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Abstract

Distributed electric propulsion (DEP) is a promising development in the aviation industry,
with the possibility of advances in efficiency, design and noise-reduction of air transport. This is
in part due to the flexibility in distributing aircraft thrust across multiple, electrically-powered
propellers across the aircraft. Knowledge of the airflow generated by different distributed pro-
peller layouts is important for analysis and hence the optimisation of propeller layout to minimise
the noise generated by these aircraft. In this thesis, a novel data transform originating from the
image processing space, the Radon-CDT, is investigated and evaluated as a potential method to
be applied in a reduced-order modelling framework for accurate and efficient calculation of flows
for DEP configurations.
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1 Introduction Tobias Long

1 Introduction

One of the most promising developments in the aviation industry in recent decades

is the concept of distributed electric propulsion (DEP). DEP is a specific case of

distributed propulsion - where aircraft propulsion is delivered through multiple pro-

pellers, distributed upon the aircraft - which utilises electrically-driven propellers, as

opposed to propellers driven by internal combustion engines as currently used by the

vast majority of the industry (see Figure 1). DEP offers higher potential capabilities

in flight efficiency, aircraft control and robustness when compared to combustion

engine aircraft [1, 2]. One large benefit of DEP is the flexibility of propeller place-

ment on an aircraft, as propellers and their power sources can be placed in different

locations and then connected easily. Although DEP is a promising concept, with

small-scale DEP aircraft already in testing, many challenges remain before the con-

cept can offer beneficial results in the real world and be broadly applied to large

aircraft. A large part of this challenge arises from the electrical components, al-

though electrically-powered propellers are hugely beneficial in design flexibility and

efficiency, battery technology is not sufficiently developed for the energy density and

battery life needed to power a realistic DEP aircraft [2, 3].

One area of interest that poses a unique challenge in DEP systems is the noise

generated by the propeller layouts, or more broadly, the aeroacoustics associated

with DEP aircraft design. The increased flexibility in propeller layout allows for

more control of the aeroacoustic profiles generated by different propeller setups,

hence minimising both near-field (for any passengers inside the aircraft) and far-
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1 Introduction Tobias Long

field sound (to the public on the ground) is a design challenge of high importance,

considering a recent focus on noise pollution in the aviation industry [4]. Another

possible benefit to DEP is that the noise produced by electric propellers is associ-

ated with higher frequency sound waves than those produced by internal combus-

tion propellers. This is beneficial for noise reduction because higher frequency sound

waves have increased atmospheric absorption, so noise is naturally dampened by the

air [5]. The assessment and possible suppression of noise from DEP is the focus of

the SILENTPROP project [6], part of the Clean Sky 2 Joint Undertaking of the

European Union’s Horizon 2020 innovation programme [7]. The aims of SILENT-

PROP are to develop computational and experimental methods for the assessment

of the noise produced by DEP configurations, and the assessment of possible noise

suppression technologies to reduce the noise generated by DEP aircraft as much as

possible. The work described in this report is part of the numerical branch of the

SILENTPROP workflow, with the main long-term goal for the PhD project being

to develop a reduced-order model (ROM) for accurate and efficient noise assessment

Figure 1: Digital model of the X-57 Maxwell plane in development by NASA (Source:
https://sacd.larc.nasa.gov/x57maxwell/).
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of DEP configurations.

In this work we employ the Radon-CDT transform to investigate the interpolation

of velocity field data generated by computational fluid dynamics (CFD) simulations

of various propeller layouts. This interpolation allows the estimation of an unknown

velocity field generated by a propeller layout from the velocity fields of previously

simulated propeller setups. This will potentially negate the requirement to perform

a full, time-consuming CFD simulation for a new propeller layout and replace this

with a much shorter transform-based velocity field generation (the order of minutes,

rather than hours or days). The Radon-CDT is a novel nonlinear, invertible trans-

form that so far has only been applied to data and image classification problems as

an alternative method to neural networks and similar classification techniques [8,9].

Furthermore, we will expand on the use of this transform by utilising the Radon-CDT

transform space for statistical manipulation, in order to obtain improved interpola-

tion of data compared to interpolation in physical space. Initial investigations using

the Radon-CDT are outlined in §2, which preceded the work submitted for publica-

tion in §3.

In order to reach this goal a large library of detailed and accurate propeller sim-

ulations will be required. These will form a basis upon which model parameters

and methods can be built, tested and verified. This facilitates a number of detailed

simulations for a wide range of parameter variations (for example number of blades,

propeller RPM, propeller phase-locking and blade size), which would need a huge

amount of computing resources for fully modelled propeller simulations. Instead, we

explore an alternative methodology for propeller simulation to be utilised for this
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project, allowing a faster computation of sufficiently high-fidelity propeller simula-

tions. This approach is discussed in §4.1.2.

2 Initial Investigations Using The Radon-CDT

2.1 Methodology

2.1.1 Radon-CDT

The Radon-CDT [8] is a combination of the cumulative distribution transform (CDT)

and the Radon transform. The Radon transform is used to reduce high-dimensional

signals down to a series of 1-D signals, these are then passed into the CDT which

interprets these 1-D signals as probability density functions. To avoid repeated

definitions the full definition of the transform will not be discussed here, please refer

to chapter 2 of the work submitted for publication (§3) for an expanded description.

The Radon-CDT f̂ is obtained by applying the CDT along each projection angle

in the prior Radon transform, which results in

∫ f̂(s,θ)

s1

f̃(s′, θ) ds′ =

∫ s

s1

r̃(s′, θ) ds′ (1)

for the 2-D case and

∫ f̂(s,θ,ϕ)

s1

f̃(s′, θ, ϕ) ds′ =

∫ s

s1

r̃(s′, θ, ϕ) ds′ (2)

for the 3-D case, where r̃ denotes the Radon transform of r(x, y; z).
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2.1.2 Data Synthesis

All fluid dynamics simulations were performed using OpenFOAM software (version

v-1812 ) 1, running on the on-site university high-performance computer, Augusta.

Meshes for the simulations were constructed using the ANSYS ICEM CFD meshing

software.

The propeller flows were estimated using an actuator disk model with radius R

and streamwise disk thickness of ∆z. The force per unit volume acting on the fluid

flow generated by the disc is given by

f = − 1

πR2∆z2

[∫

Ω

(s · u) · (u · s) dΩ
]
s, (3)

where s is the streamwise direction unit vector and u is the velocity of the fluid at

the disk. Simulations were carried out using LES with a basic Smagorinsky model,

in a cylindrical domain of radius 25 meters and length 150 meters (see Figure 2). For

all the results in this work a uniform inlet velocity has been used to reduce compu-

tational resources and to save time. Simulations are carried out for 15 seconds, with

a timestep size of 0.005 seconds (corresponding to a maximum Courant number of

0.5), with every 20 timesteps being saved to files (increments of 0.1s). These velocity

fields are then averaged over the final 5 seconds of the simulation (adequate time

due to uniform inlet velocity, and allowing the wakes to fully develop in the initial 10

seconds of simulation time) and this averaged velocity field is then used to calculate

the velocity magnitude at each cell in the domain. Raw velocity data was averaged

1Available at https://www.openfoam.com/
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and exported to csv files using Paraview (software included with OpenFOAM ).

2.1.3 Radon-CDT Workflow

The Radon-CDT methodology and post-processing of data are carried out using

MATLAB. Data files are read in as tables before the average velocity magnitude

is calculated for each cell. These tables are then converted to MATLAB arrays, on

which the radon transform followed by the CDT can be performed. This is done using

the scatteredInterpolant function 2 - this samples the velocity magnitude values from

the coordinates in the tables and returns an interpolated sample of the data in a 3D

array, with a size of n×n×n, where n is the number of sample points defined by the

user. For the results in this report, n = 250 is used (unless stated otherwise). This

value allows the data arrays to be of high enough resolution to sufficiently represent

the flow fields, whilst optimising the runtime and memory requirements. All the

data sets in this work are defined within a rectangular box along the length of the

full simulated domain, centred on the propellers. This box is defined between ±3 in

the x and y directions, and between 47.5 and 72.5 in the z-direction (see Figure 2).

Example velocity contours from the data can be seen in Figure 3.

Once the data sets have been generated and converted to arrays, they are nor-

malised (dividing all array values through by the magnitude of the maximum array

value) before being transformed by the Radon-CDT method. For all results in this

report, the step size of the θ array used in the Radon transform was set as ∆θ = 1.

This was done to optimise result accuracy and code runtime. The Radon-CDT trans-

2Documentation: https://uk.mathworks.com/help/matlab/ref/scatteredinterpolant.html
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Figure 2: An illustration of the full CFD domain (outer cylinder) and the box (shown
in red) containing the propellers (blue) defining the data sets in this work.

Figure 3: Contours of velocity magnitude in an example data set. Contours corre-
spond to values of 10 (cyan), 12.5 (yellow) and 15 (orange). Actuator disk modelling
propellers are shown by the red disks.
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Figure 4: Workflow for results in this article.

form is not applied to the 3D data as a whole but instead is applied individually to

2D slices of the 3D data set. For example, when the data is sampled from the data

set by the scatteredInterpolant function using 250 sample points in each dimension,

our Radon-CDT algorithm is applied individually to the 250 xy, yz, or xz slices in

this sampled data. A full 3D algorithm is in development, though is currently not

ready for use. Interpolation is then carried out by averaging the values of the arrays

in Radon-CDT space, before the application of inverse CDT and radon transforms

to return the array values to physical space. The values in these arrays are then

scaled back to the original range of data values using a weighting in accordance with

the interpolation parameter, α (see §3.6). The procedure for interpolating the data

can be seen in Fig. 4.

2.1.4 Interpolation Methods

Interpolation of data sets has been carried out using arithmetic averaging and geo-

metric averaging. For arithmetic averaging, we interpolate N data sets of velocity

magnitudes vi to obtain the interpolated velocity magnitude vint using
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vint =
N∑

i=0

αivi , where
N∑

i=0

αi = 1. (4)

Similarly, when using geometric averaging, the interpolated velocity magnitudes

are given by

vint =
N∏

i=0

αivi , where
N∏

i=0

αi = 1. (5)

2.1.5 Error Quantification

To quantify the accuracy of the interpolation in each case, a squared error parameter

∆ will be calculated for each cell within the domain (of total volume V ) using the

formula

∆ =

∫
V
(vint − vtarg)

2 dV∫
V
v2targ dV

, (6)

where vtarg denotes the velocity magnitude values in the target data set. In the

case of a uniformly distributed domain, this effectively reduces to the square of the

error in a given cell divided by the target value for that cell. The average percentage

error for the resulting array will also be used, as this is a good metric for intuitive

analysis of the accuracy of the result. The percentage error from the target will be

shown for each cell in the resulting array, as well as an overall average percentage

error for the full domain for quick comparisons between results. To calculate this

value, after the percentage difference from the target array value is calculated for

every cell in the result array, the percentages are averaged for the full data set to
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return a single percentage value for the error.

2.2 Investigation Results

Firstly the Radon-CDT framework was used to interpolate velocity field data sets

with two propellers of identical radius, with differing separations between the pro-

pellers. Similarly, the framework is then used to carry out similar interpolation on

varying propeller radii, with constant separation between propellers. Finally, the

Radon-CDT is used to estimate flows where the separation of propellers and the size

of the propellers both vary between data sets. An example of separation, radius and

combined interpolation between two propeller data sets can be seen in Figures 5 and

6, Figures 7 and 8, and Figures 9 and 10 respectively. Note that when referring to

the domain, this is the box defined previously in §3.5 (see Figure 2). In the results,

we will use the notation [a1, a2, a3] for demonstrating the separations between pro-

pellers, or radii of propellers used in the interpolation (all values given in meters).

a1 and a3 are the parameters of the two data sets used for the input of the interpola-

tion method, with a2 being the interpolated (and hence target) parameter. Whether

these parameters refer to separation or radius will be made clear.

2.2.1 Separation Interpolation

Interpolation between data sets where identical propellers are separated by differing

distances was carried out in three different cases, the results of which are seen in

Table 1. For the cases with propeller radius 0.50, the error for the case with propellers

closer together has a lower value, signifying this interpolation result is more accurate
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Propeller Radius Propeller Separations Arithmetic Error Geometric Error

0.50
[1.00, 1.25, 1.50] 4.81× 10−3 / 1.83% 4.81× 10−3 / 1.83%

[1.00, 1.50, 2.00] 2.28× 10−2 / 6.26% 2.26× 10−2 / 6.27%

0.75 [1.00, 1.50, 2.00] 6.70× 10−3 / 4.40% 6.70× 10−3 / 3.39%

Table 1: Error values for separation interpolation between propeller data sets of
constant radius. Both arithmetic and geometric averaging interpolation with equal
weighting (αi = 0.50) have been used and the errors for each method are shown.
The error values shown are: integrated error values / average percentage errors over
the whole domain (both to 3 s.f.).

than the case with propellers further apart. Comparing this with the case with the

same separations but a radius of 0.75, we note that the case with a large propeller

radius has a lower error. Finally, not just for separation interpolation, but indeed for

all three interpolation tests in this report, there is very little difference in the error

of the result when using arithmetic and geometric averaging.

2.2.2 Radius Interpolation

The results for interpolation using a constant propeller separation and differing pro-

peller radius can be seen in Table 2. For each constant separation, the cases with

the largest propeller radii had the lowest error, however as seen in the separation

2.00 cases, there is no trend between error and propeller radius.

2.2.3 Radius-Separation Interpolation

The results for interpolation involving varying separation and radius are found in

Table 3. For this combined interpolation, there is a small difference in the errors

favouring the geometric method. This differs by a small amount when comparing this

12
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Propeller Separation Propeller Radii Arithmetic Error Geometric Error

1.50
[0.50, 0.75, 1.00] 9.68× 10−3 / 4.95% 9.65× 10−3 / 4.94%

[0.75, 1.00, 1.50] 5.69× 10−3 / 3.73% 5.65× 10−3 / 3.73%

2.00

[0.50, 0.75, 1.00] 6.21× 10−3 / 5.17% 6.20× 10−3 / 5.17%

[0.75, 1.00, 1.25] 2.59× 10−3 / 2.42% 2.57× 10−3 / 2.41%

[1.00, 1.25, 1.50] 3.04× 10−3 / 3.42% 3.03× 10−3 / 3.42%

[1.25, 1.50, 1.75] 6.96× 10−4 / 1.53% 6.89× 10−3 / 1.52%

Table 2: Error values for radius interpolation between propeller data sets of con-
stant separation. Both arithmetic and geometric averaging interpolation with equal
weighting (αi = 0.50) have been used and the errors for each method are shown.
The error values shown are: integrated error values / average percentage error over
the whole domain (both to 3 s.f.).

to the previous results for separation and radius interpolation alone. This difference

in error is large enough to be considered as significant.

2.2.4 Interpolation Parameter

Parameter sweeps for the interpolation weighting parameter, α were performed to

obtain an estimate for the optimal weighting in each of the cases. An example of

this for the two-propeller interpolation cases can be seen in Figure 11. From these

plots we can infer that there is little difference in the results for two-propeller data

sets when using arithmetic or geometric averaging for the interpolation, at all values

of α. The optimal value of α varies slightly, from α = 0.5 (equal weighting) for

separation interpolation, to α = 0.40 − 0.45 and α = 0.35 − 0.40, for radius and

combined radius-separation interpolation respectively.
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Propeller Separations Propeller Radii Arithmetic Error Geometric Error

[1.00, 2.00, 3.00]

[0.50, 0.75, 1.00] 2.72× 10−2 / 9.46% 2.72× 10−2 / 9.46%

[0.75, 1.25, 1.75] 5.41× 10−3 / 5.10% 5.34× 10−3 / 5.04%

[0.50, 1.25, 2.00] 2.77× 10−2 / 9.52% 2.75× 10−2 / 9.38%

[1.00, 1.50, 2.00]
[0.50, 0.75, 1.00] 1.44× 10−2 / 7.25% 1.43× 10−2 / 7.23%

[0.75, 1.00, 1.25] 4.47× 10−3 / 4.02% 4.42× 10−3 / 3.98%

Table 3: Error values for radius-separation interpolation between propeller data
sets. Both arithmetic and geometric averaging interpolation with equal weighting
(αi = 0.50) have been used and the errors for each method are shown. The error
values shown are: integrated error value / average percentage error over the whole
domain (both to 3 s.f.).

2.3 Brief Discussion of Results

Visually, the results of the Radon-CDT interpolation produce a very similar profile

to the target image for separation interpolation (see Figure 5 - 6) and radius interpo-

lation (Figure 7 - 8). For separation interpolation, the correct shape for the propeller

layout and resulting wake is visible, as is demonstrated by the low error values in

the wake and around the propellers (Figure 5/6c). A high amount of error (approx-

imately 120%) can be seen in a small region between the propellers, although this is

an area of relatively low velocity compared to the wake values and so the absolute

difference in values here is not the largest in the domain (see Figure 5/6d). Radius

interpolation delivers similar results around the propellers, where there is a larger

peak area of error (see Figure 78c), however, the percentage error does not peak at

such a high value as the previous case (peaking at around 40% for this case). The

error in the wake for radius interpolation is similar to the error seen for separation

interpolation - the percentage error is found to be around 10-40% throughout the

14
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Figure 5: Example xz-plane slice of velocity magnitude through the centre of the
domain for separation interpolation [1.00, 1.25, 1.50]. (a) Radon-CDT interpolated
slice, (b) Target slice, (c) Percentage error between each cell of (a) and (b), (d)
Absolute value difference between each cell of (a) and (b). Propeller radius = 0.50,
α = [0.50, 0.50]

Figure 6: Example xz-plane slice of velocity magnitude through the centre of the
domain for separation interpolation [1.00, 1.50, 2.00]. (a) Radon-CDT interpolated
slice, (b) Target slice, (c) Percentage error between each cell of (a) and (b), (d)
Absolute value difference between each cell of (a) and (b). Propeller radius = 0.50,
α = [0.50, 0.50]
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wake - although it is distributed differently in each case. For both interpolation

methods, the shape of the flows is visually representative of the target but differs

with numerical value. This leads us to believe that the error in the numerical val-

ues for each cell arises from the scaling applied after the Radon-CDT method, to

return the velocity values to their original ranges, rather than from the Radon-CDT

method itself, which does not depend on the magnitude of array values but the rel-

ative difference between these values. Therefore, focusing on how to better average

these magnitudes for scaling may prove beneficial to the accuracy of the results in

the future.

Figure 7: Example xz-plane slice of velocity magnitude through the centre of the
domain for radius interpolation [1.25, 1.50, 1.75]. (a) Radon-CDT interpolated slice,
(b) Target slice, (c) Percentage error between each cell of (a) and (b), (d) Absolute
value difference between each cell of (a) and (b). Propeller separation = 2.00, α =
[0.500.50]

For the combined interpolation case, the shape of the propellers and resulting

wake are not accurately estimated by the Radon-CDT method for the cases where the

propeller wakes do not overlap (Figure 10). The result is more accurate visually for
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Figure 8: Example xz-plane slice of velocity magnitude through the centre of the
domain for radius interpolation [0.50, 0.75, 1.00]. (a) Radon-CDT interpolated slice,
(b) Target slice, (c) Percentage error between each cell of (a) and (b), (d) Absolute
value difference between each cell of (a) and (b). Propeller separation = 2.00, α =
[0.50, 0.50]

the overlapping case (Figure 9), but is still not fully capturing the correct morphology

of the target flow. However, in terms of error values, we should note that there

appears to be no trend between whether the wakes overlap and the numerical error,

this is also the case with radius interpolation. This could also be investigated for

separation interpolation, but as of yet this has not been tested. It is particularly

clear for combined interpolation that the estimated array struggles to capture the

combined shape of the input arrays. In Figures 9a and 10a there are clearly areas

surrounding the ‘strong’ wake where the original input data are still visible - the

method has failed to completely combine the inputs into the correct size ‘strong’

wake seen in the target images. This is most obvious in the case where the wakes of

the target are not overlapping (Figure 10). This is unlikely down to the interpolation

weighting, as shifting the weighting towards the smaller propeller input will remove
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this larger propeller ‘shadow’, but further reinforce the wakes that are already too

small when compared to the target wakes. We can also see from Figure 11 that the

interpolation parameter does not significantly reduce the error from the case with

α = 0.5 shown, and in fact, increases when the interpolation is weighted more heavily

in favour of the smaller propeller data set (larger α in the plots). A more thorough

investigation of the Radon-CDT interpolation is needed to overcome this, which will

be the focus of future work. It is also possible that using reduced-order modelling will

eliminate this problem of diffuse values, through having less complicated morphology

in the arrays.

Figure 9: Example xz-plane slice of velocity magnitude through the centre of the
domain for combined separation-radius interpolation with data sets of propeller sep-
aration/radius [1.00/0.75, 1.50/1.00, 2.00/1.25]. (a) Radon-CDT interpolated slice,
(b) Target slice, (c) Percentage error between each cell of (a) and (b), (d) Absolute
value difference between each cell of (a) and (b). α = [0.50, 0.50]

The initial results presented here are promising and confirm the further investiga-

tion of applying the novel Radon-CDT transform to data interpolation for distributed

propeller layouts is worthwhile. Preliminary tests using 2D Radon-CDT on data sets

18
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Figure 10: Example xz-plane slice of velocity magnitude through the centre of the
domain for combined separation-radius interpolation with data sets of propeller sep-
aration/radius [1.00/0.50, 2.00/0.75, 3.00/1.00]. (a) Radon-CDT interpolated slice,
(b) Target slice, (c) Percentage error between each cell of (a) and (b), (d) Absolute
value difference between each cell of (a) and (b). α = [0.50, 0.50]

(a) (b) (c)

Figure 11: Integrated error in the velocity magnitude ∆ for interpolation of two-
propeller data sets, both arithmetic and geometric averaging, over a range of inter-
polation parameter α values for the first input data set (the second input is weighted
by 1 − α). (a) Propeller separation interpolation, separation distances [1.00, 1.25,
1.50], for a propeller radius of 0.50. (b) Propeller radius interpolation, propeller radii
[0.75, 1.00, 1.25], for a propeller separation of 1.50. (c) Combined radius-separation
interpolation, separations [1.00, 2.00, 3.00], radii [0.75, 1.25, 1.75] respectively.
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have demonstrated that the Radon-CDT space manipulation is a useful tool for in-

terpolation of separated-propeller data sets, allowing the merging of flows without

duplication of features, in contrast to physical space and other transform spaces.

Results from the interpolation of raw data are promising for future work where these

methods will be applied to reduced-order models, in which the features of each data

set will be of lower complexity, with a strong possibility of producing more accurate

results.

3 Published Work

The following section contains the work submitted for publication. The paper ap-

pears here in the submitted format with no changes, as found in the public do-

main [10].
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1 Introduction

The importance of modelling advective-dominant flows accurately, and efficiently, is incorporated within
a multitude of scientific fields of study. Examples include the aviation industry, both traditional com-
bustion and newly emerging distributed electric propulsion (DEP) for electrical aircraft [1, 2, 3]. Using
a configuration of electric propellers to provide propulsion to the aircraft, as opposed to the typical
combustion propellers in use today, allowing more flexibility in aircraft design in comparison. In both
cases highly turbulent, or advective-dominant, flows are generated by said propellers; therefore, requir-
ing appropriate modelling. Of particular importance to aviation, and especially DEP, has recently been
noise pollution [4, 5]. With aims to reduce the aeroacoustics generated by said propellers; both near-field
where passengers are located, and far-field such as public on the ground. Again, this requires appropriate
models of the aircraft’s flow to decipher the sound frequencies produced. Other examples of advective-
dominant flow presence are the accretion disks of energy formed by black holes and certain stars [6, 7];
aerodynamically generated noise, i.e. aeraucostics, of helicopter rotors [8]; similarly, the near-field aero-
dynamics of wind turbines, close to their blades, within wind energy [9]; and the field of turbulent flows,
advective-dominance being a key contributing factor [10, 11, 12].

The common interest in all these problems is the modelling of highly complex non-linear advective-
dominant flows, with aims at being able to predict a variety of flows; considering variations in the initial,
or dynamic, geometrical parameters of the given flow. However, due to the severe non-linearity of the
problem, this can be a demanding task to accomplish. Since flow variations cannot be linearly separated,
predicting ’interim’ variations – those between two solved variational flows – via physical interpolation
of the solved flows often yields unsatisfactory results. What’s more the high-dimensionality poses a
demanding computational task, even when attempting other forms of predictive interpolation, forming
significantly large data arrays to handle. As such, results of solving the flows in their full-dimensional form
are often slow and computationally inefficient. An established methodology to combat this computational
issue, producing order-reduced flows of lower dimension, is reduced order modelling (ROM) [13, 14], or,
model order reduction.

ROM is widely-used in computational science and engineering applications. It plays a key role in
applications that require simulating systems for many scenarios with different parameters efficiently.
Example applications are system control [15], uncertainty quantification [16] and optimal system design
[17]. With reduced order modelling of a system, the set of differential equations – which describe the
physical system we are interested in – are solved numerically in low-dimensional reduced spaces. This is
in contrast to full order models that are formulated in the full high-dimensional space, often solved with
finite element or volume methods. The reduced space is constructed from data in an ‘offline’ phase and
is then applied in an ‘online’ phase, returning an approximate solution typically in a far shorter time
than solving for the full, non-reduced, model. This greatly increases the speed at which many different
parameters can be tested and results returned. However for advection-dominated phenomena, a keen
concern in the reduced order modelling community of fluid dynamics, an issue arises. This is because
breaking the Kolmogorov n-width barrier in problems that are difficult to compress by linear reduced
order modelling strategies remains a particularly difficult problem to solve [18, 19]. Advection-dominated
problems exhibit a slow decay in Kolmogorov n-width, thus rendering the reduced order model (ROM)
construction inefficient [20]. Current approaches to overcome this problem include the use of nonlinear
compression strategies (eg. autoencoders, convolutional autoencoders) [21, 22], piecewise linear subspaces
(involving clustering into the parameter space or solution space) [23] and nonlinear transformation of the
solution manifold in order to then apply standard compression strategies. This last approach can further
be divided into a few distinct approaches where the transformation from the physical problem is known
[24], where the transformation is computed by solving an optimal transport problem [25] and finally
where the transformation is learnt with a neural network [26].

Instead, our approach turns towards the conjunction of two transformations: the Radon transform,
and the recent cumulative distribution transform (CDT) [27]. Transforming high-dimensional ’signals’ e.g.
a travelling wave, to a series of one-dimensional ones; finally represented as one-dimensional probability
density functions in the new RCDT space. Through the conjunction of these two transforms, particularly
CDT due to its non-linear form, flows become linearly separable in RCDT space. Enabling typical ROM
methods, such as proper orthogonal decomposition (POD), to be used in the transform space; therefore,
forming a reduced-order transform space which can be inverted. Finally arriving at a reduced-order,
i.e. lower dimensional, space of the original. With better computation efficiency over the full-order
model when solving or predicting flows. Furthermore, since flows become separable in the RCDT space,
interpolation can be done through standard approaches, such as linear interpolation, to arrive at predicted
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flows when done within the RCDT space.
In this work we utilise the unique properties of the RCDT to capture geometric and spatial variations

within a parameterised input and use this to produce an approximate solution for system parameters
in a reduced order modelling methodology. Initially, we investigate the properties of the RCDT with
simplified test cases to gauge the strengths and weaknesses of the methodology for potential use in the
ROM and CFD communities. Later the RCDT is applied to a ROM workflow, following proper orthog-
onal decomposition (POD), and later tested on a number of computational fluid dynamics (CFD) data
sets. Verifying flow retention when transformed between spaces, alongside the accuracy of ROM’s flow
reconstruction at reduced order. We also give a preliminary study into the interpolation error introduced
in predicting flows; giving an initial qualitative gauge on RCDTs’ applicability to flow prediction via
interpolating known, i.e. solved, flows.

Both the implementation of the RCDT and ROM workflows have been written in Python 3.9.7.
Making use of two packages, PyTransKit [28] and EZyRB [29]; implementing the discretised form of
RCDT – with subsequent forward/inverse transforms – and reduce order modelling (ROM) functionality,
respectively. For the ROM side, i.e. EZyRB, model reduction is approached using proper orthogonal
decomposition (POD), see [30, 31], for example, in applying EZyRB towards shape optimization problems.
Specifically the singular value decomposition (SVD) – discussed more in §2.4 – is used, as a way to
determine the modes of POD for the order-reduced model. SVD is not the only way to compute the
POD, though, an alternative approach is given by the method of snapshots [10, 32]. Three distinct
workflows have been implemented: performing RCDT upon a single snapshot image/flow, transforming
then subsequently inverting the image to observe intrinsic error induced by the non-linear transform; the
RCDT-POD reconstruction/projection error to evaluate the effect of the non-linear transformation in
the POD models; and, the complete RCDT-POD ROM workflow on a series of snapshots of a flow at
separate time points.

To analyse RCDT, POD, and RCDT-POD ROM’s applicability towards modelling advective-dominant
flows we consider the relative errors introduced by these transformations. Performing a number of test
cases to observe each of their magnitudes. These errors are: the intrinsic error given off by RCDT,
due to being a non-linear transformation; the reconstruction/projection error of RCDT-POD, influenced
by the number of POD modes, when reconstructing the flow after order-reduction; and RCDT-POD
ROM interpolation error, introduced from predicting between ”known” flow configurations to gauge the
capability of predicting, via interpolation in their respective space, along a given parameter e.g., time,
distance, ’thickness’, etc.

To observe and test the respective errors summarised above we perform a multitude of image and
flow case studies. These can be found in §3.2 through 4.2.1. In chronological order of appearance these
are: fig. 3 of a unit circle image, with circle and background defined as one and zero or vice versa,
to observe intrinsic error in the RCDT workflow; fig. 4, a circular ring with sharp and thin width, to
observe the same error as above; fig. 5, likewise looking at intrinsic error, but instead for a normal
Gaussian distributions and its ’inverted’ twin, construable as an extreme case of a smoothed boundary
and subsequent observance in potential error-reduction; table 1 is a more quantitative measurement
of the error-reduction from smoothed boundaries, given as the average relative L2-norm calculated in
physical space for both smoothed and sharp cases; figs. 6 and 7 contains, respectively, a pair of input
twin jet flow images in differing separation widths and their interpolation in RCDT space compared to
the physical, with the target jet ’configuration’ alongside both image pairs, and intention as an initial test
into the interpolation error introduced when ’predicting’ flows whilst in RCDT space; fig. 8 is an inputted
random-travelling Gaussian distribution, computed into RCDT space and order-reduced using POD’s five
highest value ’modes’, compared alongside ’standard’ POD in physical space, where the difference is taken
against the input to compare reconstructive error of both, while fig. 9 provides insight into the efficiency
of decomposition of POD in RCDT space, compared against Fourier and in the physical; in figs. 11 and 12
we input a multi-phase wave – using now high-resolution computational fluid dynamic (CFD) data – into
the same RCDT-POD workflow as before, done twice for the five and twenty highest ’modes’ respectively,
to determine if mitigation of reconstructive error by considering more ’modes’ is still retained in RCDT
space, with fig. 13 comparing RCDT-POD against physical and Fourier decomposition via singular value
ratios; same goes for figs. 16 to 18 for CFD data of flow around an airfoil, with the same intention as
the previous case and again for the top five and twenty modes, next to a singular value ratio comparison
against Fourier and physical; finally, we have figs. 14 and 19, our final cases, extending the initial test
study of interpolation error in figs. 6 and 7. Here instead performing interpolation in RCDT-POD space
for the same multi-phase and airfoil CFD before, respectively. The desire being to gauge the effectiveness
of the RCDT-POD beneficial predictive capabilities via interpolation.
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The results of our analysis show that RCDT, alongside POD, is a promising novel approach for the
model order reduction of advective-dominant flows and subsequent predictive interpolation. Giving good
computational efficiency to even the more challenging cases containing highly complex flow patterns,
while retaining a good degree of accuracy. Additionally our preliminary interpolation error results signify
that, while the intrinsic and reconstructive errors hold importance, the interpolation error when predicting
flows is order magnitudes larger. Making them negligible in comparison and a great deal easier to remedy
via post-processing options.

This report is organised as follows: RCDT methodology is introduced in §2; before numerical imple-
mentation of the transform is investigated with simple test cases in §3; RCDT is afterwards applied in
the context of ROM for CFD data in §4; concluding the report with future directions of the work in §5.

2 Methodology

Within §2 we provide definitions of the Radon and cumulative distribution (CDT) transformations, given
in §2.1 and §2.2. Reducing high-dimensional signals to a series of one-dimensional ones and interpreting
1-D signals as probability density functions respectively. The combined RCDT is later defined in §2.3.
Finally, the proper orthogonal decomposition (POD) method of model order reduction is defined in §2.4,
using the singular value decomposition.

2.1 Radon Transform

The Radon transform is a widely used image transform in fields such as medical imaging and optics. Its
inverse transform (iRadon) can be used to reconstruct images from probe-measured distributions, see
[33, 34]. The Radon transform Rf : Sn−1 × R→ R of a function f : Rn → R can be defined as

Rf(ξ, p) =
∫

x·ξ=p

f(x)dm(x), (1)

where dm is the Euclidean measure over the hyperplane. For any fixed pair (ξ, p) ∈ Sn−1 × R the set
{x ∈ Rn|p = x · ξ} defines a hyperplane. Therefore, the transform is an integration of the function over
this hyperplane. In R2, the Radon transform integrates a function f(x, y) over a series of lines and can
be written explicitly as

Rf(θ, s) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(s− x cos θ − y sin θ) dx dy. (2)

Here s denotes the oriented distance of the line lθ,s to the origin, and θ is the angle as defined in polar
coordinates. Here θ lies in the range 0 ≤ θ < π due to the symmetry of line integrals for a 2D function
in polar coordinates.

2.2 Cumulative Distribution Transform

The Cumulative Distribution Transform (CDT), such as in [27], is a novel 1D signal transform defined
for signals that can be interpreted as 1-D probability density functions. The CDT has been developed to
aid in object recognition problems, rendering certain types of classification problems linearly separable
in the transform space (data classification examples include hand gestures, accelerometer data [27], wave
signals [35] and optimal mass transport signal processing, see [36]). The CDT has been developed from
work on linear optimal transport methods; in contrast to linear transform methods such as Fourier
and Wavelet, which consider intensity variation at fixed coordinates, the CDT considers the location of
intensity variations within a signal.

Say we have an input signal f(x) and a reference signal r(x) that are both positive and defined on
[x1, x2], which are then normalised such that

∫ x2

x1

f(x) dx =

∫ x2

x1

r(x) dx = 1. (3)

The CDT of f(x) with respect to the reference function r(x) is defined as the strictly increasing function

f̂(x), which satisfies the relation:

4



∫ f̂(x)

x1

f(x′) dx′ =
∫ x

x1

r(x′) dx′. (4)

The inverse of the CDT (iCDT) is given by

f(x) = r(f̂−1(x))
d

dx
f̂−1(x), (5)

where f̂−1(f̂(x)) = x. The function can then be de-normalised to return to the original value range.
The CDT is an invertible nonlinear signal transform, transforming from the space of smooth probability
densities to the space of differentiable functions. This allows the CDT framework to consider both the
pixel intensity variations and the locations of the intensity variation within the signal [27]. In contrast,
linear signal transforms (such as the Fourier transform) lack the ability to tie intensity variations to
locations within the signal and deal with intensity variations at fixed points. A consequence, however, of
being a nonlinear signal transform is the subsequent intrinsic error left after inverting back to physical
space. This will be looked into more later on.

2.3 Radon Cumulative Distribution Transform

The Radon Cumulative Distribution Transform (RCDT) [37, 38, 39] is a combination of the cumulative
distribution transform (CDT) and the Radon transform. The Radon transform is used to reduce high-
dimensional signals down to a series of 1-D signals, these are then passed into the CDT and interpreted
as probability density functions. This allows us to expand the use of one-dimensional CDT to higher
dimensions, such as two or three-dimensional flow velocity data. In this particular work, we utilise the
RCDT to transform 2-D data in the form of uniformly-spaced grids, which can be interpreted as images.
For 3-D data sets we have chosen to take 2-D slices along one dimension of the data and feed these into
the 2-D RCDT procedure, rather than using a 3-D Radon transform algorithm. This is due to the large
amount of artefacts introduced to the data by the 3-D Radon and subsequent inverse Radon transform
algorithms.

The RCDT f̃ is obtained by applying the CDT along each projection angle in the prior Radon
transform, which results in

∫ f̃(s,θ)

s1

Rf(s′, θ) ds′ =
∫ s

s1

Rr(s′, θ) ds′ (6)

for the 2D case where R denotes the Radon transform.
For the interested reader, details of the computational algorithms for the discrete versions of the CDT

and combined RCDT that are used here are laid out in [27] and [37] respectively. In previous applications
within image processing, the RCDT has been shown to capture scaling and transport behaviours well,
allowing interpolation between geometrical features within data to great success (note that this feature
arises within the CDT rather than Radon transform). For example, the RCDT was used for interpolation
between pictures of human faces [37] and used to increase efficiency of image classification with neural
networks [38]. In this work we make use of the PyTransKit package to carry out the RCDT, which has
been developed by Rubaiyat et al. [28].

A caveat, however, that comes from the non-linearity of RCDT is the introduction of intrinsic error
following the forward and inverse transforms between original and RCDT space. Later in §3 this error
is visible on image and flow boundaries when performing RCDT, and inverse; comparing to the original
image or flow.

2.4 Reduced Order Modelling with Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is the most widely used technique to compress the solution
manifold of a variety of problems like the unsteady Navier-Stokes equations, and has been applied ubiq-
uitously in ROM research during the past decades. The method dates back to the work of Pearson [40],
with POD first being applied to turbulent flows by Lumley in 1967 [41]. POD is closely related to meth-
ods in other areas of mathematics e.g., principal component analysis (PCA) in statistical analysis [42]
and the Karhunen–Loève expansion in stochastic modelling [43]. POD is a technique for computing an
orthonormal reduced basis for a given set of experimental, theoretical or computational data. Specifically,
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the POD basis is obtained performing the singular value decomposition of the snapshots’ matrix, which
is assembled with sampled data at distinct time instances (‘snapshots’). The computation is described
for the example solution u(x, t), for x ∈ R3 and 0 ≤ t ≤ T . Decomposing into a time-averaged base
solution and sum of POD modes taken, along with their time-dependent coefficients. The numerical
implementation for the computation of the POD in this work is handled by the python package EZyRB
[29].

SVD is a way to obtain POD of a dynamical system when given a sequence of data snapshots at
various time instances. First, we seek an approximation to the solution u(x, t) by the sum of a base
stationary flow ū and a linear combination of spatial modes Ψi(x) and temporal coefficients ai(t) for a
chosen i = 1, . . . , Nr. That is,

u(x, t) ≈ ur(x, t) = ū(x) +

Nr∑

i=1

ai(t)Ψi(x). (7)

Here, ū(x) =
∫ T

0
u(x, t)dt is the time-averaged base stationary flow for Nr ≥ 1 modes. This is

reasonable for a fluid flow that can be approximated as a stochastic and stationary process in time and
ergodic. The spatial modes are orthogonal, that is to say ⟨Ψi,Ψj⟩ = 0 for i ̸= j where ⟨·, ·⟩ denotes the
L2 inner product. The time coefficients can be calculated using various methods, the most common being
via Galerkin projection of the original system onto the spatial modes, where the resulting ROM is then
termed a Galerkin ROM or POD-Galerkin ROM [44, 45]. Other methods for developing a ROM from
POD are POD with interpolation (PODI), POD with Gaussian process regression (POD-GPR) and POD
with neural networks (POD-NN). The first approach falls into the category of intrusive ROMs while the
second one falls into the category of non-intrusive ROMs [46]. Intrusive methods exploit the discretised
equations and project them onto the space spanned by the POD modes to obtain a lower dimensional
system of ODEs. This technique, exploiting the governing equations, is naturally phyiscs-based and,
usually, has better extrapolation properties. However, it requires a larger implementation effort and
needs access to the discretised differential operators assembled by the full order model (hence the name
intrusive). Moreover, in the case of non-linear/non-affine problems, the speed-up that can be achieved is
usually smaller with respect to non-intrusive approaches [47]. On the other hand, non-intrusive methods
are purely data-driven and can guarantee a speed-up also in non-linear/non-affine cases. In this article
we will focus our attention only on non-intrusive methods. The modes Ψi(x) of the decomposition are
calculated from snapshots of the data. The data snapshots are taken as state solutions of the system;
computed at different points in time, or at different parameter values, denoted by x1,x2, ...,xn where
xj = x(tj ,pj) ∈ RN denotes the jth snapshot at time tj and parameter values pj , with n being the total
number of snapshots. Define a snapshot matrixX ∈ RN×n constructed with columns as each snapshot xj .
The singular value decomposition – the generalised form of eigen-decomposition for non-square matrices
– of the snapshot matrix X is then,

X = UΣVT =
r∑

j=1

σjujv
T
j , (8)

where the columns of U ∈ RN×n and V ∈ Rn×N are the left (uj) and right (vj) singular vectors of
matrix X respectively. The columns of U and V are orthonormal, so they satisfy UTU = VTV = I, I
being the identity matrix. The singular values of X, σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0, are found along the diagonal
of Σ, such that Σ ∈ Rn×n = diag(σ1, σ2, ..., σn). The POD basis vectors can then be chosen as the r
largest singular values and their corresponding left singular vectors in U, uj . The r singular values are
generally chosen based on the ratio of the ‘energy’ contained in the r modes and the total ‘energy’ in all
n modes, that is the ratio (or tolerance, κ) given by,

∑r
i=1 σ

2
i∑n

i=1 σ
2
i

= κ. (9)

The POD can be applied to both the time domain in time-dependent problems, or to the parameter
domain in parametric flow problems, in both cases, the method remains the same and the snapshots are
sampled in either time or parameter space.
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An obvious consequence of taking the reduced r modes is the subsequent lost ’energy’ of the n − r
modes neglected for modelling efficiency. This comes in the form of reconstruction error in the geometrical
shape of the POD results; in the flow or moving object geometry. Taking a sufficiently large number of
modes reconciles these errors and will be observable in the test cases of §4.

3 RCDT implementation and applications

This section focuses on the algorithmic procedure of RCDT and on testing its consistency in image
capture and interpolation. The implemented steps of the RCDT process have been written using Python
3.9.7. Construction of the discrete RCDT image is done via use of the package PyTransKit [28], used
for example in [38], containing the RCDT class for forward and inverse transforms of two-dimensional
images, defined as a data array, assuming the image is normalised.

To test RCDT consistency, we present some initial test cases as image-like inputs to the RCDT
algorithm. These are transformed into RCDT space through the numerical algorithm, a discretisation
of the continuous RCDT presented previously, before being inverse transformed back into the original
‘physical space’. Comparing the output image to the original input image then allows analysis of the
numerical RCDT algorithms consistency, identifying any error introduced in the procedure; allowing us
to observe the intrinsic error caused by RCDT. Knowledge of this error is necessary for later studies
involving reduced order modelling and predictive interpolation, so the intrinsic error from the RCDT
itself is already accounted for.

3.1 Numerical implementation

Here we provide the algorithmic steps implemented – see algorithm 1 – to analyse RCDTs’ capability
in retaining a single snapshot images’ geometrical shape, i.e. its consistency; observable by successive
forward and inverse RCDT on the given image. Comparing the outputted forward and inverse image with
the original displays the intrinsic error – a consequence of non-linear transformation – that we desire.
Finally, the average relative L2-norm error is computed as a scalar quantifier to help compare among
image cases; defined as,

e2 =
||x− x̃||
||x|| =

(∑
(xi − x̃i)

2
)1/2

(
∑

(x2
i ))

1/2
, (10)

where xi is the true cell value and x̃i is the approximated cell value at cell i.
Qualitative results, i.e. plots, allow observance of how RCDTs’ residual artefacts (intrinsic error)

distribute throughout the outputted image, while the L2-norm error lets us quickly identify image ’traits’,
for example smoothed image boundaries, which cause comparably better RCDT consistency than their
counterparts i.e., sharp boundaries.

Algorithm 1: Implemented pseudo-code algorithmic steps for RCDT of a given input image.

Data: Input image array K; CDT reference array B;
Result: Apply RCDT, followed by its inverse, on input K. Compare result with K to observe

RCDT consistency and error.
1 K̂ ← K ÷ ||K|| ; /*Normalise input image.*/

2 ℓ̂← [min(K̂), max(K̂)] ; /*Store limits of normalised image.*/

3 Rc ← RadonCDT() ; /*Create RadonCDT object from pytranskit package.*/

4 Rf
c ← Rc.forward([0, 1], B, ℓ̂, K̂) ; /*Perform forwards RCDT on K̂; inputs: reference

signal range; reference signal array; signal to transform range; signal to

transform.*/

5 Rr
c ← Rc.inverse(R

f
c , B, ℓ̂) ; /*Perform inverse RCDT (iRCDT) on Rf

c ; inputs: signal to

inverse; reference signal; inverse signal range.*/

6 Rr
c ← Rr

c × ||K|| ; /*De-normalise the outputted RCDT to iRCDT image, Rr
c.*/

7 γ ← ||Rr
c −K|| ÷ ||K|| ; /*Calculate relative L2-norm error*/

8 Plot ← K, Rr
c & K −Rr

c ; /*Plot input image; outputted RCDT to iRCDT image; give

comparison*/
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3.2 Algorithm verification

Here we present a selection of preliminary results focused on testing the consistency of the discrete RCDT
algorithm and the intrinsic error introduced. These test cases consist of simple images such as a circle,
fig. 3, a ring obtained from applying an edge filter to a circle, fig. 4, and a Gaussian function, fig. 5.
The domain in these images was chosen to be 0 values, with the features as 1 values, or in the case of
the the continuous functions, values between 0 and 1 (from here these images will be referred to as the
‘regular’ images). Tests were also performed when these test images were ‘inverted’. That is to say the
‘inverted’ image pixels had values of 1 − x where x is the original pixel value. In practice this leads
to the image features taking on a value of 0, whereas the background domain values are of value 1 (in
the following referred to as the ‘inverted’ images; for example, see fig. 3). For each test case the RCDT
was performed on the image, followed by the inverse RCDT (iRCDT) to return back to the physical
domain. The outputted image is then compared to the original input image; the difference between them
is calculated cell-wise by eq. (10); therefore, letting us observe any intrinsic error, or in other words
artefacts, of RCDT.

All test cases within this section of observing RCDT’s intrinsic error, i.e. image consistency, are
performed on a uniform two-dimensional grid of 250 by 250 pixels (px); ergo, 62500px total. The various
images used to test the intrinsic error are constructed as 250 by 250 data arrays, each element representing
a pixel and its ’intensity’ – e.g. flow velocity, or, an object – within the array.

Each shows some inconsistency in the RCDT, iRCDT procedure, as expected by a non-linear trans-
form. In the outputted images we observe an introduction of artefacts. In the circle test case seen in
fig. 3, the resulting image differs from the input around the edge of the circle. In particular, we observe
an undershoot and overshoot pattern, with the inner edge of the circle showing a slightly lower predicted
value and the outer edge showing higher. A similar effect is observed in the circle edge test image in fig. 4,
however the extent of the error appears more localised, possibly due to the small width of the feature in
the image.

In the Gaussian test case, fig. 5, the error around the edges of the Gaussian feature are similar
to the circle cases, but with additional over and undershooting inside the feature. Despite this extra
qualitative error, the quantitative error is actually an order of magnitude smaller than the circle test
cases. This under/overshoot is possibly being caused by the change of values in the image domain, with
a discontinuous and large value change being associated with a larger error, for example the error values
are much larger for the discontinuous circle test case compared to the continuous Gaussian test case.
This is also supported by the smoothed circle and smoothed edge test cases, seen in fig. 1 respectively. In
these cases the discontinuous edges of the features are smoothed out with a Gaussian filter, in order to
render the changes in the image continuous. We see that both the under/overshoot error magnitudes and
the overall image errors in these cases are of smaller magnitude than their discontinuous counterparts,
supporting the hypothesis that a smooth change in values is handled better by the transform and inverse
transform algorithms and results in a more consistent result.

In the Gaussian test case, fig. 5, the error around the edges of the Gaussian feature are similar
to the circle cases, but with additional over and undershooting inside the feature. Despite this extra
qualitative error, the quantitative error is actually an order of magnitude smaller than the circle test
cases. This under/overshoot is possibly being caused by the change of values in the image domain, with
a discontinuous and large value change being associated with a larger error, for example the error values
are much larger for the discontinuous circle test case compared to the continuous Gaussian test case. This
is also supported by the smoothed circle and smoothed edge test cases, seen in figs. 1 and 2 respectively.
In these cases the discontinuous edges of the features are smoothed out with a Gaussian filter, in order to
render the changes in the image continuous. We see that both the under/overshoot error magnitudes and
the overall image errors in these cases are of smaller magnitude than their discontinuous counterparts,
supporting the hypothesis that a smooth change in values is handled better by the transform and inverse
transform algorithms and results in a more consistent result.

In the inverted cases another unique artefact is seen at the corners of the resulting images. For
example, in fig. 3 there is a relatively large overshooting of the background value in the corners of the
image, extending partially along the edges of the image. This effect is exclusive to the inverted image
cases and is not seen at all in the regular images.

Upon further investigation it is hypothesised that these errors arise from the numerical implementation
of the CDT being used for the transformation, rather than from the Radon transform algorithm. This
was concluded after the images were transformed first into Radon space, this Radon space image was then
iRadon transformed and this result compared to the image after applying CDT-iCDT before iRadon once
again. The Radon-iRadon image was free of artefacts, whereas the RCDT-iRadonCDT image contained
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Figure 1: Left: input image. Centre: result of RCDT followed by iRCDT on input image. Right: difference
between stated input and result, and L2-norm error value.
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Figure 2: Left: input image. Centre: result of RCDT followed by iRCDT on input image. Right: difference
between stated input and result, and L2-norm error value.
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similar edge artefacting to shown in the examples discussed here. The result of the Radon space image
undergoing CDT-iCDT back to Radon space was also compared with the original Radon-transformed
image, where error in Radon space was introduced by the CDT procedure.

Figure 3: Left: input images of a circle defined by ones (top) or zeros (bottom) and vice versa for background.
Centre: result of RCDT followed by iRCDT on the input images. Right: difference between stated input images
and RCDT iRCDT results, and L2-norm errors.

The error values for all the RCDT test cases can be found in table 1. Notably the error for the
standard Gaussian case is an order of magnitude lower than all other examples tested, whereas the least
accurate reconstruction was in the circle edge case. Of our examples, the Gaussian case is the example
where the inputs to the CDT function from the Radon transform algorithm most resemble a well-defined,
smooth probability density function. Seeing as the CDT is defined from the space of smooth probability
density functions, it is natural that this example returns the most consistent result, compared to the
others where the input to the CDT are less well-defined or non-smooth.

From the features seen and errors encountered with these test examples, we can gain some insight as
to how useful the RCDT may be when applied to the area of CFD. Firstly, the fact that many examples
of CFD data will not exhibit sharp discontinuities is helpful for the RCDT, because although it does
deal with sharp boundaries, it is much less error-prone when used on smooth transitions and boundaries.
Another feature seen is the rounding of edges and addition of zero values along the non-zero borders of
the inverted images. This could lead to problems when applied to CFD data and must be accounted for,
if not resolved with a modified RCDT algorithm. This is only a problem when the boundary values are
non-zero, so in some cases e.g., interacting twin jet flows in fig. 7, this is not an issue.

3.3 Interpolation study

For studies of real-world applications ’controlled’ errors, like the intrinsic error of RCDT above, are an
acceptable compromise for the capability of interpolating highly nonlinear geometric flow features. A
crucial aspect for modelling a variety of singular and multiple flow configurations for various parameter
(spatial and transient) variations. This is in part due to how these ’controlled’ errors can be compensated
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Figure 4: Left: input images of a circular edge ring defined by ones (top) or zeros (bottom) and vice versa for
background. Centre: result of RCDT followed by iRCDT on the input images. Right: difference between stated
input images and RCDT iRCDT results, and L2-norm errors.

RCDT test cases L2-norm error

Circle 2.279× 10−1

Circle inverse 1.658× 10−1

Circle smoothed 1.322× 10−1

Circle smoothed inverse 1.618× 10−1

Circle edge 6.065× 10−1

Circle edge inverse 1.708× 10−1

Circle edge smoothed 2.356× 10−1

Circle edge smoothed inverse 1.624× 10−1

Gaussian 3.204× 10−2

Gaussian inverse 1.628× 10−1

Table 1: L2-norm error values for RCDT test cases. Quantitatively, errors for the inverted version of each case
fared better than their original counterparts, though marginally. Contrasting to the qualitative differences seen
in test case figures. Smoothed cases – of the originals – for the circle and circle edge also fared better by roughly
factors of a half and third, respectively.
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Figure 5: Left: input images of a normal Gaussian distribution function (top) ranging from 0 to 1, and vice
versa (bottom). Centre: result of RCDT followed by iRCDT on the input images. Right: difference between
stated input images and RCDT iRCDT results, and L2-norm errors.

13



for – or ultimately removed – in post-process. RCDTs intrinsic error is mostly observed around image and
flow boundaries (see figs. 3 and 4 and later on fig. 12) but still permits good image/flow capture. Same can
be said of the ’controlled’ POD reconstructive error mentioned in §2.4; analysed later in §4. Considering a
large number of spatial modes negates the error, but post-processing could again be utilised. Despite these
caveats of RCDT – and likewise ROM/POD – in introducing systematical errors, the novel capability of
interpolating nonlinear flow features makes it a small price to pay for such a valuable function.

What’s more our preliminary results of interpolating in-between two flow configurations, figs. 6 and 7,
suggest these ’controlled’ errors are likely negligible compared to error with respect to physical flow
interpolation. The figs. 6 and 7 are the result of two duo jet flow configurations, differing by the separation
width of the duo jets and subsequent intertwining flows; interpolated in-between to arrive at a desired
target flow image given in the right-side sub-figures of figs. 6 and 7. Interpolation is done in physical –
using POD mentioned in §2.4 – and RCDT space for comparison. The left and centre images of fig. 7 are
the resultant physical POD and RCDT interpolations respectively, showing clear failure of physical space
i.e., ’standard’, POD in interpolating; a stark to the results of RCDT space interpolation. The predicted
flow of RCDT, while having some over-shoot in inter-flow contact and dissipation, is a strikingly good
result, at least qualitatively shown here. Matching the desired target image with only some degree of
error, both intrinsic and interpolated, that appears to smooth the outer jet flow ’boundaries’, while the
inner ’boundary’ is sharpened.

Whilst only qualitatively shown for now, it seems interpolation error far over-shadows the intrinsic.
Making it negligible in comparison; much like the reconstruction error of POD/ROM, observed and tested
later in §4; determined by the number of spatial modes taken into account in model reduction. The more
modes the better POD is able to reconstruct the image, and so the less reconstruction error seen in the
output. It should be stated again these ’controlled’ errors can be removed in image post-processing; later
studies will utilise this to focus more on analysing the interpolation error briefly shown in fig. 7. With
the end goal of accurately predicting flows using our RCDT-POD ROM workflow for a large number of
parameter variations and flow configurations.

Figure 6: Input and target twin jet flow configuration images for differing separation widths. Left: Input image
1; Jets are close together; flows interact and merge close to sources. Centre: Input image 2; jet sources are
further separated; therefore, flows do not merge together. Right: Target image; a jet configuration in between
input images 1 & 2.

Figure 7: The resulting jet flow configuration images from interpolating the two input images in fig. 6. Left:
Interpolation in physical space; failure of standard POD. Centre: Interpolation in RCDT space; qualitatively
similar to target image, some over-shoot in inter-flow contact angle and smoothed jet boundaries. Right: Target
image.
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4 RCDT-POD for model order reduction

To gather an understanding of the reconstruction error introduced by the POD modes component of
our RCDT-POD workflow, we looks towards comparison against high-fidelity CFD simulated data in the
following subsections. The RCDT-POD procedure is compared against standard POD in physical space
and as such the aforementioned intrinsic error is present. To observe changes in the reconstructive error
of POD we make comparison with the original data for choices of r = 5 modes and r = 20 modes per
subsequent case. Apart from §4.1, an initial example where r = 5 modes almost perfectly constructs
the original image. In the following cases we construct the ROM using POD for the spatial mode
decomposition, and a Gaussian process regression (GPR) for the model prediction [48, 49].

It should be noted that from the following examples all but one, §4.1, use data from CFD simulations.
This coordinated data can directly be used for physical space ROM, however, the RCDT requires a
uniformly-spaced grid (image-like data) for the input. This therefore requires the original CFD data
to be uniformly interpolated across the domain. This was done using the scipy interpolation function
griddata. Consequently, the RCDT-POD result is compared to the uniform grid input data, and not the
original coordinated CFD data.

For implementation of proper orthogonal decomposition (POD) and reduced order modelling (ROM)
we use the EZyRB package [29]. See algorithm 2 for the algorithmic procedure for the RCDT-POD ROM
workflow of a given Ki input images at snapshot times ti for i = 0, . . . , Nt and Nt ≥ 0. For construction
of the ROMs we employ POD for snapshot decomposition using a reduced P modes, given some input
training data. Then, either the Radial Basis Function (RBF) method, using default arguments where
smooth and shape parameters are ignored, or Gaussian process regression (GPR) is used for the snapshot
approximation, i.e. interpolation, via the reduced order model constructed by POD.

For simplicity the RCDT component of algorithm 2 is neglected. Instead delegated to being algorithm
1’s outputted RCDT, followed by iRCDT, image of the given input snapshot image and reference. Outputs
are similar to before, calculating the averaged relative L2-norm error per snapshot image and plotting
the result of RCDT-POD ROM and difference to the given input snapshot images. Additional outputs
unlike before include the mean L2-norm error over all snapshots, quantifying RCDT-POD ROMs’ overall
accuracy; the plotted arranged singular values of POD, discussed in §2.4, divided by the largest singular
value and compared against fast fourier transform (FFT) and standard POD on the physical space.

The next few sections are dedicated to employing our RCDT-POD workflow to ROMs for a number of
real-world applications and results within literature. This is to gauge RCDT-POD ROMs’ capabilities in
handling complex high-fidelity computational flow dynamics (CFD) data, using standard reduced order
modelling on the physical space as a comparative measure. Furthermore, by comparing outputs with
differing number of POD modes taken we can observe the reconstructive error of ROM; reduced by
taking a large number of modes as discussed beforehand.

4.1 Gaussian pulse

In fig. 8 we reproduce the results for a randomly-travelling Gaussian pulse in a 2D domain, originally
carried out by Ren et al [39]. In this case we create a domain of size 100 × 100 cells and then add a
randomly-travelling Gaussian pulse through the variation of the Gaussian mean (standard notation µ) in
the x and y directions for each time step. The Gaussian standard deviation σ is kept constant (in this
example we have used σx,y = 5.3) and the means µx,y are randomly chosen from the value range [10, 90].
The number of time steps used is 100.

In this example, we can clearly see that the RCDT-based POD far exceeds the accuracy of the physical
space-based POD, in fact almost perfectly replicating the original snapshot. In fig. 9 it is clear that the
number of POD modes required in RCDT space to accurately capture most of the snapshot energy is
very low, whereas for the physical space case the drop off in singular values in the POD decomposition is
very slow, and hence requires a very large amount of modes to capture the energy needed to reproduce
the snapshots accurately. This demonstrates the ability of the RCDT space to capture travelling wave
behaviour and linearise these features such that the POD procedure can remain efficient in decomposing
the problem, especially when compared to the physical space POD. Also note that for each individual
snapshot we see a similar error pattern to the Gaussian cases presented previously, so these POD results
are consistent with the error produced by the RCDT algorithm alone.

In fig. 9 the singular values of the POD decomposition (normalised by the first singular value) for the
Gaussian POD are compared. The same example constructed in Fourier space has also been included
for comparison here, as well as in future examples in this section. Singular values represent the amount
of ‘energy’ stored in each corresponding POD mode (ordered from largest singular value to smallest).
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Algorithm 2: Implemented algorithmic steps for a RCDT-POD workflow

Data: Input image arrays Ki; image snapshot time points ti for i = 0, . . . , Nt; CDT reference
image array B; snapshot target image index k; number of POD modes used P

Result: RCDT-POD prediction of input images Ki at snapshot time points ti; plots taken at
snapshot time index k i.e., at tk.

1 for i = 0 to Nt do
2 αi ← RCDT to iRCDT image of algorithm 1 (Rr

c) with inputs Ki & B;
3 end
4 POD ← POD(P ) /*Construct POD object for P modes */

5 for i = 0 to Nt do
6 ROMi ← ROM(αi,POD, •) /*Perform model reduction using POD and • = GPR, RBF

or Linear, for each αi */

7 end
8 s←POD().singular values() /*Get all P singular values of POD */

9 for i = 0 to Nt do
10 Ri ← ROMi.predict(i) /*Construct predictions of RCDT-POD at snapshot times */

11 RI
i ←RadonCDT().inverse(Ri, B, [0, 1]) /*Invert results Ri back to original space */

12 RI
i ← RI

i × ||Ki|| /*De-normalise */

13 Ei ← ||RI
i −Ki|| ÷ ||Ki|| /*Get relative L2-norm errors per snapshot */

14 if i = k then
15 Plot RI

i & Ki −RI
i /*Plot results at snapshot index k */

16 end

17 end
18 Ē ← mean(Ei) /*Calculate mean L2-norm error over all snapshots */

19 Plot singular values s ÷ by the first singular value

Therefore, a sharp decay in singular values corresponds to a larger proportion of the total energy of the
system captured by the first few POD modes, in turn allowing for a more accurate POD with fewer modes
needed to capture the behaviour in the system. In this example, we see that both the Fourier space and
physical space POD results in the first 20 POD mode singular values being of a similar magnitude. This
means that all of these POD modes contain a relatively large amount of the total energy of the system,
and hence we would need to include many of the modes in the POD construction to get an accurate
result. Conversely, in the case of POD in the RCDT space, we see a very sharp drop off in singular
values for the first 4 modes, as they contain the majority of the total energy of the system. As seen in
fig. 8, this results in an accurate POD using only the first 5 modes, whereas in physical space the POD
is completely inaccurate for the first 5 modes.

4.2 Multi-phase wave

The dataset for this example has been generated solving the unsteady Navier Stokes equations for two
incompressible, isothermal immiscible fluids. The domain is given by the rectangle Ω = [−2.5, 3.5] ×
[−0.5, 1.2] and the computational domain (see fig. 10) is obtained with a structured grid composed
by 250 × 75 hexahedral cells. The results are obtained using the interFoam solver developed in the
OpenFOAM finite volume library. For what concerns the velocity field we apply a uniform velocity
U = (0.25, 0)m/s on the left side of the domain, a noslip condition on the bottom of the domain, and a
zeroGradient (i.e. ∇U · n = 0) condition on the bottom and right side of the domain. For the pressure
field we used, a uniform totalPressure with p = 0kg/(ms2) to the bottom boundary, and a uniform
fixedFluxPressure with p = 0kg/(ms2) on other boundaries. The αw field, that varies between 0 and 1
and represents the fraction of volume of water in each cell, has a uniform condition αw = 0 on the bottom
boundary and a zeroGradient condition on the other boundaries. The properties of the two phases are
set as ρ1 = 103kg/m3, ν1 = 10−6m2/s, and ρ2 = 1kg/m3, ν2 = 1.48 · 10−5m2/s, where ρ1, ρ2 and ν1,
ν2 are the density and the kinematic viscosity of the first and second phase, respectively. Snapshots are
collected in the time window [0, 5]. The figs. 11 and 12 are the result of applying the same RCDT-POD
projection procedure proceeding, now to the multi-phase wave data set generated by the above setting
(the phase parameter αw, denoting the fraction of water/air, is shown in these figures), using 5 and 20
modes respectively. For RCDT-POD, the CFD data is interpolated onto a uniform grid of size 200×150.
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Figure 8: Single snapshot result from the randomly-travelling Gaussian POD (using top 5 modes). Top-left:
original snapshot image. Top-middle: physical space POD projection. Bottom-middle: RCDT-POD projec-
tion. Top/bottom-right: respective differences for each projection from original snapshot image.

Figure 9: Plot of ratio of each singular value to first singular value in POD decomposition for physical space,
Fourier space and RCDT space POD’s.
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The number of time steps in this data set is Nt = 200. The initial condition for the velocity field is
uniform U = (0.25, 0)m/s, for the pressure field is uniform p = 0kg/(ms2), while for the αw field is set
according to following profile:

{
αw = 1 if y < e−0.5x2

,

αw = 0 otherwise.
(11)

The time integration is performed using an implicit first order Euler scheme.

6

1.
75

(a) (b)

Figure 10: Computatonal domain of the multiphase CFD data set: (a) domain size and mesh grid
structure, (b) initial condition for the αw field

The data set exhibits the wave shown travelling across the domain from left to right during the time
series. There is a considerable difference in the physical POD between the two different results. At 20
modes the physical POD is relatively accurate when compared with the original data, however when
reducing the number of modes the physical POD struggles to capture the shape of the original wave.
This is in contrast to the RCDT-POD, which retains more of the shape of the original when only using
5 modes for reconstruction. The result improves slightly for 20 modes, but the majority of the shape is
captured in the first few modes unlike in the physical case. This is made clear in fig. 13 where the decay
of the POD singular values for the RCDT-POD case is much quicker than in the physical and FFT space
cases.

Another clear difference in the RCDT-POD is the appearance of edge-bound errors around the wave
along the bounds of the domain, especially in the bottom corners. This is a consequence of the RCDT
transform algorithm requiring a zero value in the first array position (this is set by the algorithm in the
CDT when requiring the input to be a probability density function). Future work on this example will test
the effect of adding a padding region around the data before it is used in the RCDT-POD methodology
to evaluate whether adding padding, and then removing it in post-processing, will help reduce the errors
around the edge of the domain (due to the zero value being set outside of the area of interest, and then
any error caused by this at the domain edges being removed). There is also the possibility of using other
forms of pre- and post-processing such as thresholds and edge detection, which may improve results in
certain cases.

4.2.1 Predictive time interpolation

Here we give a case of the full RCDT-POD ROM workflow for predictive interpolation in time, like
the preliminary study in §3.3. Displaying the primary draws of the RCDT-POD ROM: accurate image
capture, and linear predictive capabilities introduced by the CDT component. The case settings we
consider are similar as in §4.2 and §4.3, the multiphase and airfoil cases respectively. The difference
here being, before inverting results from RCDT-POD space into the physical, snapshots determined
by the RCDT-POD workflow are first linearly interpolated in time, whilst still in RCDT-POD space.
Utilising a significant benefit of RCDT; linear separability of fluid flow with respect to time, or whatever
parameter was fed to the CDT portion. Within fig. 14 are the results of performing the previous RCDT-
POD ROM interpolation on the multiphase CFD data of §4.2, followed by prediction at a chosen target
snapshot using linear interpolation in the reduced RCDT-POD space. Comparison is given against
the same proper orthogonal decomposition (POD) and interpolation, done instead in the physical, and
similarly Fourier, space. All transformation’s, decomposition’s, and interpolation’s are done using a
reduced training dataset of the original multiphase CFD data. This reduced dataset is composed of
every fiftieth snapshot of the original Nt = 200 snapshots, i.e. the 1st, 50th, 100th, 150th and 200th data
snapshots, given on a 250 by 75 grid resolution. Linear interpolation is performed, in each space, at the
chosen target snapshot index k = 75, so to not be a part of our training dataset, and compared against
the original k = 75 snapshot multiphase data. Note, to better convey the error of interpolating, results
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Figure 11: Single snapshot result from the multi-phase wave POD (using top 5 modes). Top-left: original
snapshot image. Top-middle: physical space POD projection. Bottom-middle: RCDT-POD projection.
Top/bottom-right: respective differences for each projection from the original snapshot image.

Figure 12: Single snapshot result from the multi-phase wave POD (using top 20 modes). Top-left: original snap-
shot, top-middle: physical space POD projection. Bottom-middle: RCDT-POD projection. Top/bottom-
right: respective differences for each projection from the original snapshot image.
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Figure 13: Plot of ratio of each singular value over the first singular value in POD decomposition for physical,
Fourier, and RCDT-POD space multi-phase wave.

are ran through a threshold of 0.5, i.e., values above 0.5 are set to 1, otherwise they are set to 0. In fig. 14a
are, from left to right: the target wave snapshot at time k = 75; predicted solution of linear interpolation
in physical space, using POD decomposition; and, the respective base 10 logarithmic (log10) absolute
difference between the target and predicted snapshots, with title containing the average L1-norm error.
Results of fig. 14a show clear failure of interpolation in the physical space, forming a bimodal wave with
inaccurate peak location to the target snapshot, despite a quantitatively low average L1 error. Within
fig. 14b are the results of following the same procedure as in fig. 14a, but performed in Fourier space
instead. Much like before, the figures show a distinct failure in interpolating the multi-phase wave within
Fourier space, with the same story told by the L1 error. Unlike the physical, we observe clustering of
artefacts on wave boundary, in part due to the thresholding of results and Fouriers’ wave-like nature.
Inside fig. 14c are the results of interpolation within RCDT-POD space. As can be seen by the respective
predicted snapshot and scaled absolute error image, compared to figs. 14a and 14b, there is a notable
qualitative difference. The RCDT prediction gives a much more accurate location of the wave peak,
and error at the wave boundary is primarily situated at the waves tail end. A consequence however,
as seen in all other tests of RCDT, is some rounding of the outer boundaries is present. In fig. 14d we
provide a verification of RCDT’s accuracy when transforming, and subsequently inversely transforming,
the original input snapshot data back and forth from RCDT space. Error is observed along the wave
boundaries, including the external ’boundary’ where we observe the rounding much like in fig. 14c.

4.3 Airfoil CFD dataset

In this case the dataset is created solving the compressible Navier-Stokes equations around a NACA0012
profile. The mesh is structured and counts 4500 hexahedral elements. For more details on the mesh
structure and domain dimension see Figure 15. The equations are solved employing the finite volume
method and using the sonicFoam solver developed in the OpenFOAM library [50]. The simulation is
2D and boundary conditions are set according to fig. 15. In particular, the waveTrasmissive boundary
condition is a special type of non-reflecting boundary condition implemented in OpenFOAM. In the
picture U , T and p denote the velocity, temperature and pressure fields, respectively. The problem is
transient, the time integration is carried out with an implicit Euler Scheme, and the simulation time
window is t ∈ [0, 3]. The time step used to numerically solve the Navier-Stokes equations is ∆t = 0.001s
and we store every ten time steps. This means we acquire 300 snapshots to test our numerical pipeline.
The methodology is tested on the velocity field. The inlet velocity Ux is indirectly parametrized through
the Mach number Ma. In §4.3.1 we will provide more details on the different values of the Mach number
used in the numerical simulations.

The figs. 16 and 17 are the result of applying the ROM procedure to an airfoil flow data set (the
velocity magnitude is shown in these figures), using 5 and 20 modes respectively. For the RCDT-POD
ROM the CFD data is interpolated onto a uniform grid of size 250 × 200. The number of time steps in
this data set is Nt = 300.

We observe that in both the physical and RCDT cases the qualitative results for each ROM do not
differ considerably when moving from 5 modes to 20 modes. In the physical case, the error is reduced
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(a) Physical POD space interpolation results. Left: target snapshot. Centre: predicted solution of linear
interpolation, in physical POD space. Right: absolute difference between target and result, given in base log10,
alongside average L1-norm error.

(b) Fast Fourier transform (FFT) POD space interpolation results. Left: target snapshot. Centre: predicted
solution of linear interpolation, in FFT POD space, inverted back to physical. Right: absolute difference between
target and result, given in base log10, alongside average L1-norm error.

(c) RCDT-POD ROM interpolation results. Left: target snapshot. Centre: predicted solution of linear inter-
polation, in RCDT-POD space, inverted back to physical for comparison. Right: absolute difference between
target and interpolation result, given in base log10, alongside average L1-norm error.

(d) Accuracy test of RCDT’s transformed snapshot from the original input snapshot data. Left: target snapshot.
Centre: resultant image of RCDT, followed by its inverse back to physical space, at target snapshot. Right:
difference between target snapshot and RCDT to iRCDT snapshot, given in base log10, alongside the average
L2-norm error.

Figure 14: Prediction of multiphase wave snapshot data, in time, using reduced order modelling (ROM)
and linear interpolation i.e., RCDT-POD ROM. Interpolation in physical and Fourier space given as
comparison against RCDT-POD space. space.
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Figure 15: Computational domain of the airfoil CFD data set: (a) domain size and mesh grid structure,
(b) domain patches and boundary conditions

by a factor of two, however, the error is of the order of 10−3 and so this is a relatively minor decrease
when comparing the ROM results. We can see from fig. 18 that a large amount of the energy is captured
in the first 5 modes of the POD decomposition in physical, Fourier and RCDT space. This supports the
observations from the ROM results and errors, as adding modes to the ROM reconstructions beyond the
first 5 modes will contribute relatively small amounts of information to the ROM and hence only improve
results marginally when compared to the results from the first 5 modes.

4.3.1 Predictive Mach number interpolation

As mentioned in §4.2.1, we provide here a full RCDT-POD ROM interpolation case, using a linear
interpolation study. However, in this case interpolation is performed with respect to the dimensionless
Mach number, Ma, denoting the ratio of local flow velocity around the airfoil boundary to the speed of
sound in said medium. The training dataset, of the original Nt = 300 (snapshot times) by NMa = 13
(Mach number values) CFD data snapshots provided, contains the two end-time snapshots for Ma =
1.9, 3.1. Like before, all transformation’s, decomposition’s, and interpolation’s are performed using said
training set. Decomposition via POD is performed using the top 10 modes, see fig. 18. It’s worth
noting that in this particular situation we use a signed variant of RCDT, applying separately the POD
to the positive and negative parts of the inputted CFD data, and later re-combined. See [35] for further
details on the transforming of signed measures in RCDT space. What’s more, we use a cropped 160x100
uniform grid resolution of the original airfoil CFD data, removing the computational padding viewable in
figs. 16 and 17, focusing on flow around the airfoil at hand. The chosen target snapshot is at Ma = 2.5,
being somewhat midway to the two training snapshots, and part of the original CFD data for accurate
comparison. Within fig. 19a are the three snapshots, training set and target, mentioned previously. The
left and right are the training snapshots for Ma = 1.9 and 3.1, respectively, while the centre is our target
snapshot for Ma = 2.5, which we stress is not part of the training. In fig. 19b is the target snapshot again
(left), predicted solution of linear interpolation in physical POD space (middle) from the training shots,
and absolute difference between target and prediction (right) in base log10, with the average L2-norm
error titled. While the break waves are somewhat predicted, the error shows clear failure in physical
ROM to capture the wave magnitudes, despite a relatively low L2 error. The snapshots of fig. 19c are
the same procedure as in fig. 19b, this time instead performed within Fourier space. Likewise, both the
average L2-norm error and right-hand image paints a similar story to the physical case. Following the
same workflow, now within RCDT-POD space, we get the results pictured in fig. 19e. Unlike the other
spaces, we observe a qualitatively good comparison between the target snapshot and predicted solution,
despite a quantitatively higher L2-norm error than the previous counterparts. If we consider fig. 19e,
which tests the accuracy (or intrinsic error) of RCDT at the training snapshot Ma = 1.9, as well as
figs. 14a and 14b, the errors of fig. 19d can be viewed as a layering of both the intrinsic of RCDT, and
the reconstructive error of POD.
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Figure 16: Single snapshot result from the airfoil POD (using top 5 modes). Top-left: original snapshot image.
Top-middle: physical space POD projection. Bottom-middle: RCDT-POD space projection. Top/bottom-
right: respective differences for each projection from the original snapshot image.

Figure 17: Single snapshot result from the airfoil POD (using top 20 modes). Top-left: original snapshot, top-
middle: physical space POD projection. Bottom-middle: RCDT-POD space projection. Top/bottom-right:
respective differences for each projection from the original snapshot image.
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Figure 18: Plot of ratio of each singular value over the first singular value in POD decomposition for physical,
Fourier and RCDT-POD space for the airfoil.

5 Conclusions

This work has focused on the implementation and verification of the Radon-Cumulative Distribution
Transform (RCDT) for image and flow capture, as well assessing the transform’s applicability to a Reduced
Order Modelling (ROM) setting – under proper orthogonal decomposition (POD) – of high-fidelity CFD
input data. Both RCDT and subsequent RCDT-POD ROM workflows were tested for accuracy; compared
against either the original input image, or standard POD in physical space for ROMs’ case. Based on
the results in this work, we show that the RCDT transform may significantly reduce dimensionality and
improve the interpolation in ROM with respect to real space POD/interpolation. Although the approach
introduces additional artefacts and errors due to the numerical implementation of the forward and inverse
transform, resulting in limited or no improvement in the error norms for some examples shown, we should
note that this approach remains a promising prospect due to its unique properties and capabilities of
capturing advection-dominated phenomena. The ability to capture and preserve geometrical features
within complex CFD data sets is the most important novelty of this approach. For data sets that span
differing configurations of the flow or image, see §3.3,4.2.1 and 4.3.1, this geometrical preservation is
crucial; so far no other method can produce such flow preservation with ease.

Although the results presented here are two-dimensional images in a one-dimensional parameter space,
RCDT and its ROM application can be easily applied to higher-dimensional data sets. In future studies,
the errors coming from the transform (i.e., intrinsic RCDT error), the POD truncation (reconstruction)
and the interpolation will be further analysed separately to better explore the RCDT-POD ROM ap-
plicability when predicting advective-dominant flows of varying geometrical shapes, configurations, and
speeds, and with more interpolating parameters. Other future works could involve improving RCDT’s
introduced for field data that does no go to zero at the boundary and pre-/post-processing of data to
improve RCDT usage.
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(a) Training and target snapshots. Left: training snapshot Ma = 1.9. Centre: target snapshot Ma = 2.5.
Right: training snapshot Ma = 3.1.

(b) Physical POD space interpolation results. Left: target snapshot. Centre: predicted solution of linear
interpolation, in physical POD space. Right: absolute difference between target and result, given in base log10,
alongside average L2-norm error.

(c) Fast Fourier transform (FFT) POD space interpolation results. Left: target snapshot. Centre: predicted
solution of linear interpolation, in FFT POD space, inverted back to physical. Right: absolute difference between
target and result, given in base log10, alongside average L2-norm error.
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(d) RCDT-POD ROM interpolation results. Left: target snapshot. Centre: predicted solution of linear inter-
polation, in RCDT-POD space, inverted back to physical for comparison. Right: absolute difference between
target and interpolation result, given in base log10, alongside average L2-norm error.

(e) Accuracy test of RCDT’s transformed snapshot from the original input snapshot data. Left: training snapshot
Ma = 1.9. Centre: resultant image of RCDT, followed by its inverse back to physical space, at the given snapshot.
Right: difference between training snapshot and RCDT to iRCDT snapshot, given in base log10, alongside the
average L2-norm error.

Figure 19: Prediction of airfoil CFD snapshot data, with respect to the Mach number, using reduced
order modelling (ROM) and linear interpolation. Interpolation in physical and Fourier space given as
comparison against RCDT-POD space.
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3 Published Work Tobias Long

3.1 Contributions to published work

The majority of the work displayed in this paper was carried out and written up

by the candidate, Tobias Long. The exceptions to this are the work carried out by

Robert Barnett in §4.2 and §4.3.1, including Figures 10, 14 and 15. The work was

carried out with the aid of all authors listed, including editing and corrections to the

written document.

This page marks the end of the work submitted for publication.
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4 CFD Work

4.1 Propeller Modelling

Modelling propellers or turbines in CFD simulations can be done using a few different

methods. These methods vary in complexity and hence the accuracy of results, and

the user must decide on a method based on minimising resources needed for the

model whilst maximising the accuracy of the results. For example, running a high-

fidelity simulation where the propeller blades are fully modelled is very accurate

but extremely complex, resulting in a huge amount of processing power needed for

the simulation. In contrast, an actuator disk model (ADM) involves only a source

of momentum being applied to a small volume of the domain, which requires very

few resources but captures none of the behaviour of the propeller blades. Here each

method will be discussed briefly.

4.1.1 Actuator Disk Method (ADM)

The ADM simulates a rotating propeller by projecting a force onto the fluid within

the disc-shaped area spanned by the blades. Within this disc, actuator points are

defined where the force is calculated from the fluid speed passing through the point,

and then this force is projected onto the fluid as it passes through the point.

The force exerted by the propeller being modelled, with a radius of R and a

streamwise disk thickness of ∆z is given by

f = − 1

πR2∆z2

[∫

Ω

(s · u) · (u · s) dΩ
]
s, (7)
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where s is the streamwise direction unit vector and u is the velocity of the fluid

at the disk. This is a very simple method for estimating the time-averaged force

created by a propeller, requiring very little computational resources, at the expense

of being a crude estimation of the force without any time-dependent flow features.

For an in-depth description refer to [11].

4.1.2 Actuator Line Method (ALM)

The ALM simulates a rotating propeller using a series of actuator points (20-50

points typically) along the length of each blade. The force at each actuator point

is then calculated in a lift and drag component, fN,m = (LN,m, DN,m)
T , where the

indices N and m represent the blade index and the actuator point index along each

blade respectively. This is done by noting the local flow velocity and the angle of

attack of the blade at a given actuator point, which are then applied to an airfoil

lookup table, allowing the drag and lift forces to be calculated. These lift and drag

forces are then projected back into the domain mesh using the body force term of

the momentum equation. The force itself must be distributed over multiple mesh

cells in order to avoid numerical instabilities. This is done with the use of a Gaussian

kernel function at each actuator point location, this function is defined as follows

η(x, y, z) =
1

ε3π3/2
exp

(
−(x− x0)

2 + (y − y0)
2 + (z − z0)

2

ε2

)
(8)

,

where (x0, y0, z0) is the location for the function to be applied to (ie. each actuator
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point N,m), and ε is the Gaussian width parameter (recommended to be twice the

size of the mesh resolution). The force is applied to the domain mesh as a force

vector Fp, which is given by

Fp(xp, yp, zp, t) = −
∑

N

∑

m

fN,m(xN,m, yN,m, zN,m, t)ηN,m (9)

,

where p denotes all grid mesh points that are affected by all actuator points

(N,m) and fN,m are the force vectors at each of the actuator points. As the ALM is

not used in this work in favour of the advanced method to follow, this description is

adequate for our purposes. For a more comprehensive coverage of the methodology

of the ALM please refer to [12,13].

4.1.3 Advanced Actuator Line Method (AALM)

The Advanced ALM is an advancement upon the base ALM theory and uses both

a more realistic, blade-shaped projection function for the body forces and a more

robust velocity sampling algorithm around the blades. This results in a more accu-

rate calculation and projection of the blade forces onto the domain mesh. A brief

description of this method is offered here as the full extent of the methodology and

calculation of parameters is extensive. A full discussion of the method and the

calculation of the parameters can be found in the original work [14].

The modified projection function, ηAAL, is defined as
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ηAAL(xc, xt, xr) =

1

εcεtεrπ3/2
exp

(
− (xc − xc,0)

2

ε2c
− (xt − xt,0)

2

ε2t
− (xr − xr,0)

2

ε2r

)
(10)

,

where (xc, xt, xr) are the coordinates of a point in the chord-wise, thickness-

wise and radial-wise directions respectively. The subscript 0 denotes the location to

which the function is applied and each coordinate direction has its own Gaussian

width parameter (εc, εt, εr).

The velocity sampling used in the AALM is also different from the one used in the

ALM. In the ALM, the velocity used for the airfoil look-up table is simply sampled

from the centre of the actuator points in the mesh. The velocity is interpolated from

the freestream velocity values in the surrounding mesh cells. This sampling method

works well when used with a symmetric projection function such as the Gaussian

function used in the ALM, but is not suitable for non-symmetric projection functions

such as the one defined in (10). Instead, for the AALM a new velocity sampling

method is required. The AALM uses integral velocity sampling where an integral

weighted by the projection function, η, is used for calculating the velocity at the

actuator points.
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4.2 Code

4.2.1 Adapted SOWFA Code

The ALM used in this work has been adapted from the SOWFA (Simulator fOr

Wind Farm Applications) package, developed by the National Renewable Energy

Laboratory (NREL) [15]. Specifically, the code from the development branch of

SOWFA-6 was used for this adaptation, as this code is the most up-to-date version

in development (in this case for OpenFOAM v6 ) [16]. The code produced by NREL

is specifically for wind turbine simulations and requires minor modifications to the

solver and the source files required for the ALM. The horizontalAxisWindTurbine-

sALMAdvanced model was chosen for adaptation as this was the source code used for

simulations with the advanced ALM, which is the more accurate ALM as discussed in

§4.1.3. A majority of the functions in the Advanced ALM code produced by NREL

are wind turbine specific (such as controllers for RPM, torque and generators) and

were removed to simplify the code, as all that is needed for this work is the ALM

itself and the ability to set the RPM of the propeller(s). This new model is named

propALMAdvanced. The solver was created by modifying the source code for the

pimpleFoam solver adding the turbine objects to the source file, and the addition of

a source term to the equations of motion. The new solver is named pimpleALMFoam.

Preliminary testing was carried out on a coarse mesh to compare the adapted

AALM code to the original code from SOWFA. The results of this comparison can

be seen in Figure 12. This test was carried out on a coarse mesh relative to the

case found in the original literature in order to initially validate the algorithm and
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(a) (b)

Figure 12: Comparison of AALM code outputs along y-axis slice for (a) original
SOWFA AALM code [14] and (b) our adapted code described here.

check that the results generated were as expected to rule out large errors in the

calculations. As seen in Figure 12 the results resemble the overall structure and

amplitudes seen in the original test case, confirming the algorithm was working as

expected, allowing work to proceed on validating the results on a finer mesh. Due

to time shortage at this stage of the work, the results on the fine mesh have not yet

been carried out and validated. This is reserved for future work, in order to confirm

the algorithm is sufficiently accurate to produce the data needed for the reduced

order modelling of DEP layouts. Despite this, confidence is high that this will be a

trivial result due to the resemblance shown in the coarse mesh test.

4.2.2 Code Parameters

The polar file input for the CLARK Y airfoil was created using JavaFoil. The data

points for plotting the airfoil shape were obtained from the website Airfoil Tools 3 and

JavaFoil was used to simulate polar values for angles ±150 degrees. Blade geometry

3http://airfoiltools.com/airfoil/details?airfoil=clarky-il
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data was obtained from the propeller geometry CAD file for a 9-inch diameter test

case propeller. Seven separate planes along the radius of the propeller blade were

used to extract blade geometry data for input to the ALM code. The propeller

blade geometry is relatively uniform so a large number of planes were not necessary

as interpolation between planes would generate sufficient accuracy for the blade

geometry. The planes are shown in Fig. 13
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Figure 13: Planes used for extracting blade geometry data. Measurements shown
are in mm.

58



5 Concluding Remarks Tobias Long

5 Concluding Remarks

The aim of this work is to make the first steps in utilising a novel data transform,

the Radon-CDT, to produce an efficient reduced order model methodology for quick

and accurate estimation of single and multiple propeller configurations. This is a

key step in the estimation and evaluation of noise generation in distributed electric

propulsion (DEP) applications and beyond. The work presented in this thesis lays

out the starting investigations and progress towards combining the Radon-CDT with

a reduced order modelling workflow in order to accurately and swiftly estimate such

propeller flows. Initial work has been carried out in order to better understand the

behaviour and the computational implementation of the Radon-CDT on relevant

test data, confirming the applicability of the transform for use in the context of

propeller CFD data. The transform was then implemented and tested in a reduced

order modelling workflow for various CFD test cases, where it was shown to be a

worthwhile avenue of further research and use for the application of reduced order

modelling for distributed electric propulsion layouts. Further to this, an algorithm for

a suitable propeller simulation with sufficient accuracy and computational efficiency

was developed, using previous work on an advanced actuator line model from the

SOWFA laboratory. This algorithm can be used in future work in order to provide

the outlined reduced-order model method with a large number of high-fidelity DEP

layout data sets.

With the groundwork presented here, there is the promising possibility of devel-

oping a full ROM workflow incorporating the Radon-CDT for accurate DEP con-
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figuration flow estimations, and hence noise prediction. Pre- and post-processing of

the CFD data in an appropriate manner is a further step required to fully utilise

the properties of the Radon-CDT in this context. This processing will allow errors

from specific boundary effects to be minimised and hence will allow the Radon-CDT

workflow to be developed beyond the current capabilities.
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