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Abstract 

Additive Manufacturing (AM) is a class of manufacturing techniques that relies 

on joining material, layer-upon-layer, to create the final object. With 

significantly lower barriers to manufacturing-on-demand and fulfilling product 

variety, AM is predicted to cause a disruptive revolution in manufacturing and 

product-service industries. However, mainstream adoption of AM, particularly 

at scale, is hindered by a lack of suitable operations management 

understanding, exacerbating issues related to productivity and high cost. 

Therefore, this thesis attempts to provide a path towards efficient AM 

operations at scale. This is done by addressing key process efficiency concerns 

via operations management interventions and thus developing best practice 

recommendations for AM users.  

The methodological approach in this research is quantitative exploratory 

simulation of process planning in the AM system, spanning decisions at the 

build level-of-abstraction through to the whole production facility. Relevant 

metrics are developed to capture the impact of process planning on production 

losses and production cost, and evaluate the underlying mechanisms of 

efficient, effective production using the example of polymer laser sintering. 

The results of this work provide guidelines for AM users that centre on three 

overarching themes. First, production losses at the AM machine are reduced, 

and thus value-adding capacity is increased, by maximising the use of machine 

capacity in each build. Second, integrated optimisation of part allocation, 

packing and build scheduling leads to more cost-effective and cost-consistent 

AM workflows, driven by a trade-off between capacity-, failure-, and schedule 

adherence-related costs. Third, the implementation of manufacturing cells in 

AM production facilities can significantly reduce non-value-adding time in the 

AM workflow, at the expense of poorer flexibility in expanding the facility as 

the production scale increases. Overall, this thesis argues that process planning 

can be successfully leveraged to improve process efficiency and, thus, 

attractiveness of AM for future adopters.  
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1 Introduction 

Additive Manufacturing (AM) is a class of manufacturing techniques that relies 

on joining material, layer-upon-layer, to create the final object. This contrasts 

to subtractive manufacturing, which removes material from a block workpiece 

to achieve the final form, and formative manufacturing, which typically uses 

pressure and/or heat to manipulate the raw material into the final form. 

A key characteristic of AM is the ability to produce objects directly from digital 

models, without the need for intermediate moulds or tooling. Consequently, 

the manufacturing process can be initiated easily and repeatedly, underpinning 

the history of AM use in prototyping applications. Furthermore, the 

economically-feasible batch size falls to one, and pre-existing design-for-

manufacturing constraints are relaxed. This has led to significant interest in the 

adoption of AM for end-part production, or direct digital manufacturing 

(Holmström et al., 2016). 

Early hype suggested that AM would support limitless geometric freedom and 

widespread manufacture at the point-of-use, with the cost of production 

independent of the production scale (Garrett, 2014; Ben-Ner and Siemsen, 

2017). It was claimed that AM would cause paradigm shifts in supply chains 

(e.g. decentralised and localised production), business models (e.g. prosumers), 

and production processes (e.g. print entire products in one step), among others 

(D’Aveni, 2015). However, as of 2022, the market share of AM is still less than 

0.1% of the global manufacturing industry, at USD 15.2 billion out of USD 44.5 

trillion (AMFG, 2020; Geiselman, 2022; Interact Analysis, 2022). This shows that 

the early, albeit optimistic, expectations of an AM revolution have not been 

met yet.  

On the other hand, the Wohlers report found that the AM market has grown 

by 19.5% from 2021 to 2022, and more notably, the share of AM use for end-

part production has risen to just over one third of all AM applications 

(Geiselman, 2022). Expanding further, Sculpteo’s survey of AM users shows 
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that the production of “end-use, functional parts” is the top use case among 

so-called “Power Users”, who have over five years of industrial experience with 

AM (Sculpteo, 2022). Therefore, there is demonstrable potential and interest 

in direct digital manufacturing using AM. 

Bringing this together, the underlying rationale of this thesis is to help bridge 

the gap between expectation and reality for direct digital manufacturing. This 

will be achieved by investigating the role of operations management in 

overcoming the barriers to AM technology adoption to both unlock the 

potential for direct digital manufacturing and encourage wider use of AM. The 

remainder of this introductory chapter is organised as follows. Section 1.1 

describes the background to the field of study and explains the significance of 

the operations management perspective in AM technology adoption. Section 

1.2 summarises the research gap in the extant literature and explains how this 

motivates the doctoral research presented in this thesis. Section 1.3 outlines 

the research aims and objectives that arise, followed by a summary of the thesis 

structure in Section 1.4 and the published research outputs in Section 1.5. 

1.1 Research Context 

1.1.1 AM Use Case 

Throughout this thesis, the use case for AM-based direct digital manufacturing 

is the fulfilment of an incoming order stream, containing different and 

unrelated parts, using polymer laser sintering. This is synonymous to the 

operations for an AM service bureau, who provide on-demand manufacturing-

as-a-service to customers, but typically do not engage in design or product 

development themselves (Piller, Weller and Kleer, 2015).  

In this particular use case, revenue is generated by exploiting the ability of AM 

to produce dissimilar parts concurrently, which then introduces the challenge 

of managing different product streams (Holmström et al., 2016). Profitability 

also depends on both effective and efficient operations, in terms of both time 

and cost, which becomes a common theme in the research. Most importantly, 
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AM bureaus are not limited in operations to low-volume production; and thus 

the question of scaling up AM adoption and operations can be adequately 

explored. To support this, a case study company that operates an AM service 

bureau is used to inform and inform part of the research conducted. 

Laser sintering, which is a powder-bed fusion AM technique, is chosen as the 

reference AM process due to its applicability to industrial AM. A notable feature 

of laser sintering is the ability to stack parts in 3D to utilise the entire build 

volume (Baumers and Holweg, 2019), rather than being built on the base alone. 

Laser sintering is therefore often more resource-efficient than alternative 

polymer AM processes (Hopkinson and Dickens, 2003). The industrial 

applicability of laser sintering is further driven by two factors: the mechanical 

strength of parts produced, which are often similar to conventionally 

manufactured parts (Bourell et al., 2014); and the potential to process a wide 

variety of materials, particular engineering polymers, which have favourable 

mechanical and thermal properties (Goodridge, Tuck and Hague, 2012; Tan, 

Zhu and Zhou, 2020). Thus, laser sintering is often a feasible alternative to 

conventional polymer manufacturing processes such as injection moulding. 

While the scope and findings of this research are linked to the characteristics 

of laser sintering, generalisable insights will be drawn that apply to AM 

operations more widely. To support this, the wider AM context is explored first. 

1.1.2 Technology Adoption of AM  

A realistic re-interpretation of the early hype around an AM revolution is to 

describe AM as a potential “general purpose technology” (GPT). The term refers 

to technologies that have a transformative effect on businesses, households 

and entire economies through gains in productivity and onward innovations 

(Bresnahan and Trajtenberg, 1995; Jovanovic and Rousseau, 2005). AM 

confidently meets all three qualifying characteristics of GPTs: AM is used in a 

variety of industries already (e.g. medical devices, consumer goods, aerospace), 

demonstrating pervasiveness; AM equipment and technology have evolved and 

improved over time, improving accessibility and cost for users; and finally, a 
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multitude of complementary innovations have arisen (and continue to emerge) 

based on AM, from applications with new functionality based on geometric and 

multi-material capabilities of AM to new manufacturing-as-a-service business 

models (Garrett, 2014; Choi, 2018). Therefore, the premise in this thesis is that 

higher adoption of AM will lead to wide-ranging benefits, as per GPTs. 

The adoption of GPTs occurs over prolonged periods of time, upwards of 30 

years, and consequent improvements in productivity are not immediately felt 

(Jovanovic and Rousseau, 2005). Given that AM was first developed in the 

1980s, it follows that the journey of AM towards full GPT status is still ongoing. 

AM users and the wider market will encounter milestones along the way, 

underpinned by strategic imperatives of growth, innovation, and performance 

(Cotteleer and Joyce, 2014). From the product perspective, this will include 

faster innovation cycles and the development of new products with improved 

performance, thanks to AM capabilities. From the process and organisation 

perspective, there will be new fulfilment pathways based on the flexibility of 

AM operations, alongside new business models that exploit the economic 

characteristics of AM to deliver higher growth and innovation. Finally, beyond 

the organisation, new supply chains and market interactions will arise from the 

digital thread that supports AM, leading to better performance.  

Like other GPTs, AM exists as part of a wider “ecosystem” of processes and 

value chains, which includes machines and materials in the physical realm, and 

design platforms in the digital realm (Piller, Weller and Kleer, 2015). For each 

firm within the AM ecosystem, there are multiple challenges to overcome while 

working towards the above milestones to successfully adopt AM and realise the 

associated benefits. Mellor et al. (2014) provide a comprehensive framework 

of the different aspects of technology implementation for AM, as seen in Figure 

1.1. The research in this thesis focuses on the operations part of this 

framework, in particular the elements of process planning, cost accounting, and 

integration across the AM workflow. Therefore, the contribution of this thesis 

will be to examine the OM barriers to AM adoption and provide suitable tools 

for new or potential users of AM to overcome these. 
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Figure 1.1: Areas contributing to successful AM technology implementation, 

adapted from Mellor et al. (2014) 

1.1.3 Scaled-Up AM 

In transitioning from a technology adoption mindset to an operations mindset, 

it is important to first clarify the current extent of AM adoption for direct digital 

manufacturing and the presumed path of forward adoption. This helps explain 

the scope for scaled-up AM and associated operations research in this thesis.  

To date, AM has gained acceptance as a viable method for low volume 

applications, based on process economics (Baumers et al., 2016). However, to 

tip the momentum of adoption towards GPT status, AM operations and process 

economics must improve for certain medium and high volume applications as 

well. It is expected that AM use can then spread, in terms of increasing both 

the number of companies using AM and the economically viable throughput 

quantity. In addition to the use case in this research (higher-throughput AM 

service bureaus), scaled-up AM may be seen in mass customisation or 

production workflows for high-value or complex parts in large quantities. 
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A key competitive advantage for AM in this scenario will be to deliver more 

responsive and flexible production at scale than subtractive and formative 

manufacturing processes (Additive Manufacturing UK, 2015). This supports 

meeting future trends of increasingly short product life cycles and customer 

demands for products that better fit their needs (Bohlmann et al., 2013).  

Increased scale in manufacturing systems can be achieved in two ways, through 

upgrade and through replication (Putnik et al., 2013). Upgrade refers to 

upsizing the characteristics in individual elements of the manufacturing system, 

such as build volume dimensions or number of lasers in AM machines (Figure 

1.2a). Given that AM machines have fixed volumetric capacity, increasing scale 

through upgrade is not currently possible without technological innovation. On 

the other hand, replication is to link together individual elements to form a 

network of scaled-up capacity (Figure 1.2b). Scaling up via replication can be 

achieved with existing AM equipment, requiring only the installation and 

operational integration of new machines into the AM workflow. Furthermore, 

it is suggested that replication offers better flexibility in AM operations, 

improving the responsiveness to demand and resilience of the manufacturing 

system to poor reliability (Eyers et al., 2018). Therefore, this thesis focuses on 

replication as the more viable path towards medium-to-high volume direct 

digital manufacturing, and this is hereafter referred to as scaled-up AM.  

 

Figure 1.2: Increasing scale in manufacturing systems through a) upgrade or b) 

replication, adapted from Putnik et al. (2013) 
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1.1.4 Operations Management of Scaled-Up AM 

To open with a definition, operations management is “managing inputs 

(resources) through transformation processes to deliver outputs (service or 

products)” (Rowbotham, Galloway and Azhashemi, 2007, p. 2). This can be split 

into two objectives for the transformation process: effectiveness, delivering 

products and services to meet the intended purpose; and efficiency, improving 

the ratio of the transformed outputs to the required inputs (Naylor, 2002, p. 7).  

The effectiveness of AM in responsive and short lead time direct digital 

manufacturing is well-established. However, the bottleneck for further 

adoption and implementation at scale lies in the efficiency of AM operations. 

In particular, the efficient use of the equipment resources in the AM process 

remains an issue. Challenges such as slow process speed, high equipment cost, 

and variation in quality of the output increase the time, cost and labour 

required for production (Baumers et al., 2016). Therefore, developing suitable 

AM operations systems to mitigate these issues is imperative to promote wider 

AM use, and this requires a holistic approach to operations management. 

There are four interlinked areas that contribute to successful implementation 

of transformation processes: capacity management, scheduling, inventory 

management and control (Naylor, 2002, pp. 19–20); and these can be further 

described from a manufacturing perspective. The goal of capacity management 

is to design and manage the process to maintain desired levels of throughput; 

this concerns medium-to-long term equipment investment and work flow 

design decisions to achieve the required output in parts per time period. 

Moving to a short term perspective, scheduling entails the planning of activities 

and allocation of resources to optimise the process time, cost, and other 

relevant objectives. Inventory management supports the scheduling facet of 

operations by maintaining sufficient stocks of materials, work-in-progress 

(WIP), and finished goods to ensure smooth process activities and fulfilment of 

customer demand. Encompassing all three areas, control involves monitoring 

the process and taking corrective action, where necessary, to ensure that 
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performance objectives are met in areas such as time, cost, quality, robustness 

to disturbances, and so on (Buffa, 1980). Figure 1.3 illustrates the relationship 

between these four elements of operations management.  

 

Figure 1.3: Facets of operations management for transformative processes 

In manufacturing systems involving networks of dedicated equipment, as is the 

case for subtractive or formative manufacturing, the efficacy and efficiency of 

the process relies on integrating all four operations management areas. In 

particular, production relies on the inventory management of batches of similar 

products through multiple process steps across different equipment, and even 

different facilities. However, when using AM, the production flow for 

responsive direct digital manufacturing is better described as multiple streams 

of products aligned to customer demands, which combine at the general-

purpose AM machine. The freedom to manufacture without intermediate 

tooling makes it possible to approach AM operations management from the 

perspective of flows of individual products, rather than an inventory-based 

perspective (Holmström et al., 2016). This product-centric approach promotes 

greater alignment between the manufacturing system operations and the 

strategic aims of responsive and flexible manufacturing (Lyly-Yrjänäinen et al., 

2016). Therefore, this research focuses on product-centric AM fulfilment and 

the impact of the three remaining operations management facets (capacity 

management, scheduling, and control) therein. 
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A further, defining feature of scaled-up AM is the mutual interchangeability, or 

“fungibility”, of capacity that exists both within and across AM machines 

(Baumers et al., 2017). Fungibility allows individual products to be 

manufactured, subject to process constraints, in any part of any build space 

within the network of machines. This leads to both opportunities and 

challenges with respect to AM operations for process efficiency. Capacity 

management is simplified, to an extent, as build space can be allocated flexibly 

to demand both inside and outside the firm to achieve economically-efficient 

process operations (Ruffo and Hague, 2007; Hedenstierna et al., 2019). This can 

temper the issue of matching investment in expensive AM equipment with 

unpredictable demand from customers (Eyers et al., 2018). On the other hand, 

the increased freedom in routing individual parts through the manufacturing 

network makes it more challenging to find optimal configurations of part-

position-build for cost-, material- and time-efficient production. Moreover, to 

ensure customer satisfaction and avoid waste, suitable control and monitoring 

tools must maintain required levels of process reliability whilst delivering 

product variety from build-to-build (D’Aveni and Venkatesh, 2020). A core 

theme therefore emerges for this thesis: the management of the AM process 

for efficient use of fungible, network-oriented capacity to provide product 

variety-driven value at scale.  

1.1.5 Complementary Innovations in the AM Ecosystem 

Process efficiency improvement is often associated with core innovation, which 

is primarily hardware or software changes to the technology, or “core product". 

In the case of AM, core innovation has indeed fomented transformations in the 

layer-wise manufacturing process (e.g. developing point-based photo-curing in 

stereolithography into plane-based photo-curing using “digital light 

processing”). However, innovation can also occur around the core product, 

known as complementary innovation. This is the development of products 

and/or services that create a more favourable ecosystem for the core product, 

which is the AM machine itself. Complementary innovations such as new 

materials with a wider processing window for polymer laser sintering, or 
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software that adjusts process parameters in fused deposition modelling to 

mitigate against faults are also key to maximising the process efficiency of the 

AM machine and wider manufacturing system. 

Taking a wider perspective, which includes the potential of AM as a GPT, it 

follows that complementary innovation plays an equally important, if not more 

important role in the AM ecosystem than core innovation alone. 

Complementary innovations increase the attractiveness of the core product, 

which in turn enhances technology adoption therein. This is achieved by 

improving the ease of use of, providing alternative routes of exposure to, or 

showcasing the potential new capabilities of the core product or technology for 

users. Manufacturing-as-a-service providers, or AM service bureaus, are an 

example of a business model-based complementary innovation in the AM 

ecosystem that encompass all three features. The service element provides 

support to those unfamiliar with the technological requirements of AM, and 

allows manufacturers to incorporate AM into their process as an outsourced 

step; while AM bureaus’ operations demonstrate the potential to successfully 

shift from low-volume, high-variety production towards high-volume, high-

variety production using AM.  

Further complementary innovations are required, however, to help improve 

the viability of scaled-up AM in a wider range of direct digital manufacturing 

applications. The performance frontier theory supports this argument by 

explaining that the gap between the actual cost-performance trade-off for a 

given manufacturing system, known as the operating frontier, and the ultimate 

fixed asset frontier, determined by the core product, depends on the efficiency 

of processes and procedures therein (Schmenner and Swink, 1998). This 

relationship is illustrated in Figure 1.4. Consequently, the AM operations 

manager’s challenge lies in understanding how to remove inefficiencies to 

improve performance to the current operating frontier, and establish suitable 

processes and procedures to better the operating frontier. This will help AM to 

reach its potential, and is the starting point for the research motivation. 
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Figure 1.4: Operating and asset frontiers for manufacturing systems, adapted from 

Schmenner and Swink (1998) 

1.2 Research Motivation 

Following hype of an AM-driven revolution and concurrent high market growth 

a decade ago, the AM industry currently occupies a curious state of “slow 

revolution” with diverse use-cases and companies, but a lack of meaningful 

progress in further adoption or scaling up of production capabilities (Beltagui, 

Rosli and Candi, 2020; Davies, 2023). To overcome this, Milgrom and Roberts 

(1990) assert that complementary, organisational innovations are required to 

coordinate the different functions and operations within the firm to access and 

elevate the benefits of the value-adding technology (in this case, AM). In turn, 

improvements in the operations management of AM can lead to better 

performance of AM systems (Schmenner and Swink, 1998); and in particular, 

help overcome barriers of high production cost and poor productivity, which 

inhibit the mainstream uptake of AM (Baumers et al., 2016). Therefore, this 

research aims to elucidate a path towards efficient AM operations at scale, such 

that this platform technology can be more widely adopted by manufacturers to 
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respond to customers’ needs en masse. In this section, the research motivation 

is further explained via three interconnected gaps in the extant literature. 

The first gap relates to a lack of transparency about machine-level process 

efficiency and manufacturing performance in AM. To date, research studies 

have focused on narrow metrics of performance, such as the build time or 

throughput, which relate to the deposition process alone. However, these 

approaches to AM manufacturing performance do not capture or draw 

attention to sources of inefficiency elsewhere in the machine operations, for 

example, during machine setup or arising from poor reliability and repeatability 

(D’Aveni and Venkatesh, 2020). Eyers and Potter (2017) emphasise the need 

for a systems perspective of AM operations, particularly for industrial 

applications, and yet there is no suitable method for monitoring the process 

efficiency or use of AM capacity as a whole. Existing performance measurement 

frameworks from the realms of conventional manufacturing, such as value-

added time and production losses, are based on repetitive production steps 

executed over predictable throughput (Hines and Rich, 1997; Muchiri and 

Pintelon, 2008). Yet, scaled-up AM is characterised by variation in both process 

and products; and so suitable manufacturing performance metrics must be 

developed to provide AM operations managers with clear insights about the 

current state of their machines and how best to use the operational capacity.  

Extending this further, the concept of benchmarking the performance of AM 

systems against its potential has not been explored. This gap in the 

understanding of AM operations severely limits the ability to investigate and 

evaluate initiatives to improve the operating frontier of AM equipment relative 

to the asset frontier (Schmenner and Swink, 1998), and thus achieve cost and 

productivity improvements. Additionally, from a capital equipment investment 

perspective, poor clarity about AM machine capabilities hides the relative 

advantage of AM and diminishes performance expectations. Both of these are 

key factors for driving the intention to adopt AM (Schniederjans, 2017), and so 

poor understanding of AM performance and drivers of process efficiency acts 

as a direct barrier to its adoption in industry. 
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The second gap relates to the scheduling and control of production activities 

across a scaled-up network of machines operating in parallel, and how this 

impacts the cost-effective operations management of responsive direct digital 

manufacturing. Within individual machines, the relationship between high 

utilisation of machine capacity and improved process economics is well-

accepted (Ruffo, Tuck and Hague, 2006a; Baumers et al., 2016). However, 

suitable approaches for scheduling production across multiple machines to 

achieve this degree of process efficiency are not well understood. Hedenstierna 

et al. (2019) show that networks of capacity can be leveraged to improve 

machine utilisation by trading fungible capacity on an intra-firm basis, but this 

does not provide practical direction for how to manage the allocation of 

capacity within the firm. In particular, responsive AM operations, as required 

for make-to-order fulfilment, must reconcile conflicting objectives of 

minimising the batch size for short production lead time and maximising the 

load on the machine for cost-effectiveness (Costabile et al., 2017). Therefore, 

the trade-off between the different cost drivers across the network of machines 

requires close examination. In the production planning of make-to-order AM, 

this extends the existing computationally-complex challenge of packing parts 

for cost-effective production (Araújo et al., 2018) into the time domain, with 

further dimensionality due to multi-machine operations.  

The third gap relates to capacity management within the AM production 

facility. While AM supply chain literature postulates about reconfiguring 

production infrastructure to create new value streams and reduce sources of 

waste in the workflow, for example via decentralised and localised production 

and production on demand (Ben-Ner and Siemsen, 2017; Zhang et al., 2019), 

little attention has been given to the capacity management within each 

production facility to meet the required throughput. Despite multiple 

observations of different facility layout approaches in AM operations studies, 

the facility layout or workflow design itself is always considered a foregone 

conclusion. Therefore, consideration of the facility layout choices for AM is 

absent from the discourse.  
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The choice of facility layout is typically driven by the trade-off between 

production volume and variety in conventional manufacturing, using general 

purpose or dedicated equipment as appropriate. However, the flexibility of 

direct digital manufacturing (Lyly-Yrjänäinen et al., 2016) alongside the 

fungibility of AM equipment capacity (Baumers et al., 2017) has the scope to 

completely alter this balance point. Additionally, Huang et al. (2021) note that 

the facility layout requirements in particular change as the scale of AM 

production increases, and that capacity management decisions in this scaled-

up AM context must focus on the efficiency of the production workflow. To this 

end, a thorough examination of the process efficiency drivers and ancillary 

motivators for different facility layout approaches for AM workflows, as the 

scale of production increases, is missing in the extant literature.  

1.3 Aims and Objectives 

The aim of this research is to investigate how to manage AM operations to 

improve production cost and losses in the context of scaled-up, make-to-order 

manufacturing. This advances understanding of the process efficiency of AM, 

and particularly, the transparency of AM operations for direct digital 

manufacturing and other industrial applications. The following research 

objectives, which contribute to this research aim, are addressed in this thesis:  

1. To evaluate the effect of process planning on the production losses in 

AM, at the machine level of abstraction. 

2. To evaluate the effect of process planning on the total cost for make-to-

order fulfilment using scaled-up AM, at the manufacturing system level 

of abstraction. 

3. To investigate suitable facility layouts for scaled-up AM production, and 

their effect on process efficiency in terms of cost and production losses. 

The primary research objectives above contribute to a final, ancillary objective 

in this research: to establish the mechanisms by which process planning affects 

the costs and benefits assessment of AM operations from a technology 

adoption perspective. Therefore, a complete chain of understanding is formed 
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between the process planning step in the AM workflow, the operational 

performance of the entire AM system, and the strategic fit of scaled-up AM 

within a firm. All of the research objectives above will be addressed using 

polymer laser sintering as the exemplar AM process, given its widespread use 

in industrial AM contexts. 

Summarising the aims and objectives of this thesis in one question, this 

research will attempt to answer the question: how should scaled-up AM be 

implemented and why? 

1.4 Thesis Structure 

This thesis follows the conventional order of chapters focusing on the prior 

literature, research methodology, results obtained, and discussion of results. 

The purpose of this structure is to present a clear research funnel, progressing 

from reviewing the broad, overarching challenges of scaled-up AM (Chapters 2 

– 3); to developing and testing specific operations management interventions 

(Chapters 3 – 6), and finally to exploring the wider implications for future 

implementation and adoption of AM (Chapters 7 – 8).  

Throughout the sequence of chapters, the three key themes of this research 

are addressed in a consistent order, in alignment with the three research 

objectives. In the literature review (Chapter 2), methodology (Chapter 3) and 

discussion (Chapter 7), the subdivision of the chapters focuses on the 

production losses, production cost and facility layout for AM in turn; and the 

corresponding results are presented in separate chapters (4 – 6). The chosen 

structure is intended to guide the reader through the different aspects of 

scaled-up AM operations explored in this research, as shown in Figure 1.5. 
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Figure 1.5: Overview of thesis structure 

1.5 Published Work 

A publication strategy was devised to support this doctoral research by means 

of structured dissemination and peer review. This consists of four separate 

publications: one of which has been published, and two further publications in 

the manuscript preparation stage.  

The published journal article: 

1. The first journal publication explains the role of production losses in AM, 

introduces Overall Equipment Effectiveness (OEE) for AM and examines 
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the effect of process planning on the OEE for polymer laser sintering. It 

is titled “Reducing production losses in additive manufacturing using 

Overall Equipment Effectiveness” (Basak et al., 2022), and is published 

in the Additive Manufacturing journal. 

The manuscripts under development: 

2. The second journal publication proposes a research agenda to extend 

the work on production losses, and reflects on contributions from 

industry and academic experts about future challenges in operations 

management for scaled-up AM. The planned title is “Towards Industrial 

and Scaled-Up Additive Manufacturing: A Research Agenda”. This work 

is currently undergoing additional preparation. 

3. The third journal publication investigates the role of process planning 

on production cost across a network of AM machines. The planned title 

is “Integrated Workflow Optimisation to Improve Production Cost 

Consistency in Laser Sintering”. This work is currently undergoing 

additional preparation. 

The planned, final publication: 

4. The fourth journal publication explores how scaled-up AM facilities 

should be organised, by examining the impact of facility layout on the 

setup investment and operational performance. The planned title is “A 

Comparative Study of Additive Manufacturing Facility Layout to Reduce 

Production Losses and Cost”. This work is currently undergoing 

additional preparation. 

Alongside this, concerted efforts have been made to engage with AM 

practitioners to share insights with industry. The research in this thesis has 

been presented at two conferences and one self-organised knowledge 

exchange workshop; and discussions are ongoing for a tailored workshop for 

the company that contributed data for the third research objective.  
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2 Literature Review 

This chapter presents a review of the literature that indirectly affects or directly 

contributes to this research. To this end, the chapter is divided into two 

sections: the first part (Section 2.1) addresses the background theory, while the 

second part (spanning Sections 2.2 – 2.4) discusses the focal literature that 

underpins the research studies in this thesis.  

The background theory explores relevant concepts in manufacturing 

operations, process economics and adoption of technology, and importantly, 

their influence on scaled-up AM. Following this, the focal literature covers the 

three areas of AM operations: production losses and process inefficiency, cost 

modelling, and facility layout design. Finally, the chapter closes with a summary 

of the gaps identified in the literature and how these relate to the research 

objectives, thus grounding this research in the discourse. 

2.1 Review of Background Theory 

2.1.1 Overview of the AM Process 

2.1.1.1 General Workflow 

To support the review of the background theory in the context of AM, this 

section provides a primer on the AM process workflow. While different AM 

techniques use distinct material mediums and physical processes, the general 

workflow is common (Gibson, Rosen and Stucker, 2015, pp. 4–6; Gardan, 2016).  

The starting point is a digital 3D model of the part to be produced. This is 

typically a computer-aided design (CAD) or engineering (CAE) model, and any 

design optimisation occurs at this stage. The model is then converted to an STL 

(acronym for “stereolithography”) file, which is a surface mesh file format that 

is common to all AM processes. The STL file(s) are grouped into a build file, 

corresponding to a single AM build; at this stage, the file(s) are scaled, oriented, 

and positioned as required, and any support structures are added. The build file 

is subsequently transferred to the AM machine, where it is “sliced” using 
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machine-specific software and the machine code for the build is generated. 

Shifting to physical production tasks, the AM machine is set up next by 

replenishing consumables and setting process parameters. The automated 

build process is then started, with intermittent operator supervision to check 

for any errors. Once the build is complete, part(s) are removed from the 

machine and cleaned in the post-processing stage. The parts are then either 

ready for use, or undergo additional finishing steps. 

Contrary to the perception of AM as a fully automated, one-step process (Ben-

Ner and Siemsen, 2017), Figure 2.1 illustrates that the majority of steps in the 

overall AM workflow are either semi-automated or entirely manual. 

 

Figure 2.1: General AM workflow, inspired by Gibson, Rosen and Stucker (2015, p. 

5) and Gardan (2016) 

2.1.1.2 Polymer Laser Sintering 

Polymer laser sintering is used in this research as an example of an industrial 

AM process, and so its physical process requires explanation. Referring to the 

schematic in Figure 2.2, laser sintering relies on repeatedly filling the powder-

bed (also known as the build volume) with a layer of pre-heated powder before 

selectively fusing regions using a laser beam (Goodridge, Tuck and Hague, 

2012). First, a thin layer of powder from the feed is spread evenly over the build 

volume, and any excess is collected in overflow containers. Within the build 
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volume, the computer-controlled laser(s) then sinters the powder area(s) 

corresponding to the part(s) geometry in the cross-sectional slice of the build 

file. The platform in the build volume is then lowered a distance corresponding 

to the layer height, and the process repeats until all layers are deposited. An 

example physical machine, the EOS Formiga P100, is shown in Figure 2.3. 

 

Figure 2.2: Schematic of the laser sintering process, inspired by Lohfeld and 

McHugh (2012) 

 

Figure 2.3: EOS Formiga P100 laser sintering machine in research laboratory 



Page 21 
 

2.1.2 Operations Management and Operations Research  

The inter-related but distinct fields of operations management and operations 

research underpin this research, and form a helpful starting point for the review 

of managing AM processes.  

Operations management (OM) relates to “creating, operating and controlling a 

transformation system” of input resources to outputs that meet customer 

needs (Naylor, 2002, p. 5), with a purview of performance and decision-making 

over operational, tactical and strategic levels. Alongside this, operations 

research (OR) concerns “how to conduct and coordinate the activities within an 

organisation”, using a scientific or mathematical approach to help decide upon 

an optimal course of action (Hillier and Lieberman, 2010, pp. 2–3).  

The remit of OM extends across all activities within the boundaries of the 

organisation, whereas OR typically focuses on a well-defined problem as a 

subset of the chain of activities (Naylor, 2002, pp. 6–7; Hillier and Lieberman, 

2010, p. 3); and this distinction is shown in Figure 2.4. Thus, while both OM and 

OR provide objective insights for decision support, OM is more aligned to 

strategic growth and competitiveness (Fuller and Mansour, 2003) as it includes 

the broad, cross-functional trade-offs in decision-making for transformation 

systems (Buffa, 1980). Nevertheless, a systems approach involving both OM 

and OR can lead to a more holistic view of the processes, and as a result, and 

improved operations in manufacturing systems (Mingers and White, 2010).  

Novel OM and OR perspectives are required for AM operations, which centre 

on the general purpose nature of AM equipment (Framinan, Perez-Gonzalez 

and Fernandez-Viagas, 2023) and ability to replace process-driven flows with 

product-driven flows (Holmström et al., 2016). For make-to-order AM in 

particular, new structures emerge for organising and controlling fulfilment of 

varied product streams, from efficiently packing parts in a single build (Oh et 

al., 2020) to sharing AM capacity across firms (Hedenstierna et al., 2019). Thus, 

the focus of this review is to explore OM and OR with respect to product variety 

at scale, and the impetus to maximise time- and cost-efficiency in the workflow.  
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Figure 2.4: Remit of operations management and operations research with respect to organisational activities, adapted from Naylor (2002, p. 22) 
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2.1.2.1 Product Volume and Variety 

The competitive objectives of the firm and its market lead to different product 

strategies based on volume and variety, which in turn influences the 

manufacturing process structures and operations (Naylor, 2002, p. 71). The 

Hayes and Wheelwright model, also known as the “product-process matrix”, is 

a widely recognised representation of these different OM systems (Hayes and 

Wheelwright, 1979). Shown in Figure 2.5, the model shows four key types of 

manufacturing operations, spanning from jumbled process flows to fulfil low-

volume and high-variety products (top left quadrant) to continuous process 

flows to manufacture commodity products at high-volume and low-variety.  

 

Figure 2.5: Product-process matrix, adapted from Hayes and Wheelwright (1979) 

Hayes and Wheelwright (1979) argue that OM systems typically align with the 

diagonal of the matrix to minimise the risk of mismatch between organisational 

strategy and competencies. This suggests that the process structure for a given 

product strategy is fixed, or vice versa. However, subsequent industry surveys 

note the importance of catering more closely to customers’ needs; and this is 

pushing firms away from the diagonal, particularly in the top left quadrant of 

the matrix (Ahmad and Schroeder, 2002).  
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Continuing this theme, AM can improve the ability to meet customer needs, 

through variety at scale. Inverting the product-process matrix (as in Figure 2.6) 

illustrates how AM decouples product volume and variety, thanks to minimal 

marginal costs for added variety in AM (Baumers and Holweg, 2019). In this 

case, moving away from the matrix diagonal introduces new value streams, 

such as mass customisation. Digital manufacturing approaches, such as 

automated geometry personalisation and digital kit preparation, are also 

leveraged to deliver variety efficiently at higher volumes of production (Tuck et 

al., 2008; Khajavi et al., 2018; Baumers and Dominy, 2022). 

 

Figure 2.6: Effect of digital manufacturing and AM on the product-process matrix 

Unlike conventional manufacturing, the process structures and standardisation 

of activities in AM depend on the quantity, quality, and customer co-creation 

requirements of specific products, rather than the volume and variety alone 

(Tuck et al., 2008; Eyers and Potter, 2017; Eyers et al., 2022). For example, mass 

customisation uses batch processes and high standardisation, whereas product 

co-design with customers inevitably requires low process standardisation and 

job shop operations (Eyers et al., 2022).  
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While the freedom exists to operate the general purpose AM equipment in 

flexible or dedicated configurations (Tuck et al., 2008), AM processes are 

presently limited to disconnected process flows as each build job is a discrete 

batch (Baumers and Holweg, 2019). This means that job shop and batch 

operations dominate in AM use cases (Eyers et al., 2022). Although, research 

efforts towards continuous flows in AM are active, for example using angled 

print beds (Günther et al., 2014) and volumetric deposition (Kelly et al., 2019). 

Overall, the traditional product volume-variety relationship is disrupted by AM, 

whereby variety can be delivered at higher volumes and thus the operations 

systems must adapt to support this. In the case of make-to-order fulfilment, a 

balance must be found between responsive and product-centric workflows, 

and the efficiencies that arise from process-centric management (Holmström 

et al., 2016) for the presently-batch AM process (Baumers and Holweg, 2019).  

2.1.3 Economies of Scale and Scope 

Two complementary factors, economies of scale and economies of scope, 

govern cost efficiency in production for volume and variety.  

Economies of scale are defined as “a small proportional increase in the levels 

of all input factors [leading] to more than proportional increases in the levels 

of outputs produced” (Panzar and Willig, 1977). In other words, economies of 

scale lead to increased resource efficiency for larger production volumes. Haldi 

and Whitcomb (1967) provide a generic cost-quantity relationship, given by: 

𝐶 = 𝑎𝑋𝑏 (2.1) 

where: 

𝐶  ‒ total cost of production 

𝑋  ‒  total quantity of output 

𝑎  ‒  constant, depends on organisation, processes and outputs 

𝑏  ‒  constant, known as “coefficient of scale” 

 

 

Where economies of scale are present for a particular product and process 

combination, the coefficient of scale, 𝑏, is less than one.  
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Economies of scope is a slightly newer concept, developed by Panzar and Willig 

(1977, 1981) while assessing multi-product firms in the 1970s and 1980s. It is 

defined as the cost savings that arise from combining production of two or 

more outputs, as compared to producing them separately (Teece, 1980; Panzar 

and Willig, 1981). Thus, economies of scope see increased resource efficiency 

where the product variety is higher. For an arbitrary set of outputs, economies 

of scale are present if the following inequality, adapted by Teece (1980), holds: 

𝐹𝐶(𝑋1, … , 𝑋𝑛) < 𝐹𝐶(𝑋1, 0, … ,0) + ⋯ + 𝐹𝐶(0, … , 0, 𝑋𝑛) (2.2) 

where: 

𝐹𝐶   ‒ total cost function for products in brackets 

𝑋1 … 𝑋𝑛  ‒  quantity of different products, denoted by subscript 

 

 

If the cost functions reverse the inequality, then diseconomies of scope exist 

and each product should be fulfilled separately (Panzar and Willig, 1981). 

In manufacturing operations, economies of scale and scope both arise from 

efficiently amortising input resources over a range of outputs. Economies of 

scale are found by sharing indivisible assets, such as equipment and specialist 

knowhow, and other common inputs, such as facility space and utilities, across 

the production quantity (Haldi and Whitcomb, 1967). To access economies of 

scope, the shared resources should be somewhat specialised to the firm, such 

that it is economically inefficient to access those resources from elsewhere in 

the market (Panzar and Willig, 1981). Teece (1980) further clarifies that 

indivisible but organisation-specific assets can satisfy both economies of scale 

and scope where they are inputs to the production of more than one product.  

As a result, economies of scale typically affect the process structure (Naylor, 

2002, p. 71), as per the product-process matrix in Figure 2.5. Higher economies 

of scale justify efficient dedicated equipment, and this is represented by a shift 

towards the bottom right quadrant of the product-process matrix. On the other 

hand, economies of scope influence the use of programmable and flexible 

production systems to shift operations towards the bottom left quadrant of the 

product-process matrix for reduced cost of variety (Goldhar and Jelenik, 1983).  



Page 27 
 

The use of AM for direct digital manufacturing is widely considered to be re-

writing existing practice around economies of scale and scope. The absence of 

tooling and consequent reduction in the setup cost and time for manufacturing 

new products leads to “economies of one”, which focus on the economically 

feasible production of unique goods (Petrick and Simpson, 2013; Cotteleer and 

Joyce, 2014; Pour and Zanoni, 2015; Weller, Kleer and Piller, 2015).  

In this part of the AM operations discourse, it is often suggested that economies 

of scale either do not exist or are redundant in the AM process (Pour and 

Zanoni, 2015; Weller, Kleer and Piller, 2015; Ben-Ner and Siemsen, 2017). 

Instead, individualisation and immediacy of production are prioritised, and it is 

suggested that economies of scale and scope are dichotomous. However, a 

detailed assessment of AM workflow resource consumption reveals fixed 

process elements (e.g. machine setup time and fixed machine capacity) that 

can be amortised over the contents of each build job (Ruffo, Tuck and Hague, 

2006a; Baumers and Holweg, 2019; Khorram Niaki et al., 2022). These are 

sources of economies of scale and affect the cost-effectiveness of AM, as 

further examined in Section 2.3. While no estimate of the scale coefficient, 𝑏, 

from equation (2.1) has been offered for AM, it is asserted that economies of 

scale are stronger in conventional manufacturing than AM (Ruffo, Tuck and 

Hague, 2006a). Thus, AM cannot compete from a cost perspective with 

conventional manufacturing at high volumes of production, exceeding tens of 

thousands in quantity. Although, this trade-off may shift in the future as the 

synergy of AM product and process design increases (Huang et al., 2021), and 

AM machine productivity and other cost drivers improve (Baumers et al., 2016).  

Unlike the case for economies of scale, there is broad consensus that AM 

exhibits economies of scope in multiple forms. Combining the production of 

unrelated items in a single build leads to better utilisation of the volumetric 

machine capacity in various AM processes (Ruffo and Hague, 2007; di Angelo 

and di Stefano, 2010; Rickenbacher, Spierings and Wegener, 2013; Baumers et 

al., 2017). This is generalised via the concept of fungibility of the build space, 

introduced in Section 1.1.3, which provides complete geometric freedom to 
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pursue product variety and associated economies of scope within a build job 

(Baumers et al., 2017). Furthermore, Hedenstierna et al. (2019) show that build 

space fungibility enables both economies of scale and scope to be extended 

beyond the boundaries of the firm: this gives rise to unique “economies of 

collaboration”, whereby capacity in AM machines is dynamically shared 

between firms to improve uniformity of utilisation and process cost.  

To summarise, Table 2.1 outlines the economies of scale and scope that arise 

in AM operations, as compared to conventional manufacturing. 

Table 2.1: Comparison of economies of scale and scope in AM and conventional 

manufacturing operations 

Element Description Source 

Economies of Scale 

Similarities Amortisation of fixed/shared inputs in AM and 

conventional manufacturing workflows 

(Ruffo, Tuck and 

Hague, 2006a) 

Standardised AM and conventional manufacturing 

workflows to increase amortisation of shared 

inputs as quantity of (similar) products increases 

(Tuck et al., 

2008) 

Differences 

 

Higher amortisation of fixed inputs in 

conventional manufacturing leads to better 

economies of scale at quantities >10,000 

(Ruffo, Tuck and 

Hague, 2006a) 

Continuous AM workflows are not found in 

industry practice, limiting amortisation of assets 

due to batch process structure 

(Baumers and 

Holweg, 2019) 

Economies of scope 

Similarities General purpose AM extends concept of flexible, 

programmable machines for low cost of variety 

(Goldhar and 

Jelenik, 1983) 

Differences 

 

Fungibility of build space leads to minimal 

marginal cost for variety in AM 

(Baumers and 

Holweg, 2019) 

Direct digital manufacturing method and 

fungibility of machine capacity enable “economies 

of collaboration” between AM firms 

(Hedenstierna 

et al., 2019) 

 

2.1.4 Adoption of Technology 

An innovation is of little benefit and has no impact on organisations and wider 

society unless it is adopted by willing users. Adoption of technology is therefore 

an area of interest, studying the motivators and decision-making that leads to 

individuals and organisations accepting or rejecting new innovations (Straub, 
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2009). Complementing, but separate to, technology adoption is the concept of 

technology diffusion, which relates to the spread of an innovation through a 

population of potential adopters, and provides an aggregated view of the 

individual adoption decisions (Straub, 2009). Treating diffusion as a managed 

process of sharing knowledge and information about a new innovation, higher 

diffusion of technology corresponds to higher awareness and external peer 

influence on the average member of the population, who then becomes more 

inclined to adopt the new technology (Rogers, 1983, p. 234). This link between 

diffusion and adoption leads to an S-shaped cumulative relationship, as shown 

in Figure 2.7. While adoption and diffusion are inextricably linked, given the 

relative immaturity of scaled-up AM, this section focuses primarily on adoption. 

 

Figure 2.7: S-shaped cumulative curve of adoption and normally-distributed 

frequency curve, adapted from Rogers (1983, pp. 243, 247) 

Various theories have been developed to ascertain and evaluate the attributes 

of an innovation that affect its likelihood of adoption. Often, these theories are 

specific to a given sector, such as the Concerns-Based Approach Model for 

innovation in education (Hall, 1979), or heavily focus on the psychology and 

motivations of individual actors, rather than organisational decision-making, as 

for the Technology Acceptance Model for information technology (Davis, 
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1989). In contrast, the Innovation Diffusion Theory (Rogers, 1983) stands out as 

an influential model for evaluating innovations in a wide variety of application 

contexts (Straub, 2009; Handfield et al., 2022).  

The Innovation Diffusion Theory focuses on generalised traits that influence the 

adopter’s perception of the innovation, and thus should predict future rates of 

adoption (Rogers, 1983, p. 212). Summarised in Table 2.2, the five innovation 

attributes that arise are: relative advantage, compatibility, complexity, 

trialability,  and observability (Rogers, 1983, pp. 213–232). Together, these 

attributes cover the capabilities of the innovation as well as its impact on 

current practice and wider potential for diffusion. 

Table 2.2: Attributes of innovations that affect adoption rate, as per Rogers (1983) 

Determinant 

of Adoption 

Description Effect on 

Adoption 

Relative 

advantage 

Perception of the innovation as better 

(economically, or status-wise) than previous options 

Positive 

correlation 

Compatibility Perception of the innovation’s consistency with the 

adopter’s existing systems and experience 

Positive 

correlation 

Complexity Perception of difficulty in use and understanding of 

the innovation 

Negative 

correlation 

Trialability Extent to which the innovation can be experimented 

with, to reduce the adopter’s uncertainty 

Positive 

correlation 

Observability Extent to which the innovation and its impacts can 

be observed and communicated by the adopter 

Positive 

correlation 

 

In their AM-specific application of this theory, Oettmeier and Hofmann (2017) 

further categorise and expand the innovation attributes into technology-

related, firm-related, market structure-related, and supply-chain related 

factors that affect adoption rates. The resulting eight determinants of adoption 

rate are outlined in Table 2.3. Notably, this model for adoption emphasises the 

view of AM as part of a wider ecosystem, rather than just an isolated novel 

manufacturing process (Mellor, Hao and Zhang, 2014; Piller, Weller and Kleer, 

2015). Indeed, the eight determinants of adoption align very closely with the 

six factors for AM implementation, proposed by Mellor et al. (2014); this is 

illustrated in Figure 2.8. 
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Table 2.3: Determinants of adoption rate, as per Oettmeier and Hofmann (2017) 

Determinant 

of Adoption 

Description Effect on 

Adoption 

Category 

Relative 

advantage 

Benefits of the innovation with respect 

to its costs 

Positive 

correlation 
Technology 

Complexity Perception of difficulty in use and 

understanding of the innovation 

Negative 

correlation 

Absorptive 

capacity 

Ability of the firm to develop, evaluate, 

and apply relevant new knowledge 

Positive 

correlation 

Firm Compatibility Perception of the innovation’s 

consistency with the firm’s existing 

systems and experience 

Positive 

correlation 

External 

pressure 

Influence of regulation, competition, 

and customer needs on the firm 

Positive 

correlation 
Market 

Structure 
Perceived 

outside 

support 

Training, knowledge, and support to 

reduce uncertainty about the 

innovation 

Positive 

correlation 

Supply-side 

benefits 

Simplification of the upstream supply 

chain 

Positive 

correlation Supply 

Chain Demand-side 

benefits 

Increased customer collaboration and 

agility in the downstream supply chain 

Positive 

correlation 

 

 

Figure 2.8: Influence of Mellor et al.’s (2014) framework for AM implementation on 

Oettmeier and Hofmann’s (2017) determinants of adoption rate 
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Across various assessments of AM against the determinants for adoption, there 

is a strong consensus about the relative advantages of AM, indicating that these 

are well-understood and accepted by both current and potential adopters. The 

commonly mentioned advantages are: capability for complex and customisable 

products, increased production responsiveness, and ability to deploy customer-

centric business models (Mellor, Hao and Zhang, 2014; Schniederjans, 2017; 

Khorram Niaki, Torabi and Nonino, 2019; Handfield et al., 2022). However, in 

contrast, the influence of wider process-related, firm-related, and market-

related attributes are much less clear. The findings from a number of case study 

and survey analyses are presented in Table 2.4, showing the inconsistencies 

regarding which individual attributes are deemed significant for AM adoption.  

Table 2.4: Assessment of AM against determinants of innovation, as per Rogers 

(1983) and Oettmeier and Hofmann (2017) 

Determinant of 

Adoption 

Assessment of effect on AM adoption, as per… 

(Oettmeier 

and Hofmann, 

2017) 

(Schniederjans, 

2017) 

(Khorram Niaki, 

Torabi and Nonino, 

2019) 

(Handfield 

et al., 

2022) 

Relative 

advantage 
✓ ✓ ✓ ✓ 

Compatibility 
✓ ✓ 

 
(“Technology 

adaptability) 
 

Complexity 
✓  

 
(“Technology 

adaptability) 
✓ 

Trialability -  -  

Observability 
-  

 
(“Customer 

expectations”) 
✓ 

Absorptive 

capacity 
✓ - - ✓ 

External 

pressure  

 
(“Social 

pressure”) 

 
(“Business and 

market expansion”) 
 

Perceived 

outside support ✓ 

✓ 
(“Facilitating 

conditions”) 
- ✓ 

Note: 

✓and  denote determinants that affect or do not affect AM adoption, respectively  

White fill denotes explicit 

assessment 

Grey fill denotes implied assessment, with the 

related term quoted in brackets 
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When considering multiple adoption attributes together, Oettmeier and 

Hofmann (2017) note that positive perceptions of AM compatibility with 

existing systems in the firm amplifies the assessment of benefits, or relative 

advantage, of AM. Looking beyond the firm, there is little discussion of 

trialability or observability among the studies. Although Handfield et al. (2022) 

argue that the acquisition of specialist knowledge from experts and setting 

honest expectations about AM quality are imperative to building trust about 

AM capabilities within the company and among customers to support adoption. 

It should be noted that insights about firm-related and market-related 

determinants are either taken from the broader discussion (Handfield et al., 

2022) or from comparable attributes in alternative frameworks adopted by the 

studies (Schniederjans, 2017; Khorram Niaki, Torabi and Nonino, 2019). 

Overall, the inconsistencies in the assessment of AM against the various 

determinants of adoption simply highlight the multi-faceted and complex 

nature of decision-making in technology adoption. Even among the relatively 

consistent factor of relative advantage, views on the cost-benefit relationship 

of the technology itself differ between adoptees and non-adoptees (Oettmeier 

and Hofmann, 2017), as expected; but they also depend on whether 

organisations approach the adoption decision early or late in the innovation’s 

life-cycle (Schniederjans, 2017) – as labelled in Figure 2.7. Moreover, once a 

decision to adopt is made, implementing AM is an interdisciplinary, multi-step 

journey that relies on selecting the best options to realise the identified 

competitive advantages for the given product-process-organisation 

combination (Achillas et al., 2015; Khorram Niaki et al., 2022). This leads to a 

number of strategic and operational pathways for AM adoption, ranging from 

product evolution to full business model evolution (Cotteleer and Joyce, 2014). 

2.1.4.1 Barriers to AM Adoption 

The reasons for individual firms to adopt or reject AM can be aggregated into 

two opposing views of the future trajectory for AM: either as merely another 

option among the processes available to incumbent manufacturers, or as the 
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underpinning technology for a disruptive manufacturing industry revolution 

(Holmström et al., 2016). In either case, the importance of appropriate process 

management tools for AM is underlined by the barriers to AM adoption. 

Despite the progress made to date, overall industry perspectives on the key 

challenges for implementing AM at scale primarily focus on three areas: process 

productivity and efficiency, equipment reliability and stability, and integration 

of hardware with supporting software systems (Additive Manufacturing UK, 

2015; Proff and Staffen, 2019; D’Aveni and Venkatesh, 2020).  

Although academic perspectives often identify a much wider range of barriers, 

these typically vary according to the scope and industry. In the context of high-

value, engineering part production, Thomas-Seale et al. (2018) add cost and 

material availability to the aforementioned barriers; whereas, small-to-

medium enterprises often face more difficulties in educating and convincing 

customers to embrace AM processes for their parts, which must then be 

redesigned appropriately (Luomaranta and Martinsuo, 2022). A lack of suitable 

standards, common certification processes, and industry-specific guidance for 

AM implementation leads to poor confidence, particularly in safety-critical 

applications (Ford and Despeisse, 2016; Khorram Niaki, Torabi and Nonino, 

2019), and an over-reliance on individual champions to spearhead AM adoption 

rather than systematic strategies (Luomaranta and Martinsuo, 2022).  

To further complicate matters, AM adoptees must also account for likely 

increases in business and operations complexity, due to the data flows and 

systems required to support increased product variety and more responsive 

fulfilment processes (Handfield et al., 2022). With this in mind, operations 

management and operations research are considered tools to overcome some 

of the AM adoption barriers, with a particular focus on areas such as optimising 

the process workflow to minimise sources of uncertainty, improving cost-

effectiveness and resource efficiency in the workflow, and creating suitable 

assessment criteria and metrics for manufacturing performance (Ford and 

Despeisse, 2016; Luomaranta and Martinsuo, 2022). These principles motivate 

the focused literature review in the remainder of this chapter.  
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2.2 Production Losses in AM 

2.2.1 Process Inefficiency Frameworks 

Production wastes in a manufacturing flow centre on the notion of maximising 

the resources spent on delivering value, as per the customer’s expectations. 

Known as lean manufacturing, the underlying argument is that any resources 

consumed by processes that are not wanted or needed by the customer are 

wasted (Ohno, 1988). These are summarised in seven wastes during production 

and one additional workforce-related waste (see Table 2.5). Importantly, all 

resources consumed in these wastes must either be paid for by the customer, 

or erode the profit margin for the product sold; in either case, the revenue 

generation potential of the process and, by extension, the competitiveness of 

the business are diminished. Therefore, the process effectiveness and 

efficiency are achieved by understanding what the customer wants, and 

eliminating wastes from the resulting process. This requires an external, 

customer-centric view of value, as well as an internal, organisation-centric view 

of the process and operations for delivering the product that embodies the 

value, known as the value stream (Womack and Jones, 2003).  

Table 2.5: Wastes in lean manufacturing, adapted from Wahab et al. (2013) 

Lean Waste Description 

Overproduction Manufacturing excess quantity, ahead of schedule, 

or “just in case” 

Waiting Products not progressing through the workflow 

Transportation Excess movement of materials during the workflow 

Unnecessary motion Excess movement of people during the workflow 

Inappropriate 

processing 

Manufacturing that does not meet quality 

requirements, match customer requirements, or 

over-complicated processes 

Inventory Holding stocks of material, work-in-progress, or 

finished goods 

Defect Internal scrap and rework, or external repairs and 

remedial servicing 

Underutilised people Lack of engagement, mismatch between tasks and 

skills, and poor balancing of workload 
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Bridging the internal and external perspectives, it is imperative to understand 

the contribution of each process step to the value of the end product. To this 

end, the time taken for each process step is divided into value-adding and non-

value-adding components (Hines and Rich, 1997). The value-adding time covers 

the conversion of raw inputs into semi-finished or finished outputs, and non-

value-adding time refers to unnecessary actions in the workflow, such as 

waiting time, that should be eliminated. An additional third component within 

this framework, necessary-but-non-value-adding time, includes actions that 

are “wasteful but necessary under the current operating procedures” (Hines 

and Rich, 1997), such as travel between equipment. The relationship between 

these time components is shown in Figure 2.9. 

 

Figure 2.9: Relationship between time and value creation in a manufacturing 

workflow 

A third framework for process inefficiency is the theory of the six production 

losses, which focuses on the equipment at the heart of the transformation 

process in manufacturing operations. Arising from the Total Productive 

Maintenance initiative (Nakajima, 1988), production losses capture different 

sources of equipment-related disturbance on the manufacturing process (Dal, 

Tugwell and Greatbanks, 2000). Table 2.6 summarises the production losses. 

This process inefficiency framework supports three of the four internal 

dimensions of lean manufacturing, related to the transformation process: 

quality in the manufacturing process and equipment, synchronisation of 
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manufacturing planning with demand, and visibility of information flows about 

the manufacturing system to support feedback and corrective action (Wahab, 

Mukhtar and Sulaiman, 2013).  

Table 2.6: Six production losses, adapted from Muchiri and Pintelon (2008) 

Production Loss Description 

Breakdown Equipment failure or breakdown 

Setup & Adjustment Changeover of equipment from one product to another 

Idling & Minor Stops Temporary interruptions or pauses during equipment 

operation 

Reduced Speed Difference between the designed and actual operating 

speed of equipment 

Defects & Rework Damage and lost output due to equipment malfunction 

Start-up Yield Substandard output from equipment start-up until 

stabilisation 

 

Despite its internal orientation, the six production losses offer an integrated 

view of process efficiency and value-adding time for each machine by 

complementing efficiency in the time-domain with a measure of production 

output, or productivity, and quality thereof (Muchiri and Pintelon, 2008). While 

this machine-centric approach breaks down the overall manufacturing system 

into discrete sub-system elements, it allows operations managers to clearly 

evaluate how efficiently each part of the production process is performing.  

Before exploring process efficiency in AM in more detail, it is important to note 

the relationship between time and cost perspectives of manufacturing 

operations. Working in the time domain is helpful, as the same measurement 

procedure can be applied to different steps in the process workflow; this leads 

to a common benchmark across any given workflow, and the ability to easily 

compare alternative options for the same process step (Dal, Tugwell and 

Greatbanks, 2000). However, time alone cannot capture the relative loss 

incurred by different sources of non-value-adding time (Jauregui Becker, Borst 

and van der Veen, 2015), and so time-based metrics should also be 

complemented by cost-centric measures for a full understanding of production 

efficiency.  
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2.2.2 Drivers of Process Inefficiency 

AM is widely considered to be beneficial for reducing lean wastes in the 

production flow, as compared to conventional processes (Ghobadian et al., 

2020; Lakshmanan et al., 2023). This is achieved through better customisation 

to customers’ needs and matching production precisely to demand, fitting the 

principle of manufacturing “the right amount at the right time” (Handal, 2017). 

Table 2.7 expands on the impact of AM on lean wastes from a supply chain and 

strategic operations perspective.  

Table 2.7: Impact of AM on lean wastes 

Lean Waste Impact of AM Sources 

Overproduction Shortening supply chains 

Production on demand 

(Ford, 2014; Holmström and 

Partanen, 2014; Ford and 

Despeisse, 2016) 

Waiting Condensing process steps to 

single print (and post-

process) 

(Baumers et al., 2013; Ford 

and Despeisse, 2016) 

Transportation Distributed and localised 

production 

(Holmström and Partanen, 

2014; Ford and Despeisse, 

2016; Ben-Ner and Siemsen, 

2017) 

Unnecessary 

motion 

Condensing process steps to 

single print (and post-

process) 

(Baumers et al., 2013; Ford 

and Despeisse, 2016) 

Inappropriate 

processing 

Use of digital manufacturing 

tools e.g. process simulation, 

digital testing 

(Oettmeier and Hofmann, 

2016; Lakshmanan et al., 

2023) 

Inventory Production on demand 

Replacing physical inventory 

with digital inventory 

(Mashhadi, Esmaeilian and 

Behdad, 2015; Ford and 

Despeisse, 2016; Handal, 

2017) 

Defect In-situ repair of high value 

products 

Manufacture of complex 

parts 

(Holmström and Partanen, 

2014; Ford and Despeisse, 

2016; Ghobadian et al., 2020) 

Underutilised 

people 

Standardisation of tasks 

Uniform training 

requirements for different 

products 

(Oettmeier and Hofmann, 

2016; Handal, 2017) 
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However, there is less consensus in the understanding of value-adding time in 

the AM process. Totah et al. (2017) deem the automatic printing and cool down 

time to be non-value adding in the AM workflow. Although the reasoning for 

this choice is not discussed, it can be assumed that the authors have taken an 

operator-centric perspective of the workload and seek to compare the labour 

input into different processes. In contrast, lead time and cost optimisation 

studies categorise the printing time at the machine as value-adding, relegating 

setup, waiting and ancillary manual tasks to non-value-adding time (Pushparaj 

et al., 2019; Kurdve et al., 2020). The latter position aligns more closely with 

assessments of AM value generation from a customer and organisational 

competitiveness perspective (Thompson et al., 2016). Furthermore, treating 

part production as the value-adding step drives efforts to maximise the 

productivity of manufacturing systems, for example, using automation to 

reduce non-value-adding changeover time (Becker et al., 2019). 

Expanding upon the notion of productivity in the AM operations literature, the 

process planning and the productivity of AM equipment are demonstrably 

interconnected (Gopsill and Hicks, 2018; Stittgen and Schleifenbaum, 2021). 

Focusing on the utilisation of equipment in the time domain, the objective in 

both studies is to minimise changeovers and thus maximise the time that the 

AM machine is running by controlling the contents of each build. This can be 

achieved by altering the scheduling algorithm for converting incoming orders 

into build jobs (Gopsill and Hicks, 2018). Similarly, Stittgen and Schleifenbaum 

(2021) use the release rate of orders and the target output of each build to 

control the production time, referred to as the “work content”, and gaps 

between builds to increase the utilisation of AM machines. The studies agree 

on the presence of an optimal level of throughput, which matches the capacity 

and work rate of the AM machine. Combining perspectives from process 

economics, production losses, and production system management: this 

optimal level of throughput corresponds to “technically efficient” operations, 

where production losses due to under- or over-loading are minimised and so 
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the manufactured output is maximised for the given inputs (De Ron and Rooda, 

2006; Baumers et al., 2013; Stittgen and Schleifenbaum, 2020).  

Nevertheless, conflating high equipment uptime with efficient use of 

equipment and other inputs provides an incomplete assessment of process 

inefficiency. Referencing the value-adding time framework, the efficiency and 

stability of value-adding steps require both capable and available processes 

(Womack, 2006). In other words, processes must be designed and operated 

such that equipment can be deployed when needed (available) and can 

produce good outputs (capable). The utilisation-centric perspective assumes 

ideal operating conditions, neglecting aspects such as maintenance, idling, 

process interruptions and defective output (Gopsill and Hicks, 2018; Stittgen 

and Schleifenbaum, 2020, 2021). Moreover, Framinan et al. (2023) note that 

the different facets of process planning (including orientation and packing of 

parts, and sequencing and scheduling of build jobs) affect the performance of 

AM systems in an interconnected manner; while this argument is made with 

reference to revenue and customer value, it can be readily extended to process 

efficiency. Therefore, a holistic and overarching view of process efficiency is 

required. However, assessments of value-adding time and production losses 

are absent in the context of AM, which leads to a significant gap in the 

understanding of process efficiency.  

Fera et al. (2017) acknowledge some differences between production losses in 

AM and conventional manufacturing, arguing that reduced speed and start-up 

yield losses do not apply in AM. However, these assumptions fail to account for 

sources of equipment wear and tear, and general instability in the thermal 

conditions across the build chamber that particularly affect the deposition of 

early layers in the build (Bourell et al., 2014; Abdelrahman and Starr, 2015). 

Additionally, the omission of reduced speed losses assumes that the “optimum 

setup” for the machine is always chosen, with the process parameters and 

packing of the parts delivering the shortest theoretical build time. The 

computational complexity of part packing alone is too high to make this a 

feasible assumption (Araújo et al., 2019), notwithstanding the added solution 
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space dimensions from the process parameters. Therefore, in the absence of 

any quantitative assessment of these assumptions, it is important to establish 

the extent to which the current understanding of production losses applies to 

and fits with the characteristics of AM. 

2.2.3 Overall Equipment Effectiveness 

The Overall Equipment Effectiveness (OEE) is a well-established measure of 

equipment performance, originally developed by Seiichi Nakajima as part of the 

Total Productive Maintenance system of manufacturing control (1988). OEE 

quantifies the impact of the six production losses, already introduced in Section 

2.2.1, via the product of three constituent metrics. The first, availability, focuses 

on equipment utilisation; the second, performance, measures the operational 

rate compared to the theoretical upper limit; and the third, quality, tracks 

whether the output meets specifications (Garza‐Reyes et al., 2010). The three 

metrics combine to provide an estimate of the fraction of the planned 

proportion time that results in good quality output, or in other words, can be 

classified as “value-adding”. This is summarised in Figure 2.10; and Nakajima’s 

(1988) original equations for the constituent metrics are given below. 

OEE = Availability × Performance × Quality (2.3) 

 

Availability =
𝑇𝑃𝑃 − 𝑇𝐷

𝑇𝑃𝑃
 

(2.4) 

where: 

𝑇𝑃𝑃  ‒  planned production time 

𝑇𝐷  ‒ machine downtime 

 

  

Performance =
𝑇𝐶 × 𝑄𝑃

𝑇𝑃𝑃 − 𝑇𝐷
 

(2.5) 

where: 

𝑇𝐶   ‒ theoretical processing time for one unit of output 

𝑄𝑃  ‒  total quantity of output 
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Quality =
𝑄𝑃 − 𝑄𝐷

𝑄𝑃
 

(2.6) 

where: 

𝑄𝐷  ‒ quantity of output deemed defective 

 

 

 

Figure 2.10: Schematic summary of the six production losses (white boxes), 

alongside the OEE and its constituent metrics 

While the link to the six production losses is clear, there is some debate about 

the value that OEE provides as a key performance indicator in the operation 

manager’s toolkit. Jonsson and Lesshammar (1999) identify four key areas to 

cover in manufacturing performance measurement: strategy, integration along 

the supply chain, customer satisfaction, and productivity. Given its machine-

level focus, the authors note that OEE only covers the productivity aspect of 

performance. However, assuming that the product specifications match 

customer requirements, it can be argued that the quality metric in OEE 

implicitly capture the ability to produce the goods that customers demand 

(Bamber et al., 2003; Jauregui Becker, Borst and van der Veen, 2015).  

Nevertheless, within the remit of process efficiency, there is consensus that 

OEE can capture wide-ranging contributors to the effective use of equipment 

capacity, and condense this information into a succinct and easy to track metric 

(Jonsson and Lesshammar, 1999; Bamber et al., 2003; Garza‐Reyes et al., 2010). 

This enables performance benchmarking and tracking over time for continuous 

improvement initiatives (Dal, Tugwell and Greatbanks, 2000; Garza‐Reyes et al., 
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2010; Kang et al., 2016). Over time, these factors combine to indicate sources 

of hidden capacity within the system (Muchiri and Pintelon, 2008).  

From the perspective of AM operations, the application of OEE towards 

measuring effective use of capacity is critical, as the cost of lost capacity in 

industrial AM processes is particularly high (Baumers et al., 2016). The ability 

to compare the performance of different workflows using the same equipment 

(Dal, Tugwell and Greatbanks, 2000) allows the links between process planning 

and production losses to be probed; in this sense, OEE can almost be thought 

of as a learning tool to improve AM operations management. Although directed 

towards conventional manufacturing organised into dedicated production 

lines, the classification structure proposed by Pavnaskar et al. (2003) succinctly 

summarises the utility of OEE with respect to lean manufacturing: the metric 

identifies and measures machine-related inefficiency and unreliability factors 

that lead to wastes. Alongside this, the clear delineation in OEE between value-

adding and non-value-adding steps within the process at the AM machine 

provides a gauge of return on investment for the equipment, which helps with 

equipment investment decisions. 

2.2.3.1 Overall Equipment Effectiveness in AM 

Despite assertions that the OEE is useful for providing a realistic estimate of 

production time-driven costs (Fera et al., 2017) and for equipment 

improvement initiatives (Dirks and Schleifenbaum, 2020), OEE features very 

sparsely in the AM management discourse. The extant literature either 

provides cursory examples of sources of process inefficiency, such as lack of 

machine component synchronisation (Dirks and Schleifenbaum, 2020), or very 

limited, case study-specific examples of OEE formulations (Reid, 2019; 

Parshawanath Jain, 2022). This leads to a lack of both understanding and 

integration between qualitative, in-depth evaluation of production losses and 

quantitative analysis of the OEE in the aforementioned research. 

The first of two studies that propose measurement frameworks for OEE in AM 

is the Overall Additive Manufacturing Effectiveness (OAME) metric (Reid, 
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2019). While based on the OEE metric, the distinguishing feature of OAME is to 

consider the time taken to detect and mitigate defects in-situ as a production 

loss that diminishes the AM machine running time, which affects the 

performance metric, rather than a loss of output due to quality. This leads to 

the OAME formulation as per equations (2.7) – (2.9).  

OAME = Availability × Performance (2.7) 

 

Availability =
𝑇𝐴

𝑇𝑃𝑃
 

(2.8) 

where: 

𝑇𝐴  ‒ time that machine is available to run 

𝑇𝑃𝑃  ‒  planned production time 

 

  

Performance =
𝑇𝑅

𝑇𝐴
 

(2.9) 

where: 

𝑇𝑅  ‒ machine running time 

𝑇𝐴  ‒  time that machine is available to run 

 

 

The inclusion of the in-situ defect mitigation process is a valuable step towards 

a more detailed and realistic account of necessary-but-non-value-adding time 

during the AM build process. However, a significant limitation of this work is 

assuming that all defects can be captured and corrected during the build, which 

leads to the omission of the quality metric from the definition of OAME. As a 

result, the OAME metric is incomplete as it completely neglects other quality 

issues at the part level, such as non-correctable part defects or unacceptable 

variation in material mechanical properties (Baumers and Holweg, 2019), and 

at the machine level, such as uncleanliness or unstable component 

performance (Fulga, Davidescu and Effenberger, 2017). It should also be noted 

that Reid’s (2019) definition of the machine running time relies on the same 

assumption as Fera et al. (2017) that the actual build time is always equal to 

the minimum theoretical build time (see Section 2.2.2).  
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By contrast, the second study that applies OEE to AM (Parshawanath Jain, 2022) 

follows a more conservative approach by using the International Organisation 

for Standardization (ISO) definitions of availability, performance and quality, as 

per ISO 22400-2:2014 (The British Standards Institution, 2014). Probing the 

definitions of each metric further, a notable deviation from the original OEE 

formulation (equations (2.4) – (2.6)) is found. The actual production time in the 

availability metric (equation (2.11)) covers the time taken by “only the value-

adding functions” (The British Standards Institution, 2014). This is equivalent to 

the ideal running time (Nakajima, 1988), rather than the intended definition, 

which is the total time that the machine is running (see Figure 2.11). As a result, 

the availability metric in this study gives the ratio of value-added time to 

planned production time, which is effectively analogous to the entire OEE 

metric, as per Nakajima’s (1988) definition. By grouping together the 

production losses in this manner, the visibility of each source of production 

inefficiency is diminished.  

OEE = Availability × Performance × Quality (2.10) 

 

Availability =
𝑇𝐴𝑃𝑇

𝑇𝑃𝐵𝑇
 

(2.11) 

where: 

𝑇𝐴𝑃𝑇  ‒ actual production time 

𝑇𝑃𝐵𝑇  ‒  planned busy time 

 

  

Performance =
𝑇𝑃𝑅𝐼

𝑇𝐴𝑃𝑇
 

(2.12) 

where: 

𝑇𝑃𝑅𝐼  ‒ planned run time 

𝑇𝐴𝑃𝑇  ‒  actual production time 

 

 

Quality =
𝑄𝐺

𝑄𝑃
 

(2.13) 

where: 

𝑄𝐺  ‒ quantity of output deemed good 

𝑄𝑃  ‒  total quantity of output 
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Figure 2.11: Comparison of “actual production time” definitions, as per a) ISO 

22400-2:2014 (The British Standards Institution, 2014), and b) Nakajima (1988) 

Shifting attention to the quality metric in equation (2.13), the use of a quantity-

based measurement puts all sizes of output on par with one another. This does 

not align with the consensus that the resources and equipment capacity 

consumed by AM processes, and therefore wastes, in the case of rework, differ 

based on the geometry and size of the output (Ruffo and Hague, 2007; Baumers 

et al., 2013; Rickenbacher, Spierings and Wegener, 2013). As a consequence, 

the quality-related losses of the AM machine may be under or overestimated, 

depending on the properties of the parts produced. 

In all, a systematic assessment of the production losses in AM is missing. Given 

the prevalence of internal inefficiencies and complexity of the AM system, a 

thought-out interpretation of the OEE metric for AM is necessary to improve 

the transparency of process efficiency in AM. Moreover, the link between 

process planning and the production losses is not well-understood, as 

explained in Section 2.2.2, leading to missed opportunities to improve the 

operating frontier of AM.  
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2.3 Production Cost in AM 

From a strategic perspective, the suitability of a chosen production process for 

adoption is informed by the balance between its benefits and costs. In this 

context, AM cost models aim to accurately capture the cost of resources 

consumed during the production of valuable outputs, helping to evaluate the 

net value creation (Thomas and Gilbert, 2014). Depending on the activities of 

interest, the scope of cost models can span the production process, the total 

fulfilment process including design and supply chain activities, and even the use 

phase of the product as well (Kadir, Yusof and Wahab, 2020). Given the focus 

of this research on AM operations within the manufacturing firm, the 

production process scope is a suitable level of abstraction for this review. 

A thorough understanding of the underlying relationships between cost and the 

physical AM process is required to find the most cost-effective and feasible 

process planning options to maximise competitiveness (Chang, 2013, p. 239). 

Taking this a step further, AM cost models aim to both elucidate the cost drivers 

in the present, and highlight opportunities to broaden the economic 

applicability of AM in the future. Over time, this cycle of increasing depth of 

knowledge in AM process economics guides the development of impactful 

complementary innovations, pushing AM further towards GPT status. 

2.3.1 Cost Model Approaches 

The various different approaches for systematically estimating the contributors 

to production cost fall into two categories: qualitative or quantitative (Niazi et 

al., 2006; Kadir, Yusof and Wahab, 2020). Qualitative approaches use prior 

knowledge and costing data from previous products and processes to infer the 

resources consumed for production of a new product. In contrast, quantitative 

approaches analyse features of the product and process to derive relationships 

based on the product parameters or process activities. While qualitative 

approaches are considered quicker to apply, the use of previous data can 

introduce bias and repeatability issues; and therefore, despite a higher level of 
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complexity, quantitative approaches are considered more accurate (Niazi et al., 

2006). Importantly, quantitative approaches provide a clearer understanding of 

production cost drivers (Kadir, Yusof and Wahab, 2020). For reference, a non-

exhaustive summary of the quantitative approaches is given in Table 2.8. 

Table 2.8: Summary of quantitative cost model approaches for AM production 

Cost model 

approach 

Basis Techniques Examples 

Parametric Statistical regression of 

known or proposed cost 

drivers using available 

cost data (for early 

stages of product/ 

process design) 

Regression (di Angelo and di Stefano, 

2010; Pacella and Grieco, 

2010) 

Machine 

Learning 

(Chan, Lu and Wang, 2018; 

Rudolph and Emmelmann, 

2018) 

Analytical Decomposition of 

process into discrete 

operations or activities 

and summing 

relationships based on 

observable resources 

consumed therein (for 

late stages of product/ 

process design) 

Engineering (Schröder, Falk and Schmitt, 

2015; Griffin, Hale and Jin, 

2022) 

Breakdown (Hopkinson and Dickens, 

2003; Ruffo, Tuck and Hague, 

2006a; Atzeni et al., 2010; 

Atzeni and Salmi, 2012; 

Franchetti and Kress, 2017) 

Activity 

Based 

Costing 

(Alexander, Allen and Dutta, 

1998; Rickenbacher, Spierings 

and Wegener, 2013; Fera et 

al., 2017; Baumers and 

Holweg, 2019; Šoškić et al., 

2019) 

 

Among the quantitative techniques, activity based costing is the most suitable 

option for evaluating the cost of make-to-order AM, with the product variety 

this entails. Activity based costing focuses on the discrete activities in the 

workflow, and quantifies the corresponding resources consumed in each (Niazi 

et al., 2006). This option is more adaptable than alternative techniques to 

changes in the AM workflow for different products and, importantly, the 

influence on pre-processing and post-process activities (Alexander, Allen and 

Dutta, 1998). In contrast, the more detailed cost estimation equations in the 

engineering approach are often limited in scope to the AM deposition step 

alone (Griffin, Hale and Jin, 2022), in order to limit the onerous data entry 
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requirements for each product feature or process parameter (Schröder, Falk 

and Schmitt, 2015). Similarly, the activity based costing approach combines the 

mix of labour-intensive and highly-automated steps in the AM workflow in a 

more structured manner than the breakdown costing approach, which 

aggregates the different cost elements (e.g. labour, equipment) over the entire 

production process as if it were a single step (Hopkinson and Dickens, 2003; 

Ruffo, Tuck and Hague, 2006a; Atzeni et al., 2010; Atzeni and Salmi, 2012).  

An important feature of activity based costing is its application for comparing 

different process planning options, and their influence on the production cost 

drivers. The product feature-specific and process setup-specific cost 

formulations in parametric, breakdown and engineering approaches are less 

suited to this type of analysis (Niazi et al., 2006; Kadir, Yusof and Wahab, 2020).  

The prevalence of the breakdown approach in cost models for break-even 

studies comparing AM with conventional manufacturing, as compared to the 

use of activity based costing in detailed analyses of AM operations and cost 

drivers (see references in Table 2.8) supports this assessment.  

2.3.2 Drivers of Cost in Polymer Laser Sintering 

The cost drivers correspond to the different resources consumed or utilised for 

a given manufacturing process, and their impact on the unit cost of production. 

Identifying the major cost drivers in AM is important for efforts to manage and 

reduce the production cost (Hopkinson and Dickens, 2003; Ruffo, Tuck and 

Hague, 2006a; Lindemann et al., 2012). With this in mind, Table 2.9 provides a 

summary of the cost drivers for polymer laser sintering across a number of 

studies from the past 20 years. 

While different cost drivers (and relative magnitudes thereof) are captured by 

each model, there is consensus that material and machine costs dominate the 

overall cost of production (Hopkinson and Dickens, 2003; Ruffo, Tuck and 

Hague, 2006a; Atzeni et al., 2010; Baumers and Holweg, 2016). The joint 

contribution of these two cost drivers varies between 43% (Baumers and 

Holweg, 2016) and 98% (Hopkinson and Dickens, 2003) of the part cost. This is 
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also corroborated by a recent survey of industry AM users, who note that 74% 

of the total investment into in-house AM capabilities is dedicated towards 

equipment and material costs (Sculpteo, 2022).  

Atzeni et al. (2010) further show that reducing the cost of feedstock material 

and machine investment could improve production costs by 6% and 12%, 

respectively. The strategy for AM industrialisation also notes the importance of 

innovation in more affordable materials and machines (Additive Manufacturing 

UK, 2015); but in the meantime, these particular cost drivers are addressed via 

operations management, by maximising the efficiency of capital resources and 

material consumption during production, as examined in Section 2.3.3. 

Focusing on the remaining cost drivers, the contribution of labour, energy, and 

overheads, such as facilities and software, are typically smaller in magnitude 

than the material and machine costs (see Table 2.9). The energy costs are so 

minor that Ruffo et al. (2006a) explicitly choose to omit them; a choice later 

affirmed by Baumers and Holweg (2016), who find that energy costs are less 

than 1% of the production cost. It is pertinent to note that sharp increases in 

the overall cost of energy, such as the 85% rise in average per-unit electricity 

price since 2021 (Department for Business, Energy & Industrial Strategy, 2023), 

would impact the energy, material and indirect costs to varying extents. 

Embedded energy in the material is 87% of the total energy demand in the AM 

workflow, as compared to 10% for process energy (i.e. electricity) consumption 

(Wiese et al., 2021). Along with the increased costs for heating and lighting 

production facilities, it is therefore expected that the material and indirect 

costs have increased as a proportion of the total AM production cost, while 

process energy costs have been less affected. 

Despite the touted benefits of AM to reduce reliance on labour during 

manufacturing, the majority of the AM workflow involves manual tasks 

(Baumers and Holweg, 2016), and the cost of skilled operators can exceed one 

eighth of the production cost (Ruffo, Tuck and Hague, 2006a) and one quarter 

of a company’s investment in AM (Sculpteo, 2022).  
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Table 2.9: Summary of production cost drivers in polymer laser sintering 

Cost Driver Contribution to Unit Cost of Production (%) Type of  

Cost  

(Son, 1991) 
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Material 74 33 30 

86 – 89  

27 - 

Well-

structured 

costs 

Machine 24 38 59 16 
86 

Overheads (Indirect) - 16 - 16 

Labour 2 13 11 4 7 

Energy - - - - <1 - 

Risk of Failure - - - - 38 - Ill-

structured 

costs 

Quality Control - - - 11 – 14 - - 

Inventory - - - - - 7 

 

2.3.2.1 Ill-Structured Costs 

As AM technology has matured, perspectives on the cost drivers in the extant 

literature have also evolved to include and quantify less tangible aspects of the 

production cost. The framework proposed by Son (1991) in Figure 2.12 includes 

quality and flexibility as such “relatively ill-structured costs” (hereafter simply 

“ill-structured costs”), complementing the “well-structured costs” explored in 

the previous section. Referring to the summary of cost drivers (see Table 2.9), 

the latter three studies each include individual ill-structured cost elements.  

 

Figure 2.12: Framework of well-structured and ill-structured costs in production, 

adapted from Son (1991) 
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Exploring the quality-related costs first, the cost of failure arises from wasted 

resources expended on scrapped outputs (Ashby, 2011, p. 409). The extra 

resources consumed amplify the net cost by a given “scrap fraction”, or 

likelihood of failure, as shown in equation (2.14). While Ashby (2011) assumes 

that only the direct material input into a generic manufacturing process would 

be lost in the case of failure, Son (1991) takes a more holistic approach that 

accounts for the cost of necessary rework or the total cost of scrapping an 

irreparable part. This delineation between failure modes that lead to 

recoverable versus irrecoverable scrap is carried forward in estimates of failure 

costs in polymer laser sintering (Baumers and Holweg, 2016, 2019), and also 

aligns with approaches followed in other advanced manufacturing processes 

(Jauregui Becker, Borst and van der Veen, 2015).  

𝐶𝑡𝑜𝑡𝑎𝑙 =
𝐶𝑛𝑒𝑡

(1 − 𝑓)
 

(2.14) 

where: 

𝐶𝑡𝑜𝑡𝑎𝑙   ‒ total cost of production 

𝐶𝑛𝑒𝑡  ‒  net cost of production, before failure 

𝑓  ‒  scrap fraction 

 

 

Furthermore, two different cost estimation schemes emerge for failure costs in 

laser sintering. The first follows a part-oriented approach with a fixed scrap 

fraction, as above, for each part in the build. This is applied to metal powder-

bed fusion by Colosimo et al. (2019), and to laser sintering failures that arise 

from irreparable part defects by Baumers and Holweg (2016). The second 

scheme relates to an additional but distinct failure mode, whereby the entire 

build prematurely terminates due to an unforeseeable disruption (Baumers and 

Holweg, 2016, 2019). This scheme is layer-oriented, such that each layer during 

the build process is considered an independent step with its own likelihood of 

failure, as shown in Figure 2.13.  

From a process economics perspective, both schemes are helpful for 

aggregating the many sources of quality issues in powder-bed fusion AM (Fulga, 

Davidescu and Effenberger, 2017) into a straightforward, outcome-based 



Page 53 
 

estimate of failure and its cost impact. However, the specific source of quality 

issues remains hidden in this way, which is not conducive to process 

improvement for cost reduction. Additionally, establishing the appropriate 

scrap fractions requires empirical observations of part rejections and build 

failures (Baumers and Holweg, 2016, 2019). While the process of gathering 

failure-related data may lead to additional costs, these empirical approaches 

avoid the need to rely on arbitrary estimates of part rejection or machine failure 

probabilities, as seen in Schröder et al. (2015) and Laureijs et al. (2017), 

respectively. This improves the validity of the failure cost calculations.  

 

Figure 2.13: Discrete event probability tree for layer-wise calculation of build 

failure probability, adapted from Baumers et al. (2017) 

Closely related to the cost of failure itself is the cost of preventative systems, 

designed to monitor and intervene in the manufacturing process in order to 

minimise failures (Son, 1991). Schmid and Levy (2012) find that the fixed and 

variable costs for preventative quality control systems account for between one 

tenth and one fifth of the annual revenue for medium-value parts, which are 

priced at EUR200. While this is not exorbitant, the importance of offsetting the 

additional cost with savings in time, resources and materials on defective 

output is emphasised.  
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Therefore, the cost-effectiveness of such preventative systems relies on their 

ability to alert operators to issues and, where possible, terminate the 

manufacturing process to avoid excess resource consumption. Colosimo et al. 

(2019) note that, in the case of metal powder-bed fusion, the reliability of the 

monitoring system itself affects its cost-effectiveness. If the error rates in the 

monitoring system are high, particularly if defects are erroneously detected in 

parts (false positive), then the part cost becomes inflated through unnecessary 

scrap and remanufacturing. Given the likely scrap fractions in the machine and 

error rates in monitoring systems, Colosimo et al. (2019) conclude that 

monitoring is economically beneficial only for medium-to-high value parts. 

It is important to note that, while various preventative systems are emerging 

under research (Phillips, Fish and Beaman, 2018; Reiff et al., 2018; Brion and 

Pattinson, 2022), fully functional closed-loop quality control systems with 

active process correction capabilities do not yet exist for laser sintering. 

Shifting attention to the flexibility-related costs, a key cost contributor in any 

manufacturing process is the inventory of work-in-progress or finished parts. 

To this end, from a supply chain perspective, Alogla et al. (2021) note that 

manufacturing on demand using AM can entirely eliminate inventory costs, as 

compared to conventional manufacturing pathways. However, avoiding 

inventory relies on a minimum order quantity that is nearly eight times higher 

for AM than conventional manufacturing; and so responsive production of a 

varied mix of products is achieved, but at the expense of limited flexibility in 

the quantity to be delivered. On the other hand, Khajavi et al. (2018) show that 

inventory can arise within direct digital manufacturing operations due to a 

mismatch between the production fulfilment dates for different parts within an 

order. This points to an important link between appropriate management of 

the AM workflow and the production cost drivers, which can also be expanded 

to cover the flexibility costs of setup and waiting, as alluded to by the, albeit 

limited, sensitivity analysis conducted by Schröder et al. (2015). Therefore, the 

following section explores this in further detail.  
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To conclude the review of polymer laser sintering cost drivers, it is important 

to acknowledge the breadth of both well-structured and ill-structured costs 

that have emerged in the extant literature. The study of well-structured costs 

has been expanded to include different ill-structured cost drivers, from a 

quality perspective (Schmid and Levy, 2012; Baumers and Holweg, 2016; 

Colosimo, Cavalli and Grasso, 2019) and a flexibility perspective  (Schröder, Falk 

and Schmitt, 2015; Khajavi et al., 2018; Alogla et al., 2021). However, with the 

exception of one study (Khajavi et al., 2018), the examination of cost drivers is 

limited to the operation of individual machines; and so the context of operating 

multiple machines within a production facility or wider network that underpins 

scaled-up AM is as-yet unexplored. Moreover, a systematic assessment of 

different ill-structured costs together, and any trade-offs therein, is missing 

from the discourse. Given the dominance of ill-structured costs, particularly the 

risk of failure (Baumers and Holweg, 2016), this is a particularly significant 

omission from the study of AM cost and cost-effective operations.   

2.3.3 Impact of Process Planning on Cost Drivers 

This section explores how process planning affects the cost drivers, thus linking 

the operations management of the AM system to its cost-effectiveness. The 

various process planning factors fall into different categories, as per Framinan 

et al. (2023), and are outlined in Table 2.10. Assuming that the process choice 

is fixed, the following process planning and operating factors (from Table 2.10) 

affect all of the cost drivers: part allocation to machines, order acceptance and 

scheduling, part packing and orientation in the build. These can be explored in 

more detail with respect to the AM workflow and build process.  

Within a build, minimising the build height is a common objective when 

orienting and packing parts (Oh et al., 2020). The overarching aim is to reduce 

the build time and associated overheads or indirect costs. For laser sintering 

and other powder-bed fusion processes, the number of layers and build height 

contribute most significantly to the build time. Alongside this, the volume of 

unsintered powder that undergoes thermal cycling, ultimately leading to waste, 
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increases with the number of layers deposited. Thus, minimising the build 

height also reduces the consumption of expensive feedstock material.  

Table 2.10: Summary of different process planning factors, from Framinan et al. 

(2023), and links to cost drivers 

Categories Process Planning Element Link to Cost Drivers 

Designing 

AM Process 

Number of AM and ancillary 

machines  

Indirect costs, via machine 

depreciation and maintenance 

Organisation of machines in 

workflow 

As yet unexplored (see Section 

2.4.2.1) 

Planning 

AM Process 

AM process choice 

All cost drivers, via process 

design and consumption of 

materials and energy 

Part allocation to machines/ 

facilities in distributed network 
All cost drivers, via amortisation 

of machine capacity and labour, 

and consumption of materials 

and energy 

Order acceptance and scheduling  

Nesting (packing) of parts 

Operating 

of AM 

Orientation of parts in build 

Process parameter settings 

Material, energy, indirect costs; 

via time and resources 

consumed during the build 

 

Considering the ill-structured cost drivers as well, the risk of build failure 

provides a further motivation to minimise the build height. Although it should 

be noted that this arises due to the layer-wise nature of the build failure 

probability model (Baumers and Holweg, 2016). Alternative models focus on 

part orientation to balance minimising height (for the aforementioned effect 

on build time and material consumption) with quality-centric factors such as 

surface roughness that affect the part value rather than the production cost.  

There is also consensus that the volumetric capacity should be maximally filled 

for each build. This relates to achieving economies of scale by apportioning the 

fixed machine time and resources (labour, energy) for the setup, loading, 

warm-up, cool-down, and unloading across the largest possible output set. 

Ruffo et al. (2006a) first identify the scale economies in the relationship 

between cost and quantity, which Baumers and Holweg (2019) later formalise 

by accounting for failure modes and operator variation as well.  
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While the amortisation of fixed costs motivates process planning to maximise 

capacity utilisation in various cost studies, this also increases build failure-

related costs due to the taller build height. Baumers and Holweg (2016) thus 

find a trade-off between well-structured and failure-related ill-structured costs.  

In a similar vein, when managing an incoming order stream in make-to-order 

AM, the timeliness of delivery becomes an additional constraint to balance with 

capacity utilisation (Costabile et al., 2017). Production of early orders must be 

delayed to allow demand to accumulate and fill machines for cost effective 

production, risking late delivery. In this case, process planning shifts from 

packing alone to the allocation of parts to a sequence of builds in a machine; 

and the objective often becomes minimum makespan rather than build height 

or machine utilisation (Oh et al., 2020). Although, sophisticated approaches are 

required to avoid additional ill-structured costs, such as inventory holding of 

partially fulfilled orders from one build to the next (Khajavi et al., 2018).  

Expanding the perspective to include allocating parts and scheduling builds 

across multiple machines, the extant literature begins to disagree on 

appropriate process planning approaches. A key reason is the relative recency 

of the topic, with studies that explore multi-build and multi-machine scenarios 

only appearing in the discourse from 2015 onwards (Oh et al., 2020). Studies 

vary in their focus on cost, makespan, tardiness, fraction of orders accepted, 

and other related factors; and importantly, the process planning solution, in 

terms of a sequence of packed builds, is different depending on the objective 

that is prioritised (Altekin and Bukchin, 2021).  

This points to a unique challenge of both cost-effective and consistent-cost 

operation of multiple machines for make-to-order fulfilment. Estimating the 

cost of orders is a challenge when the contents of the builds is unknown, due 

to variety in the rate and contents of incoming orders (Rudolph and 

Emmelmann, 2018). Therefore, shifting the focus of process planning 

capabilities to generate both cost- and time-effective AM builds in a predictable 

manner could improve users’ business competitiveness and ability to attend to 

process improvement rather than stability.  
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It is also important to acknowledge that process planning activities are often 

handled by skilled operators, who rely on tacit knowledge about the 

manufacturing process. To this end, Mandolini et al. (2020) note the 

importance of properly capturing both tacit and explicit understanding of 

manufacturing processes towards successful implementation of cost models. 

2.3.3.1 Role of Workflow Optimisation 

Thus far, this section has highlighted that AM process planning for cost-

efficiency involves a multitude of contributory factors, which operate at 

different levels of abstraction in the manufacturing system: from the 

orientation of a single part, to the acceptance or rejection of entire orders 

(Framinan, Perez-Gonzalez and Fernandez-Viagas, 2023). Additionally, the 

solution space within each factor is often vast, if not infinite. A prime example 

of this is packing parts for a build job, which alone is a computationally complex, 

non-deterministic polynomial hard (i.e. NP-hard) optimisation problem (Araújo 

et al., 2018), even before other factors are combined therewith. As a result, 

novel and powerful optimisation techniques are required to deliver cost-

effective AM production; and more importantly, such optimisation techniques 

must consider multiple aspects of the AM workflow (Baumers, Özcan and Atkin, 

2017), hereafter referred to as “workflow optimisation”.  

Given the computational complexity of AM process planning optimisation, 

heuristic approaches are often employed in this domain (Oh et al., 2020), 

because they are able to find a “good enough” solution within a reasonable 

computational time and workload, as compared to analytical or brute force 

alternatives. However, a key trend that still prevails among process planning 

optimisation studies is the optimisation of different workflow steps, such as 

packing, order acceptance, and build time minimisation, in isolation (Freens et 

al., 2015; Li, Kucukkoc and Zhang, 2017; Chergui, Hadj-Hamou and Vignat, 

2018). While constraining the optimisation problem in this way can lead to 

simpler and faster solutions, potentially vast swathes of the design space for 

process planning are overlooked at the intersection between the different 
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process planning factors (Framinan, Perez-Gonzalez and Fernandez-Viagas, 

2023), and so cost-effective process planning choices could be missed.  

To address this gap, studies are emerging that recognise the presence of trade-

offs between different parts of AM process planning (Altekin and Bukchin, 

2021; Kapadia et al., 2021), and attempt to optimise these in a holistic manner, 

hereafter referred to as “integrated optimisation”. Three process planning 

elements are of particular interest: the allocation of incoming orders to build 

jobs, the packing of parts therein, and the scheduling or sequencing of the build 

jobs; together, these are referred to as the “packing and scheduling problem”. 

The packing and scheduling problem is pivotal for cost-effective AM because it 

directly affects the build properties and, by extension, the cost drivers 

(Baumers, Özcan and Atkin, 2017; Costabile et al., 2017).  

A limited set of AM operations research studies are found to explore integrated 

optimisation of the packing and scheduling problem (Gopsill and Hicks, 2018; 

Khajavi et al., 2018; Kapadia et al., 2021), of which only the latter two consider 

three-dimensional packing, as found in the polymer laser sintering process. 

However, both of these studies focus on other tools available in direct digital 

manufacturing to optimise the workflow: automatic kit generation (Khajavi et 

al., 2018), and dynamic order acceptance or rejection (Kapadia et al., 2021). As 

a result, while novel algorithmic solutions for integrated optimisation of the 

packing and scheduling problem are presented, the results do not explore the 

links between this workflow optimisation phenomenon and the underlying cost 

drivers. It is therefore difficult to evaluate the cost-effectiveness of employing 

integrated optimisation against alternative, simpler solutions.  

In the wider context, Framinan et al. (2023) note that integrated optimisation 

will feature heavily in future AM operations management tools. This echoes the 

assertion that AM system-level integration is required to improve the 

performance frontier for flexibility and controllability in the workflow, leading 

to better profit and revenue (Thomas and Gilbert, 2014; Baumers, Özcan and 

Atkin, 2017). Hence, proving the benefits of integrated optimisation for the 

packing and scheduling problem is key to the wider AM workflow performance. 
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2.4 Facility Layout in AM 

The facility layout refers to the arrangement and organisation of processes, and 

the required equipment, to fulfil production. Appropriate layout choices 

depend on the production scale, variety of products, process technologies, and 

links to the upstream and downstream supply chains (Naylor, 2002, p. 240). 

This aspect of capacity management affects the production output that can be 

achieved, the number and types of equipment in the workflow, and the time 

and resources (e.g. operator workload) consumed during production (Radford 

and Richardson, 1977, p. 132).  

In other words, facility layout is significant because it has repercussions for the 

future production workflow and for the balance of process inputs and outputs 

therein, which is directly related to the process efficiency. Furthermore, it is 

very difficult to remediate issues arising from inappropriate facility layout once 

production operations have begun, even with significant re-investment in time, 

organisational change and cost (Kopf et al., 2016). This is exacerbated by the 

high investment cost required for AM, in terms of both equipment and operator 

training (Khorram Niaki and Nonino, 2017). 

Despite this, the extant literature severely lacks consideration of AM facility 

layout or infrastructure requirements at the strategic or operational level. One 

possible reason is the relatively poor maturity of AM use in industrial contexts, 

which motivates a general-purpose workshop-style layout when first adopting 

AM to improve the ability to pivot towards changing production requirements 

(Kopf et al., 2016). For this reason, AM operations management and operations 

research frameworks have remained focused on issues relating to process 

capability and reliability (Mellor, Hao and Zhang, 2014), and timely and cost-

efficient management of the production workflow (Framinan, Perez-Gonzalez 

and Fernandez-Viagas, 2023). Therefore, the remainder of this section outlines 

appropriate facility layout approaches and implications for the AM workflow. 
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2.4.1 Facility Layout Approaches 

There are three key facility layout approaches that are related to batch 

production, which matches AM operations characteristics (Baumers and 

Holweg, 2019), and are also found in various AM production facility studies. 

First, the process layout (Figure 2.14a) organises the production floor into zones 

of general-purpose equipment of the same type, and products are flexibly 

routed between these zones as per their processing requirements (Yoo et al., 

2016; Kellner et al., 2019). Second, the line layout (Figure 2.14b) sequences 

equipment in the order of operations for a given product or group of similar 

products, known as a product family (Avventuroso et al., 2017; Avventuroso, 

Silvestri and Frazzon, 2018). The equipment is typically dedicated to the 

product family, and the pace of the product flow through the system is set by 

operator- or machine-driven tasks. The third layout is a hybrid between the 

preceding options: cellular layout (Figure 2.14c) has clusters (cells) of general-

purpose or dedicated equipment that correspond to common sequences in the 

manufacturing workflow (Kang et al., 2018). Products are routed flexibly across 

the cells, and often proceed in series inside the cells. The operational 

characteristics of each layout option is presented in Table 2.11, with reference 

to manufacturing processes in general (Radford and Richardson, 1977, pp. 133–

134; Naylor, 2002, pp. 242–251). 
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Figure 2.14: Example flows of different products through facility with a) process 

layout, b) line layout, and c) cellular layout 
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Table 2.11: Characteristics of facility layout approaches suitable for batch production 

Characteristic Facility Layout Approach 

Process Line Cellular 

Orientation Equipment function Product type Hybrid 

Product-Process 

Mix 

High variety of products 

Generalised equipment 

Low/no variety of products 

Dedicated equipment 

Medium/high variety of products 

Generalised equipment in dedicated clusters 

Advantages Flexibility in scheduling 

Aligns with operator specialisation 

No delay between processes 

Shorter throughput 

Higher control 

No delay between processes within cells 

Higher scheduling flexibility than line layout 

Lower work-in-progress than process layout 

Higher task autonomy for operators 

Disadvantages Complex scheduling 

Higher quantity of work-in-progress 

Longer travel time between processes 

Products may loop back to the same part 

of the facility, depending on operations 

Inflexible in scheduling 

Series flow vulnerable to disruption 

Synchronisation required along the line 

for a smooth flow 

Negligible task autonomy for operators 

Low and/or uneven utilisation of some 

equipment in cells 
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2.4.2 Drivers of Facility Layout Choice 

The suitability of each facility layout approach can be reviewed with reference 

to the scope of AM operations in this research, which is direct digital 

manufacturing to fulfil product variety.  

In place of conventional manufacturing methods, AM can improve the 

economic feasibility of production variety when using the line layout, but the 

layout itself is oriented towards efficiency and therefore is not conducive to 

flexibility in production (Enrique et al., 2022). Indeed, the two examples of an 

AM-based line layout involve identical parts (Avventuroso, Silvestri and 

Frazzon, 2018) or batches of parts differing in size only (Avventuroso et al., 

2017). Therefore, despite its focus on process efficiency, the line layout would 

not be suitable for the product variety orientation of this research.  

On the other hand, the cellular layout is amenable to not only variety in 

production output (Kang et al., 2018), but also variety in production processes 

involving hybrid-AM combinations (Boivie et al., 2011; Lehmhus et al., 2016) 

and even variety in workflow configurations (Arnarson et al., 2022). Similarly, 

the product-agnostic configuration of equipment in the process layout 

facilitates easy re-orientation of the production facility to demonstrate a range 

of different applications of AM (Yoo et al., 2016).  

These examples of cellular and process layouts are presented as demonstrator 

facilities; and so there is no quantitative analysis of the available facility layout 

approaches to justify their choice, despite the opportunity to maximise value-

adding time and minimise production cost (Ali Naqvi et al., 2016). Few studies 

of facility layout offer an operations-oriented justification, and even fewer still 

seek to optimise the layout, once chosen. The following sub-sections therefore 

assess the limited extant literature for the potential impacts of the facility 

layout on process efficiency and scope for scaled-up AM. 
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2.4.2.1 Impact on Cost 

The equipment requirements, or capacity within the manufacturing system, 

depends not only on the anticipated throughput of products but on the facility 

layout as well (Radford and Richardson, 1977, p. 132). This relationship is also 

influenced by factors such as the flexibility to introduce new products and the 

required redundancies against breakdown. Therefore, by extension, the facility 

layout choice affects the setup cost, as per the quantity of each equipment, of 

the production workflow. Kang et al. (2018) show that the equipment 

investment cost is a valid metric of comparison between different 

manufacturing system setups, albeit comparing conventional and AM systems 

within the same cellular layout.  

The high costs of equipment, alongside necessary infrastructure and skilled 

labour, are an investment barrier to AM implementation and expansion, 

particularly for small and medium enterprises (Pour et al., 2016; Khorram Niaki 

and Nonino, 2017). Referring to conventional manufacturing processes, the 

equipment requirements are higher in cellular manufacturing, as each cell 

should contain all the machines necessary for the process steps within to 

maintain the system advantages (Greene and Sadowski, 1984). However, it is 

not known whether the general purpose nature of AM machines can help other 

facility layout approaches achieve similar process efficiency advantages to the 

cellular layout. While consensus has built over the years that an AM production 

workflow is less costly to set up than a low-volume, flexibility-centric 

conventional manufacturing counterpart (Hopkinson and Dickens, 2003; Atzeni 

et al., 2010; Kang et al., 2018), no studies have been found to compare different 

layouts for AM production as the production scale increases. Therefore, the 

impetus to find cost-effective facility layouts also impacts the technology 

adoption and wider diffusion of AM.  
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2.4.2.2 Impact on Production Losses 

Expanding on the links between facility layout and cost-efficiency of the 

workflow, the constraints on the workflow that arise from the layout choice 

impact the production time and quality. 

The disparity in time taken for the AM production step compared to upstream 

and downstream parts of the AM workflow leads to production bottlenecks 

(Avventuroso et al., 2017; Avventuroso, Silvestri and Frazzon, 2018; Kang et al., 

2018). This motivates parallelisation of the different steps, which is 

straightforward to implement in the process layout; optimisation of the 

number of machines in each step therefore leads to improved throughput and 

equipment utilisation (Kellner et al., 2019). A similar approach is also feasible 

in the cellular and line layouts, but only where the manufacturing setup is 

modular (Lehmhus et al., 2016; Avventuroso et al., 2017; Avventuroso, Silvestri 

and Frazzon, 2018; Kang et al., 2018). Given the footprint of industrial AM 

equipment, modularity is possible only with desktop-sized machines, as in the 

cited studies.  

Focusing further on the process layout, Kellner et al. (2019) demonstrate that 

parts spend most of their time (82 – 86%) in storage or travel between 

machines. This corroborates weaknesses of the process layout relating to non-

value-added time in the workflow, as identified in Table 2.11. On the other 

hand, Dutra et al. (2022) assert that the process layout improves production 

flexibility via concurrent manufacture of different products. However, this 

specific attribute is already available in AM (notwithstanding material 

requirements), independent to the facility layout (Pour et al., 2016). Therefore, 

the trade-off between non-value-added time and parallelisation in AM 

workflows using the process layout is unclear and warrants further 

investigation. 

Yoo et al. (2016) provide a different motivation for choosing the process layout, 

which is to control the production environment for the pre-process, process 

and post-process steps separately to improve safety and output quality. 
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Interestingly, a similar argument can be used for the cellular layout in high-

value and industrial applications of AM (Nuclear AMRC News, 2015). For 

example, separate manufacturing cells can be reserved for different material 

flows, leveraging the ability to set up complete and independent workflows 

inside each cell, as demonstrated by Kang et al. (2018). However, separating 

and restrictively allocating resources introduces elements of the line layout by 

reducing the flexibility of the workflow and increasing its vulnerability to 

disruption (see Table 2.11). Given the vulnerability of powder-bed fusion 

systems to breakdown and outright build failure (Baumers and Holweg, 2016; 

Colosimo, Cavalli and Grasso, 2019), the organisation of the workflow with 

respect to this trade-off in quality factors is of pertinent interest. 

2.4.2.3 Impact on Scaled-Up AM 

Throughout this section, the use cases for cellular manufacturing are geared 

towards demonstrator (Boivie et al., 2011; Lehmhus et al., 2016) or standalone 

“micro-factories” (Kang et al., 2018). This suggests better suitability towards 

low-scale AM or scaling up via distributed manufacturing, where each facility 

has a few cells that span the entire AM workflow and operate independently.  

Shifting towards scaled-up AM, Ben-Ner and Siemsen (2017) make a valuable 

observation about the ability to invest in individual general-purpose machines 

to expand capacity in AM workflows, rather than investing in “lumpy increases 

in capacity”, as would be found in conventional manufacturing. Extending this 

logic, the process layout would be more amenable to smoothly adjusting the 

capacity in the manufacturing workflow to the external demand. This is because 

there is greater freedom to expand capacity one function at a time by investing 

in individual machines. In contrast, the cellular layout aligns with expanding 

capacity by entire manufacturing cells at a time.  

The scope to incorporate further digital manufacturing paradigms in the AM 

workflow also depends on the facility layout. The AM and hybrid cellular layouts 

each include automated transfer systems between stations in the cell, such as 

robotic arms and conveyor systems (Boivie et al., 2011; Lehmhus et al., 2016; 
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Kang et al., 2018). The relative proximity of each process step facilitates the use 

of this readily-available technology to minimise the operator input between the 

steps in the AM workflow, which is conducive to operations at scale. In the 

process layout, alternative, albeit futuristic, solutions such as autonomous 

guided vehicles would have to be considered (EOS GmbH, 2023).  

To sum up, the facility layout considerations for the AM workflow significantly 

change when operating at scale (Huang et al., 2021). In particular, the focus 

must shift towards high process efficiency in the flow of products through the 

manufacturing system. Therefore, there is a need to establish the connections 

between the facility layout and the drivers of cost-effective and time-efficient 

production in order to support scaled-up AM. 

2.5 Summary 

The review of the background and focal literature can be summarised according 

to three themes that relate to each research objective, and their intersection 

with perspectives on operations management and technology adoption for AM. 

These are outlined below and in Table 2.12. 

First, the technology adoption literature has shown the potential scope of AM 

to disrupt existing manufacturing and product-service businesses (Cotteleer 

and Joyce, 2014; Steenhuis and Pretorius, 2017; Maresch and Gartner, 2020), 

but emphasise that this is only possible if tools are available to AM users to 

reconcile the complexity of decision making in adopting and implementing AM 

(Oettmeier and Hofmann, 2017; Handfield et al., 2022). To this end, the focal 

literature on production losses highlights that this key system for assessing the 

value-add of manufacturing processes has not been fully applied to AM (Fera 

et al., 2017; Reid, 2019; Parshawanath Jain, 2022). An opportunity exists here 

to improve both the transparency of AM performance and direct AM users 

towards methods for achieving greater process efficiency. 

Second, the literature pertaining to economies of scale and scope highlights the 

different sources of cost-effectiveness in AM (Rickenbacher, Spierings and 
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Wegener, 2013; Baumers et al., 2017; Baumers and Holweg, 2019; 

Hedenstierna et al., 2019). Relating this to AM operations management, the 

role of process planning (primarily the conversion of incoming orders to packed 

and scheduled build jobs) in realising economies of scale and scope has been 

explored in the aforementioned studies with respect to well-structured costs. 

However, the impact of ill-structured costs on cost-effectiveness in AM has 

largely been examined in isolation (Baumers and Holweg, 2016; Khajavi et al., 

2018; Alogla et al., 2021), which misses any potential trade-offs therein. 

Therefore, there is scope to extend the understanding of both well-structured 

and ill-structured costs in tandem and, importantly, do so in the context of 

multi-machine operations as found in scaled-up AM. 

Third, the operations management literature relating to process and facility 

design for product volume and variety (Radford and Richardson, 1977, pp. 133–

134; Hayes and Wheelwright, 1979; Naylor, 2002, pp. 242–251) offers a strong 

framework for guiding the layout of facilities as the production scale increases. 

However, this perspective is almost entirely missing from the AM discourse, 

with limited examination of or justification provided for industrial AM users’ 

choice of facility layout (Yoo et al., 2016; Avventuroso et al., 2017; Kang et al., 

2018). Moreover, there is no comparative assessment of the facility layout 

approaches with respect to AM, and evaluations of the process efficiency are 

limited to single paradigms (Avventuroso et al., 2017; Kellner et al., 2019). A 

gap therefore arises for developing a verifiable guide for AM users with respect 

to the appropriate facility layout, and underlying mechanisms for process 

efficiency, for different scales of production. 

To close, the common thread throughout the research gaps, and subsequent 

design of this research, is the balance of efficiency with responsiveness and 

variety across the AM workflow. In short, this thesis aims to apply AM 

operations management principles in the pursuit of maximum cost-

effectiveness, time-efficiency, and quality of output; while managing variety in 

both the production output, in terms of product mix and scale of production, 

and the process, from single machines to entire production facilities. 
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Table 2.12: Summary of literature gaps to be addressed by each research objective 

Research Objective Identified Gaps in the Literature 

1. To evaluate the 

effect of process 

planning on the 

production losses in 

AM, at the machine 

level of abstraction. 

• Poor transparency of AM process efficiency, 

particularly with reference to well-established 

theories (value-adding time, production losses) and 

metrics (OEE) that can support the AM business 

case (Pushparaj et al., 2019; Kurdve et al., 2020). 

• Absence of quantified estimates of production 

losses in the AM workflow, and evaluation of steps 

that can be taken to reduce these (Fera et al., 2017; 

Reid, 2019; Parshawanath Jain, 2022). 

• Limited investigation of the link between AM 

process planning and production losses, despite 

studies that allude to its significance (Gopsill and 

Hicks, 2018; Stittgen and Schleifenbaum, 2020).  

2. To evaluate the 

effect of process 

planning on the 

total cost for make-

to-order fulfilment 

using scaled-up AM, 

at the 

manufacturing 

system level of 

abstraction. 

• Studies into ill-structured costs are limited to 

individual machine operations (Schmid and Levy, 

2012; Baumers and Holweg, 2016; Alogla et al., 

2021). Extension of this to multi-machine scenarios 

is required to reflect realistic industrial AM 

operations (Khajavi et al., 2018). 

• Ill-structured costs have been evaluated in isolation 

in the extant literature, which neglects potential 

trade-offs therein (Baumers and Holweg, 2016, 

2019; Khajavi et al., 2018). 

• Similarly, process planning factors that influence 

both well-structured and ill-structured cost drivers 

are typically optimised sequentially, in isolation 

(Freens et al., 2015). Integrated optimisation of 

these factors shows promise for improving cost-

effectiveness of AM (Baumers, Özcan and Atkin, 

2017), but the links to the cost drivers have not 

been explored. 

3. To investigate 

suitable facility 

layouts for scaled-

up AM production, 

and their effect on 

process efficiency in 

terms of cost and 

production losses. 

• Within the limited discussion of equipment 

organisation for AM workflows (Yoo et al., 2016; 

Avventuroso et al., 2017; Kang et al., 2018), the 

effect of different facility layout approaches on 

production efficiency from a time or cost 

perspective has not been explored. 

• While the relationship between facility layout and 

production scale (and variety) is well-established 

for conventional manufacturing (Radford and 

Richardson, 1977; Naylor, 2002), and could be 

significant for scaled-up AM (Huang et al., 2021), 

both qualitative and quantitative investigation of 

this phenomenon is missing in the AM discourse. 
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3 Methodology 

This chapter presents the research methodology, discussing the approaches 

and research design towards meeting the research objectives. The overall aim 

is to investigate the influence of operations management on AM process 

efficiency. The process efficiency is explored from two perspectives, production 

cost and production losses; and by systematically exploring patterns therein, 

this research will provide tools and insights to support the implementation of 

competitive scaled-up AM. 

Similar to the preceding chapter, the structure of this chapter covers 

background elements and then aligns with the three research objectives. The 

first three sections explain the underlying principles to the methodology, 

including the modelling approach and its application to the AM workflow. 

Following this, Sections 3.4, 3.5 and 3.6 cover the development of models and 

metrics for investigating AM production losses, workflow optimisation, and 

facility layout, respectively.  

3.1 Overview 

The overarching methodological approach in this research is to deploy 

exploratory simulation to systematically investigate practical process planning 

interventions on different parts of the AM workflow. Exploratory simulation 

efficiently investigates how a complex system behaves under different 

conditions, often using discrete event simulation (DES) for operations-related 

studies. The generic method, and its application to AM make-to-order systems 

is shown in Figure 3.1, and explained further in the following section. 

This approach is used to examine three OM and OR principles, and their 

intersection with AM operations. First, the theory of value-adding and non-

value-adding time (Hines and Rich, 1997) and production losses (Nakajima, 

1988) is systematically applied to the AM workflow to study the balance 

between flexibility and efficiency in the AM process. Second, the trend towards 

integrated optimisation in scheduling-related operations research (Framinan, 
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Perez-Gonzalez and Fernandez-Viagas, 2023) is applied to AM, exploring the 

touted potential for improving AM cost-effectiveness (Baumers, Özcan and 

Atkin, 2017). Third, characteristics of the cellular and process facility layout 

approaches are contrasted in the AM context for the first time, exploring the 

influence on production losses and cost-effectiveness across the AM workflow. 

 

Figure 3.1: Summary of exploratory simulation methodology and its application to 

this research 

3.2 Exploratory Simulation Approach 

Exploratory simulation involves testing the effect of different scenarios (e.g. 

system structures, operating policies and future states) on a target system, in 

this case AM make-to-order production for direct digital manufacturing 

(Größler, 2010). This approach seeks to establish the generic, defining 

relationships and mechanisms within the system (Yilmaz, Ören and Hunt, 2011). 

In the context of investigating new systems, exploratory simulation sits 

between two extremes: the invention of novel conceptual models for a system, 

with proposed behaviours (generative simulation); and the use of simulation to 

refine systems to achieve target attributes (simulation experiment design). This 

is illustrated in Figure 3.2.  
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Figure 3.2: Types of simulation in the research of complex systems, adapted from 

(Yilmaz, Ören and Hunt, 2011) 

A distinct strength of exploratory simulation is to explore novel systems in an 

efficient manner, highlighting areas of interest to be explored further via 

detailed models or empirical experiments (Ramasesh, Kulkarni and Jayakumar, 

2001). This is achieved by examining the effects of different scenarios on the 

desired performance metrics, rather than attempting to capture the underlying 

causal relationships in the model itself (Größler, 2010). Therefore, exploratory 

simulation is well-suited to the investigation of operations management 

decision-making for scaled-up AM systems.  

An alternative research approach is to derive qualitative and quantitative AM 

operations insights from empirical build experiments (see Ruffo et al. (2006a), 

Baumers and Holweg (2019)). While empirical studies offer the closest match 

to the real-world implementation of a given system, there are two major 

challenges to pursuing an empirical approach in this research. First, the 

multitude of build experiments required to obtain a statistically relevant 

sample of data for testing the different process planning experimental 

conditions would consume inordinate volumes of material, energy and 

machine time. For example, Khajavi et al. (2018) replace a mere 34 build 
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experiments (across eight experimental conditions) with an alternative, 

simulated workflow; whereas the experiment design in this thesis exceeds 100 

builds per research study. For the facility layout approaches, the second 

challenge is that it would be extremely cumbersome to physically re-arrange 

equipment within the research lab to replicate the required experimental 

conditions. An alternative option is to work with external organisations who 

already have the required facility layout setups. However, the requirement to 

commit extended time and resources to multiple build experiments still exists; 

and more importantly, it is not possible to test the effect of scaling up AM 

facilities in the real world, even with collaborating organisations, as this 

involves prohibitively expensive AM equipment investment and 

commissioning.  

It is important to acknowledge that exploratory simulation has inherent 

limitations. While simulations are able to emulate stochastic processes, these 

are ultimately pseudorandom and based on probability distributions (Hillier 

and Lieberman, 2010, p. 935). Therefore, the random variation that occurs in 

the AM process (such as the build time or breakdown events) and the wider 

workflow (such as the inflow of customer orders) is not captured in its entirety. 

To mitigate this, the validity of simulation experiments is maintained by 

obtaining data from real-world sources, for example, via case studies (Chen and 

Tsai, 2008). Additionally, controlling factors that are both stochastic, i.e. 

random, and sporadic, i.e. scattered in time, ensures that they do not affect the 

experiments in a biased manner.  

Overall, exploratory simulation makes it possible to develop new theories 

about the behaviour of complex systems from a combination of theory, 

intuition, and observations (Antunes, Coelho and Balsa, 2006). In this research, 

novel intuition about scaled-up AM is combined with existing operations 

management theory through targeted exploratory simulation to generate new 

understanding about AM operations efficiency that supports further adoption 

of the technology.  
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3.3 Model of AM Workflow 

Prior to discussing the methodologies for the exploratory simulation studies, 

this section outlines the common model of the AM workflow that underpins 

each simulation and evaluation of the operations therein. 

3.3.1 Process Steps for Polymer Laser Sintering 

The research is grounded in a common understanding of the polymer laser 

sintering process steps. Figure 3.3 illustrates the laser sintering workflow for 

make-to-order direct digital manufacturing. This builds on and covers the latter 

seven steps from the generic AM workflow (see Figure 2.1), while specifying the 

various AM machine setup and post-build activities. The scope and detail here 

follows the AM management studies by Baumers and Holweg (2016, 2019). 

 

Figure 3.3: Polymer laser sintering workflow for make-to-order production 
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To aid the development of the simulations, a conceptual model of the AM 

workflow is formed by defining the inputs, outputs, and the scope and level of 

detail of the elements therein (Robinson, 2008). The inputs are the incoming 

orders, and process planning experimental conditions for the workflow. The 

outputs are the various metrics to describe the AM step, such as the build time, 

build height and capacity utilisation (see Section 3.3.3); the relevant cost- and 

production loss-related metrics are calculated from these outputs, as explained 

in Sections 3.4, 3.5, and 3.6. The scope includes the workflow steps from file 

preparation to readying parts for dispatch, as per Figure 3.3. The level of detail 

within the key model elements is outlined in Table 3.1, covering the incoming 

orders, the build jobs arising from the process planning approaches 

investigated, and the resulting effect on the AM workflow.  

Table 3.1: Level of detail of elements included in the model of the AM workflow 

Model 

element 
Level of Detail  Justification 

Orders  

Quantity Provides the space-related constraints on 

process planning in the simulations. Volume of parts 

Arrival rate Provides the time-related constraints on 

process planning in the simulations. Delivery due date 

AM Build 

Jobs 

Packing of parts in 

the build 

Affects process planning from the 

perspective of space-efficient use of capacity. 

Scheduling of builds 

in the workflow 

Affects process planning from the 

perspective of time-efficient use of capacity.  

AM 

Workflow 

Equipment and 

arrangement 

Determines the capacity available for process 

planning, and affects the progression of 

builds through the workflow. 

Time spent in each 

part of the workflow 

Affected by process planning, the equipment 

characteristics, and scheduling of activities in 

the AM workflow. Determines the time-

efficient use of available capacity. 

Resources consumed 

in each part of the 

workflow 

Determines the cost-efficiency of capacity 

management and scheduling in the AM 

workflow. 

Disturbances e.g. 

build failure 

Affects the time and resources consumed in 

the AM workflow. 

Operators 

Time to complete 

tasks 

Affects the scheduling of the manual/semi-

automatic activities in the AM workflow. 

Number of operators 

available 

One operator per machine assumed or 

modelled, so that this does not influence the 

process planning.  
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3.3.2 Assumptions and Simplifications 

Assumptions and simplifications arise during the process of translating a real-

world process to the simulation domain. Assumptions account for uncertainties 

in or limited knowledge about the real-world domain, whereas simplifications 

aim to improve the speed and transparency of model development by 

appropriately limiting the scope and level of detail (Robinson, 2008). Key 

assumptions and simplifications for the AM workflow are outlined in Table 3.2. 

Table 3.2: Assumptions and simplifications in the model of the AM workflow 

 Description Justification 

A
ss

u
m

p
ti

o
n

s 
  

Make-to-order fulfilment, 

unless specified 

Make-to-order fulfilment is central to responsive 

direct digital manufacturing. 

One operator per AM 

machine 

The number of operators should not unduly 

affect the time-efficiency of the manual/semi-

automatic steps. 

Routine maintenance 

does not affect the AM 

workflow 

The capacity management of a manufacturing 

system accounts for routine maintenance 

activities outside of productive time. 

Si
m

p
lif

ic
a

ti
o

n
s 

 

Order contents are 

populated using a set of 

test parts 

Commercial sensitivity precludes the use of real, 

customer orders from companies. A set of 

dissimilar test parts are used instead. 

All orders are accepted  

The scale of production is low enough to accept 

and fulfil all incoming orders without 

jeopardising competitiveness. 

All orders are for parts in 

the same material 

All parts from orders can be grouped together, 

simplifying the build file preparation step. 

Part finishing (e.g. 

polishing) is excluded 

from the workflow 

Part finishing is extraneous to the basic AM 

workflow, and not affected by the process 

planning scenarios explored in this research. 

Operator skill is uniform 

Time taken by expert and novice operators 

overlap within one standard deviation (Baumers 

and Holweg, 2019); and so the difference in time 

is neglected. 

Only two failure modes 

(outright build failure, 

non-correctable part 

rejection) are considered 

Remaining two failure modes for polymer laser 

sintering, correctable part failure and material-

related failure (Baumers and Holweg, 2019), are 

not affected by the process planning scenarios 

explored in this research.  
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3.3.2.1 Failure Modes in Polymer Laser Sintering 

Baumers and Holweg (2019) define four failure modes for polymer laser 

sintering: outright build failure, non-correctable part rejection, correctable part 

failure, and material-related failure. The latter two failure modes are not 

affected by the process planning scenarios. Correctable part rejection involves 

rework to bring defect parts up to standard, which is completed away from the 

AM machine and so the value-adding time of the AM machine is not diminished. 

Material-related failures are not connected to build file preparation, and it is 

assumed that the material preparation step is always completed successfully. 

The first two failure modes are considered. Outright build failure refers to 

random faults (such as parts hitting the recoater, or sensor errors) that lead to 

irrecoverable early termination of the build. Part rejection refers to irreparable 

defects in the parts, often caused by contaminant-related disturbances or part 

slippage during production. To simplify the stochastic occurrence of these 

failure modes, rework is triggered by the mean time between failure (MTBF). 

The MTBF describes the average time between failure events, where the 

probability of failure at any given instance of time is constant (O’Connor and 

Kleyner, 2012, pp. 32–36). This reliability engineering metric therefore provides 

an estimate of how long the AM machine can be expected to run without 

interruption (Baumers and Holweg, 2019). The MTBF for the machine indicates 

the time to the next outright build failure; and the MTBF for the part triggers a 

non-correctable defect that leads to part rejection. 

3.3.2.2 Set of Test Parts 

Orders in the simulated AM workflows are populated with random quantities 

of test parts (Figure 3.4), rather than real, commercially sensitive customer 

parts. Each part is designed to emulate a product that could be ordered from 

an industrial AM bureau. The five parts in the set also display a range of sizes, 

shapes, and bounding-box aspect ratios, which makes the packing problem 

more challenging during process planning (Araújo et al., 2018). A detailed 

description of each test part is provided in the Appendix. 
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Figure 3.4: Test part designs – a) surgical guide, b) UAV body section, c) chainmail fabric, d) reaction device, and e) mechanical support
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3.3.3 Process Metrics  

A number of metrics are used in this research to characterise the build jobs and 

their relative use of the AM machine capacity. Remaining consistent with the 

laser sintering OM and OR literature, three key three metrics are defined below. 

First, the build height is the vertical dimension of the build volume slice which 

contains the parts in the build job. Denoted as 𝑍𝑏𝑢𝑖𝑙𝑑, it is measured from the 

base of the build volume to the topmost point of the packed parts (Figure 3.5).  

The build height is affected by the geometric properties and quantity of parts 

in the build, as well as their position and orientation in the build volume.   

Second, the full build capacity utilisation is the fraction of the whole build 

volume that is occupied by parts. This is synonymous to measuring the use of 

the available physical capacity of the machine for productive output (Baumers 

et al., 2013). As a result, the full build capacity utilisation indicates how 

efficiently the capital resource is being deployed during production. Referring 

to Figure 3.5, equation (3.1) defines the full build capacity utilisation, 𝑈𝑓𝑢𝑙𝑙𝑏𝑢𝑖𝑙𝑑:  

𝑈𝑓𝑢𝑙𝑙𝑏𝑢𝑖𝑙𝑑 =
𝑉𝑏𝑢𝑖𝑙𝑑

𝑋 × 𝑌 × 𝑍
 

(3.1) 

where: 

𝑉𝑏𝑢𝑖𝑙𝑑  ‒ volume of parts in the build (mm3) 

𝑋, 𝑌, 𝑍  ‒  dimensions of the full build volume (mm) 

 

 

Third, the occupied cuboid capacity utilisation is the fraction of the build height-

enclosed horizontal slice that is occupied by parts. The slight adjustment in the 

frame of reference, as compared to the full build capacity utilisation, allows this 

metric to focus on the packing efficiency within each build job. A high occupied 

cuboid capacity utilisation indicates that the committed build space is fully 

utilised, and that parts are packed to minimise the build height (Baumers and 

Holweg, 2019). Referring again to Figure 3.5, equation (3.2) defines the 

occupied cuboid capacity utilisation, 𝑈𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑𝑐𝑢𝑏𝑜𝑖𝑑: 
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𝑈𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑𝑐𝑢𝑏𝑜𝑖𝑑 =
𝑉𝑏𝑢𝑖𝑙𝑑

𝑋 × 𝑌 × 𝑍𝑏𝑢𝑖𝑙𝑑
 

(3.2) 

where: 

𝑉𝑏𝑢𝑖𝑙𝑑  ‒ volume of parts in the build (mm3) 

𝑋, 𝑌  ‒  in-plane dimensions of the full build volume (mm) 

𝑍𝑏𝑢𝑖𝑙𝑑  ‒  vertical dimension of the occupied build volume (mm) 

 

 

 

Figure 3.5: Generic build job with key parameters for process metrics 

3.3.4 Build Time Model 

Given that empirical build experiments are replaced with simulated builds, it is 

not possible to empirically observe the time taken for the AM build. Therefore, 

a build time model is proposed for this step. This model is based on the EOS 

Formiga P100, which has been used in previous empirical experiments for AM 

process economics (Baumers and Holweg, 2016, 2019).  

The build time for powder-bed fusion AM can be split into contributions at the 

per-job, per-layer, and per-volume level (Baumers et al., 2013). For each build 

job, there are fixed times for machine heat-up and cool-down. The part 

production time subsumes the layer-wise elements, such as the time to recoat 

a powder layer, and volume-wise elements, such as the laser scanning time. 
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The time for the three stages are then summed, and so the build time in hours, 

𝑇𝑏𝑢𝑖𝑙𝑑, is given by:  

𝑇𝑏𝑢𝑖𝑙𝑑 = 𝑇ℎ𝑒𝑎𝑡𝑢𝑝 + 𝑇𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑇𝑐𝑜𝑜𝑙𝑑𝑜𝑤𝑛 (3.3) 

where: 

𝑇ℎ𝑒𝑎𝑡𝑢𝑝  ‒ machine heat-up time (hours) 

𝑇𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  ‒  part production time (hours) 

𝑇𝑐𝑜𝑜𝑙𝑑𝑜𝑤𝑛  –  machine cool-down time (hours) 

 

 

Models of the part production time can include process parameters such as 

scan speed and laser scan distance, or detailed characterisation of the part 

geometry and position in the build volume (Pham and Wang, 2000; Choi and 

Samavedam, 2002; Ruffo, Tuck and Hague, 2006b). However, these approaches 

lead to cumbersome equations from a process economics and production loss 

perspective. Instead, this research continues with the method proposed by 

Baumers et al. (2013) to estimate the part production time with a multivariate 

linear regression model, using data from 14 previous build experiments for the 

same laser sintering machine (taken from Baumers and Holweg (2019)). The 

part production time in hours, 𝑇𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛, is given by: 

𝑇𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 0.54 + 0.0050𝑙𝑏𝑢𝑖𝑙𝑑 + (4.9 × 10−6)𝑉𝑏𝑢𝑖𝑙𝑑 (3.4) 

where: 

𝑙𝑏𝑢𝑖𝑙𝑑  ‒ number of layers in the build 

𝑉𝑏𝑢𝑖𝑙𝑑  ‒  volume of parts in the build (mm3) 

 

 

The model goodness of fit is estimated using the coefficient of determination, 

denoted 𝑅2 and taking values between zero and one, which indicates the 

proportion of variance in the dependent variable that can be explained by the 

model (Navidi, 2011, pp. 531–533). The 𝑅2 value for this model is 0.99. While 

providing confidence in the model utility, the very high goodness of fit could be 

due to overfitting to a limited number of observations. While a more complex 

data fitting technique, such as artificial neural networks (Munguía, Ciurana and 

Riba, 2009; Di Angelo and Di Stefano, 2011), may produce a more accurate 
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model, the chosen approach is sufficient as the production time is only one 

tenth of the build time for this machine (Baumers and Holweg, 2016).  

It is interesting to note that the manufacturer-quoted build rate for the Formiga 

P100 machine is up to 24mm/hour (EOS GmbH, 2008). In comparison, the 

model in equation (3.4) and build data from Baumers and Holweg (2019) 

suggest that the operational build rate is 51% lower, at 11.7mm/hour, where 

the average sintered area per layer is 4448mm3. The discrepancy between the 

quoted and observed build rates highlights the often overly optimistic 

assessment of AM productivity, which is a challenge for industry adoption.  

3.3.5 Build Volume Packing Tool 

The simulation studies rely, in part, on specialist software to perform integrated 

optimisation of build volume packing and scheduling. The 3D Packing Research 

Application Tool (3DPackRAT), developed at the University of Nottingham, is 

used for this purpose.  

Considered a black box system from an OM perspective, 3DPackRAT combines 

heuristic packing optimisation with scheduling algorithms to allocate and pack 

parts in order to efficiently use the available machine space and minimise the 

late delivery of parts (Baumers, Özcan and Atkin, 2017). In the web-based 

interface, part STL files are uploaded along with the quantity and target delivery 

date. Parts are then allocated and packed in the order that they are presented 

to the software, which is a necessary limitation to constrain the search space 

of the packing and scheduling problem. For illustration purposes, Figure 3.6 

shows the packed configuration for a sample of 18 test parts using 3DPackRAT.  

At the time of this research, 3DPackRAT is limited to packing and scheduling 

across a network of EOS Formiga P100 systems only. While 3DPackRAT can be 

applied as a packing-only tool for the P100 machine by ignoring the target 

delivery date input, it cannot be used for other laser sintering systems. 

Therefore, where the simulation studies include different machines, the “3D 

Scanline” packing tool within the commercial Autodesk Netfabb® Premium 
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software is used instead. This packing tool is chosen because it prioritises build 

volume capacity utilisation for parts with a variety in size (Autodesk, 2021), 

matching the characteristics of the test parts in this research. 

 

Figure 3.6: Build volume packing using 3DPackRAT 

3.4 Production Losses in AM 

3.4.1 Development of Overall Equipment Effectiveness for AM 

A comprehensive understanding of the value-adding capabilities and sources of 

process inefficiency within a manufacturing process is central to it successful 

adoption and implementation. However, the existing methods for calculating 

and interpreting relevant manufacturing performance metrics such as OEE are 

not suitable for AM, owing to the reliance on identical, repetitive process steps 

and output (Nakajima, 1988; De Groote, 1995; Dal, Tugwell and Greatbanks, 

2000; Huang et al., 2003). Therefore, this section adapts and redevelops the 

OEE metric for the AM context, whilst maintaining the original intent and 

definition as per Nakajima (1988). This contributes to the first research 

objective by capturing the sources and extent of production losses in the AM 

machine, and the influence of process planning therein. 
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3.4.1.1 Scope of OEE within an AM Process Workflow 

The scope of the OEE metric is defined by the system boundary for measuring 

planned production time and the production losses. Clarity is required with 

respect to the boundary of OEE measurements, as the AM workflow spans a 

number of different pieces of equipment and multiple steps at each.  

The first step in setting the scope is straightforward, given that OEE is calculated 

with respect to specific equipment rather than the entire process workflow (De 

Groote, 1995; Garza‐Reyes et al., 2010). Therefore, only the steps at the AM 

machine are relevant for this metric (see Figure 3.7). To avoid inflow and 

outflow issues that may impact the OEE (De Ron and Rooda, 2006), it is 

assumed that equipment for upstream and downstream steps are available and 

the respective steps are completed correctly.  

The second step involves appropriately categorising the different steps at the 

AM machine. In Figure 3.7, the pre-process, process, and post-process steps 

can be thought of as the machine setup, operational, and wrap-up phases of 

the AM machine operation. Machine setup is already one of the six production 

losses, and so the pre-process steps are classified accordingly during OEE 

measurements. However, the status of the post-process steps is less clear. 

Regular maintenance and cleaning of the machine are typically considered 

planned downtime in conventional manufacturing, and so excluded from the 

OEE calculation (Dal, Tugwell and Greatbanks, 2000; Garza‐Reyes et al., 2010). 

On the other hand, build chamber cleaning is mandatory between each build 

job, which erodes the machine’s availability. Moreover, the total time taken for 

this activity depends on the number of builds, and so is directly related to AM 

process planning decisions. Therefore, the definition of planned downtime is 

adjusted for AM such that post-process steps at the machine are classified as 

changeover losses (Basak et al., 2022).  
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Figure 3.7: AM process workflow for polymer laser sintering and relevant steps for OEE 
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3.4.1.2 Adjusting OEE Equations for AM Processes 

Appropriately defining the constituent metrics is central to adapting OEE for 

AM, to accurately quantify the production losses. Rather than altering the 

structure of the OEE calculation entirely as per Reid (2019), this research retains 

Nakajima’s (1988) original OEE structure and modifies the equations of each 

metric to suit the operations characteristics of AM. Jauregui Becker et al. (2015) 

follow the same method in adapting OEE for high-mix low-volume machining. 

Among existing OEE definitions, the availability is consistently measured in the 

time domain, whereas different approaches are proposed for the performance 

and quality. These include purely time-based measurement (Jauregui Becker, 

Borst and van der Veen, 2015; Reid, 2019), or monitoring output quantity 

alongside time (Nakajima, 1988; De Groote, 1995; Dal, Tugwell and Greatbanks, 

2000; Huang et al., 2003). Given that each AM build can produce dissimilar 

parts concurrently, neither quantity nor per-unit cycle times would be 

appropriate for the metrics in this research. Per-layer cycle times also would be 

difficult to measure as the production time changes depending on the contents 

of each layer in an AM build (Pham and Wang, 2000). To resolve these issues, 

the metrics are adapted by replacing the per-unit time and per-unit output 

calculations with cubic volume-based equations, as follows (Basak et al., 2022): 

Availability, 𝐴: 

𝐴 =
planned production time − downtime

planned production time
 

(3.5) 

 

Performance, 𝑃: 

𝑃 =
total cubic volume of parts

actual production time × theoretical volumetric process rate
 

(3.6) 

 

Quality, 𝑄: 

𝑄 =
total cubic volume of parts − cubic volume of defective parts

total cubic volume of parts
 

(3.7) 
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By maintaining the structure of Nakajima’s (1988) three constituent metrics, 

equations (3.5) – (3.7) avoid unnecessary deviation in what the OEE measures. 

Importantly, monitoring the cubic volume-based output succinctly captures 

how well the AM machine’s build capacity is being used volumetrically (or 

physically) and over time. Also, the calculation is unaffected by part size or 

geometry and robust to different AM technology variants. As a result, this OEE 

metric can be used in a consistent manner to compare process efficiency and 

effectiveness across different products and processes in an AM factory. 

3.4.2 Model and Simulation of Operations Approaches and 
Production Losses 

The first simulation study explores the impact of operations approaches and 

other process planning factors on AM production losses, quantified by the OEE.  

The “operations approach” describes the AM process planning objectives when 

converting incoming orders into build jobs. This arises from a trade-off in the 

build file preparation step between the cost efficiency of maximising capacity 

utilisation in each build versus the competitive advantage of fast delivery 

(Costabile et al., 2017); and the relative importance of the lead time depends 

on the direct digital manufacturing application. An AM build may therefore 

contain a small quantity of varied parts (high-variety, low-volume), a large 

quantity of identical parts (low-variety, high-volume), or a combination that sits 

somewhere in between (Baumers and Holweg, 2019). To reflect the full 

spectrum of operations in the capacity-time trade-off, this research derives 

three distinct operations approaches from the extant literature. 

The first operations approach is “Identical Batch Make-to-Stock AM” (IB-MtS), 

in which identical parts are made in fixed, standardised batches that each fill 

the machine space maximally to replenish inventory stock (Hopkinson and 

Dickens, 2003; Avventuroso et al., 2017). The second operations approach is 

“Capacity Maximising Make-to-Order AM” (CM-MtO), in which mixed-part 

batches fill the available machine space up to a target build volume utilisation, 

prioritising high productivity when fulfilling incoming orders (Ruffo and Hague, 
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2007; Baumers et al., 2016). The third operations approach is “Lead Time 

Minimising Make-to-Order AM” (LTM-MtO), where the quantity of parts in the 

mixed-part batches is capped to limit the process make-span, prioritising faster 

delivery for the incoming orders (Chergui, Hadj-Hamou and Vignat, 2018). 

With reference to the EOS Formiga P100 machine used in this simulation study, 

the operations approaches lead to the following build capacity constraints: 

1. IB-MtS and CM-MtO – quantity of parts in each build allowed to occupy 

the full build height of 330mm; 

2. LTM-MtO – quantity of parts capped such that the build height does not 

exceed 100mm. According to the build time model, equations (3.3) – 

(3.4), this build height is the limit for manufacturing up to 500cm3 of 

parts within 24 hours (including machine warm up and cool down time). 

This simulation study also examines the effect of changing two externally-

influenced process planning factors, the lead time and variation amongst the 

parts, on the OEE within the make-to-order operations approaches. The chosen 

factors are considered among the distinguishing advantages of AM (Attaran, 

2017). The IB-MtS operations approach is not included, as make-to-stock 

operations would be unaffected by day-to-day changes in product demand. 

3.4.2.1 Conceptual Model 

The conceptual model outlines the inputs, model flow and outputs for this 

particular simulation study. 

The first input, the operations approach, describes the AM workflow conditions 

for converting incoming orders into build jobs, as explained in the previous 

section. The orders themselves are the second input into the workflow 

simulation, and are also controlled by the external factors, lead time and 

product variety. The arrival rate of orders is one-per-day; and each order 

contains a random quantity of test parts A and B (Figure 3.8).  
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Figure 3.8: Subset of test parts used for operations approach simulation study 

In make-to-order AM, orders enter a backlog (order book) and waits, as 

constrained by the lead time, before entering production (Hedenstierna, Disney 

and Holmström, 2016). For a snapshot of the order book at any given moment, 

the lead time governs the number of orders that are “available” for production. 

This defines the set of orders for each simulation experiment; Table 3.3 gives 

an example for a 72 hour lead time. Product variety introduces variants of the 

test parts to affect the order contents, as explained in Section 3.4.2.4 (on 

experiment design). Beyond this, identical sets of orders are used for each 

operations approach, avoiding unwanted process inflow or outflow effects on 

the OEE (De Ron and Rooda, 2006). 

Table 3.3: Example of a set of orders for a lead time of 72 hours 

Part 
Quantity (units) 

Day 1 Day 2 Day 3 Total 

A 2 3 4 9 

B 7 5 4 16 

 

The model flow for order fulfilment is summarised in Figure 3.9: pack parts from 

the set of orders into build jobs, execute build jobs, and complete any required 

rework triggered (by machine or part MTBF) during the workflow.  
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Figure 3.9: Order fulfilment process for each set of orders via a) Identical Batch Make-to-Stock AM, and b) Capacity Maximising and Lead Time 

Minimising Make-to-Order AM operations approaches 
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Rework arises for outright build failure and non-correctable part rejection. With 

build failure, the entire build job is repeated. Similarly, defective parts are re-

made in make-to-order fulfilment; however, for IB-MtS, defects are absorbed 

by the inventory stock and so no replacements are required.  

Having completed the order fulfilment, the outputs for each build job in the 

simulation study are the time taken for each step at the AM machine, along 

with the volume of defect-free and defective output. These data allow the OEE 

and its constituent metrics to be calculated over each simulation experiment. 

In addition, key build metrics, such as the build height, capacity utilisation, and 

quantity of parts per build are recorded to help establish the underlying 

mechanisms of production losses in the AM workflow. 

3.4.2.2 Assumptions and Simplifications 

The assumptions and simplifications in the model are summarised in Table 3.4. 

Further details of assumptions for the calculation of the production losses are 

given in the next sub-section. 

Table 3.4: Assumptions and simplifications in the operations approaches model 

 Description Justification 

A
ss

u
m

p
ti

o
n

s 
  

Single AM machine in the 

workflow 

Production losses at AM machine explored in 

isolated context. 

Maximum order volume is 

500cm3/day 

Maximum output possible in 24 hours for on-

time delivery in LTM-MtO operations approach. 

Maximum full build 

capacity utilisation is 10% 

Match realistic levels of machine usage 

(Baumers and Holweg, 2019) 

Defective parts chosen at 

random from original size 

versions of parts A and B 

Ensure the rework volume is consistent across 

the simulation experiments. 

Si
m

p
lif

ic
a

ti
o

n
s 

 

Incoming order stream 

simplified to one-time 

allocation and packing 

from a static order book 

Speed up simulation by avoiding incremental 

time progression at order packing stage. 

Periodic allocation and packing from a static 

order book is a realistic representation of 

operator-led workflows in AM service bureaus. 

Part variety represented 

by different sized parts, 

rather than different 

geometries. 

Control the consistency of volume of parts 

deposited in each build (via the quantity), so 

that only the change in the packing of more 

varied parts affects the OEE. 
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3.4.2.2.1 Assumptions for Production Loss Calculations 

The production losses are calculated in a systematic manner. For outright build 

failure, the build time for machine heat-up, part production up to the failed 

layer, and machine cool-down are converted into breakdown time. The 

remaining production losses are averaged from prior empirical data, giving 

fixed mean times for the setup and idle losses arising from machine 

preparation, heat-up and cool-down. The theoretical volumetric process rate is 

an estimate of the maximum hourly output volume during the productive 

phase of the build. Using the theoretical maximum build rate of 20mm/hour 

(Loughborough University Additive Manufacturing Research Group, 2021) and 

assuming 10% full build volume utilisation up to the full build height, the value 

for the EOS Formiga P100 machine is 109.2cm3/hour. These parameters are 

summarised in Table 3.5. The start-up yield losses are not measured as this 

would require modelling the thermal conditions within the AM build chamber, 

which is outside the scope of this research.  

Table 3.5: Summary of parameters for calculating production losses 

Production 

Loss 
Value Source 

Breakdown 
Mean time between failure (build 

failure): 6244 layers 

(Baumers and Holweg, 

2019)  

Set-up & 

Adjustment 

Fixed pre-process time: 0.25 hours 
Prior empirical data, used 

in (Baumers and Holweg, 

2019)  

Fixed post-process time: 0.23 hours 

Idling & 

Minor Stops 

Fixed warm up time: 3.51 hours 

Fixed cool down time: 12 hours 

Theoretical volumetric processing 

rate: 109.2 cm3/hour 

Calculation based on data 

from (Loughborough 

University Additive 

Manufacturing Research 

Group, 2021)  

Reduced 

Speed 

Theoretical volumetric processing 

rate: 109.2 cm3/hour 

Defects & 

Rework 

Mean time between failure (non-

correctable part rejection): 40 units 

(Baumers and Holweg, 

2019)  

Start-up 

Yield 
Ignored in this study 

Simplification: thermal 

conditions in build volume 

are not modelled 
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3.4.2.3 Model and Simulation Implementation 

This simulation study can be described as a manual implementation of a 

discrete event simulation (DES) approach. DES simulations are appropriate for 

the operational level of decision making involved in production planning and 

resource utilisation studies (Jahangirian et al., 2010).  

The order fulfilment simulation mimics the nature of prior empirical build 

experiments conducted on the EOS Formiga P100 machine (Baumers and 

Holweg, 2016, 2019). This is done by packing the parts for each build job using 

3DPackRAT, and then recording the build properties in Microsoft™ (MS) Excel.  

For each build job, breakdowns and defects are simulated by comparing the 

cumulative build height and quantity of parts since the previous rework 

occurrence against the corresponding MTBF (see Table 3.5). Upon exceeding 

the MTBF, either the entire build terminates and is repeated, or a random part 

is deemed defective and then remade via re-entering the order book ahead of 

subsequent orders. The cumulative build height or quantity of parts since the 

last failure is then reset. This process is illustrated in Figure 3.10. 

After the order fulfilment simulation, the time for each build job is estimated 

via the build time model using equations (3.3) – (3.4). Combined with the 

simulated breakdowns and defects, and the data in Table 3.5, it is then possible 

to calculate the production losses and OEE for each set of orders using 

equations (3.5) – (3.7). Each simulation and OEE estimate spans one day’s 

operations, equivalent to fulfilling one set of orders, and is repeated for five 

sets of orders, or one working week. This aligns with industry-recommended 

daily OEE measurement frequency, alongside weekly summaries (Muchiri and 

Pintelon, 2008). 
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Figure 3.10: Snapshot of manual implementation of simulation in MS Excel, showing successful builds, breakdowns, defects, and rework 

 



Page 96 
 

3.4.2.4 Experiment Design and Analysis 

The simulation experiments are split into two stages. First, the influence of each 

operations approach on the OEE and constituent metrics are examined. A 

default lead time of 72 hours is used for each order. This is seen as the upper 

limit of responsive make-to-order AM production (Deradjat and Minshall, 2017; 

Chergui, Hadj-Hamou and Vignat, 2018). The post-experiment analysis probes 

the time expended in each build to quantify and explain the production loss 

drivers for polymer laser sintering. This contributes to establishing best-

practices for consistent and efficient process planning. 

Second, a Design of Experiments (DoE) approach is used to investigate how the 

OEE varies with the operations approach, lead time, and part size variety. The 

Central Composite Design Face-Centred design is chosen to fully examine the 

influence of each independent variable (factor), and interactions therein, using 

fewer experiments than a full factorial approach (Mason, Gunst and Hess, 2003; 

Myers, Montgomery and Anderson-Cook, 2016). This experiment design 

complements the factorial design (corner points) with a cubic centre point and 

face-centred points in the factorial design space, as shown in Figure 3.11. 

 

Figure 3.11: Schematic of the Central Composite Design Face-Centred factorial 

design space for the three experimental factors 
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The DoE is implemented with three levels for each factor: the extreme values 

match the design space edges and the middle value gives the face-centred and 

centre points. Table 3.6 outlines the values taken at each level for the factors. 

Table 3.6: Summary of experimental factor values  

Level Factor 

Allowable Build 

Height (mm) 

Lead Time 

(hours) 

Part Size Variety (%) 

1 100 (LTM-MtO) 48 0 

2 215 72 50 (50%, 100% volume parts) 

3 330 (CM-MtO) 96 100 (50%, 100%, 150% volume parts) 

 

Allowable Build Height (ABH), is a continuous proxy variable for the categorical 

variable, the operations approach; it references the maximum allowed build 

height for each operations approach. This proxy variable is used to divide the 

factor into three levels (required to examine the interaction terms) without 

adding a redundant operations approach. Lead Time (LT), controls the size of 

the order book snapshot through the number of orders available to fulfil. 

Finally, Part Size Variety (PSV), represents product variety among the incoming 

orders via smaller and larger versions of the test parts (Figure 3.12).  

 

Figure 3.12: Product variety represented by scaled versions of test parts, with 

corresponding Part Size Variety (PSV) factor values 
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The range in size across the order, relative to the original test part volume, gives 

the PSV value (see Table 3.6). In experiments at 𝑃𝑆𝑉 = 50 and 𝑃𝑆𝑉 = 100, the 

order quantities are adjusted to maintain a constant cubic volume of output. 

To illustrate, Table 3.7 shows a set of orders for 𝑃𝑆𝑉 = 50 and 𝐿𝑇 = 96, which 

can be compared to the baseline of 𝑃𝑆𝑉 = 0 and 𝐿𝑇 = 72 (see Table 3.3). 

Table 3.7: Example of a set of orders for a lead time of 96 hours and PSV of 50 

Part Volume 
Quantity  

Day 1 Day 2 Day 3 Day 4 Total 

A 
100% 1 1 1 1 4 

50% 4 6 8 2 20 

B 
100% 1 1 1 1 4 

50% 8 6 2 10 26 

 

Post-experiment, the impacts of lead time and part size variety are examined 

separately via graphical methods and Analysis of Variance (ANOVA). ANOVA 

estimates the contribution of each factor and interaction to the variance in the 

OEE. The contribution is found by dividing the estimate of variance for each 

variable, given by the sum of the squared deviations from the mean, through 

the sum of the estimates for all variables (Lindman, 1992). Therefore, it is 

possible to estimate which process planning factors can be leveraged to the 

greatest effect in order to improve process efficiency in laser sintering. 

3.5 Integrated Optimisation of the AM Workflow 

The economic feasibility of a given production process depends on the balance 

between costs and value generation. To this end, a total cost model provides a 

full understanding of the various cost contributors across the AM process steps. 

This cost model is then used to evaluate the effect of workflow optimisation on 

the cost-effectiveness of the subsequent process steps. This contributes to the 

second research objective by identifying relationships between process 

planning and AM systems-level costs. 
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3.5.1 Development of a Total Cost Model 

The cost model structure follows the activity based costing method (Alexander, 

Allen and Dutta, 1998), and is split according to the three key stages in the AM 

workflow: before (pre-process), during (process), and after (post-process) the 

automatic steps in Figure 3.3. These give rise to well-structured costs covering 

the direct resource consumption for the production process, indirect overheads 

for production, and labour input into manual steps. In addition, ill-structured 

costs related to the risk of build failure and non-adherence to delivery 

requirements are captured using the cost model at the end of AM workflow. 

This is summarised in Figure 3.13. The remainder of this section outlines the 

assumptions and equations for each part of the total cost model. 

 

Figure 3.13: AM process stages for polymer laser sintering and associated cost 

model elements 
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3.5.1.1 Pre-Process Costs 

The pre-process costs cover the manual steps to prepare the build file and AM 

machine ahead of each build job. These are the first four steps in the workflow 

(see Figure 3.3). Only the labour input is costed, as the fixed cost of the multi-

purpose computer workstation is neglected. Therefore, the pre-process cost in 

GBP, 𝐶𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠, for each build is given by: 

𝐶𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = �̇�𝑙𝑎𝑏𝑜𝑢𝑟𝑇𝑠𝑒𝑡𝑢𝑝 (3.8) 

where: 

�̇�𝑙𝑎𝑏𝑜𝑢𝑟  ‒ operator’s labour rate (GBP/hour) 

𝑇𝑠𝑒𝑡𝑢𝑝  ‒  machine setup time (hours) 

 

 

3.5.1.2 Process Costs 

The process costs cover the warm up, deposition, and cool down steps at the 

AM machine. Operators periodically monitor the machine alongside other 

unrelated tasks, and so the labour input is neglected. The cost model covers  

direct costs from material use and energy consumption, and the indirect costs. 

The first source of material consumption is waste material. In polymer laser 

sintering, exposure to thermal cycles in the build chamber negatively affects 

the physical properties of reused unsintered powder, resulting in “orange peel” 

quality defects (Bourell et al., 2014; Goodridge and Ziegelmeier, 2017). To avoid 

this, virgin powder is mixed with the recycled powder in a material-specific 

ratio, known as the refresh rate (Goodridge, Tuck and Hague, 2012); and this 

volume is equal to the fraction of the unsintered material permanently used up 

in each build (Ruffo, Tuck and Hague, 2006a). Thus, the volume of unsintered 

material consumed during each build in mm3, 𝑉𝑢𝑛𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑑, is given by: 

𝑉𝑢𝑛𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑑 = 𝑟(𝑉ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑉𝑏𝑢𝑖𝑙𝑑) (3.9) 

where: 

𝑟  ‒ refresh rate (%) 

𝑉ℎ𝑒𝑖𝑔ℎ𝑡  ‒  volume enclosed in the Z-height of the build (mm3) 

𝑉𝑏𝑢𝑖𝑙𝑑  ‒  volume of parts in the build (mm3) 
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Combined with the consumption of sintered material (equal to the volume of 

parts), the total cost of material in GBP, 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, for each build is given by: 

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝐶𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘(𝜌𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑑𝑉𝑏𝑢𝑖𝑙𝑑 + 𝜌𝑢𝑛𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑑𝑉𝑢𝑛𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑑) (3.10) 

where: 

𝐶𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 ‒  price of fresh material (GBP/kg) 

𝜌𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑑 ‒  density of sintered material (kg/mm3) 

𝑉𝑏𝑢𝑖𝑙𝑑 ‒  volume of parts in the build (mm3) 

𝜌𝑢𝑛𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑑 ‒  density of unsintered material (kg/mm3) 

𝑉𝑢𝑛𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑑 ‒  volume of unsintered material consumed (mm3) 

 

 

Next, energy consumption is calculated based on the build contents (Baumers, 

Tuck, Bourell, et al., 2011). This method of finding the time-, geometric volume- 

and build height-dependent components of energy use is deemed “more 

accurate” than Ruffo, Tuck and Hague’s (2006a) fixed overhead cost method 

(Costabile et al., 2017). Of these elements, time-dependent consumption 

dominates at 75% of the total energy use (Baumers, Tuck, Bourell, et al., 2011); 

while the remaining elements are driven by the amortisation of fixed energy 

use during the warm-up and cool-down steps (Baumers, Tuck, Wildman, et al., 

2011). Thus, to simplify the calculation, this cost model adopts a time-centric 

energy consumption estimate, with terms for the energy expended at different 

rates during warm-up, part production, and cool-down (Baumers, Tuck, Bourell, 

et al., 2011; Baumers, Tuck and Hague, 2015). To summarise, the cost of energy 

consumption in GBP, 𝐶𝑒𝑛𝑒𝑟𝑔𝑦, for each build is given by: 

𝐶𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐶𝑀𝐽(�̇�ℎ𝑒𝑎𝑡𝑢𝑝𝑇ℎ𝑒𝑎𝑡𝑢𝑝 + �̇�𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑇𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

+ �̇�𝑐𝑜𝑜𝑙𝑑𝑜𝑤𝑛𝑇𝑐𝑜𝑜𝑙𝑑𝑜𝑤𝑛) 

(3.11) 

where: 

𝐶𝑀𝐽 ‒  unit price of energy (GBP/MJ) 

�̇�ℎ𝑒𝑎𝑡𝑢𝑝 ‒  energy rate for machine heat-up (MJ/hour) 

𝑇ℎ𝑒𝑎𝑡𝑢𝑝 ‒  machine heat-up time (hours) 

�̇�𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ‒  energy rate for part production (MJ/hour) 

𝑇𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ‒  part production time (hours) 

�̇�𝑐𝑜𝑜𝑙𝑑𝑜𝑤𝑛 ‒  energy rate for machine cool-down (MJ/hour) 

𝑇𝑐𝑜𝑜𝑙𝑑𝑜𝑤𝑛 ‒  machine cool-down time (hours) 
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There are also varied fixed costs, such as machine depreciation, maintenance, 

production overheads and administrative overheads to include. These costs can 

be grouped into a “machine cost”, which is a function of a constant cost rate 

and the machine use time (Son, 1991), i.e. the AM build time. This is referred 

to as the indirect cost, in line with prior AM cost studies (Ruffo, Tuck and Hague, 

2006a; Baumers and Holweg, 2016, 2019), and is distinct from the physical 

resource costs. The indirect cost in GBP, 𝐶𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡, for each build is given by: 

𝐶𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = �̇�𝑓𝑖𝑥𝑒𝑑𝑇𝑏𝑢𝑖𝑙𝑑 (3.12) 

where: 

�̇�𝑓𝑖𝑥𝑒𝑑  ‒ fixed indirect cost rate (GBP/hour) 

𝑇𝑏𝑢𝑖𝑙𝑑  ‒  machine time: sum of heat-up, production, cool-down time (hours) 

 

Summing the three parts in equations (3.10) – (3.12), the total process cost in 

GBP, 𝐶𝑝𝑟𝑜𝑐𝑒𝑠𝑠, is given by: 

𝐶𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 + 𝐶𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 (3.13) 

where: 

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  ‒ cost of material consumption (GBP) 

𝐶𝑒𝑛𝑒𝑟𝑔𝑦  ‒  cost of energy consumption (GBP) 

𝐶𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡  ‒ indirect cost of production (GBP) 

 

 

3.5.1.3 Post-Process Costs 

The post-process costs cover the final four manual steps after the completion 

of the build job (see Figure 3.3). Steps are completed for each build job, such as 

unloading the build volume and cleaning the machine, or for each part, such as 

de-powdering and blasting. Thus, the labour time is calculated from separate 

per-build and per-part time contributions, as per Baumers and Holweg (2016).  

The per-part post-processing time is taken to be uniform across the test parts. 

Whilst internal cavities and small features are more difficult to clean than plain 

surfaces due to powder entrapment (Gibson, Rosen and Stucker, 2015), these 

are present in each test part, and so variation in the time is neglected.  
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Therefore, the post-process cost in GBP, 𝐶𝑝𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠, for each build is given by: 

𝐶𝑝𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = �̇�𝑙𝑎𝑏𝑜𝑢𝑟(𝑇𝑝𝑜𝑠𝑡𝑏𝑢𝑖𝑙𝑑 + 𝑛𝑇𝑝𝑜𝑠𝑡𝑝𝑎𝑟𝑡) (3.14) 

where: 

�̇�𝑙𝑎𝑏𝑜𝑢𝑟  ‒ operator’s labour rate (GBP/hour) 

𝑇𝑝𝑜𝑠𝑡𝑏𝑢𝑖𝑙𝑑 ‒  build-level post-process time (hours) 

𝑇𝑝𝑜𝑠𝑡𝑝𝑎𝑟𝑡  ‒  part-level post-process time (hours) 

𝑛 ‒  total quantity of parts in the build 

 

 

3.5.1.4 Well-Structured Costs 

The direct and indirect costs together cover the inputs required to manufacture 

the parts, forming the well-structured production costs (Son, 1991). These are 

captured in the pre-process, process, and post-process costs; and so the total 

well-structured cost in GBP, 𝐶𝑏𝑢𝑖𝑙𝑑, for the build is given by: 

𝐶𝑏𝑢𝑖𝑙𝑑 = 𝐶𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝐶𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝐶𝑝𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (3.15) 

where: 

𝐶𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠  ‒ cost of pre-process stage (GBP) 

𝐶𝑝𝑟𝑜𝑐𝑒𝑠𝑠  ‒  cost of process stage (GBP) 

𝐶𝑝𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠  ‒ cost of post-process stage (GBP) 

 

 

To facilitate the onward calculation of ill-structured costs, it is necessary to 

switch from the per-build cost calculation to the per-part cost calculation. Given 

the mixed-part builds, the build cost cannot simply be divided by the quantity 

of parts to obtain the cost of one unit (i.e. one instance of a part geometry). 

Suitable alternative approaches use the volume of each part relative to the total 

volume of parts (Baumers et al., 2012), or the relative cost of producing each 

part in separate high-volume identical part batches (Ruffo and Hague, 2007). 

While the batch cost method is more equitable than the volume method where 

parts are vastly dissimilar in volume (Ruffo and Hague, 2007), the test parts’ 

volumes are of the same order of magnitude and so the simpler volume-based 

calculation can be used. Therefore, for the 𝑖th different part in the build, the 

well-structured unit cost in GBP, 𝐶𝑢𝑛𝑖𝑡𝑊𝑆𝐶, is given by: 
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𝐶𝑢𝑛𝑖𝑡𝑊𝑆𝐶(𝑖) =
𝐶𝑏𝑢𝑖𝑙𝑑𝑉𝑖

𝑉𝑏𝑢𝑖𝑙𝑑
 

(3.16) 

where: 

𝐶𝑏𝑢𝑖𝑙𝑑  ‒ total well-structured cost of build (GBP) 

𝑉𝑖  ‒  volume of one unit of 𝑖th part in the build (mm3) 

𝑉𝑏𝑢𝑖𝑙𝑑  ‒ volume of parts in the build (mm3) 

 

 

3.5.1.5 Ill-Structured Costs 

This cost model incorporates aspects of both quality and flexibility costs, 

covering both categories identified by Son (1991). The cost of defective output 

that leads to scrap or rework is estimated, because scheduling and capacity 

management decisions affect the likelihood of failures that lead to defective 

output (Cai, Wu and Zhou, 2009; Baumers and Holweg, 2016). Given that in-situ 

process interventions are outside the scope of this research, prevention costs 

are not included. With respect to flexibility, the ability to respond to variations 

in customer demand is considered important for make-to-order fulfilment – 

and there is a direct link between workflow optimisation and makespan at the 

build-level, and monetary penalties for due-date non-adherence at the 

customer- or order-level (Khajavi et al., 2018). Therefore, the costs of due-date 

adherence and likelihood of failure estimated, as follows. 

3.5.1.5.1 Risk of Failure 

The cost model uses the likelihood of failure to estimate the cost of rework, 

based on two independent failure modes (see Section 3.3.2.1). The risk of 

outright build failure follows a layer-wise model, as in Baumers et al. (2017), 

and the risk of part rejection is a constant probability per-part, as in Baumers 

and Holweg (2019). The probability of rebuild for a part, 𝑝𝑟𝑒𝑏𝑢𝑖𝑙𝑑, is given by: 

𝑝𝑟𝑒𝑏𝑢𝑖𝑙𝑑 = (1 − (1 − 𝑝𝑙𝑎𝑦𝑒𝑟)
𝑙𝑏𝑢𝑖𝑙𝑑

) + 𝑝𝑝𝑎𝑟𝑡 (3.17) 

where: 

𝑝𝑙𝑎𝑦𝑒𝑟 ‒  constant probability of build failure per layer 

𝑙𝑏𝑢𝑖𝑙𝑑 ‒  number of layers in the build 

𝑝𝑝𝑎𝑟𝑡 ‒  constant probability of rejection per part 
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The probability of part rebuild is applied as a scrap fraction to the total cost 

model (Ashby, 2011), inflating the well-structured cost in line with the expected 

risk of failure, as per Baumers and Holweg (2016) and Colosimo et al. (2019). 

Therefore, for the 𝑖th different part in the build, the expected ill-structured cost 

including the risk of failure in GBP, 𝐶𝑢𝑛𝑖𝑡𝐼𝑆𝐶1(𝑖), is given by: 

𝐶𝑢𝑛𝑖𝑡𝐼𝑆𝐶1(𝑖) =
𝐶𝑢𝑛𝑖𝑡𝑊𝑆𝐶(𝑖)

(1 − 𝑝𝑟𝑒𝑏𝑢𝑖𝑙𝑑)
 

(3.18) 

where: 

𝐶𝑢𝑛𝑖𝑡𝑊𝑆𝐶(𝑖) ‒  well-structured cost for unit of 𝑖th part in the build (GBP) 

𝑝𝑟𝑒𝑏𝑢𝑖𝑙𝑑 ‒  probability of part rebuild 

 

3.5.1.5.2 Late Delivery Penalty 

The total cost model notes the adherence to due-date constraints through a 

cost penalty for late delivery. Such penalties are usually defined by the 

customer, based on factors such as the part value, number of late units and the 

length of the delay (Zhang et al., 2019). Here, the penalty is calculated as a 

proportion of the part cost, representing its value. This is then further scaled by 

the quantity of units and number of days delayed, following Khajavi et al. 

(2018), and averaged over the total units of each part in the build. The late 

delivery penalty for the 𝑖th different part in the build, 𝑃𝑙𝑎𝑡𝑒(𝑖), is given by: 

𝑃𝑙𝑎𝑡𝑒(𝑖) =
𝑐𝑙𝑎𝑡𝑒𝑡𝑖𝑙𝑖

𝑛𝑖
 

(3.19) 

where: 

𝑐𝑙𝑎𝑡𝑒 ‒  baseline penalty for late delivery, as a proportion of part cost (%) 

𝑡𝑖 ‒  mean number of days late for units of 𝑖th part in the build 

𝑙𝑖 ‒  quantity of late units of 𝑖th part in the build 

𝑛𝑖  ‒  quantity of units of 𝑖th part in the build  

 

Missing the delivery due-date inflates the production cost by the magnitude of 

the late delivery penalty. For the 𝑖th different part in the build, the ill-structured 

cost including the late delivery penalty in GBP, 𝐶𝑢𝑛𝑖𝑡𝐼𝑆𝐶2(𝑖), is given by: 



Page 106 
 

𝐶𝑢𝑛𝑖𝑡𝐼𝑆𝐶2(𝑖) = 𝐶𝑢𝑛𝑖𝑡𝑊𝑆𝐶(𝑖) × (1 + 𝑃𝑙𝑎𝑡𝑒(𝑖)) (3.20) 

where: 

𝐶𝑢𝑛𝑖𝑡𝑊𝑆𝐶(𝑖) ‒  well-structured cost for unit of 𝑖th part in the build (GBP) 

𝑃𝑙𝑎𝑡𝑒(𝑖) ‒  late delivery penalty for units of 𝑖th part in the build  

 

3.5.1.6 Total Cost of Production 

The ill-structured and well-structured costs are brought together to give the 

total cost of production. Both ill-structured costs are applied as multipliers to 

the baseline (i.e. well-structured) cost. Therefore, for the 𝑖th different part in 

the build, the expected total cost of production in GBP, 𝐶𝑢𝑛𝑖𝑡(𝑖), is given by: 

𝐶𝑢𝑛𝑖𝑡(𝑖) = 𝐶𝑢𝑛𝑖𝑡𝑊𝑆𝐶(𝑖) ×
1

(1 − 𝑝𝑟𝑒𝑏𝑢𝑖𝑙𝑑)
× (1 + 𝑃𝑙𝑎𝑡𝑒(𝑖)) 

(3.21) 

where: 

𝐶𝑢𝑛𝑖𝑡𝑊𝑆𝐶(𝑖) ‒  well-structured cost for unit of 𝑖th part in the build (GBP) 

𝑝𝑟𝑒𝑏𝑢𝑖𝑙𝑑 ‒  probability of part rebuild 

𝑃𝑙𝑎𝑡𝑒(𝑖)  ‒  late delivery penalty for units of 𝑖th part in the build 

 

When evaluating the influence of different process planning approaches on the 

cost of production, it is helpful to compare the cost per volume deposited 

(specific cost of production) alongside the unit cost (Baumers et al., 2013). 

While the unit cost scales with the part volume, the specific cost is agnostic to 

the part size and volume. For the 𝑖th different part in the build, the specific 

expected total cost of production in GBP/cm3, 𝐶𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐(𝑖), is given by: 

𝐶𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐(𝑖) =
𝐶𝑢𝑛𝑖𝑡(𝑖)

𝑉𝑖
× 103 

(3.22) 

where: 

𝐶𝑢𝑛𝑖𝑡(𝑖) ‒  total cost for unit of 𝑖th part in the build (GBP) 

𝑉𝑖 ‒  volume of one unit of 𝑖th part in the build (mm3) 
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3.5.2 Model and Simulation of AM Workflow Optimisation 

The second exploratory simulation study aligns with the second research 

objective, investigating the influence of the workflow optimisation approach on 

the production cost. The total cost model presented in the preceding section is 

used to estimate the production cost. 

The “workflow optimisation approach” refers to the driving optimisation 

objective (and associated tools used) when converting incoming orders into a 

sequence of build jobs, specifically while operating multiple AM machines in 

parallel over a number of time periods (Figure 3.14). This addresses the packing 

and scheduling problem for the build file preparation step in the AM workflow. 

Varying the optimisation approach affects the generated number and contents 

of the builds, which influences the cost of production (Khajavi et al., 2018). 

Moreover, Baumers et al. (2017) argue that integrated optimisation of packing 

and scheduling has the potential to outperform alternative approaches. 

Therefore, this research examines the different workflow optimisation 

approaches and their connections to cost drivers in laser sintering, and onwards 

suitability for scaled-up AM. 

 

Figure 3.14: Packing and scheduling of parts into build slots spanning 𝒏 AM 

machines operating over 𝒌 time periods 



Page 108 
 

Depending on the application, AM users may prioritise the packing aspect of 

build setup (Baumers et al., 2016; Griffiths et al., 2019), the scheduling aspect 

(Li et al., 2019; Rohaninejad et al., 2021), or a combination thereof (Freens et 

al., 2015; Gopsill and Hicks, 2018; Khajavi et al., 2018; Kapadia et al., 2021). It 

is therefore possible to define five distinct workflow optimisation approaches 

for the build file preparation step, as summarised in Table 3.8.  

For validation, each optimisation approach can be linked to particular value 

propositions for direct digital manufacturing. Approaches A and B are more 

appropriate where alternative priorities outweigh the scheduling constraint. 

Complex product quality or engineering constraints may demand manual 

packing as in approach A (Delfs, T̈ows and Schmid, 2016), whereas 

synchronising machine activity with other steps in the workflow could promote 

parallel packing as in approach B (Chen et al., 2015). Approach C is suitable for 

applications with high variability in product customisation and incoming rate of 

orders, for example localised manufacture at the point of sale (Ben-Ner and 

Siemsen, 2017). In contrast, approaches D and E would be found where the 

incoming rate of orders is too high to justify manual process planning steps, for 

example in large AM service bureaus (Deradjat and Minshall, 2017). 

Table 3.8: Summary of workflow optimisation approaches for packing and 

scheduling in AM production planning 

Optimisation Approach Label Description of Conditions 

Manual Approach 

A 

Operator manually packs all of the parts, 
disregarding the order schedule  

Packing Only Approach 

B 

Software packs all of the parts, 
disregarding the order schedule  

Scheduling Only Approach 

C 

Operator allocates parts to build jobs 
according to the order schedule, and 

manually packs them  

Packing and Scheduling, 

Separate 

Approach 

D 

Operator allocates parts to build jobs 
according to the order schedule, and 

software packs them  

Packing and Scheduling, 

Integrated 

Approach 

E 

Software allocates and packs all of the 
parts according to the order schedule  
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3.5.2.1 Conceptual Model 

The conceptual model outlines the inputs, model flow and outputs for this 

particular simulation study. Some parallels can be drawn between this study 

and the preceding one on production losses (see Section 3.4.2.1); and so, 

references are made to the previous conceptual model, where applicable.  

The first input is the incoming orders. Each order fulfilment simulation has an 

order book, with random quantities of the five test parts (Section 3.3.2.2) to be 

delivered over the next five days; an example is shown in Table 3.9. The order 

book representation of the incoming stream of orders follows the same logic as 

the production losses simulation (see Section 3.4.2.1). The total quantity of 

parts in each order book fills between 50% and 100% of the available machine 

capacity. This promotes efficient use of the AM machines (Baumers et al., 

2013), whilst avoiding the need for order non-acceptance due to overloading 

the manufacturing system (Kapadia et al., 2021). Importantly, the on-time 

delivery constraint for the scheduling aspect of the process planning problem 

is based on this order book. If the given quantity of each part is not fulfilled on 

each day, a late delivery penalty applies. 

Table 3.9: Example of order book for one order fulfilment simulation 

Part Quantity Due 

Day 1 Day 2 Day 3 Day 4 Day 5 Total 

A 11 23 18 10 19 81 

B 13 34 34 19 26 126 

C 29 21 30 20 32 132 

D 6 6 3 5 5 25 

E 14 12 10 6 9 51 

 

The second input, the workflow optimisation approach, defines the process of 

allocating parts from incoming orders to a sequence of build jobs, and 

configuring the parts therein, across a network of AM machines. The 

constraints for each workflow optimisation approach are described below, with 

reference to the operation of two AM machines in parallel. 
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In approach A (Manual), the operator manually packs the total quantity of 

available parts in the order book, filling the current build job completely before 

moving to the next available build slot. While manual packing precludes the use 

of computational optimisation, the operator may still use a systematic packing 

method. Here, the manual packing rules follow the “deepest bottom-left-fill” 

algorithm (Araújo et al., 2019):  

1. Insert first part in bottom left corner;  

2. Maintain 5mm gap between part bounding box and side walls of 

build volume;  

3. Insert additional parts: where possible, fill space along the shorter 

in-plane dimension to complete a row before starting a new row;  

4. Maintain 2mm gap between part bounding boxes;  

5. Where possible, fill space in the current layer of parts before starting 

a new layer;  

6. No preferred build orientation;  

7. Rotate parts in increments of 90° in global Cartesian axes as needed.  

In approach B (Packing Only), the operator packs the total quantity of available 

parts using automated computational packing optimisation software. Parts are 

packed across both machines in parallel, filling the available capacity for the 

current time period before moving to the next.  

In approach C (Scheduling Only), the operator manually packs the parts from 

the order book, day-by-day, to satisfy the scheduling constraint. Parts for day 1 

are allocated and then configured using the same packing rules as approach A; 

the build job is then locked, and the process repeats for the remaining days. 

This workflow optimisation approach is similar to the Lead Time Minimising 

Make-to-Order operations approach from the production losses study.  

The process for approach D (Packing and Scheduling, Separate) amalgamates 

approaches B and C. The operator uses automated computational packing 
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optimisation software to allocate and configure the parts from day 1 in the 

order book, locks these build jobs, and then repeats the process for the 

remaining days. This is analogous to assigning parts to build jobs in the 𝑛, 𝑘 

matrix of slots (see Figure 3.14) according to their due date and then, 

separately, packing each build job to achieve its optimal configuration. 

In approach E (Packing and Scheduling, Integrated), the operator uses 

automated computational packing optimisation software to allocate and pack 

all parts from the order book across all available build slots to simultaneously 

achieve compact build volume packing and minimise late delivery. The key 

difference between approaches D and E is that it is possible to utilise the empty 

space across all available builds in approach E, whereas the separation of the 

optimisation steps in approach D prevents this. 

The model flow for order fulfilment has two steps: allocate and pack parts, and 

execute the resulting sequence of build jobs. Following this, the outputs are 

captured on a per-build job basis. Data related to the build properties (such as 

the production time, volume deposited and build height) contribute to the 

calculation of the production cost for each build. The quantity of each part 

present in each build is then used to allocate the build cost to the respective 

units, such that the late delivery penalty for non-adherence to the order 

schedule can be applied. The model flow, including inputs and outputs, is 

shown in Figure 3.15. 

 

Figure 3.15: Model flow for simulation of workflow optimisation approaches 
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3.5.2.2 Assumptions and Simplifications 

The assumptions and simplifications in the model are summarised in Table 3.10. 

Further details of assumptions for the total cost model calculations are given in 

the next sub-section. 

Table 3.10: Assumptions and simplifications in the workflow optimisation model 

 Description Justification 

A
ss

u
m

p
ti

o
n

s 
  

Permissible lead time of 

up to seven days 

Matches lead times offered by large (3D People 

UK, 2022; Protolabs, 2022) and specialist powder-

bed fusion service bureaus (3DPRINTUK, 2022). 

Two AM machines in 

parallel operation 

Parallel operation of machines is representative of 

scaled-up AM. 

Si
m

p
lif

ic
a

ti
o

n
s 

 

Time taken to prepare 

build file is neglected 

Time affected by software speed, which is 

inconsistent in the research tool used. 

Rework is not triggered 

in the order fulfilment 

simulations 

Cost calculations infer completion of rework via 

scrap fraction. Analogous to averaging failure 

instances over extended time horizon, as per 

Baumers and Holweg (2016). 

 

3.5.2.2.1 Assumptions for Total Cost Model Constants 

The total cost model expressions require several data from external sources, 

covering machine and material factors, and manufacturing operations costs.  

The AM machine, the EOS Formiga P100, and its operating procedures match 

previous empirical experiments conducted by Baumers and Holweg (2016); and 

so the indirect and labour cost rates are adapted from the published data via 

inflation alone. The inflationary change is calculated using the average year-on-

year Retail Prices Index between 2016 and 2019, taken from the Office for 

National Statistics (2020) annual data, as per the expression below: 

𝐶𝑌 = (1 + 𝑅𝑃𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒)
(𝑌−2016)

× 𝐶2016 (3.23) 

where: 

𝐶𝑌  ‒ cost rate in year of research study (GBP/hour) 

𝑌 ‒  given year for inflated cost rate  

𝑅𝑃𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒  ‒  mean Retail Price Index between 2016 and 2019 

𝐶2016  ‒ cost rate in 2016, year of input data (GBP/hour) 
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At the time of the study, conducted in 2020, the 𝑅𝑃𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒 value was 3.2%; so 

the cost rates from Baumers and Holweg (2016) are inflated by 13.4%.  

Similarly, the AM machine energy rates are based on prior data collected via 

power meters (Baumers, Tuck and Hague, 2015). The energy consumption rate  

for different levels of full build capacity utilisation are averaged and converted 

to megajoules per hour (MJ/hour), as shown in Table 3.11. The unit price of 

energy for the cost calculations is taken from the mean annual electricity price 

for 2020 (Department for Business, Energy & Industrial Strategy, 2021). 

Table 3.11: Data for energy rate estimation, from Baumers, Tuck and Hague (2015) 

Process 

Stage 

Energy Consumption (J/s) Mean Energy 

Consumption (MJ/hour) Single Part Build Full Build Mean 

Heat-Up 1835 1658 1747 6.3 

Production 1395 1420 1408 5.1 

Cool-Down 327 335 331 1.2 

 

The AM cost and materials literature guides the values taken for the remaining 

constants. The material refresh rate lies between 30-50% for acceptable part 

quality for the EOS Formiga P100 machine (Wan Yusoff, Pham and Dotchev, 

2009). A mid-value of 40% is taken, as suggested by Goodridge et al. (2012) for 

the standard PA2200 material. The lateness penalty is set at 100% of the part 

value, similar to the penalty applied by Khajavi et al. (2018) and Ransikarbum 

et al. (2017) for parts with similar functionality to the test parts in this research. 

The probability of part rebuild is estimated from prior empirical data, taken 

from Baumers and Holweg (2019). The AM machine-specific probability of build 

failure, 𝑝𝑙𝑎𝑦𝑒𝑟, is 0.016% per layer; and the probability of part rejection, 𝑝𝑝𝑎𝑟𝑡, 

is 2.5% per part. Therefore, the general expression in equation (3.17) for the 

probability of part rebuild, 𝑝𝑟𝑒𝑏𝑢𝑖𝑙𝑑, becomes: 

𝑝𝑟𝑒𝑏𝑢𝑖𝑙𝑑 = 1 − (1 −
0.016

100
)

𝑙𝑏𝑢𝑖𝑙𝑑

+
2.5

100
= 1.025 − 0.99984𝑙𝑏𝑢𝑖𝑙𝑑  

(3.24) 

where: 

𝑙𝑏𝑢𝑖𝑙𝑑  ‒ number of layers in the build 
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For clarity, the full set of constants derived from external data are summarised 

in Table 3.12.  

Table 3.12: Summary of total cost model constants derived from external inputs  

Constant Description Value Unit Source 

�̇�𝑙𝑎𝑏𝑜𝑢𝑟 
Operators’ labour 

rate 
22.24 GBP/hour 

Adjusted from 

(Baumers and 

Holweg, 2016)  

𝑟 
Material refresh 

rate 
40% - 

From (Goodridge, 

Tuck and Hague, 

2012)  

𝐶𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 
Price of fresh 

material 
57.37 GBP/kg EOS GmbH order 

𝜌𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑑 
Density of sintered 

material 
0.93 g/cm3 

From (EOS GmbH, 

2009)  

𝜌𝑢𝑛𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑑 
Density of 

unsintered material 
0.45 g/cm3 

From (EOS GmbH, 

2009)  

𝐶𝑀𝐽 Unit price of energy 0.026 GBP/MJ 

From (Department 

for Business, 

Energy & Industrial 

Strategy, 2021)  

�̇�ℎ𝑒𝑎𝑡𝑢𝑝 
Energy rate for 

machine heat-up 
6.3 MJ/hour 

Calculated from 

(Baumers, Tuck 

and Hague, 2015)   

�̇�𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 
Energy rate for part 

production 
5.1 MJ/hour 

Calculated from 

(Baumers, Tuck 

and Hague, 2015)  

�̇�𝑐𝑜𝑜𝑙𝑑𝑜𝑤𝑛 
Energy rate for 

machine cool-down 
1.2 MJ/hour 

Calculated from 

(Baumers, Tuck 

and Hague, 2015)  

�̇�𝑓𝑖𝑥𝑒𝑑 
Fixed indirect cost 

rate 
11.41 GBP/hour 

Adjusted from 

(Baumers and 

Holweg, 2016)  

𝑝𝑙𝑎𝑦𝑒𝑟 
Probability of build 

failure per layer 
0.016% - 

From (Baumers 

and Holweg, 2019) 

𝑝𝑟𝑒𝑏𝑢𝑖𝑙𝑑 

Probability of non-

correctable part 

rejection per part 

2.5% - 
From (Baumers 

and Holweg, 2019) 

𝑐𝑙𝑎𝑡𝑒 

Proportion of part 

value applied as 

lateness penalty (%) 

100% - 
From (Khajavi et 

al., 2018)  
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3.5.2.3  Model and Simulation Implementation 

This simulation study is a manual, MS Excel-based implementation of DES. The 

order fulfilment simulation is a computational representation of the build file 

preparation and production steps in the AM workflow. This follows the 

approach of Khajavi et al. (2018) to efficiently generate a suitable dataset for 

production cost analysis across a number of process planning scenarios.  

For the build file preparation step, the use of two machines to fulfil a five-day 

order book results in a 2 × 5 dimension packing and scheduling problem with 

10 available build slots, referencing the matrix in Figure 3.14. Table 3.13 

describes the steps in the implementation of each optimisation approach.  

Table 3.13: Effect of workflow optimisation approach constraints on the simulation 

implementation 

Optimisation 

Approach 

Model Flow 

Build Slot Progression Scheduling Constraint 
Packing 

Constraint 

Manual 
1.1 then 2.1 
Repeat up to 1.5 then 2.5 

Pack all parts A 
Repeat up to all parts E 

Manual: 
Netfabb® 

Packing Only 
1.1 and 2.1 together 
Repeat up to 1.5 and 2.5 

Pack all parts A 
Repeat up to all parts E 

Automated: 
3DPackRAT 

Scheduling 

Only 
1.1 then 2.1 
Repeat up to 1.5 then 2.5 

Pack parts A - E for day 1 
Repeat up to day 5 

Manual: 
Netfabb® 

Packing and 

Scheduling, 

Separate 

1.1 and 2.1 together 
Repeat up to 1.5 and 2.5 

Pack parts A - E for day 1 
Repeat up to day 5 

Automated: 
3DPackRAT 

Packing and 

Scheduling, 

Integrated 
All build slots together 

Pack parts A - E for day 1 
Repeat up to day 5 

Automated: 
3DPackRAT 

 

The packing and scheduling of parts is completed using Autodesk Netfabb® 

Premium for the workflow optimisation approaches involving manual packing, 

and 3DPackRAT for those involving automated computer optimised packing. 

MS Excel is used to record the build properties and contents, and calculate the 

build time to mimic the execution of the build on the EOS Formiga P100 

machine. The build time model, defined in equations (3.3) and (3.4), is applied 

here. This process is shown in Figure 3.16.  
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Figure 3.16: Snapshot of manual implementation, in MS Excel, of the simulation of workflow optimisation approaches  
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3.5.2.4 Experiment Design and Analysis 

The simulation experiments assess the influence of each workflow optimisation 

approach on the production cost and constituent cost contributors. A common 

order book is processed via each workflow optimisation approach, resulting in 

output build sequences of differing length and build properties. Each simulation 

spans up to five days of manufacturing, depending on the sequence of builds 

generated, and is repeated across 10 different order books. This number of 

repetitions sits in the range observed across similar studies involving packing 

and scheduling across parallel AM machines (Chergui, Hadj-Hamou and Vignat, 

2018; Zhang, Yao and Li, 2020).  

The post-experiment analysis evaluates the build, unit and specific costs of 

production using the total cost model. This quantifies the contributors to the 

magnitude and spread in production cost within and between each workflow 

optimisation approach. Similar to the first exploratory simulation study, the 

build properties, such as height and capacity utilisation, are used to explain the 

cost drivers and any trade-offs therein. This contributes to understanding the 

suitability of process planning tools for cost-effective scaled-up AM production. 

3.6 Facility Layout in AM  

The third exploratory simulation study explores which facility layout approach, 

cellular or process layout, is best for process efficiency in scaled-up AM 

operations in terms of capacity management and scheduling.  

To provide empirical grounding, the simulations are based on a case study of 

an AM user that employs cellular and process layouts in their AM workflows. 

Within the exploratory simulation research design, a descriptive case study 

approach is used to inform the production process and operating conditions 

under each facility layout approach (McCutcheon and Meredith, 1993). Choi et 

al. (2016) note that this combination of case study and analytical (simulation-

based) methodologies is common in operations management studies, and 

improves the relevance and depth of insights. Here, the case study company 
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provides data relating to the AM workflow, such as equipment characteristics 

and timings for each step, and the production scale, such as the frequency and 

size of incoming orders. The sources of process inefficiency and routes towards 

productive scaled-up AM are thus examined with respect to a real AM facility.  

3.6.1 Case Study Company 

The criteria for choosing the case study company is derived from the scope of 

the research, as follows: 

• The company should use AM for end-part production. This requires 

efficient AM operations that balance customer satisfaction (high 

quality) and revenue generation (low cost and production losses). 

• The company should operate AM in a make-to-order or 

manufacturing-as-a-service context. This leads to product variety in 

the workflow, and so the scaled-up operations must demonstrate 

both economies of scale and scope. 

• The company should implement either cellular or process layouts in 

their production facility for polymer laser sintering workflows. 

While the initial intention was to find two companies, one for each facility 

layout approach, a suitable company was found that used both layouts and 

satisfied the above criteria.  

The case study company is a UK-based rapid manufacturing services provider 

to multiple industries, such as aerospace, automotive and medical. Polymer 

laser sintering is one of the variety of AM methods offered. The company 

operates large laser sintering machines, with a build volume exceeding 350mm 

in each dimension. These large machines enable higher economies of scale on 

a per-build basis (Baumers and Holweg, 2019). However, the responsiveness of 

manufacturing is negatively affected as operators must wait for a larger volume 

of orders to fill each machine and achieve cost-effective production (Costabile 

et al., 2017). The delivery lead time offered is therefore up to 10 days. The 

company’s laser sintering workflow is shown in Figure 3.17.  
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Figure 3.17: Make-to-order workflow for laser sintering at case study company 

The company fulfils laser sintering orders using four machines; two set up in a 

cellular layout, and two in a process layout in a different part of the facility. 

Build jobs are routed indiscriminately to the machines, depending on their 

availability. At present, the customer orders are common in material, and so 

material changeovers are not required. Nevertheless, the company recognises 

the benefits of the cellular layout for material contamination control, 

motivating their use of production cells to manage (past) material-dependent 

workflows and meet industry quality control mandates. The production output 

for laser sintering currently exceeds 7500 parts/year. Therefore, the company’s 

scale of production for laser sintering sits within the modal band for AM service 

bureaus, which is typified by 3-5 industrial AM machines and production output 

of 1001 to 10,000 parts (Akinsowon and Nahirna, 2019). 
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3.6.2 Conceptual Model 

The conceptual model outlines the inputs, outputs, assumptions and 

simplifications in the model flow for this simulation study. Prior to this, the 

simulation objective is defined in two parts, each with quantifiable outputs, to 

help appropriately define the model scope and content. The first objective 

refers to the setup investment: for each facility layout approach, compare the 

minimum number of machines required to fulfil the incoming orders within a 

nine day makespan, at the given production scale. The makespan constraint 

ensures that the 10 day promised lead time is always met, allowing one day for 

delivery. The second objective refers to the operational performance 

(specifically cost, production losses, and non-value-adding time): for each 

facility layout approach, compare the operational performance when running 

the minimum number of machines required to meet the setup investment 

objective at each production scale.  

3.6.2.1 Inputs  

The first input is the facility layout; the constraints of which are: 

1. Cellular layout – equal numbers of material preparation, AM, and 

de-powder machines are grouped into parallel cells that contain one 

of each machine, with no travel time inside each cell, and an 

independent number of blasting machines in a separate zone; 

2. Process layout – independent numbers of material preparation, AM, 

de-powder, and blasting machines, operate in parallel in separate 

zones in the production facility, with travel time between each zone. 

The second input is the scale of production, which is equivalent to the steady-

state customer demand that in turn determines the required manufacturing 

capacity (Wang and Koren, 2012). Thus, the production scale is given by the 

arrival rate of orders into the workflow. The baseline is the current arrival rate 

of incoming orders for the case study company, and increasing this by fixed 

multiples simulates future scaled-up production.  
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The third input is the number of machines, or manufacturing capacity, required 

to fulfil orders at each production scale. The machines of interest are the 

material preparation, AM, de-powder, and blasting machines, highlighted in 

Figure 3.17. The number of machines of each type is independently varied for 

the setup investment objective to establish the minimum values for the 

makespan constraint. Then, this input is fixed for the subsequent simulations 

for the operations performance objective. 

The fourth input is the orders, which are simulated here as an incoming stream 

with a specified arrival rate. This is feasible due to the simulation software used 

(see Section 3.6.3) and, as explained above, enables experimentation with the 

production scale. Each order contains a random quantity of test parts C, D, and 

E (Figure 3.18). Parts C and D are enlarged by 150% in each dimension relative 

to the original size (see Figure 3.4), such that the range in size across the set is 

more representative of the parts observed among the company’s orders.  

 

Figure 3.18: Subset of test parts used for facility layout simulation study with 

adjusted sizes 



Page 122 
 

3.6.2.2 Outputs  

A range of outputs are collected in relation to the orders, builds, resources, and 

overall production facility to address the simulation objectives. Table 3.14 

summarises these, according to the entity over which each output is measured. 

Table 3.14: Summary of outputs for facility layout simulation study 

Entity  Outputs 

Order Makespan (and timeliness of delivery) 

Time spent in each step of workflow 

Affected by outright build failure 

Build job Time spent in each step at AM machine 

Time lost to breakdown (outright build failure) 

Volume of defect-free and defective output 

Time spent in travel between machines 

Time spent awaiting operator input 

Resource Operator: Availability on shift  

AM Machine: Time lost to unplanned maintenance 

Production Facility Number of machines required to meet the nine day 

makespan constraint 

 

For the setup investment objective, the makespan (time spent in the simulated 

workflow) of each order is collated. Also, the minimum number of machines in 

the production facility required to meet the makespan constraint is recorded. 

For the operational performance objective, the time spent by the orders at 

each workflow step is used to estimate the well-structured costs. Alongside 

this, the ill-structured costs are inferred from the incidence of outright build 

failure for the respective build job (in which the order is processed), and the 

timeliness of delivery (as per the makespan). For each build, the time taken for 

each step at the AM machine, the incidence of outright build failure, and the 

volumes of defect-free and defective output are collated for the production 

losses and OEE. In between the workflow steps, the non-value-added time for 

each build comprises of the travel time between machines, and the time spent 

awaiting the next available operator for manual tasks. Referring to resources, 

the on-shift operator availability and the unplanned maintenance time for each 

AM machine are recorded to explore their effect on non-value-adding time. 
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3.6.2.3 Assumptions and Simplifications 

The assumptions and simplifications for the four entities (orders, builds, 

resources and production facility) in this model are presented in Table 3.15. 

Table 3.15: Assumptions and simplifications for facility layout model 

 Description Justification 

A
ss

u
m

p
ti

o
n

s 

Volume of parts in an 

order less than volumetric 

capacity of a single build 

Allows entire orders to be assigned to single 

build jobs. The order costs can therefore be 

simply calculated as a fraction of the respective 

build costs. 

Follow capacity-

maximising make-to-order 

operations approach; and 

Packing and Scheduling, 

Separate workflow 

optimisation approach 

Aligns with the process planning methods 

observed at the case study company. Integrated 

workflow optimisation is not suitable because 

the relevant software is not available for the AM 

machines used by the case study company. 

New builds and orders for 

rework inserted at the 

front of the respective 

workflow queues 

Aligns with the process planning methods 

observed at the case study company, and with 

the assumed operations approach. 

Two sets of portable 

resources (material and 

build cartridges) for each 

AM machine 

Material cartridges (contain feedstock material) 

and build cartridges (in which deposition occurs) 

needed. Extra set allows material for next build 

to be prepared while current build is ongoing. 

Si
m

p
lif

ic
a

ti
o

n
s 

 

Constant inter-arrival rate 

for orders across the year 

Collected data (see Section 3.6.3.1) shows no 

consistent seasonal patterns, and so the average 

rate is used as a constant. 

Setup investment neglects 

cost of expanding 

premises 

Space is available in and around the case study 

company’s existing production facility to 

accommodate new equipment. 

Travel time only counted 

for build progressing from 

machine to machine 

Any other sources of travel time do not explicitly 

contribute to the order makespan, and so are 

neglected. 

Only unplanned 

maintenance of AM 

machine counted 

Time for planned maintenance (one hour per six 

months) and unplanned maintenance in other 

machines (less than once per year) is negligible. 

 

For reference, in the cellular layout, builds are routed to the cell with the next 

available material preparation machine, and remain within the same cell for the 

AM build and de-powder steps. In the process layout, builds are routed to any 

available machine in the facility. Operators are not similarly constrained and 

move freely between cells and machines in both facility layout approaches.  
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3.6.3 Data Collection and Analysis 

Data for the various inputs and model content are required to implement the 

conceptual model. Therefore, relevant elements of the case study company’s 

production facility and workflow are characterised in this section.  

First, data collection involves both setting the data requirements to satisfy the 

conceptual model, and obtaining the identified data; and this is often an 

iterative process, as shown in Figure 3.19, with the level of detail increasing 

from contextual, qualitative information to detailed, quantitative data 

(Robinson, 2004, pp. 95–96). In this study, three iterations were conducted.  

 

Figure 3.19: Iterative data collection process for simulation models 

The first visit to the case study company was used to assess the suitability of 

their processes and facility layouts for investigation. This allowed the structure 

of the model implementation and required data to be planned. A second visit 

involved working with the production team to learn about the workflow, 

operating procedures, and any issues therein. It was then possible to fully 

define the quantitative data plan, and verify that these were either available or 

collectable, avoiding issues of unobtainable data (Robinson, 2004, p. 97). In the 

third visit, primary (collectable) and secondary (available) data were obtained. 

Once collected, the data must be transformed into a format that is useful for 

the model. This is commonly a parameterised probability distribution (Skoogh 

and Johansson, 2008), as used in this study. The only exception is the AM build 



Page 125 
 

time, for which a linear regression model is generated, similar to the EOS 

Formiga P100 machine build time model (see Section 3.3.4). The data collected 

and analysis thereof are summarised in the following subsections. 

3.6.3.1 Order-related Data 

Order-related data are collated from the company’s records. Data samples are 

taken using a common time frame, the financial year 2021-22 (“FY 21-22”), for 

consistency; this is the only annual period for which full datasets are available, 

and is long enough to expose any seasonal patterns. This data contribute to 

three elements in the model: the inter-arrival rate of orders, the number of 

unique parts per order, and the total quantity of parts per order. 

For the inter-arrival rate, Figure 3.20 shows that the exponential distribution is 

a suitable fit for the collated data. The mean inter-arrival rate is 21.5 hours, 

which becomes the baseline production scale in the model. The order data is 

also checked for seasonal patterns. Figure 3.21 shows that, while the number 

of orders is not uniform across the year, there is no consistent seasonal pattern; 

and so the assumption in the conceptual model is sufficiently verified. 

 

Figure 3.20: Histogram of order inter-arrival time, with fitted exponential 

distribution curve 
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Figure 3.21: Number of orders per month, over previous two financial years 

Next, the number and quantity of unique parts determines the size of each 

order. The box-whisker plots in Figure 3.22 show that the majority (96.4%) of 

orders contain fewer than 10 unique parts. The mean value, marked with a 

cross, is 3.1 unique parts per order, which corresponds to the use of three test 

parts in this study. Alongside this, Figure 3.23 shows the histogram for the 

quantity of each unique part across the orders in FY 21-22. The quantity range 

spans one to 350, but the histogram x axis is curtailed at 50 (excluding 46 of 

1292 data points) to allow the frequency density pattern to be visualised. This 

distribution is positively skewed such that the majority of orders (86.1%) of the 

orders contain five or fewer instances of unique parts. Therefore, the quantity 

of each unique part in each order is, at most, five. 

 

Figure 3.22: Box-whisker plots for number of unique parts per order, a) with 

outliers, and b) without outliers 
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Figure 3.23: Histogram of unique parts quantity per order, up to 50 parts per order 

3.6.3.2 Build-related Data 

As above, the build-related data is taken from the subset of available records 

for FY 21-22. This data contributes to four elements in the model: the machine 

build time model, the build failure rate, the part defect rate, and the threshold 

full build capacity utilisation for converting the order stream into build jobs.  

The records from 81 successful builds on the two most used AM machines show 

that the full build capacity utilisation distribution (Figure 3.24) is skewed 

towards sparse builds. With 55.5% of builds below 3% full build capacity 

utilisation, the assumption of capacity-maximising make-to-order operations 

appears to not hold. However, observations of the company’s workflow 

confirm that the operators do indeed fill each build to the maximum possible, 

subject to two constraints: the large size of parts in the same order limits the 

ability to tightly pack each build, and orders cannot be held up at the batching 

stage so long that delivery is then late. As production scales up, it could be 

helpful to consider more sophisticated, integrated optimisation type tools, to 

mitigate the effects of these constraints. For now, the simulation model adopts 

a 6.0% target for the full build capacity utilisation, corresponding to a full-height 

build containing the test parts, and encompassing 88.9% of the observed data. 
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Figure 3.24: Histogram of full build capacity utilisation per build 

Records from 175 builds across all available AM machines are used to estimate 

the prevalence of part defects. On average, 3.5% of parts are defective; 

however, given that the ordered parts vary significantly in size and geometry, 

it is not possible to set a constant probability of part rejection, as per Baumers 

and Holweg (2016, 2019). Instead, the proportion of the build quantity that is 

defective is estimated from the distribution shown in Figure 3.25. The majority 

of builds, 80.6%, contain no defects; and of the remainder, 38.2% of builds lose 

up to one-tenth of the parts. Thus, the range used in the model is 0 – 10.0% of 

parts rejected. As production scales up, increased use of data-driven part 

packing and process control may further reduce the defect rates. 

 

Figure 3.25: Histogram of defect part quantity as a fraction of the build quantity 
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The MTBF for build failures is estimated from 23 build failures across 118 

records in the machine logs for the two most used AM machines. Figure 3.26 

shows the distribution of the build failure inter-arrival times, which is the time 

between the end of one failure and the start of the next. Time (rather than 

number of layers) between failures is used, as the empirical distributions for 

time are more consistent across the machines. As the AM machines are all 

identical, the model MTBF takes the mean value of 250 hours for simplicity. 

 

Figure 3.26: Histogram of build failure inter-arrival time 

3.6.3.2.1 Build Time Model 

Similar to the build time model for the EOS Formiga P100 machine (see Section 

3.3.4), a multivariate linear regression model is used to predict the build time 

on the case study company’s AM machine. The FY 21-22 build records and 

machine logs for error-free builds on the two most used machines provide the 

input and test data of 47 and 34 builds, respectively, for this build time model. 

The heat-up time is consistent across both the input and verification datasets, 

at one hour. As per the previous model in equation (3.4), the production time 

is split into layer-wise and volume-wise elements. Indeed, both build volume 

and build height are statistically significant in this model, at the 1% confidence 

interval. However, unlike the EOS Formiga P100 machine, the cool-down time 

is not uniform on the case study company’s machines. To investigate further, 

the cool-down time is also regressed against the build contents, wherein the 



Page 130 
 

build height is statistically significant (1% confidence interval) but the volume 

is not. The heat-up, production and cool-down times, 𝑇ℎ𝑒𝑎𝑡𝑢𝑝, 𝑇𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,

𝑇𝑐𝑜𝑜𝑙𝑑𝑜𝑤𝑛, in hours are therefore given by: 

𝑇ℎ𝑒𝑎𝑡𝑢𝑝 = 1 (3.25) 

𝑇𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = −2.0 + 0.099𝐻𝑏𝑢𝑖𝑙𝑑 + (7.7 × 10−7)𝑉𝑏𝑢𝑖𝑙𝑑 (3.26) 

𝑇𝑐𝑜𝑜𝑙𝑑𝑜𝑤𝑛 = 15.0 − 0.0099𝐻𝑏𝑢𝑖𝑙𝑑 (3.27) 

where: 

𝐻𝑏𝑢𝑖𝑙𝑑  ‒ height of the build (mm) 

𝑉𝑏𝑢𝑖𝑙𝑑  ‒  volume of parts in the build (mm3) 

 

 

Notably, the cool-down time is negatively correlated with the build height. This 

is presumably because the build temperature sensor, used during the cool-

down stage, is near the bottom of the build cartridge and registers a cooler 

temperature in taller builds as the build has progressed further.  

The goodness of fit for the production and cool-down time models are 0.90 and 

0.91, respectively. Further, to verify that the linear regression models match 

with the empirical data, the model-fitted data are compared to the test dataset. 

Figure 3.27 shows that the two datasets are closely matched for both the part 

production and machine cool-down times, and so the build time model is used 

in the simulations, ensuring that build heights are within the modelled range. 

 

Figure 3.27: Test dataset and corresponding model output plotted against build 

height for a) production time, and b) cool-down time 
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3.6.3.3 Unplanned Maintenance Data 

The unplanned maintenance data for the AM machine is derived from records 

of maintenance requests and repair jobs completed in FY 21-22. Unplanned 

maintenance is the reactive repair of faults uncovered in between build jobs, 

and only the highest priority level faults are included here, as these prohibit use 

until the repair is completed. The AM machine with the highest number of such 

maintenance requests, 15 in total, is used to estimate the MTBF and the mean 

time to repair (MTTR). The box-whisker plots, excluding outliers, in Figure 3.28 

show that both parameters are positively skewed: unplanned maintenance 

events are relatively frequent, but the time to repair is also short. Nonetheless, 

given the spread in times across the few observed data points, a triangular 

distribution that corresponds to the middle quartiles is chosen to represent the 

data in a straightforward manner, as shown in Table 3.16.   

 

Figure 3.28: Box-whisker plots of a) mean time between failure, and b) mean time 

to repair for unplanned maintenance events 

Table 3.16: Summary of triangular distribution parameters for unplanned 

maintenance events 

Unplanned Maintenance 

Parameter 

Triangular Distribution Parameter 

Lower Limit Mode Upper Limit 

Mean Time between Failures (days) 23.1 54.9 153.1 

Mean Time to Repair (hours) 3.2 4.6 13.9 
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3.6.3.4 Workflow Process Step Times 

Among the data kindly made available by the case study company, the time 

taken to complete each step and travel between machines in the workflow did 

not exist. Therefore, this data is collected via a simplified manufacturing time 

study to capture the value-adding and non-value-adding tasks at each step 

(Pattanaik and Sharma, 2009). Referring to the workflow in Figure 3.17, all steps 

are studied apart from the AM build step (covered by the build time model).  

In this time study, voice notes were used (rather than a stopwatch) to describe 

and capture the timestamps of different, asynchronous tasks. These were later 

transcribed into a spreadsheet. Post-analysis, the process step and travel times 

are represented using a triangular distribution, as below. 

Table 3.17: Process step times in the workflow for laser sintering 

Process Step 
Triangular Distribution Parameter (minutes) 

Lower Limit Mode Upper Limit 

Download orders 1.8 3.2 4.6 

Pack orders 6.5 19.4 32.3 

Material prep. (setup machine) 0.9 1.9 2.8 

Material prep. (machine time) 15.0 15.0 15.0 

Material prep. (unload machine) 2.0 3.3 4.5 

AM machine (setup machine) 7.8 13.2 18.5 

AM machine (unload machine) 12.9 14.4 15.8 

Unpack and de-powder parts 37.1 41.2 45.3 

Blasting (setup machine) 0.2 0.2 0.2 

Blasting (machine time) 13.5 15.0 16.5 

Blasting (unload machine) 0.8 0.9 1.0 

 

Table 3.18: Travel times in the workflow for laser sintering 

Travel between… 
Triangular Distribution Parameter (minutes) 

Lower Limit Mode Upper Limit 

Workstation & Material Prep. 0.3 0.3 0.4 

Material Prep. & AM Machine* 3.8 4.5 5.3 

AM Machine & De-Powder* 1.6 1.8 1.9 

De-Powder & Blasting 0.8 0.9 1.0 

Note: * denotes elements that apply to the process layout only 
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3.6.4 Model and Simulation Implementation 

The DES simulation of the case study company’s make-to-order workflow is 

implemented using specialist software, Anylogic (Personal Learning Edition, 

version 8.8.1), that is suitable for simulating the AM workflow and effects of 

capacity management in an efficient manner (Avventuroso et al., 2017). The 

software employs an customisable object-oriented architecture and process-

specific libraries to allow powerful and flexible simulation of production 

operations (Anylogic, 2023a). A simplified version of the model logic is shown 

in Figure 3.29, and its implementation in Anylogic is shown in Figure 3.30. 

 

Figure 3.29: Logic for facility layout simulation model with parallel branches for 

cellular and process layout 



Page 134 
 

 

Figure 3.30: Annotated snapshot of facility layout simulation implementation in Anylogic 
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Given that the facility layout affects only part of the AM workflow (see Figure 

3.17), a single simulation model is developed with two parallel branches for the 

cellular and process layouts. Builds are routed through the appropriate branch 

for the experiment settings. This model structure is more compact than the 

alternative of two separate models. More importantly, Anylogic can achieve 

reproducible simulation runs (Anylogic, 2023b), avoiding spurious effects from 

randomly generated inputs (e.g. the incoming order stream); and this can only 

be applied within a single model. All elements of the workflow are executed 

within the Anylogic software, except the packing of parts in the build volume. 

While the time taken for this step falls within the capability of the software, it 

is not possible to complete the actual orientation and positioning of parts. This 

is completed using Autodesk Netfabb® Premium, and the resulting build 

properties are encoded into the simulation. 

3.6.5 Experiment Design 

The influence of two facility layout approaches on the setup investment and 

operational performance of make-to-order fulfilment is examined at four scales 

of production. As a result, eight workflow scenarios are generated (Figure 3.31).  

 

Figure 3.31: Workflow scenarios arising from facility layout and production scale 

inputs to the simulation study 
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For each workflow scenario, a sensitivity analysis is conducted by altering the 

number of machines available and observing the effects on the makespan and 

operational performance. This follows the approach of Avventuroso et al. 

(2017) in studying a simple AM-based production facility. Moreover, sensitivity 

analysis is useful for highlighting which elements of capacity management have 

a greater or lesser impact on process efficiency (Robinson, 2004, pp. 194–195). 

Each experiment fulfils a randomly-generated order stream, with the arrival 

rate set by the production scale, for 14 months. To ensure that the output data 

is free from initiation bias (Robinson, 2004, pp. 141–142) and represents 

steady-state operations, the first and last month of data from each run is 

discarded, leaving a dataset spanning 12 repetitions of one month’s operations.  

In line with the two parts of the simulation objective, the post-experiment 

analysis of the output data is split into two parts. First, for the setup investment, 

the number of material preparation, AM, de-powder machines are varied 

within the range shown in Table 3.19, and the time taken for each order to 

progress through the workflow is assessed. This establishes the minimum 

number of machines for each facility layout for each production scale. It should 

be noted that, during trial runs to set the input ranges, a single blasting machine 

was found to be sufficient for the workflow. Second, the operational 

performance is assessed in each minimum-capacity setup. For this, the time 

spent in each part of the workflow is probed, and cost and productivity-related 

metrics (see the following section) are calculated. Thus, the balance of value-

adding and non-value-adding time in each facility layout, and the impact on the 

cost- and time-effectiveness of production is evaluated.  

Table 3.19: Input range for available capacity for facility layout simulation 

Production 

Scale 

Input range for no. of machines 

Material 

Preparation 
AM De-Powder Blasting 

1 1 – 3 1 – 3 1 – 3 1 

2 1 – 3  1 – 3  1 – 3  1 

5 1 – 4  1 – 4  1 – 4  1 

10 1 – 7  1 – 7  1 – 7  1 
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3.6.6 Calculation of Metrics 

3.6.6.1 Setup Investment 

The setup investment is evaluated via the minimum number of machines that 

provide sufficient capacity to meet the nine day makespan target. Therefore, 

for each productivity scale, 𝑖, the objective function to minimise, 𝐹1, is given by: 

𝐹1(𝑖) = 𝑀𝑃𝑖 + 𝐴𝑀𝑖 + 𝐷𝑃𝑖  (3.28) 

where: 

𝑀𝑃𝑖, 𝐴𝑀𝑖, 𝐷𝑃𝑖  ‒ number of material preparation, AM, and de-powder  

  machines, respectively 

 

3.6.6.2 Operations Performance 

The operations performance is assessed from two perspectives, production 

losses and production cost. For the production losses, the OEE (see Section 

3.4.1) measures the impact of the facility layout on the productive use of the 

AM machine capacity. In addition, the facility layout is expected to affect the 

value-adding and non-value-adding time across the entire workflow, and so the 

time spent by each order or build in each workflow step is recorded and probed 

further. The value-adding and non-value-adding time elements in the total 

workflow time in hours, 𝑇𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤, can therefore be split as follows: 

𝑇𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 = 𝑇𝑎𝑢𝑡𝑜 + 𝑇𝑚𝑎𝑛𝑢𝑎𝑙 + 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 + 𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔 (3.29) 

where: 

𝑇𝑎𝑢𝑡𝑜  ‒ time spent in automatic, machine steps (hours) 

𝑇𝑚𝑎𝑛𝑢𝑎𝑙   ‒  time spent in operator-dependent steps (hours) 

𝑇𝑡𝑟𝑎𝑣𝑒𝑙  ‒ time spent in travel between machines (hours) 

𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔  ‒  time spent awaiting operators or resources (hours) 

 

 

For the production cost, a simplified version of the total cost model (see Section 

3.5.1) covers two time-related well-structured cost contributors: the indirect 

cost of time spent in the automatic steps, and the labour cost of time spent in 

the operator-dependent steps and travel in between. Given commercial 
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sensitivity, the cost rates from the case study company’s AM workflow are not 

disclosed, and so the cost-incurring time per part is used as a proxy for the unit 

cost. The relationship between the time-dependent well-structured unit cost, 

𝐶𝑇−𝑊𝑆, and cost-incurring time per part, 𝑇𝑐𝑜𝑠𝑡𝑒𝑑, can therefore be given by:  

𝐶𝑇−𝑊𝑆 = �̇�𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑇𝑎𝑢𝑡𝑜 + �̇�𝑙𝑎𝑏𝑜𝑢𝑟(𝑇𝑚𝑎𝑛𝑢𝑎𝑙 + 𝑇𝑡𝑟𝑎𝑣𝑒𝑙) (3.30) 

𝑇𝑐𝑜𝑠𝑡𝑒𝑑 = 𝑇𝑎𝑢𝑡𝑜 + (𝑇𝑚𝑎𝑛𝑢𝑎𝑙 + 𝑇𝑡𝑟𝑎𝑣𝑒𝑙) (3.31) 

 

Similarly, for the ill-structured costs, the time domain replaces the cost 

penalties arising from the failure mode scrap fractions and late delivery. This 

relies on detailed analysis of the time spent by each order and build in the 

different stages of the simulated workflow. The extra time consumed in 

processing extra builds (for build failure) and replacement orders (for part 

defects) is compared. Alongside this, the makespan constraint of nine days is 

used to assess the extent to which orders are processed in a timely manner in 

each workflow scenario. The time-domain outputs of the simulation 

experiments are therefore deployed in multiple ways to provide insights into 

the effect of facility layout on both the time- and cost-effectiveness of 

production. 
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4 Results on Production Losses in AM 

4.1 Overview 

This chapter presents the results of research towards the first research 

objective, to evaluate the effect of process planning on the machine-level 

production losses.  

The approach for addressing this research objective is a combination of a 

theoretical framework and experimentation via exploratory simulation. The 

framework explains sources of production losses in the AM process, and how 

the characteristics of AM operations affect the prevalence of production losses. 

This is the first step to inform process planning decisions towards minimising 

production losses at the AM machine. The exploratory simulation study then 

investigates the effect of different process planning approaches (referred to as 

“operations approaches”) on the production losses. The OEE metric developed 

in this research (Section 3.4.1) is used to quantify the relative merit of each 

operations approach with respect to operational efficiency at the machine-

level. The development of the framework and exploratory simulation models 

are explained in Section 3.4. 

The remainder of this chapter is organised as follows. First, Section 4.2 provides 

the theoretical framework for production losses in the AM workflow. Section 

4.3 then presents the results for the first exploratory simulation on the effect 

of the operations approach on the production losses and OEE. The sensitivity 

of the OEE to externally-controlled factors within the AM operations is then 

investigated in the second exploratory simulation, as reported in Section 4.4. 

4.2 Framework of Production Losses in AM 

The theoretical framework for production losses in AM adapts the existing 

understanding of production losses in conventional manufacturing to the 

process and operations characteristics of AM. This builds upon and 

complements the methodological work to “translate” the OEE metric so that it 
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is suited for AM (Section 3.4.1). Therefore, the results in this section provide a 

systematic interpretation of the contributors to machine-level waste for 

polymer laser sintering AM. More generally, this framework provides a better 

understanding of the drivers of AM efficiency and, importantly, improves the 

clarity of the process efficiency implications of pursuing responsive direct 

digital manufacturing using AM.  

4.2.1 Inherent and Non-Inherent Production Losses in the AM 
Machine 

Production losses in the manufacturing workflow are underpinned by the 

notion of value-adding steps as a fraction of the total planned production time 

(see Figure 2.10 for schematic representation). As explained in Section 2.2.1 of 

the literature review, a value-adding step is that which directly contributes 

towards creating features and functionality that the customer desires. In the 

AM machine, therefore, the only value-adding step is the deposition (or 

automated build) step. With reference to the process workflow for polymer 

laser sintering (Figure 3.7), this is the fifth of eight steps at the AM machine. 

Ancillary steps that lead up to the build step and thereafter ensure that the 

parts are successfully retrieved for post-processing are considered necessary-

but-non-value-adding steps (see Figure 2.9 for graph of taxonomy). As 

emphasised by Gibson et al. (2015) and Gardan’s (2016) explanation of the full 

AM workflow (see Figure 2.1), without these steps, the AM process would not 

function correctly. However, from a productivity and revenue-generation 

perspective, the AM machine is not generating value outside of the build step. 

Rather the time spent on the ancillary steps reduces the process’ capacity to 

produce more good quality parts, and costs the manufacturer in overheads, 

labour and equipment depreciation. 

The non-value-adding and necessary-but-non-value-adding steps in the AM 

process can be further categorised into inherent and non-inherent production 

losses (Figure 4.1). Inherent production losses are those which arise as a result 

of the batch process nature of AM and the layer-by-layer deposition during the 
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build. The associated steps and time lost occur for each build, e.g. machine 

setup, or for each layer added to the build, e.g. waiting to heat the new powder 

layer. In contrast, non-inherent production losses arise from a variety of other 

sources, for example sporadic disturbances in the process or unsuitable 

standard operating procedures. The distinguishing feature of inherent 

production losses in AM is that they would be present even if all of the process 

steps were completed correctly and efficiently, and no random defects 

occurred. 

 

Figure 4.1: Taxonomy of inherent and non-inherent losses, extending the theory of 

value-adding and non-value-adding time   

The difference between inherent and non-inherent production losses can be 

further explained using examples in the polymer laser sintering process 

workflow. Figure 4.2 provides examples of production losses in polymer laser 

sintering, where inherent losses are marked with an asterisk. 

Inherent production losses are more prevalent in three of the six production 

loss categories: setup and adjustment, idling and minor stops, and start-up 

yield. The batch nature of the AM process necessitates ancillary steps to 

prepare the machine for the build process. In the setup and adjustment 
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category, these include setting up machine hardware and software, replacing 

the build volume container, and cleaning the build chamber between each 

build. The machine then sits idle as the build volume and chamber heat up (and 

cool down, after the build). Once the build step has started, blank layers must 

be deposited in the build volume to form a thermal barrier at the base, 

constituting lost output capacity at the start of each build. On a layer-by-layer 

basis, minor stops occur between completing the sintering for one layer, 

applying the next layer of powder, and starting the next sintering cycle; the 

primary source of time lost is the pause to heat up the new powder layer. 

 

Figure 4.2: Examples of production losses in polymer laser sintering workflow 

On the other hand, non-inherent production losses can be found in all six 

production loss categories. The sources of these losses include machine and 

process instability (breakdown, defects), reducing machine capacity in an 
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attempt to regulate thermal conditions (reduced speed, start-up yield), and 

poor management of manual steps (idle and minor stops).  

Both inherent and non-inherent production losses can be addressed by a 

combination of AM operations management, and innovations and 

improvements in the AM technology. Such innovations include process 

monitoring and control systems for thermal regulation and reducing pauses 

during the build process; however, these fall outside the scope of this thesis. In 

the following section, the focus shifts to the operations characteristics of the 

AM process, which can then inform operations management approaches to 

tackle production losses in AM machines. 

4.2.2 Effect of AM Operations Characteristics on Production 
Losses 

The differences between AM and conventional manufacturing operations can 

be distilled into five AM operations characteristics, as found by Baumers and 

Holweg (2019): 

1. Product variety can be produced at close to zero marginal cost; 

2. Each build is a vertical batch process with a maximum batch size 

determined by the build volume capacity; 

3. Volume-driven static economies of scale apply up to full build volume 

utilization, but not beyond; 

4. Learning curve effects apply to both pre- and post-processing steps; and 

5. The risk of build failure increases with the number of layers produced. 

These characteristics describe how the technological and human factors 

influence the operations constraints and opportunities in AM. Therefore, it is 

pertinent to explore how controlling the AM operations can influence the 

production losses. In this part of the framework, the operations characteristics 

are mapped against the six production losses to show the sources of 

operational efficiency and inefficiency in the AM process. By codifying the 

relationship between production losses and AM operations in Table 4.1 and 
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Table 4.2, these results indicate where AM operations managers can focus their 

attention to maximise the output from machine capacity. 

The mapping identifies three key relationships between the operations 

characteristics and the production losses. First, each new build is accompanied 

by non-value-adding time in setup, pre-process and post-process idle time, and 

lost output on process start-up. Therefore, minimising the number of builds 

reduces these production losses. This corresponds to physically filling the 

machine capacity. 

Second, the risk of build failure increases with the machine capacity utilisation, 

and so the production losses for breakdown and rework is negatively impacted. 

Moreover, the above penalties for a new build would be incurred for the new 

build, which is required to fulfil rework. 

Third, sources of variation in the production content and operator-dependent 

manual steps affect the ability to standardise the process, which affects 

production losses across the AM machine workflow. No link is found in the 

mapping between these operations characteristics and causes of part defects 

or machine breakdowns, which depend on the equipment reliability. 

The sources of operational efficiency and inefficiency can also be related back 

to the inherent losses from the previous section. The batch-related inherent 

losses are highlighted in this mapping, particularly via the operations 

characteristic that defines the batch process nature of AM. An additional 

connection is made between process instability and inherent losses, through 

extra builds for rework. The mapping also links together the batch- and layer-

related inherent losses through build volume utilisation. Increasing the build 

volume utilisation amortises batch-related losses across the output, minimises 

losses due to new batches, and improves the productivity of each layer in the 

build. These operational cues are further tested through exploratory simulation 

experiments in the following sections of this chapter. 
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Table 4.1: Mapping the production losses to the AM operations characteristics (for first three production losses) 

AM Operational 

Characteristics  

Production Loss 

Breakdown Setup & Adjustment Idling & Minor Stops 

Product variety at 

minimal marginal 

cost 

 Process parameters in control system may change, 

depending on the parts in each build, requiring 

checks each time (‒) (Proff and Staffen, 2019) 

 

Feedstock material variety incurs time penalty for 

material changeover in the machine (‒) (Proff and 

Staffen, 2019) 

Each build is a 

vertical batch 

process, limited by 

build volume 

capacity 

Build failure can lead to loss 

of entire batch of parts, as an 

interrupted build cannot be 

restarted (‒) (Baumers and 

Holweg, 2016) 

Each build incurs a time penalty for pre- and post-

process steps (‒) (Fera et al., 2017) 

Each build incurs a time penalty for warm up 

and cool down of build volume (‒) (Ruffo, Tuck 

and Hague, 2006a) Periodic time penalty for feedstock material refresh 

(‒) (Fera et al., 2017) 

Static economies of 

scale up to full build 

volume utilisation 

in each build 

  Higher utilisation of space in each layer 

increases the proportion of productive time to 

layer-wise idle time (+) (Ruffo, Tuck and Hague, 

2006a; Dirks and Schleifenbaum, 2020) 

Learning curve in 

pre-process and 

post-process steps 

 Operator skill/experience affects time to set up 

machine (+) (Baumers and Holweg, 2019)  

Efficient standard operating procedures for 

manual steps minimise errors and minor stops 

(+) (Reid, 2019) 

Risk of build failure 

increases with 

number of layers 

Likelihood of breakdown 

increases with the number of 

layers deposited (‒) 

(Baumers and Holweg, 2016) 

Extra builds required to accommodate reworked 

parts incur a time penalty for pre- and post-process 

steps (‒) (Baumers and Holweg, 2016) 

Extra builds required to accommodate 

reworked parts incur a time penalty for warm 

up and cool down of build volume (‒) 

(Baumers and Holweg, 2016) 
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Table 4.2: Mapping the production losses to the AM operations characteristics (for the second three production losses) 

AM Operational 

Characteristics  

Production Loss 

Reduced Speed Defects & Rework Start-up Yield 

Product variety at minimal 

marginal cost 

Sacrificial parts may be required to 

regulate thermal conditions across 

dissimilar product geometries (‒) 

(Pavan et al., 2017) 

 Non-productive blank layers phase may be 

more conservative to account for dissimilar 

thermal conditions across product geometries 

(‒)   

Each build is a vertical batch 

process, limited by build 

volume capacity 

 Extra build required to 

accommodate reworked parts (‒) 

(Baumers and Holweg, 2016) 

Defects may arise in parts near the bottom of 

the build volume due to less stable thermal 

conditions (‒) (Wegner and Witt, 2015) 

Each build requires deposition of blank layers 

prior to productive phase  

(‒) (Baumers and Holweg, 2016) 

Static economies of scale up 

to full build volume utilisation 

in each build 

Space-efficient part positioning 

reduces time taken for laser spot to 

traverse between sintered regions 

(+) (Pham and Wang, 2000) 

 Higher utilization of space in each build 

increases the proportion of productive phase 

to non-productive blank layers (+)  

Learning curve in pre-process 

and post-process steps 

   

Risk of build failure increases 

with number of layers 

Equipment may be operated using 

conservative process parameters to 

reduce likelihood of breakdown (‒)  

Likelihood of rework increases with 

number of layers occupied by parts 

(‒) (Baumers and Holweg, 2016)  

 

(+) or (‒) indicate positive or negative effect on production losses and OEE, respectively, in Tables 4.1 and 4.2 



 

Page 147 
 

4.3 Effect of Operations Approach on OEE 

This section presents the results for the first exploratory simulation, which 

investigates the effect of the AM operations approach on the OEE of the AM 

machine for polymer laser sintering. 

4.3.1 Effect of Operations Approach on AM Build Properties 

Opening with the descriptive statistics, Table 4.3 shows the mean and standard 

deviation of the build properties and their output across five repetitions for 

each operations approach. It should be noted that the results for the Identical 

Batch Make-to-Stock (IB-MtS) operations approach are aggregated across two 

sets of simulation experiments, corresponding to the two test parts. Each 

statistic shown in Table 4.3 is calculated separately for the IB-MtS experiments 

involving part A and part B; and then the mean and standard deviation is 

evaluated across the total of 10 repetitions. This ensures that the results for the 

IB-MtS experiments reflect the variation in build properties when fulfilling 

different but internally identical batches, and that the descriptive statistics are 

comparable across the different operations approaches. 

Table 4.3: Descriptive statistics for operations approach simulation experiments 

Statistic 

Operations Approach 

Identical Batch 

Make-to-Stock 

Capacity 

Maximising 

Make-to-Order 

Lead Time 

Minimising 

Make-to-Order 

Mean St. Dev. Mean St. Dev. Mean St. Dev. 

No. of Builds 1.4 0.5 2.0 0.7 3.6 0.9 

No. of Breakdowns 0.4 0.5 0.4 0.6 0.4 0.6 

No. of Parts Produced 31.0 4.2 24.8 1.3 24.8 1.3 

No. of Defective Parts 0.7 0.5 0.6 0.6 0.6 0.6 

Build Height (mm) 273.0 7.4 178.9 48.6 87.0 4.0 

Full Build Capacity 

Utilisation 
9.9% 0.1% 5.5% 0.3% 2.5% 0.3% 

Occupied Cuboid 

Capacity Utilisation 
11.9% 0.2% 8.4% 1.1% 9.5% 1.1% 
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The effect of the operations approach on the AM workflow and resulting build 

properties is explored first, referring to Table 4.3. The IB-MtS operations 

approach results in the fewest number of builds at 1.4 builds per experiment, 

followed by Capacity Maximising Make-to-Order (CM-MtO) at 2.0 builds per 

experiment, and lastly Lead Time Minimising Make-to-Order (LTM-MtO) at 3.6 

builds per experiment. The standardised batches in IB-MtS also result in higher 

output than the make-to-order operations approaches, at 31.0 parts per 

experiment for IB-MtS compared to 24.8 for CM-MtO and LTM-MtO. This is 

because the make-to-stock approach is agnostic to the incoming demand, and 

the batch size is set according to the upper limit of the practical build volume 

capacity, which is 10% full build capacity utilisation. The number of breakdowns 

and defective parts is consistent across the operations approaches. This is 

because both are modelled as fixed rates of occurrence: breakdown every 6244 

layers and defects every 40 parts, following Baumers and Holweg (2019). 

The final three statistics in Table 4.3 characterise the extent to which the 

available build space is used and how densely parts are packed therein. To aid 

with visualisation, Figure 4.3 shows the typical configuration of parts in each 

operations approach: standardised arrangement of parts A and B in IB-MtS, and 

order-dependent fulfilment in CM-MtO and LTM-MtO. On average, IB-MtS has 

the tallest builds (build height) with the greatest volume of parts filling the 

machine capacity (full build capacity utilisation) that are packed most densely 

(occupied cuboid capacity utilisation). In descending order for each of the three 

statistics, IB-MtS is followed by CM-MtO and lastly LTM-MtO.  

However, given its priority to maximise use of machine space, the full build 

capacity utilisation in the CM-MtO experiments of 5.5% is lower than expected, 

especially when compared to the value of 9.9% in IB-MtS. The relatively low 

mean value arises due to sparse, single-part builds containing rework, i.e. 

replacements for defective parts, which occur in experiments 1, 4, and 5. 

Without these extra builds in each experiment, the full build volume utilisation 

for CM-MtO would be higher on average (7.8%) and more consistent (standard 

deviation of 0.2%), as seen in Figure 4.4a.  



 

Page 149 
 

 

Figure 4.3: Typical packing of parts in builds for a) IB-MtS part A batches, b) IB-MtS 

part B batches, c) CM-MtO, and d) LTM-MtO operations approaches 

The extra builds also affect the occupied cuboid capacity utilisation and build 

height in the CM-MtO operations approach in a similar manner. Figure 4.4a 

shows that the typical CM-MtO build, i.e. the mean excluding builds for single-

part rework, is 227.2mm tall and packs parts to 11.3% occupied cuboid capacity 

utilisation. These values are, respectively, 27.0% and 40.6% higher than the 

average of all builds in the CM-MtO operations approach. Therefore, the gap 

between the typical CM-MtO build and IB-MtS build closes to 45.8mm in mean 

build height and 2.1% in mean occupied cuboid capacity utilisation. 

In contrast, the other make-to-order operations approach, LTM-MtO, is only 

marginally affected by the single-part extra builds for rework. Figure 4.4b 

demonstrates a small increase in the average build height (0.8mm), full build 
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capacity utilisation (0.1%), and occupied cuboid capacity utilisation (0.4%) 

when these extra builds are excluded. However, the spread in the results as 

indicated by the standard deviation, falls by up to two-thirds. Figure 4.4 

emphasises the difference between the response of the CM-MtO and LTM-MtO 

operations approaches to the single-part extra builds. This is because the 

single-part builds are much sparser relative to the typical CM-MtO build than 

the typical LTM-MtO build, and so there is a greater negative influence on the 

mean values for the former operations approach. 

 

Figure 4.4: Influence of extra single-part builds for rework on build properties for a) 

CM-MtO and b) LTM-MtO operations approaches 
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4.3.2 Effect of Operations Approach on Production Losses & OEE 

Having explained the influence of the operations approaches on the AM build 

properties, this section focuses on the consequences for production losses and 

OEE. 

Figure 4.5 illustrates the OEE and constituent metrics (availability, 

performance, and quality) for the three operations approaches. The IB-MtS 

operations approach has the highest OEE at 35.1%, followed by the CM-MtO 

operations approach at 24.5%, and lastly the LTM-MtO operations approach at 

16.4%. Therefore, of the three operations approaches investigated, IB-MtS 

incurs the least production losses. This is equivalent to the most value-adding 

time as a proportion of the planned production time, as illustrated in Figure 4.6.  

 

Figure 4.5: Influence of operations approach on OEE and constituent metrics 

Nevertheless, these OEE values fall far short of the ideal target of 85% 

(Nakajima, 1988), and both make-to-order operations approaches result in an 

OEE below the commonly-accepted range in conventional manufacturing of 30 

– 80% (Dal, Tugwell and Greatbanks, 2000). Therefore, the constituent metrics, 

alongside the itemisation of planned production time in the simulation 

experiments in Figure 4.6, can be used to probe the contributors to production 

losses in the AM workflow for each operations approach. 
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Figure 4.6: Itemisation of planned production time for each operations approach 

Contrary to expectations, Figure 4.5 shows that the availability of machines is 

highest for the LTM-MtO operations approach, at 91.0% compared to 84.9% for 

CM-MtO and 84.7% for IB-MtS. The setup losses arise as a fixed time per build 

and so are highest in LTM-MtO, corresponding to the larger number of builds 

required to fulfil production. However, Figure 4.6 shows that breakdown is a 

far more significant availability loss: almost four times more time is lost to 

breakdown than setup in the LTM-MtO operations approach, and this increases 

to a 12-fold difference for IB-MtS. 

Even though the equipment breakdown rate is constant, the operations 

approach influences the magnitude of the breakdown losses. More time is lost 

to breakdown in the CM-MtO and IB-MtS operations approaches than in LTM-

MtO (9.0, 8.4, and 6.6 hours, respectively). The reason for this is build height. 

Given that the build time up to the failed layer (along with the fixed time taken 

to setup the failed build and clean the machine afterwards) becomes waste, a 

taller failed build incurs a larger breakdown loss. The mean height of failed 

builds is 78.0mm for IB-MtS and 105.5mm in CM-MtO, compared to 8.5mm tall 

in LTM-MtO. Comparing the two make-to-order operations approaches, the 

93mm difference in mean build-height-at-failure translates to a 36.2% increase 

in time lost to breakdown. 
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Bringing these together, Figure 4.7 illustrates the trade-off between the 

breakdown and setup losses, depending on the build height and number of 

builds across the operations approaches. Given that the breakdown losses for 

taller builds far outweigh the setup losses for each new build, the results 

suggest that a larger number of shorter builds should be favoured over fewer, 

taller builds to maximise the availability metric. LTM-MtO is therefore the best 

operations approaches option for machine uptime and availability. 

 

Figure 4.7: Trade-off in availability losses across operations approaches, according 

to a) build height and b) number of builds, per repetition 

Shifting to the next metric, Figure 4.5 shows that the performance of machines 

is highest for the IB-MtS operations approach at 42.4%, followed by CM-MtO 

at 29.8% and LTM-MtO at 18.4%. Furthermore, Figure 4.6 shows that idle time 

is the largest production loss of all five investigated for all three operations 
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approaches. This loss occupies 33% of the total planned production time for IB-

MtS, and this fraction rises to 44% for CM-MtO and 62% for LTM-MtO. The idle 

losses also outweigh the reduced speed losses in terms of impact on the 

performance metric. The magnitude of this difference is largest for the LTM-

MtO operations approach, at just over five-fold. Therefore, the performance 

losses are driven by machine idle time. 

The source of idle losses is the fixed time for automated machine checks, build 

chamber warm up and build container cool down that accompany each build in 

the polymer laser sintering machine. For each build, there is 3.5 hours of 

automatic machine checks and warm up, and 12 hours of cool down. Therefore, 

the operations approach influences the idle time through the number of builds 

required to fulfil production. As noted in Table 4.3, the IB-MtS has the fewest 

number of builds per experiment and, correspondingly, the lowest idle losses. 

The balance between idle time and productive time in each build is important 

for the performance metric, and this is affected by how full each build is. The 

linear trend line in Figure 4.8 demonstrates a clear link between the full build 

capacity utilisation of each build and the idle loss incurred as a fraction of the 

actual production time therein. As the full build capacity utilisation increases, 

the fixed per-build idle time is amortised over a larger volume of output in the 

build. Of the operations approaches, the CM-MtO and IB-MtS builds (denoted 

by diagonal crosses and diamond markers, respectively, in Figure 4.8) have the 

highest full build capacity utilisation. Therefore, the AM machine is running for 

a larger fraction of the actual production time in these experiments, and the 

rate of output is closer to the theoretical processing rate, which improves the 

performance metric. It is worth noting that the single-part extra builds for 

rework, found in CM-MtO and LTM-MtO operations approaches, have the 

highest fraction of idle time at 78-82% of the actual production time; and so the 

AM machine is operating most inefficiently from a performance perspective 

here. 
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Figure 4.8: Influence of filling the build capacity on the idle time as a fraction of the 

actual production time for each build 

The second contributor to the performance metric is the reduced speed losses. 

The time lost here is calculated as the difference between the experimental 

build time and the minimum build time if the equipment were operating at the 

theoretical volumetric build rate. Figure 4.9 shows that the reduced speed 

losses in each build are influenced by the packing of parts therein. In Figure 

4.9a, there is a positive correlation between the build height and the reduced 

speed loss within each operations approach. This suggests that layer-wise 

losses accumulate as the build is packed with more parts and becomes taller. 

However, when the reduced speed loss per cubic volume of output is 

considered, the negative effect of the taller, fuller builds is reversed. Figure 4.9b 

shows an amortisation effect across all builds that is similar to the idle losses, 

but weaker in correlation. Lastly, Figure 4.9c depicts a negative correlation 

between the occupied cuboid capacity utilisation and reduced speed losses 

within each operations approach. This indicates that the denser the packing, 

the higher the processing rate relative to the theoretical ideal.  
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Figure 4.9: Relationship between reduced speed losses and a) build height, b) full 

build capacity utilisation, and c) occupied cuboid capacity utilisation 

The operations approaches influence the reduced speed losses through the 

build properties achieved. Figure 4.9a and Figure 4.9c demonstrate that IB-MtS 

and CM-MtO result in higher reduced speed losses per build than LTM-MtO. On 
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the other hand, as the output per build is correspondingly higher, the losses per 

unit of output are up to 49% lower in both IB-MtS and CM-MtO relative to LTM-

MtO, as seen in Figure 4.9b. Therefore, the taller and fuller builds in IB-MtS and 

CM-MtO are beneficial for reduced speed losses. 

Overall, performance losses can be reduced by packing a larger volume of parts 

in fewer builds in a space-efficient manner, such that the full build capacity 

utilisation and occupied cuboid capacity utilisation are both maximised. Figure 

4.10 shows that the IB-MtS operations approach achieves this most effectively, 

and so is the best option for minimising idle and reduced speed losses per unit 

volume of output. This corresponds to the highest performance metric (see 

Figure 4.5). 

 

Figure 4.10: Performance losses across operations approaches, according to a) full 

build and b) occupied cuboid capacity utilisation, per repetition 
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The third metric to consider is quality. In this study, only the losses due to 

defects are considered, as the thermal conditions that lead to start-up yield 

losses are not modelled. Figure 4.5 shows that the quality metric is near 

identical across the operations approaches, at 97.7% for IB-MtS and 97.5% for 

both CM-MtO and LTM-MtO. Defective parts appear at a constant rate of one 

every 40 parts, and so identical values for quality would be expected across the 

operations approaches. However, the slight discrepancy between IB-MtS and 

the make-to-order operations approaches arises because of the total quantity 

of parts produced. Given that 15 parts are produced since the last defect in IB-

MtS, versus 4 parts in both CM-MtO and LTM-MtO, the proportion of good 

output to defective output is slightly higher in IB-MtS. Nevertheless, relatively 

little time is lost to defects, as seen in Figure 4.6. On average, a loss of 0.5 hours 

per experiment is incurred, which is just 1% of the total production losses. 

Therefore, while the defect rate in this study is equivalent to 3.5 sigma, the 

availability and performance losses far outweigh the quality losses. 

Two final observations are noted to close this section, which relate the spread 

in the OEE metrics. The error bars in Figure 4.5 show the standard deviation for 

the availability, performance, quality, and overall OEE. In particular, the 

availability metric has a high standard deviation across the operations 

approaches, from 5.3% of the mean in LTM-MtO up to 11.0% of the mean in 

CM-MtO. This arises from the effect of breakdown losses on the total 

downtime. Across all operations approaches, the mean downtime in 

experiments where there are no build failures is 0.8 hours (over 12 

experiments); whereas the occurrence of build failures increases the downtime 

by 27-fold to 21.6 hours (over 8 experiments). This difference rises to 38-fold 

for IB-MtS and CM-MtO, because both the breakdown losses are higher and 

setup losses lower in these operations approaches. Therefore, the consistency 

in equipment uptime is poorer for the IB-MtS and CM-MtO operations 

approaches, relative to the LTM-MtO operations approach. 

Similarly, the standard deviation of the performance metric is relatively high for 

the make-to-order operations, at 11.1% of the mean for CM-MtO and 5.4% for 
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LTM-MtO, compared to 0.2% of the mean in IB-MtS. Figure 4.11 demonstrates 

that the single-part extra builds for rework, mentioned in the previous section, 

are the reason behind the large spread in the make-to-order performance. The 

addition of a build to the workflow incurs a fixed idle time loss during the 

machine checks, warm up and cool down. Also, Figure 4.9a and Figure 4.9c 

illustrate that the single-part build incurs 22.0% higher reduced speed loss to 

the typical LTM-MtO build despite containing one eighth of the output, thanks 

to sparse packing relative to the build height. Therefore performance-related 

losses are higher in the repetitions with single-part extra builds for rework, 

which reduces the mean and increases the spread in the performance metric. 

 

Figure 4.11: Influence of extra single-part builds for rework on performance-related 

losses for a) CM-MtO and b) LTM-MtO operations approaches 
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4.4 Sensitivity of OEE to External Factors 

This section presents the results for the second exploratory simulation, which 

investigates the effect of two external factors on the OEE of the AM machine 

for polymer laser sintering. The two external factors are delivery lead time and 

variety in the size of parts being packed. The third variable in these experiments 

is the Allowable Build Height (ABH), which represents the two make-to-order 

operations approaches, LTM-MtO (ABH = 100mm) and CM-MtO (ABH = 

330mm).  

The three variables and their interactions are covered by 16 experiments in a 

face-centred central composite design DOE configuration, as explained in 

Section 3.4.2.4. Table 4.4 and Table 4.5 show the experiment factor levels, 

alongside the mean and standard deviation of the build properties and output 

across five repetitions for each experiment. Alongside this, Figure 4.12 shows 

the availability, performance, and quality metrics for each experiment. 

Together, this overview of the experiment outputs confirm that the properties 

such as build height, full build capacity utilisation and occupied cuboid capacity 

utilisation vary (in both average and spread) with changes in the operations 

approaches and the external factors, influencing the operational efficiency of 

the AM machine.  

To explore these relationships systematically, the linear and quadratic main 

effects of each variable on the OEE and their two-way interactions are modelled 

at the 10% statistical significance level, as shown in Figure 4.13. The main 

effects and interactions, respectively, identify the independent and combined 

influence of each variable on the OEE. The linear main effect terms for ABH and 

Lead Time (LT) are both statistically significant, alongside the quadratic main 

effect terms for ABH and Part Size Variety (PSV). The only statistically significant 

interaction is between ABH (representing the operations approach) and LT. 

Model hierarchy is also observed. Consequently, the linear term for PSV is kept, 

even though only the quadratic term is statistically significant.  
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Table 4.4: Descriptive statistics for external factors simulation experiments (for experiments 1-8) 

Factor / Statistic 

Experiment 

1 2 3 4 5 6 7 8 

Mean 
St. 

Dev. 
Mean 

St. 

Dev. 
Mean 

St. 

Dev. 
Mean 

St. 

Dev. 
Mean 

St. 

Dev. 
Mean 

St. 

Dev. 
Mean 

St. 

Dev. 
Mean 

St. 

Dev. 

Allowable Build 

Height (mm) 
215 - 215 - 100 - 330 - 100 - 330 - 100 - 330 - 

Lead Time (hours) 72 - 72 - 48 - 48 - 96 - 96 - 48 - 48 - 

Part Size Variety 50 - 50 - 0 - 0 - 0 - 0 - 100 - 100 - 

No. of Builds 2.8 0.8 2.8 0.8 2.6 0.5 1.6 0.5 4.8 0.8 2.2 0.8 2.4 0.5 1.6 0.5 

No. of Breakdowns 0.4 0.5 0.4 0.5 0.2 0.4 0.2 0.4 0.6 0.5 0.4 0.5 0.2 0.4 0.2 0.4 

No. of Parts 

Produced 
43.4 2.2 43.4 2.2 16.6 0.5 16.6 0.5 33.0 1.2 33.0 1.2 16.6 0.5 16.6 0.5 

No. of Defective 

Parts 
1.0 0 1.0 0 0.4 0.5 0.4 0.5 0.8 0.4 0.8 0.4 0.4 0.5 0.4 0.5 

Build Height (mm) 123.9 16.5 124.7 14.4 83.3 7.5 134.3 24.6 86.4 5.4 188.1 61.7 86.2 4.3 142.7 29.4 

Full Build Capacity 

Utilisation 
3.5% 0.7% 3.5% 0.8% 2.3% 0.4% 4.2% 1.4% 2.5% 0.2% 6.2% 2.0% 2.5% 0.4% 4.3% 1.4% 

Occupied Cuboid 

Capacity Utilisation 
8.3% 1.6% 8.5% 1.6% 8.8% 1.4% 9.4% 2.8% 9.6% 0.6% 9.1% 1.1% 9.5% 1.4% 8.8% 2.5% 
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Table 4.5: Descriptive statistics for external factors simulation experiments (for experiments 9-16) 

Factor / Statistic 

Experiment 

9 10 11 12 13 14 15 16 

Mean 
St. 

Dev. 
Mean 

St. 

Dev. 
Mean 

St. 

Dev. 
Mean 

St. 

Dev. 
Mean 

St. 

Dev. 
Mean 

St. 

Dev. 
Mean 

St. 

Dev. 
Mean 

St. 

Dev. 

Allowable Build 

Height (mm) 
100 - 330 - 100 - 330 - 215 - 215 - 215 - 215 - 

Lead Time (hours) 96 - 96 - 72 - 72 - 48 - 96 - 72 - 72 - 

Part Size Variety 100 - 100 - 50 - 50 - 50 - 50 - 0 - 100 - 

No. of Builds 4.6 0.5 2.4 0.9 4.0 0.7 2.4 0.5 1.8 0.4 3.0 0.7 2.4 1.1 2.0 0.7 

No. of Breakdowns 0.4 0.5 0.6 0.5 0.4 0.5 0.4 0.5 0.2 0.4 0.6 0.5 0.4 0.5 0.4 0.5 

No. of Parts 

Produced 
33.0 1.2 33.0 1.2 43.4 2.2 42.6 3.6 29.0 1.6 57.8 1.9 24.8 1.3 24.8 1.3 

No. of Defective 

Parts 
0.8 0.4 0.8 0.4 1.0 0 1.0 0 0.6 0.5 1.4 0.5 0.6 0.5 0.6 0.5 

Build Height (mm) 84.4 3.0 199.2 51.7 84.9 7.7 142.2 7.5 131.7 24.9 150.1 15.1 148.9 38.8 167.6 41.7 

Full Build Capacity 

Utilisation 
2.5% 0.2% 6.3% 2.0% 2.3% 0.4% 3.9% 0.3% 3.7% 1.3% 4.6% 0.9% 4.5% 1.8% 5.5% 2.0% 

Occupied Cuboid 

Capacity Utilisation 
9.9% 0.9% 8.5% 1.6% 8.5% 1.0% 6.3% 0.5% 8.1% 2.5% 9.3% 1.7% 8.7% 2.1% 10.1% 2.1% 
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Figure 4.12: Availability, performance and quality metrics for external factors simulation experiments 
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Figure 4.13: Sensitivity of OEE to a) allowable build height and external factors, and 

b) statistically significant two-way interactions 

Analysing each variable in turn, the left panel in Figure 4.13a shows that 

increasing the ABH improves the OEE by allowing more parts to be packed 

within each build. The curve spans 8.2 percentage points, which is nearly equal 

to the difference between the OEE achieved by the CM-MtO and LTM-MtO 

operations approaches in the previous section (at 8.1 percentage points). 

Therefore, the main effect of the two make-to-order operations approaches on 

the OEE is consistent between both sets of exploratory simulations. 

Additionally, a maximum point can be seen in the main effects curve, at 
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approximately ABH = 295mm in the model. This reflects the trade-off between 

availability and performance losses as the build height and full build capacity 

utilisation increase between LTM-MtO and CM-MtO, as explained in Section 

4.3.2. 

The middle panel in Figure 4.13a shows that the OEE improves linearly by 2.5 

percentage points upon increasing the lead time from 48 hours to 96 hours. 

This change is driven by the amortisation of performance losses over the 

output, a phenomenon that was also seen in Section 4.3.2. One practical 

implication of extending the order lead time, and expanding the capacity of the 

buffer order book, is that the volume of parts available to pack in each build of 

the simulation experiments also increases. As a result, the volume of parts 

deposited per build increases in line with the lead time, by 16.3% on average 

for every 24 hours.  

However, it should be noted that the volume of parts deposited per build can 

only increase up to the limit of the build capacity utilisation. In the experiments 

where ABH = 100mm (equivalent to LTM-MtO), the builds can only 

accommodate 24 hours’ worth of orders. Therefore, the mean volume of parts 

available in the order book increases at a similar rate to the number of builds 

required to fulfil them. For example, averaging experiments at LT = 48 hours 

and LT = 96 hours, 82.6% more builds deliver 97.5% more output in volume; 

this equates to 7.9% more volume deposited per build. In contrast, experiments 

at ABH = 330mm see 53.4% more volume deposited per build for the 

corresponding increase in the lead time (28.6% more builds are required for 

97.5% more output volume). This interaction between the ABH and LT in 

influencing the OEE is succinctly captured in Figure 4.13b. The non-parallel 

curves show that the positive effect of the lead time on the OEE increases as 

the ABH increases. The OEE curves for lead time converge at ABH = 100mm, 

whereas doubling the lead time at ABH = 330mm improves the OEE by 4.6 

percentage points. Therefore, it is important to control the operations 

approach and lead time in tandem to improve use of the available machine 

capacity. 



 

Page 166 
 

The right panel in Figure 4.13a illustrates a quadratic relationship between the 

PSV and OEE. Switching from no size variety (PSV = 0) to a mix of 50% volume 

and 100% volume parts (PSV = 50) leads to a fall of 3.2 percentage points in the 

OEE. Upon introducing larger, 150% volume parts to the mix (PSV = 100), the 

OEE recovers to the same value as for PSV = 0. This change in the OEE is driven 

by the density of part packing that is achievable with the different sized parts. 

In experiments at PSV = 0 and PSV = 100, the occupied cuboid capacity 

utilisation is 8.7% and 8.9% on average, respectively. However, for PSV = 50, 

this value falls to 7.9%. As a result, reduced speed losses are 8.4% higher when 

PSV= 50, versus PSV = 0; and so the performance metric is negatively affected. 

Contrary to expectations, the part dimensions are such that the packing density 

improves upon introducing more size variety in the experiments at PSV = 100, 

as shown in Figure 4.14. While it is not known what the mathematical nature 

of the relationship between PSV and OEE would be outside the range in part 

size variety investigated, the underlying drivers for performance losses and OEE 

still apply. Therefore, the performance and OEE are sensitive to the variety in 

part size due to its impact on the occupied cuboid capacity utilisation. 

 

Figure 4.14: Demonstration of part packing for experiments at a) PSV = 50 and b) 

PSV = 100, with respective values for occupied cuboid capacity utilisation 
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In addition to the main effects and interactions, ANOVA is used to compare the 

influence of the operations approach and external factors on the OEE. Table 4.6 

shows the model degrees of freedom (DF), adjusted sum of squares (Adj. SS), 

adjusted mean squares (Adj. MS), F-value, P-value and percentage contribution 

of the repetition order (blocks), model terms that are statistically significant or 

otherwise kept for model hierarchy, and the residual error. The percentage 

contribution is calculated by dividing the adjusted sum of squares for each term 

by the total sum of squares; this summary metric therefore indicates the 

relative contribution of each term to the variance in the OEE. 

Taking the linear and quadratic main effects together, the lead time influences 

the OEE the least, as only 2% of the variance can be attributed to the LT 

variable. This is followed by the part size variety at 5% contribution to the 

variance. The blocks in the observations, i.e. the correlation between the 

experiment repetition number and the OEE, contribute to 25% of the variance. 

This occurs because breakdowns and part defects occur at a constant rate, 

systematically affecting repetitions 2, 4, and 5 more than repetitions 1 and 3. 

More importantly, Table 4.6 shows that the operations approach dominates 

the change in OEE. The proxy variable of allowable build height contributes 30% 

of the variance. Therefore, efforts to improve the OEE should be focused on the 

operations approach, while the lead time interaction and part size variety offer 

moderate extra control during process planning. 

Table 4.6: ANOVA for model assessing OEE sensitivity to external factors 

Model Term DF 
Adj. 

SS 

Adj. 

MS 

F-

Value 

P-

Value 

% 

Contribution 

Blocks 4 0.081 0.020 10.93 0.000 25% 

Allowable Build Height 

(ABH) 1 0.084 0.084 45.62 0.000 26% 

Lead Time (LT) 1 0.008 0.008 4.18 0.045 2% 

Part Size Variety (PSV) 1 0.000 0.000 0 0.944 0% 

ABH × ABH 1 0.013 0.013 7.28 0.009 4% 

PSV × PSV 1 0.017 0.017 9.07 0.004 5% 

Interaction: ABH, LT 1 0.005 0.005 2.83 0.097 2% 

Error 69 0.128 0.002 - - - 

Total 79 0.326     
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5 Results on Workflow Optimisation in AM 

5.1 Overview 

This chapter presents the results of research towards the second research 

objective, to evaluate the effect of process planning on the total cost of make-

to-order fulfilment using scaled-up AM production. 

Similar to the previous chapter (Sections 4.3 and 4.4), this research objective is 

addressed via an exploratory simulation study. Each simulation experiment 

follows a particular approach for optimising the packing and scheduling steps 

within the process planning stage (referred to as “workflow optimisation”). The 

total cost model developed in this research (Section 3.5.1) is used to quantify 

the cost-effectiveness of each workflow optimisation approach over the AM 

production line within a single manufacturing facility. The development of the 

workflow optimisation approaches and exploratory simulation models are 

explained in Section 3.5.2. In particular, the suggested unique advantages 

associated with the integrated workflow optimisation approach will be 

quantitatively tested in this exploratory simulation study. 

The remainder of this chapter is organised as follows. First, Section 5.2 explains 

the influence of each workflow optimisation approach on the properties of the 

packed and scheduled AM builds. Section 5.3 then investigates the consequent 

impact on the production cost. Finally, the trade-off between the dominant 

cost drivers and impact of the integrated workflow optimisation approach are 

examined in Sections 5.4 and 5.5. 

5.2 Effect of Workflow Optimisation Approach on AM 
Build Properties 

In the exploratory simulation study, the order fulfilment experiments are 

repeated 10 times for each of the five workflow optimisation approaches, 

resulting in a total of 460 simulated builds. Summarising the output, Table 5.1 

shows the mean and standard deviation of the production and build properties. 
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The same 10 sets of input orders are used in the repetitions for each workflow 

optimisation approach, and so each statistic is averaged over the same 

production volume of 6054 parts split across five different geometries. 

The descriptive statistics for the number of builds per experiment and number 

of parts per build show that there are two distinct patterns for the conversion 

of the incoming order stream into sets of build jobs. First, the Manual and 

Packing Only approaches compress production into fewer builds with a higher 

quantity of parts per build, at eight builds containing 75-76 parts on average. In 

contrast, applying the scheduling constraint in the remaining three workflow 

optimisation approaches means that parts are spread over 10 builds with 60.5 

parts each on average. However, it should be noted that the number of parts 

per build is relatively inconsistent in the approaches A-C (Manual, Packing Only, 

Scheduling Only) as shown by the standard deviation, which is approximately 

half of the mean value in magnitude. Given that the number of parts per build 

directly relates to the full build capacity utilisation, the above patterns in the 

average and spread of values are also seen in the latter statistic. 

Shifting attention to the packing-related build properties, the mean build 

height shows that the average build is at least three-quarters full in the Z 

dimension, across the workflow optimisation approaches. The operator-

controlled Manual approach has the highest mean build height, reflecting the 

objective to entirely fill each build volume before starting a new build job. On 

the other hand, in the Scheduling Only approach, the parts are allocated to 

build jobs strictly on the basis of the due date, resulting in shorter and sparser 

builds on average, and the largest spread in build height. More generally, 

approaches A-C generate an inconsistent mix of short and tall builds in fulfilling 

the production orders, indicated by the build height standard deviation which 

is greater than one fifth of the mean. The approaches that optimise both 

packing and scheduling (either separately, D, or in an integrated manner, E), 

result in consistent builds with moderate build height relative to the alternative 

approaches.  
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Table 5.1: Descriptive statistics for workflow optimisation simulation experiments 

Statistic 

Workflow Optimisation Approach 

Manual (A) Packing Only (B) Scheduling Only (C) 

Packing and 

Scheduling,  

Separate (D) 

Packing and 

Scheduling,  

Integrated (E) 

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

No. of Builds 8 0.7 8 0 10 0 10 0 10 0 

No. of Parts per Build 76.0 38.5 75.6 35.7 60.5 26.9 60.5 6.9 60.5 5.7 

No. of Late Parts 150.5 44.3 121.8 36.6 0 0 0 0 0 0 

No. of Builds containing Late Parts 5.6 0.7 5.6 0.8 0 0 0 0 0 0 

Build Height (mm) 295.3 60.4 288.7 64.7 245.4 78.8 262.6 21.8 259.3 18.6 

Full Build Capacity Utilisation 15.4% 8.7% 15.3% 7.9% 12.3% 5.5% 12.3% 1.5% 12.3% 1.2% 

Occupied Cuboid Capacity 

Utilisation 
16.9% 8.9% 17.4% 7.8% 16.4% 5.6% 15.4% 1.1% 15.6% 1.1% 
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The occupied cuboid capacity utilisation also describes the density of parts 

packing within each build volume. The Packing Only approach achieves the 

densest part packing, followed by the operator-controlled Manual and 

Schedule Only approaches, and finally the two approaches optimising both 

Packing and Scheduling. While a high occupied cuboid capacity utilisation is 

expected in the software-controlled Packing Only approach, this contrasts to 

the lowest values for approaches D and E, which are also software-controlled. 

Together with difference in occupied cuboid capacity utilisation of up to one 

percentage point between approach C (operator-controlled) and approaches D 

and E (software-controlled), this suggests that the packing software used in the 

study cannot pack dissimilar geometries as space-efficiently as an operator. 

Finally, Table 5.1 shows how each workflow optimisation approach performs 

with respect to schedule attainment. Only approaches A and B result in late 

parts, which occurs because the scheduling constraint is neglected when 

allocating parts to build jobs. There are 23.5% more late parts in total via the 

Manual approach than the Packing Only approach, while the number of builds 

containing late parts is equal. Therefore, there is a greater concentration of late 

parts in individual builds in the Manual approach, which is more detrimental 

from a cost penalty perspective. Nevertheless, the obvious note must be made 

that timely delivery is desirable, if not essential, and so approaches C-E are 

effective in this regard. 

5.3 Effect of Workflow Optimisation Approach on 
Production Cost  

5.3.1 Effect of Workflow Optimisation Approach on Overall 
Specific Cost of Production 

Having examined the impact of the workflow optimisation approach on the 

production output, build properties and timeliness of delivery, this section 

focuses on the consequences for production cost. The specific cost of 

production, units GBP/cm3, is used throughout the results to eliminate the 

influence of part size on the cost results. 
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Figure 5.1 shows the mean specific production cost for the five workflow 

optimisation approaches. The Manual approach is the most expensive at 0.97 

GBP/cm3, followed by Packing Only at 0.82 GBP/cm3 and Scheduling Only at 

0.56 GBP/cm3. Of the approaches that optimise both packing and scheduling, 

approach D is slightly more expensive at 0.54 GBP/cm3, and the cheapest 

option is approach E at 0.53 GBP/cm3. The Packing and Scheduling, Integrated 

approach delivers a saving of 46% against the Manual approach, on average.  

 

Figure 5.1: Influence of workflow optimisation approach on production cost 

The workflow optimisation approach also has a notable effect on the spread in 

the production cost, as indicated by the error bars in Figure 5.1, which span one 

standard deviation. The most cost-effective workflow optimisation approaches 

are also the most consistent in cost. In the Packing and Scheduling, Separate 

and Packing and Scheduling, Integrated approaches, the magnitude of the 

standard deviation is less than 5% of the mean. On the other hand, this fraction 

increases to 32.4% for the Packing Only approach and 46.5% for the Manual 

approach. In these workflow optimisation approaches, the cost-effectiveness 

of production is unpredictable from build to build; and referring back to Table 

5.1, this large spread is linked to the inconsistency in the build properties during 

order fulfilment. Therefore, the workflow optimisation approaches that 

consider both packing and scheduling constraints lead to the most consistent 

build setups and, concurrently, production cost. 
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The workflow optimisation approaches also indicate the relative impact of 

packing optimisation versus scheduling optimisation. Figure 5.1 shows that, 

relative to the constraint-free Manual approach, the mean production cost is 

42.2% lower when using the Scheduling Only approach as compared to just 

15.5% lower when using the Packing Only approach. Thus, adhering to 

scheduling requirements, albeit with operator-controlled packing, results in an 

almost three-fold increase in the cost saving than relying on software-

controlled packing alone. This emphasises the important contribution of the 

scheduling constraint during process planning, enabling timely delivery and by 

extension more cost-effective production. However, the labour time in 

manually packing parts for approaches A and B versus setting up the computer-

controlled packing software in approaches C, D, and E is not measured in this 

study. It is likely that computer-controlled packing would incur lower labour 

content than manual packing; this would increase the gap in production cost 

between approaches A and B whilst simultaneously decreasing the gap 

between approaches B and C. 

5.3.2 Effect of Workflow Optimisation Approach on the Cost 
Model Components 

Splitting the specific production cost results into the cost model components 

helps to identify and examine the key cost drivers in more detail. Figure 5.2 

shows that the indirect, failure and lateness costs are the largest contributors 

to the production cost, albeit in different patterns across the workflow 

optimisation approaches. For three of the five approaches, C-E, the pattern is 

similar: the indirect cost is the foremost cost contributor at 0.20 – 0.22 

GBP/cm3, followed by the failure cost at 0.18 – 0.19 GBP/cm3; there is no 

lateness cost in these approaches. By contrast, in approach B, the failure cost 

is the largest contributor at 0.23 GBP/cm3; the indirect cost and lateness 

penalty follow closely at 0.22 GBP/cm3 and 0.21 GBP/cm3, respectively. Finally, 

in approach A, the lateness penalty dominates at 0.32 GBP/cm3, and the 

indirect cost is second at 0.25 GBP/cm3 followed by the failure cost at 0.24 

GBP/cm3. Across all five workflow optimisation approaches, the final three cost 
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contributors are material (0.11 – 0.13 GBP/cm3), labour (3.6 – 4.1 pence/cm3) 

and lastly, energy (0.2 pence/cm3).  

 

Figure 5.2: Production cost split into cost model components for each workflow 

optimisation approach 

In addition to being the largest cost contributors, Figure 5.2 indicates that the 

indirect, failure and lateness costs are most strongly influenced by the workflow 

optimisation approach. Figure 5.3 shows the mean and spread in each of these 

three cost model contributors across the workflow optimisation approaches. 

 

Figure 5.3: Influence of workflow optimisation approach on three largest 

contributors to production cost 
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Referring to the indirect costs first, the mean specific cost falls by 18.5% 

between the Manual approach and the Packing and Scheduling, Integrated 

approach. In a similar manner to the overall production cost in Figure 5.1, the 

spread in the indirect cost also decreases by 25-fold between the 

aforementioned workflow optimisation approaches. For the mean failure costs, 

the difference between the best-performing Packing and Scheduling, 

Integrated approach and worst-performing Manual approach is 24.8%. Here, 

both the Manual and Packing Only approaches have a similar mean failure cost, 

separated by 0.4 pence per cm3. However, the Packing Only approach has the 

largest spread, which is nine times larger than the Packing and Scheduling, 

Integrated approach. Finally, the lateness costs are both the largest cost 

contributor in the Manual approach at 32.8% of the total production cost, and 

the source of greatest uncertainty in the cost due to the spread of 0.27 

GBP/cm3. As noted in Section 5.2, the Manual approach performs worse than 

Packing Only in terms of schedule attainment, and this is reflected in the higher 

average and spread in the lateness penalty. 

Importantly, Figure 5.3 also shows that approaches D and E consistently have 

the lowest production cost across the three major cost contributors. The 

following section will explore the build properties and cost contributors in 

conjunction to explain the cost-effectiveness of optimising both packing and 

scheduling during process planning. 

5.4 Trade-off between Capacity-, Failure-, and Schedule-
related Costs 

Expanding on the descriptive statistics from Section 5.2, Figure 5.4 and Figure 

5.5 show the distribution of build height and corresponding means for the three 

major cost contributors (indirect, failure, and lateness) across the five workflow 

optimisation approaches.  

The imprecise specific cost of production in the Manual (A), Packing Only (B) 

and Scheduling Only (C) approaches has been noted in the previous sections. 

Figure 5.4a and Figure 5.5a show that the cost contributors are particularly 
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inconsistent in operator-packed builds shorter than 150mm (in approaches A 

and C). On the other hand, Figure 5.4b indicates that the builds between 

200mm and 300mm in height are most erratic in approach B. In both cases, the 

workflow optimisation approach means that the builds in these height groups 

are found in the latter time periods of the experiments, and so the contents of 

these builds is difficult to predict. On average, these builds occur on days 4.2, 

3.8, and 3.2 out of the five slots for approaches A, B and C respectively. The 

allocation of parts depends entirely on the uniformity of the incoming order 

stream (in approach C) or the parts left over after space-efficiently packing 

preceding builds (approaches A and B); and so the indirect and failure costs do 

not follow a consistent trend in these builds. Moreover, the lateness penalties 

are highest in magnitude in these corresponding builds for approaches A and B 

(Figure 5.4a and Figure 5.4b). Probing the experimental results further shows 

that 70% of the parts are late in the shorter builds (<150mm) via approach A, 

and 41% in the 200-300mm builds via approach B. This corresponds to the later 

position of these builds in the production sequence. 

In contrast, Figure 5.4 and Figure 5.5a show that the three major cost 

contributors converge in the taller builds. Across approaches A-C, magnitude of 

the indirect, failure and lateness costs (where applicable) is approximately 0.20 

GBP/cm3 in builds exceeding 270mm in height, which also occur earlier in the 

production sequence. On average across approaches A-C, these builds occur on 

day 2.4 out of five, corresponding to the first half of the production sequence. 

The transition occurs at 270mm for approaches A and C (Figure 5.4a and Figure 

5.5a), and 315mm for approach B (Figure 5.4b).  

This transition also coincides with the trade-off between indirect costs and 

failure costs as the build height increases. Below 270mm, the indirect costs 

dominate across all workflow optimisation approaches (Figure 5.4 and Figure 

5.5). This is because the fixed time for machine warm up and cool down, and 

associated time-dependent costs are divided over fewer parts in these 

relatively sparsely filled builds. As the number of parts increases in line with the 

build height, the fraction of the specific production cost that is apportioned to 
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indirect costs reduces. On the other hand, the failure costs depend on the risk 

of failure, which rises with each additional layer deposited. Therefore, the 

upward-trending failure cost overtakes the indirect cost, at 285mm for 

approaches A-B and 270mm for approaches C-E.  

 

Figure 5.4: Build height distribution and influence on indirect, failure and lateness 

costs for a) Manual and b) Packing Only workflow optimisation approaches 

The trade-off between the indirect, failure and lateness costs, and the role of 

the workflow optimisation approach in balancing these costs, is summarised in 

Figure 5.6. The grid of pie charts shows how the division of the specific 

production cost varies across the aforementioned short (<225mm), moderate 

(225-315mm), and tall builds (>315mm) for each workflow optimisation 

approach.  
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Figure 5.5: Build height distribution and influence on indirect and failure costs for a) 

Scheduling Only, b) Packing and Scheduling, Separate, and b) Packing and 

Scheduling, Integrated workflow optimisation approaches 
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The left column of Figure 5.6 shows that the indirect costs dominate in the short 

builds for the Manual, Packing Only, and Scheduling only approaches. In the 

first two approaches, this is also accompanied by the lateness cost. These builds 

benefit from reduced failure-related costs, at the expense of poor use of 

machine capacity and adherence to the schedule constraints. At the opposite 

end of the build height scale, the right column of Figure 5.6 shows that the 

contribution of the failure cost to the total production cost increases. Relative 

to the shorter builds, the failure cost fraction rises by two-fold for approaches 

B and C, and four-fold for approach A. Alongside this, the share apportioned to 

indirect and even lateness costs falls. Therefore, the taller builds exchange 

improved capacity utilisation and better schedule attainment across the output 

for increased failure-related costs.  

In the middle column of Figure 5.6, the builds of moderate height between 

225mm and 315mm tall occupy the most cost-effective position in this trade-

off. This is confirmed by the mean specific cost of production, quoted for the 

respective build height group and workflow optimisation approach below each 

pie chart. In this height group, there is a good balance between a well-packed 

build that amortises indirect costs over a larger quantity of output, at 60-75 

parts per build, and a shorter build height that reduces failure-related costs. 

The contribution of lateness costs, where applicable in approaches A and B, is 

also similar in proportion to the advantageous taller builds.  

For reasons noted earlier in this section, the exception to this trend is the 

Packing Only approach, where the moderate build height group has the most 

expensive production cost. Nevertheless, Figure 5.5b and Figure 5.5c show that 

the approaches D and E consistently produce builds in the cost-effective, 

moderate build height range. By balancing the three-way trade-off between 

capacity-, failure-, and schedule-related costs, the optimisation of both packing 

and scheduling in approaches D and E results in cost savings of up to 81% 

against the most expensive build configuration (short builds in the Manual 

approach), and even 62% against moderately tall builds via the alternative 

workflow optimisation approaches. 
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Figure 5.6: Split of mean specific production cost depending on build height for 

each workflow optimisation approach 
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5.5 Role of Integrated Workflow Optimisation  

While optimising both packing and scheduling in approaches D and E result in 

cost-effective production, the effect of integrated workflow optimisation has 

yet to be examined. Figure 5.7 compares the build properties for separate and 

integrated optimisation of packing and scheduling, approaches D and E, to help 

explain the benefits of the latter approach. 

Figure 5.7a shows that Approach E results in shorter builds across the 

experiments than approach D, with the exception of experiment 4. Builds are 

up to 9mm shorter, despite being presented with identical sets of orders. 

Consequently, the builds generated from integrated optimisation are also more 

densely packed across each experiment than those from separate optimisation 

of packing and scheduling. Figure 5.7c shows that the occupied cuboid capacity 

utilisation is up to 4% higher in approach E than approach D. Therefore, 

integrated optimisation leads to more compact builds, with parts allocated 

such that the software-controlled packing results in a smaller enclosed volume 

by height. As a result, approach E reduces the build time, risk of failure, and 

volume of unsintered material relative to approach D; and the indirect, failure, 

and material costs improve, albeit marginally, by 0.1 pence per cm3, 0.3 pence 

per cm3, and 0.1 pence per cm3, respectively.  

When using integrated optimisation, the build heights are also more uniform 

within each experiment, as shown by the standard deviation (error bars in 

Figure 5.7a). Despite a coefficient of variation of up to 40% in the quantity of 

parts to be delivered per day in each experiment, integrated optimisation 

reduces the impact on the build height to a coefficient of variation of 5.5% 

(compared to 7.1% for approach D), averaged across all experiments.  

The full build capacity utilisation indicates how this is achieved. The error bars 

in Figure 5.7b show that the standard deviation in the cubic volume of parts per 

build (full build capacity utilisation) within each experiment is 18.5% lower in 

approach E than approach D. Note that the mean values for full build capacity 

utilisation are equal for each experiment because the order schedules are 
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identical across the workflow optimisation approaches. Integrated 

optimisation spreads parts more uniformly across builds by accounting for 

available machine capacity in future builds during the part allocation process, 

not just the current day’s builds as in approach D. Therefore, integrated 

optimisation is able to convert inconsistent demand into builds with more 

consistent properties than separate optimisation of packing and scheduling, 

resulting in lower mean specific production cost by 0.1 GBP/cm3.  

In all, integrated optimisation provides two key advantages for process 

planning. First, it leads to more compact builds, which result in lower capacity-

related, failure-related, and material-related costs due to lower build height 

and higher occupied cuboid capacity utilisation. Second, integrated 

optimisation leads to more consistent builds in terms of the quantity of parts 

and, thus, build height and full build capacity utilisation. The machine capacity 

is filled more uniformly and predictably, despite variation in the incoming order 

quantity; this is beneficial for higher scale production planning and particularly 

for managing unpredictable demand (Deradjat and Minshall 2017). 
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Figure 5.7: Change in a) build height, b) full build capacity utilisation, and c) 

occupied cuboid capacity utilisation due to integrated workflow optimisation 
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6 Results on Facility Layout in AM 

6.1 Overview 

This chapter presents the results of research towards the third research 

objective, to investigate the suitability and effect of different facility layouts on 

process efficiency for scaled-up AM production. 

Like the previous chapters, an exploratory simulation study is used to address 

this research objective. However, this part of the research differs from the 

previous studies, as the model and simulation are based on a case study of an 

existing AM user rather than a generic AM workflow of make-to-order AM 

fulfilment. Nevertheless, the experiment design aims to provide structured and 

generalizable insights that cover process efficiency across the AM production 

facility from two different perspectives, production losses and cost. 

Importantly, these aspects are investigated at different scales of production to 

further inform operations management of AM at scale. 

To achieve this, each simulation experiment covers order fulfilment in a single 

manufacturing facility where the arrangement of AM workflow equipment, and 

subsequent scheduling of activities, follows one of two layout approaches, 

cellular and process layouts. The equipment capacity required to satisfy the 

incoming orders at the given scale of production is evaluated, informing the 

setup investment and cost of capacity for each facility layout approach. 

Furthermore, the flow of orders through the simulated AM facility is examined 

from a time and throughput perspective, in order to elucidate the impact of 

facility layout on the scheduling of production. This is quantified via estimates 

of production losses, OEE and production cost contributors. The development 

of the simulation model and evaluating metrics are explained in Section 3.6. 

The remainder of this chapter is organised as follows. First, Section 6.2 outlines 

the characteristics of each AM workflow in terms of the production throughput 

and resulting build properties. Second, the effect of facility layout on the 

capacity management of the AM workflow at different scales of production is 
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examined in Section 6.3. Finally, Sections 6.4 and 6.5 investigate the effect of 

the facility layout on the operations performance of the AM workflow from 

production loss and production cost perspectives, respectively, and how this 

changes as the scale of production increases. 

6.2 Summary of Build Properties and Production 
Throughput 

In the exploratory simulation study, the facility operations experiments cover 

the fulfilment of incoming orders for one month, repeated 12 times to provide 

data for one full calendar year of operations. Experiments span four production 

scales, reflecting the baseline average of the case study AM user and set 

multiples thereof; and for each production scale, the AM production facilities 

are organised according to two layout approaches, cellular and process layout. 

Across the resulting eight workflow scenarios, covering each distinct layout-

production scale combination, a total of 69 experiments are conducted to 

establish the required resources to meet the incoming demand of orders, and 

operations performance therein. Of these experiments, the equipment 

capacity was not sufficient to generate a full dataset in 14 experiments. Thus, 

excluding these incomplete experiments, Table 6.1 and Table 6.2 outline the 

descriptive statistics for production throughput and the build properties across 

the 12 months of order fulfilment. 

Prior to exploring the effects of facility layout in the following sections, a few 

pertinent observations can be noted. First, as per expectations, the number of 

orders and parts processed rises in line with the production scale, which 

confirms that the available capacity in the analysed experiments is sufficient for 

the incoming demand, and does not unduly constrain the outputs related to 

the production losses and cost. It should also be noted that the incoming order 

stream is identical across experiments at the same production scale, controlled 

by a fixed seed random number generator the simulation software, so as to 

avoid confounding effects when comparing the facility layout performance. 
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Table 6.1: Descriptive statistics for facility layout experiments (for production scales 1 & 2) 

Statistic 

Production Scale and Facility Layout 

Production Scale = 1 Production Scale = 2 

Cellular Layout Process Layout Cellular Layout Process Layout 

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

No. of Orders Processed 405.5 21.5 407.9 13.7 794.5 9.2 793.4 10.3 

No. of Parts Processed 3637.5 248.6 3652.5 129.0 7143.0 101.8 7122.8 105.8 

No. of Scheduled Builds 59.5 3.1 59.9 2.8 107.0 2.8 105.4 1.9 

No. of Actual Builds 63.3 4.6 65.3 2.2 120.0 2.8 115.6 2.4 

No. of Parts per Build 64.3 1.0 64.4 1.2 71.0 0.9 71.3 0.6 

Build Height (mm) 347.9 4.4 348.2 5.6 376.5 6.1 379.9 4.6 

Full Build Capacity Utilisation 4.0% 0.1% 4.0% 0.1% 4.5% 0.1% 4.5% 0.0% 

Occupied Cuboid Capacity Utilisation 5.6% 0.0% 5.6% 0.0% 5.7% 0.0% 5.6% 0.0% 
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Table 6.2: Descriptive statistics for facility layout experiments (for production scales 5 & 10) 

Statistic 

Production Scale and Facility Layout 

Production Scale = 5 Production Scale = 10 

Cellular Layout Process Layout Cellular Layout Process Layout 

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

No. of Orders Processed 2038.0 15.6 2051.0 42.4 4074.0 50.9 4061.9 62.5 

No. of Parts Processed 18246.0 161.2 18445.1 411.1 36693.0 585.5 36582.0 620.0 

No. of Scheduled Builds 259.5 3.5 258.8 6.4 512.5 6.4 510.8 7.5 

No. of Actual Builds 283.0 4.2 284.2 6.8 556.0 7.1 553.7 8.2 

No. of Parts per Build 73.9 0.7 75.0 0.2 75.2 0.1 75.1 0.3 

Build Height (mm) 391.9 3.8 396.3 1.2 398.3 0.4 397.4 1.2 

Full Build Capacity Utilisation 4.6% 0.0% 4.7% 0.0% 4.7% 0.0% 4.7% 0.0% 

Occupied Cuboid Capacity Utilisation 5.7% 0.0% 5.7% 0.0% 5.7% 0.0% 5.7% 0.0% 

 

 



 

Page 188 
 

Second, the number of parts per build rises in line with the production scale, 

from approximately 64 parts per build at the baseline production scale 1 up to 

75 parts per build at the highest production scale 10. Alongside this, the full 

build capacity utilisation in the builds also grows by the same rate (17.1% 

increase) between the lowermost and uppermost production scales. This 

indicates that the available capacity is not maximally utilised at production 

scales 1 and 2 (see Table 6.1) as compared to production scales 5 and 10 (see 

Table 6.2). Additionally, given that both the mean build height and parts per 

build continue to increase between production scales 5 and 10, economies of 

scale are present in the AM workflow, which lead to more efficient use of the 

available resources as the production scale increases. This concept is revisited 

throughout this chapter. 

Third, the number of builds taken to fulfil the incoming demand is relatively 

uniform between the cellular and process layouts, at less than ± 4% difference, 

when comparing within each production scale. Again, this is anticipated, as a 

common, consistent packing and scheduling approach is used across the eight 

different workflow scenarios; and results from Chapters 4 and 5 emphasise the 

influence of the packing and scheduling on the generation of consistent builds 

in single and multi-machine production environments. Further corroborating 

this, the occupied cuboid capacity utilisation is identical (5.6 – 5.7%) across all 

of the experiments. Therefore, the facility layout does not affect the 

organisation of orders into build jobs, and this allows an unbiased investigation 

into the influence of the facility layout on other parts of the AM workflow. 

6.3 Effect of Facility Layout on Setup Investment 

The first part of the exploratory simulation examines the effect of facility layout 

on the investment in capacity, as per the number of machines required to fulfil 

the incoming orders at each production scale. For this, an order makespan 

target is set at nine days, matching the constraint used by the case study AM 

user to achieve their promised lead time of 10 days; and then the minimum 

number of material preparation, AM and de-powder machines necessary to 
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meet this target is compared between the facility layout approaches. Table 6.3 

and Table 6.4 show the respective results for the cellular and process layouts, 

and the percentage of orders for which the makespan target is met. 

Table 6.3 shows that a minimum of one, two, three, and six AM machines are 

required to provide sufficient build capacity for the incoming orders at the 

production scales of 1, 2, 5, and 10, respectively. In line with the grouping of 

each AM machine with one material preparation and one de-powder machine 

in each cell, an equal number of these ancillary machines are also required at 

each production scale. In the process layout, a similar number of AM machines 

are required at each production scale, as shown in Table 6.4. The minimum 

number is identical to the cellular layout, aside from the baseline production 

scale 1. In this scenario, the makespan target is met in only 62.9% of orders 

when using just one AM machine, which is deemed unsatisfactory.  

Table 6.3: Minimum number of machines required to meet makespan constraint in 

experiments using cellular layout 

Production 

Scale 

Order Inter-

arrival Rate 

Minimum Machines in Cellular Layout Makespan 

Target Met Material Prep. AM De-powder 

Scale = 1  21.5 hours 1 1 1 73.8% 

Scale = 2  10.7 hours 2 2 2 84.5% 

Scale = 5  4.3 hours 3 3 3 81.4% 

Scale = 10  2.1 hours 6 6 6 90.9% 

 

Table 6.4: Minimum number of machines required to meet makespan constraint in 

experiments using process layout 

Production 

Scale 

Order Inter-

arrival Rate 

Minimum Machines in Process Layout Makespan 

Target Met Material Prep. AM De-powder 

Scale = 1  21.5 hours 1 2 2 71.5% 

Scale = 2  10.7 hours 1 2 1 80.8% 

Scale = 5  4.3 hours 1 3 1 89.4% 

Scale = 10  2.1 hours 1 6 1 92.3% 

 

To further confirm that the number of AM machines is suitable for each 

production scale, Figure 6.1 illustrates the change in mean and spread (note: 

error bars span one standard deviation) in the order makespan as the number 
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of machines is varied for each facility layout. For production scales 2, 5, and 10, 

there is a clear demarcation between insufficient and sufficient production 

capacity, depending on whether the order makespan exceeds nine days or not 

(Figure 6.1b, Figure 6.1c, and Figure 6.1d, respectively). In each case, this point 

coincides with the number of AM machines required for the given production 

scale, as per Table 6.3 and Table 6.4. On the other hand, for production scale 1, 

the makespan target is met less than 80% of the time, despite Figure 6.1a 

showing that the mean order makespan is consistently within the target value, 

even when using the minimum possible number of machines. The reason for 

this discrepancy is that the threshold full build capacity utilisation, of 3.2%, for 

releasing and packing a batch of incoming orders takes longer to meet at the 

baseline production scale. As a result, orders may spend up to five days waiting 

in the batching queue in experiments at production scale 1. In reality, the case 

study AM user mitigates the time lost to this delay by releasing batches for 

packing earlier but with a lower full build capacity utilisation, which may even 

be as low as <1%, in spite of the cost effectiveness penalty associated with 

poorer utilisation of machine capacity (see Section 5.4). 

Shifting focus to the ancillary equipment, the number of material preparation 

and de-powder machines can be varied freely in the process layout. With this 

in mind, Table 6.4 shows that the absolute minimum number of each machine, 

one each, is sufficient to support the AM workflow in all but one case, 

production scale 1. Therefore, from an equipment investment perspective, the 

cellular layout is more economical for lower scale production. Whereas, on the 

other hand, the greater flexibility afforded by the process layout avoids the cost 

of excess ancillary equipment as the production scale increases.  

Expanding upon this intuitive finding, the role of ancillary equipment in the 

responsiveness of the workflow can be further examined via a sensitivity study 

to provide insights that support investment decisions therein. Figure 6.2 and 

Figure 6.3 illustrate the relative effect of investing in material preparation and 

de-powder machines, respectively, on the time taken for each build to progress 

through the corresponding steps under the process layout.  
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Figure 6.1: Effect of facility layout and number of machines on order makespan for production scales a) 1, b) 2, c) 5, and d) 10 
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Figure 6.2: Effect of number of material preparation machines on time spent in this section of the workflow for production scales a) 2, b) 5, and c) 10 
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Figure 6.3: Effect of number of de-powder machines on time spent in this section of the workflow for production scales a) 2, b) 5, and c) 10 
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Contrary to expectations, Figure 6.2 and Figure 6.3 indicate that investing in 

additional material preparation and de-powder machines does not guarantee 

faster progression through the respective parts of the workflow in all scenarios. 

The effect of the number of either ancillary machine varies with both the 

production scale and number of other machines in the workflow. First, Figure 

6.2 shows that the time taken for the material preparation step improves when 

increasing the number of material preparation machines in only two cases: 

alongside minimum de-powder machines, i.e. one, at production scale 5; and 

alongside maximum de-powder machines, i.e. six, at production scale 10. In the 

other cases, the process step time actually increases, in the most extreme case 

by 53.6% (Figure 6.2b, at three de-powder machines).  

On the other hand, the time taken for the de-powder step decreases in line 

with adding de-powder machines to the workflow in five out of the six cases, 

by up to 42.4% (Figure 6.3c: alongside maximum material preparation 

machines, i.e. six, at production scale 10). Whereas, in the single non-improved 

case (Figure 6.3b: alongside maximum material preparation machines, i.e. 

three, at production scale 5), the process step time increases by a mere 6.8%.  

Therefore, the sensitivity analysis shows that increasing the number of de-

powder machines more consistently improves the respective process step time, 

and thus responsiveness of the workflow, than increasing the number of 

material preparation machines. Given that the de-powder step also takes 

approximately twice as long, on average, as the material preparation step, it is 

more prudent to invest in additional de-powder machines first when expanding 

capacity whilst aiming to minimise the process makespan.  

6.4 Effect of Facility Layout on Production Losses 

Having explored the initial setup investment for equipment, the second part of 

the exploratory simulation investigates the operations performance of the AM 

workflow under each facility layout. This section presents the operations 

performance from the perspective of production losses, including value-added 

and non-value-added time in the workflow.  
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For a concise comparison, the production losses (and also cost in Section 6.5) 

are assessed for the minimum number of machines for the two layout options, 

and also the equal number of machines in the process layout as the cellular 

layout, at each production scale; this is summarised in Table 6.5 for clarity.  

Table 6.5: Production scale, facility layout, and equipment combinations for 

operations performance simulation experiments 

Production 

Scale 

Cellular Layout:  

Minimum Machines 

Process Layout: 

Minimum Machines 

Process Layout: 

Equivalent to 

Cellular Layout 

MP AM DP MP AM DP MP AM DP 

Scale = 1  1 1 1 1 2 2 1 1 1 

Scale = 2  2 2 2 1 2 1 2 2 2 

Scale = 5  3 3 3 1 3 1 3 3 3 

Scale = 10  6 6 6 1 6 1 6 6 6 

Note: MP denotes “Material Preparation”, and DP denotes “De-powder” 

6.4.1 Value-Adding and Non-Value-Adding Time 

Following the framework for value-adding time (see Section 2.2.1), the 

makespan can be split into value-adding and non-value adding activities to 

indicate the effect of the facility layout on time-efficiency of production. 

Accordingly, Figure 6.4 shows the time each build spends in the AM workflow 

divided into four parts: automatic steps, requiring no operator intervention; 

manual steps, carried out by operators; travel between equipment; and waiting 

for the aforementioned steps. Of these four components, the automatic and 

manual steps can be considered either value-adding or necessary-but-non-

value-adding, depending on the activity and sub-steps therein. Automatic and 

manual activities include, among others, packing parts, the AM build, and de-

powdering the parts. Both the mean and spread in the time taken for these 

activities is relatively unchanged across the facility layout approaches, which 

again affirms that the minimum capacity across the equipment is sufficient for 

the production throughput. However, the waiting and travel time, which align 

with two of the seven lean wastes, are entirely non-value-adding, and vary 

across the facility layouts at each production scale. Therefore, it is pertinent to 

explore the scope to reduce or eliminate the waiting and travel time. 
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Assessing the effect of the facility layout on the travel time first, Figure 6.4 

confirms that the cellular layout is capable of virtually eliminating travel time in 

the workflow. Across all four production scales, the travel time is less than one 

minute per build in the cellular layout, as compared to 14 minutes on average 

for the process layout. The difference is simply cause by the proximity of the 

material preparation, AM and de-powder machines in each cell, minimising the 

time taken to transfer the material and build cartridges from one machine to 

the next. While the travel time in the process layout is still two orders of 

magnitude smaller than the largest time contributor, automatic steps, it inflates 

the operator-dependent time (i.e. manual steps and travel) by up to one-fifth. 

Therefore, the cellular facility layout can significantly reduce the operator load 

in the AM workflow, freeing up time for alternative value-adding activities. 

However, shifting from the operator’s perspective to the overall time taken for 

the build to progress through the manufacturing system, Figure 6.4 shows that 

the waiting time is a far larger contributor to the makespan. The waiting time 

ranges from 25.7 hours in the cellular layout at production scale 2 (Figure 6.4b) 

up to 43.3 hours in the process layout at production scale 5 (Figure 6.4c), which 

is of the same order of magnitude as the time taken for automatic steps. As a 

result, the overall makespan of each build is extended by between 30.6% and 

42.3% due to the waiting time alone.  

Within the experiments at each production scale, the waiting time is 

consistently greater in magnitude when using the process layout. Switching 

from the cellular to the process layout, using the minimum number of 

machines, increases the waiting time by up to 26.8% (Figure 6.4d). Moreover, 

even where the number of machines remains unchanged, switching from the 

cellular to the process layout amplifies the waiting time by up to 40.7% (Figure 

6.4c). Thus, as for the travel time, opting for the cellular layout reduces the non-

value-adding waiting time, regardless of the scale of production. This improves 

the achievable lead time for fulfilling orders, by minimising the non-value-

adding time in the AM workflow. 
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Figure 6.4: Value-adding and non-value-adding time in workflow for production scales a) 1, b) 2, c) 5, and d) 10
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To help explain the underlying reasons for the waiting time advantages of the 

cellular layout, Figure 6.5 illustrates the waiting time incurred by each build in 

the different parts of the AM workflow: starting from batching orders into 

builds, through production, and ending with separating the cleaned parts into 

their respective orders again. Across all four production scales, waiting time at 

the AM machine is the largest in magnitude; this comprises of waiting for the 

machine itself, operators for loading and unloading, and prepared material and 

build cartridges. At the higher production scales, the AM waiting time entirely 

dominates, at over 90% of the total (Figure 6.5c and Figure 6.5d); whereas, at 

the lower production scales, between one-fifth and two-fifths of the waiting 

time is also spent at the build packing step (Figure 6.5a and Figure 6.5b). The 

rate of incoming orders at production scales 1 and 2 is low enough (at one order 

every 21.5 hours and 10.5 hours, respectively) that the capacity threshold for 

batching orders is often not met inside of working hours, and so batches await 

packing until the next operator shift.  

Refocusing on the AM waiting time, workflows in the process layout incur a 

25.5% higher waiting time than the cellular layout, on average; in the most 

extreme comparison, at production scale 5, switching to the process layout 

while maintaining the same number of machines increases the AM waiting time 

by 60.8% (Figure 6.5c). The difference in time between the two facility layout 

approaches comprises mainly of waiting time for the portable resources, the 

build and material cartridges, and the build waiting in the machine for 

unloading. In the cellular layout, it follows that the downstream de-powder 

machine within the cell is more likely to be ready and available for the finished 

build; and, notably, that the build and material cartridges circulate between the 

machines in the cell, in alignment with the progress of each build. Therefore, 

the cellular layout reduces waiting losses by exerting tighter constraints on the 

movement of WIP and portable resources across the manufacturing workflow. 
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Figure 6.5: Waiting time in each part of the workflow for production scales a) 1, b) 2, c) 5, and d) 10
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6.4.1.1 Influence of Operator Availability 

Given that the waiting time at the AM machine is such a significant source of 

non-value-adding time, external influences on this time are explored for added 

context, such as the availability of operators to complete manual loading and 

unloading tasks. Figure 6.6 shows the effect of the AM build finishing inside or 

outside operator shifts on the waiting time at the AM machine. Across the 

board, the waiting time is significantly lower when builds finish during operator 

shifts. For the cellular layout, the waiting time is eliminated almost entirely at 

all four production scales. The same occurs for the process layout at production 

scales 1 and 2; whereas, at production scales 5 and 10 (Figure 6.6c and Figure 

6.6d), the availability of the portable build and material cartridges does not 

keep up with the rate of builds, and so a portion of the waiting time remains. 

Nevertheless, this highlights the importance of scheduling builds to synchronise 

manual upstream and downstream activities with operator availability. It 

should be noted that the case study AM user already applies a simple 

scheduling scheme for staggering builds across the working week, such that the 

automatic processes predominantly occur off-shift. However, as the production 

scale increases, it may become necessary to apply more sophisticated 

approaches to avoid large fluctuations in the operator workload.  

6.4.1.2 Influence of Unplanned AM Machine Maintenance 

This section explores a second external influence on waiting time for the AM 

machine, sensitivity to unplanned maintenance. Unplanned AM machine 

maintenance occurs in between builds to reactively rectify issues as they arise; 

separate to build failure events, which occur during the build. Figure 6.7 shows 

that unplanned maintenance extends the waiting time for the AM machine, 

that is, the time between the completion of material preparation and loading 

the AM machine. As expected, this is because the machine is not available for 

the next build while maintenance is ongoing. It should be noted that unplanned 

maintenance did not coincide with builds progressing through the workflow at 

production scales 1 and 2, hence the absence of results for these cases.  
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Figure 6.6: Influence of operator shift availability on waiting time per build at AM machine for production scales a) 1, b) 2, c) 3, and d) 4 
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Figure 6.7: Influence of unplanned maintenance on waiting time for AM machine for production scales a) 5, and b) 10 
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Two notable comparisons can be made between the facility layout approaches, 

with respect to the influence of unplanned machine maintenance. First, Figure 

6.7 emphasises the extent to which the cellular layout reduces non-value-

adding time in the AM workflow: for both production scales 5 and 10, the 

average waiting time with unplanned maintenance in the cellular layout is up 

to three-fifths lower than the average waiting time without unplanned 

maintenance in the process layout. Second, the relative adverse effect of 

unplanned maintenance on the waiting time is actually higher for the cellular 

layout than the process layout. That is to say, the waiting time at the AM 

machine increases by 100-fold when unplanned maintenance occurs in the 

cellular layout; whereas the relative increase in the process layout is limited to 

seven-fold, at most. This aligns with the additional flexibility in the process 

layout to switch to the next available machine, rather than being constrained 

to the equipment within the same cell, as for the cellular layout. 

6.4.2 Overall Equipment Effectiveness 

Departing from the assessment of value-adding and non-value-adding time in 

the overall workflow, this section examines the production losses at the AM 

machine itself, using the OEE metric from Chapter 4. Figure 6.8 shows the OEE 

and constituent metrics for the facility layout approaches over the four 

production scales. It is immediately apparent that both the mean and spread in 

the OEE results are uniform across both the production scales and facility layout 

approaches. The availability is 76.3% on average, the performance is 76.2%, the 

quality is 95.4%, and the OEE is 55.3%. It should be noted that the performance 

metric is significantly higher in this study than in Chapter 4, because the 

reduced speed losses during the build are neglected as the theoretical 

volumetric process rate for the AM machine in this case study is unknown. 

The uniformity in the values of each metric matches expectations, given that 

the build properties are relatively consistent across the board (see Table 6.1 

and Table 6.2). Therefore, the facility layout does not influence production 

losses at the AM machine, unlike elsewhere in the production workflow. 
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Figure 6.8: OEE and constituent metrics for AM machine for production scales a) 1, b) 2, c) 3, and d) 4 
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6.5 Effect of Facility Layout on Production Cost  

The examination of operations performance for the two facility layout 

approaches shifts to the production cost. In this section, the key well-structured 

and ill-structured cost contributors are evaluated on a per-order or per-part 

basis, as appropriate. Given that the case study AM user’s cost rates are not 

available for commercial sensitivity reasons, the time consumed in the cost-

incurring steps is used as a proxy for cost. Like the previous section on 

production losses, a subset of the possible combinations of production scale, 

facility layout, and number of equipment is investigated (see Table 6.5). 

6.5.1 Well-Structured Cost Contributors 

Among the well-structured cost contributors (material, energy, labour and 

indirect costs), this section focuses on the latter two elements. The conversion 

of orders into builds is relatively uniform in these experiments and that the 

incoming stream of orders is also identical, and so the material and energy costs 

are consistent across the facility layouts. Similarly, the assessment of value-

adding time (Section 6.4.1) suggests that facility layout does not affect the 

machine time, which influences the indirect cost. Figure 6.9 confirms that the 

AM machine time is uniform across the facility layout approaches; and this is 

used as a baseline for the analysis of ill-structured costs in the following section. 

In contrast, the production loss results demonstrate that the facility layout 

affects the operator workload, which directly relates to the labour cost. Figure 

6.10 shows the labour-incurring time in each part of the AM workflow. The four 

parts (build packing, AM machine and material setup, AM machine unload, and 

de-powder and post-process) align with the workflow stages covered by the 

total cost model. Across the production scales, the AM setup and de-powder 

steps incur the highest labour time, at 21.4% and 46.7% of the total labour time, 

respectively. While the total costed labour time decreases as the production 

scale increases, demonstrating economies of scale in operator input, the 

relative contributions of each step stay consistent within each facility layout. 
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Figure 6.9: Costed indirect time for each facility layout approach at each production scale 
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Figure 6.10: Costed labour time in different parts of the AM workflow for production scales a) 1, b) 2, c) 5, and d) 10  
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In addition, the setup and de-powder steps are the two most affected by the 

facility layout. Switching from the cellular layout to the process layout increases 

the setup labour time by 16.5% – 30.7%, and the de-powder and post-process 

time by 9.5% - 18.0%, depending on the production scale. Connecting this with 

the findings for non-value-adding time in Section 6.4.1, more time is expended 

in the process layout on travel between the manual steps, and waiting for the 

required resources. Therefore, the use of the cellular layout can significantly 

improve both the time and cost incurred for manual tasks in the AM workflow. 

6.5.2 Ill-Structured Cost Contributors 

From the total cost model, the two ill-structured cost contributors that feature 

in this research are the impact of late delivery and build failure. As for the well-

structured costs, the time domain is used as a proxy for the cost. To this end, 

the proportion of orders that are delivered late, along with the mean and 

spread in their delay, is shown in Figure 6.11. To assess the cost-incurring time 

for build failure, the effect of failed builds on the two key well-structured costs, 

labour and indirect costs, is observed; this is shown in Figure 6.12 and Figure 

6.13, respectively.  

Exploring the late delivery first, Figure 6.11 indicates that the production scale 

has a greater influence on late delivery than the facility layout. This is caused 

by the time spent waiting in a backlog for batching the incoming orders at the 

low production scales, due to the minimum full build capacity utilisation 

allowed, as explored in Section 6.3. Nonetheless, the cellular layout reduces 

both the prevalence of late orders and the magnitude of the delay by up to two-

fifths at production scales 1 and 2. On the other hand, the process layout 

experiments perform better at production scales 5 and 10, reducing the rate of 

late deliveries by up to half, as compared to the cellular layout. Therefore, the 

cellular layout is better for responsive, time-sensitive fulfilment up to medium-

scale production, whereas the increased flexibility afforded by the process 

layout is best suited to high-scale production. 
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Figure 6.11: Late delivery of orders for each facility layout approach at each production scale 
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Shifting attention to the impact of build failure, Figure 6.12 and Figure 6.13 

show that the response of labour and indirect costs, respectively, to build 

failure events follow similar patterns. This reflects the sequence of events in 

the AM workflow, whereby a failed build triggers a repeat of the entire AM 

workflow from material preparation through to de-powdering; which multiplies 

the time incurred for the well-structured cost contributors uniformly. Across 

the production scales and facility layout approaches, build failure causes a 

68.1% increase in the labour time, and 73.8% increase in the indirect time. 

The facility layout influences the costed time where build failure has occurred 

in a different way at production scales 1 and 2, than production scales 5 and 

10; this is seen from the grey bars for both the labour time (Figure 6.12) and 

indirect time (Figure 6.13). At the lower production scales, 1 and 2, the costed 

time upon failure is highest for the process layout when using the minimum 

number of machines (middle bar in the group at each production scale); and 

yet, the process layout outperforms the cellular layout when the number of 

machines are identical. This suggests that there are two influences operating in 

tandem. First, the process layout has added flexibility to route builds to the next 

available machine across the entire facility, helping the repeat builds progress 

through the workflow faster than in the cellular layout, when the number of 

machines are the same. Second, introducing extra material preparation and de-

powder machines, as compared to the scenario with the minimum number of 

machines in the process layout, improves the ability to turn around portable 

resources, the build and material cartridges, without delay; this reduces the 

amount of time that repeated builds spend in the workflow.  

In contrast, at the higher production scales, 5 and 10, the cellular layout incurs 

the lowest costed labour time upon failure (Figure 6.12). Here, the extra labour 

time for travel in the process layout accumulates over the higher number of 

workflow repetitions, leading to a consistent disadvantage over the cellular 

layout. Whereas, all three layout-machine combinations perform similarly for 

the costed indirect time (Figure 6.13), indicating that layout-related effects on 

the aforementioned resource delays even out over the higher number of builds.  
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Figure 6.12: Effect of build failure on costed labour time for each facility layout approach at each production scale 
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Figure 6.13: Effect of build failure on costed indirect time for each facility layout approach at each production scale 
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Interestingly, when the number of machines are equal, the facility layout has 

opposing effects on the two ill-structured costs (due to late delivery and build 

failure) depending on the production scale; this is outlined in Table 6.6. At 

production scales 1 and 2, the costed time penalty for build failure is higher for 

the cellular layout, whereas the penalty for late delivery is lower. In contrast, 

at production scales 5 and 10, the costed time penalty for build failure is lower 

for the cellular layout, and the penalty for late delivery is higher. Therefore, the 

robustness of each facility layout to disturbances, such as build failures, and 

ability of each facility layout to consistently deliver timely production changes 

as the scale of production increases. This contradicts the pattern observed for 

the well-structured cost contributors and the non-value-adding time, where 

the cellular layout consistently outperforms the process layout with lower cost 

and production losses.  

Overall, the cellular layout is more time- and cost-efficient on average than the 

process layout, when considering the non-value-adding time, well-structured 

and failure-related cost contributors. Notably, however, the process layout 

achieves better adherence to the makespan constraint at higher scales of 

production, minimising both the fraction of orders delivered late and the delay 

therein (Figure 6.11). Therefore, the results suggest that the cellular layout 

performs less consistently at production scales 5 and 10, leading to poorer 

schedule adherence; and so the process layout may be a better option here.  

Table 6.6: Summary of effects of production scale and facility layout on ill-

structured cost contributors 

Production 

Scale 

Effect on magnitude of losses 

due to Late Delivery  

Effect on magnitude of losses 

due to Build Failure 

Cellular Layout Process Layout Cellular Layout Process Layout 

Scale = 1  ↓ ↑ ↑* ↓* 

Scale = 2  ↓ ↑ ↑* ↓* 

Scale = 5  ↑ ↓ ↓ ↑ 

Scale = 10  ↑ ↓ ↓ ↑ 

Note: ↑ and ↓ denote increase and decrease in cost-incurring time, 

respectively; * refers to an effect that changes when the minimum number of 

machines are compared instead  
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7 Discussion  

This chapter presents a discussion of the findings of this research in order to 

contextualise and ascertain its wider implications for scaled-up AM operations. 

To this end, the chapter is divided into two distinct parts. The first part, in 

Section 7.1, compares and contrasts the results from the three preceding 

chapters to the related literature, explaining the key themes that emerge. The 

second part, in Sections 7.2 and 7.3, provide an integrated synthesis of the 

research findings along separate discussion themes that fall into two 

categories: operations management and technology adoption of scaled-up AM.  

Together, the discursive analysis helps identify the advances in understanding 

of process efficiency and transparency of AM operations that arise from this 

research. Thus, the mechanisms for improving production losses and cost when 

managing scaled-up, make-to-order AM, with its associated product and 

process variety, become clearer – to the benefit of current and future AM users. 

7.1 Contextualisation of the Results 

7.1.1 Production Losses  

Building on the limited discourse about production losses and OEE in AM, the 

results from Chapter 4 confirm that the fundamental logic of targeting the six 

big production losses is just as important in AM as in the realm of conventional, 

tool-based manufacturing. In addition, a novel approach to the calculation of 

OEE is presented in this research (see Section 3.4.1), which is discussed first. 

7.1.1.1 Novel Calculation of OEE for AM 

The original OEE formulations (Nakajima, 1988) are adapted in this research to 

better suit the process characteristics and product variety found in AM-based 

workflows. The approach for achieving this fit aligns with the work of Jauregui 

Becker et al. (2015), who retain the equation structures for OEE and the 

constituent metrics, but adjust the terms to suit their manufacturing system 
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and product variety characteristics. In this case, the use of a cubic volume frame 

of reference (in the equations for performance and quality) is particularly well-

suited to the geometric freedom for parts and fungibility of build space for 

process planning when using AM (Baumers et al., 2017).  

The implications of the novel OEE calculation method in this research can be 

ascertained by comparing the exploratory simulation results with OEE results 

for similar processes and operations approaches (Table 7.1). Of the few studies 

related to OEE in AM, only one provides quantitative values (Parshawanath 

Jain, 2022). For an equivalent comparison, Parshawanath Jain’s results are 

adapted from measuring the time lost relative to 24 hours per day (calendar 

time base) to measuring the time lost relative to the planned production time 

i.e. when the machine is scheduled to run (as in this research). From the change 

in Parshawanath Jain’s results upon switching the calculation method, it is 

apparent that the OEE calculation method in this research affects the 

availability and performance metrics, but not the quality metric. 

Table 7.1: Comparison of OEE results for powder-bed fusion reported in literature, 

with this study highlighted in grey 

Metric 

Parshawanath Jain (2022) IB-MtS 

operations 

approach 
Base: Calendar 

Time  

Base: Planned 

Production Time  

Availability 12.2% 90.2% * 91.0% 

Performance 86.0% 63.5% * 42.4% 

Quality 75.0% 75.0% * 97.7% 

OEE 7.8% 43.0% * 31.5% 

Note: * denotes values calculated from available data & equations (3.5) – (3.7) 

The availability metric is inflated in the novel calculation method, due to the 

use of a planned production time base rather than calendar time. On the one 

hand, a calendar time base allows the effect of unscheduled time and planned 

downtime to be captured (Muchiri and Pintelon, 2008). However, in 

Parshawanath Jain’s work, this is currently indistinguishable from the time lost 

to poor demand and under-feeding the existing capacity, which availability 

already captures (De Ron and Rooda, 2006). Therefore, the use of calendar time 

does not provide clear additional information for the AM user. In contrast, the 
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availability metric in this work more accurately reflects how the machine 

capacity is being managed with respect to the production workload, i.e. 

planned production. This can provide a better indication of non-value-adding 

activities within the planned uptime.  

In contrast, the performance metric decreases when using the novel calculation 

method, since idle periods (e.g. machine cool-down) are classed as necessary-

but-non-value-adding time rather than part of the machine’s productive time. 

Additionally, Parshawanath Jain’s calculations only implicitly account for delays 

and minor stops, via the change in machine uptime versus calendar time in the 

availability metric; whereas this should be explicitly included as time lost during 

machine operating time (De Ron and Rooda, 2006; Muchiri and Pintelon, 2008). 

As such, the performance metric in this work provides a more complete 

measure of equipment efficiency and effectiveness during its productive time. 

The OEE and constituent metric values in this research and Parshawanath Jain’s 

study are comparable when the same planned production time base is used 

(third and fourth columns in Table 7.1). While the performance and quality 

values deviate by 21.1% and 22.7%, respectively, this can be attributed to 

differences in machine operations due to the metal laser sintering process in 

Parshawanath Jain’s work, such as shorter machine cool-down time and higher 

part rejection based on sample testing. Thus, the comparison of the studies 

suggests that the OEE calculation method is valid, and that the simulation 

results in this research satisfactorily reflect empirical build experiments.  

7.1.1.2 Theoretical Framework 

The theoretical framework for production losses in AM presents the notion of 

inherent and non-inherent losses in the AM workflow (Section 4.2.1), extending 

prior understanding of non-value-adding and necessary-but-non-value-adding 

time (Hines and Rich, 1997) during a generic manufacturing process. Moreover, 

a systematic mapping is provided between the AM operations characteristics 

and their influence on production losses in Table 4.1 and Table 4.2, guiding AM 

operations managers towards drivers of process efficiency in the workflow.  
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It is pertinent to emphasise that the theoretical framework demonstrates that 

all six production losses apply to AM. This contradicts previous assertions that 

reduced speed losses and start-up yield losses are not found in AM (Fera et al., 

2017). Referring to empirical studies involving laser sintering, this conflict can 

be further explained. Across 10 build experiments on the same machine with 

identical process parameters, contents and part packing, the build time varies 

by up to 55 minutes, or 37% (Baumers and Holweg, 2019). This does not agree 

with Fera et al.’s (2017) suggestion that the actual process time always matches 

the predicted time, which would be uniform in the aforementioned case. For 

start-up yield losses, process control studies identify layer-wise thermal 

variation arising from the interaction between the part geometry and whether 

sintering occurs over unsintered powder or previously sintered regions 

(Abdelrahman and Starr, 2015). Therefore, conditions within the AM machine 

are not uniform across the build process, as stated by Fera et al. (2017), and so 

start-up yield losses may arise.  

7.1.1.3 Influence of Operations Approach 

The results of the exploratory simulation study for OEE (Figure 4.5) and 

itemisation of the planned production time (Figure 4.6) show that the 

operations approach is a strong determinant of the process efficiency in AM.  

Of the operations approaches investigated, the Identical Batch Make-to-Stock 

(IB-MtS) approach outperforms the alternative make-to-order options in terms 

of the OEE achieved, followed by Capacity Maximising Make-to-Order (CM-

MtO), and lastly, Lead Time Minimising Make-to-Order (LTM-MtO). This pattern 

is largely driven by idle time losses, with complementary influences from 

reduced speed losses and setup losses (Figure 4.6). The fulfilment of production 

using as few builds as possible in IB-MtS means that the setup and idle losses 

associated with switching from one build to the next are minimised. Also, from 

closer examination of the build properties, the IB-MtS approach is also found 

to achieve the highest utilisation of machine capacity, as measured by the full 

build capacity utilisation, which leads to lower reduced speed and better 



 

Page 218 
 

amortisation of idle time losses. Extending this to the two make-to-order 

operations approaches, the CM-MtO approach leads to higher full build 

capacity utilisation and fewer builds than LTM-MtO; and so the associated 

setup and idle losses are almost half in CM-MtO than LTM-MtO. 

In comparing the IB-MtS and CM-MtO approaches, both of which prioritise 

maximal use of the available machine space, it is important to acknowledge 

that the part size and geometry affects the achievable packing efficiency (Oh et 

al., 2020). The test parts in this research coincidentally lead to well-packed 

builds in the IB-MtS approach, at close to 10% full build capacity utilisation. An 

alternative study that follows the same approach only realises builds with 2% 

full build capacity utilisation, due to the thin-walled and hollow nature of the 

parts therein (Alogla, Baumers and Tuck, 2019). Therefore, in practice, CM-MtO 

may outperform IB-MtS if the given selection of products can be packed more 

tightly in mixed batches than in identical part batches. Indeed, this is 

demonstrated by Ruffo and Hague (2007) from a cost perspective. Hence, the 

use of a hybrid approach, a standard batch of mixed parts with higher full build 

and occupied cuboid capacity utilisation, may be more appropriate than IB-MtS 

to minimise performance-related production losses, depending on the parts. 

More generally, the underlying mechanism for the production loss results is 

similar in logic to quantity-cost relationships observed for single-machine AM 

operations (Figure 7.1). In the saw-tooth cost-quantity pattern (Ruffo, Tuck and 

Hague, 2006a), fully occupying each horizontal layer with parts gives a local cost 

minimum, whereas the fixed cost increment for each new build leads to a local 

cost maximum. In this research, the analogous production loss contributors are 

reduced speed and idle losses during the deposition of each layer; and setup 

and idle losses during changeover, warm-up and cool-down time between 

builds. Notably, the single-part builds for rework observed in the CM-MtO 

operations approach are equivalent to the aforementioned peaks in the saw-

tooth quantity-cost relationship, with no economies of scale to amortise fixed 

production losses. Therefore, non-value-adding and necessary-but-non-value-

adding time contributes towards cost-efficiency of production as well. 
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Figure 7.1: Quantity-cost curve for production of small parts using identical batch 

make-to-stock operations approach, taken from Ruffo et al. (2006a) 

Across the operations approaches, the OEE values indicate that there is 

significant room for improvement in the production losses for laser sintering: 

the range in OEE of 16.4% - 35.1% straddles the lower bound (30%) of 

commonly-accepted values for conventional manufacturing (Dal, Tugwell and 

Greatbanks, 2000). This aligns with Parshawanath Jain (2022), who estimates a 

very low OEE of 7.8% when production losses are measured relative to calendar 

time (or 43.0% relative to planned production time, as per Table 7.1).  

The constituent metrics help identify the reasons for high production losses, 

and help direct AM managers towards potential solutions (Dal, Tugwell and 

Greatbanks, 2000; Muchiri and Pintelon, 2008). The results of this research 

strongly suggest that the performance metric should be improved by targeting 

idle and reduced speed losses. To this end, the ability to cool down one build 

while simultaneously starting the next would significantly improve idle losses 

(Šoškić et al., 2019); as would parallelisation in the layer-by-layer deposition 

process, such as through the adoption of multiple energy sources (EOS GmbH, 

2021). Alongside these technological improvements, the operations 

approaches point towards the first two (of four) driving propositions that AM 

users should consider when planning production to minimise production losses: 

1. To maximise OEE in AM, the foremost priority should be to minimise the 

number of builds.  
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This increases the ratio of productive deposition time to inherent fixed losses 

per build. Yet, the adverse consequence is to increase time lost to breakdown 

in the case of build failure, which may lead to unacceptable further outcomes, 

such as late delivery and wasted overhead costs during downtime.  

2. The allocation and packing of parts should seek to achieve high full build 

and occupied cuboid capacity utilisation.  

This depends on a consistent distribution of size and shape in the parts, 

appropriate to the AM machine. For the machine and parts in this study, 

homogeneous part size and shape are most favourable (IB-MtS), but similar 

space-efficient packing is achieved when mixed parts fit well together in a given 

build volume (CM-MtO). This minimizes uncertainty in the reduced speed 

losses and improves the confidence in the performance metric recorded. 

7.1.1.4 Influence of External Factors 

The two external factors, lead time and part size variety, are found to influence 

the production losses and OEE in different ways (Figure 4.13). Extending the 

lead time improves the OEE by increasing the volume of parts available to 

process at any one time, which in turn increases the ability to maximise use of 

machine capacity. This reduces setup and changeover losses between builds, 

and increases the amortisation of reduced speed and idle losses during builds. 

Importantly, however, the benefits of extending the lead time can only be 

realised when the operations approach allows taller, more time-consuming 

builds, as in CM-MtO. On the other hand, changing the part size variety affects 

the achievable packing density. For the test parts used in this study, moderate 

variety (PSV = 50) results in less dense packing (lower occupied cuboid capacity 

utilisation) than the scenarios involving no variety (PSV = 0) and higher variety 

(PSV = 100). Where the occupied cuboid capacity utilisation is higher, the 

productive proportion of the build time increases (Ruffo, Tuck and Hague, 

2006a; Dirks and Schleifenbaum, 2020) and so performance losses are lower.  

Therefore, two further propositions arise for AM users to consider when 

planning production to minimise production losses, completing the set of four: 
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3. Efforts to extend the order lead time will reduce changeover and idle 

losses, when applied in conjunction with the first two propositions. 

While short lead times are a competitive advantage for AM, it is possible to 

manage customer expectations to balance this against effective use of machine 

capacity. For example, direct digital manufacturers may advertise a lead time 

range, to allow more time for the order book to fill when variation in production 

demand is at a low point, without missing customer delivery targets. 

4. Efforts to constrain the part size variety during the allocation and 

packing of parts will reduce performance losses, in line with the full 

build and occupied cuboid capacity utilisation.  

Process planning and packing algorithms can be adjusted to account for part 

size, alongside schedule constraints, when allocating parts to build jobs to 

mitigate the effect of part size variety on the capacity utilisation. 

It is important to acknowledge that the external factors are somewhat beyond 

the control of AM users: lead time is dictated by the competitiveness of the 

make-to-order service in the chosen market (Cotteleer and Trouton, 2016), 

while part size variety is set by the product mix across the incoming orders. 

Nevertheless, this research has shown that the external factors can be viewed 

as “levers” that complement the operations approach to maximise the value-

adding use of available capacity, within reason.  

7.1.2 Workflow Optimisation and Production Cost 

The second study builds upon the AM cost literature that explores AM process 

planning optimisation. The results from Chapter 5 highlight the importance of 

appropriate workflow optimisation approaches for achieving both effective use 

of the equipment capacity, and timely delivery of orders. In particular, it is 

shown that an integrated workflow optimisation approach can outperform 

simpler alternatives; and the discussion thereof opens this sub-section. 
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7.1.2.1 Cost-Effectiveness of Integrated Optimisation 

The results for the exploratory simulation for workflow optimisation show that 

accounting for both packing and scheduling, whether separately or via 

integrated optimisation, reduces both the mean and spread in the cost of 

production (Figure 5.1). The effect of switching from separate optimisation 

(approach D) to integrated optimisation (approach E) on the specific cost of 

production is found to be marginal, with an improvement of just 0.01 GBP/cm3 

for approach E. As explained in Section 5.5, the difference arises from better 

utilisation of the available capacity, with more compact builds (higher occupied 

cuboid capacity utilisation) and higher consistency in the build contents (lower 

spread in full build capacity utilisation).  

With respect to make-to-order operations at scale, the improved uniformity of 

build properties that integrated optimisation achieves has the potential to 

significantly alter the predictability of production cost. This is a known issue for 

AM operations management, particularly for AM bureaus that must provide 

cost estimates without prior knowledge of the properties of the builds in which 

orders will be fulfilled (di Angelo and di Stefano, 2010; Rudolph and 

Emmelmann, 2018). However, these prior studies into predicting AM part cost 

with limited build information focus on well-structured costs only; and so the 

findings of this research are novel in establishing consistency among ill-

structured costs as well. Therefore, the use of integrated optimisation can 

increase the confidence in estimates of expected build properties for given 

incoming order rates, or throughput rates. As order price estimates improve in 

accuracy, AM users can achieve increased profitability and competitiveness.  

7.1.2.2 Validation of Cost Drivers 

By comparing the specific cost of production with other polymer laser sintering 

cost studies, the underlying cost drivers can be validated. This also helps to 

identify mechanisms by which workflow optimisation approaches that involve 

both packing and scheduling outperform alternatives on cost-effectiveness. To 
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this end, Table 7.2 gives the production cost from a selection of studies over 

the past two decades, and the results of this study for approaches D and E. 

Table 7.2: Comparison of specific cost results reported in polymer laser sintering 

literature, with this study highlighted in grey 

Machine 
Specific Cost 

(GBP/cm3) 
Source 

EOS P100, novice operator 1.27 * (Baumers and Holweg, 2019)  

EOS P100, expert operator 0.87 * (Baumers and Holweg, 2019)  

EOS P100 0.84 * (Baumers and Holweg, 2016)  

EOS P770 0.80 *† (Alogla, Baumers and Tuck, 2019)  

EOS P100: Approach D 0.54  This study 

EOS P100: Approach E 0.53  This study 

EOS P100: Approach D, 

excluding risk-related costs 
0.35  This study 

EOS P100: Approach E, 

excluding risk-related costs 
0.34  This study 

3D-Systems Vanguard 0.31 *† (Ruffo, Tuck and Hague, 2006a)  

Note: * denotes specific cost that is inferred from data provided, and † denotes 

currency conversion using average historical exchange rate from reference year  

Referring to Table 7.2, the cost of integrated optimisation in this study is at least 

0.31 GBP/cm3 lower than two previous studies into the same EOS P100 system 

(Baumers and Holweg, 2016, 2019), and 0.27 GBP/cm3 lower than a study into 

the newer EOS P770 system (Alogla, Baumers and Tuck, 2019). Despite 

differences in the cost models, whereby the P700 costs have no risk-related 

component, the full build capacity utilisation emerges as a key driver for the 

large specific cost disparity. The 3DPackRAT software used in this research 

packs parts more densely than the conservative manual packing approach in 

the previous P100 studies, at 12% (mean) versus 9% full build capacity 

utilisation respectively. In the P770 study, the full build capacity utilisation is 

lower still, at approximately 2%, due to the part geometry. The full build 

capacity utilisation influences the indirect and material costs through the build 

time and unsintered material consumed per unit volume of output. In this 

research, these cost drivers are lowest when using integrated optimisation. 

Ruffo, Tuck and Hague (2006a) report a similar specific production cost to 

approaches D and E in this study, while operating a different laser sintering 
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machine at 12% full-build capacity utilisation. However, this comparison relies 

on neglecting the risk-related cost from the results of this study for equivalent 

cost model assumptions. Nonetheless, across the different comparisons, the 

importance of sufficiently filling the machine capacity for cost-effective AM 

operations is underlined, in agreement with previous studies.  

7.1.2.3 Trade-Off between Capacity-, Failure-, and Schedule-related 
Costs 

Expanding upon the importance of process planning to towards efficient use of 

machine capacity, the detailed study of the cost drivers in this research reveals 

a trade-off between the indirect, failure, and lateness costs (Figure 5.6). These 

in turn relate to managing effective use of capacity, the risk of failure, and 

adherence to schedule constraints. This extends and combines two separate 

pairs of trade-offs that have been explored in the AM operations management 

discourse: capacity versus risk of failure (Baumers and Holweg, 2016), and 

capacity versus timeliness of delivery (Khajavi et al., 2018). 

Baumers and Holweg (2016) introduce a trade-off between indirect and failure 

costs, driven by capacity utilisation and build height, respectively. This leads to 

optimum cost performance at sub-maximum full-build capacity utilisation. The 

pattern in indirect and failure costs, plotted against build height in Figures 5.5 

and 5.6, show that this research aligns with the previous work. Furthermore, 

Figure 5.7 highlights that this phenomenon strongly influences the 

performance of the optimisation approaches in terms of specific production 

cost. In particular, moderate height builds in optimisation approaches C, D and 

E occupy the most cost-effective region of operation, at less than 0.55 GBP/cm3. 

In the other half of the three-way trade-off, Costabile et al. (2017) note that 

capacity utilisation cannot be wholly prioritised at the expense of part lateness 

when managing the delivery of an incoming order stream. This captures the 

overarching process-planning challenge for make-to-order AM operations. To 

this end, the results of this research can be contrasted with the work of Khajavi 

et al. (2018), who include penalties for non-timely delivery in their study on 
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digital kitting in AM workflows. The relevant workflow results are summarised 

in Table 7.3. Comparing equivalent optimisation approaches (Experiment 1 and 

approach B, Experiment 5 and approach E), integrated optimisation results in 

13% higher specific production cost than packing optimisation in Khajavi et al.’s 

work, despite a similar proportion of parts delivered late (20% in approach B, 

26% in Experiment 1). This contradicts the results from this research, where the 

specific production cost difference is 55% in the opposite direction.  

Table 7.3: Comparison of AM workflow results in this study, highlighted in grey, 

against Khajavi et al. (2018)  

Workflow Optimisation 

Approach 

Mean Specific 

Cost (GBP/cm3) 

% of Parts 

Late 

Mean Build 

Height (mm) 

Packing Only (Experiment 1) 0.10 26 292.7 

Packing and Scheduling, 

Integrated (Experiment 5) 
0.13 0 195.0 

Packing Only (Approach B) 0.82 20 288.7 

Packing and Scheduling, 

Integrated (Approach E) 
0.53 0 259.3 

 

However, the build heights explain this contradiction. Given a lower volume of 

parts in Khajavi et al.’s order schedules than in this study, integrated 

optimisation (Experiment 5) generates builds that are 195mm tall on average. 

These builds fall below the optimum moderate range (225 – 315mm, see Figure 

5.6), which leads to higher indirect costs. Alongside this, packing only 

optimisation (Experiment 1) leads to builds that fall within the aforementioned 

optimum range. Moreover, Khajavi et al.’s cost model does not include failure-

related costs, as this is outside the scope of their work. If the risk-of-failure 

model from this research is applied to their results, the unit cost difference 

between Experiments 1 and 5 drops to 3%, and importantly, integrated 

optimisation (Experiment 5) is cheaper. 

Therefore, the results in this research extend previous work to show that the 

production cost depends on a trade-off between all three major cost drivers: 

build productivity derived from capacity utilisation, the risk of failure, and 

timely delivery. The workflow optimisation approaches lead to builds that fall 
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in different regions of this trade-off. Thus, cost-effective production is achieved 

not only by generating productive, low-risk builds on-time, but doing so 

consistently; which integrated optimisation is able to do most successfully. 

7.1.3 Facility Layout 

The third study extends the AM capacity management and scheduling discourse 

to include the impact of facility layout on AM operations efficiency, evaluating 

this with respect to a real AM user’s facility. To this end, the results of Chapter 

6 uncover and explain the sources of non-value-adding time and workflow 

inefficiency that arise from the cellular and process layout choices for AM.  

The findings confirm that the facility layout sufficiently impacts the ancillary 

steps in the AM workflow so as to influence the time- and cost-efficiency of 

production. It is also shown that the facility layout influences the robustness of 

the workflow to disturbances, such as unplanned maintenance and machine 

breakdown. Notably, the effect of facility layout on the average makespan and 

timeliness of delivery can change, depending on the production scale. 

Therefore, AM operations exhibit a link between production throughput and 

appropriate facility layout, in a similar manner to conventional manufacturing. 

7.1.3.1 Influence of Production Scale 

Expanding upon the summary above, the results for setup investment (Section 

6.3), production losses (Section 6.4), and cost contributors (Section 6.5) can be 

brought together to provide a mapping between facility layout and production 

scale, specific to the AM context. This is shown in Table 7.4. Notably, the 

mapping extends the generic characteristics of the facility layout approaches 

(Table 2.11), as developed for conventional manufacturing. Outlining the 

observed strengths and weaknesses of each AM facility layout approach in this 

way provides a guide for AM users to make the appropriate choice for their 

direct digital manufacturing application by considering process efficiency, in 

both time and cost, and adherence to external constraints. 
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Table 7.4: Characteristics of facility layout approaches for AM 

Characteristic 
Facility Layout Approach 

Process Cellular 

Orientation Segregated workflow steps Integrated workflow steps 

Product-

Process Mix 
Independent of product mix or variety 

Production 

Scale 

Higher scale  

(> 10,000 parts per year) 

Lower and higher scale  

(1000s – 10,000s parts per year) 

Advantages Higher flexibility in setup 

investment 

Higher flexibility in scheduling 

Better for schedule adherence 

at higher scales of production 

Negligible travel time within the 

manufacturing cell 

Lower labour load  

Better for schedule adherence 

at lower scales of production 

Disadvantages Higher travel time 

Higher waiting time 

More time lost to unplanned 

maintenance 

More time lost to build failure 

Lower flexibility in setup 

investment 

Lower flexibility in scheduling 

 

Two significant differences are found between the AM-specific (Table 7.4) and 

the generic facility layout characteristics (Table 2.11). First, the facility layout 

choice is independent from the product variety. In other words, neither layout 

incurs changeover inefficiencies for fulfilling a high variety of products. This is 

due to the non-dedicated nature of AM machines and ancillary equipment, and 

the fungibility of AM machine capacity (Baumers et al., 2017). However, it 

should be noted that, where production regularly involves parts made using 

different materials, equipment and workspaces can be dedicated to each 

specific material to avoid contamination issues (Kang et al., 2018).  

Second, the process layout in AM exhibits higher vulnerability to disruptions 

such as unplanned maintenance and build failure, which is a characteristic of 

the line layout paradigm. However, the underlying cause is different in each 

case. In the line layout, disruption from downtime arises from the inflexibility 

of the workflow to adjust around the unavailable machine (Radford and 

Richardson, 1977, p. 133). On the other hand, in the AM process layout, while 
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production can easily be switched from an unavailable machine to an available 

alternative operating in parallel, inefficiencies in the workflow around the 

machine accumulate. For example, extra delays arise in the workflow from 

waiting for ancillary resources (such as build and material cartridges) and extra 

travel time between machines (Figure 6.7 and Figure 6.12, respectively).  

Overall, there is a trade-off between process efficiency across the workflow, 

and flexibility in both capacity management and scheduling (Table 7.4). The 

process layout is able to fulfil production using fewer ancillary machines than 

the cellular layout, incurring a lower setup investment. However, this is at the 

expense of a higher non-value-adding time in the workflow, due to waiting and 

travel between machines, along with the labour load incurred. Nevertheless, 

the additional flexibility in routing offered by the process layout improves its 

consistency in the time domain, leading to better schedule adherence than the 

cellular layout. Therefore, while the cellular layout is the better choice to 

minimise production losses across the AM production facility, the process 

layout offers better stability in the time domain at higher production scales. 

7.1.3.2 Impact on Value-Adding and Non-Value-Adding Time 

The impact of facility layout on the value-adding and non-value-adding time in 

the AM workflow has been explored in depth in Section 6.4.1, particularly the 

impact of non-value-adding travel and waiting time on process efficiency. Given 

the paucity of facility layout studies in the AM management discourse, the 

results from Chapter 6 are contrasted with one study only, Kellner et al. (2019), 

which focuses on the process layout. Table 7.5 presents the results of this 

research and Kellner et al.’s optimised process layout for metal laser sintering. 

Both sets of results confirm that non-value-adding time is a significant 

proportion of the overall production makespan. However, the impact of travel 

and waiting time is noticeably higher in Kellner et al.’s work, at 84.0% of the 

makespan, compared to 37.7% or less in this research. There are two main 

reasons for this difference. First, the metal laser sintering process in Kellner et 

al.’s work requires a much shorter production time than polymer laser 
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sintering, particularly given the large machine used by the case study company. 

The difference is 25-fold, at 2.1 hours for metal laser sintering versus 55.3 hours 

on average for polymer laser sintering. Therefore, the production time 

inevitably dominates the overall makespan length in this research. 

Table 7.5: Comparison of value-adding and non-value-adding time with results for 

powder-bed fusion reported in literature, with this study highlighted in grey 

Facility Layout 

Approach 
Production 

Scale 

Fraction of Makespan 
Source 

Production Travel Waiting * 

Process - 16.1% 41.7% 42.3% 
(Kellner et 

al., 2019) 

Cellular 1 64.0% 0.0% 36.0% This study 

Process 1 63.3% 0.3% 36.5% This study 

Cellular 2 68.7% 0.0% 31.2% This study 

Process 2 66.9% 0.3% 32.8% This study 

Cellular 5 65.5% 0.0% 34.4% This study 

Process 5 62.3% 0.2% 37.5% This study 

Cellular 10 69.4% 0.0% 30.6% This study 

Process 10 62.1% 0.2% 35.8% This study 

Note: * “Waiting” is equivalent to “Storage” in Kellner et al. (2019) 

Second, the production facility in Kellner et al’s study uses slow-moving 

conveyors between machines, which themselves act as a work-in-progress 

buffer between process steps. In contrast, the case study company in this 

research rely on operators to transfer parts and builds between the machines 

manually, but as quickly as possible. As a result, the travel time is shorter in this 

study, and its impact on the makespan is minimal. However, it is important to 

acknowledge that automating the manual loading and unloading process for 

the material preparation, AM and blasting machines would improve the labour 

load in the workflow, particularly at higher production scales – albeit at the 

expense of potentially higher travel-related non-value-adding time. 

7.2 Operations Management of Scaled-Up AM 

Shifting focus to the AM practitioners’ perspective, this section discusses the 

results in the context of operations management of scaled-up AM. 
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7.2.1 Systems Perspective of AM Operations 

The importance of a systems perspective towards industrial AM is highlighted 

by Eyers and Potter (2017), who seek to expand the perspective of AM 

management beyond the control of AM processes in individual machines. The 

AM system definition proposed by the authors covers the full production value 

chain: design, pre-processing, production, and post-processing (see Figure 7.2). 

This perspective underpins operations management and the pursuit of efficient 

and effective use of resources across full AM workflows.  

To this end, the research studies in this thesis investigate the system demands, 

resources, disturbances and outputs for the pre-processing and production 

elements of the chain. Notably, the results inform operations management 

decision making at different levels of abstraction in the AM system: from single-

machine productivity (Chapter 4), through production cost control for discrete 

multi-machine systems (Chapter 5), to workflow productivity and cost across 

entire AM facilities (Chapter 6). These levels of abstraction correspond to 

Muthiah and Huang’s (2007) structure of analysis: machine, workflow sub-

system, and factory. Expanding Eyers and Potter’s (2017) evaluation of the 

impact of the AM systems perspective on manufacturing competitive 

objectives, Table 7.6 shows how the results in this thesis provide new, practical 

insights in each dimension for AM users. 

 

Figure 7.2: Industrial AM system definition, taken from Eyers and Potter (2017) 
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Table 7.6: Systems-level AM operations findings with respect to manufacturing competitive advantages 

Competitive 

Objectives  
Definition * 

Findings at Level of Systems Abstraction 

Single AM machine Network of AM machines AM Production Facility 

Cost 

Expense incurred by 

manufacturing operations in 

the satisfaction of demand. 

(Not explored in this research.) 

Integrated control of the AM 

workflow improves cost 

through efficient allocation of 

shared resources (i.e. each AM 

machine) to input orders. 

The process layout allows ancillary 

machine resources to be shared 

more efficiently, improving setup 

costs for scaled-up AM systems. 

Dependability 
Correct satisfaction of demand 

at the expedited time. 

Inherent production losses at 

the AM machine exacerbate 

the time lost when 

disturbances affect the system, 

leading to build failure. 

Limited to AM machine 

reliability, consistent allocation 

of demand across the AM 

machine network reduces 

deviations in reliability. 

The cellular layout improves system 

dependability, at the expense of 

redundant capacity in ancillary 

machines; although facility layout 

effect diminishes at higher scale. 

Flexibility 

Ability to change attributes of 

the production system and/or 

its outputs with little penalty. 

(Not explored in this research.) (Not explored in this research.) 

The process layout is more amenable 

to system-level flexibility in 

production capacity and scheduling. 

Quality 

Manufacture of products that 

conform to a predetermined 

specification. 

The pursuit of acceptable quality can diminish the most efficient 

use of AM machine capacity (e.g. through packing constraints). 

The impact of AM machine quality 

issues cascade via repeated steps 

required elsewhere in the workflow. 

Speed 
Time taken to respond to 

customer demand. 

Inherent production losses at 

the AM machine limit the 

scope for compressing lead 

times. 

Appropriate production 

planning control (a pre-

processing step) is paramount 

for achieving acceptable lead 

times. 

As for dependability, the cellular 

layout improves lead time, at the 

expense of redundant capacity. 

Although, the process layout excels 

for scaled-up AM via its flexibility. 

Note: * Definition of competitive objectives as per Eyers and Potter (2017) 
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7.2.2 Transparency of AM Operations 

As compared to conventional manufacturing, the use of AM leads to better 

transparency and understanding of resource efficiency, by simplifying and 

condensing multiple, distinct manufacturing processes into a single AM 

workflow (Baumers et al., 2013). Despite this, the understanding of process 

efficiency in AM has been restricted to date, due to unsuitable metrics and 

measures for manufacturing performance – particularly in relation to 

productivity. There is a myriad of “partial” metrics, which apply to either 

specific (and sometimes unrealistic) machine conditions, such as complete 

defect mitigation in-situ (Reid, 2019); or to specific use cases, such as utilisation 

measured against incoming orders (Gopsill and Hicks, 2018) and throughput 

measured against batch size (Stittgen and Schleifenbaum, 2020). Such metrics 

give an incomplete picture of machine productivity, and importantly, the 

potential value being generated by the expensive AM process. 

In this research, the development of coherent and comprehensive productivity 

metrics (namely, OEE, and also the use of value-adding time) improves the 

transparency of AM operations further and supports decision-making to 

maximise AM machine performance. While OEE and value-adding time are 

applied to isolated machines and workflows within a single production facility 

in this thesis, others show that OEE can provide decision-support even when 

operations span across different, distributed facilities (Antônio Mendonça, Da 

Piedade Francisco and De Souza Rabelo, 2022).  

As a further consequence, purposely-designed performance metrics for AM 

make it easier for users to understand the system, without needing to delve 

into its intricacies (Melnyk, Stewart and Swink, 2004). On the one hand, while 

it is important for AM operations researchers to find the deeper, underlying 

mechanisms behind effective and efficient AM workflows, the target for AM 

users is to maintain proper performance of their systems quickly and 

effortlessly. Well-designed metrics therefore provide easier paths for AM users 
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to find the proper solution to issues as they arise, increasing confidence in AM 

deployment and operations management in industry. 

From a wider perspective, Melnyk et al. (2004) provide a typology of metrics 

that are of interest to operations managers, shown in Figure 7.3. The research 

in this thesis focuses on the outcomes tense (rather than the predictive tense), 

whereby actual production data is used to provide an indication of performance 

after the event – and inform future AM operations decisions. Additionally, the 

total cost estimation and OEE metric together capture the financial and 

operational (or productivity) focuses, leading to a holistic appraisal of AM 

operations. The evaluation of production loss drivers in laser sintering has 

uncovered common relationships between the financial and productivity-

related performance, such as the dependence on efficient use of machine 

capacity, and trade-offs between minimising changeovers and reliability-

related costs and downtime. Nevertheless, it could be useful for future research 

to focus on formalising the relationships between cost and productivity to 

further improve the transparency of AM operations. 

 

Figure 7.3: Typology of operations metrics, from Melnyk et al. (2004) 

7.2.3 Production Strategies and Trade-Offs 

A common theme that has emerged in the results is that of trade-offs that arise 

in both cost-, quality- and time-related performance when pursuing different 

process planning strategies in AM. Depending on the priority pursued by the 

AM user, which in turn is informed by the business model and customer needs, 

the results have illustrated which process planning approach would be best. 
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This is summarised in Figure 7.4. To further clarify, the closing remarks of this 

section cover the key features, metrics, and pitfalls of each approach for 

operations management of scaled-up AM. 

 

Figure 7.4: Overview of production strategies and trade-offs in outcomes 

Looking at the operations approach first, the capacity-maximising approach 

leads to more cost-efficient use of machine capacity at the expense of lead time 

and risk of failure, which are both driven by build height. Minimising the 

production cost would be the expected strategic driver for this approach; and 

additionally, the production losses are lower here, as per the availability and 

performance sub-metrics of the OEE. On the other hand, the lead time-

minimising approach prioritises the responsiveness of production, and so the 

makespan would be an appropriate metric. Short lead time (and lower risk of 

failure) are achieved through short builds with low full build capacity utilisation. 

This leads to poor amortisation of fixed time and cost elements, which accrue 

mainly on a per-build basis. Given that the time and cost per part would be 

higher, AM bureaus can typically charge a premium for short lead times. 

Following a similar logic, the Scheduling Only workflow optimisation approach 

minimises the lead time at the expense of inconsistent cost. Here, only parts to 
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be delivered imminently are manufactured in each build job, and so depending 

on the production scale (and, thus, use of machine capacity), this optimisation 

approach may lead to a mix of short and tall builds, with fluctuations in the risk 

of failure and amortisation of fixed costs. In contrast, integrated optimisation 

of packing and scheduling generates builds with balanced capacity utilisation, 

trading off the risks of failure and late delivery with the fixed costs. Integrated 

optimisation is most suited to a cost- and production loss-driven strategy, and 

particularly to the management of unpredictable order streams in AM bureaus.  

It is worth noting that as the production scale increases, the role of facility 

layout in cost-, time- and quality-efficiency also becomes important (Huang et 

al., 2021). Referring to the facility layout characteristics for AM workflows (see 

Table 7.4), the cellular and process layouts can be assessed against the three-

way trade-off. The cellular layout reduces the impact of failures on the 

makespan, and minimises non-value-adding time (waiting and travel); whereas 

the process layout sees shorter makespans at higher production scales. Thus, 

the cellular layout is suitable when the quality is prioritised, and for short lead 

times at low production scales. The process layout favours cost-effective use of 

workflow capacity (across all equipment), at the expense of adequate lead 

times and lower redundancies to failure, at higher scales of production. 

7.3 Technology Adoption of Scaled-Up AM 

In the second of the two cross-cutting discursive themes, this section explores 

how the results can influence the technology adoption of scaled-up AM. 

7.3.1 Towards Digital Factories 

AM is a distinctly digital manufacturing process, which should inherently 

support the benefits of digital factories such as increased responsiveness to 

changing customer demand and improved process optimisation capabilities for 

efficiency (Araújo, Pacheco and Costa, 2021). However, AM sits within a 

workflow that depends on manual labour in the upstream and downstream 

ancillary steps, such as build file preparation and post-processing (see Figure 
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2.1). Therefore, suitable digital tools and solutions must be developed to 

elevate the AM workflows towards fully digital factories. 

Focusing first on the upstream steps, there are two key challenges for 

computational decision-making support in this area. One, the optimisation of 

production planning in AM is a highly complex and multi-dimensional problem, 

which is entirely infeasible to solve through brute-force exploration of possible 

solutions (Araújo et al., 2018; Framinan, Perez-Gonzalez and Fernandez-Viagas, 

2023). Two, it is important to capture the rich, tacit knowledge held by AM 

operators when developing decision-support tools to help ensure their 

suitability and practicality (Mandolini et al., 2020). In this thesis, the study of 

workflow optimisation approaches has attempted to reconcile these 

challenges. The cost results in Chapter 5 demonstrate that heuristic 

optimisation, with an integrated approach to the packing and scheduling 

dimensions, outperforms operator-led workflow optimisation approaches.   

Increased digital control and automation is also emerging elsewhere in the AM 

workflow, for example: auto-mixing and loading of feedstock material in Multi 

Jet Fusion printing, and new post-processing machines that require minimal 

operator intervention. Despite this, the facility layout results in this thesis (see 

Chapter 6) show that a significant proportion of the production lead time still 

depends on operators. This is either in the form of manual workflow steps, such 

as transferring material and parts from one machine to the next, or time spent 

waiting for available operators for such steps. Thus, novel technologies are 

required to address this gap in the digitalisation of the AM workflow.  

To this end, the facility layout could be leveraged to improve the ability to 

automate more elements of the AM workflow. In the cellular layout, the shorter 

distance and fewer infrastructure obstacles between different machines in the 

workflow simplifies the challenge of automating, for example, the transfer of 

feedstock material to, and ready-to-post-process parts away from AM 

machines. This is reflected in the prevalence of robotic arm and conveyor 

systems in demonstrator facilities that use the cellular layout (Boivie et al., 

2011; Lehmhus et al., 2016; Kang et al., 2018), while futuristic alternatives for 
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the process layout, such as automated guided vehicles (EOS GmbH, 2023), have 

yet to be fully developed. Furthermore, the facility layout simulations suggest 

that the physical distance between different machines influences the transfer 

time between them, which would apply regardless of the manual or automated 

method of transport. Therefore, facility layout will continue to be an integral 

factor in the success and efficiency of future digital AM factories. 

With respect to implementing manufacturing digitalisation, it is argued that the 

change process is easiest and most effective when the workflow is simple, for 

example in make-to-stock fulfilment with low product variety (Strandhagen et 

al., 2016). From the perspective of production losses, the exploratory 

simulations in Chapter 4 show that identical batches of parts, leading to 

consistent and repeatable production, are indeed the most efficient operations 

approach for AM. On the other hand, suitable methods to manage the effect of 

product and process variety are also demonstrated in this thesis, from both 

productivity and cost perspectives. Importantly, digital production planning 

tools are at the heart of this, for example, integrated workflow optimisation. 

Taking a broader perspective, the remit of integrated workflow optimisation 

could be expanded to include networks of material preparation and post-

processing machines (in addition to AM machines). By covering more of the AM 

workflow, digital production planning tools of this nature could lead to unified 

and simplified control of the AM workflow. This would further increase the 

transparency of AM operations, seen at the AM machine level, to an 

overarching “AM operations overview” of order streams through AM 

production facilities as a whole. Complementary innovations to support this 

could include adopting more sophisticated optimisation algorithms based on 

machine learning, and adapting suitable facility-level productivity metrics, as 

explored by Muchiri and Pintelon (2008), for AM. Moreover, it would become 

possible to investigate the implementation of AM in novel product-centric 

digital factory configurations, such as “One Touch” control of production 

routing and scheduling (Lyly-Yrjänäinen et al., 2016), and product-based 

material flows, such as digital kitting (Khajavi et al., 2018). 
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7.3.2 Improving Technology Adoption Determinants 

To date, evaluations of AM against the various determinants of technology 

adoption have focused on the relative advantages of AM and its compatibility 

with existing manufacturing environments (Oettmeier and Hofmann, 2017; 

Schniederjans, 2017; Khorram Niaki, Torabi and Nonino, 2019; Handfield et al., 

2022). However, the crux of this research has been to explore coordinated 

changes in operations – as espoused by Milgrom and Roberts (1990) – and their 

influence on productivity and cost in AM. It is therefore expected, and pertinent 

to verify, that the AM operations insights impact varied technology adoption 

determinants. Table 7.7 summarises the research findings against these 

determinants, as defined by Rogers (1983) and Oettmeier and Hofmann (2017). 

The development of suitable cost and productivity metrics in this research, and 

their application in identifying underlying mechanisms of efficiency in AM 

operations, has a notable effect on the observability and complexity 

determinants. This is because the performance of AM systems becomes much 

more transparent and visible, as explained in Section 7.2.2, and also more 

digestible for the AM user. Moreover, by translating production loss 

frameworks and the OEE metric from its widely-used conventional 

manufacturing context to the AM context, this research improves compatibility 

of AM with existing manufacturing management systems.  

The results for AM operations approaches, workflow optimisation approaches, 

and facility layout approaches in this research also contribute to the progress 

of AM as a GPT. While the AM industry awaits further improvements in the 

technology, the AM operations mechanisms can be applied to improve cost and 

productivity in the short-to-medium term. The operations management levers 

and AM workflow trade-offs can be captured in complementary innovations 

(e.g. software tools) for process planning, eventually leading to highly product-

centric production management platforms to support scaled-up AM. 
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Table 7.7: Mapping of the research findings against determinants of adoption for AM, as per Rogers (1983) and Oettmeier and Hofmann (2017) 

Determinant 

of Adoption 

Description Influence of this Research 

Relative 

advantage 

Perception of the innovation as better 

(economically, or status-wise) than previous 

options 

AM cost modelling is expanded to include trade-offs in ill-structured costs (failure, late 

delivery); and the role of complementary innovations such as integrated workflow 

optimisation in improving the cost-benefit balance is demonstrated. 

Compatibility Perception of the innovation’s consistency 

with the adopter’s existing systems and 

experience 

Compatibility of AM operations management (with wider manufacturing concepts) is 

improved through the adaptation of commonly-used productivity metrics (OEE, value-

adding time) for AM, in a manner that resolves previous conflicts in definition.  

Complexity Perception of difficulty in use and 

understanding of the innovation 

Underlying mechanisms of AM operations that emerge from the exploratory simulations 

help AM users understand how to design and operate their systems efficiently in the 

appropriate context (e.g. production scale, product variety, lead time constraints). 

Trialability Extent to which the innovation can be 

experimented with, to reduce the adopter’s 

uncertainty 

(Not explored in this research.) 

Observability Extent to which the innovation and its 

impacts can be observed and communicated 

by the adopter 

The OEE metric is adapted for AM to improve the transparency of productivity and effective 

use of capacity. Further, the impacts of workflow operations on AM machine productivity 

are clearly observed. 

Absorptive 

capacity 

Ability of the firm to develop, utilise, 

evaluate, and apply relevant new knowledge 

(Not explored in this research.) 

External 

pressure 

Influence of regulation, competition, other 

innovations, and customer needs on the firm 

(Not explored in this research.) 

Perceived 

outside 

support 

Training, knowledge, and support to reduce 

uncertainty about the innovation 

Quantitative insights into the influence of key AM operations decisions (operations 

approach, workflow optimisation, and facility layout) provide new knowledge to support 

the adoption of efficient workflows in scaled-up AM. 
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8 Conclusions 

This concluding chapter presents a summary of the thesis, with a focus on the 

key findings and contributions to the relevant discourse. Alongside this, the 

limitations in the research are acknowledged and recommendations for future 

work are provided.  

8.1 Summary of the Thesis 

The overarching aim of this thesis is to uncover drivers of process efficiency, 

affecting both cost and production losses, for direct digital manufacturing 

applications that use AM in a make-to-order fulfilment context. To this end, the 

research focuses on uncovering suitable guiding frameworks and systematic 

mechanisms to make AM operations more transparent and more efficient, 

from the machine to production facility. This leads to the three research 

objectives, as outlined in Section 1.3, which have been addressed as follows. 

8.1.1 Production Losses in AM 

The extant literature is marked by poor transparency regarding AM process 

efficiency, with conflicting understanding of value-adding time (Totah et al., 

2017; Pushparaj et al., 2019; Kurdve et al., 2020). To this end, this research has 

developed a novel OEE metric, which adapts the original formulation by 

Nakajima (1988) to better suit the product and process variety found in AM 

workflows and technologies, respectively. Therefore, the ability to compare the 

performance of AM equipment, both against its theoretical capacity and 

alternative machines, is vastly improved. Even in the absence of further process 

improvement, the application of this metric positively impacts AM adoption via 

better observability and understanding of its relative advantage (Rogers, 1983).  

In the discussion of OEE in AM, prior studies offer only partial explanations of 

sources of production losses (Fera et al., 2017; Reid, 2019; Parshawanath Jain, 

2022). Notable omissions from the assessment of process efficiency using OEE 

include: thermal inconsistencies across the build (Bourell et al., 2014), the 
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assumption of perfect process planning, and defects that cannot be corrected 

in-situ (Baumers and Holweg, 2019). The formation of a systematic production 

losses framework for AM in this research addresses this gap, highlighting the 

prevalence of necessary-but-non-value-adding time (Hines and Rich, 1997) in 

the AM workflow. More importantly, the evaluation of production losses with 

respect to the operational characteristics of AM (Baumers and Holweg, 2019) 

shows that all six production losses apply to AM, which contradicts Fera et al. 

(2017). This is further extended by identifying sources of process efficiency (and 

inefficiency) in line with both production loss and AM operations characteristics 

frameworks, which provides implementable insights for AM users to improve 

their process planning towards better process efficiency. 

The exploratory simulation studies that build on the theoretical framework 

expand and elaborate on the link between process planning and production 

losses, which are only alluded to via narrow metrics by Gopsill and Hicks (2018), 

and Stittgen and Schleifenbaum (2020). The results (see Chapter 4) 

demonstrate that minimising the number of builds and, concurrently, 

maximally filling the available space in each build are key to improving the ratio 

of value-adding time to production losses in polymer laser sintering production. 

This provides quantitative evidence to link underlying factors, such as capacity 

utilisation and height-dependent risk of build failure, with setup and 

performance-related production losses.  

While the production loss drivers may be different in alternative AM processes, 

particularly outside the powder-bed fusion category, the OEE metric is 

constructed in such a way that it is entirely generalisable to other AM 

technologies. Most importantly, by formalising the production loss drivers, it is 

possible to guide AM users towards more productive and efficient use of the 

available machine capacity, in line with their existing workflow constraints, 

such as order lead time and part size variety. 
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8.1.2 Workflow Optimisation in AM 

While a variety of ill-structured costs have been explored in the extant 

literature, such as failure (Baumers and Holweg, 2016), quality-systems (Schmid 

and Levy, 2012), flexibility (Alogla et al., 2021), and inventory (Khajavi et al., 

2018); the assessments have been limited to exploring each in isolation, which 

precludes identifying any trade-offs therein. The total cost model developed in 

this research addresses multiple ill-structured costs for the first time, pertaining 

to the cost of failure and penalties for late delivery. The choice of these two ill-

structured costs relates to two separate cost trade-offs noted in the literature, 

between capacity utilisation and, respectively, failure-related costs (Baumers 

and Holweg, 2016) and timeliness of delivery (Costabile et al., 2017). Extending 

the aforementioned work, this research shows that a three-way trade-off 

emerges between these elements, whereby process planning approaches must 

satisfy scheduling constraints using moderately-filled builds to both amortise 

fixed costs and avoid excess risk-of-failure. 

Importantly, this research is unique in exploring the above with relation to 

multi-build, multi-machine operations. While various operations research 

studies have begun to progress from sequential optimisation of packing and 

scheduling in the AM workflow (Baumers, Özcan and Atkin, 2017; Kapadia et 

al., 2021), the potential improvements in cost drivers from alternative but more 

complex integrated optimisation approaches lacked attention. The cost results 

(see Chapter 5) show that integrated optimisation is able to balance the 

competing influences on production cost across networks of AM machines 

more effectively than alternative, simpler workflow optimisation approaches. 

Therefore, integrated workflow optimisation delivers lower cost and better 

predictability of cost for scaled-up AM production. While these findings relate 

to polymer laser sintering, the logic is readily applicable to other powder-bed 

fusion processes where 3D packing is achievable. 

By systematically exploring the cost impact of different workflow optimisation 

approaches, the relative importance of time-dependent indirect costs, build 
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height-dependent failure costs, and schedule-dependent late delivery costs 

have been emphasised, as explained above. This can help focus future 

development of process planning optimisation algorithms for scaled-up AM. 

This research has also demonstrated the benefits of integrated optimisation of 

packing and scheduling: not only on the cost-effectiveness of production but 

also on the predictability of cost, which helps businesses improve their 

competitiveness as production scale and volatility in demand increase 

(Deradjat and Minshall, 2017). 

8.1.3 Facility Layout in AM 

Despite the importance of the facility layout and organisation of the AM 

workflow for the success of scaled-up AM (Huang et al., 2021), the extant 

literature provides little justification for facility layout choices or assessment of 

best practice therein. This research therefore contributes a novel quantitative 

assessment of production losses and cost contributors arising in the AM 

workflow due to the implementation of different facility layout approaches. By 

identifying the key sources of non-value-adding time in the workflow for each 

facility layout approach, and the relative magnitude thereof, the results provide 

a stepping stone towards future optimisation of scheduling across the AM 

workflow to improve process efficiency. 

By modelling the production facility and operations of a real AM user, the 

results (see Chapter 6) show that the cellular layout outperforms the process 

layout in terms of non-value-adding time (and labour costs) arising from travel, 

waiting and disturbances such as unplanned maintenance and build failures. 

However, the production scale also affects the results; and the process layout 

delivers on-time production more consistently at higher volumes of throughput 

(>10,000 parts). Therefore, while the cellular layout minimises production 

losses, the process layout is a viable alternative for high-scale AM. 

While capacity management optimisation has been observed for single layout 

choices (Kellner et al., 2019), the comparative nature of this exploratory study 

allows the development of a “best practice” guide for setting up AM facilities 
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for different scales of production. This extends the previous frameworks for 

conventional manufacturing, such as the product-process matrix and product 

or process-oriented facility layouts, to the AM context. Thus, AM users can 

readily understand which layout option to pursue to satisfy their operational 

needs and production throughput. 

8.2 Contribution of the Research 

Reviews of AM from a technology adoption perspective point towards its 

potential to revolutionise and disrupt manufacturing and product-service 

industries. However, an oft-quoted barrier to this progress is the poor 

perception of process efficiency and production cost. Complementing core 

innovation within the technology and delivering immediate results, operations 

management can improve the performance of AM systems, shifting the 

operating frontier towards the ultimate asset frontier. This relies on holistic 

assessments of process efficiency and cost in AM, to resolve trade-offs and find 

optima therein. However, previous AM operations studies have often assessed 

relevant aspects in isolation, such as ill-structured failure costs, flexibility costs, 

availability and productivity. 

Therefore, this research is designed around systematic studies into AM 

operations at different levels of abstraction. Consequently, this thesis attempts 

to provide thorough guidance for the AM user towards extracting the maximum 

value-adding capacity from the AM workflow, while fulfilling the product 

variety and process responsiveness required of direct digital manufacturing. 

This is based on exploring the underlying cost and production loss mechanisms, 

which are then collated into practicable overarching operations principles. As 

mentioned in the introduction, this helps answer the question, how should 

scaled-up AM be implemented and why? To this end, Table 8.1 provides a 

summary of the key contributions and research gaps addressed, which is 

followed by a discursive overview. 
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Table 8.1: Summary of research contributions against the literature gaps 

Identified Gaps in the Literature Contribution of this Research 

Poor transparency of AM process efficiency, particularly with reference to well-established 

theories (value-adding time, production losses) and metrics (OEE) that can support the AM 

business case (Pushparaj et al., 2019; Kurdve et al., 2020). 

New OEE framework and metric improves AM 

compatibility and observability, with respect to Rogers 

(1983) technology adoption determinants. 

Absence of quantified estimates of production losses in the AM workflow, and evaluation of steps 

that can be taken to reduce these (Fera et al., 2017; Reid, 2019; Parshawanath Jain, 2022). 

OEE used to quantify sources of production losses in 

the AM workflow, including “inherent” losses. 

Operations approaches and guidelines to minimise 

production losses are developed for AM practitioners. 
Limited investigation of the link between AM process planning and production losses, despite 

studies that allude to its significance (Gopsill and Hicks, 2018; Stittgen and Schleifenbaum, 2020). 

Studies into ill-structured costs are limited to individual machine operations (Schmid and Levy, 

2012; Baumers and Holweg, 2016; Alogla et al., 2021). Extension of this to multi-machine 

scenarios is required to reflect realistic industrial AM operations (Khajavi et al., 2018). 

Consistent production cost behaviour for machines 

working in parallel, a precursor to fully scaled-up AM, 

when optimising both packing and scheduling. 

Ill-structured costs have been evaluated in isolation in the extant literature, which neglects 

potential trade-offs therein (Baumers and Holweg, 2016, 2019; Khajavi et al., 2018). 

New total cost model for failure and flexibility-related 

costs is used to probe trade-offs in ill-structured costs. 

Similarly, process planning factors that influence both well-structured and ill-structured cost 

drivers are typically optimised sequentially, in isolation (Freens et al., 2015). Integrated 

optimisation of these factors shows promise for improving cost-effectiveness of AM (Baumers, 

Özcan and Atkin, 2017), but the links to the cost drivers have not been explored. 

Production cost is lowest and most consistent when 

using integrated optimisation, driven by trade-off in 

capacity, failure, and timeliness (flexibility) costs. This 

optimisation approach smooths cost of volatile flows. 

Within the limited discussion of equipment organisation for AM workflows (Yoo et al., 2016; 

Avventuroso et al., 2017; Kang et al., 2018), the effect of different facility layout approaches on 

production efficiency from a time or cost perspective has not been explored. 

Novel comparison of cellular and process layout in AM 

shows differing vulnerability to failures and sources of 

non-value-adding time in the workflow. 

While the relationship between facility layout and production scale (and variety) is well-

established for conventional manufacturing (Radford and Richardson, 1977; Naylor, 2002), and 

could be significant for scaled-up AM (Huang et al., 2021), both qualitative and quantitative 

investigation of this phenomenon is missing in the AM discourse. 

Evaluation using case study company’s data provides 

evidence for AM practitioners about facility layout at 

different scales: cellular layout for low-medium scales, 

process layout for high scales, despite inefficiencies. 
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First, this thesis demonstrates that the success of scaled-up AM relies on 

exploiting the fungibility of capacity to maximise efficiency in both cost and 

value-adding-time. Notably, the prevalence of reliability issues, such as build 

failure and part rejects, must be managed by operating at sub-maximum 

capacity with respect to the AM machine and workflow. Second, the research 

into the management of multiple AM (and ancillary) machines operating in 

parallel shows that productivity and production cost are minimised through a 

combination of optimisation in the digital and physical realms. It is necessary 

to develop sophisticated, integrated workflow optimisation approaches to 

tackle the complexity of the production planning solution space; and this must 

be complemented by due attention to the facility layout to avoid sources of 

non-value-adding time, particularly as the scale of production increases. 

Underpinning both contributions above is the transposition and adaptation of 

key productivity concepts from conventional manufacturing to AM – namely, 

production losses, OEE, and value-adding time. This has produced new tools for 

AM users to deploy towards proactive management of industrial AM systems. 

Furthermore, the monitoring and continuous improvement enabled by OEE in 

particular can act as a stepping stone towards data-driven, real-time 

optimisation of material flows and productivity in scaled-up AM.  

To achieve such futuristic goals for AM operations, this research points towards 

the development of production planning platforms that encompass more steps 

in the AM workflow, greater automation of manual steps and transitions in the 

AM workflow, and skills development among AM operators to help them 

leverage digital decision-support tools for increasingly complex product-

process flows.  

8.3 Limitations and Recommendations for Future Work 

While this thesis contributes to the understanding of AM operations and the 

onward impact on adoption of scaled-up AM, there are inevitably limitations to 

the methodology and findings. This section identifies notable constraints in the 

research, and offer recommendations of future work to help address these. 
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First, it is imperative to acknowledge the shortcomings of the exploratory 

simulation approach chosen for this research. Despite offering freedom to 

investigate a wide range of operational scenarios and generate generalised 

insights (Jahangirian et al., 2010), it is not possible to capture the empirical and 

random variation within the AM workflow using controlled elements such as 

regression-based build time models, consistent order arrival rates, and fixed 

MTBFs. Therefore, targeted empirical experiments would be beneficial for 

validating the guidelines proposed in this study for production losses, workflow 

optimisation and facility layout in the specific contexts of application; this 

would help capture secondary influences from industry-, procedure-, and even 

machine-specific characteristics. 

The simulation of order fulfilment in the production loss and workflow 

optimisation studies uses a static pre-determined delivery schedule to simplify 

the incoming order stream (Hedenstierna, Disney and Holmström, 2016). 

Shifting towards a dynamic stream of incoming orders would be more 

representative of make-to-order operations, as seen in the third, facility layout 

study. The influence of different operations approaches and workflow 

optimisation approaches on minimising production losses and generating cost-

effective builds, based on incomplete information (Rudolph and Emmelmann, 

2018), could then be explored. Regarding the workflow optimisation in 

particular, this research has shown that integrated optimisation delivers 

consistent capacity utilisation when the orders are known in advance. It is 

therefore important to establish whether this cost-effective pattern prevails 

under more variable product demand conditions, with limited information 

about future demand, to further support make-to-order AM operations. 

In the facility layout simulation study, the influence of the production scale on 

the performance of the AM workflow suggests that the process efficiency, in 

terms of value-adding and non-value-adding time, could be further affected by 

workflow factors that have not yet been explored. The holistic assessment of 

the AM production facility could therefore be expanded to include factors such 

as bursts of demand, optimised build scheduling to align with operator 
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availability, or investment in portable resources (build and material cartridges) 

rather than more expensive machines. Designing such future studies in a 

sensitivity analysis structure would promote understanding of the most 

impactful factors, further guiding AM users about appropriate operations 

management choices for scaled-up AM. 

Throughout this research, the risk of build failure has been accounted for using 

a layer-based model, which simplifies the thermal basis of the laser sintering 

process. Part quality and successful build completion depend on appropriately 

controlling the temperature distribution in the build volume (Southon et al., 

2018). This distribution is influenced by laser printing parameters along with 

the sintered area of each layer and the surrounding layers, which together 

control the magnitude of heat input into local regions of the build volume and 

the rate of heat dissipation (Abdelrahman and Starr, 2015; Huang et al., 2020). 

The layer-based function in this study is unable to capture these phenomena, 

and so shorter builds are systematically favoured in the production loss and 

workflow optimisation simulations, involving the EOS Formiga P100 machine.  

Therefore, a new laser sintering build failure model could include stochastic and 

thermally influenced sources of cascading failure, such as foreign particles in 

the powder feed or part warpage increasing layer-on-layer. Modelling the 

likelihood of failure phenomena more accurately would enable more accurate 

research to probe the trade-off between different process planning strategies 

for deterministic cost and production losses versus the stochastic rework and 

failure events, which is particularly important for improving AM from a lean 

manufacturing perspective. 
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Appendix 

A.1 Explanation of Test Part Design 

A set of test parts is used to populate incoming orders in the simulated make-

to-order AM workflow. The part designs are inspired by industrial applications 

of polymer AM, with features that exploit the geometric intricacy and absence 

of support structures found in laser sintering. Part A is a device for guiding 

bone-cutting steps prior to knee surgery (Figure 3.4a). Part B is the front section 

of a plane-like unmanned aerial vehicle (UAV) with an internal helical core 

structure (Figure 3.4b). Part C is a semi-flexible assembly that behaves like a 

chainmail fabric (Figure 3.4c). Its longest dimension is 30 times larger than its 

shortest dimension, which means that the Z-height of the build would change 

significantly depending on how this part is oriented. Part D is a self-contained 

device for mixing and collecting the product of two chemical reagents (Figure 

3.4d). It is inspired by cheap, custom chemical reaction devices that are made 

for out-of-lab applications (Kitson et al., 2013). Part E is a ring-shaped 

mechanical compression support with a graded body-centre cubic lattice 

structure to allow a rocking motion about one axis (Figure 3.4e).  

A further design consideration is the geometric complexity of the parts, as this 

a key value-adding motivator to adopt AM (Araújo et al., 2015). The geometric 

complexity can be quantified using a metric first proposed by Valentan et al. 

(2011), and further endorsed by Araujo et al. (2015). Based on this metric, given 

in equation A.1, the test parts in this research are 10 times more geometrically 

complex on average than a previous set of industry-inspired parts from 

Baumers et al. (2013), denoted B2013. This is shown in Figure A.1.  

 

 

 

 



 

Page 269 
 

𝑘 =
𝑓 × 𝑎

𝑣
 

(A.1) 

where: 

𝑘  ‒ part complexity 

𝑓  ‒ number of facets, or triangles, in the part mesh 

𝑎  ‒  surface area of the part (mm2) 

𝑣  ‒  volume of the part (mm3) 

 

 

 

Figure A.1: Comparison of geometric properties between test parts in this research 

and Baumers et al. (2013) 
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