
Discontinuous Galerkin FEMs for Radiation

Transport Problems

Richard Widdowson

A thesis submitted to the University of Nottingham for the degree of

Doctor of Philosophy

June 2023

Abstract

The linear Boltzmann transport equation (LBTE), a high-dimensional partial integro-

differential equation, is used to model radiation transport. Radiation transport is an area

of physics that is concerned with the propagation and distribution of radiative particles,

such as photons and electrons within a material medium.

In this thesis, we present a high-order discontinuous Galerkin finite element method

(DGFEM) discretisations of the steady state linear Boltzmann transport equation in the

spatial, angular, and energy domains. Comparisons between the tensor discontinuous

Galerkin finite element method and discrete ordinates method show that the former is

higher order than the latter. A method of block diagonalising the resulting matrix into

a sequence of transport equations coupled by the right hand side while retaining high

order convergence, is demonstrated for both the angular and energy domains. This new

method offers the arbitrary order convergence rates of the discontinuous Galerkin finite

element method, but it can be implemented in an almost identical form to standard

multigroup discrete ordinates methods.

The assembly of the matrix for the resulting transport equations for a variety of

different type of elements is discussed. The generation of meshes formed of general

polytopes is discussed, and a comparison between the time to solve the transport equation

on meshes formed of the different element types follows.

An efficient implementation of the discontinuous Galerkin finite element method for

transport equations is then presented. This algorithm exploits the fixed wind direction of

the transport problems resulting from the discontinuous Galerkin finite element method

of the LBTE, to solve the transport problem while never forming the matrix. We

then compare this algorithm to a direct matrix solver for both convex and non-convex

polytopes.

An a posteriori error bound for the discontinuous Galerkin finite element method

of the LBTE and the transport problem is then derived. We use this error bound to

develop an adaptive framework for the LBTE. Three different adaptive algorithms for

the LBTE are then presented and compared. The h-refinement algorithm, which marks

the element with the error of each tensor element it is part of, shows a clear advantage

over the other methods.

1

Acknowledgements

I would first like to express my gratitude to my supervisors, Matthew Hubbard and Paul

Houston, for their guidance, insight, and support throughout the course of my PhD. I

would like to extend my thanks to the rest of the School of Mathematical Sciences at the

University of Nottingham, especially the Scientific Computation research group.

I would like to thank Oliver Sutton for providing insight and mentorship, and being

a supervisor in spirit (if not in pay). I also thank Fred Currell and Balder Villagomez-

Bernabe for many inspiring ideas about how our work could be used and the physics

underpinning the model. To Thomas Radley I would like to express my gratitude for his

constant support, insight, and for the many hours of conversation, a few of which may

have even been on topic!

I would like to thank all of my friends, for their constant support and lifting of my

spirits. Their friendship and companionship has been the highlight of my life. Finally, I

would like to thank my family for their support, and motivation throughout the years –

the many, many years – I have spent at university.

2

Contents

1 Introduction 6

1.1 Thesis Outline . 8

2 Background 10

2.1 Formulation of the linear Boltzmann transport equation 10

2.2 Angular discretisation . 12

2.2.1 Level-symmetric quadrature methods 12

2.2.2 TN quadrature . 13

2.2.3 Spherical harmonics . 13

2.3 Transport Problems . 14

2.3.1 Discontinuous Galerkin finite element method 16

2.3.2 Properties of discontinuous Galerkin finite element method . . . 19

3 Discontinuous Galerkin finite element method for the time independent

linear Boltzmann transport equation 22

3.1 Time-independent linear Boltzmann transport equation 22

3.2 Energy discretisation . 23

3.2.1 Multigroup . 23

3.2.2 Discontinuous Galerkin (DG) in Energy 25

3.3 Angular discretisation . 25

3.3.1 Discrete Ordinates (DO) . 25

3.3.2 Discontinuous Galerkin (DG) in Angle 26

3.4 DG-DG-DG . 27

3.5 DG-DG . 28

3.6 Source iteration . 30

3.7 DG-DG vs DO mono-energetic LBTE 31

3.8 Discrete Ordinates Galerkin (DOG) . 36

3.8.1 DOG in energy . 38

3.9 DOG vs DG-DG vs DO . 40

3.10 Summary . 43

3

4 The structure of the matrix system resulting from the discrete ordinate

Galerkin discretisation 44

4.1 The linear system for the LBTE . 44

4.2 Transport block structure . 46

4.3 Matrix Sparsity . 48

4.4 Polytopic mesh generation . 53

4.4.1 Voronoi mesh generation . 54

4.4.2 Agglomerated meshes . 56

4.5 Timings for different element types . 59

4.5.1 2D . 59

4.5.2 3D . 62

4.6 Summary . 65

5 Efficiently solving the linear Boltzmann transport equation 67

5.1 Sweep Solver . 68

5.1.1 Comparison between matrix and the sweep solver for convex elements 69

5.1.1.1 Quadrature free integration over polytopic domains . . 69

5.1.1.2 Square . 70

5.1.1.3 Triangular . 73

5.1.1.4 Convex Polygons . 75

5.1.1.5 Agglomerated Squares 76

5.1.1.6 Cube . 78

5.1.1.7 Tetrahedral . 81

5.1.1.8 Agglomerated Cubes . 82

5.2 Cyclic Dependence . 84

5.2.1 Comparison between matrix and the sweep solver for non-convex

elements . 86

5.2.1.1 Agglomerated polygons 86

5.2.1.2 Agglomerated squares 92

5.2.1.3 Agglomerated polyhedra 100

5.2.1.4 Agglomerated cubes . 102

5.3 Summary . 104

6 Adaptive Algorithms for the linear Boltzmann transport equation 110

6.1 Motivation . 110

6.2 General algorithm for adaptivity . 111

6.3 a posteriori error estimator . 112

6.3.1 Transport problem . 115

6.3.2 LBTE . 119

6.4 2D mono-energetic . 120

4

6.4.1 h-refinement algorithm 2 . 123

6.4.2 h-refinement algorithm 3 . 126

6.5 2D mono-energetic beam . 128

6.6 3D mono-energetic beam . 131

6.7 Summary . 132

7 Conclusion 134

7.1 Further work . 135

7.1.1 Poly-energetic LBTE . 135

7.1.1.1 a posteriori error bound and adaptivity 135

7.1.2 Mesh creation and agglomeration 136

7.1.3 Medical physics applications . 136

7.1.3.1 Electron Transport . 137

Bibliography 138

5

Chapter 1

Introduction

In the UK alone, around 1,000 cases of cancer are diagnosed every day [66]. Radiotherapy

is an integral part of treatment plans for combatting cancer, with 4 out of every 10

cancer cures including radiotherapy [39]. A system that provides a rapid, accurate, and

robust prediction of the dosage of radiation that the tumour needs to be exposed to,

is invaluable. This is complicated in part due to each individual requiring their own

customised treatment plan. Another complication is that radiation does not distinguish

between the cancerous cells and the cells of the surrounding tissue and organs, which

will also be damaged by the exposure to radiation. The treatment plan, therefore, must

balance the need to deliver enough radiation to denature the DNA of the cancerous cells

with the need to preserve the healthy surrounding cells.

The current “gold standard” of this dose calculation procedure is a statistical method

called Monte Carlo. This models the motion of each individual radiative particle through

the patient. The distance each particle travels between interactions, as well as the

deflection angle, and associated energy loss after each interaction, are randomly sampled

using given cross-sectional data which contains relevant material data. Each cross-section

is defined by the energy of the incident particle and to the kind of interaction it undergoes.

This data must be supplied for each material present.

The particles can interact in three ways. Absorption removes the particle from the

system, due to loss of energy. The other interaction is scattering, where a particle

collides with an atom in the patient’s body, transferring some energy and/or changing

the direction of travel. Both of these interactions can produce secondary particles. If the

secondary particles produced are charged, the interaction is said to be ionising. It is this

ionising effect that denatures the DNA in the cell, preventing the cells from growing and

dividing; thus, causing them to die. The particle can also be removed from the system

by exiting the domain of interest, i.e. the particle passed out of the patient’s body.

Deterministic methods have started to be proposed as alternative methods to Monte

Carlo. Most of these methods are based on solving coupled Boltzmann transport

6

equations. To account for the different types of particles that the scattering can produce,

deterministic methods separate out the equation for photons and electrons. The linear

Boltzmann transport equation (LBTE) is used for photons, and the electron transport

equation [32] or the Boltzmann Fokker-Plank transport equation [46], are solved for

electrons. Deterministic methods have been compared favourably to Monte Carlo methods

[28]. In this thesis, we focus on the linear Boltzmann transport equation.

The linear Boltzmann transport equation is a 7-dimensional partial integro-differential

equation. The dimensions are split into four domains, space Ω ∈ R3, the position in 3D

space, angle µ ∈ S, the direction of travel in 3D space parametrised on to the surface

of the unit sphere, energy E ∈ E = [0,∞), and time t ∈ T = [0,∞). The solution to

the LBTE gives the fluence of radiative particles in the patient as a function of their

positions, directions of travel, energies, and the time since the simulation was started.

The dosage the patient receives can then be calculated from the fluence.

The discretisation of the energy domain is most commonly done using the multigroup

method [50]. This subdivides the energy domain into a number of so-called energy groups.

The multigroup methodology results in a collection of mono-energetic problems, one for

each energy group. The solutions of these mono-energetic problems are then multiplied

by an energy group-specific energetic function, to yield an approximation of the exact

angular fluence.

Discretising the angular domain has a long and rich history of study. There have

been several different discretisations proposed over the years. Spherical harmonic

approximations are constructed utilising a basis of typically high-order smooth spherical

harmonic functions defined globally on the sphere [17]. The emphasis of such schemes is

to simplify the implementation of the scattering operator. Such schemes offer a natural

variational setting for their analysis, but the global nature of the basis functions makes

local adaptivity a challenging task and Gibbs’-type oscillations may be expected around

sharp variations in the solution [26].

Discrete ordinates [48] is generally the most popular option, whereby the angular

domain is discretised using a collocation at a discrete set of angular quadrature points.

The advantage of this approach is that the LBTE can be solved as a set of independent

linear transport problems in the spatial domain with fixed wind directions.

One deterministic method for approximating the solution on the spatial domain is

the finite element method. The classical finite element method, also known as continuous

Galerkin finite element method (CGFEM), seeks a continuous piecewise-polynomial

approximation of the solution discretised on an underlying mesh, formed of basic element

shapes, such as simplices, quadrilaterals etc. The discontinuous Galerkin finite element

method (DGFEM), on the other hand, is capable of employing meshes consisting of more

general element geometries, and does not require the approximation of the solution to

be continuous. DGFEM was originally developed to solve this very problem [56], but

7

has gone on to be used on a variety of different problems, such as hyperbolic [63, 38],

parabolic [59, 5], and elliptic [7, 58] partial differential equations (PDEs) as well as

ordinary differential equations (ODEs) [57].

The use of arbitrary polytopic elements in the mesh allows the underlying geometry

of a problem to be preserved more accurately. This is especially useful in this application

as the changes in the medium’s electron density will result in different scattering cross-

sections being used. Polytopic elements can also reduce the size of the matrix that needs

to be inverted to find a solution.

The accuracy of DGFEM relies on mesh refinement (h-refinement) and increasing

the polynomial order of the approximation (p-refinement). For the transport problem,

the order of convergence of the error in the L2 norm is given as O(hp+1) [40] for most

meshes [53]. Naturally, p-refinement is very advantageous in situations where a smooth

solution is to be approximated [14]. hp-adaptive DGFEMs have been employed on a

variety of problems, as they provide accurate estimation of the solution while reducing

the degrees of freedom (DOFs) of the system [?].

1.1 Thesis Outline

The thesis is structured as follows. In Chapter 2, we first provide the formulation and

overview of the linear Boltzmann transport equation (LBTE). We provide an insight into

the common forms of discretising the LBTE, particularly the angular component. We

show how the discrete ordinates angular discretisation can be devolved into transport

equations which are coupled by their right hand side. Motivated by this, we discuss the

transport equation and discontinuous Galerkin finite element (DGFEM) discretisation

as applied to the transport equation.

In Chapter 3 we discuss applying the discontinuous Galerkin finite element method

to the time independent linear Boltzmann transport equation. We show the DGFEM

discretisation of the energy, angle, and space components of the LBTE. We then compare

DGFEM angular discretisation to discrete ordinates, showing that DGFEM achieves

arbitrarily high order convergence of the error in the L2 norm compared to the fixed

order of discrete ordinates, at the cost of increased computation time and complexity. We

then introduce a new discretisation, first introduced in our paper [33], known as Discrete

Ordinate Galerkin (DOG). This discretisation retains the high order convergence while

still devolving the PDE into coupled transport equations.

Motivated by a desire to create an efficient transport equation solver for our DOG

discretisation, we look at the structure of the matrix formed by DGFEM on a transport

equation in Chapter 4. We consider a number of different spatial element types, such as

simplices, convex polytopes, and arbitrarily shaped polytopes. We compare the density

of the resulting matrices and then the time to solve the matrix equation.

8

Continuing to examine the transport solver, we introduce a new matrix free sweep

solver in Chapter 5. This solver exploits the fixed wind direction of the transport

problems that result from the DOG discretisation, to be efficiently solved without having

to store the matrix. We compare the time taken to solve transport equations with our

different element types. This also shows the effect of element convexity on the sweep

solver.

Finally, in Chapter 6, we introduce an a posteriori error estimator, and dual weighted

residuals to calculate it. We use this error estimation to guide our mesh refinements for

both the transport equation and the LBTE. When the standard h-refinement algorithm

under-performs due to the tensor structure of the LBTE, we introduce two alternative

versions of a h-refinement algorithm that perform more satisfactorily.

9

Chapter 2

Background

2.1 Formulation of the linear Boltzmann transport

equation

Radiation transport is an area of physics that is concerned with the interactions of

particles in some material medium. These particles, photons, neutrons, and electrons,

interact by transferring some of their energy from collisions to the material, irradiating

the material. Radiation transport has two main areas of study, nuclear reactor theory

[12, 62], and radiotherapy treatments [11]. In this thesis, we focus on radiotherapy

applications, which are dictated by the linear Boltzmann transport equation (LBTE).

In radiotherapy, the principle function of concern is the angular flux, denoted by

u(x,µ, E, t). This function relates the distribution of particles in physical space Ω ⊂ Rd,

d = 2, 3, as a function of time t ∈ R+, position x ∈ Ω, energy E > 0, and the angle the

particles are travelling in direction, µ ∈ Sd−1, where Sd−1 denotes the surface of the

unit sphere in Rd.

The linear Boltzmann transport equation (LBTE) is a seven-dimensional partial

integro-differential equation for the angular flux u(x,µ, E, t) [12, 50, 62] given by:

1

v

∂u

∂t
(x,µ, E, t) + µ · ∇xu(x,µ, E, t) + (α(x,µ, E, t) + β(x,µ, E, t))u(x,µ, E, t)

=

ˆ
E

ˆ
S
θ(x,µ′ → µ, E′ → E, t)u(x,µ′, E′, t) dµ′ dE′ + f(x,µ, E, t)

u(x,µ, E, 0) = u0(x,µ, E)

u(x,µ, E, t) = g(x,µ, E, t) on Γ−

u(x,µ, E, t) =

ˆ
E

ˆ
S
κ(x,µ′ → µ, E′ → E, t)u(x,µ′, E′, t) dµ′ dE′ on Γ−.

Where

• x - position in Ω ⊂ Rd.

10

• µ, µ′ - angle of travel in S.

• E, E′ - energies in E = [0,∞).

• t - time in R+.

• u(x,µ, E, t) - angular flux at position x and time t for particles with energy E

travelling in direction µ.

• v(E) - particle speed.

• θ(x,µ′ → µ, E′ → E, t) - differential scattering cross-section. This represents the

particles at position x and time t initially travelling in a direction µ′ with energy

E′ which then interact with the medium, scattering in direction µ with energy E.

• α(x,µ, E, t) - macroscopic absorption cross-section of the medium. This describes

the rate of absorption in the system, with particles of energy E travelling in

direction µ at position x and time t leaving the system.

• β(x,µ, E, t) - macroscopic scattering cross-section of the medium. This describes

the rate of scattering in the system, with particles of energy E travelling in direction

µ at position x and time t leaving the system.

• f(x,µ, E, t) - source term from outside the space domain Ω.

• u0(x,µ, E) - the initial condition.

• g(x,µ, E, t) - Dirichlet boundary condition.

• Γ− = {(x,µ, E, t) ∈ Ω× S×E× [0,∞) : µ ·n(x) < 0} - inflow boundary set where

n(x) denotes the outward unit normal to Ω on the boundary ∂Ω.
´
E
´
S κ(x,µ

′ →

µ, E′ → E, t)u(x,µ′, E′, t) dµ′ dE′ - scattering boundary condition. The function

κ(x,µ′ → µ, E′ → E, t) is an albedo function that describes a particle travelling

in a direction µ′ which is deflected along µ upon interacting with the boundary.

The macroscopic scattering cross-section of the medium can be calculated from the

differential scattering cross-section

β(x,µ, E, t) =

ˆ
E

ˆ
S
θ(x,µ→ µ′, E → E′, t) dµ′ dE′.

For many practical applications, the angular flux is often not a quantity of interest, but

rather another quantity called the scalar flux [62], defined by

ϕ(x, E, t) =

ˆ
S
u(x,µ, E, t) dµ.

The scalar flux represents the distribution of particles at a given spatial position x with

energy E at time t moving in any direction.

11

2.2 Angular discretisation

The first approach we will examine is called the discrete ordinates method. This method

approximates the integral over the angular domain by forming a quadrature scheme on

the surface of the sphere [8]. This results in a system of coupled transport equations

that can then be solved. For the remainder of this report we shall only be concerned

with discretisation, other presented here are for completeness sake. Naturally, there is a

lot of literature on forming quadrature schemes on the surface of the sphere. We shall

detail two key different versions.

2.2.1 Level-symmetric quadrature methods

SN , or Level-symmetric quadrature methods, involve inserting quadrature points in each

octant of the unit sphere, with N being an even positive integer. In these quadratures,

the points are arranged on N
2 horizontal levels relative to each vertex of the first octant

of a unit sphere centred at the origin. The number of points on each ith level is equal to

N
2 –i+ 1, where 1 ≤ i ≤ N

2 . The order of a SN quadrature, N , represents the number

of different direction cosines for every axis. In the SN quadrature, the total number

of directions per octant is N(N+2)
8 , while the total number of directions is N(N + 2).

Figure 2.1 shows an example of a level-symmetric S8 quadrature from [60].

Figure 2.1: S8 quadrature [60]

12

2.2.2 TN quadrature

TN quadrature is a similar style quadrature scheme. Each octant is treated as the unit

triangle. The unit triangle is then subtessellated with N equally sized triangles. The

centroid of every small triangle is projected from the origin onto the surface of the

sphere, and that is the quadrature point. It is generally accepted that TN is less efficient

than SN , but it has two interesting features. Firstly, the weights are always positive so

any selection of N is viable. Furthermore, it exactly corresponds to the zeroth order

discontinuous Galerkin discretisation in angle.

2.2.3 Spherical harmonics

Spherical harmonics are another way to discretise the LBTE. This method is based on

truncating the expansion of the angular flux in terms of an orthogonal basis of the unit

sphere in d dimensions[62]. The basis in the three-dimensional case, S ∈ R3, may be

written in terms of parameters (ψ,φ) ∈ (0, π)× [0, 2π)

µ = (sinψ cosφ, sinψ sinφ, cosψ).

We then express u in terms of x and our basis, in order that we can then have a spherical

harmonic decomposition [62]

u(x,µ) = u(x, ψ, φ) =

∞∑
l=0

2l + 1

4π

l∑
m=−l

ϕl,m(x)Yl,m(ψ,φ).

The spherical harmonic functions Yl,m(ψ,φ) are given as

Yl,m(ψ,φ) =

√
(l −m)!

(l +m)!
Pm
l (cosψ)eimφ,

where each function Pm
l (·) is an associated Legendre function:

Pm
l (x) =

(1− x2)m
2

dmPl(x)
dxm m ≥ 0,

(−1)|m|P
|m|
l (x) m < 0,

and Pl(·) is the lth Legendre polynomial, defined recursively by

P0(x) = 1,

P1(x) = x,

(2l + 1)xPl(x) = (l + 1)Pl+1(x) + lPl−1(x) for l ≥ 2.

13

The spherical harmonic method truncates the series expansion for some non-negative

integer N , yielding the approximation:

u(x,µ) ≈
N∑
i=0

2i+ 1

4π

i∑
j=−i

ϕi,j(x)Yi,j(µ).

The source term and scattering kernel can also be expressed in the same way:

f(x,µ) ≈
N∑

l′=0

2l′ + 1

4π

l′∑
m′=−l′

fl′,m′(x)Yl′,m′(µ),

θ(x,µ · µ′) ≈
N∑

l′=0

2l′ + 1

4π
θl′(x)Pl′(µ · µ′).

By substituting the truncated expansion of u(x,µ), multiplying by Y ∗
l,m(µ) and integrat-

ing over S with respect to µ, this gives a set of spherical harmonic moments

{ϕl,m(x) : 0 ≤ l ≤ N,−l ≤ m ≤ l}

that satisfy the following system of first-order PDEs for 0 ≤ l ≤ N and −l ≤ m ≤ l [62]:

1

2l + 1

[
1

2

√
(l +m+ 2)(l +m+ 1)

(
− ∂

∂x
− i ∂

∂y

)
ϕl+1,m+1(x)

+
1

2

√
(l −m+ 2)(l −m+ 1)

(
∂

∂x
− i ∂

∂y

)
ϕl+1,m−1(x)

+
1

2

√
(l −m− 1)(l −m)

(
∂

∂x
+ i

∂

∂y

)
ϕl−1,m+1(x)

+
1

2

√
(l +m− 1)(l +m)

(
− ∂

∂x
+ i

∂

∂y

)
ϕl−1,m−1(x)

+
√

(l +m+ 1)(l −m+ 1)
∂ϕl+1,m(x)

∂z

+
√

(l +m)(l −m)
∂ϕl−1,m(x)

∂z

]
+ ((x) + β(x))ϕl,m(x)

= θl(x)ϕl,m(x) + fl,m(x). (2.2.1)

Setting ϕi,j(x) = 0 for (i, j) ̸∈ {(l,m) : 0 ≤ l ≤ N,−l ≤ m ≤ l}.

2.3 Transport Problems

The transport equation is a linear hyperbolic partial differential equation (PDE), that

describes the concentration of some substance flowing in and out of a domain. It

has a large number of applications in applied mathematics, physics, and engineering,

particularly in fluid dynamics, where it is known as the advection-reaction equation.

Given a bounded open domain Ω of Rd, d ≥ 1, with boundary ∂Ω, let L be the

given differential operator and G(L,Ω) = {v ∈ L2(Ω) : Lv ∈ L2(Ω)} be the graph space

14

associated with the differential operator over the domain. Then the transport problem is

given as:

Find u ∈ G(L,Ω) such that

Lu = ∇ · (au) + bu = f in Ω

u = g on the inflow boundary
(2.3.1)

Where f ∈ L2(Ω) , b ∈ L∞(Ω) and a = {ai}di=1 where ai are Lipschitz continuous real

functions on Ω [35]. As L is hyperbolic, the inflow and outflow boundaries of the domain

are given by

∂−Ω = {x ∈ ∂Ω : a(x) · n(x) < 0} inflow,

∂+Ω = {x ∈ ∂Ω : a(x) · n(x) ≥ 0} outflow,
(2.3.2)

where n(x) = {ni(x)}di=1 are the outward facing unit norm on Ω. We introduce the

standard hypothesis [35] that there exists some γ > 0 such that

b−∇ · a ≥ γ ∀x ∈ Ω. (2.3.3)

Therefore there exists a c such that

c2 = b− 1

2
∇ · a. (2.3.4)

As this PDE is hyperbolic, the solution is likely to exhibit localised phenomena, such

as propagating discontinuities and sharp transition layers. Therefore, classical numerical

techniques cannot be used as the schemes lacks sufficient stability. Due to this, we need

to introduce some stabilised methods to get a numerically significant approximation.

There are a few common approaches, one is to use the streamline upwind Petrov-Galerkin

scheme (SUPG) FEM [15], another is Finite Volume, however we shall use the discontin-

uous Galerkin finite element method (DGFEM). One of the other biggest advantages

of DGFEM is its simple handling of non-standard element shapes, such as arbitrary

polytopes. As the basis functions are not required to be continuous across elements, they

can be defined without reference to the element’s shape. Polytopic elements allow for

greater flexibility and allow for efficiently designed meshes, especially where complex

underlying geometries are present in the problem.

15

2.3.1 Discontinuous Galerkin finite element method

Figure 2.2: The number of papers in MathSciNet, cumulatively, that have discontinuous
Galerkin in their title [18].

The discontinuous Galerkin finite element method, referred to as the DGFEM from here

on, was introduced in 1973 by W.H. Reed and T.R. Hill [56, 19] as a numerical method

to solve the neutron transport equation. This method was first analysed by P. LaSaint

and P-A. Raviart [47] in 1974, and then again by C. Johnson and J. Pitkäranta [40]

in 1986. Since B. Cockburn and C-W. Shu published [20] in 1989, it has become an

increasingly popular area of study, as evident in Figure 2.2, and has been used to solve

hyperbolic [63], parabolic [59], and elliptic [7] partial differential equations (PDEs) as

well as ordinary differential equations (ODEs) [57].

Let TΩ be a subdivision of the spatial domain Ω into non-overlapping open polytopic

elements κΩ, such that Ω = ∪κΩ. This is our mesh formed by elements of arbitrary size

and shaped polytopes. On each element, we have a set of faces FκΩ
= {fi}

NfκΩ
i=1 , which

are defined as the (d − 1)-dimensional planar facets of the element κΩ. Each element

will have NfκΩ
faces, and the mesh’s faces are given by F =

⋃
FκΩ

. On each of these

elements, we need to define a set of basis functions to form a finite element space. Unlike

classical finite elements, we do not require these basis functions to have continuity across

the elements. Given κΩ ∈ TΩ, we denote by pκΩ
≥ 0 the polynomial degree of the basis

on κΩ, and define the vector p := (pκΩ
: κΩ ∈ TΩ). Using this polynomial degree, we can

define our polynomial basis functions HpκΩ
(κΩ). We will consider two versions of the

16

basis functions: HpκΩ
(κΩ) = PpκΩ

(κΩ) denotes the set of polynomial functions with the

maximum total degree less than or equal to pκΩ on κΩ. HpκΩ
(κΩ) = QpκΩ

(κΩ) denotes

the set of polynomial functions of maximal degree pκΩ
in each independent variable on

κΩ. These basis functions result in different degrees of freedom (DOFs) on each element,

with QpκΩ
giving (pκΩ + 1)d DOFs, and PpκΩ

giving
∏d

i=1

pκΩ
+i

i DOFs for each element.

We can then define the finite element space, formed of our mesh and basis functions

on each element of said mesh:

Vp
Ω = {v ∈ L2(Ω) : v|κΩ

∈ HpκΩ
(κΩ) for all κΩ ∈ TΩ}.

The boundary of each element is defined by ∂κΩ, the union of (d− 1)–dimensional

open faces of the element κΩ. Then we can define the inflow and outflow boundary of

each element with respect to a

∂−κΩ = {x ∈ ∂κΩ : a · nκΩ
(x) < 0},

∂+κΩ = {x ∈ ∂κΩ : a · nκΩ(x) ≥ 0},

respectively, where nκΩ
(x) denotes the unit outward normal vector to ∂κΩ at x ∈ ∂κΩ.

For some κΩ ∈ TΩ, the trace of some sufficiently smooth function v on ∂−κΩ from κΩ

is denoted by v+κΩ
. Further, if ∂−κΩ\∂Ω is non-empty, then for x ∈ ∂−κΩ\∂Ω there

exists a unique κ′Ω ∈ TΩ such that x ∈ ∂+κ′Ω; with this notation, we denote by v−κΩ
the

trace of v|κ′
Ω
on ∂−κΩ\∂Ω. Hence, the upwind jump of the function v across a face

F ⊂ ∂−κΩ\∂Ω is denoted by

⌊v⌋ := v+κΩ
− v−κΩ

.

We can then find the weak (variational) formulation of the transport problem by inte-

grating by parts we get:

∑
κΩ∈TΩ

(ˆ
κΩ

−auh · ∇vh + buhvh dx+

ˆ
∂κΩ

a · nκΩuv ds

)

=
∑

κΩ∈TΩ

ˆ
κΩ

fvh dx ∀vh ∈ Vp
Ω.

Introducing a numerical flux H(u+h , u
−
h ,nκΩ

) gives the weak formulation:

Find uh ∈ Vp
Ω such that:

∑
κΩ∈TΩ

(ˆ
κΩ

−auh · ∇vh + buhvh dx+

ˆ
∂κΩ

H(u+h , u
−
h ,nκΩ)v

+ ds

)

=
∑

κΩ∈TΩ

ˆ
κΩ

fvh dx ∀vh ∈ Vp
Ω.

Here, H(·, ·, ·) denotes some numerical flux. We typically require the following properties

17

[16] for the numerical flux.

• Consistency: H(u, u,nκΩ)|∂κΩ = (au) · nκΩ .

• Conservation: for two neighbouring elements κΩ and κ′Ω ∈ Th at each point

x ∈ ∂κΩ ∩ ∂κ′
Ω
̸= ∅, and as nκΩ

= −nκ′
Ω
, then H(u, v,nκΩ

) = −H(u, v,nκΩ
).

The upwind flux is a common choice for the numerical flux. For some κΩ ∈ TΩ

H(u+, u−,nκΩ
)|∂κΩ

=


a · nκΩ

u+ x ∈ ∂+κΩ,

a · nκΩ
u− x ∈ ∂−κΩ \ ∂−Ω,

a · nκΩ
g x ∈ ∂−κΩ ∩ ∂−Ω.

Putting this upwind flux into our weak formulation, we get the DGFEM for the transport

problem:

Find uh ∈ Vp
Ω

B(uh, vh) = ℓ(vh) ∀vh ∈ Vp
Ω,

where

B(uh, vh) =
∑

κΩ∈TΩ

ˆ
κΩ

−auh · ∇vh + buhvh dx (2.3.5)

+

ˆ
∂+κΩ

a · nκΩu
+
h v

+
h ds+

ˆ
∂−κΩ\∂−Ω

a · nκΩu
−
h v

+
h ds (2.3.6)

ℓ(vh) =
∑

κΩ∈TΩ

ˆ
κΩ

fvh dx+

ˆ
∂−κΩ∩∂−Ω

a · nκΩgv
+
h ds. (2.3.7)

It is often beneficial, especially in terms of implementation, to rewrite the DGFEM

formulation in terms of faces and elements, rather than just elements.

Let FΩ denote the collection of element faces in TΩ. We can divide these faces into

two sets, FΩ
∂ are the faces that only have one element connected to them, that is to

say the face is on the boundary of the domain. FΩ
int are the set of faces that have

two elements connected to them, they are referred to as the internal faces. Obviously

FΩ
∂∪FΩ

int = FΩ. We can define the boundary faces as either inflow or outflow boundary

faces for a given a,

FΩ
+ = {FΩ

∂ ∪ ∂+Ω}, (2.3.8)

FΩ
− = {FΩ

∂ ∪ ∂−Ω}. (2.3.9)

18

So that FΩ
∂ = FΩ

+ ∪ FΩ
−.

∑
κΩ

ˆ
κΩ

−auh · ∇vh + buhvh dx

+
∑
FΩ

(ˆ
FΩ

−
anFΩ

u+h v
+
h −
ˆ
FΩ

int

anFΩ
⌊uh⌋v+h

)

=
∑
κΩ

ˆ
κΩ

fvh dx+
∑
F

ˆ
FΩ

+

anFΩ
g dS.

(2.3.10)

Where nFΩ
is the unit outward normal vector of one of the elements whose union forms

that face, which one is picked is arbitrary, but the choice must be consistent across every

face.

2.3.2 Properties of discontinuous Galerkin finite element method

DGFEM has many useful properties that give advantages over many other numerical

methods. One of these properties is Galerkin Orthogonality As we have

B(u, v) = ℓ(v) ∀v ∈ G(L,Ω) and B(uh, vh) = ℓ(vh) ∀vh ∈ Vp
Ω,

and u is sufficiently smooth, we get

B(u, vh) = ℓ(vh) ∀vh ∈ Vp
Ω.

Therefore,

B(u− uh, vh) = B(u, vh)−B(uh, vh)

= ℓ(vh)− ℓ(vh)

= 0 ∀vh ∈ Vp
Ω.

One of the advantages of the DGFEM is that we can show that Galerkin Orthogonality

holds element-wise as well.

B(u, v) = ℓ(v) ∀v ∈ G(L, κΩ) and B(uh, vh) = ℓ(vh) ∀vh ∈ Vp
Ω|κΩ .

By the same arguments as before, we get

B(u− uh, vh)|κΩ
= 0 ∀vh ∈ Vp

Ω|κΩ
.

DGFEM was shown to be stable for transport problems in [34]. Using our standard

hypothesis (2.3.3) and (2.3.4) we can show well-posedness of the problem. Then uh is

19

constrained by this bound

∑
κΩ

(
∥cuh∥2L2(κΩ) + ∥u

+
h − u

−
h ∥

2
∂−κΩ\∂Ω + ∥u+h ∥

2
∂+κΩ∩∂Ω +

1

2
∥u+h ∥

2
∂−κΩ∩∂−Ω

)

≤
∑
κΩ

(
∥c−1f∥2L2(κΩ) + 2∥g∥2∂−κΩ∩∂−Ω

)
.

Where

∥u∥τ =

(ˆ
τ

a · nκΩ
u2dS

) 1
2

τ

for some τ ⊂ ∂κΩ.

This bound implies the existence and uniqueness of the solution to DGFEM for a

transport problem [35].

We can now introduce the discontinuous Galerkin (DG) norm [35].

∥w∥2DG =
∑
κΩ

(
∥cw∥2L2(κΩ)+

1

2
∥w+∥2∂−κΩ∩∂−Ω+

1

2
∥w+−w−∥2∂−κΩ\∂Ω+

1

2
∥w+∥2∂+κΩ∩∂Ω

)
.

(2.3.11)

Using this, we can get an a-priori error bound from [35]:

If γ defined above exists and

a · ∇T vh ∈ Vp
Ω ∀vh ∈ Vp

Ω,

where ∇T u is the broken gradient of

u

, ∇T u|κΩ
= ∇(u|κΩ

), and that solution u exists in some Sobolov space Hk(κΩ) for some

k ≥ 1 then for a uniform p

∥u− uh∥DG ≤ C

(
h

p+ 1

)s− 1
2

|u|s,Th
. (2.3.12)

Where 1 ≤ s ≥ min(p+ 1, k).

Hence, the above hp-bound is optimal in h and suboptimal in p by p
1
2 . This implies

the rate of convergence for the error in the DG norm is O(hp+
1
2). The error in the L2

norm is similarly suboptimal on certain meshes [52] but on most meshes is said to be

O(hp+1) [49]. Using a simple example of the transport problem on Ω = (0, 1)2,

∇ · (au) + u = 2π cos(2πx) sin(2πy) + 2π cos(2πy) sin(2πx) + sin(2πx) sin(2πy) in Ω

u = 0 on ∂−Ω.

(2.3.13)

Where a = (1, 1)T . This PDE was chose as it has an analytical solution u = sin(2πx) sin(2πy).

20

Figure 2.3: Comparing DG norm and L2 norm rate of covergence

Figure 2.3 shows the different rate of convergence of the errors in the L2 and DG

norms.

21

Chapter 3

Discontinuous Galerkin finite

element method for the time

independent linear Boltzmann

transport equation

In this chapter, we discuss how we plan to discretise each of the domains (space, angle, and

energy) of the time independent LBTE. Having now introduced the notion of DGFEM,

we can apply it in the case of the LBTE. For simplicity, we will deal exclusively with

the steady state (time-independent) LBTE, reducing it to six dimensions. The spatial

domain Ω, describes the location of the particles, and has three dimensions. The angular

domain S gives the direction of travel of the particles in 3D but is described by polar

and azimuthal angles, making it 2D only. The energy domain E describes the amount of

energy the particles possess, and is 1D. We then compare the DGFEM discretisation of

the angular domain to the commonly used discrete ordinates as described in the previous

Chapter 2.2. Having done so, we introduce our new angular discretisation, DOG, which

retains the simple matrix structure of discrete ordinates with the high order DG.

3.1 Time-independent linear Boltzmann transport

equation

Given an open bounded polyhedral spatial domain Ω ⊂ Rd for d = 2 or 3, with ∂Ω

signifying the union of its (d − 1)-dimensional open faces, let D = Ω × S × E, where

S = {µ ∈ Rd : |µ|2 = 1} denotes the surface of the d-dimensional unit sphere and

E = {E ∈ R : E ≥ 0} is the real half line.

22

Then, the time independent linear Boltzmann transport problem is given by:

Find u : D → R such that

µ · ∇xu(x,µ, E) + (α(x,µ, E) + β(x,µ, E))u(x,µ, E) = S[u](x,µ, E)

+ f(x,µ, E) in D,

u(x,µ, E) = gD(x,µ, E) on Γin, (3.1.1)

where f, g, α : D → R are problem specific data terms, ∇x is the spatial gradient operator,

and Γin = {(x,µ, E) ∈ D̄ : x ∈ ∂Ω and µ · n < 0} denotes the inflow boundary of D,

where n denotes the unit outward normal vector on the boundary ∂Ω. S[u] denotes the

scattering operator on u and is given by:

S[u](x,µ, E) =

ˆ
E

ˆ
S
θ(x,η → µ, E′ → E)u(x,η, E′) dη dE′,

where θ is the scattering kernel given by the problem. The θ usually defined by the

type of particle interaction in the material present. η → µ is a shorthand for the

incoming and outgoing angular direction of the interaction often given as a scattering

angle cos(ϑ) = η · µ. Simiarily the incoming and outgoing energy is shown as E′ → E.

The total scattering data term β can be calculated as:

β(x,µ, E) =

ˆ
E

ˆ
S
θ(x,µ→ η, E → E′) dη dE′.

From the physical interpretation of the LBTE we know that particles can only lose

energy during a scattering interaction and thus θ(x,η → µ, E′ → E) = 0 for E < E′.

The other interaction that the particles can go through is absorption, denoted by α.

Similarly, we presume the problem is angularly isotropic, so α(x,µ, E) ≥ 0 for all x ∈ Ω

and E ∈ E. Finally, we assume there exists some constant c0 such that

c = α(x,µ, E) +
1

2
(β(x,µ, E)− γ(x,µ, E)) ≥ c0 > 0, (3.1.2)

where

γ(x,µ, E) =

ˆ
E

ˆ
S
θ(x,η → µ, E′ → E) dη dE′

3.2 Energy discretisation

3.2.1 Multigroup

Discretising the energy domain of the LBTE has historically been done by a multi-

group approximation [50]. This method first restricts the domain E to a finite interval

23

(Emin, Emax). Then it creates a series of sub-intervals between (Emin, Emax) such that

Emax = E0 > E1 > . . . > ENE−1 > ENE = Emin

for some NE ∈ N. Each energy group g has a function ug defined by

ug(x,µ) =

ˆ Eg−1

Eg

u(x,µ, E)dE,

and a weighting function ωg such that

u(x,µ, E) ≈ ωg(E)ug(x,µ) for E ∈ [Eg, Eg−1],

ˆ Eg−1

Eg

ωg(E)dE = 1.

The simplest example of ωg(E) is

ωg(E) =
1

Eg−1 − Eg

We can then define data terms for each group 1 ≤ g, g′ ≤ NE as follows:

αg(x,µ) =

ˆ Eg−1

Eg

ωg(E)α(x,µ, E) dE,

βg(x,µ) =

ˆ Eg−1

Eg

ωg(E)β(x,µ, E) dE,

θg′→g(x,µ
′ → µ) =

ˆ Eg−1

Eg

ˆ Eg′−1

Eg′

w(E′)θ(x,µ′ → µ, E′ → E) dE′ dE,

fg(x,µ) =

ˆ Eg−1

Eg

ωg(E)f(x,µ, E) dE.

Using these we get a coupled system of mono-energetic LBTE problems for {ug}NE
g=1

µ · ∇xug(x,µ) + (αg(x,µ) + βg(x,µ))ug(x,µ)

=

NE∑
g′=1

ˆ
S
θg′→g(x,µ

′ → µ)ug′(x,µ′) dµ′ + fg(x,µ).

Thus, the multigroup approximation gives the poly-energetic LBTE as a system of

coupled mono-energetic LBTEs. As we assume not particle can gain energy from an

interaction, the ordering matters for the multigroup method, we must first solve for the

fluence in the highest energy group, and then subsequently for each lower energy group

in turn.

24

3.2.2 Discontinuous Galerkin (DG) in Energy

We can easily define a mesh using the same energy groups, as in multigroup

TE = {κg}NE
g=1,

where the interval κg = (Eg, Eg−1) is called the energy group g, g = 1, . . . , NE. For

every energy group κg, g = 1, . . . , NE, we give a polynomial degree rg ≥ 0. Defining

r = (rκg
)NE
g=1, we introduce the energy finite element space

Vr
E = {v ∈ L2(Emin, Emax) : v|κg ∈ Prκg

(κg) for all κg ∈ TE}.

3.3 Angular discretisation

There are several different discretisations of the angular domain that are used in the

literature. We will be focusing on two different methods, discrete ordinates, as mentioned

in Chapter 2 and finite element methods, specifically the discontinuous Galerkin finite

element method.

3.3.1 Discrete Ordinates (DO)

The discrete ordinates method involves dividing the angular domain into a finite set of

discrete angles [8], denoted by µn for n = 1, ..., N . The angles µn act as quadrature

points, used to integrate over the angular domain

ˆ
S
f(x,µ) ≈

N∑
n=1

ωnf(x,µn),

where ωn are the associated quadrature weights. The radiation transport equation can

then be discretised into a set of N transport equations:

µn·∇xu(x,µn)+(α(x,µn)+β(x,µn))u(x,µn) =

N∑
n=1

ωnθ(x,ηn → µn)u(x,ηn)+f(x,µn),

for 1 ≤ n ≤ N . All N transport equations are coupled via the scattering operator. There

are many choices of quadrature points and weights, but in general we want a quadrature

scheme with the following properties [45]:

• Quadrature points should be located within the domain of integration, and the

weights should all be positive.

• Any rotation of the arrangement of the quadrature points must have no effect.

25

• The principle of optical reciprocity

θ(x,ηn → µn) = θ(x,µn → ηn),

must be maintained for the quadrature scheme.

• Quadrature points and weights must satisfy

N∑
n=1

ωnµn = 0.

There are numerous quadrature schemes that satisfy these conditions. For the rest

of this section, we will be focusing on a common type of discrete ordinates TN , which

we introduced in Section 2.2. This discrete ordinate system was chosen to allow easy

comparison to DG in angle.

3.3.2 Discontinuous Galerkin (DG) in Angle

Similar to DG for the spatial domain, we need to define a mesh and finite element space

over the angular domain. As the angular domain S is the surface of the unit circle in R2

and the unit sphere in R3, defining a mesh presents a challenge that is well documented

in the literature [4, 22, 24]. Many mappings will become singular at the poles and force

elements near to the poles to have degenerate faces. In this work, a cube-sphere mesh

over the angular domain S is used. A cube-sphere mesh requires a mesh of the surface

of the d-dimensional unit cube that is then mapped, using a smooth and invertible

mapping, on to the unit sphere. We denote a mesh T̃S = {κ̃S} on an approximation of the

surface of a sphere Sh, i.e., Sh = ∪κ̃S∈T̃S
κ̃S. We introduce a smooth invertible mapping,

ϕS : Sh → S, assuming the surface is star-shaped with respect to the origin, defined as

ϕS(µ̃) = |µ̃|−1
2 µ̃, where | · |2 denotes the l2-norm. The mesh on S can then be defined as

TS =
{
κS : κS = ϕS(κ̃S) ∀κ̃S ∈ T̃S

}
.

We assume that elements κ̃S ∈ T̃S are mapped to κS ∈ TS, without any significant

rescaling. Assuming ϕκS : κ̂S → κ̃S for some reference element κ̂S ⊂ Rd−1 is affine, we

can define FκS : κ̂S → κS by FκS = ϕS ◦ ϕκS for some reference element κ̂S.

Then, for each κS ∈ TS, we write qκS ≥ 0 to denote the polynomial degree employed on

κS and write q := (qκS : κS ∈ TS). The corresponding finite element space defined on the

surface of the sphere S is given by

Vq
S = {v ∈ L2(S) : v|κS = v̂ ◦ F−1

κS
, v̂ ∈ Hk(κ̂S) for all κS ∈ TS},

26

here Hk(κ̂S) are the polynomial basis functions on the angular element. The basis

functions are of the form Pk(κ̂S) or Qk(κ̂S) as defined in Section 2.3.1.

3.4 DG-DG-DG

Employing the definitions introduced in the previous sections, we define the full space-

angle-energy mesh by taking a tensor product of the meshes.

T = TΩ × TS × TE = {κ : κ = κΩ × κS × κg, κΩ ∈ TΩ, κS ∈ TS, κg ∈ TE}.

Likewise, we can obtain our space-angle-energy finite element space by taking the

tensor product of the finite element space over each different domain.

Vp,q,r
Ω,S,E = Vp

Ω ⊗ Vq
S ⊗ Vr

E,

and, for any µ ∈ S, let Gµ,h = {v ∈ L2(Ω) : µ ·∇xv|κΩ ∈ L2(κΩ) for all κΩ ∈ TΩ} denote

the broken spatial graph space. Exploiting the tensor structure of our domain D and

our finite element space Vp,q,r
Ω,S,E, allows us to finally introduce the DGFEM:

Find uh ∈ Vp,q,r
Ω,S,E such that

∑
κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
κΩ

(µ · ∇xuhvh + (α+ β)uhvh) dx dµ dE

−
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
∂−κΩ\∂Ω

(µ · nκΩ)(u
+
h − u

−
h)v

+
h ds dµ dE

−
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ)u
+
h v

+
h ds dµ dE

=
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
κΩ

S[uh](x,µ, E)vh dx dµ dE

+
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
κΩ

fvh dx dµ dE

−
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ)gDvh ds dµ dE ∀vh ∈ Vp,q,r
Ω,S,E.

This can be rewritten as:

Find uh ∈ Vp,q,r
Ω,S,E such that

b(uh, vh) ≡ a(uh, vh)− s(uh, vh) = ℓ(vh) (3.4.1)

for all vh ∈ Vp,q,r
Ω,S,E, where a, s : Vp,q,r

Ω,S,E × Vp,q,r
Ω,S,E → R and ℓ : Vp,q,r

Ω,S,E → R are given,

27

respectively, by

a(uh, vh) =
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
κΩ

(µ · ∇xuhvh + (α+ β)uhvh) dx dµ dE

−
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
∂−κΩ\∂Ω

(µ · nκΩ)⌊uh⌋v+h ds dµ dE

−
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ)u
+
h v

+
h ds dµ dE

s(wh, vh) =
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
κΩ

S[uh](x,µ, E)vh dx dµ dE

ℓ(vh) =
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
Ω

fvh dx dµ dE

−
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ)gDvh ds dµ dE

We note that this scheme is consistent in the sense that if the analytical solution u

to (3.1.1) is sufficiently smooth then

b(u, v) = ℓ(v)

for all v ∈ Vp,q,r
Ω,S,E.

3.5 DG-DG

The monoenergetic LBTE is given as

µ · ∇xu(x,µ) + (α(x,µ) + β(x,µ))u(x,µ) = S[u](x,µ)

+ f(x,µ) in D,

u(x,µ) = gD(x,µ) on Γin, (3.5.1)

By the same arguments we can derive a DGFEM for the mono-energetic LBTE. Defining

the space-angle mesh

TΩ,S = TΩ × TS = {κ : κ = κΩ × κS, κΩ ∈ TΩ, κS ∈ TS}.

Again, we can obtain our space-angle finite element space

Vp,q
Ω,S = Vp

Ω ⊗ Vq
S ,

28

and, for any µ ∈ S, let Gµ,h = {v ∈ L2(Ω) : µ ·∇xv|κΩ
∈ L2(κΩ) for all κΩ ∈ TΩ} denote

the broken spatial graph space. Notice that we can define the space-angle finite element

space as the subspace of Vp,q,r
Ω,S,E where the space-angle-energy functions are constant in

the energetic argument:

Vp,q
Ω,S = {vh ∈ Vp,q,r

Ω,S,E : vh(·, ·, E) = vh(·, ·, E′) ∀E,E′ ∈ E}.

Likewise, energy independent data terms can be defined from the poly-energetic

equivalents

θ(x,η → µ, E′ → E) =
1

|E|
θ(x,η → µ),

α(x,µ, E) = α(x,µ),

f(x,µ, E) = f(x,µ),

g(x,µ, E) = g(x,µ).

The other data terms are given by

β(x,µ) =

ˆ
S
θ(x,η → µ) dη,

γ(x,µ) =

ˆ
S
θ(x,η → µ) dη,

the condition on α, (3.1.2), is reduced to

c = α(x,µ) ≥ c0 > 0.

The DG-DG scheme can be written as:

Find uh ∈ Vp,q
Ω,S such that

b(uh, vh) ≡ a(uh, vh)− s(uh, vh) = ℓ(vh), (3.5.2)

for all vh ∈ Vp,q
Ω,S, where a, s : V

p,q
Ω,S × Vp,q

Ω,S → R and ℓ : Vp,q
Ω,S → R are given, respectively,

by

a(uh, vh) =
∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
κΩ

(µ · ∇xuhvh + (α+ β)uhvh) dx dµ

−
∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
∂−κΩ\∂Ω

(µ · nκΩ)⌊uh⌋v+h ds dµ

−
∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ
)u+h v

+
h ds dµ

29

s(wh, vh) =
∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
κΩ

S[uh](x,µ, E)vh dx dµ

ℓ(vh) =
∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
Ω

fvh dx dµ

−
∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ
)gDvh ds dµ

We note that this scheme is consistent in the sense that if the analytical solution u to

(3.5.1) is sufficiently smooth then

b(u, v) = ℓ(v)

for all v ∈ Vp,q
Ω,S.

3.6 Source iteration

We may express the mono-energetic problem, as defined in Section 3.5, in matrix form:

find the vector U ∈ RN of coefficients with respect to a basis of Vp,q
Ω,S such that

AU − SU = F (3.6.1)

where A,S ∈ RN×N and F ∈ RN denote the matrix representation of the streaming,

A, and scattering, S, operators and load term, F , respectively. Rather than seeking to

compute u = (A− S)−1F directly, which is prohibitively expensive due to the density of

S; we employ a linear solver, so that the solution to the previous iteration can be used

on the scattering turn. Source iteration is the technique of solving this linear system

using the Richardson iteration:

Given U0 ∈ RN , find Ur ∈ RN such that

AUr = SUr−1 + F, (3.6.2)

for r = 1, 2, It may be shown that this iteration converges to the solution of (3.6.1)

if this scattering ratio,

ess sup
x∈Ω

β(x)

α(x) + β(x)
< 1,

holds [1].

The advantage of this approach is that it avoids inverting the scattering matrix,

which is typically dense and highly coupled in angle. To investigate the structure of the

matrix A, we introduce the following notation: for an angular element κS, κS ∈ TS, we

define the local element basis by {φi
κS
}|qκS |
i=1 , where |qκS | denotes the dimension of the

30

polynomial space defined on κS. Furthermore, write Vp
Ω = span{φi

Ω}
NΩ
i=1, NΩ = dim(Vp

Ω).

The matrix A has the nested block structure

A =



D1 0

0 D2 0

0
. . .

. . . 0

0 D|TS|


, with Dn =


Dn

1,1 . . . Dn
1,|qκS |

...
. . .

...

Dn
|qκS |,1

. . . Dn
|qκS |,|qκS |

 ,

where |TS| = card(TS) and, for n = 1, 2, . . . , |TS|, Dn
i,j =

´
κS
φi
κS
(µ)φj

κS
(µ)Dµ dµ, i, j =

1, 2, . . . , |qκS |, where Dµ ∈ RNΩ×NΩ , with (Dµ)i,j = Bµ(ϕ
j
Ω, ϕ

i
Ω), i, j = 1, 2, . . . , NΩ.

Where Bµ the bilinear form the DGFEM transport problem (2.3.5) with a selected to

be direction vector µ. Solving (3.6.2) therefore requires inverting each diagonal block

Dn, n = 1, 2, . . . , |TS|, which corresponds to solving a coupled system of spatial transport

problems on each angular element.

3.7 DG-DG vs DO mono-energetic LBTE

To compare these two methods of discretisation on a mono-energetic model problem is

introduced. This problem is unrealistic and has has been picked due to it having an

analytical solution.

Find u ∈ Ω× S such that

µ · ∇xu(x,µ) + (α(x,µ) + β(x,µ))u(x,µ) = S[u](x,µ)

+ f(x,µ) in D,

u(x,µ) = gD(x,µ) on Γin.

The macroscopic absorption cross-section is set at α = 1, and the differential scattering

cross-section S is selected to be

S(x,µ · µ′) =
1

4π
,

over D therefore β = 1. Finally, the forcing term f and g are selected so that the

analytical solution is given by

u(x,µ) = cos(4ϕ)(x cos y + y sinx),

where the angular variable is parameterised by µ = (sinϕ cosφ, sinϕ sinφ, cosϕ) for

0 ≤ ϕ ≤ π and 0 ≤ φ ≤ 2π. α = 1, β = 1, θ(x,µ · η) = 1
4π over D. And the terms f and

31

g are defined such that the analytical solution is

u(x,µ) = cos(4ϕ)(x cos y + y sinx).

Figure 3.1: The L2 error for DO and DG-DG q = p = 2.

Figure 3.1 shows the convergence of the DGFEM using meshes consisting of uniform

squares in the spatial domain Ω for both the different angular discretisations. In this

example, we observe that as we uniformly refine both space and angle at the same rate,

the error in the L2 norm does not behave in the same way for both angular discretisations.

The convergence of error in the L2 norm for DG-DG is of order ∥u− uh∥L2(D) ∼ O(h3),

but for DO, it is of order ∥u− uh∥L2(D) ∼ O(h).

We can show that this is due to the different angular discretisations. By integrating

out the angle, we get the scalar flux:

ϕ(x) =

ˆ
S
u(x,µ) dµ

32

Figure 3.2: The scalar flux error for DO and DG-DG q = p = 2.

Figure 3.2 shows the error of the scalar flux ∥ϕ− ϕh∥L2(D) ∼ O(h3) for both of the

angular discretisations. It demonstrates that the low order of the L2 error of the discrete

ordinates is due to the angular discretisations used. Another point of comparison between

the two methods is the time taken to solve the mono-energetic LBTE.

33

Figure 3.3: Time taken to solve LBTE with DG-DG and DO q = p = 2

Figure 3.3 shows that the DG-DG method takes significantly longer to solve than

the DO method, while both are using the same optimised matrix solver MUMPS [65].

We can split the time taken to solve the LBTE into three different stages: forming the

matrix; solving the matrix; and calculating the scattering term.

34

Figure 3.4: The time taken for each stage of solving the LBTE q = p = 0

Figure 3.5: The time taken for each stage of solving the LBTE q = p = 2

From Figure 3.4 we can see that computing the scattering term takes roughly the

same amount of time for each scheme. Figure 3.5 demonstrates that at higher orders,

however, the time taken to construct and solve the matrix is significantly longer and

35

growing at a faster rate for the DG-DG method. This difference is due to the matrix

structure of each of the schemes.

Figure 3.6: Matrix sparsity pattern for the DO and DG-DG schemes.

The discrete ordinates method results in a block diagonal matrix, with each block

being a transport equation with the ordinate (quadrature point) as the advection field.

This allows each transport problem to be solved separately. With DG-DG, however, the

matrix formed is much denser and cannot easily be separated into transport problems.

Figure 3.6 shows an example of the different matrix structures; please note with both of

these, each entry is a block matrix itself. Section 3.6 shows the structure of the blocks

produced by the DG-DG method.

3.8 Discrete Ordinates Galerkin (DOG)

From the DG-DG implementation we know that on each angular element κS ∈ TS, the

mono-energetic solution can be approximated in terms of an angular basis {φi
κS
}|qκS |
i=1 on

κS

uh(x,µ)|κS =

|qκS |∑
i=1

uiκS
(x)φi

κS
(µ) ∀uiκS

∈ Vp
Ω.

Which we can rewrite as

uh(x,µ) =
∑
κS∈TS

|qκS |∑
i=1

uiκS
(x)φi

κS
(µ),

in terms of these basis functions.

Selecting test functions of the form vh = vκSφ
i
κS
, vκS ∈ Vp

Ω the DG-DG problem can

be expressed as:

∀κS ∈ TS, find {uiκS
}|qκS |
i=1 ∈ Vp

Ω such that

|qκS |∑
j=1

a(ujκS
φj
κS
, vκSφ

i
κS
) =

∑
κ′
S∈TS

|qκS |∑
j=1

s(ujκ′
S
φj
κ′
S
, vκSφ

i
κS
) + ℓ(vκSφ

i
κS
) ∀vκS ∈ Vp

Ω,

36

and 1 ≤ i ≤ |qκS |.

For some given angular reference element κ̂S ∈ TS, let {(µ̂q, ω̂q)}
|qκS |
q=1 (where |qκS | =

(qκS + 1)d−1) denote the tensor-product Gauss-Legendre quadrature scheme with qκS + 1

points in each direction. Then, on the same reference element κ̂S, let {φ̂i}
|qκS |
i=1 denote the

Lagrangian basis for QqκS
(κ̂S) constructed with respect to the Gauss-Legendre quadrature

points µ̂q, q = 1, 2, . . . , |qκS |, which satisfies

φ̂i(µ̂j) = δij , i, j = 1, 2, . . . , |qκS |.

On each angular element, κS ∈ TS, we map the local basis defined on the reference

element to κS based on employing the mapping FκS ; more precisely, this yields the local

basis

{φi
κS

= φ̂i ◦ F−1
κS
}|qκS |
i=1 ,

on κS. Furthermore, the quadrature scheme on κS ∈ TS, is given by (µq
κS
, ωq

κS
)
|qκS |
q=1 , where

µq
κS

= FκS(µ̂q), ω
q
κS

= ω̂qJκS(µ̂q), q = 1, 2, . . . , |qκS |, and JκS denotes the square root of

the determinant of the first fundamental form of the mapping FκS . Hence, the mapped

basis retains the Lagrangian property of the reference basis.

|qκS |∑
j=1

a(ujκS
φj
κS
, vκSφ

i
κS
) ≈

|qκS |∑
q=1

ωq
κS
φj
κS
(µq

κS
)φi

κS
(µq

κS
)aqκS

= ωi
κS
aiκS

δij for i = 1, 2, . . . |qκS |

Where aiκS
is a(uh, vh) evaluated at µ = µi

κS
, i.e. a transport problem with a fixed wind

direction. This changes the structure of our matrix equations used for source iteration to

Dn ≈



ω1Aµ1 0

0 ω2Aµ2

. . .

. . .
. . . 0

0 ω|qκS |AµN|qκS |

.


A becomes a block diagonal matrix formed from block diagonal matrices where the

individual blocks correspond to a single spatial transport problem, exactly like DO, as

seen in Section 3.7, but retaining the DG variational framework. The DOG discretisations

allow the mono-energetic LBTE to be treated as a system of transport equations coupled

on the right side. We require the basis functions to be QqκS
(κS) rather than offering the

choice between that and PqκS
(κS) in order that the number of quadrature points used to

evaluate the angular domain is high enough while keeping that:

φ̂i(µ̂j) = δij , i, j = 1, 2, . . . , |qκS |.

37

3.8.1 DOG in energy

In our paper [33], we show that the same arguments can be applied to the DGFEM in

energy domain to result in a system of coupled mono-energetic LBTEs. If we had perfect

knowledge of the function

u+(x,µ, E) =

u(x,µ, E) for E > Ê,

0 otherwise,

for some Ê > 0, then the assumption that the scattering kernel satisfies θ(x,η · µ, E′ →

E) = 0 for E′ < E, would imply that û(x,µ) ≡ u(x,µ, Ê) satisfies the monoenergetic

radiation transport problem:

Find û : Ω× S→ R such that

µ · ∇xû(x,µ) + (α(x,µ, Ê) + β(x,µ, Ê))û(x,µ) = S[u+](x,µ, Ê)

+ f(x,µ, Ê) in D,

û(x,µ) = g(x,µ, Ê) on Γin.

As with multigroup discretisation we must first solve in the higher energy groups

before moving on to the lower energy groups. We then introduce the following family of

energy cutoff functions:

u+g (x,µ, E) =

uh(x,µ, E) for E ≥ Eg−1,

0 otherwise,

for all 1 ≤ g ≤ NE, which represents the component of the discrete fluence which may be

considered as pre-computed ‘data’ when solving for the fluence in group κg, and focus

on solving the problem in a single energy group κg, 1 ≤ g ≤ NE. We expand uh in group

κg in terms of energy basis functions as

uh(x,µ, E)|κg ≡ ug(x,µ, E) =

rκg+1∑
j=1

ujg(x,µ)φ
j
g(E),

where ujg ∈ Vp,q
Ω,S, j = 1, 2, . . . , rκg + 1, and {φj

g}
rκg+1

j=1 forms a basis of Prκg
(κg) (which

is only supported on κg).

Selecting vh = vgφ
i
g ∈ Vp,q,r

Ω,S,E, with vg ∈ Vp,q
Ω,S, i = 1, 2, . . . , rκg

+ 1, the fluence in

group κg may then be computed by solving:

38

Find
{
uig
}rκg+1

i=1
∈ Vp,q

Ω,S such that

rκg+1∑
j=1

(ˆ
κg

ˆ
S
aEµ (u

j
g, vg)φ

j
gφ

i
g dµ dE − s(ujgφj

g, vgφ
i
g)

)
= s(u+g , vgφ

i
g) + ℓ(vgφ

i
g)

for all vg ∈ Vp,q
Ω,S and i = 1, 2, . . . , rκg

+ 1. Where we have defined the upwind transport

bilinear form aEµ : Gµ,h × Gµ,h → R as

aEµ (wh, vh) =
∑

κΩ∈TΩ

ˆ
κΩ

(µ · ∇xwhvh + (α+ β)whvh) dx

−
∑

κΩ∈TΩ

ˆ
∂−κΩ\∂Ω

(µ · nκΩ
)⌊wh⌋v+h ds

−
∑

κΩ∈TΩ

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ
)w+

h v
+
h ds.

And s(wh, vh) and ℓ(vh) are the definitions given in Section 3.4,

s(wh, vh) =
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
κΩ

S[uh](x,µ, E)vh dx dµ dE,

ℓ(vh) =
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
Ω

fvh dx dµ dE

−
∑

κg∈TE

ˆ
κg

∑
κS∈TS

ˆ
κS

∑
κΩ∈TΩ

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ
)gDvh ds dµ dE.

This forms a fully coupled system of monoenergetic Boltzmann transport problems

for the rκg
+ 1 unknowns within the energy group κg. To simplify this structure, let

{Eq
g}

rκg+1

q=1 ⊂ κg denote the rκg
+ 1 Gauss-Legendre quadrature points on κg with

associated weights {ωq
g}

rκg+1

q=1 ⊂ R≥0. We then select the basis functions {φi
g}

rκg+1

i=1 to

be the unique set of polynomials which satisfy the Lagrangian property φi
g(E

j
g) = δij ,

i, j = 1, 2, . . . , rκg
+ 1, where δij denotes the Kronecker delta. This quadrature is exact

for polynomials of degree 2rκg
+ 1, and so we use it to evaluate the (energy) integrals

present in the bilinear form aEµ (·, ·):

Find
{
ujg
}rκg+1

j=1
∈ Vp,q

Ω,S such that

ωi
g

ˆ
S
a
Ei

g
µ (uig, vg) dµ−

rκg+1∑
j=1

s(ujgφ
j
g, vgφ

i
g) = s(u+g , vgφ

i
g) + ℓ(vgφ

i
g) (3.8.1)

for all vg ∈ Vp,q
Ω,S and i = 1, 2, . . . , rκg

+ 1. Here, a
Ei

g
µ (·, ·) is defined analogously to

aEµ(·, ·) with the coefficient data α and β evaluated at the energy quadrature point Ei
g,

i = 1, 2, . . . , rκg + 1. Furthermore, with a slight abuse of notation, we have written{
uig
}rκg+1

i=1
to also denote the solution of the equation above. We have not applied

39

the above quadrature scheme in energy to the forcing and scattering terms, since in

applications it is usually preferable to treat these terms separately. Instead, we express

the scattering term in an alternative form. For w, v ∈ Vp,q
Ω,S, we define

sj,ig′,g(w, v) =

ˆ
S

ˆ
Ω

ˆ
S
Θj,i

g′,g(x,η · µ)w(x,η)v(x,µ) dη dx dµ,

where

Θj,i
g′,g(x,η · µ) =

ˆ
κg

ˆ
κg′

θ(x,η · µ, E′ → E)φi
g(E)φj

g′(E
′) dE′ dE,

for g, g′ = 1, 2, . . . , NE , i = 1, 2, . . . , rκg
+ 1, and j = 1, 2, . . . , rκg′ + 1. With this, (3.8.1)

may be rewritten in the following equivalent form:

Find
{
ujg
}rκg+1

j=1
∈ Vp,q

Ω,S satisfying the discrete monoenergetic radiation transport problem

ωi
g

ˆ
S
a
Ei

g
µ (ujg, vg) dµ−

rκg+1∑
j=1

sj,ig,g(u
j
g, vg) =

g−1∑
g′=1

rκ
g′

+1∑
j=1

sj,ig′,g(u
j
g′ , vg) + ℓ(vgφ

i
g)

for all vg ∈ Vp,q
Ω,S and i = 1, 2, . . . , rκg

+ 1. This yields a system of rκg
+ 1 monoenergetic

radiation transport problems to solve within each energy group, which are only coupled

through the scattering operator. Moreover, as we assume particles never gain energy from

their interactions, solutions within a given energy group depend only on the solutions

within the same group and from higher energy groups.

3.9 DOG vs DG-DG vs DO

Using the same model problem as in Section 3.7, Figure 3.7 shows that the DOG scheme

retains the high order approximation of the DG-DG scheme, ∥u − uh∥L2(D) ∼ O(h3),

rather than the DO scheme which is ∥u− uh∥L2(D) ∼ O(h).

40

Figure 3.7: Angular flux error in the L2 norm for DO, DOG and DG-DG q = p = 2.

Figure 3.8: Time taken to solve LBTE with different angular discretisations q = p = 2.

Figure 3.8 shows that the DOG scheme has retained the shorter solve times of the DO

scheme. This is as expected as the matrix has been block diagonalised in a similar way

to the DO scheme. Figures 3.9 and 3.10 show that at higher orders, DOG construction

41

and solve times scale like the DO ones.

Figure 3.9: The time taken for each stage of solving the LBTE q = p = 0

Figure 3.10: The time taken for each stage of solving the LBTE q = p = 2

42

3.10 Summary

In this chapter, we have shown how the domain D of the LBTE can be formed by the

tensor product of three domains Ω,S,E. This tensor structure can then be exploited to

allow each domain to be discretised separately, such as multigroup in energy and discrete

ordinates in angle. This simplicity, however, comes at the cost of them being low order

methods. For high order methods, traditionally we have to treat and consider multiple

domains at once, such as DG-DG-DG; however, the new discretisation we have presented,

DOG, and its analogous results for the energy domain in [33], can be used to treat each

domain separately while retaining the high order convergence from the discontinuous

Galerkin methods.

The DOG scheme, Section 3.8, relies on using quadrilateral elements in the angular

mesh, as other shaped elements cannot be integrated as accurately with a lower number

of quadrature points entirely contained within their domain. Likewise, the basis functions

on the angular elements must be QqκS
with Lagrangian polynomials so that

φ̂i(µ̂j) = δij , i, j = 1, 2, . . . , |qκS |.

Consequently, the DOG scheme results in a system of transport problems coupled

only on the right hand side; thus, the matrix can be more efficiently constructed and

solved than the coupled domain system of DG-DG. We have also seen that the scattering

step of solve, takes the same amount of time, no matter the discretisation. While there

are more efficient algorithms for performing this step, see [55], we will not be focussing

on that stage for the rest of this thesis. We shall, instead, be focussing on optimising the

construction and solve times of the DOG scheme, by developing an efficient solver for

the transport problem.

43

Chapter 4

The structure of the matrix

system resulting from the

discrete ordinate Galerkin

discretisation

As we have shown, the DOG discretisation allows us to solve a series of transport

equations coupled on the right hand side. It is, therefore, worth examining how we solve

the transport equation, as if we find an efficient way to solve the individual transport

problems, we will be able to solve the LBTE much more efficiently.

Also, motivated by our desire to use real life MRI or CAT scan data, we need to

consider the size of these problems. An average MRI image is formed of 16,777,216 voxels,

though higher resolutions are becoming more popular, which means using the MRI voxels

would require a lot of resources. In this chapter we, therefore, examine the effect of using

different element types in our spatial mesh. We first explain how the different standard

element shapes affect the sparsity of the resulting matrix, we then examine polytopic

meshes, convex elements from Voronoi tessellation, and then agglomerating elements.

4.1 The linear system for the LBTE

Taking the weak form of the transport problem (2.3.5), we can find the finite element

formulation to this problem:

Find uh ∈ Vh such that

B(uh, vh) = ℓ(uh) ∀vh ∈ Vh.

44

where B : Vh × Vh → R is a bilinear functional and ℓ : Vh → R, gives a matrix system

Au = l

This matrix A and vector l have coefficients Aij = B(ϕi, ϕj), li = ℓ(ϕi) as our basis

functions ϕ are constructed such that their span equals the test space for our problem.

However, due to the scattering operator present in the LBTE, our bilinear functional

A can be separated into two separate operators A = T − S

This gives a linear system

Tu = Su+ l

where T is a matrix of coefficients corresponding to the transport part of the LBTE

and S is a matrix of coefficient for the scattering part of the LBTE. When the problem

is discretised, however, the structure of S is always a dense matrix formed of blocks

corresponding to each combination of basis functions of the space and angular dimensions.

S =


S11 S12 . . . S1,N

·
··

·
··

···
·
··

SN1 SN2 . . . SNN .


The structure of T , however, is much more dependent on the choice of discretisation.

As discussed previously, one of the main advantages derived from the DOG scheme, Sec-

tion 3.8, is its block diagonal matrix structure. Not only does this structure dramatically

reduce the computation required to solve the linear system, see Section 3.9, it also allows

us to reduce polyenergetic LBTE to a sequence of monoenergetic LBTE systems [33].

Furthermore, it allows us to treat a monoenergetic LBTE as a sequence of transport

equations. It is, therefore, these transport equations that form the blocks in the resulting

block diagonal matrix T . In the DOG scheme we get a transport matrix

T =



ωE
1 ω

A
1 T11

ωE
1 ω

A
2 T12

···
ωE
Mω

A
NTMN


,

Here, M,N are the number of quadrature points in the discrete ordinate scheme formed

by the DOG scheme for energy and angle, and {ωE
i }Mi=1 and {ωA

j }Nj=1 are the weights

associated with these quadrature points. Also {Tij}M,N
i=1,j=1 is a matrix that is formed

from the unique transport problem formed for the quadrature point pairs. So it is worth

discussing the structure of these transport block matrices Tij .

45

4.2 Transport block structure

The matrix Tij is formed by the transport bilinear form B(·, ·), as defined in (2.3.5) and

has two distinct components, the element, and the face blocks. The element block is

formed when the trial and test functions (uh, vh) ∈ VΩ are wholly within a given element

κΩ is

AκΩ = B(uh, vh)|κΩ

=

ˆ
κΩ

−uha · ∇vh + buhvhdx,

AκΩ
[i, j] =

ˆ
κΩ

−ϕia · ∇ϕj + bϕiϕjdx,

where ϕi ∈ HpκΩ
, i, j ∈ [1,pκΩ

] is our finite element basis as defined in 2.3.1 and pκΩ
is

the maximum polynomial degree in the finite element space on the element κΩ.

The resulting square block is of size ((pκΩ + 1)(pκΩ + 2)/2)2 for 2D and ((pκΩ +

1)(pκΩ
+ 2)(pκΩ

+ 3)/6)2 for 3D with a HpκΩ
= PpκΩ

basis or (pκΩ
+ 1)4 for 2D and

(pκΩ
+ 1)6 for 3D with HpκΩ

= QpκΩ
. This block is placed in the matrix on the diagonal

of our transport matrix Tij .

There are two different types of face block, internal and external face blocks. Internal

face blocks are formed when the test and trial functions are defined on different convex

elements, κ1Ω, κ
2
Ω which have an intersection known as a face F between them. These

blocks for a given face F = κ1Ω ∩ κ2Ω are given by

Fκ1
Ω,κ2

Ω
= B(uh, vh)|F

=

ˆ
F
a · nκΩ

(u+h − u
−
h)v

+
h dS

Fκ1
Ω,κ2

Ω
[i, j] =

ˆ
F
a · nκΩ

(ϕ+i − ϕ
−
j)ψ

+
i dS,

where ϕ+i , ψ
+
i ∈ Hp

κ1
Ω

, ϕ−j ∈ Hp
κ2
Ω

, i ∈ [1,pκ1
Ω
] and j ∈ [1,pκ2

Ω
]. This matrix is a

rectangular block ((pκ1
Ω
+ 1)(pκ1

Ω
+ 2)/2)× ((pκ2

Ω
+ 1)(pκ2

Ω
+ 2)/2) for 2D and ((pκ1

Ω
+

1)(pκ1
Ω
+2)(pκ1

Ω
+3)/6)×(pκ2

Ω
+1)(pκ2

Ω
+2)(pκ2

Ω
+3)/6) for 3D if HpκΩ

= PpκΩ
. Similarly,

(pκ1
Ω
+ 1)2 × (pκ2

Ω
+ 1)2 for 2D and (pκ1

Ω
+ 1)3 × (pκ2

Ω
+ 1)3 for 3D if HpκΩ

= QpκΩ
.

This block is positioned in an off diagonal position in our transport matrix Tij ,

aligned with the two element blocks of the two elements κ1Ω and κ2Ω. The wind direction

a will determine which of these blocks are formed. Fκ1
Ω,κ2

Ω
will be the face block formed

with the wind coming from element κ1Ω to element κ2Ω and Fκ2
Ω,κ1

Ω
will be the face block

formed by the wind going in the opposite direction across the face F .

The external face block is formed by a boundary face with an element that is down

wind from the face, consequently the test and trial functions are only sampled on a single

46

element.

FK = B(uh, vh)|F∩∂−Ω

=

ˆ
F∩∂−Ω

a · nκΩ
u+h v

+
h dS

FK [i, j] =

ˆ
F∩∂−Ω

a · nκΩ
ϕ+i ψ

+
j dS,

where ϕ+i ⊆ PpκΩ
and i, j ∈ [1,pκΩ]. These blocks are positioned on the diagonal and

are the same size and shape as our elemental blocks, so they can be added together to

form our diagonal block

EK [i, j] = AκΩ [i, j] + FκΩ [i, j].

As an illustrative example of how these blocks are placed within the matrix Tij , we

will use a mesh with 4 square elements, as shown in Figure 4.1, and wind direction of

a = [1, 1]T . This gives the following block structure:

4 2

3 1

Wind direction

Figure 4.1: Square mesh with a north-east wind direction

Tij =


[E1] [F13]

[F21] [E2] [F24]

[E3]

[F43] [E4]

 . (4.2.1)

Obviously, this is a very small example of our transport block Tij . It is worth noting

that the matrix Tij is square, and it will have DOFs2 number of entries. So even this

small example could result in a large matrix with a high enough p. But the number of

empty (or equal to zero) cells will be fixed by the number of elements and the number

of faces between those elements. This leads us to consider the effect the type of the

elements has on the matrix sparsity.

47

4.3 Matrix Sparsity

A sparse matrix is a matrix where most of the elements are zero valued. A matrix’s

sparsity is defined as the percentage of elements in the matrix which are zero valued.

The example matrix above, (4.2.1) , has a block sparsity of 50%. Figure 4.2 shows the

actual sparsity pattern formed by the mesh in Figure 4.1 with polynomial degree one i.e.

p = 1. This has a sparsity of 71.6%. Similarly, Figure 4.3 shows the sparsity pattern for

a 3D cube mesh with eight elements, again with p = 1, this has a sparsity of 89.7%.

Figure 4.2: Sparsity pattern for 4 square elements, as shown in Figure 4.1, with p = 1

48

Figure 4.3: Sparsity pattern for 8 cube elements with p = 1

The sparser the matrix, the less memory and time is required to solve the matrix

equation; however, it is worth noting that this is a very basic example, and the sparsity

and structure of the transport matrix block is obviously dependent on three things:

• The number of elements will define how many diagonal blocks there are.

• The maximum polynomial degree basis function defined on each element will define

the block size for that element and its associated face blocks.

• The number of other elements that have at least one connected face between this

element and them, will define the number of face blocks on that element’s row and/

or column (depending on wind direction across the face(s)).

The number of elements and the polynomial degree are chosen for accuracy, as the

convergence rate of the error in the L2 norm is O(hp+1) [53], see Section 2.3.1. The

number of faces between elements, however, has no direct bearing on the accuracy of the

calculation, it is usually just a consequence of the element type and refinement strategy

chosen. It will, however, have a large bearing on the sparsity of the matrix, which is

directly linked to the time taken to solve the transport matrix equation.

In this section, we will be comparing three different element types: quadrilaterals;

simplices; and arbitrarily shaped polytopic elements.

Quadrilaterals and simplices are both examples of meshes with a single defined

element shape. Because of this, we know a priori how many faces every element should

have. In 2D the quadrilaterals we will use are squares which have four faces, in 3D we

49

will use cubes which have six faces. The simplices, used in our examples, in 2D are

right-angled triangles which have three faces and in 3D tetrahedra, which have four faces.

Polytopic meshes, however, do not have a predetermined shape, so elements can have a

different number of faces.

Unfortunately, if a quadrilateral or simplex mesh is not refined uniformly, there exist

elements of different sizes in the grid, and hanging nodes can form. A hanging node is

a node defined on the face of an element that is not a node used to define the shape

of the element. For example, in Figure 4.4 we see a hanging node has been formed,

giving a mesh with four smaller elements with four faces each and one larger element

which has 5 faces. If a mesh has at least one hanging node, it is called nonconforming.

Nonconforming meshes are no more complicated to use due to the discontinuous basis

functions in DGFEM; however, they can cause the calculation to slow down due to the

increased density of the matrix.

Figure 4.4: A hanging node formed by unevenly refining a square mesh

Figure 4.5 shows the sparsity pattern for a mesh formed of 8 simplices which has

a sparsity of 86.9%. Comparing with Figure 4.2 we can see that the reduction in the

number of faces has made the matrix 15.3% more sparse. In Figure 4.6 we see the matrix

sparsity for a mesh of 48 tetrahedral elements has a sparsity of 96.8%, an increase in

sparsity of 7.1%.

50

Figure 4.5: Sparsity pattern for 8 triangular elements with p = 1.

Figure 4.6: Sparsity pattern for 48 tetrahedral elements with p = 1.

While simplex meshes do have a higher sparsity than quadrilaterals they also have

quite a few more elements in them. This is due to two right-angled triangles forming a

square and six tetrahedra forming a cube (in our implementation), as shown in Figure

51

4.7.

Figure 4.7: How six tetrahedrons form one cube [25].

Simplex elements are polytopic elements with the lowest number of faces possible,

but a polytope element can have an arbitrarily high number of faces. This will result

in a denser matrix, as shown in Figure 4.8 where the matrix formed from 4 polygonal

elements has a sparsity of 36.1%, about half of the sparsity of the equivalent mesh with

square elements.

52

Figure 4.8: Sparsity pattern for 4 polygonal elements with p = 1.

4.4 Polytopic mesh generation

Polytopic meshes do have advantages of their own. Polytopic elements can be created

to fit the shape of the underlying geometry, rather than having to increase the number

of elements used. Doing this will result in a smaller matrix, with fewer element blocks.

Thus, a smaller denser matrix can give the same accuracy, in the L2 norm, as the larger

more sparse matrix of simplexes or quadrilaterals. Additionally, polytopic elements can

model complicated geometries more accurately than using smaller standard elements to

approximate the geometry.

As these polytopic elements are not as structured, they can be non-convex and have

multiple different faces between two elements. In the latter case, to evaluate the test

and trial functions across this face, we have to consider the subfaces. We define the

subfaces as the boundary between two elements that do not form the intersection of

the two elements. Consequently, the union of subfaces will form the face between two

elements. Due to this the face blocks of our transport matrix become

Fκ1
Ω,κ2

Ω
[i, j] =

N∑
l

sf

ˆ
Fl

a · nκΩ(ϕ
+
i − ϕ

−
i)ψ

+
j dS,

where ϕ+i , ψ
+
i ∈ Hp

κ1
Ω

, ϕ−j ∈ Hp
κ2
Ω

, i ∈ [1,pκ1
Ω
] and j ∈ [1,pκ2

Ω
] and Nsf is the number of

subfaces that form face F . This will not change the structure of the block, as the same

basis functions are being evaluated for each face between the same elements. This will

not affect the way the diagonal element blocks are calculated.

53

Figure 4.9: A polygonal element and the triangular element’s representation of an
underlying geometry [54].

Figure 4.9 shows how a polygonal element has to be split into seventeen triangular

elements to accurately represent its shape, thus producing a larger matrix.

Polytopic meshes are extremely valuable for our application as the human body is full

of complex geometries which have different material properties, i.e. reaction to radiation

of different organs. Being able to form our meshes around such material properties avoids

edge cases where a single element has different material properties within it.

Polytopic meshes can be generated in many ways, with different approaches producing

meshes with very different element shapes. In this report, we will focus on two different

forms, Voronoi tessellation and agglomeration.

4.4.1 Voronoi mesh generation

A Voronoi tessellation is defined by:

In space X with metric d with set of points K, I randomly generate them, and let

(Pk)k∈K be a subset of X containing point k [29, 9]. The Voronoi region for a point k is

then defined as the set

Rk = {x ∈ X | d(x, Pk) ≤ d(x, Pj) for all j ̸= k}. (4.4.1)

The Voronoi tessellation of space X is the set of (RκΩ
)k∈K such that

⋃
κΩ

RκΩ
= X. In

Euclidean space, the Voronoi regions are convex polytopes, polygons in 2D and polyhedra

in 3D. To form a Voronoi mesh, we need (RκΩ)k∈K

⋂
Ω. Our boundary elements will

be guaranteed to be convex if our domain Ω is itself convex, as the intersection of two

convex sets is itself convex. In Figures 4.10, 4.11 and 4.12 we see examples of Voronoi

meshes on Ω = [0, 1]2.

54

Figure 4.10: A Voronoi mesh with 16 elements.

Figure 4.11: A Voronoi mesh with 64 elements.

55

Figure 4.12: A Voronoi mesh with 256 elements.

The Voronoi mesh examples show how different in shape and size the resulting

elements can be, with the number of faces for an element varying between three and

eight.

4.4.2 Agglomerated meshes

An agglomerated mesh is a mesh whose elements are defined by the union of contiguous

elements of an underlying fine mesh. The fine mesh is usually formed with standard

elements, small enough to capture the underlying geometry. An algorithm then groups

these fine elements into the coarse elements. There are a multitude of different algorithms

that can be used to group the elements.

METIS is a graph partitioning software package [42, 41]. We can convert the mesh

into a graph G = (V,E) with elements as the vertices V and faces as the edges E, with

|V | = NΩ. Using METIS to apply a multilevel graph partitioning algorithm to partition

the graph into l subsets V1, V2, ..., Vl such that Vi ∩ Vj = ∅ for i ̸= j, |Vi| ≈ NΩ

l and⋃
i vi = V , and the number of edges connecting different Vi is reduced [43]. METIS will

output l graph partitions, which we can convert back into polygonal coarse elements,

formed from a roughly equal number of fine elements, with a minimised number of faces

between coarse elements. Figures 4.13, 4.14, and 4.15 show examples of the coarse meshes

produced by using METIS on a fine mesh of 8,192 triangles.

While the elements are the same size, their shape will present some problems. Due

to there being no restriction on the element’s shape, we get elements that have a lot

56

of faces. The resulting matrix will end up being relatively dense, with the number of

faces for an element varying between three and thirteen in these examples. Another issue

with the shape of these elements is the large number of subfaces, with many forming

jagged edges that will result in cyclic dependences. A cyclic dependence, in a transport

problem, is where an element is simultaneously up and down wind from another element,

directly or indirectly, see Section 5.2.

Figure 4.13: An agglomerated polygon mesh produced by METIS with 16 elements.

57

Figure 4.14: An agglomerated polygon mesh produced by METIS with 64 elements.

Figure 4.15: An agglomerated polygon mesh produced by METIS with 256 elements.

The agglomerated mesh examples show how different in shape and size the resulting

elements can be, even compared to the Voronoi examples. Another way we can form an

agglomerated mesh is by grouping the fine mesh into predefined shaped coarse elements.

58

To do this, we need a rubric that knows how to form this shape and how many fine

elements are needed to form one coarse element. In our example, we agglomerate a

quadrilateral fine mesh into a quadrilateral coarse mesh. This is a very simple example,

but other examples could be made.

Having presented the different element shapes and discussed their expected properties,

we will give some test examples of solving the transport equation with the different

element types.

4.5 Timings for different element types

4.5.1 2D

We will be solving this transport problem introduced in Section 2.3.1: With Ω = (0, 1)2

∇ · (au) + u = 2π cos(2πx) sin(2πy) + 2π cos(2πy) sin(2πx) + sin(2πx) sin(2πy) in Ω

u = 0 on ∂−Ω.

(4.5.1)

Where a = (1, 1)T . This has an analytical solution u = sin(2πx) sin(2πy). We shall be

using a direct sparse matrix solver, MUMPS, to solve these equations.

The triangular, convex polygonal, and agglomerated polygonal meshes have been

made with the same number of degrees of freedom (DOFs), so we can see the effects of

using the different element types on the time to solve this system.

Figure 4.16: Time taken to solve the system with different element types with p = 0

59

Figure 4.17: Time taken to solve the system with different element types with p = 2

From Figures 4.16 and 4.17 we can see that the triangular elements are the fastest to

solve for the same number of DOFs, as expected. The convex polygons created by our

Voronoi tessellation take slightly longer than the triangular elements. The agglomerated

elements’ matrix takes considerably longer to solve the system than the other elements,

this isn’t due to the matrix structure but because they are agglomerated elements. To

evaluate the weak form on the agglomerated elements, we must evaluate the weak form

on each of the underlying fine mesh elements. We are evaluating the weak form on the

same 2,097,152 triangular elements that were used to form the agglomerated partition.

For p = 0 it is clear that evaluating on the fine mesh is dominating any effect of the

matrix density in the timing. This can be seen in the final run, where both matrices are

the same size, i.e. the fine and coarse meshes have the same number of elements, and

take comparable times.

For, p = 2 we can see that agglomerated polygons take considerably longer to solve.

As both algorithms are evaluating the same number of elements and have matrices the

same size, this difference must be due to the increase in the density of the agglomerated

polygons matrix.

60

Figure 4.18: Time taken to solve the system with different element types with p = 0

Figure 4.19: Time taken to solve the system with different element types with p = 2

Our agglomerated squares have the same issue as the agglomerated polygons, in that

they are still evaluated on the fine mesh as shown in Figures 4.18 and 4.19. Continuing

our investigation in 3D gives similar results.

61

4.5.2 3D

For our numerical demonstrations in 3D, we will use this transport problem: With

Ω = [0, 1]3

∇ · (au) + u = 2π cos(2πx) sin(2πy) sin(2πz) + 2π cos(2πy) sin(2πx) sin(2πz)

+ 2π cos(2πz) sin(2πx) sin(2πy) + sin(2πx) sin(2πy) sin(2πz) in Ω

u = 0 on ∂−Ω.

(4.5.2)

Where a = (1, 1, 1)T . This has an analytical solution u = sin(2πx) sin(2πy) sin(2πz).

The tetrahedral and agglomerated polyhedral meshes have been made with the same

number of DOFs, so we can see the effects of using the different element types on the

time to solve this system.

Figure 4.20: Time taken to solve the system with different element types with p = 0

62

Figure 4.21: Time taken to solve the system with different element types with p = 2

Figure 4.20 shows a very interesting phenomenon, where the time taken to solve the

system appears to reduce as the matrix size increases.

Figure 4.22: Time taken to construct and solve the matrix with p = 0

Consulting Figure 4.22 shows that this is due to solving the matrix rather than

63

constructing it. This is likely to be due to a dense matrix formed by many coarse

elements being connected by faces.

Figure 4.23: Time taken to solve the system with different element types with p = 0

Figure 4.24: Time taken to solve the system with different element types with p = 2

64

Agglomerated cubes, again, show the results we expect, evaluating the PDE on coarse

elements being the dominating factor for the time to solve the system, as shown in

Figures 4.23 and 4.24.

Figure 4.25: Time taken to construct and solve the matrix with p = 2

We can demonstrate this in more detail with Figure 4.25, which shows that the time

to solve the matrix formed by the agglomerated cube mesh is almost exactly the same as

the cube mesh, and the only difference in the timing comes from the construction of this

matrix. In fact, in the example, the resulting matrix should be identical due to how we

have constructed our meshes and thus the solve times are identical.

4.6 Summary

Throughout this chapter, we have broken down and discussed the structure of the matrix

that results from the DOG discretisation. We have focused on the matrices formed by

the transport problem, as the DOG scheme results in a system of transport equations

coupled in the right hand side. We discussed and demonstrated how the sparsity of these

matrices is affected by the choice of elements in the spatial mesh, and how that, despite

not increasing the DOFs in the system, the number of faces an element has directly

correlates to the time taken to construct and solve the transport matrix.

We also showed how the elements can be grouped together via agglomeration, to

reduce the number of DOFs in the system. Agglomerated elements, however, require

the integrals over the fine elements to be evaluated to construct the coarse mesh matrix,

65

leading to construction times which are not dependent on the number of DOFs of the

system but on the number of elements in the fine mesh.

In conclusion, although agglomerating elements through programs like METIS can

reduce the size of the matrix, it does not follow that the time to solve the matrix system

will be reduced. There are, however, still some advantages of having the smaller matrix

size. So far we have been solving matrices that a computer can comfortably fit within

its memory; however, for larger matrices such as those formed from MRI voxels, this

limitation may become more important. Additionally, agglomerating into convex coarse

elements, such as with our agglomerated cubes, leads to far more predictable results.

In the next chapter, we show a new solver we developed, which allows our system to

be solved without storing the entire matrix, and we will continue to experiment with

different element types and show how they interact with our custom solver.

66

Chapter 5

Efficiently solving the linear

Boltzmann transport equation

We showed in Section 3.8, that our DOG discretisation results in a system of transport

equations coupled on the right hand side, solving the transport equation efficiently which

will result in an efficient solver for the LBTE. As commented in the previous section, 4,

the choice of element affects not only the construct time of the matrix, but also the time

taken to solve the matrix system. We also commented on how expensive large matrices

are to store. In this section, we present our customised transport equation solver, the

sweep solver.

This solver evaluates the weak formulation on each element, or group of elements

in the case of cyclic dependencies, individually, and then inverts the matrix equation

for that element, to get the solution for that element. It then uses the solution of that

element, to solve the upwind elements by moving the face blocks to the right hand side of

the matrix equation. In addition, this solver uses quadrature free methods to construct

the matrix blocks. This code was provided by our colleague, Dr. Thomas Radley, the

details of the exact construction can be found in his thesis [55].

This results in a very fast solver that does not require the full matrix to ever be

constructed or stored, for convex elements. For non-convex elements, cyclic dependencies

can form. We suggest a solution to this, using Tarjan’s algorithm to detect these

dependencies and evaluate and invert the matrix for these groups of elements, instead of

inverting for the individual elements. Finally, we test the effect that different element

types have on the efficacy of our sweep solver.

To solve a matrix equation Ax = b where A is a sparse matrix, there are many

different approaches and algorithms. There are a variety of freely and commercially

available software packages that offer highly optimised solvers for sparse matrixes. We

will be using MUMPS [65] as our solver for the fully constructed sparse matrix systems;

however, due to the size of the potential transport matrices formed from MRI or CAT

67

scan data, constructing the full transport matrix for each advection direction from our

DOG discretisation, may not viable. If it is possible to construct the matrix, solving

the matrix system may likewise be deemed to demand too much time and memory to

be viable. We, therefore, have developed the algorithm, known as a sweep solver, to

solve the matrix equation on an element by element basis. To do this, we exploit the

known structure of the matrix of the transport problem, specifically the fixed advection

direction that DOG discretisation gives us.

5.1 Sweep Solver

As the transport problem is strictly hyperbolic with respect to a constant wind direction,

we know a priori which elements are dependent on the results of preceding elements.

Exploiting this knowledge, we can pivot the rows of the matrix. By putting the downwind

elements at the bottom of the matrix and making sure the element blocks are ordered to

be below any element blocks it is upwind of, we obtain a matrix in block upper triangular

form. This is the same as the pivots that many matrix equation solvers apply to get the

matrix into row echelon form. For instance, using our example in Figure 4.1 we would

normally get a matrix equation of the form:
[E1] [F13]

[F21] [E2] [F24]

[E3]

[F43] [E4]




[X1]

[X2]

[X3]

[X4]

 =


[B1]

[B2]

[B3]

[B4]

 .

However, if we use our knowledge of the fixed wind direction a = (1, 1)T , and make sure

each element blocks is upwind of the element blocks under it, we get:
[E2] [F24] [F21]

[E4] [F43]

[E1] [F13]

[E3]




[X2]

[X4]

[X1]

[X3]

 =


[B2]

[B4]

[B1]

[B3]

 .

Now that we have the matrix in upper triangular form, we know from the Gaussian

elimination algorithm the matrix equation can be expressed as:

[E2][X2] = [B2]− [F24][X4]− [F21][X1]

[E4][X4] = [B4]− [F43][X3]

[E1][X1] = [B1]− [F13][X3]

[E3][X3] = [B3].

Notice that the solution X3 is now independent of any element block aside from E3.

68

Therefore, we can invert the element block to find the solution of the matrix equation on

that element. Using this solution X3, we can then evaluate the right hand side of the

matrix equations

[E1][X1] = [B1− F13X3]

[E4][X4] = [B4− F43X3].

So that the element blocks can be inverted to find the solutions X1 and X4. These

solutions can then be used in the same way to find the solution for element two. Thus,

the transport equation matrix can be inverted without ever constructing the full matrix.

5.1.1 Comparison between matrix and the sweep solver for con-

vex elements

We will now compare the time taken to construct and solve a transport problem with a

standard matrix solver and our sweep solver. For the matrix solver, we will be using

a MUMPS based transport solver written by Prof. Paul Houston. In the sweep solver

the element block matrix equations are inverted by a simple PLU matrix solver which I

wrote, this is not an optimised solver but as the blocks it is inverting are rather small this

should not make much of a difference. The sweep solver also incorporates quadrature

free evaluation written by Dr Thomas Radley. The details of the exact construction of

the quadrature free evaluation and the analysis of the procedure can be found in his

thesis [55], but we provide a broad overview to aid the understanding of our results.

5.1.1.1 Quadrature free integration over polytopic domains

A function f : Rd → R is homogeneous of degree k > 0 if

f(αx) = αkf(x) ∀α > 0 and ∀x ∈ Rd

Euler’s homogeneous function theorem [61] then states that if f : Rd → R is continuously

differentiable, then f is homogeneous of degree k if and only if

x · ∇f(x) = kf(x) ∀x ∈ Rd.

Then for some polytope P with faces {Fi}NF
i=1 in Rd integrating over the polytope can

be expressed as a series of surface integrals over its faces

ˆ
P
f(x) dx =

1

d+ k

m∑
i=1

ai

ˆ
Fi

f(x) ds. (5.1.1)

69

and then by the same arguments a surface integral over the face can be expressed as

integrals over the d− 2 boundary edges ∂Fi = {Eij}Ne
j=1

ˆ
Fi

f(x) ds =
1

d+ k − 1

 Ne∑
j=1

dij

ˆ
Eij

f(x) dν +

ˆ
Fi

xi,0 · ∇f(x) ds

 . (5.1.2)

With xi,0 being an arbitrary point lying in the same hyperplane Hi as Fi. dij is the

Euclidean distance between xi,0 and Eij . Thus, the integral over our polytope can be

recursively dimensionally reduced to point evaluations [6].

We can then apply this to the DGFEM transport equation, thus we can reduce the

integral on the polytope and its faces to be point evaluations. Another key property

of quadrature free assembly is how it interacts with agglomerated meshes. Due to

the reduction in dimension of the integral to the point evaluations, internal fine mesh

elements, elements of the fine mesh that are in the coarse mesh but not contributing

to its boundary, do not have to be evaluated. This means that for large coarse mesh

elements, the number of fine mesh elements that have to be evaluated can be drastically

reduced.

5.1.1.2 Square

Figure 5.1: Time taken to solve system on a square mesh with p = 0.

70

Figure 5.2: Time taken to solve system on a square mesh with p = 2.

Comparing the time taken to solve the same transport problems, Figures 5.1 shows that,

for the meshes with square elements, the sweep solver is slightly slower for p = 0. This

is not unexpected, the quadrature free evaluation is designed for large systems, and has

some set up time associated, as Figure 5.3 shows. It is worth noting that due to the

structure of the sweep solver there is no singular solver step, instead each time to invert

each element’s block is noted, and their total is taken away from the overall run time.

As we increase p to two, Figure 5.2 shows a greater disparity in the time taken to solve

the matrix system. Figure 5.4 shows that the time saved by the sweep solver is due to

both the quadrature free evaluation and the sweep solver.

71

Figure 5.3: The breakdown of the construction and solve time for transport equation on
square mesh p = 0.

Figure 5.4: The breakdown of the construction and solve time for transport equation on
square mesh p = 2.

72

5.1.1.3 Triangular

Again, we see that the benefit of the sweep solver over an optimised matrix solver is

minimal, though still existent, for a relatively low number of DOFs. Figure 5.6, however,

shows at a higher polynomial degree the sweep solver is considerably faster than an

optimised matrix solver.

Figure 5.5: Time taken to solve system on a triangular mesh with p = 0.

73

Figure 5.6: Time taken to solve system on a triangular mesh with p = 2.

Figure 5.7 shows that we are making a saving on both the solve and the construction

stages, at p = 2.

Figure 5.7: The breakdown of the construction and solve time for transport equation on
triangluar mesh p = 2.

74

5.1.1.4 Convex Polygons

Figure 5.8 shows that for our Voronoi tessellation generated meshes the sweep solver

performs well for p = 2, with constant saving at each step.

Figure 5.8: Time taken to solve on a convex polygonal mesh with p = 2.

Convex polygons represent an additional challenge for the matrix solver, as it has

to sub tessellate each element to define a quadrature on it. As with our agglomerated

polygons, this increases the time taken for the evaluation of each element, as shown in

Figure 5.9.

75

Figure 5.9: The breakdown of the construction and solve time for transport equation on
convex polygonal mesh p = 2.

5.1.1.5 Agglomerated Squares

As stated in the previous Section, agglomerating presents issues for the standard matrix

solver, due to having to evaluate each element of the fine mesh. This explains the extreme

difference shown in Figure 5.10. The quadrature free evaluation allows our sweep solver

to ignore the fine elements that are not on the boundary of the coarse element.

76

Figure 5.10: Time taken to solve system on an agglomerated square mesh with p = 2.

Figure 5.11 shows just how dominated the matrix solver is by the construction of its

matrix rather than solving the matrix. Happily, the sweep solver also offers a saving on

the solve step, though nowhere near as significant as that offered by the quadrature free

evaluation.

77

Figure 5.11: The breakdown of the construction and solve time for transport equation
on agglomerated square mesh p = 2.

5.1.1.6 Cube

Moving on to 3D we can see that the sweep solver offers savings for both p = 0 and

p = 2. From Figure 5.14 we can see that for p = 0 that the meshes with a low number

of elements, the solve time is dominated by the construction of the matrix. We suspect

that we have captured some dominating set up time rather than anything of particular

significance.

78

Figure 5.12: Time taken to solve system on a cube mesh with p = 0.

Figure 5.13: Time taken to solve system on a cube mesh with p = 2.

79

Figure 5.14: The breakdown of the construction and solve time for transport equation
on cube mesh p = 0.

Figure 5.15: The breakdown of the construction and solve time for transport equation
on cube mesh p = 2.

80

5.1.1.7 Tetrahedral

The matrix formed by a tetrahedral mesh, is solved by our sweep solver more efficiently

than the optimised matrix solver. Looking at Figure 5.17 shows that most of this saving

can be attributed to the sweep solver rather than the quadrature free construction.

Figure 5.16: Time taken to solve system on a tet mesh with p = 2.

81

Figure 5.17: The breakdown of the construction and solve time for transport equation
on tet mesh p = 2.

5.1.1.8 Agglomerated Cubes

The sweep solver performs very favourably on the matrix formed by the agglomerated

cube mesh. As with the agglomerated square example, this is in large part due to the

quadrature free evaluation. Figure 5.19, however, shows that the sweep solver does

provide some savings over the matrix solver.

82

Figure 5.18: Time taken to solve system on an agglomerated cube mesh with p = 2.

Figure 5.19: The breakdown of the construction and solve time for transport equation
on agglomerated cube mesh p = 2.

The sweep solver is shown to be a viable alternative to an optimised sparse matrix

solver for convex elements. However, for non convex elements a problem may arise. If an

83

element is non convex it is possible for one element to be both the inflow and outflow of

an element, directly or indirectly. This is called a cyclic dependence.

5.2 Cyclic Dependence

4 2

3 1

Wind direction

5

Figure 5.20: Mesh with a non-convex element with a north-east wind direction

Adding a non convex element to our example mesh, such as in Figure 5.20 gives an

ordered matrix: 

[E2] [F24] [F21]

[E4] [F43]

[E1] [F13]

[E5] [F53]

[F35] [E3]


.

This is obviously not in our desired upper triangular form, nor can any pivoting make it

so. This effectively breaks our sweep solver, as we cannot evaluate a single element block

and then invert it; however there is a larger block that could be inverted to solve the

matrix equation. If we were to treat elements 3 and 5 as their own block and invert it

to find the solutions to those elements, we could still invert the others using our sweep

solver. So our matrix equation would become:

[E2][X2] = [B2]− [F42][X4]− [F12][X1]

[E4][X4] = [B4]− [F34][X3]

[E1][X1] = [B1]− [F31][X3] [E5] [F35]

[F53] [E3]

[X5]

[X3]

 =

[B5]

[B3]

 .
We then need to only invert one larger block, and then treat any elements that

are not part of cyclic dependence as before. To do this, an algorithm to detect cyclic

84

dependencies is required. Tarjan’s strongly connected components algorithm [64] is a

relativity simple graph algorithm which will do this. We create a directed graph where

each element is a node and each outflow face is an edge connecting the two elements

vertex. Having created this directed graph to represent our mesh, this allows us to use

Tarjan’s algorithm to find the strongly connected components (SCC) in the problem.

Any elements that form a cyclic dependence will be grouped into strongly connected

components, and any elements that are not cyclically dependent will be considered as

their own strongly connected component.

function tarjan(node)
node.visited← true
node.index← indexCounter
s.push(node)
for all successor in node.successors do

if node.visited then tarjan(successor)
end if
node.lowlink ← min(node.lowlink, successor.lowlink)

end for
if node.lowlink == node.index then

repeat
successor ← stack.pop()

until successor == node
end if

end function

Tarjan’s algorithm’s run time is of the order O(|V |+ |E|), where |V | is the number

of vertices and |E| is the number of edges of the directed graph [64]. Tarjan’s algorithm

also produces a reverse topological sort; therefore, if we perform Tarjan’s algorithm on

the mesh before we start we will produce the sweep ordering as well.

85

5.2.1 Comparison between matrix and the sweep solver for non-

convex elements

5.2.1.1 Agglomerated polygons

Figure 5.21: Time taken to solve system on an agglomerated polygon mesh with p = 0.

86

Figure 5.22: Time taken to solve system on an agglomerated polygonal mesh with p = 2.

Figures 5.21 and 5.22 shows some very unexpected results, with the sweep solver taking

considerably longer for some of the meshes compared to the matrix solver. Additionally,

the matrix solver takes a longer time than one might expect to solve the first mesh.

87

Figure 5.23: The breakdown of the construction and solve time for transport equation
on agglomerated polygon mesh p = 0.

Figure 5.24: The breakdown of the construction and solve time for transport equation
on agglomerated polygon mesh p = 2.

Figures 5.23 and 5.24 provide some insight as to why these results are occurring. They

88

show that solving the matrix is the biggest change. The quadrature free construction is,

as predicted, faster than the matrix solver. Additionally, the first solve for the matrix

solver is shown to have an increased solve time, indicating that as expected a denser

than usual matrix is present. Investigating the cause of these very slow solve times, we

must look at the strongly connected components that Tarjan’s algorithm is giving us,

and thus the cyclic dependencies in the mesh.

Fine elements Coarse elements SCCs Coarse elements in the largest SCC
2,097,152 8,192 6,640 13
2,097,152 32,768 28,680 30
2,097,152 131,072 69,540 86
2,097,152 524,279 523,895 2
2,097,152 2,097,152 2,097,152 1

Table 5.1: The number of strongly connected components and the number of coarse
elements in the largest SCC.

From Table 5.1 we see that the cause of this slow down is due to the presence of large

strongly connected components, with many elements that are in cyclic dependency, the

largest dependency being formed of 86 elements. This results in our sweep solver trying

to invert large sections of the matrix at once, causing a significant slow down.

To further investigate, we changed tack. Rather than changing the number of coarse

elements with a fixed number of fine elements underneath, we fix the number of coarse

elements and increased the number of fine elements, as we expected that the matrix

solver’s time will be dependent on the number of fine elements.

89

Figure 5.25: Time taken to solve on an agglomerated polygonal mesh, varying the fine
mesh with p = 0.

Figure 5.26: Time taken to solve on an agglomerated polygonal mesh, varying the fine
mesh with p = 2.

Figures 5.25 and 5.26 show the dependence of the matrix solver on the number of fine

90

elements as expected. We were not expecting the sweep solver to be dependent on the

number of elements in our fine mesh, but it does appear to be. Again, the unexpected

spike can be explained by the cyclic dependencies, shown in Table 5.2.

Fine elements Coarse elements SCCs Coarse elements in the largest SCC
8,192 8,192 8,192 1
32,768 8,192 8,183 2
131,072 8,192 4,506 34
524,288 8,192 7,249 11
2,097,152 8,192 6,640 13

Table 5.2: The number of strongly connected components and the number of elements in
the largest SCC.

Figure 5.27: The breakdown of the construction and solve time for transport equation
on agglomerated polygon mesh, varying the underlying fine mesh p = 0.

91

Figure 5.28: The breakdown of the construction and solve time for transport equation
on agglomerated polygon mesh, varying the underlying fine mesh p = 2.

Figures 5.27 and 5.28 show that the construction appears to be dependent on the

number of elements in the fine mesh. This is very unexpected, as the quadrature free

evaluation should have decoupled them.

5.2.1.2 Agglomerated squares

To avoid any confusion caused by cyclic dependencies, we will use our agglomerated

squares meshes to investigate this further.

92

Figure 5.29: Time taken to solve system on an agglomerated square mesh, varying the
fine mesh with p = 0.

Figure 5.30: Time taken to solve system on an agglomerated square mesh, varying the
fine mesh with p = 2.

Again, both the sweep and matrix solver are dependent on the number of elements

93

in the fine mesh, as shown in Figures 5.29 and 5.30. Figures 5.31 and 5.32 show that the

solve step is not as dependent on the number of elements in the fine mesh compared to

the construction.

Figure 5.31: The breakdown of the construction and solve time for transport equation
on agglomerated square mesh varying the underlying fine mesh p = 0.

94

Figure 5.32: The breakdown of the construction and solve time for transport equation
on agglomerated square mesh varying the underlying fine mesh p = 2.

The Gaussian quadrature that is used to evaluate our forcing and boundary functions,

to form the right hand side of the matrix equation, is dependent on the number of fine

elements. This accounts for the dependency on the number of elements in the fine mesh

during the construction step.

95

Figure 5.33: Time taken to solve on an agglomerated square mesh, varying the fine mesh
with p = 0.

Figure 5.34: Time taken to solve on an agglomerated square mesh, varying the fine mesh
with p = 2.

To create Figures 5.35 and 5.36 we set our forcing and boundary functions to be

96

constant in our domain, and, thus, turned off the quadrature construction and evaluation

for the right hand side. To that end, we can show that our sweep solver construction

step time is actually dominated, at least at the number of DOFs we experimented with,

by the quadrature required to evaluate the right hand side of the matrix equation.

Figure 5.35: Time taken to solve on an agglomerated square mesh with no quadrature
with p = 0.

97

Figure 5.36: Time taken to solve on an agglomerated square mesh with no quadrature
with p = 2.

Figures 5.35 and 5.36 show that the quadrature dominates the vast majority of the

sweep solve time. We presume that for a large enough mesh the construction of the

matrix and solving the matrix system will dominate the time taken. This is obviously

dependent on the elements that form the mesh. We revisited the agglomerated polygons

meshes to see what effect the removal of quadrature by using a constant forcing and

boundary functions has on the results.

98

Figure 5.37: Time taken to solve on an agglomerated square mesh with no quadrature
with p = 0.

Figure 5.38: Time taken to solve on an agglomerated square mesh with no quadrature
with p = 2.

We can see that for meshes with less cyclic dependencies that quadrature was

99

Fine elements Coarse elements SCCs Coarse elements in the largest SCC
384 384 384 1
3,072 384 9 348
24,576 384 3 382
196,608 384 2 383
1,572,864 384 1 384
1,572,864 384 1 384
1,572,864 3,072 2 3,071
1,572,864 24,576 5 24,570
1,572,864 196,608 2 196,572
1,572,864 1,572,864 1,572,864 1

Table 5.3: The number of strongly connected components (SCC) and the number of
elements in the largest SCC.

dominating the time taken to solve the system, but for meshes with large SCC, the

construction time, including the time to evaluate the quadrature, is dominated by the

solve time.

5.2.1.3 Agglomerated polyhedra

Agglomerated polyhedra present many difficulties for the sweep solver. The meshes

produced by METIS are so jagged, that they create cyclic dependence that span the

majority of the mesh. METIS is not minimising the cyclic dependencies, rather it

minimises the number of paths (faces) between vertices (elements).

Table 5.3 shows the number of elements in the largest SCC, which in the worst case

is the entire mesh, meaning every element is cyclically dependent on every other element.

This has a dramatic effect on the solve time of the sweep solver. Figures 5.39 and 5.40

show how the smallest solves are affected, with the sweep solver, at worst, taking around

19,000% longer than the matrix solver.

100

Figure 5.39: Time taken to solve on a polyhedral mesh, varying the number of fine mesh
with p = 0.

Figure 5.40: Time taken to solve on a polyhedral mesh, varying the number of fine mesh
with p = 2.

Again, we see that the sweep solver is completely dominated by the cyclic dependencies.

101

Unfortunately, there is little that can be done to mitigate this aside from using a different

algorithm that results in convex coarse elements.

5.2.1.4 Agglomerated cubes

Figure 5.41: Time taken to solve on an agglomerated cube mesh, varying the number of
fine mesh with p = 0

102

Figure 5.42: Time taken to solve on an agglomerated cube mesh, varying the number of
fine mesh with p = 2

Figures 5.41 and 5.42 show that for agglomerated cube mesh, the sweep solver time to

solve the system is dependent on the number of elements in the fine mesh as well.

Figure 5.43: Time taken to solve on an agglomerated cube mesh, varying the number of
fine mesh with o quadrature with p = 0

103

Figure 5.44: Time taken to solve on an agglomerated cube mesh, varying the number of
fine mesh with no quadrature with p = 2

Examining figures 5.43 and 5.44 we see that evaluating the right hand side with

quadrature dominates the time taken to solve the system for a lower number of DOFs.

For a larger number of DOFs, however, the time taken to solve the system actually starts

to dominate the total time.

5.3 Summary

In conclusion, we have shown that the sweep solver is generally more efficient than the

optimised matrix solver, MUMPS; however, the choice of elements in spatial domain can

make a large difference to the efficiency of the solver. In particular, the sweep solver is

a lot more sensitive to cyclic dependences than MUMPS is. This is especially true for

3D polytopes formed by METIS or similar programs that can result in highly irregular

elements, causing large cyclic dependencies; this can make the sweep solver unusable. As

the LBTE requires us to solve transport equations in every direction, it is best to chose

convex elements to prevent any cyclic dependencies.

For clinical applications, our meshes would be based off of voxel data from MRI or

CAT scans, so cube meshes would be very easy to define from that data, as we just

use the voxel structure. This would, however, give us around seventeen million spatial

elements, so the number of DOFs for LBTE would be extremely high. Therefore, some

form of agglomeration would reduce the number of DOFs in the system and with the

104

quadrature free evaluation this would represent a saving in the matrix construction time

as well.

As we have now shown that we have an efficient transport solver, let us link this back

to the LBTE, and our solver for it. To do this, we will compare DOG discretisation with

our sweep solver to the DG-DG discretisation with a MUMPS matrix solver.

Figure 5.45: Error in the L2 norm for different solvers on square spatial mesh p = 2

Figure 5.45 shows that both the DG-DG and DOG solvers converge at the same

rate in the L2 norm. There is a constant difference, likely due to different quadrature

being used. The DOG discretisation commits a variational crime by under resolving the

quadrature, as we need the number of quadrature points to be exactly match our basis

functions, see Section 3.8 for more details. The error incurred by this variational crime,

is obviously not the dominating error as we still get the expected rate of convergence in

the L2 norm.

The reason the DG-DG solver stops prematurely, is the machine we used for these

timings ran out of memory and the programme crashed while trying to solve the LBTE

with 2,359,296 DOFs. This is also why the computations in this section have been

restricted to 2D, the DG-DG solver simply can not handle number of DOFs required.

105

Figure 5.46: Time taken to solve LBTE with different solvers on square spatial mesh
p = 2

Comparing the run times, in Figure 5.46, shows how far we have come. The DOG

discretisation with the sweep solver is significantly more efficient than the DG-DG

discretisation with the matrix solver. The DOG solver is able to solve the LBTE with

150,994,944 DOFs in less than half the time it takes the DG-DG solver to solve the

LBTE with 294,912 DOFs.

106

Figure 5.47: Time taken to solve and construct the LBTE with different solvers on square
spatial mesh p = 2

If we look at the breakdown of the time taken to solve and construct the matrixes

for the two different solvers, in Figure 5.47, the construction and solve steps grow at a

similar rate as the number of DOFs for DOG. For the DG-DG, however, we can see the

construction step grows at a faster rate than the solver step. As noted in Chapter 3, the

scattering steps are roughly the same, so have been excluded from this graph for clarity.

107

Figure 5.48: Time taken to solve LBTE with different solvers on agglomerated square
spatial mesh p = 2

Comparing the time taken for agglomerated squares for both solvers, with 294,912

fine square elements underneath. We see in Figure 5.48 that the time taken to solve

the LBTE with the DG-DG solver is not entirely dependent on the number of DOFs in

the matrix, while the DOG solver is. Figure 5.49 shows that the DG-DG solver time is

dominated by the construction of the matrix.

108

Figure 5.49: Time taken to solve and construct the LBTE with different solvers on
agglomerated square spatial mesh p = 2

109

Chapter 6

Adaptive Algorithms for the

linear Boltzmann transport

equation

Having developed an efficient solver for the transport equation, we now turn our sights

back to the LBTE, and focus on accurately solving it. To this end we introduce the concept

of goal oriented adaptivity, with the aim of reducing the error in our approximation of

the LBTE, while maintaining an efficient solver.

Another reason adaptive refinements are popular is they can be used on complex

geometries, while not requiring the whole mesh to be fine enough to capture the geometries.

This is also equally true for solutions with a high degree of variation, which will be lost

with too coarse a mesh.

Given the high dimensionality of the LBTE, uniform refinement is unfeasible for any

practical problems due to the amount of memory that would be required to store the

mesh and solutions. We, therefore, shall suggest using adaptive refinement algorithms.

We have shown in Section 3 that increasing the number of elements in the meshes yields

a smaller error; however, let us suppose that not every element contributes the same

amount of error. Splitting an element with a larger error contribution would therefore

be more efficient than splitting an element with a smaller error contribution. To this

end, adaptive refinement algorithms aim to maximise the accuracy of the solution while

minimising the number of DOFs used to compute that solution.

6.1 Motivation

Simulating physical phenomena always introduces some inaccuracies known as numerical

errors. One type is a discretisation error. Discretisation errors occur from trying to

110

represent a continuous process within a discrete space; thus these errors can never be

eliminated, only reduced. To reduce the discretisation error of a numerical technique,

one must enrich the discrete space, increasing its dimensionality.

In relation to DGFEM, our discrete space is given in the form:

Vp
Ω = {v ∈ L2(Ω) : v|κΩ ∈ PpκΩ

(κΩ) for all κΩ ∈ TΩ}.

So we have two components of the discrete representation, the mesh TΩ, and basis

functions on each element of the mesh PpκΩ
(κΩ). Thus, the discretisation error can be

reduced by increasing the number of elements in our mesh, known as h-refinement, or

by increasing the number of basis function in each element, p-refinement. In the case

of polynomial basis functions, as described in Sections 2.3.1 and 3.8, this is done by

increasing the degree of the family of polynomials defined on each element. Both of these

refinement types have their own merits and uses.

h-refinement is best used to capture underlying geometries and non-smooth solutions

on the element. p-refinement, on the other hand, is best used on elements with a smooth

solution. These two techniques, however, can be combined while retaining the advantages

of both methods into what is termed the hp-refinement algorithms, where each element

is h or p refined depending on the smoothness of solution on the element [36].

In Section 2.3 and Chapter 3, we showed the effects of uniform h-refinement for a few

global refinements of p on the transport and LBTE problems. While we did successfully

reduce the discretisation error with respect to the L2 norm, it can be assumed that some

of the refinements on each element did little to change the overall error. This means that

the time and resources dedicated to these additional degrees of freedom produced little for

no reward. Ideally we would only refine the elements that are significantly contributing

to error. This could be done by hand, i.e. individually choosing for each element whether

it should be refined and if so what sort of refinement would be best. This would be

tedious and time consuming; therefore, a computerised algorithm is advised.

6.2 General algorithm for adaptivity

For an adaptive algorithm we need some way of calculating the local error contribution

of each element in the mesh and then using these local errors to decide which element

to refine and in the hp case which refinement type to do. Figure 6.1 shows the general

algorithm of adaptivity.

111

Start

Create first
mesh mi = 1

Compute solution
on mesh mi.

Compute global
error estimate.

Is global error
estimate <
tolerance?

Compute
refinement
indicators.

Refine the
elements.

Output solution
and mesh mi

Stop

yes

no

mi = mi + 1

Figure 6.1: General form of mesh refinement algorithms [67].

Unfortunately, the L2 norm we have used thus far can only be calculated using the

analytical solution of the problem which heavily restricts the number of problems that it

is useable for. We need to find a new way of computing the global error as well as the

local errors.

6.3 a posteriori error estimator

Directly computing the error is impossible for many problems as they lack a known

analytical solution; therefore, we must rely on an estimation of the error. To that end,

we introduce an a posteriori error estimation. This estimation is based on an upper

112

bound of the error of a solution. Then we can guarantee analytically that the error,

still unknown, is below this estimation. There are three main types of a posteriori error

estimates: implicit, explicit, and recovery-based [2]. We will be focussing solely on the

dual weighted residual (DWR) method [10] a type of goal oriented explicit a posteriori

error estimation.

Consider a target functional, J(·), of physical interest, for example a mean value

functional [30]:

J(v) =

ˆ
Ω

ωvdx (6.3.1)

where ω ∈ L2(Ω) is a given weight function [37].

We introduce the dual problem with respect to that functional, with the solution

z ∈ Vp
Ω being defined by

J(v) = B(v, z) ∀v ∈ Vp
Ω.

where B(·, ·) is the bilinear from weak form of the primal problem. Therefore,

J(u) = B(u, z) = ℓ(z).

So we can exploit the structure of our functional and bilinear form [31], to get

J(u)− J(uh) = J(u− uh) by linearity

= B(u− uh, z)

= B(u− uh, z − zh) by Galerkin orthogonality (Section 2.3.2)

= B(u, z − zh)−B(uh, z − zh)

= ℓ(z − zh)−B(uh, z − zh)

=: R(uh, z − zh)

Here R(uh, z − zh) is the a posteriori estimation of the error.

Due to the Galerkin orthogonality property, the dual solution z cannot be computed

on the same finite dimensional subspace Vp
Ω as the primal solution, u, as this would

lead to an error representation formula that is identically zero. Hence, the discrete

dual solution ẑh which we use to approximate z − zh, again by Galerkin orthogonality,

must come from an enriched space, we use Vp+1
Ω [31]. We, therefore, approximate the a

posteriori error using

|J(u)− J(uh)| ≈ ℓ(ẑh)−B(uh, ẑh) = |R(uh, ẑh)|.

Furthermore, this residual R(uh, ẑh) can be decomposed into individual element contri-

butions:

|J(u)− J(uh)| ≈ |R(uh, ẑh)| = |
∑

κΩ∈TΩ

ηκΩ
| ≤

∑
κΩ∈TΩ

|ηκΩ
|. (6.3.2)

113

So it can be used to calculate the global and local error estimations.

To be able to compare error estimation techniques, it is customary to refer to the

effectivity of the estimation given by:

I =

∣∣∣∣
∑

κΩ∈TΩ
ηκΩ

J(u)− J(uh)

∣∣∣∣
An effectivity of one indicates that the estimation is perfectly estimating the functional

error.

The marking procedure is the method by which we chose which elements in our mesh

to refine. This is of the utmost importance; if we mark too few elements, we will have to

iterate the loop in Figure 6.1 many more times than we need to, making it very inefficient.

On the other hand, if we choose to refine too many elements, we will end up having a

less efficient programme. An ‘optimal’ choice would be defined as one that minimises

this ratio [13]
Work done to solve the new problem

Gain in accuracy
.

There are many marking procedures that are based around treating this ratio as an

optimisation problem [21, 13]. We present these different options here:

• Even distribution of error

Assume that the error is split evenly across all the elements, and then require

all elements to have an error, such that when summed it will be lower than the

tolerance [38].

|ηκΩ | ≤
TOL

N

where N is the number of elements in Th.

• Fraction of Max

Use the maximum of the errors found [3]

|ηκΩ
| < ω max

κΩ∈TΩ

|ηκΩ
| ω ∈ (0, 1).

The common choice is ω is 1
3 .

• Dörfler marking

For a given ω ∈ (0, 1) find a subsetMΩ of TΩ, such that [23]

∑
κΩ∈MΩ

|ηκΩ
|2 ≥ ω

∑
κΩ∈TΩ

|ηκΩ
|2.

MΩ is constructed by the elements with the largest ηκΩ first.

• Fixed fraction method

Order |ηκΩ
| in terms of size and then select the top 20-30% of them for marking

114

[21]. The actual percentage is highly problem dependent, and tries to find a balance

between over refining, where DOFs are created that do not have a meaningful

impact on the overall error, and not performing too many runs.

The best choice is highly problem dependent, but for the rest of this report we will

be using fixed fraction. Having decided which elements need refining and marking them,

we then need to decide whether we should use h or p refinement. As hp-refinement is

not our focus, we only mention two methods to do this.

• Legendre Polynomial Coefficient

We estimate the decay rate of the coefficients by a least squares fit. Where

uiκΩ
, i = pκΩ − 4, . . . , pκΩ is the ith Legendre coefficient in a one-dimensional

expansion of the solution, we can assume that [51]

uih ≈ Ce−iσ.

Then we p-refine if σ > 1 and h-refine otherwise (if κΩ ≤ 3 then p-refine).

• Sobolev Regularity Estimation

We use a root test derived in the paper [36].

lκΩ
=

log
(2pκΩ

+1

2|u
pκΩ
h |2

)
2 log pκΩ

pκΩ
> 2,

where upκΩ is the pκΩ
th Legendre coefficient in a one-dimensional expansion of the

solution. If pκΩ ≥ lκΩ use p-refinement, else use h-refinement.

Due to the high polynomial degree required for these tests, performing hp-refinement is

impractical on the available hardware. We have, therefore, focused solely on h-refinement

for our implementation section.

6.3.1 Transport problem

Applying the DWR (6.3.2) to a transport problem as presented in Section 2.3.1 we can

define our element residual:

ηκΩ
=

ˆ
κΩ

fẑh dx−
ˆ
∂−κΩ∩∂Ω

(µ · nκΩ
)gDẑh ds

−
ˆ
κΩ

(µ · ∇uhẑh + (α)uhẑh) dx

+

ˆ
∂−κΩ\∂Ω

(µ · nκΩ
)⌊uh⌋ẑ+h ds

+

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ
)u+h ẑ

+
h ds.

115

We define ω of our mean value functional J(·) (6.3.1) as a Gaussian function centred on

b = (0.3, 0.3)T , of height a = 1, and width of c = (1, 1)T :

ω(x) = a exp

(
−
(
(x− b1)2

2c21
+

(y − b2)2

2c22

))
.

Using the example problem from Section 4.5.1, we can compute the effectivities of

our error estimator. Table 6.1 show that our effectivities are close to one and converge

towards it with additional refinement. This shows that DWR is a good error estimator

for the transport problem.

p Total DOFs Effectivities

0 4,096 0.9894823564
0 16,384 0.9946546551
0 65,536 1.0001351506
0 262,144 1.0000654540
0 1,048,576 0.9999945653

1 12,288 0.9916364352
1 49,152 0.9964397215
1 196,608 1.0000054546
1 786,432 1.0000009854
1 3,145,728 0.9999998564

2 24,576 0.9986464116
2 98,304 0.9999983476
2 393,216 1.0000008653
2 1,572,864 1.0000006351
2 6,291,456 1.0000005854

Table 6.1: The effectivities for transport problem (10 s.f.)

Algorithm 1 h-refinement algorithm 1 with fixed fraction of 30%.

1: function h-refinement(1)(η)
2: Sort η high to low, populate elementsnum[1:N] ▷ Record the order of the elements
3: elements[1:N]=0
4: for m← 1 to ⌈N × 0.3⌉ do
5: i= elementsnum[m]
6: elements[i]=1
7: end for
8: Return elements ▷ elements[i]=1 marks element i for refinement
9: end function

The h-refinement algorithm employed, h-refinement(1), here is very simple: if an

element’s error indicator, ηκΩ
, is in the top 30% of the errors in the mesh, then it is

refined. We arrived at the fixed fraction of 30% by experimenting with different fixed

fractions.

116

Figure 6.2: Comparing the functional errors of h-refinement algorithm 1 with different
fixed fractions on a square mesh with p = 0.

Figure 6.2 shows the functional error of different fixed fractions, we can see that

refining the top 40% of elements gives suboptimal convergence, due to elements being

refined that are not contributing enough to the overall error. Fixed fractions of 20% and

30% give similar convergence, but a very different number of iterations of the loop in

Figure 6.1. With each iteration representing a solve of the primal and dual problem,

in order to save time we want to minimise the number of iterations required to reach

an appropriate level of accuracy. While a fixed fraction of 40% has a lower number of

iterations in the graph shown, it will be likely to require more iterations than the fixed

fraction of 30% to reach a functional error of around 10−3.

117

Figure 6.3: The error estimates of uniform vs h-refinement algorithm 1 for a transport
problem on a square mesh with p=0.

Figure 6.3 shows the h-adaptive refinement algorithm compared to uniform refinement,

with the h-refinement terminated once the error indicator is below the error indicator of

the finest mesh in the uniform refinement we considered. It is clear that the h-refinement

uses many fewer DOFs to get the same accuracy as uniform refinement.

118

Figure 6.4: The error estimates of uniform vs h-refinement algorithm 1 for a transport
problem on a square mesh with p=2.

Figure 6.4 shows the same thing but for p = 2. Again, h-refinement requires many

fewer DOFs for the same level of accuracy. It also shows a relatively common phenomenon,

where refining some elements leads to little or no reduction in the error. Both Figures

6.3 and 6.4 indicate that for uniform refinement, the functional error |J(u)− J(uh)| is of

order O(h2(p+
1
2)) which is the expected optimal rate of convergence [38].

6.3.2 LBTE

Applying DWR to the LBTE, we can define the residual for the tensor element as

ηκ =

ˆ
κg

ˆ
κS

ˆ
Ω

fẑh dx dµ dE

−
ˆ
κg

ˆ
κS

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ
)gDẑh ds dµ dE

−
ˆ
κg

ˆ
κS

ˆ
κΩ

(µ · ∇xuhẑh + (α+ β)uhẑh) dx dµ dE

+

ˆ
κg

ˆ
κS

ˆ
∂−κΩ\∂Ω

(µ · nκΩ
)⌊uh⌋ẑ+h ds dµ dE

+

ˆ
κg

ˆ
κS

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ
)u+h ẑ

+
h ds dµ dE

−
ˆ
κg

ˆ
κS

ˆ
κΩ

S[uh](x,µ, E)ẑh dx dµ dE.

119

We define ω of our mean value functional J(·) as a von Mises type distribution, centred

on a point bΩ = (0.3, 0.3)T and bS = (1) for the space and angular domains, with

concentrations of κΩ = 50 and κS = 0, and noting that for κΩ = 0 the distribution is

normal:

ω(x,µ) =
1

2πI0(κS)
expκΩ(x− bΩ)

2,

here I0(κS) is the modified Bessel function of the first kind of order 0. We use this weight

for all the dual problems of the LBTE we compute in this chapter.

6.4 2D mono-energetic

Using the model problem from Section 3.7, we can see the effectivities of the error

estimation in Tables 6.2 are close to one. As the error estimation is a good approximation

p = q Total DOFs Effectivities

0 4,096 0.9894823564
0 16,384 0.9946546551
0 65,536 0.9998648494
0 262,144 1.0000654546
0 1,0485,76 0.9999945653

1 122,88 0.9916364352
1 49,152 0.9964397215
1 196608 1.0000054546
1 786,432 1.0000009854
1 3,145,728 0.9999998564

2 24,576 0.9986464116
2 98,304 1.0000016524
2 393,216 0.9999991347
2 1,572,864 1.0000006351
2 6,291,456 0.9999994146

Table 6.2: The effectivities for 2D mono-energetic problem (10 s.f.)

of the functional error. However, when we commence with h-refinement algorithm 1 with

a fixed fraction of 20% we see some unexpected results.

120

Figure 6.5: Comparing the functional error of uniform vs h-refinement algorithm 1 for
LBTE with q = p = 0.

Figure 6.6: Comparing the functional error of uniform vs h-refinement algorithm 1 for
LBTE with q = p = 2.

Figures 6.5 and 6.6 show that the h-refinement algorithm 1 on the LBTE using

121

the tensor element error indicators results in almost the same as uniform refinement

despite only marking 20% of the elements for refinement. This is a result of the tensor

structure of the elements. Marking a tensor element for refinement, in fact, marks an

element in each of the space and angle meshes. Due to this, marking 20% of the tensor

elements results in nearly every space and angle element being refined thus giving uniform

refinement. Figures 6.5 and 6.6 also show that uniform refinement with fixed q,p gave a

convergence of the functional error of order O(h2(p+
1
2)).

To combat this, it would be helpful to be able to compute error indicators for both

the space and angle meshes separately.

Let ΠΩ,ΠS denote the L2-projection operators onto the spatial and angular finite element

spaces, so that zh = ΠΩΠSz. Therefore,

J(u)− J(uh) = R(uh, z − zh)

= R(uh, z −ΠΩΠSz)

= R(uh, z −ΠΩz +ΠΩz −ΠΩΠSz)

= R(uh, z −ΠΩz) +R(uh,ΠΩ(z −ΠSz))

Approximating the dual solution z with ẑh ∈ Vp+1
Ω via DWR, gives

J(u)− J(uh) ≈ R(uh, ẑh −ΠΩẑh) +R(uh,ΠΩ(ẑh −ΠSẑh)).

|J(u)− J(uh)| ⪅ |R(uh, ẑh −ΠΩẑh)|+ |R(uh,ΠΩ(ẑh −ΠSẑh))|

=: |
∑

κΩ∈TΩ

ηκΩ
|+ |

∑
κS∈TS

ηκS |

≤
∑

κΩ∈TΩ

|ηκΩ
|+

∑
κS∈TS

|ηκS |

Where,

ηκΩ
=

ˆ
κΩ

f(ẑh −ΠΩẑh) dx−
ˆ
∂−κΩ∩∂Ω

(µ · nκΩ
)gD(ẑh −ΠΩẑh) ds

−
ˆ
κΩ

(µ · ∇uh(ẑh −ΠΩẑh) + (α+ β)uh(ẑh −ΠΩẑh)) dx

+

ˆ
∂−κΩ\∂Ω

(µ · nκΩ)⌊uh⌋(ẑ+h −ΠΩẑ
+
h) ds

+

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ)u
+
h (ẑ

+
h −ΠΩẑ

+
h) ds

+

ˆ
κΩ

S[uh](x,µ, E)(ẑh −ΠΩẑh) dx,

122

and

ηκS =

ˆ
κS

fΠΩ(ẑh −ΠSẑh) dµ

−
ˆ
κS

(µ · ∇xuhΠΩ(ẑh −ΠSẑh) + (α+ β)uhΠΩ(ẑh −ΠSẑh)) dµ

−
ˆ
κS

S[uh](x,µ, E)ΠΩ(ẑh −ΠSẑh) dµ.

6.4.1 h-refinement algorithm 2

As we wish to minimise the error of the LBTE on the tensor element, it does not make

sense to treat these two error indicators separately. While we could refine the elements on

each mesh that have the highest error indicators, that does not guarantee that the tensor

element with the most error is refined. We must, therefore, develop a more customised

algorithm to decide which elements of the space and angle meshes to refine.

Using the split error indicators, we developed a new refinement algorithm, h-

refinement(2). The h-refinement algorithm 2 marks the tensor elements with the largest

local error estimates, the space, and angle elements that form that tensor element have

one added to their tally. The space and angle elements with the highest tallies are then

refined.

123

Algorithm 2 h-refinement algorithm 2 with fixed fraction of 20%.

1: function h-refinement(2)(ηΩ[1 : NΩ], ηS[1 : NS],tensorelements[1:N])
2: for i← 1 to N do
3: j,k=tensorelements[i] ▷ Fetch space, angle element numbers for tensor

element i
4: η[i]=ηΩ[j] + ηS[k]
5: end for
6: Sort η high to low, populate tensorelementsnum[1:N] ▷ Record the order of the

elements
7: spacetally [1 : NΩ]=0
8: angletally [1 : NS]=0
9: for m← 1 to ⌈N/5⌉ do

10: i=tensorelementsnum[m]
11: j,k=tensorelements [i]
12: spacetally[j] + +
13: angletally[k] + +
14: end for
15: Sort spacetally high to low, populate spaceelementsnum[1:NΩ]
16: Sort angletally high to low, populate angleeelementsnum[1:NS]
17: spaceelements[1:NΩ]=0
18: angleelements[1:NS]=0
19: for m← 1 to ⌈NΩ/5⌉ do
20: j=spaceelementsnum[m]
21: spaceelements[j] = 1
22: end for
23: for m← 1 to ⌈NS/5⌉ do
24: k=angleelementsnum[m]
25: angleelements[k] = 1
26: end for
27: Return spaceelements and angleelements ▷ spaceelements[j]=1 marks space

element j for refinement, analogous for angle
28: end function

124

Figure 6.7: Comparing the functional error of uniform vs h-refinement algorithm 2 for
LBTE with q = p = 0.

Figure 6.8: Comparing the functional error of uniform vs h-refinement algorithm 2 for
LBTE with q = p = 2.

As Figures 6.7 and 6.8 show, this is a marked improvement on uniform refinement

125

and thus the tensor residual; however, it is not as efficient as we might have hoped. This

is likely to be due to it being possible for the space or angle element that is marked most

to not correspond to the tensor element with the highest error.

6.4.2 h-refinement algorithm 3

To address this issue, we introduce h-refinement algorithm 3, which multiplies each tally

by the error contribution of the tensor element. Thus, the space and angle elements

selected to be refined are the ones that contribute the most to the global tensor error.

Algorithm 3 h-refinement algorithm 3 with fixed fraction of 20%.

1: function h-refinement(3)(ηΩ[1 : NΩ], ηS[1 : NS],tensorelements[1:N])
2: for i← 1 to N do
3: j,k=tensorelements[i] ▷ Fetch space, angle element numbers for tensor

element i
4: η[i]=ηΩ[j] + ηS[k]
5: end for
6: Sort η high to low, populate tensorelementsnum[1:N] ▷ Record the order of the

elements
7: spacetally [1 : NΩ]=0
8: angletally [1 : NS]=0
9: for m← 1 to ⌈N/5⌉ do

10: i=tensorelementsnum[m]
11: j,k=tensorelements [i]
12: spacetally[j]= spacetally[j]+η[i]
13: angletally[k]= angletally[k] +η[i]
14: end for
15: Sort spacetally high to low, populate spaceelementsnum[1:NΩ]
16: Sort angletally high to low, populate angleeelementsnum[1:NS]
17: spaceelements[1:NΩ]=0
18: angleelements[1:NS]=0
19: for m← 1 to ⌈NΩ/5⌉ do
20: j=spaceelementsnum[m]
21: spaceelements[j] = 1
22: end for
23: for m← 1 to ⌈NS/5⌉ do
24: k=angleelementsnum[m]
25: angleelements[k] = 1
26: end for
27: Return spaceelements and angleelements ▷ spaceelements[j]=1 marks space

element j for refinement, analogous for angle
28: end function

126

Figure 6.9: Comparing the functional error of uniform, h-refinement algorithms 2 and 3
for LBTE with q = p = 0.

Figure 6.10: Comparing the functional error of uniform, h-refinement algorithms 2 and 3
for LBTE with q = p = 2.

Figures 6.9 and 6.10 show that h-refinement algorithm 3 is a great improvement on

127

h-refinement algorithm 2, especially for q = p = 0. This probably means that many

space and/ or angle elements formed tensor elements marked for refinement multiple

times, thus were marked for refinement by algorithm 2 but didn’t necessarily contribute

the most to the overall error. h-refinement algorithm 3 has proved to be very efficient

compared to uniform refinement, requiring around one order of magnitude fewer DOFs

for the same error for q = p = 0.

6.5 2D mono-energetic beam

So far we have only used a fairly smooth non-physical problem for the LBTE, but

to demonstrate the effectiveness of our refinement techniques we introduce the beam

problem. This is a closer match to the type of problem that would be used in radiography.

It represents an emitter with a focused beam of photons being fired from it, into a unit

square of water, Ω = [0, 1]2cm. The beam enters on the x = 0 boundary and is shone

horizontally, with an initial radius of 5cm. The boundary condition is given by

g(x,µ) =


1
2 (1− tanh(100(∥x− s∥ − 5))) if d · µ > 0.99995

0 otherwise

where s is the source of the beam on the boundary in this case s = (0, 0.5), and d is

the direction of travel of the beam in this case d = (1, 0). There is no forcing in this

problem as the source of photons is outside of our domain of interest, so f = 0.

The data terms α and S are chosen to mimic the Compton scattering of photons

travelling through water. To that end the macroscopic absorption cross-section is set at

α = 0, and the differential scattering cross-section is:

θ(x,µ · µ′) = ρ(x)
1

2
r(2− (1− cos2(ϑ))2)

where ρ(x) is the electron density of the medium, in this case water ρ(x) ≈ 3.34281×

1029m−3 [27], and r ≈ 2.81794 × 10−15m is a physical constant, the classical electron

radius [32]. cos(ϑ) = µ · µ′ is the scattering angle.

The macroscopic scattering cross-section of the medium can be calculated from the

differential scattering cross-section

β(x,µ) =

ˆ
S
θ(x,µ→ µ′) dµ′;

128

Figure 6.11: Comparing the functional errors of h-refinement algorithm 3 with different
fixed fractions for the beam problem with q = p = 1.

Figure 6.11 shows the functional error for the beam problem with different fixed

fractions, we choose a fixed fraction of 20% as it requires fewer iterations of the loop in

Figure 6.1 than the 10% fixed fraction to reach an error below 10−7. A fixed fraction of

30%, requires fewer iterations but over refines. To reach an error below 10−7. a fixed

fraction of 30% required 3,933,828 DOFs whereas our choice of the fixed fraction of 20%

only required 896,112 DOFs.

129

Figure 6.12: Comparing the functional error of uniform, h-refinement algorithms 2 and 3
for beam problem with q = p = 0.

Figure 6.13: Comparing the functional error of uniform, h-refinement algorithms 2 and 3
for beam problem with q = p = 2.

Figures 6.12 and 6.13 show that the functional error converges in order O(h2(p+
1
2))

130

for uniform refinement. Figures 6.12 and 6.13, also show the h-refinement algorithm 3 is

far more efficient in terms of DOFs for functional error than the h-refinement algorithm 2,

with an order of magnitude difference for higher DOFs. Both algorithms have instances

where the h-refinement does not result in any meaningful reduction in the functional

error. This is likely to be due to the h-refinements not providing sufficient resolution to

capture the details of the solution. Both algorithms, however, perform better than the

uniform refinement and thus the h-refinement algorithm 1.

6.6 3D mono-energetic beam

We take the beam problem from Section 6.5, and applied it to a 3D cube of water, so

the mono-energetic LBTE becomes 5D. To do this, we take the same problem definition,

as in Section 6.5, but use Ω = [0, 1]3cm, s = (0, 0.5, 0.5) and d = (1, 0, 0). The rest of the

definition of the problem is dimensionally invariant.

Unfortunately, with this many dimensions, we cannot do uniform refinement due to

the number of degrees of freedom it would require, but we have included a predicted

rate of convergence for uniform refinement, O(h2(p+
1
2)).

Figure 6.14: Comparing the functional error from h-refinement algorithms 2 and 3 to
the predicted rate of uniform refinement for LBTE q = p = 0.

131

Figure 6.15: Comparing the functional error from h-refinement algorithms 2 and 3 to
the predicted rate of uniform refinement for LBTE q = p = 2.

From Figures 6.14 and 6.15 we once again see that h-refinement algorithm 3 out-

performs h-refinement algorithm 2. Also, we do see refinements that have little to no

effect on the overall functional error. This can be explained by the resolution, failing to

capture details of the solutions. Additionally, we see refinements that provide a steep

drop in the functional error. This is likely to be a consequence of the resolution of the

mesh capturing the underlying behaviour of the solution.

6.7 Summary

In conclusion, we have shown how an a posteriori error estimates can be computed using

the dual weighted residual method for both the transport and LBTE problems. We have

also shown how this residual error can be then be divided into residuals for each element

in the mesh. This allows us to identify the elements that are contributing the most to

the global error.

Using these error indicators, we showed how a basic h-refinement algorithm, h-

refinement(1), can be used to solve the transport problem more efficiently than uniform

refinement. Additionally we saw that these residuals were a good approximation of the

functional error for the transport problem as we got effectivities of around one. We

also saw that uniform h-refinement resulted in the functional error reducing at order

O(h2(p+
1
2)).

132

When we tried h-refinement algorithm 1 on the LBTE we obtained nearly uniform

refinement due to the tensor nature of the elements. We, therefore, created h-refinement

algorithm 2 to tally the number of times a space or angle element is marked for refinement,

and then refine the elements with the most tallies. h-refinement algorithm 2 proved to

be an upgrade to h-refinement algorithm 1, being more efficient than uniform refinement.

h-refinement algorithm 2 did not always refine the elements that were contributing the

most to the global error. To combat this, we created h-refinement algorithm 3 which

weighted the tallies with the tensor error indicators. h-refinement algorithm 3 performed

well, providing an order of magnitude reduction to the functional error for the same

number of DOFs as uniform refinement.

Finally, we tested h-refinement algorithm 2 and 3 on a LBTE problem that incorpo-

rated more realistic physics. We simulated a beam of photons being fired in to a block

of water, and undergoing Compton scattering. Once again, h-refinement algorithm 3

proved to be more efficient.

133

Chapter 7

Conclusion

In this thesis, we have developed efficient high-order discontinuous Galerkin finite element

methods (DGFEMs) for the numerical approximation of the mono- and poly-energetic

forms of the linear Boltzmann transport equation (LBTE). We have employed DGFEMs

in each of the spatial, angular, and energetic domains to create a three-way tensor

discretisation of the LBTE. We have then shown how this tensor discretisation can

be implemented as a sequence of transport equations coupled in the right hand side.

The remaining work has focussed on optimising the construction and solving of this

discretisation.

In Chapter 3, we introduced discretisations for each of the spatial, angular, and energy

domains, and specified spaces of discontinuous piecewise-polynomial basis functions

used in each case. These function spaces were necessary to develop a full space-angle-

energy discretisation of the poly-energetic linear Boltzmann transport equation using the

discontinuous Galerkin finite element method. We then provided numerics to show that

the space-angle DG-DG discretisation of the mono-energetic LBTE is high order, with

the error in the L2 norm converging at O(hp+1) for a space-angle mesh-size parameter h

and the global polynomial degree of approximation p. We then showed how the angle

and energy domains’ DG discretisations could become a sequence of coupled transport

equations, like a multigroup discrete-ordinates-like solver.

Chapter 4 provided a deeper insight into the form of the matrix resulting from the

discretisation in the previous chapter. We discussed and presented the construction of

the transport equation blocks. We then examined how meshes of different element types

could affect the matrix sparsity, and thus the construction and inverting of the matrix of

the transport equation. The creation of polytopic meshes was covered, with emphasis

being placed on agglomeration. We also examined the agglomeration of elements into

polytopes and how the underlying fine elements are still employed by a “standard” matrix

solver.

In Chapter 5 we presented a novel transport equation solver. This solver showed itself

134

to be considerably more efficient at constructing and inverting the system’s matrix than

a direct matrix solver for convex elements, while not requiring the system’s matrix to be

fully constructed. We then showed that the same solver could be efficient for non-convex

elements if there were not many cyclic dependencies present. If, however, large cyclic

dependencies were present, this sweep solver would then be less efficient than the direct

matrix solver. Finally, in this chapter, we showed the speed-up we had achieved for

solving the LBTE. We compared the tensor discretisation with a direct matrix solver to

the coupled transport equations solved by our sweep solver for both square elements and

elements agglomerated into squares.

Finally, in Chapter 6 we presented an a posteriori error bound for the transport

equation and the linear Boltzmann transport equation. We used these error bounds

to create an adaptive h-refinement solve for each of them. Noting the h-refinement

algorithm was underperforming for the LBTE, we presented an error estimate that was

split across the domains of the LBTE and then used this to develop two h-refinement

algorithms. We then tested these h-refinement algorithms on a problem that modelled

real world physics to great success. The h-refinement algorithm that marks the element

with the error of each tensor element it is part of, showing a clear advantage over the

other methods.

7.1 Further work

There are several topics of research that can be suggested as extensions of the work

contained in the thesis. We will briefly discuss them here.

7.1.1 Poly-energetic LBTE

We provided a novel way of discretising the energy domain of the LBTE in Section

3.8.1; however, we have not provided any numerics to support it. Some numerics do

appear in [33] and [55] but no comparisons to the “standard” multigroup approximations

exist. This could be informative as the DGFEM of the energy domain is a high order

approximation, but multigroup is low order. Additionally, a comparison to the full

three-way tensor system of DG-DG-DG, outlined in Section 3.4, could be done.

7.1.1.1 a posteriori error bound and adaptivity

There are a number of open questions about solving the dual problem of the poly-energetic

LBTE. It is unclear if one solves the dual problem from high energy to low or from

low energy to high. The split a posteriori error bound, discussed in Section 6.4, can be

expanded to include poly-energetic LBTE problems. We believe that an energy error

135

indicator can be created of the form

J(u)− J(uh) = R(uh, z −ΠΩΠSΠEz)

= R(uh, z −ΠΩΠSz +ΠΩΠSz −ΠΩΠSΠEz)

= R(uh, z −ΠΩz +ΠΩ(z −ΠSz)−ΠΩΠS(z −ΠEz))

= R(uh, z −ΠΩz) +R(uh,ΠΩ(z −ΠSz)) +R(uh,ΠΩΠS(z −ΠEz)).

We can then incorporate this into any of our h-refinement algorithms, and the results

can be compared. Further to this, a full hp-refinement run could be done for the

mono-energetic, as well as the poly-energetic LBTE. This will require immense computer

resources, as most of the smoothness checks, such as the Sobolev Regularity Estimation,

shown in Section 6.3, require high polynomial degrees to be reliable [36].

7.1.2 Mesh creation and agglomeration

We have shown that convex elements are required by our sweep solver to be efficient,

but there are many ways to create convex polygonal meshes. The Voronoi tessellation

provides convex polygonal shapes, but has no respect for underlying problem geometry.

An adapted tessellation may be able to be created which allows this.

Alternatively, agglomerating the MRI or CAT scan data into convex polygons is

possible. While agglomerating square/cube elements into a larger square/cube elements

is possible, there are still problems associated with it. There can be many faces evaluated

by the quadrature free algorithm, as we have to evaluate each face in the fine mesh

that forms the boundary of an element in the coarse mesh. This could be fixed by

agglomerating the faces of the coarse mesh element. This is relatively simple for a square

coarse mesh element, but is more complex for a cube or arbitrary shaped polytope.

Also, refining our coarse mesh would require de-agglomerating the coarse mesh and then

re-agglomerating the fine mesh into more elements. If we manage to complete these

two tasks, we could remove the fine mesh entirely. So once we have agglomerated the

fine mesh, we could store our coarse mesh as a completely new mesh and remove the

underlying mesh. The question then becomes how to h-refine a convex polygon into

N convex polygons. This is an interesting open problem, that would have many other

applications in other fields.

7.1.3 Medical physics applications

In order to demonstrate that our deterministic approach can be used on real world

problems, it will be necessary to benchmark our method vs gold standard Monte Carlo

methods [44]. These benchmarks will, by necessity, have to be much more complex, with

inhomogeneities in the material coefficients [68].

136

7.1.3.1 Electron Transport

To actually be able to calculate dosage for radiotherapy, we will need to move on to the

study of electrons. We know from physics that the interactions between photons and a

medium can produce an electron and electrons can scatter from colliding with each other

[11]. At energy levels used for radiology, electron interactions do not produce a photon,

but they may at lower energies. We, therefore, form a coupled system of equations, one

models photons and their interactions, feeding into the second equation which models

electrons and their interactions [32].

µ · ∇xuγ(x,µ, E) + (αγ(x, E) + βγ(x, E))uγ(x,µ, E)

=

ˆ
E

ˆ
S
θγγ(x,µ

′ · µ, E′ → E)uγ(x,µ
′, E′) dµ′ dE + fγ(x,µ, E),

µ · ∇xue(x,µ, E) + (αe(x, E) + βe(x, E))ue(x,µ, E)

=

ˆ
E

ˆ
S
θγe(x,µ

′ · µ, E′ → E)uγ(x,µ
′, E′) dµ′ dE

+

ˆ
E

ˆ
S
θee(x,µ

′ · µ, E′ → E)ue(x,µ
′, E′) dµ′ dE

+ fe(x,µ, E),

where, the terms αγ , βγ , and θγγ denote the typical macroscopic absorption, macroscopic

scattering, and differential scattering cross-sections associated with the physics of photons.

Likewise αe, βe and θee for electrons and the differential cross-section θγe represents

electron production from photon interactions.

From this, the electron scalar flux

ϕe(x, E) =

ˆ
S
ue(x,µ, E) dµ

could be used to calculate the dosage of radiation. Once we can calculate the dosage, we

can use a dosage functional to inform our adaptivity algorithms and do goal oriented

adaptive refinements.

137

Bibliography

[1] Adams, M. L., and Larsen, E. W. Fast iterative methods for discrete-ordinates

particle transport calculations. Progress in Nuclear Energy 40, 1 (2002), 3 – 159.

[2] Ainsworth, M., and Oden, J. A posteriori error estimation in finite element

analysis. Computer Methods in Applied Mechanics and Engineering 142, 1 (1997),

1–88.

[3] Ainsworth, M., and Senior, B. Aspects of an adaptive hp-finite element method:

Adaptive strategy, conforming approximation and efficient solvers. Computer Meth-

ods in Applied Mechanics and Engineering 150, 1 (1997), 65 – 87. Symposium on

Advances in Computational Mechanics.

[4] Antonietti, P. F., Dedner, A., Madhavan, P., Stangalino, S., Stinner, B.,

and Verani, M. High order discontinuous Galerkin methods for elliptic problems

on surfaces. SIAM J. Numer. Anal. 53 (2015), 1145–1171.

[5] Antonietti, P. F., Giani, S., and Houston, P. hp-version composite discontin-

uous galerkin methods for elliptic problems on complicated domains. SIAM Journal

on Scientific Computing 35, 3 (2013), A1417–A1439.

[6] Antonietti, P. F., Houston, P., and Pennesi, G. Fast numerical integration

on polytopic meshes with applications to discontinuous Galerkin finite element

methods. Journal of Scientific Computing (2018), 1–32.

[7] Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. Unified analysis

of discontinuous galerkin methods for elliptic problems. SIAM journal on numerical

analysis 39, 5 (2002), 1749–1779.

[8] Asadzadeh, M. Analysis of a fully discrete scheme for neutron transport in two-

dimensional geometry. SIAM journal on numerical analysis 23, 3 (1986), 543–561.

[9] Aurenhammer, F. Voronoi diagrams—a survey of a fundamental geometric data

structure. ACM Comput. Surv. 23, 3 (Sept. 1991), 345–405.

[10] Becker, R., and Rannacher, R. An optimal control approach to a posteriori

error estimation in finite element methods. Acta Numerica 10 (2001), 1–102.

138

[11] Bedford, J. L. Calculation of absorbed dose in radiotherapy by solution of the

linear Boltzmann transport equations. Physics in Medicine and Biology (2018).

[12] Bell, G. I., and Glasstone, S. Nuclear reactor theory. Tech. rep., US Atomic

Energy Commission, Washington, DC (United States), 1970.

[13] Berndt, M., Manteuffel, T. A., and McCormick, S. F. Local error estimates

and adaptive refinement for first-order system least squares (fosls). Electron. Trans.

Numer. Anal 6 (1997), 35–43.

[14] Bey, K. S., and Tinsley Oden, J. hp-version discontinuous galerkin methods

for hyperbolic conservation laws. Computer Methods in Applied Mechanics and

Engineering 133, 3 (1996), 259–286.

[15] Brooks, A. N., and Hughes, T. J. R. Streamline upwind/Petrov-Galerkin

formulations for convection dominated flows with particular emphasis on the incom-

pressible Navier-Stokes equations. Computer Methods in Applied Mechanics and

Engineering 32 (Sept. 1982), 199–259.

[16] Cangiani, A., Dong, Z., Georgoulis, E. H., and Houston, P. hp-Version

Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer

International Publishing, 2017.

[17] Carson, M. The spherical harmonic method. Tech. rep., National Research Council

of Canada, Atomic Energy Project, Division of Research, 1947.

[18] Cockburn, B. Discontinuous Galerkin Methods for Computational Fluid Dynamics.

American Cancer Society, 2017, pp. 1–63.

[19] Cockburn, B., Karniadakis, G. E., and Shu, C.-W. The development of

discontinuous galerkin methods. B. Cockburn, G. E. Karniadakis, and C.-W. Shu,

Eds., Springer Berlin Heidelberg.

[20] Cockburn, B., and Shu, C.-W. Tvb runge-kutta local projection discontinu-

ous galerkin finite element method for conservation laws ii: General framework.

Mathematics of Computation 52, 186 (1989), 411–435.

[21] De Sterck, H., Manteuffel, T., McCormick, S., Nolting, J., Ruge, J.,

and Tang, L. Efficiency-based h-and hp-refinement strategies for finite element

methods. Numerical Linear Algebra with Applications 15, 2-3 (2008), 89–114.

[22] Demlow, A. Higher-order finite element methods and pointwise error estimates

for elliptic problems on surfaces. SIAM J. Numer. Anal. 47 (2009), 805–827.

[23] Dörfler, W. A convergent adaptive algorithm for poisson’s equation. SIAM

Journal on Numerical Analysis 33, 3 (1996), 1106–1124.

139

[24] Dziuk, G., and Elliott, C. M. Finite element methods for surface PDEs. Acta

Numer. 22 (2013), 289–396.

[25] Eppstein, D. How many tetrahedra?, https://www.ics.uci.edu/~eppstein/

projects/tetra/, 2001.

[26] Fletcher, J. K. A solution of the neutron transport equation using spherical

harmonics. Journal of Physics A: Mathematical and General 16, 12 (aug 1983),

2827–2835.

[27] Geant, et al. Physics reference manual. Version: Geant4 9, 0 (2016).

[28] Gifford, K. A., Horton Jr, J. L., Wareing, T. A., Failla, G., and

Mourtada, F. Comparison of a finite-element multigroup discrete-ordinates code

with monte carlo for radiotherapy calculations. Physics in Medicine & Biology 51, 9

(2006), 2253.

[29] Green, P. J., and Sibson, R. Computing Dirichlet Tessellations in the Plane.

The Computer Journal 21, 2 (05 1978), 168–173.

[30] Harriman, K., Houston, P., Senior, B., and Suli, E. hp-version discontinu-

ous galerkin methods with interior penalty for partial differential equations with

nonnegative characteristic form. Tech. rep., Unspecified, 2002.

[31] Hartmann, R., and Houston, P. Adaptive discontinuous galerkin finite element

methods for the compressible euler equations. Journal of Computational Physics

183, 2 (2002), 508–532.

[32] Hensel, H., Iza-Teran, R., and Siedow, N. Deterministic model for dose

calculation in photon radiotherapy. Physics in Medicine & Biology 51, 3 (2006),

675.

[33] Houston, P., Hubbard, M. E., Radley, T. J., Sutton, O. J., and Wid-

dowson, R. S. J. Efficient high-order space-angle-energy polytopic discon-

tinuous galerkin finite element methods for linear boltzmann transport, https:

//doi.org/10.48550/arXiv.2304.09592, 2023.

[34] Houston, P., Schwab, C., and Suli, E. Stabilized hp-finite element methods for

first-order hyperbolic problems. SIAM Journal on Numerical Analysis 37, 5 (2000),

1618–1643.

[35] Houston, P., Schwab, C., and Süli, E. Discontinuous hp-finite element methods

for advection-diffusion-reaction problems. SIAM Journal on Numerical Analysis 39,

6 (2002), 2133–2163.

140

https://www.ics.uci.edu/~eppstein/projects/tetra/
https://www.ics.uci.edu/~eppstein/projects/tetra/
https://doi.org/10.48550/arXiv.2304.09592
https://doi.org/10.48550/arXiv.2304.09592

[36] Houston, P., Senior, B., and Süli, E. Sobolev regularity estimation for

hp-adaptive finite element methods.

[37] Houston, P., Senior, B., and Süli, E. hp-discontinuous galerkin finite element

methods for hyperbolic problems: error analysis and adaptivity. International

Journal for Numerical Methods in Fluids 40, 1-2, 153–169.

[38] Houston, P., and Süli, E. hp-adaptive discontinuous galerkin finite element

methods for first-order hyperbolic problems. SIAM Journal on Scientific Computing

23, 4 (2001), 1226–1252.

[39] Inform, N. Radiotherapy, https://www.nhsinform.scot/

tests-and-treatments/non-surgical-procedures/radiotherapy, 2022.

[40] Johnson, C., and Pitkäranta, J. An analysis of the discontinuous galerkin

method for a scalar hyperbolic equation. Mathematics of computation 46, 173 (1986),

1–26.

[41] Karypis, G. Metis, https://github.com/KarypisLab/METIS, 2023.

[42] Karypis, G., and Kumar, V. METIS: A software package for partitioning

unstructured graphs, partitioning meshes, and computing fill-reducing orderings

of sparse matrices. Computer Science Engineering (CSE) Technical Reports 749

(1997).

[43] Karypis, G., and Kumar, V. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1 (1998),

359–392.

[44] Kawrakow, I., and Fippel, M. Investigation of variance reduction techniques for

Monte Carlo photon dose calculation using XVMC. Physics in Medicine & Biology

45, 8 (2000), 2163.

[45] Koch, R., Krebs, W., Wittig, S., and Viskanta, R. Discrete ordinates

quadrature schemes for multidimensional radiative transfer. Journal of Quantitative

Spectroscopy and Radiative Transfer 53, 4 (1995), 353 – 372.

[46] Larsen, E. W., Miften, M., Fraass, B. A., and Bruinvis, I. A. D. Electron

dose calculations using the method of moments. Medical physics 24 1 (1997), 111–25.

[47] Lasaint, P., and Raviart, P.-A. On a finite element method for solving the

neutron transport equation. In Mathematical aspects of finite elements in partial

differential equations. Elsevier, 1974, pp. 89–123.

[48] Lathrop, K. D., and Carlson, B. G. Discrete ordinates angular quadrature

of the neutron transport equation. Tech. Rep. LA-3186, Los Alamos Scientific

Laboratory, 1965.

141

https://www.nhsinform.scot/tests-and-treatments/non-surgical-procedures/radiotherapy
https://www.nhsinform.scot/tests-and-treatments/non-surgical-procedures/radiotherapy
https://github.com/KarypisLab/METIS

[49] Lesaint, P., and Raviart, P.-A. On a finite element method for solving the

neutron transport equation. Publications mathématiques et informatique de Rennes,

S4 (1974), 1–40.

[50] Lewis, E. E. E. E., and Miller, W. F. Computational methods of neutron

transport. New York : Wiley, 1984. ”A Wiley-Interscience publication.”.

[51] Mavriplis, C. Adaptive mesh strategies for the spectral element method. Computer

methods in applied mechanics and engineering 116, 1-4 (1994), 77–86.

[52] Persson, P.-O. Mesh generation for implicit geometries. PhD thesis, Massachusetts

Institute of Technology, 2005.

[53] Peterson, T. E. A note on the convergence of the discontinuous galerkin method

for a scalar hyperbolic equation. SIAM Journal on Numerical Analysis 28, 1 (1991),

133–140.

[54] ProgrammerSought. Cg-polygon triangulation, https://www.

programmersought.com/article/6011775469/, 2001.

[55] Radley, T. Discontinuous Galerkin Methods for the Linear Boltzmann Transport

Problem. PhD thesis, University of Nottingham, 2022.

[56] Reed, W. H., and Hill, T. Triangular mesh methods for the neutron transport

equation. Tech. rep., Los Alamos Scientific Lab., N. Mex.(USA), 1973.

[57] Schötzau, D., and Schwab, C. An hp a priori error analysis of the dg time-

stepping method for initial value problems. CALCOLO 37, 4 (Dec 2000), 207–232.

[58] Schötzau, D., Schwab, C., and Wihler, T. P. hp-dgfem for second-order

elliptic problems in polyhedra i: Stability on geometric meshes. Siam journal on

numerical analysis (2013), 1610–1633.

[59] Schötzau, D., and Schwab, C. Time discretization of parabolic problems by the

hp-version of the discontinuous galerkin finite element method. SIAM Journal on

Numerical Analysis 38, 3 (2001), 837–875.

[60] Seäıd, M., Klar, A., and Pinnau, R. Numerical solvers for radiation and

conduction in high temperature gas flows. Flow, Turbulence and Combustion 75

(2005), 173–190.

[61] Simon, C. P., Blume, L., et al. Mathematics for economists, vol. 7. Norton

New York, 1994.

[62] Stacey, W. M. Nuclear reactor physics. John Wiley & Sons, 2018.

142

https://www.programmersought.com/article/6011775469/
https://www.programmersought.com/article/6011775469/

[63] Süli, E., Houston, P., and Schwab, C. hp-finite element methods for hyperbolic

problems. The Mathematics of Finite Elements and Applications X (2000), 143–162.

[64] Tarjan, R. Depth-first search and linear graph algorithms. SIAM Journal on

Computing 1, 2 (1972), 146–160.

[65] Technologies, M. Multifrontal massively parallel sparse direct solver, https:

//mumps-solver.org/, 2022.

[66] UK, C. R. Cancer statistics for the uk, https://www.cancerresearchuk.org/

health-professional/cancer-statistics-for-the-uk, 2023.

[67] Verfürth, R. A posteriori error estimation and adaptive mesh-refinement tech-

niques. Journal of Computational and Applied Mathematics 50, 1-3 (1994), 67–83.

[68] Wang, L., Lovelock, M., and Chui, C.-S. Experimental verification of a CT-

based Monte Carlo dose-calculation method in heterogeneous phantoms. Medical

Physics 26, 12 (1999), 2626–2634.

143

https://mumps-solver.org/
https://mumps-solver.org/
https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk
https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk

	Introduction
	Thesis Outline

	Background
	Formulation of the linear Boltzmann transport equation
	Angular discretisation
	Level-symmetric quadrature methods
	TN quadrature
	Spherical harmonics

	Transport Problems
	Discontinuous Galerkin finite element method
	Properties of discontinuous Galerkin finite element method

	Discontinuous Galerkin finite element method for the time independent linear Boltzmann transport equation
	Time-independent linear Boltzmann transport equation
	Energy discretisation
	Multigroup
	Discontinuous Galerkin (DG) in Energy

	Angular discretisation
	Discrete Ordinates (DO)
	Discontinuous Galerkin (DG) in Angle

	DG-DG-DG
	DG-DG
	Source iteration
	DG-DG vs DO mono-energetic LBTE
	Discrete Ordinates Galerkin (DOG)
	DOG in energy

	DOG vs DG-DG vs DO
	Summary

	The structure of the matrix system resulting from the discrete ordinate Galerkin discretisation
	The linear system for the LBTE
	Transport block structure
	Matrix Sparsity
	Polytopic mesh generation
	Voronoi mesh generation
	Agglomerated meshes

	Timings for different element types
	2D
	3D

	Summary

	Efficiently solving the linear Boltzmann transport equation
	Sweep Solver
	Comparison between matrix and the sweep solver for convex elements
	Quadrature free integration over polytopic domains
	Square
	Triangular
	Convex Polygons
	Agglomerated Squares
	Cube
	Tetrahedral
	Agglomerated Cubes

	Cyclic Dependence
	Comparison between matrix and the sweep solver for non-convex elements
	Agglomerated polygons
	Agglomerated squares
	Agglomerated polyhedra
	Agglomerated cubes

	Summary

	Adaptive Algorithms for the linear Boltzmann transport equation
	Motivation
	General algorithm for adaptivity
	a posteriori error estimator
	Transport problem
	LBTE

	2D mono-energetic
	h-refinement algorithm 2
	h-refinement algorithm 3

	2D mono-energetic beam
	3D mono-energetic beam
	Summary

	Conclusion
	Further work
	Poly-energetic LBTE
	a posteriori error bound and adaptivity

	Mesh creation and agglomeration
	Medical physics applications
	Electron Transport

	Bibliography

