheses 

did not identify causative factors for AD but had led to the definition of other 

dementia sub-types and their association with disease risk (Lipton, 2006). 

The early hypotheses on symptom aetiology considered neurotransmitter deficiency, 

specifically Acetylcholine (ACh), due to low levels observed in diseased patients as 

well as benefits of acetylcholinesterase inhibitor (AChEI) treatments on symptom 

management (Francis et al., 1999). Excitotoxicity, specifically the overstimulation of 

the NMDA glutamate receptor, was considered as a potential cause of AD due to its 

ability to cause neurone cell death, as seen in neurological disorders like Multiple 

Sclerosis (Lipton, 2006). 

1.1.3 Treatment 

No cure has been established for AD, as the aetiology remains unclear (Zanetti et al., 

2009). Investment in drug research and development has produced numerous 

unsuccessful drugs to combat AD symptoms (Cummings et al., 2014). Treatments 

have been often targeted the Aβ pathway with monoclonal antibodies and gamma 

secretase inhibitors, targeting P-tau with aggregation inhibitors, and drugs regulating 

neurotransmitter levels (Doody et al., 2014; Novak et al., 2017). Few drugs have 

passed clinical trials, principally those which provide temporary symptomatic relief at 

different stages of disease progression. 

Donepezil, an AChEI, acts by preventing the breakdown of ACh, which is present in 

lower concentrations in patients with AD as a consequence of cholinergic neurone 

loss (National Institute for Health and Clinical Excellence, 2011; Wenk, 2003). The 

cognitive symptoms may reduce with greater levels of ACh being present at synapses, 

but the drug is most effective against mild to moderate AD and improves experience 
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for only around 40-70% of patients (National Institute for Health and Clinical 

Excellence, 2011). 

Memantine is an example of an NMDA receptor antagonist, used to alleviate the 

cognitive symptoms of AD as a result of excessive levels of glutamate released 

through neuronal damage in AD patients (National Institute for Health and Clinical 

Excellence, 2011; Wilkinson, 2012). The drug acts to prevent the uptake of glutamate 

at active NMDA receptors which would usually lead to excitotoxicity and cell death; 

Memantine is recommended with moderate to severe AD (National Institute for 

Health and Clinical Excellence, 2011). 

Recent advancements in immunotherapies have led to successful trials of lecanemab 

and donanemab, which target cerebral Aβ plaques at high levels of potency; where 

previous drugs have had limited clinical benefit, patients have been observed as 

amyloid-negative within 12 months of treatment (Alzheimer’s Society, 2023; Ramanan 

& Day, 2023). Following approval, these drugs are expected to have significant impact 

on the rate of cognitive decline and may potentially be used for disease prevention 

(Alzheimer’s Society, 2023).   
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1.2 Aetiology and Comorbidities 

1.2.1 Infection 

Many disorders caused by infection have been linked to dementia risk due to common 

symptoms and association studies, some infections can cause dementia in the 

absence of other risk factors (Budson, 2016). 

Lyme neuroborreliosis, caused by Lyme disease bacterial infection, causes memory 

problems and symptoms affecting attention and learning; this can be identified as 

Lyme dementia, and is treatable (Blanc et al., 2014; Budson, 2016). 

Human Immunodeficiency Virus (HIV) has an associated neurocognitive disorder due 

to the impacts on cognition, processing and executive function; cognitive assessments 

are carried out on patients with HIV and treated with combination antiretroviral 

therapies (Alzheimer’s Society, 2021; Budson, 2016). 

Studies into the presence of herpes simplex virus type 1 in postmortem AD patients, 

its correlation with other AD risk factors, and other herpesviruses implicated in 

dementia risk have led to wider studies into the association of microbial infection with 

dementia pathology (Abbott, 2020; Itzhaki et al., 1997; Seaksid & Wilcockid, 2020). 

This includes the most recent association of chronic periodontitis, often caused by 

Porphyromonas gingivalis, and Alzheimer’s disease pathogenesis (Abbott, 2020; Chen 

et al., 2017). 

1.2.2 Vascular disease 

Mild vascular cognitive impairment (VCI) is determined when effects of 

cerebrovascular disease (CVD) advance pathogenesis and severity of dementia 

symptoms; when impairment is more significant or severe, this is considered vascular 

dementia (VaD) (Skrobot et al., 2018). When VaD is combined with dementia 

pathology this is identified as either mixed dementia unless the dementia subtype can 
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be identified, i.e., VCI-AD when in combination with AD (Budson, 2016; Skrobot et al., 

2018).  

Atherosclerosis has been found to be significantly associated with both AD and 

vascular dementia; this is determined to be involved with interactions with 

Apolipoprotein E (Andrews et al., 2021; Chandler et al., 2019; Hofman et al., 1997; 

Kivipelto & Solomon, 2006; Launer et al., 2000; Xu et al., 2011). 

1.2.3 Autoimmune diseases 

Type 2 diabetes is a common autoimmune disease with known association with 

dementia risk and symptoms, including memory loss (Budson, 2016). Diabetes leading 

to cerebrovascular disease or hypoglycaemia, which cause damage to the brain, has 

been linked to increased risk of dementia as well as a lower age at onset (Andrews et 

al., 2021; Budson, 2016). 

1.2.4 Psychiatric disorders 

The relationship between anxiety, depression and psychiatric disorders and dementia 

is understood to be concomitant, as anxiety and depression are often a symptom of 

dementia whilst a history of depression in early life can increase risk (Budson, 2016; 

Kokmen et al., 1996; Panza et al., 2010). 

1.2.5 Toxic disorders  

Alcoholism caused by long-term exposure to alcohol can cause dysfunction to the 

frontal lobes, limbic system and cerebellum of the brain; changes in personality and 

emotion are seen alongside aggressive and inappropriate behavioural traits (Budson, 

2016; Matloff et al., 2020). Other comorbidities combined with alcoholism including 

schizophrenia, liver disease and head injury result in worsening of symptoms of 

dementia (Budson, 2016). 
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Whilst some metals, such as Zinc, Iron and Copper, are essential to biological 

functions, excess amounts can disrupt the equilibrium required for normal protein 

expression, similarly to exposure to neurotoxic metals like Lead and Aluminium 

(Dosunmu et al., 2007). Exposure to concentrated amounts of certain metals during 

the lifetime can have acute effects and increase risk and severity of dementia, 

observed by the high concentrations of Zinc and Iron in Aβ plaques due to their role in 

altering APP expression and promoting Aβ aggregation (Dosunmu et al., 2007). 

1.2.6 Metabolic disorders  

Metabolic disorders can affect attention and memory, presenting symptoms of 

dementia; there is also a distinction between this and symptoms of patients with the 

comorbidity of metabolic disorders and underlying dementia pathology (Andrews et 

al., 2020; Budson, 2016). This can be understood with Hypercalcemia, when 

symptoms of cognitive impairment are observed to be worse than usual and then 

return post-treatment, in later life as dementia symptoms (Budson, 2016). 

The relationship between mitochondria, mitonuclear interactions and metabolic 

disease and how they link to dementia risk has been studied; whilst some correlation 

has been observed with specific mitochondrial haplogroups, results remain 

inconclusive and warrant further study (Andrews et al., 2020). 

1.2.7 Poor nutrition 

Dementia risk can be increased by a lifestyle of historic poor nutrition as well as 

deficiency of certain vitamins and minerals (Budson, 2016; Dosunmu et al., 2007; Xu 

et al., 2011). Nutrients are necessary for healthy function of the central nervous 

system through their impact on APP metabolism, Aβ isomer concentrations and 

neurodegeneration (Dosunmu et al., 2007). Cholesterol levels, which can be 
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controlled by diet, recorded at elevated levels in midlife are considered a significant 

risk factor for dementia in later life (Kivipelto & Solomon, 2006). 

Many symptoms of vitamin B12 deficiency are common to those with dementia: 

memory loss, psychosis, irritability and personality changes (Budson, 2016). B12 

deficiency can occur in patients who are vegetarian, with conditions which reduce 

absorption, and the elderly; treatment such as supplements may improve B12 levels 

and reduce symptoms (Budson, 2016). Long-term deficiency of vitamin B12, vitamin 

B6 or folic acid can lead Hyperhomocysteinemia, a risk factor for vascular disease and 

dementia (Dosunmu et al., 2007). 

1.2.8 Lifestyle 

Educational attainment and length have been studied to identify association with 

dementia, however results are mixed (Cobb et al., 1995; Zhou et al., 2006). Lower 

education can also be linked to low socioeconomic status which has been more often 

associated with poor health and disease (Cobb et al., 1995). Similarly, lower education 

when linked with nutritional deficiency, association with dementia risk can be 

observed (Zhou et al., 2006). Conversely, intellectual stimulation, occupation, and 

leisurely activity in later life as extensions to education have been associated with 

reduced risk of dementia and quality of life (Andel et al., 2005).  
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1.3 Diagnosis 

Post-mortem pathological diagnosis is necessary to confirm disease status and 

dementia subtype; however, clinical diagnosis is mostly concordant with this, 

achieving 77% accuracy where misclassification may be due to the variability in 

dementia subtypes (Beach et al., 2012). Diagnosis has been accomplished through 

various methods; when distinguishing dementia from other neurological disorders 

and later diagnosing the sub-type, mental and physical assessments are 

recommended alongside testing for biomarkers and conducting imaging (Blacker et 

al., 1994; Dubois et al., 2007; Jack et al., 2016; G. McKhann et al., 1984; G. M. 

McKhann et al., 2011; Whitwell et al., 2007). 

In the UK, dementia is identified by a General Practitioner and diagnosed by a 

specialist. Mental assessments are used to identify cognitive decline, assessing short 

and long-term memory, ability to concentrate and attention span, language and 

communication skills, and temporal and spatial awareness; tests are often repeated 

over time to identify if abilities are progressively worsening (Dubois et al., 2007). 

Recommended screening tools include the Mini-Mental State Exam (MMSE) and the 

Montreal Cognitive Assessment (MoCA), which are both short, 30-point tests where 

score-bands differentiate between those who are cognitively healthy, in cognitive 

decline or severely impaired due to dementia (Folstein et al., 1975; Mungas, 1991; 

Pangman et al., 2000; Yaari & Corey-Bloom, 2007). As results can be influenced by 

age, educational background, and other impairments, further testing is required to 

rule out a dementia diagnosis (Jefferson et al., 2002; Pangman et al., 2000).  

Blood testing is currently arranged to check liver, kidney and thyroid function, vitamin 

and folate levels, and whether the patient may have diabetes; other investigations are 

considered to rule out infections. Computerised Tomography (CT) scans can be used 
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to search for signs of stroke or brain tumours, in order to rule them out, but are not 

adequate for assessing brain structure (Johnson et al., 2012).  

An Electroencephalogram (EEG) is used to rule out epilepsy as a cause of dementia 

symptoms (Johnson et al., 2012). Magnetic Resonance Imaging (MRI) scans are more 

effective at imaging the brain structure and are often used to define dementia sub-

type; damage to blood vessels is an indicator of VAD, and shrinkage in the frontal as 

well as the temporal lobe is an indicator of FTD (Jobst et al., 1998; Johnson et al., 

2012). Other imaging assessments include Positron Emission Tomography (PET) scans, 

which when incorporating radiotracers, can improve diagnosis by observing 

pathological phenotypes like Aβ plaque deposition, and its levels within the brain 

(Johnson et al., 2012; G. M. McKhann et al., 2011; Minati et al., 2009; Vlassenko et al., 

2012). 

1.3.1 Biomarkers 

Clinical diagnosis usually occurs after the onset of symptoms; however, the 

pathological changes which occur within the AD brain may begin years to decades 

beforehand, meaning treatments to modify or prevent degeneration are being 

administered too late in the disease process (Mattsson, 2011). Preclinical dementia 

diagnosis can be achieved through testing for the presence or concentration of 

biomarkers associated with AD (Ewers et al., 2015; Humpel, 2011; Mattsson, 2011). 

1.3.1.1 Neuroimaging 

MRI and CT scanning, used in diagnosis, can also be utilised preclinically when 

measuring brain volume, cortical atrophy and NFTs; brain structural and functional 

information can be collected, and changes can be observed over time through repeat 

scanning (Scheltens et al., 2002). PET scanning with the radioligands Pittsburgh 

compound (PiB-PET) and 18F-2-deoxy-2-fluoro-D-glucose (FDG-PET) can be used to 
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identify Aβ plaque and glucose levels respectively (Mistur et al., 2009; Nobili & 

Morbelli, 2010). The use of these neuroimaging biomarkers has resulted in success 

tracking and predicting AD conversion amongst those with MCI, with results quoting 

around 75% accuracy using PET alone (Herholz et al., 2011; Nobili & Morbelli, 2010). 

Using imaging as a tool to observe preclinical pathology could be considered a 

successful, non-invasive utility; however, comprehensive regular neuroimaging would 

be expensive and could not be justified as a preclinical procedure available to either 

the entire population or even individuals who could be more at risk. 

1.3.1.2 Cerebrospinal fluid (CSF) 

CSF transports nutrients, hormones, and waste products around the CNS. A sample of 

CSF is extracted from patients by an invasive lumbar puncture but can provide details 

of proteins and their levels at the point of extraction; model CSF biomarkers are 

identified as AD-related proteins which vary in concentration when comparing 

between samples from individuals with dementia, without dementia (controls) and 

with MCI. Established AD-related proteins which can be used as CSF biomarkers 

include Aβ42, which is significantly lower in AD than controls, indicative of Aβ42 

trapped in insoluble plaques and therefore not being cleared or circulated; total tau 

(t-tau) levels, which tend to increase with age but are significantly higher in dementia 

patients than controls and more likely to be higher in those with MCI who convert to 

AD than non-converters; P-tau levels are generally similar to t-tau but more predictive 

in regards to sensitivity and specificity when discerning between AD and other 

dementias (Blennow & Hampel, 2003; Forlenza et al., 2015; Humpel, 2011; Llorens et 

al., 2016; Motter et al., 1995). 

Inflammatory regulation and microglial activation could be measured by levels of 

soluble Triggering receptor expressed on myeloid cells 2 (TREM2), a protein expressed 
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on microglia which correlates with t-tau and P-tau, and therefore a biomarker for 

inflammation during early symptomatic phases of AD (Suárez‐Calvet et al., 2016). As 

several biomarkers can be tested from one sample, CSF sampling may be a good 

source for comprehensive pre-clinical diagnostic information (Mattsson et al., 2009). 

The current method of sampling however is intrusive and may not be suitable for all 

patients or regular sampling. 

1.3.1.3 Plasma 

The most cost effective and reasonably non-invasive source of biomarkers may be in 

blood plasma collection. Plasma carries tens of thousands of proteins, with most in 

low, immeasurable concentrations; the proteins present in plasma are produced by 

peripheral tissue and do not cross the blood-brain barrier, therefore are not useful for 

observing activity and expression of AD-related proteins in the brain (Hansson et al., 

2010; Mehta et al., 2000; van Oijen et al., 2006). 

Although plasma levels of proteins like Aβ and tau produce conflicting results for risk 

prediction, platforms built to measure a combination of plasma biomarkers with other 

markers may show high predictive accuracy between AD and controls (Thambisetty & 

Lovestone, 2010). Candidate biomarkers have been identified and tested based on 

pathways associated with AD pathology, such as total serum cholesterol and 

oxysterols for cholesterol metabolism and F2-isoprostanes for oxidative stress; 

predictive abilities of 85-90% have been recorded when measuring plasma 

concentrations of proteins, such as interleukins, associated with inflammation (Ray et 

al., 2007; Thambisetty & Lovestone, 2010). Most recently, Neurofilament light chain 

(NfL) has been identified as a promising biomarker based on its ability to distinguish 

between AD and MCI cases and controls (Giacomucci et al., 2022).  
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1.3.2 Age 

1.3.2.1 Late-onset AD 

AD most commonly occurs in the elderly, with symptoms first presenting at the age of 

65 or later; late-onset Alzheimer’s disease (LOAD) represents most individuals who 

suffer from dementia (Piaceri et al., 2013). Through twin studies, it is apparent there 

is a genetic component to LOAD as well as being affected by environmental factors 

(Gatz et al., 2006; Wilson et al., 2011). AD can occur in patients before 65, presenting 

symptoms in early life or before 65, the symptoms are often more severe, and the 

progression can be more accelerated (Mendez, 2012; Minati et al., 2009). The 

identification of individuals with early, severe symptoms of AD resulted in many 

studies and possible explanations for the aetiology of AD (Antonell et al., 2013; Piaceri 

et al., 2013). 

1.3.2.2 Early-onset familial AD 

Amongst patients of early onset AD, there are two further sub-types (Ertekin-Taner, 

2007). A small proportion of individuals with early-onset AD were found to have 

genetic variants in one of few genes, which were recognised for their involvement in 

APP processing (Bertram et al., 2010; R. Guerreiro & Hardy, 2014). The variants are 

present within the genes of Amyloid precursor protein (APP), Presenilin 1 (PSEN1) and 

Presenilin 2 (PSEN2); the genes are autosomal-dominant due to the variants showing 

high penetrance in family studies (M. Choi et al., 2009). Many variants have been 

identified within these genes, mostly within coding regions; patients with early-onset 

symptoms of AD are screened for variants in these genes, the presence of which leads 

to a diagnosis of early-onset familial Alzheimer’s disease (EOFAD) (Hampel & Lista, 

2012). Although rare, familial variants can also be found in LOAD patients, suggesting 

some variants may also have lower penetrance (Antonell et al., 2013). 
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1.3.2.3 Sporadic early onset AD 

The remaining patients with early-onset symptoms without the autosomal-dominant 

familial aspect of EOFAD are classified as sporadic early-onset Alzheimer’s disease 

(sEOAD) (Piaceri et al., 2013). The hypothetical cause of sEOAD is thought to be a 

result of a greater concentration of or more penetrant set of gene variants than 

observed in LOAD, which leads to an earlier onset of symptoms but otherwise 

identical disease traits (Piaceri et al., 2013). 

1.3.2.4 Mild cognitive impairment 

Where only minor symptoms of cognitive decline present in individuals before or 

around the age of 65, a diagnosis of mild cognitive impairment (MCI) is given 

(Petersen et al., 1999). Amongst this cohort, there is the likelihood individuals will 

either develop dementia in later life, with MCI being a prodrome of dementia; 

continue to have symptoms like amnesia throughout life; or revert to healthy levels of 

cognition (Adams et al., 2015; Hansson et al., 2010; Pyun et al., 2021; Rodríguez-

Rodríguez et al., 2013).  
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1.4 Genetics 

Genetic research involves the study of genes and gene variants and their associations 

with disease phenotypes. Through twin, family and cohort studies, the genetic 

architecture of diseases can be defined, and heritability can be estimated. Genetic 

studies have been undertaken in AD research since the discovery and further study of 

the pathological pathways which may be involved in AD (Tanzi & Bertram, 2005). The 

various methods of gene variant discovery have resulted in some understanding of 

the complex genetic nature of AD, its sub-types and other dementia sub-types (Gatz 

et al., 2006). 

1.4.1 Genome-wide association studies 

Gene discovery was revolutionised by the utility of genome-wide association studies 

(GWAS) (Bertram et al., 2010; Bush & Moore, 2012; Manolio, 2010). The study takes 

the genotype data of a cohort of individuals with (cases) and without (controls) a 

disease phenotype and compares the frequency of each genetic variant between each 

group and calculates the significance of the association of the genotype with the 

phenotype (Anderson et al., 2010; Clarke et al., 2011). The more often a variant 

appears amongst cases than controls the more likely it is to be associated with 

increasing likelihood of developing the disease (Anderson et al., 2010; Manolio, 2010). 

The more individuals involved in the study, the more accurate the effect the variant 

has can be calculated, and the more power the study has finding variants of 

significant, genome-wide impact (Clarke et al., 2011). This concept was recognised 

and used across a spectrum of diseases, aiding discovery and confirmation of many 

significant genetic loci associated with a disease phenotype (Manolio, 2010). 

A widely used GWAS completed on LOAD using genotype data from 35,274 clinically 

diagnosed and later post-mortem pathologically confirmed cases of AD and 59,163 
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controls of Non-Hispanic White, Caucasian ethnicity (J. C. Lambert et al., 2013). The 

results identified 25 independent genetic loci with association to AD at genome-wide 

level of significance, 20 of which were previously found in previous GWAS analyses 

(Beecham et al., 2009; Bertram et al., 2007; Coon et al., 2007; Grupe et al., 2007; 

Harold et al., 2009; Hollingworth et al., 2011; J. C. Lambert et al., 2009; Y. Li et al., 

2008; Reiman et al., 2007; Seshadri et al., 2010). The most recent GWAS identifies 75 

risk loci associated with AD and related dementias, requiring further study (Bellenguez 

et al., 2022). 

1.4.2 Gene Clusters 

Results of GWAS are often shared in the form of a Manhattan plot; the figure 

identifies the genetic loci along the x-axis, and a logarithmic scale of significance (p-

value) on the y-axis (J. C. Lambert et al., 2013). There is usually a line which outlines 

the significance level which needs to be achieved for the variant to be considered 

genome-wide significant, p<5×10-8 (J. C. Lambert et al., 2013). GWAS results can also 

be shared in a plot of minor allele frequency on the x-axis and disease risk on the y-

axis; this is useful for understanding the genetic architecture of diseases. 

Genetic research to date has aided in categorising genetic loci associated with AD as 

causative, common and rare; the Apolipoprotein E (APOE) gene locus falls outside of 

this categorisation (Bush & Moore, 2012; Manolio et al., 2009). The associated risk 

observed in APOE variants is similar to that of rare variants, yet the risk allele is 

common. The hypothesis for this considers individuals who harbour the APOE ε4 allele 

and common variants to have fecundity and therefore manage to survive and 

reproduce, passing on the variant to the next generation and maintaining the allele 

frequency. As the disease presents in later life; there has been no selective pressure 

against harbouring it. 
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1.4.2.1 APOE: high frequency, moderate risk 

One of the first genes to be associated with AD, before the use of GWAS was APOE; 

the gene was first identified in linkage studies and its presence and role in the Aβ 

pathway is still being determined (Corder et al., 1993; Liao et al., 2017). This exists in 

three isoforms (i.e., E2, E3, and E4), where individuals carry two copies; the identity of 

which alleles an individual harbours can be determined from the genotypes of two 

SNPs (i.e., rs7412 and rs429358) (Farrer et al., 1997). The specific APOE allele 

associated with increased risk produces the E4 isoform of the protein, where the 

presence of one copy increases AD risk 4-fold and individuals who harbour two have a 

12 to 16-fold risk of developing AD compared to individuals with the most common 

genotype, ε3ε3 (Bertram et al., 2007; Corder et al., 1993, 1994). The ε2 allele is 

associated with a reduced risk of developing AD as well as a delayed age at onset in 

those who do develop AD (Corder et al., 1994; Farrer et al., 1997). 

The pathological role of APOE in AD has been studied based on its site of expression, 

and role and interaction with amyloid β (Corder et al., 1994; Holtzman et al., 2000; 

Liao et al., 2017; Sleegers et al., 2010). The study of APOE and its association 

continues, as further evidence highlights the entire locus site of interest, with 

suggestions implicating the gene to be the most significant association to AD whilst 

others consider the APOE gene to be linked to and inherited with another nearby loci, 

which may be the true causative source of disease risk observed with APOE ε4; both 

TOMM40 and APOC1 are situated within the same locus as APOE and have variants 

with association to AD risk (Kulminski et al., 2021; Ware et al., 2020). 

1.4.2.2 Causative: low frequency, high risk 

Variants with the highest risks are clustered together and usually considered to have 

such high risk it is likely an individual carrying this variant would develop the disease 
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(Hampel & Lista, 2012). Examples of variants in AD which may have this effect include 

the three genes which lead to EOFAD (i.e., APP, PSEN1 and PSEN2) as well as a rare 

variant found in the TREM2 gene (Abduljaleel et al., 2014; Bekris et al., 2010; De 

Strooper et al., 1998; Desikan et al., 2015; Ertekin-Taner, 2007; R. Guerreiro et al., 

2013; R. J. Guerreiro et al., 2013; Hutton et al., 1998; S. C. Jin et al., 2014; Jonsson et 

al., 2013; Levy-Lahad et al., 1996; Lleó et al., 2001; Pottier et al., 2013; Taddei et al., 

2002; Tomita et al., 1997). 

1.4.2.3 Common: high frequency, low risk 

Most variants identified as significant by GWAS happen to be common, present in 

both cases and controls, but more frequently in cases (Bush & Moore, 2012; Manolio, 

2010; Manolio et al., 2009; Visscher et al., 2012). This localisation of these variants is 

usually due to the variants having little independent disease risk but when present 

with other risk variants in genes which interact, the low pathological effect propagates 

into greater risk (Morgan, 2011; Tosto & Reitz, 2013). 

1.4.2.4 Rare: low frequency, moderate risk 

Rare variants form another cluster of variants associated with AD, sharing similar 

inheritance and disease risk (Schork et al., 2009). They tend to have a higher risk and 

may drive disease pathology more than APOE is observed to, but the variant remains 

rare as accumulation of too many rare variants or the specific rare variant with too 

high penetrance may lead to fatality or premature death and thus prevent the variant 

being passed down (Pabinger et al., 2014). Rare variants are often so infrequent they 

are not included in the genotyping arrays developed for studies and their discovery 

occurs through analysis of whole genome sequence data, where rare variants with 

higher risk are sequenced in smaller association studies and validated in later studies 

(Y. Li et al., 2008; Tosto & Reitz, 2013; Vardarajan et al., 2015; Visscher et al., 2012). 
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1.4.3 Complex Aetiology 

The results of GWAS identify a spectrum of variants of increasing risk and frequency, 

this describes the complex architecture now known to lead to development of AD 

(Pabinger et al., 2014; Pottier et al., 2012; Reich & Lander, 2001). Further hypotheses 

on the mechanism by which disease pathology occurs consider the onset of AD to be 

a combination of genetic risk, environment and upbringing, lifestyle and care in later 

life (Gatz et al., 2006). 

1.5 Genotyping and Sequencing 

The first human genome sequenced was completed using shotgun sequencing 

methods, however, in the process of bringing down costs alternative sequencing 

methods were used and refined (Grada & Weinbrecht, 2013; Ng et al., 2010). 

Nowadays, high throughput next-generation sequencing is the established method for 

large genomics studies and automated sanger sequencing is the ‘gold standard’ for 

accurately detecting polymorphisms; methods primarily vary depending on the 

desired product and study design (Goh & Choi, 2012; Sanger et al., 1977). 

The ability to genotype large cohorts has provided great advancements with the 

development of GWAS (Manolio, 2010). Association studies identify susceptibility loci 

which are frequently observed alongside disease traits; the studies identify numerous 

loci across the genome in complex diseases, some of which are considered to reach 

genome-wide significance, one in a million (p≤5×10-8) (J. C. Lambert et al., 2013). 

These loci are found within gene coding regions as well as intronic and intergenic 

regions; the variants within the loci outside of gene coding regions are usually more 

common and have smaller effect on disease risk (J. C. Lambert et al., 2013). 

GWAS begins with the identification of loci from where a signal is derived but, due to 

linkage disequilibrium (LD), it is difficult to identify the risk variant amongst those it is 
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inherited with (Bush & Moore, 2012; Rosenthal & Kamboh, 2014). The loci are 

identified as an LD block which harbours the variant of interest (Manolio, 2010; 

Rosenthal & Kamboh, 2014). Follow-up studies are required to identify these specific 

variants, this process can be easier for exonic LD blocks whilst some signals from 

intergenic regions are yet to be explained (Clarke et al., 2011). When genotyping 

individuals for previously established genetic variants it is most practical to use a 

genotyping array; when looking at variation within exonic gene coding regions, the 

most cost-effective sequencing method would be whole-exome sequencing (WES); 

when looking for any and all genetic variation for cohorts the whole-genome 

sequencing (WGS) method is most thorough (Bamshad et al., 2011; Ng et al., 2010; R. 

Sims et al., 2017; Visscher et al., 2012). 

1.5.1 Whole-genome sequencing 

The most comprehensive and expensive sequencing method for an individual is whole 

genome sequencing (WGS) (Grada & Weinbrecht, 2013; Sanger et al., 1977; Visscher 

et al., 2012). This method includes all coding and non-coding regions and, during its 

processing stages, can produce multiple long reads which are especially useful for 

data analysis investigating copy number variants (CNVs), indels, regulatory elements 

and structural variants (Depristo et al., 2011; Koboldt et al., 2013; D. Sims et al., 

2014). 

1.5.2 Whole-exome sequencing 

Many studies are more specifically interested in looking at variation within genes, as 

they code for proteins and make up around 2% of the genome and therefore require 

a fraction of the data storage space (M. Choi et al., 2009; Goh & Choi, 2012; Ng et al., 

2010). WES requires less sequencing time and money and is a more popular 



Introduction 

25 
 

sequencing method than WGS for its efficiency and specificity of its approach 

(Bamshad et al., 2011; Guo et al., 2012; Warr et al., 2015). 

1.5.3 Genotyping 

Genotyping arrays are the most popular method for sequencing larger cohorts for 

specific variants of interest. Independent sequencing assays are completed for every 

variant present on the array, plates are designed to carry up to 92 individuals. 

Genotyping arrays can be designed to detect variation across the genome for 

association with one or a group of diseases, such as the NeuroX and NeuroChip arrays 

and neurological disorders (Blauwendraat et al., 2017; Nalls et al., 2015). 

1.5.3.1 NeuroX array 

The NeuroX genotyping array is the first iteration of a series of arrays designed to 

capture genetic data associated with neurological disorders (Barber et al., 2017; Nalls 

et al., 2015). The NeuroX was built on the HumanExome BeadChip v1.1 which consists 

of 242,901 SNPs across the whole exome, with an additional 24,706 SNPs which were 

either candidates for or known to be associated with diseases such as Alzheimer's 

disease and frontotemporal dementia, Parkinson’s disease, amyotrophic lateral 

sclerosis and multiple sclerosis, multiple systems atrophy, Charcot Marie Tooth and 

myasthenia gravis (Barber et al., 2017; Illumina, 2011; Nalls et al., 2015). 

1.5.3.2 NeuroChip array 

The NeuroChip array is the successor to the NeuroX (Blauwendraat et al., 2017; Nalls 

et al., 2015). The NeuroChip was built on the backbone of the Infinium HumanCore-24 

v1.0 array consisting of 306,670 SNPs, with an additional 179,467 SNPs of custom 

content (Blauwendraat et al., 2017). Use of the HumanCore-24 backbone allows for 

greater coverage of non-exonic variants and improved genome-wide resolution; 

alongside variants more recently implicated in the disorders covered by the NeuroX 
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array, the NeuroChip includes variants implicated in dementia with Lewy bodies, 

progressive supranuclear palsy and corticobasal degeneration (Blauwendraat et al., 

2017). 

1.5.4 Imputation 

Imputing array data can increase the number of variants individuals are genotyped for 

in a more cost-effective way than other NGS methods. Imputation involves phasing 

inputted sample data into haplotypes to identify blocks of linkage disequilibrium. 

These regions are compared to a reference panel of individuals’ phased data to 

statistically calculate the likelihood of variants present in the reference to also be 

present in the sample. The accuracy of calls were given as INFO scores, which is 

affected by the number of initially genotyped variants in the LD block and the size of 

the population in the reference panel. Imputation requires a lot of computation and 

memory space especially when using large reference panels.  

In recent years servers have become an alternative and user-friendly utility to impute 

array data; the Michigan Imputation Server (MIS) is often used as a free imputation 

service which uses the Minimac4 engine and stores data on Cloudgene (Das et al., 

2016). 

Imputation gives rise to more variants genotyped per individual, leading to coverage 

of relevant variants identified as associated with disease after the architecture of an 

array. The SNPs are identified when compared to reference panel which depending on 

its size can provide around 39 million SNPs per individual, compared to arrays which 

may potentially carry up to one million variants. When comparing imputed data to the 

original array data, there may be greater cross-over with datasets used in analysis, 

improving overall accuracy.  
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1.6 Polygenic risk scoring 

Polygenic risk scores (PRS) are understood to determine the risk associated with a 

specific phenotype across multiple genes, usually across the whole genome (Euesden 

et al., 2015; S. A. Lambert et al., 2019). Differing nomenclature includes polygenic 

hazard score (PHS) and omnigenic risk score (ORS), sometimes due to minor variations 

in methodology. The fundamental method uses variants which are given an estimated 

value of effect from a base dataset, the number of which harboured by an individual is 

summated to identify their overall risk of a phenotype, and compared at different 

thresholds of inclusion of variants based on the significance of their association with 

the phenotype (Escott-Price, Myers, et al., 2017; Euesden et al., 2015; S. A. Lambert et 

al., 2019). This method is completed on groups of individuals in a target dataset with 

and without the phenotype, to determine which PRS model is most useful in 

differentiating the groups and therefore most effective at predicting likelihood of 

developing the phenotype (S. A. Lambert et al., 2019). 

Base variant effect scores used as in PRS analyses are derived from summary statistics 

from GWAS meta-analyses or association testing of case-control data and are required 

to be independent from the target dataset due to be validated (Euesden et al., 2015). 

PRS has many utilities, with more in development; association of genetic risk with 

other co-factors can be useful in more accurately determining disease likelihood and 

estimating age at disease onset (Darst et al., 2017; Foo et al., 2021; W. W. Li et al., 

2020; Porter et al., 2018). Modelling PRS between cases and controls can be used to 

derive predictability of disease risk for undiagnosed individuals or individuals 

diagnosed mild cognitive impairment (Chaudhury et al., 2019; Logue et al., 2019). 

Selection of individuals at greatest risk of disease for clinical trials has the utility of 
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observing the maximum potential effects of treatment on disease onset (Euesden et 

al., 2020; S. A. Lambert et al., 2019). 

Further study of number of gene variants associated with a disease required 

formatting the variants into sub-groups (Darst et al., 2017; Lawingco et al., 2021). The 

methods of variant classification include allele frequency, by chromosome, by genes 

which are active in the same pathway or cascade, and genes which are all expressed 

or upregulated in the same system (Andrews et al., 2020; Darst et al., 2017; 

Femminella et al., 2021; Hu et al., 2017; Lawingco et al., 2021). 

1.8.1 Literature 

PRS analysis has been used to investigate AD since methods for doing so were 

determined, now varying methods and sample cohorts have been used in studies. 

Exploring literature using the search criteria of “polygenic risk score” AND 

“Alzheimer’s disease” identified 55 articles between 2016 and 2021, varying from 

primary studies to reviews (Bellou et al., 2020; S. A. Lambert et al., 2019). 

The meta-analysis by the International Genomics of Alzheimer’s disease Project (IGAP) 

consortium has been a significant contributor to most studies of PRS in AD (Andrews 

et al., 2020; Axelrud et al., 2019; Chandler et al., 2019; Chaudhury et al., 2018, 2019; 

Cruchaga et al., 2018; Darst et al., 2017; Del-Aguila et al., 2018; Ebenau et al., 2021; 

Elman et al., 2020; Escott-Price et al., 2015, 2019; Escott-Price, Myers, et al., 2017; 

Escott-Price, Shoai, et al., 2017; Escott-Price & Schmidt, 2021; Euesden et al., 2020; 

Femminella et al., 2021; Foo et al., 2021; Fulton-Howard et al., 2021; Ge et al., 2018; 

Gibson et al., 2017; Hong et al., 2020; Huq et al., 2021; Kauppi et al., 2020; Korologou-

Linden et al., 2019; Kremen et al., 2019; Lawingco et al., 2021; Leonenko et al., 2021; 

Leonenko, Shoai, et al., 2019; Leonenko, Sims, et al., 2019; Logue et al., 2019; Matloff 

et al., 2020; Tasaki et al., 2018, 2019; Wehby et al., 2018; Yesavage et al., 2020).  
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Used as the base dataset, the summary statistics on data of 74,046 individuals, 

provided sufficient power to determine many variants to be identified to have 

genome-wide significance (J. C. Lambert et al., 2013). Recently, this was increased to 

include data of 94,437 individuals and used in subsequent studies (Kunkle et al., 2019; 

Najar et al., 2021; Skoog et al., 2021; Stocker et al., 2021). The most comprehensive 

meta-analysis to-date utilises 1,126,563 individuals, its potential benefits still to be 

determined (Wightman et al., 2021). 

1.8.2 Association 

The results of PRS studies have identified associations between PRS and biomarkers or 

other diagnostic criteria (Darst et al., 2017; Foo et al., 2021; W. W. Li et al., 2020; 

Porter et al., 2018). Patients with CSF biomarkers for AD have been found to have high 

PRS, identifying high PRS individuals as targets for early screening of biomarkers 

before dementia symptoms (Darst et al., 2017; W. W. Li et al., 2020). The association 

between higher PRS and lower hippocampal subfield volume has been observed when 

measured over time; as individuals with high PRS develop a reduced hippocampal 

volume endophenotype in old age, similar PRS in younger individuals may indicate 

likelihood of developing this in later life (Foo et al., 2021). 

1.8.3 Prediction 

Predictions can also be made from the PRS of a cohort with known phenotypes, 

resulting in the successful identification of at-risk individuals before the onset of 

disease symptoms (Chaudhury et al., 2018, 2019; Dudbridge, 2013; Escott-Price, 

Myers, et al., 2017; S. A. Lambert et al., 2019; Leonenko et al., 2021; Logue et al., 

2019; Porter et al., 2018; Stocker et al., 2021). The PRS of patients diagnosed with 

mild cognitive impairment compared to a case-control cohort has found trends which 
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indicate the likelihood of conversion to AD in patients with highest PRS (Chaudhury et 

al., 2019; Logue et al., 2019). 

Deriving PRS using selection criteria (e.g., common variants, MAF > 5%) has been a 

popular approach to efficiently determine the risk of AD in the general population (X. 

Jin et al., 2021). Many of the variants used in analyses have been previously identified 

in GWAS meta-analyses, enabling replication of methods and substantial research 

undertaken to understand the role of the variants in AD pathology (Desikan et al., 

2017; Leonenko, Sims, et al., 2019). A Polygenic Hazard Score has often been 

classified as using a limited number of SNPs identified by GWAS as the basis for 

measuring genetic risk (Desikan et al., 2017). 

1.8.4 Specialisation 

Expression network and pathway driven PRS approaches are a method by which the 

genetic risk of a smaller subset of variants can be more specific in predicting the risk 

of disease from the variants in the genes as well as the association of the pathway or 

network to disease pathology (Darst et al., 2017; Femminella et al., 2021; Hu et al., 

2017; Lawingco et al., 2021; Morgan, 2011). 

Understanding the relationship between proteins expressed at the synapse was 

developed into PRS analysis to determine the gene variants with most significant 

association to AD alongside the utility of predicting likelihood of AD in patients 

exhibiting synaptic dysfunction (Lawingco et al., 2021; Lleó et al., 2019). These 

approaches have identified 6 potential CSF biomarkers for AD and a PRS model 

consisting of 8 SNPs across 6 genes sufficient to predict likelihood of AD greater than 

the APOE SNPs alone.  

PRS have been derived from 19,630 variants in 1,158 mitonuclear genes, those 

affecting the expression and function of mitochondria; this study has shown strong 
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associations with risk of AD as well as age at onset, developing the understanding of 

mitochondrial activity on AD pathology (Andrews et al., 2020). The utility of 

specialised PRS analyses in understanding AD pathology advocates for similar 

approaches to be taken for other AD associated pathways and could support 

improvements in discerning between dementia sub-types. 

1.8.5 Software 

Calculating PRS can be achieved by utilising various bioinformatics tools; dedicated 

software has also been developed for this purpose, such as PRSice (Euesden et al., 

2015). The first iteration of this software, PRSice v1.25, utilises other bioinformatics 

tools for calculating scores, computing regression models and producing figures to 

present this (Euesden et al., 2015). The second iteration, PRSice-2, incorporates 

complex coding to maximise its efficiency, enabling analysis at larger scale in terms of 

size of data and number of models (S. W. Choi & O’Reilly, 2019). 

1.7 Project Aims 

This PhD aims to explore the current genetic landscape of AD, identifying the best 

methods to calculate genetic risk, improve risk prediction and propose future 

applications of polygenic risk scores. The thesis will cover numerous genotyping 

methodologies, comparing their consistency, accuracy, ease of generation, quality 

assurance and quality control. 

The study will be primarily focussed on a cohort of individuals recruited by the Brains 

for Dementia Research resource, comprising of individuals across the UK, including 

healthy controls, patients with AD, and other dementia sub-types; deceased 

individuals have been post-mortem pathologically confirmed (Francis et al., 2018). 

The study will also use genetic data from international GWAS, international 

genotyping projects and the genotype data of a group of individuals diagnosed with 
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MCI and recruited into the Inflammation, Cognition and Stress (ICOS) longitudinal 

study (Sussams et al., 2013). 

PRS can be primarily used to determine disease likelihood, taking the distribution of 

risk amongst cases, controls and a general population and determining thresholds for 

lifetime-risk classification of preclinical individuals. PRS will also be explored similarly 

as a utility for predicting conversion likelihood in individuals with MCI. PRS can also be 

further utilised to differentiate sub-type classification, identifying whether the genetic 

variants associated with sub-type are mutual or exclusive to other sub-types. 

The variation of information which produces the PRS will be explored to identify if 

prediction can be achieved with a subset of variants based on filtering by pathway or 

expression platform and what conclusions or trends can be observed by these studies; 

further exploration of a series of subsets can determine if PRS in multiple subsets can 

lead to a deeper understanding of AD aetiology and how this may vary between 

individuals. 
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2 Methods 

2.1 Laboratory 

2.1.1 Samples 

Lab-based methods outline the recruitment of individuals for genotyping studies, with 

priority for patients diagnosed with Alzheimer’s disease or other dementia sub-types 

or prodromes. The individuals and their biological samples were collected from 

various resource and study groups. The samples primarily used throughout this thesis 

were provided by the Brains for Dementia Research (BDR) resource and the 

inflammation, cognition, and stress (ICOS) study group. 

The BDR group is currently coordinated from Newcastle; they recruit individuals from 

five brain banks in the UK: University of Bristol, King’s College London, University of 

Manchester, University of Newcastle, and University of Oxford. Individuals are subject 

to the Montreal cognitive assessment as well as providing a blood sample and 

donating brain tissue at death, at which point clinical features and post-mortem 

disease status were reported. All samples were obtained with written informed 

consent and approval from participants and the BDR and University of Nottingham 

ethics committees. As of March 2019, the resource provided the blood samples of 

1164 individuals of which 760 were given a post-mortem pathological diagnosis, the 

majority were genotyped using the NeuroChip array and many have been whole 

exome sequenced. 

The ICOS study group is based in Southampton, UK, for individuals with mild cognitive 

impairment; the study has followed the patients over time to record changes, 

specifically to clinically diagnose conversion to AD or other dementias. As of 2017, 124 

patients provided a blood sample for NeuroChip genotyping. 
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2.1.2 DNA extraction 

DNA was extracted from 2mL of blood using a phenol chloroform method (Sigma 

Aldrich and Qiagen). Blood samples were defrosted at room temperature for 30 

minutes and then inverted to suspend cells. First, 2mL of whole blood was added to a 

15mL falcon tube containing 20μL RNase A. Then, 200μL of Proteinase K, for protein 

degradation, and 2mL of AL lysis buffer, which breaks down the cellular membrane, 

were added and mixed well. The homogenised sample was incubated at 56°C in a 

thermoshaker for 10 minutes. 

Two 15mL MaxTract High Density Tubes (HDT) (Qiagen) were spun at 1500g for 3 

minutes. The incubated sample transferred to one of the HD tubes followed by an 

equal amount of Phenol:Chloroform:Isoamyl alcohol (25:24:1) pH 8.0 (Sigma-Aldrich). 

The HDT is centrifuged for 7 minutes at 1500g at room temperature using a PRISM 

benchtop microcentrifuge (Abnet). Centrifugation with phenol chloroform allows for 

separation of DNA, protein, and cellular debris into layers. DNA, which accumulates in 

the upper aqueous layer is carefully pipetted into the second pre-spun HDT, and the 

volume is noted. In the fume hood, equal parts Phenol:Chloroform:Isoamyl alcohol is 

added to re-homogenise the sample and then centrifuged at 1500g for 7 minutes. The 

upper phase is transferred into a new falcon tube and the volume is noted. At the 

bench, 3M sodium acetate (Sigma) is added to the falcon tube equivalent to 10% of 

the upper phase volume and inverted twice. Equal parts of cold 100% ethanol is 

added to the tube and inverted gently for precipitation of the DNA. The sample is 

either stored at -20°C overnight or kept on dry ice for 1 hour.  

The falcon tube is spun at 4°C at 6000rpm for 10 minutes. Supernatant was discarded 

and 1mL of 70% ethanol was added to the tube to wash the pellet. The tube was again 

centrifuged at 4°C at 6000rpm for 10 minutes and excess alcohol was discarded. The 
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wash was repeated once again, and the tube was left to air dry for 45 minutes at 

room temperature.  

Finally, 100μL of Tris-EDTA Buffer (Qiagen) was added to resuspend the pellet. The 

tube was then left overnight at 4°C followed by incubation on a heat block for 40 

minutes at 50°C. DNA concentration was measured using the Nanodrop Fluorometer 

3300 and degradation was estimated using 1% agarose alongside a 1000kb ladder. 

The DNA was then able to be stored at either -20°C for use within two weeks or -80°C 

if the sample required storing for longer. 

2.1.3 DNA quality control 

Samples underwent 10x dilution with nuclease-free water, this ensured the 

concentration levels of DNA were within suitable detection ranges for 

spectrophotometry. All samples were quantified with a Nanodrop Spectrophotometer 

2200 (Thermo Scientific) following protocols provided with the Quant-iT dsDNA Broad 

Range Assay Kit (Life Technologies). The concentration of double stranded DNA was 

quantified from the sample as the Nanodrop 2200 used PicoGreen fluorescence; this 

was repeated in triplicate. The concentration of dsDNA was quantified as opposed to 

all DNA to provide a more accurate reading, and results were in triplicate to ensure 

the readings were reliable. DNA yield was calculated in 45μL; for whole exome 

sequencing, the samples needed to be above 10μg. 

The TapeStation (BioAnalyser) was used to measure DNA integrity, 1μL of sample was 

added and mixed with 10μL buffer in PCR tubes and loaded onto the machine with a 

genomic DNA screentape. DNA is quantitatively measured by its DNA Integrity 

Number (DIN) score, the output of the TapeStation. Samples are required to have a 

DIN score ≥ 6.0 and appear as a clean band on the gel, samples with scores below 6.0 
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were diluted again and repeated and where the band was smeared the DNA required 

re-extracting from remaining tissue or blood. 

2.1.4 TaqMan assays 

TaqMan assays (Applied Biosystems) were performed using primers and probes 

provided by the manufacturer to manually genotype the two SNPs associated with 

APOE status, rs429358 and rs7412. These variants are exclusively assayed due to the 

GC-rich nature of the region in which they are present on chromosome 19, leading to 

difficulties and inaccuracies when genotyped on array platforms. 

Procedures are completed in a sterile laminar flow hood, where all equipment was 

sterilised under ultraviolet light irradiation for at least 20 minutes before use; light 

sensitive reagents, the assay mix and TaqMan master mix were thawed at room 

temperature and covered with foil to prevent degradation. The lamp on the Mx3000P 

real-time quantitative PCR (qPCR) machine (Agilent) requires switching on 20 minutes 

before use to allow time to warm up and the machine to be primed. 

To produce a master mix for the reactions, 3μL of ddH2O was added to 4.5μL of 

TaqMan master mix and 0.5μL of assay mix containing primers for the SNP assays; 

reagent volumes were multiplied for the number of reactions taking place. A 96 well 

optic PCR plate was loaded with 2μL of DNA sample at a concentration of 

approximately 20ng/μL with the 8 μL of reagent master mix; 2μL of nuclease free 

water was used in lieu of a DNA sample as a no template control (NTC) whilst 2μL of 

DNA from Sanger sequencing confirmed positive controls for the wild type, 

homozygous and heterozygous mutants are included on each genotyping plate for 

validation. Plates are sealed with optical caps and reagents are thoroughly mixed by 

being vortexed. The plates were then placed in the qPCR machine, the plate plan was 

set up to identify the samples in each well and locations of the NTCs and positive 
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controls. The PCR thermal cycle was set to run at 95°C for 10 minutes, followed by 60 

cycles of 92°C for 15 seconds and 60°C for 1 minute. 

Alleles present at each SNP were determined by comparing Hexachloro-fluorescein 

(HEX) and 6-Carboxyfluorescein (FAM) fluorescence curves to positive controls. This 

was done by observing signals from FAM fluorescence representing T alleles and HEX 

representing C alleles or signals from both representing heterozygous calls. Once the 

two SNPs are called, APOE status can be determined from the alleles present at each 

variant and therefore individuals’ haplotypes. Many individuals show a fluorescent 

signal for FAM for rs429358, genotyped as TT, and CC for rs7412 from a HEX 

fluorescent signal; their haplotypes would therefore be T/C and T/C and their APOE 

status is classified as ε3ε3, as shown in Table 1. 

APOE status 

rs429358 rs7412 

FAM HEX FAM HEX 

ε2ε2 1 0 1 0 

ε2ε3 1 0 1 1 

ε3ε3 1 0 0 1 

ε3ε4 1 1 0 1 

ε4ε4 0 1 0 1 

 

Table 1: APOE genotype calls by TaqMan assay 

The table describes the FAM (T allele) and HEX (C allele) signals present at both APOE 
SNPs to make genotype calls, where 1 indicates the presence of a signal and 0 
indicates the absence of a signal. 

2.1.5 Comparison of APOE genotyping methods 

As mentioned previously, the two APOE SNPs require TaqMan assays to confirm the 

genotypes for individuals. This is due to previous examples of genotyping arrays failing 

to call either or both variants even when repeated. There is also observed evidence of 

discrepancies between APOE genotypes when using alternative variant calling 

methods i.e., Sanger sequencing, whole-exome or whole-genome sequencing, and 

imputation.  
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2.2 Bioinformatics 

2.2.1 Genetic data 

Genotype data collected through various methods requires processing and storage in 

formats that can allow computation and manipulation by other software. As new 

programs and tools are still being developed, genotype data is required to be able to 

be stored effectively in universal file formats, which can otherwise be converted to 

more specific and appropriate file formats for the data analysis tools. 

2.2.1.1 Variant call format 

The most common method of storing individual DNA polymorphic data is in variant 

call format (VCF), developed during the 1000 Genomes project. The VCF file can store 

data for SNPs, insertions, deletions, structural variants and informs further annotative 

points regarding the quality of the variant and its known function and association with 

disease. The VCF is typically a storage and transfer format for data; data can be 

further compressed to save space, whilst there is no theoretical limit to the number of 

individuals who can be included within a VCF file (Danecek et al., 2011). VCF can be 

easily manipulated and used for a variety of functions, the files are easily readable and 

can be viewed by most text editors; software developed for analysis of genetic data is 

usually designed to either import or export in VCF. 

2.2.1.2 Genome Analysis Toolkit 

The Broad Institute, who work heavily with genetic data, developed the Genome 

Analysis Toolkit (GATK). GATK contains a range of programs and tools to edit data; 

tools are used to process the raw genotype data into formats which can be for 

manipulating and quality controlling data before being converted into the final VCF.  

There are many formats which raw genotype data can come in, Illumina is the leading 

company in high throughput sequencing, and usually produces the raw forward and 
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reverse reads as a pair of FASTQ files per individual. FASTQ sequence files are text files 

containing the entire genomic base sequence with Phred quality scores for each 

nucleotide represented by ASCII characters. 

Sequence data requires alignment to an assembly. This is completed, and the 

resulting data is formatted into Sequence Alignment Mapped (SAM) format. SAM files 

are more comprehensive than FASTQ, combining both FASTQ reads and indicating the 

reference genome and alignment; with quality scores, the mapping position for each 

nucleotide and where its paired read align are also presented. SAM files are larger in 

comparison to most files, and in order to be stored efficiently, the data is indexed and 

compressed into a binary SAM (BAM) file. Indexing allows other programs to identify 

and extract key information whilst the data is in its compressed format. GATK tools 

are also self-encompassing, so any scripts which require decompression of specific 

regions for analysis finish their processes by re-compressing afterwards. 

2.2.1.3 PLINK 

PLINK is an open-source genome association analysis tool developed by 

Massachusetts General Hospital and the Broad Institute. The toolkit can be used to 

further manipulate genetic data and complete association-based analysis. PLINK is 

compatible with VCF files, but analysis using the software requires conversion from 

VCF to other data formats for analysis. The alternative file formats to VCF can usually 

require less space, are more easily manipulated and some formats can be read in text 

editor software. 

A VCF contains all the variants an individual is genotyped for, in order of chromosomal 

position; this can be isolated by PLINK as a MAP file. When PLINK produces the MAP 

file, the genotypes of all individuals present in the VCF are also exported in the order 

they appear in the MAP file as a PED file; the PED file may also, where provided, 
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include individuals’ sex and phenotype, and can also store individuals maternal and 

paternal identifiers. The MAP and PED files are known as standard PLINK files. PLINK 

can also produce binary files which further reduce storage space whilst remaining 

accessible for analysis procedures. The PLINK binary files are like the MAP and PED 

files, as one contains a list of all the variants (BIM) whilst another holds the same 

individuals’ information reported in PED files (FAM). The BIM and FAM files are 

separately readable but require the presence of the binary PED (BED) file to be read 

by PLINK for analysis and computation. With the most recent version of PLINK, the 

three file formats i.e., VCF, PLINK and binary files, are fully cross-compatible and can 

be converted from one another using PLINK tools. 

2.2.2 Sequencing pipeline 

2.2.2.1 Initial QC 

Successfully run samples produced paired raw FASTQ files per sample, one in the 

forward direction and the other in the reverse direction containing paired reads. The 

best practice guidelines for next generation sequencing determined by Broad Institute 

recommended GATK v4.1.4, which includes programs and software necessary to 

complete their recommended pipeline. The NGS pipeline was designed to be used in a 

Unix operating system environment and the pipeline was completed within a Linux-

based server.  

Raw reads required initial assessment for quality control of the library prep and 

sequence run. FastQC (Babraham Bioinformatics) is a java-based program which 

produces a QC report of any identified issues. The report checked for contamination 

from external sources and adapter sequences, base composition bias from too rich GC 

content, sequence duplicates and overrepresentation, unexpected read lengths and 

per base quality scores. The accuracy at calling bases in a sequence was given using a 
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Phred quality scale (Q), it is vital to attain Phred scores of Q30 with its respective call 

error rate of 0.001 (99.9% accurate) for good quality data. 

Usage: 

$ fastqc --threads 8 sample_1.fastq -o sample_qc 

--threads = number of processors 

-o  = output filename 

 

2.2.2.2 Alignment 

The first stage of the GATK pipeline was alignment of the short reads from the raw 

paired FASTQ files to a reference genome, producing a single file in sequence 

alignment mapped (SAM) format. SAM files store genomic position and quality 

information for each read. Alignment of all samples was completed using the 

Burrows-Wheeler Aligner (BWA) and aligned to the 1000 Genomes FASTA file as the 

reference genome; the algorithm also incorporated seeding to improve processing 

speeds by finding maximal exact matches (MEM) for where the sequence was most 

likely to align and used the affine-gap Smith-Waterman algorithm to build optimal 

alignments.  

Usage: 

$ bwa mem -t human_g1k_v37.fasta sample_1.fastq 
sample_2.fastq > sample.sam 

-t = number of processors 

 

2.2.2.3 Sorting 

The resulting SAM file was sorted using the SortSam Picard tool, which organises the 

mapped short reads in a defined order, indexes the SAM file and can be used to 

compress the SAM file. SAM files, which are usually between 20-30Gb in size, 

compress into a binary SAM (BAM) file, which are usually around 4-10Gb, saving space 
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whilst maintaining accessibility. Indexing allowed the BAM file to be used for 

downstream analyses without the requirement of decompressing the entire file when 

a region required loading, and the file was sorted in order of genomic position 

(coordinate). The resulting BAM was then checked again using FastQC to detect any 

issues after alignment, as a pre-processing step. FastQC also provided statistics to 

describe the coverage for each sample against the reference.  

Usage: 

$ java -Xmx4g -jar picard/SortSam \ 
INPUT=sample.sam \ 
OUTPUT=sample.sorted.bam \ 
SO=coordinate \ 
CREATE_INDEX=TRUE \ 
VALIDATION_STRINGENCY=LENIENT 

$ fastqc --threads 8 sample.bam -o sample.align.qc 

-Xmx4g  = maximum allocation of memory to be used by java 

SO  = parameter to sort by (coordinate/unsorted/queryname) 

CREATE_INDEX = generate an index file with output (TRUE/FALSE) 

VALIDATION_STRINGENCY = bypass certain validation measures to reduce 
processing speed (STRICT/LENIENT/SILENT) 

 

2.2.2.4 Read Groups 

All reads which come from a single lane in a sequencing run of a sample are described 

as a read group. These can be identified by several read group tags which hold 

information about the sample in the header of the BAM file. For upstream processing 

stages, the read groups needed to be added or the existing information tagged for the 

read group had to be uniform and unique to the sample. The tags include sample 

name (RGSM), genotyping platform (RGPL), the barcode and lane of the flowcell 

(RGPU), a unique read group identifier (RGID) and the DNA preparation library 

identifier (RGLB). Existing read groups for the BAM file were reported in the header of 

the file and are checked using SAMtools view function; the information needed to be 
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recorded as to not replace the current read group tag information when adding or 

replacing tags. The Picard tool AddOrReplaceReadGroups was used to update read 

group information.  

Usage: 

$ samtools view -H sample.sorted.bam | grep ‘@RG’ 

$ java -Xmx4g -jar picard/AddorReplaceReadGroups \ 
INPUT=sample.sorted.bam \ 
OUTPUT=sample.sorted.rg.bam \ 
RGLB=SureSelect \ 
RGPU=Platform \ 
RGSM=sample \ 
RGPL=Illumina \ 
RGID=sample 

-H = header 

grep = search for string based on criteria ‘’ 

 

2.2.2.5 Validation 

The Picard tool ValidateSamFile was used to confirm each sample BAM file was 

formatted correctly and all previous QC processes had not led to errors. The tool 

diagnoses any errors in processes and flags any other values which may need 

addressing. To pass validation, BAM files need to be aligned to a reference, sorted and 

with read groups; any issues reported in a summary file were re-run to resolve errors 

or otherwise the sample needed to be completely re-sequenced. 

Usage: 

$ java -Xmx4g -jar picard/ValidateSamFile \ 
INPUT=sample.sorted.rg.bam \ 
MODE=SUMMARY 

MODE = output mode (verbose/summary) 

 

2.2.2.6 Mark duplicates 

During sequencing, raw reads can often be produced which align to the same position 

and contain the exact same sequence. Duplicates of the same read in sequence data 
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can lead to over-representation of some alleles and negatively affect variant calling. 

Duplicates are often produced as a result of amplification biases during PCR, the 

sample library prep could contain errors or low levels of starting material or 

enrichment methods can give rise to bias. Optical duplicates occur as a result of the 

sequencing instrument mistakenly producing artefacts where single amplification 

clusters are detected as multiple clusters by the optical sensor.  

The Picard MarkDuplicates tool identified and marked these duplicates for each read 

so that GATK tools used in downstream analyses disregarded them from analysis. The 

base-quality score was used to differentiate between the primary read and its 

duplicates by ranking them based on the sum of their scores as part of the tool’s 

algorithm. The output files of this process produced a BAM file with duplicates 

marked as well as a metrics file outlining all reported duplicates. 

Usage: 

$ java -Xmx4g -jar picard/MarkDuplicates \ 
INPUT=sample.sorted.rg.bam \ 
OUTPUT=sample.sorted.rg.marked.bam \ 
METRICS_FILE=metrics \ 
CREATE_INDEX=TRUE \ 
VALIDATION_STRINGENCY=LENIENT 

METRICS = output metrics file 

 

2.2.2.7 Realignment around InDels 

Databases of known variants are included in the GATK package; these include dbSNP, 

1000 Genomes and HapMap. During initial alignment, errors may have occurred 

especially near the ends of reads, where indels may lead to misalignment of bases to 

the reference and produce sequencing artefacts; these would eventually lead to false 

positives to be reported during variant discovery. This was countered by using a two-

step local realignment process. Firstly, the GATK tool RealignerTargetCreator used 

variant databases to list all potential indels present within the sequence and identified 
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intervals which required realignment. The next step was completed by the GATK tool 

IndelRealigner, which determined an optimal consensus sequence based on the 

intervals highlighted by the first step and performed local realignment of reads. This 

was completed for all samples based on the dbSNP v138 database.  

Usage: 

$ java -Xmx4g -jar GenomeAnalysisTK \ 
-T RealignerTargetCreator \ 
-R human_g1k_v37.fasta \ 
-I sample.sorted.rg.marked.bam \ 
-o indels.intervals \ 
--known dbSNP.vcf 

$ java -Xmx4g -jar GenomeAnalysisTK \ 
-T IndelRealigner \ 
-I sample.sorted.rg.marked.bam \ 
-R human_g1k_v37.fasta \ 
-targetIntervals indels.intervals \ 
-o sample.sorted.rg.marked.realign.bam 

-T = GATK tool 

-R = reference fasta file 

-I = path to input file 

--known = VCF of known variants 

-targetIntervals = list of target loci 

 

2.2.2.8 Fix mate information 

As IndelRealigner worked to adjust sequences around known indels, the process could 

lead to errors where fixed mates of paired-end reads of initial sequencing, which have 

not been realigned, are moved and are no longer the known and expected distance 

from one other. Mate pairs were defined during sequencing as the starting positions 

of the forward and reverse-complement orientated reads covering the same region. 

The Picard tool FixMateInformation ensures all mate pairs were re-fixed to their 

original positions. 

Usage: 
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$ java -Xmx4g -jar picard/FixMateInformation \ 
INPUT=sample.sorted.rg.marked.realign.bam \ 
OUTPUT=sample.sorted.rg.marked.realign.fixed.bam \ 
SO=coordinate \ 
VALIDATION_STRINGENCY=LENIENT \ 
CREATE_INDEX=TRUE 

 

2.2.2.9 Base Quality Score Recalibration 

Systematic errors during sequencing are one of many sources of technical errors in 

genotyped data, specifically base quality. The likelihood of correct base calling is 

quantified by quality scores, which are estimates of the error emitted by the 

sequencer. Accurate base calling is obtained by recalibration, which relies heavily on 

base quality scores. Variant calling algorithms use base quality scores as evidence for 

possible variant alleles at a specific site. 

Base quality score recalibration (BQSR) is broken down into two stages, recalibration 

of scores and application of adjusted scores. Firstly, the GATK tool BaseRecalibrator 

produced a data table comparing the observed variants to the known sites of 

variation from multiple sources in VCF, any variants observed in the sequence data 

not previously known of are considered errors of poor base quality. The empirical 

probability of error was calculated at each site based on the number of mismatches 

and observations, with covariates for read group, reported quality score, machine 

cycle and nucleotide context. The GATK tool ApplyBQSR was then used to allocate 

new base quality scores to the sample file from the table produced by 

BaseRecalibrator. 

Usage: 

$ ./gatk BaseRecalibrator \ 
--input sample.sorted.rg.marked.realign.fixed.bam \ 
--reference human_g1k_v37.fasta \ 
--known-sites dbSNP.vcf \ 
--known-sites 1000G_phase1.indels.b37.vcf \ 
--known-sites 1000G_phase1.snps.high_confidence.b37.vcf 
--known-sites 
Mills_and_1000G_gold_standard.indels.b37.vcf \ 
--output sample_recal_data.table 
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$ ./gatk ApplyBQSR \ 
--input – sample.sorted.rg.marked.realign.fixed.bam \ 
--bqsr-recal-file sample_recal_data.table \ 
--output sample.sorted.rg.marked.realign.fixed.recal.bam 

--input  = input file 

--reference = reference FASTA sequence 

--known-sites = multiple VCF of known sites 

--output = output file 

--bqsr-recal-file = input recalibration file from BaseRecalibrator 

 

2.2.2.10 Variant calling 

Variants are called as part of a workflow which eventually combines multiple samples 

into a single VCF file. The first stage was completed by the tool HaplotypeCaller, which 

is the recommended tool for calling SNPs and indels. The tool uses multiple algorithms 

to redefine regions, ignoring existing mapping information, where signs of variation 

amongst reads occur; this leads to local de-novo assembly of haplotypes in an active 

region. A De Bruijn-like graph was built for each active region to reassemble the 

region by identifying both the haplotypes present, this was then aligned to the 

reference haplotype using the Smith-Waterman algorithm.  

The likelihoods of different haplotypes identified using the algorithm were tested 

using a Pair Hidden Markov Model (PairHMM) algorithm based on the read data, the 

most likely genotype was then assigned for each potential site according to Bayes’ 

ruling. The resulting file is a genomic VCF (gVCF) of raw unfiltered variants, these per-

sample gVCFs were then merged with other samples using the GATK CombineGVCFs 

tool and joint genotyping was performed using GATK GenotypeGVCFs and produced a 

final VCF for all samples.  

Usage: 

$ ./gatk HaplotypeCaller \ 
--reference human_g1k_v37.fasta \ 
--input sample.sorted.rg.marked.realign.fixed.recal.bam \ 
--emit-ref-confidence GVCF \ 



Methods 

48 
 

--dbsnp dbSNP.vcf \ 
--output sample.g.vcf 

$ ./gatk CombineGVCFs \ 
--reference human_g1k_v37.fasta \ 
--variant sample.g.vcf \ 
--dbsnp dbSNP.vcf \ 
--output cohort.g.vcf 

$ ./gatk GenotypeGVCFs \ 
--reference human_g1k_v37.fasta \ 
--variant cohort.g.vcf \ 
--output BDR_cohort.vcf 

--emit-ref-confidence = mode for emitting reference confidence scores 

--variant  = separate inputs for each sample 

 

2.2.2.11 Variant Quality Score Annotation and Recalibration 

In order to provide context when filtering variants, properties of the sequence data 

specific to variants requires annotating. GATK tool VariantAnnotator was used to 

provide additional information for variants with regards to variant IDs according to the 

reference and depth of coverage. The VCF was then filtered to remove false positives 

and false negatives from amongst true calls by variant quality score recalibration 

(VQSR). 

VariantRecalibrator firstly built a recalibration model for the inputted VCF and using 

resources from HapMap, 1000 Genomes and dbSNP of known variants and true sites 

of variation, trained the tool to identify true calls from false calls which had resulted 

from sequence or data processing artefacts. The tool scored each variant under the 

Gaussian mixture model with a log odds value (VQSLOD) which was included in the 

INFO of the variant in the VCF file. 

The second stage of VQSR was filtering the variants based on their scores, which 

needed to be completed for SNPs and indels separately. Filtering was subject to the 

VQSLOD score and the target sensitivity value, GATK tool ApplyVQSR marked variants 

for which tranche they fell within (90%, 99%, 99.9%, 100%); if a limit of 99% was 

defined, the variants marked only in the 90% tranche and therefore did not fall within 
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the 99% or above tranches would be marked for filtering out using the GATK 

SelectVariants tool. 

Usage: 

$ ./gatk VariantAnnotator \ 
--reference human_g1k_v37.fasta \ 
--variant BDR_cohort.vcf \ 
--dbsnp dbSNP.vcf \ 
--output BDR_cohort_annotated.vcf 

$ ./gatk VariantRecalibrator \ 
--reference human_g1k_v37.fasta \ 
--variant BDR_cohort_annotated.vcf \ 
--resource 
dbSNP,known=true,training=false,truth=false,prior=2.0:dbS
NP.vcf 
--resource 
1000G,known=false,training=true,truth=false,prior=10.0:10
00G_phase1.snps.high_confidence.b37.vcf \ 
-an QD -an MQ -an MQRankSum -an ReadPosRankSum -an FS -an 
SOR \ 
-mode SNP \ 
--output output.recal \ 
--tranches-file output.tranches \ 
--rscript-file output.plots.R 

$ ./gatk ApplyVQSR \ 
--reference human_g1k_v37.fasta \ 
--variant BDR_cohort_annotated.vcf \ 
--output BDR_cohort_annotated_VQSR.vcf \ 
--truth-sensitivity-filter 99.0 \ 
--tranches-file output.tranches \ 
--recal-file output.recal \ 
-mode SNP 

$ ./gatk VariantRecalibrator \ 
--reference human_g1k_v37.fasta \ 
--variant BDR_cohort_annotated_VQSR.vcf \ 
--resource 
Millsand1000G,known=false,training=true,truth=false,prior
=10.0:1000G_gold_standard.indels.b37.vcf \ 
-an QD -an MQ -an MQRankSum -an ReadPosRankSum -an FS -an 
SOR \ 
-mode INDEL \ 
--output indels_output.recal \ 
--tranches-file indels_output.tranches \ 
--rscript-file indels_output.plots.R 

$ ./gatk ApplyVQSR \ 
--reference human_g1k_v37.fasta \ 
--variant BDR_cohort_annotated_VQSR.vcf \ 
--output BDR_cohort_annotated_VQSR2.vcf \ 
--truth-sensitivity-filter 99.0 \ 
--tranches-file indels_output.tranches \ 
--recal-file indels_output.recal \ 
-mode INDEL 

--resource  = details and file of annotation resources 

-an   = annotations to be included 

-mode   = recalibration mode to employ (SNP/INDEL/BOTH) 
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--tranches-file  = the output tranches file to be used by ApplyRecalibration 

--rscript-file  = the output script to be run in R to produce plots 

--truth-sensitivity-filter = sensitivity level to retain SNPs by (90.0/99.0/99.9) 

--tranches-file  = input tranches file 

--recal-file  = input recalibration file 

 

2.2.2.12 Functional annotation 

Variants with known functions can be identified within the input file and their known 

functions can be annotated onto the VCF file. Known functions are recorded in 

external data sources like gnomAD and are made available using the GATK 

FuncotatorDataSourceDownloader tool; the tool requires specification as to which 

variants are needed, whether they require validation and whether to extract after 

importing. The GATK Funcotator tool was then used to locate and match the variants 

function from the data source and applied this to the variants in the file. The output of 

the tool was a VCF file with the matched functional annotations included.  

Other variant annotation tools exist outside of GATK, these include ANNOVAR, SnpEff 

and Variant Effect Predictor (VEP).  

Usage: 

$ ./gatk FuncotatorDataSourceDownloader --germline --
validate-integrity --extract-after-download 

$ ./gatk Funcotator \ 
--reference human_g1k_v37.fasta \ 
--variant BDR_cohort_annotated_VQSR2.vcf \ 
--output BDR_cohort_Funcotator \ 
--output-file-format VCF \ 
--data-sources-path dataSourcesFolder/ \ 
--ref-version hg19 

--output-file-forma  = format in which results should be produced 
(VCF/MAF/SEG) 

--data-sources-path = path to data sources from 
FuncotatorDataSourceDownloader 

--ref-version  = version of reference to use (hg19/hg38) 
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2.2.2.13 Quality checks 

Finalised variant data was analysed, and quality metrics were obtained using multiple 

tools including VariantEval, TsTv-by-count (VCFtools), CalculateHsMetrics (Picard) and 

depth (VCFtools). VariantEval and TsTv-by-count are tools used as a data quality check 

by calculating the number of transitions and transversions which occur amongst 

different classes of variants and only bi-allelic variants, respectively. The 

transition/transversion (Ti/Tv or Ts/Tv) ratio describes the proportion of purine-purine 

or pyrimidine-pyrimidine changes compared to purine-pyrimidine or pyrimidine-

purine changes and is a useful indicator for the quality of different sequencing 

methods; it is expected for whole-exome sequencing data to have a Ti/Tv ratio around 

2.8, where lower than this would suggest an excess of false negatives. 

CalculateHsMetrics computes hybrid selection specific metrics from BAM files, metrics 

were therefore completed on the BAM file produced before variant calling. Hybrid 

selection metrics included AT/GC dropout, GC content and mean coverage. The depth 

tool within VCFtools can also calculate average depth of coverage for all variants.  

Usage: 

$ java -Xmx128g -jar GenomeAnalysisTK \ 
-R human_g1k_v37.fasta \ 
-T VariantEval \ 
--eval BDR_cohort_filtered.vcf \ 
--dbsnp dbSNP.vcf \ 
-o BDR_cohort_eval.grp 

$ vcftools --vcf BDR_cohort_filtered.vcf \ 
--TsTv-by-count --out BDR_cohort.tstvcount 

$ java -Xmx128g -jar picard/BedToIntervalList \ 
I=SureSelect_Regions.bed \ 
SD=human_g1k_v37.dict \ 
O=SureSelect_PicardIntervals.list 

$ java -Xmx128g -jar picard/CalculateHsMetrics \ 
R=human_g1k_v37.fasta \ 
I=sample.sorted.rg.marked.realigned.fixed.recal.bam \ 
O=BDR_cohort_HsMetrics.txt \ 
TARGET_INTERVALS=SureSelect_PicardIntervals.list \ 
BAIT_INTERVALS=SureSelect_PicardIntervals.list 
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$ vcftools --vcf BDR_cohort_filtered.vcf \ 
--depth --out BDR_cohort.depth 

--eval   = input file to be evaluated 

--vc   = input VCF file 

--out   = output tstvcount file 

SD   = reference sequence dictionary 

TARGET_INTERVALS = list of target locations 

BAIT_INTERVALS = list of bait locations 

--depth   = calculate depth of coverage 

 

2.2.3 Genotyping pipeline 

2.2.3.1 Initial clustering 

Genotyping for the NeuroChip array was completed following manufacturer’s 

instructions on the HiSeq sequencer by collaborators at University College London, 

London. Quality control for the NeuroChip was completed following guidelines 

stipulated by the Cancer Biology research group at Vanderbilt University. The raw 

intensity data files (IDAT) for three batches of samples were imported onto 

GenomeStudio v2.0 (Illumina), and automatic clustering was completed using a 

cluster file provided by Blauwendraat and colleagues; a GenCall threshold was set as 

0.15. GenomeStudio describes all individuals as samples and all markers for variants 

as SNPs. 

The clustering algorithm considers calls for each SNP, it identifies the signals of the 

two probes for each allele (A and B) and the intensity by which the fluorescently 

labelled target sequences bind, which is dependent on the hybridisation conditions. 

The results of the fluorescence levels are scored by R and Theta values which were 

normalised and plotted with R on the y-axis and Theta on the x-axis. The algorithm 

then clusters the included samples to group those it identifies as homozygous major 

(AA), heterozygous (AB) and homozygous minor (BB).  
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Once clustering is completed, SNP and sample call frequencies and rates are 

calculated respectively; samples which fall below 95% call rate in the Samples Table 

are selected and excluded from analysis. The remainder of quality control is subject to 

identification of SNPs which do not follow expected cluster criteria and are zeroed in 

GenomeStudio; SNPs which are zeroed are excluded from the dataset when it is 

eventually exported from GenomeStudio and subject to downstream QC in PLINK. 

2.2.3.2 Manual re-clustering 

The results of the clustering algorithm may also produce incorrect genotype calls. 

SNPs which may have been incorrectly clustered can be identified by low GenTrain 

score, cluster separation score and call frequency. In order to identify and resolve 

these irregularities, the SNPs were filtered using the ‘filter rows’ function, which can 

filter SNPs based on the many parameters each SNP has associated to it in the SNP 

Table. A filter was placed on the SNP Table for each of these parameters using the 

logic function (“GenTrain score < 0.5”) to present only those which fulfil the criteria 

(n=3277), (“Call Freq < 0.5”) retains 2765 SNPs and (“Cluster Sep < 0.5”) filters to 

retain 24228 SNPs. 

The SNP Table was then sorted by each of the parameters and those which observably 

do not follow the expected format of clusters of correctly genotyped SNPs were 

manipulated to do so by either re-identifying an incorrectly identified cluster as AA, 

AB or BB or altering the cluster bounds to prevent samples from being incorrectly 

called.  

Low GenTrain score errors can be observed with SNPs where clusters form but not all 

samples that would fit within the bounds are called; to resolve this, the cluster bound 

ovals are reshaped or moved further apart to allow calling of all samples within the 
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cluster. An example of this is given in Figure 1A, where rs181988691 was edited to 

include all samples in the AA homozygous major cluster.  

Errors in call frequency were identified by a proportion of calls having low R values 

due to one of the probes failing or the cluster oval failing to call all samples due to a 

large spread of calls with a range of Theta values. This is shown in Figure 1B as the AA 

homozygous major oval in rs810810 were changed to include all samples in the 

cluster and exclude the samples with low normalised R scores.  

Adjusting the cluster ovals for SNPs with low cluster separation scores can resolve 

many uncalled samples. The main errors found with these SNPs are found to be due 

to clusters spread and too close together, fitting the ovals to maintain all the calls for 

the correct cluster and allowing the ovals of other clusters to contain the spread of 

samples within its bounds increases cluster separation scores. Figure 1C shows this 

with the example of rs12906911, where the AA homozygous major cluster is changed 

to include all samples within the cluster and the ovals for the AB heterozygous and BB 

homozygous minor were reshaped to include all samples and remove overlap of the 

cluster ranges. 
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Figure 1: Examples of manual re-clustering in GenomeStudio 

The figure gives examples of cases where manually adjusting the cluster ovals of SNPs 
improved their calling capacity beyond the cluster algorithm. A. The cluster oval for 
the AA homozygous major allele (red) is extended horizontally to capture all the 
uncalled samples, and the AB heterozygous allele (purple) is reduced horizontally to 
allow for the samples to fall within the correct cluster region. B. The cluster oval for 
the AA homozygous major allele (red) is raised vertically and expanded horizontally to 
capture the samples in the cluster whilst avoiding the samples with normalised R 
scores of <0.20. C. The cluster oval for the AA homozygous major allele (red) is moved 
horizontally to the edge of the cluster and reduced horizontally to capture all the 
samples in the cluster but maintaining a small cluster region respectively; the BB 
homozygous minor allele (blue) and AB heterozygous allele (purple) are also 
decreased horizontally to reduce the cluster region whilst maintaining the samples 
called and minimising the cluster regions.  

B

A

C
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2.2.3.3 Non-autosomal SNPs 

Chromosome X and Y SNPs are assessed differently and separately to autosomal 

variants due to the expected nature of calls. As males have one of each chromosome, 

they cannot be heterozygous for either variant or as females have two X 

chromosomes, they are not expected to call for Y chromosome SNPs; the 

mitochondrial (MT) SNPs are also assessed similar to Y chromosome SNPs, as they 

were expected to form two clusters, with no heterozygotes. The pseudo autosomal 

regions (PAR) are identified and assessed as autosomal, as they are present at the 

ends of the X and Y chromosomes which are common to males and females.  

The Samples Table holds information regarding all samples, Gender can be estimated 

based on the current genotypes of individuals. Samples can also be marked with an 

associated colour to identify in cluster plots, this allows male and female samples and 

the clusters they fall into. 

The PAR is identified according to the Genome Reference Consortium as chrX:60,001-

2,699,520, chrX:154,931,044-155,260,560, chrY:10,001-2,649,520 and 

chrY:59,034,050-59,363,566. Each region was filtered in the SNP Table to list all 

variants on the NeuroChip within these regions, the first of which was filtered using 

(“Chr = X” AND “Position > 60000” AND “Position < 2649521”). The list of SNPs within 

this region were collected using the ‘Export displayed data to a file’ tool and was 

repeated for all regions. The list of SNP Names were compiled into a table as the first 

column with a second column titled PAR with each SNP being given an arbitrary value 

of 1. The table was imported into GenomeStudio, which adds an additional column in 

the SNP Table marking all PAR SNPs as 1 and all other SNPs as 0; this is useful for 

filtering processes in later QC. 
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Chromosome X SNPs are filtered in the SNP Table using the (“Chr = X” AND “PAR != 

1”) logic function and retains 9832 SNPs. The SNPs are sorted in descending order by 

AB Freq, to identify males who have been called as heterozygotes, all SNPs with a 

large majority of male heterozygote calls are zeroed. Some SNPs may have called 

males at heterozygotes instead of homozygotes by the algorithm, the cluster oval 

were moved and reshaped to only include the females in the heterozygote cluster. 

Figure 2A shows all male samples marked in light blue for rs7050856, there are 

expected to be no male heterozygotes, so the cluster ovals were reshaped to call only 

females in the AB heterozygote cluster and increase the region of coverage for the BB 

homozygous minor cluster to include all male samples.  

SNPs which tagged to chromosome Y were first filtered using GenomeStudio filter 

rows function, using logic functions the Chr column was set to (“Chr = Y” AND “PAR != 

1) and the SNP Table was reduced to only show those variants (n=1899); all SNPs were 

selected, and their properties were changed so that the number of expected clusters 

was set to 2. The SNP Table was sorted descending by Call Freq, the SNPs with high 

frequency were selected and zeroed as they were calling females and should not be. 

The expected call frequency for chromosome Y SNPs should be the proportion of male 

samples in the genotyped cohort, the cluster plots were edited to show this by 

moving the cluster ovals to no longer call females or correctly identifying the 

homozygous allele clusters. Both examples are shown in Figure 2 where female 

samples are marked in pink. In M2B there are some females called by all three cluster 

groups of rs7067378, the adjustment reduces all AB heterozygote to zero and 

excludes females called in AA and BB homozygous clusters. M2C reflects an example 

of misidentification of a cluster for rs9785830, the samples with moderately high 

normalised Theta scores are selected and redefined as the BB homozygous minor 

cluster which resolves the SNP to the expected clustering.  
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Mitochondrial SNPs were filtered using the (“Chr = MT”) filter, which presented 160 

SNPs. These were selected and their properties were also set to expect 2 clusters. 

SNPs with heterozygote calls were zeroed; cluster ovals were moved for SNPs with 

clusters which may include samples that are called but not part of the genotype 

cluster, and more likely to be uncalled samples. Figure 2D for the SNP named 200610-

105 shows two separate clusters called for AA homozygous major allele, it could be 

expected that the samples with low normalised Theta and R scores may have failed to 

be correctly called, it is more accurate to adjust the cluster oval to no longer call these 

samples. 

2.2.3.4 Rare variants 

Rare SNPs were manually checked by filtering the SNPs by minor allele frequency and 

call frequency to identify SNPs with low minor allele frequency and with very few 

uncalled samples (“MAF < 0.01” AND “Call frequency < 0.9999”). Some of the 55743 

SNPs filtered by these filters may show samples with apparent heterozygotes and 

minor allele homozygotes which haven’t been called, the oval can be moved to 

include the sample and therefore identify the rare call. 
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Figure 2: Examples of manual re-clustering autosomal SNPs in GenomeStudio 

The figure depicts some cases where manual adjustment was required for non-autosomal SNPs. In these scenarios, the Males were marked with a sample 
colour of light blue and Females were marked with a sample colour of pink. A. The samples in the middle cluster were expected to not call males and 
therefore were selected and re-defined as the AB heterozygote allele (purple), the cluster oval for the BB homozygous minor allele (blue) was shifted to the 
left and shrunk horizontally to capture all samples whilst reducing the cluster region. B. In this scenario, the female samples were not expected to be called; 
all the cluster ovals were all raised vertically to no longer include the female samples in the cluster regions. C. The cluster algorithm had grossly failed to 
correctly define the clusters; the apparent samples within the AA homozygous major cluster were selected and redefined as such, and all cluster ovals were 
raised vertically to exclude the female samples from the cluster regions. D. The cluster algorithm has identified two clusters which have similar normalised 
theta scores and included them both in the cluster region; it is likely the samples with low normalised theta and R scores have failed to be correctly called and 
should therefore be excluded from the AA homozygous major allele (red) cluster oval, which is done by raising the oval vertically.

B

A
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2.2.3.5 Alignment 

The resulting dataset after quality control in GenomeStudio was exported using the 

PLINK report plug-in and produced the dataset in PLINK format (MAP/PED). The files 

were uploaded to a Linux server using Core FTP LE (version 2.2, Core FTP) for further 

QC using PLINK. 

The PLINK files were first converted to binary files (BED/BIM/FAM) using PLINK --

make-bed function. The binary ped file format allowed the dataset to be altered to 

reorganise genotype calls from allele zygosity to specific nucleotide change at the 

genotypic location.  

Alignment of the binary ped file to the GRCh37/hg19 assembly was completed using 

the strand file CustomNeurochipHumanCore-24-v1_A-b37.strand and shell script 

update_build.sh, which were acquired from Rayner, W of the Wellcome Trust. The 

script updates the input datasets and outputs an aligned dataset in binary PLINK 

format. 

Usage:  

$ plink --file GenomeStudio --make-bed --out NeuroChip 

$ sh update_build.sh NeuroChip CustomNeurochipHumanCore-
24-v1_A-b37.strand NeuroChip_aligned 

--file = root of input file in PLINK format 

--out = name of output file 

 

2.2.3.6 Sample call rate 

All blank controls and samples which failed and were therefore zeroed in 

GenomeStudio were exported within the PLINK report. These samples were removed 

from the dataset using the PLINK --mind function with a sample missingness set to 

0.1, and the resulting binary PLINK file is produced using the --make-bed function.  
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Usage: 

$ plink --bfile NeuroChip_aligned --mind 0.1 --make-bed -
-out NeuroChip_callfreq 

--bfile = root of input file in binary PLINK format 

 

2.2.3.6 Gender mismatch 

PLINK uses individuals’ chromosome X SNP genotypes to determine the sex of the 

sample. The function --check-sex tests all variants and calculates the inbreeding co-

efficient, an F-statistic. The inferred sex of samples can be compared with the 

reported sex in clinical files or Gender estimation in GenomeStudio. Individuals and 

their F-statistic are reported in the output file, highlighting any discrepancies as 

errors. These discrepancies were further evaluated and those individuals whose sex 

was incorrectly reported and correctly calculated were rewritten using the --impute-

sex function and a replacement dataset is produced with updates sex calls using the --

make-bed function. 

Usage:  

$ plink --bfile NeuroChip_callfreq --check-sex --out 
NeuroChip 

$ plink --bfile NeuroChip_callfreq --impute-sex --make-
bed --out NeuroChip_sexcheck 

--out = name of output sexcheck file 

 

2.2.3.7 Relatedness 

Related samples who share up to third-degree relation affect allele frequencies from 

heritability, which can bias the association of variants with disease status. Relatedness 

was calculated with PLINK using only common (MAF>0.1), independent, autosomal 

SNPs. These SNPs were isolated by pruning the dataset using independent pairwise 

analysis (kb window size=50; step size=5; linkage disequilibrium r2=0.2). The non-
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autosomal SNPs were excluded using the --exclude function from list of all 

corresponding variants in a non_autosomal.txt derived from the BIM file. Independent 

pairwise was completed using the --indep-pairwise function which produced output 

files containing lists of variants which would be pruned in and out according to the 

parameters, the SNPs which passed pruning were extracted from the dataset using 

the --extract function and relatedness was calculated using the --genome function. 

The genome file paired individuals and calculated identity-by-decent and produced 

PI_HAT scores, which ranged from 1 to 0 depending on degree of relatedness. Third-

degree relatives have a PI_HAT score around 0.125; under those conditions only one 

individual per related pair would be removed to not bias the dataset. Samples 

selected for removal were listed in remove_related.txt and removed from the dataset 

using the –remove function and a new dataset was produced using the –make-bed 

function. 

Usage: 

$ plink --bfile NeuroChip_sexcheck --maf 0.1 --exclude 
non_autosomal.txt --indep-pairwise 50 5 0.2 --out 
NeuroChip_indepSNP 

$ plink --bfile NeuroChip_sexcheck --extract 
NeuroChip_indepSNP.prune.in --genome --out NeuroChip 

$ plink --bfile NeuroChip_sexcheck --remove 
remove_related.txt --make-bed --out NeuroChip_relatedness 

--maf   = minor allele frequency threshold 

--indep-pairwise = parameters for pruning: window, step size and r2 threshold 

--extract  = input file for extracting variants for relatedness test 

--remove  = input file of list of individuals to remove 

 

2.2.3.8 Ancestry 

Ancestry was calculated using the --pca function which produced eigenvector and 

eigenvalue files; these were used in principal component analysis. Genotype calls for 
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ancestry informative markers were identified from numerous online sources and 

those present on the NeuroChip were extracted using the --extract and –make-bed 

function. The resulting AIM dataset was used for ancestry testing. 

The top eigenvectors were plotted against each other in a scatter plot, the samples 

were organised into clusters. Mean and standard deviation (SD) of each sample was 

calculated for each PCA, individuals with values greater than 6 SDs from the mean 

were listed in the failed_ancestry.txt file and removed using --remove and --make-bed 

function. 

Usage: 

$ plink --bfile NeuroChip_relatedness --extract AIMs.txt 
--make-bed --out NeuroChip_AIMs 

$ plink --bfile NeuroChip_AIMs --pca 10 --out NeuroChip 

$ plink --bfile NeuroChip_relatedness --remove 
failed_ancestry.txt --make-bed --out NeuroChip_ancestry 

--extract = input list of variants for principal component analysis 

--pca  = maximum number of components to test the dataset on 

 

2.2.3.9 Hardy-Weinberg equilibrium 

Allele frequencies are dependent on many assumptions which would allow SNPs to 

fall within Hardy-Weinberg equilibrium (HWE) and therefore be correctly genotyped. 

These assumptions which lead to variants being within HWE include the lack of 

selection pressure against variants, no mutations leading to this observed variation 

and the tested variants existing within large populations. HWE was tested based on 

the allele frequencies in non-diseased samples for common SNPs (MAF>0.05) and the 

significance of the variant existing in this equilibrium in the population group is 

calculated with a given p-value. The --hardy function in PLINK is used to calculate 

these significances, producing an output file with significance values for cases, 

controls, and all individuals.  
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A threshold was derived using Bonferroni correction for multiple testing from an 

expected p-value (p<0.05) divided by the number of SNPs tested (p<1.032×10-7); SNPs 

with a p-value more significant than this threshold in unaffected individuals were 

listed in the hwe_SNPs.txt file and removed using the --exclude function and a 

resulting dataset was produced with the --make-bed function. 

Usage: 

$ plink --bfile NeuroChip_ancestry --maf 0.05 --hardy --
out NeuroChip 

$ plink --bfile NeuroChip_ancestry --exclude hwe_SNPs.txt 
--make-bed --out NeuroChip_hwe 

 

2.2.3.10 Heterozygosity 

Heterozygosity is the measure of genetic variability within a population, there are 

many conditions which could lead to excessively low or high heterozygosity being 

observed amongst the genotyped cohort; high levels of heterozygosity can result from 

cross-contamination and low heterozygosity could be an indicator of inbreeding 

within the population, these factors may have not been identified in earlier quality 

checks of relatedness. Heterozygosity can be calculated in PLINK using the --het 

function based on common, independent SNPs identified during the pruning stage for 

relatedness testing and the --extract function.  

The resulting file indicated levels of heterozygosity for individuals, mean 

heterozygosity and SDs were calculated and those who deviated by more than 3SDs 

were listed in remove_het.txt and removed using the --remove function. The final 

output dataset of this stage was produced using the --make-bed function, the final 

quality-controlled dataset was to be used in further genetic testing and polygenic risk 

scoring. 

Usage: 
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$ plink --bfile NeuroChip_hwe --extract 
NeuroChip_indepSNP.prune.in --het --out NeuroChip 

$ plink --bfile NeuroChipF --remove remove_het.txt --
make-bed --out final_NeuroChip 

 

2.2.4 Imputation pipeline 

2.2.4.1 Pre-imputation quality control 

When running a job on the imputation server, input data is required to be in zipped 

VCF, with separate files for each chromosome; multiple samples can also be imputed 

at the same time. The input files were prepared in PLINK using the --chr function to 

isolate SNPs and the --recode function to produce VCF files. VCF files were then sorted 

and compressed using vcf-sort and the -c function of bgzip, respectively. 

Usage: 

$ plink --bfile final_NeuroChip --chr 1 --recode vcf --
out chr1 
$ plink --bfile final_NeuroChip --chr 2 --recode vcf --
out chr2 
$ plink --bfile final_NeuroChip --chr 3 --recode vcf --
out chr3 
$ plink --bfile final_NeuroChip --chr 4 --recode vcf --
out chr4 
$ plink --bfile final_NeuroChip --chr 5 --recode vcf --
out chr5 
$ plink --bfile final_NeuroChip --chr 6 --recode vcf --
out chr6 
$ plink --bfile final_NeuroChip --chr 7 --recode vcf --
out chr7 
$ plink --bfile final_NeuroChip --chr 8 --recode vcf --
out chr8 
$ plink --bfile final_NeuroChip --chr 9 --recode vcf --
out chr9 
$ plink --bfile final_NeuroChip --chr 10 --recode vcf --
out chr10 
$ plink --bfile final_NeuroChip --chr 11 --recode vcf --
out chr11 
$ plink --bfile final_NeuroChip --chr 12 --recode vcf --
out chr12 
$ plink --bfile final_NeuroChip --chr 13 --recode vcf --
out chr13 
$ plink --bfile final_NeuroChip --chr 14 --recode vcf --
out chr14 
$ plink --bfile final_NeuroChip --chr 15 --recode vcf --
out chr15 
$ plink --bfile final_NeuroChip --chr 16 --recode vcf --
out chr16 
$ plink --bfile final_NeuroChip --chr 17 --recode vcf --
out chr17 
$ plink --bfile final_NeuroChip --chr 18 --recode vcf --
out chr18 
$ plink --bfile final_NeuroChip --chr 19 --recode vcf --
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out chr19 
$ plink --bfile final_NeuroChip --chr 20 --recode vcf --
out chr20 
$ plink --bfile final_NeuroChip --chr 21 --recode vcf --
out chr21 
$ plink --bfile final_NeuroChip --chr 22 --recode vcf --
out chr22 

$ vcf-sort chr1.vcf | bgzip -c > chr1.vcf.gz 
$ vcf-sort chr2.vcf | bgzip -c > chr2.vcf.gz 
$ vcf-sort chr3.vcf | bgzip -c > chr3.vcf.gz 
$ vcf-sort chr4.vcf | bgzip -c > chr4.vcf.gz 
$ vcf-sort chr5.vcf | bgzip -c > chr5.vcf.gz 
$ vcf-sort chr6.vcf | bgzip -c > chr6.vcf.gz 
$ vcf-sort chr7.vcf | bgzip -c > chr7.vcf.gz 
$ vcf-sort chr8.vcf | bgzip -c > chr8.vcf.gz 
$ vcf-sort chr9.vcf | bgzip -c > chr9.vcf.gz 
$ vcf-sort chr10.vcf | bgzip -c > chr10.vcf.gz 
$ vcf-sort chr11.vcf | bgzip -c > chr11.vcf.gz 
$ vcf-sort chr12.vcf | bgzip -c > chr12.vcf.gz 
$ vcf-sort chr13.vcf | bgzip -c > chr13.vcf.gz 
$ vcf-sort chr14.vcf | bgzip -c > chr14.vcf.gz 
$ vcf-sort chr15.vcf | bgzip -c > chr15.vcf.gz 
$ vcf-sort chr16.vcf | bgzip -c > chr16.vcf.gz 
$ vcf-sort chr17.vcf | bgzip -c > chr17.vcf.gz 
$ vcf-sort chr18.vcf | bgzip -c > chr18.vcf.gz 
$ vcf-sort chr19.vcf | bgzip -c > chr19.vcf.gz 
$ vcf-sort chr20.vcf | bgzip -c > chr20.vcf.gz 
$ vcf-sort chr21.vcf | bgzip -c > chr21.vcf.gz 
$ vcf-sort chr22.vcf | bgzip -c > chr22.vcf.gz 

--chr  = chromosome number by which to filter (1-26) 

--recode = output format, default is PLINK file 

 

2.2.4.2 Imputation 

Input files are uploaded to the server and selection criteria is given based on the 

desired reference panel, the assembly of input data, whether an LD-based r2 filter 

should be used and to what level it should be set, the software which should be used 

for phasing, identification of the input sample population and the desired output.  

Usage: 

Run – Genotype Imputation (Minimac4) 
Name: NeuroChip 
Reference Panel: HRC r1.1 2016 (GRCh37/hg19) 
Input Files: chr1.vcf.gz chr2.vcf.gz chr3.vcf.gz 
chr4.vcf.gz chr5.vcf.gz chr6.vcf.gz chr7.vcf.gz 
chr8.vcf.gz chr9.vcf.gz chr10.vcf.gz chr11.vcf.gz 
chr12.vcf.gz chr13.vcf.gz chr14.vcf.gz chr15.vcf.gz 
chr16.vcf.gz chr17.vcf.gz chr18.vcf.gz chr19.vcf.gz 
chr20.vcf.gz chr21.vcf.gz chr22.vcf.gz 
Array Build: GRCh37/hg19 
rsq Filter: 0.001 
Phasing: Eagle v2.4 (phased output) 
Population: EUR 
Mode: Quality Control & Imputation 



Methods 

67 
 

 

2.2.4.3 Quality control 

The resulting output data is downloaded as compressed VCF files which can be 

transferred back onto the workspace for quality control of imputation. Firstly, the 

single chromosome VCF files were merged into a single VCF file using the concat 

command of bcftools; the --allow-overlaps was used, and --rm-dups was set to all 

function to avoid loss of variants during merging and prevent duplicate SNPs being 

introduced, the --output-type function was set to z to produce an compressed VCF as 

the output. Imputed SNPs are filtered by INFO score, which ranges from 0-1 based on 

the statistical accuracy of the call; this can be completed using the filter command of 

bcftools. 

Usage: 

$ bcftools concat --allow-overlaps --rm-dups all --
output-type z \ 
chr1.vcf.gz chr2.vcf.gz chr3.vcf.gz chr4.vcf.gz 
chr5.vcf.gz \ 
chr6.vcf.gz chr7.vcf.gz chr8.vcf.gz chr9.vcf.gz 
chr10.vcf.gz \ 
chr11.vcf.gz chr12.vcf.gz chr13.vcf.gz chr14.vcf.gz 
chr15.vcf.gz \ 
chr16.vcf.gz chr17.vcf.gz chr18.vcf.gz chr19.vcf.gz 
chr20.vcf.gz \ 
chr21.vcf.gz chr22.vcf.gz > imputed_NeuroChip.vcf.gz 

$ bcftools view --include ‘INFO>0.8’ --output-type z 
imputed_NeuroChip.vcf.gz > imputedQC_NeuroChip.vcf.gz 

--rm-dups = variant type to be managed (snps/indels/both/all/none) 

--output-type = format of output file (b/u/z/v) 

--include = expression by which to filter variants  

 

2.2.5 Polygenic risk scoring 

Genetic risk modelling is completed in many studies of genetic data associated with 

disease. Risk of disease is expected to correlate with the SNPs individuals harbour 

based on their association with disease phenotype; SNP effects can be measured as 

dosage, the number of risk alleles present or weighted by their observed association 
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in larger case-control cohorts. The summary statistics of GWAS highlight the SNPs 

most associated with disease where the effect is estimated as a beta value or odds 

ratio. PRS is often used to analyse a target group based on the observed effects in a 

discovery group, the output provides arbitrary values of risk individuals in the target 

cohort has for the disease phenotype. 

2.2.5.1 PRSice 

PRSice software was used on several occasions throughout the study, where the most 

recently released, stable version was using for final analysis. In this example scenario, 

PRSice-2 was used to identify the best model of disease amongst AD cases and 

cognitively healthy controls with the exclusion of a 500kb region surrounding the 

APOE gene; this was completed using the --keep function based on the samples listed 

in “AD_Control.txt” and --exclude range function with “APOE_locus.txt” file in PLINK, 

where a new dataset was produced using the --make-bed function. PRSice-2 was run 

using the GWAS summary statistics from the IGAP consortium, the base file used was 

“IGAP_stage_1.txt”. PRSice-2 uses PLINK to calculate the linkage disequilibrium (LD) 

between SNPs, estimated from the observed linkage within a cohort of 503 European 

individuals genotyped as part of the 1000 Genomes project, “1000G_EUR”. The 

clumping algorithm identifies the most significant SNP (index) according to the base 

dataset in a sliding window and removes SNPs in LD with the index SNP above a given 

r2 value to reduce the occurrence of type I errors. The r2 value signifies the inheritance 

correlated between the SNPs and false positives are introduced as SNPs in LD with a 

variant with known association with the disease will appear as a novel signal. The 

effects of clumping algorithm can be seen in Figure 3. 

Usage: 
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$ plink --bfile final_NeuroChip --exclude range 
APOE_locus.txt --keep AD_Control.txt --make-bed --out 
NeuroChip_noAPOE_AD_Control 

$ Rscript PRSice.R \ 
--dir . \ 
--prsice ./PRSice \ 
--base IGAP_stage_1.txt \ 
--target NeuroChip_noAPOE_AD_Control \ 
--ld 1000G_EUR \ 
--thread max \ 
--print-snp T \ 
--stat BETA \ 
--binary-target T \ 
--no-clump F \ 
--clump-kb 250\ 
--clump-r2 0.2 \ 
--clump-p 1 \ 
--perm 10000 \ 
--lower 0 \ 
--interval 0.000001 \ 
--upper 1 \ 
--all-score T \ 
--out NeuroChip_noAPOE_AD_Control 

--exclude = exclusion format, default is individual variant name 

Rscript  = root to R script for PRSice-2 calculation 

--dir  = directory from which to work 

--prsice  = root to PRSice software 

--base  = root to base dataset 

--target  = root to target dataset 

--ld  = root to dataset for LD calculation 

--thread = number of threads to use, or set as max 

--print-snp = produce an output file of SNPs used in model (T/F) 

--stat  = identify effect statistic (BETA/OR) 

--binary-target = specify use of case-control data (T/F) 

--no-clump = specify exclusion of LD based clumping (T/F) 

--clump-kb = specify window to be used in clumping algorithm 

--clump-r2 = specify r2 threshold for LD 

--clump-p = specify p-value threshold for clumping 

--perm  = specify number of permutations of best model for empirical p-value 

--lower  = specify lower significance level to be tested 

--interval = specify intervals by which to increase in modelling 

--upper  = specify upper significance level to be tested 

--all-score = produce an output of scores for all models tested 

--out  = output file prefix 
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Figure 3: Linkage disequilibrium heat map of PRSice clumping algorithm 

The figure identifies the observed relationship between SNPs when not subjected to LD based clumping. The red boxes represent the R2 value of linkage 
between SNPs and a continuous diagonal shows the relationship a SNP has with itself (R2 = 1). Each sub-figure represents each chromosome, (chr 1-20, 22). 
There is no figure for chromosome 21 as there were no SNPs from this chromosome present in the PRSice best model. Each extended region of red boxes 
shows there is linkage disequilibrium between those SNPs, and they are representative of a single locus. The PRSice clumping algorithm works by reducing the 
effect at each locus from being represented by multiple SNPs to just a single SNP and thus prevent over-fitting of the model. 
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3 Polygenic risk scoring of late-onset Alzheimer’s 
disease 

3.1 Perspective 

Polygenic risk scoring was conducted on a cohort of late-onset Alzheimer’s disease 

(LOAD) cases and neurologically healthy controls from the Brains for Dementia 

Research (BDR) resource (target dataset), based on summary statistics from the 

International Genomics of Alzheimer’s disease Project (IGAP) meta-analysis (base 

dataset), using the most current stable version of PRSice-2 software. 

PRSice-2 was used to generate PRS on samples genotyped on the NeuroChip array, 

the second generation of the neuro-specific array to include variants implicated in 

neurodegenerative diseases.  

The Brains for Dementia Research (BDR) resource recruited samples; clinical 

information was provided with samples, including post-mortem pathological 

confirmation of disease status. Genotyped samples were quality controlled using 

Illumina GenomeStudio and PLINK and later imputed using the Michigan Imputation 

Server Minimac4 software. 

Previous analysis of this cohort was conducted using an earlier version of PRSice 

software, PRSice-1.25, on samples from the first two batches of the BDR cohort. The 

results showed significant differences between mean PRS between LOAD cases 

(n=302) and controls (n=137), with a predictive ability (area under the ROC curve; 

AUC) for distinguishing between groups of 73% (Chaudhury et al., 2019). When 

samples were sorted into deciles of increasing risk and a greater proportion of cases 

were observed at higher deciles with the opposite being seen in controls, confirming 

the association between genetic risk of disease and likelihood of developing AD.  
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The primary aim of this study was to determine the genetic risk of AD in the entire 

BDR collection (to date) using updated PRS analysis software. 

3.2 Samples 

DNA was isolated from blood and/or brain tissue from all BDR samples (n=1172). Lab 

procedures were carried out by Patel, T., following methods as described (Section 

2.1). All samples were genotyped using the NeuroChip array. Quality control of the 

genotyping data was completed using GenomeStudio v2 and PLINK (Section 2.3.3). 

Samples were checked for call rate, relatedness, diversion from European ancestry, 

and heterozygosity; SNPs were controlled for call rate and adherence to Hardy-

Weinberg equilibrium. By March 2019 there were 217 cognitively healthy controls and 

358 LOAD cases (Table 2), genotyped for 477,720 SNPs; additionally, 185 samples of 

other phenotypes and 437 living, undiagnosed samples were genotyped on the 

NeuroChip. Both SNPs associated with APOE status and additional SNPs identified to 

be associated with AD from recent GWAS were not included in the NeuroChip design; 

these variants, outlined in Table 3, were genotyped for all deceased samples using 

TaqMan assays, carried out by Brookes, K., following methods described (Section 

2.1.4). 
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Phenotype N Age at death (SD) Females (%) APOE ε4+ (%) APOE ε4ε4 (%) 

Control 217 49.7 (44.2) 115 (53.0) 35 (16.1) 2 (0.9) 

Late-onset AD 358 83.2 (8.5) 173 (48.3) 231 (64.5) 49 (13.7) 

 

Table 2: Demographics of BDR samples 

Individuals, categorised by disease status, were recruited from across the UK: from universities in Bristol, Manchester, Newcastle, Oxford, and King’s College 
London. Age at death (together with standard deviation) was obtained from clinical information. The number and percentage of females in each group is also 
shown as well as the number and percentage of individuals with at least one APOE ε4 allele and additionally those who were ε4ε4 homozygotes. 
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SNP Chromosome Base Position Alleles GWAS gene IGAP P-value Genotyping Call Rate 

rs429358 19 45,411,941 T>C APOE 6.70×10-536 99.7% 

rs7412 19 45,412,079 C>T APOE 1.23×10-22 99.7% 

rs9271192 6 32,578,530 C>A HLA-DRB1 1.57×10-8 97.4% 

rs6656401 1 207,692,049 A>G CR1 7.73×10-15 95.7% 

rs10948363 6 47,487,762 A>G CD2AP 3.05×10-8 97.1% 

rs10838725 11 47,557,871 T>C CELF1 6.73×10-6 96.2% 

rs35349669 2 234,068,476 C>T INPP5D 9.58×10-5 97.5% 

rs28834970 8 27,195,121 T>C PTK2B 3.27×10-9 97.3% 

rs11218343 11 121,435,587 T>C SORL1 4.98×10-11 96.0% 

rs983392 11 59,923,508 A>G MS4A2 2.76×10-11 97.5% 

rs9331896 8 27,467,686 G>T CLU 9.63×10-17 95.2% 

 

Table 3: Additional GWAS SNPs genotyped using TaqMan assays 

TaqMan assays were used to genotype all BDR samples for the two variants used to identify APOE ε status and additional GWAS hits absent from the 
NeuroChip array. The variants are listed by their rsID; chromosome, base pair and the observed alleles are given alongside the gene locus they were initially 
identified within. The genotyping call rate is given for each SNP from testing all BDR samples (n=1296). 
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Imputation using the Michigan imputation server was completed on the entire BDR 

cohort to identify additional variants based on the observed genotypes. The 

genotyped dataset underwent pre-imputation quality controls of the strand and 

position of alleles; their calls, assignments, and frequencies were checked to be 

consistent with the Haplotype Referencing Consortium. Imputation increased the 

number of SNPs accessible by PRSice on the BDR cohort (n=4,222,576). 

3.3 Polygenic risk scoring 

Primary PRS analysis (Figure 4) tested 358 LOAD cases and 217 controls using default 

PRSice-2 parameters and additional PRS quality control of the base and target dataset. 

PRSice quality control of the target dataset included standard cut-off thresholds for 

minor allele frequency (MAF ≤ 0.01), Hardy-Weinberg equilibrium (HWE ≤ 1×10-6), 

genotyping call rate (GENO ≤ 0.01) and sample call rate (MIND ≤ 0.01). Ambiguous or 

duplicate SNPs were removed, and mismatched SNPs were resolved in both the base 

and target datasets; following QC, the target dataset was reduced to 232,111 SNPs. 

The APOE locus, a window of 250kb either side of APOE (chr19:45,160,844-

45,660,844; GRCh37/hg19), was excluded from the target dataset as a well-known AD 

hotspot; the SNPs which identify the APOE ε status would be reintroduced to the risk 

modelling at a later stage. 
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Figure 4: Analysis pipeline for PRS of LOAD with the NeuroChip 

The figure outlines the process of generating polygenic risk scores from a target 
dataset. Primary analysis (blue) is run in parallel with secondary analysis, the use of 
imputation (green). Polygenic risk scores are generated, and covariates are 
introduced; the results are used to determine the predictive ability of the best PRS 
model and the measure the distribution of samples based on PRS. Further analysis 
includes the introduction of TaqMan assays of GWAS hits absent from the array to the 
genotyped model. The resulting models are checked for previously unidentified genes 
associated with AD.  
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The SNPs were then clumped based on their LD to reduce the number of potential 

false positives. The default clumping settings for PRSice-2 which were used included a 

250kb sliding window and r2 set as 0.1; the dataset was also tested without clumping 

to compare and evaluate its effect. 

PRSice-2 then selects all SNPs present in the base and target dataset and runs logistic 

regression to model cases against controls based on the SNPs present within given 

significance thresholds; the threshold incrementally increases to include additional 

SNPs for the next model until all SNPs have been included. The results of the 

modelling are compared and then scored by Nagelkerke’s R2 to identify the best 

model fit. The lowest threshold set for PRSice-2 analysis started at SNPs with 

significance of association in the base dataset between 0 ≤ p ≤ 1×10-6, increasing in 

increments of 1×10-6 as new SNPs are introduced up to P≤1. 

3.3.1 Best model selection 

PRSice-2 provided individual scores at each tested threshold and identified the best p-

value threshold for modelling risk in the target cohort based on Nagelkerke’s R2 and 

the number of SNPs used in the model. The resulting models at various testing 

thresholds are shown in Table 4, with the PRSice output figures included as Figure 5. 

The most predictive model was identified with an Nagelkerke’s R2 value of 0.042, at a 

p-value threshold of 1.4×10-4 and consists of 134 SNPs. At this threshold, there were 

152 additional SNPs which were clumped out by the PRSice algorithm. 
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A  B  

 

Figure 5: Output figures of PRSice modelling of LOAD with the NeuroChip 

A. The bar plot presents the same thresholds in Table 4, identifying the model fitness expressed as Nagelkerke’s R2 at different stages. The results show the 
best model to be at 1.4×10-4, which gradually decreases as more SNPs are introduced. B. The high-resolution plot identifies the p-value derived from each 
model at all tested thresholds, giving more details about the effect shown in A. The most prediction is found when using the most significantly associated 
variants according to the base dataset. However, there are additional peaks occurring as SNPs are introduced that are not as predictive as the first peak.  
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P-value threshold N SNPs Nagelkerke’s R2 Significance (P) 

≤0.000001 16 0.0261 0.0011 

≤0.00001 34 0.0182 0.00616 

≤0.0001 110 0.0363 0.0363 

≤0.00014 134 0.0412 0.0000442 

≤0.001 507 0.0207 0.00344 

≤0.01 2909 0.0107 0.0351 

≤0.05 9212 0.0261 0.00103 

≤0.1 14946 0.0183 0.00587 

≤0.2 23176 0.0223 0.00238 

≤0.3 30084 0.0168 0.00838 

≤0.4 36219 0.0168 0.00842 

≤0.5 41210 0.0150 0.0126 

≤1.0 57047 0.0163 0.00946 

 

Table 4: PRSice modelling of LOAD with the NeuroChip 

The table outlines the results of PRSice modelling at p-value thresholds of significance according to the base dataset. At each threshold PRSice identifies the 
number of SNPs present in the target dataset at the threshold and calculates model fitness that can be determined based on the SNPs as Nagelkerke’s R2 and 
the associated p-value of the model. As the threshold increases, more SNPs are introduced to the model which affects the model predictiveness. The best 
model derived by PRSice is identified at a threshold of Pt≤0.00014, with the largest Nagelkerke’s R2 and the most significant p-value. 
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Mean individual PRS at the PRSice best model was calculated as 0.00139 with a 

standard deviation of 0.00234. Mean PRS and standard deviation for controls and 

LOAD cases was found as 0.000853±0.00232 and 0.00172±0.00243, respectively. 

Single factor ANOVA found variance for controls as 5.38×10-6 and LOAD cases 

5.92×10-6, and the significance of the variation to be 3.08×10-5.  

The best model was then tested with the re-introduction of SNPs associated with 

APOE ε status (rs429358 and rs7412) and running PRSice-2 with the inclusion of 

covariates for sex and age at death. The SNPs were introduced to the dataset using 

PLINK by extracting the SNPs which were present in the best model and merging with 

a dataset of calls for both SNPs according to TaqMan genotyping. Covariates were 

included in the PRSice script with the inclusion of a covariate file identifying each 

individual and stating their clinical sex and recorded age at death. Covariates testing 

was also replicated using binary logistic regression in SPSS (IBM) to validate the results 

and record an individual score which combined PRS with covariates. Receiver 

operating characteristic (ROC) curves and precision-recall curves (PRC) are produced 

from this value, and the area under the curve (AUC) is calculated as a measure of 

predictability from each. The resulting models were compared to the PRSice best 

model in Table 5.
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Model N SNPs Nagelkerke’s R2 P AUROC (%) AUPRC (%) 

PRSice best model 134 0.0418 4.42×10-5 59.5% 70.8% 

APOE 2 0.1954 1.28×10-17 70.8% 79.9% 

PRS (with APOE) 136 0.1995 2.76×10-17 73.2% 81.3% 

PRS + sex 136 0.2002 3.55×10-17 73.2% 81.3% 

PRS + age at death 136 0.2025 2.4×10-17 73.3% 81.5% 

PRS + sex + AAD 136 0.2028 2.51×10-16 73.4% 81.5% 

 

Table 5: Modelling PRS of LOAD with covariates 

The best model by PRSice was isolated and tested with the inclusion of the SNPs associated with APOE ε status, rs429358 (ε4) and rs7412 (ε2). The APOE 
SNPs alone show greater significance and model disease status better than the best model, however, when combined the PRS model shows improved fitness 
than either alone. Clinical sex and age at death (AAD) were introduced to the PRS with APOE model independently and together to show the best model 
according to Nagelkerke’s R2 to be PRS with sex and AAD combined. Predictive ability for all models was also calculated using area under the receiver 
operating characteristic curve (AUROC). Given the model is based on an unbalanced number of cases and controls, it was imperative to also test predictive 
ability using area under the precision-recall curve (AUPRC), which shows greater predictive ability than the former. 



Polygenic risk scoring of late-onset Alzheimer’s disease 

82 
 

3.3.2 Association and risk prediction 

Following the results of covariate analysis, prediction of disease status was most 

informative when including sex and age at death as covariates, therefore the resulting 

normalised scores for this model were used for downstream analyses. Mean score 

and standard deviation for controls was calculated as 0.529±0.171 and 0.680±0.176 

for LOAD cases. Variance for controls and cases were calculated as 0.0291 and 0.0308 

respectively and found to be significantly different by single factor ANOVA 

(p=3.87×10-22). 

Further statistical analysis included decile scoring, where all samples were ranked by 

score (PRS with sex and age at death) and distributed into ten tiers of increasing risk. 

The samples were then separated by disease classification to identify the proportion 

of cases and controls which appeared in each decile, given in Table 6, and presented 

in Figure 6. The results show cases and controls are present within all deciles; most 

controls populate the lower five deciles whilst cases are proportionally higher in the 

upper five deciles. Controls are observed to be highest in the fifth and sixth decile 

whilst the most cases are represented in the eighth decile. 
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Decile 1 2 3 4 5 6 7 8 9 10 

All individuals 11 37 54 54 69 88 66 96 55 41 

Controls 6 26 33 32 37 37 7 24 11 2 

Late-onset AD 5 11 21 22 32 51 59 72 44 39 

 

Table 6: Distribution of LOAD samples by decile scoring 

The table shows the results of decile scoring on the BDR cohort LOAD cases and controls. The number of individuals, which fall within each decile, are given 
alongside the number of cases and controls. The entire cohort shows distribution into two peaks, with most samples observed in the sixth and then eighth 
deciles.  
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Figure 6: Distribution of LOAD PRS by decile scoring 

The Figure shows the distribution of BDR cohort LOAD cases and controls when sorted into deciles. The distribution of all individuals are given as grey bars 
within which are the distribution of controls (orange) and LOAD cases (blue). The controls show normal distribution, with a peak around the fifth and sixth 
decile; the distribution of cases shows a right sided skew with more cases in higher deciles. This confirms a larger proportion of cases have higher risk 
classification of disease than controls and which can be discriminated using the PRS. 
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3.4 SNPs 

PRSice variants included in the analysis (n=57,048) were ranked in order of 

significance in the base dataset. The rsIDs of the SNPs, which were present in the best 

model, were checked against online variant databases to identify their observed 

variation and the gene in which they are present. From amongst the 134 variants in 

the best model, eight were directly identified as GWAS hits on meta-analysis (J. C. 

Lambert et al., 2013). Additional GWAS hits were represented in the PRS, as ten of the 

PRS SNPs were in linkage disequilibrium with GWAS hits and would have been 

clumped out had the GWAS hit been genotyped on the NeuroChip. The online variant 

database, dbSNP (NCBI), was used to identify the genes each SNP fell within, 85 were 

present within 80 gene-coding regions, 12 SNPs were in RNA-coding regions or non-

coding loci (LINC/LOC) whilst 37 were intergenic. 

As previously mentioned, running PRSice without clumping identified an additional 

151 SNPs which were removed from the model due to being in LD with another SNP 

of greater significance according to the base dataset. These SNP identities were 

derived by running analysis at the same threshold as the PRSice best model 

(PT=1.4×10-4) and checking the .snp file. The list of SNPs was mapped on an online LD 

reference tool, LDmatrix, to identify the observed LD based on a UK population. The 

results were exported and compiled to show the LD blocks existing within the dataset 

and the effectiveness of the clumping algorithm as shown in Figure 3. 

3.4.1 TaqMan GWAS SNPs 

In the PRSice best model it was determined that there was risk of AD associated with 

many regions of the genome, implicating 134 SNPs from up to 80 genes associated 

with developing or preventing AD. Some of the SNPs identified were observed to be 

within the loci of previously determined genes with significant association at a 
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genome-wide level according to GWAS results. Many of the previous GWAS hits 

however were not included on the NeuroChip array and were therefore genotyped 

using TaqMan assay. The effect of these GWAS hits, listed in Table 7, in lieu of the 

SNPs representing these associations in the model were measured by incorporating 

these variants into the PRSice best model and observing the effect. 

Initially 9 variants were included with the 134 variants from the best model as a new 

target dataset and PRSice was run with the same clumping parameters to identify 

which variants were removed due to being within the same LD block; clumping 

reduced the number of variants from 143 to 137. The SNP file was used to breakdown 

the clumping process to find that 3 variants in the best model were replaced by GWAS 

hits (CR1, PTK2B, and CLU). In addition, 3 variants were introduced into the model as 

there was no previous representation from these loci (INPP5D, HLA-DRB1, SORL1), 

and 3 GWAS hits were less significant than the variant representing the locus 

according to the base dataset and were therefore not included (CD2AP, CELF1, 

MS4A2). 

PRSice analysis of the clumped dataset slightly improved performance of the model 

when including the additional GWAS hits, Nagelkerke’s R2 increased to 0.0419 with a 

p-value of 3.54×10-5. Further to this, the inclusion of significant SNPs with known 

effect has led to PRSice identifying a more predictive model at a lower threshold of 

significance. The best model was determined at a threshold of p≤1.19×10-4 with a 

Nagelkerke’s R2 of 0.0421 and a p-value of 3.56×10-5. With APOE SNPs included, both 

models showed significant improvement as observed when APOE was introduced to 

the PRSice best model from the initial results. 
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Model N SNPs Nagelkerke’s R2 P AUROC AUPRC 

PRSice best model 134 0.0418 4.42×10-5 59.5% 70.8% 

PRS best model + APOE SNPs + sex + AAD 136 0.2030 2.51×10-16 73.4% 81.5% 

PRSice best model + GWAS 137 0.0419 3.54×10-5 59.8% 71.0% 

PRSice+GWAS best model 120 0.0421 3.56×10-5 60.1% 70.9% 

PRSice+GWAS bm + APOE (GWAS PRS) 122 0.2000 1.83×10-17 73.3% 81.3% 

GWAS PRS + sex + AAD 122  0.2040 1.78×10-17 73.4% 81.4% 

 

Table 7: Effect of GWAS SNPs on PRS of LOAD modelling 

The table identifies the results from including additional GWAS hits to the PRSice best model. The previously derived best models are listed with a model with 
the previously unrepresented GWAS hits included, the more predictive model when GWAS hits are included, and with the further inclusion of APOE SNPs and 
covariates for sex and age at death. The table includes the number of SNPs present in each model, the Nagelkerke’s R2 and P-value derived from PRSice and 
SPSS, and the predictive ability derived in R. 
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3.4.2 Imputation 

The imputed dataset was analysed under the same PRSice clumping conditions and 

test parameters, to compare with the PRSice results from the genotyped dataset. 

The threshold identified as the best model from genotyped data was compared to 

imputed data to identify additional loci previously not picked up by PRSice but within 

the tested limits. These would be introduced to the dataset as a replacement for 

genotyped SNPs which were less significantly associated with disease phenotype 

according to the IGAP meta-analysis. At the best threshold (Pt =1.4×10-4), there were 

269 SNPs present in the model with only 71 common to those identified in the 

genotyped model; imputation introduced 198 new variants within this threshold, 

replacing 63 from the genotyped model and potentially introducing additional loci to 

the model. 

3.5 Discussion 

PRSice quality controls were stricter than the parameters used in earlier quality 

control stages of genotyping. Although they led to a reduction in the number of SNPs 

being incorporated into the analysis, most of the removed SNPs were duplicate or 

mismatched SNPs; multiallelic SNPs were unusable in PRSice analysis and would be 

excluded during this stage of analysis if not before. SNPs of low call rate made up a 

small proportion of the SNPs that were removed but may have led to type II errors in 

the results due to missing calls suggesting effect due to their absence in some 

individuals; SNPs with low minor allele frequency are classed as rare SNPs and can 

have strong effects on the dataset, they were removed so that analysis was based on 

the variation observed in common genetic variants. 

The clumping parameters used in PRSice analysis were the defaults suggested in 

PRSice manuals and those used in other examples of PRS analysis. The rationale for 
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using a low r2 value was to determine if all SNPs used in the analysis were 

independent and represented a single locus in the genome, the addition of variants 

from the same locus could inflate the results based on the significance that loci holds. 

Multiple SNPs of great significance from the same locus can have the ability to drive 

the results to suggest the locus is of greater importance than it is, therefore making 

the PRSice model inaccurate. 

This effect is widely observed to occur in the APOE locus, the hotspot identifies 

numerous significant variants within the region which would inflate the score. The 

biological understanding of the gene has identified two variants within the locus 

which help determine which of the APOE subtypes individuals carry. These two 

variants are not the most significant within the locus based on association data and 

there may in fact be other variants within the locus which have pathological effects on 

disease progression. Hence, which of these two alleles an individual carries are a more 

biologically relevant representation of the locus and are therefore included at a later 

stage of the PRS-specific analysis. 

The number of thresholds tested, and the increments of testing used were also PRSice 

defaults, the software is able to calculate models from smaller incremental 

differences with more specific threshold ranges; however, these were not used as to 

avoid further biasing the results based on expected or predetermined results. 

The results from PRSice identify a best model using few SNPs at a low significance 

threshold, whilst Figure 5 also shows fluctuations in model predictability as more SNPs 

are introduced but never succeeding the best model determined at the p-value 

threshold of 1.4×10-4. The resulting model shows significant differences in mean PRS 

between cases and controls, confirming the NeuroChip-genotyped risk is higher in 

cases than controls. The downstream analyses reinforced this understanding by 
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increasing the difference in scores between the two groups as covariates are 

introduced. APOE status is known to be a factor which affects risk of LOAD and on its 

own is more predictive than the PRS genetic model alone; when both are combined, 

the new model is more predictive as the trends from both models complement one 

another. This can also be seen from the incorporation of age at death and controlling 

for sex. AAD is highly variable for controls and lower than cases which provides 

insignificant predictive power on its own but can further improve the model whilst 

proportions of females between and within groups is fairly consistent and has little 

observed effect on the model but leads to overall improvement. 

Decile scoring was used to further identify the trends of PRS incorporating APOE and 

controlling for sex and age at death in cases and controls. The distribution of scores in 

Figure 6 identifies a large overlap between individuals from both groups with fewer 

individuals at either extreme of low or high risk. Introducing tiers of increasing risk 

gives a better representation of the distribution of samples, and the benefit of 

modelling individuals by PRS. The presence of cases at lower thresholds controls at 

higher deciles, most notably in decile 8, suggests there are other factors which affect 

disease progression beyond genetic risk. Lifestyle choices affect likelihood of LOAD, as 

controls with high PRS may have prevented disease presentation whilst cases with 

lower PRS may have lived unhealthy lives advancing onset of AD symptoms. 

Additionally, the PRS from NeuroChip genotyping may not capture the entirety of 

genetic risk associated with LOAD. 

The variants used in the model represent the associations of 134 loci across the 

genome, significant to at least 1.4×10-4 or lower. Most SNPs were found to be within 

gene coding regions and may implicate those genes in AD pathogenesis; some 

variants were intergenic and may either represent a pathologically relevant variant 

within that locus or potentially a variant involved in regulation of expression of a gene 
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associated with LOAD. Other variants may also implicate regions of DNA which are 

transcribed for RNA sequences which may also affect the development of AD. 

The clumping algorithm (Figure 3) explains the process by which the algorithm works 

to reduce the number of SNPs from loci of interest. Each individual chromosome plot 

shows the relationships between SNPs, and areas with strong correlations of 

inheritance form blocks of red; there was no plot for chromosome 21 since no SNPs 

were present in the model from that chromosome at the chosen threshold. Each 

block is represented by a single SNP in the model, had these clumped out SNPs been 

included in the PRSice model, the resulting model would have been statistically more 

predictive but less accurate. 

The TaqMan genotyped SNPs were incorporated into the dataset with varying effects; 

3 SNPs replaced existing SNPs in the model during the clumping stage as they 

represented the same loci and the TaqMan assay had a more significant p-value in the 

base dataset. However, 3 SNPs were not incorporated into the dataset as a more 

significant variant was already present within the model representing that locus. The 

last 3 SNPs incorporated into the model had a very small effect as they were 

introduced as novel signals, the effect of their inclusion was best observed by the 

resulting identification of a more predictive model at a lower threshold. The resulting 

improvements in predictive ability between the genotyped model and the inclusion of 

GWAS hits are not significant however, the results show the effects of most of the hits 

are already represented in the model in some way, there were also an additional 8 

GWAS hits already present in the model before the rest were TaqMan assayed. This 

suggests the NeuroChip variant selection was already effective at capturing much of 

the variation associated with risk of AD. 
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The imputed dataset includes all genotyped variants which passed quality controls 

and additional variants imputed based on their inheritance in other individuals. The 

SNPs included in the model at the threshold of significant the best model was derived 

from includes a greater number of SNPs and therefore loci than the genotyped model. 

Many of the SNPs now imputed were more significant according to the base dataset 

than its previous representative from the LD block which explains their absence, 

whilst a greater number of new loci are now identified to predict risk of LOAD in the 

BDR cohort. 
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4 Polygenic risk scoring of sporadic early-onset 
Alzheimer’s disease 

4.1 Perspective 

Polygenic risk scoring was conducted on a cohort of sporadic early-onset Alzheimer’s 

disease (sEOAD) cases and neurologically healthy controls (target dataset), based on 

summary statistics from the International Genomics of Alzheimer’s disease Project 

(IGAP) meta-analysis (base dataset), using the most current stable version of PRSice-2 

software. PRSice-2 was used to generate PRS on samples genotyped on the NeuroX 

array; the first neuro-specific array to include variants implicated in 

neurodegenerative diseases including Alzheimer’s disease and other dementias, 

Parkinson’s disease, amyotrophic lateral sclerosis, and progressive supranuclear palsy. 

The NeuroX was built on the backbone of the Infinium HumanExome BeadChip 

consisting of 242,901 SNPs, with an additional 24,706 SNPs of custom content. The 

Alzheimer’s Research UK (ARUK) consortium recruited samples with clinical 

information (post-mortem pathological confirmation of disease status and age at 

death). Genotyped samples were quality controlled using Illumina GenomeStudio and 

PLINK and later imputed using the Michigan Imputation Server Minimac4 software. 

Previous analysis of this cohort was conducted using an earlier version of PRSice 

software on the same individuals. The results showed significant differences between 

mean PRS between sEOAD cases (n=408) and controls (n=437), with a predictive 

ability (area under the ROC curve; AUC) for distinguishing between groups of 75.5% 

(Chaudhury et al., 2018). When samples were sorted into deciles of increasing risk and 

a greater proportion of cases were observed at higher deciles with the opposite being 

seen in controls, confirming the association between genetic risk of disease and 

likelihood of developing sEOAD. 
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The primary aim of this study was to determine the genetic risk of AD in a cohort of 

early-onset cases using the PRS approach. 

4.2 Samples 

DNA was isolated from blood and/or brain tissue from cases (n=451) and controls 

(n=528). Lab procedures were carried out by I. Barber following methods as described 

(Section 2.1). All samples were genotyped using the NeuroX array. Quality control of 

the genotyping data was completed using GenomeStudio v2011.1 and PLINK (Section 

2.3.3). Samples were checked for call rate, relatedness, diversion from European 

ancestry, and heterozygosity; SNPs were controlled for call rate and adherence to 

Hardy-Weinberg equilibrium. The resulting dataset consisted of 408 cases of sEOAD 

and 436 cognitively healthy controls (Table 8), genotyped for 265,049 SNPs. SNPs 

associated with APOE status were genotyped for all samples using TaqMan assays to 

identify the number of ε4 alleles individuals harbour, carried out by I. Barber following 

methods described (Section 2.1.4). 

Imputation using the Michigan imputation server was completed on the entire cohort 

to identify additional variants based on the observed genotypes. The genotyped 

dataset underwent pre-imputation quality controls of the strand and position of 

alleles, and their calls, assignments, and frequencies were checked to be consistent 

with the Haplotype Referencing Consortium. Imputation increased the number of 

SNPs accessible by PRSice on the cohort (n=2,112,986). 
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Phenotype N Age at death (SD) Females (%) APOE ε4+ (%) APOE ε4ε4 (%) 

Control 436 77.2 (6.44) 253 (58.0) 104 (23.9) 9 (2.1) 

Sporadic early-onset AD 408 64.8 (5.48) 194 (47.5) 234 (57.4) 54 (13.2) 

 

Table 8: Demographics of sEOAD samples 

Individuals, categorised by disease status, were recruited from across the UK: sEOAD cases from universities in Bristol, Manchester, Nottingham, Oxford, and 
controls from University College London. Age at death (together with standard deviation) was obtained from clinical information. The number and percentage 
of females in each group is also shown as well as the number of individuals with at least one APOE ε4 allele and additionally those who were ε4ε4 
homozygotes. 
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4.3 Polygenic risk scoring 

Primary PRS analysis (Figure 7) tested 408 sEOAD cases and 436 controls using default 

PRSice-2 parameters and additional PRS quality control of the base and target dataset. 

PRSice quality control of the target dataset included standard cut-off thresholds for 

minor allele frequency (MAF ≤ 0.01), Hardy-Weinberg equilibrium (HWE ≤ 1×10-6), 

genotyping call rate (GENO ≤ 0.01) and sample call rate (MIND ≤ 0.01). Ambiguous or 

duplicate SNPs were removed, and mismatched SNPs were resolved in both the base 

and target datasets; following QC, the target dataset was reduced to 40,302 SNPs. The 

APOE locus, a window of 250kb either side of APOE (chr19:45,160,844-45,660,844; 

GRCh37/hg19), was excluded from the target dataset as a well-known AD hotspot; the 

SNPs which identify the APOE ε status would be reintroduced to the risk modelling at 

a later stage. 

PRSice-2 uses PLINK to calculate the linkage disequilibrium (LD) between SNPs, 

estimated from a cohort of 503 European individuals genotyped within the 1000 

Genomes project (LD dataset). The SNPs were then clumped based on their LD to 

reduce the number of potential false positives. The clumping algorithm identifies the 

most significant SNP (index) according to the base dataset in a sliding window and 

removes SNPs in LD with the index SNP above a given r2 value, which signifies the 

inheritance correlated between the SNPs, to reduce the occurrence of type I errors; 

false positives are introduced as SNPs in LD with a variant with known association with 

the disease will appear as a novel signal. The default clumping settings for PRSice-2 

which were used included a 250kb sliding window and r2 set as 0.1; the dataset was 

also tested without clumping to compare and evaluate its effect.  
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Figure 7: Analysis pipeline for PRS of sEOAD with the NeuroX 

The figure outlines the process of generating polygenic risk scores from a target 
dataset. Primary analysis (blue) is run in parallel with secondary analysis, the use of 
imputation (green). Polygenic risk scores are generated, and covariates are 
introduced; the results are used to determine the predictive ability of the best PRS 
model and the measure the distribution of samples based on PRS. The resulting 
models are checked for previously unidentified genes associated with AD.  

408 Cases
436 Controls
265,049 SNPs

Curating Datasets
Imputation
Ref: HRC r1.1 (2016)
Build: GRCh37/hg19
Phasing: Eagle v2.4
Pop: European
R2 = 0.001

PRSice QC
MAF: ≤ 0.05
HWE: ≤1×10-6

Call-rate: ≤ 0.01
Duplicate SNPs

Curating Datasets
PRSice QC

MAF: ≤ 0.05
HWE: ≤1×10-6

Call-rate: ≤ 0.01
Duplicate SNPs

408 Cases
436 Controls
40,302 SNPs

408 Cases
436 Controls
2,112,986 SNPs

Polygenic Risk Scoring
Clumping

LD: 1000 Genomes

Pop: European
r2 = 0.1

window = 250kb

Analysis
Base: IGAP

Pt: 1×10-6 to 1
Interval: 1×10-6

Further Analysis
Logistic Regression

Pt: PRSice Best Model
APOE: TaqMan SNPs

Covariates: Sex

Decile Scoring

SNP Association

PRSice Best Model

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

D
is

tr
ib

u
ti

o
n

Decile

Control

sEOAD

ALL

Distribution
Predictive Ability (AUC)

Polygenic Risk Scoring
Clumping
LD: 1000 Genomes

Pop: European
r2 = 0.1
window = 250kb

Analysis
Base: IGAP
Pt: 1×10-6 to 1
Interval: 1×10-6

Imputed Best Model

Target Gene Discovery

NeuroX array



Polygenic risk scoring of sporadic early-onset Alzheimer’s disease 

98 
 

PRSice-2 then selects all SNPs present in the base and target dataset and runs logistic 

regression to model cases against controls based on the SNPs present within given 

significance thresholds; the threshold incrementally increases to include additional 

SNPs for the next model until all SNPs have been included. The results of the 

modelling are compared and then scored by Nagelkerke’s R2 to identify the best 

model fit. The lowest threshold set for PRSice-2 analysis started at SNPs with 

significance of association in the base dataset between 0 ≤ Pt ≤ 1×10-6, increasing in 

increments of 1×10-6 as new SNPs are introduced up to Pt≤1. 

4.3.1 Best model selection 

PRSice-2 provided individual scores at each tested threshold and identified the best p-

value threshold for modelling risk in the target cohort based on Nagelkerke’s R2 and 

the number of SNPs used in the model. The resulting models at various testing 

thresholds are shown in Table 9, with the PRSice output figures included as Figure 8. 

The most predictive model was identified with a Nagelkerke’s R2 value of 0.104, at a p-

value threshold of 0.490401 and consists of 10,927 SNPs. At this threshold, there 

were 7,356 additional SNPs which were clumped out by the PRSice algorithm. 
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Figure 8: Output figures of PRS modelling of sEOAD with the NeuroX 

The bar plot (A) presents some of the thresholds in Table 9, identifying the model fitness expressed as Nagelkerke’s R2 at different stages. The results show 
model to improve with the inclusion of more SNPs and peak at 0.490401 before falling once more. The high-resolution plot (B) identifies the p-value derived 
from each model at all tested thresholds, giving more details about the effect shown in A. The predictive ability fluctuates as more SNPs are introduced 
forming a maximum peak and plateauing steadily afterwards. 
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P-value threshold N SNPs Nagelkerke’s R2 Significance (P) 

≤0.000001 10 0.0460 1.1×10-7 

≤0.000010 12 0.0441 2.02×10-5 

≤0.000100 28 0.0248 8.87×10-5 

≤0.001000 95 0.0267 4.67×10-5 

≤0.010000 430 0.0614 1.15×10-9 

≤0.050000 1609 0.0659 2.73×10-10 

≤0.100000 2856 0.0788 6.38×10-12 

≤0.200000 5126 0.0865 7.12×10-13 

≤0.300000 7206 0.0938 1.07×10-13 

≤0.400000 9228 0.0976 4.01×10-14 

≤0.490401 10927 0.1044 6.59×10-15 

≤0.500000 11091 0.1026 1.06×10-14 

≤1.000000 18853 0.0985 3.22×10-14 

 

Table 9: PRSice modelling of sEOAD with the NeuroX 

The table outlines the results of PRSice modelling at p-value thresholds of significance according to the base dataset. At each threshold PRSice identifies the 
number of SNPs present in the target dataset at the threshold and calculates model fitness that can be determined based on the SNPs as Nagelkerke’s R2 and 
the associated p-value of the model. As the threshold increases, more SNPs are introduced to the model which affects the model predictiveness. The best 
model derived by PRSice is identified at a threshold of p≤0.490401, with the largest Nagelkerke’s R2 and the most significant p-value. 
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Mean individual PRS at the PRSice best model was calculated as 3.93×10-4 with a 

standard deviation of 1.06×10-4. Mean PRS and standard deviation for controls and 

sEOAD cases was found as 3.64×10-4 ±1.04×10-4 and 4.24×10-4 ±9.94×10-5, 

respectively. Single factor ANOVA found variance for controls as 1.08×10-8 and sEOAD 

cases 9.87×10-9, and the significance of the variation to be 1.36×10-16. 

The best model was then tested with the re-introduction of SNPs associated with 

APOE ε status (rs429358 and rs7412) and running PRSice-2 with the inclusion of 

covariates for sex. The SNPs were introduced to the dataset using PLINK by extracting 

the SNPs in the best model and merging with a dataset of calls for both APOE SNPs 

according to TaqMan genotyping. Covariates were included in the PRSice script with 

the inclusion of a covariate file identifying each individual and stating their clinical sex. 

Covariates testing was also replicated using binary logistic regression in SPSS (IBM) to 

validate the results and record an individual score which combined PRS with 

covariates. Receiver operating characteristic (ROC) curves are produced from this 

value, and the area under the curve (AUC) is calculated as a measure of predictability. 

The resulting models were compared to the PRSice best model in Table 10. 
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Model N SNPs Nagelkerke’s R2 IGAP P-value AUROC (%) 

PRSice best model 10927 0.104 6.65×10-15 66.2 

APOE 2 0.175 1.87×10-23 69.5 

PRS (with APOE) 10929 0.190 1.53×10-24 72.1 

PRS + sex 10929 0.201 2.45×10-24 73.0 

 

Table 10: Modelling PRS of sEOAD with covariates 

The best model by PRSice was isolated and tested with the inclusion of the SNPs associated with APOE ε status, rs429358 (ε4) and rs7412 (ε2). The APOE 
SNPs alone show greater significance and model disease status better than the best model, however, when combined the PRS model shows improved fitness 
than either alone. Clinical sex was introduced to the PRS with APOE model to show the best model according to Nagelkerke’s R2 and was found to be PRS with 
sex considered. Predictive ability for all models was also calculated using area under the receiver operating characteristic curve (AUROC). 
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4.3.2 Association and risk prediction 

Following the results of covariate analysis, prediction of disease status was most 

informative when including APOE and sex as a covariate, therefore the resulting 

normalised scores for this model were used for downstream analyses. Normalised 

mean score and standard deviation for controls was calculated as 0.409±0.176 and 

0.563±0.184 for sEOAD cases. Variance for controls and cases were calculated as 

0.0309 and 0.0337 respectively and found to be significantly different by single factor 

ANOVA (p=5.78×10-33). 

Further statistical analysis included decile scoring, where all samples were ranked by 

score (PRS with APOE + sex) and distributed into ten tiers of increasing risk. The 

samples were then separated by disease classification to identify the proportion of 

cases and controls which appeared in each decile, given in Table 11, and presented in 

Figure 9. The results show cases and controls are present within all deciles; most 

controls populate the lower five deciles whilst cases are proportionally higher in the 

upper five deciles. Controls are observed to be highest in the fourth decile whilst the 

most cases are represented in the seventh decile. 
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Decile 1 2 3 4 5 6 7 8 9 10 

All individuals 25 60 99 134 125 124 120 74 58 25 

Controls 21 46 73 94 68 56 39 23 11 5 

Sporadic early-onset AD 4 14 26 40 57 68 81 51 47 20 

 

Table 11: Distribution of sEOAD samples by decile scoring 

The table shows the results of decile scoring on the cohort of sEOAD cases and controls. The number of individuals, which fall within each decile, are given 
alongside the number of cases and controls. The entire cohort shows normal distribution with most samples observed between the fourth and seventh 
deciles. 
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Figure 9: Distribution of sEOAD PRS by decile scoring 

The figure shows the distribution of cohort of sEOAD cases and controls when sorted into deciles. The distribution of all individuals are given as grey bars 
within which are the distribution of controls (orange) and sEOAD cases (blue). The controls show normal distribution, with a peak around the fourth decile; 
the distribution of cases shows a right sided skew with more cases in higher deciles peaking in the seventh. This confirms a larger proportion of cases have 
higher risk classification of disease than controls and can be discriminated using PRS. 
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4.4 SNPs 

The rsID (reference SNP identification tag) of the SNPs which were present in the best 

model were checked against online variant databases to identify their observed 

variation and the gene in which they are present. From amongst the variants in the 

best model, two were directly identified as GWAS hits on meta-analysis (J. C. Lambert 

et al., 2013). Additional GWAS hits were represented in the PRS, as ten of the PRS 

SNPs were in linkage disequilibrium with GWAS hits and may have been clumped out 

had the GWAS hit been genotyped on the NeuroX. The online variant database, 

dbSNP (NCBI), was used to identify the genes each SNP fell within, 7,819 were present 

within 5,754 gene-coding regions, 682 SNPs were in RNA-coding regions or non-

coding loci (LINC/LOC) whilst 2,426 were intergenic. 

As previously mentioned, running PRSice without clumping identified an additional 

7,390 SNPs which were removed from the model due to being in LD with another SNP 

of greater significance according to the base dataset. The Nagelkerke’s R2 of a model 

at the same threshold (Pt=0.490401) without clumping is calculated as 0.0215, with a 

p-value of 2.57×10-4. 

4.4.1 Imputation 

The imputed dataset was analysed under the same PRSice clumping conditions and 

test parameters, to compare with the PRSice results from the genotyped dataset. The 

threshold identified as the best model from genotyped data was compared to 

imputed data to identify additional loci previously not picked up by PRSice but within 

the tested limits. At the PRSice-derived best threshold (Pt =0.490401), there were 

49,037 SNPs present in the model with only 155 common to those identified in the 

genotyped model. The model based on imputed variants at this threshold had a 
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Nagelkerke’s R2 of 0.128 and associated significance of p=6.8×10-18 and AUROC of 

67.5%.  

The imputed dataset was also tested without predetermining the threshold of testing, 

unbiased, and found a best model to be at a different threshold to the genotyped 

target dataset. The best model from imputed SNPs was found to be at a threshold of 

0.03249, with a Nagelkerke’s R2 of 0.138 based on 8,204 SNPs and significant to a 

level of p≤6.96×10-19. With genotypes for APOE SNPs considered in the model, 

Nagelkerke’s R2 increased to 0.197 and to 0.207 when sex was included as a covariate; 

additionally, a more predictive model was also presented with APOE SNPs introduced, 

at a p-value threshold of 0.000021 (Nagelkerke’s R2=0.209, p=7.96×10-27). Predictive 

ability was calculated using AUROC for all models at the p-value threshold of 0.03249; 

PRS on its own was calculated as 68.7%, increasing to 72.3% with APOE included and 

72.9% with the addition of the covariate for sex. 

In a breakdown of the 8,204 SNPs in the imputed best model there were 2,644 

intergenic SNPs included and the remainder were found in 4,186 loci, of which 3,610 

are gene-coding and 574 were RNA-coding regions or non-coding loci. Amongst the 

gene-coding loci, 1,918 genes were represented in the previous model. 

4.5 Discussion 

PRSice quality controls were even stricter than the parameters used in earlier quality 

control stages of genotyping and led to a greater reduction in usable data than with 

the NeuroChip. Quality controls for PRS are to ensure the variants included in analysis 

are commonly found in populations and thus the results would be repeatable and 

accurate. Most SNPs eliminated from the dataset were for having low minor allele 

frequency (n=212,941), which is consistent as the NeuroX hosts a range of rare 

variants upon its array design; additionally, 1,415 SNPs were removed for low SNP call 
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rate. As there may be significant associations with risk of AD from rare variants, which 

would be another avenue of research. 

The clumping parameters used in PRSice analysis were the defaults suggested in 

PRSice manuals and those used in other examples of PRS analysis. This clumping 

approach differed to that which was used in previous analysis of the cohort, where 

SNPs were pruned according to LD and a r2 of 0.8 was used to only exclude highly 

correlative SNPs and identify the most predictive model. This may give an explanation 

as to why a lower predictive ability was calculated and it may be worthwhile to 

explore additional clumping thresholds than the default thresholds set by PRSice-2. 

The rationale for using a low r2 value was to determine all SNPs used in the analysis 

were independent and represented a single locus in the genome as the addition of 

variants from the same locus could inflate the results based on the significance that 

loci holds. Multiple SNPs of great significance from the same locus can have the ability 

to drive the results to suggest the locus is of greater importance than it is, therefore 

making the PRSice model inaccurate. However, there were some observations of 

multiple SNPs from the same gene, possibly indicate a role in AD pathology, given that 

each variant is independent and still associated with risk according to IGAP.  

The number of thresholds that were tested and the increments of testing used were 

also PRSice defaults, the software can calculate models from smaller incremental 

differences with more specific threshold ranges; however, these were not used as to 

avoid further biasing the results based on expected or predetermined results. The 

genotyped results showed a p-value threshold to be like that of previous analysis of 

the cohort, with more predictive ability introduced once all variants with some 

association (p≤0.5) with AD risk were included. 
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The results from PRSice identify a best model using many SNPs and Figure 8 also 

shows fluctuations in model predictability as more SNPs are introduced until reaching 

a peak at a p-value threshold of 0.490401. Notably, there were fewer SNPs content 

present on the NeuroX array with significant association with AD, which may be one 

factor which explains the difference in results between the NeuroX sEOAD and 

NeuroChip LOAD results (Results 1). After imputing the dataset to include a greater 

number of variants, including those more likely to be included in IGAP, there is now a 

best model determined at a more significant threshold. 

The resulting model shows significant differences in mean PRS between cases and 

controls, confirming the NeuroX-genotyped risk is higher in cases than controls. The 

downstream analyses reinforced this understanding by increasing the difference in 

scores between the two groups as covariates are introduced. APOE status is known to 

be a factor which affects risk of AD and on its own is more predictive than the PRS 

genetic model alone; when both are combined, the new model is more predictive as 

the trends from both models complement one another. As sex is controlled for, there 

is also slight improvement of the PRS model. Age at death was not included as a 

covariate in this analysis as controls were selected based on cognitive health in late 

age whilst cases suffered and died early in life.  

Decile scoring was used to further identify the trends in cases and controls. The 

distribution of scores in Figure 9 identifies some overlap between individuals from 

either group with peaks forming in different deciles for each group. The presence of 

cases and controls at lower and higher deciles respectively suggests there are other 

factors which affect disease progression beyond genetic risk, however, the greater 

separation between groups is indicative of a much greater risk score amongst cases 

than controls, leading to earlier onset of disease.  
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The variants used in the genotyped model represent the associations of 7,819 loci 

across the genome, significant to at least 0.490401 or lower. Almost 75% of SNPs 

were found to be within gene coding regions and may implicate those genes in AD 

pathogenesis; some variants were intergenic and may either represent a 

pathologically relevant variant within that locus or potentially a variant involved in 

regulation of expression of a gene associated with LOAD. Other variants may also 

implicate regions of DNA which are transcribed for RNA sequences which may also 

affect the development of AD. Additionally more gene-coding loci were introduced by 

the imputed model analysis, indicating heterogeneity in disease risk. 
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5 Polygenic risk scoring of expression networks 

5.1 Perspective 

Polygenic risk scoring (PRS) was completed on cohorts of late-onset Alzheimer’s 

disease (LOAD) cases and neurologically healthy controls from the Brains for 

Dementia Research (BDR) resource and sporadic early-onset Alzheimer’s disease 

(sEOAD) cases and neurologically healthy controls, based on summary statistics from 

the International Genomics of Alzheimer’s disease Project (IGAP) meta-analysis (base 

dataset) (Chapters 3 & 4). PRSice-2 was then used to generate PRS from imputed data 

on samples genotyped on both NeuroX and NeuroChip arrays on SNPs present within 

a subset of genes. Gene subsets were defined from scientific literature relating to 

either genes expressed within a localised region or within a pathway associated with 

risk of AD.  

Previous analysis with this approach was conducted using an earlier version of PRSice-

2 software on NeuroChip-genotyped samples from the first two batches of the BDR 

cohort on a subset of genes identified to be expressed at the synapse (Lawingco et al., 

2021; Lleó et al., 2019). The results found a ‘Synaptic PRS’ model using 6 SNPs in 

combination with APOE SNPs to be significantly higher in LOAD cases (n=302) than 

controls (n=137), with a predictive ability (area under the ROC curve; AUC) for 

distinguishing between groups of 72%. The predictive ability of this model was 

compared to a full genetic PRS model and replicated in the third batch of BDR samples 

with a predictive ability of 73%. The synaptic PRS model was made up of previously 

identified genes associated with AD through GWAS (BIN1, PTK2B, PICALM, APOE) and 

two novel loci in the genes DLG2 and MINK1. 
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The primary aim of the study is to understand the relationship between synaptic 

genes and risk of Alzheimer’s disease in two independent cohorts and to compare the 

results to PRS models of whole genome data. 

5.2 Samples 

DNA was isolated from blood and/or brain tissue from all NeuroChip (n=1172) and 

NeuroX (n=979) samples. Lab procedures were carried out by T. Patel and I. Barber 

following methods as described (Section 2.1). Quality control of the genotyping data 

was completed using GenomeStudio and PLINK (Section 2.3.3). Samples were checked 

for call rate, relatedness, diversion from European ancestry, and heterozygosity; SNPs 

were controlled for call rate and adherence to Hardy-Weinberg equilibrium. The 

resulting target datasets consisted of 358 LOAD cases and 217 controls on the 

NeuroChip and 408 sEOAD cases and 436 controls on the NeuroX (Table 12).  

Imputation using the Michigan imputation server was completed on both datasets to 

identify additional variants based on the observed genotypes. The genotyped dataset 

underwent pre-imputation quality controls of the strand and position of alleles, and 

their calls, assignments, and frequencies were checked to be consistent with the 

Haplotype Referencing Consortium. Imputation increased the number of SNPs for 

both the NeuroChip (n=5,379,656) and NeuroX (n=4,284,386) cohorts. 
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Array Phenotype N Age at death (SD) Females (%) APOE ε4+ (%) APOE ε4ε4 (%) 

NeuroX Control 436 77.2 (6.44) 253 (58.0) 104 (23.9) 9 (2.1) 

 sEOAD 408 64.8 (5.48) 194 (47.5) 234 (57.4) 54 (13.2) 

NeuroChip Control 217 49.7 (44.2) 115 (53.0) 35 (16.1) 2 (0.9) 

 LOAD 358 83.2 (8.5) 173 (48.0) 231 (64.5) 49 (13.7) 

 

Table 12: Demographics of samples for synaptic PRS 

Individuals, categorised by disease status and array, were recruited from across the UK: NeuroX sEOAD cases from universities in Bristol, Manchester, 
Nottingham, Oxford, and NeuroX controls from University College London; NeuroChip samples were recruited from universities in Bristol, Manchester, 
Newcastle, Oxford, and King’s College London. Age at death (together with standard deviation) was obtained from clinical information. The number and 
percentage of females in each group is also shown as well as the number of individuals with at least one APOE ε4 allele and additionally those who were ε4ε4 
homozygotes. 
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5.3 Polygenic risk scoring 

5.3.1 Quality controls and gene set discovery 

Selective PRS analyses (Figure 10) tested both imputed target datasets, 358 LOAD 

cases against 217 controls and 408 sEOAD cases against 436 controls, using default 

PRSice-2 parameters and additional PRS quality control. PRSice quality control of the 

target datasets included standard cut-off thresholds for minor allele frequency (MAF ≤ 

0.01), Hardy-Weinberg equilibrium (HWE ≤ 1×10-6), genotyping call rate (GENO ≤ 0.01) 

and sample call rate (MIND ≤ 0.01). Ambiguous or duplicate SNPs were removed, and 

mismatched SNPs were resolved in both the base and target datasets; following QC, 

the NeuroChip dataset was reduced to 4,222,576 SNPs and the NeuroX dataset was 

reduced to 2,112,986. The APOE locus was excluded from the target datasets, as the 

SNPs which identify the APOE ε status would be reintroduced to the risk modelling at 

a later stage. 

Lists of genes included in gene sets were identified through proteomic studies, where 

proteins with an established function and detected in enriched fractions from tissue 

of a proteome are considered. Synapse-enriched mouse, rat, and human brain tissue 

was tested to identify synaptic genes, 537 were considered synaptic (Lleó et al., 

2019).  
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Figure 10: Analysis pipeline for synaptic PRS of AD 

The figure outlines the process of generating synaptic polygenic risk scores from 
multiple target datasets. Analyses are run in parallel, of the NeuroChip (green) and 
the NeuroX (blue) dataset. Polygenic risk scores are generated, and covariates are 
introduced; the results of individual array models are used to determine the 
predictive ability of the best PRS model and SNPs implicated. The resulting models 
were compared to previously completed whole genome PRS results and subsequent 
distribution.  
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SNPs present within the gene ranges were extracted from the target datasets using 

PLINK, the genomic locations of proteins were identified according to the 

GRCh37/hg19 reference assembly (Kent et al., 2002); the resulting datasets were 

saved for PRS analysis. All samples were also combined to form a larger dataset with 

SNPs common to both imputed arrays. The isolation of synaptic SNPs reduced the 

NeuroChip dataset to 136,242 SNPs and the NeuroX dataset to 64,050 SNPs. 

The default clumping settings for PRSice-2 included a 250kb sliding window and r2 set 

as 0.1. The lowest threshold set for PRSice-2 analysis started at SNPs with significance 

of association in the base dataset between 0 ≤ p ≤ 1×10-6, increasing in increments of 

1×10-6 as new SNPs are introduced up to Pt ≤ 1. 

5.3.2 Best model selection 

Clumping led to a further reduction of variants used for PRS analysis; the NeuroChip 

dataset consisted of 5,649 independent SNPs and the NeuroX dataset consisted of 

2,961 SNPs for PRS analysis. The best model on each array was determined by 

Nagelkerke’s R2, individual scores were recorded for each model and SNPs which 

make up the best model were identified. 

With the NeuroChip, the modelling between LOAD cases and controls peaked at a 

significance threshold of 0.000001 with Nagelkerke’s R2 calculated as 0.0203 and using 

4 SNPs (p=0.0037), subsequent models were not as predictive as more SNPs were 

introduced as Nagelkerke’s R2 plateaued at 0.005 (Figure 11). Mean synaptic PRS was 

calculated as 0.0181 with a standard deviation of ±0.0192 for controls and 

0.0228±0.0182 for LOAD cases; single-factor ANOVA found variance between groups 

to be significant to p=0.0038. Predictive ability was calculated as both area under the 

receiver operating characteristic curve (AUROC) and area under the precision-recall 

curve (AUPRC) using R package PRROC, calculated as 58.0% and 66.8% respectively. 
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The best model from the NeuroX between sEOAD cases and controls was at a p-value 

threshold of 0.036111, where Nagelkerke’s R2 was 0.0271, significant to a p-value of 

4.18×10-5 and consisting of 376 SNPs. Predictive ability increased as SNPs were 

introduced up to a peak, and steadily reduced as additional SNPs were included until 

Nagelkerke’s R2 plateaued above 0.01 (Figure 11). Mean synaptic PRS was calculated 

as 0.000497 with a standard deviation of ±0.000929 for controls and 

0.000766±0.000941 for sEOAD cases. Single-factor ANOVA found variance between 

groups to be significant to p=3.23×10-5. Predictive ability was calculated using R 

package PRROC with an AUROC of 57.9% and AUPRC as 55.8%. 

Decile scoring was used at this stage to compare the distribution of individuals 

between synaptic PRS to whole genome PRS from both arrays before the inclusion of 

covariates. The average change in decile for individuals on the NeuroChip was less 

than 2 (74%) with 90 individuals falling within the same decile. The NeuroX showed 

greater consistency of decile ranking between whole genetic and synaptic PRS with 

most falling within 2 deciles (82%) and 188 samples with no change (Table 13). 
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Figure 11: High-resolution plot of synaptic PRS modelling of LOAD and sEOAD with the NeuroChip and NeuroX 

The figures outline the resulting p-values at each tested threshold for the NeuroChip and NeuroX target datasets. A. The NeuroChip shows the highest peak 
with the most significant variants included with later peaks of smaller effect. B. The NeuroX figure shows predictive models recorded using significant SNPs 
with a steady reduction in predictive ability as less significant variants are introduced. 
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The best models were then tested with the re-introduction of SNPs associated with 

APOE ε status (rs429358 and rs7412) and including sex as a covariate. Introduction of 

the effect of APOE has been known to improve models in previous results and was 

present on the list of genes expressed at the synapse but excluded from analysis due 

to the nature of the locus. The NeuroChip best model was improved by the inclusion 

of APOE SNPs, the best model remained at the same threshold with Nagelkerke’s R2 

calculated as 0.306 (p=8.88×10-24); with addition of sex as a covariate, Nagelkerke’s R2 

was calculated as 0.308 (p=1.27×10-23). Predictive probability scores were generated 

in SPSS from logistic regression with the inclusion of sex as a covariate; mean synaptic 

PRS with APOE and sex was calculated as 0.711±0.221 for LOAD cases and 

0.478±0.173 for controls, single-factor ANOVA found the significance of variance 

between groups to be p=6.27×10-35. Predictive ability was calculated as 78.1% 

(AUROC) and 85.5% (AUPRC). 

The NeuroX best model also showed improvement with APOE SNPs: Nagelkerke’s R2 

was found to be 0.187 (p=2.5×10-24), however, a greater Nagelkerke’s R2 was also 

calculated using fewer SNPs than previously. The NeuroX best model threshold was 

lowered to 0.02027, the same threshold identified in the combined model, where 

Nagelkerke’s R2 was found to be 0.191 (p=9.05×10-25). When sex was included as a 

covariate of the original best model at Pt=0.036111, Nagelkerke’s R2 was 0.185 

(p=3.25×10-24). Mean synaptic PRS with APOE and sex calculated as a predictive 

probability in SPSS was 0.409±0.164 for controls and 0.563±0.194 for sEOAD cases, 

variance between groups was calculated and found to be significant to p=9.76×10-33. 

Predictive ability using both methods were calculated as an AUROC of 72.5% and 

AUPRC of 71.8%.  
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Decile 1 2 3 4 5 6 7 8 9 10 

NeuroChip Control 4 17 47 52 36 27 15 7 8 4 

NeuroChip LOAD 3 14 15 34 46 35 64 54 57 36 

NeuroX Control 11 41 89 99 64 53 38 25 10 6 

NeuroX sEOAD 3 15 35 51 41 52 54 69 53 35 

 

Table 13: Distribution of synaptic PRS samples by decile scoring 

The table shows the results of decile scoring of PRS with APOE SNPs and sex on the NeuroChip controls and LOAD cases, and NeuroX controls and sEOAD 
cases. The number of individuals which fall within each decile are given split by array and disease group. The distribution shows a greater number of control 
samples in the lower deciles and case groups are predominately found in the upper deciles. 
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Figure 12: Distribution of synaptic PRS by decile scoring 

The figure shows the proportion of cases and controls from each array based on PRS with APOE SNPs and controlling for sex in the combined model. 
Proportion was used as a replacement of distribution to counter the difference in numbers of samples per dataset; proportion was calculated as the number 
of samples within a decile divided by number of samples across all deciles for each test group. The NeuroChip (orange) and NeuroX (yellow) controls show 
similar representation at each decile with a positive skew and peak in the fourth decile. The NeuroChip (grey) cases show more negative skew than controls 
and a peak in the seventh decile; NeuroX (blue) cases similarly to LOAD cases show a larger distribution, with most samples proportionately in the eighth 
decile. 
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5.4 SNPs 

Breakdown of the 4 SNPs identified in the NeuroChip model identified 3 synaptic 

genes (BIN1, PICALM, PTK2B) sufficient to calculate risk of LOAD, as two independent 

SNPs were from the same gene (BIN1). Comparing to the previous studies on the 

NeuroChip, one of the SNPs from within BIN1 was common to a previous synaptic PRS 

model (rs35114168) and the SNP within PTK2B was also present in the imputed 

NeuroChip whole genome best model (rs28834970).  

There were 215 genes identified from 376 SNPs identified in the NeuroX synaptic PRS 

model used to predict risk of sEOAD from synaptic genes as 79 genes had multiple 

SNPs within their loci represented. The most recurring gene had 12 independent SNPs 

within its gene range (DLG2). When compared to previous studies there were 3 SNPs 

from 3 genes in the best model also present in the synaptosome study (DLG2 

rs286043, MINK1 rs8078173, BIN1 rs35114168); 263 of the SNPs present in the 

synaptic PRS model were also identified in the imputed NeuroX whole genome 

dataset. All 4 SNPs identified in the NeuroChip best model were present within the 

NeuroX best model.  

The combined model was made up of 199 SNPs from 138 genes, with 101 genes 

represented by a single SNP and the remaining 37 genes represented by 2-5 

independent SNPs. The most recurring genes were also identified in the NeuroX gene 

list as well as the published synaptic best model list. The SNPs within the model 

contained 180 of the SNPs identified in the NeuroX best model which included the 4 

SNPs from the NeuroChip best model; most of the remaining 19 SNPs were reported 

in less predictive models from the NeuroChip whilst 1 SNP was not present in either 

analysis initially and only remained due to the selection and clumping criteria (NGEF 

rs778357). 
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Association testing was completed using PLINK to determine the observed effect of 

variation within the combined dataset and compared to the associated effect (β) 

recorded in the base dataset, IGAP summary statistics. PLINK results provided an odds 

ratio and significance for each SNP based on differences in frequency of the effect 

allele between cases and controls. SNPs with an OR > 1 were associated with 

increased risk and < 1 were considered protective variants; in the IGAP summary 

statistics, β-values < 0 were considered protective and > 0 were associated with 

increased risk. Comparing between the datasets, 125 of the 201 SNPs (199 best model 

and 2 APOE) agreed upon whether the SNP was associated with risk or protection.  

5.5 Discussion 

Imputed datasets were used instead of the genotyped datasets to maximise the 

number of common SNPs between each target dataset and the base dataset (IGAP 

summary statistics) and between both datasets; SNP numbers were expectedly 

reduced as quality controls were carried out and when clumping was introduced. The 

NeuroChip was re-analysed on PRSice-2 to compare the results with a greater number 

of samples and the effect of imputed data to genotyped data. NeuroX analysis was 

included to compare the effects of synaptic genes on a concordant but separate 

phenotype. A combined dataset was tested to observe the correlation between PRS of 

sEOAD and LOAD risk. 

Synaptic PRS was analysed as part of a collaboration project, the use of a selection of 

genes is becoming a popular method of breaking down whole genome polygenic risk. 

The inclusion criteria leads to a more precise score based on a certain network of 

genes; this approach can be replicated using different selection criteria. An example 

of this is the selection of genes expressed by microglia, which can provide a more 

specific order to the effect of genetic variation and subsequent protein expression 
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within microglial cells on risk of AD. Future work included PRS based on genes 

expressed in microglia and the pathway genes which encode proteins in the protein-

lipid complex. 

The NeuroChip best model was identified at a similar but lower threshold to analysis 

using the first two batches of the NeuroChip, the improvements in modelling may be 

reflective of a better distinction between cases and controls could be achieved with a 

greater number of samples. In a whole genome PRS, a secondary aim was to identify 

genes not previously researched or identified to be associated with risk of AD, the use 

of a selective PRS already recognises these genes and is therefore driving the 

identification of SNPs within these genes with the greatest association with disease 

risk. 

The best model threshold determined from the NeuroX array is within a level of 

significance of (p<0.05) but not near significance levels to consider all SNPs to have a 

genome-wide level of significance (p<1×10-8). The genes identified within the model 

are a reduced number than those from the inclusion criteria as well as those 

represented in the target dataset, which suggests some genes expressed at the 

synapse are more associated with disease risk than others. 

Decile scoring between PRS models highlighted correlation between whole genome 

PRS and synaptic PRS for most individuals, however, there were some individuals who 

ranked higher in synaptic PRS than whole genome. This observation in controls may 

be due to individuals carrying many of the risk variants present within the synaptic 

model with fewer calls in other risk SNPs or may be subject to some synaptic 

dysfunction with no phenotypic effect. Cases with much greater risk in synaptic PRS 

than whole genome PRS may indicate the disease pathology for those individuals was 

driven by dysfunction in the synapse. It may be noteworthy to explore the clinical 
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features of these individuals more specifically to identify the process by which 

synaptic dysfunction can lead to AD diagnosis. 

Calculating predictive ability for the NeuroChip and NeuroX independent models can 

provide a more direct comparison of synaptic PRS models to whole genome PRS. 

Although both AUROC and AUPRC were calculated for all models, the use of AUPRC 

was specifically for NeuroChip modelling as there is a greater difference in proportion 

of cases to controls than with the NeuroX. The results showed the synaptic PRS with 

APOE and sex for the NeuroChip was more predictive (AUPRC=85.5%) than the results 

of whole genome PRS with APOE, sex and age at death for the NeuroChip (81.5%). The 

predictive ability of synaptic PRS with APOE and sex for the NeuroX (AUROC=72.5%) 

however was less predictive than whole genome PRS with APOE and sex for the 

NeuroX (73.0%). The predictive ability for the combined model PRS with APOE and sex 

was calculated using AUROC and AUPRC as the proportional difference between cases 

and controls is slightly reduced but the imbalance may still be a factor affecting 

predictive ability, as shown with a slightly greater value of AUPRC (77.5%) than AUROC 

(74.2%). A predictive ability of 77.5% falls within the boundaries of a useful predictive 

model for clinical utility.  

Identification of multiple SNPs within the same gene is a stronger indicator of 

association of the gene with disease status; the number of variants, which may not all 

be present within the same individual, may identify the dysfunction of such proteins 

produced from these genes would influence disease pathology. Future work would 

include research individual SNPs from all models and how their variation affects 

disease pathology.  

The comparison of the synaptic PRS to whole genome PRS identified that not all 

variants present in the synaptic PRS were present in the full model, which may have 
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been expected. This result may be due to the clumping algorithm removing such SNPs 

from the whole genome PRS due to a more significantly associated SNP being present 

within the tested LD window. It could therefore be considered that there may be SNPs 

outside the gene ranges that are affecting disease risk. The possibility of this could be 

further explored by adjusting the gene ranges to include SNPs up- and downstream of 

the gene to identify those with a regulatory effect on gene expression; although there 

is no distinction of how far away a regulatory SNP can be from a gene to an effect. 

The trends of decile scoring of the combined model show correlation between the 

distribution of controls in both datasets, the combined cases also represented a 

greater risk than controls. There is a more apparent cross-over amongst samples in 

the synaptic PRS analysis than the whole genome PRS analysis of individual arrays, 

which is also confirmed by predictive ability calculated as an AUROC of 74.2% and 

AUPRC of 77.5%. Decile scoring was useful at identifying outliers, inferring in some 

cases synaptic dysfunction may be a standalone risk factor in AD pathogenesis. 

Association testing of the best model SNPs can validate whether the associations 

calculated in a meta-analysis match the associations made in a smaller dataset. 

Although many SNPs matched associated effect, the effect sizes would not be 

considerably similar due to the numbers of cases and controls used in the base 

dataset providing a more accurate representation of the effect in the European 

population. In many of the SNPs which did not agree with IGAP, cases and controls in 

the target dataset shared similar frequencies of effect alleles; this is likely due to the 

SNPs used in PRS analysis representing common variation, with a minor allele 

frequency > 5%.  
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The results of this study identify a correlation between polygenic risk from synaptic 

genes and whole genome PRS. The results provide a starting point for further research 

of the previously unreported genes such as DLG2. 
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6 Polygenic risk scoring as a predictor of Alzheimer’s 
disease 

6.1 Perspective 

Polygenic risk scoring was conducted on a cohort of late-onset Alzheimer’s disease 

cases and neurologically healthy controls from the Brains for Dementia Research 

(BDR) resource, based on summary statistics from the International Genomics of 

Alzheimer’s disease Project (IGAP) meta-analysis (Chapter 3). PRSice-2 was then used 

to additionally generate PRS on living samples genotyped on the NeuroChip array, 

either with an initial diagnosis of mild cognitive impairment (MCI) or undiagnosed. 

The samples were modelled based on the distribution of LOAD cases and controls to 

predict likelihood of developing AD. 

Previous analysis of this cohort was conducted using an earlier version of PRSice-2 

software on samples from the first two batches of the BDR cohort and individuals 

diagnosed with MCI recruited by the inflammation, cognition, and stress (ICOS) 

longitudinal study. MCI samples were tested against the best model determined for 

LOAD cases and controls and categorised based on conversion to AD during the 

period covered by the study. The results showed conversion from MCI to AD could be 

predicted (area under the precision-recall curve; AUC) with 61% accuracy, with a 

significant increase in PRS across diagnosis groups from control > non-converter > 

converter > LOAD (Chaudhury et al., 2019). When ICOS samples were sorted into 

deciles of increasing risk, a greater proportion of patients who converted to AD were 

observed at higher deciles with the opposite being seen in non-converting MCI 

patients, similar to the trends observed between LOAD cases and controls, suggesting 

an association between genetic risk of disease and likelihood of conversion to AD. 
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The primary aim of this study was to determine whether the genetic risk of AD in 

living patients, either undiagnosed or with MCI, based on an AD case v control model 

can be used to predict likelihood of developing AD using updated PRS analysis 

software. 

6.2 Samples 

DNA was isolated from blood and/or brain tissue from all BDR (n=1172) and ICOS 

samples (n=128). Lab procedures were carried out by T. Patel following methods as 

described (Section 2.1). All samples were genotyped using the NeuroChip array. 

Quality control of the genotyping data was completed using GenomeStudio v2 and 

PLINK (Section 2.3.3). Samples were checked for call rate, relatedness, diversion from 

European ancestry, and heterozygosity; SNPs were controlled for call rate and 

adherence to Hardy-Weinberg equilibrium. As a result of quality controls, there were 

404 living, undiagnosed samples available for analysis from the BDR resource and 124 

samples with a clinical diagnosis of either MCI or confirmed conversion to dementia 

from the ICOS study (Table 14), genotyped for 477,720 SNPs. SNPs associated with 

APOE status were imputed based on chromosome 19 genotype data. 
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Table 14: Demographics of predictive PRS samples 

BDR-recruited individuals were recruited from across the UK: from universities in Bristol, Manchester, Newcastle, Oxford, and King’s College London; ICOS 
study samples were recruited from Southampton. The number and percentage of females in each group is also shown as well as the number of individuals 
with at least one APOE ε4 allele and additionally those who were ε4ε4 homozygotes. 

Resource Phenotype N Females (%) APOE ε4+ (%) APOE ε4ε4 (%) 

BDR Undiagnosed 404 252 (62.4) 109 (27.0) 7 (1.7) 

ICOS MCI 124 48 (38.7) 55 (44.4) 9 (7.3) 
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6.3 Polygenic risk scoring 

Predictive PRS analysis (Figure 13) was tested on 404 undiagnosed individuals and 124 

MCI cases using the SNPs present at the best model determined between 

pathologically confirmed 358 LOAD cases and 217 controls (Chapter 3), followed by 

the inclusion of APOE ε status SNPs. Individuals were given arbitrary phenotypes of 

case or control status for PRSice-2 to generate PRS and the model fitness and 

significance results were disregarded. As the results of model were being disregarded, 

covariates were not introduced to modelling through logistic regression analysis. The 

target dataset was formed using PLINK by extracting the SNPs which were present in 

the best model and APOE was included by later merging with a dataset of calls for 

both SNPs of target samples. 

6.3.1 Summary 

Mean individual PRS at the best model was calculated as 0.00121 with a standard 

deviation of ±0.00264. The model was then tested with the introduction of SNPs 

associated with APOE ε status (rs429358 and rs7412), where mean PRS with APOE 

was calculated as 0.00264±0.00399. 

Further statistical analysis included decile scoring, based on the boundaries 

determined by the PRS of LOAD cases and controls. The samples were then separated 

by phenotype to distinguish between undiagnosed and MCI cases, given in Table 15, 

and presented in Figure 14. The results show distribution of samples similar to 

previous observations of distribution amongst combined groups, representing the 

diversity in scores which may be observed in a general population.  
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Figure 13: Analysis pipeline for predictive PRS of undiagnosed and MCI samples 

The figure outlines the process of predictive polygenic risk scoring of a cohort of 
undiagnosed BDR-recruited samples and MCI cases from the ICOS study. Analysis was 
run on the NeuroChip-genotyped samples, PRS were generated based on the best 
model determined in analysis of LOAD cases against controls. Samples were 
distributed according to decile scoring used in previous analysis as well as 
classification into tiers of increasing risk from low, moderate, high to severe risk. 
Estimates were made of number of expected AD cases in undiagnosed controls; 
estimated AD case numbers in MCI cases were compared to observed conversion 
rates from the ICOS longitudinal study.  
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Control - 73 112 28 2 - 

LOAD - 40 159 126 31 - 

Odds Ratio - 0.2 0.7 3.7 10.2 - 

Undiagnosed 2 125 207 67 3 0 

MCI 0 34 54 30 4 2 

 

Quartile <1 1 (Low) 2 (Moderate) 3 (High) 4 (Severe) >4 

MCI 0 34 54 30 4 2 

MCI > AD 0 14 20 15 1 0 

MCI > Other 0 0 5 2 0 1 

Non-converters 0 20 29 13 3 1 

Conversion rate - 41% 46% 57% 25% 50% 
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Decile <1 1 2 3 4 5 6 7 8 9 10 >10 

Controls - 6 26 33 32 37 37 7 24 11 2 - 

LOAD - 5 11 21 22 32 51 59 72 44 39 - 

Undiagnosed 2 19 63 113 82 55 40 23 5 2 0 0 

MCI 0 4 18 28 21 17 20 8 3 3 0 2 

 

Table 15: Distribution of predictive PRS samples by decile scoring 

The table shows the results of decile scoring on the BDR cohort LOAD cases and controls (Results 1) alongside distribution of undiagnosed BDR samples and 
MCI ICOS samples. The number of individuals within each decile, determined from LOAD cases and controls, is given; outliers of the decile boundaries from 
the undiagnosed groups were included. The results show the greatest proportion of undiagnosed individuals and MCI cases in the third decile.  
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Figure 14: Distribution of predictive PRS by decile scoring 

The figure shows the proportion of BDR undiagnosed (purple) and ICOS MCI (yellow) samples when sorted into deciles according to observed limits in LOAD 
cases and controls. Proportion was used as a replacement of distribution to counter the difference in numbers of samples per cohort; proportion was 
calculated as the number of samples within a decile divided by number of samples across all deciles for each test group. Undiagnosed BDR samples show 
normal distribution with a positive skew which peaks at the third decile. The ICOS MCI samples show bimodal distribution with the first peak in the third 
decile and another in the sixth decile. Although no samples were present in the tenth decile, there are MCI samples with a higher score than any BDR LOAD 
case. 
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6.3.2 Risk prediction 

Prediction of disease status in undiagnosed individuals may be achieved by 

considering the odds ratio observed in LOAD v Control. Odds ratio is calculated by 

identifying the number of cases and controls which fall within and outside a selection 

criterion. With the number of samples present within each decile being too few, the 

alternative was to categorise samples by quartiles which may be indicative of low, 

moderate, high, and severe risk according to polygenic risk (Table 16). The results 

show individuals whose PRS falls within the first quartile have a 1 in 5 chance of 

developing AD whilst individuals whose scores fall within the fourth quartile have 

more than 10× greater risk of developing AD. 
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Quartile <1 1 (Low) 2 (Moderate) 3 (High) 4 (Severe) >4 

Control - 73 112 28 2 - 

LOAD - 40 159 126 31 - 

Odds Ratio - 0.2 0.7 3.7 10.2 - 

Undiagnosed 2 125 207 67 3 0 

MCI 0 34 54 30 4 2 

 

Table 16: Distribution of samples by quartile scoring 

The table shows the results of the BDR cohort LOAD cases and controls (Results 1) alongside distribution of undiagnosed BDR samples and MCI ICOS samples 
into quartiles of increased risk. An odds ratio is calculated for each quartile based on the number of LOAD cases and controls present within. The number of 
individuals within each quartile, determined from LOAD cases and controls, is given; outliers of the boundaries from the undiagnosed groups are included. 
Undiagnosed BDR individuals who score below the ‘low’ risk category have a further decreased likelihood of developing AD and MCI cases with a PRS greater 
than the ‘severe’ risk category have an even greater likelihood of developing AD. 
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Predicting probability of AD or other dementia sub-types in sample groups from odds 

ratio was attempted by categorising into tiers of risk. From the observed odds ratio it 

was calculated that up to 21 of the 125 undiagnosed BDR samples with ‘low’ risk, 

around 85 of the 207 with ‘moderate’ risk, up to 53 of the 67 with ‘high’ risk, and all 3 

individuals with ‘severe’ risk would expect to develop AD. With MCI cases, the 

expected outcome according to odds ratios would be up to 6 of the 34 cases with 

‘low’ risk, around 22 of the 54 cases with ‘moderate’ risk, up to 24 of the 30 cases 

with ‘high’ risk, and all 6 cases with ‘severe’ or higher risk would develop AD.  

Based on available data on conversion to AD and other dementia sub-types 

throughout the ICOS study, comparisons could be made regarding the predicted 

probability of and resulting diagnosis. It was reported that within 36 months, 50 the 

124 MCI cases converted to AD and 8 converted to other dementia sub-types 

(dementia with Lewy bodies=2, vascular dementia=2, mixed dementia=4). The rate of 

conversion was found to be 47% overall; the highest conversion rate was observed in 

those within a ‘high’ risk category (57%) with those in ‘low’ and ‘moderate’ risk 

categories converted below the overall conversion rate (Table 17). 
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Table 17: Distribution of MCI conversion by quartile scoring 

The table shows the results of MCI ICOS samples spread into quartiles of increased risk, further categorised by clinical diagnosis 36 months from recruitment. 
The number of individuals within each quartile, determined from LOAD cases and controls, is given; outliers of the boundaries from the MCI samples are 
included. Conversion rate was calculated based on the proportion within each quartile with reported conversion. Non-converters are considered those who 
continue to suffer from MCI or are yet to convert to dementia. 

Quartile <1 1 (Low) 2 (Moderate) 3 (High) 4 (Severe) >4 

All MCI 0 34 54 30 4 2 

MCI > AD 0 14 20 15 1 0 

MCI > Other 0 0 5 2 0 1 

Non-converters 0 20 29 13 3 1 

Conversion rate - 41% 46% 57% 25% 50% 
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6.4 Discussion 

PRSice is typically used to model the difference between binary phenotypes and with 

absence of this in undiagnosed samples, the software has limited function and use for 

predicting risk. In previous work on the ICOS MCI cohort, the difference in PRS 

between converters and non-converters was tested but the predictive ability was 

much lower compared to LOAD cases v controls; this was primarily due to all MCI 

cases having symptoms of neurodegeneration and could not be classed as 

neurologically healthy controls; sample numbers for this analysis are low and there 

may not be sufficient power to predict. Risk categorisation was an alternative 

approach to identifying more at-risk individuals than identifying genetic variation 

associated with conversion.  

The use of case v control can be informative in determining where individuals lie on a 

scale of risk, and previous analysis which confirms the correlation between score and 

risk of LOAD provides the ability to make predictions. The results are, however, based 

on a limited number of samples and therefore the confidence of these predictions 

cannot be entirely accurate, given that there are more undiagnosed individuals in the 

BDR (n=404) than either LOAD cases (n=358) or controls (n=217).  

As the scale by which undiagnosed samples were compared was limited by the range 

of scores observed in the BDR cases and controls, there were instances where 

individuals fell outside the predetermined boundaries. As more LOAD cases and 

controls are genotyped and tested in the future, the boundaries specific to this model 

and the SNPs involved may change. An alternative approach to setting the limits 

would be to generate the PRS of a positive and negative control for the model; a 

positive control would harbour all the risk variants identified in a model with no 

protective variants whilst the negative control would represent the opposite. These 
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boundary samples would then provide the definitive limits for scores individuals could 

have, however unlikely an individual is to harbour all risk or protective variants, if that 

were biologically possible.  

Although the expected number of AD cases from MCI samples based on odds ratios 

and the observed number of conversions to dementia in the cohort was identical 

(n=58), there was a discrepancy with the expected conversions from each risk group. 

The study showed more individuals with ‘low’ and ‘moderate’ risk converted to 

dementia than expected whilst fewer MCI cases with ‘moderate’ or greater risk 

converted. It could be suggested that genetic risk of LOAD would not be translatable 

for determining likelihood of disease for MCI cases and could be due to other factors 

which led to cognitive impairment which were not identifiable in this model, such as 

environment and lifestyle; alternatively, further study may be required to identify 

genetic risk of MCI by comparing with controls directly. Conversely, a greater number 

of individuals from this cohort may go on to develop AD within their lifetime as those 

with scores similar to AD cases have sufficient measurable risk; the potential benefit 

of therapies or preventative measures for this cohort needs to be realised.  

Categorising individuals into tiers of risk was more suitable than using decile scoring 

especially when calculating odds ratios, given the sample sizes. In the ICOS MCI 

cohort, it was observed that those within the higher tiers had already converted; 

predictions could still be made based on the remaining non-converters for who would 

still be likely to convert in the future. As the conversion rate increases with risk 

between ‘low’ and ‘high’ risk, the trend would suggest more conversions may be 

expected in the ‘severe’ risk category as well as the non-converting individual with a 

PRS higher than any LOAD cases reported. 
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The resulting estimates for undiagnosed BDR samples suggests up to 162 individuals 

may develop AD within their lifetime (40.1%), higher than the lifetime risk estimates. 

Based on the distribution of these samples in Figure 14, the observed spread was like 

that seen in controls; this may suggest the number of potential AD cases was over-

estimated. It would be impossible to identify which specific individuals within each risk 

tier would develop AD, as the estimations were based on odds ratios of sub-groups. 

Despite this, the benefit of calculating risk and categorising individual into risk tiers 

would help direct future preventative measures and treatments before the onset of 

symptoms for the most at-risk individuals. With the models by which individuals are 

measured likely to improve with more case and control data, the precision of 

identifying at-risk individuals would continue to improve. 
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7 Discussion 

7.1 Summary 

The objective of the project was to investigate polygenic risk scoring in AD using 

available genotyped data of the BDR cohort, the ICOS study and the sporadic early-

onset AD study samples. BDR is a growing initiative aiming to develop a 

comprehensive cohort of individuals for research in AD and other dementia sub-types, 

providing additional clinical observations from post-mortem examination. ICOS was a 

longitudinal study observing the effects of diagnosis of mild cognitive impairment on 

the likelihood of conversion to AD and other dementia sub-types. The sEOAD study 

dataset was compiled by institutions across the UK to identify genetic variation which 

led to AD beyond that observed in the early-onset familial form. PRS was generated to 

model the risk and protective variants in case-control data based on the observed 

associations in a larger cohort to identify and validate the common variation involved 

in AD susceptibility. 

Polygenic risk scoring was previously tested on a finalised dataset of NeuroX-

genotyped sEOAD cases and controls to determine the effectiveness of the PRSice 

software and methods for discerning between pathologically confirmed case-control 

data. Following the establishment of the next-generation of Neuro- arrays, genotyping 

and quality control was performed on the NeuroChip-genotyped BDR cohort and ICOS 

study samples, made up of three ‘batches’ of recruitment phases. Quality control and 

dataset curation was completed after each phase to generate preliminary data as well 

as testing the entire ICOS study cohort after its conclusion. 

Using finalised datasets and tested methods, PRS was carried out on 358 LOAD cases 

and 217 controls from the BDR cohort genotyped on the NeuroChip array (Chapter 3), 

408 sEOAD cases and 436 controls genotyped on the NeuroX array (Chapter 4), 358 
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LOAD cases, 408 sEOAD cases and 653 controls using combined imputed genotype 

data for a subset of genes expressed at the synapse (Chapter 5), and 124 MCI cases 

and 404 undiagnosed samples genotyped on the NeuroChip array based on results 

from LOAD v Control PRS (Chapter 6). 

The first batch of the BDR cohort consisted of 248 LOAD cases and 105 controls, 

which increased to 302 LOAD cases and 128 controls with the second batch and 

finalised with 358 LOAD cases and 217 controls. The results in Chapter 3 show a 

predictive model for distinguishing between cases and controls was achieved from 

genotyped data at a p-value threshold of 1.4×10-4 using 134 SNPs; inclusion of APOE 

SNPs and covariates for sex and age at death improved to the model whilst TaqMan 

assayed GWAS hits had less effect as most SNPs were represented in the model by 

proxy SNPs. The greatest predictive ability calculated as AUPRC was 81.5%, sufficiently 

predictive to be used in a clinical setting. 

The NeuroX dataset, consisting of 408 sEOAD cases and 436 controls, was tested using 

an improved version of PRSice and alternative methods to compare results to 

previous studies of the cohort. The results in Chapter 4 found the most predictive 

genotyped model to be identical to the identified model of PRS alone, subject to 

further improvement with inclusion of APOE SNPs and sex as a covariate. Imputation 

of the NeuroX dataset implicated additional loci in the model but showed a similar 

level of predictive ability to the genotyped dataset. The most predictive model was 

identified as the genotyped model with the inclusion of APOE SNPs and sex as 

covariate, calculated as AUROC to be 73.0%; this may not be sufficient for use in a 

clinical setting, however the additional genes implicated in the model provide avenues 

for further research into the AD sub-type. 
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Synaptic PRS analysis was completed to identify predictive models in the imputed 

NeuroChip and NeuroX datasets independently, to predict risk of AD from variation in 

genes expressed at the synapse. An additional model was formed from combining 

both cohorts by SNPs common to both imputed datasets. The results in Chapter 5 

showed a predictive model was found for both independent target datasets, neither 

was as predictive as whole genome PRS. The combined dataset also showed 

predictive ability, the distribution of samples by this measure also showed some 

divergences to the trends seen in whole genome PRS, which may be of note. 

Additionally, genes previously not considered to be associated with AD risk have been 

identified and require more research. 

The best model determined in Chapter 3 was then used to calculate PRS in individuals 

without AD or control diagnosis to predict likelihood of AD, this included 404 

undiagnosed, BDR-recruited individuals and 124 individuals with a prior diagnosis of 

mild cognitive impairment. The results of Chapter 6 found a large distribution of both 

sample groups when split into deciles and subsequently categorised into quartile tiers 

of risk. Odds ratio of developing AD was calculated from LOAD case v control and used 

to estimate probability of AD in undiagnosed groups, estimates for the MCI cohort 

were also compared to observed clinical diagnosis of conversion to AD or other 

dementia sub-types which suggested and under-estimation with the possibility of 

other potential later conversions.  

7.2 Genotyping 

The quality control of NeuroChip genotyped data was the most time-consuming stage 

of the study; from the point of receiving the raw IDAT data files to having a fully 

curated dataset for analysis required many months of work. This stage was repeated 

each time a new batch was received as additional samples would produce clearer 
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clusters for SNPs and improve overall quality from the previous dataset. By the third 

batch, many of the SNP allocations were clearer and the process required less time. 

The improvements from repeating quality controls with previous batches when the 

final batch was received led to the re-introduction of samples which were previously 

observed to have low call rate and excluded in the first two batches. The cluster file 

produced from successful quality control of over 1000 samples on the NeuroChip can 

be useful for any other studies using the genotyped NeuroChip data, saving time and 

improving the ability to assign calls. 

The genotyped data for the NeuroX was already produced and curated and all analysis 

was completed based on the assumption all SNPs calls were accurate and under the 

same level of scrutiny as with NeuroChip genotyping. Imputation provided the option 

to find calls for a greater number of SNPs, based on the genotyping, some of which 

were useful for generating PRS and many more present in both imputed NeuroChip 

and NeuroX datasets. This highlights the utility of research approaches to include 

imputation of genotyped data for analysis to get the most out of arrays data and gives 

rise to the potential of merging datasets to form larger cohorts for meta-analyses. 

7.3 PRSice 

PRSice was used throughout the study as polygenic risk scoring software, despite 

other methods and software being available. The general method for deriving any PRS 

comes from using the PLINK score function, however, the PRSice script is written to 

test multiple thresholds using computational processing speed to generate and test 

more data than testing preselected thresholds or SNPs. Other PRS analysis methods 

include testing a set number of SNPs such as only GWAS hits, which is often referred 

to in literature as a polygenic hazard score. Although the primary aim is to develop a 

functional predictive model using this approach, the use of PRSice can lead to greater 



Discussion 

146 
 

understanding of the effects of variation across the genome, independent of the 

significance seen in more researched and understood SNPs. 

There are some major caveats to using PRS which may be addressed in future updates 

as the field of genomics continues to grow. Most GWAS look at the effects and 

associations seen in autosomal chromosomes (1-22) and do not account for how 

variation in allosomes or mitochondria may affect risk of disease. The developers of 

PRSice are continuing to work on the inclusion of non-diploid chromosomes into PRS 

analysis; this also remains impeded by the absence of association data for these 

chromosomes in meta-analysis summary statistics, which are used as base datasets. It 

is reasonable to predict that as the field of bioinformatics and computational statistics 

develops, this issue will be resolved; for now, it remains best practice to develop 

genetics models and control for sex with logistic regression.  

As genomics further developed, it had become more apparent that some genetic 

variation is not bi-allelic in nature. This caused issues with modelling risk as the 

current approach to computing risk involves identifying a polymorphism, the major 

allele and then calculating effect and association based on the frequency of the effect 

allele. In cases where a polymorphism is multi-allelic, the effect the variation has on 

overall disease risk may vary depending on the nucleotide change, which is why 

PRSice actively identifies and removes SNPs it observes to be multi-allelic in nature. 

PRSice does this by comparing the record A1 (major) and A2 (effect) alleles in the 

base, target, and LD datasets to confirm a match. This works in most instances 

however arrays like the NeuroChip seek to identify the nucleotide change for some 

known multi-allelic SNPs by genotyping the point of variation for the presence of 

whichever allele the individual harbours, only for PRSice to disregard these SNPs from 

analysis entirely. Online SNP databases like dbSNP identify many of the SNPs used in 

modelling to be multi-allelic, which may suggest they should be disregarded from the 
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study post-hoc, but it can also be justified that these SNPs were introduced with 

confidence that the observed effect alleles match the effect allele of the other 

datasets and the recorded association is bi-allelic.  

The default settings for PRSice-2 included intervals of testing to a million models and 

testing between the p-value thresholds (Pt) of 1×10-6 to 1. PRSice-2 can however test 

at smaller intervals than this too, at intervals of 10-10, and produce 10 billion models of 

PRS starting from 1×10-10 to compare between. This effect may have led to alternative 

models being identified for any results, as it would primarily affect the models in the 

lower boundaries of testing (between 1×10-10 and 1×10-6). The defaults were used 

across all analysis to follow procedures advised by PRSice, and the presence of few 

SNPs in any quality-controlled target datasets with significance ≤ 1×10-6 (NeuroX = 10, 

imputed NeuroX = 25, NeuroChip = 16, imputed NeuroChip = 27). Further expansion 

of analysis in future work may address the potential of generating risk in more 

significant models, one suggestion may be to only model SNPs which are considered 

to have reached genome-wide significance (p≤1×10-8). 

7.3.1 Decile scoring 

There were many appropriate approaches to categorise sample groups by risk and the 

most used was distribution of samples into deciles. This approach can also vary by 

separating the number of samples into tenths instead of the dividing the score into 

tenths, so the proportion within each cohort is the same and the average score of 

each decile would then not be equidistant. This approach may give additional 

information about the nature of PRS in the cohort, and could be tested on case 

proportion, control proportion and proportion of all individuals. However, the 

approach to split by score and observe the relationship of decile to proportion of 

cases or controls proved effective.  
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The changes to methods seen with using PRS as a predictor (Chapter 6) saw the use of 

quartiles instead of deciles or even percentiles to break down the cohort into smaller 

risk groups which can give risk by score, odds ratio, with greater confidence. This 

could have still been measured using deciles, but the number of samples within each 

decile was not sufficient to calculate an odds ratio which would appropriately reflect 

the risk observed by individuals within.  

It was previously mentioned that it may be more useful to compare PRS of individuals 

for a specific model using a positive control with maximum risk and minimum 

protection and a negative control with minimum risk and maximum protection 

(according to the base dataset) to set the upper and lower boundaries of decile 

scoring, respectively. 

7.4 Outcomes 

The results from Chapter 3 identify a predictive model for determining between LOAD 

cases and controls when controlling for sex and age at death. With other factors 

included in modelling, this may improve further but without the consideration of 

covariates, a model of genetic risk including APOE could be utilised for predicting risk 

in individuals. This model is likely to change in future as more samples are recruited 

and improvements to the PRS methods continue, as seen with the results published in 

2019 differ from those available now. The eventual aim is to develop a model which 

can be derived from across multiple arrays or from a limited number of assays to 

determine a consistent and accurate risk. 

7.4.1 Gene discovery 

The SNPs present in imputed models for both LOAD and sEOAD were identified, the 

genes of exonic SNPs and reported in Table 18. Many of the genes identified have 

previously been implicated in AD risk; newly reported genes contain SNPs with a p-
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value of significance ≤ 2.1×10-5. These genes warrant further study to understand 

their involvement in AD pathology. Intergenic SNPs were also found in both models, 

alongside SNPs in long intergenic non-protein coding RNA (LINC) and uncharacterised 

locus (LOC) regions. Whilst these variants are not present in gene-coding regions, 

their presence suggests involvement in AD pathology. 

Chromosome Genes 

1 VAV3, RGS5, KIF21B, IL19, CR1, CR1L, SMYD3 

2 BIN1, PPP1R1C, MYT1L, KANSL1L, INPP5D, NDUFAF7, NRXN1, 
ZNF638 

3 OSBPL10 

4 COL25A1, RAPGEF2, FRG1-DT, FAM114A1, SLC4A4 

5 TMED7, MEGF10, PSD2, NRG2, SPRY4-AS1, GRIA1, PRLR, MEF2C-
AS1 

6 AFG1L, CCDC162P, PRKN 

7 MOGAT3, BMT2, ZYX, EPHA1, EPHA1-AS1, DPP6, PMS2P1 

8 SNX31, PTK2B, EPHX2, CLU, CSMD1, XKR9, NDUFAF6 

9 ABCA1 

10 TCERG1L, PIP4K2A, IPMK, TLL2 

11 SNX19, NAV2, MADD, CELF1, NDUFS3, MS4A4A, MS4A6E, MARK2, 
SHANK2, GUCY2EP, PICALM, AP2A2, CNTN5 

12 OAS1, CACNA1C, POC1B 

13 MCF2L, RASA3 

14 EML5, SLC24A4 

15 SPPL2A, EFL1, ZNF710, RGMA 

16 CLEC16A, DNAH3, RAB11FIP3, FTO, MTSS2 

17 ITGB3, ABI3, ZNF652, MINK1, SCIMP, SDCBP2, TSPOAP1, GAS7 

18 L3MBTL4, CCDC102B 

19 CNN2, ABCA7, SSBP4, ACP7, CEACAM22P, PVR, TRAPPC6A, 
EXOC3L2, OPA3, QPCTL, FBXO46, CD33 

20 SLC9A8, CASS4 

 

Table 18: Genes identified in PRS analyses 

The table lists the genes, categorised by chromosome (Chr) with variants present in 
both LOAD and sEOAD imputed models. 
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7.5 Limitations 

As time and access became a limiting factor during the end stages of analysis, there 

were many aspects of research which were available but not able to be considered in 

the results. Some factors may have affected modelling post-PRS, as well as additional 

features to compare PRS results to. Examples of modelling factors included principal 

component analysis of genetic diversity and effects from which batch the sample was 

collected in and centre from which samples were recruited. As some analyses involve 

living samples, confirmation of clinical diagnoses can only be achieved with 

postmortem examination; whilst all analyses were completed with the most accurate 

data, incorrect diagnoses will impact the sensitivity and specificity of modelling. 

Additional clinical information was available with the BDR resource, measuring 

lifestyle and environmental factors. As these factors affect risk of developing AD, they 

would provide beneficial insight towards understanding disease classification of AD 

cases with low PRS and controls with high PRS. Researching the clinical information 

with greatest utility and setting standards in practice when recruiting participants will 

improve the ability to conduct these analyses. 

7.6 Future work 

The continuation of this work would entail genotyping new samples on the 

NeuroBooster array; PRS analyses to predict likelihood of other dementia sub-types 

and samples of other ethnicity groups; and utilising artificial intelligence (AI) and 

machine learning to improve PRS methods. 

7.6.1 BDR resource 

The BDR cohort is utilised by many dementia research groups, benefitting from the 

availability of clinical features, blood and brain tissue and samples from several 
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dementia sub-types. Access to genetic data when conducting research can support 

candidate selection and reporting association. 

7.6.2 NeuroBooster array 

The third iteration of neuro-specific arrays is the NeuroBooster array; the array hosts 

SNPs associated with neurological disorders discovered since the NeuroChip was 

developed. Newly recruited BDR samples are now genotyped on this array, where 

imputation can support backwards compatibility with the NeuroX and NeuroChip 

genotyped samples. 

7.6.3 Targets for analysis 

During this study, there were insufficient sample numbers for PRS analysis of cohorts 

genotyped on the BDR with non-AD dementia sub-type classification, such as FTD and 

DLB. Increased recruitment of participants with these forms of dementia and large-

scale GWAS of these dementia sub-types can provide sufficient power for analysis. 

From an equality, diversity and inclusion perspective, the historic non-participation of 

individuals of non-European ancestry in research has led to limited dementia studies 

of these populations; this has been addressed in other countries through actively 

engaging these communities and this approach needs to be taken for research in the 

UK to reduce the potential of bias existing within genetic research. 

7.6.4 Machine learning and AI 

Machine learning has already been utilised in imputation methodologies, furthering 

the use of this technology to select SNPs for PRS analysis can improve accuracy of PRS 

models. The significant advancements of generative AI in recent years holds potential 

utility for PRS analysis. Developing this technology for extensive variant discovery and 

analysis, which is currently unachievable due to limited time and resources to conduct 
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research, can accelerate the scale of genetic research to the same effect as seen with  

genotyping and sequencing technology advancements.   
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7.7 Conclusion 

This PhD has improved the understanding and utility of analysing PRS in AD, 

comparing early and late-onset and as a toll for prediction. The published articles 

during this period have supported development of the research area, cited in various 

other papers and providing effective methods for analysis. The outputs delivered from 

genotyping have enhanced the current and future research into these cohorts by 

other dementia research groups. 

The continuation of this research is necessary for driving our understanding of the 

role genetic variation plays in AD risk and pathology. The potential that recent 

advancements in technology provide create opportunities for conducting more 

comprehensive analysis over the next few years. Therefore, we can be optimistic 

about the improvements in diagnosing and treating dementia and ultimately quality 

of life of sufferers.
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