
Mathematical Models of Thrombin Generation

Matthew Owen

November 20, 2023



Acknowledgements

First and foremost, I would like to extend my deepest gratitude to my supervisors
for their continuous guidance and support, and without whom this work would
not have been possible. Prof. John King, who provided both mathematical insight
and valuable critique of my writing, without which I would not have seen such
improvement; Prof. Etienne Farcot, who provided insight into chemical kinetic
models and first introduced me to Chemical Reaction Network Theory; Prof. Ali-
son Goodall, who helped me to improve both my biological understanding and my
writing; Dr Joy Wright, who answered my many questions on the data collection
methods; Prof. Edward Tuddenham, who provided insight and clarification into
the relevant biochemistry; and Dr Joanne Dunster, who provided both mathemat-
ical modelling insight and helped me to manage the inter-disciplinary side of this
work.

I am incredibly thankful for the support of the MRC’s IMPACT DTP, for
funding this research and for the training they provided. I would like to give spe-
cial thanks to Dr Karen Robinson, the University of Nottingham IMPACT DTP
Lead, for making me feel so welcomed into the DTP.

I am grateful for access to the University of Nottingham’s Augusta HPC ser-
vice, which I make use of throughout this work.

I am also grateful for the mathematical insight and critique provided by Prof.
Markus Owen and Prof. Ruediger Thul during the Annual Reviews.

I would also like to thank Prof. Andrea Cangiani, Prof. Edward Hall, and
Prof. Jeremy Levesley, for first sending me down this path.

Finally, I would like to thank my Mum, Nan, and Granddad, for their support
throughout my life, both as a student and before; my wife, Jessica Owen, for her
unwavering confidence and tolerance, particularly in these final months; and my
cats, Lily and Frankie, for their emotional support.

1



Abstract

Thrombin generation is a key step in the formation of a blood clot. It is the only
enzyme able to cleave the protein fibrinogen into fibrin, which is vital to both
the structure and stability of a clot. The formation of thrombin is the result of
many positive and negative feedback loops, controlled by a series of proteins called
coagulation factors, whose concentrations vary both between individuals and over
time. It is the combined effects of all coagulation factors that regulate both the
rate and amount of thrombin that is generated.

Many models have been developed to predict the rate of thrombin genera-
tion and how it varies under differing conditions. An accurate and reliable model
could prove to be a vital tool in drug development, such as for antithrombotics,
and could aid in improving our understanding of both haemophilia and cardio-
vascular disease. However, while these models are validated qualitatively against
variation in a few coagulation factors, they have rarely been validated quantita-
tively under variation in all factors, matching the variation seen in patient data.
This sets up the key questions of this work; can any of these models accurately
predict thrombin generation across variation in all coagulation factors, and if not,
what changes need to be made to achieve this?

In this work, we assess the accuracy of eight existing models against coagula-
tion data from a large cohort of donors (n=348), showing none of these models
are able to reliably reproduce thrombin generation. We then conduct multiple
stages of exploratory analysis, identifying which reactions, reaction rates and co-
agulation factors control each of the model’s predictions. Most notably, we observe
a large amount of uncertainty in the reaction rates used to construct these models.

We construct a new model of thrombin generation that quantifies the uncer-
tainty in its reaction rates and addresses other issues seen in the current models.
We use this new model to show that the uncertainty in these reaction rates re-
sults in high levels of uncertainty in model outputs and that the use of parameter
inference methods significantly reduces this uncertainty.

We conduct a simulation study, identifying improvements in the parameter
inference methods we use and test assumptions made during model development.

Finally, we outline future improvements and key next steps in the development
of these models, most prominently, how to analyse and address model discrepancy
and improve model specification.
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Chapter 1

Introduction

1.1 Biology

1.1.1 Haemostasis

Haemostasis is the process by which blood loss is limited upon damage to a blood
vessel [1, 2]. Traditionally, haemostasis was separated into four distinct stages [3].

The first of these stages is vasoconstriction, in which the blood vessel narrows
as a response to being damaged. This acts as a very rapid response where the mus-
cles in the vessel walls constrict, reducing flow and thereby limiting the amount
of blood that can be lost.

The second stage, commonly called primary haemostasis, is the formation of a
platelet plug. In the seconds following damage to the vessel walls, platelets bind
to vWF (von Willebrand Factor) and collagen is exposed to the blood. Over the
next few minutes, these platelets can be activated by, among other things, colla-
gen, damaged red blood cells, and ADP (Adenosine DiPhosphate) released from
other activated platelets. Activation of platelets results in them becoming more
adhesive, and in a change in their shape from discoid to round, followed by the
development of pseudopodia. These changes allow them to adhere to the vessel
wall and to aggregate together with other platelets by binding to the protein fib-
rinogen, forming the platelet plug. If the vessel damage is small enough, then this
is sufficient to stop blood loss. For larger damage, it is necessary for coagulation
to take place.

Coagulation, the third stage, involves a series of enzymatic reactions, initi-
ated by collagen and Tissue Factor (TF), a protein present on the surface of
sub-endothelial cells, which is exposed to the blood upon damage to the vessel
wall. The goal of coagulation is to activate prothrombin into thrombin, which is
able to cleave fibrinogen into fibrin monomers, which then bind together forming
long fibrin polymers. These fibrin polymers, through cross-linking by factor XIII,
form a complex fibrin mesh, trapping red blood cells and platelets, stabilising the
platelet plug, and further reducing blood loss. Coagulation begins almost im-
mediately upon damage to the vessel wall. However, this process takes multiple
minutes to build up sufficient amounts of thrombin for a response to be noticeable
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and is typically complete after around 30 minutes.

The final stage of haemostasis is fibrinolysis, which governs the breakdown of
the formed clot. It also consists of a series of enzymatic reactions, although a
much smaller system than for coagulation, which culminate in the production of
the enzyme plasmin that is able to cleave fibrin, thus breaking the clot over the
following couple of hours.

1.1.2 The Coagulation Cascade

The coagulation cascade consists of many protein-protein interactions culminating
in the formation of fibrin.

The cascade model of coagulation remains similar in structure to the one orig-
inally proposed in 1964 [4, 5]. It consists of two pathways leading to thrombin
activation, the extrinsic pathway which covers the reactions initiated by tissue fac-
tor, and the intrinsic pathway for the reactions resulting from contact activation.
A simplified layout of the reactions in the coagulation cascade is given in Figure
1.1.

Figure 1.1: A network diagram demonstrating a basic form of the coagulation
cascade for both tissue factor activation and contact activation as well as inhibi-
tions caused by Antithrombin (AT) and Tissue Factor Pathway Inhibitor (TFPI).
Factors present in the blood prior to coagulation are given in bold. Two or more
fibrin monomers (FIa) can join together to form fibrin polymers. Acronyms are
described in Table 1.1.

The most relevant proteins in the coagulation cascade are the coagulation fac-
tors, a collection of serine proteases and cofactors, with each protein given a roman
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numeral, with an “a” appended to their name to denote the active form∗. These
are proteins, present in the blood plasma, six of which are serine proteases (factors
II, VII, IX, X, XI, and XII) while the two cofactors are named factor V and factor
VIII. In addition to these factors, there are two prominent inhibitors, a general
inhibitor Antithrombin (AT) which inhibits all the serine proteases and a specific
inhibitor Tissue Factor Pathway Inhibitor (TFPI) which inhibits only FXa and
TF:VIIa. The names and their corresponding abbreviations are given in Table 1.1.

Names Abbreviation

Tissue Factor TF
Fibrinogen (Fibrin) FI (FIa)

Prothrombin (Thrombin) FII (FIIa)
Meizothrombin mIIa

Factor V (Factor Va) FV (FVa)
Factor VII (Factor VIIa) FVII (FVIIa)
Factor VIII (Factor VIIIa) FVIII (FVIIIa)
Factor IX (Factor IXa) FIX (FIXa)
Factor X (Factor Xa) FX (FXa)
Factor XI (Factor XIa) FXI (FXIa)
Factor XII (Factor XIIa) FXII (FXIIa)
Factor XIII (Factor XIIIa) FXIII (FXIIIa)

Tissue Factor Pathway Inhibitor TFPI
Antithrombin AT

Protein C (Activated Protein C) PC (APC)
Protein S PS

von Willebrand Factor vWF
Prothrombinase Xa:Va
Extrinsic Tenase TF:VIIa
Intrinsic Tenase IXa:VIIIa

Table 1.1: The names and abbreviations for the proteins and complexes in the
coagulation cascade.

After exposure of TF to these proteins in the blood plasma, FVIIa rapidly
binds to TF to form the TF:VIIa complex. This TF:VIIa activates small amounts
of FX into FXa which in turn activates FII (prothrombin) into FIIa (thrombin).
This newly activated FIIa then begins a series of feedback loops, activating the
serine protease FXI and the two cofactors FV and FVIII. FXIa begins activation
of FIX to FIXa, which then binds to its cofactor FVIIIa to form the intrinsic
tenase complex (IXa:VIIIa), increasing the rate of FIXa activation of FX. This
large burst of FXa, along with its cofactor FVa, forms the prothrombinase complex
(Xa:Va), which results in the rapid activation of large amounts of prothrombin into
thrombin. As the system begins to deplete its levels of these coagulation factors,
inhibition begins to take over, with sufficient levels of AT to inhibit all coagulation

∗For notation, we will commonly write FV instead of Factor V. We also drop the F/Factor
when describing complexes, like Xa:Va, or when writing out reactions.
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factors.

1.1.3 The Cell-Based Model of Haemostasis

If these reactions occurred in solution, then the coagulation cascade would be
an accurate description of the dynamics. However, many of these reactions oc-
cur on surfaces. This led to the proposal of a cell-based model of haemostasis
[6], in which haemostasis occurs in three overlapping phases. In the first phase,
initiation, coagulation begins on TF-bearing cells where factors Xa and IIa bind
and are activated. The second phase, amplification, is where the small amounts
of thrombin that were activated on the TF-bearing cells, move to and activate
platelets. This phase contains the feedback for activation of FV and FVIII, that
both bind to platelet surfaces, and FXI which is activated in solution. The third
phase, propagation, is where the large amounts of thrombin generated lead to the
formation of the fibrin mesh, which is cross-linked by FXIII, stabilising the clot.
These three stages are demonstrated in Figure 1.2.

Figure 1.2: An overview of the cell-based model of haemostasis.

1.1.4 Phospholipids

Phospholipids make up the majority of the cell membrane [7]. Each phospholipid
consists of a hydrophilic head and two hydrophobic tails. As shown in Figure
1.3, these phospholipids are grouped together in the cell membrane as a bilayer
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with the hydrophilic heads pointing outwards and the hydrophobic tails point-
ing inwards. There are five key phospholipid groups, named based on the amino
acid in their head group, phosphatidylethanolamine (PE), phosphatidylcholine
(PC), phosphatidylglycerol (PG), phosphatidylinositol (PI) and phosphatidylser-
ine (PS). PS and PE have negatively-charge head groups and are normally found
on the inside of the cells. However, activated platelets, and membrane-bound mi-
crovesicles released from activated platelets and other cells, carry these negatively-
charged phospholipids on the outside of their membranes, and this provides a
surface for the coagulation factors to bind, accelerating their activation. When
coagulation is measured in experimental laboratory assays, a phospholipid reagent
comprising a mixture of phosphatidylcholine (PC) and the negatively charged
phosphatidylserine (PS), typically shortened to PCPS, is frequently used in the
form of phospholipid vesicles. These phospholipids provide a surface for many
reactions in the coagulation cascade and are necessary for the prothrombinase
complex which forms on negatively charged phospholipids like phosphatidylserine.

Figure 1.3: A demonstration of the phospholipid and bilayer structure.

1.1.5 Contact Activation

Factor XII can be activated in many ways with the two most prominent meth-
ods being contact with collagen at the site of vessel damage in vivo or activation
through contact with a negatively charged surface in vitro [8]. This activated
factor FXIIa then activates prekallikrein that then in turn activates more FXIIa
resulting in a positive feedback loop for FXIIa activation. Factor XIIa is able to
begin coagulation through its activation of FXI, beginning the intrinsic pathway.
Historically, contact activation was thought of as the main method of coagulation
activation in vivo. However, this has since shifted towards activation by TF with
the role of FXIIa currently being questioned [9].

1.1.6 α-Inhibitors

There are a group of proteins we refer to here as the α inhibitors. These are the
proteins α1-Anti-Trypsin, α2-Macroglobulin and α2-Anti-Plasmin. These proteins
are inhibitors of coagulation, (α1 − AT inhibits FIIa, FXa, and FXIa; α2 −M
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inhibits FIIa and FXIIa; α2 − AP inhibits FXIa and FXIIa), however, they are
not typically covered in descriptions of the coagulation cascade as they serve other
roles outside of coagulation, most prominently in fibrinolysis.

1.1.7 Protein C

Protein C is a serine protease, however, unlike the other serine proteases in the
coagulation cascade, it serves as an inhibitor of coagulation. Protein C, like the
other proteases, circulates in the plasma in its zymogen form. It is activated by the
surface-bound thrombin-thrombomodulin (IIa:TM) complex. As demonstrated in
Figure 1.4, activation of protein C presents a strong negative feedback loop in the
system in which high levels of thrombin results in high levels of activated protein
C which inhibits the cofactors FVa and FVIIIa through cleavage, reducing the
rate of activation of thrombin. Protein C is also able to increase its rate of inhibi-
tion through its cofactor protein S, however, unlike the cofactors FVa and FVIIIa,
protein S does not need to be activated to inhabit its cofactor role.

Figure 1.4: A network diagram demonstrating the coagulation cascade including
the reactions for protein C. Factors present in the blood prior to coagulation are
given in bold. Two or more fibrin monomers (FIa) can join together to form fibrin
polymers. Acronyms are described in Table 1.1.

1.1.8 Clotting Measurements

Historically, the ability of an individual’s blood to clot was measured using two
clotting assays. The first, called a Prothrombin Time test (PT) [10], measures the
function of the extrinsic system through the addition of TF to a patient’s plasma
and is measured as the time for the blood to clot (typically around 11-15 seconds).
The second test, called an Activated Partial Thromboplastin Time test (aPTT or
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PTT) [11], measures the intrinsic system similarly through addition of kaolin to
activate FXII.

While these two assays have been, and are still routinely used in hospitals to
check whether patients have a risk of bleeding, for example before they undergo
surgery, they only measure ∼5% of the thrombin that is generated in the blood;
enough to initiate coagulation. In recent years the Thrombin Generation Assay
has been developed that measures the total amount of thrombin that can be gen-
erated in the blood plasma. While not yet used clinically, this assay monitors
thrombin concentration over time. This gives a thrombin generation curve which
is typically summarised using four key summary statistics: peak concentration,
ttP (time to peak), lagtime (the time taken to reach 5% of the peak thrombin
concentration†), and ETP (endogenous thrombin potential) which is the integral
of the thrombin generation curve over the time-course of the thrombin generation
assay [12]. These summary statistics are demonstrated in Figure 1.5, in addition
to two other summary statistics we will make use of, the maximum increasing rate
and minimum decreasing rate (most negative) of the thrombin concentration.

This assay can be performed using two similar methods. In the first of these
[13], a chromogenic substrate, which is activated by thrombin, is added and the
thrombin concentration at a given time is determined by measuring the levels of
this chromogenic substrate. The activated chromogenic substrate concentration
is measured as Optical Density‡ which is proportional to its molar concentra-
tion. Due to the law of mass action, the thrombin concentration is proportional
to the derivative of the molar concentration of activated chromogenic substrate
and therefore proportional to the derivative of Optical Density. This results in
ETP being proportional to the final value of the Optical Density curve. However,
thrombin that has been inhibited by α2 −M is still able to activate this chro-
mogenic substrate. This makes measurements of free thrombin more complicated.
The amount of IIa:α2 − M can be determined at the end of the assay as only
IIa:α2−M will activate the substrate, this effect can then be quantified and after
accounting for the thrombin concentration over time, its effect can be removed
from the whole time course. This form of the assay requires platelets to be re-
moved beforehand and the formation of the fibrin mesh to be stopped.

The second method uses a fluorogenic substrate which is not affected by the
presence of α2 − M and, because it does not rely on the transmission of light
through the reaction mixture, it can measure thrombin generation in plasma both
in the presence of platelets and if fibrin is allowed to clot the blood. However,
the fluorescent signal cannot be simply converted into a measurement of thrombin
concentration. To resolve this, the fluorogenic substrate is added to a separate
thrombin sample with a known and constant concentration and measured in par-

†Many sources use slightly different measures to find a lagtime summary statistic such as
time to 2% or 5% of peak value or time to 2nM FIIa concentration.

‡Optical Density is measured by shining a light source on the sample. The activated chro-
mogenic substrate has revealed chromophores which will absorb the light, and re-emit it at a
particular wavelength. The Optical Density is a measurement of the intensity of the light at this
wavelength.
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allel with the samples being analysed. This method is known as a Calibrated
Automated Thrombogram (CAT).

Figure 1.5: An example thrombin generation assay curve labelling the key sum-
mary statistics used for describing a thrombin generation curve.

1.1.9 Coagulation Disorders

Coagulation disorders are normally split into two groups, hypercoagulable disor-
ders, also called thrombophilia, which results in excessive clotting and can lead to
heart attacks and strokes, and bleeding disorders.

Hypercoagulable disorders [14] come from either genetic defects in key coagu-
lation factor genes resulting in conditions, such as factor V Leiden [15], in which a
single point mutation in factor V renders it no longer able to be inhibited by pro-
tein C, or variations in the FII gene that lead to higher levels of prothrombin, or
reduced concentrations of inhibitors, namely antithrombin, protein C, or protein S.

While these deficiencies and mutations collectively affect around 0.4% of the
general population [14], heart disease and strokes are the two leading causes of
death worldwide, accounting for over a quarter of all deaths in 2019 (16% and
11% respectively), both of which are caused by blood clots blocking blood vessels
[16].

A common type of bleeding disorder is haemophilia, split into three different
types: haemophilia A (deficiency in FVIII), haemophilia B (deficiency in FIX),
and haemophilia C (deficiency in FXI) [17]. There are also other bleeding disor-
ders caused by deficiencies in other coagulation factors, including FX and FV as
well as deficiency of von Willebrand Factor [18], which acts as a carrier for FVIII
in the blood, protecting it from being degraded.

Haemophilia affects a smaller proportion of the population (around 0.3% of
newborn males) with haemophilia A being the most common [19]. Unfortunately,
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mortality rates for those diagnosed with haemophilia are increased by 40% relative
to the general population [20], even with recent improvements in treatment [17].

1.1.10 Data

In this work, we make use of a large coagulation data set [21] measured on
the PRAMIS (Platelet Reactivity And Myocardial Infarction Study) cohort [22].
These data are from 162 patients who suffered a myocardial infarction before
the age of 50 and 186 age, sex and smoking-status matched healthy controls.
Laboratory analysis of plasma samples from each of these individuals provided
measurements of the level of the coagulation factors (factors I, II, V, VII, VIII,
IX, X, XI, and XII), the inhibitors (AT, protein C, protein S, and TFPI), the
key haemostatic proteins TF and vWF, as well as the output from a thrombin
generation assay (both ETP and Optical Density curves), and a handful of health
related measures (concentration of low and high density lipoproteins, concentra-
tion of C-reactive protein, and demographic data on each individual such as age,
sex, smoking status, etc.). Figure 1.6 gives histograms of the coagulation factors
and inhibitors, as well as a plot demonstrating the variance in the Optical Density
curves throughout the data set. The concentrations of the coagulation factors
vary across a wide range between individuals and thrombin generation provides a
response as a combination of all of these factors.

Thrombin generation was measured in platelet-poor plasma using a chro-
mogenic substrate, Pefachrome TG, with the addition of a small peptide that
prevents the cross-linking of fibrin, allowing the plasma to remain clear (unclotted)
to allow the passage of light to the photoreceptor in the analyser. Phospholipid
was added to each sample as well as 2mM calcium chloride to initiate the coagula-
tion reaction and each plasma sample was analysed with and without the addition
of 5pM exogenous TF. This produces the measured Optical Density curves and
ETP, both of which are recorded relative to a 20-donor pooled plasma sample,
which provides a standard to compare against, reducing inter-assay variability.
Both the Optical Density curves and the measured ETP for each individual are
expressed as a percentage of the pooled plasma ETP, given as the final value of
the OD curve. The concentrations of FII, FV, FVII, FVIII, FIX, FX, FXI, FXII,
AT, protein C, protein S, and vWF were also all given as a percentage of the
20-donor plasma pool. The concentration of endogenous TF§ was reported in pM,
TFPI was given in Units/ml (a measure of activity), and fibrinogen is given in
g/L. Where patient-level factor concentrations were missing, they were assumed
to be at a healthy reference concentration.

§This TF is not present normally in the blood stream but is instead a result of the venepunc-
ture during sample collection.
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Figure 1.6: A: Histograms of the coagulation factor concentrations at the start of
the thrombin generation assay. Where units are expressed as percentages, they are
given compared to the 20-donor plasma pool. B: The mean Optical Density curves
across the patients for the with added Tissue Factor data cut. The central 50%
and 90% regions are also given (using the 5th, 25th, 75th, and 95th percentiles).

1.2 Mathematical Modelling
Thrombin generation can be modelled through chemical reaction networks. These
models produce a system of ODEs (Ordinary Differential Equations), for a given
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set of chemical reactions and reaction rates, which describe how the concentra-
tions of each species in the system changes over time. This system of ODEs can
then be solved numerically, for a given set of initial concentrations, to model the
dynamics of the system.

Here, we present a formalisation of the process for generating these ODEs
through Chemical Reaction Network Theory, followed by a short introduction of
two mathematical modelling techniques we later make use of in Section 2.7.

1.2.1 Chemical Reaction Networks

A chemical reaction network is given by N = (S,C,R), where S is the set of n
species in the network, C is the set of combinations of species that appear in the
network represented as vectors of length n, and R ⊂ C ×C is the set of reactions
in the network consisting of ordered pairs (Ci, Cj) representing the reaction which
goes from combination Ci to Cj [23].

Rate Law

The rate law gives a description of how each species in the network should change
over time based of the reactions it is involved in. Each reaction, Ci → Cj, has
a rate constant ki,j and occurs with reaction rate κi,j = ki,j

∏n
m=1 s

αi,j,m
m where

sm ∈ S and αi,j,m ∈ N0. This gives us:

dS

dt
=

∑
Ci→Cj∈R

κi,jYi,j

where Yi,j denotes the reaction vector Cj − Ci.

Law of Mass Action

The law of mass action is the most common rate law applied in chemical reactions
[24]. In mass action kinetics, the values of αi,j,m are set as the stoichiometric
coefficient for species m in combination Ci. This results in the rate of reaction,
κi,j, being proportional to the product of the concentrations of the reactants.

Example

Consider a system consisting of four species, A, B, C, and D, with the following
reactions:

A+B → A+ 2C, C +D → A+ C, A+ 2C → B + C

Converting this system into the form N = (S,C,R) gives:

S = {A,B,C,D},
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C = {A+B,A+ 2C,C +D,A+ C,B + C},

R = {(A+B,A+ 2C), (C +D,A+ C), (A+ 2C,B + C)}

If this system is assumed to follow the mass action rate law, with reaction rates
p, q, and r for the reactions A+B → A+2C, C+D → A+C, and A+C → B+C,
respectively, we can derive the ODEs given as follows:

dA

dt
= qCD − rAC2

dB

dt
= −pAB + rAC2

dC

dt
= 2pAB − rAC2

dD

dt
= −qCD

Michaelis Menten Kinetics

A typical enzymatic reaction for an enzyme E converting a substrate S into the

product P through the intermediate step of a complex C is defined as E + S
k+


k−

C
q→ E + P . Following mass action kinetics, this gives us the following system:

dE

dt
= k−C − k+ES + qC

dS

dt
= k−C − k+ES

dC

dt
= k+ES − k−C − qC

dP

dt
= qC

This system can be simplified into a single reaction by assuming that dC
dt

= 0.
The steps in this simplification are given below, whereKm = q+k−

k+
and ET = E+C

is the total concentration of the enzyme E.

k+ES = (k− + q)C = k+(ET − C)S ⇒ C =
k+ETS

q + k− + k+S
=

ETS

Km + S

This gives us a direct reaction from S to P with Michaelis Menten [25, 26] rate
dP
dt

= −dS
dt

= qETS
K+S

.
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Further Approximations

We now demonstrate two approximations that can be applied to Michaelis Menten
kinetics, the first of which is frequently used in mathematical models for thrombin
generation.

If S << Km, then we can simplify the rate to q
Km

ETS which is equivalent to

a mass action law reaction of E + S
q

Km→ E + P . This approximation is used very
frequently in the published models.

The other approximation is for the case of S >> Km, or over-saturation of
species S. In this case the rate simplifies to qET and is independent of the con-
centration of S.

Michaelis Menten with Competitive Inhibition

An aspect of chemical kinetics that the Michaelis Menten rate law does not capture
is competitive inhibition. This is where the enzyme is bound to one substrate and
therefore cannot bind to another to begin activation. This effect can be modelled
into the rate law with a simple modification, however. For the enzymatic reaction
S

E→ P , where enzyme E can also activate, and therefore bind to, species Ii, we
scale the parameter Km by the constant 1 +

∑
i Ii/Ki where Ki = k−

k+
is the ratio

of the backwards and forwards binding rates for species Ii [27, 28].

Standard Notation

For enzymatic reactions cleaving substrate S into product P through enzyme
E with intermediate complex E:S, we denote them either in mass action form
E + S ↔ E:S → E + P with k+ to represent the forwards association rate, k− to
represent the backwards disassociation rate and kcat to represent the rate of com-
plex E : S releasing product P , or in the Michaelis Menten form S

E→ P specified
by reaction rate parameters Km = k−+kcat

k+
and kcat.

For reversible reactions between two species A and B, we denote them by a
reaction A+B ↔ A:B where A:B denotes the complex of A and B and the reac-
tion rates k+ and k− are used to denote the forwards association and backwards
disassociation rates, respectively. We may also summarise this reaction with the
rate Kd = k−

k+
.

1.2.2 Nondimensionalisation

Nondimensionalisation is the process of removing physical dimensions from a sys-
tem through variable substitution. Each variable is separated into two constituent
parts, consisting of a dimensional scaling constant and a dimensionless variable.
By carefully choosing the values for these dimensional scaling constants (taking
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them to be functions of parameters in the model), we can reduce the number of
parameters in the model while maintaining the same dynamics. Typically, the di-
mensional scaling constants are chosen to either reduce the number of parameters
by as much as possible, set all variables to be O(1), or some combination of the two.

The Buckingham π theorem [29] states that at least p parameters can be re-
moved through nondimensionalisation where p is the number of linearly indepen-
dent dimensions in the system. For the purposes of our work p = 2, with the
fundamental dimensions being time (typically expressed in seconds) and count
(typically expressed in moles), coming from the units of the reaction rates, s−1

andM−1s−1 for mass action kinetics and s−1 andM for Michaelis Menten kinetics.

1.2.3 Timescale Analysis

Timescale analysis is the process of separating the dynamics of a model or system
into timescales, such that reduced sub-models can accurately predict the dynam-
ics of the full model on their corresponding timescale. The sub-models can then
be more easily analysed due to their smaller size. This is typically done through
asymptotic analysis and has been performed previously on a model of thrombin
generation [30].

The process by which a model is separated into timescales is given as follows.
First, the model is nondimensionalised aiming for all variables to be O(1). A small
dimensionless parameter ε is then introduced as some function of the dimensionless
parameters in the system. All dimensionless parameters then have some power of
ε taken out as a factor, resulting in a product between a power of ε and an O(1)
dimensionless parameter. The model can then be solved on separate timescales
given by the various powers of ε using methods from Perturbation Theory [31, 32,
33].

1.3 Statistics
In this section, we outline the statistical and data analysis methods we make use
of for this work. We begin by giving an overview of the performance metrics we
use to evaluate model predictions against patient data. We then give a short in-
troduction to Bayesian statistics, before introducing the two parameter inference
methods we use, gradient descent with the interior point algorithm and Approx-
imate Bayesian Computation (ABC). The final methods we use to analyse the
models are two methods in uncertainty quantification, forward propagation of un-
certainty and sensitivity analysis. Finally, we detail the data analysis methods
we use. These are principal component analysis and the varimax transformation,
k-means clustering using the Gap statistic, regression trees and the Gini index,
and functional data analysis.
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1.3.1 Performance Metrics

For the majority of this work, we make use of two metrics for comparing model
predictions to patient level ETP. The model predictions for ETP are reported in
nM ·min while patient level ETP is reported as a percentage of pooled plasma
ETP. In order to compare between these two units, we make use of two transfor-
mations, one linear and one affine (linear plus a constant). A linear relationship is
expected, since both an ETP of 0 in both units, would only occur if no thrombin
was generated. A affine relationship is included compare without the need for the
assumption of a linear relationship.

The first metric we use to compare these values is R2, given by Equation (1.1),
where ŷ is given by the line of best fit (an affine transformation, the line y = mx+c
where m and c minimise the sum of squared errors, y represents the experimental
ETP measurement in % of pooled plasma, and x represents the model-derived
ETP in nM ·min). This gives a dimensionless value between 0 (no linear correla-
tion) and 1 (perfect linear correlation). Values above 0.7 are commonly considered
to represent a high level of correlation while values below 0.4 are commonly con-
sidered to represent a low level or weak correlation.

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

(1.1)

The second metric we use is Root Mean Squared Error (RMSE), given by
Equation (1.2), where ŷ is given by the line of proportionality (a linear transfor-
mation, the line y = mx where m minimises the sum of squared errors). This
gives a value in the same units as y that can be considered as an measure of the
average error in predictions.

RMSE =

√∑n
i=1(ŷi − yi)2

n
(1.2)

Other metrics, such as those to compare model predicted OD curves and pa-
tient level OD curves, are to be introduced later in Chapter 3.

1.3.2 Bayesian Statistics

In frequentist statistics, parameters are thought of as having true values which
we try to approximate. However, in Bayesian statistics parameters are thought of
as random variables with an unknown distribution. This allows us to consider a
probability distribution for a parameter θ, π(θ), called a prior. This is the distri-
bution which summarises our current beliefs about θ. We can then update these
beliefs with some new data y to get the posterior distribution π(θ | y) = p(y|θ)π(θ)

m(y)

where p(y | θ) is the probability model for the likelihood of the data y given the
parameter θ and m(y) is the marginal density function of the data y. Given that
m(y) is typically intractable, it is sufficient to note that π(θ | y) ∝ p(y | θ)π(θ)
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since π(θ | y) is a probability distribution.

The benefit of treating parameters as probability distributions rather than
point values is that it allows us to easily encode information about uncertainty
into the prior distribution of the parameter and also assess how this uncertainty
is changed through posterior distributions.

1.3.3 Parameter Inference

Parameter inference is the method by which parameters are optimised to best fit
a data set. It generally consists of defining a cost function, which measures the
error between model predictions and the data set, which is then optimised, pos-
sibly under some constraints or conditions. We make use of two methods, both
introduced here, gradient descent with the interior point algorithm and Approxi-
mate Bayesian Computation - Sequential Monte Carlo.

Gradient Descent

Gradient Descent is a simple but powerful parameter inference method. It consists
of beginning at an initial point in parameter space and calculating the gradient of
the cost function at that point, typically by finite differences. We then move from
the initial point in the direction opposite of the gradient, with step size propor-
tional to the magnitude of the gradient, to achieve a lower cost. This process is
then repeated, typically until the magnitude of the gradient is sufficiently small.

There are many alterations to the basic premise of gradient descent, such as
line search [34], stochastic gradient descent [35], and gradient descent with mo-
mentum [36]. We will make use of an alteration called the interior point algorithm
[37]. This algorithm allows us to specify upper and lower bounds. In the case rel-
evant to our work in Chapter 3 and onward, where all parameters (reaction rates)
need to remain positive, the cost function f(x) is replaced by the barrier function
B(x, µ) given by Equation (1.3). This barrier function is then minimised using
gradient descent and after each iteration, the barrier parameter µ is decreased to-
wards zero. As shown in Figure 1.7, the barrier function increases rapidly as any of
the parameters xi approach zero, however, as the barrier parameter µ approaches
zero, the barrier function approaches f(x) ∀x > 0 and therefore represents its
local minimums accurately.

B(x, µ) = f(x)− µ
∑
i

log(xi) (1.3)

For upper bounds, and also non-zero lower bounds, we apply a transform on
the parameters to map the position of the bound to result in an infinite cost from
the barrier function. To achieve this, for an upper bound of a, we include the
term −µ log(a−xi) into the barrier function. For a non-zero lower bound of b, we
include the term −µ log(xi − b) into the barrier function.
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Figure 1.7: A plot of the barrier function −µ log(x) for varying values of µ.

Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) methods [38] aim to approximate the
posterior distribution in situations where the likelihood function p(y|θ) is too com-
putationally expensive to evaluate. This approximation is achieved by replacing
the likelihood function with a comparison between simulated and observed data.
The general steps of an ABC algorithm are as follows:

1. Sample a particle (parameter or parameter vector) of θ∗ from the prior π(θ)

2. Generate a simulated data set y∗ based on the parameter θ∗

3. Compare the simulated data set y∗ with the observed data y0 through the
use of a distance function d(y0, y

∗). If d(y0, y
∗) < ε then accept θ∗, where ε

is a given tolerance.

This allows us to sample from the distribution π(θ | d(y0, y
∗) < ε) which should

give a good approximation of π(θ | y0) for sufficiently small ε. The distance metric
is commonly defined using a set of summary statistics and evaluates the distance
between the summary statistics of the simulated data set and that of the observed
data set.

ABC Rejection Sampler

The ABC Rejection Sampler [38] is the simplest ABC algorithm and is defined in
Algorithm 1.

The ABC Rejection Sampler has a very low acceptance rate if the prior and
the posterior are very different and so it struggles with uninformative priors.

ABC Markov Chain Monte Carlo

The ABC-MCMC algorithm [38] aims to avoid the issues from the ABC Rejection
Sampler for uninformative priors by instead using a proposal distribution q(θ|θi)
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Algorithm 1: ABC Rejection
Input: Number of particles N , prior π, model simulator l, data y and

tolerance ε.
Output: A set of sampled particles Θ.
for i=1:N do

while True do
θ∗ ∼ π(·);
y∗ ∼ l(·|θ∗);
if d(y, y∗) < ε then

Θ(i) = θ∗;
break;

end
end

end

to form a Markov chain of parameters and is defined in Algorithm 2.

Algorithm 2: ABC-MCMC
Input: Initial estimate θ1, number of particles N , proposal distribution

q(θ|θi), prior π, model simulator l, data y and tolerance ε.
Output: A set of sampled particles Θ.
Θ(1) = θ1;
for i=1:N do

θ∗ ∼ q(θ|Θ(i));
y∗ ∼ l(·|θ∗);
if d(y, y∗) < ε then

α = min
(

1, π(θ∗)q(Θ(i)|θ∗)
π(Θ(i))q(θ∗|Θ(i))

)
;

if rand() < α then
Θ(i+ 1) = θ∗;

else
Θ(i+ 1) = Θ(i);

end
else

Θ(i+ 1) = Θ(i);
end

end

This gives us a Markov chain with a stationary distribution of π(θ | d(y0, y
∗) <

ε). The two main disadvantages of ABC-MCMC are that the sampled parameters
are heavily correlated with one another and that the algorithm can get stuck in
areas of low probability for a long time as θi+1 can only change if we have that
d(y0, y

∗) < ε.
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ABC Sequential Monte Carlo

In ABC-SMC [38], we have a list of tolerances ε1, . . . , εT such that ε1 > . . . > εT >
0 and take a sample of N particles for each εt. This allows us to avoid one of the
disadvantages of ABC-MCMC where we can get stuck in areas of low probability
for a long time. The algorithm is defined in Algorithm 3.

Algorithm 3: ABC Sequential Monte Carlo
Input: Number of populations T , number of particles per population N ,

prior π, model simulator l, family of perturbation kernels Kt(θ|θ∗)
and a descending sequence of tolerances ε1, . . . , εT

Output: Particles and weights {(θ(i)
t , w

(i)
t )}Ni=1 for each population t

for t=1:T do
for i=1:N do

while True do
if t=1 then

θ∗∗ ∼ π(·);
else

θ∗ ∼ {θ(i)
t−1}i=1,...,N with weights {w(i)

t−1}i=1,...,N ;
θ∗∗ ∼ Kt(θ|θ∗)

end
y∗ ∼ l(·|θ∗∗);
if π(θ∗∗) > 0 AND d(y∗, y) < εt then

break;
end

end
θ

(i)
t = θ∗∗;
if t=1 then

w
(i)
t = 1;

else

w
(i)
t =

π(θ
(i)
t )∑N

j=1 w
(j)
t−1Kt(θ

(j)
t−1|,θ

(i)
t )

;

end
end
wt = wt/

∑
i(w

(i)
t )

end

1.3.4 Uncertainty Quantification

Uncertainty quantification is the field of characterisation and measurement of un-
certainty and its effect on models. For this work, we focus on parameter uncer-
tainty in both the reaction rates used to construct a chemical kinetic model and
the coagulation factor concentrations. We make use of two uncertainty quantifi-
cation methods, sensitivity analysis and forward propagation of uncertainty.
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Sensitivity Analysis

Sensitivity analysis is a method for understanding how variation in particular
model inputs influences variation in the output. In Section 2.5, we introduce
a local, variance-based sensitivity analysis method. A local sensitivity analysis
method aims to quantify variation in model output as inputs are varied close to
their original or typical values, usually performed by varying each parameter in-
dependently of the others. This is in comparison to a global sensitivity analysis
method which explores the whole parameter space. To quantify variation in the
model output, one of two common methods are typically used. The first of these
methods, the one that we make use of, is through calculating the variance in a
set of summary statistics. The second method is to estimate the derivative of the
summary statistics with respect to changes in the parameters, usually calculated
with finite differences.

Many sensitivity analysis methods have been applied to different models of
thrombin generation, including both global and local methods, with almost all
methods being variance-based and only a single derivative-based method [39, 40,
41, 42, 43, 44, 45].

Forward Propagation of Uncertainty

Although the prior distributions are defined on the model parameters, we can also
investigate model outputs under variation across these priors. This can be done
analytically for simpler models but we will instead do this through a Monte Carlo
approach. We can randomly sample parameters from the prior distributions and
simulate them in the models. This will give us model outputs, which if we repeat
many times, can be used to infer the distribution of these model outputs. This
can be helpful to understand if a large uncertainty in a few key parameters (which
may have low sensitivity) results in large uncertainty in model outputs.

1.3.5 Principal Component Analysis

Principal Component Analysis (PCA) is a method commonly used in high dimen-
sion data sets for dimensionality reduction [46]. It provides a linear coordinate
transform which, when the data is projected upon, maximises the variance in the
data under the condition that all coordinate axes, called principal components,
are perpendicular.

The first principal component is calculated as the line that passes through the
mean of the data and maximises the sum of the squared distances between the
data points projected onto the line and the mean. All later principal components
are given as the line which is perpendicular to all preceding principal components
and maximises the squared distances between the data points projected onto the
line and the mean. Each principal component can be assigned a percentage of
explained variance, measured using the sum of the squared distances between the
data points and the mean projected onto that principal component, reported as a
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proportion of the sum of squared distances between the data points and the mean.

PCA is commonly formulated through vector notation. If X is the m×n data
matrix with n observations of m variables (after subtracting the mean for each
variable), then the eigenvectors of XXT are the principal components, given in the
order of largest to smallest eigenvalue. The explained variance for each principal
component is given as the ratio between the corresponding eigenvalue and the sum
of the eigenvalues [46].

The Varimax rotation is a common tool in PCA [46]. It applies a rotation to
the first k principal component vectors such that the components emphasise vari-
ation in a few variables while maintaining the same amount of explained variance
as the first k principal components. Due to this transform the components will
no longer be perpendicular to one another. However, being able to emphasise a
smaller number of variables can greatly aid interpretation.

1.3.6 Clustering

Clustering is an unsupervised data analysis method to group data together into
clusters, such that the data in each cluster are more similar to one another than
to the data in the other clusters. A common method for this, the one we make
use of, is k-means clustering. In the k-means clustering algorithm, k data points
are randomly selected to be the cluster centre points. Each data point is then
classified into the cluster whose centre point is closest. The cluster centres are
then recalculated to be the mean of the data classified into that cluster. This
centring-reclassification loop is then repeated until the classifications no longer
change.

Determining the optimal number of clusters, k, can be a challenging task. We
make use of a metric called the Gap statistic which compares the clustering for a
given value of k to the performance of clustering uniform data [47].

To calculate the gap statistic, we first calculate the dispersion metric Wk, the
pooled within-cluster sum of squares around the cluster means (given by Equa-
tion (1.4), where dij is the squared Euclidean distance between observation i and
observation j and Cr is the set, of size nr, of observations in cluster r), for each
value of k we wish to investigate. We then generate B reference data sets, sampled
from a uniform distribution over the hypercube defined by the ranges of the data
after performing PCA. We then calculate the dispersion metric for each of these
reference data sets, denoted as W ∗

kb. The gap statistic, Gap(k), and its standard
deviation sdk are then given by Equations (1.5) and (1.6), respectively.

Wk =
k∑
r=1

1

2nr

∑
i,j∈Cr

dij (1.4)
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Gap(k) =
1

B

∑
b

(log(W ∗
kb)− log(Wk)) (1.5)

sdk =

√√√√ 1

B

∑
b

(
log(W ∗

kb)−
1

B

∑
b

log(W ∗
kb)

)2

(1.6)

There are still multiple ways of choosing the optimal value of k from the val-
ues of the gap statistic. It was first defined as the smallest k such that Gap(k) ≥
Gap(k + 1)−sdk+1 [47] and then later defined by another group as the smallest k
such that Gap(k) ≥ Gap(p)−sdp where p = arg maxk(Gap(k)), i.e. the smallest
value of k that is within one standard deviation of the global maximum [48]. Here,
we define the optimal value for k as the smallest value that is within one standard
deviation of the first local maximum of the gap statistic.

1.3.7 Regression Tree

Regression trees are a data analysis tool used to identify which variables may
have an important influence on a particular output (regression trees for contin-
uous output, decision trees for categorical output) [49]. The tree consists of a
series of branching binary questions (such as “Is the FII concentration > 95?”)
such that both the variable (FII concentration) and the cutoff (95%) are optimal
in separating high and low values of the output variable. The full tree can then
be used to estimate the variable of interest, knowing only the answers to a set of
binary questions regarding other variables. An example regression tree to predict
ETP is given in Figure 1.8.

The optimal questions and cutoffs are determined by minimising the sum of
squared errors [49]. For every possible combination of question and cutoff, two
sub-nodes are generated. Each sub-node is assigned a predictive value correspond-
ing to the average of the data points that are sorted into that sub-node. The sum
of squared errors is then calculated, taking the error as the difference between the
output variable for a data point and the predictive value given by the sub-node
that data point is sorted into. The optimal question and cutoff are given as those
that minimise this sum of squared errors.

For decision trees, there are a handful of metrics that can be used to determine
the optimal questions. Here, we will introduce the Gini Index [50], which we will
make use of for determining optimal cutoffs in Chapter 4. The Gini, defined by
Equation (1.7), is calculated for all possible questions (all variable-cutoff combi-
nations) for each of the two sub-nodes. The variable pi is the probability of each
class being sampled from a given node. For example, if there are two classes that
the decision tree is differentiating between, pass and fail, and n samples that fall
into a sub-node, then the Gini of the sub-node is 1 − (#passes

n
)2 − (#fails

n
)2. The

weighted average of these two Gini scores (weighting by the number of samples
that are classified into each of the two sub-nodes) gives the Gini Index, also called
the Gini Impurity, of that variable-cutoff combination. The question which gives
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Figure 1.8: An example regression tree for predicting ETP. Each cell is labelled
with the average ETP of the samples that pass through it and the number of
samples n. Calculations were done using the rpart package in R.

the lowest Gini Index is chosen for that node. This process is repeated for each
sub-node until either all sub-nodes have a Gini Index of 0 (perfect classification),
or some other termination criteria is reached.

Gini = 1−
∑
i

(pi)
2 (1.7)

1.3.8 Functional Data Analysis

In Functional Data Analysis (FDA), data functions are represented in the form of
a linear combination of basis functions. This form then grants the ability to per-
form common data analysis methods such as linear models, PCA, and clustering.

Common basis functions to use in FDA include monomials, Fourier series and
splines. Here, we will focus on the use of splines as the basis functions as this is
what we make use of in Chapter 4. To identify the splines which best fit a given
set of data points, we evaluate the residual sum of squares (

∑
j [yj − ŷ(xj)] where

yj are the data points at xj and ŷ is the linear combination to be evaluated). In
order to better handle noise in the experimental data, a roughness penalty can
be included. This penalty is typically defined as proportional to the curvature
of the functional representation (the square of the second derivative). Through
a cost function, given as the sum of the residual sum of squares and the rough-
ness penalty, the functional representations of the data can be derived. From
these functional representations, linear models, PCA, and clustering, among other
methods, can be performed [51, 52].

1.4 Thesis Outline
We begin with Chapter 2, split up into many smaller sections, covering the ex-
ploratory analysis of eight published mathematical models of thrombin generation.
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These sections are detailed below.

• Section 2.1 selects eight published models to analyse, chosen to best match
the thrombin generation data set.

• Section 2.2 validates our implementation of these models.

• Section 2.3 investigates the accuracy of these models in their predictions of
patient level ETP across the cohort.

• Section 2.4 compares the differences in model predictions for many factors
throughout the coagulation cascade and identifies the primary cause for these
differences.

• Section 2.5 introduces a sensitivity analysis method which is then applied
to each of the eight models, investigating changes in their response under
variation in both the coagulation factor concentrations and the reaction rates
used in the construction of these models.

• Section 2.6 explores the different choices of reaction rates between the mod-
els, identifying the original sources for each reaction rate in each model.

• Section 2.7 conducts a numerical timescale analysis on two of the models,
identifying which reactions are relevant in the models and how these change
over time.

We develop upon the results found through the exploratory analysis of these
eight models to develop a new model, named the Unified Model, in Chapter 3.

In order to further improve the predictions of the Unified Model, Chapter 4
covers the analysis of the thrombin generation data. While ideally this work would
have been completed earlier, the discoveries made in Chapter 2 demonstrated a
clear weakness in the models that we chose to investigate first.

Chapter 5 aims to implement the improvements identified in Chapter 4 into a
new version of the Unified Model.

Chapter 6 details the results of a simulation study, exploring the parameter
inference methods used in the construction of the Unified Model and other mod-
elling assumptions made during its development.

Chapter 7 concludes with a summary of the findings of this work and discusses
future steps in the development of mathematical models of thrombin generation.

Following this a glossary of key terms and the bibliography are given.

The Appendix provides ODEs for each of the models implemented in this work,
reaction rates to simulate the models where not specified in the main body of the
thesis, supplementary data concerning the exploratory analysis of the models, and
further information on the Unified Model.
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The key results explored in the thesis are the discovery of the importance of
FXI in model predictions, made in Section 2.4, and the limitations surrounding
the choice of sources for the reaction rates, particularly the uncertainty driven by
differing experimental conditions, explored in Section 2.6 and Chapters 3 and 5.
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Chapter 2

Existing Models

2.1 Thrombin Generation Models
There are many mathematical models for thrombin generation, each with different
descriptions of the coagulation cascade. Here, we focus on models that describe co-
agulation as it occurs in the in vitro thrombin generation assay rather than in vivo
where surfaces, flow and diffusion all play large roles. The earliest descriptions of
the coagulation cascade, describing reactions but not reaction rates, proposed sim-
ple enzyme cascades from FXII down to fibrinogen [4, 5]. As the understanding of
coagulation improved and more interactions between the coagulation factors were
uncovered, new chemical kinetic models (mathematical models that could simu-
late coagulation using both reactions and their corresponding rates) that aimed to
predict thrombin generation were developed, with a shift in focus from contact ac-
tivation towards TF activation [53, 54]. These earlier models have been improved
iteratively, producing a wide variety of available models. A timeline presenting
the development of these models is given in Figure 2.1.

To aid in explanation, each model is named after the surname of the first au-
thor in its publication, with publication year used to differentiate when necessary.

The earliest mathematical models of thrombin generation, such as Khanin 1989
[54] and Willems [55], featured heavily simplified dynamics with only a handful of
the coagulation factors being included. Newer models sought to improve upon the
previous ones through inclusion of more coagulation factors and more reactions,
expanding the range of predictions the models could make and better aligning
them with the understanding of coagulation at the time. This led to the inclusion
of factors VIII and IX into the models [56, 57] and more detailed descriptions of
TF:VIIa formation [53, 58]. One of these groups, the group that developed the
Jones model [53], then continued the development of their model, updating it to
include AT and TFPI, producing the Hockin model [59]. This model then became
a baseline for continued work by the same group [42, 60] and others [39, 45, 61].
In addition, there have also been many models developed independently [62, 63,
64, 65, 66, 67, 68]. As these later models were developed, they began to focus on
different aspects of the cascade, such as the effect of phospholipids in the Bun-
gay model [62], or the differences between the intrinsic and extrinsic pathways in
the Zhu model [68]. Table 2.1 presents the components contained in each of the
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Figure 2.1: A timeline of in vitro thrombin generation models. The arrows demon-
strate where models have utilised the reactions or reaction rates of a previous
model. The size of the model is given by Nv and Np. Nv denotes the number of
variables in the model and Np denotes the number of parameters in the model.

mathematical models of the thrombin generation assay.

All of these models use chemical kinetics to form a system of ordinary differen-
tial equations (with the exception of [64] which uses partial differential equations
to describe the rate of diffusion in the thrombin generation assay and its effect on
a plasma that is not well-mixed). This system of ODEs is defined using a set of
reactions and their corresponding reaction rates. The simulation of these models
is then performed numerically, with initial coagulation factor concentrations spec-
ified as the model input and concentrations of all coagulation factors over time
(although typically only thrombin is analysed) forming the output of the model.

Some of these models have been validated qualitatively against data for a ‘nor-
mal’ donor under varying concentrations of a few coagulation factors, with the
remaining models not being validated against any data (in which case the models
are assumed to be representative of general dynamics of the system). However,
these models are still used to make predictions about the thrombin generation
assay [72]. The use of the models in this way has been questioned. Hemker, who
developed many of the current methods for the thrombin generation assay [13, 73,
74, 75], believes that there is too much uncertainty in both the reaction schemes
and reaction rates for the models to generate useful predictions [76]. Mann, who
aided in the development of these models [53, 59], believes that these models are
still useful due to their high level of transparency compared with biological assays
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and cheap computational cost [77].

Recent attempts of modelling focus on validating these complex models against
patient data. A previous group have shown that a subset of these models failed
to reproduce patient data for a cohort of 112 male subjects, 40 of which had
haemophilia A, 32 with haemophilia B and 40 healthy controls [78]. They then
explored reparametrising one of these models, specifically the Hockin model [59],
on a per-patient basis. However, it has been suggested that thrombin generation
curves can be efficiently summarised in five parameters and fitting more than this,
on a per-patient level, will result in an unidentifiable model [79]. Due to this fact,
they fit all reaction rates across the cohort (one value per reaction rate for all in-
dividuals), and then fit three reaction rates on a per-patient level. From this, they
are able to achieve a good match between model predictions and patient data,
however, it is still unclear if these reaction rates truly vary on a patient specific
level across such a broad range or if this is a result of over-fitting. We believe
that, assuming there are no mutations in these proteins, then the rates of these
reactions should be identical between individuals. Differences in thrombotic po-
tential between individuals, for example between different ages or sexes [21], then
comes about due to differences in the concentrations of these proteins. Under this
assumption, a single set of reaction rates should be sufficient for all individuals.

In this work, we focus on mathematical models for the thrombin generation
assay. However, models have also been developed to capture thrombin generation
in vivo. These models typically include the effects of flow, clot formation and
its effect on blood flow, and platelets with both their activation and aggregation
[43, 80, 81, 82, 83, 84]. These models use partial differential equations for both
the flow of the blood and the coagulation factor concentrations but vary in the
techniques used for modelling platelets, typically coupled through multiscale mod-
elling. These models have already been used to identify new interactions in the
regulation of coagulation in vivo. Most notably, that the reduction in coagulation
seen in patients with haemophilia A (deficiency in FVIII) is improved if that pa-
tient also has low levels of FV, which was discovered through a global sensitivity
analysis of a mathematical model of in vivo coagulation [44].

We aim to select the models that should be best at reproducing the data from
the PRAMIS cohort. As such, we select the models that satisfy the following five
conditions.

• They should include both TF and FVII to specify the initiation of coagula-
tion;

• They should contain factors X, V, IX, VIII, and II to accurately capture
their effects on thrombin generation;

• They should contain the inhibitors AT and TFPI;

• They should not model spatial effects as this data is not available; and
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• They should not include platelets as the data was collected in platelet poor
plasma.

There are eleven models that satisfy these conditions, namely Hockin [59],
Danforth [42], Chatterjee [39], Brummel [60], Bungay [62], Panteleev [63], Tyurin
[66], Zhu [68], Mitrophanov [61], Butenas [71], and Khanin 1998 [58]. Of these
eleven models, the Mitrophanov model [61] was excluded as it is identical to the
Danforth model for the reactions that are relevant to our work, the Butenas model
[71], a precursor to the Danforth model and developed from the Hockin model, was
removed due to its similarity to both of these models. Finally, the Khanin 1998
model [58] was also removed as the specified ODEs violated typical conservation
laws and allowed negative concentrations. This leaves us with eight remaining
models that satisfy these conditions, varying in size between 24 and 81 ODEs
(Panteleev and Chatterjee, respectively) and 42 to 110 parameters (Hockin and
Bungay, respectively).

Each of these models are converted to ODEs and implemented in Matlab.
These ODEs are then solved with the ode23tb numerical ODE solver to extract
model outputs.

2.1.1 Hockin Model

The Hockin model [59] is the simplest model that we consider. It built upon the
Jones model [53] by adding AT and TFPI and utilises a simple form of the coagu-
lation cascade consisting of 31 reactions (12 of which are reversible) which all use
mass action law kinetics. This model was validated against thrombin generation
curves under varying prothrombin concentrations for an average donor [85], where
it was able to reproduce the general shape of thrombin generation curves but not
a specific curve. The reactions and rate constants are given in Table 2.3. When
the model is solved along with the non-zero initial conditions listed in Table 2.2,
we can plot the thrombin generation curve, given in Figure 2.2. The ODEs are
presented in Appendix A.

Substrate Initial Concentration (M)

TF 10× 10−12

II 1.4× 10−6

V 2.0× 10−8

VII 1.0× 10−8

VIIa 1.0× 10−10

VIII 7× 10−10

IX 9.0× 10−8

X 1.6× 10−7

TFPI 2.5× 10−9

AT 3.4× 10−6

Table 2.2: The non-zero initial concentrations for the Hockin model [59].
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Index Reaction k+,ind k−,ind

1 TF + VII ↔ TF:VII 3.2× 106 3.1× 10−3

2 TF + VIIa ↔ TF:VIIa 2.3× 107 3.1× 10−3

3 TF:VIIa + VII → TF:VIIa + VIIa 4.45× 105 -
4 Xa + VII → Xa + VIIa 1.3× 107 -
5 IIa + VII → IIa + VIIa 2.3× 104 -
6 TF:VIIa + X ↔ TF:VIIa:X 2.5× 107 1.05
7 TF:VIIa:X → TF:VIIa:Xa - 6
8 TF:VIIa + Xa ↔ TF:VIIa:Xa 2.2× 107 19
9 TF:VIIa + IX ↔ TF:VIIa:IX 1.0× 107 2.45
10 TF:VIIa:IX → TF:VIIa + IXa - 1.8
11 Xa + II → Xa + IIa 7.5× 103 -
12 IIa + VIII → IIa + VIIIa 2.0× 107 -
13 VIIIa + IXa ↔ IXa:VIIIa 1.0× 107 5.0× 10−3

14 IXa:VIIIa + X ↔ IXa:VIIIa:X 1.0× 108 1.0× 10−3

15 IXa:VIIIa:X → IXa:VIIIa + Xa - 8.2
16 VIIIa1L + VIIIa2 ↔ VIIIa 2.2× 104 6.0× 10−5

17 IXa:VIIIa:X → VIIIa1L + VIIIa2 + X + IXa - 1.0× 10−3

IXa:VIIIa → VIIIa1L + VIIIa2 + IXa
18 IIa + V → IIa + Va 2.0× 107 -
19 Xa + Va ↔ Xa:Va 4.0× 108 0.2
20 Xa:Va + II ↔ Xa:Va:II 1.0× 108 103
21 Xa:Va:II → Xa:Va + mIIa - 63.5
22 mIIa + Xa:Va → IIa + Xa:Va 1.5× 107 -
23 Xa + TFPI ↔ Xa:TFPI 9.0× 105 3.6× 10−4

24 TF:VIIa:Xa + TFPI ↔ TF:VIIa:Xa:TFPI 3.2× 108 1.1× 10−4

25 TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI 5.0× 107 -
26 Xa + AT → Xa:AT 1.5× 103 -
27 mIIa + AT → mIIa:AT 7.1× 103 -
28 IXa + AT → IXa:AT 4.9× 102 -
29 IIa + AT → IIa:AT 7.1× 103 -
30 TF:VIIa + AT → TF:VIIa:AT 2.3× 102 -

Table 2.3: The reaction scheme and rate constants used for the Hockin model [59].
The reaction rate k−,17 is used for 2 reactions and should remain so during any
changes for sensitivity analysis or parameter fitting. The units for all k+,ind and
k−,ind reaction rates are M−1s−1 and s−1, respectively.

2.1.2 Danforth Model

The Danforth model [42] is an update to the Butenas model [71] which itself is
an update to the Hockin model [59]. The result of these changes, when compared
with the Hockin model, are two updated reaction rates and two new reactions.
This model has not been validated against data. However, the Butenas model
was compared to data in which small concentrations of active coagulation factors
(such as FXa and FIXa) were used to initiate the system in the absence of TF
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Figure 2.2: Thrombin generation curves for each of the models.
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for an average donor. The two new reactions and their rates are given in Table
2.4 and the two updated reaction rates are given in Table 2.5. The thrombin
generation curve, given using the initial conditions in Table 2.6, is in Figure 2.2.
The Danforth model produces a similar thrombin generation curve to the Hockin
model, featuring a slightly higher peak height and a slightly reduced lagtime. The
ODEs are presented in Appendix A.

Index Reaction k+,ind (M−1s−1)

31 IXa + X → IXa + Xa 5.7× 103

32 mIIa + V → mIIa + Va 3.0× 106

Table 2.4: The two new reactions that were added to the Hockin model for the
Danforth Model as well as their corresponding rate constants.

Index Reaction k+,ind (M−1s−1)

22 mIIa + Xa:Va → IIa + Xa:Va 2.3× 108

26 Xa + AT → Xa:AT 4.2× 103

Table 2.5: The two reaction rates that were updated and their corresponding
reactions.

Substrate Initial Concentration (M)

TF 5× 10−12

II 1.4× 10−6

V 2.0× 10−8

VII 1.0× 10−8

VIIa 1.0× 10−10

VIII 7× 10−10

IX 9.0× 10−8

X 1.6× 10−7

TFPI 2.5× 10−9

AT 3.4× 10−6

Table 2.6: The non-zero initial concentrations for the Danforth model [42].

2.1.3 Chatterjee Model

The Chatterjee model [39] consists of 75 mass action law reactions (29 of which
are reversible). The main goal of this model was to capture the effects of platelet
activation on the coagulation cascade. To do this, they expanded upon the Hockin
model and added in reactions for kallikreins, FXI, FXII, CTI (Corn Trypsin In-
hibitor), Boc-VPR-AMC (a fluorogenic substrate), α1−AT , α2−M and α2−AP
(α1-Anti-Trypsin, α2-Macroglobulin and α2-Anti-Plasmin). On top of this, they
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added a parameter, ε, to model instantaneous platelet activation and scale a hand-
ful of reaction rates based on its current value. The definition of ε is given by
Equation (2.1) where εmax0 = 0.01 and k = 0.005 and ε(t = 0) = 0.01.

dε

dt
= k(εmax − ε)

εmax = εmax0 + (1− εmax0)× f([IIa ∗ (t)])

f([IIa ∗ (t)]) =
[IIa ∗ (t)]1.6123

[IIa ∗ (t)]1.6123 + (2.45279× 109)1.6123

[IIa ∗ (t)] =max
t′∈[0,t]

([IIa(t′)]) (2.1)

This model was validated against the same data as the Butenas model [71]
as well as new data, also using active coagulation factors to initiate coagulation,
described for this model [39].

When the reactions are solved using the initial conditions given in Table 2.8,
we can plot a thrombin generation curve, given in Figure 2.2 and a plot of ε, the
instantaneous platelet activation, is given in Figure 2.3. The ODEs are presented
in Appendix A.

The thrombin generation curve produced by the Chatterjee model is very dif-
ferent to the Hockin and Danforth models. It features a similar lagtime to these
models but with much more rapid activation once this lagtime is reached, culmi-
nating in a peak height much larger than both of these models. We will investigate
the reason for these differences in Section 2.4.

Index Reaction k+,ind k−,ind

1 TF + VII ↔ TF:VII 3.2× 106 3.1× 10−2

2 TF + VIIa ↔ TF:VIIa 2.3× 107 3.1× 10−5

3 TF:VIIa + VII → TF:VIIa + VIIa 4.45× 105 -
4 Xa + VII → Xa + VIIa 1.3× 107 -
5 IIa + VII → IIa + VIIa 2.3× 104 -
6 TF:VIIa + X ↔ TF:VIIa:X 2.5× 107 0.0105†

7 TF:VIIa:X → TF:VIIa:Xa - 6
8 TF:VIIa + Xa ↔ TF:VIIa:Xa 2.2× 107 19
9 TF:VIIa + IX ↔ TF:VIIa:IX 1.0× 107 2.45
10 TF:VIIa:IX → TF:VIIa + IXa - 1.8
11 II + Xa → IIa + Xa 7.5× 103 -
12 IIa + VIII → IIa + VIIIa 2.0× 107 -
13 VIIIa + IXa ↔ IXa:VIIIa 1.0× 107 1.0× 10−4†

14 IXa:VIIIa + X ↔ IXa:VIIIa:X 1.0× 108 1.0× 10−5†

15 IXa:VIIIa:X → IXa:VIIIa + Xa - 8.2
16 VIIIa1L + VIIIa2 ↔ VIIIa 2.2× 104 6.0× 10−5†

17 IXa:VIIIa:X → VIIIa1L + VIIIa2 + X + IXa - 1.0× 10−3

IXa:VIIIa → VIIIa1L + VIIIa2 + IXa

39



18 IIa + V → IIa + Va 2.0× 107 -
19 Xa + Va ↔ Xa:Va 4.0× 108 0.008†

20 Xa:Va + II ↔ Xa:Va:II 1.0× 108 2.06†

21 Xa:Va:II → Xa:Va + mIIa - 63.5
22 Xa:Va + mIIa → Xa:Va + IIa 1.5× 107 -
23 Xa + TFPI ↔ Xa:TFPI 9.0× 105 3.6× 10−4†

24 TF:VIIa:Xa + TFPI ↔ TF:VIIa:Xa:TFPI 3.2× 108 1.1× 10−2

25 TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI 5.0× 107 -
26 Xa + AT → Xa:AT 1.5× 103 -
27 mIIa + AT → mIIa:AT 7.1× 103 -
28 IXa + AT → IXa:AT 4.9× 102 -
29 IIa + AT → IIa:AT 7.1× 103 -
30 TF:VIIa + AT → TF:VIIa:AT 2.3× 102 -
31 BocVPRMCA + IIa ↔ BocVPRMCA:IIa 1.0× 108 6.1× 103

32 BocVPRMCA:IIa → BocVPR + AMC + IIa - 53.8
33 XII → XIIa - 5.0× 10−4

34 XIIa + XII ↔ XIIa:XII 1.0× 108 750†

35 XIIa:XII → XIIa + XIIa - 3.3× 10−2

36 XIIa + PK ↔ XIIa:PK 1.0× 108 3.6× 103†

37 XIIa:PK → XIIa + K - 40
38 XII + K ↔ XII:K 1.0× 108 45.3†

39 XII:K → XIIa + K - 5.7
40 PK + K → K + K 2.7× 104 -
41 K → Kinh - 1.1× 10−2

42 XIIa + CTI ↔ XIIa:CTI 1.0× 108 2.45
43 XIIa + C1-inh → XIIa:C1-inh 3.6× 103 -
44 XIIa + AT → XIIa:AT 21.6 -
45 XI + IIa ↔ XI:IIa 1.0× 108 5
46 XI:IIa → XIa + IIa - 1.3× 10−4

47 XIIa + XI ↔ XIIa:XI 1.0× 108 200†

48 XIIa:XI → XIIa + XIa - 5.7× 10−4

49 XIa + XI → XIa + XIa 3.19× 106 -
50 XIa + AT → XIa:AT 3.2× 102 -
51 XIa + C1-inh → XIa:C1-inh 1.8× 103 -
52 XIa + α1AT → XIa:α1AT 1.0× 102 -
53 XIa + α2AP → XIa:α2AP 4.3× 103 -
54 XIa + IX ↔ XIa:IX 1.0× 108 41†

55 XIa:IX → XIa + IXa - 7.7
56 IXa + X ↔ IXa:X 1.0× 108 0.64†

57 IXa:X → IXa + Xa - 7.0× 10−4

58 Xa + VIII ↔ Xa:VIII 1.0× 108 2.1†

59 Xa:VIII → Xa + VIIIa - 0.023
60 VIIa + IX ↔ VIIa:IX 1.0× 108 0.9
61 VIIa:IX → VIIa + IXa - 3.6× 10−5

62 VIIa + X ↔ VIIa:X 1.0× 108 210
63 VIIa:X → VIIa + Xa - 1.6× 10−6

64 Fbg + IIa ↔ Fbg:IIa 1.0× 108 636
65 Fbg:IIa → Fbn1 + IIa + FPA - 84
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66 Fbn1 + IIa ↔ Fbn1:IIa 1.0× 108 742.6
67 Fbn1:IIa → Fbn2 + IIa + FPB - 7.45
68 Fbn1 + Fbn1 ↔ (Fbn1)2 1.0× 106 6.45× 10−2

69 (Fbn1)2 + IIa ↔ (Fbn1)2:IIa 1.0× 108 701
70 (Fbn1)2:IIa → (Fbn2)2 + IIa + FPB - 49
71 Fbn2 + IIa ↔ Fbn2:IIa 1.0× 108 1.0× 103

72 (Fbn1)2:IIa + AT → (Fbn1)2:IIa:AT 1.6× 104 -
73 Fbn1:IIa + AT → Fbn1:IIa:AT 1.6× 104 -
74 Fbn2:IIa + AT → Fbn2:IIa:AT 1.0× 104 -

Table 2.7: The reaction scheme and rate constants used for the Chatterjee model
[39]. The reaction rate k−,17 is used for 2 reactions and should remain so during
any changes for sensitivity analysis or parameter fitting. The units for all k+,ind

and k−,ind reaction rates are M−1s−1 and s−1, respectively.

Substrate Initial Concentration (M)

TF 10× 10−12

II 1.4× 10−6

V 2.0× 10−8

VII 1.0× 10−8

VIIa 1.0× 10−10

VIII 7× 10−10

IX 9.0× 10−8

X 1.6× 10−7

XI 3.1× 10−8

XII 3.4× 10−7

Fbg 9× 10−6

PK 4.5× 10−7

TFPI 2.5× 10−9

AT 3.4× 10−6

C1-inh 2.5× 10−6

CTI 4.2× 10−6

α1 − AT 4.5× 10−5

α2 − AP 1× 10−6

BocVPRMCA 1× 10−5

Table 2.8: The non-zero initial concentrations for the Chatterjee model as reported
in [39].

2.1.4 Brummel Model

The Brummel model [60] is an extension to the Danforth model. It consists of the
original 33 reactions of the Danforth model with an additional 39 reactions (16
of which are reversible) to capture the effects of protein C and Thrombomodulin.

†These unbinding reaction rates are be divided by ε.
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Figure 2.3: Time course for the parameter ε (instantaneous platelet activation)
for the Chatterjee model.

The effects of protein C are highly detailed, even modelling the effects of FVa
being partially cleaved. The model also contains a large number of parameters
which are meant to remain identical across multiple reactions (like was seen for
k−,17 in the Hockin model). The protein C reactions were validated against data
under varying concentrations of activated protein C [86].

When the reactions in Table 2.10 and parameter values in Table 2.11 are solved
with the non-zero initial conditions given in Table 2.9, we can plot a thrombin gen-
eration curve, given in Figure 2.2. The ODEs are presented in Appendix A.

The thrombin generation curve produced by the Brummel model is similar in
shape to the Hockin and Danforth models, but greatly reduced in scale, possibly
due to the inclusion of the inhibitor protein C.

Substrate Initial Concentration (M)

TF 5× 10−12

VII 1.0× 10−8

VIIa 1.0× 10−10

X 1.6× 10−7

IX 9.0× 10−8

II 1.4× 10−6

VIII 7× 10−10

V 2.0× 10−8

TFPI 2.5× 10−9

AT 3.6× 10−6

TM 1.0× 10−9

PC 6.5× 10−8

Table 2.9: The initial conditions that we used for the Brummel model. All values
were reported in [60] except for FVIIa, TM and PC where values from the Bungay
model [62] were used.
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Reaction k+ k−

TF + VII ↔ TF:VII k2 k1

TF + VIIa ↔ TF:VIIa k4 k3

TF:VIIa + VII → TF:VIIa + VIIa k5 -
Xa + VII → Xa + VIIa k6 -
IIa + VII → IIa + VIIa k7 -

TF:VIIa + X ↔ TF:VIIa:X k9 k8

TF:VIIa:X → TF:VIIa:Xa k10 -
TF:VIIa + Xa ↔ TF:VIIa:Xa k12 k11

TF:VIIa + IXa ↔ TF:VIIa:IX k14 k13

TF:VIIa:IX → TF:VIIa + IXa k15 -
Xa + II → Xa + IIa k16 -

IIa + VIII → IIa + VIIIa k17 -
VIIIa + IXa ↔ IXa:VIIIa k19 k18

IXa:VIIIa + X ↔ IXa:VIIIa:X k21 k20

IXa:VIIIa:X → IXa:VIIIa + Xa k22 -
VIIIa ↔ VIIIa1L + VIIIa2 k24 k23

IXa:VIIIa:X → VIIIa1L + VIIIa2 + X + IXa k25 -
IXa:VIIIa → VIIIa1L + VIIIa2 + IXa k25 -

IIa + V → IIa + Va k26 -
Xa + Va ↔ Xa:Va k28 k27

Xa:Va + II ↔ Xa:Va:II k30 k29

Xa:Va:II → Xa:Va + mIIa k31 -
mIIa + Xa:Va → IIa + Xa:Va k32 -

Xa + TFPI ↔ Xa:TFPI k34 k33

TF:VIIa:Xa + TFPI ↔ TF:VIIa:Xa:TFPI k36 k35

TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI k37 -
Xa + AT → Xa:AT k38 -

mIIa + AT → mIIa:AT k39 -
IXa + AT → IXa:AT k40 -
IIa + AT → IIa:AT k41 -

TF:VIIa + AT → TF:VIIa:AT k42 -
TM + IIa ↔ TM:IIa k44 k43

TM:IIa + PC ↔ TM:IIa:PC k46 k45

TM:IIa:PC → TM:IIa + APC k47 -
TM:IIa + AT → IIa:AT + TM k48 -

APC + Va ↔ APC:Va k50 k49

APC:Va → APC + Va5 k51 -
APC:Va → APC + Va3 k52 -
APC + Va5 ↔ APC:Va5 k50 k49

APC + Va3 ↔ APC:Va3 k50 k49

APC:Va3 → APC + Va53 k51 -
APC:Va5 → APC + Va53 k52 -

Va3 → HCF + LCA1 k53 -
Va53 → HCF + LCA1 k53 -

APC + LCA1 ↔ APC:LCA1 k50 k49

APC + TM:IIa ↔ TM:IIa:APC k46 k45
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Xa + Va5 ↔ Xa:Va5 k28 k54

Xa + Va3 ↔ Xa:Va3 k28 k54

Xa:Va5 + II ↔ Xa:Va5:II k30 k29

Xa:Va5:II → Xa:Va5 + mIIa k55 -
Xa:Va3 + II ↔ Xa:Va3:II k30 k29

Xa:Va3:II → Xa:Va3 + mIIa k56 -
Xa:Va5 + mIIa → IIa + Xa:Va5 k57 -
Xa:Va3 + mIIa → IIa + Xa:Va3 k58 -
Xa:Va3 → HCF + LCA1 + Xa k59 -

Xa:Va3:II → HCF + LCA1 + Xa + II k59 -
IXa + X → IXa + Xa k60 -
mIIa + V → mIIa + Va k61 -
TM + mIIa ↔ TM:mIIa k44 k43

TM:mIIa + PC ↔ TM:mIIa:PC k46 k45

TM:mIIa:PC → TM:mIIa + APC k47 -
TM:mIIa + AT → mIIa:AT + TM k48 -

Xa + Va53 ↔ Xa:Va53 k28 k54

Xa:Va53 + II ↔ Xa:Va53:II k30 k29

Xa:Va53:II → Xa:Va53 + mIIa k56 -
Xa:Va53 + mIIa → IIa + Xa:Va53 k58 -

Xa:Va53:II → HCF + LCA1 + Xa + II k59 -
II + Va ↔ II:Va k63 k62

Xa:Va5 + APC → Xa:Va53 + APC k64 -

Table 2.10: The reaction scheme used for the Brummel model. Parameter names
are listed instead of parameter values because many of the later parameters are
reused across multiple reactions. The values for each of the parameters are given
in Table 2.11.

Parameter Parameter Value Parameter Parameter Value

k1 3.10× 10−3s−1 k2 3.20× 106M−1s−1

k3 3.10× 10−3s−1 k4 2.30× 107M−1s−1

k5 4.450× 105M−1s−1 k6 1.30× 107M−1s−1

k7 2.30× 104M−1s−1 k8 1.05s−1

k9 2.50× 107M−1s−1 k10 6s−1

k11 19s−1 k12 2.20× 107M−1s−1

k13 2.45s−1 k14 1.00× 107M−1s−1

k15 1.8s−1 k16 7.50× 103M−1s−1

k17 2.00× 107M−1s−1 k18 5.00× 10−3s−1

k19 1.00× 107M−1s−1 k20 1.00× 10−3s−1

k21 1.00× 108M−1s−1 k22 8.2s−1

k23 2.20× 104M−1s−1 k24 6.00× 10−3s−1

k25 1.00× 10−3s−1 k26 2.00× 107M−1s−1

k27 0.075s−1 k28 1.50× 108M−1s−1

k29 103s−1 k30 1.00× 108M−1s−1

k31 63.5s−1 k32 2.30× 108M−1s−1

k33 3.60× 10−4s−1 k34 9.00× 105M−1s−1
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k35 1.10× 10−4s−1 k36 3.20× 108M−1s−1

k37 5.00× 107M−1s−1 k38 4.20× 103M−1s−1

k39 7.10× 103M−1s−1 k40 4.90× 102M−1s−1

k41 7.10× 103M−1s−1 k42 2.30× 102M−1s−1

k43 0.33s−1 k44 1.00× 108M−1s−1

k45 100s−1 k46 1.00× 108M−1s−1

k47 0.41s−1 k48 7.10× 103M−1s−1

k49 0.7s−1 k50 1.00× 108M−1s−1

k51 1s−1 k52 0.192s−1

k53 0.028s−1 k54 0.15s−1

k55 10.3s−1 k56 10.3s−1

k57 4.60× 107M−1s−1 k58 4.60× 107M−1s−1

k59 0.0035s−1 k60 5.70× 103M−1s−1

k61 3.00× 106M−1s−1 k62 70s−1

k63 1.00× 108M−1s−1 k64 4.05× 106M−1s−1

Table 2.11: The parameter values given for the Brummel model [60].

2.1.5 Bungay Model

The Bungay model [62] consists of 49 reactions (26 of which are reversible) gov-
erned by mass action law kinetics. The aim of the model was to capture the
reliance of the coagulation cascade on phospholipid binding sites where many of
these reactions occur. This was achieved by considering a lipid head group species
which can bind to many of the species in the model (indicated by a subscript of L)
and then considering any reactions that only occur on a phospholipid surface to be
modelled by a reaction between lipid bound species. The lipid binding reactions
for a species S are given by Equation (2.2), where LBSS is the number of lipid
binding sites available for species S. LBSS is given by [Lipid]

nS
where [Lipid] is the

concentration of lipid head groups and nS is the number of head groups that are
required to bind species S, which was assumed to be 100 for all species.

Sf + LBSS ↔ SL (2.2)

This model, like the Hockin model, was validated qualitatively against data for
an average donor with varied prothrombin concentrations [85]. These reactions
are given in Table 2.12 and the model is then completed by including reactions to
represent the lipid binding and unbinding reactions which are given in Table 2.13.

When the model is solved using the non-zero initial conditions given in Table
2.14, we can then plot a thrombin generation curve for the Bungay model, given
in Figure 2.2. The ODEs are presented in Appendix A.

The thrombin generation curve for the Bungay model is different to all the
previous models. Its shape falls somewhere between that of the Chatterjee model
and the others. It has the shortest lagtime of the models so far, but the second
lowest peak height.
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Index Reaction k+,ind k−,ind

1 TFL + VIIaL ↔ TF:VIIaL 5× 108 0.005
2 TFL + VIIL ↔ TF:VIIL 5× 106 0.005
3 TF:VIIaL + IXL ↔ TF:VIIa:IXL 1× 107 2.09
4 TF:VIIa:IXL → TF:VIIaL + IXaL - 0.34
5 TF:VIIaL + XL ↔ TF:VIIa:XL 1× 108 32.5
6 TF:VIIa:XL → TF:VIIa:XaL - 1.5
7 TF:VIIa:XaL → TF:VIIaL + XaL - 1
8 TF:VIIL + XaL ↔ TF:VII:XaL 5× 107 44.8
9 TF:VII:XaL → TF:VIIaL + XaL - 15.2
10 IXaL + VIIIaL ↔ IXa:VIIIaL 1× 108 0.2
11 XaL + VaL ↔ Xa:VaL 1× 109 1
12 IXa:VIIIaL + XL ↔ IXa:VIIIa:XL 1× 108 10.7
13 IXa:VIIIa:XL → IXa:VIIIaL + XaL - 8.3
14 VL + XaL ↔ V:XaL 1× 108 1
15 V:XaL → VaL + XaL - 0.043
16 VIIIL + XaL ↔ VIII:XaL 1× 108 2.1
17 VIII:XaL → VIIIaL + XaL - 0.023
18 VL + IIaf ↔ V:IIaL 1× 108 6.94
19 V:IIaL → VaL + IIaf - 0.23
20 VIIIL + IIaf ↔ VIII:IIaL 1× 108 13.8
21 VIII:IIaL → VIIIaL + IIaf - 0.9
22 Xa:VaL + IIL ↔ Xa:Va:IIL 1× 108 100
23 Xa:VaL + mIIaL ↔ Xa:Va:mIIaL 1× 108 66
24 Xa:Va:IIL → Xa:Va:mIIaL - 13
25 Xa:Va:mIIaL → Xa:VaL + IIaf - 15
26 VIIL + XaL ↔ VII:XaL 5× 107 44.8
27 VII:XaL → VIIaL + XaL - 15.2
28 XIf + IIaf ↔ XI:IIaf 1× 108 10
29 XI:IIaf → XIaf + IIaf - 1.453
30 APC:PSL + VIIIaL ↔ APC:PS:VIIIaL 1× 108 1.6
31 APC:PS:VIIIaL → APC:PSL + VIIIaiL - 0.45
32 APC:PSL + VaL ↔ APC:PS:VaL 1× 108 1.6
33 APC:PS:VaL → APC:PSL + VaiL - 0.45
34 TFPIf + Xaf ↔ TFPI:Xaf 1.6× 107 0.00033
35 TFPI:Xaf + TF:VIIaL ↔ TFPI:Xa:TF:VIIaL 1× 107 0.0011
36 IXaf + ATf → IXa:ATf 4.9× 102 -
37 Xaf + ATf → Xa:ATf 2.3× 103 -
38 IIaf + ATf → IIa:ATf 6.83× 104 -
39 VL + mIIaL ↔ V:mIIaL 1× 108 6.94
40 V:mIIaL → VaL + mIIaL - 1.035
41 VIIIL + mIIaL ↔ VIII:mIIaL 1× 108 13.8
42 VIII:mIIaL → VIIIaL + mIIaL - 0.9
43 IIaf + TML ↔ TM:IIaL 1× 109 0.5
44 TM:IIaL + PCL ↔ TM:IIa:PCL 1× 108 6.45
45 TM:IIa:PCL → TM:IIaL + APCL - 3.6
46 mIIaf + ATf → mIIa:ATf 6.83× 103 -
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47 APCL + PSL ↔ APC:PSL 1× 108 0.5
48 XIaf + IXL ↔ XIa:IXL 1× 107 1.4517
49 XIa:IXL → XIaf + IXaL - 0.183

Table 2.12: The reaction scheme for the Bungay model and their corresponding
rate values. The units for all k+,ind and k−,ind reaction rates are M−1s−1 and s−1,
respectively.

Index Substrate konind
(M−1s−1) koffind

(s−1)

1 II 4.3× 106 1
2 mIIa 5× 107 0.4575
3 V 5× 107 0.145
4 Va 5.7× 107 0.17
5 VII 5× 107 0.66
6 VIIa 5× 107 0.227
7 VIII 5× 107 0.1
8 VIIIa 5× 107 0.335
9 IX 5× 107 0.115
10 IXa 5× 107 0.115
11 X 1× 107 1.9
12 Xa 2.9× 107 3.3
13 APC 5× 107 3.5
14 PS 5× 107 0.2
15 VIIIai 5× 107 0.335
16 Vai 5.7× 107 0.17
17 PC 5× 107 11.5

Table 2.13: The species that can bind to lipids in the Bungay model and their
binding and unbinding rates.
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Substrate Initial Concentration (M)

TF 5×10−12

II 1.4×10−6

V 2×10−8

VII 1×10−8

VIIa 1×10−10

VIII 7×10−10

IX 9×10−8

X 1.7×10−7

XI 3×10−8

TFPI 2.5×10−9

AT 3.4×10−6

TM 1×10−9

PC 6×10−8

PS 3×10−7

Table 2.14: The non-zero initial concentrations for the Bungay model [62].

2.1.6 Panteleev Model

The Panteleev model [63] is based on a spatial flow model used in earlier work
by Panteleev [64], that was subsequently simplified to remove the spatial compo-
nents, platelets and thrombomodulin. This model is defined differently to others
by featuring some additional assumptions. Binding to phospholipids and of en-
zyme substrate complexes is assumed to be rapid so the concentrations of these
is given as a fraction of the total levels of the substrates. Additionally, the con-
centrations of some inhibitors (α1 −AT , α2 −AP , α2 −M , PCI, C1-inh, heparin
and PS) were assumed to be constant. This model was validated against data
on fibrin concentration in normal and factor V deficient plasma for varying TF
concentrations where it was able to reproduce the experimental data accurately.

The model was originally defined only as an ODE system which we have trans-
lated into an equivalent set of mass action law and non-mass action law reactions
given in Table 2.16 and 2.17, respectively. The instant binding equations are given
in Table 2.15 where SB denotes substrate S is bound to lipids and SF denotes the
free concentration of substrate S that is not bound to an enzyme or cofactor. The
B and F qualifiers have been added to the reaction scheme in any places where it
effects a reaction rate.

When the model is solved using the non-zero initial conditions given in Table
2.19, we can then plot a thrombin generation curve for the Panteleev model which
is given in Figure 2.2. The ODEs are presented in Appendix A.

The Panteleev model produces a very smooth thrombin generation curve, with
its activation appearing almost identical to its inhibition. Its peak height is similar
to (although slightly larger than) the Danforth model.
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Reaction

[TF:VIIaF ] = [TF :V IIa]
1+[IX]/K4+[X]/K6

[TF:VIIa:Xa] = k6
K6·k−19

· [X][TF : V IIaF ]

[IXaBF ] = [IXa]p·n20

K20+[IXa]

[VIIIaBF ] = [V IIIa]p·n21

(K21+V IIIa)·(1+
[XB ]
p·K10

)·(1+[PS]/K22)

[Xa:VaB] = [Xa]·[V aB ]
K23(1+[PS]/K24+[Xa]/K23)+V aB

[XaF ] = [Xa]-[XaVaB]
[XB] = [X]p·n25

K25(1+[X]/K25+[II]/K26)

[IIaF ] = [IIa]

1+
[Ia]+[I]
K14

[IIB] = [II]p·n25

K26(1+[X]/K25+[II]/K26)

[VaB] = [V a]p·n27

K27+[V a]

[VaBF ] = [VaB]-[Xa:VaB]

Table 2.15: The Panteleev model’s equations for the levels of free and lipid bound
substrate.
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Reaction Reaction rate

TF + VII ↔ TF:VII k1, k−1

TF + VIIa ↔ TF:VIIaF k1, k−1

TF:VII + IIaF → TF:VIIa + IIa k2

TF:VII + XaF → TF:VIIa + Xa k3

VII + IIaF → VIIa + IIa k2

TF:VIIaF + Xa:TFPI → TF:VIIa:Xa:TFPI h1

TF:VIIa:Xa + TFPI → TF:VIIa:Xa:TFPI h2

IX + TF:VIIaF → IXa + TF:VIIa k4/K4

IXa + AT → IXa:AT h3

X + TF:VIIaF → Xa + TF:VIIa k6/K6

XB + IXaBF → Xa + IXa k7
p·K7

XB + IXaBF + VIIIaBF → Xa + IXa + VIIIa k8
p2·K8·K9

XaF + TFPI ↔ Xa:TFPI k11, k−11

XaF + AT → Xa:AT h4

XaF + α2 −M → Xai + α2 −M h5

XaF + α1 − AT → Xai + α1 − AT h6

XaF + PCI → Xai + PCI h7

XaVaB + AT → Xa:AT + Va h8

II + XaF → IIa + Xa k12 · p
IIB + XaVaB → IIa + XaVa k13/p

IIaF + AT → IIa:AT h9

IIaF + α2 −M → IIai + α2 −M h10

IIaF + α1 − AT → IIai + α1 − AT h11

IIaF + PCI → IIai + PCI h12

IIaF + hep → IIai + hep h13

Fbg + IIaF → Fbn + IIa k14/K14

VIIIa → VIIIai h14

VaBF + APC → Vai + APC h15

XI + IIaF → XIa + IIa k17 · p
XIa + AT → XIa:AT h16

XIa + α2 − AP → XIai + α2 − AP h17

XIa + α1 − AT → XIai + α1 − AT h18

XIa + PCI → XIai + PCI h19

XIa + C1inh → XIai + C1inh h20

PC + IIaF → APC + IIa k18

APC + α2 −M → APCi + α2 −M h21

APC + α2 − AP → APCi + α2 − AP h22

APC + α1 − AT → APCi + α1 − AT h23

APC + PCI → APCi + PCI h24

Table 2.16: Mass action law reactions for the Panteleev model [63].
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Reaction Reaction rate (M/s)

IX XIa→ IXa k5[IX][XIa]
K5+[IX]

VIII IIa
F

→ VIIIa k15[V III][IIaF ]
K15+[IIaF ]

V IIaF→ Va k16[V ][IIaF ]
K16+[IIaF ]

Table 2.17: The non-mass action law reactions and their reaction rate functions
for the Panteleev model [63].
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Parameter Parameter Value

k1 7× 107M−1s−1

k−1 0.0183s−1

k2 2.33× 104M−1s−1

k3 6.67× 106M−1s−1

k4 0.25s−1

K4 2.1× 10−7M
k5 0.097s−1

K5 2× 10−7M
k6 7.25s−1

K6 2.38× 10−7M
k7 1× 10−3s−1

K7 230 molecules/platelet
k8 105.8s−1

K8 1216 molecules/platelet
K9 278 molecules/platelet
K10 1655 molecules/platelet
k11 8.67× 105M−1s−1

k−11 3.33× 10−4s−1

k12 7.5× 1017M−2s−1

k13 0.024s−1

k14 84s−1

K14 7.2× 10−6M
k15 0.9s−1

K15 1.47× 10−7M
k16 0.23s−1

K16 7.17× 10−8M
k17 5× 1014M−2s−1

k18 3.33× 102M−1s−1

k−19 12.83s−1

n20 260 sites/platelet
K20 2.57× 10−9M
n21 750 sites/platelet
K21 1.5× 10−9M
K22 1.5× 10−7M
K23 1.18× 10−10M
K24 2× 10−7M
n25 16000 sites/platelet
K25 3.2× 10−7M
K26 4.7× 10−7M
n27 2700 sites/platelet
K27 2.9× 10−9M
h1 7.33× 106M−1s−1

h2 1× 108M−1s−1

h3 1.37× 102M−1s−1

h4 2.5× 103M−1s−1

h5 6.67× 102M−1s−1
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h6 2.27× 102M−1s−1

h7 2× 104M−1s−1

h8 3.67× 102M−1s−1

h9 6.83× 103M−1s−1

h10 1.67× 103M−1s−1

h11 50M−1s−1

h12 6.17× 103M−1s−1

h13 1.05× 103M−1s−1

h14 5.83× 10−3s−1

h15 1.28× 108M−1s−1

h16 3.17× 102M−1s−1

h17 4.33× 102M−1s−1

h18 1× 102M−1s−1

h19 9× 104M−1s−1

h20 2.33× 103M−1s−1

h21 1× 102M−1s−1

h22 1× 102M−1s−1

h23 11.7M−1s−1

h24 6.5× 103M−1s−1

p 7.5× 10−14M/(sites/platelet)

Table 2.18: The parameter values given for the Panteleev model [63].

Substrate Initial Concentration (M)

TF 5× 10−12

II 1.4× 10−6

V 2× 10−8

VII 1× 10−8

VIIa 1× 10−10

VIII 7× 10−10

IX 9× 10−8

X 1.7× 10−7

XI 3× 10−8

Fbg 7.6× 10−6

TFPI 2.5× 10−9

AT 3.4× 10−6

PC 6× 10−8

PS 3.46× 10−7

PCI 8.8× 10−8

C1-inh 1.7× 10−6

hep 1.4× 10−6

α1 − AT 4× 10−5

α2 − AP 1.1× 10−6

α2 −M 3× 10−6

Table 2.19: The non-zero initial concentrations for the Panteleev model [63].
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2.1.7 Tyurin Model

The Tyurin model [66] consists of 48 reactions (22 of which follow Michaelis Menten
kinetics and 26 follow mass action law with two of the mass action law reactions
being reversible). This model included many new features such as contact ac-
tivation (which was modelled using a fixed concentration of factor XIIa present
initially), many new inhibitors such as α1 − AT , α2 − M , α2 − AP (α1-Anti-
Trypsin, α2-Macroglobulin and α2-Anti-Plasmin), protein C (in a more simplified
set of reactions than those in Brummel) and PCI (Protein C Inhibitor). The model
was produced for the purpose of evaluating optimal initial concentrations of the
various coagulation factors. The model uses Michaelis Menten with competitive
inhibition and mass action law rather than exclusively mass action law that was
used in the work by Hockin [59], Danforth [42], Chatterjee [39], Brummel [60]
and Bungay [62]. This model was not validated against any experimental data.
The Michaelis Menten reactions are given in Table 2.20 and the mass action law
reactions are given in 2.21.

Index Reaction kcatind
(s−1) kmind

(M)

1 XI XIIa→ XIa 0.35 5× 10−8

2 XI IIa→ XIa 1.43 5× 10−8

3 XI XIa→ XIa 0.13 5× 10−8

4 IX XIa→ IXa 1.25 3.55× 10−7

5 IX V IIa→ IXa 1.8× 10−4 9× 10−9

6 IX TF :V IIa→ IXa 0.7 1× 10−7

7 X IXa→ Xa 6.7× 10−4 1× 10−6

8 X IXa:V IIIa→ Xa 25 1.6× 10−7

9 X V IIa→ Xa 2.45× 10−3 2.5× 10−7

10 X TF :V IIa→ Xa 1.8 2.2× 10−7

11 II Xa→ IIa 0.0375 5.8× 10−6

12 II Xa:V a→ IIa 28.3 1.03× 10−6

13 V IIa→ Va 0.23 7.17× 10−8

14 V Xa→ Va 0.043 1.04× 10−8

15 VII Xa→ VIIa 0.05 5× 10−8

16 TF:VII Xa→ TF:VIIa 0.66 9.3× 10−9

17 VIII IIa→ VIIIa 0.36 2.0× 10−8

18 PC TM :IIa→ APC 88.3 5.9× 10−6

19‡ Va APC→ Vai 0.4 2.0× 10−8

20‡ VIIIa APC→ VIIIai 0.4 2.0× 10−8

21‡ IXa:VIIIa APC→ VIIIai + IXa 0.4 2.0× 10−8

22‡ Xa:Va APC→ Vai + Xa 0.4 2.0× 10−8

Table 2.20: The Michaelis Menten reactions and rate constants for the Tyurin
model [66].

54



Index Reaction kind

1 Va + Xa → Xa:Va 1.67× 108

2 VIIIa + IXa → VIIIa:IXa 1.67× 108

3 VIIa + TF → TF:VIIa 5× 104

4 TF:VIIa → VIIa + TF 3.33× 10−5

5 VII + TF → TF:VII 3.33× 104

6 TF:VII → VII + TF 3.33× 10−6

7 TF:VIIa + TFPI:Xa → TF:VIIa:TFPI:Xa 1.08× 107

8 TF:VIIa + AT → TF:VIIa:AT 450
9 IIa + AT → IIa:AT 7.08× 103

10 IIa + α1 − AT → IIa:α1 − AT 78.3
11 IIa + α2 −M → IIa:α2 −M 488
12 IIa + PCI → IIa:PCI 1.67× 104

13 Xa + AT → Xa:AT 3.13× 103

14 Xa + α1 − AT → Xa:α1 − AT 262
15 Xa + TFPI → Xa:TFPI 1.6× 107

16 Xa:Va + α1 − AT → Xa:α1 − AT + Va 262
17 Xa:Va + AT → Xa:AT + Va 1.67× 103

18 IXa + AT → IXa:AT 490
19 VIIIa:IXa + AT → IXa:AT + VIIIa 500
20 XIa + C1-inh → XIa:C1-inh 16.7
21 XIa + α1 − AT → XIa:α1 − AT 66.7
22 XIa + AT → XIa:AT 167
23 XIa + α2 − AP → XIa:α2 − AP 500
24 XIa + PAI-1 → XIa:PAI-1 2.1× 105

25 IIa + TM → TM:IIa 5× 105

26 TM:IIa + PCI → TM:IIa:PCI 1× 106

27 APC + PCI → APC:PCI 2.5× 103

28 APC + α1 − AT → APC:α1 − AT 10

Table 2.21: Mass action law reactions and reaction rate constants for the Tyurin
model [66]. All units are M−1s−1 except for k4 and k6 which are both s−1.

When this system is solved with the initial conditions given in Table 2.22, we
get the thrombin generation curve given in Figure 2.2. The ODEs are presented
in Appendix A.

The thrombin generation curve of the Tyurin model appears similar in shape
to the Chatterjee model, with very rapid activation up to a very large peak height
once it passes the lagtime. The lagtime is shorter than the Chatterjee model,
similar to the Bungay model, and its peak height is larger.

‡The parameters for these reactions are identical to one another and should remain so during
any changes for sensitivity analysis or approximate Bayesian computation.

§These initial conditions are not stated in the description of the model and are added to
ensure that all reactions in the model can occur.
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Substrate Initial Concentration (M)

TF 1× 10−8

II 1.4× 10−6

V 2.1× 10−8

VII 1× 10−8

VIIa§ 1× 10−10

VIII 7× 10−10

IX 9× 10−8

X 1.33× 10−7

XI§ 3× 10−8

XIIa§ 2.3× 10−11

TFPI 2.5× 10−9

AT 5× 10−6

TM§ 1× 10−9

PC 6.45× 10−8

PCI 7× 10−8

C1-inh§ 2.1× 10−6

PAI-1§ 4.6× 10−10

α1 − AT 4× 10−5

α2 − AP 9.5× 10−7

α2 −M 3× 10−6

Table 2.22: The non-zero initial conditions for the Tyurin model as reported in
[66]. Some initial conditions were not given so values have been used from other
models.

2.1.8 Zhu Model

The Zhu model [68] consists of 55 reactions (of which 35 follow mass action law
kinetics and 20 follow Michaelis Menten kinetics). They separated the model into
contact activation and tissue factor activation to investigate the differences be-
tween them. This meant the model has a very detailed contact activation pathway
which included kallikreins, an activator for FXII, and a simplified set of protein
C reactions. This model was not validated against any experimental data. The
Michaelis Menten reactions are reported in Table 2.23 and the mass action law
reactions are given in Table 2.24.

When these reactions are solved with the non-zero initial conditions given in
Table 2.25, we observe the thrombin generation curve given in Figure 2.2. The
ODEs are presented in Appendix A.

The Zhu model has the largest peak height of all the models and the smallest
lagtime. It is most similar in shape to the Tyurin and Chatterjee models.
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Index Reaction kcatind
(s−1) kmind

(M)

1 XII XIIa→ XIIa 0.033 1.1× 10−5

2 PK XIIa→ K 3.6 9.1× 10−8

3 PK XIIf→ K 40 3.7× 10−5

4 XII K→ XIIa 5.7 5.1× 10−7

5 XIIa K→ XIIf 5.7× 10−3 5× 10−7

6 XI XIIa→ XIa 5.7× 10−4 2× 10−6

7 XII XIa→ XIIa 0.57 5× 10−7

8 IX XIa→ IXa 3.75 3.5× 10−7

9 X IXa→ Xa 6.7× 10−4 2× 10−6

10 X IXa:V IIIa→ Xa 29 1.9× 10−7

11 II Xa→ IIa 0.0375 5.8× 10−8

12 II Xa:V a→ IIa 28.3 1× 10−6

13 V IIa→ Va 0.23 7.17× 10−8

14 V Xa→ Va 0.043 1.04× 10−8

15 VIII IIa→ VIIIa 1 2× 10−8

16 Fbg IIa→ Fbn 84 7.2× 10−6

17 TF:VII Xa→ TF:VIIa 0.66 9.3× 10−9

18 X TF :V IIa→ Xa 1.72 3.8× 10−7

19 IX TF :V IIa→ IXa 0.57 1.33× 10−7

20 PC TM :IIa→ APC 0.33 7.7× 10−6

Table 2.23: The Michaelis Menten reactions and rate constants for the Zhu model
[68].
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Index Reaction kind

1 Xa + Va → Xa:Va 1.67× 108

2 VIIIa + IXa → VIIIa:IXa 1.67× 108

3 IIa + AT → IIa:AT 5833
4 IIa + α1 − AT → IIa:α1 − AT 78.3
5 IIa + α2 −M → IIa:α2 −M 488
6 Xa + AT → Xa:AT 1833
7 Xa + α1 − AT → Xa:α1 − AT 262
8 Xa + TFPI → Xa:TFPI 1.6× 107

9 IXa + AT → IXa:AT 490
10 XIa + C1-inh → XIa:C1-inh 16.7
11 XIa + α1 − AT → XIa:α1 − AT 66.7
12 XIa + AT → XIa:AT 167
13 XIa + α2 − AP → XIa:α2 − AP 500
14 XIa + PAI-1 → XIa:PAI-1 2.1× 105

15 XIIa + C1-inh → XIIa:C1-inh 3667
16 XIIa + α2 − AP → XIIa:α2 − AP 183
17 XIIa + α2 −M → XIIa:α2 −M 83
18 XIIa + AT → XIIa:AT 21.7
19 XIIa + PAI-1 → XIIa:PAI-1 1.6× 104

20 XIIf + C1-inh → XIIf:C1-inh 3083
21 XIIf + α2 − AP → XIIf:α2 − AP 152
22 XIIf + AT → XIIf:AT 53.3
23 K + C1-inh → K:C1-inh 1.67× 104

24 K + α2 −M → K:α2 −M 4833
25 K + PAI-1 → K:PAI-1 6× 104

26 K + AT → K:AT 160
27 VII + TF → TF:VII 3.3× 104

28 TF:VIIa + AT → TF:VIIa:AT 450
29 TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI 1.1× 107

30 APC + Va → APC:Va 2× 107

31 APC + VIIIa → APC:VIIIa 2× 107

32 APC + Xa:Va → APC:Xa:Va 2× 107

33 APC + VIIIa:IXa → APC:VIIIa:IXa 2× 107

34 TM + IIa → TM:IIa 6.7× 106

35 XI → XIa 1.3× 10−4

Table 2.24: Mass action law reactions and reaction rate constants for the Zhu
model [68]. All units are M−1s−1 except for k35 which has units of s−1
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Substrate Initial Concentration (M)

TF 5× 10−7

II 1.4× 10−6

V 2.1× 10−8

VII 1.8× 10−8

TF:VIIa 5× 10−9

VIII 7× 10−10

IX 9× 10−8

X 1.33× 10−7

XI 2.5× 10−8

XII 3× 10−7

XIIa 2.3× 10−11

Fbg 8.3× 10−6

PK 5.8× 10−7

TFPI 2.5× 10−9

AT 3.4× 10−6

TM 2.2× 10−10

PC 6.4× 10−8

C1-inh 1.7× 10−6

PAI-1 4.6× 10−10

α1 − AT 2.45× 10−5

α2 − AP 9× 10−7

α2 −M 3.5× 10−6

Table 2.25: The non-zero initial conditions for the Zhu model [68].

2.1.9 Model Components

Figure 2.4 presents the components in each of the models in the form of a Venn
diagram.

Alongside the default species required for the tissue factor activation pathway,
protein C and thrombomodulin are commonly used in models as well as including
the contact activation pathway. Although protein C is featured in many of these
models, its cofactor protein S is only included in two models.

There is still clearly large disagreement between models on which components
are relevant to predicting thrombin generation. Over the following sections, we
will investigate these differences between the models, with the end goal of identi-
fying what is necessary, what may be removed, and where we can improve upon
them.
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Figure 2.4: A Venn diagram comparing the species used in each of the models.
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2.2 Model Validation
To ensure our implementation of the models is accurate, for each model we utilise,
our code is validated against available code on BioModels [87] and figures and
plots available in the original papers.

2.2.1 Hockin Model

The code for the Hockin model is validated against the auto-generated MATLAB
BioModels code (Version 2 of the Hockin Model; BIOMD0000000335) and by re-
producing Figure 3 from the original paper [59].

To produce easily comparable figures the BioModels time interval is changed
from [0,100] to [0,700] and the AbsTol (ODE solver absolute tolerance) is reduced
to 10−10. This is then compared against our thrombin generation curve in Figure
2.5∗. We also reproduce Figure 3 from the original paper [59], which demonstrates
total thrombin generation curves ([IIa] + 1.2[mIIa]) for varying initial levels of
tissue factor, presented in Figure 2.6. In both cases we are able to reproduce the
results of the model accurately.

Figure 2.5: A comparison between the BioModels and our code (labelled ODE)
for the Hockin model.

2.2.2 Danforth Model

The code for the Danforth model is validated against Figure 1 from the original
paper [42], with the comparison given in Figure 2.7. There appears to be a slight
discrepancy in time to peak which lead us to compare another figure, specifically
Figure 2B in the original paper [42]. As demonstrated in Figure 2.8, this also
presented minor discrepancies that become more apparent at large changes to the
parameter values.

∗This validation was performed using an initial TF concentration of 25pM.
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(a) Copied from the original paper. (b) Generated using our Hockin model code.
Blue curves are used for the digitized curves
from the original figure.

Figure 2.6: A comparison between Figure 3 from the original paper [59] and the
same figure generated using our code for the Hockin model.

We have verified that, after reversing the changes between the Danforth model
and Hockin model in our code, we reproduce the results of the Hockin model but
we are unable to identify a cause for these discrepancies. This leads us to believe
there are differences between the reactions and rates described in the supplemental
information of the paper and the implementation of the model used to generate
the figures in the paper.

(a) Plot from original paper.
(b) Generated using our Danforth model.
Blue curves are used a digitized curve from
the original figure.

Figure 2.7: A comparison between Figure 1 from the original Danforth paper [42]
and the same figure generated by our Danforth model code.
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(a) Plot from original paper.

(b) Generated using our Danforth model.
Blue curves are used for four digitized curves
from the original figure (only the thick black
line and the three dotted lines are repro-
duced).

Figure 2.8: A comparison between Figure 2B from the original Danforth paper
[42] and the same figure generated by our Danforth model code for the variation
of parameter k−,19 (referred to as k41 in the Danforth paper [42]).

2.2.3 Chatterjee Model

The code for the Chatterjee model is validated against the BioModels auto-
generated MATLAB code (MODEL1108260014). The dilution event∗ that is used
frequently in the paper, and also in the BioModels code, is unnecessary for our
work so is removed from the BioModels code to produce the thrombin generation
curve. There is also an error caused by the auto-generation program which only
uses parameters in the default of local scope and the parameter which represents
[IIa·(t)] (global_par_parameter_1) needs to be global for the code to update ε
correctly, so this is also changed. This code is then compared against our thrombin
generation curve in Figure 2.9 where we are able to reproduce the results.

2.2.4 Brummel Model

The code for the Brummel model is validated against the BioModels SBML file
(Version 2; MODEL1807180002) which is then analysed using the SimBiology ap-
plication in MATLAB. There are two discrepancies between the SBML BioModels
file and our MATLAB code which are the lack of an initial concentration for FVIIa
in the SBML file and the parameter k17 which uses a value of 2× 107 in our code
and 237 in the SBML file. After checking the parameter value in the description of
the model given by Brummel [60], it is reported as 2×107 and therefore corrected
in the SBML file. Although initial conditions are not specified by Brummel in the
model description, a non-zero initial FVIIa concentration is required for thrombin
generation so this is also added to the SBML file as 1 × 10−10M. The thrombin

∗The dilution event is a part of the SBML file, and therefore also the auto-generated code,
in which the volume of the system is changed to capture an experimental assay being diluted.
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Figure 2.9: A comparison between the BioModels and our code (labelled ODE)
for the Chatterjee model.

Figure 2.10: A comparison between the BioModels and our code (labelled ODE)
for the Brummel model.

generation curves are then compared to one another in Figure 2.10 where we are
able to match the results of this edited SBML file.

2.2.5 Bungay Model

The code for the Bungay model is validated against the BioModels auto-generated
MATLAB file (Version 2; BIOMD0000000334) as well as Figure 4 from the origi-
nal paper [62]. To produce easily comparable figures, the BioModels time interval
is changed from [0,100] to [0,700] and the AbsTol is reduced to 10−10. This is
compared against our thrombin generation curve in Figure 2.11. The comparison
to Figure 4 from the original paper [62] is given in Figure 2.12 and in both cases
we produce matching figures.

2.2.6 Panteleev Model

The code for the Panteleev model is validated against two figures from the paper
[63] (Figures 4A and 4D). The comparison between the original figures and our
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Figure 2.11: A comparison between the BioModels and our code (labelled ODE)
for the Bungay model.

(a) Plot from the original paper.
(b) Generated using our Bungay code. Blue
curves are used for the digitized curves from
the original figure.

Figure 2.12: A comparison between the thrombin generation curves for different
vesicle concentrations from Figure 4 of the original paper and our code for the
Bungay model.

code is given in 2.14. All curves appear to match except for the 4pM of TF curve
where it appears slightly slower in the original compared to our predictions. We
were unable to identify the cause of this discrepancy so we compared our code to
the BioModels code (BIOMD0000000740; which also fails to reproduce the origi-
nal Figure 4A, although in a different way) and found a handful of discrepancies
between these two implementations. All discrepancies were due to errors in the
BioModels code (using k8 instead of K8 in the FX and FXa ODEs and using i3,
Xa:TFPI, instead of i1, AT, in the FIXa ODE). After fixing these mistakes and in-
cluding an initial FV concentration, our code matches the edited BioModels code
as demonstrated in Figure 2.13.
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Figure 2.13: A comparison between the BioModels and our code (labelled ODE)
for the Panteleev model.

2.2.7 Tyurin Model

The Tyurin model’s original paper [66] lacks any figures or results that can be
easily used for verifying our code and there is not a version of the model available
on BioModels. As such, we rebuilt the model in the SimBiology MATLAB app to
verify against minor implementation mistakes†. The thrombin generation curves
are given in Figure 2.15.

2.2.8 Zhu Model

We are unable to validate our code against the figures given in the original paper.
Additionally, no code is given with the paper and there are no implementations on
BioModels. The model is given as a set of 55 reactions, but in the ODEs and fig-
ures these reactions are separated into intrinsic, extrinsic or both. Unfortunately,
the only statement of which reactions are in each group is given in the ODEs
which contain multiple errors. These mistakes are fairly simple to resolve, such as
the rate of FIIa inhibition by α2−M being given as −k21[α2−M ][Xa]. However,
implementing these ODEs with or without these mistakes still fails to reproduce
the results seen in the paper (See Figure 2.17). We are able to verify that, after
fixing the mistakes in the ODEs, we replicated the results of our previous code
(when the intrinsic and extrinsic reactions are merged together). Additionally, to
further ensure that there are no mistakes in our model’s code we reproduced the
model in SimBiology and then verify our code against it. The thrombin generation
curves are given in Figure 2.16.

2.2.9 Conclusions

We are able to accurately reproduce the Hockin, Chatterjee, Brummel, and Bun-
gay models. The Danforth and Panteleev models appears to have a small discrep-

†This is focused on avoiding mistakes in the typing of the ODEs which are unlikely to be
repeated. This does not ensure that our implementation matches the one used in the paper.
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(a) Figure 4A from [63].

(b) Generated using our Panteleev code.
Blue curves are used for the digitized curves
from the original figure.

(c) Figure 4D from [63].
(d) Generated using our Panteleev code.
Blue curves are used for the digitized curves
from the original figure.

Figure 2.14: A comparison between the fibrin curves from the original paper [63]
and our Panteleev model code. Figure 4A uses 0.64, 0.32, 0.16, 0.08, 0.04, 0.02,
0.01 and 0pM as the initial concentration of TF and Figure 4D uses 64, 32, 16, 8,
4, 2, 1 and 0pM of TF with no initial V concentration.

ancy between our implementation and the results in the paper. In the case of the
Panteleev model, we were able to validate against the available model on BioMod-
els. The Tyurin model does not present any methods for a simple validation so
we have verified our implementation against minor mistakes. We were unable to
reproduce the results of the Zhu model, so we have also verified our implementa-
tion against minor mistakes. In the interest of clarity and reproducibility, we have
presented the ODEs we use to implement the models in Appendix A.
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Figure 2.15: A comparison between our SimBiology implementation and our ODE
implementation for the Tyurin model.

Figure 2.16: A comparison between our SimBiology implementation and our ODE
implementation for the Zhu model.
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(a) Plot for intrinsic pathway from the orig-
inal paper.

(b) Generated using our Zhu code for the
intrinsic pathway. Blue curves are used for
the digitized curves from the original figure.

(c) Plot for extrinsic pathway from the orig-
inal paper.

(d) Generated using our Zhu code for the
extrinsic pathway. Blue curves are used for
the digitized curves from the original figure.

Figure 2.17: A comparison between the figures from the original paper and the
same figures made using our implementation of the ODEs after fixing the mistakes.
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2.3 Correlation
The models have been validated qualitatively against thrombin generation data,
under which the concentrations of at most two coagulation factors are varied. It
has previously been shown that a subset of the models we consider (Hockin, Chat-
terjee, Bungay, Tyurin and Zhu) failed to reproduce ETP from patient data for a
cohort of 112 individuals [78]. We will expand on this work, both in the number
of models and the number of patients. We will then assess some similarities and
differences between the predictions made by the models. Finally, we will conclude
by identifying the cause of a discrepancy in one of the model’s predictions of ETP
that was found when comparing the models to patient data.

In this chapter, we assess the models as they were originally described. Later,
in Chapter 3, we will assess one of these models after optimising the reaction rates
to best fit the PRAMIS data.

2.3.1 Correlation with Patient Data

As previously described in Section 1.1, the data set we use consists of measured
values for factor concentrations and ETP from a cohort of 348 individuals (162 pre-
mature myocardial infarction cases and 186 age, sex and smoking-status matched
healthy controls). The thrombotic potential, given as ETP, was measured through
a chromogenic assay with the Pefachrome-TG substrate. From this assay, ETP
was reported as a percentage of a 20-donor plasma pool. Additionally, the mea-
sured concentrations of factors II, V, VII, VIII, IX, X, XI and the inhibitor AT
are also reported relative to a 20-donor plasma pool. The concentration of TF
is recorded in pM and TFPI is recorded in Units. We convert the TFPI concen-
tration to a percentage using the mean TFPI concentration of the controls. The
chromogenic assay was performed twice, using both the reported concentration of
TF and with an additional 5pM of exogenous TF added.

A set of baseline initial conditions were taken as the median of the initial
conditions given by each of the models, which coincides with previously reported
healthy figures [59]. These baseline initial conditions are given in Table 2.26. We
use the patient specific factor concentrations (given as a percentage of pooled
plasma) to scale these baseline concentrations, giving us the patient specific factor
concentration in moles that can be simulated in the models. The rate constants
for each model are fixed at their original values, so only the initial concentrations
of the coagulation factors vary between individuals.

The patient specific factor concentrations are simulated in each of the models
and the ETP is extracted from the resulting model-predicted thrombin generation
curve. The units for model predicted ETP, mol ·sec, cannot be easily compared to
the units recorded in the data, percentage of pooled plasma. This is because while
we had standard reference values to assume were present in the pooled plasma

∗The Zhu model does not feature a FVIIa species so the TF:VIIa is used in its place.
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Species Baseline Initial Concentration (M)

II 1.4×10−6

V 2×10−8

VII 1×10−8

VIII 7×10−10

IX 9×10−8

X 1.6×10−7

XI 3×10−8

VIIa [VII]/100∗

AT 3.4×10−6

TFPI 2.5×10−9

PCI 7.9×10−8

α1 − AT 4×10−5

α2 −M 3×10−6

α2 − AP 9.75×10−7

PAI1 4.6×10−10

C1-inh 1.7×10−6

Lipid 4×10−6

Table 2.26: The baseline non-zero initial concentrations to be used as standard
values. These values are gathered as a median from the models and coincides with
the healthy figures reported in [59]. The lipid concentration used matches that in
our assay rather than from the models.

(which we scale by the patient data in % of pooled plasma to derive patient spe-
cific values), the ETP in mol · sec for pooled plasma is dependent on the assay
and its setup. As such, we evaluate model performance using scatter plots, with
the accuracy quantified through the RMSE of a line of proportionality. We focus
on the line of proportionality as we still expect zero ETP in the assay (which can
only occur if no thrombin is formed) to correspond to zero ETP in the model.
This method is presented diagrammatically in Figure 2.18.

Only the initial coagulation factor concentrations are varied between individ-
uals while the reactions and reaction rates are kept fixed for each of the models.

Factor XII is not included in the model simulations to provide the best match
to the data, for which FXII activation is minimal. Additionally, CTI, Boc-VPR-
MCa, TM, and protein C are not included as they are not present in the assay
(protein C is present but will not be significantly activated due to the lack of TM).

The ETP scatter plots for each of the models are given in Figure 2.19. All
models were poor predictors of ETP (RMSE: 27.6-32.5) with the Panteleev model
giving marginally the best RMSE. For comparison, a linear model, trained us-
ing the same factor concentrations as used by the models to predict ETP gives a
RMSE of 25.7†, considerably better than all models.

†The linear model was trained to predict ETP using the initial concentrations of factors II,
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Figure 2.18: A diagram of the steps taken to perform the correlation analysis.

Model predictions have also been compared to the optical density time course
data. The cohort is sorted by the absolute value of the residuals of the lines of
proportionality given in Figure 2.19. For each model, the individual that gave the
largest and smallest absolute residual, for their with TF sample, were taken to be
compared against model time courses. The individuals model predicted thrombin
generation curve is converted into an optical density curve by taking the cumula-
tive integral, as given by Equation (2.3). This is then scaled from nM ·min into
% of pooled plasma using the gradient of the line of proportionality in Figure 2.19.

OD(t = k) =

∫ k

t=0

[FIIa](t)dt (2.3)

Figure 2.20 presents the model predicted optical density curves for the best
ETP predicted individuals. Only the Danforth and Brummel models present a
similar OD curve as the data with all other models showing different shapes and

V, VII, VIII, IX, X, and XI, AT, TFPI, and TF. The RMSE was evaluated using 5-fold cross
validation to avoid skewing the results due to overfitting.
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Figure 2.19: Scatter plots of predicted ETP against measured ETP, separated
by cases/control (open/closed) and male/female (blue/red). RMSE measured the
error using the line of proportionality (solid line) and R2 measures the correlation
using the line of best fit (dashed line).
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lagtimes. However, even these two models then fail when looking at other indi-
viduals. It seems clear that the models fail to reproduce experimental data across
the cohort.

Figure 2.21 presents similar results but for the worst predicted donor of each
model (largest absolute residual of the line of proportionality). Interestingly, for
most of the models this is the same individual. In all cases, the models signifi-
cantly under-predict ETP. All three of these individuals show increased levels of
all factors, particularly FVIII. It seems that the models struggle to reproduce the
large ETPs seen in the data.

2.3.2 Inter-Model Correlation

We have shown the models correlate poorly with patient data in which many coag-
ulation factors are varied simultaneously. However, it is difficult to identify from
the scatter plots if the predictions of the models are similar to one another. To
identify models with similar predictions, we will compare the predicted patient
specific ETP values from the models to one another. The R2 correlation coef-
ficient, between each of the models predicted patient data sets, is given in the
heatmap in Figure 2.22.

There is much stronger correlation between the different models than there
was between the models and the patient data, with all inter-model R2 > 0.5,
compared with the largest R2 to the patient data of R2 = 0.20 for the Hockin
model. Even still, there is significant variation in the strength of the correlations
between different pairings of models. The Hockin model generally has the weak-
est correlation to the other models, with its most correlated models being that
of Danforth (R2 = 0.87) and Brummel (R2 = 0.86), both models which utilise
the Hockin model to build upon. Other than the Hockin model, all show strong
correlation with one another (R2 > 0.75) with the Danforth-Brummel pairing and
the Tyurin-Zhu-Panteleev triplet all being almost perfectly correlated with one
another (R2 > 0.99). The Tyurin and Zhu models are the most strongly corre-
lated with R2 = 0.9998.

The ETP inter-model correlation would suggest that most model predictions
are highly similar. However, comparing different summary statistics (those given
previously in Figure 1.5) shows much greater separation between the models.
Heatmaps of R2 for each of the summary statistics are given in Figure 2.22.

The Hockin-Danforth-Brummel triplet are even more strongly correlated (R2 >
0.95) for the other summary statistics, except for lagtime, where only Danforth
and Brummel remain strongly correlated. The Panteleev model appears to be most
strongly correlated with the Hockin-Danforth-Brummel triplet, although slightly
weaker than seen between the models in this triplet. The Bungay model does not
have significant correlations with any models across all the summary statistics.
The Tyurin and Zhu models remain significantly correlated for all of the summary
statistics and, while the Chatterjee model is correlated with the Tyurin-Zhu pair
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Figure 2.20: Optical Density plots for the best predicted individuals of each model.
Model predicted OD curves are given by cumulative integral of the thrombin
generation curves, scaled according to the lines of proportionality from Figure
2.19. The experimentally determined OD curves are given in black and labelled
‘Data’.
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Figure 2.21: Optical Density plots for the worst predicted individuals of each
model. Model predicted OD curves are given by cumulative integral of the throm-
bin generation curves, scaled according to the lines of proportionality from Figure
2.19. The experimentally determined OD curves are given in black and labelled
‘Data’.

for some summary statistics (peak, maximum increasing rate, and minimum de-
creasing rate), it is poorly correlated with these models for lagtime and time to
peak.

The correlation between the Hockin, Danforth, and Brummel models is to be
expected since the Danforth and Brummel models are derived by expanding the
Hockin and Danforth models, respectively. The similarity between the Tyurin and
Zhu models is likely because they both make use of the rates in the Kogan [88]
and Khanin [58] models, leading to many identical rates between the Tyurin and
Zhu models.

2.3.3 Low ETP Predictions

The Hockin model (and to a lesser extent, the Brummel and Danforth models)
predicted exceptionally low ETP for a handful of individuals (seen in Figure 2.19).
By exploring the mean values for each initial conditions for small and large pre-
dicted ETPs for the Hockin model, we aim to find a cause for the low ETP pre-
dictions. The average initial factor concentrations for those that predicted ETP
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Figure 2.22: The R2 correlation between the predicted summary statistics of the
models. Each heatmap is split into an upper-right half, showing the correlation
for one summary statistic, and a lower-left half showing the correlation for another
summary statistic. Which summary statistics are used is given to the right of each
heatmap.
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below 250nM ·min and for ETP larger than 250nM ·min are given in Table 2.27.

Initial Condition Mean for small ETP Mean for large ETP
(n=12) (n=573)

Tissue Factor 2.81pM 10.64pM
II 110.75% 121.94%
V 111.83% 125.18%
VII 117.08% 122.90%
VIII 109.00% 137.45%
IX 101.00% 124.82%
X 124.83% 130.93%
XI 90.25% 103.37%

TFPI 1.41 Units 1.06 Units

Table 2.27: The mean initial factor concentrations, split by whether the Hockin
model predicts an ETP of greater or less than 250nM ·min.

The initial condition for tissue factor is significantly different between the two
groups. To verify this is the only cause for the low ETP or if there are others, our
ETP correlation plot for the Hockin model is coloured based on the initial level of
tissue factor on the left-hand side of Figure 2.23.

All individuals with a low predicted ETP also had a low TF concentration.
Further investigation into the thrombin generation curves predicted by the Hockin
model for these individuals revealed that a long lagtime for these individuals re-
sulted in thrombin generation that did not complete in the 20-minute simulation
time. The ETP correlation for the Hockin model was performed again with an
extended simulation time of four hours‡. The results are demonstrated on right-
hand side of Figure 2.23. These longer simulations reveals that this was the only
cause of low predicted ETP individuals in the Hockin model.

‡This time far exceeds the time used in the experimental assay of 20 minutes. This is done
to verifiy that it is the cut-off time to which the Hockin model is sensitive.
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Figure 2.23: Scatter plot of predicted ETP (from the Hockin model) against mea-
sured ETP, coloured by the initial level of TF in pM. Followed by an identical
figure for an extended 4-hour simulation time.
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2.4 Model Comparison
In the previous section, we demonstrated that the models are poorly correlated
with patient data and are more strongly correlated with one another. Here, we
will further explore the differences between these models and identify the causes
that give rise to them. We will investigate the differences in the thrombin genera-
tion curves predicted by the models, demonstrating that the models fall into two
groups; the differences in reaction rates between two of the models; and the dif-
ferences in the reactions used in each of the models. Finally, we will demonstrate
the differences in the predictions of the models for other coagulation factors and
identify the underlying cause for these two groups of models.

2.4.1 Differences in Thrombin Generation Curves

First, we will look at the thrombin generation curves predicted by each of the
models. The same coagulation factors are used for the initial conditions for each
of the models (Table 2.26). The predicted thrombin generation curves for all
the models are given in Figure 2.24, followed by similar figures for the predicted
thrombin generation curves of three patients, a high ETP individual (199% ETP),
a medium ETP individual (100% ETP), and a low ETP individual (51%). These
patient level predicted curves are given in Figure 2.25.

Figure 2.24: The thrombin generation curve given by each model for the baseline
initial conditions given in Table 2.26.

The models all show vastly different predicted thrombin generation curves.
There appears to be two distinct shapes for the model predicted thrombin gener-
ation curves. The curves predicted by Zhu, Tyurin and Chatterjee all show very
rapid thrombin activation after the lagtime, continuing up to a large peak height.
The Panteleev, Hockin, Danforth and Brummel models all predict smoother, more
symmetrical shapes for the thrombin generation curves. We will term these groups
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the Quick group and the Symmetrical group, respectively, to aid with later com-
parisons. The Bungay model most closely matches that of the Quick group so we
will include it there, while also taking note of its much smaller peak height and
slightly less sharp activation compared with the other members of the Quick group.

Figure 2.25 shows only minor changes between the predicted thrombin gener-
ation curves for each of the three individuals. Mostly, these changes appear to be
stretching or shifting the thrombin generation curves, while the underlying shape
of the curves remains consistent between these three individuals.

2.4.2 Are Model Differences the Result of the Reactions,
Reaction Rates, or Both?

We will now begin looking into the construction of the models themselves. All the
models feature both differences in the reaction schemes they use and in their re-
action rates. First, we will attempt to separate the influences of the reaction rates
from the reactions. To do this, we will replace the reaction rates of the Hockin
model with the corresponding rates from the Tyurin model, wherever possible.
The reactions that appear in both models and their corresponding reaction rates
(in a reduced form) are given in Table 2.28∗. Replacing the reaction rates in the
Hockin model with those from the Tyurin model wherever possible produces the
model given in Table 2.29.

Reaction Model Reaction Rates

TF + VII ↔ TF:VII

Hockin k+ = 3.2× 106M−1s−1,
k− = 3.1× 10−3s−1

Tyurin k+ = 3.33×104M−1s−1,
k− = 3.33× 10−6s−1

TF + VIIa ↔ TF:VIIa

Hockin k+ = 2.3 × 107M−1s−1,
k− = 3.1× 10−3s−1

Tyurin k+ = 5× 104M−1s−1,
k− = 3.3× 10−5s−1

VII Xa→ VIIa
Hockin kcat

Km
= 1.3× 107M−1s−1

Tyurin kcat
Km

= 1× 106M−1s−1

X TF :V IIa→ Xa

Hockin Km = 2.14 × 10−7M ,
kcat = 4.56s−1

Tyurin Km = 2.2 × 10−7M ,
kcat = 1.8s−1

∗The reduced form of the reaction rates are Km, Kd, kcat and kcat
Km

. If there is only a single
forward reaction involved (such as AT inhibition) then only that parameter is reported. These
parameters are used to allow easy comparison between the models due to their different rate
laws.
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IX TF :V IIa→ IXa

Hockin Km = 4.25 × 10−7M ,
kcat = 1.8s−1

Tyurin Km = 1 × 10−7M ,
kcat = 0.7s−1

II Xa→ IIa
Hockin kcat

Km
= 7.5× 103M−1s−1

Tyurin kcat
Km

= 6.5× 103M−1s−1

VIII IIa→ VIIIa
Hockin kcat

Km
= 2.0× 107M−1s−1

Tyurin kcat
Km

= 1.8× 107M−1s−1

VIIIa + IXa → IXa:VIIIa Hockin k+ = 1× 107M−1s−1

Tyurin k+ = 1.67× 108M−1s−1

X IXa:V IIIa→ Xa

Hockin Km = 8.2 × 10−8M ,
kcat = 8.2s−1

Tyurin Km = 1.6 × 10−7M ,
kcat = 25s−1

V IIa→ Va
Hockin kcat

Km
= 2× 107M−1s−1

Tyurin kcat
Km

= 3.2× 106M−1s−1

Xa + Va → Xa:Va Hockin k+ = 4× 108M−1s−1

Tyurin k+ = 1.67× 108M−1s−1

Xa + TFPI → Xa:TFPI Hockin k+ = 9.5× 105M−1s−1

Tyurin k+ = 1.6× 103M−1s−1

TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI Hockin k = 5× 107M−1s−1

Tyurin k = 1.08× 107M−1s−1

Xa + AT → Xa:AT Hockin k = 1.5× 103M−1s−1

Tyurin k = 3.13× 103M−1s−1

IXa + AT → IXa:AT Hockin k = 490M−1s−1

Tyurin k = 490M−1s−1

IIa + AT → IIa:AT Hockin k = 7.1× 103M−1s−1

Tyurin k = 7.08× 103M−1s−1

TF:VIIa + AT → TF:VIIa:AT Hockin k = 230M−1s−1

Tyurin k = 450M−1s−1

Table 2.28: Comparison between the reaction rates used in the Hockin and Tyurin
models for their common reactions.
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Figure 2.25: Thrombin generation curves for each of the models using initial con-
ditions from high, medium and low ETP individuals.

83



Index Reaction k+,ind k−,ind

1 TF + VII ↔ TF:VII 3.33× 104 3.33× 10−6

2 TF + VIIa ↔ TF:VIIa 5× 104 3.33× 10−5

3 TF:VIIa + VII → TF:VIIa + VIIa 4.45× 105 -
4 Xa + VII → Xa + VIIa 1× 106 -
5 IIa + VII → IIa + VIIa 2.3× 104 -
6 TF:VIIa + X ↔ TF:VIIa:X 2.5× 107 4.09
7 TF:VIIa:X → TF:VIIa:Xa 1.99 -
8 TF:VIIa + Xa ↔ TF:VIIa:Xa 2.2× 107 19
9 TF:VIIa + IX ↔ TF:VIIa:IX 1.0× 107 0.3
10 TF:VIIa:IX → TF:VIIa + IXa 0.7 -
11 Xa + II → Xa + IIa 6.47× 103 -
12 IIa + VIII → IIa + VIIIa 1.8× 107 -
13 VIIIa + IXa ↔ IXa:VIIIa 1.67× 108 8.35× 10−2

14 IXa:VIIIa + X ↔ IXa:VIIIa:X 2.0× 108 7
15 IXa:VIIIa:X → IXa:VIIIa + Xa 25 -
16 VIIIa ↔ VIIIa1L + VIIIa2 6.0× 10−3 2.2× 104

17 IXa:VIIIa:X → VIIIa1L + VIIIa2 + X + IXa
1.0× 10−3 -IXa:VIIIa → VIIIa1L + VIIIa2 + IXa

18 IIa + V → IIa + Va 3.21× 106 -
19 Xa + Va ↔ Xa:Va 1.67× 108 8.35× 10−2

20 Xa:Va + II ↔ Xa:Va:II 1.0× 108 103
21 Xa:Va:II → Xa:Va + mIIa 63.5 -
22 mIIa + Xa:Va → IIa + Xa:Va 1.5× 107 -
23 Xa + TFPI ↔ Xa:TFPI 1.6× 103 6.4× 10−7

24 TF:VIIa:Xa + TFPI ↔ TF:VIIa:Xa:TFPI 3.2× 108 1.1× 10−4

25 TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI 1.08× 107 -
26 Xa + AT → Xa:AT 3.13× 103 -
27 mIIa + AT → mIIa:AT 7.1× 103 -
28 IXa + AT → IXa:AT 4.9× 102 -
29 IIa + AT → IIa:AT 7.08× 103 -
30 TF:VIIa + AT → TF:VIIa:AT 4.5× 102 -

Table 2.29: The reaction scheme and reaction rates for the altered Hockin model,
made to more closely match the Tyurin model. The units for the reaction rates
are s−1 and M−1s−1 for first and second order rates, respectively. Reaction rates
that have been changed are underlined.

When applying these changes to the Hockin model, a very minimal amount of
TF:VIIa is produced which is not able to lead to producing significant quantities
of thrombin. The Tyurin model includes activations using FVIIa, in addition to
TF:VIIa, which can account for the lack of TF:VIIa produced in the model. After
the reaction for the activation of FX by FVIIa was included, the thrombin genera-
tion curves produced (given in Figure 2.26) are more similar to the Hockin model
than the Tyurin model, featuring an even longer lagtime and more symmetrical
thrombin generation curve than the Hockin model.
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Figure 2.26: The thrombin generation curves for the Tyurin model as well as the
edited Hockin model

Figure 2.27: The thrombin generation curves for the Tyurin model as well as the
edited Hockin model

As shown in Figure 2.27, addition of a single extra reaction, FIX activation by
FVIIa, produces thrombin generation curves resembling the Tyurin model with a
slightly longer lagtime and lower peak height. This suggests that there are some
significant differences between the reaction rates of the models, hence the lack
of TF:VIIa produced by the Tyurin model. However, this is not the cause of the
disparity in the shape of the thrombin generation curves which appears to be more
closely linked with activation of FIX.

2.4.3 Differences in Reaction Schemes

To help explain the differences seen in the thrombin generation curves, we now
compare the reaction schemes used by the models. To aid comparison between
the reaction schemes, the enzymatic reactions in the models that exclusively use
mass action kinetics were reduced down to a simpler form, for example using X
IXa:VIIIa→ Xa to denote the three-step reaction X + IXa:VIIIa ↔ IXa:VIIIa:X →
IXa:VIIIa + Xa.
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The reactions that are featured in all models are given in Table 2.30. The
reactions that are missing from a single model and those that are contained in
only a single model are given in Tables 2.31 and 2.32, respectively.

Reaction

TF + VII → TF:VII
X TF :V IIa→ Xa
IX TF :V IIa→ IXa

Xa + Va → Xa:Va
V IIa→ Va

VIII IIa→ VIIIa
X IXa:V IIIa→ Xa

IIa + AT → IIa:AT
IXa + AT → IXa:AT
Xa + AT → Xa:AT

Xa + TFPI → Xa:TFPI
TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI

Table 2.30: The reduced reactions that are contained in all the models.

Reaction Missing From?

II Xa→ IIa Bungay
TF + VII ← TF:VII Zhu
TF + VIIa ↔ TF:VIIa Zhu

IXa + VIIIa → IXa:VIIIa Panteleev

Table 2.31: The reduced reactions that are missing from only one of the models.

Reaction Included In?

II + Va ↔ II:Va Brummel
XI → XIa Zhu

VIII mIIa→ VIIIa Bungay
TF:VIIa + Xa:TFPI ← TF:VIIa:Xa:TFPI Bungay

IXa:VIIIa + AT → IXa:VIIIa:AT Tyurin

Table 2.32: The reduced reactions that are only included in a single model.

One notable reaction that is not contained in the Bungay model, but is fea-
tured in all other models, is II Xa→ IIa. This reaction is necessary for the initial
activation of FIIa. Instead, the Bungay model activates FII exclusively by Xa:Va,
which is initially formed using FV activated by FXa. This was thought to be an
explanation of the low ETP predictions by the Bungay model, however, including
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this reaction (using the reaction rate in the Hockin model) does not produce a
significant effect on the thrombin generation curve (as seen in Figure 2.28).

Figure 2.28: The Bungay model both before (green) and after (black) undergoing
two edits. On the left the edited curve shows the inclusion of an extra reaction for
activation of FII by FXa (using reaction rates from the Hockin model). On the
right shows the thrombin generation curves for a decreased rate of FIIa inhibition
by AT (using reaction rates from the Hockin model).

Further investigation into the Bungay model and its rates revealed that it has a
much higher rate of FIIa inhibition by AT than the other models (6.83×104M−1s−1

for Bungay vs 7.1× 103M−1s−1 for Hockin). If this rate is adjusted to match the
other models, as is given in Figure 2.28, then the Bungay model produces similar
peaks heights to the other models in the Quick group.

There is a lack of reactions for the formation of TF:VIIa in the Zhu model.
This model lacks a FVIIa species, which is normally used as an initial condition
so TF:VIIa had to be used to initiate coagulation instead, resulting in an excess
of TF.

The Brummel model’s additional reaction, II + Va ↔ II:Va, does not appear
to have much purpose other than reducing the amount of free FII and FVa. How-
ever, this does still seem to have a significant effect on the thrombin generation
curve as this reaction is the only difference between the Danforth and Brummel
models once the effects of protein C are removed.

The Panteleev model is missing a reaction for IXa:VIIIa formation. This model
instead keeps these factors separate and uses third order reactions, for example,
X + IXa + VIIIa → Xa + IXa + VIIIa.

The auto-activation of FXI in the Zhu model is heavily simplified as it does not
require any activated factors to form FXIa and begin coagulation. The Bungay
model is the only model to include mIIa activation of FVIII, in addition to that
by FIIa. The Tyurin model includes AT reactions for the complexes Xa:Va and
IXa:VIIIa to inhibit FXa and FIXa, respectively.
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The remaining reactions are all used at least twice and left out at least twice.
These reactions and the models in which they are used, are given in Appendix C.

2.4.4 Exploring Model Predictions for Other Factors

We have investigated the differences between the models in both their reaction
schemes and their reaction rates. However, we have been unable to identify the
cause for the differences in the shape of their thrombin generation curves. We
have demonstrated a potential link between the shape and activation of FIX by
FVIIa in the Tyurin model but the lack of this reaction in the other models of
the Quick group shows this description of the differences is not complete. We will
now look at model predictions of coagulation factors other than thrombin to help
explore this difference.

Figure 2.29 gives plots of TF:VIIa, XIa, II, mIIa, TFPI and AT concentra-
tion. Notably, all prothrombin is converted into thrombin in all the models, in
opposition to the thrombin generation assay where only ≈ 90% of the prothrom-
bin is converted to thrombin [89]. This may explain why the models struggled
to produce the extreme ETPs seen in the data (Figure 2.21). If all prothrombin
is always converted, an increase in the rate of prothrombin conversion will have
limited effect on ETP compared with if faster prothrombin conversion was able to
convert more prothrombin.

Additionally, we identify the delayed formation of TF:VIIa in the Tyurin
model, where little TF:VIIa is formed at the early timescales, where it is normally
most impactful. The models clearly separate into the Quick and Symmetrical
groups in the depletion of TFPI. Since TFPI can only be depleted in its inhibition
of FXa, then the models must make distinct predictions for FX activation.

In Figure 2.30, we present similar plots but with a focus on FXa and its acti-
vation. We observe the models separating into the Quick and Symmetrical groups
in the plots of FIX, FX, Xa:Va and IXa:VIIIa. This leads us to conclude that
the differences are due to the Quick group activating significantly more FIXa than
the Symmetrical group, resulting in higher levels of IXa:VIIIa, which in turn ac-
tivates larger amounts of FXa so more Xa:Va is formed. These larger amounts of
Xa:Va in the Quick group then cause the differences in the shape of the thrombin
generation curves. The differences in activation of FIX are likely predominantly
due to the presence of FXI in the Quick group. Although the Zhu model does not
activate FXI as significantly as the other models, it still activates all FIX, likely
through its activation by TF:VIIa, of which it has a significant excess.

However, the Panteleev model does not match this trend as it features sig-
nificant FXI activation, but sees much less FIXa than the Quick group. This
is due to its significantly slower rates for FXIa activation of FIX (Panteleev:
kcat
Km

= 4.9×105M−1s−1, Chatterjee: kcat
Km

= 1.6×107M−1s−1). It does still activate
far more FX than the other Symmetrical group models, but does not result in full
depletion of FX.
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Figure 2.29: Plots of coagulation factor concentrations (TF:VIIa, XIa, II, mIIa,
TFPI, AT) over time, for identical initial conditions (Table 2.26). The Symmetri-
cal group of models are given in dashed line while the Quick group of models are
given in solid lines.
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Figure 2.30: Plots of coagulation factor concentrations (those related to FX ac-
tivation; FIX, IXa:VIIIa, FX, FXa, FV, FVIII, Xa:Va) over time, for identical
initial conditions (Table 2.26). The Symmetrical group of models are given in
dashed line while the Quick group of models are given in solid lines.
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To verify the claim that FIX activation, predominantly through FXIa, is the
cause for the different shapes of the predicted thrombin generation curves, we
have given thrombin generation curves in Figure 2.31 with FXI included and then
excluded. There is a dramatic shift in the shape of the curves predicted by the
models of Tyurin, Chatterjee and Bungay. The Tyurin model still resembles its
original shape more closely than that of the Symmetrical group, however, this is
likely due to activation of FIX by FVIIa, as explored in the Hockin vs Tyurin sec-
tion earlier. Both the Zhu and Panteleev models remain similar to their original
curves, with a slight shift in the Panteleev model and no noticeable change in the
Zhu model.

Figure 2.31: Thrombin generation curves for the five models that feature FXI
(Chatterjee, Bungay, Panteleev, Tyurin and Zhu), with FXI included and then
excluded.

2.4.5 Conclusions

We have seen that the differences in reaction rates between the models give rise
to differences in the thrombin generation curves, but not in their shape. The
differences in shape are instead due to FIX activation, most commonly by FXIa
(Figure 2.31), which after several steps, significantly changes the levels of Xa:Va.
Additionally, there are many differences in the reaction schemes of these models,
with some models missing significant reactions.

All the models predicted that all the prothrombin is converted into thrombin,
contrary to expectation [89]. This may be, at least in part, due to the lack of reac-
tions for inhibiting Xa:Va. The only models which feature a reaction like this are
the models of Tyurin and Panteleev, both of which feature a reaction that releases
the FVa and only inhibits the FXa part of the complex. Since there is significantly
more FX than FV, this will result in Xa:Va being present for significantly longer
than if FVa was also inhibited.
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2.5 Sensitivity Analysis
In the previous sections, we have seen that the models vary significantly in their
predictions, with both reactions and reaction rates having significant influences
over particular parts of the models. We will continue this investigation into their
predictions through the use of a variance-based, local sensitivity analysis. This al-
lows us to test which components of the cascade have the greatest influence on the
predictions of the models and therefore need to be implemented most accurately.
We will perform this sensitivity analysis on both the initial coagulation factor
concentrations, to compare the significance of general areas of the cascade, and on
the reaction rates, to pinpoint individual reaction rates which have particularly
strong or weak influence on the model predictions. Rather than comparing to ex-
perimental data and drawing conclusions through comparison to a ground truth,
this section will be purely focused on the predictions of the models and comparing
them to one another, identifying if these models behave similarly under variation
in reaction rates and coagulation factor concentrations.

2.5.1 Sensitivity to Coagulation Factor Concentrations

Method

To quantify the sensitivity of the models to each of the coagulation factors, we
introduce a new sensitivity analysis method and apply it to these models. This
method, demonstrated in Figure 2.33, uses summary statistics to quantify a throm-
bin generation curve and measures the variance in these summary statistics as the
sensitivity.

The concentration of each coagulation factor is varied, one at a time, across
eleven linearly spaced points between 50% and 150% of their default value, given
as a reduced set of initial concentrations in Table 2.33. A reduced set of coagula-
tion factors is used, removing the inhibitors α1 − AT , α2 − AP , α2 −M , PAI-1,
PCI, and C1-inh to improve comparability between the models. We then calculate
the six summary statistics (lagtime, peak height, time to peak, ETP, maximum
increasing rate and minimum decreasing rate), demonstrated in Figure 2.32, for
each resulting thrombin generation curve. The standard deviation for the varia-
tion in each summary statistic is calculated and then normalised using the value
of the summary statistic at the 100% initial condition. We will then calculate the
sensitivity to each coagulation factor as the norm of the vector of normalised stan-
dard deviations. Finally, we report the normalised sensitivity of each coagulation
factor scaled such that the sum of the sensitivities for a model is one∗. The sensi-
tivity analysis method is presented in Figure 2.33. These normalised sensitivities
are presented in a heatmap in Figure 2.34.

∗This means if a model has a sensitivity of one to a particular factor, and therefore a sensitivity
of zero to all other factors, then its predicted thrombin generation curves are entirely determined
by that single factor and varying the other factors will not change the thrombin generation curves.
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Figure 2.32: The summary statistics that are used for the sensitivity analysis,
demonstrated on a thrombin generation curve. Peak height is the maximum of
the thrombin generation curve and time to peak is the time taken to reach this
maximum. Lagtime is the time to reach 5% of the peak height. ETP is the
integral of the thrombin generation curve. Maximum increasing rate and minimum
decreasing rate are given as the gradient at the steepest increase and decrease of
the curve respectively.

Species Baseline Initial Concentration (M)

TF 1×10−11

II 1.45×10−6

V 2×10−8

VII 1×10−8

VIII 7×10−10

IX 9×10−8

X 1.6×10−7

XI 3×10−8

VIIa 1×10−10

AT 3.45×10−6

TFPI 2.5×10−9

Lipid 4×10−6

Table 2.33: The baseline non-zero initial concentrations to be used in the sensitiv-
ity analysis. These values are gathered as a median from the models and coincide
with the healthy figures reported in [59]. The lipid concentration used matches
that in our assay rather than from the models.

Results

The predictions of all models are significantly influenced by initial FII and AT
concentrations. The Bungay model is also sensitive to the FV concentration.
Interestingly, only the Chatterjee model appears to be significantly affected by
variance in the FXI concentration. The Symmetrical group (Hockin, Danforth,
Brummel and Panteleev) are all more sensitive to the TF and TFPI concentra-
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Figure 2.33: A flowchart of the sensitivity analysis method. For each coagula-
tion factor, the concentration is varied between 50% and 150% and the resulting
thrombin generation curves are calculated. The six summary statistics are then
calculated for each thrombin generation curve and the standard deviation for each
summary statistic is found. These standard deviations are normalised by the cor-
responding summary statistic value for the curve of the 100% initial concentration.
The final sensitivity value is calculated as the norm of the vector of normalised
standard deviations.

tions than the Quick group (Chatterjee, Bungay, Tyurin and Zhu).

The sensitivities are also given for the individual summary statistics. These
are reported in Figure 2.35 as the normalised standard deviations, then scaled
such that the sum across the coagulation factors, for each model, is one. ETP
is only significantly influenced by the FII and AT concentrations for all models,
however, the other summary statistics are much more varied.
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Figure 2.34: A heatmap demonstrating the sensitivity of the models to variation
in the coagulation factors. The sensitivities are normalised such that the sum of
the sensitivities for a given model is one.

The predictions of lagtime in the Chatterjee model are predominantly driven
by FXI, while the other Hockin based models (Hockin, Danforth and Brummel)
are influenced by TF, VII, VIIa, TFPI and AT. The Panteleev model is similar to
the Hockin, Danforth and Brummel models except, instead of being significantly
influenced by AT, it is influenced by FV. The lagtime predictions of the Tyurin
and Zhu models are sensitive to FVIIa but not sensitive to TF or FVII, as ex-
pected from previous results concerning TF:VIIa in these models.

The time to peak sensitivities are similar to the ones for lagtime with no mean-
ingful changes between the two. Lagtime and time to peak are likely to be strongly
correlated with one another and, unsurprisingly, this results in similar sensitivity
distributions.

The peak height is most sensitive to FII and AT, similarly to the ETP sensitiv-
ity, but the Chatterjee, Tyurin and Zhu models show much lower sensitivity to AT
and greater sensitivity to FII whereas previously, all models were more sensitive
to AT than FII. Additionally, the Bungay model is again sensitive to FV.

The sensitivities of the maximum increasing rate appear to focus on AT (for
which Hockin, Danforth, Brummel, Bungay and Panteleev are particularly sensi-
tive), FII (for which all models are sensitive) and FV (for which Bungay, Tyurin
and Zhu are most sensitive). The minimum decreasing rate behaves similarly, with
the same models sensitive to FII and FV. However, the minimum decreasing rates
of the Danforth and Brummel models are not sensitive to AT while the minimum
decreasing rates of the Chatterjee, Tyurin and Zhu models are sensitive to AT.
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Figure 2.35: Heatmaps of sensitivity of each model to variation in the initial
concentration of the coagulation factors. A separate heatmap is given for each
summary statistic.
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2.5.2 Sensitivity to Reaction Rates

The same sensitivity analysis method can be used on the reaction rates. We vary
each reaction rate between 50% and 150% of its value, calculating thrombin gen-
eration curves for each variation and the sensitivity similarly. These sensitivities
are then presented in reaction network diagrams, isolated to the reactions rele-
vant to the initial conditions given in Table 2.33. Enzymatic activations, which
are represented as multiple mass action law reactions in some of the models, are
reduced to a single reaction in the network diagrams, with the sensitivity given as
the largest reaction rate sensitivity of the mass action law reactions that compose
it. All sensitivities are reported as a percentage of the largest reaction rate sensi-
tivity for that model.

As seen in Figure 2.36, the Hockin model’s most sensitive reactions commonly
involve TF:VIIa (including its formation, its activation of both FIX and FX, and
its inhibition by TFPI) or FIIa (its activation from mIIa and both FIIa and mIIa
inhibition by AT). Many of the least sensitive reactions are the reverse direction of
reversible reactions or the activations of FVII by FIIa and TF:VIIa. Interestingly,
even though TF:VIIa inhibition by TFPI (through inhibition of the TF:VIIa:Xa
complex) is a sensitive reaction, TF:VIIa inhibition by AT is not a sensitive reac-
tion.

Figure 2.36: The reaction rate sensitivity analysis results for the Hockin model,
given as a network diagram coloured by sensitivity as a proportion of the most
sensitive reaction rate. Sensitive reactions are coloured in red, while insensitive
reactions are given in grey. Reactions with an average level of sensitivity (≈ 10%)
are coloured in blue.

The reaction rate sensitivity distribution for the Danforth model is given in
Figure 2.37. None of the changes in the Danforth model, inclusion of activation
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of FX by FIXa and FV by mIIa and changes to the reaction rates for mIIa con-
version into FIIa and FXa inhibition by AT, produce sensitive reactions. Instead,
the sensitivity is reduced for mIIa conversion into FIIa when compared with the
Hockin model and the additional reaction of FX activation by FIXa is insensitive
in the Danforth model. However, these changes to the model do produce a differ-
ent sensitivity distribution in the other reactions. All but FIIa inhibition by AT
have a reduced sensitivity, likely due to an increased sensitivity to FIIa inhibition
by AT, resulting in other sensitivities being lower in proportion.

Figure 2.37: The reaction rate sensitivity analysis results for the Danforth model,
given as a network diagram coloured by sensitivity as a proportion of the most
sensitive reaction rate. Sensitive reactions are coloured in red, while insensitive
reactions are given in grey. Reactions with an average level of sensitivity (≈ 10%)
are coloured in blue.

As demonstrated in Figure 2.38, the Chatterjee model features only three sen-
sitive reactions. The first two of these are similar to previous models (mIIa con-
version into FIIa and FIIa inhibition by AT), however, the third reaction, FXI
activation by FXIa, has not appeared as a sensitive reaction in any other model.
Many inhibitions by AT are insensitive, including those for TF:VIIa, FXIa, FIXa
and FXa. All FVII activations and the reverse direction of reversible reactions are
also insensitive throughout the model.

The results of the Brummel model, given in Figure 2.39, are identical to those
of the Danforth model. The additional reactions in the Brummel model (FII and
FVa binding and unbinding) have an average level of sensitivity.

The most sensitive reactions in the Bungay model, as seen in Figure 2.40, are
those involving FIIa, in particular activation of FII into mIIa and mIIa into FIIa
by Xa:Va and FIIa inhibition by AT. The model is insensitive to most reactions,
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Figure 2.38: The reaction rate sensitivity analysis results for the Chatterjee model,
given as a network diagram coloured by sensitivity as a proportion of the most
sensitive reaction rate. Sensitive reactions are coloured in red, while insensitive
reactions are given in grey. Reactions with an average level of sensitivity (≈ 10%)
are coloured in blue.

Figure 2.39: The reaction rate sensitivity analysis results for the Brummel model,
given as a network diagram coloured by sensitivity as a proportion of the most
sensitive reaction rate. Sensitive reactions are coloured in red, while insensitive
reactions are given in grey. Reactions with an average level of sensitivity (≈ 10%)
are coloured in blue.
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including TFPI; activation of FVII; inhibition of mIIa; Xa and IXa by AT; and
some activations of FV and FVIII (insensitive to FVIII activation by FIIa and
FXa and to FV activation by FIIa).

Figure 2.40: The reaction rate sensitivity analysis results for the Bungay model,
given as a network diagram coloured by sensitivity as a proportion of the most
sensitive reaction rate. Sensitive reactions are coloured in red, while insensitive
reactions are given in grey. Reactions with an average level of sensitivity (≈ 10%)
are coloured in blue.

The reaction rate sensitivity distribution for the Panteleev model is given in
Figure 2.41. This model has FII activation by Xa:Va and FIIa inhibition by AT
as its only sensitive reactions. Almost all reactions have an average sensitivity
of around 10%. The insensitive reactions include inhibition of FXIa, FIXa and
Xa:Va by AT, some of the TFPI reactions and activation of FX by FIXa.

As seen in Figure 2.42, the Tyurin model is most sensitive to FII activation
by Xa:Va and FIIa inhibition by AT. There are many insensitive reactions in
the Tyurin model, including all inhibitions other than FIIa by AT and FXa by
TFPI. Additionally, all reactions involving the formation of TF:VIIa or activa-
tion by TF:VIIa were insensitive, further demonstrating the lack of involvement
of TF:VIIa in the predictions of the Tyurin model.

As demonstrated in Figure 2.43, the conclusions of the Zhu model are similar
to those of the Tyurin model, sensitive reactions for FII activation by Xa:Va and
FIIa inhibition by AT with low sensitivities for all other inhibitions and formation
of TF:VIIa. However, activations by TF:VIIa are significant in the Zhu model
since it still relies of TF:VIIa (featuring no FVIIa to otherwise initiate coagula-
tion) but features sufficient high TF:VIIa initially set that it no longer requires
more to be formed.
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Figure 2.41: The reaction rate sensitivity analysis results for the Panteleev model,
given as a network diagram coloured by sensitivity as a proportion of the most
sensitive reaction rate. Sensitive reactions are coloured in red, while insensitive
reactions are given in grey. Reactions with an average level of sensitivity (≈ 10%)
are coloured in blue.

Figure 2.42: The reaction rate sensitivity analysis results for the Tyurin model,
given as a network diagram coloured by sensitivity as a proportion of the most
sensitive reaction rate. Sensitive reactions are coloured in red, while insensitive
reactions are given in grey. Reactions with an average level of sensitivity (≈ 10%)
are coloured in blue.
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Figure 2.43: The reaction rate sensitivity analysis results for the Zhu model, given
as a network diagram coloured by sensitivity as a proportion of the most sensitive
reaction rate. Sensitive reactions are coloured in red, while insensitive reactions
are given in grey. Reactions with an average level of sensitivity (≈ 10%) are
coloured in blue.

2.5.3 Conclusions

In this section, we have explored how model predictions vary in response to varia-
tions in coagulation factors and reaction rates. The Hockin, Danforth and Brum-
mel models were generally similar in sensitivity distributions for both methods,
being sensitive to FII, AT, TF and TFPI as well as most reactions involving those
factors. The Bungay model appears sensitive to FV in both methods, possibly
linked to the high rate of FIIa inhibition by AT where predictions will be heavily
influenced by how much and how quickly prothrombinase can be formed. The
Chatterjee model was the only model to appear sensitive to FXI (particularly its
auto-activation). The Tyurin and Zhu models again appeared similar in their pre-
dictions, this time having similar sensitivity distributions in all coagulation factors
and all comparable reaction rates except for activation by TF:VIIa for which only
the Zhu model is sensitive.

The most sensitive reaction rate in all models was FIIa inhibition by AT and
all models were sensitive to some form of FIIa activation by Xa:Va (II to mIIa,
mIIa to IIa or II to IIa), although they disagreed on which specific step in the
activation was the most sensitive. The models also varied in their sensitivity to
TFPI with some models, such as the Hockin model, being incredibly sensitive to
TFPI reactions and others, such as Bungay, where all TFPI reactions are insen-
sitive. Finally, we found that inhibition of many coagulation factors (FIXa, FXa,
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FXIa and TF:VIIa) were frequently insensitive reactions.
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2.6 Parameter Sources
The values of the reaction rates used by the models has been shown to vary sig-
nificantly depending on the source that is used [76]. Additionally, many of the
models cite earlier models as the source of their reaction rates. Understanding
the accuracy of the reaction rates that are used, what changes have been made,
and where any assumptions have been used will inform the process by which we
can develop a new model. We have investigated the sources given for all reac-
tion rates in the Hockin, Danforth, Chatterjee, Brummel, Bungay, Tyurin and
Zhu models∗. This included identifying the original source for each reaction rate,
changes that have been made since that source was measured and the reason for
those changes, where given. We will provide an overview here, with the tables de-
tailing the values, sources and notes for all reaction rates given in the Appendix D.

2.6.1 Hockin Model

The Hockin model predominantly uses reaction rates from the Jones model [53].
This includes some reaction rates that were tweaked from their measured values
through fitting to data and some that were entirely derived through fitting. For
example, [90] gives a Kd = 2nM for TF:VII association and dissociation which
was used as a base to fit both k+ and k− using data from [91]. All enzyme sub-
strate binding reactions feature a common rate of 1×108M−1s−1 and a handful of
rates are assumed to be the same as similar reactions, such as activation of FVIII
by FIIa which is assumed to be the same as for FV activation by FIIa.

2.6.2 Danforth Model

Of the four changes made to the Hockin model by Danforth, two of the changes
are not given a citation (the two reaction rate changes). Since the Danforth model
is built upon the Hockin model, many of the comments there are still relevant in
the Danforth model, including that it contains fitted reaction rates from the Jones
model [53].

2.6.3 Chatterjee Model

The first 31 reactions, and their reaction rates, in the Chatterjee model come from
the Hockin model. Many of these reaction rates have been scaled based on reports
using varied phospholipid concentrations. This includes the fitted reaction rates,
some of which are scaled but the underlying values are still based on the fitting
performed by Jones [53]. The enzyme substrate binding reactions are assumed to
be diffusion limited (k+ = 1 × 108M−1s−1 [69]). This was likely also the source
used for the Hockin model even though it was not cited as such. A thoroughly
validated model for fibrin is used [92] and all inhibitions of kallikrein are combined

∗The Panteleev model was not included as all of its rates are derived for the spatial model
and, as such, as less easily compared to the other models.
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into a single first order rate.

2.6.4 Brummel Model

The comments on the Danforth model are also applicable to the Brummel model.
Many of the new reactions and their rates come from the model of Bravo [86],
which itself gets many of its reactions and rates from an earlier, protein C model
by Hockin [93]. There are some reaction rates which are not given a source in these
models and some with incorrect citations, leaving many reaction rates without an
experimental source.

2.6.5 Bungay Model

The Bungay model features a handful of reaction rates that utilise measured val-
ues of multiple sources to average over. The source for activation of FXI by FIIa
[94] has been retracted since the Bungay model was published [95], which demon-
strates another potential pitfall of using previous models as the source of reaction
rates. The sources of two reaction rates are reported as “Not Available” with no
reason given. Four reaction rates are assumed to be the same as similar reactions,
for example activation of FVIII by mIIa is assumed to occur at the same rate as
activation by FIIa.

2.6.6 Tyurin Model

The Tyurin model features many reaction rates that are defined as an average
over multiple sources. They appear to have used the models of Kogan [88] and
Khanin [58] (which both use multiple sources frequently) for many of their rates,
although they typically cited the original sources rather than the models. The
Tyurin model also uses the same retracted source as Bungay for its activation of
FXI by FIIa [94, 95].

2.6.7 Zhu Model

The Zhu model also features many rates from Kogan [88] and Khanin [58] which use
multiple sources. Some of the rates in these earlier models were derived through
fitting or estimated and are then reused in the Zhu model. The reaction rate for
activation of FXI is first order and is calculated using data of its activation by
FIIa [96].

2.6.8 Conclusions

We have identified several potential issues in the reaction rates for these models.
A breakdown of how these reaction rates have been derived for each model is given
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in Table 2.34. Of the 504 reaction rates across the models, 32% use estimated val-
ues, roughly half of which are due to a lack of rate constants for enzyme substrate
binding. Only 10% of the reaction rates use multiple sources when determining
the values to use in the models with all other reaction rates using a single exper-
imental source. It has already been shown that there exists significant variation
between different sources for the same reaction rate [76], likely due to the differ-
ent experimental conditions each laboratory uses. This may mean that using a
single source for each reaction rate is insufficient, and the uncertainty in these reac-
tion rates leads to large amounts of uncertainty in the resulting model predictions.

Model Estimated Rates Measured Rates
Diffusion Limited† Other Single Source Multiple Sources

Hockin 4 10 24 4
Danforth 4 11 25 4
Chatterjee 20 15 58 4
Brummel 7 19 33 7
Bungay 36 15 52 6
Tyurin 0 13 45 13
Zhu 0 8 54 13

Table 2.34: Each reaction rate in the models has been grouped into either “Esti-
mated Rates” or “Measured Rates”, which are then further separated into the sub-
groups of “Diffusion Limited” or “Other”, and “Single Source” or “Multiple Sources”.
The total number of reaction rates which fall into each of these groups are given
for each model.

†This includes a handful of rates that are assumed to be 1 × 107M−1s−1, or other similar
values, rather than 1× 108M−1s−1.
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2.7 Timescale Analysis and Nondimensionalization
We have seen many differences in the predictions of the models, such as forma-
tion of TF:VIIa; the shape of the thrombin generation curves; and their inhibition
schemes for the complexes Xa:Va and IXa:VIIIa (Section 2.4). We now aim to in-
vestigate the models across various timescales (Figures 2.29 and 2.30, on pages 89
and 90, respectively, highlight significantly different dynamics between the early
and late timescales) to identify accuracies and inaccuracies in their predictions
across the three standard phases of coagulation: initiation, propagation, and in-
hibition.

The first model we investigated was the Danforth model. This was chosen
as it contains relatively few reactions and performed significantly better in the
correlation analysis than the model with the fewest reactions, the Hockin model
(Section 2.3 and Figure 2.19).

Due to the size of the models (44 parameters across 34 ODEs), typical timescale
analysis methods such as asymptotic analysis would be challenging to implement.
This led us to attempt to reduce the complexity of the models through nondimen-
sionalization, hoping to remove a significant number of the parameters to make
the timescale analysis work easier. Unfortunately, we found it was not possible to
remove more than two parameters from the model (the minimum number already
guaranteed by the Buckingham π theorem [29]), and therefore we were unable to
significantly reduce its complexity.

In this section, will demonstrate the reason why we were unable to remove
more than two parameters from the model. Then given the complexity of these
models, we will perform a computational timescale analysis on both the Danforth
and Tyurin models, skipping the nondimensionalization.

2.7.1 Nondimensionalization

After attempting the nondimensionalize the Danforth model to remove a signifi-
cant number of parameters, we found we were unable to remove more than two
(with removal of two parameters guaranteed by the Buckingham π theorem [29]).
To understand why this is the case we will break down the model into first and
second order reactions.

• First order reaction rates can only be removed through the time scaling and
as such only one can be removed.

• Second order reaction rates cannot be removed if one of the concentration
scalings for a reactant has already been set.

For notation, we will use ã to denote the dimensionless version of the variable
a and a0 to denote the dimensional scaling used for the variable a giving us a = a0ã.
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First Order Reactions

First order reactions are those that only contain a single reactant∗. An example
reaction of this form would be x→ x1 + x2. This reaction would give an ODE for
x, x1 and x2 with the ODE for x given as dx

dt
= −k · x where k is the reaction rate

parameter. By nondimensionalizing this ODE, we reach dx̃
dt̃

= −k · t0 · x̃. From this
we can see that the only way to remove the parameter k is to set the value of t0.
Since this can only be done once for the whole system then we can only remove a
single first order reaction rate.

Second Order Reactions

There are two types of second order reactions present in the Danforth model,
binding reactions of the form x + y → z and enzymatic reactions of the form
x+ y → x+ z.

For the binding reactions, with reaction rate p, we get the ODE system below.

dx

dt
= −p · x · y

dy

dt
= −p · x · y

dz

dt
= p · x · y

After nondimensionalizing this system, we get the following.

dx̃

dt̃
= −p · t0 · y0 · x̃ỹ

dỹ

dt̃
= −p · t0 · x0 · x̃ỹ

dz̃

dt̃
= p · t0 ·

x0 · y0

z0

x̃ỹ

To remove the parameter p from the system we require x0 = y0 = z0 = 1
t0·p (up

to multiples of other nondimensional parameters).

Then suppose we have another reaction which uses one of x, y or z as a reac-
tant. Without loss of generality, we will assume this reaction uses x and is of the
form x + a → b with reaction rate q. The nondimensionalized ODE system for
this reaction is given below.

∗The model contains first order reactions both with one and two products. However, we will
see the number of products is not relevant and the same properties hold.
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dx̃

dt̃
= −q · t0 · a0 · x̃ã

dã

dt̃
= −q · t0 · x0 · x̃ã

db̃

dt̃
= q · t0 ·

x0 · a0

b0

x̃ã

Since x0 is already defined then, from the ODE for ã, we now have a nondi-
mensional parameter of q

p
which cannot be removed, and we are forced to choose

a0, b0 = 1
t0·p (up to multiples of other nondimensional parameters) to avoid intro-

ducing further parameters.

Similarly, any first order reactions of the form x → c or x → c + d (system
given below), where the scaling for x0 is already defined, require that the scalings
c0 and d0 are the same as x0 (up to multiples of other nondimensional parameters)
in order to not introduce more nondimensional parameters into the system.

dx̃

dt̃
= −r · t0 · x̃

dc̃

dt̃
= r · t0 ·

x0

c0

· x̃

dd̃

dt̃
= r · t0 ·

x0

d0

· x̃

These two properties are enough to show that whichever species’s scaling is
chosen first, it is not possible to remove further parameters by setting the other
scalings in the Danforth model. This is with the exception of the scalings V0 and
V III0 which only appear as the species y in reactions of the form x+ y → x+ z.
Unfortunately, it is not possible to remove parameters through these scalings ei-
ther. Any reactions of the form x + y → x + z (system given below), where the
scalings x0 and z0 are already set, requires that y0 = z0 (up to multiples of other
nondimensional parameters).

dỹ

dt̃
= −s · t0 · x0 · x̃ỹ

dz̃

dt̃
= s · t0 ·

x0 · y0

z0

· x̃ỹ

This means that, regardless of which scaling is used to remove a parameter,
no more parameters can be removed from the system. This, along with the fact
that time scaling can only remove one first order reaction rate, is why we can only
remove a maximum of two parameters through nondimensionalization.
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2.7.2 Timescale Analysis - Danforth

To assess the various timescales in the Danforth model, we have extracted the
intervals of influence for each term in the ODE system. This is the time interval
that a particular term has a meaningful influence on a given species ODE. The
process by which we did this is presented in Figure 2.44.

The intervals of influence take into account cancelling any reactions in equilib-
rium and whether the current value of the ODE is significant to the system as a
whole. For example, the reaction TF:VIIa + AT → TF:VIIa:AT is the dominant
reaction on AT for very early times (in the first 5 seconds). However, the AT
concentration does not change significantly during this time meaning it will have
no meaningful influence on the levels of free AT in the system so this reaction is
not considered influential to AT. The decision as to whether a small change to a
species is influential requires knowledge about the roles each species plays in the
system. For example, FIIa is only activated by FXa at early times which pro-
duces what would appear as a negligible change in FIIa concentration but due to
the strong positive feedback loops in FIIa concentration if this reaction is deemed
negligible then no FIIa will be produced in the system at the later timescales. The
intervals of influence for each reaction on each species is given in Table 2.35.

Figure 2.44: The steps taken to determine the intervals of influence. An example
is given for determining the intervals of influence, on TF, for the four reactions
that affect it.

111



Species Reaction Interval of
Influence (s)

TF

TF + VII → TF:VII (0,300)
TF:VII → TF + VII (40,240)
TF + VIIa → TF:VIIa (40,240)
TF:VIIa → TF + VIIa -

TF:VII TF + VII → TF:VII (0,300)
TF:VII → TF + VII (40,700)

VII

TF + VII → TF:VII (0,30)
TF:VII → TF + VII -

TF:VIIa + VII → TF:VIIa + VIIa -
Xa + VII → Xa + VIIa (10,150)∪(340,700)
IIa + VII → IIa + VIIa (130,460)

TF:VIIa

TF + VIIa → TF:VIIa (0,700)
TF:VIIa → TF + VIIa (15,700)

TF:VIIa + X → TF:VIIa:X (0,700)
TF:VIIa:X → TF:VIIa + X (0,700)
TF:VIIa + Xa → TF:VIIa:Xa (250,700)
TF:VIIa:Xa → TF:VIIa + Xa (0,700)
TF:VIIa + IX → TF:VIIa:IX (7,700)
TF:VIIa:IX → TF:VIIa + IX (7,700)
TF:VIIa:IX → TF:VIIa + IXa (7,700)

TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI (250,700)
TF:VIIa + AT → TF:VIIa:AT (50,700)

VIIa

TF + VIIa → TF:VIIa (0,5)
TF:VIIa → TF + VIIa -

TF:VIIa + VII → TF:VIIa + VIIa -
Xa + VII → Xa + VIIa (2,150)∪(340,700)
IIa + VII → IIa + VIIa (130,420)

Xa

TF:VIIa + Xa → TF:VIIa:Xa -
TF:VIIa:Xa → TF:VIIa + Xa (0,460)
IXa:VIIIa:X → IXa:VIIIa + Xa (100,150)∪(300,700)

Xa + Va → Xa:Va (25,140)∪(320,700)
Xa:Va → Xa + Va (25,140)∪(320,700)

Xa + TFPI → Xa:TFPI (500,700)
Xa:TFPI → Xa + TFPI -

Xa + AT → Xa:AT (10,700)
IXa + X → IXa + Xa -

IIa
Xa + II → Xa + IIa (0,100)

Xa:Va + mIIa → Xa:Va + IIa (85,350)
IIa + AT → IIa:AT (30,700)
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TF:VIIa:X
TF:VIIa + X → TF:VIIa:X (0,700)
TF:VIIa:X → TF:VIIa + X (0,700)
TF:VIIa:X → TF:VIIa:Xa (0,700)

X

TF:VIIa + X → TF:VIIa:X (0,140)
TF:VIIa:X → TF:VIIa + X -

IXa:VIIIa + X → IXa:VIIIa:X (100,700)
IXa:VIIIa:X → IXa:VIIIa + X -

IXa:VIIIa:X → IXa + X + VIIIa1L + VIIIa2 -
IXa + X → IXa + Xa -

TF:VIIa:Xa

TF:VIIa:X → TF:VIIa:Xa (0,700)
TF:VIIa + Xa → TF:VIIa:Xa (200,700)
TF:VIIa:Xa → TF:VIIa + Xa (0,700)

TF:VIIa:Xa + TFPI → TF:VIIa:Xa:TFPI (0,700)
TF:VIIa:Xa:TFPI → TF:VIIa:Xa + TFPI (50,700)

IX TF:VIIa + IX → TF:VIIa:IX (0,700)
TF:VIIa:IX → TF:VIIa + IX (0,700)

TF:VIIa:IX
TF:VIIa + IX → TF:VIIa:IX (0,700)
TF:VIIa:IX → TF:VIIa + IX (0,700)
TF:VIIa:IX → TF:VIIa + IXa (0,700)

IXa

TF:VIIa:IX → TF:VIIa + IXa (0,700)
IXa + VIIIa → IXa:VIIIa (110,700)
IXa:VIIIa → IXa + VIIIa (120,700)

IXa:VIIIa:X → IXa + X + VIIIa1L + VIIIa2 (350,700)
IXa:VIIIa → IXa + VIIIa1L + VIIIa2 (350,700)

IXa + AT → IXa:AT (50,700)

II
Xa + II → Xa + IIa -

Xa:Va + II → Xa:Va:II (40,350)
Xa:Va:II → Xa:Va + II (40,350)

VIII IIa + VIII → IIa + VIIIa (40,170)

VIIIa

IIa + VIII → IIa + VIIIa (20,170)
IXa + VIIIa → IXa:VIIIa -
IXa:VIIIa → IXa + VIIIa -
VIIIa → VIIIa1L + VIIIa2 (120,700)
VIIIa1L + VIIIa2 → VIIIa -

IXa:VIIIa

IXa + VIIIa → IXa:VIIIa (80,700)
IXa:VIIIa → IXa + VIIIa (120,700)

IXa:VIIIa + X → IXa:VIIIa:X (80,700)
IXa:VIIIa:X → IXa:VIIIa + X (170,700)
IXa:VIIIa:X → IXa:VIIIa + Xa (80,700)

IXa:VIIIa → IXa + VIIIa1L + VIIIa2 (170,700)
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IXa:VIIIa:X

IXa:VIIIa + X → IXa:VIIIa:X (80,700)
IXa:VIIIa:X → IXa:VIIIa + X (170,700)
IXa:VIIIa:X → IXa:VIIIa + Xa (80,700)

IXa:VIIIa:X → IXa + X + VIIIa1L + VIIIa2 (170,700)

VIIIa1L

VIIIa → VIIIa1L + VIIIa2 (80,700)
VIIIa1L + VIIIa2 → VIIIa -

IXa:VIIIa:X → IXa + X + VIIIa1L + VIIIa2 -
IXa:VIIIa → IXa + VIIIa1L + VIIIa2 -

V IIa + V → IIa + Va (10,30)∪(100,170)
mIIa + V → mIIa + Va (25,170)

Va

IIa + V → IIa + Va (10,30)∪(100,170)
Xa + Va → Xa:Va (25,700)
Xa:Va → Xa + Va (170,700)

mIIa + V → mIIa + Va (25,170)

Xa:Va

Xa + Va → Xa:Va (25,700)
Xa:Va → Xa + Va (25,700)

Xa:Va + II → Xa:Va:II (25,360)
Xa:Va:II → Xa:Va + II (25,360)

Xa:Va:II → Xa:Va + mIIa (25,360)

Xa:Va:II
Xa:Va + II → Xa:Va:II (25,360)
Xa:Va:II → Xa:Va + II (25,360)

Xa:Va:II → Xa:Va + mIIa (25,360)

mIIa
Xa:Va:II → Xa:Va + mIIa (25,360)

Xa:Va + mIIa → Xa:Va + IIa (120,360)
mIIa + AT → mIIa:AT (40,340)

TFPI

Xa + TFPI → Xa:TFPI (10,700)
Xa:TFPI → Xa + TFPI -

TF:VIIa:Xa + TFPI → TF:VIIa:Xa:TFPI (0,360)
TF:VIIa:Xa:TFPI → TF:VIIa:Xa + TFPI -

Xa:TFPI
Xa + TFPI → Xa:TFPI (0,700)
Xa:TFPI → Xa + TFPI -

TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI -

TF:VIIa:
Xa:TFPI

TF:VIIa:Xa + TFPI → TF:VIIa:Xa:TFPI (0,700)
TF:VIIa:Xa:TFPI → TF:VIIa:Xa + TFPI -
TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI -

AT

Xa + AT → Xa:AT -
mIIa + AT → mIIa:AT (70,270)
IXa + AT → IXa:AT -
IIa + AT → IIa:AT (180,700)

TF:VIIa + AT → TF:VIIa:AT -

Table 2.35: Intervals of influence for each reaction, on each of the species that the
reaction affects, for the Danforth model.
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Based on the intervals of influence, five interval timescales were chosen which
are reported in seconds. The t = O(1s) dynamics are demonstrated by the signif-
icant reactions on the (0,5) time interval; the t = O(10s) dynamics are governed
by the (5,40) significant reactions; the t = O(100s) dynamics are split across two
timescales, covering the amplification on the interval (40,170) and the switch from
amplification to inhibition on the (170,460) interval; and the t = O(1000s) dynam-
ics are demonstrated by the significant reactions on the (460,1200) interval. Each
timescale will be demonstrated using a reduced network diagram and simulations.
We only look on the interval (0,1200) since this corresponds to the timescale in
which relevant reactions are occurring in the experiment (20 minutes). A network
diagram for the Danforth model, containing all reactions, is given in Figure 2.45.
The ODEs for each of the Danforth timescale-reduced models are given in Ap-
pendix A.

Figure 2.45: A reaction network diagram of the Danforth model. Grey nodes
correspond to individual species. Yellow nodes correspond to reactions and each
reaction node is connected to its products (arrows), reactants (solid lines) and
species which are both products and reactants (dotted lines). Reaction nodes next
to a pair of arrows indicate that the reaction is reversible. The species nodes for
AT, TFPI and VIIIa1L+VIIIa2 have been repeated in multiple places to simplify
the network diagram.
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The First Timescale

The first interval timescale is (0,5) and contains the reactions that begin almost
immediately in the system. A reduced network diagram for the reactions which
are significant on this timescale is given in Figure 2.46 and simulations of this
reduced model are given in Figure 2.47 for TF:VIIa, FXa, FIXa and FIIa. We
observe a surprisingly large number of reactions being involved at this timescale.
TF:VIIa, FIXa, FXa and FIIa are all being formed immediately as well as the
feedback from FXa activating FVII. We also observe TFPI beginning to regulate
TF:VIIa and TF:VIIa:Xa. We can see good predictions in the (0,5) timescale with
differences only starting to appear at around t = 10s and onward, when the AT
inhibitions start to become more relevant resulting in all species being over pre-
dicted. The initial conditions used for these simulations are the original Danforth
initial conditions given in Table 2.2.

Figure 2.46: A reaction network diagram of the reduced Danforth model for the
(0,5) timescale. Red lines and arrows indicate a species that is not significantly
affected by a reaction, but the reaction still has a significant effect on other species.
If only one direction in a reversible reaction is insignificant, then an additional red
arrow is used to demonstrate that direction.
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Figure 2.47: Comparison between the reduced Danforth for the first timescale and
the full Danforth model.

The Second Timescale

The second interval timescale is (5,40) and governs the reactions that may not
begin immediately but do still play a role in the initiation of the system. A re-
duced network diagram for the reactions which are significant on this timescale
is given in Figure 2.48. Simulations of this model are given in Figure 2.49 for
TF:VIIa, FXa, FIXa, FIIa and FVa concentrations. The initial conditions for the
system are taken from the first timescale model at t = 5s. This timescale adds
in reactions for AT inhibition and activation of FV by FIIa to then move into
production of prothrombinase in the later timescales. We see good agreement up
to t = 45s where mIIa conversion into FIIa becomes significant, slightly surpassing
the required (5,40) time interval.

The Third Timescale

The third interval timescale is (40,170) and begins amplification. A reduced net-
work diagram for the reactions which are significant on this timescale is given in
Figure 2.50 and simulations of this model are given in Figure 2.51 for TF:VIIa,
FXa, FIXa, FIIa and FVa. The initial conditions used are from the second
timescale model at t = 40s. This model now includes most of the full model
with FVIII now being activated and IXa:VIIIa being formed. TF:VIIa seems to
no longer have a significant effect on the system. The third timescale model stays
valid for longer than required with good predictions up to t = 200s. The initial
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Figure 2.48: A reaction network diagram of the reduced Danforth model for the
(5,40) timescale. Red lines and arrows indicate a species that is not significantly
affected by a reaction, but the reaction still has a significant effect on other species.
If only one direction in a reversible reaction is insignificant, then an additional red
arrow is used to demonstrate that direction.

condition for FXa appears to be slightly off, however, this does not significantly
affect the results on this timescale. The levels of FVa are the first to show dif-
ferences between the models, where the full model begins to drift downwards at
around t = 150s, which is not followed by the reduced model, corresponding to
the prothrombinase formation reaction starting to significantly affect the FVa con-
centration.

The Fourth Timescale

The fourth interval timescale is (170,460) and covers the end of amplification and
the beginning of initiation. A reduced network diagram for the reactions which
are significant on this timescale is given in Figure 2.52 and simulations are given
in Figure 2.53, beginning with the initial conditions defined by the third timescale
model at t = 170s. Factors VIII and V are no longer being activated. This model
has the largest set of reactions, and this allows it to capture the results of the later
timescales accurately. There is a slight drift between the reduced model and the
full model which is due to earlier timescales as the shapes of the concentration
curves matches very well.
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Figure 2.49: Comparison between the reduced Danforth for the second timescale
and the full Danforth model.

Figure 2.50: A reaction network diagram of the reduced Danforth model for the
(40,170) timescale. Red lines and arrows indicate a species that is not significantly
affected by a reaction, but the reaction still has a significant effect on other species.
If only one direction in a reversible reaction is insignificant, then an additional red
arrow is used to demonstrate that direction.
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Figure 2.51: Comparison between the reduced Danforth for the third timescale
and the full Danforth model.

Figure 2.52: A reaction network diagram of the reduced Danforth model for the
(170,460) timescale. Red lines and arrows indicate a species that is not significantly
affected by a reaction, but the reaction still has a significant effect on other species.
If only one direction in a reversible reaction is insignificant, then an additional red
arrow is used to demonstrate that direction.
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Figure 2.53: Comparison between the reduced Danforth for the fourth timescale
and the full Danforth model.

The Fifth Timescale

The fifth interval timescale is (460,1200) and governs the inhibitions. A reduced
network diagram for the reactions which are significant on this timescale is given
in Figure 2.54. The simulation for the fifth timescale model only tracks FIIa and
AT levels and is given in Figure 2.55 using the initial conditions from the fourth
timescale model at t = 460s. No new thrombin is being activated which means,
if only thrombin is of interest, the system reduces dramatically to only AT inhi-
bition of FIIa. Most of the reactions on this timescale are inhibitions or are only
changing due to inhibitions such as the balance of prothrombinase levels as FXa
is inhibited by TFPI and AT. However, there are still significant activations for
FVII, FIX and FX. The FIIa concentration is able to follow the shape of the curve
well with the only error appearing to be due to the initial conditions from previous
timescales. The fifth timescale model is small enough to be solved for thrombin
concentration, as is given below.

d[IIa]

dt
=
d[AT ]

dt
= −k[IIa][AT ]

This will give us a solution of the following form:

[AT ] = [IIa] + c

The ODE for [IIa] can then be solved by separation of variables using this sub-
stitution to give the equation below, with the constants c = [AT ] − [IIa] and d
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which can be found from the initial concentration of FIIa.

[IIa] =
cecd

ekct − ecd

Figure 2.54: A reaction network diagram of the reduced Danforth model for the
(460,1200) timescale. Red lines and arrows indicate a species that is not signif-
icantly affected by a reaction, but the reaction still has a significant effect on
other species. If only one direction in a reversible reaction is insignificant, then
an additional red arrow is used to demonstrate that direction.

Figure 2.55: Comparison between the reduced Danforth for the fifth timescale and
the full Danforth model.

Unnecessary Reactions

Four reactions, given in Table 2.36, are insignificant for all species on all timescales
and can therefore be removed from the model. These reactions being insignificant
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matches well with the biology, FVII is predominantly activated by FXa; and FX
can be activated by FIXa without the need for FVIIIa to be present but the activa-
tion is much weaker. The two remaining unnecessary reactions are both reversible
reactions, but due to their tight binding (fast association and slow disassociation),
the disassociation does not occur in significant amounts.

Reaction

VII + TF:VIIa → VIIa + TF:VIIa
VIIIa1L + VIIIa2 → VIIIa
Xa:TFPI → Xa + TFPI
X + IXa → Xa + IXa

Table 2.36: The reactions in the Danforth model that are negligible across all
timescales.

2.7.3 Timescale Analysis - Tyurin

To complement the analysis of the Danforth model, we have conducted the same
analysis on the Tyurin model, after removing the reactions for species not used
in this section (chosen as it contains many of the reactions that are missing from
the Danforth model, such as FXI). The intervals of influence, for each reaction,
are given in Table 2.37. The dynamics on both t = O(1s) and t = O(10s) utilise
similar reactions so are jointly covered by the reactions significant on the (0,40)
time interval; the shift between the t = O(10s) and t = O(100s) timescales are
governed by the reactions which are significant on the (40,130) time interval; the
t = O(100s) dynamics are shown on the (130,180) interval; the switch between
the t = O(100s) and t = O(1000s) timescales are given on the (180,500) interval;
and the t = O(1000s) dynamics are given by the reactions which are significant
on the (500,1200) interval. The ODEs for each of the Tyurin timescale-reduced
models are given in Appendix A.

Species Reaction Interval of
Influence (s)

TF

TF + VIIa → TF:VIIa (150,1200)
TF + VII → TF:VII (0,230)
TF:VIIa → TF + VIIa -
TF:VII → TF + VII -

TF:VII
TF:VII Xa→ TF:VIIa (130,220)
TF + VII → TF:VII (0,220)
TF:VII → TF + VII -
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TF:VIIa

TF:VII Xa→ TF:VIIa (110,220)
TF + VIIa → TF:VIIa (0,140)∪(160,1200)

TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI (165,1200)
TF:VIIa + AT → TF:VIIa:AT (10,150)∪(70,1200)

TF:VIIa → TF + VIIa -

VIIa
VII Xa→ VIIa (0,260)

TF + VIIa → TF:VIIa (0,100)
TF:VIIa → TF + VIIa -

VII
VII Xa→ VIIa (100,260)

TF + VII → TF:VII (0,130)
TF:VII → TF + VII -

Xa

X IXa→ Xa -
X IXa:V IIIa→ Xa (60,250)
X V IIa→ Xa (0,120)

X TF :V IIa→ Xa (20,90)
Xa + Va → Xa:Va (140,620)
Xa + AT → Xa:AT (20,90)∪(150,600)

Xa + TFPI → Xa:TFPI (0,180)

X

X IXa→ Xa -
X IXa:V IIIa→ Xa (80,240)
X V IIa→ Xa (0,100)

X TF :V IIa→ Xa -

Va

V IIa→ Va (40,170)
V Xa→ Va (0,165)

Xa + Va → Xa:Va (150,180)∪(540,620)
Xa:Va + AT → Xa:AT + Va (155,180)∪(540,1200)

V V IIa→ Va (40,170)
V Xa→ Va (0,160)

Xa:Va Xa + Va → Xa:Va (0,170)∪(560,620)
Xa:Va + AT → Xa:AT + Va (165,170)∪(560,1200)

XIa
XI IIa→ XIa (0,165)
XI XIa→ XIa (10,155)

XIa + AT → XIa:AT (160,1200)

XI XI IIa→ XIa (0,165)
XI XIa→ XIa (10,155)
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IX XIa→ IXa (20,240)
IX V IIa→ IXa (0,40)

IXa IX TF :V IIa→ IXa -
IXa + VIIIa → IXa:VIIIa -
IXa + AT → IXa:AT (170,1200)

IX
IX XIa→ IXa (20,240)
IX V IIa→ IXa (0,40)

IX TF :V IIa→ IXa -

VIIIa
VIII IIa→ VIIIa (0,170)

IXa + VIIIa → IXa:VIIIa (60,1200)
IXa:VIIIa + AT → IXa:AT + VIIIa (160,200)

VIII VIII IIa→ VIIIa (0,165)

IXa:VIIIa IXa + VIIIa → IXa:VIIIa (60,200)
IXa:VIIIa + AT → IXa:AT + VIIIa (130,200)

IIa
II Xa→ IIa (0,40)

II Xa:V a→ IIa (20,180)
IIa + AT → IIa:AT (20,120)∪(160,700)

II II Xa→ IIa (0,40)
II Xa:V a→ IIa (20,180)

TFPI Xa + TFPI → Xa:TFPI (10,30)∪(130,180)

Xa:TFPI TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI (170,1200)
Xa + TFPI → Xa:TFPI (0,180)

AT

TF:VIIa + AT → TF:VIIa:AT -
IIa + AT → IIa:AT (150,600)
Xa + AT → Xa:AT (220,500)

Xa:Va + AT → Xa:AT + Va -
IXa + AT → IXa:AT (300,1200)

IXa:VIIIa + AT → IXa:AT + VIIIa -
XIa + AT → XIa:AT -

Table 2.37: Intervals of influence for each reaction, on each of the species that the
reaction effects, for the Tyurin model.

The First Timescale

The first interval timescale, (0,40), covers the initiation. A reduced network dia-
gram is given in Figure 2.58 and model simulations are given in Figure 2.58. The
initial conditions used are the original Tyurin initial conditions in Table 2.22. Due
to the slower TF:VII and TF:VIIa binding in the Tyurin model, most activation
is performed by FVIIa instead. This timescale covers activation of FX and FIX
by FVIIa, activation of FII by FXa, activation of FV by FXa and FVIII by FIIa,
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Figure 2.56: A reaction network diagram of the Tyurin model. Grey nodes cor-
respond to individual species. Yellow nodes correspond to reactions and each
reaction node is connected to its products (arrows), reactants (solid lines) and
species which are both products and reactants (dotted lines). Reaction nodes
next to a pair of arrows indicate that the reaction is reversible. The species nodes
for AT have been repeated in multiple places to simplify the network diagram.

and the beginning of Xa:Va formation and its activation of FIIa. The simulations
of the reduced model are able to reproduce the full model up to t = 60s, where
activation of FX by IXa:VIIIa becomes significant.

The Second Timescale

The second interval timescale, (40,130), covers the end of initiation and leads into
amplification. A reduced network diagram is given in Figure 2.60 and model sim-
ulations are given in Figure 2.60. The initial conditions are taken from the first
timescale model at t = 40s. We now include activation of FV by FIIa and acti-
vation of FX by IXa:VIIIa. This results in most factors seeing rapid exponential
growth through this timescale.
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Figure 2.57: A reaction network diagram of the reduced Tyurin model for the
(0,40) timescale. Red lines and arrows indicate a species that is not significantly
affected by a reaction, but the reaction still has a significant effect on other species.
If only one direction in a reversible reaction is insignificant, then an additional red
arrow is used to demonstrate that direction.

Figure 2.58: Comparison between the reduced Tyurin for the first timescale and
the full Tyurin model.
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Figure 2.59: A reaction network diagram of the reduced Tyurin model for the
(40,130) timescale. Red lines and arrows indicate a species that is not significantly
affected by a reaction, but the reaction still has a significant effect on other species.
If only one direction in a reversible reaction is insignificant, then an additional red
arrow is used to demonstrate that direction.

Figure 2.60: Comparison between the reduced Tyurin for the second timescale
and the full Tyurin model.
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Figure 2.61: A reaction network diagram of the reduced Tyurin model for the
(130,180) timescale. Red lines and arrows indicate a species that is not significantly
affected by a reaction, but the reaction still has a significant effect on other species.
If only one direction in a reversible reaction is insignificant, then an additional red
arrow is used to demonstrate that direction.

The Third Timescale

The third interval timescale, (130,180), is quite short and covers the rapid ampli-
fication up to peak thrombin and towards inhibition. A reduced network diagram
is given in Figure 2.62 and model simulations are given in Figure 2.62. The initial
conditions are taken from the second timescale model at t = 130s. This timescale
includes most reactions and subsequent timescales have a reduced number of reac-
tions. Prothrombinase formation is now happening rapidly enough to significantly
affect the levels of FVa and FXa. All inhibitions are now significant.

The Fourth Timescale

The fourth interval timescale, (180,500), covers most of the inhibition. A reduced
network diagram is given in Figure 2.64 and model simulations are given in Figure
2.64. The initial conditions are taken from the third timescale model at t = 180s.
There is still significant activation occurring, with FIX activation by FXIa and
activation of FX by IXa:VIIIa, FVIIa and TF:VIIa. However, this remaining acti-
vation does not continue to activate more thrombin, due to all prothrombin being
depleted. The model simulations continue to match well as the factors are strongly
inhibited.

129



Figure 2.62: Comparison between the reduced Tyurin for the third timescale and
the full Tyurin model.

Figure 2.63: A reaction network diagram of the reduced Tyurin model for the
(180,500) timescale. Red lines and arrows indicate a species that is not significantly
affected by a reaction, but the reaction still has a significant effect on other species.
If only one direction in a reversible reaction is insignificant, then an additional red
arrow is used to demonstrate that direction.
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Figure 2.64: Comparison between the reduced Tyurin for the fourth timescale and
the full Tyurin model.

The Fifth Timescale

The fifth interval timescale, (500,1200), covers the final inhibitions of the system
for the longest lasting species. A reduced network diagram is given in Figure 2.66
and model simulations are given in Figure 2.66. The initial conditions are taken
from the fourth timescale model at t = 500s. No more activation is occurring and
the only reactions are inhibitions, or reversible reactions balancing as inhibition
takes place.

Unnecessary Reactions

There are four reactions that are insignificant for all species on all timescales and
can be removed from the model, these reactions are given in Table 2.38. The acti-
vation of FX by FIXa, as seen previously for the Danforth model, is insignificant
across all timescales. The remaining reactions could all be put down to the poor
production of TF:VII and TF:VIIa in the Tyurin model, hence FIXa activation
by TF:VIIa is insignificant but activation by FVIIa remains significant.

2.7.4 Conclusions

The two models show fairly significant differences in their initiation of the system.
This is covered in the first and second timescales for the Danforth model and the
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Figure 2.65: A reaction network diagram of the reduced Tyurin model for the
(500,1200) timescale. Red lines and arrows indicate a species that is not signif-
icantly affected by a reaction, but the reaction still has a significant effect on
other species. If only one direction in a reversible reaction is insignificant, then
an additional red arrow is used to demonstrate that direction.

Figure 2.66: Comparison between the reduced Tyurin for the fifth timescale and
the full Tyurin model.
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Reaction

IX TF :V IIa→ IXa
X IXa→ Xa

TF:VIIa → TF + VIIa
TF:VII → TF:VII

Table 2.38: The reactions in the Tyurin model that are negligible across all
timescales.

first timescale for the Tyurin model. The Danforth model has a very rapid first
timescale, (0,5), that captures rapid binding of FVIIa to TF and leads to small
amounts of FIIa. The second timescale for the Danforth model, (5,40), then be-
gins formation of Xa:Va and its activation of thrombin. In the Tyurin model, all
of these reactions are included in the first timescale, (0,40), as this model more
heavily relies on activation by FVIIa and less so on TF:VIIa.

The two models both show similar dynamics for amplification, covered in the
third timescale for Danforth, (40,170), and the second for Tyurin, (40,130). Both
models begin formation of the IXa:VIIIa and use this to activate larger amounts
of FX into FXa. The only significant difference between these two is the presence
of FXI in the Tyurin model which is entirely absent from the Danforth model and
therefore not included in this timescale.

The peak of thrombin comes after amplification in the fourth timescale for Dan-
forth, (170,460), and the third timescale for Tyurin, (130,180). For both models
this occurs when both inhibition and activation are significant.

The final stages of the system are inhibition. For the Danforth model, this
occurs on the fifth timescale, (460,1200), in which thrombin decouples from the
majority of the system and is then only inhibited by AT. This decoupling does not
occur until there is below 25nM of thrombin in the system. Contrary to this, in the
Tyurin model, inhibition occurs across the fourth, (180,500), and fifth, (500,1200),
timescales, both of which decouple thrombin starting at around 1000nM of throm-
bin in the system. The fifth timescale covers the slower inhibitions in the system
and the coagulation factors which are activated in significant numbers.

During the inhibition phase, both models still presented significant amounts
of prothrombinase so they could only be reduced to FIIa inhibition by AT if pro-
thrombin had been fully depleted. This suggests that, in order to not fully deplete
prothrombin, the models require a stronger inhibition of prothrombinase.

Almost all reactions, in both the Danforth and Tyurin models, were significant
at least one timescale. Of the handful that were not significant at any timescale,
FX activation by FIXa was insignificant in both models. The remaining insignif-
icant reactions were model specific, with Tyurin’s related to the lack of TF:VIIa
formation and Danforth’s focusing on the strongly bound but reversible reactions
that are not present in the Tyurin model.
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2.8 Conclusions
In this chapter, we conducted many stages of exploratory analysis on eight models
of thrombin generation. We showed that none of these models could accurately
and reliably predict thrombin generation over the whole cohort (Section 2.3). We
were able to show that the models can be separated into two groups, the Quick
group and the Symmetrical group, based on the shape of their thrombin genera-
tion curves and we identified the presence or absence of FXI in the models as the
most common cause for this difference (Section 2.4).

We found high levels of sensitivity in the models (Section 2.5), with the most
sensitive reaction rates and coagulation factors differing between the models. This
led us to investigate the original sources for each of the reaction rates in the mod-
els (Section 2.6), exploring how they were changed from their original values.
We found large variability in the reaction rates between the models for the same
reactions, with few reaction rates in the models determined using multiple exper-
imental sources.

Finally, we conducted a timescale analysis on the Danforth and Tyurin models
(Section 2.7). We found that almost all of the reactions in the model were signif-
icant on at least one timescale. Most conclusions of the timescale analysis were
similar between the two models, with Danforth having shorter early timescales
due to differences in the predictions of the models for TF:VII(a) association. We
had previously identified this difference, where the Tyurin model has much less
TF:VII and TF:VIIa during the early stages, in Section 2.4. Using the work from
Section 2.6, we were able to show that this was caused by the Tyurin model being
the only model to use an experimental source for TF:VII and TF:VIIa association
rather than an approximation using an experimental source for Kd = k−

k+
.

Looking forward to the development of a new model, it seems clear that the
choice of reaction rates for the model will be important. The high variability
between experimental sources for the same reaction rates and low variability in
repeated measurements within the same source suggests that the variability is
likely a result of changes in the experimental conditions between different sources.
This makes it complex to choose reaction rates which match the experimental con-
ditions of our assay. Further, there are still minor differences between the models
in their reaction schemes that need to be resolved.

A qualitative result of partial prothrombin conversion, something that is known
to occur in the assay but is not observed in any of the models (Figure 2.29), should
also likely be a focus of this work. Inhibition of the prothrombinase complex is
likely a requirement for this result, however, as seen in the Tyurin model, this
alone is not sufficient to predict partial prothrombin conversion.

Finally, it would be worth evaluating model performance beyond just measures
of ETP. We have seen differences in the predictions of lagtime, both in the average
case (Section 2.4) and in the lagtime sensitivity under variation in different coag-
ulation factors (Section 2.5). Measuring performance through the Optical Density
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curves would allow us to investigate the accuracy of other summary statistics such
as lagtime.
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Chapter 3

Unified Model

3.1 Introduction
Previously, in Section 2.3, we showed that the current mathematical models of
thrombin generation fail to predict patient data across a large cohort of donors.
The models were found to have many differences in the reaction schemes they use,
with some models missing crucial parts of the cascade. Additionally, there is sig-
nificant variation between the models in both the reaction rates and the sources
they use which vary in pH, temperature, phospholipids levels and even species
(with many measurements using bovine coagulation factors in place of human;
Section 2.6). These differences not only result in issues when the models are com-
pared between one another but also produce inconsistencies within the individual
models themselves with no clear experimental setting that the models are trying
to simulate. This chapter will attempt to resolve these issues to build a more
accurate model of thrombin generation.

As seen in Section 2.5, the current models of thrombin generation are very
sensitive to changes in the reaction rates with changes in even a single reaction
rate, of which the models contain between 50 and 150, being sufficient to signif-
icantly change the predictions of a model, as seen in the Chatterjee model with
its FXI auto-activation reaction rate. In addition to this, the reaction rates are
known to vary across multiple orders of magnitude between different sources [76].
This combination of features poses a problem in the construction of the models: if
even a single reaction rate is significantly different to the experimental conditions,
then this could result in the model having significantly reduced accuracy. In an
attempt to resolve this, the reaction rates will be fitted to better match the data
set and by extension, the experimental conditions.

In an attempt to resolve these three issues (differences in the reaction schemes,
large variation in reaction rates, and differing experimental conditions between
the reaction rates), we introduce a three-step process for building a new model.
As part of this process, we also remove any reactions that are not relevant to the
PRAMIS data set, including contact activation and protein C.

1. Form the model reaction scheme as the union of previous models, including
additional reactions for consistency where applicable.
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2. Build reaction rate prior distributions by collecting a wide number of values
from different sources.

3. Use the reaction rate prior distributions to fit to a large data set in order to
best identify a set of reaction rates that match a single experimental setting.

The ODEs and reaction rates for the models not given in this chapter are pre-
sented in Appendices A and B.

3.1.1 Optical Density Data

Experimental data provided by Glenfield Hospital and the University of Leicester
describes the haemostatic profile of 333 donors (162 of whom suffered a myocardial
infarction up to the age of 50), consisting of measurements of coagulation factor
levels (TF; factors II, V, VII, VIII, IX, X, and XI; and the inhibitors AT and
TFPI) and optical density curves measured during the thrombin generation assay.

The optical density curves are standardised against a fixed pooled plasma sam-
ple to limit inter-assay variation. In order to best match this data, we include the
chromogenic substrate used in the assay into the model (allowing us to capture
any competitive inhibitory effects it may have) and use the concentration of the
active substrate in place of optical density. Additionally, we simulate a pooled
plasma curve using the reference concentrations given in Table 3.1 and use the
final concentration of the active substrate to determine the pooled plasma ETP,
which we then use to normalise all patient-specific, model predicted optical den-
sity curves.

Figure 3.1 gives examples of a thrombin generation curve and an optical den-
sity curve and the relationship between the two and an example of the data that
is available for each of the 333 individuals.

Species Baseline Initial Concentration (M)

TF 1.5×10−11

II 1.4×10−6

V 2×10−8

VII 1×10−8

VIII 7×10−10

IX 9×10−8

X 1.6×10−7

XI 3×10−8

VIIa [VII]/100
AT 3.4×10−6

TFPI 2.5×10−9

Table 3.1: The initial coagulation factor concentrations used for the pooled plasma
simulation.
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Figure 3.1: A: An example thrombin generation curve, an optical density curve
and a demonstration of the relationship between them. B: An example of the data
available for each individual.
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3.2 Methods
In this section, we detail the steps taken in the construction of a new model,
named the Unified Model. We begin with the introduction of the modules and
other tools we make use of to simplify the model construction. Following this,
we demonstrate the method used to combine the reaction schemes of the previous
models into the reaction scheme for the Unified Model. We then detail the meth-
ods used to collect the reaction rates and form the prior distributions. Finally, we
demonstrate how we utilise the fitting methods to produce the final model. An
overview of this method is given in Figure 3.2.

Figure 3.2: A flowchart demonstrating the method used in the Unified Model
construction, separated into the construction of the reaction scheme, the prior
distributions, and the fitting methods.

3.2.1 Modules

To reduce the complexity of the model, the coagulation cascade has been separated
into modules (groupings of reactions) in which each module has a clear, biolog-
ically important goal (the TF:VIIa module has the goal of producing TF:VIIa,
so includes reactions for factor VII activation, binding of factors VII and VIIa to
TF, and inhibition of TF:VIIa; the Xa:Va module includes reactions for FX and
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FV activation, their binding into Xa:Va and inhibition of FXa and Xa:Va; the
FIIa module contains the reactions for FII activation by FXa and Xa:Va and its
inhibition by AT; the FXIa module contains the reactions for FXI activation by
FXIa and FIIa and FXIa inhibition by AT; the IXa:VIIIa module contains the
reactions for activation of FVIII and FIX, their binding to form IXa:VIIIa, inhi-
bition of FIXa and IXa:VIIIa by AT, and degradation of FVIIIa; and the TFPI
module contains the reactions for inhibition of FXa by TFPI and TF:VIIa by
Xa:TPFI). Each module has an associated PDF document, given in Appendix E,
which contains information about the reaction schemes used by each model, the
reaction rates used in the models, and the original values of the reaction rates that
were reported. Finally, they detail the reaction scheme, reaction rates and prior
distributions used in the Unified Model.

3.2.2 Development of the Reaction Scheme

The models make use of different rate laws and therefore represent the enzymatic
reactions in different forms. To better compare the reaction schemes of each of the
models, we describe their enzymatic reactions in a simplified form. For example,
the reactions TF:VIIa+X↔ TF:VIIa:X→ TF:VIIa+Xa are reduced to the form
X TF:VIIa→ Xa. This process is applied to all the models, with the resulting reduced
reaction schemes for each model given in Figure 3.3. There are five inhibitors that
we do not have patient-specific concentrations for (namely α1 − AT , α2 − AP ,
α2−M , C1-inh and PAI-1). These inhibitors have weaker effects than the likes of
AT or TFPI. This leads us to ignore these inhibitors to favour model simplicity,
at least with this initial construction. The Unified Model reaction scheme, given
in Figure 3.4, is chosen by combining the simplified reaction schemes from these
models, along with any other reactions which are necessary to produce a consis-
tent model. Finally, the enzymatic reactions are then expanded into the standard
three reaction mass action law system to produce the final Unified Model reaction
scheme. We use exclusively mass action kinetics, as has been recommended [43],
in order to capture all competitive inhibitory effects. A summary of this method
for building the Unified Model reaction scheme is given in Figure 3.5.

Meizothrombin (mIIa) is the intermediate for prothrombin activation by pro-
thrombinase. Unlike some other intermediates, it has comparable levels of activity
to the fully active form, thrombin [97]. However, it has not been included in the
model due to the limited number of sources that determine the reaction rates in
multiple steps (with an intermediate) compared with assuming it is a single step
reaction.

3.2.3 Choice of Reaction Rates

As explained in Section 2.1, we believe a single set of reaction rates should be
sufficient for a model to predict all individuals in this cohort. This is because the
experimental conditions should be consistent across all samples and there should
not be any differences in the proteins between individuals. This means none of
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Figure 3.3: A comparison of reduced form of the reaction schemes for the eight
models. The reactions are separated to best compare with the modules for the
Unified Model, as seen in Figure 3.4.

the parameters will be fitted patient specifically.

To build the prior distributions, we want to make use of multiple sources for
each reaction rate. To begin, we use the original sources in each of the models,
as found in Section 2.6. Any reaction rates which have two or fewer sources are
then investigated and new sources are added where they can be found. Details
on each source are then collected such as temperature; pH; where the coagulation
factors were sourced from; whether non-human factors are used; the concentration
and type of phospholipids that were used, if applicable; and anything else notable
about the experimental conditions used for the reaction rate measurements. There
is insufficient data to identify the shape of these distributions, however we do know
that they are all bounded from below by zero. For this reason, log-normal distri-
butions are fitted to the reaction rate values and the geometric mean (median of
the log-normal distribution) is used as the point estimate for the reaction rates.
Any sources which are considered too different from the experimental setting of
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Figure 3.4: The simplified reaction scheme for the Unified Model, separated into
the individual modules.

the thrombin generation assay, or appear unreliable, are ignored. These details
are recorded in the module documents in Appendix E.

The reaction rates are described in a standard from, here named the prior form.
This uses Km and kcat to describe the enzymatic reactions; Kd and k+ to describe
the association and dissociation reactions; and k+ for the association reactions.
This allows us to implement the prior distributions using the form most commonly
used in the original sources that identify them.

To simulate the model, the set of reaction rates is converted from prior form to
mass action form. This form of the reaction rates uses k+, k−, and kcat to describe
the enzymatic reactions; k+ and k− to describe the association and dissociation
reactions; and k+ for the association reactions. To convert the prior form for
enzymatic reactions (Km and kcat) into the mass action form (k+, k−, and kcat),
k+ is assumed to be diffusion limited at a rate of 1 × 108M−1s−1 [69]. Equation
3.1 presents the formulas for the disassociation constant and Michaelis Menten
constant which we can rearrange into the form given by Equation 3.2 to derive
equations for k− in both of these contexts.
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Figure 3.5: A summary of the method used to build the Unified Model reaction
scheme.
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Kd =
k−
k+

Km =
k− + kcat

k+

(3.1)

k− = Kd × k+

k− = Km × k+ − kcat (3.2)

Sometimes a given pair of values for Km and kcat cannot be used with the on
rate of k+ = 1× 108M−1s−1 as it will result in a negative value of k−. To resolve
this, the value of k+ will be iteratively increased by a factor of 10 until a positive
value of k− is found. This is ensures all values in the prior can be simulated.

This conversion from prior to mass action form for the reaction rates alters the
shape of some of the distributions. In prior form, all distributions are log-normal.
In mass action form, any binding/unbinding reactions (those using Kd and k+ in
the prior form) will find that k− is still a log-normal distribution since the product
of two log-normal distributions is also log-normal. For the enzymatic activations,
we see that k− = Km × k+ − kcat. The difference between two log-normal distri-
butions does not appear to produce any typical distribution, and considering that
k+ here is a discontinuous function of Km and kcat, it seems unlikely that anything
useful can be derived about the shape of the distribution for k− in enzymatic ac-
tivations.

If a reaction rate has no experimental sources, we use an assumed rate and set
the log-normal standard deviation to 2.5. If a reaction rate has a single experi-
mental source, we use this value as the median of the log-normal distribution and
set the log-normal standard deviation to 2.5. A log-normal standard deviation of
2.5 was chosen since it is larger than the largest standard deviation of 1.5. This
puts 95% of the distribution within a factor of 105 up or down, avoiding a reliance
on values in which we are least certain.

An example of a table in the module documents that is used to form the prior
distributions is given in Table 3.2. A summary of the method to build the prior
distributions is given in Figure 3.6.

3.2.4 Parameter Fitting Overview

Our previous work in Section 2.5 shows that the models are highly sensitive, with
even small discrepancies in the reaction rates resulting in significantly different
model outputs. To mitigate the effect this has on the final model, the reaction
rates are fitted to the data set. This is done using Gradient Descent and Ap-
proximate Bayesian Computation - Sequential Monte Carlo. These two fitting
methods are utilised to compare between the quality of fit reached when a prior

144



TF + VII ↔ TF:VII
Citation Rates Notes

[98] Kd = 13.2nM Temperature: 37°C. Bovine FVII. Puri-
fied bovine brain TF. Egg PC lipid from
Supleco, Bellefonte, PA. pH: 7.5. Mea-
sures with different binding schemes for
varying PS% (not taken into account
here for consistency with other bind-
ing/unbinding reactions).

[99] Kd = 1nM ,
k+ = 5× 104M−1s−1,
k− = 6× 10−5s−1

Room temp. Human FVII. Human TF
from American Diagnostic Inc, Green-
wich, CT, USA. pH: 7.4. Phospholipids
not used as the surface. Separate as-
sociation and disassociation rates are
given. Also gives rates for AT.

[90] Kd = 2nM ,
k+ = 3.14× 105M−1s−1,
k− = 6.29× 10−4s−1

Soluble truncated TF1−219 gift from
Dr. D. L. Eaton, Greentech Inc., South
San Francisco, CA. Separate association
and disassociation rates are given. Also
gives activation of FX. pH: 7.3.

Chosen values: Kd = 3nM(10 ∧ N(−8.55, 0.582), 5% = 3.28 × 10−10, 95% =
2.66 × 10−8), k+ = 1.25 × 105M−1s−1(10 ∧ N(5.10, 0.562), 5% = 1.51 ×
104, 95% = 1.05× 106) therefore k− = 3.75× 10−4s−1

Table 3.2: An example reaction rate table for the reaction TF + VII ↔ TF:VII.
10 ∧ N(µ, σ2) denotes a log-normal distribution with parameters µ and σ. The
remaining reaction rate tables can be found in Appendix E.
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Figure 3.6: A summary of the method used to build the Unified Model reaction
rate prior distributions.

is stipulated, encouraging reaction rates to remain in a biologically relevant range
(ABC-SMC), and a fitting method where any positive values for the reaction rates
can be used (Gradient Descent). The use of two methods allows us to infer ad-
ditional information based on differences in the two sets of fitted reaction rates.
For example, if the Gradient Descent algorithm finds much more improvement
than the ABC-SMC by using a reaction rate for thrombin inhibition by AT much
larger than would be biologically plausible (which can be determined from the
prior distributions), then it can be inferred that the reaction scheme may need
more inhibitors (such as α2 −M) to be added whereas if they both find similar
sets of reaction rates then greater trust can be placed in the fitted values.

3.2.5 Parameter Identifiability

To avoid reaction rates which have insignificant effects on model output undergo-
ing an effectively random selection during the fitting process, any reaction rates
with an insignificant effect on the OD curves have not been fitted and are instead
maintained at their default rates (the median of the priors) throughout the fitting
process. To identify which reaction rates do not have a significant effect on optical
density, the model is simulated using the reaction rates at the 5th and 95th per-
centiles of the prior distribution for that reaction rate, keeping all other reaction
rates at their default rates. If there is no noticeable difference between the model
predicted OD curves, then we do not fit that reaction rate. This is then repeated
for all reaction rates.
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3.2.6 Data Set and Cross Validation

Although the data contain measurements at forty time points, each optical den-
sity curve can be very efficiently summarised by a small number of parameters
[79]. Due to the large number of reaction rates we will be fitting, and the fact
that each OD curve can be summarised in only a few parameters, it will be useful
to perform cross validation to ensure that any improvement in model accuracy
is not a result of over-fitting. As such, we use 5-fold stratified cross validation,
maintaining consistent ratios of males to females and cases to controls across all
folds. This is implemented using Matlab’s cvpartition function.

In 5-fold cross validation, the data is cut into five folds. The model is trained
on four of these folds and then tested against the fifth fold. This is repeated to
use each fold as a test set once. This allows exploration into model accuracy on
data that was not used for training, allowing diagnosis of over-fitting.

3.2.7 Evaluating Model Fit

We define four metrics to evaluate model accuracy, the first of which is cost. This
metric, as defined by Equation (3.3), finds the sum of squared errors between the
experimentally determined OD curve for a given individual and the model pre-
dicted OD curve. This patient-specific squared error measure is then averaged
across all individuals and square rooted.

cost =

√∑n
i=1[
∑40

j=1((modelODi,j − dataODi,j)2)]

n
(3.3)

The model performance for ETP predictions are evaluated using three meth-
ods. To match the ETP correlation results seen previously, we use the R2 of the
line of best fit and the RMSE of the line of proportionality (renamed to RMSEfit).
In addition, since ETP can now be measured in units of % of pooled plasma, it
is also possible to investigate the RMSE for ETP predictions using a direct 1:1
match (intercept fixed at 0 and gradient fixed at 1), labelled as RMSE1:1.

3.2.8 Approximate Bayesian Computation

Using the log-normal distribution priors for each reaction rate, the model is fit-
ted using ABC-SMC with Early Rejection [100] with a minor alteration∗. The
perturbation kernel uses a multivariate log-normal distribution with a covariance
matrix equal to one-fourth of the empirical covariance matrix measured in the log
of the previous population of particles. To get a pointwise estimate of the reaction
rates the most repeated particle in the final population is used. Pseudocode of the
ABC-SMC algorithm we use is given in Algorithm 4.
The ABC-SMC method is run with 2000 particles per population, 200 of which

∗In the original algorithm, the first set of particles, those that are selected from the prior,
are sampled freely which can result in a large initial tolerance and increase in computation time
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are unique, using an initial tolerance of 250. The ABC-SMC algorithm is run for
seven days across twelve cores, after which the tolerances for each iteration are
checked to ensure convergence.

3.2.9 Gradient Descent Fitting

MATLAB’s fmincon (using a gradient descent method with the interior point algo-
rithm) is used to fit the reaction rates, utilising a lower bound of zero to ensure all
reaction rates remain positive. An increased finite difference step size of 1×10−3 is
specified to ensure a significant change is made in the reaction rates for the errors
in the ODE solver to be insignificant in the gradient calculation. Additionally, the
step size calculation is adjusted to use normalised reaction rates (all initially set
to one) to ensure changes in small reaction rates, those < 10−6, are not considered
too small and result in an early termination of the algorithm.

3.3 Results

3.3.1 Previous Models

Since we make use of a different data set in this chapter (only 333 individuals,
all of whom have 5pM of added TF vs. the full 348 individuals, both with and
without added TF), one which the previous models have not been tested against,
we present their performance here. The performance of the previous models is
presented in Table 3.3. To calculate the cost metric, the OD curves are calculated
as given previously in Equation (2.3) (Section 2.3) and again below for clarity. For
comparison with the cost metric, assuming a mean OD curve for all individuals
results in a cost of 185. The RMSE1:1 metric shows the Panteleev model as the
best at predicting ETP, with the Hockin model performing significantly worse.
The cost metric shows the Brummel model as performing best, however, all mod-
els perform worse than a mean OD curve.

OD(t = k) =

∫ k

t=0

[FIIa](t)dt

3.3.2 Unified Model Fitting

There were 44 significant reaction rates (determined using the method in Subsec-
tion 3.2.5) to be fitted. The results of the fitting are given in Table 3.4. After
fitting, there is a decrease in cost from 291 to 175. The cross validation also
demonstrates that the fitting is robust against over-fitting with similar training
costs and test costs given for both methods.

of the algorithm. Initially restricting the first tolerance to select N particles that meet this
tolerance helped improve computation time and improve consistency between runs.
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Algorithm 4: ABC-SMC with Early Rejection
Input: Number of particles N , desired number of unique particles U ,

prior π, model simulator l, initial tolerance εinit and final
tolerance εend

Output: Particles, costs and Weights {(θ(i)
t , x

(i)
t , w

(i)
t )}Ni=1 for each

population t
for i=1:N do

while True do
θ∗ ∼ π(·);
x∗ ∼ l(·|θ∗);
if d(y, x∗) < εinit then

θ
(i)
0 = θ∗;
x

(i)
0 = x∗;
w

(i)
0 = 1

N
;

break;
end

end
end
ε0 = maxi d(y, x

(i)
0 );

t = 0;
while εt > εend do

v ∼ U [0, 1]N , to be used in resampling
Use bisection to choose εt+1 s.t. there are U unique particles after
reweighting and resampling (using fixed random numbers v)
for i=1:N do

w̃
(i)
t+1 = w

(i)
t I(d(y, x

(i)
0 ) < εt+1);

end
w

(·)
t+1 = w̃

(·)
t+1/

∑N
i=1(w̃

(i)
t+1);

Resample using random draws v
for i=1:N do

θ
(i)
t+1 = θ

(i)
t , x

(i)
t+1 = x

(i)
t ;

θ∗ ∼ q(·|θ(i)
0 );

u ∼ U [0, 1];

if u < π(θ∗)q(θ
(i)
t |θ∗)

π(θ
(i)
t )q(θ∗|θ(i)t )

then

x∗ ∼ l(·|θ∗);
if d(y, x∗) < εt+1 then

θ
(i)
t+1 = θ∗, x

(i)
t+1 = x∗;

end
end

end
t = t+ 1;

end
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Model Cost R2 RMSEfit RMSE1:1

Hockin 286.2 0.23 32.4 44.5
Danforth 250.3 0.22 27.8 32.8
Chatterjee 242.0 0.21 28.1 33.0
Brummel 238.2 0.22 27.8 32.7
Bungay 393.8 0.20 27.9 31.8
Panteleev 296.0 0.22 27.4 29.6
Tyurin 323.1 0.22 27.4 30.2
Zhu 384.1 0.22 27.4 30.0

Table 3.3: The performance of the previous models against the OD data set for
the metrics we use to evaluate the Unified Model.

Fitting Method Training Cost Test Cost

No fitting N/A 291.3

Gradient Descent Cross Validation 173.2±5.4 174.0±25.9
Full 175.2 N/A

ABC-SMC Cross Validation 172.9±5.9 173.4±24.7
Full 174.7 N/A

Table 3.4: The results from the Unified Model fitting process. Cross validation
costs are given as mean±1

2
×range from the five folds.

Thrombin Generation Curves and Optical Density Curves

The thrombin generation curves for each of the reaction rate sets (default, gradi-
ent descent fitted, and ABC-SMC fitted) are given in Figure 3.7, using the initial
conditions given in Table 3.1. Optical density curves from the chromogenic sub-
strate are given for six randomly selected individuals in Figure 3.8.

After fitting, the thrombin generations curves shift to have a shorter lagtime
and a longer tail. This allows the model to better predict the shape of an av-
erage OD curve. As seen from the OD curves in Figure 3.8, most of the cost
improvement comes from correcting this shape, with the model predicting close to
an average curve for all individuals. The minor deviations from an average curve
then allow the cost to reduce slightly further than the mean OD curve cost (175
vs. 185).

ETP Correlation

The ETP correlation scatter graphs (as seen with the previous models), for the
default and the fitted reaction rates, and the ETP correlation metrics are given
in Figure 3.9 and Table 3.5, respectively. The ETP correlation appears similar to
the previous models, showing minor improvement in R2 and RMSEfit. The fitting
provides small improvements in all metrics.
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Figure 3.7: The thrombin generation curves for each of the three reaction rate
sets, default, gradient descent fitted, and ABC-SMC fitted.

Figure 3.8: A comparison of optical density curves of six randomly selected indi-
viduals. The experimentally determined OD curves are given in black. The model
predicted OD curves are given in red, blue, and green for the default, gradient
descent fitted, and ABC-SMC fitted reaction rates, respectively.
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The OD curves, both experimental and model predicted, for the individuals
with the best and worst ETP predictions are given in Figure 3.10. Whereas previ-
ously we had to scale the OD curves by the gradient of the line of proportionality
to convert the units of nM ·min to % of pooled plasma, we now use the model to
simulate a pooled plasma sample for the scaling.

Compared with the previous models (Figures 2.20 and 2.21), the Unified Model
is able to better match lagtime but the shape, even for the curve with the best
ETP prediction, still does not match the experimental data. Interestingly, the
same individual that many of the previous models found most difficult to predict
was also the most difficult for the Unified Model. We had originally put this re-
sult, at least partially, down to the models predicting all prothrombin is always
converted, reducing the amount of variability allowed in model predicted ETP.

Fitting Method R2 RMSEfit RMSE1:1

Unified Model
No fitting 0.22 27.17 30.3

Gradient Descent 0.23 26.96 29.9
ABC-SMC 0.23 26.93 30.1

Table 3.5: The accuracy of the Unified Model predicted ETP, as assessed using
the metrics of R2, RMSEfit and RMSE1:1.

Figure 3.9: The ETP correlation scatter graph for the default, gradient descent
fitted, and ABC-SMC fitted reaction rates.
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Figure 3.10: The Unified Model predicted OD curve and the experimental OD
curve for the individuals with the best and worst predicted ETP, separated by the
Gradient Descent (top) and ABC-SMC (bottom) fitted rates.

Parameter Changes

In Tables 3.6 and 3.7, the default reaction rates used by the model are given,
followed by the changes from the gradient descent and ABC-SMC fitting.

The Gradient Descent algorithm changes many reaction rates to be an extreme
value (outside of the central 90% of the prior distributions) with multiple kcat rates
reaching magnitudes of 1000s−1. The ABC-SMC is more successful at maintain-
ing a realistic set of reaction rates with only a handful of reaction rates falling
outside of the central 90% of the prior distributions. Most of these rate changes
most strongly affect the lagtime and could be the reason that the gradient descent
achieves a shorter lagtime than the ABC-SMC fitting.
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Reaction Default Reaction Rates Gradient Descent ABC-SMC
Kd (M) k+ (M−1s−1) Kd (M) k+ (M−1s−1) Kd (M) k+ (M−1s−1)

TF + VII ↔ TF:VII 2.95× 10−9 1.26× 105 Default Default Default Default
TF + VIIa ↔ TF:VIIa 3.16× 10−9 1.29× 105 Default 1.49× 107† Default 1.33× 105

TF:VIIa + AT → TF:VIIa:AT - 9.55× 102 - 3.78× 105† - 2.71× 102

Xa + Va ↔ Xa:Va 1.78× 10−10 1.58× 109 2.26× 10−13† Default 1.02× 10−9 Default
Xa + AT → Xa:AT - 1.82× 103 - 3.26× 105† - 5.06× 103

Xa:Va + AT → Xa:AT + Va - 1.07× 103 - Default - Default
IIa + AT → IIa:AT - 6.17× 103 - 3.04× 103† - 4.28× 103†

XIa + AT → XIa:AT - 3.98× 102 - Default - Default
IXa + VIIIa ↔ IXa:VIIIa 1.62× 10−9 1.00× 107 Default 1.71× 109 Default 8.45× 106

IXa + AT → IXa:AT - 4.90× 102 - 1.11× 105 - 9.48× 105

IXa:VIIIa + AT → IXa:AT + VIIIa - 4.90× 102 - 1.24× 105 - 3.93
Xa + TFPI ↔ Xa:TFPI 9.33× 10−11 3.80× 106 Default 5.34× 108† Default 1.36× 106

TF:VIIa + Xa:TFPI ↔ TF:VIIa:Xa:TFPI 1.51× 10−10 8.91× 106 Default Default Default Default

Table 3.6: The reaction rates for the Unified Model and the changed reaction rates for the non-enzymatic reactions made by the fitting
processes. Default is used to denote a rate that is fixed at the default rates for the fitting.

Reaction Default Reaction Rates Gradient Descent ABC-SMC
Km (M) kcat (s−1) Km (M) kcat (s−1) Km (M) kcat (s−1)

VII Xa→ VIIa 1.20× 10−6 15.1 3.14× 10−4 4.10× 103 2.69× 108 1.82× 10−2

TF:VII Xa→ TF:VIIa 1.05× 10−7 3.16 2.21× 10−6 2.21× 103† 1.16× 10−4† 54.9

VII IIa→ VIIa 2.69× 10−6 6.17× 10−2 9.62× 10−4 8.08 6.11× 10−8 0.165

†These fitted reaction rates fall outside the central 90% of the prior distributions.
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TF:VII IIa→ TF:VIIa 2.69× 10−6 6.17× 10−2 1.40× 10−3 10.4 4.60× 10−9 0.267

VII IXa→ VIIa 1.70× 10−6 3.24× 10−1 4.68× 10−4 79.3 1.83× 10−5 2.04× 105†

TF:VII IXa→ TF:VIIa 1.70× 10−6 3.24× 10−1 4.35× 10−4 88.6 3.46× 10−2† 4.86× 10−3

VII TF :V IIa→ VIIa 3.24× 10−6 1.41 7.93× 10−4 Default 1.26× 10−8 Default
X TF :V IIa→ Xa 3.16× 10−7 6.03 8.89× 10−7 5.54× 102† 4.84× 10−8 6.81

X V IIa→ Xa 1.10× 10−6 3.24× 10−4 2.46× 10−4† Default 2.36× 10−6 Default
X IXa:V IIIa→ Xa 8.51× 10−8 3.39 Default 3.00× 102† Default 4.45

X IXa→ Xa 7.94× 10−8 2.82× 10−4 1.04× 10−5† Default 3.57× 10−7 Default
V IIa→ Va 7.24× 10−8 2.95× 10−1 1.18× 10−5 Default 1.34× 10−6 Default
V Xa→ Va 1.05× 10−8 4.27× 10−2 Default 14.2 Default 0.170

II Xa→ IIa 1.32× 10−6 9.33× 10−3 5.45× 10−4† Default 2.50× 10−6 Default
II Xa:V a→ IIa 6.92× 10−7 35.5 4.19× 10−4† 4.46× 103† 1.70× 10−6 25.5

XI IIa→ XIa 5.01× 10−8 1.29× 10−4 2.21× 10−5 1.11× 10−4 7.45× 10−11 1.88× 10−3

XI XIa→ XIa 5.01× 10−8 1.29× 10−4 1.48× 10−5 3.34× 10−2 1.08× 10−8 0.185

IX TF :V IIa→ IXa 1.62× 10−7 5.37× 10−1 Default Default Default Default
IX V IIa→ IXa 8.91× 10−9 3.63× 10−5 1.52× 10−6 5.55× 10−5 9.71× 10−11 7.75× 10−3

IX XIa→ IXa 4.17× 10−7 7.41× 10−1 9.86× 10−5† 60.0† 7.10× 10−7 1.99

VIII IIa→ VIIIa 2.00× 10−7 1.00 7.65× 10−6 3.02× 102† 1.86× 10−9 0.532

VIII Xa→ VIIIa 2.00× 10−7 2.19× 10−1 5.39× 10−5 57.9 1.09× 10−8 4.86

Substrate IIa→ Activated Substrate 1.95× 10−3 1.91 Default Default Default Default

Table 3.7: The reaction rates for the Unified Model and the changed reaction rates of the enzymatic activations made by the fitting
processes. Default is used to denote a rate that is fixed at the default rates for the fitting.
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In order to test various different hypotheses that could limit the predictive ca-
pabilities of the model, for the remainder of this chapter we will only make use of
gradient descent (the quicker of the two fitting methods) and we will not perform
cross validation. If we are able to improve model accuracy, then we can return to
using both of these methods.

Perturbed Fitting

Noisy data can sometimes present problems in fitting. Noise can introduce bias
in the optimal parameter values. As a step to validate the fitting process, the
model has been fitted to its own output, using the default reaction rates, with
perturbations added to replicate experimental noise. The model is simulated for
the coagulation factor data for each individual and the OD curves are recorded.
These OD curves are then perturbed by a normal distribution (mean zero and
standard deviation one, in units of % of pooled plasma) at each point and any
negative values were set to 0. The model is then fitted to this perturbed model
output using gradient descent to assess the change in the optimal parameter values.

The cost sees only a minor decrease after fitting from 5.5908 for the default
rates to 5.5882 for the gradient descent fitted rates. The largest relative changes in
the reaction rates after fitting are a reduction by 0.5% and an increase by 0.25%.
This suggests that the fitting process should be resilient to data noise.

ETP Fitting

The Unified Model fitting showed much greater improvement in the cost metric
than in the ETP correlation metrics. To verify that this is not due to the current
cost metric weighting accurate lagtimes too heavily over the ETP predictions, we
have performed the gradient descent fitting to optimise the RMSE1:1 metric.

The thrombin generation curve predicted for the reference factor concentrations
using the fitted rates, the ETP correlation scatter graph, and model performance
metrics are given in Figure 3.11, Figure 3.12, and Table 3.8, respectively.

The ETP fitting presents a very rapid thrombin generation curve (almost all
fitted reaction rates are scaled to ×1000 the original values). The RMSEfit comes
out higher than for the default reaction rates. There is only minor improvements
in RMSE1:1 and it is clear that the fitting is not working as intended and accurately
predicting ETP from the coagulation factors, but is instead trying to approximate
a linear model from FII and AT concentration by removing the effects of the other
factors. This is further demonstrated in Figure 3.13 with the OD curves of the
individuals with the best and worst ETP predictions.

156



Fitting Method R2 RMSEfit RMSE1:1

Unified Model No fitting 0.22 27.17 30.3
Gradient Descent (ETP) 0.22 27.38 29.1

Table 3.8: The ETP prediction results from the ETP fitted Unified Model.

Figure 3.11: The thrombin generation curve for the ETP fitted reaction rates.

Figure 3.12: The ETP correlation scatter graph for the reaction rates found
through fitting to ETP only.

3.3.3 Chatterjee Model Fitting

To help understand what components could be missing from the model, a current
model which gives good coverage over the reactions in the coagulation cascade has
been fitted. The Chatterjee model was chosen as it contains the largest reaction
scheme and its main problem is in the reaction rate for FXI auto-activation, which
can be easily accounted for in fitting.

Since priors are not available for the reaction rates in the Chatterjee model,
parameter identifiability is performed by varying each mass action reaction rate
between 0.1 and 10 times its value and assessing for changes in the resulting throm-
bin generation curves. This leads us to find 33 significant reaction rates to fit. The
cost is evaluated as described previously in Equation (2.3).
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Figure 3.13: The Unified Model predicted OD curve and the experimental OD
curve for the individuals with the best and worst predicted ETP for the gradient
descent fitted rates, fitted to ETP.

Again, the fitting reduced the model predicted lagtime, as shown in Figure
3.14. The cost was lowered from 190.8 to 167.7 after fitting, achieving a slightly
lower cost than the Unified Model. The ETP correlation, presented in Table 3.9
and Figure 3.15, appears similar to the Unified Model. After fitting, the RMSE is
lower than that achieved by the Unified Model but, again, there is no substantial
improvement.

The Chatterjee model shows improvement in all measures after fitting but is
still an unreliable predictor of ETP.

Figure 3.16 shows the OD curves for the individuals with the best and worst
ETP predictions. Compared with the previous results for the Chatterjee model
(Figures 2.20 and 2.21), the Chatterjee model’s worst donor is the same individual
but the predictions have generally improved, both in shape and lagtime.

This suggests that there may be minor improvements to be found by including
some of the features of the Chatterjee model, but even inclusion of these will not
result in a significant improvement in model accuracy.

Fitting Method R2 RMSEfit RMSE1:1 Cost

Chatterjee Model No fitting 0.22 27.48 31.6 190.8
Gradient Descent 0.26 26.49 28.2 167.7

Table 3.9: The predictive accuracy of the Chatterjee model.

3.3.4 Expanded Unified Model

In the process of building the Unified Model, some inhibitors and other reactions
which were thought to be smaller in effect size were ignored in order to keep the
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Figure 3.14: The thrombin generation curves of the Chatterjee model for the
default and gradient descent fitted reaction rates.

Figure 3.15: The ETP correlation scatter graph for the Chatterjee model with the
default and gradient descent fitted reaction rates.

model simple. The poor fitting of the Unified Model, and its robustness to over-
fitting (shown in Section 3.3.2), suggests that it may be relevant to include these
additional components. In this section, we will construct the Expanded Unified
Model which will include these reactions. This model also incorporates a more
detailed reaction scheme for TFPI inhibition which includes protein S as a cofac-
tor and the slow-tight binding interaction between TFPI and Xa [101, 102]. A list
of the additional reactions that were included into the Unified Model to form the
Expanded Unified Model, alongside their corresponding rates, is given in Table
3.11.

The same 0.1× and 10× parameter identifiability, as was used in the Chatter-
jee fitting, is used for the Expanded Unified model (as the new reactions do not
feature full prior distributions) on the prior form of the rates. The new inhibitors
added are included at fixed concentrations given in Table 3.10. Protein S is in-
cluded using the patient data, scaled against a reference concentration of 350nM
[101].
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Figure 3.16: The Chatterjee Model predicted OD curve and the experimental OD
curve for the individuals with the best and worst predicted ETP for the gradient
descent fitted rates.

Species Reference Initial Concentration (M)

α1 − AT 4× 10−5

α2 − AP 9.5× 10−7

α2 −M 3.25× 10−6

C1-inh 2.1× 10−6

PAI1 4.6× 10−10

Table 3.10: The coagulation factor concentrations for the new inhibitors used for
all individuals. The reference concentrations are taken from the previous models
[66, 68, 39, 63].
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Reactions Rates

TF:VIIa + Xa ↔ TF:VIIa:Xa Kd = 8.64× 10−7M,
k+ = 2.2× 107M−1s−1

IIa + a1AT → IIa:a1AT k = 78.3M−1s−1

Xa + a1AT → Xa:a1AT k = 262M−1s−1

Xa:Va + a1AT → Xa:a1AT + Va k = 262M−1s−1

XIa + a1AT → XIa:a1AT k = 66.7M−1s−1

XIa + a2AP → XIa:a2AP k = 500M−1s−1

IIa + a2M → IIa:a2M k = 488M−1s−1

XIa + C1inh → XIa:C1inh k = 16.7M−1s−1

XIa + PAI1 → XIa:PAI1 k = 2.1× 105M−1s−1

VIIIa ↔ VIIIa1L + VIIIa2 Kd = 2.6× 10−7M,
k+ = 5.85× 10−3s−1

IXa:VIIIa → IXa + VIIIa1L + VIIIa2 k = 1.4× 10−3s−1

IXa + VIII ↔ IXa:VIII → IXa + VIIIa Km = 2× 10−7M,
kcat = 0.22s−1

TFPI + Xa ↔ Xa:TFPI Kd = 4.4× 10−9M,
k+ = 3.8× 106M−1s−1

Xa:TFPI ↔ Xa=TFPI k+ = 4.15× 10−2s−1,
k− = 5× 10−4s−1

Xa:TFPI + TF:VIIa ↔ TF:VIIa:Xa:TFPI Kd = 1.51× 10−10M,
k+ = 8.91× 106M−1s−1

Xa=TFPI + TF:VIIa ↔ TF:VIIa:Xa=TFPI Same rates as for
Xa:TFPI

TF:VIIa:Xa + TFPI → TF:VIIa:Xa:TFPI k = 8.91× 106M−1s−1

TF:VIIa:Xa:TFPI ↔ TF:VIIa:Xa=TFPI Same as Xa:TFPI to
Xa=TFPI

PS + TFPI ↔ TFPI:PS Kd = 5× 10−9M,
k+ = 1× 108M−1s−1‡

TFPI:PS + Xa ↔ Xa:TFPI:PS Kd = 5× 10−10M,
k+ = 3.8× 106M−1s−1

Xa:TFPI:PS ↔ Xa=TFPI:PS k+ = 1.2× 10−2s−1,
k− = 4.67× 10−4s−1

Xa:TFPI:PS + TF:VIIa ↔ TF:VIIa:Xa:TFPI:PS Same as without PS
Xa=TFPI:PS + TF:VIIa ↔ TF:VIIa:Xa=TFPI:PS Same as without PS
TF:VIIa:Xa + TFPI:PS → TF:VIIa:Xa:TFPI:PS Same as without PS
TF:VIIa:Xa:TFPI:PS ↔ TF:VIIa:Xa=TFPI:PS Same as Xa:TFPI:PS to

Xa=TFPI:PS
Xa:TFPI + PS ↔ Xa:TFPI:PS Same as for PS and

TFPI alone
Xa=TFPI + PS ↔ Xa=TFPI:PS Same as for PS and

TFPI alone
TF:VIIa:Xa:TFPI + PS ↔ TF:VIIa:Xa:TFPI:PS Same as for PS and

TFPI alone
TF:VIIa:Xa=TFPI + PS ↔ TF:VIIa:Xa=TFPI:PS Same as for PS and

TFPI alone

161



Table 3.11: The additional reactions and reactions rates that have been added
into the Unified Model to form the Expanded Unified Model. “=” is used to
denote a strong binding between the TFPI and FXa compared with the weaker
“:” binding. Reaction rates are defined from the previous models for previously
defined reactions and from the literature for reactions that have not previously
been included in the models.

The thrombin generation curves, ETP correlation scatter graphs, and ETP cor-
relation metrics are given in Figure 3.17, Figure 3.18, and Table 3.12, respectively.
The thrombin generation curves continue to present a delayed lagtime which is
then fixed through fitting. The cost is improved from 301.6 to 168.8. There is only
a minor improvement in RMSEfit after fitting compared with the original Unified
Model (26.96 vs. 26.92). Equivalent results are seen for the R2 metric (0.22 vs.
0.24), with the largest improvement coming from RMSE1:1 (29.6 vs. 29.0).

Fitting Method R2 RMSEfit RMSE1:1 Cost

Expanded Unified Model No fitting 0.22 27.16 29.6 301.6
Gradient Descent 0.24 26.92 29.0 168.8

Table 3.12: The predictive accuracy of the Expanded Unified Model.

Figure 3.17: The thrombin generation curves for the two reaction rate sets for the
Expanded Unified Model.

Figure 3.19 shows the OD curves for the individuals with the best and worst
ETP predictions. The lagtime is accurately predicted for the best individual but
the shape does not match, with a poorer match than the original Unified Model
(Figure 3.10).

‡These rates are taken for protein C and protein S binding. Multiple sources have attempted
to, but have been unable to, find rates for binding between TFPI and PS [103, 104, 105].
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Figure 3.18: The ETP correlation scatter graph for the Expanded Unified Model
with the default and gradient descent fitted reaction rates.

Figure 3.19: The Expanded Unified Model predicted OD curve and the experi-
mental OD curve for the individuals with the best and worst predicted ETP for
the gradient descent fitted rates.

3.3.5 Partial Prothrombin Conversion

The current models (including both previous versions of the Unified Model) pre-
dict that all prothrombin is converted into thrombin (see Section 2.4, Figure 2.29).
This issue had been noted by us in Section 2.4 and by others [76] (data show only
around 90% of prothrombin is converted into thrombin [89]) but it is not clear
whether this is an issue with inaccurate reaction rates or missing elements of the
reaction scheme. It is possible for the Expanded Unified Model to predict partial
prothrombin conversion through amplifying its AT inhibition rates; however, this
is not achieved through the fitting process.

Protein C

A potential cause of this effect could be protein C as this inhibitor needs to be
first activated by thrombin (specifically thrombin which is bound to thrombomod-
ulin). This means protein C can be a strong inhibitor without affecting lagtime
as it is only significantly activated after the lagtime during the amplification phase.
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Protein C was originally ignored from the Unified Model and Expanded Uni-
fied Model because the assay lacks the surface-bound thrombomodulin, which is
needed, as a cofactor, to activate significant amounts of protein C. However, there
is a weaker, soluble form of thrombomodulin found in the plasma which could
be the cause of partial prothrombin conversion in the assay. A simple protein C
reaction scheme using soluble thrombomodulin (sTM), given in Table 3.13, was
added to the Expanded Unified Model as well as 0.228nM of sTM for all individ-
uals (16.9ng/ml [106] at a molecular weight of 74kDa [107]). Data for the sTM
reaction rates is used from multiple sources [108, 109, 110].

Reaction Rates

IIa + sTM → IIa:sTM Kd = 1× 10−8M,k+ = 1× 108M−1s−1

PC
IIa:sTM→ APC Km = 9.8× 10−7M,kcat = 14.5s−1

V a
APC→ V ai Km = 2× 10−8M,kcat = 0.4s−1

Xa : V a
APC→ Xa+ V ai Km = 2× 10−8M,kcat = 0.4s−1

V IIIa
APC→ V IIIai Km = 2× 10−8M,kcat = 0.4s−1

IXa : V IIIa
APC→ IXa+ V IIIai Km = 2× 10−8M,kcat = 0.4s−1

Table 3.13: The additional reactions for the Expanded Unified Model to include
protein C inhibition.

As shown in Figure 3.23, inclusion of protein C was successful in stopping
all prothrombin being converted, however this made the model dramatically less
accurate (Figure 3.21) and produced ‘normal’ thrombin generation curves similar
to the Expanded Unified Model (Figure 3.20). Prior to fitting, the model out-
put was very strongly dependent on the individual’s concentration of protein C
(R2 = 0.113), much more so than the data predicted (R2 = 0.0022) and protein C
would inhibit the system well before 90% of the prothrombin had been converted.
After fitting, the model would return to activating all prothrombin so long as
there was at least ∼10pM of TF (R2 = 0.064 after fitting) and perform slightly
worse than the original Expanded Unified Model. The lack of correlation between
protein C and ETP in the data make it clear protein C is an unlikely explanation
for the system to stop before all prothrombin is converted.

Figure 3.22 shows the OD curves for the individuals with the best and worst
ETP predictions. For the best individual, the model predicted lagtime is signifi-
cantly shorter than the data with the shape of the OD curve being much smoother
in the model.

3.3.6 Fibrinogen and Fibrin

It is typical for the thrombin generation assay to be in defibrinated plasma (all
fibrinogen is removed) as the fibrin polymer mesh network can interfere with the
OD measurements [13]. However, the assay still included fibrinogen and instead
blocked the mesh network formation at the point of fibrin which is kept in a
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Figure 3.20: The thrombin generation curves for each of the reaction rate sets for
the Expanded Unified Model with Protein C.

Figure 3.21: The ETP correlation scatter graph for the Expanded Unified Model
with Protein C for the default and gradient descent fitted reaction rate sets.

monomer state and stopped from polymerising. This means fibrinogen still has
a competitive inhibitory effect on FIIa which may be relevant to include in the
model.

The reaction scheme and rates are defined using a model of fibrinogen conver-
sion given in [92]. This model has then been reduced to remove polymerisation,
with the final form of the reactions added to the Expanded Unified Model given
in Table 3.14.

Fibrinogen concentration is measured on an individual level in g/L. This is
converted into moles using a molecular weight of 340kDa [111]. For the pooled
plasma simulation, a fibrinogen concentration of 8.65×10−6M is used (the average
concentration across all individuals).

The thrombin generation curves, ETP correlation scatter graphs, and ETP
correlation metrics are given in Figure 3.24, Figure 3.25, and Table 3.15, respec-
tively. The thrombin generation curves still present a delayed lagtime when using
the default rates which is then fixed by gradient descent. The model performance
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Figure 3.22: The Expanded Unified Model with Protein C predicted OD curve and
the experimental OD curve for the individuals with the best and worst predicted
ETP for the gradient descent fitted rates.

Figure 3.23: Plots of prothrombin conversion for the Expanded Unified Model
(black) and Expanded Protein C Model (red), with the corresponding default
(solid) and gradient descent (dashed) reaction rates.

Reaction Rates

Fbg + IIa ↔ Fbg:IIa → Fbn1 + FPA Km = 7.2× 10−6M,kcat = 84s−1

Fbn1 + IIa ↔ Fbn1:IIa → Fbn2 + FPB Km = 7.5× 10−6M,kcat = 7.45s−1

Fbn2 + IIa ↔ Fbn2:IIa Kd = 1× 10−5M

Table 3.14: The additional reactions to include fibrinogen and fibrin into the
Expanded Unified Model.

metrics are similar to those seen in the Expanded Unified Model with a cost re-
duction from 321.0 to 169.6.

Figure 3.26 shows the OD curves for the individuals with the best and worst
ETP predictions. The best predicted individual is an almost perfect match, with
only a slightly shorter lagtime in the model. The lagtime is also slightly shorter,
but still close, in the worst individual.
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Fitting Method R2 RMSEfit RMSE1:1 Cost

Fibrinogen Unified Model No fitting 0.20 27.46 30.2 321.0
Gradient Descent 0.24 26.90 28.9 169.6

Table 3.15: The predictive accuracy of the Expanded Unified Model with fibrino-
gen.

Figure 3.24: The thrombin generation curves for the default and gradient descent
fitted reaction rates for the Expanded Unified Model with Fibrinogen.

Figure 3.25: The ETP correlation scatter graph for the Expanded Unified Model
with Fibrinogen with the default and gradient descent fitted reaction rates.

3.3.7 Lagtime

The different versions of the Unified Model have consistently predicted a long lag-
time, which is then fixed through fitting. For the original Unified Model, this was
fixed by increasing or decreasing reaction rates far outside of a biologically rele-
vant range. This section investigates which components of the coagulation cascade
result in the long lagtime and investigates if the reaction rates they correspond to
are known accurately.
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Figure 3.26: The Expanded Unified Model with Fibrinogen predicted OD curve
and the experimental OD curve for the individuals with the best and worst pre-
dicted ETP for the gradient descent fitted rates.

Which Factors are Slow to Activate?

Figure 3.27 gives time course plots (on a log scale) of the coagulation factors that
control the lagtime (grey). There is a rapid burst for TF:VIIa and FXa initially
with another burst once significant amounts of thrombin are produced. The lag-
time of this system is around 9 minutes. Prior to this, the is a long period of
exponential growth from around 1 minute until 10 minutes (straight line on the
log plots). Since this is the shape we expect from a simple feedback loop between
FVa and FIIa, it seems likely there are no other factors producing significant ef-
fects on FVa or FIIa. Since the lagtime is marked by reaching a specific FIIa
concentration, and we think the main thing driving the FIIa concentration are
FIIa itself, FVa and Xa:Va then it seems reasonable to conclude that if we want
to reduce the lagtime, either one of FIIa, FVa, Xa:Va need to start the feedback
at higher concentrations, or the feedback needs to be stronger (larger gradient).

A larger initial value of FXa, hopefully leading to a larger value of Xa:Va at
1 minute in at the start of the feedback. A larger gradient would be a result of
stronger feedback, so either a greater rate of activation of FV by FIIa or FII by
Xa:Va.

The reaction rates for FIIa action of FV and Xa:Va activation of FII are known
very accurately with many sources measuring them and identifying similar values
in each of the sources. This suggests that any inaccuracies should lie in the amount
of FIIa activated by FXa in the initial burst.

Fitting for Realistic Lagtime

To investigate whether a model can fit with realistic values (within the central
90% of the prior distributions) for all reaction rates, the original Unified Model is
fitted using gradient descent and upper and lower bounds on all reaction rates are
stipulated at the 5th and 95th percentiles of their corresponding prior distribution.
The cost improves from 291.3 to 172.8 and the quality of fit appears similar to the
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Figure 3.27: Plots of the total levels of the coagulation factors TF:VIIa, FXa, FVa,
Xa:Va and FIIa found from the original Unified Model with its default and fitted
reaction rates (fitted as described in Section 3.3.7) in grey and black, respectively.
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fittings performed previously.

Figure 3.27 also shows the concentration plots after fitting (black). There is a
decrease in lagtime given in the thrombin generation curve that aligns with more
significant amounts of FXa produced in the initial burst. The three reaction rates
kcat for TF:VII activation by FXa, Km for FX activation by TF:VIIa, and inhi-
bition of FIIa by AT were fitted to be very close to their upper or lower bounds
suggesting either the reaction rates for these reactions have poor accuracy in the
sources or the reactions involving TF:VIIa and FXa are not properly captured by
the model. The sources for FX activation by TF:VIIa are very consistent with one
another. There are only two rates for TF:VII activation by FXa which disagree
by several orders of magnitude (both present similar values for kcat

Km
suggesting the

overall rates of activation will be similar but with differences in the strength of
the binding for activation). As such, it seems likely that a poor understanding of
this reaction rate is the cause of the long lagtime in the default reaction rates.

3.4 Reduced Unified Model
So far we have been unable to find a model that is able to match the data well.
To move ahead with future work, however, we still require a model. We will take
the Expanded Unified Model with Fibrinogen§ and perform the model reduction
algorithm described in Section 2.7. Specifically, instead of looking at which re-
actions are significant at various timescales, we will identify reactions which are
significant across the full simulation time of 20 minutes and remove any reactions
which are never significant in this interval.

The Reduced Unified Model is given in Tables 3.16 and 3.17 (mass action and
enzymatic reactions, respectively) and the reactions that were found to be insignif-
icant are given in Table 3.18.

3.5 Conclusions
In this chapter, we built a new mathematical model of thrombin generation, tar-
geted for a specific example of the thrombin generation assay. Unfortunately, we
were unable to achieve a significant improvement in model accuracy compared
with the previous models (in fact, if the previous models undergo similar fitting,
then they achieve similar results; Section 3.3.3). We then constructed another
version of this model, testing various hypotheses. We were able to show the fitting
process is robust against over-fitting (Table 3.4) and experimental noise (Section

§Protein S has been removed and the TFPI module reactions were reverted back to the
original form used in the first Unified Model as the assumption of TFPI and PS having similar
on and off rates as that of PS and PC seems too strong (all TFPI and PS quickly bind at
the start and no TFPI is left unbound from PS). Unless an accurate measurement of the Kd

between TFPI and PS can be made it seems as though this more complex form of the TFPI
module cannot be used.
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Reaction Kd (M) k+ (M−1s−1)

TF + VII ↔ TF:VII 2.95× 10−9 1.26× 105

TF + VIIa ↔ TF:VIIa 3.16× 10−9 1.29× 105

TF:VIIa + AT → TF:VIIa:AT - 9.55× 102

Xa + Va ↔ Xa:Va 1.78× 10−10 1.58× 109

Xa + AT → Xa:AT - 1.82× 103

Xa:Va + AT → Xa:AT + Va - 1.07× 103

IIa + AT → IIa:AT - 6.17× 103

XIa + AT → XIa:AT - 3.98× 102

IXa + VIIIa ↔ IXa:VIIIa 1.62× 10−9 1.00× 107

IXa + AT → IXa:AT - 4.90× 102

IXa:VIIIa + AT → IXa:AT + VIIIa - 4.90× 102

Xa + TFPI ↔ Xa:TFPI 9.33× 10−11 3.80× 106

TF:VIIa + Xa:TFPI ↔ TF:VIIa:Xa:TFPI 1.51× 10−10 8.91× 106

TF:VIIa + Xa ↔ TF:VIIa:Xa 8.64× 10−7 2.20× 107

IIa + a1AT → IIa:a1AT - 78.3
Xa + a1AT → Xa:a1AT - 262

Xa:Va + a1AT → Xa:a1AT + Va - 262
XIa + a1AT → XIa:a1AT - 66.7
XIa + a2AP → XIa:a2AP - 50
IIa + a2M → IIa:a2M - 488

XIa + PAI1 → XIa:PAI1 - 2.10× 105

VIIIa → VIIIa1L + VIIIa2 - 5.85× 10−3

IXa:VIIIa → IXa + VIIIa1L + VIIIa2 - 1.40× 10−3

Table 3.16: The mass action reactions used in the Reduced Unified Model and
their corresponding reaction rates.

3.3.2).

Expanding the reaction scheme to include the inhibitors α1 − AT , α2 − AP ,
α2 −M , and PAI-1 did affect model predictions so should be included in future
iterations of the model (Section 3.3.4). It may be the case that patient-specific
concentrations of these inhibitors are necessary for an accurate model to be used.
We end up testing this in Section 5.6.4.

All forms of the Unified Model, except for that with protein C, predicted total
prothrombin conversion. Unfortunately, the inclusion of protein C (through the
use of soluble thrombomodulin) significantly weakened model accuracy and, if the
model were to predict partial prothrombin conversion, would produce ETP which
was significantly more correlated with the protein C concentration than the data
suggests (Section 3.3.5). It appears unlikely that protein C is the cause for the
partial prothrombin conversion in the assay.

Inclusion of fibrinogen in the model produced different predictions compared
with its exclusion, suggesting its competitive inhibitory effects are significant in
their effect on model output and fibrinogen should be included in future iterations
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Reaction Km (M) kcat (s−1)

VII Xa→ VIIa 1.20× 10−6 15.1

TF:VII Xa→ TF:VIIa 1.05× 10−7 3.16

VII IIa→ VIIa 2.69× 10−6 6.17× 10−2

TF:VII IIa→ TF:VIIa 2.69× 10−6 6.17× 10−2

VII IXa→ VIIa 1.70× 10−6 3.24× 10−1

TF:VII IXa→ TF:VIIa 1.70× 10−6 3.24× 10−1

X TF :V IIa→ Xa 3.16× 10−7 6.03

X V IIa→ Xa 1.10× 10−6 3.24× 10−4

X IXa:V IIIa→ Xa 8.51× 10−8 3.39

X IXa→ Xa 7.94× 10−8 2.82× 10−4

V IIa→ Va 7.24× 10−8 2.95× 10−1

V Xa→ Va 1.05× 10−8 4.27× 10−2

II Xa→ IIa 1.32× 10−6 9.33× 10−3

II Xa:V a→ IIa 6.92× 10−7 35.5

XI IIa→ XIa 5.01× 10−8 1.29× 10−4

XI XIa→ XIa 5.01× 10−8 1.29× 10−4

IX TF :V IIa→ IXa 1.62× 10−7 5.37× 10−1

IX V IIa→ IXa 8.91× 10−9 3.63× 10−5

IX XIa→ IXa 4.17× 10−7 7.41× 10−1

VIII IIa→ VIIIa 2.00× 10−7 1.00

VIII Xa→ VIIIa 2.00× 10−7 2.19× 10−1

Substrate IIa→ Activated Substrate 1.95× 10−3 1.91

Table 3.17: The enzymatic reactions used in the Reduced Unified Model and their
corresponding reaction rates.

Insignificant Reactions

VII + TF:VIIa ↔ VII:TF:VIIa → VIIa + TF:VIIa
VIII + IXa ↔ VIII:IXa → VIIIa + IXa

VIIIa1L + VIIIa2 → VIIIa
XIa + C1-inh → XIa:C1-inh

Table 3.18: The insignificant reactions removed from the Reduced Unified Model.

of the Unified Model (Section 3.3.6). This happens since thrombin is required to
bind to fibrinogen to order to activate it into fibrin. While it is bound, it cannot
bind to and activate any other factors, thus acting as a kind of temporary inhibitor.

The default reaction rates produce a large lagtime which is then fixed in fitting.
By fitting the Unified Model, with biologically relevant upper and lower bounds,
and then investigating plots of the concentration of multiple factors leading up
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to the lagtime, we were able to link this long lagtime to the reactions and reac-
tion rates corresponding to the interactions between TF:VIIa and FXa (Section
3.3.7). In particular, we suggest that poor knowledge of the reaction rates for
TF:VII activation by FXa is the cause of this long lagtime with the default re-
action rates. This modelling work suggests that the Km values for this reaction
should be smaller and its kcat values should be larger than what is observed.

To ascertain where improvements in the model may be most useful, in the
following chapters we will perform a stage of data analysis, and then using the
results of this data analysis, we will return to build a definitive version of the
Unified Model.
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Chapter 4

Data Analysis

4.1 Introduction
In the previous chapter, we introduced the Unified Model, building multiple ver-
sions with different reaction schemes. Unfortunately, we failed to identify a model
which would fit the data sufficiently accurately. In this chapter, we perform a
stage of data analysis to help explain where the model can be improved. We begin
this chapter with functional data analysis, exploring both principal component
analysis and data clustering. Following this, we identify which variables are most
closely linked with model error. We also compare the correlation of different vari-
ables between model predictions and experimental data, aiming to identify which
variables may be able to be linked to an increase in predictive power. Finally,
we answer some questions that arise from these analyses such as differing effects
between endogenous and exogenous TF and the possibility of filtering the data to
improve the fitted model accuracy.

4.2 Functional Data Analysis

4.2.1 Introduction

To begin our functional data analysis, we first find a functional representation of
the OD curves in the form of a linear combination of a set of basis functions. The
resulting curves can then be differentiated to find functional representations of
the thrombin generation curves. We then investigate properties of these throm-
bin generation curves using Principal Component Analysis and k-means clustering.

4.2.2 Curve Smoothing

To convert the measured OD curve values (recorded every 30 seconds during the
20-minute assay) into a single smooth curve, we first define a set of basis func-
tions. We will use quartic splines as the set of basis functions as they will grant us
smooth cubic splines for the final thrombin generation curves. The curve smooth-
ing is performed in the fda [112] package in R. The quartic splines used for the
basis functions are defined using 21 knots (placed at one minute intervals) for a
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total of 24 basis functions, plotted in Figure 4.1. In addition to fitting to the
experimental data, the curve smoothing process uses a roughness penalty, given
as the square of the third derivative (curvature of the thrombin generation curve).
This roughness penalty helps to minimise over-fitting that would result in noisy os-
cillations in the thrombin generation curves. Additionally, the curve fitting makes
use of linearly decreasing weights, from 21 to 1, applied to the data points which
emphasise the lagtime that is otherwise poorly matched to favour smoother curves.

Figure 4.1: A plot of the 24 quartic splines that make up the set of basis functions.

Figure 4.2 shows the OD data before smoothing while Figure 4.3 contains a
plot of the smoothed OD curves with the mean OD and its 95% confidence interval
marked. We now take the derivative of these smoothed curves to investigate the
thrombin generation curves, plotted in Figure 4.4.

There is a lot of variation between the thrombin generation curves, in partic-
ular there appears to be substantial amounts of thrombin present initially. This
does not appear as clearly in the OD curves (present as an initial positive gradi-
ent) and is likely just a result of experimental noise in the early stages of the assay.

Additionally, some smoothed thrombin generation curves show negative con-
centrations. This comes from the raw OD data being noisy and therefore not
monotonically increasing. While the fda package we use for the smoothing does
allow us to constrain the smoothing to be monotonic through a transform on
the linear combination of basis functions, and therefore force positive thrombin
concentrations, it is not possible to perform principal component analysis on the
resulting transformed smooth curves in the fda package [112]. The same applies
if the smoothing was constrained to force an initial gradient of zero in the OD
curves (which would ensure the thrombin generation curves start at zero).
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Figure 4.2: The OD curves for all patients before smoothing.

Figure 4.3: The smoothed OD curves for all patients. The mean (solid) and its
95% confidence interval (dashed) plotted in black.

4.2.3 Principal Component Analysis

We have performed Functional Principal Component Analysis on the thrombin
generation curves to better understand their distribution. This is done using the
same fda package in R (using the function pca.fd), which is applying a standard
PCA algorithm to the basis coefficients but with adjusted weights to account for
the shape and overlap of the basis functions. The four principal components (that
explain 95% of the variance) are given in Figure 4.5. We have then performed
a Varimax rotation (this provides components that explain the same amount of
total variation but focuses the variation onto a smaller time interval at the cost of
the components becoming correlated) in order to better identify which summary
statistics produce the most variation in Figure 4.6.
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Figure 4.4: The smoothed thrombin generation curves with the mean and its 95%
confidence interval plotted in bold.

The effects of the principal component directions can be seen by where the per-
turbed curves deviate most from the mean curve. The first principal component
demonstrates how rapid the activation is and influences ttP, lagtime and peak.
The second principal component seems more closely related to total activation ca-
pacity and influences peak and ETP. The third principal component controls how
wide the curve is and influences the two gradient summary statistics of maximum
increasing rate and minimum decreasing rate. The fourth principal component
influences the appearance of an early peak. It is useful to know that this early
peak is uncorrelated from the majority of the rest of the curve with only a small
correlation with ttP. The Varimax transformed curves show similar effects with
the summary statistics.

4.3 Clustering

4.3.1 Introduction

To further understand the distributions in the data, we performed k-means clus-
tering on the factor levels (TF, FII, FV, FVII, FVIII, FIX, FX, FXI, TFPI, AT,
protein C, protein S, vWF and fibrinogen) and the thrombin generation curves
(represented as summary statistics, basis coefficients, and principal component
scores), aiming to find groups of individuals, who can be identified either from
the concentration data or their thrombin generation curves, who are accurately
predicted by mathematical models, possibly pointing in the direction where the
greatest improvement in accuracy can be found.

There are a few predefined groups in the PRAMIS cohort that it is worth re-
membering for this section. The cohort is already split into cases (who suffered
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Figure 4.5: Plots of the mean thrombin generation curve (solid), overlaid with
the effect of the variation in each of the four principal component directions. +
is used to show the effect of perturbing the mean thrombin generation curve by
increasing it in the principal component direction while - shows a decrease in the
principal component direction. The titles of each subplot show the percentage of
the variability that is explained by that principal component.
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Figure 4.6: Plots of the mean thrombin generation curve (solid), overlaid with
the effect of the variation in each of the four Varimax transformed component
directions. + is used to show the effect of perturbing the mean thrombin gener-
ation curve by increasing it in the principal component direction while - shows a
decrease in the principal component direction. The titles of each subplot show the
percentage of the variability that is explained by that principal component.

179



a myocardial infarction before the age of 50) and controls (who are age, sex, and
smoking status matched to the cases population). Age is similar among the whole
cohort (mean of 47 years, standard deviation of 6 years) but other demograph-
ics, such as sex (86:14, male:female), will still separate individuals into predefined
groups. These groups are significantly different in ETP [21], but we believe this
should be entirely explained by their differences in coagulation factor concentra-
tions. The proteins themselves should be identical between individuals.

Definitions of Summary Statistics

Before we begin the clustering, we first define the summary statistics for the func-
tional representations of the thrombin generation curves. Since many thrombin
generation curves are initially non-zero (sometimes quite significantly), there are
issues trying to define the lagtime as there may be no time point such that the
value of the curve is below 5%. In addition, there are some curves where the peak
height is at, or close to, the start of the curve. Due to these issues, it is necessary
to give clear definitions of peak, ttP and lagtime. Peak and ttP both use the
global maximum, regardless of its location. Lagtime is defined as the first time
with a thrombin concentration = 5% of the peak height, and if there is no such
value, or the value is larger than the ttP, then the lagtime is reported as missing.

4.3.2 Gap Statistic

In order to assess whether or not clusters are present in the data and if so, the
optimal value for k in the k-means clustering, we have used the gap statistic [47].
The gap statistic uses bootstrapping (1000 samples) to determine its standard er-
ror which allows us to assess if improvements in the gap statistic from larger values
of k are significant. The plots of the gap statistic for values of k between one and
ten, along with the optimal value of k, are given in Figure 4.7. The optimal value
of k is chosen as the smallest value of k such that its gap statistic is within one
standard error of the gap statistic at the first local maximum.

For the initial conditions, summary statistics, and PCA scores, there are no
significant clusters (k = 1 is optimal). However, when clustering using the basis
coefficients, there is a clear set of seven clusters.

4.3.3 Thrombin Generation Curve Clusters

We now investigate the differences between these seven clusters defined by the
thrombin generation curve basis coefficients. The mean values of the summary
statistics in each cluster, as well as the mean thrombin generation curves for each
cluster, are used to determine names for each of the clusters. The names, rea-
soning behind the names and the size of each cluster are given in Table 4.1. The
mean values for each summary statistic, split by cluster, are given in Table 4.2.
Finally, plots of the thrombin generation curves in each cluster, the raw OD data
(before smoothing) in each cluster, and the mean curves for each cluster are given
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Figure 4.7: Plots of the gap statistic for clustering the initial conditions and
the thrombin generation curve summary statistics, basis coefficients and principal
component scores. The dashed vertical line shows the optimal number of clusters.

in Figures 4.8, 4.9 and 4.10, respectively.

Most of the clusters feature clear differences from the average in some sum-
mary statistics giving them obvious names (Big, Quick, Small, No Lag and Late
Peak). However, the Double Bump cluster is instead named due to the shape
of its thrombin generation curves which appear to show a high initial thrombin
concentration that subsequently decreases before then giving a normally shaped
curve. This is likely due to the initial OD reading at t = 0 being low due to
experimental noise, resulting in an initial positive gradient in the OD curve as it
returns to normal. Although the majority of the curve is likely still accurate, it
may be the case that this shape interferes with the fitting process as it produces
curves that the models are unable to reproduce.

Looking at the OD data before smoothing in Figure 4.9 appears to confirm
this conclusion. While the artefacts, such as double bumps, are not a result of the
smoothing process, they are exaggerated by it. This means that when fitting to
the OD data, they likely have little influence.
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Figure 4.8: All thrombin generation curves, separated into the seven clusters.
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Figure 4.9: The raw OD curves (before smoothing), separated into the seven
clusters.
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Cluster Names Name Reasoning Cluster Size

Big Largest ETP, Peak, Max Inc Rate and Min Dec
Rate

25

Double Bump Summary statistics appear normal, name from
thrombin generation curves

45

Quick Smallest Lagtime and ttP 45
Normal Summary statistics appear normal, name from

thrombin generation curves
81

Small Smallest ETP (fairly small Max Inc Rate and
Min Dec Rate)

86

No Lag All bar one lagtime value is missing due to large
initial value

10

Late Peak Largest Lagtime, ttP. Smallest Peak, Max Inc
Rate and Min Dec Rate

41

Table 4.1: The names given to identify each cluster, the reasons for each name
and the size of each cluster.

Cluster ETP Lagtime Peak ttP Max Inc Rate Min Dec Rate

Big 150.8 2.40 31.0 6.68 13.5 8.5
Double Bump 106.0 3.33 17.4 4.47 6.6 6.8

Quick 120.3 0.47 25.2 3.66 11.8 6.7
Normal 109.9 1.05 21.8 5.32 8.8 6.0
Small 96.0 2.42 14.5 7.92 4.9 3.6
No Lag 100.0 0.52 17.3 3.94 7.0 4.0

Late Peak 102.2 3.80 13.5 10.31 4.0 3.4

Table 4.2: The mean summary statistics for each cluster.

4.3.4 ANOVA and Between Cluster Differences

To understand the possible influences in the different thrombin generation curve
shapes, we have used ANOVA and Fisher’s Exact Test to test significance be-
tween cluster means. The variables used in the ANOVA are the concentrations
of FII, FV, FVII, FVIII, FIX, FX, FXI, TF, TFPI, AT, protein C, protein S,
fibrinogen, and vWF; the age of each individual; the absolute value of the Unified
Model’s ETP error for that individual (with and without GD); and an estimate of
the pooled plasma ETP that was used to normalise the sample. The categorical
variables that used Fisher’s Exact Test were Event and Sex. Further details of
these variables can be found in Table 4.5. The variables that were found to be
significant, and their corresponding p-values, are given in Table 4.3.

One of the assumptions of the ANOVA method is that the data must be nor-
mally distributed. While this is true for the majority of these variables, there are
a handful, such as the TF concentration, for which this is not true (see Figure
1.6). However, since this is restricted to only a few variables, ANOVA is generally
robust against violations to the normality assumption [113], and the resulting p-
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Figure 4.10: The mean thrombin generation curves, and their 95% confidence
intervals, for each cluster.

values are of less importance here than the relative significance between variables
(since we are looking to identify which variables are most different between the
clusters), we believe an ANOVA will suffice for our purposes.

Variable p-value

FII 0.0028
FVIII 6.7e-6
FIX 0.0027
FX 0.0066
FXI 0.025
TF 0.00012

Fibrinogen 0.00097
vWF 0.019

Unified Model error 2.8e-5
Unified Model error (GD) 3.4e-5

pooledOD.ETP 2.8e-6
Event 0.00022
Sex 0.00027

Table 4.3: The variables with a significant difference in means between the clusters
and their corresponding p-values.

The Normal cluster gives significantly lower absolute model ETP error than
the other clusters with the Late Peak and Big clusters having the highest error.
The Big cluster features very high levels of all of the significant factor levels. FVIII
appears to be a very big influence in the size and shape of the thrombin genera-
tion curves, being highest in the Big, Quick and No Lag clusters and lowest in the
Small cluster. We have seen previously that the size and shape of model predicted
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Variable
Cluster Means

Big Double Quick Normal Small No Late
Bump Lag Peak

FII (%) 133 118 121 120 120 124 126
FVIII (%) 160 134 161 142 117 173 127
FIX (%) 139 124 130 120 122 135 131
FX (%) 139 130 133 126 131 146 137
FXI (%) 112 107 105 101 99 117 105
TF (pM) 17.3 9.8 11.0 10.1 8.9 7.7 7.8

Fibrinogen (g/L) 3.61 3.06 3.06 2.89 2.78 2.98 2.98
vWF (%) 123 102 111 105 96 94 105

Unified Model error 30.0 20.3 22.0 15.8 26.5 22.8 34.9
Unified Model error (GD) 30.0 19.8 21.8 15.6 26.1 23.1 34.5

pooledOD.ETP 57.4 45.3 53.5 55.7 53.8 46.5 50.2
Control Percentage (%) 16 51 36 59 64 40 51
Female Percentage (%) 24 11 20 23 5 30 2

Table 4.4: The mean values of variables that are significantly different between
the clusters. Details on each of the variables are given in Table 4.5.

thrombin generation curves are heavily dependent on activation of FIX. It may
be the case that FVIII is a more limiting factor in IXa:VIIIa formation that the
models would suggest.

4.4 Model Error Analysis

4.4.1 Introduction

In this section, we aim to identify the individuals that the model predicts poorly
and explore the variables that are the most influential in determining model ac-
curacy. To achieve this, we construct a regression tree to predict model error.

4.4.2 Regression Tree

The regression tree is trained using the variables listed in Table 4.5 and aims to
predict absolute model error from the Unified Model (using the default rates). We
use absolute error rather than square error as we want to be able to more closely
separate smaller errors rather than larger ones. The resulting regression tree is
then presented in Figure 4.11.

Three variables seem to stand out quite strongly in their effect on model er-
ror. The most important separation the regression tree makes is the distinction
between samples with or without added TF. Of the samples with added TF (the
choice that gave the lower error), the next check is that the ETP of the pooled OD
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Variable Details

TF.tot Initial total TF concentration in pM, including both endoge-
nous TF and added exogenous TF.

FII Initial individuals FII concentration in % of pooled plasma.
FV Initial individuals FV concentration in % of pooled plasma.
FVII Initial individuals FVII concentration in % of pooled plasma.
FVIII Initial individuals FVIII concentration in % of pooled plasma.
FIX Initial individuals FIX concentration in % of pooled plasma.
FX Initial individuals FX concentration in % of pooled plasma.
FXI Initial individuals FXI concentration in % of pooled plasma.
TFPI Initial individuals TFPI concentration in Units.
AT Initial individuals AT concentration in % of pooled plasma.

ProteinC Initial individuals protein C concentration in % of pooled
plasma.

ProteinS Initial individuals protein S concentration in % of pooled
plasma.

vWF Initial individuals von Willebrand Factor concentration in %
of pooled plasma.

Fibrinogen Initial individuals Fibrinogen concentration in g/L.
CRP Health related measure. C-reactive protein concentration in

mmol/L. High levels are an indicator of recent injury.
LDL Health related measure. Low density lipoprotein concentra-

tion in mmol/L.
HDL Health related measure. High density lipoprotein concentra-

tion in mmol/L.
Age Age of the individual in years.
Sex Binary representation of the sex of each individual. 1=Male,

2=Female.
Event Binary representation of whether an individual was a case or

control, ie. whether or not the individual suffered a MI before
the age of 50. 1=Case, 2=Control.

addedTF Binary representation of whether or not that thrombin gen-
eration assay used an additional 5pM of exogenous TF.

pooledOD.ETP An estimate of the pooled plasma ETP that was used to nor-
malise the sample.

Table 4.5: The variable names and further details on their definitions and purpose.

was not large (typical range of 40-60, split at <68), a possible anomaly in the data.
If a sample was compared against an artificially raised pooled OD ETP, through
a mistake in the experimental setup, the measured sampled would be reported as
lower than it should be (as a percentage of pooled plasma). Finally, the average
absolute error reduces again if we remove the samples with a high prothrombin
concentration (remove those with FII>143%). Average absolute error decreases
from 27 to 21 for the samples measured with added TF, at an average poole-
dOD.ETP (typical range of 40-60), and at an average FII concentration. There
are 310 samples (53%) that satisfy all three of these conditions. It is interesting to
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Figure 4.11: The regression tree fitted to predict absolute model error (Unified
Model without fitting). Each cell shows the average absolute model error of the
samples that satisfy its requirements as well as the number of samples n.

note that it is the addition of exogenous TF that separates the groups rather than
total TF concentration. It may be the case that there is differing effects between
the endogenous and exogenous TF.

4.5 Side by Side Factor Correlations
The clustering showed us that FVIII is influential in the magnitude of thrombin
generation, however the previous models suggested that FIX activation is the rate
limiting component of IXa:VIIIa formation. It may be useful to compare other fac-
tors correlation with both the model predicted ETP and the experimental ETP to
identify other areas with similar discrepancies. Plots of ETP (predicted by Unified
Model, Unified Model with Gradient Descent and from the data) against various
factors are given in Figure 4.12. These plots can tell us which factors differ in im-
portance between the models and the data. For example, if FV is more strongly
correlated with the data than with the model predictions, it would suggest the
model is missing some interaction involving FV.

It is clear there is more variation in the data that is not present in the pre-
dictions of the model. However, there does not appear to be a clear factor which
produces this variation in the data. There is a clear correlation in the model with
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Figure 4.12: Scatter plots of model predicted ETP (Unified Model with and with-
out gradient descent) and data ETP against various factor levels. Each factor,
labelled under a heading “Side by Side Plot”, has three scatter plots associated
with it. The first scatter plot looks at the correlation between the concentration
of that factor and the ETP predicted by the Unified Model using the default rates,
the second figure uses the gradient descent fitted rates, and the third figure com-
pares the correlation between the concentration of that factor and the ETP given
experimentally for that individual.

factor VII concentration that is not present in the data (Figure 4.12, heading “Side
by Side Plot: FVII”) which could suggest that the assumed FVIIa concentration
may not be valid. There are also correlations in FV, FX and fibrinogen that are
not present in the data and the correlation with FV appears to be reduced by
gradient descent.
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4.6 Added TF vs Higher TF
The regression tree trained on model error predicted that whether a sample in-
cluded the added 5pM of exogenous TF produced the best separation in errors,
with the added TF reducing the absolute model error. It is interesting that the
additional TF was a more relevant predictor than total TF. This suggests that
there may be some difference in adding 5pM of exogenous TF compared with
5pM higher endogenous TF. To assess this, we will compare the mean change in
ETP from adding 5pM of exogenous TF with 5pM higher concentration of en-
dogenous TF as predicted through linear regression.

4.6.1 Added TF

The mean change in ETP between the added TF and no added TF groups is
23.99% of pooled plasma (95% CI: 21.18%, 26.80%; measured with a t-test).

4.6.2 Higher TF

To assess the effect of higher levels of endogenous TF, we have trained a simple
linear regression model (ETP=m×TF+c) to predict ETP using total TF concen-
tration for the full dataset and the two data cuts of added TF and no added TF.
The gradient, and its confidence interval, are then scaled to find the effect of in-
creasing endogenous TF by 5pM on average. These results are given in given in
Table 4.6.

Data Change in ETP from increasing TF (95% CI)

Added TF 6.82% (4.63%, 9.00%)
No added TF 3.73% (1.76%, 5.69%)
Full data 7.01% (5.50%, 8.53%)

Table 4.6: The average change in ETP from increasing TF by 5pM for the 3 data
cuts, those measured with the 5pM of added TF, those measured without the 5pM
of added TF, and the full dataset.

The exogenous TF clearly has a much larger effect on ETP than the endoge-
nous TF. Since the TF proteins should be identical for endogenous and exogenous
TF, there is no clear reason for this difference. It may be an error in the calibration
of the TF measurements (either to determine the 5pM or the endogenous TF in
a sample) or there may be a difference in the sizes of the phospholipids between
that the exogenous and endogenous TF are expressed upon.
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4.7 Data Filtering

4.7.1 Introduction

We have seen that model error is significantly different between the thrombin
generation curve clusters and that some of the curve clusters represent thrombin
generation curves that the models cannot predict (non-zero initial thrombin con-
centration). The Unified Model may be able to fit better to a subset of the data
which do not exhibit these shapes.

4.7.2 Filtering

To filter the data, we first search through the smoothed curves by hand, identifying
which curves demonstrate a particular property we are aiming to remove. Once
these curves are identified, a measure of this property is defined and the optimal
cut-off for this measure is determined using the Gini index. Any curves which are
classified differently between the two methods are then investigated again, favour-
ing the results of the cut-off classification unless it is clear that the measure used
is unsuitable for that curve.

Mini Peak

First, we aim to remove all thrombin generation curves with either a high ini-
tial thrombin concentration or a significant secondary peak. After filtering these
curves by hand, the Mini Peak measure is defined as the relative height of the
second highest local maximum as a ratio of the global maximum. If only one local
maximum is present, then the measure is set to zero.

After the filtering by hand 116 curves have been proposed for removal and the
optimal cut-off for removing curves is found to be a second peak larger than 24.5%
the height of the largest peak. Using this cut-off would result in 106 curves being
removed with fourteen curves being classified differently between the two meth-
ods. One of these fourteen curves was not filtered in the computed filtering as it
did not completely make a local maximum but was removed by hand. Since the
height of this bump is still large enough it was removed. The computed filtering
was used for all other curves resulting in the removal of 107 curves.

No Lag

Next, we aim to remove the thrombin generation curves with no delay for the
lagtime. The No Lag filtering was done by hand, then an optimal separation was
found using the ratio between the initial gradient of the thrombin generation curve
and the maximum gradient of the curve.

After filtering by hand, 60 of the remaining curves were proposed for removal.
From this, the optimal cut-off was determined as an initial gradient larger than
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Figure 4.13: An example of a thrombin generation curve that was removed due to
the presence of a mini peak.

30.5% of the maximum gradient. This cut-off gives a computed filtering which
removes 66 curves with 20 discrepancies between the two filtering methods. In
these 20 discrepancies, there were six curves which featured a small insignificant
Mini Peak which provided a large enough initial gradient to trigger the computed
filtering which have now been kept since they still offer a lagtime prior to large
scale thrombin generation. The computed filtering was used for all other curves
leading to 60 further curves being removed.

Figure 4.14: An example of a thrombin generation curve that was removed due to
the lack of a lag time.
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Other

Finally, the remaining curves were investigated by hand to search for any other
non-physiological curves that should be removed. A total of fourteen further
curves we removed, all of which featured large perturbations to otherwise normal
thrombin generation curves.

The results of this data filtering leave 166 of the original 333 thrombin gen-
eration curves remaining (Removed curves are in Figure 4.16 and the remaining
curves are in Figure 4.17). The demographics of the reduced population are simi-
lar to the full cohort (17% female and 51% controls after filtering compared with
14% female and 49% controls for the full cohort). Although this filtering does
remove a significant portion of the data, there should still be a sufficient number
of curves remaining for fitting. Additionally, if there is improvement seen in the
fitting then we can investigate either a less stringent filtering or data cleaning to
retain some of the curves.

Figure 4.15: An example of a thrombin generation curve that was removed for
other reasons, in this case because there was an unusual bump in the amplification.

4.7.3 Fitting

We fit the Reduced Unified Model given in the previous chapter, restricted to only
fit to the filtered data curves. There are 49 reaction rates that are significant
in their effect on OD for the Reduced Unified Model. The cost improves from
317 to 166 after fitting with only a minor improvement compared with the costs
previously. ETP scatter plots before and after fitting are given in Figure 4.18 and
thrombin generation curves for an average donor are given in Figure 4.20.

Figure 4.19 shows the OD curves for the individuals with the best and worst
ETP predictions. All of the individuals that previously gave the worst predictions
were removed by the filtering. However, the conclusions for this models worst
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Figure 4.16: All of the OD curves (pre-smoothing) that have been removed by the
data filtering.

Figure 4.17: All of the OD curves (pre-smoothing) that remain after data filtering.

individual are generally similar (high factors levels, although not high FVIII, very
large ETP, outside the general range that the model can seem to predict). The
best predicted individual does not match on lagtime but the shape does seem
similar.

The fitting does produce a slightly more realistic thrombin generation curve
shape than seen with the other models or the previous versions of the Unified
Model, however, the model is still a poor predictor of the data.
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Figure 4.18: ETP correlation scatter graph for the Reduced Unified Model with
the default rates and fitted rates for the filtered curves.

Figure 4.19: The Reduced Unified Model predicted OD curve and the experimental
OD curve for the individuals with the best and worst predicted ETP for the
gradient descent fitted rates. Both fitting and evaluating are restricted to the
filtered data.

Figure 4.20: Thrombin generation curves for the Reduced Unified Model before
and after fitting to the filtered curves.
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4.8 Conclusions
While exploring the thrombin generation curves, we found that many curves had
unusual shapes, with some featuring apparent high initial concentrations of throm-
bin and multiple peaks (Section 4.2). These are likely artefacts from the noise in
the OD curves and we have verified that they did not interfere with the fitting (Sec-
tion 4.7) by rerunning the fitting with curves presenting these artefacts removed.
Additionally, the presence of these shapes is uncorrelated with the summary statis-
tics of the thrombin generation curves (Figure 4.5), further suggesting they are
the result of experimental noise.

We identified clusters in the thrombin generation curves and found that model
accuracy varied between the clusters, with the models being a particularly poor
predictor for the Big and Late Peak clusters (Section 4.3). Factor VIII varied
significantly between the clusters and appeared to have a large influence over the
amount of thrombin generated. This is contrary to the predictions of the models
which all suggest FIX activation has the largest control over the magnitude of
thrombin generation (Section 2.4).

It was also identified that model error is significantly lower in the samples
where exogenous TF is added (Section 4.6). This does not seem to be accounted
for just by the TF concentration as the addition of 5pM of exogenous TF has a
larger impact on ETP than an average increase in endogenous TF would suggest.
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Chapter 5

Improved Unified Model

5.1 Introduction
In Chapter 3, we were unable to produce a model that accurately reproduced ex-
perimental OD data. However, both through developing these models in Chapter
3 and analysis of the data in Chapter 4, we were able to identify a handful of
issues in the versions of the Unified Model which we will attempt to address in
this chapter. The issues we address are:

• Inhibition of the complexes Xa:Va, IXa:VIIIa, and TF:VIIa,

• Predicting partial prothrombin conversion without manual intervention,

• Identifying and improving upon the sources used for FXI activation,

• Continuing investigation into the long lagtime that is featured in the previous
versions of the Unified Model and identifying why the long lagtime is not
present in the previous models.

We begin by addressing the inhibition of the complexes, with a particular fo-
cus on prothrombinase. The goal of this section will be to identify mechanisms
for fully inhibiting prothrombinase prior to the total conversion of prothrombin.
We search the literature for new reaction rates for these reactions and explore
any data which may help illuminate the mechanisms of complex inhibition that
occur in vitro. Following this, we explore FXI activation, aiming to identify new
sources for reaction rates. We then explore which reaction rates most significantly
affect the lagtime, expanding on the work completed in Chapter 3; and update the
module documents, introducing new modules to identify prior distributions not
included in the Expanded Unified Model. Finally, we will use this new research to
build a definitive Unified Model, named the Improved Unified Model, and use this
model to explore uncertainty caused by variation between sources in the reaction
rates.

5.2 Prothrombinase Inhibition
In this section, we explore the mechanisms for prothrombinase inhibition. We
show the effects of the different mechanisms featured in the previous models. We
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then demonstrate the influence of reaction rates over these inhibition mechanisms
through the use of the previous versions of the Unified Model. Finally, we show
other possible mechanisms for prothrombinase inhibition, one of which is able to
predict partial prothrombin conversion.

5.2.1 Previous Models

Previous models have featured different schemes for prothrombinase inhibition.
The Tyurin model features an inhibition of the form given below∗ and the other
models only inhibit FXa, requiring Xa:Va to disassociate before it can be inhibited.
Since the levels of prothrombinase dictate the shape of the thrombin generation
curve, an accurate description of prothrombinase inhibition is required to con-
struct a predictive model. Plots of prothrombinase concentration are given in
Figure 5.1 for the previous models. As demonstrated previously in Section 2.4,
four models (Chatterjee, Bungay, Tyurin, and Zhu) feature very rapid formation
of Xa:Va which corresponds to FXI activation (or excess TF:VIIa in the case of
Zhu). The remaining models do not form the maximum amount of Xa:Va of 20nM
due to the lack of FXI.

Xa:Va + AT→ Xa:AT + Va

In Figure 5.2, we have extended the simulation time to explore the inhibition
of prothrombinase. For a model to not fully convert prothrombin, it must fully
inhibit prothrombinase prior to total prothrombin conversion. From this figure,
it is clear that waiting for Xa:Va disassociation, the same mechanism utilised by
all except the Tyurin model, would require dramatically different reaction rates
to sufficiently inhibit prothrombinase. The Tyurin model is able to fully inhibit
prothrombinase by around 10 minutes, demonstrating that this inhibition mecha-
nism could be sufficient for partial prothrombin conversion.

Figure 5.1: Plots of prothrombinase concentration for the previous models.

∗The Panteleev model mimics a reaction of this form, however, it does not track Xa:Va
concentration explicitly so is not featured in this section.
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Figure 5.2: Plots of prothrombinase concentration for the previous models, fea-
turing an extended simulation time of 60 minutes.

5.2.2 Unified Models

The previous versions of the Unified Model have all used the same mechanism for
prothrombinase inhibition as the Tyurin model but with varying reaction rates.
We can use these models to explore the effects of variation in the reaction rates on
inhibition of prothrombinase. Figures 5.3 and 5.4 present plots of prothrombinase
concentration over time for the Unified Model and the Reduced Unified Model,
respectively. Results for the different versions of the Expanded Unified Model
present similarly to the Reduced Unified Model, with the differences between the
versions most influenced by the inclusion of α1−AT which is in all but the original
Unified Model.

The Unified Model shows two styles of curves. The first is presented by the
default rates and the gradient descent fitted rates, showing full activation after
the lagtime with minimal inhibition occurring in the 20 minutes. The ABC-SMC
fitted rates instead do not fully activate prothrombinase to the 20nM maximum
and show significant inhibition in the 20 minutes, but still fail to fully inhibit
quickly enough to make partial prothrombin conversion possible.

The Reduced Unified Model, and other version of the Unified Model, presents
similar curves for the default rates as the Unified Model for the ABC-SMC rates,
showing a peak activation below 20nM followed by inhibition. The gradient de-
scent fitted rates show a smaller peak and we see complete inhibition of prothrom-
binase by 10 minutes.

5.2.3 Different Inhibition Schemes

We have seen two different mechanisms for inhibiting prothrombinase so far. The
first of which requires prothrombinase to disassociate and then inhibits the FXa
part. The second mechanism inhibits the prothrombinase complex in a reaction
that releases the FVa, only inhibiting the FXa of the complex. We propose that,
given there is significantly more FX in the assay than FV, inhibiting the full Xa:Va
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Figure 5.3: Plots of prothrombinase concentration for the Unified Model (using
the default, gradient descent fitted, and ABC-SMC fitted rates).

Figure 5.4: Plots of prothrombinase concentration for the Reduced Unified Model
(using the default and gradient descent fitted rates).

complex could lead to a faster method of inhibition. We implement these three in-
hibition mechanisms, given below, into the Reduced Unified Model and Figures 5.5
and 5.6 give the resulting prothrombinase and prothrombin concentration curves,
respectively.

• Xa:Va + AT → Xa:AT + Va, Xa + AT → Xa:AT

• Xa:Va + AT → Xa:Va:AT, Xa + AT → Xa:AT

• Xa + AT → Xa:AT only

We see the inhibition method has a strong influence on the prothrombinase
concentration and the amount of prothrombin that is converted into thrombin.
For the case where FVa is not released when the complex is inhibited, we see, for
the first-time, partial prothrombin conversion without the need to manually alter
the reaction rates. It is possible that finding the correct method for prothrom-
binase inhibition could resolve the mismatch between the models and the data
regarding total prothrombin conversion.
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Figure 5.5: Plots of prothrombinase concentration for the Reduced Unified Model
with the gradient descent fitted rates for three different inhibition mechanisms for
prothrombinase.

Figure 5.6: Plots of prothrombin concentration for the Reduced Unified Model
with the gradient descent fitted rates for three different inhibition mechanisms for
prothrombinase.

5.2.4 Changes to Prothrombinase Inhibition

After demonstrating that the mechanism of prothrombinase inhibition has signif-
icant influence over the rate of prothrombinase inhibition and over the possibility
of partial prothrombin conversion, we investigate the original sources for the in-
hibition rates of prothrombinase, looking for any evidence which may suggest one
of these mechanisms over the others.

There are two sources used for determining reaction rates of prothrombinase
inhibition [114, 115]. Upon further investigation of one of these sources [114], it
was revealed that the inhibition was of FXa and not Xa:Va, as FVa was later
added in order to measure the activity of the remaining, non-inhibited FXa. Due
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to this, the reaction rates given in [114] are no longer used for informing rates of
inhibition of prothrombinase. The other source [115] does measure the inhibition
of the full prothrombinase complex but gives no indication as to whether or not
the FVa is released from the complex after inhibition.

Other papers studying prothrombinase inhibition, those that do not give reac-
tion rates, were also searched but no indication as to the mechanism was found.
Since inhibiting the FVa produces results more in line with experimental data, we
implement this inhibition mechanism for Xa:Va and IXa:VIIIa.

5.3 Varying FXI Activation
In Section 2.4, we saw that the previous models differ greatly between those that
feature FXI and those that do not. In this section, we investigate the differences
between the models after accounting for the presence of FXI. To do this, we add
FXI activation into the Danforth model (with the rates used in Tyurin, given in
Table 5.1). In Figures 5.7 and 5.8, we show plots of the concentrations of factors
XIa, IX, IXa, X, Xa, and IIa and the complexes Xa:Va and IXa:VIIIa, for the new
Danforth model and the Tyurin model, respectively. In these plots, we gradually
reduce the activation rates of FXI (kcat for FXI activation by FIIa and FXIa are
scaled by values given in the figure legend) to examine the remaining differences
between the models.

There is faster inhibition of FXIa in the Tyurin model than in the Danforth
model. There are a variety of inhibitors of FXIa in the Tyurin model that are not
included in the Danforth model (α1−AT , α2−AP , C1-inh and PAI-1). In Figure
5.9, we present similar curves with the inhibitors α1 −AT and α2 −AP removed
from the Tyurin model. This produces similar FXIa curves as the Danforth model.

Unlike the Tyurin model, the Danforth model is able to inhibit IXa:VIIIa sig-
nificantly. This is due to the FVIIIa degradation also affecting IXa:VIIIa in the
Danforth model, which gives a stronger inhibition than the sole AT reaction used
by Tyurin. Removing this reaction from the Danforth model produces curves sim-
ilar to the Tyurin model. This difference has a large impact on the level of FX
with the Tyurin model predicting FX is all activated, even if the effect of FXI is
removed.

It is clear that FXI has a strong effect in the models, however, it seems large
changes to the reaction rates are needed before the effect of FXI starts to be re-
duced (on the order of a 1000-fold reduction). This suggests that we do not need
to know the rates of FXI very accurately, assuming current values are reasonable.
However, due to the lack of sources, it would be worth investigating further to
decide if we believe the current sources provide reasonable values in comparison
to our assay methods, and as such, further research into FXI is necessary.
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Reaction Rate

XI + IIa → XI:IIa 1× 108M−1s−1

XI:IIa → XI + IIa 3.57s−1

XI:IIa → XIa + IIa 1.43s−1

XI + XIa → XI:XIa 1× 108M−1s−1

XI:XIa → XI + XIa 4.87s−1

XI:XIa → XIa + XIa 0.13s−1

XIa + AT → XIa:AT 167M−1s−1

IX + XIa → IX:XIa 1× 108M−1s−1

IX:XIa → IX + XIa 34.25s−1

IX:XIa → IXa + XIa 1.25s−1

Table 5.1: The FXI reactions and rates that were added to the Danforth model,
using a mass action law version of the reaction scheme and rates from the Tyurin
model.

5.3.1 Changes to FXI Activation

Factor XI was first discovered to be activated in the absence of FXIIa when in
the presence of dextran sulphate, a non-physiological negatively charged surface.
This was demonstrated to occur through both an auto-activation by FXIa and
activation by FIIa [96, 116]. It was then later shown that other negative surfaces,
such as polyphosphate (commonly shortened to polyP, released from platelets)
and nucleic acids, can also stimulate FXI activation, with polyP believed to be
the physiological activation surface [117, 118, 119, 120]. More recently it has been
discovered that FIIa activation of FXI can be stimulated by negatively charged
phospholipids such as PS (phosphatidylserine) [121], which are present in our as-
say. Due to the heavily surface dependent nature of FXI activation and the fact
that neither of the sources we used measure this activation on phospholipid sur-
faces, we likely need updated reaction rates for FXI activation.

We will make use of two new sources for FXI activation [118, 121]. One of
these sources [121] measures FXI activation by FIIa at a variety of phospholipid
compositions and concentrations, and in the presence of polyP. The other source
[118] measures FXI activation by FXIa in the presence of varying lengths and
concentrations of polyP, which we will use to estimate the rates in the presence of
phospholipids.

For the activation of FXI by FIIa, the data has been digitized using WebPlot-
Digitizer [122] and linearly interpolated to estimate the reaction rate for 4µM of
50:50 PC:PS vesicles. This source also gives data for different phospholipid com-
positions using 50µM of PC:PS with varying composition. Since our assay used
28.5% PS, we have then scaled this rate by the ratio between 50% PS composition
and 28.5% PS composition (28.5% estimated through linear interpolation).

The linearly interpolated rate for 4µM of 50:50 PC:PS vesicles is estimated
to be 8.55 × 10−3nM/min [121] for 1nM of FIIa and 30nM of FXI. The ratio
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Figure 5.7: Plots of multiple coagulation factors for the Danforth model (with
newly added FXI) for various FXI activation rates. Both the kcat for FXI activation
by FIIa and the kcat for FXI activation by FXIa are scaled by the values given
in the legend. Plots of various coagulation factors are then given using pooled
plasma initial conditions. The values of k+ and k− are not adjusted to ensure the
same Km.

of 28.5% PS composition to 50% PS composition, for 50µM of PC:PS is esti-
mated to be 23.9%. This gives an estimated second order rate for 4µM of PC:PS
(71.5:28.5) of kcat

Km
= 1136M−1s−1. Using a typical Km = 5× 10−8M , we estimate

kcat = 5.68× 10−5s−1.

Reaction rates have been reported for FXI auto-activation [118] using 4µM of
polyP at varying polymer lengths. This source also gives reaction rates for varying
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Figure 5.8: Plots of multiple coagulation factors for the Tyurin model for various
FXI activation rates. Both the kcat for FXI activation by FIIa and the kcat for FXI
activation by FXIa are scaled by the values given in the legend. Plots of various
coagulation factors are then given using pooled plasma initial conditions.

concentrations of polyP at a handful of lengths for activation by FIIa.

We use this data to estimate both a ratio between 1µM of polyP and 4µM
of polyP for activation by FIIa, and a ratio between 1µM of polyP at a length
of 70mer and our estimated phospholipid composition for activation by FIIa. We
combine these ratios with the reaction rate for activation by FXIa in the presence
of 4µM of polyP to estimate a rate for activation by FXIa in our phospholipid
composition.
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Figure 5.9: Plots of multiple coagulation factors for the Tyurin model for various
FXI activation rates. The inhibitors α1 − AT and α2 − AP have been removed
to better match the FXIa curves of the Danforth model. Both the kcat for FXI
activation by FIIa and the kcat for FXI activation by FXIa are scaled by the
values given in the legend. Plots of various coagulation factors are then given
using pooled plasma initial conditions.

The second order rate constant for activation by FXIa, measured with 4µM of
70mer polyP, is kcat

Km
= 1.89 × 105M−1s−1. The ratio between 1µM and 4µM of

polyP for activation by FIIa, using 65mer polyP, is 33%. The ratio between 1µM
of 70mer polyP and our phospholipid composition for activation by FIIa (calcu-
lated using data from [121]) is 5%. This gives an estimated second order rate for
FXI auto-activation using our phospholipid composition of kcat

Km
= 3065M−1s−1.

Using a typical Km = 5× 10−8M , this gives kcat = 1.53× 10−4s−1.
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These new rates for FXI activation can then be used in an updated model.

5.4 Shortening the Long Lagtime
The previous versions of the Unified Model all present a long lagtime but the pre-
vious models, those that the Unified Model is based on, do not all feature such a
long lagtime. When we previously investigated this in Chapter 3, we found the
interactions between TF:VIIa and FXa to be the most likely cause and specifi-
cally mentioned TF:VII activation by FXa as the likely cause. In this section, we
have continued this work, expanding upon it to identify more possible reactions
which influence the lagtime based on our prior distributions. We have compared
the reaction rates of the Unified Model with those of the previous models for the
reactions in the TF:VIIa, Xa:Va, and IIa modules. Of these reactions, the k+ rates
for TF:VII and TF:VIIa appear to be the key difference. Changing these rates to
be more in line with the previous models reduces the lagtime from 10 minutes to
5 minutes.

This issue was also noticed in the Tyurin model (which has similar k+ rates
to the Unified models), demonstrated in Section 2.4, where activation by FVIIa,
instead of TF:VIIa, was amplified relative to the other models to account for this.
However, we have three sources for the TF:VIIa association rate which are fairly
consistent in value and none of which reach the more extreme rates used by the
other previous models. This suggests that, although the reason we have a longer
lagtime than the previous models is due to using this lower association rate, there
should be a more likely reaction rate which can be adjusted to fix this lagtime while
maintaining realistic values. Figure 5.10 demonstrates the effect of increasing the
association rates for TF:VII and TF:VIIa to match those used in the Hockin model.

Figure 5.10: The thrombin generation curves for two different sets of reaction rates:
the default rates, given in black; and the increased reaction rates for TF:VII and
TF:VIIa association (using the Hockin models association rates), given in red.

To investigate other possible causes, we have varied the reaction rates in the
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Reduced Unified Model along the priors (where defined for the Unified Model),
using the 5th and 95th percentiles. This identified seven reactions which, when
their rates were varied, could shorten the lagtime to 5 minutes or below. These
reactions are given in Table 5.2, along with the smallest lagtime (out of the 5th or
95th percentiles for either kcat or Km) and the standard deviation used to define
the priors. Five of the seven reactions use a wide prior standard deviation of 2.5
because we only have one source available for these reactions. The remaining two
reactions have multiple sources and therefore use smaller prior standard devia-
tions. It seems most likely that the inaccuracy comes from these two reactions
rather than falling on the outer limits of the wide prior distributions. Figure 5.11
shows thrombin generation curves for these two reactions for the 5th and 95th
percentile rates and the default rates. The first of these reactions, activation of
TF:VII by FXa, was identified previously in Chapter 3. The second reaction is
activation of FX by TF:VIIa, which we have many sources for, but still shows a
similar magnitude of effect.

Figure 5.11: The thrombin generation curves for varying the activation of TF:VII
by FXa and for varying the activation of FX by TF:VIIa.

Reaction Smallest Lagtime (mins) Prior Standard Deviation

VII Xa→ VIIa 4 2.5
TF:VII Xa→ TF:VIIa 4 1.49
TF:VII IXa→ TF:VIIa 5 2.5

X TF :V IIa→ Xa 4 0.63
XI XIa→ XIa 3 2.5
IX V IIa→ IXa 2 2.5

Table 5.2: The reactions which can produce a lagtime of under five minutes while
maintaining realistic reaction rates.
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5.5 New Modules
When new reactions were added to the Unified Model to form the Expanded
Unified Model, the reaction rates were reused from the previous models. These
reactions included many new inhibitors such as α1 − AT and α2 − AP , which we
have now found to be significant in their effect on factor XIa. To ensure the reac-
tion rates are accurate for these reactions, we have created a new module, named
the Other Inhibitors module. This module allows us to use multiple sources and
investigate the original sources used for the reactions. We have also built the Fib-
rinogen module, although this has a slightly different structure compared to the
other modules as the fibrinogen reactions are based off another model which has
been well validated. We have still allowed variation of these rates in the priors,
however, the standard deviations of these priors are reduced from 2.5 to 1.5 to
account for the validation in this module.

5.6 Improved Unified Model
Applying these changes give us the Improved Unified Model. The updated mod-
ule documents are given in Appendix E. The reactions, default reaction rates and
prior distributions for the resulting model are given in Table 5.3.

5.6.1 Model Fitting

We fit the model through both Gradient Descent and ABC-SMC, with five-fold
cross validation. The fitted reaction rates are given in Table 5.4. The fitting
results, presented through the ETP metrics; cost (with cross validation); ETP
correlation scatter graphs; and thrombin generation curves are given in Table 5.5,
Table 5.6, Figure 5.12, and Figure 5.14, respectively. The Improved Unified Model
ODEs and fitted reaction rates in mass action form are given in Appendices A and
B.

Model performance is improved compared with previous version of the Unified
Model in most metrics, but the model is still a poor predictive tool. Other con-
clusions, such as the change in the shape of the thrombin generation curves, are
identical to the previous versions of the Unified Model.
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Reaction Rates Priors

TF + VII ↔ TF:VII k+ = 1.25× 105M−1s−1,
k− = 3.75× 10−4s−1

Kd ∼ 10 ∧N(−8.53, 0.582),
k+ ∼ 10 ∧N(5.10, 0.562)

TF + VIIa ↔ TF:VIIa k+ = 1.3× 105M−1s−1,
k− = 4.16× 10−4s−1

Kd ∼ 10 ∧N(−8.50, 0.552),
k+ ∼ 10 ∧N(5.11, 0.232)

VII + Xa ↔ VII:Xa k+ = 1× 108M−1s−1, k− = 105s−1 Km ∼ 10 ∧N(−5.92, 2.52),
VII:Xa → VIIa + Xa kcat = 15.2s−1 kcat ∼ 10 ∧N(1.18, 2.52)

TF:VII + Xa ↔ TF:VII:Xa k+ = 1× 108M−1s−1, k− = 7.34s−1 Km ∼ 10 ∧N(−6.98, 1.492),
TF:VII:Xa → TF:VIIa + Xa kcat = 3.16s−1 kcat ∼ 10 ∧N(0.5, 0.962)

VII + IIa ↔ VII:IIa k+ = 1× 108M−1s−1, k− = 270s−1 Km ∼ 10 ∧N(−5.57, 2.52),
VII:IIa → VIIa + IIa kcat = 6.1× 10−2s−1 kcat ∼ 10 ∧N(−1.21, 2.52)

TF:VII + IIa ↔ TF:VII:IIa k+ = 1× 108M−1s−1, k− = 270s−1 Km ∼ 10 ∧N(−5.57, 2.52),
TF:VII:IIa → TF:VIIa + IIa kcat = 6.1× 10−2s−1 kcat ∼ 10 ∧N(−1.21, 2.52)

VII + IXa ↔ VII:IXa k+ = 1× 108M−1s−1, k− = 170s−1 Km ∼ 10 ∧N(−5.77, 2.52),
VII:IXa → VIIa + IXa kcat = 0.32s−1 kcat ∼ 10 ∧N(−0.49, 2.52)

TF:VII + IXa ↔ TF:VII:IXa k+ = 1× 108M−1s−1, k− = 170s−1 Km ∼ 10 ∧N(−5.77, 2.52),
TF:VII:IXa → TF:VIIa + IXa kcat = 0.32s−1 kcat ∼ 10 ∧N(−0.49, 2.52)
VII + TF:VIIa ↔ VII:TF:VIIa k+ = 1× 108M−1s−1, k− = 319s−1 Km ∼ 10 ∧N(−5.49, 2.52),
VII:TF:VIIa → VIIa + TF:VIIa kcat = 1.4s−1 kcat ∼ 10 ∧N(0.15, 2.52)
TF:VIIa + AT → TF:VIIa:AT k = 450M−1s−1 k ∼ 10 ∧N(2.65, 2.52)
X + TF:VIIa ↔ X:TF:VIIa k+ = 1× 108M−1s−1, k− = 26s−1 Km ∼ 10 ∧N(−6.5, 0.582),
X:TF:VIIa → Xa + TF:VIIa kcat = 6s−1 kcat ∼ 10 ∧N(0.78, 0.632)

X + VIIa ↔ X:VIIa k+ = 1× 108M−1s−1, k− = 110s−1 Km ∼ 10 ∧N(−5.96, 0.912),
X:VIIa → Xa + VIIa kcat = 3.2× 10−4s−1 kcat ∼ 10 ∧N(−3.49, 0.132)

X + IXa:VIIIa ↔ X:IXa:VIIIa k+ = 1× 108M−1s−1, k− = 6.31s−1 Km ∼ 10 ∧N(−7.07, 0.372),
X:IXa:VIIIa → Xa + IXa:VIIIa kcat = 2.19s−1 kcat ∼ 10 ∧N(0.34, 0.822)

X + IXa ↔ X:IXa k+ = 1× 108M−1s−1, k− = 8s−1 Km ∼ 10 ∧N(−7.10, 0.862),
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X:IXa → Xa + IXa kcat = 6.3× 10−4s−1 kcat ∼ 10 ∧N(−3.20, 0.912)
V + IIa ↔ V:IIa k+ = 1× 108M−1s−1, k− = 6.87s−1 Km ∼ 10 ∧N(−7.14, 2.52),
V:IIa → Va + IIa kcat = 0.3s−1 kcat ∼ 10 ∧N(−0.53, 0.132)
V + Xa ↔ V:Xa k+ = 1× 108M−1s−1, k− = 0.997s−1 Km ∼ 10 ∧N(−7.98, 2.52),
V:Xa → Va + Xa kcat = 4.3× 10−2s−1 kcat ∼ 10 ∧N(−1.37, 2.52)
Xa + Va ↔ Xa:Va k+ = 1.6× 109M−1s−1,

k− = 5.04× 10−2s−1

Kd ∼ 10 ∧N(−10.5, 1.512),
k+ ∼ 10 ∧N(9.20, 2.52)

Xa + AT → Xa:AT k = 2.1× 103M−1s−1 k ∼ 10 ∧N(3.32, 0.392)
Xa:Va + AT → Xa:Va:AT k = 367M−1s−1 k ∼ 10 ∧N(2.56, 2.52)

II + Xa ↔ II:Xa k+ = 1× 108M−1s−1, k− = 130s−1 Km ∼ 10 ∧N(−5.88, 0.912),
II:Xa → IIa + Xa kcat = 9.3× 10−3s−1 kcat ∼ 10 ∧N(−2.03, 0.862)

II + Xa:Va ↔ II:Xa:Va k+ = 1× 108M−1s−1, k− = 34s−1 Km ∼ 10 ∧N(−6.16, 0.342),
II:Xa:Va → IIa + Xa:Va kcat = 36s−1 kcat ∼ 10 ∧N(1.55, 0.192)

IIa + AT → IIa:AT k = 6.1× 103M−1s−1 k ∼ 10 ∧N(3.79, 0.082)
XI + IIa ↔ XI:IIa k+ = 1× 108M−1s−1, k− = 5s−1 Km ∼ 10 ∧N(−7.3, 2.52),
XI:IIa → XIa + IIa kcat = 5.68× 10−5s−1 kcat ∼ 10 ∧N(−4.25, 2.52)
XI + XIa ↔ XI:XIa k+ = 1× 108M−1s−1, k− = 5s−1 Km ∼ 10 ∧N(−7.3, 2.52),
XI:XIa → XIa + XIa kcat = 1.53× 10−4s−1 kcat ∼ 10 ∧N(−3.82, 2.52)
XIa + AT → XIa:AT k = 400M−1s−1 k ∼ 10 ∧N(2.6, 0.142)

IX + TF:VIIa ↔ IX:TF:VIIa k+ = 1× 108M−1s−1, k− = 11.3s−1 Km ∼ 10 ∧N(−6.93, 0.492),
IX:TF:VIIa → IXa + TF:VIIa kcat = 0.43s−1 kcat ∼ 10 ∧N(−0.37, 0.302)

IX + VIIa ↔ IX:VIIa k+ = 1× 108M−1s−1, k− = 0.8s−1 Km ∼ 10 ∧N(−8.10, 2.52),
IX:VIIa → IXa + VIIa kcat = 1.62× 10−4s−1 kcat ∼ 10 ∧N(−3.79, 2.52)
IX + XIa ↔ IX:XIa k+ = 1× 108M−1s−1, k− = 41.3s−1 Km ∼ 10 ∧N(−6.38, 0.372),
IX:XIa → IXa + XIa kcat = 0.74s−1 kcat ∼ 10 ∧N(−0.13, 0.652)
VIII + IIa ↔ VIII:IIa k+ = 1× 108M−1s−1, k− = 13.9s−1 Km ∼ 10 ∧N(−6.83, 2.52),
VIII:IIa → VIIIa + IIa kcat = 0.8s−1 kcat ∼ 10 ∧N(−0.09, 0.062)
VIII + Xa ↔ VIII:Xa k+ = 1× 108M−1s−1, k− = 14.5s−1 Km ∼ 10 ∧N(−6.83, 2.52),
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VIII:Xa → VIIIa + Xa kcat = 0.16s−1 kcat ∼ 10 ∧N(−0.79, 2.52)
VIIIa ↔ VIIIa1L + VIIIa2 k+ = 5.85× 10−3s−1,

k− = 2.19× 104M−1s−1

Kd ∼ 10 ∧N(−6.58, 0.022),
k+ ∼ 10 ∧N(−2.24, 2.52)†

IXa:VIIIa → IXa + VIIIa1L + VIIIa2 k = 1.4× 10−3M−1s−1 k ∼ 10 ∧N(−2.85, 2.52)
IXa + VIIIa ↔ IXa:VIIIa k+ = 1× 107M−1s−1,

k− = 3.5× 10−2s−1

Kd ∼ 10 ∧N(−8.45, 0.222),
k+ ∼ 10 ∧N(7, 2.52)

IXa + AT → IXa:AT k = 490M−1s−1 k ∼ 10 ∧N(2.69, 2.52)
IXa:VIIIa + AT → IXa:VIIIa:AT k = 317M−1s−1 k ∼ 10 ∧N(2.5, 2.52)

Xa + TFPI ↔ Xa:TFPI k+ = 3.8× 106M−1s−1,
k− = 3.5× 10−4s−1

Kd ∼ 10 ∧N(−10.03, 0.92),
k+ ∼ 10 ∧N(6.58, 0.882)

TF:VIIa + Xa:TFPI ↔ TF:VIIa:Xa:TFPI k+ = 8.9× 106M−1s−1,
k− = 1.34× 10−3s−1

Kd ∼ 10 ∧N(−9.82, 2.52),
k+ ∼ 10 ∧N(6.95, 0.122)

IIa + α1 − AT → IIa:α1 − AT k = 72M−1s−1 k ∼ 10 ∧N(1.86, 0.252)
Xa + α1 − AT → Xa:α1 − AT k = 262M−1s−1 k ∼ 10 ∧N(2.42, 2.52)

Xa:Va + α1 − AT → Xa:Va:α1 − AT k = 262M−1s−1 k ∼ 10 ∧N(2.42, 2.52)
XIa + α1 − AT → XIa:α1 − AT k = 82M−1s−1 k ∼ 10 ∧N(1.91, 0.122)
XIa + α2 − AP → XIa:α2 − AP k = 656M−1s−1 k ∼ 10 ∧N(2.82, 0.262)
IIa + α2 −M → IIa:α2 −M k = 488M−1s−1 k ∼ 10 ∧N(2.69, 2.52)
XIa + C1-inh → XIa:C1-inh k = 1.1× 103M−1s−1 k ∼ 10 ∧N(3.04, 0.32)
XIa + PAI-1 → XIa:PAI-1 k = 2.1× 105M−1s−1 k ∼ 10 ∧N(5.32, 2.52)

Fbg + IIa ↔ Fbg:IIa k+ = 1× 108M−1s−1,
k− = 636s−1

k+ ∼ 10 ∧N(8, 1.52),
k− ∼ 10 ∧N(2.8, 1.52)

Fbg:IIa → Fbn1 + IIa + FPA kcat = 84s−1 kcat ∼ 10 ∧N(1.92, 1.52)
Fbn1 + IIa ↔ Fbn1:IIa k+ = 1× 108M−1s−1,

k− = 743s−1

k+ ∼ 10 ∧N(8, 1.52),
k− ∼ 10 ∧N(2.87, 1.52)

Fbn1:IIa → Fbn2 + IIa + FPB kcat = 7.45s−1 kcat ∼ 10 ∧N(0.87, 1.52)
Fbn2 + IIa ↔ Fbn2:IIa k+ = 1× 108M−1s−1, k− = 1× 103s−1 k+ ∼ 10∧N(8, 1.52), k− ∼ 10∧N(3, 1.52)

Fbn1:IIa + AT → Fbn1:IIa:AT k = 6.1× 103M−1s−1 k ∼ 10 ∧N(3.79, 1.52)
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Fbn2:IIa + AT → Fbn2:IIa:AT k = 3.8× 103M−1s−1 k ∼ 10 ∧N(3.58, 1.52)
Substrate + IIa ↔ Substrate:IIa k+ = 1× 108M−1s−1, k− = 1.95× 105s−1 Km ∼ 10 ∧N(−2.71, 02),

Substrate:IIa → Activated Substrate + IIa kcat = 1.91s−1 kcat ∼ 10 ∧N(0.28, 02)

Table 5.3: The reactions used in the Improved Unified Model with their corresponding default reaction rates and priors.

Reaction Gradient Descent Rates ABC-SMC Rates

TF + VII ↔ TF:VII k+ = 1.87× 106M−1s−1,
k− = 5.62× 10−3s−1

k+ = 1.22× 105M−1s−1,
k− = 3.66× 10−4s−1

TF + VIIa ↔ TF:VIIa k+ = 1.01× 106M−1s−1,
k− = 3.22× 10−3s−1

k+ = 8.19× 104M−1s−1,
k− = 2.62× 10−4s−1

VII + Xa ↔ VII:Xa k+ = 1× 108M−1s−1, k− = 109s−1 k+ = 1×1011M−1s−1, k− = 1.37×103s−1

VII:Xa → VIIa + Xa kcat = 119s−1 kcat = 681s−1

TF:VII + Xa ↔ TF:VII:Xa k+ = 1× 109M−1s−1, k− = 34.5s−1 k+ = 1× 108M−1s−1, k− = 0.05s−1

TF:VII:Xa → TF:VIIa + Xa kcat = 23.4s−1 kcat = 0.75s−1

VII + IIa ↔ VII:IIa k+ = 1× 108M−1s−1, k− = 270s−1 k+ = 1× 108M−1s−1, k− = 270s−1

VII:IIa → VIIa + IIa kcat = 1.15× 10−4s−1 kcat = 4.92× 10−3s−1

TF:VII + IIa ↔ TF:VII:IIa k+ = 1× 108M−1s−1, k− = 2.56× 103s−1 k+ = 1×1010M−1s−1, k− = 4.96×103s−1

TF:VII:IIa → TF:VIIa + IIa kcat = 2.05× 10−4s−1 kcat = 3.02× 103s−1

VII + IXa ↔ VII:IXa k+ = 1× 108M−1s−1, k− = 1.28× 103s−1 k+ = 1× 108M−1s−1, k− = 3.13s−1

VII:IXa → VIIa + IXa kcat = 2.69s−1 kcat = 1.53s−1

TF:VII + IXa ↔ TF:VII:IXa k+ = 1× 108M−1s−1, k− = 7.25× 102s−1 k+ = 1× 108M−1s−1, k− = 12.3s−1

TF:VII:IXa → TF:VIIa + IXa kcat = 1.45s−1 kcat = 0.026s−1

VII + TF:VIIa ↔ VII:TF:VIIa k+ = 1× 108M−1s−1, k− = 1.46× 103s−1 k+ = 1× 108M−1s−1, k− = 4.3× 103s−1

VII:TF:VIIa → VIIa + TF:VIIa kcat = 1.4s−1 kcat = 1.4s−1

TF:VIIa + AT → TF:VIIa:AT k = 2.47× 103M−1s−1 k = 5.56× 103M−1s−1

†k+ here refers to the forward rate rather than the association/binding rate. This means that k− is given by k+

Kd
.

213



X + TF:VIIa ↔ X:TF:VIIa k+ = 1× 1011M−1s−1, k− = 126s−1 k+ = 1× 108M−1s−1, k− = 94.4s−1

X:TF:VIIa → Xa + TF:VIIa kcat = 15.8s−1 kcat = 2.81s−1

X + VIIa ↔ X:VIIa k+ = 1× 108M−1s−1, k− = 398s−1 k+ = 1× 108M−1s−1, k− = 15.5s−1

X:VIIa → Xa + VIIa kcat = 3.2× 10−4s−1 kcat = 3.2× 10−4s−1

X + IXa:VIIIa ↔ X:IXa:VIIIa k+ = 1× 1011M−1s−1, k− = 50.1s−1 k+ = 1× 109M−1s−1, k− = 59.4s−1

X:IXa:VIIIa → Xa + IXa:VIIIa kcat = 16.7s−1 kcat = 6.96s−1

X + IXa ↔ X:IXa k+ = 1× 108M−1s−1, k− = 0.187s−1 k+ = 1× 108M−1s−1, k− = 0.96s−1

X:IXa → Xa + IXa kcat = 2.15× 10−4s−1 kcat = 1.45× 10−3s−1

V + IIa ↔ V:IIa k+ = 1× 108M−1s−1, k− = 31.2s−1 k+ = 1× 1010M−1s−1, k− = 1.20s−1

V:IIa → Va + IIa kcat = 3.18s−1 kcat = 0.33s−1

V + Xa ↔ V:Xa k+ = 1× 108M−1s−1, k− = 6.14s−1 k+ = 1× 108M−1s−1, k− = 3.34× 103s−1

V:Xa → Va + Xa kcat = 0.299s−1 kcat = 1.33s−1

Xa + Va ↔ Xa:Va k+ = 1.39× 1010M−1s−1, k− = 0.338s−1 k+ = 9.24× 1010M−1s−1, k− = 0.35s−1

Xa + AT → Xa:AT k = 5.23× 103M−1s−1 k = 1.36× 103M−1s−1

Xa:Va + AT → Xa:Va:AT k = 3.52× 103M−1s−1 k = 0.27M−1s−1

II + Xa ↔ II:Xa k+ = 1× 108M−1s−1, k− = 903s−1 k+ = 1× 108M−1s−1, k− = 31.7s−1

II:Xa → IIa + Xa kcat = 9.3× 10−3s−1 kcat = 9.3× 10−3s−1

II + Xa:Va ↔ II:Xa:Va k+ = 1× 108M−1s−1, k− = 0.462s−1 k+ = 1× 108M−1s−1, k− = 145s−1

II:Xa:Va → IIa + Xa:Va kcat = 83.9s−1 kcat = 41.1s−1

IIa + AT → IIa:AT k = 4.02× 103M−1s−1 k = 5.39× 103M−1s−1

XI + IIa ↔ XI:IIa k+ = 1× 108M−1s−1, k− = 95s−1 k+ = 1× 108M−1s−1, k− = 2.13s−1

XI:IIa → XIa + IIa kcat = 9.83× 10−5s−1 kcat = 1.65× 10−5s−1

XI + XIa ↔ XI:XIa k+ = 1× 108M−1s−1, k− = 22.4s−1 k+ = 1× 108M−1s−1, k− = 0.051s−1

XI:XIa → XIa + XIa kcat = 2.94× 10−4s−1 kcat = 1.14× 10−4s−1

XIa + AT → XIa:AT k = 400M−1s−1 k = 400M−1s−1

IX + TF:VIIa ↔ IX:TF:VIIa k+ = 1× 108M−1s−1, k− = 87.2s−1 k+ = 1× 108M−1s−1, k− = 4.02s−1

IX:TF:VIIa → IXa + TF:VIIa kcat = 0.43s−1 kcat = 0.43s−1

IX + VIIa ↔ IX:VIIa k+ = 1× 108M−1s−1, k− = 0.817s−1 k+ = 1× 108M−1s−1, k− = 6.46s−1
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IX:VIIa → IXa + VIIa kcat = 1.34× 10−4s−1 kcat = 9.11× 10−5s−1

IX + XIa ↔ IX:XIa k+ = 1× 108M−1s−1, k− = 689s−1 k+ = 1× 108M−1s−1, k− = 24.3s−1

IX:XIa → IXa + XIa kcat = 0.924s−1 kcat = 0.33s−1

VIII + IIa ↔ VIII:IIa k+ = 1× 109M−1s−1, k− = 1.28s−1 k+ = 1× 108M−1s−1, k− = 0.94s−1

VIII:IIa → VIIIa + IIa kcat = 0.8s−1 kcat = 0.8s−1

VIII + Xa ↔ VIII:Xa k+ = 1× 108M−1s−1, k− = 56.5s−1 k+ = 1× 108M−1s−1, k− = 62.7s−1

VIII:Xa → VIIIa + Xa kcat = 1.26s−1 kcat = 2.74s−1

VIIIa ↔ VIIIa1L + VIIIa2 k+ = 1.82× 10−2s−1,
k− = 6.86× 104M−1s−1

k+ = 3.88× 10−2s−1,
k− = 1.47× 105M−1s−1

IXa:VIIIa → IXa + VIIIa1L + VIIIa2 k = 8.96× 10−3M−1s−1 k = 0.037M−1s−1

IXa + VIIIa ↔ IXa:VIIIa k+ = 5.51× 107M−1s−1, k− = 0.306s−1 k+ = 1.26× 1011M−1s−1, k− = 297s−1

IXa + AT → IXa:AT k = 2.79× 103M−1s−1 k = 1.66M−1s−1

IXa:VIIIa + AT → IXa:VIIIa:AT k = 2.45× 103M−1s−1 k = 2.35× 103M−1s−1

Xa + TFPI ↔ Xa:TFPI k+ = 1.39× 107M−1s−1,
k− = 1.28× 10−3s−1

k+ = 1.11× 106M−1s−1,
k− = 1.03× 10−4s−1

TF:VIIa + Xa:TFPI ↔ TF:VIIa:Xa:TFPI k+ = 8.9× 106M−1s−1,
k− = 1.34× 10−3s−1

k+ = 8.9× 106M−1s−1,
k− = 1.34× 10−3s−1

IIa + α1 − AT → IIa:α1 − AT k = 156M−1s−1 k = 102M−1s−1

Xa + α1 − AT → Xa:α1 − AT k = 87.5M−1s−1 k = 124M−1s−1

Xa:Va + α1 − AT → Xa:Va:α1 − AT k = 4.43× 103M−1s−1 k = 4.24M−1s−1

XIa + α1 − AT → XIa:α1 − AT k = 82M−1s−1 k = 82M−1s−1

XIa + α2 − AP → XIa:α2 − AP k = 656M−1s−1 k = 656M−1s−1

IIa + α2 −M → IIa:α2 −M k = 465M−1s−1 k = 4.98M−1s−1

XIa + C1-inh → XIa:C1-inh k = 1.1× 103M−1s−1 k = 1.1× 103M−1s−1

XIa + PAI-1 → XIa:PAI-1 k = 1.09× 106M−1s−1 k = 2.96× 105M−1s−1

Fbg + IIa ↔ Fbg:IIa k+ = 1.42× 108M−1s−1,
k− = 6.57× 103s−1

k+ = 1.10× 108M−1s−1,
k− = 77.4s−1

Fbg:IIa → Fbn1 + IIa + FPA kcat = 299s−1 kcat = 291s−1
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Fbn1 + IIa ↔ Fbn1:IIa k+ = 6.51× 108M−1s−1,
k− = 1.59× 103s−1

k+ = 1.15× 107M−1s−1,
k− = 1.61× 104s−1

Fbn1:IIa → Fbn2 + IIa + FPB kcat = 50s−1 kcat = 17.8s−1

Fbn2 + IIa ↔ Fbn2:IIa k+ = 9.62× 104M−1s−1,
k− = 2.93× 103s−1

k+ = 3.48× 107M−1s−1,
k− = 2.79× 103s−1

Fbn1:IIa + AT → Fbn1:IIa:AT k = 864M−1s−1 k = 3.13× 104M−1s−1

Fbn2:IIa + AT → Fbn2:IIa:AT k = 2.16× 104M−1s−1 k = 106M−1s−1

Substrate + IIa ↔ Substrate:IIa k+ = 1× 108M−1s−1, k− = 1.95× 105s−1 k+ = 1× 108M−1s−1, k− = 1.95× 105s−1

Substrate:IIa → Activated Substrate + IIa kcat = 1.91s−1 kcat = 1.91s−1

Table 5.4: The reactions used in the Improved Unified Model with their corresponding fitted reaction rates from both the Gradient
Descent and the ABC-SMC algorithms.
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Fitting Method R2 RMSEfit RMSE1:1

Improved Unified Model
No fitting 0.08 29.8 34.3

Gradient Descent 0.24 26.9 29.7
ABC-SMC 0.21 27.3 31.1

Table 5.5: The predictive accuracy of the Improved Unified Model, before fitting
and after gradient descent and ABC-SMC fitting.

Fitting Method Training Cost Test Cost

No fitting N/A 298

Gradient Descent Cross Validation 167±6 164±22
Full 167 N/A

ABC-SMC Cross Validation 178±12 179±34
Full 175 N/A

Table 5.6: The results from the Improved Unified Model fitting process. Cross
validation costs are given as mean±1

2
×range from the five folds.

Figure 5.12: The ETP correlation scatter graphs for the Improved Unified Model
for the default, gradient descent fitted, and ABC-SMC fitted reaction rates.

Figure 5.13 shows the OD curves for the individuals with the best and worst
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ETP predictions, given for the gradient descent fitted rates and the ABC-SMC fit-
ted rates. The worst predicted individuals draw similar conclusions to those seen
previously, suggesting we may not have achieved partial prothrombin conversion.
The best predicted individual for the gradient descent fitted rates matches well
in both lagtime and shape, while the ABC-SMC fitted rates show a longer model
predicted lagtime and smoother shape.

Figure 5.13: The Improved Unified Model predicted OD curve and the experimen-
tal OD curve for the individuals with the best and worst predicted ETP, separated
by the Gradient Descent (top) and ABC-SMC (bottom) fitted rates.

5.6.2 Partial Prothrombin Conversion

One of the improvements we aimed to make with this new model was to build a
model which can predict partial prothrombin conversion while using realistic re-
action rates. To test if this has worked and to see if this property continues after
fitting, prothrombin conversion curves are given in Figure 5.15.

We were unable to achieve partial prothrombin conversion in the Improved
Unified Model. The reason for this was investigated by comparing the reaction
rates in the Improved Unified Model to that of the Reduced Unified Model that
the partial prothrombin conversion result was achieved with. It was found that
the result from the Reduced Unified Model relied on the use of the fitted rates,
specifically on the large k− for the activation of FII by Xa:Va given in the fitted
rates (Km = 3 × 10−5M,kcat = 365s−1 ⇒ k− = 2.6 × 103s−1) compared with the
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Figure 5.14: The thrombin generation curves for the Improved Unified Model,
before fitting and after gradient descent and ABC-SMC fitting.

Figure 5.15: The prothrombin conversion curves are given for the Improved Unified
Model with the default, gradient descent fitted, and ABC-SMC fitted reaction
rates.

default rates (Km = 7 × 10−7M,kcat = 36s−1 ⇒ k− = 34s−1). It may be the
case that either a high k− for FII activation by Xa:Va or inhibition of the bound
complex II:Xa:Va is needed to properly inhibit Xa:Va, however, it appears more
data is needed on the inhibition of the complexes and on which factors are fully
or partially converted before partial prothrombin conversion can be achieved by
the models.

5.6.3 Model Uncertainty

Due to the large variation in reaction rates, Hemker proposed that the models
may result in significant amounts of uncertainty in their predictions [76]. Most
reaction rates in the previous models are defined using a single source, with only
10% of reaction rates using multiple sources, all of which then take an average
value. Thanks to our prior distributions, allowing us to quantify variation be-
tween different sources for many reaction rates, we can provide an answer as to
whether or not this variation results in significant model uncertainty.
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To quantify the variation in the reaction rates, we use our prior distributions
with one change. The variation in reaction rates that only have a single source or
use approximated values, currently assumed to be a log-normal standard deviation
of 2.5, is instead set to a log-normal standard deviation of 0.5 (the average log-
normal standard deviation of the reaction rates with multiple sources). We then
draw 2000 samples from these edited prior distributions and use them to generate
2000 OD curves in the Improved Unified Model.

Figure 5.16 presents the resulting variation in these OD curves, showing the
median OD curve and both the central 50% and 90% of the variance in the OD
curves. We see a significant amount of uncertainty in the model predictions and
it is clear that identifying a single source for each reaction rate is insufficient if
precautions are not made to reproduce a particular experimental setting. Figure
5.17 shows the resulting uncertainty after fitting. It shows the variation in the
2000 sampled reaction rates from the ABC-SMC posterior distributions and the
variation is dramatically reduced compared with that before fitting. It appears
fitting the reaction rates is a suitable method to manage this uncertainty.

Figure 5.16: A measure of the uncertainty in model predictions through variation
across the prior distributions.

5.6.4 Effect of Healthy Variation in Other Inhibitors

During the fitting process, there are a handful of factors for which we do not have
patient specific data (α1−AT , α2−AP , α2−M , PAI-1 and C1-inh). Due to this,
we assume a fixed, healthy value for each of these inhibitors. It is possible that
varying these factors across a healthy range could produce a significant change in
the thrombin generation curves, suggesting that fitting without this data would
be unlikely to work.

We have gathered data on each of these factors to find a healthy range, given in
Table 5.7, and simulated thrombin generation curves using the Improved Unified
Model for 500 randomly sampled initial concentrations of these inhibitors from the
uniform hypercube defined by their healthy ranges. All model reaction rates were
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Figure 5.17: A measure of the uncertainty in model predictions, after fitting,
through variation across the ABC-SMC posterior distributions.

fixed at their default values. Figure 5.18 gives the mean and median thrombin
generation curves and 5th and 95th percentiles to show variation. We see that
varying across a healthy range for these inhibitors does not produce a significant
change in the thrombin generation curves, so it is unlikely that patient specific
data for these would improve model predictions.

Inhibitor Healthy Range Sources

α1 − AT 16µM to 32µM 0.9g/L to 1.75g/L [123]. 54kDa [124].
α2 − AP 0.4µM to 1.2µM Range of 45% to 128% [125]. Using our

default concentration of 0.95µM (other
sources report similarly, ∼ 1µM [126]).

α2 −M 2.365µM to 2.601µM 178.8± 8.5mg/dl [127]. 720kDa [128].
PAI-1 0.1pM to 0.4pM 5ng/ml to 20ng/ml [129]. 49kDa [130].
C1-inh 1µM to 6µM Mean: 0.25g/L, SD: 0.09g/L [131].

71kDa [132].

Table 5.7: The healthy concentrations for the inhibitors α1−AT , α2−AP , α2−M ,
PAI-1 and C1-inh.

5.7 Conclusions
After building the Improved Unified Model, we did not see significant improve-
ment compared to the previous work in Chapter 3. However, we did introduce
more qualitative improvements through more accurate rates for factor XI activa-
tion and the introduction of a new mechanism for complex inhibition which was
shown in a previous version of the Unified Model to predict partial prothrombin
conversion. We also further identified the cause for the long lagtime in the default
rates (Section 5.4) and included more accurate reaction rates for FXI activation
(Section 5.3). Finally, we showed that a model which uses a single source for
each reaction rate results in high levels of uncertainty in model predictions if the
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Figure 5.18: The distribution of thrombin generation curves under healthy varia-
tion of the inhibitors α1 − AT , α2 − AP , α2 −M , PAI-1 and C1-inh.

experimental conditions are not matched. In Section 5.6.3, we then showed that
fitting to a data set is sufficient to significantly reduce this uncertainty.

One point that we have not addressed in the model uncertainty is the use of
averaging multiple reaction rates to produce a single value. Some of the models
make use of this as a way to include multiple sources for each reaction rate. While
it is true that this would reduce the variation in the implemented reaction rates,
this does not necessarily mean that model uncertainty is improved. The use of
averaging the reaction rates requires variation between sources to be the result of
experimental noise, however, given that each source shows small variation upon
repeated measurements, and it is only between the different sources that large
variation occurs, it seems more likely that this variation is due to differing experi-
mental conditions, which cannot be improved by averaging across multiple sources.
It is possible that, if the experimental conditions were sufficiently similar to one
another, then the derived reaction rates could be used together without fitting.
However, given that many reaction rates still have only one or two sources, this is
not a viable method for the foreseeable future.

After showing that variation in the inhibitors that we do not have individual
level concentrations for is not the cause for a poor model fit (Section 5.6.4), we
now move ahead and begin a simulation study to assess the fitting methods we use.
Hopefully, this will grant us insight into how the model fitting can be improved
and if the model is lacking in its construction.
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Chapter 6

Simulation Study

6.1 Introduction
Through the development of multiple versions of the Unified Model, we have been
unable to accurately reproduce patient data across the cohort, including after fit-
ting. This could be due to discrepancies between the reactions used in the model
and the reactions involved in the assay that generated the data, or there could
be issues with the parameter fitting methods we are using. We have explored the
former through the use of different versions of the Unified Model in Chapters 3
and 5 and the previously completed data analysis in Section 4.4. In this chapter,
we explore the latter through a simulation study.

We will complete our simulation study in batches, each focusing on answering a
separate question about the fitting process. Each batch will complete the following
steps (further detailed in Figure 6.1 and in the methods section of batch 1):

1. Generate Data Sets

2. Parameter Fitting

3. Performance Evaluation Metrics

6.2 Batch 1 - Exploration of Fitting Methods
The first batch will be a basic assessment of the fitting methods we use with the
conclusions then informing the later batches.

6.2.1 Methods

Generate Data Sets

In order to generate the simulated data sets, we first require a set of reaction
rates. For this batch, the set of reaction rates is randomly sampled from the prior
distributions under the added condition that the shape of the resulting thrombin
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generation curve (for pooled plasma initial factor concentrations) should be real-
istic∗. Once we have the sampled set of reaction rates, which we term the ‘true’
rates, we can simulate the Improved Unified Model, using these reaction rates, for
the initial factor concentrations in the data set (measurements of TF, AT, TFPI
and factors II, V, VII, VIII, IX, X and XI for 333 individuals). We then extract
the chromogenic substrate concentrations and normalise them by the final con-
centration of the pooled plasma initial conditions to match the form of the data.
We repeat this to generate five different, independent sets of reaction rates and
their corresponding predicted OD curves to produce five repetitions (for brevity,
referred to here as reps). We do not add noise to the simulated data based on the
results in Section 3.3.2.

Parameter Fitting

We will use both the Gradient Descent and ABC-SMC fitting algorithms for our
parameter fitting, using similar methods to our previous fitting of the Improved
Unified Model. For this first batch, the reaction rates that would normally remain
fixed during fitting, determined using the method described in Chapter 3, are set
to the ‘true’ rates. This ensures the parameter space explored by the fitting meth-
ods contains the ‘true’ rates. We will then explore the consequences of using the
default values for these instead of the ‘true’ rates in the following batch. We use
the cost metric defined previously, and given again below in Equation (6.1), for
evaluating model fit in both fitting algorithms. The ABC-SMC algorithm uses the
prior distributions given for the Improved Unified Model (the same ones that were
used to sample the ‘true’ rates) and the parameters N = 2000, U = 200, ε0 = 400
(the same as for the Improved Unified Model fitting). Both fitting algorithms fit
the prior form of the reaction rates (Km, kcat, Kd, k+) and then convert these to the
mass action law form of the reaction rates (k+, k−, kcat, using k+ = 1×108M−1s−1

for enzymatic reactions) to simulate the model. In addition to this, we only fit
reaction rates which, when varied to the 5th and 95th percentiles of their priors,
give a significant change in the output (as defined in Section 3.2.5), specifically in
the chromogenic substrate concentration.

cost =

√∑n
i=1[
∑40

j=0((modelODi,j − dataODi,j)2)]

n
(6.1)

Performance Evaluation Metrics

To assess the quality of fit, we will utilise two performance evaluation metrics.

To assess how closely the model predictions are to the predictions made by
the ‘true’ rates, we use the cost metric which is used for the fitting process and is
given in Equation (6.1). The variables dataODi,j and modelODi,j represent the
values of the OD curve of individual i at time-point j (time-points are from 0 to
20 minutes in intervals of 30 seconds) predicted by the ‘true’ rates and the fitted

∗This removes curves that do not reach a peak, have unusual or extreme shapes, etc.
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reaction rates, respectively.

To evaluate how close the fitted reaction rates are to the ‘true’ rates, we use
RMSLE (Root Mean Squared Log Error), given by Equation (6.2), where ki is the
ith ‘true’ reaction rate and k̂i is the ith fitted reaction rate, both given in prior form.

RMSLE =

√√√√ 1

N

N∑
i=1

(log10(ki)− log10(k̂i))2 (6.2)

An overview of these methods is provided in Figure 6.1.

Figure 6.1: A flowchart outlining the steps in the first batch of the simulation
study.

6.2.2 Results

The results of the first batch of the simulation study are shown in Table 6.1. There
is a dramatic decrease in the cost after fitting, with four of the five reps achieving
a cost below 30 in each of the fitting methods and all reps achieving a cost below
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30 for at least one fitting method. The Improved Unified Model, when fitted to
patient data, achieved a cost of 167, with all other versions of the Unified Model
achieving similar costs. There appears to be a single repetition, rep 1, which the
fitting struggled to reproduce. None of the repetitions were able to identify reac-
tion rates that were similar to their respective ‘true’ rates, with all fitted rates
falling at around a RMSLE of 2 (on average the fitted reaction rates were a factor
of 100 away from the true rates).

So while we were able to achieve a significantly lower cost, we were not able
to recover the original parameters that were used to generate the data. In the
following two batches, we will investigate assumptions that are made during the
fitting process which may explain why this fitting achieves much lower cost than
when fitting to patient data.

Rep Default Gradient Descent ABC-SMC
Cost RMSLE Cost RMSLE Cost RMSLE

1 497.1 1.80 235.2 2.18 25.2 2.06
2 255.8 1.92 28.4 2.02 18.7 1.96
3 348.7 2.04 23.1 2.05 12.5 1.72
4 245.4 1.63 9.2 1.62 16.1 1.80
5 115.2 1.90 18.2 1.92 46.9 2.20

Mean 292.4 1.86 62.8 1.96 23.9 1.95

Table 6.1: Performance metrics for the batch 1 fitting. Metrics are given for
the default rates and the fitted reaction rates. The cost (Equation (6.1)) gives a
measure of the difference in the OD curves and RMSLE (Equation (6.2)) measures
the difference in the reaction rates (smaller is better for both metrics).

6.3 Batch 2 - Parameter Identifiability
In the previous batch, we included the ‘true’ rates for the reaction rates that we
do not fit. We did this to ensure that the parameter space the fitting methods
could explore contained the ‘true’ rates that were used to construct the data. In
this batch, we instead fix these reaction rates at the default rates, as was done
when fitting to patient data.

6.3.1 Methods

The methods used for this batch are identical to those used in batch 1, however,
the reaction rates that are not varied through fitting are maintained at the default
rate values (median of the prior distributions). Since the parameter space explored
by the fitting methods now no longer contains the ‘true’ rates, we also report the
‘perfect’ cost and ‘perfect’ RMSLE. These represent the metrics given when all
reaction rates that are varied during fitting exactly match the ‘true’ rates (those
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used to generate the data) but those that are fixed during fitting are set to the
default rates (different from the ‘true’ rates used to generate the data).

This means that while the ‘perfect’ RMSLE is the global minimum of the RM-
SLE metric (in the restricted parameter space where only some of the rates are
fitted), the ‘perfect’ cost will be non-zero (due to the differences in the rates that
are not fitted). It is possible that the ‘perfect’ cost is not even the global minimum
of the cost metric in the restricted parameter space (since it may be the case that
a lower cost can be achieved by accounting for the differences in parameters that
cannot be fit by continuing to fit the parameters that can be fitted).

This batch reuses the data generated, and the ‘true’ rates, from batch 1. This
allows us to compare the results between these batches more easily without the
effects of the random sampling of rates interfering with conclusions.

6.3.2 Results

Table 6.2 gives the cost and RMSLE for each set of fitted reaction rates. Interest-
ingly, the cost is lower in this batch than in batch 1 in many cases, including rep
1 where the previous batch struggled to fit (235.2 and 25.2 in batch 1 vs 8.3 and
23.3 in batch 2).

The costs for both fitting methods are considerably lower than when fitting
to the data (8-40 rather than 165-170), suggesting there is a significant difference
between the data and the model predictions sampled from the prior. We will in-
vestigate a possible cause of this in batch 3.

The RMSLE is again around 2 for all reps (slight increase from batch 1), com-
pared with ‘perfect’ RMSLEs of 0.27-0.83, demonstrating that we are unable to
identify the ‘perfect’ reaction rates. Since the RMSLE for the default rates is lower
than that of the fitted rates, the fitting method is not even converging towards
the ‘true’ rates.

Notably, the costs for some of the reps are below the ‘perfect’ costs. This could
only happen if the fitting is accounting for differences in the reaction rates that are
fixed by further varying the reaction rates that are variable. This demonstrates
that the set of reaction rates which cause a significant change in the model is
changing throughout the fitting and resulting in the global minimum of the cost
function not being the same as the global minimum in the RMSLE metric. We
will further investigate this in batch 4.

This happens because the method for determining which parameters are sig-
nificant is only locally determined (near the default rates). As the fitting progress
and the algorithm moves away from the default rates other parameters can become
significant and previously significant parameters can become insignificant.
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Rep Default Gradient Descent ABC-SMC ‘Perfect’
Cost RMSLE Cost RMSLE Cost RMSLE Cost RMSLE

1 497.1 1.80 8.3 2.38 23.3 1.88 127.2 0.83
2 255.8 1.92 28.5 2.14 39.6 2.23 4.4 0.27
3 348.7 2.04 19.3 2.37 16.5 2.32 16.6 0.70
4 245.4 1.63 8.0 1.71 16.1 2.21 15.0 0.47
5 115.2 1.90 13.7 1.95 17.1 1.86 123.3 0.47

Mean 292.4 1.86 15.6 2.11 22.5 2.10 57.3 0.55

Table 6.2: Performance metrics for the batch 2 fitting. Metrics are given for the
default rates, the fitted reaction rates, both using Gradient Descent and ABC-
SMC, followed by the ‘perfect’ metrics. The cost (Equation (6.1)) gives a measure
of the difference in the OD curves and RMSLE (Equation (6.2)) measures the
difference in the reaction rates (smaller is better for both metrics).

6.4 Batch 3 - Assumption Testing
We have seen that for randomly sampled reaction rates from the prior, we are
able to fit significantly better than for patient data. This would suggest that
either the reaction rates that correspond to the data are far outside of the prior
distributions† or the model structure does not match the data set. However, there
is an assumption in how the reaction rates are generated that we have yet to
test, the assumption that k+ = 1× 108M−1s−1 (the reaction is diffusion limited)
for enzymatic reactions. There may be some variation in this rate for different
reactions and this could explain why we are able to reproduce simulated data
(which also uses this assumption) but not patient data (which may or may not
follow this assumption).

6.4.1 Methods

This batch uses the data generating method outlined in batch 1 with one change.
During the process of generating these data sets, when the reaction rates are con-
verted from prior form (Km, kcat, Kd, k+) to the mass action law form (k+, k−, kcat),
as described in Section 3.2.3, instead of assuming k+ = 1×108M−1s−1, we instead
randomly choose a k+ from a log-uniform distribution between 1×104M−1s−1 and
1× 109M−1s−1‡.

The fitting algorithm and performance evaluation methods are the same as in
batch 2, including the fitting algorithms still assuming k+ = 1 × 108M−1s−1 for
enzymatic reactions. This allows us to see if, even under this assumption, we are

†This seems unlikely since we either have multiple sources giving us a known range where
the reaction rates should fall or, where we only have a single rate, have assumed a very wide
distribution around that point.

‡We still maintain the iterative increasing method for k+ (described previously in Chapter 3)
to ensure that k− > 0. The values chosen for the bounds represent the upper and lower limits
of values for k+ used in the priors for the association reactions.

228



able to reproduce data which was generated without this assumption.

6.4.2 Results

Table 6.3 gives the cost and RMSLE for each set of fitted reaction rates. The
achieved costs are higher than in batch 2 but still significantly lower than for fit-
ting to patient data. The assumed value of the on rate appears to be sufficient
to reproduce even data in which different values are used, although with a slight
penalty to the achieved cost.

Rep Default Gradient Descent ABC-SMC ‘Perfect’
Cost RMSLE Cost RMSLE Cost RMSLE Cost RMSLE

1 158.7 1.53 14.2 1.66 15.6 2.13 151.7 0.70
2 84.2 1.55 21.4 1.58 67.8 2.53 81.9 0.54
3 222.2 1.83 37.7 1.85 42.2 2.13 180.3 0.63
4 289.2 1.81 51.9 2.03 48.2 2.23 101.2 0.64
5 458.4 1.55 30.8 1.78 31.9 1.86 38.0 0.28

Mean 242.5 1.65 31.2 1.78 41.1 2.17 110.6 0.56

Table 6.3: Performance metrics for the batch 3 fitting. Metrics are given for the
default rates, the fitted reaction rates, both using Gradient Descent and ABC-
SMC, followed by the ‘perfect’ metrics. The cost (Equation (6.1)) gives a measure
of the difference in the OD curves and RMSLE (Equation (6.2)) measures the
difference in the reaction rates (smaller is better for both metrics).

6.5 Batch 4 - Significant Rates
We saw in both batch 2 and batch 3 that the cost achieved by the fitting was
frequently below the ‘perfect’ cost. This suggests that there is a change in which
reaction rates are significant during the fitting process and that the fitting is ac-
counting for not being able to fit some of the reaction rates by changing others.
This means that even if we were able to find the reaction rates which minimise the
cost function (the global minimum), these rates would not necessarily minimise
the RMSLE metric or be close to the ‘true’ rates.

6.5.1 Methods

In this batch, we attempt to fix this problem by allowing all reaction rates§ to vary
during the fitting. This means we fit 86 reaction rates rather than the reduced
number of 68. This means that the ‘perfect’ cost and ‘perfect’ RMSLE for this
batch will both be zero. We will reuse the generated data sets from batch 1 so
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that the cost and RMSLE can be compared directly.

6.5.2 Results

Table 6.4 gives the cost and RMSLE for each set of fitted reaction rates. We are
able to achieve better costs for the gradient descent than we found in batches 1
and 2 but we still do not converge towards the ‘true’ rates, ending up at rates that
are a similar distance away as batches 1 and 2. We will now investigate the cost
function to understand if changes can be made which further improve the fitting
or aid in identifying the ‘true’ rates.

Rep Default Gradient Descent ABC-SMC
Cost RMSLE Cost RMSLE Cost RMSLE

1 497.1 1.80 8.7 2.01 25.6 1.81
2 255.8 1.92 28.5 1.98 118.7 2.11
3 348.7 2.04 15.2 2.39 12.5 2.18
4 245.4 1.63 8.6 1.92 16.1 2.01
5 115.2 1.90 12.8 2.03 12.6 2.07

Mean 292.4 1.86 14.8 2.07 37.1 2.04

Table 6.4: Performance metrics for the batch 4 fitting. Metrics are given for the
default rates and the fitted reaction rates only since the ‘perfect’ metrics are all
zero. The cost (Equation (6.1)) gives a measure of the difference in the OD curves
and RMSLE (Equation (6.2)) measures the difference in the reaction rates (smaller
is better for both metrics).

6.5.3 Cost Function

We have generated plots of the cost function as the reaction rates are linearly
shifted from the fitted rates to the corresponding ‘true’ rates (using the prior
form of the reaction rates). The plots are given in Figures 6.2 and 6.3 for the
Gradient Descent and ABC-SMC fitting, respectively.

The cost function is smooth with few, if any, local minima along the straight
line in parameter space between the fitted rates and ‘true’ rates, so it does not
appear there is an issue of a large number of local minima which would be prob-
lematic for the gradient descent.

The cost functions do appear uninformative as to the direction of the global
minimum. Figure 6.2 reports the cost function between the default and gradient
descent fitted rates and Figure 6.3 reports the cost function between the default
and ABC-SMC fitted rates. All the cost functions, except for rep 5 (GD and

§We still do not vary the rates for the activation of the substrate but since this is assumed to
be fixed in the prior distribution then we still have the potential to fit to the ‘true’ rates exactly.
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Figure 6.2: Evaluation of the cost function between the Gradient Descent fitted
rates and the ‘true’ rates for each repetition.

Figure 6.3: Evaluation of the cost function between the ABC-SMC fitted rates
and the ‘true’ rates for each repetition.

ABC-SMC), appear to have a poor radius of convergence for the global minimum,
either featuring other nearby local minima (rep 4 GD; rep 2 ABC-SMC), sharp
drops from an otherwise high-cost surface (rep 1 GD; reps 1, 3, and 4 ABC-SMC)
or the surface has a clear gradient, but it is towards the fitted local minimum not
the global minimum (reps 1 and 2 GD). Changing the cost function may help with
making it more informative for fitting.

6.5.4 OD Curves

In order to better understand where the accuracy of the fitting is lacking and how
we could make a more informative cost function, we have investigated fitted and
‘true’ OD and thrombin generation curves. Some example curves are given in
Figure 6.4.
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The curves demonstrate that OD (particularly ETP) is fitted very well, with
only the ABC-SMC fitting for rep 2 fitting poorly. However, the thrombin gener-
ation curves (given as dOD/dt) allow us to note some further issues. Peak height
(in all reps), lagtime (in reps 2, 3 and 4), and maximum increasing rate (in reps
1, 2, 3 and 5) appear to be poorly predicted by both fitting methods. We may be
able to use a cost function which evaluates, and places a larger emphasis on, these
summary statistics to produce a more informative cost surface.

It is worth noting that these curves are still normalised by a pooled plasma
ETP (as described in Section 3.1.1). As shown in Table 6.5, the values of pooled
plasma ETP after fitting, compared with the ‘true’ pooled plasma ETP, is typi-
cally off by 5% with some repetitions being off by as much as 33%. It may improve
the fit if we remove this normalisation step (something we cannot do for these data
but could be useful knowledge for future work), however, how much of an improve-
ment we could achieve is unclear.

Pooled Plasma ETP (M)
Rep Fitting Method Fitted True Abs. Rel. Error (%)

1 Gradient Descent 6.2758× 105 5.9610× 105 5.28
1 ABC-SMC 5.2551× 105 5.9610× 105 11.84
2 Gradient Descent 1.7989× 104 1.8371× 104 2.08
2 ABC-SMC 2.4379× 104 1.8371× 104 32.70
3 Gradient Descent 3.0282× 104 2.4148× 104 25.40
3 ABC-SMC 2.3949× 104 2.4148× 104 0.82
4 Gradient Descent 3.1579× 104 3.1728× 104 0.47
4 ABC-SMC 3.3359× 104 3.1728× 104 5.14
5 Gradient Descent 2.5182× 104 2.6830× 104 6.14
5 ABC-SMC 2.6756× 104 2.6830× 104 0.28

Table 6.5: Predictions for the pooled plasma ETP (given as the concentration of
activated substrate) and the absolute relative error (Abs. Rel. Error) between the
fitted rates and ‘true’ rates for batch 4.

6.6 Batch 5 - Cost Functions
We have seen that the cost function is uninformative as to the location of the global
minimum and fits ETP well at the cost of lagtime and peak height. To investigate
whether a cost function which explicitly evaluates these summary statistics to cal-
culate model error may help to alleviate this problem, we have generated similar
cost function curves as seen in Figures 6.2 and 6.3 for each summary statistic for
the Gradient Descent fitted rates. These results are given in Figure 6.5.

No summary statistics seem to be any more informative as to the direction of
the global minimum than the original cost function. Generally, the fitted local
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Figure 6.4: OD and Thrombin Generation (represented as derivative of OD) curves
for randomly selected individuals for each repetition of batch 4.

minima are also local minima in each of the summary statistics, with a few ex-
ceptions such as rep 2 for ttP. Even though lagtime is a summary statistic that
we do not fit as well as we would like, the lagtime cost function is very similar to
the original cost function. It may instead be the case that the lagtime does have
a large effect on the cost function but cannot be accurately fitted further due to
the limited temporal resolution (0.5 minutes).

It seems that, although some summary statistics are more informative for some
of the repetitions, the majority are either as equally informative as the original
cost function or perform worse and any weighting of the summary statistics would
be unlikely to fix this.
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Figure 6.5: Plots of each summary statistics RMSE for linearly interpolated rates
between the Gradient Descent rates and the ‘true’ rates. Since there is no noise,
the ‘true’ rates define the global minimum at zero.

6.7 Batch 6 - Pooled Plasma Scaling
So far, we have demonstrated that the current fitting algorithms are sufficient to
reproduce OD curves with a high degree of accuracy but are unable to identify
the ‘true’ rates. We saw in batch 4 that the predicted values of the pooled plasma
ETP (that is used to scale the OD curves to convert the units to % of pooled
plasma) were frequently different between the fitted rates and the ‘true’ rates and
this may be limiting the ability of the fitting to identify the ‘true’ rates. It is
possible that multiple sets of reaction rates produce concentration curves that are
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proportional to one another and therefore, after scaling by pooled plasma, would
be identical in their output. In this batch we remove the effect of pooled plasma
scaling and investigate if this improves predictions of pooled plasma ETP and if
this allows us to identify the ‘true’ rates from fitting.

6.7.1 Methods

In order to implement this, we have used the same data as batch 1 (same ‘true’
rates and OD curves), but during the fitting process, instead of scaling by the
pooled plasma for those rates, we use the pooled plasma for the ‘true’ rates. Orig-
inally, using the method described in Section 3.1.1, in order to evaluate the cost
of a set of reaction rates, we would run the model with each patients initial con-
centrations to generate a patient specific OD curve, we would then also run the
model with pooled plasma initial conditions and find the final value of the OD
curve. We could then rescale the patient specific OD curves by this final value
of the pooled OD curve in order to calculate the patient specific OD curves as a
percentage of pooled plasma. This entire process used the same set of reaction
rates to derive their cost. We now, instead of running the pooled plasma simula-
tion with the rates we are evaluating, use the ‘true’ rates. This ensures the cost
function is on the same scale as the previously reported values but now we are
only scaling by a fixed constant rather than one which depends on the current
rates. This allows us to explore what the fitting would look like if the data was
given as concentrations in moles rather than percentage of pooled plasma, while
still allowing us to compare the costs between this batch and the other batches.
This fitting varies all reaction rates as was identified as beneficial in the previous
batches.

6.7.2 Results

Table 6.7 gives the cost and RMSLE for each set of fitted reaction rates. The
costs are similar to batch 4, with a sizeable increase in cost for reps 1 and 4 for
the Gradient Descent fitted rates and reps 2 and 5 for the ABC-SMC fitted rates.
However, the pooled plasma predictions, presented in Table 6.6, are now consid-
erably more accurate with below 4% relative error for all reps for both fitting
methods. Removing the pooled plasma scaling does improve the predictions for
pooled plasma ETP, as would be expected, but does not improve cost or RMSLE.

6.8 Batch 7 - Narrow Priors
Many of the reaction rates have multiple sources and therefore have an estimate
for the log-normal standard deviation in the prior distributions. However, there
are still a significant number of reaction rates for which we only have one source
and so have assumed a large log-normal standard deviation of 2.5. We wish to

¶This repetition failed to converge when using the ABC-SMC algorithm.
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Pooled Plasma ETP (M)
Rep Fitting Method Fitted True Abs. Rel. Error (%)

1 Gradient Descent 5.9722× 10−5 5.9610× 10−5 0.19
1 ABC-SMC N/A¶ 5.9610× 10−5 N/A¶

2 Gradient Descent 1.8868× 10−4 1.8371× 10−4 2.71
2 ABC-SMC 1.9083× 10−4 1.8371× 10−4 3.88
3 Gradient Descent 2.4191× 10−4 2.4148× 10−4 0.18
3 ABC-SMC 2.4882× 10−4 2.4148× 10−4 3.04
4 Gradient Descent 3.1553× 10−4 3.1728× 10−4 0.55
4 ABC-SMC 3.0926× 10−4 3.1728× 10−4 2.53
5 Gradient Descent 2.7649× 10−4 2.6830× 10−4 3.05
5 ABC-SMC 2.7219× 10−4 2.6830× 10−4 1.45

Table 6.6: Predictions for the pooled plasma ETP (given as the concentration of
activated substrate) and the absolute relative error (Abs. Rel. Error) between the
fitted rates and ‘true’ rates for batch 6.

Rep Default Gradient Descent ABC-SMC
Cost RMSLE Cost RMSLE Cost RMSLE

1 497.1 1.80 98.0 3.14 NA¶ NA¶

2 255.8 1.92 29.7 1.98 112.5 2.68
3 348.7 2.04 13.2 2.92 34.7 2.37
4 245.4 1.63 18.4 1.89 24.6 1.98
5 115.2 1.90 13.5 1.98 118.9 2.51

Mean 292.4 1.86 34.6 2.38 72.7 2.39

Table 6.7: Performance metrics for the batch 6 fitting. Metrics are given for the
default rates and the fitted reaction rates only since the ‘perfect’ metrics are all
zero. The cost (Equation (6.1)) gives a measure of the difference in the OD curves
and RMSLE (Equation (6.2)) measures the difference in the reaction rates (smaller
is better for both metrics).

identify if in future, when the variation in these reaction rates is known similarly
to the other rates, those that we have multiple sources for, will the fitting be able
to identify the ‘true’ rates.

6.8.1 Methods

We have set the prior standard deviations for all reaction rates with one source
(or none) to 0.5 (the average log-normal standard deviation for reaction rates with
multiple sources). We then generate a new set of reaction rates from this prior
and a new data set from these rates. The Gradient Descent algorithm does not
include a measure of uncertainty so is the same as for the previous batches, but
the ABC-SMC algorithm uses the new narrower prior distributions.
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6.8.2 Results

Table 6.8 gives the cost and RMSLE for each set of fitted reaction rates. The
costs are similar to those seen in the previous batches. The RMSLE is signifi-
cantly lower in this batch than seen previously, but this appears to be due to the
narrower priors used for sampling since the default rates produce a RMSLE simi-
lar to the ABC-SMC and lower than Gradient Descent. Additionally, ABC-SMC
outperforms Gradient Descent in RMSLE for all reps and performs similarly or
better in cost, significantly outperforming for reps 1 and 5.

Rep Default Gradient Descent ABC-SMC
Cost RMSLE Cost RMSLE Cost RMSLE

1 427.3 0.61 84.1 1.17 42.3 0.83
2 140.5 0.55 17.2 1.11 17.2 0.67
3 247.3 0.56 15.8 0.98 16.3 0.64
4 120.0 0.56 56.2 0.94 56.5 0.59
5 353.0 0.51 66.2 3.03 28.6 0.71

Mean 257.6 0.56 47.9 1.45 32.2 0.69

Table 6.8: Performance metrics for the batch 7 fitting. Metrics are given for the
default rates and the fitted reaction rates only since the ‘perfect’ metrics are all
zero. The cost (Equation (6.1)) gives a measure of the difference in the OD curves
and RMSLE (Equation (6.2)) measures the difference in the reaction rates (smaller
is better for both metrics).

6.9 Fitting to Patient Data
Since we have seen an improvement to our fitting methods by fitting all reaction
rates rather than a reduced subset, we present here the results of fitting the Im-
proved Unified Model to the PRAMIS cohort data when fitting all reaction rates
(except the rates for the chromogenic substrate).

Figure 6.6 presents the ETP correlation, before and after fitting, and Figure
6.8 presents the thrombin generation curves for the reference concentrations before
and after fitting. After fitting we achieve a cost of 164.5 for gradient descent and
177.4 for ABC-SMC.

The fitted thrombin generation curves when fitting to data are different be-
tween the Gradient Descent fitted rates and the ABC-SMC fitted rates. However,
when fitting to the simulated data both algorithms produced similar curves (see
Figure 6.4). It appears that there are many curves which can reproduce the data
sufficiently accurately but since the simulated data can be reproduced much more
accurately than the experimental data, there are fewer possibilities.

The fitted reaction rates for this can be found in Appendix B and the results
of a sensitivity analysis on this final version of the model are given in Appendix
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Figure 6.6: The ETP correlation scatter graphs for the Improved Unified Model
for the default, gradient descent fitted, and ABC-SMC fitted reaction rates when
fitting all reaction rates.

Figure 6.7 shows the OD curves for the individuals with the best and worst
ETP predictions, given for the gradient descent fitted rates and the ABC-SMC
fitted rates. The worst predicted individuals draw similar conclusions to those
seen previously. The best predicted individual for the gradient descent fitted rates
matches well, baring the bumps in the data. The ABC-SMC fitting results in a
larger lagtime for both the best and worst individuals.

6.10 Conclusions
We have demonstrated than the fitting methods are sufficient to replicate OD and
thrombin generation curves for reaction rates sampled from the prior distributions
(Sections 6.2 and 6.3). Since we are unable to achieve this quality of fit for the
patient data, it would suggest that either the prior distributions do not accurately
reflect the reaction rates (which seems unlikely given our broad prior distributions)
or the reaction scheme does not accurately reflect the reactions taking place in the
assay, a possible source of model discrepancy.

We have validated the assumption of the diffusion limited association rate for
enzymatic activations (Section 6.4). In Section 6.5, we found that our assumption
that we only need to fit reaction rates that give a significant change in the output
(originally described in Section 3.2.5) is not valid and all reaction rates should be
fitted. We then showed that this fitting produces similar OD and thrombin gen-
eration curves but without identifying the ‘true’ rates that were used to generate
the data.

We have evaluated the performance of the fitting algorithms in settings that
may be relevant in future work. We demonstrated that scaling the data by pooled
plasma ETP does not interfere with the fitting (Section 6.7). We also saw that
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Figure 6.7: The Improved Unified Model predicted OD curve and the experimental
OD curve for the individuals with the best and worst predicted ETP, separated
by the Gradient Descent (top) and ABC-SMC (bottom) fitted rates when fitting
all reaction rates.

Figure 6.8: The thrombin generation curves for the Improved Unified Model,
before fitting and after gradient descent and ABC-SMC fitting when fitting all
reaction rates.

even if all reaction rates have multiple sources to produce a reasonable estimate
for the log-normal standard deviation, we would still be unable to identify the
‘true’ rates (Section 6.8). Additionally, as the prior distributions begin to narrow
the ABC-SMC fitting begins to outperform the Gradient Descent fitting (Table
6.8).
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Finally, we fitted the Improved Unified Model to the PRAMIS data with the
updated fitting method (Section 6.9). This did not significantly improve the fitting
(Figures 6.6 and 6.7), as would be expected if there is significant model discrep-
ancy.
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Chapter 7

Conclusion

7.1 Summary
We began this work by comparing eight mathematical models of thrombin gener-
ation, chosen to best match a data set of 348 individuals. All eight models showed
poor predictive capabilities when used to simulate thrombin generation data across
this large cohort (RMSE: 27.6-32.5), with the Panteleev model giving marginally
the best result (Section 2.3, Figure 2.19). Interestingly, the ETP predicted by the
models was much more strongly correlated between the models than it was with
the data; however, the other summary statistics generally had a weaker correlation
between the models (Figure 2.22).

When comparing the differences between the models in their predicted throm-
bin generation curves, we were able to identify two groups of models (Section 2.4).
The Quick group, consisting of Bungay, Chatterjee, Tyurin, and Zhu, all showed
rapid activation of thrombin. The Symmetrical group, consisting of Hockin, Dan-
forth, Brummel, and Panteleev, all showed smoother, near symmetrical thrombin
generation curves. We were able to identify the cause of this difference to be ac-
tivation of FIX (Figure 2.30). Specifically, the Quick group activate significant
amounts of FIX, with all models fully depleting it, leading to large concentrations
of FXa and therefore Xa:Va. By contrast, the Symmetrical group activate very
little FIX which results in lower levels of Xa:Va which are formed at a slower
rate. The most common cause for this difference is the presence or absence of
FXI (Figure 2.31), which determines the levels of FIXa in all but the Zhu and
Panteleev models. The Zhu model activates most FIX through TF:VIIa and the
Panteleev model uses a significantly weaker rate for FXIa activation of FIX (Pan-
teleev: kcat

Km
= 4.9× 105M−1s−1, Chatterjee: kcat

Km
= 1.6× 107M−1s−1).

From the sensitivity analysis (Section 2.5), we were able to show a strong re-
lationship between the Hockin-based models, with the only change between their
sensitivities being the sensitivity of the Chatterjee model to FXI auto-activation.
We identified AT inhibition of FIIa to be the most sensitive reaction in all models;
however, other inhibitions by AT were generally much less sensitive.

We investigated the original sources for all reaction rates across the models
(Section 2.6). As has been reported previously by Hemker [76], we observed a

241



large variation between experimental sources for the same reaction. Due to the
low variation observed under repeated measurements in the same source, we expect
this variation to be due to differing experimental conditions between the sources
rather than experimental noise. Additionally, we identified that only 10% of re-
action rates in the models utilised more than one experimental source to derive
their values (Table 2.34).

As the final stage of exploratory analysis of the models, we conducted a
timescale analysis of the Danforth and Tyurin models (Section 2.7). We showed
than almost all reactions were significant on at least one timescale. The results
of the timescale analysis also highlighted an issue seen previously in the models
(Section 2.24). The Tyurin model is the only model to use an observed value
for the association rate for TF:VII and TF:VIIa, with all other models using an
assumed rate, or a fitted rate, with an experimentally determined Kd = k−

k+
. How-

ever, all the assumed values were significantly higher than the values reported in
the literature. This led to the Tyurin model generating very little TF:VIIa during
the early stages when TF:VIIa is most useful and instead relied on its activation
by FVIIa to initiate coagulation.

These results led us to develop a new model, the Unified Model, which places
a heavy emphasis on the choice of reaction rates (Chapter 3). To manage the
large variation between experimental sources, we constructed prior distributions
for each reaction rate using multiple sources to define the amount of variation
(Section 3.2.3). From this, we assume the experimental conditions used for the
thrombin generation data on the PRAMIS cohort should result in reaction rates
that lie in the area of high probability in the prior distributions, which we explored
through parameter inference. The reaction scheme aims to cover all relevant re-
actions in the previous models (Section 3.2.2). Unfortunately, the resulting model
failed to significantly improve upon the previous models. After making changes to
the reaction scheme, expanding to incorporate other features, we were still unable
to significantly improve. However, we did note that some of the changes made,
such as the inclusion of fibrinogen (Section 3.3.6), were significant in their influ-
ence on the model and so should still be included.

In order to assess where further improvements could be made, we conducted a
stage of data analysis (Chapter 4). The Functional Data Analysis demonstrated
some curves which the model would be unable to reproduce (Section 4.2). How-
ever, removing these from the data set and refitting did not improve the model
accuracy (Section 4.7). We were unable to identify any factors which could ex-
plain the large variation we saw in experimental ETP (Section 4.4), suggesting
that there may be other proteins, varying on a patient specific level, which are
heavily influencing coagulation. We found a discrepancy between the exogenous
TF added in the assay and the endogenous TF in which the exogenous TF had a
much larger effect over ETP than would be expected from just an increase in TF
concentration (Section 4.6).

To continue model development, we constructed the Improved Unified Model
(Chapter 5). The aim of this model was to improve upon the previous versions of
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the Unified Model in a select few key areas. We aimed to get the model to achieve
partial prothrombin conversion which we attempted to do through making changes
to the inhibition scheme for prothrombinase (Section 5.2). Furthermore, we up-
dated the reaction rates for FXI activation to be more in line with a phospholipid
activation surface (Section 5.3). Unfortunately, this model did not significantly
improve upon the previous versions of the Unified Model (Figures 5.12 and 5.13)
nor predict partial prothrombin conversion (Figure 5.15). Finally, we assessed
model uncertainty though both edited prior distributions and the posterior distri-
butions (Section 5.6.3). From this uncertainty work, we were able to show that
a model that uses only a single source for each reaction rate results in too much
uncertainty for the model predictions to be reliable (Figure 5.16); however, after
fitting, this uncertainty is massively reduced (Figure 5.17), both answering an
open question posed by Hemker [76] about the variability in reaction rates and
demonstrating a solution to this problem.

In order to verify if the poor fitting is a problem with the model or the fit-
ting methods, we conducted a simulation study (Chapter 6). Section 6.2 showed
that the current fitting methods were able to reproduce simulated data to a much
higher degree of accuracy than for real data, although with poor parameter iden-
tifiability. We tested two assumptions used in the fitting methods, the diffusion
limited association rate for enzymatic reactions (Section 6.4) and the percentage
of pooled plasma scaling for the OD curves (Section 6.7). We showed that neither
of these influence or disrupt the fitting methods. Even if the association rates are
not diffusion limited, fitting is still able to reproduce the simulated data. Remov-
ing the pooled plasma scaling from the data does not improve on the accuracy
after fitting. In Section 6.5, we were able to find an improvement on the fitting
methods used previously by fitting all parameters rather than a reduced set. Fi-
nally, we showed that even if the reaction rates for which we only have one source,
can be more accurately understood with further measurements, the current fitting
methods will not be able to identify the true parameters (Section 6.8). This work
led us to conclude that the low accuracy in model predictions is due to model
discrepancy rather than as a result of the fitting methods used.

The progression of the cost function throughout this work is presented in Fig-
ure 7.1.

We believe that this model discrepancy is the main problem the models of
thrombin generation currently face. Although the fitting methods we present here
still present issues which will need to be resolved in the future, in particular poor
parameter identifiability, they are sufficient for the current accuracy of the models.
Further experimental investigation to address this model discrepancy will prove
vital in future developments of mathematical models of thrombin generation. In
the following section, we suggest possible methods and investigations which we
believe are currently most useful.
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Figure 7.1: The progression of the cost function throughout this work. The pre-
vious models are given in blue, evaluated using their originally described reaction
rates as detailed in Chapter 3. The Unified Models are given in orange and green.
GD: The Gradient Descent fitted rates; ABC: The ABC-SMC fitted rates; Fil-
tered: Fitting (and evaluating against) the reduced data set from Chapter 4; All
params: Fitting all prior form parameters, as described in Chapter 6. The model
parameterization that gives the lowest cost is shown in green.
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7.2 Discussion
Our work on the previous models highlights why this kind of quantitative valida-
tion against a large cohort is so important. All models give unique predictions with
similarities, such as that seen in the inter-model correlation, coming from their
fundamentally similar structure. As these models have evolved, the standards for
developing new models have increased. Quantitative validation against a large
cohort, as we have done here, is now necessary in order to assess if changes to
a model actually improve its predictions, something which qualitative validation
against variation in only one or two factors can no longer do.

The focus of this work has been placed on the thrombin generation assay. In
addition to this, there are mathematical models aiming to capture effects of co-
agulation varying from assays under flow to in vivo conditions [43, 80, 81, 84].
These models are able to capture many effects that are exclusive to this setting,
including the large effect flow has over this system where it can act as an inhibitor
in its own right [83] while also serving procoagulant roles, providing a fresh sup-
ply of coagulation factors in their zymogen form. The complications that arise
from both modelling the system under flow and flow-based assays result in a lack
of available data to grant quantitative validation across a variety of conditions.
However, given these complications also result in a poorer understanding of the
dynamics of coagulation under flow, these models do not need to be a perfect
match to aid in new discoveries and have in fact already done so [44].

In addition to these flow-based models, there is also a wide variety of models
for platelet aggregation. Due to the complex nature of platelets and their role in
coagulation, there have been a variety of modelling techniques used to capture the
different dynamics of platelets. These models range from chemical kinetic ODE
models [133] to platelet ODE models under flow [44] or through a two-phase flow
capturing the differences between flow through a platelet thrombus and free flow
through a vessel [134]. There is also a range of multiscale models for platelet
aggregation, including a molecular dynamics model for platelets using dissipative
particle dynamics for fluid flow [135], or lattice kinetic Monte Carlo models for
platelets coupled with neural networks for the platelet activating species, all under
flow [136, 137].

As demonstrated from the simulation study, model discrepancy currently ap-
pears to be the largest problem with the models. This lack in the model structure
could come from a number of things. We could be seeing a lack of important
reactions and proteins in the system, or a violation of the model assumptions
for chemical kinetic models. One possible violated assumption lies in the role of
phospholipids. By acting as a surface for many of the reactions in the coagulation
cascade, they may grant a local high-activity spatial effect that is not captured
in a homogenised model. This has been explored previously for activation of FXa
where it was found that a homogenised model was suitable to capture the kinetics
on this reduced set of reactions [138]. If the model discrepancy is due to missing
reactions between known factors, it may be possible to account for these unknown
reactions through including a neural network, or more specifically a single layered
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perceptron, into the ODEs as shown by Equation (7.1) below (where NN V III(S)
is the neural network for FVIII, taking an input S of the current state of the
system, represented as a vector of concentrations of factors that may be able to
interact with FVIII) [139, 140]. However, this cannot account for reactions involv-
ing proteins we do not have concentration data for or are currently unknown. This
may also present problems with over-fitting due to the large numbers of parame-
ters introduced, which will need to be carefully managed to ensure the results are
reproducible.

d[V III]

dt
= −k1[V III][IIa]− k2[V III][Xa]− [V III]NN V III(S) (7.1)

One of the issues highlighted by the simulation study in Chapter 6 was param-
eter identifiability. None of the batches of the simulation study correctly identified
the reaction rates after fitting. While the models still show signs of model dis-
crepancy, this is not a major issue since parameter identifiability only makes sense
when the model matches the underlying data generating process. However, in
the future, parameter identifiability will be vital to use the models in pharma-
cokinetic settings. A possible path to achieve parameter identifiability would be
through optimal experimental design [141]. Including data measuring the concen-
tration of the other coagulation factors or constructing assays using coagulation
factor concentrations optimised to improve parameter identifiability may aid in
this situation. Another possibility would be to alter how the prior distributions
function∗. The current prior distributions work by understanding the variation be-
tween experimental sources, many of which use differing experimental conditions,
and assuming our experimental conditions should be in line with this variation.
A possible modification would be to construct weighted prior distributions, giving
larger weights to experimental conditions that are similar to that of the thrombin
generation data from the PRAMIS cohort. This would likely be a fairly simple
change that would maintain the workflow we have used for the model construction.
As an alternative to this, we could use our knowledge of the differing experimental
conditions to construct a model which predicts the reaction rates for any experi-
mental conditions. If we were able to predict reaction rates under any experimental
conditions, then the uncertainty surrounding these reaction rates could be reduced
or even removed entirely, possibly eliminating the need for fitting.

A viable method for further developing the models would be validation at the
module level. This would consist of validating the reactions for say TF:VIIa for-
mation under varying levels of TF, FXa, FIIa, FVII, and FVIIa. The same could
be repeated for the other modules. After this, further differences can be accounted
for by interactions between the modules, which can be assessed by including other
coagulation factors that are expected to have little influence and comparing model
predictions with experimental results. This method of using the models as a tool
to describe current understanding and building upon this to derive an accurate

∗Included in this are ways to reduce the uncertainty in the prior distributions.
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model has already been implemented for fibrin formation [92]. This smaller scale
of validation can help with both the interpretation of the results and parameter
identifiability, greatly aiding the development of the models.

There are still known proteins that have not been included in the models. Two
such proteins are protein Z and protein Z-dependent protease inhibitor (ZPI), ZPI
being able to inhibit FXa, boosted by its cofactor protein Z, and FXIa, whose
inhibition is unaffected by protein Z [142, 143, 144]. They were not included in
the Unified Model due to a lack of reaction rates and patient level concentrations
for both of these proteins, although we have already seen that some inhibitors
(α1 −AT , α2 −AP , α2 −M , PAI-1, and C1-inh) can be included into the model
at an average concentration and patient specific values do not always need to be
known. As more proteins are discovered to be involved in coagulation, these mod-
els will continue to need updates and improvements.

There are also other reactions not currently captured between coagulation fac-
tors that are included in the models. Such reactions include II + Va↔ II:Va, which
is included in the Brummel model. We choose not to include this reaction in the
Unified Model as it was not clear if the complex II:Va could result in activation of
prothrombin. There are also interactions such as that between TF:VIIa and FV
[145] that are not included in the models due to the lack of available reaction rates.

Finally, an improved understanding of prothrombin conversion would prove
useful to model development. We have been able to show it is possible to predict
partial prothrombin conversion in a model, both with the Expanded Unified Model
by tweaking reaction rates, the Expanded Protein C Model, and the Reduced Uni-
fied Model with the new prothrombinase inhibition scheme. Understanding how
the remaining prothrombin concentration is influenced by the other coagulation
factors and which other coagulation factors are still present at the end of the as-
say and which are fully depleted would provide further qualitative measures of
model accuracy to test against. Currently, it appears that the lack of knowledge
surrounding prothrombinase inhibition is the limiting factor in predicting partial
prothrombin conversion.

We began this work aiming to explore the current mathematical models of
thrombin generation. We have identified problems with these models and the root
cause for these issues. We have provided solutions to resolve the issues with these
models and used this to develop a new model. From this new model, we answered
open questions surrounding the applicability of these models. Finally, we have
identified future issues that may disrupt further improvements on the models and
given possible methods for resolving each of these.

From the discoveries we have made, and the work suggested in this chapter,
we believe models of the coagulation cascade will prove to be a useful tool in
future thrombosis and haemostasis research. Initially, they are best suited as a
‘quantifier of current knowledge’ for comparison to experimental data to explore
missing information in the current description of the coagulation cascade. Later,
once these models have improved in accuracy, they can begin to be used as a
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highly transparent proxy for biological experiments, allowing fast, thorough and
in-depth information about potential drug candidates or personalised medicine
with individually tailored treatments.

248



Glossary

α inhibitor

The collective name we use for the inhibitors α1-AntiTrypsin, α2-AntiPlasmin
and α2-Macroglobulin. See Chapter 1.

N0

Natural numbers including zero.

ABC-SMC

We utilise the ABC-SMC with Early Rejection algorithm from [100]. We
use N=2000 particles, of which U=200 are unique, with an initial tolerance
of ε0=400 to define the first sample from the priors. Further tolerances are
determined algorithmically to ensure there are 200 unique particles in each
population. The final reaction rates are given as the mode of the posterior
sampled reaction rates. See Chapter 3.

activated partial thromboplastin time

A clinical assay to measure the performance of the intrinsic pathway. See
Chapter 1.

ADP

Adenosine DiPhosphate is a compound that is released by activated platelets
that can activate more platelets.

amplification

The second stage of the cell-based model of haemostasis. See Chapter 1.

ANOVA

Analysis of Variance. A statistical method for comparing means between
groups. See Chapter 4.

antithrombin

Antithrombin (AT) is a serpin (serine protease inhibitor) which inhibits
many active coagulation factors. It acheives this by binding to these fac-
tors, blocking their active site and remains bound until removed from the
blood. See Chapter 1.

approximate Bayesian computation

A class of algorithms using Bayesian statistics that approximate the posterior
distribution through comparisons to data. See Chapters 1 and 3.
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assay

A biological experiment for measuring a quantity or activity..

association

A reaction in which two species bind together.

asymptotic analysis

A group of methods that can be applied to a system or equation in which
its terms are on different scales. See Chapter 1.

basis function

A family of functions with linear combinations of these functions forming a
function space.

bilayer

The phospholipid bilayer is the natural form phospholipids take, in which two
layers of phospholipids are stacked one on top of the other, with the bottom
inverted so that both the top and bottom layers have the hydrophilic heads
exposed. See Chapter 1.

blood plasma

The fluid part of blood. Blood plasma is what remains after red blood cells,
white blood cells, and platelets are removed.

blood vessel

Blood vessels (including veins, arteries and capillaries) are used to transport
blood around the body.

C-reactive protein

A protein whose concentration increases during and after inflammation.

calcium chloride

A salt used in the thrombin generation assay to supply calcium ions which
are used by prothrombinase.

calibrated automated thrombogram

The name for the fluorogenic thrombin generation assay. It requires an
additional sample of a fixed, constant thrombin concentration to calibrate
the fluorescence signal. See Chapter 1.

cassette

A grouping of reactions with a particular goal. See Chapter 3.

cell-based model of haemostasis

A more up-to-date description haemostasis, taking into account the roles of
surfaces such as platelets and how this influences coagulation. See Chapter
1.
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chromogenic substrate

Used in the measurement of the thrombin concentration during the chro-
mogenic thrombin generation assay. When the substrate is activated by
thrombin, it exposes its chromophores which can be picked up by a light
detector. See Chapter 1.

clustering

A class of methods used to group data into clusters where the data in each
cluster is more similar to one another than to data in the other clusters. See
Chapters 1 and 4.

coagulation

The third stage of haemostasis. Also called secondary haemostasis. This is
a series of enzymatic reactions which result in production of a fibrin mesh
which stabilises the blood clot. See Chapter 1.

coagulation cascade

The series of reactions which lead to production of thrombin. The name
“cascade” comes from the structure of the reactions in which each coagulation
factor activates the next one in the cascade. See Chapter 1.

coagulation factor

A protein which circulates in blood plasma and is involved in blood coagu-
lation. See Chapter 1.

cofactor

In reference to coagulation factors, cofactors are proteins which increase the
enzymatic activity of an enzyme. See Chapter 1.

collagen

A common protein that is found external to blood vessels. See Chapter 1.

competitive inhibition

A property of enzyme kinetics. During the process of an enzyme activating
a substrate, its active site is likely blocked. This means that the enzyme
is unable to activate other substrates so the effective concentration of the
enzyme is temporarily decreased. See Chapter 1.

complex

A complex is a group of two or more proteins that are associated or bound
together.

conservation law

A equation representing the conservation of a particular quantity in a chem-
ical kinetic model.

contact activation

The mechanism for FXII activation through contact with collagen or other
negatively charged surfaces. See Chapter 1.
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corn trypsin inhibitor

An inhibitor of contact activation commonly used in thrombin generation
assays.

cost

The metric used to compare model predicted and experimental optical den-
sity curves. See Chapter 3.

cross validation

A method in data analysis to diagnose over-fitting. This involves fitting the
data to a subset of the full data set and then testing the resulting model
against the remaining data. See Chapter 3.

cubic spline

A method of interpolation in which points are connected through cubic poly-
nomials.

data filtering

Removing data that satisfy certain properties from a data set. See Chapter
4.

default rates

The default rates are the reaction rates given by the median of the prior
distributions. This is equivalent to the geometric mean of the experimentally
measured values used to construct the prior distribution. See Chapter 3.

defibrinated plasma

Blood plasma that has fibrinogen removed.

dextran sulphate

A surface for factor XI activation.

diffusion limited

A reaction rate is diffusion limited when its reaction rate is sufficiently rapid
that it is capped by the time it takes to be transported around the solution
through diffusion.

dissociation

A reaction in which a species breaks apart into two or more constituent
parts.

endogenous tissue factor

Endogenous TF is TF that is already present in the plasma sample and is
not added in. We have measured values of the endogenous TF concentration
for each individual.
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endothelial

The cells in the vessel wall that are in contact with the blood. Blocks contact
between the sub-endothelial cells and the blood plasma. See Chapter 1.

enzymatic reaction

A reaction involving an enzyme in which it acts upon a substrate, cleaving
it to change its form. See Chapter 1.

ETP

The integral of the thrombin generation curve. See Chapter 1.

exogenous tissue factor

Exogenous TF is TF that is added to our assay from external source as
opposed to already present in the blood plasma from when the sample was
taken. When exogenous TF is used in the assay that was used to collect our
data set, it is always in a concentration of 5pM.

experimental noise

Random fluctuations due to an experimental apparatus.

extrinsic pathway

The coagulation cascade pathway which begins with tissue factor and the
formation of TF:VIIa. See Chapter 1.

extrinsic tenase

The TF:VIIa complex which activates FX and FIX into FXa and FIXa,
respectively. See Chapter 1.

factor V Leiden

A mutation in factor V which can stop its inhibition by activated protein C.
See Chapter 1.

fibrin

The protein that is cleaved from its precursor fibrinogen by thrombin. Fibrin
is a monomer which joins to other fibrin monomers to for a long polymer
chain. See Chapter 1.

fibrin mesh

After fibrin has polymerised into long chains, it is cross-linked by factor XIII
into a mesh. This mesh stabilizes the platelet plug, capturing red blood cells
and more platelets. See Chapter 1.

fibrinogen

The precursor form of fibrin. See Chapter 1.
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fibrinolysis

The fourht stage of haemostasis. In this stage, a series of enzymatic re-
actions, triggered by coagulation factors, lead to production of an enzyme
plasmin, which breaks down the fibrin mesh to remove the blood clot. See
Chapter 1.

first order reaction

A reaction with one reactant.

Fisher’s exact test

A statistical test used to determine association between categorical variables,
in our case a categorical variables and the group. See Chapter 4.

fluorogenic substrate

Used in the measurement of the thrombin concentration during the fluoro-
genic thrombin generation assay. When the substrate is activated by throm-
bin, it briefly fluoresces which can be picked up by a light detector. Unlike
the chromogenic substrate, this fluorescence signal can not be easily con-
verted to a thrombin concentration. See Chapter 1.

functional data analysis

A class of methods in data analysis for analysing functional data. See Chap-
ters 1 and 4.

gap statistic

A metric to determine the optimal number of clusters in a data set. See
Chapters 1 and 4.

Gini index

A metric to determine the optimal question for regression and decision trees.
See Chapters 1 and 4.

Gradient Descent

The Gradient Descent fitting algorithm we use is the interior point algorithm
(to provide a lower bound of zero on all reaction rates) implemented through
MATLAB’s fmincon using a finite difference step size of 0.001. See Chapters
1 and 3.

haemophilia

A bleeding disorder caused by deficiency in one of factors VIII, IX, or XI.
See Chapter 1.

haemostasis

The name of the processes used in stopping or reducing the loss of blood
after damage to a vessel wall. It consists of four stages, vasoconstriction,
formation of a platelet plug, coagulation and fibrinolysis. See Chapter 1.
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heparin

Increases the activity of antithrombin.

in vitro

Experiment performed external to the normal biological environment.

in vivo

Inside the body or other living organism.

inhibition

The process by which an enzyme has its activity removed, typically by block-
ing the active site.

initiation

The first stage of the cell-based model of haemostasis. See Chapter 1.

inter-model correlation

Assessing the correlation of predictions between two models. See Section
2.3.

interior point algorithm

A method for bounded gradient descent. See Chapters 1 and 3.

interpolation

Determining a function which passes through a series of data points.

intervals of influence

The time interval that a particular term in an ordinary differential equation
has a significant influence on the value of the differential equation. See
Section 2.7.

intractable

Not possible or difficult to calculate.

intrinsic pathway

The coagulation cascade pathway which begins with FXII, activated on con-
tact with collagen or other negatively charged surfaces. See Chapter 1.

intrinsic tenase

The IXa:VIIIa complex which activates FX into FXa. See Chapter 1.

iterative increasing method

The iterative increasing method accounts for the possibility of identifying a
Km, kcat pair that, when using k+ = 1 × 108M−1s−1, can give k− ≤ 0. To
avoid this we iteratively multiply k+ by 10 until we find a k+ that gives a
k− > 0. See Chapter 3.
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kallikrein

The active form of prekallikrein. Part of a positive feedback loop with FXIIa
in which they can activate each other. See Chapter 1.

kaolin

A mineral used in the Activated Partial Thromboplastin Time test..

knots

In the context of splines, a knot is where the individual components of the
spline are joined together. For example, for linear splines the knots will be
at the points where it is not differentiable.

lagtime

The time to reach 5% of the maximum concentration of thrombin from the
thrombin generation curve. See Chapter 1.

lipoprotein

Lipoproteins, a mix of proteins and lipids (fats), carry cholesterol through
the blood stream. They come in two types, high-density lipoproteins (HDLs)
and low-density lipoproteins (LDLs).

log-normal distribution

A random variable X has log-normal distribution if log(X) has a normal
distribution. We denote a log-normal distribution by 10∧N(µ, σ2) where µ
and σ2 are mean and variance of log10(X).

Markov chain

A stochastic model where future states depend only on the current state and
not on earlier states.

mass action

A chemical kinetic rate law. It assumes reactions occur at a rate proportional
to the product of their reactants. See Chapter 1.

mass action law form

The model simulates fully in mass action law kinetics, so the reaction rates
need to be converted from prior form to mass action law form. This consists
of, for complex binding using k+, k− = Kd×k+ and for enzymatic activations
using k+ = 1× 108M−1s−1, k− = Km × k+ − kcat, kcat. See Chapter 3.

maximum increasing rate

The maximum value of the gradient of the thrombin generation curve. See
Chapter 1.

Michaelis Menten

A chemical kinetic rate law commonly used for enzymatic reactions. See
Chapter 1.
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minimum decreasing rate

The minimum value (most negative) of the gradient of the thrombin gener-
ation curve. See Chapter 1.

model discrepancy

When the underlying structure of a model is different from the process it is
attempting to reproduce.

monomer

a molecule which can bind to other identical molecules to form a long chain
called a polymer.

myocardial infarction

A condition where a blood clot reduces or stops blood from supplying the
heart with oxygen. Colloquially known as a heart attack.

negative feedback

Negative feedback is when a processes output is fed back into itself, where
increases in the output result in future decreases. An example of negative
feedback in coagulation is protein C, where increases in thrombin result
in increases in protein C, leading to less FVa and FVIIIa which reduces
thrombin formation.

nondimensionalization

The process of removing dimensions (units) from a mathematical system.
See Chapter 1 and Section 2.7.

optical density

The chromophore concentration, and by extension the concentration of sub-
strate that has been activated, is measured in units of optical density. The
optical density curve at time t is proportional to the integral of the thrombin
generation curve between time 0 and t. See Chapters 1 and 3.

ordinary differential equation

An equation involving one or more functions of a single variable and deriva-
tives of these functions.

over-fitting

A consequence of fitting more parameters than can be informed by the data.
It results in a model which is especially good at predicting the data it was
trained on but performs considerably worse on data it was not trained on.

parameter determinability

The parameter determinability method we use determines the reaction rates
we keep fixed during fitting. This method varies the reaction rates one-at-a-
time to see if they have a significant influence on the optical density curve.
See Chapter 3.
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parameter identifiability

A property in which parameter fitting is able to correctly identify the pa-
rameters for the system.

PCPS

PCPS (PhosphatidylCholine-PhosphatidylSerine) are 2 types of phospho-
lipids commonly used together for coagulation assays. See Chapter 1.

peak

The maximum concentration of thrombin from the thrombin generation
curve. See Chapter 1.

peptide

A short chain of amino acids. Proteins, also called polypeptides, consist of
many peptide sub-units.

perfect rate

The reaction rates that are closest to the true rates (measured in the RMSLE
metric) that can be fitted by the fitting algorithms. See Chapter 6.

perturbation kernel

A perturbation kernel is a function used in ABC-SMC to perturb particles.
See Chapter 1.

phospholipid

A protein consisting of a hydrophilic head and hydrophobic tail. Phospho-
lipids act as a surface for coagulation factors to bind to. See Chapter 1.

plasmin

The enzyme which breaks down fibrin. Its precursor, plasminogen, is cleaved
by FXIa, FXIIa, tPA (tissue plasminogen activation), and urokinase. See
Chapter 1.

plasminogen activator inhibitor 1

An inhibitor in fibrinolysis. It also inhibits factor XIa.

platelet plug

The platelet plug is a collection of activated platelets which have aggregated
together and forms part of the final blood clot. See Chapter 1.

platelets

A small cell fragment without a nucleus that is involved in clotting. See
Chapter 1.

polymer

A long chain of monomer molecules. The length of a polymer is measured
as the number of monomers, for example, a 70mer polymer consists of 70
monomers.
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polyphosphate

A surface for factor XI activation.

pooled plasma

In the assay, pooled plasma refers to a technique for generating a standard
plasma sample by pooling together the plasma samples of multiple individ-
uals to average out the individual variation with our assay using a 20-donor
pool. In the model, we use standard, averaged reference concentrations for
each factor to emulate this and produce a standard thrombin generation
curve. See Chapters 1 and 3.

positive feedback

Negative feedback is when a processes output is fed back into itself, where
increases in the output result in future decreases. An example of positive
feedback in coagulation is the cofactors. Higher levels of thrombin lead to
higher levels of the cofactors FVa and FVIIIa which result in an increase in
thrombin formation.

PRAMIS

Platelet Reactivity in Myocardial Infarction Study. The cohort on which the
thrombin generation data we use was measured. See Chapter 1.

prekallikrein

The precursor to kallikrein. Involved in contact activation. See Chapter 1.

primary haemostasis

The second stage of haemostasis. Primary haemostasis is the formation of a
platelet plug. See Chapter 1.

principal component analysis

A method of dimensionality reduction. See Chapter 1.

prior distribution

A prior distribution in Bayesian statistics summarises the current beliefs
around the value of a parameter. See Chapter 1. The prior distributions in
this work are log-normal distributions for each reaction rate, fitted to the
reaction rate’s experimentally measured values. See Chapters 3 and 5.

prior form

The experimentally measured values of the reaction rates are frequently given
in terms of Kd = k−

k+
for complex binding and Km, kcat for enzymatic activa-

tion. As such, the prior distributions define reaction rates in terms of Kd, k+

for complex binding and Km, kcat and the set of reaction rates are termed
to be in prior form. The prior form is used for fitting reaction rates and
transformed into mass action law form for model simulation. See Chapter 3.

propagation

The third stage of the cell-based model of haemostasis. See Chapter 1.
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protein

A protein is a long chain of amino acids. Many bodily functions are con-
trolled by proteins, including coagulation in which all coagulation factors,
both zymogen and active forms, are all proteins.

protein C

Protein C (PC) is the precursor to Activated Protein C (APC). APC is a
serine protease which is activated by the IIa:TM (thrombin-thrombomodulin
complex) and degrades factors Va and VIIIa. See Chapter 1.

protein S

Protein S is the cofactor for protein C and has also been shown to serve as
a cofactor for TFPI. See Chapter 1.

prothrombin

The zymogen form of the enzyme thrombin. See Chapter 1.

prothrombin conversion

Prothrombin conversion can either be total (in which all prothrombin is
converted to thrombin) or partial (in which prothrombin is remaining at the
end of the assay). The prothrombin conversion discrepancy is that the previ-
ous models, and many Union Models, predict total prothrombin conversion
whereas experimental measures demonstrate partial prothrombin conversion.
See Section 2.4 and Chapters 4 and 5.

prothrombin time

A clinical assay to measure the performance of the extrinsic pathway. See
Chapter 1.

prothrombinase

The complex between FXa and FVa (Xa:Va) which is able to activate pro-
thrombin into thrombin. See Chapter 1.

pseudopodia

The arm like tendrils that grow from a platelet when it is activated. See
Chapter 1.

rate law

The method used to convert a set of reactions and reaction rates into an or-
dinary differential equation system. The two most common are Mass Action
and Michaelis Menten. See Chapter 1.

reaction scheme

A set of reactions.

red blood cell

Disk-shaped cells in the blood that carry oxygen.
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regression tree

A method in data analysis in which a variable is approximated from a data
set through binary questions on the other variables. See Chapters 1 and 4.

relative error

The absolute error between a predicted value and its true value, as a per-
centage of the true value.

relipidated tissue factor

Tissue factor that has been removed from phospholipids (delipidated) and
then expressed on another set of phospholipid vesicles so greater control can
be placed over the composition and size of the phospholipid vesicles.

RMSE

Root Mean Squared Error. See Chapter 1.

RMSLE

Root Mean Squared Log Error. See Chapter 6.

roughness penalty

A penalty that can be applied when fitting curves to data to reduce high
frequency oscillations resulting from over-fitting. See Chapters 1 and 4.

SBML

Systems Biology Markup Language. A data format for representing mathe-
matical systems biology models including chemical kinetic models.

second order reaction

A reaction with two reactants.

sensitivity analysis

A method of uncertainty quantification. See Chapter 1 and Section 2.5.

serine protease

A protein, specifically an enzyme, which cleaves other proteins through its
serine amino acid active site.

simulation study

A method in which a simulated data set is constructed to test a statistical
method in a situation where the true data generating method is known. See
Chapter 6.

species

A term in chemical kinetic modelling to describe each molecule. For example,
in thrombin generation models, all of FX, FXa, FV, FVa, and Xa:Va are all
species.
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sub-endothelial cell

Cells found in an internal layer of blood vessels which normally does not
come into contact with blood. These cells are smooth muscle cells and
express tissue factor. See Chapter 1.

thrombin

The serine protease which is uniquely able to cleave fibrinogen into fibrin.
This coagulation factor (factor IIa) is the focus of much of this and others
work. See Chapter 1.

thrombin generation assay

The assay for measuring thrombin concentration over the course of its ac-
tivation. This assay is initiated by tissue factor, phospholipids and calcium
ions. See Chapter 1.

thrombin generation curve

A plot of thrombin concentration over time from a thrombin generation assay
or mathematical model. See Chapter 1.

thrombomodulin

The surface bound protein (TM) serves as the cofactor to increase the rate
of protein C activation by thrombin. See Chapter 1.

time to peak

The time to reach the maximum concentration of thrombin from the throm-
bin generation curve. See Chapter 1.

timescale analysis

The process of analysing a mathematical model on different timescales. See
Chapter 1 and Section 2.7.

tissue factor

A protein that is expressed on sub-endothelial cells. See Chapter 1.

tissue factor pathway inhibitor

Tissue Factor Pathway Inhibitor (TFPI) is an inhibitor for FXa and TF:VIIa.
It first inhibits FXa, forming the Xa:TFPI complex, which then may inhibit
the TF:VIIa complex. See Chapter 1.

true rate

The reaction rates used to generate a simulated data set. See Chapter 6.

uncertainty quantification

A class of methods used to evaluate and quantify the uncertainty in param-
eters and their effects on model output. See Chapter 1.
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unidentifiable

A model is unidentifiable if it is not possible to identify a unique set of pa-
rameters from some data. This is typically either because the model returns
identical outputs for different parameter sets (true unidentifiability) or out-
puts that are sufficiently similar that it is not reasonable to separate them
when acounting for experimental noise (practical unidentifiability).

uninformative prior

A form of prior distribution where a wide range of values have similar prob-
ability. Useful when very little information is known about the parameters.

varimax rotation

A rotation that can be applied to the principal components to emphasise
the change in a few variables to aid interpretation. See Chapter 1.

vasoconstriction

The first stage of haemostasis. The muscular response in which a blood
vessel constricts to reduce blood flow upon damage. See Chapter 1.

vesicle

A phosphilipid vesicle is a ball-shaped phospholipid bilayer..

vessel wall

The vessel wall, or endothelium, consists of many layers, two of which are
relevant to this work. The layer which is typically exposed to the blood is
a layer of endothelial cells. Beneath this layer are the sub-endothelial cells
which are involved in coagulation. See Chapter 1.

von Willebrand Factor

A glycoprotein that can bind to plaletes and factor VIII.

zymogen

The precursor form of an enzyme.
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Appendix A

Models ODEs

This appendix presents the ODEs for all of the implemented models. It begins with
the previous models, Hockin, Danforth, Brummel, Chatterjee, Panteleev, Bungay,
Tyurin, and Zhu. Then presents the reduced ODEs corresponding to the timescale
analysis in Section 2.7 for the Danforth model and the Tyurin model. Finally, it
presents the ODEs for each version of the Unified Model (Unified Model, Expanded
Unified Model, Expanded Unified Model with Protein C, Expanded Unified Model
with Fibrinogen, Reduced Unified Model, and Improved Unified Model). In all
cases the names of the parameters match those used to report the parameter val-
ues in Section 2.1 for the previous models and Appendix B for the Unified Models.

A.1 Previous Models

A.1.1 Hockin Model

d[TF ]

dt
= k−,1[TF :V II]− k+,1[TF ][V II] + k−,2[TF :V IIa]− k+,2[TF ][V IIa]

d[V II]

dt
= k−,1[TF :V II]− k+,1[TF ][V II]− k+,3[V II][TF :V IIa]− k+,4[V II][Xa]

− k+,5[V II][IIa]

d[TF :V II]

dt
= −k−,1[TF :V II] + k+,1[TF ][V II]

d[V IIa]

dt
= k−,2[TF :V IIa]− k+,2[TF ][V IIa] + k+,3[V II][TF :V IIa] + k+,4[V II][Xa]

+ k+,5[V II][IIa]

d[TF :V IIa]

dt
= −k−,2[TF :V IIa] + k+,2[TF ][V IIa] + k−,6[TF :V IIa:X]− k+,6[TF :V IIa][X]

+ k−,8[TF :V IIa:Xa]− k+,8[TF :V IIa][Xa] + k−,9[TF :V IIa:IX]− k+,9[TF :V IIa][IX]

+ k−,10[TF :V IIa:IX]− k+,25[TF :V IIa][Xa:TFPI]− k+,30[TF :V IIa][AT ]

d[Xa]

dt
= k−,8[TF :V IIa:Xa]− k+,8[TF :V IIa][Xa] + k−,15[IXa:V IIIa:X]

+ k−,23[Xa:TFPI]− k+,23[Xa][TFPI]− k+,26[Xa][AT ] + k−,19[Xa:V a]− k+,19[Xa][V a]

d[IIa]

dt
= k+,11[II][Xa] + k+,22[mIIa][Xa:V a]− k+,29[IIa][AT ]

d[X]

dt
= k−,6[TF :V IIa:X]− k+,6[TF :V IIa][X] + k−,14[IXa:V IIIa:X]

− k+,14[IXa:V IIIa][X] + k−,17[IXa:V IIIa:X]
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d[TF :V IIa:X]

dt
= −k−,6[TF :V IIa:X] + k+,6[TF :V IIa][X]− k−,7[TF :V IIa:X]

d[TF :V IIa:Xa]

dt
= k−,7[TF :V IIa:X]− k−,8[TF :V IIa:Xa] + k+,8[TF :V IIa][Xa]

+ k−,24[TF :V IIa:Xa:TFPI]− k+,24[TF :V IIa:Xa][TFPI]

d[IX]

dt
= k−,9[TF :V IIa:IX]− k+,9[TF :V IIa][IX]

d[TF :V IIa:IX]

dt
= −k−,9[TF :V IIa:IX] + k+,9[TF :V IIa][IX]− k−,10[TF :V IIa:IX]

d[IXa]

dt
= k−,10[TF :V IIa:IX] + k−,13[IXa:V IIIa]− k+,13[IXa][V IIIa]

+ k−,17[IXa:V IIIa:X] + k−,17[IXa:V IIIa]− k+,28[IXa][AT ]

d[II]

dt
= −k+,11[II][Xa] + k−,20[Xa:V a:II]− k+,20[Xa:V a][II]

d[V III]

dt
= −k+,12[V III][IIa]

d[V IIIa]

dt
= k+,12[V III][IIa] + k−,13[IXa:V IIIa]− k+,13[IXa][V IIIa]

+ k+,16[V IIIa1L][V IIIa2]− k−,16[V IIIa]

d[IXa:V IIIa]

dt
= −k−,13[IXa:V IIIa] + k+,13[IXa][V IIIa] + k−,14[IXa:V IIIa:X]

− k+,14[IXa:V IIIa][X] + k−,15[IXa:V IIIa:X]− k−,17[IXa:V IIIa]

d[IXa:V IIIa:X]

dt
= −k−,14[IXa:V IIIa:X] + k+,14[IXa:V IIIa][X]− k−,15[IXa:V IIIa:X]

− k−,17[IXa:V IIIa:X]

d[V IIIa1L]

dt
=
d[V IIIa2]

dt
= −k+,16[V IIIa1L][V IIIa2] + k−,16[V IIIa]

+ k−,17[IXa:V IIIa:X] + k−,17[IXa:V IIIa]

d[V ]

dt
= −k+,18[V ][IIa]

d[V a]

dt
= k+,18[V ][IIa] + k−,19[Xa:V a]− k+,19[Xa][V a]

d[Xa:V a]

dt
= −k−,19[Xa:V a] + k+,19[Xa][V a] + k−,20[Xa:V a:II]− k+,20[Xa:V a][II]

+ k−,21[Xa:V a:II]

d[Xa:V a:II]

dt
= −k−,20[Xa:V a:II] + k+,20[Xa:V a][II]− k−,21[Xa:V a:II]

d[mIIa]

dt
= k−,21[Xa:V a:II]− k+,22[mIIa][Xa:V a]− k+,27[mIIa][AT ]

d[TFPI]

dt
= k−,23[Xa:TFPI]− k+,23[Xa][TFPI] + k−,24[TF :V IIa:Xa:TFPI]

− k+,24[TF :V IIa:Xa][TFPI]

d[Xa:TFPI]

dt
= −k−,23[Xa:TFPI] + k+,23[Xa][TFPI]− k+,25[TF :V IIa][Xa:TFPI]

d[TF :V IIa:Xa:TFPI]

dt
= −k−,24[TF :V IIa:Xa:TFPI] + k+,24[TF :V IIa:Xa][TFPI]

+ k+,25[TF :V IIa][Xa:TFPI]

d[AT ]

dt
= −k+,26[Xa][AT ]− k+,27[mIIa][AT ]− k+,28[IXa][AT ]− k+,29[IIa][AT ]

− k+,30[TF :V IIa][AT ]
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A.1.2 Danforth Model

d[Xa]

dt
= k−,8[TF :V IIa:Xa]− k+,8[TF :V IIa][Xa] + k−,15[IXa:V IIIa:X]

+ k−,23[Xa:TFPI]− k+,23[Xa][TFPI]− k+,26[Xa][AT ] + k+,31[X][IXa] + k−,19[Xa:V a]

− k+,19[Xa][V a]

d[X]

dt
= k−,6[TF :V IIa:X]− k+,6[TF :V IIa][X] + k−,14[IXa:V IIIa:X]

− k+,14[IXa:V IIIa][X] + k−,17[IXa:V IIIa:X]− k+,31[X][IXa]

d[V ]

dt
= −k+,18[V ][IIa]− k+,32[V ][mIIa]

d[V a]

dt
= k+,18[V ][IIa] + k−,19[Xa:V a]− k+,19[Xa][V a] + k+,32[V ][mIIa]

A.1.3 Brummel Model

d[TF ]

dt
= k1[TF :V II]− k2[TF ][V II] + k3[TF :V IIa]− k4[TF ][V IIa]

d[V II]

dt
= k1[TF :V II]− k2[TF ][V II]− k5[V II][TF :V IIa]− k6[V II][Xa]− k7[V II][IIa]

d[TF :V II]

dt
= −k1[TF :V II] + k2[TF ][V II]

d[V IIa]

dt
= k3[TF :V IIa]− k4[TF ][V IIa] + k5[V II][TF :V IIa] + k6[V II][Xa] + k7[V II][IIa]

d[TF :V IIa]

dt
= −k3[TF :V IIa] + k4[TF ][V IIa] + k8[TF :V IIa:X]− k9[TF :V IIa][X]

+ k11[TF :V IIa:Xa]− k12[TF :V IIa][Xa] + k13[TF :V IIa:IX]− k14[TF :V IIa][IX]

+ k15[TF :V IIa:IX]− k37[TF :V IIa][Xa:TFPI]− k42[TF :V IIa][AT ]
d[Xa]

dt
= k11[TF :V IIa:Xa]− k12[TF :V IIa][Xa] + k22[IXa:V IIIa:X] + k27[Xa:V a]

− k28[Xa][V a] + k33[Xa:TFPI]− k34[Xa][TFPI]− k38[Xa][AT ] + k54[Xa:V a5]

− k28[Xa][V a5] + k54[Xa:V a3]− k28[Xa][V a3] + k59[Xa:V a3] + k59[Xa:V a3:II]

+ k60[X][IXa] + k54[Xa:V a53]− k28[Xa][V a53] + k59[Xa:V a53] + k59[Xa:V a53:II]

d[IIa]

dt
= k16[II][Xa] + k32[mIIa][Xa:V a]− k41[IIa][AT ] + k43[TM :IIa]− k44[TM ][IIa]

+ k57[mIIa][Xa:V a5] + k58[mIIa][Xa:V a3] + k58[mIIa][Xa:V a53]

d[X]

dt
= k8[TF :V IIa:X]− k9[TF :V IIa][X] + k20[IXa:V IIIa:X]− k21[IXa:V IIIa][X]

+ k25[IXa:V IIIa:X]− k60[X][IXa]

d[TF :V IIa:X]

dt
= −k8[TF :V IIa:X] + k9[TF :V IIa][X]− k10[TF :V IIa:X]

d[TF :V IIa:Xa]

dt
= k10[TF :V IIa:X]− k11[TF :V IIa:Xa] + k12[TF :V IIa][Xa]

+ k35[TF :V IIa:Xa:TFPI]− k36[TF :V IIa:Xa][TFPI]
d[IX]

dt
= k13[TF :V IIa:IX]− k14[TF :V IIa][IX]

d[TF :V IIa:IX]

dt
= −k13[TF :V IIa:IX] + k14[TF :V IIa][IX]− k15[TF :V IIa:IX]

d[IXa]

dt
= k15[TF :V IIa:IX] + k18[IXa:V IIIa]− k19[IXa][V IIIa] + k25[IXa:V IIIa:X]

+ k25[IXa:V IIIa]− k40[IXa][AT ]
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d[II]

dt
= −k16[II][Xa] + k29[Xa:V a:II]− k30[Xa:V a][II] + k29[Xa:V a5:II]

− k30[Xa:V a5][II] + k29[Xa:V a3:II]− k30[Xa:V a3][II] + k59[Xa:V a3:II]

+ k29[Xa:V a53:II]− k30[II][Xa:V a53] + k59[Xa:V a53:II] + k62[II:V a]− k63[II][V a]
d[V III]

dt
= −k17[V III][IIa]

d[V IIIa]

dt
= k17[V III][IIa] + k18[IXa:V IIIa]− k19[IXa][V IIIa] + k23[V IIIa1L][V IIIa2]

− k24[V IIIa]
d[IXa:V IIIa]

dt
= −k18[IXa:V IIIa] + k19[IXa][V IIIa] + k20[IXa:V IIIa:X]

− k21[IXa:V IIIa][X] + k22[IXa:V IIIa:X]− k25[IXa:V IIIa]
d[IXa:V IIIa:X]

dt
= −k20[IXa:V IIIa:X] + k21[IXa:V IIIa][X]− k22[IXa:V IIIa:X]

− k25[IXa:V IIIa:X]

d[V IIIa1L]

dt
=
d[V IIIa2]

dt
= −k23[V IIIa1L][V IIIa2] + k24[V IIIa] + k25[IXa:V IIIa:X]

+ k25[IXa:V IIIa]

d[V ]

dt
= −k26[V ][IIa]− k61[V ][mIIa]

d[V a]

dt
= k26[V ][IIa] + k27[Xa:V a]− k28[Xa][V a] + k49[APC:V a]− k50[APC][V a]

+ k61[V ][mIIa] + k62[II:V a]− k63[II][V a]
d[Xa:V a]

dt
= −k27[Xa:V a] + k28[Xa][V a] + k29[Xa:V a:II]− k30[Xa:V a][II] + k31[Xa:V a:II]

d[Xa:V a:II]

dt
= −k29[Xa:V a:II] + k30[Xa:V a][II]− k31[Xa:V a:II]

d[mIIa]

dt
= k31[Xa:V a:II]− k32[mIIa][Xa:V a]− k39[mIIa][AT ] + k55[Xa:V a5:II]

+ k56[Xa:V a3:II]− k57[mIIa][Xa:V a5]− k58[mIIa][Xa:V a3] + k43[TM :mIIa]

− k44[TM ][mIIa] + k56[Xa:V a53:II]− k58[mIIa][Xa:V a53]
d[TFPI]

dt
= k33[Xa:TFPI]− k34[Xa][TFPI] + k35[TF :V IIa:Xa:TFPI]

− k36[TF :V IIa:Xa][TFPI]
d[Xa:TFPI]

dt
= −k33[Xa:TFPI] + k34[Xa][TFPI]− k37[TF :V IIa][Xa:TFPI]

d[TF :V IIa:Xa:TFPI]

dt
= −k35[TF :V IIa:Xa:TFPI]

+ k36[TF :V IIa:Xa][TFPI] + k37[TF :V IIa][Xa:TFPI]

d[AT ]

dt
= −k38[Xa][AT ]− k39[mIIa][AT ]− k40[IXa][AT ]− k41[IIa][AT ]

− k42[TF :V IIa][AT ]− k48[TM :IIa][AT ]− k48[TM :mIIa][AT ]

d[TM ]

dt
= k43[TM :IIa]− k44[TM ][IIa] + k48[TM :IIa][AT ] + k43[TM :mIIa]

− k44[TM ][mIIa] + k48[TM :mIIa][AT ]

d[TM :IIa]

dt
= −k43[TM :IIa] + k44[TM ][IIa] + k45[TM :IIa:PC]− k46[PC][TM :IIa]

+ k47[TM :IIa:PC]− k48[TM :IIa][AT ] + k45[TM :IIa:APC]− k46[APC][TM :IIa]

d[PC]

dt
= k45[TM :IIa:PC]− k46[PC][TM :IIa] + k45[TM :mIIa:PC]− k46[TM :mIIa][PC]

d[TM :IIa:PC]

dt
= −k45[TM :IIa:PC] + k46[PC][TM :IIa]− k47[TM :IIa:PC]
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d[APC]

dt
= k47[TM :IIa:PC] + k49[APC:V a]− k50[APC][V a] + k51[APC:V a]

+ k52[APC:V a] + k49[APC:V a5]− k50[APC][V a5]
+ k49[APC:V a3]− k50[APC][V a3] + k51[APC:V a3] + k52[APC:V a5] + k49[APC:LCA1]

− k50[APC][LCA1] + k45[TM :IIa:APC]− k46[APC][TM :IIa] + k47[TM :mIIa:PC]

d[APC:V a]

dt
= k49[APC:V a]− k50[APC][V a]− k51[APC:V a]− k52[APC:V a]

d[V a5]

dt
= k51[APC:V a] + k49[APC:V a5]− k50[APC][V a5] + k54[Xa:V a5]− k28[Xa][V a5]

d[V a3]

dt
= k52[APC:V a] + k49[APC:V a3]− k50[APC][V a3]− k53[V a3] + k54[Xa:V a3]

− k28[Xa][V a3]
d[APC:V a5]

dt
= −k49[APC:V a5] + k50[APC][V a5]− k52[APC:V a5]

d[APC:V a3]

dt
= −k49[APC:V a3] + k50[APC][V a3]− k51[APC:V a3]

d[V a53]

dt
= k51[APC:V a3] + k52[APC:V a5]− k53[V a53] + k54[Xa:V a53]− k28[Xa][V a53]

d[HCF ]

dt
= k53[V a3] + k53[V a53] + k59[Xa:V a3] + k59[Xa:V a3:II] + k59[Xa:V a53]

+ k59[Xa:V a53:II]

d[LCA1]

dt
= k53[V a3] + k53[V a53] + k49[APC:LCA1]− k50[APC][LCA1] + k59[Xa:V a3]

+ k59[Xa:V a3:II] + k59[Xa:V a53] + k59[Xa:V a53:II]

d[APC:LCA1]

dt
= −k49[APC:LCA1] + k50[APC][LCA1]

d[TM :IIa:APC]

dt
= −k45[TM :IIa:APC] + k46[APC][TM :IIa]

d[Xa:V a5]

dt
= −k54[Xa:V a5] + k28[Xa][V a5] + k29[Xa:V a5:II]− k30[Xa:V a5][II]

+ k55[Xa:V a5:II]− k64[Xa:V a5][APC]
d[Xa:V a3]

dt
= −k54[Xa:V a3] + k28[Xa][V a3] + k29[Xa:V a3:II]− k30[Xa:V a3][II]

+ k56[Xa:V a3:II]− k59[Xa:V a3]
d[Xa:V a5:II]

dt
= −k29[Xa:V a5:II] + k30[Xa:V a5][II]− k55[Xa:V a5:II]

d[Xa:V a3:II]

dt
= −k29[Xa:V a3:II] + k30[Xa:V a3][II]− k56[Xa:V a3:II]− k59[Xa:V a3:II]

d[TM :mIIa]

dt
= −k43[TM :mIIa] + k44[TM ][mIIa] + k45[TM :mIIa:PC]

− k46[TM :mIIa][PC] + k47[TM :mIIa:PC]− k48[TM :mIIa][AT ]

d[TM :mIIa:PC]

dt
= −k45[TM :mIIa:PC] + k46[TM :mIIa][PC]− k47[TM :mIIa:PC]

d[Xa:V a53]

dt
= −k54[Xa:V a53] + k28[Xa][V a53] + k29[Xa:V a53:II]− k30[II][Xa:V a53]

+ k56[Xa:V a53:II]− k59[Xa:V a53] + k64[Xa:V a5][APC]

d[Xa:V a53:II]

dt
= −k29[Xa:V a53:II] + k30[II][Xa:V a53]− k56[Xa:V a53:II]− k59[Xa:V a53:II]

d[II:V a]

dt
= −k62[II:V a] + k63[II][V a]
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A.1.4 Chatterjee Model

d[TF ]

dt
= k−,1[TF :V II]− k+,1[TF ][V II] + k−,2[TF :V IIa]− k+,2[TF ][V IIa]

d[V II]

dt
= k−,1[TF :V II]− k+,1[TF ][V II]− k+,3[V II][TF :V IIa]− k+,4[V II][Xa]

− k+,5[V II][IIa]

d[TF :V II]

dt
= −k−,1[TF :V II] + k+,1[TF ][V II]

d[V IIa]

dt
= k−,2[TF :V IIa]− k+,2[TF ][V IIa] + k+,3[V II][TF :V IIa] + k+,4[V II][Xa]

+ k+,5[V II][IIa]− k+,60[V IIa][IX] + k−,60[V IIa:IX] + k−,61[V IIa:IX]

− k+,62[V IIa][X] + k−,62[V IIa:X]/ε+ k−,63[V IIa:X]

d[TF :V IIa]

dt
= −k−,2[TF :V IIa] + k+,2[TF ][V IIa] + k−,6[TF :V IIa:X]− k+,6[TF :V IIa][X]

+ k−,8[TF :V IIa:Xa]− k+,8[TF :V IIa][Xa] + k−,9[TF :V IIa:IX]− k+,9[TF :V IIa][IX]

+ k−,10[TF :V IIa:IX]− k+,25[TF :V IIa][Xa:TFPI]− k+,30[TF :V IIa][AT ]

d[Xa]

dt
= k−,8[TF :V IIa:Xa]− k+,8[TF :V IIa][Xa] + k−,15[IXa:V IIIa:X] + k−,19[Xa:V a]/ε

− k+,19[Xa][V a] + k−,23[Xa:TFPI]/ε− k+,23[Xa][TFPI]− k+,26[Xa][AT ] + k−,57[IXa:X]

− k+,58[Xa][V III] + k−,58[Xa:V III]/ε+ k−,59[Xa:V III]] + k−,63[V IIa:X]

d[IIa]

dt
= k+,11[II][Xa] + k+,22[mIIa][Xa:V a]− k+,29[IIa][AT ]

− k+,31[Boc−V PR−MCA][IIa] + k−,31[Boc−V PR−MCA:IIa]

+ k−,32[Boc−V PR−MCA:IIa]− k+,45[XI][IIa] + k−,45[XI:IIa] + k−,46[XI:IIa]

− k+,64[Fbg][IIa] + k−,64[Fbg:IIa] + k−,65[Fbg:IIa]− k+,66[Fbn1][IIa]

+ k−,66[Fbn1:IIa] + k−,67[Fbn1:IIa]− k+,69[Fbn12][IIa] + k−,69[Fbn12:IIa]

+ k−,70[Fbn12:IIa]− k+,71[Fbn2][IIa] + k−,71[Fbn2:IIa]

d[X]

dt
= k−,6[TF :V IIa:X]− k+,6[TF :V IIa][X] + k−,14[IXa:V IIIa:X]/ε

− k+,14[IXa:V IIIa][X] + k−,17[IXa:V IIIa:X]− k+,56[IXa][X]

+ k−,56[IXa:X]/ε− k+,62[V IIa][X] + k−,62[V IIa:X]/ε

d[TF :V IIa:X]

dt
= −k−,6[TF :V IIa:X] + k+,6[TF :V IIa][X]− k−,7[TF :V IIa:X]

d[TF :V IIa:Xa]

dt
= k−,7[TF :V IIa:X]− k−,8[TF :V IIa:Xa] + k+,8[TF :V IIa][Xa]

+ k−,24[TF :V IIa:Xa:TFPI]− k+,24[TF :V IIa:Xa][TFPI]

d[IX]

dt
= k−,9[TF :V IIa:IX]− k+,9[TF :V IIa][IX]− k+,54[XIa][IX] + k−,54[XIa:IX]/ε

− k+,60[V IIa][IX] + k−,60[V IIa:IX]

d[TF :V IIa:IX]

dt
= −k−,9[TF :V IIa:IX] + k+,9[TF :V IIa][IX]− k−,10[TF :V IIa:IX]

d[IXa]

dt
= k−,10[TF :V IIa:IX] + k−,13[IXa:V IIIa]/ε− k+,13[IXa][V IIIa]

+ k−,17[IXa:V IIIa:X] + k−,17[IXa:V IIIa]− k+,28[IXa][AT ] + k−,55[XIa:IX]

− k+,56[IXa][X] + k−,56[IXa:X]/ε+ k−,57[IXa:X] + k−,61[V IIa:IX]

d[II]

dt
= −k+,11[II][Xa] + k−,20[Xa:V a:II]/ε− k+,20[Xa:V a][II]

d[V III]

dt
= −k+,12[V III][IIa]− k+,58[Xa][V III] + k−,58[Xa:V III]/ε
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d[V IIIa]

dt
= k+,12[V III][IIa] + k−,13[IXa:V IIIa]/ε− k+,13[IXa][V IIIa]

+ k+,16[V IIIa1L][V IIIa2]− k−,16[V IIIa]/ε+ k−,59[Xa:V III]

d[IXa:V IIIa]

dt
= −k−,13[IXa:V IIIa]/ε+ k+,13[IXa][V IIIa] + k−,14[IXa:V IIIa:X]/ε

− k+,14[IXa:V IIIa][X] + k−,15[IXa:V IIIa:X]− k−,17[IXa:V IIIa]

d[IXa:V IIIa:X]

dt
= −k−,14[IXa:V IIIa:X]/ε+ k+,14[IXa:V IIIa][X]− k−,15[IXa:V IIIa:X]

− k−,17[IXa:V IIIa:X]

d[V IIIa1L]

dt
=
d[V IIIa2]

dt
= −k+,16[V IIIa1L][V IIIa2] + k−,16[V IIIa]/ε

+ k−,17[IXa:V IIIa:X] + k−,17[IXa:V IIIa]

d[V ]

dt
= −k+,18[V ][IIa]

d[V a]

dt
= k+,18[V ][IIa] + k−,19[Xa:V a]/ε− k+,19[Xa][V a]

d[Xa:V a]

dt
= −k−,19[Xa:V a]/ε+ k+,19[Xa][V a] + k−,20[Xa:V a:II]/ε− k+,20[Xa:V a][II]

+ k−,21[Xa:V a:II]

d[Xa:V a:II]

dt
= −k−,20[Xa:V a:II]/ε+ k+,20[Xa:V a][II]− k−,21[Xa:V a:II]

d[mIIa]

dt
= k−,21[Xa:V a:II]− k+,22[mIIa][Xa:V a]− k+,27[mIIa][AT ]

d[TFPI]

dt
= k−,23[Xa:TFPI]/ε− k+,23[Xa][TFPI] + k−,24[TF :V IIa:Xa:TFPI]

− k+,24[TF :V IIa:Xa][TFPI]

d[Xa:TFPI]

dt
= −k−,23[Xa:TFPI]/ε+ k+,23[Xa][TFPI]− k+,25[TF :V IIa][Xa:TFPI]

d[TF :V IIa:Xa:TFPI]

dt
= −k−,24[TF :V IIa:Xa:TFPI] + k+,24[TF :V IIa:Xa][TFPI]

+ k+,25[TF :V IIa][Xa:TFPI]

d[AT ]

dt
= −k+,26[Xa][AT ]− k+,27[mIIa][AT ]− k+,28[IXa][AT ]− k+,29[IIa][AT ]

− k+,30[TF :V IIa][AT ]− k+,44[XIIa][AT ]− k+,50[XIa][AT ]− k+,72[Fbn12:IIa][AT ]

− k+,73[Fbn1:IIa][AT ]− k+,74[Fbn2:IIa][AT ]

d[Boc−V PR−MCA]

dt
= −k+,31[Boc−V PR−MCA][IIa] + k−,31[Boc−V PR−MCA:IIa]

d[Boc−V PR−MCA:IIa]

dt
= k+,31[Boc−V PR−MCA][IIa]− k−,31[Boc−V PR−MCA:IIa]

− k−,32[Boc−V PR−MCA:IIa]

d[Boc−V PR]
dt

= k−,32[Boc−V PR−MCA:IIa]

d[AMC]

dt
= k−,32[Boc−V PR−MCA:IIa]

d[XII]

dt
= −k−,33[XII]− k+,34[XIIa][XII] + k−,34[XIIa:XII]/ε− k+,38[XII][K]

+ k−,38[XII:K]/ε

d[XIIa]

dt
= k−,33[XII]− k+,34[XIIa][XII] + k−,34[XIIa:XII]/ε+ 2k−,35[XIIa:XII]

− k+,36[XIIa][PK] + k−,36[XIIa:PK]/ε+ k−,37[XIIa:PK] + k−,39[XII:K]

− k+,42[XIIa][CTI] + k−,42[XIIa:CTI]− k−,43[XIIa][C1−inh]
− k+,44[XIIa][AT ]− k+,47[XIIa][XI] + k−,47[XIIa:XI]/ε+ k−,48[XIIa:XI]
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d[XIIa:XII]

dt
= k+,34[XIIa][XII]− k−,34[XIIa:XII]/ε− k−,35[XIIa:XII]

d[PK]

dt
= −k+,36[XIIa][PK] + k−,36[XIIa:PK]/ε− k+,40[PK][K]

d[XIIa:PK]

dt
= k+,36[XIIa][PK]− k−,36[XIIa:PK]/ε− k−,37[XIIa:PK]

d[K]

dt
= k−,37[XIIa:PK]− k+,38[XII][K] + k−,38[XII:K]/ε+ k−,39[XII:K] + k+,40[PK][K]

− k−,41[K]

d[XII:K]

dt
= k+,38[XII][K]− k−,38[XII:K]/ε− k−,39[XII:K]

d[CTI]

dt
= −k+,42[XIIa][CTI] + k−,42[XIIa:CTI]

d[C1−inh]
dt

= −k−,43[XIIa][C1−inh]− k+,51[XIa][C1−inh]

d[XI]

dt
= −k+,45[XI][IIa] + k−,45[XI:IIa]− k+,47[XIIa][XI] + k−,47[XIIa:XI]/ε

− k+,49[XIa][XI]

d[XI:IIa]

dt
= k+,45[XI][IIa]− k−,45[XI:IIa]− k−,46[XI:IIa]

d[XIa]

dt
= k−,46[XI:IIa] + k−,48[XIIa:XI] + k+,49[XIa][XI]− k+,50[XIa][AT ]

− k+,51[XIa][C1−inh]− k+,52[XIa][α1−AT ]− k+,53[XIa][α2−AP ]
− k+,54[XIa][IX] + k−,54[XIa:IX]/ε+ k−,55[XIa:IX]

d[XIIa:XI]

dt
= k+,47[XIIa][XI]− k−,47[XIIa:XI]/ε− k−,48[XIIa:XI]

d[α1−AT ]
dt

= −k+,52[XIa][α1−AT ]

d[α2−AP ]
dt

= −k+,53[XIa][α2−AP ]

d[XIa:IX]

dt
= k+,54[XIa][IX]− k−,54[XIa:IX]/ε− k−,55[XIa:IX]

d[IXa:X]

dt
= k+,56[IXa][X]− k−,56[IXa:X]/ε− k−,57[IXa:X]

d[Xa:V III]

dt
= k+,58[Xa][V III]− k−,58[Xa:V III]/ε− k−,59[Xa:V III]

d[V IIa:IX]

dt
= k+,60[V IIa][IX]− k−,60[V IIa:IX]− k−,61[V IIa:IX]

d[V IIa:X]

dt
= k+,62[V IIa][X]− k−,62[V IIa:X]/ε− k−,63[V IIa:X]

d[Fbg]

dt
= −k+,64[Fbg][IIa] + k−,64[Fbg:IIa]

d[Fbg:IIa]

dt
= k+,64[Fbg][IIa]− k−,64[Fbg:IIa]− k−,65[Fbg:IIa]

d[Fbn1]

dt
= k−,65[Fbg:IIa]− k+,66[Fbn1][IIa] + k−,66[Fbn1:IIa]− k+,68[Fbn1]

2 + k−,68[Fbn12]

d[FPA]

dt
= k−,65[Fbg:IIa]

d[Fbn2]

dt
= k−,67[Fbn1:IIa]− k+,71[Fbn2][IIa] + k−,71[Fbn2:IIa]

d[Fbn12]

dt
= k+,68[Fbn1]

2 − k−,68[Fbn12]− k+,69[Fbn12][IIa] + k−,69[Fbn12:IIa]

d[Fbn22]

dt
= k−,70[Fbn12:IIa]
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d[FPB]

dt
= k−,67[Fbn1:IIa] + k−,70[Fbn12:IIa]

d[Fbn2:IIa]

dt
= k+,71[Fbn2][IIa]− k−,71[Fbn2:IIa]− k+,74[Fbn2:IIa][AT ]

d[Fbn12:IIa]

dt
= k+,69[Fbn12][IIa]− k−,69[Fbn12:IIa]− k−,70[Fbn12:IIa]

− k+,72[Fbn12:IIa][AT ]

d[Fbn1:IIa]

dt
= k+,66[Fbn1][IIa]− k−,66[Fbn1:IIa]− k−,67[Fbn1:IIa]− k+,73[Fbn1:IIa][AT ]

A.1.5 Panteleev Model

[IXaBF ] = [IXa]pn1/(K11 + [IXa])

[TF :V IIaF ] = [TF :V IIa]/(1 + [IX]/K1 + [X]/K3)

[TF :V IIa:Xa] = k6/(K3k−3)[X][TF :V IIaF ]

[V aB] = [V a]pn4/(K18 + [V a])

[Xa:V aB] = [Xa][V aB]/(K14(1 + [PS]/K15 + [Xa]/K14) + [V aB])

[V aBF ] = [V aB]− [Xa:V aB]

[XaF ] = [Xa]− [Xa:V aB]

[IIB] = [II]pn3/(K17(1 + [X]/K16 + [II]/K17))

[IIaF ] = [IIa]/(1 + ([Ia] + [I])/K8)

[XB] = [X]pn3/(K16(1 + [X]/K16 + [II]/K17))

[V IIIaBF ] = [V IIIa]pn2/((K12 + [V IIIa])(1 + [XB]/(pK7)(1 + [PS]/K13)))

d[TF :V IIa]

dt
= k1[V IIa][TF ]− k−1[TF :V IIaF ] + k2[TF : V II][IIaF ] + k3[TF : V II][XaF ]

− h1[TF :V IIaF ][Xa:TFPI]− h2[TF :V IIa:Xa][TFPI]
d[TF :V II]

dt
= k1[V II][TF ]− k−1[TF : V II]− k2[TF : V II][IIaF ]− k3[TF : V II][XaF ]

d[TF ]

dt
= −k1[V IIa][TF ] + k−1[TF :V IIaF ]− k1[V II][TF ] + k−1[TF : V II]

d[V IIa]

dt
= −k1[V IIa][TF ] + k−1[TF :V IIaF ] + k2[V II][IIaF ]

d[V II]

dt
= −k1[V II][TF ] + k−1[TF : V II]− k2[V II][IIaF ]

d[IXa]

dt
= k4/K1[IX][TF :V IIaF ] + k5[IX][XIa]/(K2 + [IX])− h3[AT ][IXa]

d[IX]

dt
= −k4/K1[IX][TF :V IIaF ]− k5[IX][XIa]/(K2 + [IX])

d[Xa]

dt
= k6/K3[X][TF :V IIaF ] + k8[IXaBF ][V IIIaBF ][XB]/(p2K6K5)

+ k7[IXaBF ][XB]/(pK4)− k9[XaF ][TFPI] + k−2[Xa:TFPI]− h4[AT ][XaF ]
− h5[α2−M ][XaF ]− h6[α1−AT ][XaF ]− h7[PCI][XaF ]− h8[AT ][Xa:V aB]

d[X]

dt
= −k6/K3[X][TF :V IIaF ]− k7[IXaBF ][XB]/(pK4)

− k8[IXaBF ][V IIIaBF ][XB]/(p2K6K5)

d[IIa]

dt
= k10p[XaF ][II] + k11[Xa:V aB][IIB]/p− h9[AT ][IIaF ]− h10[α2−M ][IIaF ]

− h11[α1−AT ][IIaF ]− h12[PCI][IIaF ]− h13[hep][IIaF ]
d[II]

dt
= −k10p[XaF ][II]− k11[Xa:V aB][IIB]/p

d[Ia]

dt
= k12/K8[I][IIaF ]
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d[I]

dt
= −k12/K8[I][IIaF ]

d[V IIIa]

dt
= k13[V III][IIaF ]/(K9 + [IIaF ])− h14[V IIIa]

d[V III]

dt
= −k13[V III][IIaF ]/(K9 + [IIaF ])

d[V a]

dt
= k14[V ][IIaF ]/(K10 + [IIaF ])− h15[APC][V aBF ]

d[V ]

dt
= −k14[V ][IIaF ]/(K10 + [IIaF ])

d[XIa]

dt
= k15p[XI][IIaF ]− h16[AT ][XIa]− h17[a1AP ][XIa]− h18[α1−AT ][XIa]

− h19[PCI][XIa]− h20[C1−inh][XIa]
d[XI]

dt
= −k15p[XI][IIaF ]

d[AT ]

dt
= −h3[IXa][AT ]− h4[XaF ][AT ]− h8[Xa:V aB][AT ]− h9[IIaF ][AT ]− h16[XIa][AT ]

d[TFPI]

dt
= −k9[XaF ][TFPI] + k−2[Xa:TFPI]− h2[TF :V IIa:Xa][TFPI]

d[Xa:TFPI]

dt
= k9[XaF ][TFPI]− k−2[Xa:TFPI]− h1[TF :V IIaF ][Xa:TFPI]

d[APC]

dt
= k16[PC][IIaF ]− h21[α2−M ][APC]− h22[a1AP ][APC]− h23[α1−AT ][APC]

− h24[PCI][APC]
d[PC]

dt
= −k16[PC][IIaF ]

A.1.6 Bungay Model

d[IIf ]

dt
= −kon1

[IIf ][LIPID]/nV a + koff1 [IIL]

d[IIL]

dt
= kon1

[IIf ][LIPID]/nV a − koff1 [IIL]− k+,22[Xa:V aL][IIL] + k−,22[Xa:V a:IIL]

d[mIIaf ]

dt
= −kon2 [mIIaf ][LIPID]/nV a + koff2 [mIIaL]− k+,46[mIIaf ][ATf ]

d[mIIaL]

dt
= kon2

[mIIaf ][LIPID]/nV a − koff2 [mIIaL]− k+,23[Xa:V aL][mIIaL]

+ k−,23[Xa:V a:mIIaL]− k+,39[VL][mIIaL] + k−,39[V :mIIaL] + k−,40[V :mIIaL]

− k+,41[V IIIL][mIIaL] + k−,41[V III:mIIaL] + k−,42[V III:mIIaL]

d[Vf ]

dt
= −kon3

[Vf ][LIPID]/nV a + koff3 [VL]

d[VL]

dt
= kon3 [Vf ][LIPID]/nV a − koff3 [VL]− k+,14[VL][XaL] + k−,14[V :XaL]

− k+,18[VL][IIaf ] + k−,18[V :IIaL]− k+,39[VL][mIIaL] + k−,39[V :mIIaL]

d[V af ]

dt
= −kon4

[V af ][LIPID]/nV a + koff4 [V aL]

d[V aL]

dt
= kon4

[V af ][LIPID]/nV a − koff4 [V aL]− k+,11[XaL][V aL] + k−,11[Xa:V aL]

+ k−,19[V :IIaL]− k+,32[APC:PSL][V aL] + k−,32[APC:PS:V aL] + k−,40[V :mIIaL]

d[V IIf ]

dt
= −kon5 [V IIf ][LIPID]/nV a + koff5 [V IIL]

d[V IIL]

dt
= kon5 [V IIf ][LIPID]/nV a − koff5 [V IIL]− k+,2[TFL][V IIL] + k−,2[TF :V IIL]

− k+,26[V IIL][XaL] + k−,26[V II:XaL]

285



d[V IIaf ]

dt
= −kon6

[V IIaf ][LIPID]/nV a + koff6 [V IIaL]

d[V IIaL]

dt
= kon6 [V IIaf ][LIPID]/nV a − koff6 [V IIaL]− k+,1[TFL][V IIaL]

+ k−,1[TF :V IIaL] + k−,27[V II:XaL]

d[V IIIf ]

dt
= −kon7

[V IIIf ][LIPID]/nV a + koff7 [V IIIL]

d[V IIIL]

dt
= kon7

[V IIIf ][LIPID]/nV a − koff7 [V IIIL]− k+,16[V IIIL][XaL]

+ k−,16[V III:XaL]− k+,20[V IIIL][IIaf ] + k−,20[V III:IIaL]

− k+,41[V IIIL][mIIaL] + k−,41[V III:mIIaL]

d[V IIIaf ]

dt
= −kon8 [V IIIaf ][LIPID]/nV a + koff8 [V IIIaL]

d[V IIIaL]

dt
= kon8

[V IIIaf ][LIPID]/nV a − koff8 [V IIIaL]− k+,10[IXaL][V IIIaL]

+ k−,10[IXa:V IIIaL] + k−,17[V III:XaL] + k−,21[V III:IIaL]− k+,30[APC:PSL][V IIIaL]

+ k−,30[APC:PS:V IIIaL] + k−,42[V III:mIIaL]

d[IXf ]

dt
= −kon9

[IXf ][LIPID]/nV a + koff9 [IXL]

d[IXL]

dt
= kon9

[IXf ][LIPID]/nV a − koff9 [IXL]− k+,3[TF :V IIaL][IXL]

+ k−,3[TF :V IIa:IXL]− k+,48[XIaf ][IXL] + k−,48[XIa:IXL]

d[IXaf ]

dt
= −kon10 [IXaf ][LIPID]/nV a + koff10 [IXaL]− k+,36[IXaf ][ATf ]

d[IXaL]

dt
= kon10

[IXaf ][LIPID]/nV a − koff10 [IXaL] + k−,4[TF :V IIa:IXL]

− k+,10[IXaL][V IIIaL] + k−,10[IXa:V IIIaL] + k−,49[XIa:IXL]

d[Xf ]

dt
= −kon11

[Xf ][LIPID]/nV a + koff11 [XL]

d[XL]

dt
= kon11 [Xf ][LIPID]/nV a − koff11 [XL]− k+,5[TF :V IIaL][XL] + k−,5[TF :V IIa:XL]

− k+,12[IXa:V IIIaL][XL] + k−,12[IXa:V IIIa:XL]

d[Xaf ]

dt
= −kon12

[Xaf ][LIPID]/nV a + koff12 [XaL]− k+,34[TFPIf ][Xaf ]

+ k−,34[TFPI:Xaf ]− k+,37[Xaf ][ATf ]

d[XaL]

dt
= kon12

[Xaf ][LIPID]/nV a − koff12 [XaL]− k−,7[TF :V IIa:XaL]

− k+,8[TF :V IIL][XaL] + k−,8[TF :V II:XaL] + k−,9[TF :V II:XaL]

− k+,11[XaL][V aL] + k−,11[Xa:V aL] + k−,13[IXa:V IIIa:XL]− k+,14[VL][XaL]

+ k−,14[V :XaL] + k−,15[V :XaL]− k+,16[V IIIL][XaL] + k−,16[V III:XaL]

+ k−,17[V III:XaL]− k+,26[V IIL][XaL] + k−,26[V II:XaL] + k−,27[V II:XaL]

d[APCf ]

dt
= −kon13 [APCf ][LIPID]/nV a + koff13 [APCL]

d[APCL]

dt
= kon13

[APCf ][LIPID]/nV a − koff13 [APCL] + k−,45[IIa:TM :PCL]

− k+,47[APCL][PSL] + k−,47[APC:PSL]

d[PSf ]

dt
= −kon14

[PSf ][LIPID]/nV a + koff14 [PSL]

d[PSL]

dt
= kon14 [PSf ][LIPID]/nV a − koff14 [PSL]− k+,47[APCL][PSL] + k−,47[APC:PSL]

d[V IIIaif ]

dt
= −kon15

[V IIIaif ][LIPID]/nV a + koff15 [V IIIaiL]
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d[V IIIaiL]

dt
= kon15

[V IIIaif ][LIPID]/nV a − koff15 [V IIIaiL] + k−,31[APC:PS:V IIIaL]

d[V aif ]

dt
= −kon16 [V aif ][LIPID]/nV a + koff16 [V aiL]

d[V aiL]

dt
= kon16

[V aif ][LIPID]/nV a − koff16 [V aiL] + k−,33[APC:PS:V aL]

d[PCf ]

dt
= −kon17

[PCf ][LIPID]/nV a + koff17 [PCL]

d[PCL]

dt
= kon17

[PCf ][LIPID]/nV a − koff17 [PCL]− k+,44[IIa:TML][PCL]

+ k−,44[IIa:TM :PCL]

d[TFL]

dt
= −k+,1[TFL][V IIaL] + k−,1[TF :V IIaL]− k+,2[TFL][V IIL] + k−,2[TF :V IIL]

d[TF :V IIaL]

dt
= k+,1[TFL][V IIaL]− k−,1[TF :V IIaL]− k+,3[TF :V IIaL][IXL]

+ k−,3[TF :V IIa:IXL] + k−,4[TF :V IIa:IXL]− k+,5[TF :V IIaL][XL]

+ k−,5[TF :V IIa:XL] + k−,7[TF :V IIa:XaL] + k−,9[TF :V II:XaL]

− k+,35[TFPI:Xaf ][TF :V IIaL] + k−,35[TFPI:Xa:TF :V IIaL]

d[TF :V IIL]

dt
= k+,2[TFL][V IIL]− k−,2[TF :V IIL]− k+,8[TF :V IIL][XaL] + k−,8[TF :V II:XaL]

d[TF :V IIa:IXL]

dt
= k+,3[TF :V IIaL][IXL]− k−,3[TF :V IIa:IXL]− k−,4[TF :V IIa:IXL]

d[TF :V IIa:XL]

dt
= k+,5[TF :V IIaL][XL]− k−,5[TF :V IIa:XL]− k−,6[TF :V IIa:XL]

d[TF :V IIa:XaL]

dt
= k−,6[TF :V IIa:XL] + k−,7[TF :V IIa:XaL]

d[TF :V II:XaL]

dt
= k+,8[TF :V IIL][XaL]− k−,8[TF :V II:XaL]− k−,9[TF :V II:XaL]

d[IXa:V IIIaL]

dt
= k+,10[IXaL][V IIIaL]− k−,10[IXa:V IIIaL]− k+,12[IXa:V IIIaL][XL]

+ k−,12[IXa:V IIIa:XL] + k−,13[IXa:V IIIa:XL]

d[Xa:V aL]

dt
= k+,11[XaL][V aL]− k−,11[Xa:V aL]− k+,22[Xa:V aL][IIL] + k−,22[Xa:V a:IIL]

− k+,23[Xa:V aL][mIIaL] + k−,23[Xa:V a:mIIaL] + k−,25[Xa:V a:mIIaL]

d[IXa:V IIIa:XL]

dt
= k+,12[IXa:V IIIaL][XL]− k−,12[IXa:V IIIa:XL]− k−,13[IXa:V IIIa:XL]

d[V :XaL]

dt
= k+,14[VL][XaL]− k−,14[V :XaL]− k−,15[V :XaL]

d[V III:XaL]

dt
= k+,16[V IIIL][XaL]− k−,16[V III:XaL]− k−,17[V III:XaL]

d[IIaf ]

dt
= −k+,18[VL][IIaf ] + k−,18[V :IIaL] + k−,19[V :IIaL]− k+,20[V IIIL][IIaf ]

+ k−,20[V III:IIaL] + k−,21[V III:IIaL] + k−,25[Xa:V a:mIIaL]

− k+,28[XIf ][IIaf ] + k−,28[XI:IIaf ] + k−,29[XI:IIaf ]

− k+,38[IIaf ][ATf ]− k+,43[IIaf ][TML] + k−,43[IIa:TML]

d[V :IIaL]

dt
= k+,18[VL][IIaf ]− k−,18[V :IIaL]− k−,19[V :IIaL]

d[V III:IIaL]

dt
= k+,20[V IIIL][IIaf ]− k−,20[V III:IIaL]− k−,21[V III:IIaL]

d[Xa:V a:IIL]

dt
= k+,22[Xa:V aL][IIL]− k−,22[Xa:V a:IIL]− k−,24[Xa:V a:IIL]

d[Xa:V a:mIIaL]

dt
= k+,23[Xa:V aL][mIIaL]− k−,23[Xa:V a:mIIaL] + k−,24[Xa:V a:IIL]

− k−,25[Xa:V a:mIIaL]

287



d[XIf ]

dt
= −k+,28[XIf ][IIaf ] + k−,28[XI:IIaf ]

d[XI:IIaf ]

dt
= k+,28[XIf ][IIaf ]− k−,28[XI:IIaf ]− k−,29[XI:IIaf ]

d[XIaf ]

dt
= k−,29[XI:IIaf ]− k+,48[XIaf ][IXL] + k−,48[XIa:IXL] + k−,49[XIa:IXL]

d[APC:PSL]

dt
= −k+,30[APC:PSL][V IIIaL] + k−,30[APC:PS:V IIIaL]

+ k−,31[APC:PS:V IIIaL]− k+,32[APC:PSL][V aL] + k−,32[APC:PS:V aL]

+ k−,33[APC:PS:V aL] + k+,47[APCL][PSL]− k−,47[APC:PSL]

d[APC:PS:V IIIaL]

dt
= k+,30[APC:PSL][V IIIaL]− k−,30[APC:PS:V IIIaL]

− k−,31[APC:PS:V IIIaL]

d[TFPIf ]

dt
= −k+,34[TFPIf ][Xaf ] + k−,34[TFPI:Xaf ]

d[ATf ]

dt
= −k+,36[IXaf ][ATf ]− k+,37[Xaf ][ATf ]− k+,38[IIaf ][ATf ]− k+,46[mIIaf ][ATf ]

d[IIa:ATf ]

dt
= k+,38[IIaf ][ATf ]

d[TFPI:Xaf ]

dt
= k+,34[TFPIf ][Xaf ]− k−,34[TFPI:Xaf ]− k+,35[TFPI:Xaf ][TF :V IIaL]

+ k−,35[TFPI:Xa:TF :V IIaL]

d[TFPI:Xa:TF :V IIaL]

dt
= k+,35[TFPI:Xaf ][TF :V IIaL]− k−,35[TFPI:Xa:TF :V IIaL]

d[APC:PS:V aL]

dt
= k+,32[APC:PSL][V aL]− k−,32[APC:PS:V aL]− k−,33[APC:PS:V aL]

d[IXa:ATf ]

dt
= k+,36[IXaf ][ATf ]

d[Xa:ATf ]

dt
= k+,37[Xaf ][ATf ]

d[V II:XaL]

dt
= k+,26[V IIL][XaL]− k−,26[V II:XaL]− k−,27[V II:XaL]

d[V :mIIaL]

dt
= k+,39[VL][mIIaL]− k−,39[V :mIIaL]− k−,40[V :mIIaL]

d[V III:mIIaL]

dt
= k+,41[V IIIL][mIIaL]− k−,41[V III:mIIaL]− k−,42[V III:mIIaL]

d[TML]

dt
= −k+,43[IIaf ][TML] + k−,43[IIa:TML]

d[IIa:TML]

dt
= k+,43[IIaf ][TML]− k−,43[IIa:TML]− k+,44[IIa:TML][PCL]

+ k−,44[IIa:TM :PCL] + k−,45[IIa:TM :PCL]

d[IIa:TM :PCL]

dt
= k+,44[IIa:TML][PCL]− k−,44[IIa:TM :PCL]− k−,45[IIa:TM :PCL]

d[mIIa:ATf ]

dt
= k+,46[mIIaf ][ATf ]

d[XIa:IXL]

dt
= k+,48[XIaf ][IXL]− k−,48[XIa:IXL]− k−,49[XIa:IXL]
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d[LIPID]

dt
= kon1

[IIf ][LIPID]− koff1 [IIL]/nV a + kon2
[mIIaf ][LIPID]

− koff2 [mIIaL]/nV a + kon3
[Vf ][LIPID]− koff3 [VL]/nV a + kon4

[V af ][LIPID]

− koff4 [V aL]/nV a + kon5
[V IIf ][LIPID]− koff5 [V IIL]/nV a + kon6

[V IIaf ][LIPID]

− koff6 [V IIaL]/nV a + kon7
[V IIIf ][LIPID]− koff7 [V IIIL]/nV a + kon8

[V IIIaf ][LIPID]

− koff8 [V IIIaL]/nV a + kon9
[IXf ][LIPID]− koff9 [IXL]/nV a + kon10

[IXaf ][LIPID]

− koff10 [IXaL]/nV a + kon11
[Xf ][LIPID]− koff11 [XL]/nV a + kon12

[Xaf ][LIPID]

− koff12 [XaL]/nV a + kon13
[APCf ][LIPID]− koff13 [APCL]/nV a + kon14

[PSf ][LIPID]

− koff14 [PSL]/nV a + kon15
[V IIIaif ][LIPID]− koff15 [V IIIaiL]/nV a + kon16

[V aif ][LIPID]

− koff16 [V aiL]/nV a + kon17
[PCf ][LIPID]− koff17 [PCL]

A.1.7 Tyurin Model

d[V a]

dt
= −k1[V a][Xa] + k16[Xa:V a][α1−AT ] + k17[Xa:V a][AT ]

+ kcat13 [IIa][V ]/(Km13
(1 + [XI]/Km2

+ [V III]/Km17
) + [V ])

+ kcat14 [Xa][V ]/(Km14
(1 + [II]/Km11

+ [V II]/Km15
+ [TF :V II]/Km16

) + [V ])

− kcat19 [APC][V a]/(Km19
+ [V IIIa] + [V a] + [Xa:V a] + [IXa:V IIIa])

d[Xa]

dt
= −k1[V a][Xa]− k13[Xa][AT ]− k14[Xa][α1−AT ]− k15[Xa][TFPI]

+ kcat7 [IXa][X]/(Km7 + [X]) + kcat10 [TF :V IIa][X]/(Km10(1 + [IX]/Km6) + [X])

+ kcat9 [V IIa][X]/(Km9(1 + [IX]/Km5) + [X]) + kcat8 [IXa:V IIIa][X]/(Km8 + [X])

+ kcat19 [APC][Xa:V a]/(Km19 + [V IIIa] + [V a] + [Xa:V a] + [IXa:V IIIa])

d[Xa:V a]

dt
= k1[V a][Xa]− k16[Xa:V a][α1−AT ]− k17[Xa:V a][AT ]

− kcat19 [APC][Xa:V a]/(Km19
+ [V IIIa] + [V a] + [Xa:V a] + [IXa:V IIIa])

d[V IIIa]

dt
= −k2[V IIIa][IXa] + k19[IXa:V IIIa][AT ]

+ kcat17 [IIa][V III]/(Km17
(1 + [XI]/Km2

+ [V ]/Km13
) + [V III])

− kcat19 [APC][V IIIa]/(Km19
+ [V IIIa] + [V a] + [Xa:V a] + [IXa:V IIIa])

d[IXa]

dt
= −k2[V IIIa][IXa]− k18[IXa][AT ] + kcat4 [XIa][IX]/(Km4

(1 + [XI]/Km3
) + [IX])

+ kcat5 [V IIa][IX]/(Km5(1 + [X]/Km9) + [IX])

+ kcat6 [TF :V IIa][IX]/(Km6(1 + [X]/Km10) + [IX])

+ kcat19 [APC][IXa:V IIIa]/(Km19 + [V IIIa] + [V a] + [Xa:V a] + [IXa:V IIIa])

d[IXa:V IIIa]

dt
= k2[V IIIa][IXa]− k19[IXa:V IIIa][AT ]

− kcat19 [APC][IXa:V IIIa]/(Km19
+ [V IIIa] + [V a] + [Xa:V a] + [IXa:V IIIa])

d[V IIa]

dt
= −k3[V IIa][TF ] + k4[TF :V IIa]

+ kcat15 [Xa][V II]/(Km15
(1 + [II]/Km11

+ [V ]/Km14
+ [TF :V II]/Km16

) + [V II])

d[TF ]

dt
= −k3[V IIa][TF ]− k5[V II][TF ] + k4[TF :V IIa] + k6[TF :V II]

d[TF :V IIa]

dt
= k3[V IIa][TF ]− k7[TF :V IIa][Xa:TFPI]− k8[TF :V IIa][AT ]− k4[TF :V IIa]

+ kcat16 [Xa][TF :V II]/(Km16
(1 + [II]/Km11

+ [V ]/Km14
+ [V II]/Km15

) + [TF :V II])

d[V II]

dt
= −k5[V II][TF ] + k6[TF :V II]

− kcat15 [Xa][V II]/(Km15
(1 + [II]/Km11

+ [V ]/Km14
+ [TF :V II]/Km16

) + [V II])
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d[TF :V II]

dt
= k5[V II][TF ]− k6[TF :V II]

− kcat16 [Xa][TF :V II]/(Km16
(1 + [II]/Km11

+ [V ]/Km14
+ [V II]/Km15

) + [TF :V II])

d[AT ]

dt
= −k8[TF :V IIa][AT ]− k9[IIa][AT ]− k13[Xa][AT ]− k17[Xa:V a][AT ]

− k18[IXa][AT ]− k19[IXa:V IIIa][AT ]− k22[XIa][AT ]
d[TF :V IIa:AT ]

dt
= k8[TF :V IIa][AT ]

d[IIa]

dt
= −k9[IIa][AT ]− k10[IIa][α1−AT ]− k11[IIa][α2−M ]− k12[IIa][PCI]

+ kcat11 [Xa][II]/(Km11
(1 + [V ]/Km13

+ [V II]/Km15
+ [TF :V II]/Km16

) + [II])

+ kcat12 [Xa:V a][II]/(Km12
+ [II])− k25[IIa][TM ]

d[α1−AT ]
dt

= −k10[IIa][α1−AT ]− k14[Xa][α1−AT ]− k16[Xa:V a][α1−AT ]

− k21[XIa][α1−AT ]− k28[APC][α1−AT ]
d[α2−M ]

dt
= −k11[IIa][α2−M ]

d[PCI]

dt
= −k12[IIa][PCI]− k26[IIa:TM ][PCI]− k27[APC][PCI]

d[TFPI]

dt
= −k15[Xa][TFPI]

d[Xa:TFPI]

dt
= −k7[TF :V IIa][Xa:TFPI] + k15[Xa][TFPI]

d[XIa]

dt
= −k20[XIa][C1−inh]− k21[XIa][α1−AT ]− k22[XIa][AT ]− k23[XIa][α2−AP ]

− k24[XIa][PAI1] + kcat1 [XIIa][XI]/(Km1 + [XI])

+ kcat2 [IIa][XI]/(Km2(1 + [V ]/Km13 + [V III]/Km17) + [XI])

+ kcat3 [XIa][XI]/(Km3(1 + [IX]/Km4) + [XI])

d[C1−inh]
dt

= −k20[XIa][C1−inh]

d[α2−AP ]
dt

= −k23[XIa][α2−AP ]

d[PAI1]

dt
= −k24[XIa][PAI1]

d[TM ]

dt
= −k25[IIa][TM ]

d[IIa:TM ]

dt
= k25[IIa][TM ]− k26[IIa:TM ][PCI]

d[APC]

dt
= −k27[APC][PCI]− k28[APC][α1−AT ] + kcat18 [IIa:TM ][PC]/(Km18 + [PC])

d[TF :V IIa:Xa:TFPI]

dt
= k7[TF :V IIa][Xa:TFPI]

d[XI]

dt
= −kcat1 [XIIa][XI]/(Km1

+ [XI])− kcat3 [XIa][XI]/(Km3
(1 + [IX]/Km4

) + [XI])

− kcat2 [IIa][XI]/(Km2
(1 + [V ]/Km13

+ [V III]/Km17
) + [XI])

d[IX]

dt
= −kcat4 [XIa][IX]/(Km4(1 + [XI]/Km3) + [IX])

− kcat5 [V IIa][IX]/(Km5
(1 + [X]/Km9

) + [IX])

− kcat6 [TF :V IIa][IX]/(Km6
(1 + [X]/Km10

) + [IX])

d[X]

dt
= −kcat7 [IXa][X]/(Km7

+ [X])− kcat8 [IXa:V IIIa][X]/(Km8
+ [X])

− kcat9 [V IIa][X]/(Km9(1 + [IX]/Km5) + [X])

− kcat10 [TF :V IIa][X]/(Km10(1 + [IX]/Km6) + [X])
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d[II]

dt
= −kcat12 [Xa:V a][II]/(Km12

+ [II])

− kcat11 [Xa][II]/(Km11
(1 + [V ]/Km13

+ [V II]/Km15
+ [TF :V II]/Km16

) + [II])

d[V ]

dt
= −kcat13 [IIa][V ]/(Km13(1 + [XI]/Km2 + [V III]/Km17) + [V ])

− kcat14 [Xa][V ]/(Km14
(1 + [II]/Km11

+ [V II]/Km15
+ [TF :V II]/Km16

) + [V ])

d[V III]

dt
= −kcat17 [IIa][V III]/(Km17

(1 + [XI]/Km2
+ [V ]/Km13

) + [V III])

d[PC]

dt
= −kcat18 [IIa:TM ][PC]/(Km18

+ [PC])

A.1.8 Zhu Model

d[V a]

dt
= −k30[APC][V a] + kcat13 [IIa][V ]/(Km13 + [V ]) + kcat14 [Xa][V ]/(Km14 + [V ])

− k1[V a][Xa]
d[Xa]

dt
= −k6[Xa][AT ]− k7[Xa][α1−AT ]− k8[Xa][TFPI] + kcat9 [IXa][X]/(Km9

+ [X])

+ kcat10 [IXa:V IIIa][X]/(Km10 + [X])− k1[V a][Xa] + kcat18 [TF :V IIa][X]/(Km18 + [X])

d[Xa:V a]

dt
= −k32[APC][Xa:V a] + k1[V a][Xa]

d[V IIIa]

dt
= −k2[V IIIa][IXa]− k31[APC][V IIIa] + kcat15 [IIa][V III]/(Km15 + [V III])

d[IXa]

dt
= −k2[V IIIa][IXa]− k9[IXa][AT ] + kcat8 [XIa][IX]/(Km8

+ [IX])

+ kcat19 [TF :V IIa][IX]/(Km19 + [IX])

d[IIa]

dt
= −k3[IIa][AT ]− k4[IIa][α1−AT ]− k5[IIa][α2−M ]− k34[TM ][IIa]

+ kcat11 [Xa][II]/(Km11
+ [II]) + kcat12 [Xa:V a][II]/(Km12

+ [II])

d[AT ]

dt
= −k3[IIa][AT ]− k6[Xa][AT ]− k9[IXa][AT ]− k12[XIa][AT ]− k18[XIIa][AT ]

− k22[XIIf ][AT ]− k26[K][AT ]− k28[TF :V IIa][AT ]
d[IXa:V IIIa]

dt
= k2[V IIIa][IXa]− k33[APC][IXa:V IIIa]

d[α1−AT ]
dt

= −k4[IIa][α1−AT ]− k7[Xa][α1−AT ]− k11[XIa][α1−AT ]

d[α2−M ]

dt
= −k5[IIa][α2−M ]− k17[XIIa][α2−M ]− k24[K][α2−M ]

d[TFPI]

dt
= −k8[Xa][TFPI]

d[Xa:TFPI]

dt
= k8[Xa][TFPI]− k29[TF :V IIa][Xa:TFPI]

d[XIa]

dt
= −k10[XIa][C1−inh]− k11[XIa][α1−AT ]− k12[XIa][AT ]− k13[XIa][α2−AP ]

− k14[XIa][PAI1] + kcat6 [XIIa][XI]/(Km6
+ [XI]) + k35[XI]

d[C1−inh]
dt

= −k10[XIa][C1−inh]− k15[XIIa][C1−inh]− k20[XIIf ][C1−inh]

− k23[K][C1−inh]
d[α2−AP ]

dt
= −k13[XIa][α2−AP ]− k16[XIIa][α2−AP ]− k21[XIIf ][α2−AP ]

d[PAI1]

dt
= −k14[XIa][PAI1]− k19[XIIa][PAI1]− k25[K][PAI1]
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d[XIIa]

dt
= −k15[XIIa][C1−inh]− k16[XIIa][α2−AP ]− k17[XIIa][α2−M ]− k18[XIIa][AT ]

− k19[XIIa][PAI1] + kcat1 [XIIa][XII]/(Km1
+ [XII]) + kcat4 [K][XII]/(Km4

+ [XII])

− kcat5 [K][XIIa]/(Km5
+ [XIIa]) + kcat7 [XIa][XII]/(Km7

+ [XII])

d[XIIf ]

dt
= −k20[XIIf ][C1−inh]− k21[XIIf ][α2−AP ]− k22[XIIf ][AT ]

+ kcat5 [K][XIIa]/(Km5
+ [XIIa])

d[K]

dt
= −k23[K][C1−inh]− k24[K][α2−M ]− k25[K][PAI1]− k26[K][AT ]

+ kcat2 [XIIa][PK]/(Km2 + [PK]) + kcat3 [XIIf ][PK]/(Km3 + [PK])

d[V II]

dt
= −k27[V II][TF ]

d[TF ]

dt
= −k27[V II][TF ]

d[TF :V II]

dt
= k27[V II][TF ]− kcat17 [Xa][TF :V II]/(Km17

+ [TF :V II])

d[TF :V IIa]

dt
= −k28[TF :V IIa][AT ]− k29[TF :V IIa][Xa:TFPI]

+ kcat17 [Xa][TF :V II]/(Km17
+ [TF :V II])

d[TF :V IIa:Xa:TFPI]

dt
= k29[TF :V IIa][Xa:TFPI]

d[APC]

dt
= −k30[APC][V a]− k31[APC][V IIIa]− k32[APC][Xa:V a]

− k33[APC][IXa:V IIIa] + kcat20 [IIa:TM ][PC]/(Km20
+ [PC])

d[APC:V a]

dt
= k30[APC][V a]

d[APC:V IIIa]

dt
= k31[APC][V IIIa]

d[APC:Xa:V a]

dt
= k32[APC][Xa:V a]

d[APC:IXa:V IIIa]

dt
= k33[APC][IXa:V IIIa]

d[TM ]

dt
= −k34[TM ][IIa]

d[IIa:TM ]

dt
= k34[TM ][IIa]

d[XII]

dt
= −kcat1 [XIIa][XII]/(Km1 + [XII])− kcat4 [K][XII]/(Km4 + [XII])

− kcat7 [XIa][XII]/(Km7
+ [XII])

d[PK]

dt
= −kcat2 [XIIa][PK]/(Km2

+ [PK])− kcat3 [XIIf ][PK]/(Km3
+ [PK])

d[XI]

dt
= −kcat6 [XIIa][XI]/(Km6

+ [XI])− k35[XI]

d[IX]

dt
= −kcat8 [XIa][IX]/(Km8 + [IX])− kcat19 [TF :V IIa][IX]/(Km19 + [IX])

d[X]

dt
= −kcat9 [IXa][X]/(Km9

+ [X])− kcat10 [IXa:V IIIa][X]/(Km10
+ [X])

− kcat18 [TF :V IIa][X]/(Km18 + [X])

d[II]

dt
= −kcat11 [Xa][II]/(Km11

+ [II])− kcat12 [Xa:V a][II]/(Km12
+ [II])

d[V ]

dt
= −kcat13 [IIa][V ]/(Km13

+ [V ])− kcat14 [Xa][V ]/(Km14
+ [V ])

d[V III]

dt
= −kcat15 [IIa][V III]/(Km15 + [V III])
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d[Fbg]

dt
= −kcat16 [IIa][Fbg]/(Km16

+ [Fbg])

d[Fbn]

dt
= kcat16 [IIa][Fbg]/(Km16 + [Fbg])

d[PC]

dt
= −kcat20 [IIa:TM ][PC]/(Km20

+ [PC])

A.2 Timescale Analysis

A.2.1 Danforth - First Timescale

d[TF ]

dt
= −k+,1[TF ][V II]

d[V II]

dt
= −k+,1[TF ][V II]

d[TF :V II]

dt
= k+,1[TF ][V II]

d[V IIa]

dt
= −k+,2[TF ][V IIa] + k+,4[V II][Xa]

d[TF :V IIa]

dt
= k+,2[TF ][V IIa] + k−,6[TF :V IIa:X]− k+,6[TF :V IIa][X]

+ k−,8[TF :V IIa:Xa] + k−,10[TF :V IIa:IX]

d[Xa]

dt
= k−,8[TF :V IIa:Xa]

d[IIa]

dt
= k+,11[II][Xa]

d[X]

dt
= −k+,6[TF :V IIa][X]

d[TF :V IIa:X]

dt
= −k−,6[TF :V IIa:X] + k+,6[TF :V IIa][X]− k−,7[TF :V IIa:X]

d[TF :V IIa:Xa]

dt
= k−,7[TF :V IIa:X]− k−,8[TF :V IIa:Xa]− k+,24[TF :V IIa:Xa][TFPI]

d[IX]

dt
= k−,9[TF :V IIa:IX]− k+,9[TF :V IIa][IX]

d[TF :V IIa:IX]

dt
= −k−,9[TF :V IIa:IX] + k+,9[TF :V IIa][IX]− k−,10[TF :V IIa:IX]

d[IXa]

dt
= k−,10[TF :V IIa:IX]

d[TFPI]

dt
= −k+,24[TF :V IIa:Xa][TFPI]

d[Xa:TFPI]

dt
= +k+,23[Xa][TFPI]

d[TF :V IIa:Xa:TFPI]

dt
= k+,24[TF :V IIa:Xa][TFPI]

A.2.2 Danforth - Second Timescale

d[TF ]

dt
= −k+,1[TF ][V II]

d[V II]

dt
= −k+,1[TF ][V II]− k+,4[V II][Xa]

d[TF :V II]

dt
= k+,1[TF ][V II]

d[V IIa]

dt
= k+,4[V II][Xa]
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d[TF :V IIa]

dt
= −k−,2[TF :V IIa] + k+,2[TF ][V IIa] + k−,6[TF :V IIa:X]− k+,6[TF :V IIa][X]

+ k−,8[TF :V IIa:Xa] + k−,9[TF :V IIa:IX]− k+,9[TF :V IIa][IX] + k−,10[TF :V IIa:IX]

d[Xa]

dt
= k−,8[TF :V IIa:Xa]− k+,8[TF :V IIa][Xa]− k+,26[Xa][AT ] + k+,31[X][IXa]

d[IIa]

dt
= k+,11[II][Xa]− k+,29[IIa][AT ]

d[X]

dt
= −k+,6[TF :V IIa][X]

d[TF :V IIa:X]

dt
= −k−,6[TF :V IIa:X] + k+,6[TF :V IIa][X]− k−,7[TF :V IIa:X]

d[TF :V IIa:Xa]

dt
= k−,7[TF :V IIa:X]− k−,8[TF :V IIa:Xa]− k+,24[TF :V IIa:Xa][TFPI]

d[IX]

dt
= k−,9[TF :V IIa:IX]− k+,9[TF :V IIa][IX]

d[TF :V IIa:IX]

dt
= −k−,9[TF :V IIa:IX] + k+,9[TF :V IIa][IX]− k−,10[TF :V IIa:IX]

d[IXa]

dt
= k−,10[TF :V IIa:IX]

d[II]

dt
= k−,20[Xa:V a:II]− k+,20[Xa:V a][II]

d[V ]

dt
= −k+,18[V ][IIa]− k+,32[V ][mIIa]

d[V a]

dt
= k+,18[V ][IIa]− k+,19[Xa][V a] + k+,32[V ][mIIa]

d[Xa:V a]

dt
= −k−,19[Xa:V a] + k+,19[Xa][V a] + k−,20[Xa:V a:II]− k+,20[Xa:V a][II]

+ k−,21[Xa:V a:II]

d[Xa:V a:II]

dt
= −k−,20[Xa:V a:II] + k+,20[Xa:V a][II]− k−,21[Xa:V a:II]

d[mIIa]

dt
= k−,21[Xa:V a:II]

d[TFPI]

dt
= −k+,23[Xa][TFPI]− k+,24[TF :V IIa:Xa][TFPI]

d[Xa:TFPI]

dt
= k+,23[Xa][TFPI]

d[TF :V IIa:Xa:TFPI]

dt
= k+,24[TF :V IIa:Xa][TFPI]

A.2.3 Danforth - Third Timescale

d[TF ]

dt
= k−,1[TF :V II]− k+,1[TF ][V II]− k+,2[TF ][V IIa]

d[V II]

dt
= −k+,4[V II][Xa]− k+,5[V II][IIa]

d[TF :V II]

dt
= −k−,1[TF :V II] + k+,1[TF ][V II]

d[V IIa]

dt
= k+,4[V II][Xa] + k+,5[V II][IIa]

d[TF :V IIa]

dt
= −k−,2[TF :V IIa] + k+,2[TF ][V IIa] + k−,6[TF :V IIa:X]− k+,6[TF :V IIa][X]

+ k−,8[TF :V IIa:Xa] + k−,9[TF :V IIa:IX]− k+,9[TF :V IIa][IX]

+ k−,10[TF :V IIa:IX]− k+,30[TF :V IIa][AT ]
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d[Xa]

dt
= k−,8[TF :V IIa:Xa] + k−,15[IXa:V IIIa:X] + k−,19[Xa:V a]− k+,19[Xa][V a]

− k+,26[Xa][AT ]

d[IIa]

dt
= k+,11[II][Xa] + k+,22[mIIa][Xa:V a]− k+,29[IIa][AT ]

d[X]

dt
= −k+,6[TF :V IIa][X]− k+,14[IXa:V IIIa][X]

d[TF :V IIa:X]

dt
= −k−,6[TF :V IIa:X] + k+,6[TF :V IIa][X]− k−,7[TF :V IIa:X]

d[TF :V IIa:Xa]

dt
= k−,7[TF :V IIa:X]− k−,8[TF :V IIa:Xa] + k−,24[TF :V IIa:Xa:TFPI]

− k+,24[TF :V IIa:Xa][TFPI]

d[IX]

dt
= k−,9[TF :V IIa:IX]− k+,9[TF :V IIa][IX]

d[TF :V IIa:IX]

dt
= −k−,9[TF :V IIa:IX] + k+,9[TF :V IIa][IX]− k−,10[TF :V IIa:IX]

d[IXa]

dt
= k−,10[TF :V IIa:IX] + k−,13[IXa:V IIIa]− k+,13[IXa][V IIIa]− k+,28[IXa][AT ]

d[II]

dt
= k−,20[Xa:V a:II]− k+,20[Xa:V a][II]

d[V III]

dt
= −k+,12[V III][IIa]

d[V IIIa]

dt
= k+,12[V III][IIa]− k−,16[V IIIa]

d[IXa:V IIIa]

dt
= −k−,13[IXa:V IIIa] + k+,13[IXa][V IIIa]− k+,14[IXa:V IIIa][X]

+ k−,15[IXa:V IIIa:X]

d[IXa:V IIIa:X]

dt
= k+,14[IXa:V IIIa][X]− k−,15[IXa:V IIIa:X]

d[V IIIa1L]

dt
=
d[V IIIa2]

dt
= k−,16[V IIIa]

d[V ]

dt
= −k+,18[V ][IIa]− k+,32[V ][mIIa]

d[V a]

dt
= k+,18[V ][IIa] + k+,32[V ][mIIa]

d[Xa:V a]

dt
= −k−,19[Xa:V a] + k+,19[Xa][V a] + k−,20[Xa:V a:II]− k+,20[Xa:V a][II]

+ k−,21[Xa:V a:II]

d[Xa:V a:II]

dt
= −k−,20[Xa:V a:II] + k+,20[Xa:V a][II]− k−,21[Xa:V a:II]

d[mIIa]

dt
= k−,21[Xa:V a:II]− k+,22[mIIa][Xa:V a]− k+,27[mIIa][AT ]

d[TFPI]

dt
= −k+,23[Xa][TFPI]− k+,24[TF :V IIa:Xa][TFPI]

d[Xa:TFPI]

dt
= k+,23[Xa][TFPI]

d[TF :V IIa:Xa:TFPI]

dt
= k+,24[TF :V IIa:Xa][TFPI]

d[AT ]

dt
= −k+,27[mIIa][AT ]

A.2.4 Danforth - Fourth Timescale

d[TF ]

dt
= k−,1[TF :V II]− k+,1[TF ][V II]− k+,2[TF ][V IIa]
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d[V II]

dt
= −k+,4[V II][Xa]− k+,5[V II][IIa]

d[TF :V II]

dt
= −k−,1[TF :V II] + k+,1[TF ][V II]

d[V IIa]

dt
= k+,4[V II][Xa] + k+,5[V II][IIa]

d[TF :V IIa]

dt
= −k−,2[TF :V IIa] + k+,2[TF ][V IIa] + k−,6[TF :V IIa:X]− k+,6[TF :V IIa][X]

+ k−,8[TF :V IIa:Xa]− k+,8[TF :V IIa][Xa] + k−,9[TF :V IIa:IX]− k+,9[TF :V IIa][IX]

+ k−,10[TF :V IIa:IX]− k+,25[TF :V IIa][Xa:TFPI]− k+,30[TF :V IIa][AT ]

d[Xa]

dt
= k−,8[TF :V IIa:Xa] + k−,15[IXa:V IIIa:X] + k−,19[Xa:V a]− k+,19[Xa][V a]

− k+,26[Xa][AT ]

d[IIa]

dt
= k+,22[mIIa][Xa:V a]− k+,29[IIa][AT ]

d[X]

dt
= −k+,14[IXa:V IIIa][X]

d[TF :V IIa:X]

dt
= −k−,6[TF :V IIa:X] + k+,6[TF :V IIa][X]− k−,7[TF :V IIa:X]

d[TF :V IIa:Xa]

dt
= k−,7[TF :V IIa:X]− k−,8[TF :V IIa:Xa] + k+,8[TF :V IIa][Xa]

+ k−,24[TF :V IIa:Xa:TFPI]− k+,24[TF :V IIa:Xa][TFPI]

d[IX]

dt
= k−,9[TF :V IIa:IX]− k+,9[TF :V IIa][IX]

d[TF :V IIa:IX]

dt
= −k−,9[TF :V IIa:IX] + k+,9[TF :V IIa][IX]− k−,10[TF :V IIa:IX]

d[IXa]

dt
= k−,10[TF :V IIa:IX] + k−,13[IXa:V IIIa]− k+,13[IXa][V IIIa]

+ k−,17[IXa:V IIIa:X] + k−,17[IXa:V IIIa]− k+,28[IXa][AT ]

d[II]

dt
= k−,20[Xa:V a:II]− k+,20[Xa:V a][II]

d[V IIIa]

dt
= −k−,16[V IIIa]

d[IXa:V IIIa]

dt
= −k−,13[IXa:V IIIa] + k+,13[IXa][V IIIa] + k−,14[IXa:V IIIa:X]

− k+,14[IXa:V IIIa][X] + k−,15[IXa:V IIIa:X]− k−,17[IXa:V IIIa]

d[IXa:V IIIa:X]

dt
= −k−,14[IXa:V IIIa:X] + k+,14[IXa:V IIIa][X]− k−,15[IXa:V IIIa:X]

− k−,17[IXa:V IIIa:X]

d[V IIIa1L]

dt
=
d[V IIIa2]

dt
= k−,16[V IIIa]

d[V a]

dt
= k−,19[Xa:V a]− k+,19[Xa][V a]

d[Xa:V a]

dt
= −k−,19[Xa:V a] + k+,19[Xa][V a] + k−,20[Xa:V a:II]− k+,20[Xa:V a][II]

+ k−,21[Xa:V a:II]

d[Xa:V a:II]

dt
= −k−,20[Xa:V a:II] + k+,20[Xa:V a][II]− k−,21[Xa:V a:II]

d[mIIa]

dt
= k−,21[Xa:V a:II]− k+,22[mIIa][Xa:V a]− k+,27[mIIa][AT ]

d[TFPI]

dt
= −k+,23[Xa][TFPI]− k+,24[TF :V IIa:Xa][TFPI]

d[Xa:TFPI]

dt
= k+,23[Xa][TFPI]
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d[TF :V IIa:Xa:TFPI]

dt
= k+,24[TF :V IIa:Xa][TFPI]

d[AT ]

dt
= −k+,27[mIIa][AT ]− k+,29[IIa][AT ]

A.2.5 Danforth - Fifth Timescale

This timescale decouple thrombin from the majority of other species. The ODEs,
and their solutions, are described in Section 2.7.

A.2.6 Tyurin - First Timescale

d[V a]

dt
= kcat14 [Xa][V ]/(Km14

(1 + [II]/Km11
+ [V II]/Km15

) + [V ])

d[Xa]

dt
= kcat9 [V IIa][X]/(Km9

(1 + [IX]/Km5
) + [X])

+ kcat10 [TF :V IIa][X]/(Km10
(1 + [IX]/Km6

) + [X])

d[Xa:V a]

dt
= k1[V a][Xa]

d[V IIIa]

dt
= kcat17 [IIa][V III]/(Km17

(1 + [XI]/Km2
+ [V ]/Km13

) + [V III])

d[IXa]

dt
= kcat4 [XIa][IX]/(Km4

(1 + [XI]/Km3
) + [IX])

+ kcat5 [V IIa][IX]/(Km5
(1 + [X]/Km9

) + [IX])

d[V IIa]

dt
= −k3[V IIa][TF ]

+ kcat15 [Xa][V II]/(Km15
(1 + [II]/Km11

+ [V ]/Km14
+ [TF :V II]/Km16

) + [V II])

d[TF ]

dt
= −k5[V II][TF ]

d[TF :V IIa]

dt
= k3[V IIa][TF ]

d[V II]

dt
= −k5[V II][TF ]

d[TF :V II]

dt
= k5[V II][TF ]

d[IIa]

dt
= −k9[IIa][AT ] + kcat12 [Xa:V a][II]/(Km12

+ [II])

+ kcat11 [Xa][II]/(Km11(1 + [V ]/Km13 + [V II]/Km15 + [TF :V II]/Km16) + [II])

d[Xa:TFPI]

dt
= k15[Xa][TFPI]

d[XIa]

dt
= kcat2 [IIa][XI]/(Km2(1 + [V ]/Km13 + [V III]/Km17) + [XI])

+ kcat3 [XIa][XI]/(Km3
(1 + [IX]/Km4

) + [XI])

d[XI]

dt
= −kcat2 [IIa][XI]/(Km2

(1 + [V ]/Km13
+ [V III]/Km17

) + [XI])

− kcat3 [XIa][XI]/(Km3(1 + [IX]/Km4) + [XI])

d[IX]

dt
= −kcat4 [XIa][IX]/(Km4

(1 + [XI]/Km3
) + [IX])

− kcat5 [V IIa][IX]/(Km5
(1 + [X]/Km9

) + [IX])

d[X]

dt
= −kcat9 [V IIa][X]/(Km9(1 + [IX]/Km5) + [X])
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d[II]

dt
= −kcat12 [Xa:V a][II]/(Km12

+ [II])

− kcat11 [Xa][II]/(Km11
(1 + [V ]/Km13

+ [V II]/Km15
+ [TF :V II]/Km16

) + [II])

d[V ]

dt
= −kcat14 [Xa][V ]/(Km14(1 + [II]/Km11 + [V II]/Km15 + [TF :V II]/Km16) + [V ])

d[V III]

dt
= −kcat17 [IIa][V III]/(Km17

(1 + [XI]/Km2
+ [V ]/Km13

) + [V III])

A.2.7 Tyurin - Second Timescale

d[V a]

dt
= kcat13 [IIa][V ]/(Km13(1 + [XI]/Km2 + [V III]/Km17) + [V ])

+ kcat14 [Xa][V ]/(Km14
(1 + [II]/Km11

+ [V II]/Km15
+ [TF :V II]/Km16

) + [V ])

d[Xa]

dt
= −k13[Xa][AT ]− k15[Xa][TFPI] + kcat8 [IXa:V IIIa][X]/(Km8

+ [X])

+ kcat9 [V IIa][X]/(Km9(1 + [IX]/Km5) + [X])

+ kcat10 [TF :V IIa][X]/(Km10(1 + [IX]/Km6) + [X])

d[Xa:V a]

dt
= k1[V a][Xa]

d[V IIIa]

dt
= kcat17 [IIa][V III]/(Km17(1 + [XI]/Km2 + [V ]/Km13) + [V III])

− k2[V IIIa][IXa]
d[IXa]

dt
= kcat4 [XIa][IX]/(Km4

(1 + [XI]/Km3
) + [IX])

d[IXa:V IIIa]

dt
= k2[V IIIa][IXa]

d[V IIa]

dt
= −k3[V IIa][TF ]

+ kcat15 [Xa][V II]/(Km15
(1 + [II]/Km11

+ [V ]/Km14
+ [TF :V II]/Km16

) + [V II])

d[TF ]

dt
= −k5[V II][TF ]

d[TF :V IIa]

dt
= k3[V IIa][TF ]− k8[TF :V IIa][AT ]

+ kcat16 [Xa][TF :V II]/(Km16(1 + [II]/Km11 + [V ]/Km14 + [V II]/Km15) + [TF :V II])

d[V II]

dt
= −k5[V II][TF ]

d[TF :V II]

dt
= k5[V II][TF ]

d[IIa]

dt
= −k9[IIa][AT ] + kcat12 [Xa:V a][II]/(Km12

+ [II])

d[Xa:TFPI]

dt
= k15[Xa][TFPI]

d[XIa]

dt
= kcat2 [IIa][XI]/(Km2

(1 + [V ]/Km13
+ [V III]/Km17

) + [XI])

+ kcat3 [XIa][XI]/(Km3
(1 + [IX]/Km4

) + [XI])

d[XI]

dt
= −kcat2 [IIa][XI]/(Km2(1 + [V ]/Km13 + [V III]/Km17) + [XI])

− kcat3 [XIa][XI]/(Km3
(1 + [IX]/Km4

) + [XI])

d[IX]

dt
= −kcat4 [XIa][IX]/(Km4

(1 + [XI]/Km3
) + [IX])

d[X]

dt
= −kcat8 [IXa:V IIIa][X]/(Km8

+ [X])− kcat9 [V IIa][X]/(Km9
(1 + [IX]/Km5

) + [X])

d[II]

dt
= −kcat12 [Xa:V a][II]/(Km12 + [II])
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d[V ]

dt
= −kcat13 [IIa][V ]/(Km13

(1 + [XI]/Km2
+ [V III]/Km17

) + [V ])

− kcat14 [Xa][V ]/(Km14
(1 + [II]/Km11

+ [V II]/Km15
+ [TF :V II]/Km16

) + [V ])

d[V III]

dt
= −kcat17 [IIa][V III]/(Km17(1 + [XI]/Km2 + [V ]/Km13) + [V III])

A.2.8 Tyurin - Third Timescale

d[V a]

dt
= −k1[V a][Xa] + kcat13 [IIa][V ]/(Km13

(1 + [XI]/Km2
+ [V III]/Km17

) + [V ])

+ kcat14 [Xa][V ]/(Km14
(1 + [II]/Km11

+ [V II]/Km15
+ [TF :V II]/Km16

) + [V ])

+ k17[Xa:V a][AT ]

d[Xa]

dt
= −k1[V a][Xa]− k13[Xa][AT ]− k15[Xa][TFPI] + kcat8 [IXa:V IIIa][X]/(Km8 + [X])

d[Xa:V a]

dt
= k1[V a][Xa]− k17[Xa:V a][AT ]

d[V IIIa]

dt
= kcat17 [IIa][V III]/(Km17

(1 + [XI]/Km2
+ [V ]/Km13

) + [V III])− k2[V IIIa][IXa]

d[IXa]

dt
= −k18[IXa][AT ] + kcat4 [XIa][IX]/(Km4(1 + [XI]/Km3) + [IX])

d[IXa:V IIIa]

dt
= k2[V IIIa][IXa]− k19[IXa:V IIIa][AT ]

d[V IIa]

dt
= kcat15 [Xa][V II]/(Km15

(1 + [II]/Km11
+ [V ]/Km14

+ [TF :V II]/Km16
) + [V II])

d[TF ]

dt
= −k3[V IIa][TF ]− k5[V II][TF ]

d[TF :V IIa]

dt
= k3[V IIa][TF ]− k7[TF :V IIa][Xa:TFPI]− k8[TF :V IIa][AT ]

+ kcat16 [Xa][TF :V II]/(Km16
(1 + [II]/Km11

+ [V ]/Km14
+ [V II]/Km15

) + [TF :V II])

d[V II]

dt
= −kcat15 [Xa][V II]/(Km15

(1 + [II]/Km11
+ [V ]/Km14

+ [TF :V II]/Km16
) + [V II])

d[TF :V II]

dt
= k5[V II][TF ]

− kcat16 [Xa][TF :V II]/(Km16
(1 + [II]/Km11

+ [V ]/Km14
+ [V II]/Km15

) + [TF :V II])

d[AT ]

dt
= −k9[IIa][AT ]

d[IIa]

dt
= −k9[IIa][AT ] + kcat12 [Xa:V a][II]/(Km12

+ [II])

d[TFPI]

dt
= −k15[Xa][TFPI]

d[Xa:TFPI]

dt
= −k7[TF :V IIa][Xa:TFPI] + k15[Xa][TFPI]

d[XIa]

dt
= −k22[XIa][AT ] + kcat3 [XIa][XI]/(Km3(1 + [IX]/Km4) + [XI])

+ kcat2 [IIa][XI]/(Km2
(1 + [V ]/Km13

+ [V III]/Km17
) + [XI])

d[XI]

dt
= −kcat2 [IIa][XI]/(Km2

(1 + [V ]/Km13
+ [V III]/Km17

) + [XI])

− kcat3 [XIa][XI]/(Km3(1 + [IX]/Km4) + [XI])

d[IX]

dt
= −kcat4 [XIa][IX]/(Km4

(1 + [XI]/Km3
) + [IX])

d[X]

dt
= −kcat8 [IXa:V IIIa][X]/(Km8 + [X])

d[II]

dt
= −kcat12 [Xa:V a][II]/(Km12

+ [II])
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d[V ]

dt
= −kcat13 [IIa][V ]/(Km13

(1 + [XI]/Km2
+ [V III]/Km17

) + [V ])

− kcat14 [Xa][V ]/(Km14
(1 + [II]/Km11

+ [V II]/Km15
+ [TF :V II]/Km16

) + [V ])

d[V III]

dt
= −kcat17 [IIa][V III]/(Km17(1 + [XI]/Km2 + [V ]/Km13) + [V III])

A.2.9 Tyurin - Fourth and Fifth Timescales

Both of these timescales decouple thrombin from the majority of other species.
The ODEs, and their solutions, are described in Section 2.7.

A.3 Unified Models

A.3.1 Unified Model

d[TF ]

dt
= −k1[TF ][V II] + k2[TF :V II]− k3[TF ][V IIa] + k4[TF :V IIa]

d[V II]

dt
= −k1[TF ][V II] + k2[TF :V II]− k5[V II][Xa] + k6[V II:Xa]− k11[V II][IIa]

+ k12[V II:IIa]− k17[V II][IXa] + k18[V II:IXa]− k23[V II][TF :V IIa] + k24[V II:TF :V IIa]

d[V IIa]

dt
= −k3[TF ][V IIa] + k4[TF :V IIa] + k7[V II:Xa] + k13[V II:IIa] + k19[V II:IXa]

+ k25[V II:TF :V IIa]− k30[X][V IIa] + k31[X:V IIa] + k32[X:V IIa]− k66[IX][V IIa]

+ k67[IX:V IIa] + k68[IX:V IIa]

d[TF :V II]

dt
= k1[TF ][V II]− k2[TF :V II]− k8[TF :V II][Xa] + k9[TF :V II:Xa]

− k14[TF :V II][IIa] + k15[TF :V II:IIa]− k20[TF :V II][IXa] + k21[TF :V II:IXa]

d[TF :V IIa]

dt
= k3[TF ][V IIa]− k4[TF :V IIa] + k10[TF :V II:Xa] + k16[TF :V II:IIa]

+ k22[TF :V II:IXa]− k23[V II][TF :V IIa] + k24[V II:TF :V IIa] + k25[V II:TF :V IIa]

− k26[TF :V IIa][AT ]− k27[X][TF :V IIa] + k28[X:TF :V IIa] + k29[X:TF :V IIa]

− k63[IX][TF :V IIa] + k64[IX:TF :V IIa] + k65[IX:TF :V IIa]

− k84[Xa:TFPI][TF :V IIa] + k85[TF :V IIa:Xa:TFPI]

d[X]

dt
= −k27[X][TF :V IIa] + k28[X:TF :V IIa]− k30[X][V IIa] + k31[X:V IIa]

− k33[X][IXa:V IIIa] + k34[X:IXa:V IIIa]− k36[X][IXa] + k37[X:IXa]

d[Xa]

dt
= −k5[V II][Xa] + k6[V II:Xa] + k7[V II:Xa]− k8[TF :V II][Xa] + k9[TF :V II:Xa]

+ k10[TF :V II:Xa] + k29[X:TF :V IIa] + k32[X:V IIa] + k35[X:IXa:V IIIa]

+ k38[X:IXa]− k42[V ][Xa] + k43[V :Xa] + k44[V :Xa]− k45[Xa][V a] + k46[Xa:V a]

− k47[Xa][AT ]− k49[II][Xa] + k50[II:Xa] + k51[II:Xa]− k75[V III][Xa] + k76[V III:Xa]

+ k77[V III:Xa]− k82[Xa][TFPI] + k83[Xa:TFPI]

d[II]

dt
= −k49[II][Xa] + k50[II:Xa]− k52[II][Xa:V a] + k53[II:Xa:V a]

d[IIa]

dt
= −k11[V II][IIa] + k12[V II:IIa] + k13[V II:IIa]− k14[TF :V II][IIa]

+ k15[TF :V II:IIa] + k16[TF :V II:IIa]− k39[V ][IIa] + k40[V :IIa] + k41[V :IIa]

+ k51[II:Xa] + k54[II:Xa:V a]− k55[IIa][AT ]− k56[XI][IIa] + k57[XI:IIa]

+ k58[XI:IIa]− k72[V III][IIa] + k73[V III:IIa] + k74[V III:IIa]

− k86[IIa][Substrate] + k87[IIa:Substrate] + k88[IIa:Substrate]
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d[V ]

dt
= −k39[V ][IIa] + k40[V :IIa]− k42[V ][Xa] + k43[V :Xa]

d[V a]

dt
= k41[V :IIa] + k44[V :Xa]− k45[Xa][V a] + k46[Xa:V a] + k48[Xa:V a][AT ]

d[V III]

dt
= −k72[V III][IIa] + k73[V III:IIa]− k75[V III][Xa] + k76[V III:Xa]

d[V IIIa]

dt
= k74[V III:IIa] + k77[V III:Xa]− k78[IXa][V IIIa] + k79[IXa:V IIIa]

+ k81[IXa:V IIIa][AT ]

d[XI]

dt
= −k56[XI][IIa] + k57[XI:IIa]− k59[XI][XIa] + k60[XI:XIa]

d[XIa]

dt
= k58[XI:IIa]− k59[XI][XIa] + k60[XI:XIa] + 2k61[XI:XIa]− k62[XIa][AT ]

− k69[IX][XIa] + k70[IX:XIa] + k71[IX:XIa]

d[IX]

dt
= −k63[IX][TF :V IIa] + k64[IX:TF :V IIa]− k66[IX][V IIa] + k67[IX:V IIa]

− k69[IX][XIa] + k70[IX:XIa]

d[IXa]

dt
= −k17[V II][IXa] + k18[V II:IXa] + k19[V II:IXa]− k20[TF :V II][IXa]

+ k21[TF :V II:IXa] + k22[TF :V II:IXa]− k36[X][IXa] + k37[X:IXa]

+ k38[X:IXa] + k65[IX:TF :V IIa] + k68[IX:V IIa] + k71[IX:XIa]

− k78[IXa][V IIIa] + k79[IXa:V IIIa]− k80[IXa][AT ]
d[IXa:V IIIa]

dt
= −k33[X][IXa:V IIIa] + k34[X:IXa:V IIIa] + k35[X:IXa:V IIIa]

+ k78[IXa][V IIIa]− k79[IXa:V IIIa]− k81[IXa:V IIIa][AT ]
d[Xa:V a]

dt
= k45[Xa][V a]− k46[Xa:V a]− k48[Xa:V a][AT ]− k52[II][Xa:V a]

+ k53[II:Xa:V a] + k54[II:Xa:V a]

d[TFPI]

dt
= −k82[Xa][TFPI] + k83[Xa:TFPI]

d[Xa:TFPI]

dt
= k82[Xa][TFPI]− k83[Xa:TFPI]− k84[Xa:TFPI][TF :V IIa]

+ k85[TF :V IIa:Xa:TFPI]

d[TF :V IIa:Xa:TFPI]

dt
= k84[Xa:TFPI][TF :V IIa]− k85[TF :V IIa:Xa:TFPI]

d[AT ]

dt
= −k26[TF :V IIa][AT ]− k47[Xa][AT ]− k48[Xa:V a][AT ]− k55[IIa][AT ]

− k62[XIa][AT ]− k80[IXa][AT ]− k81[IXa:V IIIa][AT ]
d[V II:Xa]

dt
= k5[V II][Xa]− k6[V II:Xa]− k7[V II:Xa]

d[TF :V II:Xa]

dt
= k8[TF :V II][Xa]− k9[TF :V II:Xa]− k10[TF :V II:Xa]

d[V II:IIa]

dt
= k11[V II][IIa]− k12[V II:IIa]− k13[V II:IIa]

d[TF :V II:IIa]

dt
= k14[TF :V II][IIa]− k15[TF :V II:IIa]− k16[TF :V II:IIa]

d[V II:IXa]

dt
= k17[V II][IXa]− k18[V II:IXa]− k19[V II:IXa]

d[TF :V II:IXa]

dt
= k20[TF :V II][IXa]− k21[TF :V II:IXa]− k22[TF :V II:IXa]

d[V II:TF :V IIa]

dt
= k23[V II][TF :V IIa]− k24[V II:TF :V IIa]− k25[V II:TF :V IIa]

d[X:TF :V IIa]

dt
= k27[X][TF :V IIa]− k28[X:TF :V IIa]− k29[X:TF :V IIa]
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d[X:V IIa]

dt
= k30[X][V IIa]− k31[X:V IIa]− k32[X:V IIa]

d[X:IXa:V IIIa]

dt
= k33[X][IXa:V IIIa]− k34[X:IXa:V IIIa]− k35[X:IXa:V IIIa]

d[X:IXa]

dt
= k36[X][IXa]− k37[X:IXa]− k38[X:IXa]

d[V :IIa]

dt
= k39[V ][IIa]− k40[V :IIa]− k41[V :IIa]

d[V :Xa]

dt
= k42[V ][Xa]− k43[V :Xa] + k44[V :Xa]

d[II:Xa]

dt
= k49[II][Xa]− k50[II:Xa]− k51[II:Xa]

d[II:Xa:V a]

dt
= k52[II][Xa:V a]− k53[II:Xa:V a]− k54[II:Xa:V a]

d[XI:IIa]

dt
= k56[XI][IIa]− k57[XI:IIa]− k58[XI:IIa]

d[XI:XIa]

dt
= k59[XI][XIa]− k60[XI:XIa]− k61[XI:XIa]

d[IX:TF :V IIa]

dt
= k63[IX][TF :V IIa]− k64[IX:TF :V IIa]− k65[IX:TF :V IIa]

d[IX:V IIa]

dt
= k66[IX][V IIa]− k67[IX:V IIa]− k68[IX:V IIa]

d[IX:XIa]

dt
= k69[IX][XIa]− k70[IX:XIa] + k71[IX:XIa]

d[V III:IIa]

dt
= k72[V III][IIa]− k73[V III:IIa]− k74[V III:IIa]

d[V III:Xa]

dt
= k75[V III][Xa]− k76[V III:Xa]− k77[V III:Xa]

d[Substrate]

dt
= −k86[IIa][Substrate] + k87[IIa:Substrate]

d[ActiveSubstrate]

dt
= k88[IIa:Substrate]

d[IIa:Substrate]

dt
= k86[IIa][Substrate]− k87[IIa:Substrate]− k88[IIa:Substrate]

A.3.2 Expanded Unified Model

d[TF ]

dt
= −k1[TF ][V II] + k2[TF :V II]− k3[TF ][V IIa] + k4[TF :V IIa]

d[V II]

dt
= −k1[TF ][V II] + k2[TF :V II]− k5[V II][Xa] + k6[V II:Xa]− k11[V II][IIa]

+ k12[V II:IIa]− k17[V II][IXa] + k18[V II:IXa]− k23[V II][TF :V IIa] + k24[V II:TF :V IIa]

d[V IIa]

dt
= −k3[TF ][V IIa] + k4[TF :V IIa] + k7[V II:Xa] + k13[V II:IIa] + k19[V II:IXa]

+ k25[V II:TF :V IIa]− k30[X][V IIa] + k31[X:V IIa] + k32[X:V IIa]

− k66[IX][V IIa] + k67[IX:V IIa] + k68[IX:V IIa]

d[TF :V II]

dt
= k1[TF ][V II]− k2[TF :V II]− k8[TF :V II][Xa] + k9[TF :V II:Xa]

− k14[TF :V II][IIa] + k15[TF :V II:IIa]− k20[TF :V II][IXa] + k21[TF :V II:IXa]
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d[TF :V IIa]

dt
= k3[TF ][V IIa]− k4[TF :V IIa] + k10[TF :V II:Xa] + k16[TF :V II:IIa]

+ k22[TF :V II:IXa]− k23[V II][TF :V IIa] + k24[V II:TF :V IIa] + k25[V II:TF :V IIa]

− k26[TF :V IIa][AT ]− k27[X][TF :V IIa] + k28[X:TF :V IIa] + k29[X:TF :V IIa]

− k63[IX][TF :V IIa] + k64[IX:TF :V IIa] + k65[IX:TF :V IIa]− k84[Xa:TFPI][TF :V IIa]
+ k85[TF :V IIa:Xa:TFPI]− k89[TF :V IIa][Xa] + k90[TF :V IIa:Xa]

− k84[Xa=TFPI][TF :V IIa] + k85[TF :V IIa:Xa=TFPI]

− k84[Xa:TFPI:PS][TF :V IIa] + k85[TF :V IIa:Xa:TFPI:PS]

− k84[Xa=TFPI:PS][TF :V IIa] + k85[TF :V IIa:Xa=TFPI:PS]

d[X]

dt
= −k27[X][TF :V IIa] + k28[X:TF :V IIa]− k30[X][V IIa] + k31[X:V IIa]

− k33[X][IXa:V IIIa] + k34[X:IXa:V IIIa]− k36[X][IXa] + k37[X:IXa]

d[Xa]

dt
= −k5[V II][Xa] + k6[V II:Xa] + k7[V II:Xa]− k8[TF :V II][Xa] + k9[TF :V II:Xa]

+ k10[TF :V II:Xa] + k29[X:TF :V IIa] + k32[X:V IIa] + k35[X:IXa:V IIIa]

+ k38[X:IXa]− k42[V ][Xa] + k43[V :Xa] + k44[V :Xa]− k45[Xa][V a]
+ k46[Xa:V a]− k47[Xa][AT ]− k49[II][Xa] + k50[II:Xa] + k51[II:Xa]

− k75[V III][Xa] + k76[V III:Xa] + k77[V III:Xa]− k82[Xa][TFPI]
+ k83[Xa:TFPI]− k89[TF :V IIa][Xa] + k90[TF :V IIa:Xa]− k92[Xa][α1−AT ]

− k110[TFPI:PS][Xa] + k111[Xa:TFPI:PS]

d[II]

dt
= −k49[II][Xa] + k50[II:Xa]− k52[II][Xa:V a] + k53[II:Xa:V a]

d[IIa]

dt
= −k11[V II][IIa] + k12[V II:IIa] + k13[V II:IIa]− k14[TF :V II][IIa]

+ k15[TF :V II:IIa] + k16[TF :V II:IIa]− k39[V ][IIa] + k40[V :IIa] + k41[V :IIa]

+ k51[II:Xa] + k54[II:Xa:V a]− k55[IIa][AT ]− k56[XI][IIa] + k57[XI:IIa]

+ k58[XI:IIa]− k72[V III][IIa] + k73[V III:IIa] + k74[V III:IIa]− k86[IIa][Substrate]
+ k87[IIa:Substrate] + k88[IIa:Substrate]− k91[IIa][α1−AT ]− k96[IIa][α2−M ]

d[V ]

dt
= −k39[V ][IIa] + k40[V :IIa]− k42[V ][Xa] + k43[V :Xa]

d[V a]

dt
= k41[V :IIa] + k44[V :Xa]− k45[Xa][V a] + k46[Xa:V a] + k48[Xa:V a][AT ]

+ k93[Xa:V a][α1−AT ]
d[V III]

dt
= −k72[V III][IIa] + k73[V III:IIa]− k75[V III][Xa] + k76[V III:Xa]

− k102[IXa][V III] + k103[IXa:V III]

d[V IIIa]

dt
= k74[V III:IIa] + k77[V III:Xa]− k78[IXa][V IIIa] + k79[IXa:V IIIa]

+ k81[IXa:V IIIa][AT ]− k99[V IIIa] + k100[V IIIa1L][V IIIa2] + k104[IXa:V III]

d[XI]

dt
= −k56[XI][IIa] + k57[XI:IIa]− k59[XI][XIa] + k60[XI:XIa]

d[XIa]

dt
= k58[XI:IIa]− k59[XI][XIa] + k60[XI:XIa] + 2k61[XI:XIa]− k62[XIa][AT ]

− k69[IX][XIa] + k70[IX:XIa] + k71[IX:XIa]− k94[XIa][α1−AT ]− k95[XIa][α2−AP ]
− k97[XIa][C1−inh]− k98[XIa][PAI1]

d[IX]

dt
= −k63[IX][TF :V IIa] + k64[IX:TF :V IIa]− k66[IX][V IIa] + k67[IX:V IIa]

− k69[IX][XIa] + k70[IX:XIa]
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d[IXa]

dt
= −k17[V II][IXa] + k18[V II:IXa] + k19[V II:IXa]− k20[TF :V II][IXa]

+ k21[TF :V II:IXa] + k22[TF :V II:IXa]− k36[X][IXa] + k37[X:IXa] + k38[X:IXa]

+ k65[IX:TF :V IIa] + k68[IX:V IIa] + k71[IX:XIa]− k78[IXa][V IIIa] + k79[IXa:V IIIa]

− k80[IXa][AT ] + k101[IXa:V IIIa]− k102[IXa][V III] + k103[IXa:V III] + k104[IXa:V III]

d[IXa:V IIIa]

dt
= −k33[X][IXa:V IIIa] + k34[X:IXa:V IIIa] + k35[X:IXa:V IIIa]

+ k78[IXa][V IIIa]− k79[IXa:V IIIa]− k81[IXa:V IIIa][AT ]− k101[IXa:V IIIa]
d[Xa:V a]

dt
= k45[Xa][V a]− k46[Xa:V a]− k48[Xa:V a][AT ]− k52[II][Xa:V a] + k53[II:Xa:V a]

+ k54[II:Xa:V a]− k93[Xa:V a][α1−AT ]
d[TFPI]

dt
= −k82[Xa][TFPI] + k83[Xa:TFPI]− k107[TF :V IIa:Xa][TFPI]

− k108[PS][TFPI] + k109[TFPI:PS]

d[Xa:TFPI]

dt
= k82[Xa][TFPI]− k83[Xa:TFPI]− k84[Xa:TFPI][TF :V IIa]

+ k85[TF :V IIa:Xa:TFPI]− k105[Xa:TFPI] + k106[Xa=TFPI]− k105[Xa:TFPI]
+ k106[Xa=TFPI]− k108[Xa:TFPI][PS] + k109[Xa:TFPI:PS]

d[TF :V IIa:Xa:TFPI]

dt
= k84[Xa:TFPI][TF :V IIa]− k85[TF :V IIa:Xa:TFPI]

+ k107[TF :V IIa:Xa][TFPI]− k105[TF :V IIa:Xa:TFPI] + k106[TF :V IIa:Xa=TFPI]

− k108[TF :V IIa:Xa:TFPI][PS] + k109[TF :V IIa:Xa:TFPI:PS]

d[AT ]

dt
= −k26[TF :V IIa][AT ]− k47[Xa][AT ]− k48[Xa:V a][AT ]− k55[IIa][AT ]

− k62[XIa][AT ]− k80[IXa][AT ]− k81[IXa:V IIIa][AT ]
d[V II:Xa]

dt
= k5[V II][Xa]− k6[V II:Xa]− k7[V II:Xa]

d[TF :V II:Xa]

dt
= k8[TF :V II][Xa]− k9[TF :V II:Xa]− k10[TF :V II:Xa]

d[V II:IIa]

dt
= k11[V II][IIa]− k12[V II:IIa]− k13[V II:IIa]

d[TF :V II:IIa]

dt
= k14[TF :V II][IIa]− k15[TF :V II:IIa]− k16[TF :V II:IIa]

d[V II:IXa]

dt
= k17[V II][IXa]− k18[V II:IXa]− k19[V II:IXa]

d[TF :V II:IXa]

dt
= k20[TF :V II][IXa]− k21[TF :V II:IXa]− k22[TF :V II:IXa]

d[V II:TF :V IIa]

dt
= k23[V II][TF :V IIa]− k24[V II:TF :V IIa]− k25[V II:TF :V IIa]

d[X:TF :V IIa]

dt
= k27[X][TF :V IIa]− k28[X:TF :V IIa]− k29[X:TF :V IIa]

d[X:V IIa]

dt
= k30[X][V IIa]− k31[X:V IIa]− k32[X:V IIa]

d[X:IXa:V IIIa]

dt
= k33[X][IXa:V IIIa]− k34[X:IXa:V IIIa]− k35[X:IXa:V IIIa]

d[X:IXa]

dt
= k36[X][IXa]− k37[X:IXa]− k38[X:IXa]

d[V :IIa]

dt
= k39[V ][IIa]− k40[V :IIa]− k41[V :IIa]

d[V :Xa]

dt
= k42[V ][Xa]− k43[V :Xa] + k44[V :Xa]

d[II:Xa]

dt
= k49[II][Xa]− k50[II:Xa]− k51[II:Xa]
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d[II:Xa:V a]

dt
= k52[II][Xa:V a]− k53[II:Xa:V a]− k54[II:Xa:V a]

d[XI:IIa]

dt
= k56[XI][IIa]− k57[XI:IIa]− k58[XI:IIa]

d[XI:XIa]

dt
= k59[XI][XIa]− k60[XI:XIa]− k61[XI:XIa]

d[IX:TF :V IIa]

dt
= k63[IX][TF :V IIa]− k64[IX:TF :V IIa]− k65[IX:TF :V IIa]

d[IX:V IIa]

dt
= k66[IX][V IIa]− k67[IX:V IIa]− k68[IX:V IIa]

d[IX:XIa]

dt
= k69[IX][XIa]− k70[IX:XIa] + k71[IX:XIa]

d[V III:IIa]

dt
= k72[V III][IIa]− k73[V III:IIa]− k74[V III:IIa]

d[V III:Xa]

dt
= k75[V III][Xa]− k76[V III:Xa]− k77[V III:Xa]

d[Substrate]

dt
= −k86[IIa][Substrate] + k87[IIa:Substrate]

d[ActiveSubstrate]

dt
= k88[IIa:Substrate]

d[IIa:Substrate]

dt
= k86[IIa][Substrate]− k87[IIa:Substrate]− k88[IIa:Substrate]

d[TF :V IIa:Xa]

dt
= k89[TF :V IIa][Xa]− k90[TF :V IIa:Xa]− k107[TF :V IIa:Xa][TFPI]

− k107[TF :V IIa:Xa][TFPI:PS]
d[α1−AT ]

dt
= −k91[IIa][α1−AT ]− k92[Xa][α1−AT ]− k93[Xa:V a][α1−AT ]− k94[XIa][α1−AT ]

d[α2−AP ]
dt

= −k95[XIa][α2−AP ]

d[α2−M ]

dt
= −k96[IIa][α2−M ]

d[C1−inh]
dt

= −k97[XIa][C1−inh]

d[PAI1]

dt
= −k98[XIa][PAI1]

d[V IIIa1L]

dt
=
d[V IIIa2]

dt
= k99[V IIIa]− k100[V IIIa1L][V IIIa2] + k101[IXa:V IIIa]

d[IXa:V III]

dt
= k102[IXa][V III]− k103[IXa:V III]− k104[IXa:V III]

d[PS]

dt
= −k108[PS][TFPI] + k109[TFPI:PS]− k108[Xa:TFPI][PS] + k109[Xa:TFPI:PS]

− k108[Xa=TFPI][PS] + k109[Xa=TFPI:PS]− k108[TF :V IIa:Xa:TFPI][PS]
+ k109[TF :V IIa:Xa:TFPI:PS]− k108[TF :V IIa:Xa=TFPI][PS]

− k109[TF :V IIa:Xa=TFPI:PS]
d[Xa=TFPI]

dt
= k105[Xa:TFPI]− k106[Xa=TFPI] + k105[Xa:TFPI]− k106[Xa=TFPI]

− k84[Xa=TFPI][TF :V IIa] + k85[TF :V IIa:Xa=TFPI]

− k108[Xa=TFPI][PS] + k109[Xa=TFPI:PS]

d[TF :V IIa:Xa=TFPI]

dt
= k84[Xa=TFPI][TF :V IIa]− k85[TF :V IIa:Xa=TFPI]

+ k105[TF :V IIa:Xa:TFPI]− k106[TF :V IIa:Xa=TFPI]
− k108[TF :V IIa:Xa=TFPI][PS] + k109[TF :V IIa:Xa=TFPI:PS]
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d[TFPI:PS]

dt
= k108[PS][TFPI]− k109[TFPI:PS]− k110[TFPI:PS][Xa]

+ k111[Xa:TFPI:PS]− k107[TF :V IIa:Xa][TFPI:PS]
d[Xa:TFPI:PS]

dt
= k110[TFPI:PS][Xa]− k111[Xa:TFPI:PS]− k112[Xa:TFPI:PS]

+ k113[Xa=TFPI:PS]− k84[Xa:TFPI:PS][TF :V IIa] + k85[TF :V IIa:Xa:TFPI:PS]

+ k108[Xa:TFPI][PS]− k109[Xa:TFPI:PS]
d[Xa=TFPI:PS]

dt
= k112[Xa:TFPI:PS]− k113[Xa=TFPI:PS] + k112[Xa:TFPI:PS]

− k113[Xa=TFPI:PS]− k84[Xa=TFPI:PS][TF :V IIa]
+ k85[TF :V IIa:Xa=TFPI:PS] + k108[Xa=TFPI][PS]− k109[Xa=TFPI:PS]

d[TF :V IIa:Xa:TFPI:PS]

dt
= k84[Xa:TFPI:PS][TF :V IIa]− k85[TF :V IIa:Xa:TFPI:PS]

+ k107[TF :V IIa:Xa][TFPI:PS]− k112[TF :V IIa:Xa:TFPI:PS]
+ k113[TF :V IIa:Xa=TFPI:PS] + k108[TF :V IIa:Xa:TFPI][PS]

− k109[TF :V IIa:Xa:TFPI:PS]
d[TF :V IIa:Xa=TFPI:PS]

dt
= k84[Xa=TFPI:PS][TF :V IIa]

− k85[TF :V IIa:Xa=TFPI:PS] + k112[TF :V IIa:Xa:TFPI:PS]

− k113[TF :V IIa:Xa=TFPI:PS] + k108[TF :V IIa:Xa=TFPI][PS]

− k109[TF :V IIa:Xa=TFPI:PS]

A.3.3 Expanded Unified Model with Protein C

d[TF ]

dt
= −k1[TF ][V II] + k2[TF :V II]− k3[TF ][V IIa] + k4[TF :V IIa]

d[V II]

dt
= −k1[TF ][V II] + k2[TF :V II]− k5[V II][Xa] + k6[V II:Xa]− k11[V II][IIa]

+ k12[V II:IIa]− k17[V II][IXa] + k18[V II:IXa]− k23[V II][TF :V IIa] + k24[V II:TF :V IIa]

d[V IIa]

dt
= −k3[TF ][V IIa] + k4[TF :V IIa] + k7[V II:Xa] + k13[V II:IIa] + k19[V II:IXa]

+ k25[V II:TF :V IIa]− k30[X][V IIa] + k31[X:V IIa] + k32[X:V IIa]− k66[IX][V IIa]

+ k67[IX:V IIa] + k68[IX:V IIa]

d[TF :V II]

dt
= k1[TF ][V II]− k2[TF :V II]− k8[TF :V II][Xa] + k9[TF :V II:Xa]

− k14[TF :V II][IIa] + k15[TF :V II:IIa]− k20[TF :V II][IXa] + k21[TF :V II:IXa]

d[TF :V IIa]

dt
= k3[TF ][V IIa]− k4[TF :V IIa] + k10[TF :V II:Xa] + k16[TF :V II:IIa]

+ k22[TF :V II:IXa]− k23[V II][TF :V IIa] + k24[V II:TF :V IIa] + k25[V II:TF :V IIa]

− k26[TF :V IIa][AT ]− k27[X][TF :V IIa] + k28[X:TF :V IIa] + k29[X:TF :V IIa]

− k63[IX][TF :V IIa] + k64[IX:TF :V IIa] + k65[IX:TF :V IIa]

− k84[Xa:TFPI][TF :V IIa] + k85[TF :V IIa:Xa:TFPI]− k89[TF :V IIa][Xa]
+ k90[TF :V IIa:Xa]− k84[Xa=TFPI][TF :V IIa] + k85[TF :V IIa:Xa=TFPI]

− k84[Xa:TFPI:PS][TF :V IIa] + k85[TF :V IIa:Xa:TFPI:PS]

− k84[Xa=TFPI:PS][TF :V IIa] + k85[TF :V IIa:Xa=TFPI:PS]

d[X]

dt
= −k27[X][TF :V IIa] + k28[X:TF :V IIa]− k30[X][V IIa] + k31[X:V IIa]

− k33[X][IXa:V IIIa] + k34[X:IXa:V IIIa]− k36[X][IXa] + k37[X:IXa]
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d[Xa]

dt
= −k5[V II][Xa] + k6[V II:Xa] + k7[V II:Xa]− k8[TF :V II][Xa] + k9[TF :V II:Xa]

+ k10[TF :V II:Xa] + k29[X:TF :V IIa] + k32[X:V IIa] + k35[X:IXa:V IIIa]

+ k38[X:IXa]− k42[V ][Xa] + k43[V :Xa] + k44[V :Xa]− k45[Xa][V a]
+ k46[Xa:V a]− k47[Xa][AT ]− k49[II][Xa] + k50[II:Xa] + k51[II:Xa]

− k75[V III][Xa] + k76[V III:Xa] + k77[V III:Xa]− k82[Xa][TFPI] + k83[Xa:TFPI]

− k89[TF :V IIa][Xa] + k90[TF :V IIa:Xa]− k92[Xa][α1−AT ]− k110[TFPI:PS][Xa]
+ k111[Xa:TFPI:PS] + k124[Xa:V a:APC]

d[II]

dt
= −k49[II][Xa] + k50[II:Xa]− k52[II][Xa:V a] + k53[II:Xa:V a]

d[IIa]

dt
= −k11[V II][IIa] + k12[V II:IIa] + k13[V II:IIa]− k14[TF :V II][IIa]

+ k15[TF :V II:IIa] + k16[TF :V II:IIa]− k39[V ][IIa] + k40[V :IIa] + k41[V :IIa]

+ k51[II:Xa] + k54[II:Xa:V a]− k55[IIa][AT ]− k56[XI][IIa] + k57[XI:IIa]

+ k58[XI:IIa]− k72[V III][IIa] + k73[V III:IIa] + k74[V III:IIa]− k86[IIa][Substrate]
+ k87[IIa:Substrate] + k88[IIa:Substrate]− k91[IIa][α1−AT ]− k96[IIa][α2−M ]

− k114[IIa][sTM ] + k115[IIa:sTM ]

d[V ]

dt
= −k39[V ][IIa] + k40[V :IIa]− k42[V ][Xa] + k43[V :Xa]

d[V a]

dt
= k41[V :IIa] + k44[V :Xa]− k45[Xa][V a] + k46[Xa:V a] + k48[Xa:V a][AT ]

+ k93[Xa:V a][α1−AT ]− k119[V a][APC] + k120[V a:APC]

d[V III]

dt
= −k72[V III][IIa] + k73[V III:IIa]− k75[V III][Xa] + k76[V III:Xa]

− k102[IXa][V III] + k103[IXa:V III]

d[V IIIa]

dt
= k74[V III:IIa] + k77[V III:Xa]− k78[IXa][V IIIa] + k79[IXa:V IIIa]

+ k81[IXa:V IIIa][AT ]− k99[V IIIa] + k100[V IIIa1L][V IIIa2]

+ k104[IXa:V III]− k125[V IIIa][APC] + k126[V IIIa:APC]

d[XI]

dt
= −k56[XI][IIa] + k57[XI:IIa]− k59[XI][XIa] + k60[XI:XIa]

d[XIa]

dt
= k58[XI:IIa]− k59[XI][XIa] + k60[XI:XIa] + 2k61[XI:XIa]− k62[XIa][AT ]

− k69[IX][XIa] + k70[IX:XIa] + k71[IX:XIa]− k94[XIa][α1−AT ]− k95[XIa][α2−AP ]
− k97[XIa][C1−inh]− k98[XIa][PAI1]

d[IX]

dt
= −k63[IX][TF :V IIa] + k64[IX:TF :V IIa]− k66[IX][V IIa] + k67[IX:V IIa]

− k69[IX][XIa] + k70[IX:XIa]

d[IXa]

dt
= −k17[V II][IXa] + k18[V II:IXa] + k19[V II:IXa]− k20[TF :V II][IXa]

+ k21[TF :V II:IXa] + k22[TF :V II:IXa]− k36[X][IXa] + k37[X:IXa]

+ k38[X:IXa] + k65[IX:TF :V IIa] + k68[IX:V IIa] + k71[IX:XIa]

− k78[IXa][V IIIa] + k79[IXa:V IIIa]− k80[IXa][AT ] + k101[IXa:V IIIa]

− k102[IXa][V III] + k103[IXa:V III] + k104[IXa:V III] + k130[IXa:V IIIa:APC]

d[IXa:V IIIa]

dt
= −k33[X][IXa:V IIIa] + k34[X:IXa:V IIIa] + k35[X:IXa:V IIIa]

+ k78[IXa][V IIIa]− k79[IXa:V IIIa]− k81[IXa:V IIIa][AT ]− k101[IXa:V IIIa]
− k128[IXa:V IIIa][APC] + k129[IXa:V IIIa:APC]

d[Xa:V a]

dt
= k45[Xa][V a]− k46[Xa:V a]− k48[Xa:V a][AT ]− k52[II][Xa:V a] + k53[II:Xa:V a]

+ k54[II:Xa:V a]− k93[Xa:V a][α1−AT ]− k122[Xa:V a][APC] + k123[Xa:V a:APC]
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d[TFPI]

dt
= −k82[Xa][TFPI] + k83[Xa:TFPI]− k107[TF :V IIa:Xa][TFPI]

− k108[PS][TFPI] + k109[TFPI:PS]

d[Xa:TFPI]

dt
= k82[Xa][TFPI]− k83[Xa:TFPI]− k84[Xa:TFPI][TF :V IIa]

+ k85[TF :V IIa:Xa:TFPI]− k105[Xa:TFPI] + k106[Xa=TFPI]− k105[Xa:TFPI]
+ k106[Xa=TFPI]− k108[Xa:TFPI][PS] + k109[Xa:TFPI:PS]

d[TF :V IIa:Xa:TFPI]

dt
= k84[Xa:TFPI][TF :V IIa]− k85[TF :V IIa:Xa:TFPI]

+ k107[TF :V IIa:Xa][TFPI]− k105[TF :V IIa:Xa:TFPI] + k106[TF :V IIa:Xa=TFPI]

− k108[TF :V IIa:Xa:TFPI][PS] + k109[TF :V IIa:Xa:TFPI:PS]

d[AT ]

dt
= −k26[TF :V IIa][AT ]− k47[Xa][AT ]− k48[Xa:V a][AT ]− k55[IIa][AT ]

− k62[XIa][AT ]− k80[IXa][AT ]− k81[IXa:V IIIa][AT ]
d[V II:Xa]

dt
= k5[V II][Xa]− k6[V II:Xa]− k7[V II:Xa]

d[TF :V II:Xa]

dt
= k8[TF :V II][Xa]− k9[TF :V II:Xa]− k10[TF :V II:Xa]

d[V II:IIa]

dt
= k11[V II][IIa]− k12[V II:IIa]− k13[V II:IIa]

d[TF :V II:IIa]

dt
= k14[TF :V II][IIa]− k15[TF :V II:IIa]− k16[TF :V II:IIa]

d[V II:IXa]

dt
= k17[V II][IXa]− k18[V II:IXa]− k19[V II:IXa]

d[TF :V II:IXa]

dt
= k20[TF :V II][IXa]− k21[TF :V II:IXa]− k22[TF :V II:IXa]

d[V II:TF :V IIa]

dt
= k23[V II][TF :V IIa]− k24[V II:TF :V IIa]− k25[V II:TF :V IIa]

d[X:TF :V IIa]

dt
= k27[X][TF :V IIa]− k28[X:TF :V IIa]− k29[X:TF :V IIa]

d[X:V IIa]

dt
= k30[X][V IIa]− k31[X:V IIa]− k32[X:V IIa]

d[X:IXa:V IIIa]

dt
= k33[X][IXa:V IIIa]− k34[X:IXa:V IIIa]− k35[X:IXa:V IIIa]

d[X:IXa]

dt
= k36[X][IXa]− k37[X:IXa]− k38[X:IXa]

d[V :IIa]

dt
= k39[V ][IIa]− k40[V :IIa]− k41[V :IIa]

d[V :Xa]

dt
= k42[V ][Xa]− k43[V :Xa] + k44[V :Xa]

d[II:Xa]

dt
= k49[II][Xa]− k50[II:Xa]− k51[II:Xa]

d[II:Xa:V a]

dt
= k52[II][Xa:V a]− k53[II:Xa:V a]− k54[II:Xa:V a]

d[XI:IIa]

dt
= k56[XI][IIa]− k57[XI:IIa]− k58[XI:IIa]

d[XI:XIa]

dt
= k59[XI][XIa]− k60[XI:XIa]− k61[XI:XIa]

d[IX:TF :V IIa]

dt
= k63[IX][TF :V IIa]− k64[IX:TF :V IIa]− k65[IX:TF :V IIa]

d[IX:V IIa]

dt
= k66[IX][V IIa]− k67[IX:V IIa]− k68[IX:V IIa]

d[IX:XIa]

dt
= k69[IX][XIa]− k70[IX:XIa] + k71[IX:XIa]
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d[V III:IIa]

dt
= k72[V III][IIa]− k73[V III:IIa]− k74[V III:IIa]

d[V III:Xa]

dt
= k75[V III][Xa]− k76[V III:Xa]− k77[V III:Xa]

d[Substrate]

dt
= −k86[IIa][Substrate] + k87[IIa:Substrate]

d[ActiveSubstrate]

dt
= k88[IIa:Substrate]

d[IIa:Substrate]

dt
= k86[IIa][Substrate]− k87[IIa:Substrate]− k88[IIa:Substrate]

d[TF :V IIa:Xa]

dt
= k89[TF :V IIa][Xa]− k90[TF :V IIa:Xa]− k107[TF :V IIa:Xa][TFPI]

− k107[TF :V IIa:Xa][TFPI:PS]
d[α1−AT ]

dt
= −k91[IIa][α1−AT ]− k92[Xa][α1−AT ]− k93[Xa:V a][α1−AT ]− k94[XIa][α1−AT ]

d[α2−AP ]
dt

= −k95[XIa][α2−AP ]

d[α2−M ]

dt
= −k96[IIa][α2−M ]

d[C1−inh]
dt

= −k97[XIa][C1−inh]

d[PAI1]

dt
= −k98[XIa][PAI1]

d[V IIIa1L]

dt
=
d[V IIIa2]

dt
= k99[V IIIa]− k100[V IIIa1L][V IIIa2] + k101[IXa:V IIIa]

d[IXa:V III]

dt
= k102[IXa][V III]− k103[IXa:V III]− k104[IXa:V III]

d[PS]

dt
= −k108[PS][TFPI] + k109[TFPI:PS]− k108[Xa:TFPI][PS] + k109[Xa:TFPI:PS]

− k108[Xa=TFPI][PS] + k109[Xa=TFPI:PS]− k108[TF :V IIa:Xa:TFPI][PS]
+ k109[TF :V IIa:Xa:TFPI:PS]− k108[TF :V IIa:Xa=TFPI][PS]

− k109[TF :V IIa:Xa=TFPI:PS]
d[Xa=TFPI]

dt
= k105[Xa:TFPI]− k106[Xa=TFPI] + k105[Xa:TFPI]

− k106[Xa=TFPI]− k84[Xa=TFPI][TF :V IIa] + k85[TF :V IIa:Xa=TFPI]

− k108[Xa=TFPI][PS] + k109[Xa=TFPI:PS]

d[TF :V IIa:Xa=TFPI]

dt
= k84[Xa=TFPI][TF :V IIa]− k85[TF :V IIa:Xa=TFPI]

+ k105[TF :V IIa:Xa:TFPI]− k106[TF :V IIa:Xa=TFPI]
− k108[TF :V IIa:Xa=TFPI][PS] + k109[TF :V IIa:Xa=TFPI:PS]

d[TFPI:PS]

dt
= k108[PS][TFPI]− k109[TFPI:PS]− k110[TFPI:PS][Xa]

+ k111[Xa:TFPI:PS]− k107[TF :V IIa:Xa][TFPI:PS]
d[Xa:TFPI:PS]

dt
= k110[TFPI:PS][Xa]− k111[Xa:TFPI:PS]− k112[Xa:TFPI:PS]

+ k113[Xa=TFPI:PS]− k84[Xa:TFPI:PS][TF :V IIa] + k85[TF :V IIa:Xa:TFPI:PS]

+ k108[Xa:TFPI][PS]− k109[Xa:TFPI:PS]
d[Xa=TFPI:PS]

dt
= k112[Xa:TFPI:PS]− k113[Xa=TFPI:PS] + k112[Xa:TFPI:PS]

− k113[Xa=TFPI:PS]− k84[Xa=TFPI:PS][TF :V IIa]
+ k85[TF :V IIa:Xa=TFPI:PS] + k108[Xa=TFPI][PS]− k109[Xa=TFPI:PS]
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d[TF :V IIa:Xa:TFPI:PS]

dt
= k84[Xa:TFPI:PS][TF :V IIa]− k85[TF :V IIa:Xa:TFPI:PS]

+ k107[TF :V IIa:Xa][TFPI:PS]− k112[TF :V IIa:Xa:TFPI:PS]
+ k113[TF :V IIa:Xa=TFPI:PS] + k108[TF :V IIa:Xa:TFPI][PS]

− k109[TF :V IIa:Xa:TFPI:PS]
d[TF :V IIa:Xa=TFPI:PS]

dt
= k84[Xa=TFPI:PS][TF :V IIa]

− k85[TF :V IIa:Xa=TFPI:PS] + k112[TF :V IIa:Xa:TFPI:PS]

− k113[TF :V IIa:Xa=TFPI:PS] + k108[TF :V IIa:Xa=TFPI][PS]

− k109[TF :V IIa:Xa=TFPI:PS]
[sTM ]

dt
= −k114[IIa][sTM ] + k115[IIa:sTM ]

[IIa:sTM ]

dt
= k114[IIa][sTM ]− k115[IIa:sTM ]− k116[PC][IIa:sTM ] + k117[IIa:sTM :PC]

+ k118[IIa:sTM :PC]

[PC]

dt
= −k116[PC][IIa:sTM ] + k117[IIa:sTM :PC]

[IIa:sTM :PC]

dt
= k116[PC][IIa:sTM ]− k117[IIa:sTM :PC]− k118[IIa:sTM :PC]

[APC]

dt
= k118[IIa:sTM :PC]− k119[V a][APC] + k120[V a:APC] + k121[V a:APC]

− k122[Xa:V a][APC] + k123[Xa:V a:APC] + k124[Xa:V a:APC]

− k125[V IIIa][APC] + k126[V IIIa:APC] + k127[V IIIa:APC]

− k128[IXa:V IIIa][APC] + k129[IXa:V IIIa:APC] + k130[IXa:V IIIa:APC]

[V a:APC]

dt
= k119[V a][APC]− k120[V a:APC]− k121[V a:APC]

[Xa:V a:APC]

dt
= k122[Xa:V a][APC]− k123[Xa:V a:APC]− k124[Xa:V a:APC]

[V IIIa:APC]

dt
= k125[V IIIa][APC]− k126[V IIIa:APC]− k127[V IIIa:APC]

[IXa:V IIIa:APC]

dt
= k128[IXa:V IIIa][APC]− k129[IXa:V IIIa:APC]

− k130[IXa:V IIIa:APC]

A.3.4 Expanded Unified Model with Fibrinogen

d[TF ]

dt
= −k1[TF ][V II] + k2[TF :V II]− k3[TF ][V IIa] + k4[TF :V IIa]

d[V II]

dt
= −k1[TF ][V II] + k2[TF :V II]− k5[V II][Xa] + k6[V II:Xa]− k11[V II][IIa]

+ k12[V II:IIa]− k17[V II][IXa] + k18[V II:IXa]− k23[V II][TF :V IIa]
+ k24[V II:TF :V IIa]

d[V IIa]

dt
= −k3[TF ][V IIa] + k4[TF :V IIa] + k7[V II:Xa] + k13[V II:IIa] + k19[V II:IXa]

+ k25[V II:TF :V IIa]− k30[X][V IIa] + k31[X:V IIa] + k32[X:V IIa]− k66[IX][V IIa]

+ k67[IX:V IIa] + k68[IX:V IIa]

d[TF :V II]

dt
= k1[TF ][V II]− k2[TF :V II]− k8[TF :V II][Xa] + k9[TF :V II:Xa]

− k14[TF :V II][IIa] + k15[TF :V II:IIa]− k20[TF :V II][IXa] + k21[TF :V II:IXa]
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d[TF :V IIa]

dt
= k3[TF ][V IIa]− k4[TF :V IIa] + k10[TF :V II:Xa] + k16[TF :V II:IIa]

+ k22[TF :V II:IXa]− k23[V II][TF :V IIa] + k24[V II:TF :V IIa] + k25[V II:TF :V IIa]

− k26[TF :V IIa][AT ]− k27[X][TF :V IIa] + k28[X:TF :V IIa] + k29[X:TF :V IIa]

− k63[IX][TF :V IIa] + k64[IX:TF :V IIa] + k65[IX:TF :V IIa]

− k84[Xa:TFPI][TF :V IIa] + k85[TF :V IIa:Xa:TFPI]− k89[TF :V IIa][Xa]
+ k90[TF :V IIa:Xa]− k84[Xa=TFPI][TF :V IIa] + k85[TF :V IIa:Xa=TFPI]

− k84[Xa:TFPI:PS][TF :V IIa] + k85[TF :V IIa:Xa:TFPI:PS]

− k84[Xa=TFPI:PS][TF :V IIa] + k85[TF :V IIa:Xa=TFPI:PS]

d[X]

dt
= −k27[X][TF :V IIa] + k28[X:TF :V IIa]− k30[X][V IIa] + k31[X:V IIa]

− k33[X][IXa:V IIIa] + k34[X:IXa:V IIIa]− k36[X][IXa] + k37[X:IXa]

d[Xa]

dt
= −k5[V II][Xa] + k6[V II:Xa] + k7[V II:Xa]− k8[TF :V II][Xa] + k9[TF :V II:Xa]

+ k10[TF :V II:Xa] + k29[X:TF :V IIa] + k32[X:V IIa] + k35[X:IXa:V IIIa]

+ k38[X:IXa]− k42[V ][Xa] + k43[V :Xa] + k44[V :Xa]− k45[Xa][V a]
+ k46[Xa:V a]− k47[Xa][AT ]− k49[II][Xa] + k50[II:Xa] + k51[II:Xa]

− k75[V III][Xa] + k76[V III:Xa] + k77[V III:Xa]− k82[Xa][TFPI]
+ k83[Xa:TFPI]− k89[TF :V IIa][Xa] + k90[TF :V IIa:Xa]− k92[Xa][α1−AT ]

− k110[TFPI:PS][Xa] + k111[Xa:TFPI:PS]

d[II]

dt
= −k49[II][Xa] + k50[II:Xa]− k52[II][Xa:V a] + k53[II:Xa:V a]

d[IIa]

dt
= −k11[V II][IIa] + k12[V II:IIa] + k13[V II:IIa]− k14[TF :V II][IIa]

+ k15[TF :V II:IIa] + k16[TF :V II:IIa]− k39[V ][IIa] + k40[V :IIa] + k41[V :IIa]

+ k51[II:Xa] + k54[II:Xa:V a]− k55[IIa][AT ]− k56[XI][IIa] + k57[XI:IIa]

+ k58[XI:IIa]− k72[V III][IIa] + k73[V III:IIa] + k74[V III:IIa]

− k86[IIa][Substrate] + k87[IIa:Substrate] + k88[IIa:Substrate]− k91[IIa][α1−AT ]
− k96[IIa][α2−M ]− k114[Fbg][IIa] + k115[Fbg:IIa] + k116[Fbg:IIa]− k117[Fbn1][IIa]

+ k118[Fbn1:IIa] + k119[Fbn1:IIa]− k120[Fbn2][IIa] + k121[Fbn2:IIa]

d[V ]

dt
= −k39[V ][IIa] + k40[V :IIa]− k42[V ][Xa] + k43[V :Xa]

d[V a]

dt
= k41[V :IIa] + k44[V :Xa]− k45[Xa][V a] + k46[Xa:V a] + k48[Xa:V a][AT ]

+ k93[Xa:V a][α1−AT ]
d[V III]

dt
= −k72[V III][IIa] + k73[V III:IIa]− k75[V III][Xa] + k76[V III:Xa]

− k102[IXa][V III] + k103[IXa:V III]

d[V IIIa]

dt
= k74[V III:IIa] + k77[V III:Xa]− k78[IXa][V IIIa] + k79[IXa:V IIIa]

+ k81[IXa:V IIIa][AT ]− k99[V IIIa] + k100[V IIIa1L][V IIIa2] + k104[IXa:V III]

d[XI]

dt
= −k56[XI][IIa] + k57[XI:IIa]− k59[XI][XIa] + k60[XI:XIa]

d[XIa]

dt
= k58[XI:IIa]− k59[XI][XIa] + k60[XI:XIa] + 2k61[XI:XIa]− k62[XIa][AT ]

− k69[IX][XIa] + k70[IX:XIa] + k71[IX:XIa]− k94[XIa][α1−AT ]− k95[XIa][α2−AP ]
− k97[XIa][C1−inh]− k98[XIa][PAI1]

d[IX]

dt
= −k63[IX][TF :V IIa] + k64[IX:TF :V IIa]− k66[IX][V IIa] + k67[IX:V IIa]

− k69[IX][XIa] + k70[IX:XIa]
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d[IXa]

dt
= −k17[V II][IXa] + k18[V II:IXa] + k19[V II:IXa]− k20[TF :V II][IXa]

+ k21[TF :V II:IXa] + k22[TF :V II:IXa]− k36[X][IXa] + k37[X:IXa]

+ k38[X:IXa] + k65[IX:TF :V IIa] + k68[IX:V IIa] + k71[IX:XIa]

− k78[IXa][V IIIa] + k79[IXa:V IIIa]− k80[IXa][AT ] + k101[IXa:V IIIa]

− k102[IXa][V III] + k103[IXa:V III] + k104[IXa:V III]

d[IXa:V IIIa]

dt
= −k33[X][IXa:V IIIa] + k34[X:IXa:V IIIa] + k35[X:IXa:V IIIa]

+ k78[IXa][V IIIa]− k79[IXa:V IIIa]− k81[IXa:V IIIa][AT ]− k101[IXa:V IIIa]
d[Xa:V a]

dt
= k45[Xa][V a]− k46[Xa:V a]− k48[Xa:V a][AT ]− k52[II][Xa:V a] + k53[II:Xa:V a]

+ k54[II:Xa:V a]− k93[Xa:V a][α1−AT ]
d[TFPI]

dt
= −k82[Xa][TFPI] + k83[Xa:TFPI]− k107[TF :V IIa:Xa][TFPI]

− k108[PS][TFPI] + k109[TFPI:PS]

d[Xa:TFPI]

dt
= k82[Xa][TFPI]− k83[Xa:TFPI]− k84[Xa:TFPI][TF :V IIa]

+ k85[TF :V IIa:Xa:TFPI]− k105[Xa:TFPI] + k106[Xa=TFPI]− k105[Xa:TFPI]
+ k106[Xa=TFPI]− k108[Xa:TFPI][PS] + k109[Xa:TFPI:PS]

d[TF :V IIa:Xa:TFPI]

dt
= k84[Xa:TFPI][TF :V IIa]− k85[TF :V IIa:Xa:TFPI]

+ k107[TF :V IIa:Xa][TFPI]− k105[TF :V IIa:Xa:TFPI] + k106[TF :V IIa:Xa=TFPI]

− k108[TF :V IIa:Xa:TFPI][PS] + k109[TF :V IIa:Xa:TFPI:PS]

d[AT ]

dt
= −k26[TF :V IIa][AT ]− k47[Xa][AT ]− k48[Xa:V a][AT ]− k55[IIa][AT ]

− k62[XIa][AT ]− k80[IXa][AT ]− k81[IXa:V IIIa][AT ]
d[V II:Xa]

dt
= k5[V II][Xa]− k6[V II:Xa]− k7[V II:Xa]

d[TF :V II:Xa]

dt
= k8[TF :V II][Xa]− k9[TF :V II:Xa]− k10[TF :V II:Xa]

d[V II:IIa]

dt
= k11[V II][IIa]− k12[V II:IIa]− k13[V II:IIa]

d[TF :V II:IIa]

dt
= k14[TF :V II][IIa]− k15[TF :V II:IIa]− k16[TF :V II:IIa]

d[V II:IXa]

dt
= k17[V II][IXa]− k18[V II:IXa]− k19[V II:IXa]

d[TF :V II:IXa]

dt
= k20[TF :V II][IXa]− k21[TF :V II:IXa]− k22[TF :V II:IXa]

d[V II:TF :V IIa]

dt
= k23[V II][TF :V IIa]− k24[V II:TF :V IIa]− k25[V II:TF :V IIa]

d[X:TF :V IIa]

dt
= k27[X][TF :V IIa]− k28[X:TF :V IIa]− k29[X:TF :V IIa]

d[X:V IIa]

dt
= k30[X][V IIa]− k31[X:V IIa]− k32[X:V IIa]

d[X:IXa:V IIIa]

dt
= k33[X][IXa:V IIIa]− k34[X:IXa:V IIIa]− k35[X:IXa:V IIIa]

d[X:IXa]

dt
= k36[X][IXa]− k37[X:IXa]− k38[X:IXa]

d[V :IIa]

dt
= k39[V ][IIa]− k40[V :IIa]− k41[V :IIa]

d[V :Xa]

dt
= k42[V ][Xa]− k43[V :Xa] + k44[V :Xa]

d[II:Xa]

dt
= k49[II][Xa]− k50[II:Xa]− k51[II:Xa]
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d[II:Xa:V a]

dt
= k52[II][Xa:V a]− k53[II:Xa:V a]− k54[II:Xa:V a]

d[XI:IIa]

dt
= k56[XI][IIa]− k57[XI:IIa]− k58[XI:IIa]

d[XI:XIa]

dt
= k59[XI][XIa]− k60[XI:XIa]− k61[XI:XIa]

d[IX:TF :V IIa]

dt
= k63[IX][TF :V IIa]− k64[IX:TF :V IIa]− k65[IX:TF :V IIa]

d[IX:V IIa]

dt
= k66[IX][V IIa]− k67[IX:V IIa]− k68[IX:V IIa]

d[IX:XIa]

dt
= k69[IX][XIa]− k70[IX:XIa] + k71[IX:XIa]

d[V III:IIa]

dt
= k72[V III][IIa]− k73[V III:IIa]− k74[V III:IIa]

d[V III:Xa]

dt
= k75[V III][Xa]− k76[V III:Xa]− k77[V III:Xa]

d[Substrate]

dt
= −k86[IIa][Substrate] + k87[IIa:Substrate]

d[ActiveSubstrate]

dt
= k88[IIa:Substrate]

d[IIa:Substrate]

dt
= k86[IIa][Substrate]− k87[IIa:Substrate]− k88[IIa:Substrate]

d[TF :V IIa:Xa]

dt
= k89[TF :V IIa][Xa]− k90[TF :V IIa:Xa]− k107[TF :V IIa:Xa][TFPI]

− k107[TF :V IIa:Xa][TFPI:PS]
d[α1−AT ]

dt
= −k91[IIa][α1−AT ]− k92[Xa][α1−AT ]− k93[Xa:V a][α1−AT ]− k94[XIa][α1−AT ]

d[α2−AP ]
dt

= −k95[XIa][α2−AP ]

d[α2−M ]

dt
= −k96[IIa][α2−M ]

d[C1−inh]
dt

= −k97[XIa][C1−inh]

d[PAI1]

dt
= −k98[XIa][PAI1]

d[V IIIa1L]

dt
=
d[V IIIa2]

dt
= k99[V IIIa]− k100[V IIIa1L][V IIIa2] + k101[IXa:V IIIa]

d[IXa:V III]

dt
= k102[IXa][V III]− k103[IXa:V III]− k104[IXa:V III]

d[PS]

dt
= −k108[PS][TFPI] + k109[TFPI:PS]− k108[Xa:TFPI][PS] + k109[Xa:TFPI:PS]

− k108[Xa=TFPI][PS] + k109[Xa=TFPI:PS]− k108[TF :V IIa:Xa:TFPI][PS]
+ k109[TF :V IIa:Xa:TFPI:PS]− k108[TF :V IIa:Xa=TFPI][PS]

− k109[TF :V IIa:Xa=TFPI:PS]
d[Xa=TFPI]

dt
= k105[Xa:TFPI]− k106[Xa=TFPI] + k105[Xa:TFPI]

− k106[Xa=TFPI]− k84[Xa=TFPI][TF :V IIa] + k85[TF :V IIa:Xa=TFPI]

− k108[Xa=TFPI][PS] + k109[Xa=TFPI:PS]

d[TF :V IIa:Xa=TFPI]

dt
= k84[Xa=TFPI][TF :V IIa]− k85[TF :V IIa:Xa=TFPI]

+ k105[TF :V IIa:Xa:TFPI]− k106[TF :V IIa:Xa=TFPI]
− k108[TF :V IIa:Xa=TFPI][PS] + k109[TF :V IIa:Xa=TFPI:PS]
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d[TFPI:PS]

dt
= k108[PS][TFPI]− k109[TFPI:PS]− k110[TFPI:PS][Xa]

+ k111[Xa:TFPI:PS]− k107[TF :V IIa:Xa][TFPI:PS]
d[Xa:TFPI:PS]

dt
= k110[TFPI:PS][Xa]− k111[Xa:TFPI:PS]− k112[Xa:TFPI:PS]

+ k113[Xa=TFPI:PS]− k84[Xa:TFPI:PS][TF :V IIa] + k85[TF :V IIa:Xa:TFPI:PS]

+ k108[Xa:TFPI][PS]− k109[Xa:TFPI:PS]
d[Xa=TFPI:PS]

dt
= k112[Xa:TFPI:PS]− k113[Xa=TFPI:PS] + k112[Xa:TFPI:PS]

− k113[Xa=TFPI:PS]− k84[Xa=TFPI:PS][TF :V IIa]
+ k85[TF :V IIa:Xa=TFPI:PS] + k108[Xa=TFPI][PS]− k109[Xa=TFPI:PS]

d[TF :V IIa:Xa:TFPI:PS]

dt
= k84[Xa:TFPI:PS][TF :V IIa]− k85[TF :V IIa:Xa:TFPI:PS]

+ k107[TF :V IIa:Xa][TFPI:PS]− k112[TF :V IIa:Xa:TFPI:PS]
+ k113[TF :V IIa:Xa=TFPI:PS] + k108[TF :V IIa:Xa:TFPI][PS]

− k109[TF :V IIa:Xa:TFPI:PS]
d[TF :V IIa:Xa=TFPI:PS]

dt
= k84[Xa=TFPI:PS][TF :V IIa]

− k85[TF :V IIa:Xa=TFPI:PS] + k112[TF :V IIa:Xa:TFPI:PS]

− k113[TF :V IIa:Xa=TFPI:PS] + k108[TF :V IIa:Xa=TFPI][PS]

− k109[TF :V IIa:Xa=TFPI:PS]
[Fbg]

dt
= −k114[Fbg][IIa] + k115[Fbg:IIa]

[Fbg:IIa]

dt
= k114[Fbg][IIa]− k115[Fbg:IIa]− k116[Fbg:IIa]

[Fbn1]

dt
= k116[Fbg:IIa]− k117[Fbn1][IIa] + k118[Fbn1:IIa]

[Fbn1:IIa]

dt
= k117[Fbn1][IIa]− k118[Fbn1:IIa]− k119[Fbn1:IIa]

[Fbn2]

dt
= k119[Fbn1:IIa]− k120[Fbn2][IIa] + k121[Fbn2:IIa]

[Fbn2:IIa]

dt
= k120[Fbn2][IIa]− k121[Fbn2:IIa]

[FPA]

dt
= k116[Fbg:IIa]

[FPB]

dt
= k119[Fbn1:IIa]

A.3.5 Reduced Unified Model

d[TF ]

dt
= −k1[TF ][V II] + k2[TF :V II]− k3[TF ][V IIa] + k4[TF :V IIa]

d[V II]

dt
= −k1[TF ][V II] + k2[TF :V II]− k5[V II][Xa] + k6[V II:Xa]− k11[V II][IIa]

+ k12[V II:IIa]− k17[V II][IXa] + k18[V II:IXa]

d[V IIa]

dt
== k3[TF ][V IIa] + k4[TF :V IIa]− k7[V II:Xa] + k13[V II:IIa]− k19[V II:IXa]

− k27[X][V IIa] + k28[X:V IIa] + k29[X:V IIa]− k63[IX][V IIa]

+ k64[IX:V IIa] + k65[IX:V IIa]

d[TF :V II]

dt
= k1[TF ][V II]− k2[TF :V II]− k8[TF :V II][Xa] + k9[TF :V II:Xa]

− k14[TF :V II][IIa] + k15[TF :V II:IIa]− k20[TF :V II][IXa] + k21[TF :V II:IXa]
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d[TF :V IIa]

dt
= k3[TF ][V IIa]− k4[TF :V IIa] + k10[TF :V II:Xa] + k16[TF :V II:IIa]

+ k22[TF :V II:IXa]− k23[TF :V IIa][AT ]− k24[X][TF :V IIa]

+ k25[X:TF :V IIa] + k26[X:TF :V IIa]− k60[IX][TF :V IIa]

+ k61[IX:TF :V IIa] + k62[IX:TF :V IIa]− k81[Xa:TFPI][TF :V IIa]
+ k82[TF :V IIa:Xa:TFPI]− k86[TF :V IIa][Xa] + k87[TF :V IIa:Xa]

d[X]

dt
= −k24[X][TF :V IIa] + k25[X:TF :V IIa]− k27[X][V IIa] + k28[X:V IIa]

− k30[X][IXa:V IIIa] + k31[X:IXa:V IIIa]− k33[X][IXa] + k34[X:IXa]

d[Xa]

dt
= −k5[V II][Xa] + k6[V II:Xa] + k7[V II:Xa]− k8[TF :V II][Xa] + k9[TF :V II:Xa]

+ k10[TF :V II:Xa] + k26[X:TF :V IIa] + k29[X:V IIa] + k32[X:IXa:V IIIa]

+ k35[X:IXa]− k39[V ][Xa] + k40[V :Xa] + k41[V :Xa]− k42[Xa][V a] + k43[Xa:V a]

− k44[Xa][AT ]− k46[II][Xa] + k47[II:Xa] + k48[II:Xa]− k72[V III][Xa]
+ k73[V III:Xa] + k74[V III:Xa]− k79[Xa][TFPI] + k80[Xa:TFPI]

− k86[TF :V IIa][Xa] + k87[TF :V IIa:Xa]− k89[Xa][α1−AT ]
d[II]

dt
= −k46[II][Xa] + k47[II:Xa]− k49[II][Xa:V a] + k50[II:Xa:V a]

d[IIa]

dt
= −k11[V II][IIa] + k12[V II:IIa] + k13[V II:IIa]− k14[TF :V II][IIa]

+ k15[TF :V II:IIa] + k16[TF :V II:IIa]− k36[V ][IIa] + k37[V :IIa] + k38[V :IIa]

+ k48[II:Xa] + k51[II:Xa:V a]− k52[IIa][AT ]− k53[XI][IIa] + k54[XI:IIa]

− k69[V III][IIa] + k70[V III:IIa] + k71[V III:IIa]− k83[IIa][Substrate]
+ k84[IIa:Substrate] + k85[IIa:Substrate]− k88[IIa][α1−AT ]

− k93[IIa][α2−M ]− k98[Fbg][IIa] + k99[Fbg:IIa] + k100[Fbg:IIa]− k101[Fbn1][IIa]
+ k102[Fbn1:IIa] + k103[Fbn1:IIa]− k104[Fbn2][IIa] + k105[Fbn2:IIa]

d[V ]

dt
= −k36[V ][IIa] + k37[V :IIa]− k39[V ][Xa] + k40[V :Xa] + k55[XI:IIa]

d[V a]

dt
= k38[V :IIa] + k41[V :Xa]− k42[Xa][V a] + k43[Xa:V a] + k45[Xa:V a][AT ]

+ k90[Xa:V a][α1−AT ]
d[V III]

dt
= −k69[V III][IIa] + k70[V III:IIa]− k72[V III][Xa] + k73[V III:Xa]

d[V IIIa]

dt
= k71[V III:IIa] + k74[V III:Xa]− k75[IXa][V IIIa] + k76[IXa:V IIIa]

+ k78[IXa:V IIIa][AT ]− k95[V IIIa]
d[XI]

dt
= −k53[XI][IIa] + k54[XI:IIa]− k56[XI][XIa] + k57[XI:XIa]

d[XIa]

dt
= k55[XI:IIa]− k56[XI][XIa] + k57[XI:XIa] + 2k58[XI:XIa]− k59[XIa][AT ]

− k66[IX][XIa] + k67[IX:XIa] + k68[IX:XIa]− k91[XIa][α1−AT ]
− k92[XIa][α2−AP ]− k94[XIa][PAI1]

d[IX]

dt
= −k60[IX][TF :V IIa] + k61[IX:TF :V IIa]− k63[IX][V IIa] + k64[IX:V IIa]

− k66[IX][XIa] + k67[IX:XIa]

d[IXa]

dt
= −k17[V II][IXa] + k18[V II:IXa] + k19[V II:IXa]− k20[TF :V II][IXa]

+ k21[TF :V II:IXa] + k22[TF :V II:IXa]− k33[X][IXa] + k34[X:IXa]

+ k35[X:IXa] + k62[IX:TF :V IIa] + k65[IX:V IIa] + k68[IX:XIa]

− k75[IXa][V IIIa] + k76[IXa:V IIIa]− k77[IXa][AT ] + k96[IXa:V IIIa]
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d[IXa:V IIIa]

dt
= −k30[X][IXa:V IIIa] + k31[X:IXa:V IIIa] + k32[X:IXa:V IIIa]

+ k75[IXa][V IIIa]− k76[IXa:V IIIa]− k78[IXa:V IIIa][AT ]− k96[IXa:V IIIa]
d[Xa:V a]

dt
= k42[Xa][V a]− k43[Xa:V a]− k45[Xa:V a][AT ]− k49[II][Xa:V a] + k50[II:Xa:V a]

+ k51[II:Xa:V a]− k90[Xa:V a][α1−AT ]
d[TFPI]

dt
= −k79[Xa][TFPI] + k80[Xa:TFPI]− k97[TF :V IIa:Xa][TFPI]

d[Xa:TFPI]

dt
= k79[Xa][TFPI]− k80[Xa:TFPI]− k81[Xa:TFPI][TF :V IIa]

+ k82[TF :V IIa:Xa:TFPI]

d[TF :V IIa:Xa:TFPI]

dt
= k81[Xa:TFPI][TF :V IIa]− k82[TF :V IIa:Xa:TFPI]

+ k97[TF :V IIa:Xa][TFPI]

d[AT ]

dt
= −k23[TF :V IIa][AT ]− k44[Xa][AT ]− k45[Xa:V a][AT ]− k52[IIa][AT ]

− k59[XIa][AT ]− k77[IXa][AT ]− k78[IXa:V IIIa][AT ]
d[V II:Xa]

dt
= k5[V II][Xa]− k6[V II:Xa]− k7[V II:Xa]

d[TF :V II:Xa]

dt
= k8[TF :V II][Xa]− k9[TF :V II:Xa]− k10[TF :V II:Xa]

d[V II:IIa]

dt
= k11[V II][IIa]− k12[V II:IIa]− k13[V II:IIa]

d[TF :V II:IIa]

dt
= k14[TF :V II][IIa]− k15[TF :V II:IIa]− k16[TF :V II:IIa]

d[V II:IXa]

dt
= k17[V II][IXa]− k18[V II:IXa]− k19[V II:IXa]

d[TF :V II:IXa]

dt
= k20[TF :V II][IXa]− k21[TF :V II:IXa]− k22[TF :V II:IXa]

d[X:TF :V IIa]

dt
= k24[X][TF :V IIa]− k25[X:TF :V IIa]− k26[X:TF :V IIa]

d[X:V IIa]

dt
= k27[X][V IIa]− k28[X:V IIa]− k29[X:V IIa]

d[X:IXa:V IIIa]

dt
= k30[X][IXa:V IIIa]− k31[X:IXa:V IIIa]− k32[X:IXa:V IIIa]

d[X:IXa]

dt
= k33[X][IXa]− k34[X:IXa]− k35[X:IXa]

d[V :IIa]

dt
= k36[V ][IIa]− k37[V :IIa]− k38[V :IIa]

d[V :Xa]

dt
= k39[V ][Xa]− k40[V :Xa]− k41[V :Xa]

d[II:Xa]

dt
= k46[II][Xa]− k47[II:Xa]− k48[II:Xa]

d[II:Xa:V a]

dt
= k49[II][Xa:V a]− k50[II:Xa:V a]− k51[II:Xa:V a]

d[XI:IIa]

dt
= k53[XI][IIa]− k54[XI:IIa]− k55[XI:IIa]

d[XI:XIa]

dt
= k56[XI][XIa]− k57[XI:XIa]− k58[XI:XIa]

d[IX:TF :V IIa]

dt
= k60[IX][TF :V IIa]− k61[IX:TF :V IIa]− k62[IX:TF :V IIa]

d[IX:V IIa]

dt
= k63[IX][V IIa]− k64[IX:V IIa]− k65[IX:V IIa]

d[IX:XIa]

dt
= k66[IX][XIa]− k67[IX:XIa]− k68[IX:XIa]
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d[V III:IIa]

dt
= k69[V III][IIa]− k70[V III:IIa]− k71[V III:IIa]

d[V III:Xa]

dt
= k72[V III][Xa]− k73[V III:Xa]− k74[V III:Xa]

d[Substrate]

dt
= −k83[IIa][Substrate] + k84[IIa:Substrate]

d[ActiveSubstrate]

dt
= k85[IIa:Substrate]

d[IIa:Substrate]

dt
= k83[IIa][Substrate]− k84[IIa:Substrate]− k85[IIa:Substrate]

d[TF :V IIa:Xa]

dt
= k86[TF :V IIa][Xa]− k87[TF :V IIa:Xa]− k97[TF :V IIa:Xa][TFPI]

d[α1−AT ]
dt

= −k88[IIa][α1−AT ]− k89[Xa][α1−AT ]− k90[Xa:V a][α1−AT ]− k91[XIa][α1−AT ]

d[IIa:α1−AT ]
dt

= k88[IIa][α1−AT ]

d[Xa:α1−AT ]
dt

= k89[Xa][α1−AT ] + k90[Xa:V a][α1−AT ]

d[XIa:α1−AT ]
dt

= k91[XIa][α1−AT ]

d[α2−AP ]
dt

= −k92[XIa][α2−AP ]

d[XIa:α2−AP ]
dt

= k92[XIa][α2−AP ]

d[α2−M ]

dt
= −k93[IIa][α2−M ]

d[IIa:α2−M ]

dt
= k93[IIa][α2−M ]

d[PAI1]

dt
= −k94[XIa][PAI1]

d[XIa:PAI1]

dt
= k94[XIa][PAI1]

d[V IIIa1L]

dt
=
d[V IIIa2]

dt
= k95[V IIIa] + k96[IXa:V IIIa]

d[Fbg]

dt
= −k98[Fbg][IIa] + k99[Fbg:IIa]

d[Fbg:IIa]

dt
= k98[Fbg][IIa]− k99[Fbg:IIa]− k100[Fbg:IIa]

d[Fbn1]

dt
= k100[Fbg:IIa]− k101[Fbn1][IIa] + k102[Fbn1:IIa]

d[Fbn1:IIa]

dt
= k101[Fbn1][IIa]− k102[Fbn1:IIa]− k103[Fbn1:IIa]

d[Fbn2]

dt
= k103[Fbn1:IIa]− k104[Fbn2][IIa] + k105[Fbn2:IIa]

d[Fbn2:IIa]

dt
= k104[Fbn2][IIa]− k105[Fbn2:IIa]

d[FPA]

dt
= k100[Fbg:IIa]

d[FPB]

dt
= k103[Fbn1:IIa]

A.3.6 Improved Unified Model

d[TF ]

dt
= −k1[TF ][V II] + k2[TF :V II]− k3[TF ][V IIa] + k4[TF :V IIa]
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d[V II]

dt
= −k1[TF ][V II] + k2[TF :V II]− k5[V II][Xa] + k6[V II:Xa]− k11[V II][IIa]

+ k12[V II:IIa]− k17[V II][IXa] + k18[V II:IXa]− k23[V II][TF :V IIa] + k24[V II:TF :V IIa]

d[V IIa]

dt
= −k3[TF ][V IIa] + k4[TF :V IIa] + k7[V II:Xa] + k13[V II:IIa] + k19[V II:IXa]

+ k25[V II:TF :V IIa]− k30[X][V IIa] + k31[X:V IIa] + k32[X:V IIa]− k66[IX][V IIa]

+ k67[IX:V IIa] + k68[IX:V IIa]

d[TF :V II]

dt
= k1[TF ][V II]− k2[TF :V II]− k8[TF :V II][Xa] + k9[TF :V II:Xa]

− k14[TF :V II][IIa] + k15[TF :V II:IIa]− k20[TF :V II][IXa] + k21[TF :V II:IXa]

d[TF :V IIa]

dt
= k3[TF ][V IIa]− k4[TF :V IIa] + k10[TF :V II:Xa] + k16[TF :V II:IIa]

+ k22[TF :V II:IXa]− k23[V II][TF :V IIa] + k24[V II:TF :V IIa] + k25[V II:TF :V IIa]

− k26[TF :V IIa][AT ]− k27[X][TF :V IIa] + k28[X:TF :V IIa] + k29[X:TF :V IIa]

− k63[IX][TF :V IIa] + k64[IX:TF :V IIa] + k65[IX:TF :V IIa]

− k87[Xa:TFPI][TF :V IIa] + k88[TF :V IIa:Xa:TFPI]

d[X]

dt
= −k27[X][TF :V IIa] + k28[X:TF :V IIa]− k30[X][V IIa] + k31[X:V IIa]

− k33[X][IXa:V IIIa] + k34[X:IXa:V IIIa]− k36[X][IXa] + k37[X:IXa]

d[Xa]

dt
= −k5[V II][Xa] + k6[V II:Xa] + k7[V II:Xa]− k8[TF :V II][Xa] + k9[TF :V II:Xa]

+ k10[TF :V II:Xa] + k29[X:TF :V IIa] + k32[X:V IIa] + k35[X:IXa:V IIIa]

+ k38[X:IXa]− k42[V ][Xa] + k43[V :Xa] + k44[V :Xa]− k45[Xa][V a]
+ k46[Xa:V a]− k47[Xa][AT ]− k49[II][Xa] + k50[II:Xa] + k51[II:Xa]

− k75[V III][Xa] + k76[V III:Xa] + k77[V III:Xa]− k85[Xa][TFPI]
+ k86[Xa:TFPI]− k90[Xa][α1−AT ]

d[II]

dt
= −k49[II][Xa] + k50[II:Xa]− k52[II][Xa:V a] + k53[II:Xa:V a]

d[IIa]

dt
= −k11[V II][IIa] + k12[V II:IIa] + k13[V II:IIa]− k14[TF :V II][IIa]

+ k15[TF :V II:IIa] + k16[TF :V II:IIa]− k39[V ][IIa] + k40[V :IIa] + k41[V :IIa]

+ k51[II:Xa] + k54[II:Xa:V a]− k55[IIa][AT ]− k56[XI][IIa] + k57[XI:IIa]

+ k58[XI:IIa]− k72[V III][IIa] + k73[V III:IIa] + k74[V III:IIa]− k89[IIa][α1−AT ]
− k94[IIa][α2−M ]− k97[Fbg][IIa] + k98[Fbg:IIa] + k99[Fbg:IIa]− k100[Fbn1][IIa]

+ k101[Fbn1:IIa] + k102[Fbn1:IIa]− k103[Fbn2][IIa] + k104[Fbn2:IIa]

− k107[IIa][Substrate] + k108[IIa:Substrate] + k109[IIa:Substrate]

d[V ]

dt
= −k39[V ][IIa] + k40[V :IIa]− k42[V ][Xa] + k43[V :Xa]

d[V a]

dt
= k41[V :IIa] + k44[V :Xa]− k45[Xa][V a] + k46[Xa:V a]

d[V III]

dt
= −k72[V III][IIa] + k73[V III:IIa]− k75[V III][Xa] + k76[V III:Xa]

d[V IIIa]

dt
= k74[V III:IIa] + k77[V III:Xa]− k78[V IIIa] + k79[V IIIa1L][V IIIa2]

− k81[IXa][V IIIa] + k82[IXa:V IIIa]

d[XI]

dt
= −k56[XI][IIa] + k57[XI:IIa]− k59[XI][XIa] + k60[XI:XIa]

d[XIa]

dt
= k58[XI:IIa]− k59[XI][XIa] + k60[XI:XIa] + 2k61[XI:XIa]− k62[XIa][AT ]

− k69[IX][XIa] + k70[IX:XIa] + k71[IX:XIa]− k92[XIa][α1−AT ]− k93[XIa][α2−AP ]
− k95[XIa][C1−inh]− k96[XIa][PAI1]
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d[IX]

dt
= −k63[IX][TF :V IIa] + k64[IX:TF :V IIa]− k66[IX][V IIa] + k67[IX:V IIa]

− k69[IX][XIa] + k70[IX:XIa]

d[IXa]

dt
= −k17[V II][IXa] + k18[V II:IXa] + k19[V II:IXa]− k20[TF :V II][IXa]

+ k21[TF :V II:IXa] + k22[TF :V II:IXa]− k36[X][IXa] + k37[X:IXa] + k38[X:IXa]

+ k65[IX:TF :V IIa] + k68[IX:V IIa] + k71[IX:XIa] + k80[IXa:V IIIa]

− k81[IXa][V IIIa] + k82[IXa:V IIIa]− k83[IXa][AT ]
d[IXa:V IIIa]

dt
= −k33[X][IXa:V IIIa] + k34[X:IXa:V IIIa] + k35[X:IXa:V IIIa]

− k80[IXa:V IIIa] + k81[IXa][V IIIa]− k82[IXa:V IIIa]− k84[IXa:V IIIa][AT ]
d[Xa:V a]

dt
= k45[Xa][V a]− k46[Xa:V a]− k48[Xa:V a][AT ]− k52[II][Xa:V a] + k53[II:Xa:V a]

+ k54[II:Xa:V a]− k91[Xa:V a][α1−AT ]
d[TFPI]

dt
= −k85[Xa][TFPI] + k86[Xa:TFPI]

d[Xa:TFPI]

dt
= k85[Xa][TFPI]− k86[Xa:TFPI]− k87[Xa:TFPI][TF :V IIa]

+ k88[TF :V IIa:Xa:TFPI]

d[TF :V IIa:Xa:TFPI]

dt
= k87[Xa:TFPI][TF :V IIa]− k88[TF :V IIa:Xa:TFPI]

d[AT ]

dt
= −k26[TF :V IIa][AT ]− k47[Xa][AT ]− k48[Xa:V a][AT ]− k55[IIa][AT ]

− k62[XIa][AT ]− k83[IXa][AT ]− k84[IXa:V IIIa][AT ]− k105[Fbn1:IIa][AT ]
− k106[Fbn2:IIa][AT ]

d[V II:Xa]

dt
= k5[V II][Xa]− k6[V II:Xa]− k7[V II:Xa]

d[TF :V II:Xa]

dt
= k8[TF :V II][Xa]− k9[TF :V II:Xa]− k10[TF :V II:Xa]

d[V II:IIa]

dt
= k11[V II][IIa]− k12[V II:IIa]− k13[V II:IIa]

d[TF :V II:IIa]

dt
= k14[TF :V II][IIa]− k15[TF :V II:IIa]− k16[TF :V II:IIa]

d[V II:IXa]

dt
= k17[V II][IXa]− k18[V II:IXa]− k19[V II:IXa]

d[TF :V II:IXa]

dt
= k20[TF :V II][IXa]− k21[TF :V II:IXa]− k22[TF :V II:IXa]

d[V II:TF :V IIa]

dt
= k23[V II][TF :V IIa]− k24[V II:TF :V IIa]− k25[V II:TF :V IIa]

d[X:TF :V IIa]

dt
= k27[X][TF :V IIa]− k28[X:TF :V IIa]− k29[X:TF :V IIa]

d[X:V IIa]

dt
= k30[X][V IIa]− k31[X:V IIa]− k32[X:V IIa]

d[X:IXa:V IIIa]

dt
= k33[X][IXa:V IIIa]− k34[X:IXa:V IIIa]− k35[X:IXa:V IIIa]

d[X:IXa]

dt
= k36[X][IXa]− k37[X:IXa]− k38[X:IXa]

d[V :IIa]

dt
= k39[V ][IIa]− k40[V :IIa]− k41[V :IIa]

d[V :Xa]

dt
= k42[V ][Xa]− k43[V :Xa]− k44[V :Xa]

d[II:Xa]

dt
= k49[II][Xa]− k50[II:Xa]− k51[II:Xa]
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d[II:Xa:V a]

dt
= k52[II][Xa:V a]− k53[II:Xa:V a]− k54[II:Xa:V a]

d[XI:IIa]

dt
= k56[XI][IIa]− k57[XI:IIa]− k58[XI:IIa]

d[XI:XIa]

dt
= k59[XI][XIa]− k60[XI:XIa]− k61[XI:XIa]

d[IX:TF :V IIa]

dt
= k63[IX][TF :V IIa]− k64[IX:TF :V IIa]− k65[IX:TF :V IIa]

d[IX:V IIa]

dt
= k66[IX][V IIa]− k67[IX:V IIa]− k68[IX:V IIa]

d[IX:XIa]

dt
= k69[IX][XIa]− k70[IX:XIa]− k71[IX:XIa]

d[V III:IIa]

dt
= k72[V III][IIa]− k73[V III:IIa]− k74[V III:IIa]

d[V III:Xa]

dt
= k75[V III][Xa]− k76[V III:Xa]− k77[V III:Xa]

d[Substrate]

dt
= −k107[IIa][Substrate] + k108[IIa:Substrate]

d[ActiveSubstrate]

dt
= k109[IIa:Substrate]

d[IIa:Substrate]

dt
= k107[IIa][Substrate]− k108[IIa:Substrate]− k109[IIa:Substrate]

d[α1−AT ]
dt

= −k89[IIa][α1−AT ]− k90[Xa][α1−AT ]− k91[Xa:V a][α1−AT ]− k92[XIa][α1−AT ]

d[α2−AP ]
dt

= −k93[XIa][α2−AP ]

d[α2−M ]

dt
= −k94[IIa][α2−M ]

d[C1−inh]
dt

= −k95[XIa][C1−inh]

d[PAI1]

dt
= −k96[XIa][PAI1]

d[V IIIa1L]

dt
=
d[V IIIa2]

dt
= k78[V IIIa]− k79[V IIIa1L][V IIIa2] + k80[IXa:V IIIa]

d[Fbg]

dt
= −k97[Fbg][IIa] + k98[Fbg:IIa]

d[Fbg:IIa]

dt
= k97[Fbg][IIa]− k98[Fbg:IIa]− k99[Fbg:IIa]

d[Fbn1]

dt
= k99[Fbg:IIa]− k100[Fbn1][IIa] + k101[Fbn1:IIa]

d[Fbn1:IIa]

dt
= k100[Fbn1][IIa]− k101[Fbn1:IIa]− k102[Fbn1:IIa]− k105[Fbn1:IIa][AT ]

d[Fbn2]

dt
= k102[Fbn1:IIa]− k103[Fbn2][IIa] + k104[Fbn2:IIa]

d[Fbn2:IIa]

dt
= k103[Fbn2][IIa]− k104[Fbn2:IIa]− k106[Fbn2:IIa][AT ]

d[FPA]

dt
= k99[Fbg:IIa]

d[FPB]

dt
= k102[Fbn1:IIa]
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Appendix B

Fitted Reaction Rates

This appendix presents the fitted reaction rates for Chapters 3, 4, 5, and 6. First
order rates are given in units of s−1 and second order rates are given in units of
M−1s−1.

B.1 Unified Model
Tables 3.6 and 3.7 present the fitted reaction rates in prior form. They are pre-
sented here in mass action form for simulation with the ODEs.

Rate GD Fitted ABC-SMC Fitted GD ETP Fitted GD Bounded

k1 1.26× 105 1.26× 105 1.26× 105 1.26× 105

k2 3.72× 10−4 3.72× 10−4 3.72× 10−4 3.72× 10−4

k3 1.49× 107 1.33× 105 2.47× 108 2.47× 108

k4 4.70× 10−2 4.20× 10−4 7.80× 10−1 7.80× 10−1

k5 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k6 2.73× 104 2.67 1.17× 105 1.17× 105

k7 4.10× 103 1.82× 10−2 2.31× 104 2.31× 104

k8 1.00× 1010 1.00× 108 1.00× 109 1.00× 109

k9 1.99× 104 1.15× 104 4.61× 104 4.61× 104

k10 2.21× 103 5.49× 101 6.01× 103 6.01× 103

k11 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k12 9.62× 104 5.95 3.37× 105 3.37× 105

k13 8.08 1.65× 10−1 8.33× 101 8.33× 101

k14 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k15 1.35× 105 1.93× 10−1 4.23× 105 4.23× 105

k16 1.04× 101 2.67× 10−1 8.62× 101 8.62× 101

k17 1.00× 108 1.00× 1011 1.00× 108 1.00× 108

k18 4.67× 104 1.62× 106 2.07× 105 2.07× 105

k19 7.93× 101 2.04× 105 4.49× 102 4.49× 102

k20 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k21 4.34× 104 3.46× 106 2.00× 105 2.00× 105

k22 8.86× 101 4.86× 10−3 4.81× 102 4.81× 102

k23 1.00× 108 1.00× 109 1.00× 108 1.00× 108
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k24 7.93× 104 1.12× 101 4.76× 105 4.76× 105

k25 1.41 1.41 1.41 1.41
k26 3.78× 105 2.71× 102 1.29× 106 1.29× 106

k27 1.00× 109 1.00× 109 1.00× 109 1.00× 109

k28 3.36× 102 4.16× 101 4.46× 104 4.46× 104

k29 5.54× 102 6.81 1.55× 104 1.55× 104

k30 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k31 2.46× 104 2.36× 102 1.72× 105 1.72× 105

k32 3.24× 10−4 3.24× 10−4 3.24× 10−4 3.24× 10−4

k33 1.00× 1010 1.00× 108 1.00× 1010 1.00× 1010

k34 5.51× 102 4.06 1.57× 102 1.57× 102

k35 3.00× 102 4.45 6.94× 102 6.94× 102

k36 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k37 1.04× 103 3.57× 101 9.97× 102 9.97× 102

k38 2.82× 10−4 2.82× 10−4 2.82× 10−4 2.82× 10−4

k39 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k40 1.18× 103 1.34× 102 8.80× 103 8.80× 103

k41 2.95× 10−1 2.95× 10−1 2.95× 10−1 2.95× 10−1

k42 1.00× 1010 1.00× 108 1.00× 1010 1.00× 1010

k43 9.05× 101 8.78× 10−1 5.70× 101 5.70× 101

k44 1.42× 101 1.70× 10−1 4.77× 101 4.77× 101

k45 1.58× 109 1.58× 109 1.58× 109 1.58× 109

k46 3.58× 10−4 1.62 5.13× 10−2 5.13× 10−2

k47 3.26× 105 5.06× 103 1.82× 105 1.82× 105

k48 1.07× 103 1.07× 103 1.07× 103 1.07× 103

k49 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k50 5.45× 104 2.50× 102 1.58× 105 1.58× 105

k51 9.33× 10−3 9.33× 10−3 9.33× 10−3 9.33× 10−3

k52 1.00× 108 1.00× 108 1.00× 109 1.00× 109

k53 3.75× 104 1.44× 102 6.24× 104 6.24× 104

k54 4.46× 103 2.55× 101 5.16× 104 5.16× 104

k55 3.04× 103 4.28× 103 9.28× 102 9.28× 102

k56 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k57 2.21× 103 5.57× 10−3 8.67× 103 8.67× 103

k58 1.11× 10−4 1.88× 10−3 1.75× 10−1 1.75× 10−1

k59 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k60 1.48× 103 8.98× 10−1 6.95× 103 6.95× 103

k61 3.34× 10−2 1.85× 10−1 1.40× 10−1 1.40× 10−1

k62 3.98× 102 3.98× 102 3.98× 102 3.98× 102

k63 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k64 1.57× 101 1.57× 101 1.57× 101 1.57× 101

k65 5.37× 10−1 5.37× 10−1 5.37× 10−1 5.37× 10−1

k66 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k67 1.52× 102 1.97× 10−3 1.70× 103 1.70× 103

k68 5.55× 10−5 7.75× 10−3 4.67× 10−2 4.67× 10−2

k69 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k70 9.80× 103 6.90× 101 3.19× 104 3.19× 104

k71 6.00× 101 1.99 6.26× 102 6.26× 102
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k72 1.00× 108 1.00× 109 1.00× 108 1.00× 108

k73 4.63× 102 1.33 2.54× 104 2.54× 104

k74 3.02× 102 5.32× 10−1 1.19× 103 1.19× 103

k75 1.00× 108 1.00× 109 1.00× 108 1.00× 108

k76 5.33× 103 6.08 2.21× 104 2.21× 104

k77 5.79× 101 4.86 2.73× 102 2.73× 102

k78 1.71× 109 8.45× 106 8.73× 109 8.73× 109

k79 2.77 1.37× 10−2 1.42× 101 1.42× 101

k80 1.11× 105 9.48× 105 6.93× 105 6.93× 105

k81 1.24× 105 3.93 4.16× 105 4.16× 105

k82 5.33× 108 1.36× 106 4.20× 109 4.20× 109

k83 4.97× 10−2 1.27× 10−4 3.92× 10−1 3.92× 10−1

k84 8.91× 106 8.91× 106 8.91× 106 8.91× 106

k85 1.35× 10−3 1.35× 10−3 1.35× 10−3 1.35× 10−3

k86 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k87 1.95× 105 1.95× 105 1.95× 105 1.95× 105

k88 1.91 1.91 1.91 1.91

Table B.1: The fitted reaction rates for the Unified Model, given in mass action
form.

B.2 Chatterjee Model

Reaction rate Fitted value Reaction rate Fitted value

k−,1 0.031 k+,1 3.2× 106

k−,2 3.1× 10−5 k+,2 1.13× 108

k+,3 4.4× 105 k+,4 1.3× 107

k+,5 2.3× 104 k−,6 0.0105
k+,6 2.5× 107 k−,7 6
k−,8 231.6 k+,8 2.2× 107

k−,9 2.4 k+,9 1× 107

k−,10 1.8 k+,11 2.63× 104

k+,12 1.18× 108 k−,13 1× 10−4

k+,13 3.4× 107 k−,14 1× 10−5

k+,14 9.7× 108 k−,15 11.2
k+,16 2.2× 104 k−,16 6× 10−5

k−,17 1× 10−3 k+,18 1.6× 107

k−,19 0.008 k+,19 4× 108

k−,20 29.8 k+,20 3.37× 108

k−,21 3.99 k+,22 2.24× 108

k−,23 3.6× 10−4 k+,23 9× 105

k−,24 0.011 k+,24 2.8× 109

k+,25 5× 107 k+,26 1.39× 104

k+,27 4.33× 104 k+,28 490
k+,29 4.07× 103 k+,30 230
k+,31 1× 108 k−,31 6100
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k−,32 53.8 k−,33 0.0035
k+,34 1× 108 k−,34 750
k−,35 0.033 k+,36 1× 108

k−,36 3600 k−,37 40
k+,38 1× 108 k−,38 45.3
k−,39 5.7 k+,40 2.7× 104

k−,41 0.011 k+,42 1× 108

k−,42 2.4 k+,43 3600
k+,44 21.6 k+,45 1× 108

k−,45 5 k−,46 1.3× 10−4

k+,47 7.9× 108 k−,47 1.8× 103

k−,48 0.0029 k+,49 6.66× 107

k+,50 320 k+,51 2.58× 104

k+,52 1.75× 103 k+,53 6.3× 104

k+,54 5.24× 107 k−,54 679
k−,55 3.32 k+,56 1.17× 109

k−,56 0.92 k−,57 7× 10−4

k+,58 1× 108 k−,58 2.1
k−,59 0.023 k+,60 2.88× 105

k−,60 8.34 k−,61 3.6× 10−5

k+,62 1× 108 k−,62 210
k−,63 1.6× 10−6 k+,64 1× 108

k−,64 636 k−,65 84
k+,66 1× 108 k−,66 742.6
k−,67 7.4 k+,68 1× 106

k−,68 0.064 k+,69 1× 108

k−,69 701 k−,70 49
k+,71 1× 108 k−,71 1× 103

k+,72 1.6× 104 k+,73 1.6× 104

k+,74 1× 104 εmax0 0.0116
k 0.0141

Table B.2: The fitted reaction rates for the Chatterjee model.

B.3 Expanded Unified Model

Reaction rate Fitted value Reaction rate Fitted value

k1 1.26× 105 k2 3.72× 10−4

k3 1.12× 106 k4 3.55× 10−3

k5 1.00× 108 k6 1.05× 102

k7 1.51× 101 k8 1.00× 1010

k9 9.40× 101 k10 4.59× 101

k11 1.00× 108 k12 2.69× 102

k13 6.17× 10−2 k14 1.00× 108

k15 2.69× 102 k16 6.17× 10−2

k17 1.00× 108 k18 1.70× 102

k19 3.24× 10−1 k20 1.00× 108
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k21 1.70× 102 k22 3.24× 10−1

k23 1.00× 108 k24 3.22× 102

k25 1.41 k26 8.43× 103

k27 1.00× 1010 k28 6.23× 101

k29 4.24× 101 k30 1.00× 108

k31 1.85× 103 k32 2.63× 10−3

k33 1.00× 1013 k34 5.41× 101

k35 5.00× 101 k36 1.00× 108

k37 2.53 k38 1.54× 10−3

k39 1.00× 108 k40 2.01× 101

k41 3.01 k42 1.00× 108

k43 9.66 k44 5.60× 10−1

k45 2.46× 1010 k46 1.46
k47 1.28× 104 k48 1.90× 104

k49 1.00× 108 k50 1.75× 103

k51 9.33× 10−3 k52 1.00× 108

k53 1.03× 103 k54 8.95× 101

k55 3.12× 103 k56 1.00× 108

k57 9.24× 101 k58 1.14× 10−3

k59 1.00× 108 k60 6.57× 101

k61 1.30× 10−4 k62 3.98× 102

k63 1.00× 108 k64 1.85× 102

k65 5.37× 10−1 k66 1.00× 108

k67 2.35× 10−1 k68 5.30× 10−4

k69 1.00× 108 k70 7.01× 102

k71 1.04× 101 k72 1.00× 108

k73 1.04× 102 k74 1.43× 101

k75 1.00× 108 k76 1.97× 101

k77 2.19× 10−1 k78 6.98× 107

k79 6.39× 10−1 k80 4.90× 102

k81 4.90× 102 k82 3.80× 106

k83 1.67× 10−2 k84 8.91× 106

k85 1.35× 10−3 k86 1.00× 108

k87 1.95× 105 k88 1.91
k89 2.20× 107 k90 1.90× 101

k91 5.48× 101 k92 1.77× 103

k93 3.79× 103 k94 6.67× 101

k95 5.00× 102 k96 5.52× 102

k97 1.67× 101 k98 2.10× 105

k99 7.72× 10−2 k100 2.01× 10−8

k101 1.40× 10−3 k102 1.00× 108

k103 1.98× 101 k104 2.20× 10−1

k105 4.15× 10−2 k106 5.00× 10−4

k107 8.91× 106 k108 1.00× 108

k109 5.00× 10−1 k100 3.03× 107

k111 1.51× 10−2 k112 1.20× 10−2

k113 4.67× 10−4
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Table B.3: The fitted reaction rates for the Expanded Unified Model, given in
mass action form.

B.4 Expanded Unified Model with Protein C

Reaction rate Fitted value Reaction rate Fitted value

k1 5.21× 105 k2 1.54× 10−3

k3 1.62× 106 k4 5.11× 10−3

k5 1.00× 108 k6 1.05× 102

k7 1.51× 101 k8 1.00× 109

k9 6.74× 101 k10 1.55× 101

k11 1.00× 108 k12 2.69× 102

k13 6.17× 10−2 k14 1.00× 108

k15 2.05× 102 k16 2.70× 10−1

k17 1.00× 108 k18 1.70× 102

k19 3.24× 10−1 k20 1.00× 108

k21 1.70× 102 k22 3.24× 10−1

k23 1.00× 108 k24 3.22× 102

k25 1.41 k26 3.00× 102

k27 1.00× 1010 k28 1.49× 102

k29 1.21× 102 k30 1.00× 108

k31 2.01× 101 k32 9.22× 10−4

k33 1.00× 108 k34 4.08
k35 3.51× 10−2 k36 1.00× 108

k37 4.62× 10−1 k38 3.03× 10−4

k39 1.00× 109 k40 1.48× 101

k41 1.73 k42 1.00× 108

k43 6.05 k44 9.43× 10−2

k45 1.33× 1010 k46 2.02× 10−1

k47 3.84× 102 k48 2.65× 102

k49 1.00× 108 k50 4.00× 102

k51 9.33× 10−3 k52 1.00× 1013

k53 2.50× 102 k54 2.15× 102

k55 1.89× 103 k56 1.00× 108

k57 6.15× 101 k58 6.89× 10−6

k59 1.00× 108 k60 2.31
k61 1.30× 10−4 k62 1.19× 103

k63 1.00× 108 k64 8.77× 101

k65 1.90 k66 1.00× 108

k67 1.30× 101 k68 9.36× 10−5

k69 1.00× 108 k70 2.77× 102

k71 1.38× 10−4 k72 1.00× 109

k73 1.14× 101 k74 6.21
k75 1.00× 108 k76 1.97× 101

k77 2.19× 10−1 k78 9.04× 105

k79 9.33× 10−4 k80 3.78× 101
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k81 7.78× 102 k82 3.80× 106

k83 1.67× 10−2 k84 8.91× 106

k85 1.35× 10−3 k86 1.00× 108

k87 1.95× 105 k88 1.91
k89 2.20× 107 k90 1.90× 101

k91 8.29× 101 k92 1.10× 102

k93 2.19× 102 k94 2.80× 101

k95 5.00× 102 k96 2.49× 102

k97 1.67× 101 k98 2.10× 105

k99 2.29× 10−2 k100 5.96× 10−9

k101 1.40× 10−3 k102 1.00× 108

k103 1.98× 101 k104 2.20× 10−1

k105 4.15× 10−2 k106 5.00× 10−4

k107 8.91× 106 k108 1.00× 108

k109 5.00× 10−1 k110 2.72× 106

k111 1.36× 10−3 k112 1.20× 10−2

k113 4.67× 10−4 k114 7.47× 108

k115 9.35× 10−3 k116 1.00× 1011

k117 4.21× 102 k118 4.15× 102

k119 1.00× 1010 k120 4.52× 101

k121 1.08× 101 k122 1.00× 109

k123 6.32 k124 2.43
k125 1.00× 1012 k126 2.03× 101

k127 2.58 k128 1.00× 108

k129 9.29 k130 1.98× 10−2

Table B.4: The fitted reaction rates for the Expanded Unified Model with Protein
C, given in mass action form.

B.5 Expanded Unified Model with Fibrinogen

Reaction rate Fitted value Reaction rate Fitted value

k1 2.47× 106 k2 7.30× 10−3

k3 1.19× 106 k4 1.25× 10−2

k5 1.00× 108 k6 1.05× 102

k7 1.51× 101 k8 1.00× 1011

k9 8.36× 102 k10 1.24× 102

k11 1.00× 108 k12 2.69× 102

k13 6.17× 10−2 k14 1.00× 108

k15 2.69× 102 k16 6.17× 10−2

k17 1.00× 108 k18 1.70× 102

k19 3.24× 10−1 k20 1.00× 108

k21 1.70× 102 k22 3.24× 10−1

k23 1.00× 108 k24 3.23× 102

k25 1.41 k26 9.18× 103

k27 1.00× 108 k28 7.10× 102

k29 1.13× 102 k30 1.00× 108
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k31 2.72× 103 k32 4.87× 10−3

k33 1.00× 1012 k34 5.05× 102

k35 9.65× 101 k36 1.00× 108

k37 6.93× 10−2 k38 4.43× 10−3

k39 1.00× 108 k40 9.26× 101

k41 8.34 k42 1.00× 108

k43 1.30× 101 k44 8.17× 10−1

k45 4.91× 1010 k46 1.23
k47 2.78× 104 k48 3.54× 104

k49 1.00× 108 k50 3.64× 103

k51 9.33× 10−3 k52 1.00× 108

k53 1.75× 103 k54 7.77× 102

k55 2.94× 103 k56 1.00× 108

k57 2.06× 102 k58 1.36× 10−3

k59 1.00× 108 k60 1.26× 102

k61 1.30× 10−4 k62 3.98× 102

k63 1.00× 108 k64 1.18× 102

k65 5.37× 10−1 k66 1.00× 108

k67 7.28 k68 1.13× 10−3

k69 1.00× 108 k70 1.86× 103

k71 1.59 k72 1.00× 108

k73 4.23× 102 k74 1.95× 101

k75 1.00× 108 k76 1.98× 101

k77 2.19× 10−1 k78 8.05× 107

k79 1.35× 10−2 k80 4.90× 102

k81 4.90× 102 k82 3.80× 106

k83 1.67× 10−2 k84 8.91× 106

k85 1.35× 10−3 k86 1.00× 108

k87 1.95× 105 k88 1.91
k89 2.20× 107 k90 1.90× 101

k91 3.28× 101 k92 7.21× 102

k93 9.08× 102 k94 6.67× 101

k95 5.00× 102 k96 7.87× 102

k97 1.67× 101 k98 2.10× 105

k99 2.26× 10−2 k100 5.88× 10−9

k101 1.40× 10−3 k102 1.00× 108

k103 1.98× 101 k104 2.20× 10−1

k105 4.15× 10−2 k106 5.00× 10−4

k107 8.91× 106 k108 1.00× 108

k109 5.00× 10−1 k110 9.92× 107

k111 4.96× 10−2 k112 1.20× 10−2

k113 4.67× 10−4 k114 1.00× 108

k115 3.75× 102 k116 8.40× 101

k117 1.00× 108 k118 7.00× 103

k119 7.45 k120 1.00× 108

k121 5.75× 104
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Table B.5: The fitted reaction rates for the Expanded Unified Model with Fib-
rinogen, given in mass action form.

B.6 Reduced Unified Model
This section presents the rates found in Chapter 4 when fitting to the reduced set
of OD curves.

Reaction rate Fitted value Reaction rate Fitted value

k1 3.35× 106 k2 9.88× 10−3

k3 3.61× 104 k4 2.34× 10−3

k5 1.00× 108 k6 1.05× 102

k7 1.51× 101 k8 1.00× 1012

k9 7.17× 101 k10 1.01× 102

k11 1.00× 108 k12 2.69× 102

k13 6.17× 10−2 k14 1.00× 108

k15 1.34× 104 k16 6.18× 10−1

k17 1.00× 108 k18 1.70× 102

k19 3.24× 10−1 k20 1.00× 108

k21 1.70× 102 k22 3.24× 10−1

k23 2.35× 104 k24 1.00× 108

k25 1.06× 103 k26 4.74× 101

k27 1.00× 108 k28 3.79× 103

k29 8.60× 10−3 k30 1.00× 109

k31 2.75× 102 k32 1.51× 102

k33 1.00× 108 k34 1.29× 102

k35 8.03× 10−3 k36 1.00× 108

k37 1.45× 102 k38 8.43
k39 1.00× 1011 k40 3.99
k41 1.69 k42 7.32× 108

k43 1.06 k44 4.43× 103

k45 4.09× 104 k46 1.00× 108

k47 3.77× 103 k48 9.33× 10−3

k49 1.00× 108 k50 2.56× 103

k51 3.65× 102 k52 3.97× 103

k53 1.00× 108 k54 2.72× 102

k55 4.96× 10−3 k56 1.00× 108

k57 1.63× 102 k58 1.30× 10−4

k59 3.98× 102 k60 1.00× 108

k61 3.24× 102 k62 5.37× 10−1

k63 1.00× 108 k64 8.87× 10−1

k65 1.70× 10−3 k66 1.00× 108

k67 2.00× 103 k68 3.95× 101

k69 1.00× 108 k70 5.33× 102

k71 3.00× 101 k72 1.00× 108

k73 1.98× 101 k74 2.19× 10−1
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k75 2.20× 108 k76 1.48
k77 4.90× 102 k78 4.90× 102

k79 1.15× 107 k80 1.07× 10−3

k81 8.91× 106 k82 1.35× 10−3

k83 1.00× 108 k84 1.95× 105

k85 1.91 k86 2.20× 107

k87 1.90× 101 k88 1.61× 101

k89 7.27× 102 k90 5.19× 103

k91 6.67× 101 k92 5.00× 102

k93 1.57× 102 k94 2.10× 105

k95 2.51× 10−2 k96 1.40× 10−3

k97 8.91× 106 k98 1.00× 108

k99 2.84× 104 k100 8.40× 101

k101 1.00× 108 k102 2.99× 104

k103 7.45 k104 1.00× 108

k105 6.09× 104

Table B.6: The fitted reaction rates for the Reduced Unified Model, given in mass
action form.

B.7 Improved Unified Model
Table 5.4 presents the fitting reaction rates in prior form. They are presented here
in mass action form for simulation with the ODEs.

Rate GD ABC-SMC GD - All Rates ABC-SMC - All Rates

k1 1.87× 106 1.22× 105 1.59× 106 5.17× 104

k2 5.62× 10−3 3.66× 10−4 1.33× 10−4 2.65× 10−5

k3 1.01× 106 8.19× 104 5.54× 105 1.47× 105

k4 3.22× 10−3 2.62× 10−4 3.97× 10−3 1.37× 10−4

k5 1.00× 108 1.00× 1011 1.00× 108 1.00× 108

k6 1.09× 102 1.37× 103 5.89× 102 2.53
k7 1.19× 102 6.81× 102 2.46× 101 1.06× 10−2

k8 1.00× 109 1.00× 108 1.00× 108 1.00× 108

k9 3.45× 101 4.85× 10−2 1.49× 101 1.24× 101

k10 2.34× 101 7.52× 10−1 3.71 5.25
k11 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k12 2.70× 102 2.70× 102 1.85× 103 1.10× 104

k13 1.15× 10−4 4.92× 10−3 1.96× 10−3 5.18× 10−3

k14 1.00× 108 1.00× 1010 1.00× 108 1.00× 108

k15 2.56× 103 4.96× 103 1.88× 103 2.70× 103

k16 2.05× 10−4 3.02× 103 1.66× 10−4 4.09× 102

k17 1.00× 108 1.00× 108 1.00× 108 1.00× 1013

k18 1.28× 103 3.13 1.73× 102 1.10× 104

k19 2.69 1.53 1.03 1.48× 103

k20 1.00× 108 1.00× 108 1.00× 108 1.00× 108
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k21 7.25× 102 1.23× 101 1.12× 103 1.07
k22 1.45 2.58× 10−2 5.54× 10−1 6.20× 10−2

k23 1.00× 108 1.00× 108 1.00× 108 1.00× 1011

k24 1.46× 103 4.33× 103 1.19× 103 4.97× 102

k25 1.40 1.40 7.91× 10−1 2.84× 104

k26 2.47× 103 5.56× 103 9.85× 102 1.99× 102

k27 1.00× 1011 1.00× 108 1.00× 1011 1.00× 108

k28 1.26× 102 9.44× 101 9.76× 101 1.68× 102

k29 1.58× 101 2.81 1.69× 101 1.19
k30 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k31 3.98× 102 1.55× 101 3.04× 102 2.55× 101

k32 3.20× 10−4 3.20× 10−4 6.83× 10−4 3.12× 10−4

k33 1.00× 1011 1.00× 109 1.00× 1011 1.00× 109

k34 5.01× 101 5.94× 101 5.73× 101 2.16× 101

k35 1.67× 101 6.96 2.57× 101 3.70
k36 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k37 1.87× 10−1 9.56× 10−1 2.90× 10−1 2.21
k38 2.15× 10−4 1.45× 10−3 5.48× 10−4 1.28× 10−4

k39 1.00× 108 1.00× 1010 1.00× 108 1.00× 108

k40 3.12× 101 1.20 5.94× 101 1.87× 101

k41 3.18 3.28× 10−1 3.82× 10−2 2.58× 10−1

k42 1.00× 108 1.00× 108 1.00× 108 1.00× 1011

k43 6.14 3.34× 103 5.68 4.33× 101

k44 2.99× 10−1 1.33 1.07× 10−1 1.58× 101

k45 1.39× 1010 9.24× 1010 1.62× 1010 1.02× 1011

k46 3.38× 10−1 3.54× 10−1 8.09× 10−2 5.30
k47 5.23× 103 1.36× 103 5.67× 102 2.38× 103

k48 3.52× 103 2.72× 10−1 1.32× 103 3.51× 10−1

k49 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k50 9.03× 102 3.17× 101 6.80× 102 1.20× 102

k51 9.30× 10−3 9.30× 10−3 7.65× 10−3 2.43× 10−3

k52 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k53 4.62× 10−1 1.45× 102 3.31× 102 2.02× 101

k54 8.39× 101 4.11× 101 2.70× 102 4.56× 101

k55 4.02× 103 5.39× 103 4.31× 103 5.53× 103

k56 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k57 9.50× 101 2.13 5.18× 101 1.22× 102

k58 9.83× 10−5 1.65× 10−5 2.09× 10−5 1.22× 10−12

k59 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k60 2.24× 101 5.13× 10−2 2.07× 101 1.95× 105

k61 2.94× 10−4 1.14× 10−4 8.90× 10−4 1.44× 10−3

k62 4.00× 102 4.00× 102 4.59× 102 5.44× 102

k63 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k64 8.72× 101 4.02 7.19× 101 1.84× 101

k65 4.30× 10−1 4.30× 10−1 1.10 4.73× 10−1

k66 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k67 8.17× 10−1 6.46 1.18 2.77× 101

k68 1.34× 10−3 9.11× 10−5 1.54× 10−3 4.09× 10−7
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k69 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k70 6.89× 102 2.43× 101 2.66× 102 3.77× 101

k71 9.24× 10−1 3.29× 10−1 4.13× 10−1 2.05
k72 1.00× 109 1.00× 108 1.00× 1010 1.00× 108

k73 1.28 9.41× 10−1 1.11× 101 9.98× 101

k74 8.00× 10−1 8.00× 10−1 4.05 7.25× 10−1

k75 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k76 5.65× 101 6.27× 101 2.22× 101 2.02
k77 1.26 2.74 3.01× 10−1 5.31× 10−1

k78 1.82× 10−2 3.88× 10−2 2.41× 10−2 4.57× 10−8

k79 6.86× 104 1.47× 105 8.92× 103 1.67× 10−1

k80 8.96× 10−3 3.67× 10−2 2.27× 10−3 1.90× 10−2

k81 5.51× 107 1.26× 1011 3.04× 107 1.07× 107

k82 3.06× 10−1 2.97× 102 1.86× 10−1 3.15× 10−2

k83 2.79× 103 1.66 5.48× 102 2.26
k84 2.45× 103 2.35× 103 1.22× 103 2.27× 104

k85 1.39× 107 1.11× 106 3.80× 106 9.17× 105

k86 1.28× 10−3 1.03× 10−4 1.69× 10−3 4.81× 10−5

k87 8.90× 106 8.90× 106 3.19× 107 8.79× 106

k88 1.34× 10−3 1.34× 10−3 1.38× 10−2 5.17× 10−2

k89 1.56× 102 1.02× 102 2.81× 102 4.11× 101

k90 8.75× 101 1.24× 102 4.59× 101 5.77× 10−2

k91 4.43× 103 4.24 3.03× 103 1.02× 101

k92 8.20× 101 8.20× 101 4.76× 102 9.54× 101

k93 6.56× 102 6.56× 102 2.86× 103 9.91× 102

k94 4.65× 102 4.98 1.99× 102 1.03× 101

k95 1.10× 103 1.10× 103 3.49× 103 1.50× 103

k96 1.09× 106 2.96× 105 6.48× 105 8.11× 103

k97 1.42× 108 1.10× 108 4.24× 108 5.80× 107

k98 6.57× 103 7.74× 101 5.48× 102 5.81
k99 2.99× 102 2.91× 102 3.96× 102 1.08× 101

k100 6.51× 108 1.15× 107 7.75× 108 7.76× 106

k101 1.59× 103 1.61× 104 2.70× 103 4.90× 104

k102 5.00× 101 1.78× 101 3.30× 101 3.31× 101

k103 9.62× 104 3.48× 107 3.49× 107 3.37× 106

k104 2.93× 103 2.79× 103 9.79× 103 1.50× 104

k105 8.64× 102 3.13× 104 9.81× 102 4.12× 103

k106 2.16× 104 1.06× 102 2.04× 102 1.23× 105

k107 1.00× 108 1.00× 108 1.00× 108 1.00× 108

k108 1.95× 105 1.95× 105 1.95× 105 1.95× 105

k109 1.91 1.91 1.91 1.91

Table B.7: The fitted reaction rates for the Improved Unified Model, given in mass
action form.
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Appendix C

Model Comparison

This appendix presents the remaining reactions not described in the comparison between the models in Section 2.4, given in Table C.1.
These reactions all have at least two models they are included in and two models in which they are not included.

Reaction Hockin? Danforth? Brummel? Bungay? Tyurin? Zhu? Chatterjee? Panteleev?

XI XIa→ XIa N N N N Y N Y N
XIa + AT → XIa:AT N N N N Y Y Y Y

XI IIa→ XIa N N N Y Y N Y Y
IX XIa→ IXa N N N Y Y Y Y Y

IXa + VIIIa ← IXa:VIIIa Y Y Y Y N N Y N
Xa + Va ← Xa:Va Y Y Y Y N N Y Y

Xa + TFPI ← Xa:TFPI Y Y Y Y N N Y Y
Xa:Va + AT → Xa:AT + Va N N N N Y N N Y

II Xa:V a→ mIIa Y Y Y Y N N Y N
mIIa Xa:V a→ IIa Y Y Y Y N N Y N
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II Xa:V a→ IIa N N N N Y Y N Y
X V IIa→ Xa N N N N Y N Y N
IX V IIa→ IXa N N N N Y N Y N
X IXa→ Xa N Y Y N Y Y Y Y

VIIIa ↔ VIIIa1L + VIIIa2 Y Y Y N N N Y Y
IXa:VIIIa → IXa + VIIIa1L + VIIIa2 Y Y Y N N N Y N

IXa:VIIIa:X → IXa + X + VIIIa1L + VIIIa2 Y Y Y N N N Y N
TF:VIIa:Xa + TFPI → TF:VIIa:Xa:TFPI Y Y Y N N N Y Y
TF:VIIa:Xa + TFPI ← TF:VIIa:Xa:TFPI Y Y Y N N N Y N

TF:VIIa + AT → TF:VIIa:AT Y Y Y N Y Y Y N
VII IIa→ VIIa Y Y Y N N N Y Y

VII TF :V IIa→ VIIa Y Y Y N N N Y N
VII Xa→ VIIa Y Y Y Y Y N Y N

TF:VII Xa→ TF:VIIa N N N Y Y Y N Y
VIII Xa→ VIIIa N N N Y N N Y N

V Xa→ Va N N N Y Y Y N N
V mIIa→ Va N Y Y Y N N N N

mIIa + AT → mIIa:AT Y Y Y Y N N Y N

Table C.1: The remaining reduced reactions and whether they are contained in each of the models.
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Appendix D

Parameter Sources

This appendix provides the parameter source tables that we used for the results in Section 2.6. Each row gives the parameter name, as
given in Section 2.1, the reaction that the parameter influences, the value used by the model, a citation to the source, and any notes on
that source, for example a source might not measure a rate for that specific reaction but instead measures a similar reaction.

D.1 Hockin Model

Parameter Reaction Value Sources Notes

k+,1 TF + VII → TF:VII 3.2× 106M−1s−1 [1] Kd = 2×10−9M [1] used as a base and fitted
using data from [2]. In the model Kd = 9.7×
10−10M .

k−,1 TF + VII ← TF:VII 3.1× 10−3s−1 [1] See above
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k+,2 TF + VIIa → TF:VIIa 2.3× 107M−1s−1 [1] Kd = 5.47 × 10−9M [1] used as a base and
fitted using data from [3]. In the model Kd =
1.35× 10−10M .

k−,2 TF + VIIa ← TF:VIIa 3.1× 10−3s−1 [1] See above

k+,3 TF:VIIa + VII → TF:VIIa + VIIa 4.45× 105M−1s−1 [4] [4] gives Km = 3.2× 10−6M,kcat = 1.4s−1

k+,4 Xa + VII → Xa + VIIa 1.3× 107M−1s−1 [4] [4] gives Km = 1.2× 10−6M,kcat = 15.2s−1

k+,5 IIa + VII → IIa + VIIa 2.3× 104M−1s−1 [4] [4] gives Km = 2.7× 10−6M,kcat = 0.061s−1

k+,6 TF:VIIa + X → TF:VIIa:X 2.5× 107M−1s−1 [5, 3, 6] [5] givesKm = 2.38×10−7M and kcat = 7s−1,
[3] gives Km = 6.9 × 10−8M and kcat =
7.4s−1, [6] gives Km = 4.35 × 10−6M and
kcat = 5.69s−1, [6] suggest Xa binds similarly
to X

k−,6 TF:VIIa + X ← TF:VIIa:X 1.05s−1 [5, 3, 6] See above

k+,7 TF:VIIa:X → TF:VIIa:Xa 6s−1 [5, 3, 6] See above

k+,8 TF:VIIa + Xa → TF:VIIa:Xa 2.2× 107M−1s−1 [5, 6] [6, 5] suggest that Xa binds similarly to X

k−,8 TF:VIIa + Xa ← TF:VIIa:Xa 19s−1 [5, 6] See above

k+,9 TF:VIIa + IX → TF:VIIa:IX 1.0× 107M−1s−1 [7] From Jones model [8], [7] gives Km = 2.43×
10−7M,kcat = 0.34s−1, changed by Hockin
based on [9] ratios for X and IX activation
by TF:VIIa.

k−,9 TF:VIIa + IX ← TF:VIIa:IX 2.45s−1 [7] See above

k+,10 TF:VIIa:IX → TF:VIIa + IXa 1.8s−1 [7] See above
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k+,11 Xa + II → Xa + IIa 7.5× 103M−1s−1 [10] [10] gives Km = 3 × 10−7M,kcat = 2.3 ×
10−3s−1

k+,12 IIa + VIII → IIa + VIIIa 2.0× 107M−1s−1 - Assumed to be same as IIa activation of V

k+,13 VIIIa + IXa → IXa:VIIIa 1.0× 107M−1s−1 [11] Used in Jones model [8], [11] gives Kd = 2×
10−9M

k−,13 VIIIa + IXa ← IXa:VIIIa 5.0× 10−3s−1 [11] See above

k+,14 IXa:VIIIa + X → IXa:VIIIa:X 1.0× 108M−1s−1 [12] Used in Jones model [8], [12] gives Km =
6.3× 10−8M and kcat = 8.3s−1

k−,14 IXa:VIIIa + X ← IXa:VIIIa:X 1.0× 10−3s−1 [12] See above

k+,15 IXa:VIIIa:X → IXa:VIIIa + Xa 8.2s−1 [12] See above

k+,16 VIIIa → VIIIa1L + VIIIa2 6.0× 10−3s−1 [13, 14] [13] gives Kd = 2.73 × 10−7M,k+ = 5.85 ×
10−3s−1, [14] gives Kd = 2.58× 10−7M .

k−,16 VIIIa ← VIIIa1L + VIIIa2 2.2× 104M−1s−1 [13, 14] See above

k+,17 IXa:VIIIa → VIIIa1L + VIIIa2 + IXa∗ 1.0× 10−3s−1 [15] [15] gives k = 1.4× 10−3M−1s−1

k+,18 IIa + V → IIa + Va 2.0× 107M−1s−1 [16] Used in Jones[8], [16] gives Km = 7.17 ×
10−8M and kcat = 0.23s−1

k+,19 Xa + Va → Xa:Va 4.0× 108M−1s−1 [17] Used in Jones[8], [17] gives k+ > 1 ×
109M−1s−1

k−,19 Xa + Va ← Xa:Va 0.2s−1 - [12, 11] gives Kd = 1 − 2 × 10−9M for
IXa:VIIIa, used in Jones[8]
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k+,20 Xa:Va + II → Xa:Va:II 1.0× 108M−1s−1 - Used in Jones model [8]. Original source un-
clear, [12],[7],[18] are all cited but none re-
port rates. Changed from 70s−1 to 103s−1

by Hockin

k−,20 Xa:Va + II ← Xa:Va:II 103s−1 - See above

k+,21 Xa:Va:II → Xa:Va + mIIa 63.5s−1 - See above

k+,22 mIIa + Xa:Va → IIa + Xa:Va 1.5× 107M−1s−1 - Used in Jones model [8], fitted from data in
Lawson[19]

k+,23 Xa + TFPI → Xa:TFPI 9.0× 105M−1s−1 [20] [20] gives k+ = 9 × 105M−1s−1, k− = 3.6 ×
10−4s−1

k−,23 Xa + TFPI ← Xa:TFPI 3.6× 10−4s−1 [20] See above

k+,24 TF:VIIa:Xa + TFPI → TF:VIIa:Xa:TFPI 3.2× 108M−1s−1 [20] [20] gives 2.72× 108M−1s−1

k−,24 TF:VIIa:Xa + TFPI ← TF:VIIa:Xa:TFPI 1.1× 10−4s−1 [20] [20] gives k− = 1.1× 10−3s−1

k+,25 TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI 5.0× 107M−1s−1 [20] [20] gives k+ = 5.0× 107M−1s−1

k+,26 Xa + AT → Xa:AT 1.5× 103M−1s−1 [21] [21] gives k = 4.9×103M−1s−1 and k = 2.9×
103M−1s−1

k+,27 mIIa + AT → mIIa:AT 7.1× 103M−1s−1 [22] [22] gives k = 6.2× 103s−1

k+,28 IXa + AT → IXa:AT 4.9× 102M−1s−1 [23] [21] appears to be an incorrect citation.
Likely used [23] which gives k = 490M−1s−1

k+,29 IIa + AT → IIa:AT 7.1× 103M−1s−1 [22] [22] gives k = 6.2× 103s−1

k+,30 TF:VIIa + AT → TF:VIIa:AT 2.3× 102M−1s−1 [24] [24] gives k+ = 450M−1s−1
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Table D.1: Sources for the parameter values used in the Hockin model. Any experimental sources that are used to inform a reaction rate
are given in the Source column. Any additional information, including the original measured values and any changes that were made are
given in the Notes column. If the rate is reused from another model then this is stated and both the model it was used in and the original
experimental source are given.

D.2 Danforth Model

∗This reaction rate also covers a similar reaction for IXa:VIIIa:X but the source only measures for IXa:VIIIa.
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Parameter Reaction Value Sources Notes

k+,22 mIIa + Xa:Va → IIa + Xa:Va 2.3× 108M−1s−1 - No citation given

k+,26 Xa + AT → Xa:AT 4.2× 103M−1s−1 - No citation given

k+,31 IXa + X → IXa + Xa 5.7× 103M−1s−1 [25] Introduced to the model by Butenas[26], [25] gives Km =
1.4× 10−7M and kcat = 8× 10−4s−1

k+,32 mIIa + V → mIIa + Va 3.0× 106M−1s−1 [10] [10] gives 3.5× 106M−1s−1 and 2.4× 106M−1s−1 for dif-
ferent methods

Table D.2: Sources for the parameter values used in the changes for the Danforth model. Any experimental sources that are used to
inform a reaction rate are given in the Source column. Any additional information, including the original measured values and any
changes that were made are given in the Notes column. If the rate is reused from another model then this is stated and both the model
it was used in and the original experimental source are given.

D.3 Chatterjee Model
The parameters up to (and including) k+,30 are from the Hockin model and the original sources can be found in the parameter sources
for the Hockin model section. Any changes that are made from the original values will be referenced here.

Parameter Reaction Value Sources Notes

k+,1 TF + VII → TF:VII 3.2× 106M−1s−1 [27] -

k−,1 TF + VII ← TF:VII 3.1× 10−2s−1 [27] Original value multiplied by 10 based on:
Decrease in Kd from 14.9nM to 0.58nM
as % phosphatidylserine (PS) increases
from 0 to 40[28], Kd = 2nM [1]
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k+,2 TF + VIIa → TF:VIIa 2.3× 107M−1s−1 [27] -

k−,2 TF + VIIa ← TF:VIIa 3.1× 10−5s−1 [27] Original value multiplied by 0.01 based
on: Kd decreases from 60pM to 10pM
as PS % increases from 10-40 on TF li-
posomes and from 90pM to 10pM as PS
% increases from 10-70 on TF nanodiscs
(figure 5 in [29])

k+,3 TF:VIIa + VII → TF:VIIa + VIIa 4.45× 105M−1s−1 [27] -

k+,4 Xa + VII → Xa + VIIa 1.3× 107M−1s−1 [27] -

k+,5 IIa + VII → IIa + VIIa 2.3× 104M−1s−1 [27] -

k+,6 TF:VIIa + X → TF:VIIa:X 2.5× 107M−1s−1 [27] -

k−,6 TF:VIIa + X ← TF:VIIa:X 0.0105s−1 [27] Original value multiplied by 0.01 based
on: [29] reported a decrease in Km from
400nM to 20nM as PS % increases from
10 to 40 (figure 6), [5] reported a Km of
238nM

k+,7 TF:VIIa:X → TF:VIIa:Xa 6s−1 [27] -

k+,8 TF:VIIa + Xa → TF:VIIa:Xa 2.2× 107M−1s−1 [27] -

k−,8 TF:VIIa + Xa ← TF:VIIa:Xa 19s−1 [27] -

k+,9 TF:VIIa + IX → TF:VIIa:IX 1.0× 107M−1s−1 [27] -

k−,9 TF:VIIa + IX ← TF:VIIa:IX 2.45s−1 [27] -

k+,10 TF:VIIa:IX → TF:VIIa + IXa 1.8s−1 [27] -

k+,11 II + Xa → IIa + Xa 7.5× 103s−1 [27] -
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k+,12 IIa + VIII → IIa + VIIIa 2.0× 107M−1s−1 [27] -

k+,13 VIIIa + IXa → IXa:VIIIa 1.0× 107M−1s−1 [27] -

k−,13 VIIIa + IXa ← IXa:VIIIa 1.0× 10−4s−1 [27] Original value multiplied by 0.02 based
on: Kd decreases from 351nM to 4nM on
PCPS vesicles [30], a Kd of 74pM was
found on activated platelet surfaces com-
pared to 550pM on equimolar PSPC vesi-
cles [31]

k+,14 IXa:VIIIa + X → IXa:VIIIa:X 1.0× 108M−1s−1 [27] -

k−,14 IXa:VIIIa + X ← IXa:VIIIa:X 1.0× 10−5s−1 [27] Original value multiplied by 0.01 based
on: Km decreases from 45µM to 160nM
when using activated platelets rather
than unactivated platelets [25]

k+,15 IXa:VIIIa:X → IXa:VIIIa + Xa 8.2s−1 [27] -

k+,16 VIIIa → VIIIa1L + VIIIa2 6.0× 10−5s−1 [27] Original value multiplied by 0.01 based
on: Kd of 260nM in the absence of
phopholipids [14], this reaction is stabi-
lized in the presence of phospholipids [32]

k−,16 VIIIa ← VIIIa1L + VIIIa2 2.2× 104M−1s−1 [27] -

k+,17 IXa:VIIIa → VIIIa1L + VIIIa2 + IXa 1.0× 10−3s−1 [27] -

k+,18 IIa + V → IIa + Va 2.0× 107M−1s−1 [27] -

k+,19 Xa + Va → Xa:Va 4.0× 108M−1s−1 [27] -
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k−,19 Xa + Va ← Xa:Va 0.008s−1 [27] Original value multiplied by 0.04 based
on: Kd decreases from 3.3nM to 30pM
when using 10µM 40% PS [33]

k+,20 Xa:Va + II → Xa:Va:II 1.0× 108M−1s−1 [27] -

k−,20 Xa:Va + II ← Xa:Va:II 2.06s−1 [27] Original value multiplied by 0.02 based
on: Km decreases from 34µM to 0.21µM
when using 7.5µM phospholipids [34]

k+,21 Xa:Va:II → Xa:Va + mIIa 63.5s−1 [27] -

k+,22 Xa:Va + mIIa → Xa:Va + IIa 1.5× 107M−1s−1 [27] -

k+,23 Xa + TFPI → Xa:TFPI 9.0× 105M−1s−1 [27] -

k−,23 Xa + TFPI ← Xa:TFPI 3.6× 10−4s−1 [27] -

k+,24 TF:VIIa:Xa + TFPI → TF:VIIa:Xa:TFPI 3.2× 108M−1s−1 [27] -

k−,24 TF:VIIa:Xa + TFPI ← TF:VIIa:Xa:TFPI 1.1× 10−2s−1 [27] Original value multiplied by 100 based
on: Data from [20] suggests that the orig-
inal data fitting for the reaction produces
a complex that binds too strongly

k+,25 TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI 5.0× 107M−1s−1 [27] -

k+,26 Xa + AT → Xa:AT 1.5× 103M−1s−1 [27] -

k+,27 mIIa + AT → mIIa:AT 7.1× 103M−1s−1 [27] -

k+,28 IXa + AT → IXa:AT 4.9× 102M−1s−1 [27] -

k+,29 IIa + AT → IIa:AT 7.1× 103M−1s−1 [27] -

k+,30 TF:VIIa + AT → TF:VIIa:AT 2.3× 102M−1s−1 [27] -
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k+,31 Boc-VPR-MCA + IIa → Boc-VPR-MCA:IIa 1.0× 108M−1s−1 [35] Determined experimentally by Chatter-
jee

k−,31 Boc-VPR-MCA + IIa ← Boc-VPR-MCA:IIa 6.1× 103s−1 [35] See above

k+,32 Boc-VPR-MCA:IIa → Boc-VPR + AMC + IIa 53.8s−1 [35] See above

k+,33 XII → XIIa 5.0× 10−4s−1 - Estimated to better link Hockin model to
experimental data

k+,34 XIIa + XII → XIIa:XII 1.0× 108M−1s−1 [36] [36] gives Km = 7.5× 10−6M and kcat =
0.033s−1, k+,34 is assumed to be diffusion
limited [37]

k−,34 XIIa + XII ← XIIa:XII 750s−1 [36] See above

k+,35 XIIa:XII → XIIa + XIIa 3.3× 10−2s−1 [36] See above

k+,36 XIIa + PK → XIIa:PK 1.0× 108M−1s−1 [36] [36] gives Km = 3.7× 10−5M and kcat =
40s−1, k+,36 is assumed to be diffusion
limited [37]

k−,36 XIIa + PK ← XIIa:PK 3.6× 103s−1 [36] See above

k+,37 XIIa:PK → XIIa + K 40s−1 [36] See above

k+,38 XII + K → XII:K 1.0× 108M−1s−1 [36] [36] gives Km = 5.1× 10−7M and kcat =
5.7s−1, k+,36 is assumed to be diffusion
limited [37]

k−,38 XII + K ← XII:K 45.3s−1 [36] See above

k+,39 XII:K → XIIa + K 5.7s−1 [36] See above

k+,40 PK + K → K + K 2.7× 104M−1s−1 [38] [38] gives 2.7× 104M−1s−1
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k+,41 K → Kinh 1.1× 10−2s−1 - [39] gives an approximation based on in-
activation by C1-inh, α2-M and AT

k+,42 XIIa + CTI → XIIa:CTI 1.0× 108M−1s−1 [40] [40] gives Kd = 2.4× 10−8M , k+,42 is as-
sumed to be diffusion limited [37]

k−,42 XIIa + CTI ← XIIa:CTI 2.45s−1 [40] See above

k+,43 XIIa + C1-inh → XIIa:C1-inh 3.6× 103M−1s−1 [41] [41] gives 3.6× 103M−1s−1

k+,44 XIIa + AT → XIIa:AT 21.6M−1s−1 [41] [41] gives 21.6M−1s−1

k+,45 XI + IIa → XI:IIa 1.0× 108M−1s−1 [42] [42] gives Km = 5 × 10−8M and kcat =
1.3× 10−4s−1, k+,45 is assumed to be dif-
fusion limited [37]

k−,45 XI + IIa ← XI:IIa 5s−1 [42] See above

k+,46 XI:IIa → XIa + IIa 1.3× 10−4s−1 [42] See above

k+,47 XIIa + XI → XIIa:XI 1.0× 108M−1s−1 [42] [42] gives Km = 2 × 10−6M and kcat =
5.3× 10−4s−1, k+,47 is assumed to be dif-
fusion limited [37]

k−,47 XIIa + XI ← XIIa:XI 200s−1 [42] See above

k+,48 XIIa:XI → XIIa + XIa 5.7× 10−4s−1 [42] See above

k+,49 XIa + XI → XIa + XIa 3.19× 106M−1s−1 - Fitted using the model of [43] but that
model does not include IIa activation of
XI

k+,50 XIa + AT → XIa:AT 3.2× 102M−1s−1 [44] [44] gives k = 320M−1s−1

k+,51 XIa + C1-inh → XIa:C1-inh 1.8× 103M−1s−1 [44] [44] gives 1.8× 103M−1s−1
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k+,52 XIa + α1AT → XIa:α1AT 1.0× 102M−1s−1 [44] [44] gives 100M−1s−1

k+,53 XIa + α2AP → XIa:α2AP 4.3× 103M−1s−1 [44] [44] gives 4.3× 102M−1s−1

k+,54 XIa + IX → XIa:IX 1.0× 108M−1s−1 [45] [45] gives Km = 4.9× 10−7M and kcat =
7.7s−1, k+,54 is assumed to be diffusion
limited [37]

k−,54 XIa + IX ← XIa:IX 41s−1 [45] See above

k+,55 XIa:IX → XIa + IXa 7.7s−1 [45] See above

k+,56 IXa + X → IXa:X 1.0× 108M−1s−1 [46] [46] gives Km = 6.45×10−9M and kcat =
7.0× 10−4s−1, k+,56 is assumed to be dif-
fusion limited [37]

k−,56 IXa + X ← IXa:X 0.64s−1 [46] See above

k+,57 IXa:X → IXa + Xa 7.0× 10−4s−1 [46] See above

k+,58 Xa + VIII → Xa:VIII 1.0× 108M−1s−1 [47] Used in model [48], [47] gives kcat
Km

= 1.1×
106M−1s−1

k−,58 Xa + VIII ← Xa:VIII 2.1s−1 [47] See above

k+,59 Xa:VIII → Xa + VIIIa 0.023s−1 [47] See above

k+,60 VIIa + IX → VIIa:IX 1.0× 108M−1s−1 [49] [49] gives Km = 9 × 10−9M and kcat =
3.7× 10−5s−1, k+,60 is assumed to be dif-
fusion limited [37]

k−,60 VIIa + IX ← VIIa:IX 0.9s−1 [49] See above

k+,61 VIIa:IX → VIIa + IXa 3.6× 10−5s−1 [49] See above
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k+,62 VIIa + X → VIIa:X 1.0× 108M−1s−1 [49] [49] gives Km = 2.1× 10−6M and kcat =
1.7× 10−6s−1, k+,62 is assumed to be dif-
fusion limited [37]

k−,62 VIIa + X ← VIIa:X 210s−1 [49] See above

k+,63 VIIa:X → VIIa + Xa 1.6× 10−6s−1 [49] See above

k+,64 Fbg + IIa → Fbg:IIa 1.0× 108M−1s−1 [50] [50] gives Km = 7.2× 10−6M and kcat =
84s−1, Used in a fibrin model [51], k+,64

is assumed to be diffusion limited [37]

k−,64 Fbg + IIa ← Fbg:IIa 636s−1 [50] See above

k+,65 Fbg:IIa → Fbn1 + IIa + FPA 84s−1 [50] See above

k+,66 Fbn1 + IIa → Fbn1:IIa 1.0× 108M−1s−1 [52] Used in model [51], Km = 7.5 × 10−6M
and kcat = 49s−1 from [52], kcat adjusted
based on specificity constant in [53], k+,66

is assumed to be diffusion limited [37]

k−,66 Fbn1 + IIa ← Fbn1:IIa 742.6s−1 [52] See above

k+,67 Fbn1:IIa → Fbn2 + IIa + FPB 7.45s−1 [52] See above

k+,68 Fbn1 + Fbn1 → (Fbn1)2 1.0× 106M−1s−1 [53] [53] gives k+ = 1× 106M−1s−1 and k− =
0.064s−1, Used in a fibrin model [51]

k−,68 Fbn1 + Fbn1 ← (Fbn1)2 6.45× 10−2s−1 [53] See above

k+,69 (Fbn1)2 + IIa → (Fbn1)2:IIa 1.0× 108M−1s−1 [52] [52] gives Km = 7.5× 10−6M and kcat =
49s−1, Used in a fibrin model [51], k+,69

is assumed to be diffusion limited [37]

k−,69 (Fbn1)2 + IIa ← (Fbn1)2:IIa 701s−1 [52] See above
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k+,70 (Fbn1)2:IIa → (Fbn2)2 + IIa + FPB 49s−1 [52] See above

k+,71 Fbn2 + IIa → Fbn2:IIa 1.0× 108M−1s−1 [51] Kd = 1 × 10−5M experimentally deter-
mined in [51], k+,71 is assumed to be dif-
fusion limited

k−,71 Fbn2 + IIa ← Fbn2:IIa 1.0× 103s−1 [51] See above

k+,72 (Fbn1)2:IIa + AT → (Fbn1)2:IIa:AT 1.6× 104M−1s−1 [54] k+ = 1.6×104M−1s−1 experimentally de-
termined in [51]

k+,73 Fbn1:IIa + AT → Fbn1:IIa:AT 1.6× 104M−1s−1 [54] See above

k+,74 Fbn2:IIa + AT → Fbn2:IIa:AT 1.0× 104M−1s−1 [54] [54] says it is 1.6 times slower than for
free IIa and AT

Table D.3: Sources for the parameter values used in the Chatterjee model. Any experimental sources that are used to inform a reaction
rate are given in the Source column. Any additional information, including the original measured values and any changes that were made
are given in the Notes column. If the rate is reused from another model then this is stated and both the model it was used in and the
original experimental source are given.

D.4 Brummel Model

Parameter Reaction Value Sources Notes

k43 TM + IIa ← TM:IIa 0.33s−1 [55, 56] [55] gives Kd = 9.7× 10−10M , [56] gives Kd = 2.4×
10−8M

k44 TM + IIa → TM:IIa 1× 108M−1s−1 [55, 56] See above

k45 TM:IIa + PC ← TM:IIa:PC 100s−1 [55] [55] gives Km = 1.43× 10−5M and kcat = 0.83s−1

348



k46 TM:IIa + PC → TM:IIa:PC 1× 108M−1s−1 [55] See above

k47 TM:IIa:PC → TM:IIa + APC 0.41s−1 [55] See above

k48 TM:IIa + AT → IIa:AT + TM 7.1× 103M−1s−1 [55, 56] [55] gives k+ = 1.4 × 104, [56] gives k+ = 4 × 103

(both without TM)

k49 APC + Va ← APC:Va 0.7s−1 - Used in models[57, 58]. [57] cites [17] but this paper
does not concern protein C, nor does it give the value
of 0.7

k50 APC + Va → APC:Va 1× 108M−1s−1 - Used in models[57, 58]. [57] cites [59] but this paper
does not concern protein C, nor does it give the value
of 1× 108

k51 APC:Va → APC + Va5 1s−1 [60, 61] [60] gives k = 3 × 107M−1s−1, [61] gives k = 4.3 ×
107M−1s−1, [57] converts to first order rate of k =
1s−1

k52 APC:Va → APC + Va3 0.192s−1 [58] Determined experimentally in [58]

k53 Va3 → HCF + LCA1 0.028s−1 [57] Determined experimentally in [57]

k54 Xa + Va5 ← Xa:Va5 0.15s−1 [58] Determined experimentally in [58]

k55 Xa:Va5:II → Xa:Va5 + mIIa 10.3s−1 - Cited as [58] but this does not include any mIIa re-
actions.

k56 Xa:Va3:II → Xa:Va3 + mIIa 10.3s−1 - See above

k57 Xa:Va5 + mIIa → IIa + Xa:Va5 4.6× 107M−1s−1 - See above

k58 Xa:Va3 + mIIa → IIa + Xa:Va3 4.6× 107M−1s−1 - See above

k59 Xa:Va3 → HCF + LCA1 + Xa 0.0035s−1 - Used in model [58], no source given
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k60 IXa + X → IXa + Xa 5.7× 103M−1s−1 [25] Used in Butenas model [26], [25] gives Km = 1.4 ×
10−7M and kcat = 8× 10−4s−1

k61 mIIa + V → mIIa + Va 3× 106M−1s−1 [10] [10] gives 3.5× 106M−1s−1 and 2.4× 106M−1s−1 for
different methods

k62 II + Va ← II:Va 70s−1 [62] Used in model [58], [62] gives Kd = 8.8× 10−6M

k63 II + Va → II:Va 1× 108M−1s−1 [62] See above

k64 Xa:Va5 + APC → Xa:Va53 + APC 4.05× 106M−1s−1 - Cited as [58] but not used in that model

Table D.4: Sources for the parameter values used in the changes for the Brummel model. Any experimental sources that are used to
inform a reaction rate are given in the Source column. Any additional information, including the original measured values and any
changes that were made are given in the Notes column. If the rate is reused from another model then this is stated and both the model
it was used in and the original experimental source are given.

D.5 Bungay Model

Parameter Reaction Value Sources Notes

k+,1 TFL + VIIaL → TF:VIIaL 5× 108M−1s−1 [63] [63] gives Kd = 1×10−11M , struggled with
precision

k−,1 TFL + VIIaL ← TF:VIIaL 0.005s−1 [63] See above

k+,2 TFL + VIIL → TF:VIIL 5× 106M−1s−1 - Estimated by Bungay

k−,2 TFL + VIIL ← TF:VIIL 0.005s−1 - Estimated by Bungay

k+,3 TF:VIIaL + IXL → TF:VIIa:IXL 1× 107M−1s−1 [7] [7] gives Km = 2.43 × 10−7M,kcat =
0.34s−1.
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k−,3 TF:VIIaL + IXL ← TF:VIIa:IXL 2.09s−1 [7] See above

k+,4 TF:VIIa:IXL → TF:VIIaL + IXaL 0.34s−1 [7] See above

k+,5 TF:VIIaL + XL → TF:VIIa:XL 1× 108M−1s−1 [18, 64] [18] gives Km = 4.5 × 10−7M , kcat =
1.15s−1, [64] gives Km = 5.5 × 10−8M ,
kcat = 81s−1

k−,5 TF:VIIaL + XL ← TF:VIIa:XL 32.5s−1 [18, 64] See above

k+,6 TF:VIIa:XL → TF:VIIa:XaL 1.5s−1 [18, 64] See above

k+,7 TF:VIIa:XaL → TF:VIIaL + XaL 1s−1 [18, 64] See above

k+,8 TF:VIIL + XaL → TF:VII:XaL 5× 107M−1s−1 [4] [4] gives Km = 1.2×10−6M , kcat = 15.2s−1

k−,8 TF:VIIL + XaL ← TF:VII:XaL 44.8s−1 [4] See above

k+,9 TF:VII:XaL → TF:VIIaL + XaL 15.2s−1 [4] See above

k+,10 IXaL + VIIIaL → IXa:VIIIaL 1× 108M−1s−1 [11] [11] gives Kd = 2× 10−9M

k−,10 IXaL + VIIIaL ← IXa:VIIIaL 0.2s−1 [11] See above

k+,11 XaL + VaL → Xa:VaL 1× 109M−1s−1 [65] [65] gave Kd = 1.04× 10−9M

k−,11 XaL + VaL ← Xa:VaL 1s−1 [65] See above

k+,12 IXa:VIIIaL + XL → IXa:VIIIa:XL 1× 108M−1s−1 [12, 25] [12] gives Km = 6.3 × 10−8M and kcat =
8.3s−1, [25] gives Km = 1.9 × 10−7M ,
kcat = 29s−1

k−,12 IXa:VIIIaL + XL ← IXa:VIIIa:XL 10.7s−1 [12, 25] See above

k+,13 IXa:VIIIa:XL → IXa:VIIIaL + XaL 8.3s−1 [12, 25] See above
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k+,14 VL + XaL → V:XaL 1× 108M−1s−1 [16] [16] gives Km = 1.04 × 10−8M , kcat =
0.043s−1

k−,14 VL + XaL ← V:XaL 1s−1 [16] See above

k+,15 V:XaL → VaL + XaL 0.043s−1 [16] See above

k+,16 VIIIL + XaL → VIII:XaL 1× 108M−1s−1 [47] [47] gives kcat
Km

= 1.1× 10−6M−1s−1

k−,16 VIIIL + XaL ← VIII:XaL 2.1s−1 [47] See above

k+,17 VIII:XaL → VIIIaL + XaL 0.023s−1 [47] See above

k+,18 VL + IIaf → V:IIaL 1× 108M−1s−1 [16] [16] gives Km = 7.17 × 10−8M and kcat =
0.23s−1

k−,18 VL + IIaf ← V:IIaL 6.94s−1 [16] See above

k+,19 V:IIaL → VaL + IIaf 0.23s−1 [16] See above

k+,20 VIIIL + IIaf → VIII:IIaL 1× 108M−1s−1 [66] [66] gives multiple values aroundKm = 2×
10−7M,kcat = 1s−1 for different types of
VIII

k−,20 VIIIL + IIaf ← VIII:IIaL 13.8s−1 [66] See above

k+,21 VIII:IIaL → VIIIaL + IIaf 0.9s−1 [66] See above

k+,22 Xa:VaL + IIL → Xa:Va:IIL 1× 108M−1s−1 [65] [65] gives Km = 4.6 × 10−7M,kcat =
13.5s−1

k−,22 Xa:VaL + IIL ← Xa:Va:IIL 100s−1 [65] See above

k+,23 Xa:VaL + mIIaL → Xa:Va:mIIaL 1× 108M−1s−1 [65] [65] gives Km = 6.6 × 10−7M,kcat =
15.1s−1

k−,23 Xa:VaL + mIIaL ← Xa:Va:mIIaL 66s−1 [65] See above

352



k+,24 Xa:Va:IIL → Xa:Va:mIIaL 13s−1 [65] See k+,22

k+,25 Xa:Va:mIIaL → Xa:VaL + IIaf 15s−1 [65] See k+,23

k+,26 VIIL + XaL → VII:XaL 5× 107M−1s−1 [4] [4] gives Km = 1.2×10−6M , kcat = 15.2s−1

k−,26 VIIL + XaL ← VII:XaL 44.8s−1 [4] See above

k+,27 VII:XaL → VIIaL + XaL 15.2s−1 [4] See above

k+,28 XIf + IIaf → XI:IIaf 1× 108M−1s−1 [67] [67] gives kcat = 1.43s−1, retracted in 2007
[68]

k−,28 XIf + IIaf ← XI:IIaf 10s−1 [67] See above

k+,29 XI:IIaf → XIaf + IIaf 1.453s−1 [67] See above

k+,30 APC:PSL + VIIIaL → APC:PS:VIIIaL 1× 108M−1s−1 - Assumed the same as for FVaL
k−,30 APC:PSL + VIIIaL ← APC:PS:VIIIaL 1.6s−1 - See above

k+,31 APC:PS:VIIIaL → APC:PSL + VIIIaiL 0.45s−1 - See above

k+,32 APC:PSL + VaL → APC:PS:VaL 1× 108M−1s−1 [69] [69] gives Km = 1.97 × 10−8M , kcat =
0.79s−1

k−,32 APC:PSL + VaL ← APC:PS:VaL 1.6s−1 [69] See above

k+,33 APC:PS:VaL → APC:PSL + VaiL 0.45s−1 [69] See above

k+,34 TFPIf + Xaf → TFPI:Xaf 1.6× 107M−1s−1 [70] [70] gives k+ = 1.6 × 107M−1s−1, k− =
3.3× 10−4s−1

k−,34 TFPIf + Xaf ← TFPI:Xaf 0.00033s−1 [70] See above
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k+,35 TFPI:Xaf + TF:VIIaL → TFPI:Xa:TF:VIIaL 1× 107M−1s−1 [70, 20] [70] gives k+ = 1.07× 107M−1s−1 and [20]
gives k+ = 7.34 × 106M−1s−1, k− = 1.1 ×
10−3s−1

k−,35 TFPI:Xaf + TF:VIIaL ← TFPI:Xa:TF:VIIaL 0.0011s−1 [20] See above

k+,36 IXaf + ATf → IXa:ATf 4.9× 102M−1s−1 [23] [23] gives k = 490M−1s−1

k+,37 Xaf + ATf → Xa:ATf 2.3× 103M−1s−1 [71] [71] gives k = 2.3× 103M−1s−1

k+,38 IIaf + ATf → IIa:ATf 6.83× 104M−1s−1 [72] [72] gives 6.83× 103M−1s−1

k+,39 VL + mIIaL → V:mIIaL 1× 108M−1s−1 [16] [16] gives Km = 7.17 × 10−8M and kcat =
0.23s−1 for thrombin, kcat made 4.5 times
larger, [73] gives kcat

Km
= 0.22× 106M−1s−1

k−,39 VL + mIIaL ← V:mIIaL 6.94s−1 [73, 16] See above

k+,40 V:mIIaL → VaL + mIIaL 1.035s−1 [73, 16] See above

k+,41 VIIIL + mIIaL → VIII:mIIaL 1× 108M−1s−1 - Assumed same as IIa

k−,41 VIIIL + mIIaL ← VIII:mIIaL 13.8s−1 - See above

k+,42 VIII:mIIaL → VIIIaL + mIIaL 0.9s−1 - See above

k+,43 IIaf + TML → TM:IIaL 1× 109M−1s−1 - [74] gives Kd ≈ 0.5 × 10−9M without a
source

k−,43 IIaf + TML ← TM:IIaL 0.5s−1 - See above

k+,44 TM:IIaL + PCL → TM:IIa:PCL 1× 108M−1s−1 [75] [75] gives Km = 1× 10−7M , kcat = 3.6s−1

k−,44 TM:IIaL + PCL ← TM:IIa:PCL 6.45s−1 [75] See above

k+,45 TM:IIa:PCL → TM:IIaL + APCL 3.6s−1 [75] See above
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k+,46 mIIaf + ATf → mIIa:ATf 6.83× 103M−1s−1 [72] [72] gives 6.83× 103M−1s−1

k+,47 APCL + PSL → APC:PSL 1× 108M−1s−1 - Reported as “Not available” in Bungay[76]

k−,47 APCL + PSL ← APC:PSL 0.5s−1 - See above

k+,48 XIaf + IXL → XIa:IXL 1× 107M−1s−1 [77] [77] gives Km = 1.6 × 10−7M,kcat =
0.183s−1

k−,48 XIaf + IXL ← XIa:IXL 1.4517s−1 [77] See above

k+,49 XIa:IXL → XIaf + IXaL 0.183s−1 [77] See above

kon1 IIf → IIL 4.3× 106M−1s−1 [78] [78] gives k+ = 4.3× 106M−1s−1 and k− =
1s−1

koff1 IIf ← IIL 1s−1 [78] See above

kon2 mIIaf → mIIaL 5× 107M−1s−1 - Cited as [79] which givesKd = 9.5×10−9M
for thrombin, does not measure for mIIa

koff2 mIIaf ← mIIaL 0.4575s−1 - See above

kon3 Vf → VL 5× 107M−1s−1 [80] [80] gives Kd = 2.9× 10−9M

koff3 Vf ← VL 0.145s−1 [80] See above

kon4 Vaf → VaL 5.7× 107M−1s−1 [17] [17] gives k+ = 5.7× 107M−1s−1 and k− =
0.17s−1

koff4 Vaf ← VaL 0.17s−1 [17] See above

kon5 VIIf → VIIL 5× 107M−1s−1 [28] [28] gives Kd = 1.32×10−8M , Includes TF
in the vesicles.

koff5 VIIf ← VIIL 0.66s−1 [28] See above
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kon6 VIIaf → VIIaL 5× 107M−1s−1 [28] [28] gives Kd = 4.54×10−9M , Includes TF
in the vesicles.

koff6 VIIaf ← VIIaL 0.227s−1 [28] See above

kon7 VIIIf → VIIIL 5× 107M−1s−1 [80] [80] gives Kd = 2× 10−9M

koff7 VIIIf ← VIIIL 0.1s−1 [80] See above

kon8 VIIIaf → VIIIaL 5× 107M−1s−1 [81] [81] gives Kd = 6.7 × 10−9M , FIXa is
bound to the lipids.

koff8 VIIIaf ← VIIIaL 0.335s−1 [81] See above

kon9 IXf → IXL 5× 107M−1s−1 [82] [82] gives Kd = 2.3× 10−9M

koff9 IXf ← IXL 0.115s−1 [82] See above

kon10 IXaf → IXaL 5× 107M−1s−1 [82] [82] gives Kd = 2.3× 10−9M

koff10 IXaf ← IXaL 0.115s−1 [82] See above

kon11 Xf → XL 1× 107M−1s−1 [83] [83] gives Kd = 1.9× 10−7M

koff11 Xf ← XL 1.9s−1 [83] See above

kon12 Xaf → XaL 2.9× 107M−1s−1 [17] [17] gives k+ = 2.9× 107M−1s−1 and k− =
3.3s−1

koff12 Xaf ← XaL 3.3s−1 [17] See above

kon13 APCf → APCL 5× 107M−1s−1 [84] [84] gives Kd = 7.34 × 10−8M which de-
creases to Kd = 7×10−9M in the presence
of FVa

koff13 APCf ← APCL 3.5s−1 [84] See above
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kon14 PSf → PSL 5× 107M−1s−1 [85] [85] gives Kd = 4× 10−9M

koff14 PSf ← PSL 0.2s−1 [85] See above

kon15 VIIIaif → VIIIaiL 5× 107M−1s−1 - Assumed to be the same as VIIIa

koff15 VIIIaif ← VIIIaiL 0.335s−1 - See above

kon16 Vaif → VaiL 5.7× 107M−1s−1 - Assumed to be the same as Va

koff16 Vaif ← VaiL 0.17s−1 - See above

kon17 PCf → PCL 5× 107M−1s−1 [86] [86] gives Kd = 2.3× 10−7M

koff17 PCf ← PCL 11.5s−1 [86] See above

Table D.5: Sources for the parameter values used in the Bungay model. Any experimental sources that are used to inform a reaction rate
are given in the Source column. Any additional information, including the original measured values and any changes that were made are
given in the Notes column. If the rate is reused from another model then this is stated and both the model it was used in and the original
experimental source are given.

D.6 Tyurin Model

Parameter Reaction Value Sources Notes

kcat1 XI XIIa→ XIa 0.35s−1 [67] [67] gives kcat = 0.35s−1, retracted in 2007 [68]

km1 XI XIIa→ XIa 5× 10−8M - Estimate by Tyurin

kcat2 XI IIa→ XIa 1.43s−1 [67] [67] gives kcat = 1.43s−1, retracted in 2007 [68]

km2 XI IIa→ XIa 5× 10−8M - Estimate by Tyurin
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kcat3 XI XIa→ XIa 0.13s−1 [67] [67] gives kcat = 0.13s−1, retracted in 2007 [68]

km3 XI XIa→ XIa 5× 10−8M - Estimate by Tyurin

kcat4 IX XIa→ IXa 1.25s−1 [87, 88, 89, 90, 45] Averaged: [87] gives Km = 2 × 10−6M,kcat =
0.173s−1, [88] gives Km = 3.1 × 10−7M,kcat =
0.417s−1, [89] gives Km = 3.7 × 10−7M,kcat =
0.66s−1, [90] gives Km = 3 × 10−7M,kcat = 2.4s−1,
[45] gives Km = 4.9× 10−7M,kcat = 7.7s−1

km4 IX XIa→ IXa 3.55× 10−7M [87, 88, 89, 90, 45] See above

kcat5 IX V IIa→ IXa 1.8× 10−4s−1 [49] [49] gives Km = 9 × 10−9M,kcat = 3.67 × 10−5s−1

and Km = 1.7 × 10−8M,kcat = 1.8 × 10−4s−1 for
different phospholipid concentrations

km5 IX V IIa→ IXa 9× 10−9M [49] See above

kcat6 IX TF :V IIa→ IXa 0.7s−1 [49, 64, 88, 7] Averaged: [49] gives Km = 8.2 × 10−8M,kcat =
1.8s−1, [64] gives Km = 5.5× 10−8M,kcat = 1.35s−1

(uses X not IX), [88] givesKm = 2.1×10−7M,kcat =
0.25s−1, [7] gives Km = 7× 10−8M,kcat = 0.4s−1

km6 IX TF :V IIa→ IXa 1× 10−7M [49, 64, 88, 7] See above

kcat7 X IXa→ Xa 6.7× 10−4s−1 [91, 25] [91] gives Km = 8.1 × 10−7M and kcat = 6.8 ×
10−3s−1, [25] gives Km = 1.4 × 10−7M and kcat =
8× 10−4s−1

km7 X IXa→ Xa 1× 10−6M [91, 25] See above
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kcat8 X IXa:V IIIa→ Xa 25s−1 [25] [25] gives Km = 1.9× 10−7M , kcat = 29s−1

km8 X IXa:V IIIa→ Xa 1.6× 10−7M [25] See above

kcat9 X V IIa→ Xa 2.45× 10−3s−1 [49] [49] (mixed data) gives Km = 2.5 × 10−7M , kcat =
2.6× 10−4s−1

km9 X V IIa→ Xa 2.5× 10−7M [49] See above

kcat10 X TF :V IIa→ Xa 1.8s−1 [49, 64, 88] [49] gives Km = 2.3 × 10−7M , kcat = 3.1s−1, [64]
gives Km = 5.5 × 10−8M , kcat = 81s−1, [88] gives
Km = 2.05× 10−7M , kcat = 1.17s−1

km10 X TF :V IIa→ Xa 2.2× 10−7M [49, 64, 88] See above

kcat11 II Xa→ IIa 0.0375s−1 [34] [34] gives Km = 5.8× 10−6M,kcat = 0.0375s−1

km11 II Xa→ IIa 5.8× 10−6M [34] See above

kcat12 II Xa:V a→ IIa 28.3s−1 [65, 92] Used in Khanin[93], averaged from [65] which gives
Km = 1.06× 10−6M , kcat = 22.4s−1 and [92] which
gives Km = 1× 10−6M , kcat = 35s−1

km12 II Xa:V a→ IIa 1.03× 10−6M [65, 92] See above

kcat13 V IIa→ Va 0.23s−1 [16] [16] gives Km = 7.17× 10−8M and kcat = 0.23s−1

km13 V IIa→ Va 7.17× 10−8M [16] See above

kcat14 V Xa→ Va 0.043s−1 [16] [16] gives Km = 1.04× 10−8M , kcat = 0.043s−1

km14 V Xa→ Va 1.04× 10−8M [16] See above
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kcat15 VII Xa→ VIIa 0.05s−1 - No source given

km15 VII Xa→ VIIa 5× 10−8M - No source given

kcat16 TF:VII Xa→ TF:VIIa 0.66s−1 [94] [94] gives Km = 9.3× 10−9M , kcat = 0.66s−1

km16 TF:VII Xa→ TF:VIIa 9.3× 10−9M [94] See above

kcat17 VIII IIa→ VIIIa 0.36s−1 [66] [66] gives multiple values around Km = 2 ×
10−7M,kcat = 1s−1 for VIII cleavage at different
positions

km17 VIII IIa→ VIIIa 2.0× 10−8M [66] See above

kcat18 PC TM :IIa→ APC 88.3s−1 [95] [95] gives Km = 5.9× 10−6M , kcat = 88.3s−1

km18 PC TM :IIa→ APC 5.9× 10−6M [95] See above

kcat19 Va APC→ Vai 0.4s−1 [69] [69] gives Km = 2× 10−8M , kcat = 0.4s−1

km19 Va APC→ Vai 2.0× 10−8M [69] See above

kcat20 VIIIa APC→ VIIIai 0.4s−1 - Estimated using data from [42]

km20 VIIIa APC→ VIIIai 2.0× 10−8M - Estimated using data from [42]

kcat21 IXa:VIIIa APC→ VIIIai + IXa 0.4s−1 - Estimated using data from [42]

km21 IXa:VIIIa APC→ VIIIai + IXa 2.0× 10−8M - Estimated using data from [42]

kcat22 Xa:Va APC→ Vai + Xa 0.4s−1 - Estimated using data from [42]

km22 Xa:Va APC→ Vai + Xa 2.0× 10−8M - Estimated using data from [42]
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Table D.6: Sources for the parameter values used in the Tyurin model for the enzymatic reactions. Any experimental sources that are
used to inform a reaction rate are given in the Source column. Any additional information, including the original measured values and
any changes that were made are given in the Notes column. If the rate is reused from another model then this is stated and both the
model it was used in and the original experimental source are given.

Parameter Reaction Value Sources Notes

k1 Va + Xa → Xa:Va 1.67× 108M−1s−1 [96] Used in Willems model [97], [96] gives k =
1.6× 109M−1s−1

k2 VIIIa + IXa → VIIIa:IXa 1.67× 108M−1s−1 - Fitted from data in [65]

k3 VIIa + TF → TF:VIIa 5× 104M−1s−1 [98] [98] gives k+ = 7 × 104M−1s−1, k− = 3 ×
10−5s−1, Kd = 0.5× 10−9M

k4 TF:VIIa → VIIa + TF 3.33× 10−5s−1 [98] See above

k5 VII + TF → TF:VII 3.33× 104M−1s−1 [98] [98] gives k+ = 5 × 104M−1s−1, k− = 6 ×
10−5s−1, Kd = 1× 10−9M

k6 TF:VII → VII + TF 3.33× 10−6s−1 [98] See above

k7 TF:VIIa + TFPI:Xa → TF:VIIa:TFPI:Xa 1.08× 107M−1s−1 [70] [70] gives k+ = 1.07× 107M−1s−1

k8 TF:VIIa + AT → TF:VIIa:AT 450M−1s−1 [24] [24] gives k+ = 450M−1s−1

k9 IIa + AT → IIa:AT 7.08× 103M−1s−1 [23] [23] gives 7.08× 103M−1s−1

k10 IIa + α1AT → IIa:α1AT 78.3M−1s−1 [99, 100] Used in model [101]. Averaged: [99] gives
108.5M−1s−1, [100] gives 48M−1s−1

k11 IIa + α2M → IIa:α2M 488M−1s−1 [99] [99] gives 488M−1s−1

k12 IIa + PCI → IIa:PCI 1.67× 104M−1s−1 [102] [102] gives 1.7× 104M−1s−1
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k13 Xa + AT → Xa:AT 3.13× 103M−1s−1 [23, 103] [23] gives k = 3.13×103M−1s−1, [103] gives
k = 567M−1s−1

k14 Xa + α1AT → Xa:α1AT 262M−1s−1 [103] [103] gives 262M−1s−1

k15 Xa + TFPI → Xa:TFPI 1.6× 107M−1s−1 [70] [70] gives k+ = 1.6×107M−1s−1, k− = 3.3×
10−4s−1

k16 Xa:Va + α1AT → Xa:α1AT + Va 262M−1s−1 [103] [103] reports same as for Xa

k17 Xa:Va + AT → Xa:AT + Va 1.67× 103M−1s−1 [23, 103] [23] gives k = 3.13×103M−1s−1, [103] gives
k = 367M−1s−1

k18 IXa + AT → IXa:AT 490M−1s−1 [23] [23] gives k = 490M−1s−1

k19 VIIIa:IXa + AT → IXa:AT + VIIIa 500M−1s−1 - Reported as [23] but this does not measure
in the presence of VIIIa

k20 XIa + C1-inh → XIa:C1-inh 16.7M−1s−1 [104] [104] gives 667M−1s−1, and also reports
a reduction in rate of inhibition when in
the presence of HMWK (at a factor of
around 1/2 for C1-inh). [101] reduced this
rate more than others when accounting for
HMWK.

k21 XIa + α1AT → XIa:α1AT 66.7M−1s−1 [104] [104] gives 68M−1s−1

k22 XIa + AT → XIa:AT 167M−1s−1 [104] [104] gives k = 167M−1s−1

k23 XIa + α2AP → XIa:α2AP 500M−1s−1 [104] [104] gives 1000M−1s−1, and also reports a
reduced in rate of inhibition when in the
presence of HMWK (at a factor of around
1/2 for C1-inh)
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k24 XIa + PAI-1 → XIa:PAI-1 2.1× 105M−1s−1 [105] [105] gives 2.1× 105M−1s−1

k25 IIa + TM → TM:IIa 5× 105M−1s−1 - Estimated by Tyurin

k26 TM:IIa + PCI → TM:IIa:PCI 1× 106M−1s−1 [102] Average used which included non-TM
bound IIa

k27 APC + PCI → APC:PCI 2.5× 103M−1s−1 [106] [106] gives 2.5× 103M−1s−1

k28 APC + α1AT → APC:α1AT 10M−1s−1 [107] [107] gives 10M−1s−1

Table D.7: Sources for the parameter values used in the Tyurin model for the mass action reactions. Any experimental sources that are
used to inform a reaction rate are given in the Source column. Any additional information, including the original measured values and
any changes that were made are given in the Notes column. If the rate is reused from another model then this is stated and both the
model it was used in and the original experimental source are given.

D.7 Zhu Model

Parameter Reaction Value Sources Notes

kcat1 XII XIIa→ XIIa 0.033s−1 [36] [36] gives Km = 7.5× 10−6M , kcat = 0.033s−1

km1 XII XIIa→ XIIa 1.1× 10−5M [36] See above

kcat2 PK XIIa→ K 3.6s−1 [36] [36] gives Km = 9.1× 10−8M , kcat = 3.6s−1

km2 PK XIIa→ K 9.1× 10−8M [36] See above

kcat3 PK XIIf→ K 40s−1 [36] [36] gives Km = 3.7× 10−5M , kcat = 40s−1

km3 PK XIIf→ K 3.7× 10−5M [36] See above
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kcat4 XII K→ XIIa 5.7s−1 [36] [36] gives Km = 5.1× 10−7M , kcat = 5.7s−1

km4 XII K→ XIIa 5.1× 10−7M [36] See above

kcat5 XIIa K→ XIIf 5.7× 10−3s−1 - Used in model [101], estimated using data of [108]

km5 XIIa K→ XIIf 5× 10−7M - Estimated in model [101]

kcat6 XI XIIa→ XIa 5.7× 10−4s−1 [42] [42] gives Km = 2× 10−6M , kcat = 5.7× 10−4s−1

km6 XI XIIa→ XIa 2× 10−6M [42] See above

kcat7 XII XIa→ XIIa 0.57s−1 - Used in model [101], estimated using data of [109]

km7 XII XIa→ XIIa 5× 10−5M - Estimated in model [101]

kcat8 IX XIa→ IXa 3.75s−1 [87, 88, 89, 90, 45, 110] Averaged: [87] gives Km = 2× 10−6M,kcat = 0.173s−1,
[88] gives Km = 3.1 × 10−7M,kcat = 0.417s−1, [89]
gives Km = 3.7 × 10−7M,kcat = 0.66s−1, [90] gives
Km = 3 × 10−7M,kcat = 2.4s−1, [45] gives Km =
4.9 × 10−7M,kcat = 7.7s−1, [110] says kcat increases in
the presence of phospholipids

km8 IX XIa→ IXa 3.5× 10−7M [87, 88, 89, 90, 45, 110] See above

kcat9 X IXa→ Xa 6.7× 10−4s−1 [91, 25] Used in model [101], [91] gives Km = 8.1× 10−7M and
kcat = 6.8× 10−3s−1, [25] gives Km = 1.4× 10−7M and
kcat = 8× 10−4s−1

km9 X IXa→ Xa 2× 10−6M [91, 25] See above

kcat10 X IXa:V IIIa→ Xa 29s−1 [25] [25] gives Km = 1.9× 10−7M , kcat = 29s−1
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km10 X IXa:V IIIa→ Xa 1.9× 10−7M [25] See above

kcat11 II Xa→ IIa 0.0375s−1 [34] [34] gives Km = 5.8× 10−6M,kcat = 0.0375s−1

km11 II Xa→ IIa 5.8× 10−8M [34] See above

kcat12 II Xa:V a→ IIa 28.3s−1 [65, 92] Used in Khanin[93], averaged from [65] which gives
Km = 1.06 × 10−6M , kcat = 22.4s−1 and [92] which
gives Km = 1× 10−6M , kcat = 35s−1

km12 II Xa:V a→ IIa 1× 10−6M [65, 92] See above

kcat13 V IIa→ Va 0.23s−1 [16] [16] gives Km = 7.17× 10−8M and kcat = 0.23s−1

km13 V IIa→ Va 7.17× 10−8M [16] See above

kcat14 V Xa→ Va 0.043s−1 [16] [16] gives Km = 1.04× 10−8M , kcat = 0.043s−1

km14 V Xa→ Va 1.04× 10−8M [16] See above

kcat15 VIII IIa→ VIIIa 1s−1 [66] [66] gives multiple values around Km = 2 ×
10−7M,kcat = 1s−1 for VIII cleavage at different po-
sitions (Zhu used average)

km15 VIII IIa→ VIIIa 2× 10−8M [66] See above

kcat16 Fbg IIa→ Fbn 84s−1 [50] [50] gives Km = 7.2× 10−6M , kcat = 84s−1

km16 Fbg IIa→ Fbn 7.2× 10−6M [50] See above

kcat17 TF:VII Xa→ TF:VIIa 0.66s−1 [94] [94] gives Km = 9.3× 10−9M , kcat = 0.66s−1

km17 TF:VII Xa→ TF:VIIa 9.3× 10−9M [94] See above
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kcat18 X TF :V IIa→ Xa 1.72s−1 [49, 64, 88, 111] Used in model [93], [49] (mixed data, varied concen-
trations) gives Km = 2.3 × 10−7M , kcat = 3.1s−1,
[64] gives Km = 5.5 × 10−8M , kcat = 81s−1, [88]
gives Km = 2.05 × 10−7M , kcat = 1.17s−1, [111] gives
Km = 1.04× 10−6M , kcat = 37.5s−1

km18 X TF :V IIa→ Xa 3.8× 10−7M [49, 64, 88, 111] See above

kcat19 IX TF :V IIa→ IXa 0.57s−1 [49, 88, 64, 7] [34] incorrectly cited. Value used appears to be from
[93] which uses multiple sources: [49] (mixed data) gives
Km = 8.2 × 10−8M,kcat = 1.8s−1, [88] gives Km =
2.1 × 10−7M,kcat = 0.25s−1, [64] gives Km = 5.5 ×
10−8M,kcat = 1.35s−1 (uses X not IX), [7] gives Km =
7× 10−8M,kcat = 0.4s−1

km19 IX TF :V IIa→ IXa 1.33× 10−7M [49, 88, 64, 7] See above

kcat20 PC TM :IIa→ APC 0.33s−1 [112] [112] gives Km = 7.7× 10−6M , kcat = 0.33s−1

km20 PC TM :IIa→ APC 7.7× 10−6M [112] See above

Table D.8: Sources for the parameter values used in the Zhu model for the enzymatic reactions. Any experimental sources that are used
to inform a reaction rate are given in the Source column. Any additional information, including the original measured values and any
changes that were made are given in the Notes column. If the rate is reused from another model then this is stated and both the model
it was used in and the original experimental source are given.

Parameter Reaction Value Sources Notes

k1 Xa + Va → Xa:Va 1.67× 108M−1s−1 [96] [96] gives k = 1.6 × 109M−1s−1, used in
Willems[97] model
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k2 VIIIa + IXa → VIIIa:IXa 1.67× 108M−1s−1 - Estimated in model [93]

k3 IIa + AT → IIa:AT 5833M−1s−1 [23, 113] Used in model [93]. Averaged: [23] gives
7.08 × 103M−1s−1, [113] gives 2.07 ×
103M−1s−1

k4 IIa + α1AT → IIa:α1AT 78.3M−1s−1 [99, 100] Used in model [101]. Averaged: [99] gives
108.5M−1s−1, [100] gives 48M−1s−1

k5 IIa + α2M → IIa:α2M 488M−1s−1 [99] [99] gives 488M−1s−1 (Zhu reports using
[100] however this source does not pro-
vide a value for α2-M on IIa and Zhu
likely used [99] instead)

k6 Xa + AT → Xa:AT 1833M−1s−1 [23, 103] Used in model [101], [23] gives k = 3.13×
103M−1s−1, [103] gives k = 567M−1s−1

k7 Xa + α1AT → Xa:α1AT 262M−1s−1 [103] [103] gives 262M−1s−1

k8 Xa + TFPI → Xa:TFPI 1.6× 107M−1s−1 [70] [70] gives k+ = 1.6 × 107M−1s−1, k− =
3.3× 10−4s−1

k9 IXa + AT → IXa:AT 490M−1s−1 [23] [23] gives k = 490M−1s−1

k10 XIa + C1-inh → XIa:C1-inh 16.7M−1s−1 [104] Used in model [101], [104] gives
667M−1s−1, and also reports a re-
duction in rate of inhibition when in
the presence of HMWK (at a factor
of around 1/2 for C1-inh). [101] re-
duced this rate more than others when
accounting for HMWK.

367



k11 XIa + α1AT → XIa:α1AT 66.7M−1s−1 [104] Used in model [101], [104] gives
68M−1s−1

k12 XIa + AT → XIa:AT 167M−1s−1 [104] [104] gives k = 167M−1s−1

k13 XIa + α2AP → XIa:α2AP 500M−1s−1 [104] Used in model [101], [104] gives
1000M−1s−1, and also reports a re-
duced in rate of inhibition when in
the presence of HMWK (at a factor of
around 1/2 for C1-inh)

k14 XIa + PAI-1 → XIa:PAI-1 2.1× 105M−1s−1 [105] [105] gives 2.1× 105M−1s−1

k15 XIIa + C1-inh → XIIa:C1-inh 3667M−1s−1 [41] [41] gives 3667M−1s−1

k16 XIIa + α2AP → XIIa:α2AP 183M−1s−1 [41] [41] gives 183M−1s−1

k17 XIIa + α2M → XIIa:α2M 83M−1s−1 [41] [41] gives 83M−1s−1

k18 XIIa + AT → XIIa:AT 21.7M−1s−1 [41] [41] gives 21.7M−1s−1

k19 XIIa + PAI-1 → XIIa:PAI-1 1.6× 104M−1s−1 [105] [105] gives 1.6× 104M−1s−1

k20 XIIf + C1-inh → XIIf:C1-inh 3083M−1s−1 [114] [114] gives 3083M−1s−1

k21 XIIf + α2AP → XIIf:α2AP 152M−1s−1 [114] [114] gives 152M−1s−1

k22 XIIf + AT → XIIf:AT 53.3M−1s−1 [114] [114] gives 53.3M−1s−1

k23 K + C1-inh → K:C1-inh 1.67× 104M−1s−1 [115] [114] was cited by Zhu but [115] appears
to be the correct citation, [115] gives 1.7×
104M−1s−1

k24 K + α2M → K:α2M 4833M−1s−1 [115] [115] gives 4.9× 103M−1s−1

k25 K + PAI-1 → K:PAI-1 6× 104M−1s−1 [105] [105] gives 6× 104M−1s−1
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k26 K + AT → K:AT 160M−1s−1 [115] [115] gives 160M−1s−1

k27 VII + TF → TF:VII 3.3× 104M−1s−1 [116] Used in model [93], [116] gives k+ = 3.4×
104M−1s−1, k− = 4× 10−6M−1s−1

k28 TF:VIIa + AT → TF:VIIa:AT 450M−1s−1 [24] k+ = 450M−1s−1 [24]

k29 TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI 1.1× 107M−1s−1 [70] [70] gives k+ = 1.07× 107M−1s−1

k30 APC + Va → APC:Va 2× 107M−1s−1 [69] Used in model [117], [69] gives Km =
1.97× 10−8M , kcat = 0.395s−1

k31 APC + VIIIa → APC:VIIIa 2× 107M−1s−1 - Used in model [117], Assumed same as
k30

k32 APC + Xa:Va → APC:Xa:Va 2× 107M−1s−1 - See above

k33 APC + VIIIa:IXa → APC:VIIIa:IXa 2× 107M−1s−1 - See above

k34 TM + IIa → TM:IIa 6.7× 106M−1s−1 [118] [118] gives 6.7× 106M−1s−1

k35 XI → XIa 1.3× 10−4s−1 [42] 1st order, Used in model [117], Used
value of kcat = 1.3 × 10−4s−1 from [42],
representing IIa activation of XI

Table D.9: Sources for the parameter values used in the Zhu model for the mass action reactions. Any experimental sources that are used
to inform a reaction rate are given in the Source column. Any additional information, including the original measured values and any
changes that were made are given in the Notes column. If the rate is reused from another model then this is stated and both the model
it was used in and the original experimental source are given.
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Appendix E

Unified Model Modules

This appendix presents the Unified model module documents. The first six mod-
ules contain details for both the original Unified Model from Chapter 3 and the
Improved Unified Model from Chapter 5. The final two module documents, con-
vering the Other Inhibitors and Fibrinogen are only relevant to the Improved
Unified Model.

E.1 TF:VIIa Module

Model Reactions

This module comprises the reactions from stimulation with TF through to the
formation of TF:VIIa, including both association of TF to FVII or FVIIa and
activation of FVII. The reactions included in previous mathematical models and
those included in the Unified Model are described in Table E.1, while the former
are depicted in Figure E.1 and the latter in Figure E.2.

Models Reactions

TF + VII ↔ TF:VII
Hockin, TF + VIIa ↔ TF:VIIa
Danforth, TF:VIIa + VII → TF:VIIa + VIIa

Brummel and Xa + VII → Xa + VIIa
Chatterjee IIa + VII → IIa + VIIa

TF:VIIa + AT → TF:VIIa:AT

Bungay

TFL + VIIaL ↔ TF:VIIaL
TFL + VIIL ↔ TF:VIIL

TF:VIIL + XaL ↔ TF:VIIa:XaL
TF:VIIa:XaL → TF:VIIaL + XaL

XaL + VIIL ↔ Xa:VIIL
Xa:VIIL → VIIaL + XaL

Tyurin

VII Xa→ VIIa
TF:VII Xa→ TF:VIIa
TF + VII ↔ TF:VII
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TF + VIIa ↔ TF:VIIa
TF:VIIa + AT → TF:VIIa:AT

Zhu
TF:VII Xa→ TF:VIIa
TF + VII ↔ TF:VII

TF:VIIa + AT → TF:VIIa:AT

TF + VII ↔ TF:VII
TF + VIIa ↔ TF:VIIa

VII Xa→ VIIa

Unified TF:VII Xa→ TF:VIIa
VII IIa→ VIIa

TF:VII IIa→ TF:VIIa
VII TF :V IIa→ VIIa

TF:VIIa + AT → TF:VIIa:AT

Improved Unified

TF + VII ↔ TF:VII
TF + VIIa ↔ TF:VIIa

VII Xa→ VIIa
TF:VII Xa→ TF:VIIa

VII IIa→ VIIa
TF:VII IIa→ TF:VIIa
VII TF :V IIa→ VIIa

TF:VIIa + AT → TF:VIIa:AT

Table E.1: The reactions that are used in the different models and our choice of
reactions for the TF:VIIa module.

Network Diagrams

Figure E.1: A network diagram for the TF:VIIa module reactions that are included
in previous mathematical models. Black lines represent a reaction that is included
in all models. A dashed, black and coloured line represents a line that is included
in all but the correspondingly coloured model.
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Figure E.2: A reaction diagram for our chosen reactions to be included in the
Unified Model and Improved Unified Model for the TF:VIIa module.
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Reaction rates for previous models

Reaction Model Model values Data values

TF + VII ↔ TF:VII

Hockin, k+ = 3.2× 106M−1s−1,
k− = 3.1× 10−3s−1,
Kd = 9.7× 10−10M

Kd = 2× 10−9M [1] used as a
base and fitted using data from
[2].

Danforth,
Brummel

Bungay k+ = 5 × 106M−1s−1, k− =
0.005s−1, Kd = 1× 10−9M

Estimated.

Tyurin k+ = 3.33 × 104M−1s−1, k− =
3.33×10−6s−1, Kd = 1×10−10M

k+ = 5 × 104M−1s−1, k− = 6 ×
10−5s−1, Kd = 1× 10−9M [98].

Chatterjee k+ = 3.2 × 106M−1s−1, k− =
3.1×10−2s−1, Kd = 9.7×10−9M

Scaled Kd = 2×10−9M [1] based
on [28].

TF + VII → TF:VII Zhu k+ = 3.3× 104M−1s−1 Used in [93], [116] gives k+ =
3.4 × 104M−1s−1, k− = 4 ×
10−6M−1s−1.

TF + VIIa ↔ TF:VIIa

Hockin, k+ = 2.3× 107M−1s−1,
k− = 3.1× 10−3s−1,
Kd = 1.35× 10−10M

Kd = 5.47× 10−9M [1] used as
a base and fitted using data
from [3].

Danforth,
Brummel

Bungay k+ = 5 × 108M−1s−1, k− =
0.005s−1, Kd = 1× 10−11M

Kd = 1× 10−11M [63].

Tyurin k+ = 5 × 104M−1s−1, k− =
3.33 × 10−5s−1, Kd = 6.66 ×
10−10M

k+ = 7 × 104M−1s−1, k− = 3 ×
10−5s−1, Kd = 0.5× 10−9M [98].
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Chatterjee k+ = 2.3 × 107M−1s−1, k− =
3.1×10−5s−1,Kd = 1.3×10−12M

Scaled Kd = 5.47 × 10−9M [1]
based on [29].

VII Xa→ VIIa

Hockin,
Km

kcat
= 1.3× 107M−1s−1

Km = 1.2× 10−6M ,
kcat = 15.2s−1,
kcat
Km

= 1.3× 107M−1s−1 [4].

Danforth,
Brummel,
Chatterjee

Bungay k+ = 5 × 107M−1s−1, k− =
44.8s−1, kcat = 15.2s−1, Km =
1.2× 10−6M

Km = 1.2 × 10−6M , kcat =
15.2s−1 [4].

Tyurin Km = 5× 10−8M , kcat = 0.05s−1 No source given.

TF:VII Xa→ TF:VIIa
Bungay k+ = 5 × 107M−1s−1, k− =

44.8s−1, kcat = 15.2s−1, Km =
1.2× 10−6M

Km = 1.2 × 10−6M , kcat =
15.2s−1 [4].

Tyurin, Km = 9.3× 10−9M ,
kcat = 0.66s−1

Km = 9.3× 10−9M ,
kcat = 0.66s−1 [94].Zhu

VII IIa→ VIIa

Hockin,
Km

kcat
= 2.3× 104M−1s−1

Km = 2.7× 10−6M ,
kcat = 0.061s−1,
kcat
Km

= 2.3× 104M−1s−1 [4].

Danforth,
Brummel,
Chatterjee

VII TF :V IIa→ VIIa

Hockin,
Km

kcat
= 4.45× 105M−1s−1

Km = 3.2× 10−6M ,
kcat = 1.4s−1,
kcat
Km

= 4.4× 105M−1s−1 [4].

Danforth,
Brummel,
Chatterjee

Hockin,

k+ = 230M−1s−1 k+ = 450M−1s−1 [24].Danforth,
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Brummel,
TF:VIIa + AT → TF:VIIa:AT Chatterjee

Tyurin,
k+ = 450M−1s−1 k+ = 450M−1s−1 [24].Zhu

Table E.2: The parameter values used by each of the models along with the accompanying reference and original data value for each of
the reactions in the TF:VIIa module.
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Choosing Parameters

TF + VII ↔ TF:VII
Citation Rates Notes

[28] Kd = 13.2nM Temperature: 37°C. Bovine FVII. Purified
bovine brain TF. Egg PC lipid from Su-
pleco, Bellefonte, PA. pH: 7.5. Measures
with different binding schemes for varying
PS% (not taken into account here for con-
sistency with other binding/unbinding reac-
tions).

[98] Kd = 1nM ,
k+ = 5× 104M−1s−1,
k− = 6× 10−5s−1

Room temp. Human FVII. Human TF from
American Diagnostic Inc, Greenwich, CT,
USA. pH: 7.4. Phospholipids not used as
the surface. Separate association and dis-
association rates are given. Also gives rates
for AT.

[1] Kd = 2nM ,
k+ = 3.14× 105M−1s−1,
k− = 6.29× 10−4s−1

Soluble truncated TF1−219 gift from Dr. D.
L. Eaton, Greentech Inc., South San Fran-
cisco, CA. Separate association and disasso-
ciation rates are given. Also gives activation
of FX. pH: 7.3.

Chosen values: Kd = 3nM(10 ∧ N(−8.55, 0.582), 5% = 3.28 × 10−10, 95% =
2.66 × 10−8), k+ = 1.25 × 105M−1s−1(10 ∧ N(5.10, 0.562), 5% = 1.51 ×
104, 95% = 1.05× 106) therefore k− = 3.75× 10−4s−1

Table E.3: The prior distributions and reaction rates used to inform the prior
distributions for both the Unified Model and the Improved Unified Model for TF
and FVII association/dissociation.

376



TF + VIIa ↔ TF:VIIa
Citation Rates Notes

[28] Kd = 4.54nM Temperature: 37°C. Bovine FVII. Purified
bovine brain TF. Egg PC lipid from Su-
pleco, Bellefonte, PA. pH: 7.5. Measures
with different binding schemes for varying
PS% (not taken into account here for con-
sistency with other binding/unbinding reac-
tions).

[98] Kd = 0.5nM ,
k+ = 7× 104M−1s−1,
k− = 3× 10−5s−1

Room temp. Human FVII. Human TF from
American Diagnostic Inc, Greenwich, CT,
USA. pH: 7.4. Phospholipids not used as
the surface. Separate association and dis-
association rates are given. Also gives rates
for AT.

[63] Kd = 10pM Full length TF in PC vesicles. Lacks clar-
ification on other details. Excluded from
calculation of priors due to large difference
in rate compared with other sources.

[1] Kd = 5.47nM ,
k+ = 1.6× 105M−1s−1,
k− = 8.76× 10−4s−1

Soluble truncated TF1−219 gift from Dr. D.
L. Eaton, Greentech Inc., South San Fran-
cisco, CA. Separate association and disasso-
ciation rates are given. Also gives activation
of FX. pH: 7.3.

[3] Kd = 8.4nM ,
k+ = 1.9× 105M−1s−1,
k− = 1.6× 10−3s−1

Full length human TF. Gives separate asso-
ciation and disassociation rates. Also gives
activation of FX. pH: 7.4.

Chosen values: Kd = 3.2nM(10 ∧N(−8.50, 0.552), 5% = 3.94× 10−10, 95% =
2.54×10−8), k+ = 1.3×105M−1s−1(10∧N(5.11, 0.232), 5% = 5.39×104, 95% =
3.08× 105) therefore k− = 4.16× 10−4s−1

Table E.4: The prior distributions and reaction rates used to inform the prior
distributions for both the Unified Model and the Improved Unified Model for TF
and FVIIa association/dissociation.
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VII Xa→ VIIa / TF:VII Xa→ TF:VIIa
Citation Rates Notes

[4] Km = 1.2µM ,
kcat = 15.2s−1

Temperature: 25°C. 20µM PCPS (75/25)
purchased from Sigma. Human TF1−242

from Shu-Len Liu (Hyland Division, Bax-
ter Healthcare Corp. Human FVII and Xa
from Haematologic Technologies Inc. pH:
7.4. Same with and without TF.

[94] Km = 9.3nM ,
kcat = 0.66s−1

Only measures with TF. Human TF from
Dr. T. S. Edgington, Department of Im-
munology, Scripps Research Institute, La
Jolla, CA. Purified X from Sigma and ac-
tivated by RVV. PC/PS: 70/30. Tempera-
ture: 37°C.

Chosen values: +TF: Km = 105nM(10 ∧ N(−6.98, 1.492), 5% = 3.71 ×
10−10, 95% = 2.96 × 10−5), kcat = 3.16s−1(10 ∧ N(0.50, 0.962), 5% = 8.24 ×
10−2, 95% = 1.22 × 102), -TF: Km = 1.2µM(10 ∧ N(−5.92, 2.52), 5% =
9.28 × 10−11, 95% = 1.56 × 10−2), kcat = 15.2s−1(10 ∧ N(1.18, 2.52), 5% =
1.17× 10−3, 95% = 1.96× 105)

Table E.5: The prior distributions and reaction rates used to inform the prior
distributions for both the Unified Model and the Improved Unified Model for
FVII and TF:VII activation by FXa.

VII IIa→ VIIa / TF:VII IIa→ TF:VIIa
Citation Rates Notes

[4] Km = 2.7µM ,
kcat = 0.061s−1

Temperature: 25°C. 200µM PCPS (75/25)
purchased from Sigma. Human TF1−242

from Shu-Len Liu (Hyland Division, Bax-
ter Healthcare Corp. Human FIIa and FVII
from Haematologic Technologies Inc. pH:
7.4. Same with and without TF.

Chosen values: +/-TF: Km = 2.7µM(10 ∧ N(−5.55, 2.52), 5% = 2.08 ×
10−10, 95% = 3.49 × 10−2), kcat = 0.061s−1(10 ∧ N(−1.21, 2.52), 5% = 4.76 ×
10−6, 95% = 7.99× 102)

Table E.6: The prior distributions and reaction rates used to inform the prior
distributions for both the Unified Model and the Improved Unified Model for
FVII and TF:VII activation by FIIa.
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VII IXa→ VIIa / TF:VII IXa→ TF:VIIa
Citation Rates Notes

[4] Km = 1.7µM ,
kcat = 0.32s−1

Temperature: 25°C. 200µM PCPS (75/25)
purchased from Sigma. Human TF1−242

from Shu-Len Liu (Hyland Division, Baxter
Healthcare Corp. Human FVII and FIXa
from Haematologic Technologies Inc. pH:
7.4. Same with and without TF.

Chosen values: +/-TF: Km = 1.7µM(10 ∧ N(−5.77, 2.52), 5% = 1.31 ×
10−10, 95% = 2.20 × 10−2), kcat = 0.32s−1(10 ∧ N(−0.49, 2.52), 5% = 2.50 ×
10−5, 95% = 4.19× 103)

Table E.7: The prior distributions and reaction rates used to inform the prior
distributions for both the Unified Model and the Improved Unified Model for
FVII and TF:VII activation by FIXa.

VII TF :V IIa→ VIIa
Citation Rates Notes

[4] Km = 3.2µM ,
kcat = 1.4s−1

Temperature: 25°C. 200µM PCPS (75/25)
purchased from Sigma. Human TF1−242

from Shu-Len Liu (Hyland Division, Baxter
Healthcare Corp. Human FVIIa and FVII
from Haematologic Technologies Inc. pH:
7.4.

Chosen values: Km = 3.2µM(10 ∧N(−5.49, 2.52), 5% = 2.50 × 10−10, 95% =
4.19× 10−2), kcat = 1.4s−1(10∧N(0.15, 2.52), 5% = 1.09× 10−4, 95% = 1.83×
104)

Table E.8: The prior distributions and reaction rates used to inform the prior
distributions for both the Unified Model and the Improved Unified Model for
FVII activation by TF:VIIa.
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TF:VIIa + AT → TF:VIIa:AT
Citation Rates Notes

[98] k+ = 2× 103M−1s−1 Room temp. Human VII. Human TF from
American Diagnostic Inc. AT from human
plasma was from Chromogenic AB, Mol-
ndal, Sweden. pH: 7.4. Also gives rates for
TF:VIIa binding/ unbinding.

[24] k+ = 450M−1s−1 PCPS (75/25) from Sigma. AT purified
from Human plasma. Human FVIIa from
Novo Pharmaceuticals. Human TF from
Dr. Shu-Len Liu, Hyland Division, Baxter
Healthcare Corp. Temperature: 37°C. pH:
7.4.

Chosen values: k+ = 9.5 × 102M−1s−1(10 ∧ N(2.98, 0.462), 5% = 1.67 ×
102, 95% = 5.45× 103)

Table E.9: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for TF:VIIa inhibition by AT.

Changes for Improved Unified Model

The only change for the Improved Unified Model in this module is the removal of
one source for TF:VIIa inhibition by AT as it includes heparin in its measurement.

TF:VIIa + AT → TF:VIIa:AT
Citation Rates Notes

[98] k+ = 2× 103M−1s−1 Room temp. Human VII. Human TF from
American Diagnostic Inc. AT from human
plasma was from Chromogenix AB, Mol-
ndal, Sweden. pH: 7.4. Also gives rates
for TF:VIIa binding/ unbinding. Excluded
from prior calculation as it includes heparin.

[24] k+ = 450M−1s−1 PCPS (75/25) from Sigma. AT purified
from Human plasma. Human FVIIa from
Novo Pharmaceuticals. Human TF from
Dr. Shu-Len Liu, Hyland Division, Baxter
Healthcare Corp. Temperature: 37°C. pH:
7.4.

Chosen values: k+ = 4.5 × 102M−1s−1(10 ∧ N(2.65, 2.52), 5% = 3.45 ×
10−2, 95% = 5.79× 106)

Table E.10: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for TF:VIIa inhibition by AT.
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E.2 Xa:Va Module

Model Reactions

This module comprises of the reactions that lead up to Xa:Va formation including
both association of FXa to FVa and activation of FXa and of FVa. The reactions
used in the models we have examined are given in Table E.11 as well as the re-
actions that we have chosen for the Unified and Improved Unified Models. The
reactions for the previous models, the Unified Model and the Improved Unified
Model are then demonstrated in Figures E.3, E.4, and E.5, respectively.

Models Reactions

Hockin

TF:VIIa + X ↔ TF:VIIa:X
TF:VIIa:X → TF:VIIa:Xa

TF:VIIa:Xa ↔ TF:VIIa + Xa
IXa:VIIIa + X ↔ IXa:VIIIa:X
IXa:VIIIa:X → IXa:VIIIa + Xa

IIa + V → IIa + Va
Xa + Va ↔ Xa:Va
Xa + AT → Xa:AT

TF:VIIa + X ↔ TF:VIIa:X
TF:VIIa:X → TF:VIIa:Xa

TF:VIIa:Xa ↔ TF:VIIa + Xa
IXa:VIIIa + X ↔ IXa:VIIIa:X

Danforth and IXa:VIIIa:X → IXa:VIIIa + Xa
Brummel IXa + X → IXa + Xa

IIa + V → IIa + Va
mIIa + V → mIIa + Va

Xa + Va ↔ Xa:Va
Xa + AT → Xa:AT

Bungay

TF:VIIaL + XL ↔ TF:VIIa:XL

TF:VIIa:XL → TF:VIIa:XaL
TF:VIIa:XaL → TF:VIIa + XaL
IXa:VIIIaL + XL ↔ IXa:VIIIa:XL

IXa:VIIIa:XL → IXa:VIIIaL + XaL
VL + XaL ↔ V:XaL
V:XaL → VaL + XaL
VL + IIaL ↔ V:IIaL
V:IIaL → VaL + IIaL

VL + mIIaL ↔ V:mIIaL
V:mIIaL → VaL + mIIaL
XaL + VaL ↔ Xa:VaL
Xaf + ATf → Xa:ATf

Tyurin

X IXa→ Xa
X IXa:V IIIa→ Xa
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X V IIa→ Xa
X TF :V IIa→ Xa
V IIa→ Va
V Xa→ Va

Xa + Va → Xa:Va
Xa + AT → Xa:AT

Xa:Va + AT → Xa:AT + Va

Zhu

X IXa→ Xa
X IXa:V IIIa→ Xa
X TF :V IIa→ Xa
V IIa→ Va
V Xa→ Va

Xa + Va → Xa:Va
Xa + AT → Xa:AT

Chatterjee

TF:VIIa + X ↔ TF:VIIa:X
TF:VIIa:X → TF:VIIa:Xa

TF:VIIa:Xa ↔ TF:VIIa + Xa
VIIa + X ↔ VIIa:X
VIIa:X → VIIa + Xa

IXa:VIIIa + X ↔ IXa:VIIIa:X
IXa:VIIIa:X → IXa:VIIIa + Xa

IXa + X ↔ IXa:X
IXa:X → IXa + Xa
IIa + V → IIa + Va
Xa + Va ↔ Xa:Va
Xa + AT → Xa:AT

Unified

X TF :V IIa→ Xa
X V IIa→ Xa

X IXa:V IIIa→ Xa
X IXa→ Xa
V IIa→ Va
V Xa→ Va

Xa + Va ↔ Xa:Va
Xa + AT → Xa:AT

Xa:Va + AT → Xa:AT + Va

Improved Unified

X TF :V IIa→ Xa
X V IIa→ Xa

X IXa:V IIIa→ Xa
X IXa→ Xa
V IIa→ Va
V Xa→ Va

Xa + Va ↔ Xa:Va
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Xa + AT → Xa:AT
Xa:Va + AT → Xa:Va:AT

Table E.11: The reactions that are used in the different models and our choice of
reactions.

Network Diagrams

Figure E.3: A network diagram for the Xa:Va module reactions that are included
in previous mathematical models. Black lines represent a reaction that is included
in all models. A dashed, black and coloured line represents a line that is included
in all but the correspondingly coloured model.

Figure E.4: A reaction diagram for our chosen reactions in the Unified Model for
the Xa:Va module.
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Figure E.5: A reaction diagram for our chosen reactions in the Improved Unified
Model for the Xa:Va module.
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Reaction rates for previous models

Reaction Model Model values Data values

X TF :V IIa→ Xa

Hockin, k+ = 2.5× 107M−1s−1, k− =
1.05s−1, kcat = 6s−1, kd,+ =
2.2× 107M−1s−1, kd,− =
19s−1

[5] gives Km = 2.38× 10−7M and kcat = 7s−1,
[3] gives Km = 6.9× 10−8M and kcat = 7.4s−1,
[6] gives Km = 4.35× 10−6M and kcat = 5.69s−1,
[6] suggest FXa binds similarly to FX.

Danforth,
Brummel

Bungay k+ = 1 × 108M−1s−1, k− =
32.5s−1, kcat =
1.5s−1, kd,− = 1s−1

[18] gives Km = 4.5×10−7M , kcat = 1.15s−1, [64]
gives Km = 5.5× 10−8M , kcat = 81s−1.

Tyurin Km = 2.2 × 10−7M,kcat =
1.8s−1

[49] (mixed data, varied concentrations) gives
Km = 2.3 × 10−7M , kcat = 3.1s−1, [64] gives
Km = 5.5 × 10−8M , kcat = 81s−1, [88] gives
Km = 2.05× 10−7M , kcat = 1.17s−1.

Zhu Km = 3.8 × 10−7M,kcat =
1.72s−1

[49] (mixed data, varied concentrations) gives
Km = 2.3 × 10−7M , kcat = 3.1s−1, [64] gives
Km = 5.5 × 10−8M , kcat = 81s−1, [88] gives
Km = 2.05 × 10−7M , kcat = 1.17s−1, [111] gives
Km = 1.04× 10−6M , kcat = 37.5s−1.

Chatterjee k+ = 2.5× 107M−1s−1, k− =
0.0105s−1, kcat =
6s−1, kd,+ = 2.2 ×
107M−1s−1, kd,− = 19s−1

Hockin multiplied by 0.01 based on: [29] reported
a decrease in Km from 400nM to 20nM as PS %
increases from 10 to 40 (figure 6), [5] reported a
Km of 238nM.

X V IIa→ Xa Tyurin Km = 2.5 × 10−7M,kcat =
2.45× 10−3s−1

[49] (mixed data) givesKm = 2.5×10−7M , kcat =
2.6× 10−4s−1.
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Chatterjee k+ = 1 × 108M−1s−1, k− =
210s−1, kcat = 1.6× 10−6s−1

[49] (mixed data) givesKm = 2.5×10−7M , kcat =
2.6× 10−4s−1.

X IXa:V IIIa→ Xa

Hockin,
k+ = 1× 108M−1s−1, k− =
1× 10−3s−1, kcat = 8.2s−1

[12] gives Km = 6.3× 10−8M and kcat = 8.3s−1,
used in Jones [8].Danforth,

Brummel

Bungay k+ = 1 × 108M−1s−1, k− =
10.7s−1, kcat = 8.3s−1

[12] gives Km = 6.3 × 10−8M and kcat = 8.3s−1,
[25] gives Km = 1.9× 10−7M , kcat = 29s−1.

Tyurin Km = 1.6 × 10−7M,kcat =
25s−1

[25] gives Km = 1.9× 10−7M , kcat = 29s−1.

Zhu Km = 1.9 × 10−7M,kcat =
29s−1

[25] gives Km = 1.9× 10−7M , kcat = 29s−1.

Chatterjee k+ = 1 × 108M−1s−1, k− =
1× 10−5s−1, kcat = 8.2s−1

Hockin multiplied by 0.01 based on: Km de-
creases from 45µM to 160nM when using acti-
vated platelets rather than inactive platelets [25].

X IXa→ Xa

Danforth, kcat
Km

= 5.7× 103M−1s−1 [25] gives Km = 1.4× 10−7M and
kcat = 8× 10−4s−1.Brummel

Tyurin Km = 1 × 10−6M,kcat =
6.7× 10−4s−1

[91] gives Km = 8.1 × 10−7M and
kcat = 6.8× 10−3s−1, [25] gives Km =
1.4× 10−7M and kcat = 8× 10−4s−1.

Zhu Km = 2 × 10−6M,kcat =
6.7× 10−4s−1

[91] gives Km = 8.1 × 10−7M and
kcat = 6.8× 10−3s−1, [25] gives Km =
1.4× 10−7M and kcat = 8× 10−4s−1.
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Chatterjee k+ = 1 × 108M−1s−1, k− =
0.64s−1, kcat = 7× 10−4s−1

Km = 6.45nM and kcat = 7 × 10−4s−1 was used
from [46].

V IIa→ Va

Hockin,
kcat
Km

= 2× 107M−1s−1 [16] gives Km = 7.17× 10−8M and
kcat = 0.23s−1, used in Jones [8].

Danforth,
Brummel,
Chatterjee

Bungay k+ = 1 × 108M−1s−1, k− =
6.94s−1, kcat = 0.23s−1

[16] givesKm = 7.17×10−8M and kcat = 0.23s−1.

Tyurin Km = 7.17 × 10−8M,kcat =
0.23s−1

[16] givesKm = 7.17×10−8M and kcat = 0.23s−1.

Zhu Km = 7.17 × 10−8M,kcat =
0.23s−1

[16] givesKm = 7.17×10−8M and kcat = 0.23s−1.

V mIIa→ Va
Danforth, kcat

Km
= 3× 106M−1s−1 [10] gives 3.5× 106M−1s−1 and 2.4× 106M−1s−1

for different methods.Brummel

Bungay k+ = 1 × 108M−1s−1, k− =
6.94s−1, kcat = 1.035s−1

[16] gives Km = 7.17×10−8M and kcat = 0.23s−1

for thrombin kcat made 4.5 times larger, [73] gives
kcat
Km

= 0.22× 106M−1s−1.

V Xa→ Va
Bungay k+ = 1 × 108M−1s−1, k− =

1s−1, kcat = 0.043s−1

[16] gives Km = 1.04× 10−8M , kcat = 0.043s−1.

Tyurin Km = 1.04 × 10−8M,kcat =
0.043s−1

[16] gives Km = 1.04× 10−8M , kcat = 0.043s−1.

Zhu Km = 1.04 × 10−7M,kcat =
0.043s−1

[16] gives Km = 1.04× 10−8M , kcat = 0.043s−1.

Hockin,

k = 4× 108M−1s−1 [17] (> 1× 109M−1s−1), used in Jones [8].
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Danforth,
Brummel,

Xa + Va → Xa:Va Chatterjee

Bungay k = 1× 109M−1s−1 [65] gave Kd = 1.04× 10−9M .

Tyurin,
k = 1.67× 108M−1s−1 [96] gives k = 1.6× 109M−1s−1, used in Willems

model [97].Zhu

Xa + Va ← Xa:Va

Hockin,
k = 0.2s−1 [12] gave Kd = 1− 2nM for IXa:VIIIa, used in

Jones [8].Danforth,
Brummel

Bungay k = 1s−1 [65] gave Kd = 1.04× 10−9M .

Chatterjee k = 0.008s−1 Hockin multiplied by 0.04 based on: Kd decreases
from 3.3nM to 30pM when using 10µM 40% PS
[33].

Xa + AT → Xa:AT

Hockin,
k = 1.5× 103M−1s−1 [21] gives k = 4.9× 103M−1s−1 and

k = 2.9× 103M−1s−1.Chatterjee

Danforth,
k = 4.2× 103M−1s−1 No citation for reaction rate in either Brummel

or Danforth.Brummel

Bungay k = 2.3× 103M−1s−1 [71] gives k = 2.3× 103M−1s−1.

Tyurin k = 3.13× 103M−1s−1 [23] gives k = 3.13× 103M−1s−1, [103] gives k =
567M−1s−1.

Zhu k = 1.833× 103M−1s−1 [23] gives k = 3.13× 103M−1s−1, [103] gives k =
567M−1s−1.

388



Xa:Va + AT → Xa:AT + Va Tyurin k = 1.67× 103M−1s−1 [23] gives k = 3.13× 103M−1s−1, [103] gives k =
367M−1s−1.

Table E.12: The parameter values used by each of the models along with the accompanying reference and original data value for each of
the reactions in the Xa:Va module.
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Choosing Parameters

X V IIa→ Xa
Citation Rates Notes

[49]
Km = 2.5× 10−7M ,
kcat = 2.6× 10−4s−1

PCPS (70/30), PC type V-E, bovine brain PS,
both from Sigma. FX purified from human
plasma. Human FVIIa. Temperature: 37°C.
With and without TF. Measures activation of
FX and FIX.

[18]
Km = 4.87× 10−6M ,
kcat = 3.95× 10−4s−1

TF from Bovine brain thromboplastin. FX pu-
rified from bovine plasma. Temperature: 37°C.
pH: 7.5. Gives with and without TF. Measured
in the presence of benzamidine hydrochloride.

Chosen values: Km = 1.1µM(10 ∧N(−5.96, 0.912), 5% = 3.49× 10−8, 95% =
3.44×10−5), kcat = 3.2×10−4s−1(10∧N(−3.49, 0.132), 5% = 1.98×10−4, 95% =
5.29× 10−4)

Table E.13: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FX activation by FVIIa.
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X TF :V IIa→ Xa
Citation Rates Notes

[5]
Km = 2.38× 10−7M ,
kcat = 7.25s−1

Human factor VII from Novo-Nordisk, Gen-
tofte, Denmark. Human TF from Genentech,
South San Francisco, CA. Human factor X pu-
rified from plasma. PCPS: (75/25), Hen egg
PC and Bovine brain PS from Sigma. pH: 7.4.
Temperature: 37°C.

[3]
Km = 6.9× 10−8M ,
kcat = 7.4s−1

Full length human TF. FX purified from
plasma. 200pM PCPS (70/30). Temperature:
37°C. pH: 7.4.

[6]
Km = 4.35× 10−6M ,
kcat = 5.69s−1

Suggests FXa binds similarly to FX. Human
FX from plasma. Human FVIIa purchased
form Novo-Nordisc, Gentofte, Denmark. Hu-
man TF gift from Genentech, South San Fran-
cisco, CA.

[18]
Km = 4.5× 10−7M ,
kcat = 1.15s−1

TF from Bovine brain thromboplastin. FX pu-
rified from bovine plasma. Temperature: 37°C.
pH: 7.5. Gives with and without TF. Measured
in the presence of benzamidine hydrochloride.

[64]
Km = 5.5× 10−8M ,
kcat = 81s−1

Human FVII and FX from plasma. TF purified
from human brain. PCPS (50/50). Tempera-
ture: 37°C. pH: 7.45.

[49]
Km = 2.3× 10−7M ,
kcat = 3.1s−1

PCPS (70/30), PC type V-E, bovine brain
PS, both from Sigma. FX purified from hu-
man plasma. Human brain TF. Human FVIIa.
Temperature: 37°C. With and without TF.
Measures activation of FX and FIX.

[88]
Km = 2.05× 10−7M ,
kcat = 1.17s−1

Human brain TF. Human FVII and X. pH:
7.5. Activation of FX and FIX by: FXIa (FIX
only), TF:VIIa (both) and IXa:VIIIa (FX
only).

[111]
Km = 1.04× 10−6M ,
kcat = 37.5s−1

Human FX from plasma. Human FVIIa. TF
isolated from human brains. PCPS (75/25)
from Sigma using bovine brain PC and hen egg
PS. Temperature: 37°C. pH: 7.4.

[29] Km = 4× 10−7M ,
kcat = 2.5s−1

PCPS from Avanti Polar Lipids, Alabaster, AL.
FVIIa from American Diagnostica, Greenwich,
CT. X from Enzyme Research Laboratories,
South Bend, IN. Human TF. Values stated are
approximated from graphs.

Chosen values: Km = 0.32µM(10∧N(−6.50, 0.582), 5% = 3.51×10−8, 95% =
2.85× 10−6), kcat = 6s−1(10 ∧N(0.78, 0.632), 5% = 5.54× 10−1, 95% = 6.55×
101)

Table E.14: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FX activation by TF:VIIa.
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X IXa:V IIIa→ Xa
Citation Rates Notes

[12] Km = 6.3× 10−8M ,
kcat = 8.3s−1

Bovine FIX, FVIII and FX purified from
plasma. 10µM DOPC/DOPSE (75/25).
Temperature: 37°C. pH: 7.9. With and
without FVIIIa.

[25] Km = 1.9× 10−7M ,
kcat = 29s−1

Human FIX, FVIII and FX. 25µM PCPS
(75/25). Temperature: 37°C. pH: 7.4. With
and without FVIIIa.

[88] Km = 1.4× 10−7M ,
kcat = 0.42s−1

Human brain TF. Human FIX and FX. pH:
7.5. Activation of FX and FIX by FXIa
(FIX only), TF:VIIa (both) and IXa:VIIIa
(FX only).

[91] Km = 1.2× 10−7M ,
Vmax = 7.9× 10−13Ms−1

Human FVIII from Dr. William Thomas,
Hyland Diagnostics Div., Travenol Labora-
tories, Inc., Costa Mesa, CA. Human FIX
and FX were purified from factor IX con-
centrate from Cutter Laboratories, Inc.,
Berkeley, CA. PCPS, synthetic PS and
bovine PC, both from Supelco, Inc., Belle-
fonte, PA. pH: 7.5 With and without FVI-
IIa.

[46] Km = 2.26× 10−8M ,
kcat = 1.25s−1

Human FIX and FX from Enzyme Research
Laboratories, South Bend, IN. FVIII from
Baxter Healthcare Corp., Duarte, CA. Tem-
perature: 37°C. pH: 7.4. Values for wild
type and normal (derived from plasma) are
given. With and without FVIIIa.

Chosen values: Km = 85nM(10 ∧ N(−7.07, 0.372), 5% = 2.10 × 10−8, 95% =
3.46 × 10−7), kcat = 3.35s−1(10 ∧ N(0.53, 0.822), 5% = 1.52 × 10−1, 95% =
7.57× 101)

Table E.15: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FX activation by IXa:VIIIa.
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X IXa→ Xa
Citation Rates Notes

[91] Km = 7.6× 10−7M ,
Vmax = 1.4× 10−14Ms−1

Human FIX and FX were purified from Fac-
tor IX concentrate from Cutter Laborato-
ries, Inc., Berkeley, CA. PCPS, synthetic
PS and bovine PC, both from Supelco, Inc.,
Bellefonte, PA. pH: 7.5. With and without
FVIIIa.

[46] Km = 6.4× 10−9M ,
kcat = 7× 10−4s−1

Human FIX and FX from Enzyme Research
Laboratories, South Bend, IN. Temperature:
37°C. pH: 7.4. Values for wild type and nor-
mal (derived from plasma) are given. With
and without FVIIIa.

[12] Km = 5.8× 10−8M ,
kcat = 4.1× 10−5s−1

Bovine FIX and FX purified from plasma.
10µM DOPC/DOPSE (75/25). Tempera-
ture: 37°C. pH: 7.9. With and without FVI-
IIa.

[25] Km = 1.4× 10−7M ,
kcat = 8× 10−4s−1

Human FIX and FX. 5µM PCPS (75/25).
Temperature: 37°C. pH: 7.4. With and
without FVIIIa.

Chosen values: Km = 80nM(10 ∧ N(−7.10, 0.862), 5% = 3.06 × 10−9, 95% =
2.06×10−6), kcat = 2.8×10−4s−1(10∧N(−3.55, 0.732), 5% = 1.77×10−5, 95% =
4.48× 10−3)

Table E.16: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FX activation by FIXa.
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V IIa→ Va
Citation Rates Notes

[16] Km = 7.17× 10−8M ,
kcat = 0.23s−1

20µM PCPS (75/25), Hen egg PC and
bovine brain PS from Sigma. Human FV
and FII from fresh frozen plasma. Tempera-
ture: 25°C. pH: 7.4. Also does activation by
FXa.

[73]
kcat
Km

= 3.6× 106M−1s−1

60µM DOPC/DOPS (90/10) from Avanti
Polar Lipids, Inc., Pelham, AL. Human FII
and FV. Temperature: 37°C. pH: 7.5.

[10]
kcat
Km

= 6.4× 106M−1s−1,
kcat
Km

= 4× 106M−1s−1

Different methods. DOPC/DOPS (75/25)
from Avanti Polar Lipids, Inc., Pelham, AL.
Human FII and FV purified from plasma.
Temperature: 25°C. pH: 7.4. Also gives ac-
tivation of FII by FXa and Xa:Va.

Chosen values: Km = 71.7nM(10∧N(−7.14, 2.52), 5% = 5.59× 10−12, 95% =
9.39 × 10−4), kcat = 0.3s−1(10 ∧ N(−0.53, 0.132), 5% = 1.80 × 10−1, 95% =
4.83× 10−1)∗

Table E.17: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FV activation by FIIa.

V Xa→ Va
Citation Rates Notes

[16]
Km = 1.04× 10−8M ,
kcat = 0.043s−1

20µM 20µM PCPS (75/25), Hen egg PC and
bovine brain PS from Sigma. Human FV and
FX from fresh frozen plasma. FX activated by
RVV. Temperature: 25°C. pH: 7.4. Also does
activation by FIIa.

Chosen values: Km = 10.4nM(10∧N(−7.98, 2.52), 5% = 8.08× 10−13, 95% =
1.36 × 10−4), kcat = 0.043s−1(10 ∧ N(−1.37, 2.52), 5% = 3.29 × 10−6, 95% =
5.53× 102)

Table E.18: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FV activation by FXa.

∗Km uses a single source, this Km is then used to find kcat from the other sources.
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Xa + Va → Xa:Va
Citation Rates Notes

[17] > 1× 109M−1s−1 PCPS (75/25), Hen egg PC and bovine
brain PS from Sigma. Details for binding
rates with PCPS given. Bovine FV and FX
purified from plasma. Once bound to PCPS
reaction is very rapid. Temperature: 25°C.
pH: 7.4.

[65] Kd = 1.04× 10−9M PCPS (75/25), Hen egg PC and bovine
brain PS from Sigma. Human FV and FX
purified from plasma. FXa activated by
RVV. Gives activation of FII. Temperature:
25°C. pH: 7.4.

[96] k+ = 1.6× 109M−1s−1 DOPC/DOPS (80/20) both purchased from
Sigma. 60-80nm diameter vesicles (also
gives 20-30nm). Bovine FX and FV. FX ac-
tivated by RVV from Sigma. Temperature:
37°C. pH: 7.5.

Chosen values: Kd = 177pM(10 ∧N(−9.75, 1.092), 5% = 2.86× 10−12, 95% =
1.10×10−8), k+ = 1.6×109M−1s−1(10∧N(9.20, 2.52), 5% = 1.22×105, 95% =
2.05× 1013) therefore k− = 0.28s−1

Table E.19: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FXa and FVa association.

Xa + Va ← Xa:Va
Citation Rates Notes

[65]
Kd = 1.04× 10−9M

PCPS (75/25), Hen egg PC and bovine brain
PS from Sigma. Human FV and FX purified
from plasma. FXa activated by RVV. Gives
activation of FII. Temperature: 25°C. pH: 7.4.

[33] Kd = 3× 10−11M Many varying phospholipid concentrations and
mix ratios. 10 µM DOPC/DOPS (60/40).
Bovine FX and FV. FX activated by RVV.
Temperature: 37°C. pH: 7.5.

[96] k+ = 1.6× 10−3s−1 DOPC/DOPS (80/20) both purchased from
Sigma. 60-80nm diameter vesicles (also gives
20-30nm). Bovine FX and FV. FX activated
by RVV from Sigma. Temperature: 37°C. pH:
7.5.

Chosen values: given above

Table E.20: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FXa and FVa dissociation.
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Xa + AT → Xa:AT
Citation Rates Notes

[21]
k+ = 8.9× 105M−1s−1,
k = 4.5× 103M−1s−1

Human FX purified from plasma. Human
AT. Temperature: 25°C. pH: 7.4. With and
without saturating levels of Heparin. Also
includes thrombin.

- k+ = 4.2× 103M−1s−1 Used in Danforth and Brummel. No cita-
tion given.

[71] k+ = 2.3× 103M−1s−1 Human AT was purified from outdated
plasma obtained from the Henry Ford Hos-
pital blood bank. Human FX purified from
plasma and activated by RVV. Tempera-
ture: 25°C. pH: 7.4.

[103] k+ = 567M−1s−1 20µM DOPC and Bovine brain PS (60/40)
and from Sigma. Human FX and AT. X ac-
tivated by RVV from Sigma. Temperature:
37°C. Also does in presence of FVa.

Chosen values: k+ = 1.8 × 103M−1s−1(10 ∧ N(3.26, 0.462), 5% = 3.19 ×
102, 95% = 1.04× 104)

Table E.21: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FXa inhibition by AT.

Xa:Va + AT → Xa:AT + Va
Citation Rates Notes

[23]
k+ = 3.13× 103M−1s−1

Rabbit brain thromboplastin from Ortho
Diagnostics, Raritan, NJ (used for mea-
suring FXa through FIIa activation). Hu-
man FXa, FVa and AT. Absence of heparin
(k = 4× 106M−1s−1 in presence of heparin).
Also gives FIXa and FIIa. Temperature:
37°C. pH: 7.5. Measures in presence of FVa
but not clear how this was handled.

[103] k+ = 367M−1s−1 20µM DOPC and Bovine brain PS (60/40)
and from Sigma. Human FX and AT.
Bovine FV purified from fresh bovine blood.
FX activated by RVV from Sigma. Temper-
ature: 37°C. Also does in absence of FVa.

Chosen values: k+ = 1.1 × 103M−1s−1(10 ∧ N(3.03, 0.662), 5% = 8.80 ×
101, 95% = 1.31× 104)

Table E.22: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for Xa:Va inhibition by AT.
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Improved Unified Model - Choosing Parameters

Following the changes made for the Improved Unified Model, this section outlines
the updated reaction rate sources and prior distributions with minor changes made
to the notes on each source.

Inhibition of Xa:Va by AT is only given in one model, the Tyurin model, which
cites two sources [23]† and [103]. This reaction would be strongly related to the
ability of a model to be able to predict prothrombin not being fully converted into
thrombin (data shows only around 90% of prothrombin is converted into thrombin
[119]) since prothrombinase needs to be fully inhibited if prothrombin is going to
be stopped from converted into thrombin. Other than in the Tyurin model, the
only way in which Xa:Va is inhibited is first through disassociation into Xa + Va
and then inhibition of FXa, however, since Xa:Va binds so tightly, this is too slow
to fully inhibit before all prothrombin is activated.
In addition to the inclusion of this reaction, we have changed the reaction scheme
to also inhibit the FVa rather than disassociation as used in the Tyurin model. We
have done this in order to encourage prothrombinase to be inhibited earlier (since
there is far less FV in the assay). For the sake of consistency, we do the same
change to IXa:VIIIa inhibition by AT and Xa:Va inhibition of Xa:Va by α1-AT.

†This source is used to inform the reaction rate in the Tyurin model but measures FXa
inhibition and only uses FVa after inhibition to measure the amount of remaining FXa through
prothrombin activation.

397



X TF :V IIa→ Xa
Citation Rates Notes

[5]
Km = 2.38× 10−7M ,
kcat = 7.25s−1

Human factor VII from Novo-Nordisk, Gen-
tofte, Denmark. Human TF from Genentech,
South San Francisco, CA. Human factor X pu-
rified from plasma. PCPS: (75/25), Hen egg
PC and Bovine brain PS from Sigma. pH: 7.4.
Temperature: 37°C.

[3]
Km = 6.9× 10−8M ,
kcat = 7.4s−1

Full length human TF. FX purified from
plasma. 200pM PCPS (70/30). Temperature:
37°C. pH: 7.4.

[6]
Km = 4.35× 10−6M ,
kcat = 5.69s−1

Suggests FXa binds similarly to FX. Human
FX from plasma. Human FVIIa purchased
form Novo-Nordisc, Gentofte, Denmark. Hu-
man TF gift from Genentech, South San Fran-
cisco, CA.

[18]
Km = 4.5× 10−7M ,
kcat = 1.15s−1

TF from Bovine brain thromboplastin. FX pu-
rified from bovine plasma. Temperature: 37°C.
pH: 7.5. Gives with and without TF. Measured
in the presence of benzamidine hydrochloride.

[64]
Km = 5.5× 10−8M ,
kcat = 81s−1

Human FVII and X from plasma. TF purified
from human brain. PCPS (50/50). Tempera-
ture: 37°C. pH: 7.45.

[49]
Km = 2.3× 10−7M ,
kcat = 3.1s−1

PCPS (70/30), PC type V-E, bovine brain
PS, both from Sigma. FX purified from hu-
man plasma. Human brain TF. Human FVIIa.
Temperature: 37°C. With and without TF.
Measures activation of FX and FIX.

[88]
Km = 2.05× 10−7M ,
kcat = 1.17s−1

Human brain TF. Human FVII and FX. pH:
7.5. Activation of FX and FIX by: FXIa (FIX
only), TF:VIIa (both) and IXa:VIIIa (FX
only).

[111]
Km = 1.04× 10−6M ,
kcat = 37.5s−1

Human FX from plasma. Human FVIIa. TF
isolated from human brains. PCPS (75/25)
from Sigma using bovine brain PC and hen egg
PS. Temperature: 37°C. pH: 7.4.

[29] Km = 4× 10−7M ,
kcat = 2.5s−1

PCPS from Avanti Polar Lipids, Alabaster, AL.
FVIIa from American Diagnostica, Greenwich,
CT. FX from Enzyme Research Laboratories,
South Bend, IN. Human TF. Values stated are
approximated from graphs.

Chosen values: Km = 0.32µM(10∧N(−6.50, 0.582), 5% = 3.51×10−8, 95% =
2.85× 10−6), kcat = 6s−1(10 ∧N(0.78, 0.632), 5% = 5.54× 10−1, 95% = 6.55×
101)

Table E.23: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FX activation by TF:VIIa.
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X V IIa→ Xa
Citation Rates Notes

[49]
Km = 2.5× 10−7M ,
kcat = 2.6× 10−4s−1

PCPS (70/30), PC type V-E, bovine brain PS,
both from Sigma. FX purified from human
plasma. Human FVIIa. Temperature: 37°C.
With and without TF. Measures activation of
FX and FIX.

[18]
Km = 4.87× 10−6M ,
kcat = 3.95× 10−4s−1

TF from Bovine brain thromboplastin. FX pu-
rified from bovine plasma. Temperature: 37°C.
pH: 7.5. Gives with and without TF. Measured
in the presence of benzamidine hydrochloride.

Chosen values: Km = 1.1µM(10 ∧N(−5.96, 0.912), 5% = 3.49× 10−8, 95% =
3.44×10−5), kcat = 3.2×10−4s−1(10∧N(−3.49, 0.132), 5% = 1.98×10−4, 95% =
5.29× 10−4)

Table E.24: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FX activation by FVIIa.
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X IXa:V IIIa→ Xa
Citation Rates Notes

[12]
Km = 6.3× 10−8M ,
kcat = 8.3s−1

Bovine FIX, FVIII and FX purified from
plasma. 10µM DOPC/DOPSE (75/25). Tem-
perature: 37°C. pH: 7.9. With and without
FVIIIa.

[25]
Km = 1.9× 10−7M ,
kcat = 29s−1

Human FIX, FVIII and FX. 25µM PCPS
(75/25). Temperature: 37°C. pH: 7.4. With
and without FVIIIa.

[88]
Km = 1.4× 10−7M ,
kcat = 0.42s−1

Human FIX and FX. pH: 7.5. Activation of FX
and FIX by: FXIa (FIX only), TF:VIIa (both)
and IXa:VIIIa (FX only).

[91]
Km = 1.2× 10−7M ,
kcat = 0.4s−1

Human FVIII from Dr. William Thomas, Hy-
land Diagnostics Div., Travenol Laboratories,
Inc., Costa Mesa, CA. Human FIX and FX
were purified from factor IX concentrate from
Cutter Laboratories, Inc., Berkeley, CA. PCPS,
synthetic PS and bovine PC, both from Su-
pelco, Inc., Bellefonte, PA. With and without
VIIIa.

[46]
Km = 2.26× 10−8M ,
kcat = 1.25s−1

Human FIX and FX from Enzyme Research
Laboratories, South Bend, IN. FVIII from Bax-
ter Healthcare Corp., Duarte, CA. Tempera-
ture: 37°C. pH: 7.4. Measured in the presence
of platelets. With and without FVIIIa.

Chosen values: Km = 85nM(10 ∧ N(−7.07, 0.372), 5% = 2.10 × 10−8, 95% =
3.46 × 10−7), kcat = 2.19s−1(10 ∧ N(0.34, 0.822), 5% = 7.23 × 10−2, 95% =
8.80× 101)

Table E.25: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FX activation by IXa:VIIIa.
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X IXa→ Xa
Citation Rates Notes

[91]
Km = 7.6× 10−7M ,
kcat = 6.8× 10−3s−1

Human FIX and FX were purified from factor
IX concentrate from Cutter Laboratories, Inc.,
Berkeley, CA. PCPS, synthetic PS and bovine
PC, both from Supelco, Inc., Bellefonte, PA.
With and without FVIIIa.

[46]
Km = 6.4× 10−9M ,
kcat = 7× 10−4s−1

Human FIX and FX from Enzyme Research
Laboratories, South Bend, IN. Temperature:
37°C. pH: 7.4. Measured in the presence of
platelets. With and without FVIIIa.

[12]
Km = 5.8× 10−8M ,
kcat = 4.1× 10−5s−1

Bovine FIX and FX purified from plasma.
10µM DOPC/DOPSE (75/25). Temperature:
37°C. pH: 7.9. With and without FVIIIa.

[25]
Km = 1.4× 10−7M ,
kcat = 8× 10−4s−1

Human FIX, FVIII and FX. 25µM PCPS
(75/25). Temperature: 37°C. pH: 7.4. With
and without FVIIIa.

Chosen values: Km = 80nM(10 ∧ N(−7.10, 0.862), 5% = 3.06 × 10−9, 95% =
2.06×10−6), kcat = 6.3×10−4s−1(10∧N(−3.20, 0.912), 5% = 2.00×10−5, 95% =
1.98× 10−2)

Table E.26: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FX activation by FIXa.

V IIa→ Va
Citation Rates Notes

[16] Km = 7.17× 10−8M ,
kcat = 0.23s−1

20µM PCPS (75/25), Hen egg PC and
bovine brain PS from Sigma. Human FV
and FII from fresh frozen plasma. Tempera-
ture: 25°C. pH: 7.4. Also does activation by
FXa.

[73]
kcat
Km

= 3.6× 106M−1s−1

60µM DOPC/DOPS (90/10) from Avanti
Polar Lipids, Inc., Pelham, AL. Human FII
and FV. Temperature: 37°C. pH: 7.5.

[10]
kcat
Km

= 6.4× 106M−1s−1,
kcat
Km

= 4× 106M−1s−1

Different methods. DOPC/DOPS (75/25)
from Avanti Polar Lipids, Inc., Pelham, AL.
Human FII and FV purified from plasma.
Temperature: 25°C. pH: 7.4. Also gives ac-
tivation of prothrombin by FXa and Xa:Va.

Chosen values: Km = 71.7nM(10∧N(−7.14, 2.52), 5% = 5.59× 10−12, 95% =
9.39 × 10−4), kcat = 0.3s−1(10 ∧ N(−0.53, 0.132), 5% = 1.80 × 10−1, 95% =
4.83× 10−1)‡

Table E.27: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FV activation by FIIa.
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V Xa→ Va
Citation Rates Notes

[16]
Km = 1.04× 10−8M ,
kcat = 0.043s−1

20µM 20µM PCPS (75/25), Hen egg PC and
bovine brain PS from Sigma. Human FV and
FX from fresh frozen plasma. FX activated by
RVV. Temperature: 25°C. pH: 7.4. Also does
activation by FIIa.

Chosen values: Km = 10.4nM(10∧N(−7.98, 2.52), 5% = 8.08× 10−13, 95% =
1.36 × 10−4), kcat = 0.043s−1(10 ∧ N(−1.37, 2.52), 5% = 3.29 × 10−6, 95% =
5.53× 102)

Table E.28: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FV activation by FXa.

‡Km uses a single source, this Km is then used to find kcat from the other sources.

402



Xa + Va ↔ Xa:Va
Citation Rates Notes

[17] k+ > 1× 109M−1s−1 PCPS (75/25), Hen egg PC and bovine
brain PS from Sigma. Bovine FV and FX
purified from plasma. Temperature: 25°C.
pH: 7.4. Binding rates are separated into
binding FXa and FVa with PCPS and then
rapid binding together. This makes is chal-
lenging to include with other sources (which
do not consider rates of binding to lipids) so
we do not include this source in prior calcu-
lations.

[65] Kd = 1.04× 10−9M PCPS (75/25), Hen egg PC and bovine
brain PS from Sigma. Human FV and FX
purified from plasma. FXa activated by
RVV. Gives activation of FII.

[96] Kd = 1× 10−12M ,
k+ = 1.6× 109M−1s−1

DOPC/DOPS (80/20) both purchased from
Sigma. 60-80nm diameter vesicles (also
gives 20-30nm). Bovine FX and FV. FX ac-
tivated by RVV from Sigma. Temperature:
25°C. pH: 7.5.

[33] Kd = 3× 10−11M Many varying phospholipid concentra-
tions and mix ratios. 10 µM DOPC/DOPS
(60/40). Bovine FX and FV. FX activated
by RVV. Temperature: 37°C. pH: 7.5.

Chosen values: Kd = 31.5pM(10∧N(−10.5, 1.512), 5% = 1.04×10−13, 95% =
9.54×10−9), k+ = 1.6×109M−1s−1(10∧N(9.20, 2.52), 5% = 1.22×105, 95% =
2.05× 1013) therefore k− = 5.04× 10−2s−1

Table E.29: The prior distributions and reaction rates used to inform the
prior distributions for the Improved Unified Model for FXa and FVa associa-
tion/dissociation.
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Xa + AT → Xa:AT
Citation Rates Notes

[21] k = 4.5× 103M−1s−1 Human FX purified from plasma. Human
AT. Temperature: 25°C. pH: 7.4. Also mea-
sures thrombin.

- k+ = 4.2× 103M−1s−1 Used in Danforth and Brummel. No cita-
tion given. Value not used for prior distri-
butions.

[71] k+ = 2.3× 103M−1s−1 Human AT was purified from outdated
plasma obtained from the Henry Ford Hos-
pital blood bank. Human FX purified from
plasma and activated by RVV. Tempera-
ture: 25°C. pH: 7.4. Also gives inhibition of
thrombin.

[103] k+ = 567M−1s−1 20µM 20µM DOPC and Bovine brain PS
(60/40) and from Sigma. Human FX and
AT. FX activated by RVV from Sigma.
37°C. pH: 7.4. Also does in presence of FVa
and inhibition by α1-AT.

[23]
k+ = 3.13× 103M−1s−1

Rabbit brain thromboplastin from Ortho
Diagnostics, Raritan, NJ (used for measur-
ing FXa through FIIa activation). Human
FXa, FVa and AT. Also gives FIXa and
FIIa. Temperature: 37°C. pH: 7.5.

Chosen values: k+ = 2.1 × 103M−1s−1(10 ∧ N(3.32, 0.392), 5% = 4.66 ×
102, 95% = 9.19× 103)

Table E.30: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FXa inhibition by AT.

Xa:Va + AT → Xa:Va:AT
Citation Rates Notes

[103] k+ = 367M−1s−1 20µM DOPC and Bovine brain PS (60/40)
and from Sigma. Human FX and AT. Bovine
FV purified from fresh bovine blood. FX ac-
tivated by RVV from Sigma. Temperature:
37°C. Also does in absence of FVa.

Chosen values: k+ = 367M−1s−1(10 ∧ N(2.56, 2.52), 5% = 2.8 × 10−2, 95% =
4.7× 106)

Table E.31: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for Xa:Va inhibition by AT.
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E.3 IIa Module

Model Reactions

This module comprises of the reactions that lead up to FIIa formation, including
activation by both Xa and Xa:Va. The reactions used in the models we have ex-
amined are given in Table E.32 as well as the reactions that we have chosen for
the Unified and Improved Unified Models. The reactions for the previous models
and the Unified Model are then demonstrated in Figures E.6 and E.7, respectively.
The reactions for the Improved Unified Model are identical to the reactions for
the Unified Model for the FIIa module.

We have chosen not to include mIIa in the model as it makes the choices for
reaction rates limited, particularly for the second step mIIa Xa:V a→ IIa, where as
sources which measure II Xa:V a→ IIa are much more plentiful.

Models Reactions

II + Xa → IIa + Xa

Hockin, II + Xa:Va ↔

Danforth and II:Xa:Va → Xa:Va + mIIa

Chatterjee Xa:Va + mIIa → Xa:Va + IIa
mIIa + AT → mIIa:AT
IIa + AT → IIa:AT

Brummel

II + Xa → IIa + Xa
II + Xa:Va ↔ II:Xa:Va

II:Xa:Va → Xa:Va + mIIa
Va + II ↔ Va:II

mIIa + AT → mIIa:AT
IIa + AT → IIa:AT

Bungay

IIL + Xa:VaL ↔ II:Xa:VaL
II:Xa:VaL → Xa:Va:mIIaL

Xa:Va:mIIaL ↔ Xa:VaL + mIIaL
Xa:Va:mIIaL → Xa:VaL + IIaf
mIIaf + ATf → mIIa:ATf

IIaf + ATf → IIa:ATf

Tyurin II Xa→ IIa

and Zhu II Xa:V a→ IIa
IIa + AT → IIa:AT

Unified
II Xa→ IIa

II Xa:V a→ IIa
IIa + AT → IIa:AT

Improved Unified
II Xa→ IIa

II Xa:V a→ IIa
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IIa + AT → IIa:AT

Table E.32: The reactions that are used in the different models and our choice of
reactions for the IIa module.

Network Diagrams

Figure E.6: A network diagram for the IIa module reactions that are included in
previous models.

Figure E.7: A reaction diagram for our chosen reactions to be included in the
Unified Model and Improved Unified Model for the IIa module.
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Reaction rates for previous models

Reaction Model Model values Data values

II Xa→ IIa

Hockin,
kcat
Km

= 7.5× 103M−1s−1 [10] gives Km = 3× 10−7M,kcat =

2.3× 10−3s−1, kcat
Km

= 7.5× 103M−1s−1.
Danforth,
Brummel,
Chatterjee

Tyurin, Km = 5.8× 10−6M,kcat =
0.0375s−1 [34] gives Km = 5.8× 10−6M,kcat = 0.0375s−1.Zhu

II Xa:V a→ mIIa

Hockin,
k+ = 1× 108M−1s−1, k− =
103s−1, kcat = 63.5s−1

Used in Jones [8] with a change to the rates. Jones
cites three sources, [12]; [7]; [18], as the source of
four reaction rates (including the rate relevant to
this reaction) however none of these sources concern
FII activation. [12] gives FX activation by
IXa:VIIIa, [7] gives FIX and FX activation by
TF:VIIa and [18] gives FX activation by TF:VIIa as
well.

Danforth,
Brummel

Bungay k+ = 1 × 108M−1s−1, k− =
100s−1, kcat = 13s−1

[65] gives Km = 6.6× 10−7M,kcat = 15.1s−1.

Chatterjee k+ = 1 × 108M−1s−1, k− =
2.06s−1, kcat = 63.5s−1

Original value multiplied by 0.02 based on: Km de-
creases from 34µM to 0.21µM when using 7.5µM
phospholipids [34].

mIIa Xa:V a→ IIa

Hockin,
kcat
Km

= 1.5× 107M−1s−1 Jones [8], fitted from data in Lawson [19].Danforth,
Brummel,
Chatterjee
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Bungay k+ = 1 × 108M−1s−1, k− =
66s−1, kcat = 15s−1

[65] gives Km = 6.6× 10−7M,kcat = 15.1s−1.

II Xa:V a→ IIa
Tyurin, Km = 1× 10−6M,kcat =

28.3s−1

Used in Khanin [93], averaged from [65] which gives
Km = 1.06× 10−6M , kcat = 22.4s−1 and [92] which
gives Km = 1× 10−6M , kcat = 35s−1.

Zhu

IIa + AT → IIa:AT

Hockin,

7.1× 103M−1s−1 [22] gives k = 6.2× 103M−1s−1.Danforth,
Brummel,
Chatterjee

Bungay 6.83× 104M−1s−1 [72] gives 6.83× 103M−1s−1.

Tyurin 7.08× 103M−1s−1 [23] gives 7.08× 103M−1s−1.

Zhu 5.83× 103M−1s−1 Used in [93]. Averaged: [23] gives 7.08× 103M−1s−1,
[113] gives 2.07× 103M−1s−1.

Table E.33: The parameter values used by each of the models along with the accompanying reference and original data value for each of
the reactions in the IIa module.
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Choosing Parameters

There are no changes between the Unified Model reaction rates and the Improved
Unified Model reaction rates for this module. Below gives the sources and prior
distributions for both models.

II Xa→ IIa
Citation Rates Notes

[10] Km = 3× 10−7M ,
kcat = 2.3× 10−3s−1

200µM DOPC/DOPS (75/25) from Avanti
Polar Lipids Inc., Alabaster, AL. Human Xa
was a gift from Hematologic Technologies. Hu-
man FII. Temperature: 37°C. pH: 7.4. Gives in
presence of FVa and activation of FV by FIIa.

[34]
Km = 5.8× 10−6M ,
kcat = 0.0375s−1

Bovine FII and FX. FX activated by RVV.
7.5µM DOPC/DOPS. Temperature: 37°C.
pH: 7.5. Gives activation in presence of FVa
as well.

Chosen values: Km = 1.3µM(10 ∧N(−5.88, 0.912), 5% = 4.20× 10−8, 95% =
4.14×10−5), kcat = 9.3×10−3s−1(10∧N(−2.03, 0.862), 5% = 3.59×10−4, 95% =
2.42× 10−1)

Table E.34: The prior distributions and reaction rates used to inform the prior
distributions for both the Unified Model and the Improved Unified Model for FII
activation by FXa.
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II Xa:V a→ IIa
Citation Rates Notes

[10] Km = 1× 10−6M ,
kcat = 63.5s−1

200µM DOPC/DOPS (75/25) from Avanti Po-
lar Lipids Inc., Alabaster, AL. Human Xa was
a gift from Hematologic Technologies. Human
II. Human V from plasma. Temperature: 37°C.
pH: 7.4. Gives in presence of FVa and activa-
tion of FV by FIIa.

[65]
Km = 1.06× 10−6M ,
kcat = 22.4s−1

PCPS (75/25) Hen egg PC and bovine brain
PS from Sigma. Human FV, FX and FII from
plasma. FX activated by RVV. Temperature:
25°C. pH: 7.4.

[92] Km = 1× 10−6M ,
kcat = 35s−1

PCPS. Factors X, II and V purified from hu-
man plasma. FX activated by RVV. Tempera-
ture: 22°C. pH: 7.4.

[34]
Km = 2.1× 10−7M ,
kcat = 32s−1

Bovine FII and FX. FX activated by RVV.
7.5µM DOPC/DOPS. Temperature: 37°C. pH:
7.5. Gives activation in absence of FVa as well.

Chosen values: Km = 0.7µM(10 ∧N(−6.16, 0.342), 5% = 1.91× 10−7, 95% =
2.51× 10−6), kcat = 36s−1(10 ∧N(1.55, 0.192), 5% = 1.73× 101, 95% = 7.29×
101)

Table E.35: The prior distributions and reaction rates used to inform the prior
distributions for both the Unified Model and the Improved Unified Model for FII
activation by Xa:Va.

IIa + AT → IIa:AT
Citation Rates Notes

[72]
k+ = 6.83× 103M−1s−1

PCPS (50/50) from Supelco, Bellafonte, Pa.
Human AT and FIIa from plasma. Temper-
ature: 37°C. pH: 7.4.

[23]
k+ = 7.08× 103M−1s−1

Human FIIa and AT. Absence of heparin.
Also gives FIXa and FXa. Temperature:
37°C. pH: 7.5.

[113]
k+ = 4.62× 103M−1s−1

Human FIIa from plasma. Human AT. pH:
7.5. Temperature: 24°C.

[22] k+ = 6.2× 103M−1s−1 PCPS (75/25). Human thrombin and AT.
Absence of heparin. Temperature: 37°C.
pH: 7.9.

Chosen values: k+ = 6.1 × 103M−1s−1(10 ∧ N(3.79, 0.082), 5% = 4.55 ×
103, 95% = 8.35× 103)

Table E.36: The prior distributions and reaction rates used to inform the prior
distributions for both the Unified Model and the Improved Unified Model for FIIa
inhibition by AT.
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E.4 XIa Module

Model Reactions

This module comprises only the reactions that activate FXI though the TF path-
way. The reactions included in previous mathematical models and those in the
Unified Model are described in Table E.37 while the former are depicted in Fig-
ure E.8 and the latter in Figure E.9. The Improved Unified Model uses identical
reactions with different reaction rates.

Models Reactions

Bungay XIf + IIaf ↔ XI:IIaf
XI:IIaf → XIaf + IIaf

Tyurin
XI IIa→ XIa
XI XIa→ XIa

XIa + AT → XIa:AT

Zhu XI → XIa†

XIa + AT → XIa:AT

Chatterjee
XI + IIa ↔ XI:IIa
XI:IIa → XIa + IIa

XIa + XI → XIa + XIa
XIa + AT → XIa:AT

Unified
XI IIa→ XIa
XI XIa→ XIa

XIa + AT → XIa:AT

XI IIa→ XIa
Improved Unified XI XIa→ XIa

XIa + AT → XIa:AT

Table E.37: The reactions that are used in the different models and our choice of
reactions for the XIa module.

†This reaction hasn’t been analysed as observations of this will be likely down to XI XIa→ XIa
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Network Diagrams

Figure E.8: A network diagram for the XIa module reactions that are included in
previous mathematical models.

Figure E.9: A reaction diagram for our chosen reactions to be included in the
Unified Model and Improved Unified Model for the XIa module.
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Reaction rates for previous models

Reaction Model Model values Data values

XI IIa→ XIa
Bungay k+ = 1 × 108M−1s−1, k− =

10s−1, kcat = 1.453s−1

[67] gives kcat = 1.43s−1, retracted in 2007
[68].

Tyurin Km = 5 × 10−8M,kcat =
1.43s−1

Km estimated by Tyurin, kcat from [67] which
gives kcat = 1.43s−1, retracted in 2007 [68].

Chatterjee k+ = 1 × 108M−1s−1, k− =
5s−1, kcat = 1.3× 10−4s−1

[42] gives Km = 5 × 10−8M,kcat = 1.3 ×
10−4s−1.

XI XIa→ XIa
Tyurin Km = 5 × 10−8M,kcat =

0.13s−1

Km estimated by Tyurin, kcat from [67] which
gives kcat = 0.13s−1, retracted in 2007 [68].

Chatterjee k = 3.19× 106M−1s−1 Fitted in [43] but that model doesn’t include
FIIa activation of FXI, Chatterjee reported
that due to this they used a value 4 fold lower
however they did not use a scaled value.

XIa + AT → XIa:AT
Tyurin k = 167M−1s−1 [104] gives k = 500M−1s−1 (k = 167M−1s−1

for 23°C).

Zhu k = 167M−1s−1 [104] gives k = 500M−1s−1 (k = 167M−1s−1

for 23°C).

Chatterjee k = 320M−1s−1 [44] gives k = 320M−1s−1.

Table E.38: The parameter values used by each of the models along with the accompanying reference and original data value for each of
the reactions in the XIa module.
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Unified Model - Choosing Parameters

XI IIa→ XIa
Citation Rates Notes

[67] kcat = 1.43s−1 Human FIIa from Enzyme Research Labora-
tories, South Bend, IN. FXI purified from hu-
man plasma. Temperature: 37°C. pH: 7.3. Re-
tracted in 2007 [68].

[42] Km = 5× 10−8M ,
kcat = 1.3× 10−4s−1

Human FXI and FII from plasma. Tempera-
ture: 37°C. pH: 7.5.

Chosen values: Km = 50nM(10 ∧ N(−7.30, 2.52), 5% = 3.87 × 10−12, 95% =
6.49×10−4), kcat = 1.3×10−4s−1(10∧N(−3.89, 2.52), 5% = 9.94×10−9, 95% =
1.67)

Table E.39: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FXI activation by FIIa.

XI XIa→ XIa
Citation Rates Notes

[67] kcat = 0.13s−1 Human FXIa from Hematologic Technologies
Inc., Essex Junction, VT. FXI purified from
human plasma. Temperature: 37°C. pH: 7.3.
Retracted in 2007 [68].

[43]
k = 3.19× 106M−1s−1

Model fitted. Not biological measurement. Fit-
ted without modelling FIIa activation of FXI.

Chosen values: Km = 50nM(10 ∧ N(−7.30, 2.52), 5% = 3.87 × 10−12, 95% =
6.49×10−4), kcat = 1.3×10−4s−1(10∧N(−3.89, 2.52), 5% = 9.94×10−9, 95% =
1.67). Values assumed to be same as IIa

Table E.40: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FXI activation by FXIa.
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XIa + AT → XIa:AT
Citation Rates Notes

[104] k = 500M−1s−1 AT purchased from Kabi (AB), Stockholm,
Sweden. FXI from human plasma. Temper-
ature: 37°C.

[44] k = 320M−1s−1 Purified human FXIa was obtained from
Kordia Laboratory Supplies, Leiden, The
Netherlands. Human AT from Calbiochem.
Temperature: 37°C. pH: 7.4. Also gives in
presence of dextran sulfate, heparin, hep-
aran sulfate, dermatan sulfate.

Chosen values: k+ = 400s−1(10 ∧ N(2.60, 0.142), 5% = 2.34 × 102, 95% =
6.77× 102)

Table E.41: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FXIa inhibition by AT.

Improved Unified Model - Choosing Parameters

Sources for FXI activation are clearly very limited with two reactions using a re-
tracted source and one reaction using a model fitting for the reaction rate. It has
also been demonstrated that this reaction is very surface dependent [42]. Due
to this we have tried to use other sources to estimate the reaction rates for our
specific phospholipid composition∗.
Utilising values from [120] we infer a rate for FIIa activation of FXI of kcat

Km
=

1136M−1s−1 for 4µM PCPS (with 28.5% PS) using linear interpolation for 4µM
50:50 PCPS and the ratio of 50% PS to 28.5% PS (estimated by linear inter-
polation) for 50µM of PCPS. The Km = 50nM is used from [42] to estimate
kcat = 5.68× 10−5s−1.

To estimate the rates for FXI autoactivation we have used values from [121].
We use linear interpolation to estimate the rate for 4µM of polyphosphate at
lengths of 70mer at kcat

Km
= 1.89 × 105M−1s−1. The ratio of 33% between 1µM of

polyphosphate and 4µM of polyphosphate (using lengths of 65mer) to estimate
the rate for 1µM of polyphosphate at lengths of 70mer. This was then scaled
using the ratio for 1µM of 70mer polyphosphate and 4µM PCPS (28.5% PS) for
activation by FIIa given in [120] (ratio is 4.97%). This gives us our estimate of
FXI autoactivation for 4µM PCPS (28.5% PS) of kcat

Km
= 3065M−1s−1. Using the

same Km as for activation by FIIa [42] gives us Km = 50nM, kcat = 1.53×10−4s−1.

∗The phospholipid composition in our assay is: 24.7% phosphatidylcholine, 38.9% phos-
phatidylethanolamine, 28.5% phosphatidylserine, 5.7% phosphatidylinositol, 2.2% sphin-
gomyelin.
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XIa + AT → XIa:AT
Citation Rates Notes

[104] k = 500M−1s−1 AT purchased from Kabi (AB), Stockholm,
Sweden. FXI from human plasma. Temper-
ature: 37°C.

[44] k = 320M−1s−1 Purified human FXIa was obtained from
Kordia Laboratory Supplies, Leiden, The
Netherlands. Human AT from Calbiochem.
Temperature: 37°C. pH: 7.4. Also gives in
presence of dextran sulfate, heparin, hep-
aran sulfate, dermatan sulfate.

Chosen values: k+ = 400s−1(10 ∧ N(2.60, 0.142), 5% = 2.34 × 102, 95% =
6.77× 102)

Table E.42: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FXIa inhibition by AT.

E.5 IXa:VIIIa Module

Model Reactions

This module comprises of the reactions that lead up to IXa:VIIIa formation includ-
ing activation of both FIXa and FVIIIa and binding/unbinding to form IXa:VIIIa.
The reactions used in the models we have examined are given in Table E.43 as well
as the reactions that we have chosen for the Unified and Improved Unified Mod-
els. The reactions for the previous models, the Unified Model and the Improved
Unified Model are then demonstrated in Figures E.10, E.11, and E.12, respectively.

Models Reactions

TF:VIIa + IX ↔ TF:VIIa:IX
TF:VIIa:IX → TF:VIIa + IXa

Hockin, IIa + VIII → IIa + VIIIa

Danforth and VIIIa ↔ VIIIa1L + VIIIa2

Brummel IXa:VIIIa:X → VIIIa1L + VIIIa2 + IXa + X
IXa:VIIIa → VIIIa1L + VIIIa2 + IXa

IXa + VIIIa ↔ IXa:VIIIa
IXa + AT → IXa:AT

Bungay

TF:VIIaL + IXL ↔ TF:VIIa:IXL

TF:VIIa:IXL → TF:VIIaL + IXaL
XIaf + IXL ↔ XIa:IXL

XIa:IXL → XIaf + IXaL
VIIIL + IIaf ↔ VIII:IIaL
VIII:IIaL → VIIIaL + IIaf
VIIIL + XaL ↔ VIII:XaL
VIII:XaL → VIIIaL + XaL
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VIIIL + mIIaL ↔ VIII:mIIaL
VIII:mIIaL → VIIIaL + mIIaL
IXaL + VIIIaL ↔ IXa:VIIIaL

IXaf + ATf → IXa:ATf

Tyurin

IX TF :V IIa→ IXa
IX V IIa→ IXa
IX XIa→ IXa

VIII IIa→ VIIIa
IXa + VIIIa → IXa:VIIIa
IXa + AT → IXa:AT

IXa:VIIIa + AT → IXa:AT + VIIIa

Zhu

IX TF :V IIa→ IXa
IX XIa→ IXa

VIII IIa→ VIIIa
IXa + VIIIa → IXa:VIIIa
IXa + AT → IXa:AT

Chatterjee

TF:VIIa + IX ↔ TF:VIIa:IX
TF:VIIa:IX → TF:VIIa + IXa

XIa + IX ↔ XIa:IX
XIa:IX → XIa + IXa
VIIa + IX ↔ VIIa:IX
VIIa:IX → VIIa + IXa

IIa + VIII → IIa + VIIIa
VIIIa ↔ VIIIa1L + VIIIa2

IXa:VIIIa:X → VIIIa1L + VIIIa2 + IXa + X
IXa:VIIIa → VIIIa1L + VIIIa2 + IXa

Xa + VIII ↔ Xa:VIII
Xa:VIII → Xa + VIIIa

IXa + VIIIa ↔ IXa:VIIIa
IXa + AT → IXa:AT

Unified

IX TF :V IIa→ IXa
IX V IIa→ IXa
IX XIa→ IXa

VIII IIa→ VIIIa
VIII Xa→ VIIIa

IXa + VIIIa ↔ IXa:VIIIa
IXa + AT → IXa:AT

IXa:VIIIa + AT → IXa:AT + VIIIa

Improved Unified

IX TF :V IIa→ IXa
IX V IIa→ IXa
IX XIa→ IXa

VIII IIa→ VIIIa
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VIII Xa→ VIIIa
VIIIa ↔ VIIIa1L + VIIIa2

IXa:VIIIa ↔ IXa + VIIIa1L + VIIIa2

IXa + VIIIa ↔ IXa:VIIIa
IXa + AT → IXa:AT

IXa:VIIIa + AT → IXa:VIIIa:AT

Table E.43: The reactions that are used in the different models and our choice of
reactions for the IXa:VIIIa module.

Network Diagrams

Figure E.10: A network diagram for the IXa:VIIIa module reactions that are
included in previous models.

Figure E.11: A reaction diagram for our chosen reactions in the Unified Model for
the IXa:VIIIa module.
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Figure E.12: A reaction diagram for our chosen reactions in the Improved Unified
Model for the IXa:VIIIa module.
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Reaction rates for previous models

Reaction Model Model values Data values

IX TF :V IIa→ IXa

Hockin,
k+ = 1× 107M−1s−1, k− =
2.45s−1, kcat = 1.8s−1

[7] gives
Km = 2.43× 10−7M,kcat = 0.34s−1,
changed by Hockin based on [9] ratios
for FX and FIX activation by TF:VIIa.

Danforth,
Brummel,
Chatterjee

Bungay k+ = 1 × 107M−1s−1, k− =
2.09s−1, kcat = 0.34s−1

[7] gives Km = 2.43 × 10−7M,kcat =
0.34s−1.

Tyurin Km = 1 × 10−7M,kcat =
0.7s−1

Averaged: [49] (mixed data) gives Km =
8.2 × 10−8M,kcat = 1.8s−1, [64] gives
Km = 5.5 × 10−8M,kcat = 1.35s−1 (uses
FX not FIX), [88] gives Km = 2.1 ×
10−7M,kcat = 0.25s−1, [87] gives Km =
7×10−8M,kcat = 0.4s−1 (cited from [7]).

Zhu Km = 1.33 × 10−7M,kcat =
0.57s−1

[34] incorrectly cited. Values used ap-
pear to be from [93] which uses mul-
tiple sources: [49] (mixed data) gives
Km = 8.2 × 10−8M,kcat = 1.8s−1, [88]
gives Km = 2.1× 10−7M,kcat = 0.25s−1,
[64] gives Km = 5.5 × 10−8M,kcat =
1.35s−1 (uses FX not FIX), [87] gives
Km = 7 × 10−8M,kcat = 0.4s−1 (cited
from [7]).

IX V IIa→ IXa
Tyurin Km = 9 × 10−9M,kcat =

1.8× 10−4s−1

[49] gives Km = 9×10−9M,kcat = 3.67×
10−5s−1.
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Chatterjee k+ = 1 × 108M−1s−1, k− =
0.9s−1, kcat = 3.6× 10−5s−1

[49] gives Km = 9×10−9M,kcat = 3.67×
10−5s−1.

IX XIa→ IXa

Bungay k+ = 1 × 107M−1s−1, k− =
1.4517s−1, kcat = 0.183s−1

[77] gives Km = 1.6 × 10−7M,kcat =
0.183s−1.

Tyurin Km = 3.55 × 10−7M,kcat =
1.25s−1

Averaged: [87] gives Km = 2 ×
10−6M,kcat = 0.173s−1, [88] gives Km =
3.1 × 10−7M,kcat = 0.417s−1, [89] gives
Km = 3.7 × 10−7M,kcat = 0.66s−1, [90]
givesKm = 3×10−7M,kcat = 2.4s−1, [45]
gives Km = 4.9× 10−7M,kcat = 7.7s−1.

Zhu Km = 3.5 × 10−7M,kcat =
3.75s−1

Averaged: [87] gives Km = 2 ×
10−6M,kcat = 0.173s−1, [88] gives Km =
3.1 × 10−7M,kcat = 0.417s−1, [89] gives
Km = 3.7 × 10−7M,kcat = 0.66s−1, [90]
givesKm = 3×10−7M,kcat = 2.4s−1, [45]
gives Km = 4.9 × 10−7M,kcat = 7.7s−1,
[110] says kcat increases in the presence
of phospholipids.

Chatterjee k+ = 1 × 108M−1s−1, k− =
41s−1, kcat = 7.7s−1

[45] gives Km = 4.9 × 10−7M,kcat =
7.7s−1.

VIII IIa→ VIIIa

Hockin,
kcat
Km

= 2× 107M−1s−1 Assumed to be same as FIIa activation
of FV.

Danforth,
Brummel,
Chatterjee
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Bungay k+ = 1 × 108M−1s−1, k− =
13.8s−1, kcat = 0.9s−1

[66] gives multiple values around Km =
2×10−7M,kcat = 1s−1 for different types
of FVIII.

Tyurin Km = 2 × 10−8M,kcat =
0.36s−1

[66] gives multiple values around Km =
2×10−7M,kcat = 1s−1 for FVIII cleavage
at different positions.

Zhu Km = 2×10−8M,kcat = 1s−1 [66] gives multiple values around Km =
2×10−7M,kcat = 1s−1 for FVIII cleavage
at different positions (Zhu used average).

VIII mIIa→ VIIIa Bungay k+ = 1 × 108M−1s−1, k− =
13.8s−1, kcat = 0.9s−1

Assumed same as FIIa.

VIII Xa→ VIIIa
Bungay k+ = 1 × 108M−1s−1, k− =

2.1s−1, kcat = 0.023s−1

[47] gives kcat
Km

= 1.1× 10−6M−1s−1.

Chatterjee k+ = 1 × 108M−1s−1, k− =
2.1s−1, kcat = 0.023s−1

Rate constants from [48] (model uses
k+ = 1× 108M−1s−1, k− = 2.1s−1, kcat =
0.023s−1) which use catalytic efficiencies
from [47] (gives kcat

Km
= 1.1×10−6M−1s−1)

and based on ratios between FV and
FVIII activation by Xa.

VIIIa ↔ VIIIa1L + VIIIa2

Hockin,
k+ = 6× 10−3s−1, k− =
2.2× 104M−1s−1

[13] gives
k+ = 5.85×10−3s−1, Kd = 2.73×10−7M ,
[14] gives Kd = 2.58× 10−7M .

Danforth,
Brummel
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Chatterjee k+ = 6×10−5s−1, k− = 2.2×
104M−1s−1

Hockin scaled by 0.01 based on: Kd of
260nM in the absence of phospholipids
[14], this reaction is stabilised in the pres-
ence of phospholipids [32].

IXa:VIIIa → VIIIa1L + VIIIa2 + IXa

Hockin,

1× 10−3s−1 [15] gives k = 1.4× 10−3M−1s−1.Danforth,
Brummel,
Chatterjee

IXa + VIIIa ↔ IXa:VIIIa

Hockin,
k+ = 1× 107M−1s−1, k− =
5× 10−3s−1

[11] gives Kd = 2× 10−9M adjusted
based on analogy to Xa:Va for k+.

Danforth,
Brummel

Chatterjee k+ = 1 × 107M−1s−1, k− =
1× 10−4s−1

Hockin scaled by 0.02 based on: Kd de-
creases from 351nM to 4nM on PCPS
vesicles [30], a Kd of 74pM was found on
activated platelet surfaces compared to
550pM on equimolar PSPC vesicles [31].

Bungay k+ = 1 × 108M−1s−1, k− =
0.2s−1

[11] gives Kd = 2× 10−9M .

Tyurin k+1.67× 10−8M−1s−1 Fitted from data in [65].
Zhu k+1.67× 10−8M−1s−1 Estimated in [93].

IXa + AT → IXa:AT

Hockin,

4.9× 102M−1s−1 [21] incorrect citation. Likely used [23]
which gives k = 490M−1s−1.

Danforth,
Brummel,
Chatterjee

Bungay 4.9× 102M−1s−1

[23] gives k = 490M−1s−1.Tyurin 4.9× 102M−1s−1
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Zhu 4.9× 102M−1s−1

IXa:VIIIa + AT → IXa:AT + VIIIa Tyurin 500M−1s−1 [23] gives k = 490M−1s−1.

Table E.44: The parameter values used by each of the models along with the accompanying reference and original data value for each of
the reactions in the IXa:VIIIa module.
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Unified Model - Choosing Parameters

IX TF :V IIa→ IXa
Citation Rates Notes

[7]
Km = 2.43× 10−7M ,
kcat = 0.34s−1

Bovine FVIIa and FIX from plasma. 40% brain
thromboplastin by volume extracted from
bovine brain acetone powder. Mixed brain
phospholipids. Temperature: 37°C. pH: 7.5.

[49]
Km = 8.2× 10−8M ,
kcat = 1.8s−1

(mixed data) 300pM recombinant TF relipi-
dated with PCPS (70/30) using Bovine brain
PS and PC (type V-E) from Sigma. Human
factor IX from plasma. Recombinant human
factor VIIa. Temperature: 37°C. Without TF
also given.

[88]
Km = 2.1× 10−7M ,
kcat = 0.25s−1

Human brain TF. Human FVII and FIX. pH:
7.5. Activation of FX and FIX by FXIa (FIX
only), TF:VIIa (both) and IXa:VIIIa (FX
only).

Chosen values: Km = 0.16µM(10∧N(−6.79, 0.262), 5% = 6.06×10−8, 95% =
4.34 × 10−7), kcat = 0.54s−1(10 ∧ N(−0.27, 0.462), 5% = 9.40 × 10−2, 95% =
3.07)

Table E.45: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FIX activation by TF:VIIa.

IX V IIa→ IXa
Citation Rates Notes

[49] Km = 9× 10−9M ,
kcat = 3.67× 10−5s−1

1.4µM PCPS (70/30) using Bovine brain PS
and PC (type V-E) from Sigma. Human factor
IX from plasma. Recombinant human factor
VIIa. Temperature: 37°C. With TF also given.
Other phospholipid concentrations given.

Chosen values: Km = 9nM(10 ∧ N(−8.05, 2.52), 5% = 6.88 × 10−13, 95% =
1.15×10−4), kcat = 3.67×10−5s−1(10∧N(−4.44, 2.52), 5% = 2.80×10−9, 95% =
0.47)

Table E.46: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FIX activation by FVIIa.
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IX XIa→ IXa
Citation Rates Notes

[77]
Km = 1.6× 10−7M ,
kcat = 0.183s−1

Factor XI from plasma. Purified factor IX was
purchased from Enzyme Research Laboratories,
South Bend, IN. Temperature: 37°C.

[87] Km = 2× 10−6M ,
kcat = 0.173s−1

Human factors IX and XI from plasma. Tem-
perature: 37°C. pH: 7.5.

[88]
Km = 3.1× 10−7M ,
kcat = 0.417s−1

Human FXI and FIX. pH: 7.5. Activation of
FX and FIX by FXIa (FIX only), TF:VIIa
(both) and IXa:VIIIa (FX only).

[89]
Km = 3.7× 10−7M ,
kcat = 0.66s−1

Human factor XI from plasma activated by
bovine FXIIa. Human FIX from plasma. Tem-
perature: 37°C. pH: 7.4.

[90] Km = 3× 10−7M ,
kcat = 2.4s−1

PCPS (60/40). Human factors IX and XI.
Temperature: 37°C. pH: 7.5.

[45]
Km = 4.9× 10−7M ,
kcat = 7.7s−1

Human FXI purified from plasma activated by
bovine FXIIa. Human factor IX. Temperature:
37°C. pH: 7.5.

Chosen values: Km = 0.42µM(10∧N(−6.38, 0.372), 5% = 1.03×10−7, 95% =
1.69 × 10−6), kcat = 0.74s−1(10 ∧ N(−0.13, 0.652), 5% = 6.32 × 10−2, 95% =
8.69)

Table E.47: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FIX activation by FXIa.

VIII IIa→ VIIIa
Citation Rates Notes

[66] Multiple val-
ues around
Km = 2× 10−7M ,
kcat = 1s−1

PCPS (75/25). Porcine factor VIII from
plasma. Porcine FIIa. Room temperature. pH:
7.

[47]
kcat
Km

= 5× 106M−1s−1

PCPS (25/75) PC (type III-E) and PS pur-
chased from Sigma. Porcine FVIII and FIIa.
Temperature: 22°C. pH: 7.4. Also gives activa-
tion by FXa.

Chosen values: Km = 0.2µM(10 ∧N(−6.70, 2.52), 5% = 1.54 × 10−11, 95% =
2.59× 10−3), kcat = 1s−1(10 ∧N(0, 0.52), 5% = 0.105, 95% = 6.65)

Table E.48: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FVIII activation by FIIa.
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VIII Xa→ VIIIa
Citation Rates Notes

[47]
kcat
Km

= 1.1× 106M−1s−1

PCPS (25/75) PC (type III-E) and PS pur-
chased from Sigma. Porcine FVIII and
FXa. Temperature: 22°C. pH: 7.4. Also
gives activation by FIIa.

Chosen values: Km = 0.2µM(10 ∧N(−6.70, 2.52), 5% = 1.54 × 10−11, 95% =
2.59 × 10−3), kcat = 0.22s−1(10 ∧ N(−0.66, 2.52), 5% = 1.69 × 10−5, 95% =
2.83× 103). Km assumed same as for FIIa

Table E.49: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FVIII activation by FXa.

IXa + VIIIa ↔ IXa:VIIIa
Citation Rates Notes

[11] Kd = 2× 10−9M PCPS (75/25) from PC and PS purchased
from Sigma. Porcine FIXa and FVIIIa.
Temperature: 25°C. pH: 7.4.

[30] Kd = 4× 10−9M PCPSPE (40/20/40) from Sigma. Recom-
binant factor VIII gift of the Bayer Corpo-
ration. Factor IX from Enzyme Research
Laboratories.

[31] Kd = 5.5× 10−10M PCPS (50/50) using synthetic PC and PS
purchased from Supelco Inc, Bellefonte, PA.
Human FIXa. Human FVIIIa from plasma.
Temperature: 37°C. pH: 7.4.

Chosen values: Kd = 1.6nM(10∧N(−8, 79, 0.442), 5% = 3.06× 10−10, 95% =
8.59 × 10−9), k+ = 1 × 107M−1s−1(10 ∧ N(7, 2.52), 5% = 7.72 × 102, 95% =
1.30× 1011) therefore k− = 0.016s−1

Table E.50: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FIXa and FVIIIa association/dissociation.
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IXa + AT → IXa:AT
Citation Rates Notes

[23] k = 490M−1s−1 Human FIXa, FVIIIa and AT. Absence of
heparin (k = 5 × 106M−1s−1 in presence
of heparin). Measured in presence of FVI-
IIa. Also gives FIIa and FXa. Temperature:
37°C. pH: 7.5.

Chosen values: k+ = 490M−1s−1(10∧N(2.69, 2.52), 5% = 3.78× 10−2, 95% =
6.35× 106)

Table E.51: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for FIXa inhibition by AT.

IXa:VIIIa + AT → IXa:AT + VIIIa
Citation Rates Notes

[23] k = 490M−1s−1 Human FIXa, FVIIIa and AT. Absence of
heparin (k = 5 × 106M−1s−1 in presence
of heparin). Measured in presence of FVI-
IIa. Also gives FIIa and FXa. Temperature:
37°C. pH: 7.5.

Chosen values: k+ = 490M−1s−1(10∧N(2.69, 2.52), 5% = 3.78× 10−2, 95% =
6.35× 106)

Table E.52: The prior distributions and reaction rates used to inform the prior
distributions for the Unified Model for IXa:VIIIa inhibition by AT.

Improved Unified Model - Choosing Parameters

Following the changes made for the Improved Unified Model, this section outlines
the updated reaction rate sources and prior distributions with minor changes made
to the notes on each source.

428



IX TF :V IIa→ IXa
Citation Rates Notes

[7]
Km = 2.43× 10−7M ,
kcat = 0.34s−1

Bovine FVIIa and FIX from plasma. TF from
bovine brain thromboplastin. Mixed brain
phospholipids. Temperature: 37°C. pH: 7.5.

[49]
Km = 3.2× 10−8M ,
kcat = 0.92s−1

PCPS (70/30), PC type V-E, bovine brain
PS, both from Sigma. Human factor IX from
plasma. Human FVIIa. Human TF. Tempera-
ture: 37°C. Without TF also given.

[88]
Km = 2.1× 10−7M ,
kcat = 0.25s−1

Human brain TF. Human FVII and FIX. pH:
7.5. Activation of FX and FIX by: FXIa (FIX
only), TF:VIIa (both) and IXa:VIIIa (FX
only).

Chosen values: Km = 117nM(10 ∧N(−6.93, 0.492), 5% = 1.83× 10−8, 95% =
7.56 × 10−7), kcat = 0.43s−1(10 ∧ N(−0.37, 0.302), 5% = 1.39 × 10−1, 95% =
1.31)

Table E.53: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FIX activation by TF:VIIa.

IX V IIa→ IXa
Citation Rates Notes

[49] Km = 8× 10−9M ,
kcat = 1.62× 10−4s−1

21µM PCPS (70/30) using Bovine brain PS
and PC (type VE) from Sigma. Human factor
IX from plasma. Recombinant human factor
VIIa. Temperature: 37°C. With TF also given.

Chosen values: Km = 8nM(10 ∧ N(−8.10, 2.52), 5% = 6.17 × 10−13, 95% =
1.04×10−4), kcat = 1.62×10−4s−1(10∧N(−3.79, 2.52), 5% = 1.25×10−8, 95% =
2.10)

Table E.54: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FIX activation by FVIIa.
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IX XIa→ IXa
Citation Rates Notes

[77]
Km = 1.6× 10−7M ,
kcat = 0.183s−1

Human factor XI from plasma. Purified factor
IX was purchased from Enzyme Research Lab-
oratories, South Bend, IN. Temperature: 37°C.

[87] Km = 2× 10−6M ,
kcat = 0.173s−1

Human factors IX and XI from plasma. Tem-
perature: 37°C. pH: 7.5.

[88]
Km = 3.1× 10−7M ,
kcat = 0.417s−1

Human FXI and FIX. pH: 7.5. Activation of
FX and FIX by FXIa (FIX only), TF:VIIa
(both) and IXa:VIIIa (FX only).

[89]
Km = 3.7× 10−7M ,
kcat = 0.66s−1

Human factor XI from plasma activated by
bovine FXIIa. Human FIX from plasma. Tem-
perature: 37°C. pH: 7.4.

[90] Km = 3× 10−7M ,
kcat = 2.4s−1

Human factors IX and XI. Temperature: 37°C.
pH: 7.5.

[45]
Km = 4.9× 10−7M ,
kcat = 7.7s−1

Human FXI purified from plasma activated by
bovine FXIIa. Human factor IX. Temperature:
37°C. pH: 7.5.

Chosen values: Km = 0.42µM(10∧N(−6.38, 0.372), 5% = 1.03×10−7, 95% =
1.70 × 10−6), kcat = 0.74s−1(10 ∧ N(−0.13, 0.652), 5% = 6.24 × 10−2, 95% =
8.72)

Table E.55: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FIX activation by FXIa.

VIII IIa→ VIIIa
Citation Rates Notes

[66]
Km = 1.47× 10−7M ,
kcat = 0.9s−1

PCPS (75/25). Porcine factor VIII from
plasma. Porcine FIIa. Room temperature. pH:
7. Values given are for cleavage at position 372
which is the rate limiting step.

[47]
kcat
Km

= 5× 106M−1s−1

PCPS (25/75) PC (type III-E) and PS pur-
chased from Sigma. Porcine FVIII and FIIa.
Temperature: 22°C. pH: 7.4. Also gives activa-
tion by Xa.

Chosen values: Km = 147nM(10 ∧N(−6.83, 2.52), 5% = 1.13× 10−11, 95% =
1.90× 10−3), kcat = 0.8s−1(10 ∧N(−0.09, 0.062), 5% = 0.64, 95% = 1.03)

Table E.56: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FVIII activation by FIIa.
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VIII Xa→ VIIIa
Citation Rates Notes

[47]
kcat
Km

= 1.1× 106M−1s−1

PCPS (25/75) PC (type III-E) and PS pur-
chased from Sigma. Porcine FVIII and
FXa. Temperature: 22°C. pH: 7.4. Also
gives activation by IIa.

Chosen values: Km = 147nM(10 ∧N(−6.83, 2.52), 5% = 1.13× 10−11, 95% =
1.90 × 10−3), kcat = 0.16s−1(10 ∧ N(−0.79, 2.52), 5% = 1.25 × 10−5, 95% =
2.10× 103). Km assumed same as for IIa

Table E.57: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FVIII activation by FXa.

VIIIa ↔ VIIIa1L + VIIIa2
Citation Rates Notes

[13] k+ = 5.8× 10−3s−1,
Kd = 2.73× 10−7M

PCPS (75/25). Human FVIIIa. Tempera-
ture: 22°C. pH: 7.4.

[14] Kd = 2.58× 10−7M Human FVIII from Cutter Division of Miles
Laboratories. Temperature: 22°C. pH: 7.4.
Kd is heavily pH dependent.

Chosen values: Kd = 265nM(10 ∧N(−6.58, 0.022), 5% = 2.49× 10−7, 95% =
2.83×10−7), k+ = 5.8×10−3s−1(10∧N(−2.24, 2.52), 5% = 4.48×10−7, 95% =
7.51× 101) therefore k− = 2.19× 104M−1s−1 ∗

Table E.58: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FVIIIa breaking into its long and
short sub-units.

IXa:VIIIa → VIIIa1L + VIIIa2 + IXa
Citation Rates Notes

[15] k = 1.4× 10−3s−1 Fitted using a small model for FIX, FVIII
and FX. Recombinant FVIII from Dr. Jim
Brown of Bayer Corp. and Debra Pittman
of the Genetics Institute. Factors IXa and
X from Enzyme Research Laboratories. pH:
7.2.

Chosen values: k+ = 1.4 × 10−3s−1(10 ∧ N(−2.85, 2.52), 5% = 1.09 ×
10−7, 95% = 1.83× 101)

Table E.59: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FVIIIa breaking into its long and
short sub-units while it is in the complex IXa:VIIIa.

∗k+ refers to the forwards rate which in this case is the disassociation. This means Kd = k+

k−
.
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IXa + VIIIa ↔ IXa:VIIIa
Citation Rates Notes

[11] Kd = 2× 10−9M PCPS (75/25) from PC and PS purchased
from Sigma. Porcine FIXa and FVIIIa.
Temperature: 25°C. pH: 7.4.

[30] Kd = 4× 10−9M PCPSPE (40/20/40) from Sigma. Recom-
binant factor VIII gift of the Bayer Corpo-
ration. Factor IX from Enzyme Research
Laboratories.

[31] Kd = 5.5× 10−10M PCPS (50/50) using synthetic PC and PS
purchased from Supelco Inc, Bellefonte, PA.
Human FIXa. Human FVIIIa from plasma.
Temperature: 37°C. pH: 7.4.

Chosen values: Kd = 3.5nM(10 ∧ N(−8.45, 0.222), 5% = 1.51 × 10−9, 95% =
8.27 × 10−9), k+ = 1 × 107M−1s−1(10 ∧ N(7, 2.52), 5% = 7.72 × 102, 95% =
1.30× 1011)† therefore k− = 0.035s−1

Table E.60: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FIXa and FVIIIa associa-
tion/dissociation.

IXa + AT → IXa:AT
Citation Rates Notes

[23] k = 490M−1s−1 Human FIXa, FVIIIa and AT. Absence of
heparin (k = 5 × 106M−1s−1 in presence
of heparin). Also gives FIIa and FXa. Tem-
perature: 37°C. pH: 7.5.

Chosen values: k+ = 490M−1s−1(10∧N(2.69, 2.52), 5% = 3.78× 10−2, 95% =
6.35× 106)

Table E.61: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FIXa inhibition by AT.

†k+ assumed value of 1× 107M−1s−1.
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IXa:VIIIa + AT → IXa:VIIIa:AT
Citation Rates Notes

- - No source. Assumed rate using IXa+AT
reaction and the ratio of Xa+AT and
Xa:Va+AT from [103].

Chosen values: k+ = 317M−1s−1(10∧N(2.50, 2.52), 5% = 2.45× 10−2, 95% =
4.11× 106)

Table E.62: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for IXa:VIIIa inhibition by AT.

E.6 TFPI Module

Model Reactions

This module comprises of the reactions that cover the inhibition of FXa and
TF:VIIa by TFPI. The reactions included in previous mathematical models and
those in the Unified Model are described in Table E.63 while the former are de-
picted in Figure E.13 and the latter in Figure E.14. The Improved Unified Model
uses identical reactions and reaction rates.

Models Reactions

Hockin, Danforth, Xa + TFPI ↔ Xa:TFPI
Brummel and TF:VIIa:Xa + TFPI ↔ TF:VIIa:Xa:TFPI
Chatterjee TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI

Bungay Xaf + TFPIf ↔ Xa:TFPIf
TF:VIIaL + Xa:TFPIf ↔ TF:VIIa:Xa:TFPIL

Tyurin and Zhu Xa + TFPI → Xa:TFPI
TF:VIIa + Xa:TFPI → TF:VIIa:Xa:TFPI

Unified Xa + TFPI ↔ Xa:TFPI
TF:VIIa + Xa:TFPI ↔ TF:VIIa:Xa:TFPI

Improved Unified Xa + TFPI ↔ Xa:TFPI
TF:VIIa + Xa:TFPI ↔ TF:VIIa:Xa:TFPI

Table E.63: The reactions that are used in the different models and our choice of
reactions for the TFPI module.
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Network Diagrams

Figure E.13: A network diagram for the TFPI module reactions that are included
in previous models.

Figure E.14: A reaction diagram for our chosen reactions to be included in the
Unified Model and Improved Unified Model for the TFPI module.
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Reaction rates for previous models

Reaction Model Model values Data values

Xa + TFPI ↔ Xa:TFPI

Hockin,
k+ = 9× 105M−1s−1, k− =
3.6× 10−4s−1

[20] gives k+ = 9× 105M−1s−1, k− =
3.6× 10−4s−1.

Danforth,
Brummel,
Chatterjee

Bungay k+ = 1.6× 107M−1s−1, k− =
3.3× 10−4s−1

[70] gives k+ = 1.6 ×
107M−1s−1, k− = 3.3× 10−4s−1.

Tyurin,
k+ = 1.6× 107M−1s−1 [70] gives

k+ = 1.6× 107M−1s−1, k− =
3.3× 10−4s−1.

Zhu

TF:VIIa + Xa:TFPI ↔ TF:VIIa:Xa:TFPI

Hockin,

k+ = 5× 107M−1s−1

[20] gives
k+ = 7.34× 106M−1s−1, k− =
1.1× 10−3s−1.

Danforth,
Brummel,
Chatterjee

Bungay- k+ = 1 × 107M−1s−1, k− =
1.1× 10−3s−1

[70] gives k+ = 1.07 × 107M−1s−1

and [20] gives k+ = 7.34 ×
106M−1s−1, k− = 1.1× 10−3s−1.

Tyurin
k+ = 1.1× 107M−1s−1 [70] gives k+ = 1.07× 107M−1s−1.Zhu

TF:VIIa:Xa + TFPI ↔ TF:VIIa:Xa:TFPI

Hockin,
k+ = 3.2× 108M−1s−1, k− =
1.1× 10−4s−1

Unclear how these rates were
chosen. The cited source, [20],
suggests equivalent to Xa and TFPI
binding ie k+ =
9× 105M−1s−1, k− = 3.6× 10−4s−1

based on scheme 2 description.

Danforth,
Brummel
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Chatterjee k+ = 3.2× 108M−1s−1, k− =
1.1× 10−2s−1

Hockin value multiplied by 100 based
on: Data from [20] suggests that the
original data fitting for the reaction
produces a complex that binds too
strongly.

Table E.64: The parameter values used by each of the models along with the accompanying reference and original data value for each of
the reactions in the TFPI module.

436



Choosing Parameters

There are no changes between the Unified Model reaction rates and the Improved
Unified Model reaction rates for this module. Below gives the sources and prior
distributions for both models.

Xa + TFPI ↔ Xa:TFPI
Citation Rates Notes

[20] Kd = 0.4nM ,
k+ = 9× 105M−1s−1,
k− = 3.6× 10−4s−1

Human factor X from plasma activated by
RVV. Recombinant full length TFPI. Ambi-
ent temperature (estimated at 23±2°C). pH:
7.5.

[70] Kd = 21pM ,
k+ = 1.6× 107M−1s−1,
k− = 3.3× 10−4s−1

Human factor X from Charles Heldebrant
of Alpha Therapeutics. Recombinant TFPI.
Temperature: 25°C. pH: 7.5.

Chosen values: Kd = 92pM(10 ∧N(−10.03, 0.902), 5% = 3.09× 10−12, 95% =
2.82×10−9), k+ = 3.8×106M−1s−1(10∧N(6.58, 0.882), 5% = 1.36×105, 95% =
1.07× 108) therefore k− = 3.5× 10−4s−1

Table E.65: The prior distributions and reaction rates used to inform the prior
distributions for both the Unified Model and the Improved Unified Model for FXa
and TFPI association/dissociation.
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TF:VIIa + Xa:TFPI ↔ TF:VIIa:Xa:TFPI
Citation Rates Notes

[20] Kd = 0.15nM ,
k+ = 7.34× 106M−1s−1,
k− = 1.1× 10−3s−1

Recombinant human TF a gift from from
Genentech, South San Francisco, CA re-
constituted into PCPS (75/25) hen egg PC
and bovine brain PS purchased from Sigma.
Human factor X from plasma activated by
RVV. Recombinant human factor VIIa pur-
chased from Novo-Nordisk, Gentofte, Den-
mark. Recombinant full length TFPI. Am-
bient temperature (estimated at 23±2°C).
pH: 7.5.

[70]
k+ = 1.07× 107M−1s−1

Recombinant human TF relipidated into
PCPS (70/30) from Sigma. PCPS (50/50)
vesicles. Human factor X Charles Helde-
brant of Alpha Therapeutics. Recombinant
human factor VIIa was supplied by Novo
Nordisk, Bagsvaerd, Denmark. Recombi-
nant TFPI. Temperature: 37°C. pH: 7.5.

Chosen values: Kd = 0.15nM(10 ∧N(−9.82, 2.52), 5% = 1.17× 10−14, 95% =
1.96×10−6), k+ = 8.9×106M−1s−1(10∧N(6.95, 0.122), 5% = 5.66×106, 95% =
1.40× 107) therefore k− = 1.3× 10−3s−1

Table E.66: The prior distributions and reaction rates used to inform the prior
distributions for both the Unified Model and the Improved Unified Model for
Xa:TFPI and TF:VIIa association/dissociation.

E.7 Other Inhibitors Module

Model Reactions

This module is only relevant for the Improved Unified Model and is not included in
the previous versions. This module comprises of the reactions of inhibitors (other
than AT and TFPI). The reactions used in the models we have examined are given
in Table E.67 as well as the reactions that we have chosen to try to encompass all
the effects.

Models Reactions

Tyurin

IIa + α1-AT → IIa:α1-AT
Xa + α1-AT → Xa:α1-AT

Xa:Va + α1-AT → Xa:α1-AT + Va
XIa + α1-AT → XIa:α1-AT
XIa + α2-AP → XIa:α2-AP
IIa + α2-M → IIa:α2-M

XIa + PAI-1 → XIa:PAI-1
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XIa + C1-inh → XIa:C1-inh

Zhu

IIa + α1-AT → IIa:α1-AT
Xa + α1-AT → Xa:α1-AT
XIa + α1-AT → XIa:α1-AT
XIa + α2-AP → XIa:α2-AP
IIa + α2-M → IIa:α2-M

XIa + PAI-1 → XIa:PAI-1
XIa + C1-inh → XIa:C1-inh

Chatterjee
XIa + α1-AT → XIa:α1-AT
XIa + α2-AP → XIa:α2-AP
XIa + C1-inh → XIa:C1-inh

Improved Unified

IIa + α1-AT → IIa:α1-AT
Xa + α1-AT → Xa:α1-AT

Xa:Va + α1-AT → Xa:α1-AT + Va
XIa + α1-AT → XIa:α1-AT
XIa + α2-AP → XIa:α2-AP
IIa + α2-M → IIa:α2-M

XIa + PAI-1 → XIa:PAI-1
XIa + C1-inh → XIa:C1-inh

Table E.67: The reactions that are used in the different models and our choice of
reactions for the Inhibitors module.
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Reaction rates for previous models

Reaction Model Model values Data values

IIa + α1-AT → IIa:α1-AT Tyurin,
78.3M−1s−1 Used in [101]. Averaged: [99] gives

108.5M−1s−1, [100] gives 48M−1s−1.Zhu

Xa + α1-AT → Xa:α1-AT Tyurin,
262M−1s−1 [103] gives 262M−1s−1.Zhu

Xa:Va + α1-AT → Xa:α1-AT + Va Tyurin 262M−1s−1 [103] reports same as for FXa.

XIa + α1-AT → XIa:α1-AT
Tyurin,

66.7M−1s−1 [104] gives 68M−1s−1.Zhu

Chatterjee 100M−1s−1 [44] gives 100M−1s−1.

XIa + α2-AP → XIa:α2-AP

Tyurin,
500M−1s−1 [104] gives 1000M−1s−1, and also reports a

reduced in rate of inhibition when in the
presence of HMWK (at a factor of around 1/2
for C1-inh).

Zhu

Chatterjee 4.3×103M−1s−1 [44] gives 4.3× 102M−1s−1.

IIa + α2-M → IIa:α2-M
Tyurin,

488M−1s−1 [99] gives 488M−1s−1 (Zhu reports using [100]
however this source does not provide a value for
α2-M on IIa and Zhu likely used [99] instead).

Zhu

XIa + PAI-1 → XIa:PAI-1 Tyurin,
2.1×105M−1s−1 [105] gives 2.1× 105M−1s−1.Zhu
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XIa + C1-inh → XIa:C1-inh

Tyurin,
16.7M−1s−1 [104] gives 667M−1s−1, and also reports a

reduced in rate of inhibition when in the
presence of HMWK (at a factor of around 1/2
for C1-inh). [101] reduced this rate more than
others when accounting for HMWK but it is not
clear why.

Zhu

Chatterjee 1.8×103M−1s−1 [44] gives 1.8× 103M−1s−1.

Table E.68: The parameter values used by each of the models along with the accompanying reference and original data value for each of
the reactions in the Inhibitors module.
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Choosing Parameters

IIa + α1-AT → IIa:α1-AT
Citation Rates Notes

[99] 108.5M−1s−1 Human thrombin activated by a mixture of hu-
man and bovine factors. pH: 7.4. Temperature:
37°C.

[100] 48M−1s−1 Human α1-AT and FIIa. pH: 8. Temperature:
25°C.

Chosen values: k+ = 72M−1s−1(10 ∧N(1.86, 0.252), 5% = 23, 95% = 223)

Table E.69: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FIIa inhibition by α1-AT. These
reactions are not part of the Unified Model.

Xa + α1-AT → Xa:α1-AT
Citation Rates Notes

[103] 262M−1s−1 RVV from Sigma. Human FX and α1-AT with
FX being activated by RVV. pH: 7.4. Temper-
ature: 37°C.

Chosen values: k+ = 262M−1s−1(10 ∧ N(2.42, 2.52), 5% = 3 × 10−3, 95% =
2.1× 107)

Table E.70: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FXa inhibition by α1-AT. These
reactions are not part of the Unified Model.

Xa:Va + α1-AT → Xa:α1-AT + Va
Citation Rates Notes

[103] 262M−1s−1 Bovine brain PS, PC and RVV from Sigma.
Human FX and α1-AT with FX being acti-
vated by RVV. Bovine FV activated by human
FIIa. pH: 7.4. Temperature: 37°C.

Chosen values: k+ = 262M−1s−1(10 ∧ N(2.42, 2.52), 5% = 3 × 10−3, 95% =
2.1× 107)

Table E.71: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for Xa:Va inhibition by α1-AT. These
reactions are not part of the Unified Model.
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XIa + α1-AT → XIa:α1-AT
Citation Rates Notes

[104] 66.7M−1s−1 Human FXI from plasma. Temperature: 37°C.
[44] 100M−1s−1 Purified FXIa from Kordia Laboratory Sup-

plies, Leiden, The Netherlands. α1-AT from
Calbiochem. pH: 7.4. Temperature: 37°C.

Chosen values: k+ = 82M−1s−1(10 ∧N(1.91, 0.122), 5% = 47, 95% = 143)

Table E.72: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FXIa inhibition by α1-AT. These
reactions are not part of the Unified Model.

XIa + α2-AP → XIa:α2-AP
Citation Rates Notes

[104] 1000M−1s−1 [122] (pH: 7.5. Temperature: 37°C) reported
that at physiological concentrations α2-AP
inhibits the same amount of FXIa as C1-inh.
[104] then calculates what value this should be
using their value for C1-inh inhibition of FXIa.

[44] 4.3× 102M−1s−1 Purified FXIa from Kordia Laboratory Sup-
plies, Leiden, The Netherlands. α2-AP from
Calbiochem. pH: 7.4. Temperature: 37°C.

Chosen values: k+ = 656M−1s−1(10 ∧N(2.82, 0.262), 5% = 204, 95% = 2112)

Table E.73: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FXIa inhibition by α2-AP. These
reactions are not part of the Unified Model.

IIa + α2-M → IIa:α2-M
Citation Rates Notes

[99] 488M−1s−1 Human thrombin activated by a mixture of
human and bovine factors. Human α2-M from
Dr. Margaret Hunter (Institute of Science and
Technology, University of Michigan). pH: 7.4.
Temperature: 37°C.

Chosen values: k+ = 488M−1s−1(10 ∧ N(2.69, 2.52), 5% = 6.1 × 10−3, 95% =
3.9× 107)

Table E.74: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FIIa inhibition by α2-M. These
reactions are not part of the Unified Model.
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XIa + PAI-1 → XIa:PAI-1
Citation Rates Notes

[105] 2.1× 105M−1s−1 Purified human PAI-1 and FXIa. pH: 8.2.
Temperature: 37°C.

Chosen values: k+ = 2.1 × 105M−1s−1(10 ∧ N(5.32, 2.52), 5% = 2.64, 95% =
1.67× 1010)

Table E.75: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FXIa inhibition by PAI-1. These
reactions are not part of the Unified Model.

XIa + C1-inh → XIa:C1-inh
Citation Rates Notes

[104] 667M−1s−1 C1-inh from Dr. Milan Wickerhauser. Human
FXI from plasma. Temperature: 37°C.

[44] 1.8× 103M−1s−1 Purified FXIa from Kordia Laboratory Sup-
plies, Leiden, The Netherlands. C1-inh from
Behringwerke AG, Marburg, Germany. pH: 7.4.
Temperature: 37°C.

Chosen values: k+ = 1096M−1s−1(10∧N(3.04, 0.302), 5% = 277, 95% = 4337)

Table E.76: The prior distributions and reaction rates used to inform the prior
distributions for the Improved Unified Model for FXIa inhibition by C1-inh. These
reactions are not part of the Unified Model.

E.8 Fibrinogen Module

Model Reactions

This module is only relevant for the Improved Unified Model and is not included
in the previous versions. This module comprises of the reactions that cover the
activation of fibrinogen (FI) by FIIa. The reactions used in the models we have
examined are given in Table E.77 as well as the reactions that we have chosen
to try to encompass all the effects. Only 2 models use fibrinogen, with only the
Chatterjee model using Mass Action law to incorporate the competitive inhibition
effect. The implementation of fibrinogen given in the Chatterjee model is derived
from another model [51]. Our assay restricts fibrin monomers from binding to-
gether so reactions involving (Fbn1)2 and (Fbn2)2 are dropped for our model.

Models Reactions

Chatterjee

Fbg + IIa ↔ Fbg:IIa
Fbg:IIa → Fbn1 + IIa + FPA

Fbn1 + IIa ↔ Fbn1:IIa
Fbn1:IIa → Fbn2 + IIa + FPB
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Fbn1 + Fbn1 ↔ (Fbn1)2

(Fbn1)2 + IIa ↔ (Fbn1)2:IIa
(Fbn1)2:IIa → (Fbn2)2 + IIa + FPB

Fbn2 + IIa ↔ Fbn2:IIa
(Fbn1)2:IIa + AT → (Fbn1)2:IIa:AT

Fbn1:IIa + AT → Fbn1:IIa:AT
Fbn2:IIa + AT → Fbn2:IIa:AT

Zhu I IIa→ Ia

Improved Unified

Fbg + IIa ↔ Fbg:IIa
Fbg:IIa → Fbn1 + IIa + FPA

Fbn1 + IIa ↔ Fbn1:IIa
Fbn1:IIa → Fbn2 + IIa + FPB

Fbn2 + IIa ↔ Fbn2:IIa
Fbn1:IIa + AT → Fbn1:IIa:AT
Fbn2:IIa + AT → Fbn2:IIa:AT

Table E.77: The reactions that are used in the different models and our choice of
reactions.

Reaction rates for previous models

The fibrinogen model [51] features fibrinogen activation which can be included
directly into the model as well as inhibition of fibrin-bound FIIa by AT. For
the inhibition, the model describes a reduction in reaction rate for inhibition of
Fbn2:IIa compared to the others, but because the models free inhibition of FIIa
by AT is larger than that used by our models, the rate cannot be directly included
(this is the reason AT inhibitions of the fibrin-IIa complexes are not included in
the Expanded Fibrinogen model). The original source for this discovery [54] found
that the inhibition of Fbn2:IIa is 1.6× slower than that of free FIIa so we have
used this ratio instead to derive our own rate. The original sources for these re-
action rates are reported in Table D.3.
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Choosing Parameters

Reaction Rate Prior 5% 95%

Fbg + IIa → Fbg:IIa 1× 108M−1s−1 10 ∧N(8, 1.52) 1.15× 105 8.71× 1010

Fbg + IIa ← Fbg:IIa 636s−1 10 ∧N(2.80, 1.52) 0.724 5.50× 105

Fbg:IIa → Fbn1 + IIa + FPA 84s−1 10 ∧N(1.92, 1.52) 9.55× 105 7.24× 104

Fbn1 + IIa → Fbn1:IIa 1× 108M−1s−1 10 ∧N(8, 1.52) 1.15× 105 8.71× 1010

Fbn1 + IIa ← Fbn1:IIa 742.6s−1 10 ∧N(2.87, 1.52) 0.851 6.46× 105

Fbn1:IIa → Fbn2 + IIa + FPB 7.45s−1 10 ∧N(0.87, 1.52) 8.51× 10−3 6.46× 103

Fbn2 + IIa → Fbn2:IIa 1× 108M−1s−1 10 ∧N(8, 1.52) 1.15× 105 8.71× 1010

Fbn2 + IIa ← Fbn2:IIa 1× 103M−1s−1 10 ∧N(3, 1.52) 1.15 8.71× 105

Fbn1:IIa + AT → Fbn1:IIa:AT 6.1× 103M−1s−1 10 ∧N(3.79, 1.52) 7.08 5.37× 106

Fbn2:IIa + AT → Fbn2:IIa:AT 3.8× 103M−1s−1 10 ∧N(3.58, 1.52) 4.37 3.31× 106

Table E.78: The reaction rates, with priors, 5th and 95th percentiles, for the fibrinogen module reactions.
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Appendix F

Unified Model Sensitivity Analysis

We have conducted the reaction rate sensitivity described in Section 2.5 on the
Improved Unified Model with the gradient descent fitted rates found at the end
of Chapter 6 (when all reaction rates were fitted). In order to implement the
original sensitivity analysis method, the reactions in the Fibrinogen and Other In-
hibitor modules were removed, as was done with similar reactions in Section 2.5.
The rates are perturbed in the mass action form and the sensitivity of enzymatic
activations is taken as the maximum sensitivity of the mass action reactions of
which it is comprised. We did keep in the reactions for the chromogenic substrate,
since removing it dramatically alters model predictions to the point of making
sensitivity analysis results without it uninformative. Due to this, the thrombin
generation curve on which we calculate the summary statistics was given as the
thrombin concentration plus the additional thrombin which is bound to the chro-
mogenic substrate. The resulting sensitivity distribution is given by Figure F.1.

Compared with the results from the previous models, described in Section 2.5,
the main points that stand out for the Improved Unified Model are:

• Initiation is predominantly driven by the feedback loop between TF:VIIa
and FXa, the same reactions explored in Section 5.4.

• The model is incredibly sensitive to the reaction rates for the chromogenic
substrate.

• The model is very insensitive to reactions involving FXI, in particular, its
auto-activation.
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Figure F.1: The reaction rate sensitivity analysis results for the Improved Unified
Model, given as a network diagram coloured by sensitivity as a proportion of
the most sensitive reaction rate. Sensitive reactions are coloured in red, while
insensitive reactions are given in grey. Reactions with an average level of sensitivity
(≈ 10%) are coloured in blue.
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