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Abstract

This thesis describes the use of diamagnetic levitation to study fluids in a zero-
gravity environment, particularly focusing on bubbles and droplets. We use a strong
nonhomogeneous magnetic field (maximum field strength 18.5 T) generated by a
superconducting solenoid magnet to repel/attract materials at a molecular level al-
lowing for a net zero body force to be experienced by bubbles/droplets. A new
technique that allows for the suspension of spherical gas bubbles in liquids at room
temperature is presented. The development of this technique allowed for several
novel experiments to be carried out.

Firstly, we use this technique to observe the coalescence of multiple pairs of air
bubbles in water, starting from hydrostatic equilibrium. The coalescence creates large
axisymmetric perturbations to the surface of the bubble which leads to the ejection
of satellite bubbles. For the first time, we experimentally observe the simultaneous
ejection of two satellite bubbles from the coalescence of a pair of air bubbles. After
satellite bubbles are ejected, the bubble formed from the coalescence of the parent
bubbles undergoes large nonlinear axisymmetric surface oscillations. We analyse
these surface oscillations for two cases: a symmetric case, where the initial parent
bubbles have equal radii (within experimental error) and an asymmetric case where
the ratio of the radii of the two parent bubbles is ∼ 1.5. We compare our results to
the analytical model of Tsamopoulos and Brown and find that in the symmetric case,
when only a single large amplitude surface mode is dominant, that experiment and
simulation agree well with theory and the oscillation frequency of the dominant mode
behaves as a function of the square of its amplitude. But, in the case several surface
modes are oscillating with moderate or large amplitudes, agreement between the
model of Tsamopoulos and Brown and what is observed in experiment and simulation
is seen to be less accurate.

Secondly, we use this technique to observe and manipulate bubble clusters. We
show that if a small amount of surfactant is added to the liquid, that air bubbles
levitating in the liquid may remain in contact with each other without coalescing
for an indefinite period of time. This allows for the creation of clusters of multiple
diamagnetically levitated spherical air bubbles. We present bubble clusters created
from up to 21 bubbles and show how the arrangement of these clusters may be
altered by simply altering the current in the superconducting solenoid. Future use
cases are hypothesised for bubble clusters, such as the production of new acoustic
metamaterials and a new technique for the study of the nonlinear interaction of
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bubbles in an oscillating acoustic field.
The final section of this thesis describes a new experimental technique ‘Sono-

maglev’. This new technique combines both acoustic and diamagnetic levitation,
allowing for the manipulation of multiple levitated spherical water droplets, using a
superconducting magnet fitted with low-power ultrasonic transducers. We show that
multiple droplets, arranged horizontally along a line, can be stably levitated with this
system, and demonstrate controlled contactless coalescence of two droplets. Numer-
ical simulation of the magnetogravitational and acoustic potential reproduces the
multiple stable equilibrium points observed in our experiments.
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Chapter 1

Introduction

The presence of bubbles and droplets are ubiquitous in our daily lives and play a vital
role in many natural and engineering processes. A short list of some of these processes
is presented here: the impact of raindrops on surfaces, the ejection of droplets due
to the bursting of bubbles at free surfaces, the deposition of ink droplets onto a
substrate, the collapse of cavitation bubbles, ocean spray produced from breaking
waves and many more. The dynamics of bubbles and droplets play an important role
in all these processes, yet in many applications, their dynamics are not yet completely
understood.

In many mathematical models of bubbles and droplets, the assumption is made
that the shape of the bubbles/droplets under investigation are spherical, as this
symmetry allows for the manipulation of the underlying equations governing the dy-
namics to a state where analytical solutions are more tractable. For this assumption
to hold often requires neglecting the effect of several other factors, most notably
gravity. In many cases, the effect of gravity has a negligible impact on the prob-
lem at hand, but for certain problems neglecting the effect of gravity fundamentally
changes the solution. One might assume trying to study such problems is a fruitless
endeavour, as experimental validation of such results may appear seemingly out of
reach due to the complexity and cost of carrying out such experiments. But the work
of this thesis is here to show that alternative methods exist to produce weightless
environments, and much progress can be made using these oft-overlooked techniques.

1.1 Levitation

Levitation is a fascinating phenomenon, as it appears to directly contradict our
intuition of how the world around us should behave. Objects levitating freely in
mid-air appear supernatural in nature, or possible only in the fictional worlds of
fantasy and sci-fi novels. This has led to many magicians performing astounding
tricks demonstrating this seemingly impossible feat. But as with all magic tricks,
some element of deception or trickery is necessary. In reality, no deception is needed,
as a multitude of levitation techniques have been developed by scientists over the
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last century allowing for the free suspension of materials.
These techniques are important in many ways, but as new manned missions to

space are being planned and prepared for, these techniques offer alternative methods
to study the effect of weightlessness on physical systems and biological organisms.
Traditional methods to carry out experiments under weightless conditions are either
very expensive, such as installing and carrying out experiments on the international
space station; severely time-limited, such as using drop towers where experimentation
time is limited to 5 seconds or less; or both, such as performing experiments on
parabolic flights. Levitation techniques can offer a cost-effective and preferable way
of carrying out experiments in weightless environments [1].

A large number of levitation techniques work by applying surface forces to the
object they are levitating, which in turn balances the force of gravity on the object.
One such technique is acoustic levitation, which utilises ultrasonic transducers to
create pressure fields that apply acoustic radiation forces to objects [2]. A second
technique which relies on surface forces to provide levitation is electrostatic levitation.
This technique uses time-dependent electric fields to levitate charged objects [3].
Since the charge of a conductor resides purely on its surface, objects levitated in this
manner only experience surface forces. If liquid droplets are levitated using such
techniques it is often found that the surface of the droplet deforms leading to the
flattening of levitated droplets.

The levitation technique which is the main focus of this thesis is diamagnetic
levitation. While few materials exhibit ferromagnetism, all ordinary materials exhibit
the weaker forms of magnetism, diamagnetism or paramagnetism, meaning they are
either repelled by or attracted to magnetic fields. Diamagnetic levitation exploits
these weaker forms of magnetism by using strong nonhomogeneous magnetic fields,
created by superconducting magnets or large electromagnets, to apply forces large
enough to an object to balance that of gravity [4]. Diamagnetic levitation differs
from the previous levitation techniques mentioned in that it makes use of body
forces induced at a molecular level to support the levitated object against gravity
rather than surface forces. Since the force balancing gravity is felt throughout the
entirety of the volume of a diamagnetically levitated object, smaller deformations
of diamagnetically levitated liquid droplets are observed in comparison to droplets
levitated using techniques which rely on surface forces to counteract the force of
gravity. A more detailed discussion of diamagnetic levitation will be presented in
chapter 2.

1.2 Thesis outline

Using the technique of diamagnetic levitation we have been able to conduct a num-
ber of novel experiments on bubbles and droplets in weightless environments, as
well as developing a new technique building upon diamagnetic levitation, allowing
for the levitation and manipulation of multiple spherical droplets. We present the
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first experimental confirmation of results predicted by numerical simulations of the
ejection of multiple satellite bubbles due to bubble coalescence, as well as compare
our findings to previously untested theoretical predictions of the nonlinear surface
oscillations of bubbles. To complement our experimental work we also carried out
numerical simulations, which have allowed us to gain a deeper understanding of the
physical processes we observed experimentally. The outline of this thesis is given
below.

In chapter 2, we discuss the basic physical principles underpinning diamagnetic
levitation. Earnshaw’s theorem is introduced, and we show how a static configuration
of charges, masses and magnets with constant magnetisation can never be in static
equilibrium. The stability conditions necessary for diamagnetic levitation are then
derived and we show how this does not violate Earnshaw’s theorem. Finally we
show how the shape of “magnetogravitational” traps can be varied in the bore of
superconducting magnets.

In chapter 3, we introduce a new technique for levitating spherical gas bubbles
in liquids at room temperature. We then present the experimental set-up we have
used to conduct all experiments on diamagnetically levitated air bubbles discussed
in this thesis.

In chapter 4 we investigate the nonlinear axisymmetric surface oscillations of
bubbles. Bubble coalescence is used to introduce a large axisymmetric perturbation
to the system. We analyse two cases: a symmetric case, where the initial parent
bubbles have equal radii (within experimental error) and an asymmetric case where
the ratio of the radii of the two parent bubbles is ∼ 1.5. We compare our experi-
ments and simulations to the theoretical model of Tsamopoulos and Brown [5] by
decomposing the surface of the bubble into spherical harmonics, which allows us to
observe the shift in frequency for 2nd and 3rd degree shape modes and analyse the
coupling between different shape modes.

In chapter 5 we build upon the technique demonstrated in chapter 3 and present
a method to create clusters of spherical levitated air bubbles. We show how to alter
the structure of these bubble clusters via non-contact manipulation, by altering the
current in the superconducting solenoid coil used to levitate the bubbles. Bubble
clusters of up to 19 similarly sized bubbles are demonstrated and multiple configu-
rations of these clusters are shown. We then proceed to discuss possible future uses
for bubble clusters.

In chapter 6, we present a new experimental technique combining acoustic and
diamagnetic levitation. We present our experimental set-up and demonstrate how
this technique is able to take advantage of the strengths of both acoustic levitation
and diamagnetic levitation to overcome weaknesses of each individual technique.
We then compare our experimental results to numerical simulations, demonstrating
that we are able to predict accurately the positions of levitated droplets. We then
identify some ways in which the future development of this technique expands the
toolset available to researchers looking to study systems in weightless environments.

In chapter 7, we review the work and findings presented throughout all previous
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chapters. We then discuss the prospect of future research building upon the work of
this thesis.
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Chapter 2

Principles of diamagnetic
levitation

In his review article ‘levitation in physics’ Brandt remarks that diamagnetic levitation
seems to be of no more than academic interest [6]. Though this may have seemed
true to him at the time of writing, over the last three decades diamagnetic levitation
has proven to be a markedly useful technique. Diamagnetic levitation has been used
to study a wide variety of problems in weightless or differential gravity environments,
such as the response of biological organism (e.g. fruit flies [7], Xenopus laevis embryos
(frog eggs) [8], yeast and single celled organisms such as bacteria [9] and protists
[10]), protein growth [11], separation of granular mixtures [12], surface oscillations of
Newtonian and non-Newtonian fluids [13]–[15], the shape of rotating droplets [16],
[17], surface instabilities in multiphase fluid flows [18], [19] and tektite formation [20].
In this chapter we present the underlying physics explaining how materials may be
stably levitated using diamagnetic levitation and the experimental set-up we used to
achieve this.

2.1 A brief history of diamagnetic levitation

The possibility of diamagnetic levitation was first realised in the 1870’s by Lord
Kelvin [21]. Lord Kelvin showed that a diamagnetic material placed in a magnetic
field was capable of possessing minima in its energy and hence suggested the possi-
bility of stable levitation of diamagnetic objects [22]. This theoretical result was not
proven experimentally until 1939 by Braunbeck, who was working on the problem of
static levitation [23], [24]. Braunbeck demonstrated that electrostatic levitation was
possible for materials of relative permittivity ϵ < 1 and magnetostatic levitation was
possible for materials of relative permeability µ < 1 (which is the condition that the
material must be diamagnetic). Owing to the belief at the time that there existed
no material with the physical property ϵ < 1, Braunbeck concluded that only mag-
netostatic levitation was possible and managed to demonstrate this phenomena by
levitating small particles of graphite and bismuth in the bore of a solenoid magnet.
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Diamagnetic levitation was then largely forgotten for the rest of the 20th centrury.
Only a handful of experiments were still carried out: reproducing Braunbeck’s re-
sults using permanent magnets [25], the levitation of pyrolytic graphite [26], and
studying the motion of diamagnetically levitated particles [27]. Diamagnetic levita-
tion reemerged from relative obscurity with the work of Beaugnon and Tournier [28],
who demonstrated levitation of water and organic materials, Berry and Geim [4] and
Valles Jr et al. [8] who demonstrated levitation of living organisms, and Paine and
Seidel [29] and Weilert et al. [30] who demonstrated the levitation of liquid hydro-
gen and liquid helium, respectively. Since then a larger community of researchers
have taken up this technique to enable the study of a diverse array of phenomena in
pseudo-weightless conditions.

2.2 Earnshaw’s theorem

Diamagnetic levitation is simple in principle: since diamagnetic objects feel a repul-
sive force when placed in a magnetic field it can be assumed that this repulsive force
could be used to balance other forces on an object such as gravity and hence allow
us to levitate objects. Although this is true, it is not as trivial as it first seems.
Repulsion is also seen in bar magnets, but it is known to us from childhood that it is
seemingly impossible to stably levitate one magnet on top of another. This is due to
Earnshaw’s theorem which states that no stationary configuration of magnets with
constant magnetisation, charges and masses can be in static equilibrium [22]. This
can be shown by considering a time-independent gravitational/electric/magnetic field
given by f . A point in free space within such a field satisfies

∇ · f = 0, ∇× f = 0. (2.1)

Therefore we may describe f as the gradient of some potential

f = −∇ϕ, (2.2)

hence
∇2ϕ = 0. (2.3)

For masses and electric charges, the potential energy U , of a point mass/charge
placed in a gravitational/electric field is proportional to the potential of the field ϕ,
therefore

∇2U = 0. (2.4)

For a magnetic dipole, the energy of a magnet of constant magnetisation, with mag-
netic moment m, placed in a magnetic field is given by

U = −m · f , (2.5)

hence
∇2U = −m ·∇2f . (2.6)
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The Laplacian of the energy in this case can also be shown to be zero by combining
the equations from (2.1) with the identity

∇2A = ∇ (∇ ·A)−∇× (∇×A) . (2.7)

It is known that a necessary but not sufficient stability criteria for a stable equilibrium
point is given by

∇2U > 0, (2.8)

which can’t be satisfied by any of the systems described above, therefore no static
system made of purely masses, point charges and magnets can remain in stable equi-
librium. Earnshaw’s theorem proves magnetic levitation is impossible for stationary
materials of constant magnetisation. Diamagnetic materials are not subjected to
Earnshaw’s theorem because the magnetisation in this case is proportional to the
applied magnetic field, i.e. m is not constant.

2.3 Diamagnetic levitation

Diamagnetic levitation is a phenomenon in which a diamagnetic object is suspended
against the force of gravity by magnetic forces due to an inhomogeneous magnetic
field. If we take into account the fluid surrounding the object, an identical situation
exists, except the object is suspended against buoyancy forces. When this exter-
nal fluid is taken into consideration the technique is often referred to as magneto-
Archimedes levitation, but for the rest of this thesis we shall simply refer to both
techniques as diamagnetic levitation [31].

We shall now show theoretically, following closely the work of Berry and Geim [4]
altering their derivation to account for an additional surrounding fluid, how objects
may be stably levitated using diamagnetic levitation.

Let us a consider an object of density ρ1 and magnetic susceptibility χ1 placed
in a magnetic field B(r) and surrounded by a fluid of density ρ2 and magnetic sus-
ceptibility χ2. Here r is the position vector. We shall only consider substances with
|χ| ≪ 1, therefore to a good approximation the magnetic moment of an object of
volume V is given by

m(r) =

∫
V

(χ1 − χ2)B(r)

µ0

dV. (2.9)

By integrating the work done −dm ·B as the magnetic field is increased from zero
to B(r) = |B(r)|, we obtain the magnetic energy umag, of the object, hence

umag(r) = −
∫
V

∫
B · dmdV

= −
∫
V

(χ1 − χ2)

2µ0

B2(r)dV.

(2.10)
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If we account for buoyancy forces this gives the total energy of the object

u(r) =

∫
V

[
∆ρgz − ∆χ

2µ0

B2(r)

]
dV, (2.11)

where g is the acceleration due to gravity, z is the coordinate directed anti-parallel
to the direction of gravity, ∆ρ = ρ1 − ρ2 and ∆χ = χ1 − χ2. We will assume the
volume of the object is small such that the magnetic and gravitational energy varies
slowly throughout the domain of the object. Therefore it is reasonable to assume
the contents of the integral in equation (2.11) are constant in the domain V , hence
the energy equation may be rewritten as

u(r) = ∆ρV gz − ∆χV

2µ0

B2(r). (2.12)

For the object to be levitating the net force on the object must be zero, hence

F(r) = −∇u(r) = −∆ρV gẑ+
∆χV

µ0

B(r)∇B(r) = 0, (2.13)

where ẑ is the unit vector in the direction opposite to that of gravity. Therefore
equilibrium points must satisfy the following equation

B(r)∇B(r) =
µ0g∆ρ

∆χ
ẑ. (2.14)

2.3.1 Stability conditions

For an equilibrium point to be stable we require the energy to be a minimum at that
point, meaning

∇2u(r) = −∆χV

2µ0

∇2B2(r) > 0. (2.15)

But since

∇2B2(r) =∇2(B2
x +B2

y +B2
z ) (2.16)

=2
[
|∇Bx|2 + |∇By|2 + |∇Bz|2 (2.17)

+Bx∇2Bx +By∇2By +Bz∇2Bz

]
, (2.18)

using the fact ∇×B(r) = 0 we can show

∇2B2(r) = 2
[
|∇Bx|2 + |∇By|2 + |∇Bz|2 +B(r) ·∇(∇ ·B(r))

]
, (2.19)

and since ∇ ·B(r) = 0 we can write

∇2B2(r) = 2
[
|∇Bx|2 + |∇By|2 + |∇Bz|2

]
≥ 0. (2.20)

From this it follows that ∆χ < 0 is required for an equilibrium point to be stable,
which is equivalent to χ1 < χ2. Hence the magnetic susceptibility of the outer fluid
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must be greater than that of the object. In other words, it is possible to levitate a
paramagnetic object as long as it is surrounded by a fluid that is more paramagnetic
[31].

The above condition is a necessary condition for stability but not a sufficient
condition. The sufficient conditions for stability are given by

∂2u(r)

∂x2
> 0,

∂2u(r)

∂y2
> 0,

∂2u(r)

∂z2
> 0, (2.21)

which enforces that the force in every direction must decrease as an object is moved
towards an equilibrium point. If the assumption is made ∆χ < 0 then the stability
criteria (2.21) reduces to

∂2B2(r)

∂x2
> 0,

∂2B2(r)

∂y2
> 0,

∂2B2(r)

∂z2
> 0. (2.22)

2.3.2 Stable zones of rotationally symmetric magnetic fields

In all the experimental work presented throughout this thesis we use superconducting
solenoids to create magnetic fields. The cylindrical symmetry of these solenoids leads
to magnetic fields that are rotationally symmetric about the vertical axis (z) of the
solenoid. Stable levitation points may only exist on the central axis of the solenoid.
Due to this constraint, it is possible to identify zones of stable levitation expressed
in terms of the vertical component of the magnetic field and its derivatives [4].

To begin, we introduce the magnetic potential in terms of the radial and vertical
coordinates (r, z), as

B(r, z) = ∇Φ(r, z), (2.23)

where we define the magnetic potential on the vertical axis to be

Φ0(z) = Φ(0, z). (2.24)

We may approximate the magnetic potential close to the vertical axis using a Taylor
expansion

Φ(r, z) = Φ0(z) + r
∂Φ(0, z)

∂r
+
r2

2

∂2Φ(0, z)

∂r2
+O(r3). (2.25)

We make the distinction between ∂nΦ0(z)
∂rn

, where Φ0(z) is a function of z only, hence
∂nΦ0(z)

∂rn
= 0 and ∂nΦ(0,z)

∂rn
, which is the nth derivative of the function Φ(r, z) with re-

spect to r evaluated at z = 0. Due to the cylindrical symmetry, the radial component
of the magnetic field on axis must be zero

Br(0, z) =
∂Φ(0, z)

∂r
= 0, (2.26)

hence the second term in the Taylor expansion of equation (2.25) vanishes.
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By noting that ∇·B = 0 it is clear that the magnetic potential must satisfy
Laplace’s equation. We can use Laplace’s equation and equation (2.25) to show that

Φ′′
0(z) = −2

∂2Φ(0, z)

∂r2
, (2.27)

where the primes denote differentiation with respect to z. Therefore, we may rewrite
equation (2.25) in the form

Φ(r, z) = Φ0(z)−
r2

4
Φ′′

0(z) +O(r3). (2.28)

We shall now define the on-axis magnetic field-strength to be given by

B̃(z) = Φ′
0(z). (2.29)

By combining equations (2.23), (2.25) and (2.29) the following expression for the
square of the magnetic field may be obtained

B2(r, z) = B̃(z)2 +
r2

4
(B̃′(z)2 − 2B̃(z)B̃′′(z)) +O(r4). (2.30)

We shall now return to the necessary stability conditions given by equation (2.22).
Applying rotational symmetry, these equations may be expressed in terms of the
radial and vertical coordinates as

∂2B2(r)

∂r2
> 0,

∂2B2(r)

∂z2
> 0. (2.31)

Inserting (2.30) into the stability conditions we may express the stability conditions
in terms of the on axis magnetic field strength

Dv(z) ≡ B̃′(z)2 + B̃(z)B̃′′(z) > 0 (vertical stability)

Dh(z) ≡ B̃′(z)2 − 2B̃(z)B̃′(z) > 0 (horizontal stability)
(2.32)

It was demonstrated by Berry and Geim that these stability conditions are sat-
isfied in the bore of a solenoid magnet [4]. To show this we will consider a rota-
tionally symmetric solenoid of length L and radius a. We begin by defining the
non-dimensional aspect ratio, the ratio of the diameter of the solenoid to the length
of the solenoid

δ =
2a

L
, (2.33)

and non-dimensional coordinate
ζ =

z

L
. (2.34)

Using the Biot-Savart law an analytical expression for the on-axis magnetic field
strength may be obtained under the approximation that the coils of the solenoid are
infinitesimally thin

B̃(ζ) =
B0

2

√
1 + δ2

(
1 + 2ζ√

(1 + 2ζ)2 + δ2
+

1− 2ζ√
(1− 2ζ)2 + δ2

)
. (2.35)
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a) b)

Figure 2.1: a) Plot of the normalised on-axis magnetic field strength for aspect
ratio δ = 0.1. b) Plots of the stability conditions for the magnetic field presented in
a). The horizontal stability condition is displayed in blue and the vertical stability
condition is displayed in red. The stable zone where both Dh(ζ) > 0 and Dv(ζ) > 0
is indicated by the solid black line between 0.487 < ζ < 0.510.

Here, B0 is the magnetic field at z = 0 for a given fixed current through the solenoid.
Figure 2.1a shows a plot of the non-dimensional magnetic field strength against

vertical height and 2.1b shows a plot of the stability conditions for δ = 0.1. For
δ = 0.1 the stable zone is found to lie between 0.487 < ζ < 0.510 as indicated in plot
2.1b. It should be noted that the expression for the on-axis magnetic field (2.35)
is an even function, meaning both stability conditions Dv and Dh shown in figure
2.1b are also even, hence a second stable zone exists at −0.510 < ζ < −0.487. We
note stable zones are a necessary but not sufficient condition for stable levitation, as
discussed earlier.

For an object to be diamagnetically levitated there must exist an equilibrium
point satisfying equation (2.14) within one of the stability zones. As the location of
the stability zones are only dependent on the geometry of the solenoid and entirely
independent of B0, this can be achieved by adjusting the current in the solenoid, as
this scales the magnetic field strength whilst also preserving the geometry of the field
lines.
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a) b)

Figure 2.2: a) Plot of the normalised on-axis magnetic field strength for the Cryo-
genic Ltd magnet. b) Plots of the stability conditions for the magnetic field presented
in a). As in figure 2.1b, the horizontal stability condition is displayed in blue and the
vertical stability condition is displayed in red. The stable zone where both Dh(z) > 0
and Dv(z) > 0 is indicated by the solid black line between 0.0902 m< z < 0.115 m.

2.4 Cryogenic superconducting magnet

The experiments described throughout this thesis were performed using a custom-
designed superconducting magnet manufactured by Cryogenic Ltd. The magnet
has a bore diameter of 58 mm, a maximum field strength of 18.5 T and is able
to produce a maximum field gradient product (BdB/dz) of ±1640 T2m−1. The
magnet is constructed from three concentric solenoidal windings using a cyrogen free
design, meaning the solenoid coils are placed within a vacuum rather than being
in direct contact with coolants, such as liquid helium or liquid nitrogen. Although,
gaseous helium is still required to cool the system down to approximately 4 K, so the
coils remain below their superconducting transition temperature. The lengths of the
inner, central and outer coils are 21 cm, 20 cm and 18 cm respectively. The inner and
central windings are constructed from Nb3Sn and the outer winding is constructed
from NbTi, where all the coils are connected in series. To insulate the system from
external radiation a high purity aluminium radiation shield is situated around the
magnet.

12



Figure 2.3: Plot of the field gradient product as function of vertical distance from
the center of the solenoid for the cryogenic magnet. Regions in red denote the range
of values that lie within the stable levitation zones, denoting the range of values κ
may take.

2.5 Shape of magnetogravitational potential traps

The stable zone for the cryogenic magnet is 0.090 m< z < 0.115 m, as shown in
figure 2.2. As before, due to the symmetry of the magnetic field a second stable zone
also exists at -0.115 m< z < -0.090 m. Therefore, there exists a range of heights
at which objects may be stably levitated, but this is not the whole picture, as the
magnetogravitational potential around the stable levitation point varies depending
on the vertical location of the stable levitation point.

We shall define the non-dimensional magnetic field to given by

B̂(r) = B(r)/B0. (2.36)

This allows for equation (2.14) to be rewritten as

B̂(r′)∇′B̂(r′) = κẑ, (2.37)

κ ≡ µ0g∆ρL

∆χB2
0

,

where here length has been non-dimensionalised by L, the length of the inner coil,
i.e. z = z′L and r = r′L. Since the stability zones are only dependent on B̂(r), the
introduction of the constant κ gives a single non-dimensional parameter that defines
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the shape of the magnetogravitational potential for a given magnetic field geometry,
central field strength and physical characteristics of the fluid and levitated object.
Returning to cylindrical solenoids, equilibrium points may only lie on the central
axis of such solenoids due to their rotational symmetry, as previously mentioned in
section 2.3.2. Hence, equilibrium points for cylindrical solenoids satisfy the equation

B̂(0, z′)
dB̂(0, z′)

dz′
= κ, (2.38)

where it can be shown that

sgn

(
B̂(0, z′)

dB̂(0, z′)

dz′

)
= − sgn (z′) . (2.39)

For a stable equilibrium point z0, that lies within a stable zone, if z0 > 0, then κ < 0
and conversely if z0 < 0, then κ > 0. The sign of κ is entirely dependent on ∆ρ, since
it is a necessary condition for the existence of stable equilibrium points that ∆χ < 0
(see section 2.3.1). Therefore, only objects that are denser than the surrounding fluid
may stably levitate above the centre of the solenoid and only objects that are less
dense than the surrounding fluid they are suspended in may stably levitate below
the centre of the solenoid.

For the Cryogenic magnet, the range of values κ may take is −0.9584 < κ <
−0.7665 and 0.7665 < κ < 0.9584 respectively, see figure 2.3. Figures 2.4 and 2.5
display magnetogravitational contour plots for the Cryogenic magnet for these two
ranges of κ. From these two figures the height of stable levitation point is observed
to vary as a function of κ, but also the shape of the magnetogravitational potential
varies as a function of κ. It is clear by comparing figures 2.4 and 2.5 and observing
the symmetry across z = 0 in figure 2.3 that reversing the sign of κ has the effect of
reflecting the magnetogravitational across the z = 0 plane. So from now on we will
only refer to |κ| when discussing the magnetogravitational potential.

From the contour plots in figures 2.4 and 2.5 we can see that the spatial gradient
of the magnetogravitational potential and hence the restoring force on an object is
not equal in all directions. In figure 2.4f contours are wider in the radial direction
than in the vertical direction. Hence, the potential varies more slowly in the radial
direction in comparison to the vertical direction, so objects placed in the stable
levitation point feel a stronger restoring force if perturbed in the vertical direction
than if they were perturbed radially.

We shall refer to the shape of these contours around the stable levitation point
as the shape of the magnetogravitational potential trap. Figures 2.7 and 2.6 show
the magnetogravitational potential as a function of vertical and horizontal position
respectively, where we define u0 = u(0, 0, z0). These figures are to elucidate how
the depth of the magnetogravitational potential well, contour plots of which are
displayed in figure 2.4, varies as a function of |κ|. Initially, for |κ| = 0.945, the depth
of the potential well is very shallow in the vertical direction and much deeper in the
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horizontal direction, leading to a tear-drop shaped magnetogravitational potential
trap (see figure 2.4a). But as |κ| decreases, the depth of the potential well deepens
in the vertical direction but decreases in the horizontal direction. The potential well
also widens in the horizontal direction as |κ| decreases, leading to the shape of the
magnetogravitational potential trap taking a shape similar to that of a thin oblate
spheroid (see figure 2.4g–i).

In certain situations, such as when observing the surface oscillations of droplets or
bubbles, it is preferable to make the magnetogravitational potential trap as spher-
ical as possible. To analyse the sphericity of the trap it is helpful to express the
magnetogravitational potential in terms of a multipole expansion about the stable
equilibrium point, hence

u = u0 +
∑
n=0

∑
m=0

cn,m(r)Y
m
n (θ, ϕ), (2.40)

where we have used the spherical coordinate system (r, θ, ϕ) centered at the stable
equilibrium point and Y m

n (θ, ϕ) is a spherical harmonic of degree n and order m.
Owing to the cylindrical symmetry of the magnetogravitational potential, terms of
order m ̸= 0 vanish. Therefore we may express the magnetogravitational as a sum
of Legendre polynomials

u = u0 +
∑
n=0

cn(r)Pn(cos(θ)), (2.41)

where Pn(x) is a Legendre polynomial of order n and argument x. Here, as in the
rest of this thesis, we shall take axisymmetric spherical harmonics to be given by
Y 0
n (θ, ϕ) = Pn(cos(θ)), where Pn(1) = 1.
For a perfectly spherical magnetogravitational potential trap the coefficients cn(r) =

0 for n ̸= 0. Figure 2.8 displays these coefficients for the cryogenic magnet for the
magnetogravitational potentials displayed in figure 2.4. From these plots and figure
2.9 it can be seen that even degree coefficients, other than n = 0, vary more rapidly
as a function of |κ| than odd degree coefficients. From figure 2.9 it can be further
seen that the only terms that have coefficients that may be comparable or larger in
size to the monopole (n = 0) term are other even terms, but these terms can be min-
imised by adjusting |κ|. If even terms are minimised the next greatest contribution
comes from the octupole (n = 3) term, the magnitude of all other odd terms can
seen to be less than the octupole term. The contribution of the octupole term may
be minimised by adjusting |κ|, but this leads to increased contribution from the even
terms.

Hence, to increase the sphericity of the magnetogravitational trap we chose to
minimise the quadrupole (n = 2) term, which also leads to decreasing the contribu-
tion of all other even terms, but slightly increasing the contribution of all odd terms.
To do this we minimise the integral

I =

∫ R

0

|c2(r;κ)|dr. (2.42)
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It can be seen that limr→∞ |cn(r)| = ∞, hence I is unbounded in the limit R → ∞.
Therefore, we chose a range (0 → R) over which we wish to minimise the the
quadrupole contribution. From this operation we obtain a value of |κ| = 0.9387
for R = 25 mm for the cryogenic magnet. Figure 2.10 displays a contour plot of the
magnetogravitational potential and a plot of the multipole coefficients of the magne-
togravitational potential for this value of |κ|. Although the quadrupole coefficient is
not zero for the entire range of r = 0− 25 mm it is well approximated by c2(r) ≈ 0
in comparison to all other coefficients, see figure 2.10b.
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Figure 2.4: Contour plots of the magnetogravitational potential inside the bore of
the cryogenic magnet for κ < 0. a) κ = −0.945, b) κ = −0.924, c) κ = −0.903, d)
κ = −0.882, e) κ = −0.861, f) κ = −0.84, g) κ = −0.819, h) κ = −0.798 and i)
κ = −0.777
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Figure 2.5: Contour plots of the magnetogravitational potential inside the bore
of the cryogenic magnet for κ > 0. a) κ = 0.945, b) κ = 0.924, c) κ = 0.903, d)
κ = 0.882, e) κ = 0.861, f) κ = 0.84, g) κ = 0.819, h) κ = 0.798 and i) κ = 0.777
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Figure 2.6: Energy density as a function of vertical position. z0 is the vertical coordi-
nate of the stable equilibrium point and u0 is the corresponding magnetogravitational
potential at z0. a) κ = −0.945, b) κ = −0.924, c) κ = −0.903, d) κ = −0.882, e)
κ = −0.861, f) κ = −0.84, g) κ = −0.819, h) κ = −0.798 and i) κ = −0.777
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Figure 2.7: Energy density as a function of horizontal position. z0 is the vertical co-
ordinate of the stable equilibrium point and u0 is the corresponding magnetogravita-
tional potential at z0. a) κ = −0.945, b) κ = −0.924, c) κ = −0.903, d) κ = −0.882,
e) κ = −0.861, f) κ = −0.84, g) κ = −0.819, h) κ = −0.798 and i) κ = −0.777
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Figure 2.8: Coefficients of the multipole expansions of the magnetogravitational
potentials displayed in figure 2.4, for n =0–5. Blue lines indicate even coefficients
and red lines indicate odd coefficients. a) κ = −0.945, b) κ = −0.924, c) κ = −0.903,
d) κ = −0.882, e) κ = −0.861, f) κ = −0.84, g) κ = −0.819, h) κ = −0.798 and i)
κ = −0.777
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Figure 2.9: Absolute value of the multipole coefficients cn(r) evaluated at r = 20 mm
as a function of κ for the cryogenic magnet. Even coefficients are indicated in blue
and odd coefficients are indicated in red.

a) b)

Figure 2.10: a) Contour plot and b) coefficients of the multipole expansion for the
cryogenic magnet for κ = −0.9387. In b) blue lines indicate even coefficients and red
lines indicate odd coefficients.
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Chapter 3

Diamagnetic levitation of bubbles

Experimental studies on bubbles are encumbered by the basic problem that bubbles
rise due to their buoyancy. Bubbles can be trapped at a solid- or liquid-gas interface
but these methods inhibit the free movement of bubbles. It is possible to trap
and manipulate bubbles using optical tweezers [32], but so far it has only been
possible to trap a small number of bubbles with diameters on the order of micrometres
using this technique. Trapping of bubbles has also been achieved using ultrasonic
transducers [33], but due to the strong acoustic radiation force required to counteract
the buoyancy force, the shape of bubbles trapped in this way deform into oblate
spheroids. Also, due to the high-frequency acoustic waves required to trap bubbles
using this method, Faraday instabilities are observed at the surface of acoustically
trapped bubbles. Experiments in orbit or on parabolic flights allow the trapping and
manipulation of mm–cm sized bubbles but are costly and severely time-limited. Here
we present a new method for trapping and studying mm–cm diameter air bubbles in
water using diamagnetic levitation.

One of our main motivations for finding a new technique to stably trap bubbles
is to study the oscillations of bubbles. The stability of the oscillations of bubbles
undergoing radial oscillation is important in understanding the phenomenon of sono-
luminescence, placing an upper limit on the equilibrium size of bubbles that exhibit
this effect [34]. Additionally, exploiting bubble oscillations has shown an increased
efficiency in industrial processes requiring efficient mass transfer between bubbles of
a gas phase and a surrounding liquid. An example of such a process is in bioreactors
requiring aeration. Here, the mass transfer rate between the two phases is enhanced
considerably by shape oscillations of the bubbles [35], [36].

3.1 Stable diamagnetic levitation of room temper-

ature spherical bubbles

In chapter 2 we demonstrated that it is possible to stably levitate objects in a fluid
as long as the surrounding fluid is more paramagnetic than the object. We showed
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1 cm

Figure 3.1: Image of a 13.7 mm diameter air bubble levitating in an 0.11 mol L−1

aqueous manganese chloride solution in the bore of the Cryogenic magnet. The field
strength of the magnet at the centre of the solenoid was B0 = 14 T. The image was
taken looking down the bore of the magnet

this is true in the case for objects that are both more dense and less dense than the
surrounding fluid.

We are only aware of two previous experiments that use diamagnetic levitation
to stably levitate bubbles [37], [38]. In both cases, bubbles of gaseous oxygen are
levitated in liquid oxygen. Here, cryogenic temperatures are required to keep the
oxygen in the liquid phase. As well as this, bubbles in these experiments also expe-
rience demagnetization forces that are comparable in size to surface tension forces,
due to the presence of the strong magnetic field. This leads to the deformation of
the shape of the bubbles into ellipsoids.

For the Cryogenic Ltd. superconducting magnet used in experiments throughout
this thesis, it is possible to levitate objects as long as 0.7665 < |κ| < 0.9584 and
χ2 > χ1, where κ is as defined in section 2.5. Most materials found in nature are
diamagnetic, including water, therefore to make the surrounding fluid paramagnetic
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a paramagnetic salt may be added, e.g. salts formed from manganese, gadolinium
or chromium. By placing cylinders filled with aqueous solutions of 0.1− 0.2 mol L−1

manganese chloride in the bore of the Cryogenic magnet, we found we were able to
stably levitate air bubbles at a position ∼ 10 cm below the centre of the solenoid, at
a central field strength of B0 ≈ 10− 16 T.

Figure 3.1 shows an image of an air bubble stably levitating in an aqueous man-
ganese chloride solution in the bore of the Cryogenic magnet. In our experiments,
demagnetisation effects were never observed as demagnetisation forces are many
orders of magnitude weaker than any other forces experienced by the bubbles. Al-
though bubbles experience a weak restoring force due to the magnetogravitational
potential trap (equivalent to ∼ 0.1 g) this force is several orders of magnitude weaker
than surface tension forces felt by the levitated bubbles, hence all bubbles attained
a spherical shape when levitated in this manner.

3.2 Experimental set-up

Here we present the experimental set-up used to conduct experiments on diamag-
netically levitated air bubbles discussed throughout this thesis.

We used a 1 litre cylindrical tank of diameter 57 mm filled with an aqueous
manganese chloride solution, which was fitted in the bore of the Cryogenic magnet
as shown in figure 3.2. The top and bottom of the tank were constructed from
clear plastic to allow experiments to be both illuminated and visualised. Bubbles
were injected into the stable levitation point from an L-shaped tube connected to an
air-filled syringe. By positioning the tip of the L-shaped tube at different positions
within the bore we were able to generate bubbles of radii of approximately 1–8 mm.
It was found that if the position of the tube was kept stationary and the flow rate
of air through the syringe was small enough (less than some critical flow rate), we
could consistently produce multiple bubbles of equal radius (within experimental
error). This is due to the fact that at vanishingly small flow rates the volume at
which a bubble detaches from a needle is given by the point at which surface tension
forces holding the bubble to the needle and bouyancy forces on the bubble are equal
[39]–[41]. Therefore, as effective buoyancy forces on a bubble vary as a function of
position in the magnet, we were able to vary the size of bubbles relative to each other
by moving the tip of the L-shaped tube towards and away from the stable levitation
point.

Experiments were illuminated by a 0.4 W white LED which was placed under the
tank. A 45-degree angled mirror was placed above the tank allowing experiments
to be imaged. Two convex lenses, of focal length 40 cm, arranged in a refracting
telescope layout were placed between the mirror and any camera being used. This
optical set-up allowed for cameras to be placed away from the strong magnetic fields
generated by the cryogenic magnet, as well as increasing the resolution of images we
were able to record.
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Magnet

LED light source

Camera Mirror

z = 0

Figure 3.2: Schematic of experimental set-up used to diamagnetically levitate bub-
bles. Aspect ratio and dimensions of superconducting magnet are not to scale.
Dashed lines are representative of the magnetic field lines inside the magnet bore.

3.3 Bubble coalescence experiments

In this section, we describe experiments used to study nonlinear surface oscillations
of bubbles, the results of which we present in chapter 4.

To produce surface oscillations, we begin by levitating two air bubbles in hy-
drostatic equilibrium side-by-side. These bubbles then coalesce to produce a single
levitating bubble, and we study the resulting shape oscillations. We consider two
cases: a symmetric case, where the radii of the initial ‘parent’ bubbles are equal,
within experimental uncertainty, and an asymmetric case, where the radii of the
parent bubbles differ by a factor of 1.5.

We used the Cryogenic magnet to levitate air bubbles in a weakly paramagnetic
aqueous solution of manganese chloride (0.18 mol L−1, χ2 = 2.5× 10−5). The central
field strength of the magnet was set to B0 = 10.7 T at the centre of the solenoid. The
stable levitation point of the bubbles was approximately 97 mm below the centre of
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Figure 3.3: Images of the initial state of the parent bubbles, i.e. before coalescence,
are shown for a) the symmetric case and b) the asymmetric case.

Case Radius 1 (mm) Radius 2 (mm) Ratio of radii ρ2 (kgm−3) γ (mNm−1) µ (Pa s−1)
symmetric 2.31±0.03 2.31±0.03 1.00±0.03 1017±1 68±1 ∗0.89× 10−3

asymmetric 1.60±0.02 2.46±0.02 1.54±0.03 1017±1 70±1 ∗0.89× 10−3

Table 3.1: Physical parameters of the fluids used in each series of experiments. *
denotes values taken from Huber et al. [43]; we have assumed that the viscosity of
our fluid is equal to that of water at room temperature, as the low concentration of
manganese chloride in the solution is assumed to have a negligible effect.

the solenoid.
Using an L-shaped tube we injected two parent bubbles into the stable levitation

point. We observed that the parent bubbles remained at rest (i.e. in hydrostatic equi-
librium) for 3–4 seconds before the onset of coalescence. Experiments were recorded
using a high-speed camera (Phantom Miro M340). A frame rate of up to 5000 frames
per second was used with a resolution varying from 20 – 30 µm per pixel.

Figure 3.3a & 3.3b show the initial condition for each of the two cases we con-
sidered in this study. The radii of each of the initial bubbles, as well as the physical
properties of the surrounding fluid are given in table 3.1. The surface tension was
calculated from measurements of the oscillation frequency of the n = 2 mode of the
bubbles as the amplitude of oscillations tended to zero. Density was measured using
a volumetric flask and is in agreement with the empirical formula of Novotny and
Sohnel [42].
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r(ϑ, t)

Figure 3.4: Diagram illustrating the coordinate system used in decomposition of
the interface. The origin is taken to be at the centre of mass of the bubble system.

3.3.1 Image processing and analysis

The data taken in experiments was in the form of black-and-white high-speed videos.
Radii of the parent bubbles before coalescence were calculated using a Hough trans-
form on the initial frames of the videos before coalescence proceeded [44]. This gave
an error of one pixel per diameter due to the highly spherical nature of the bubbles.

For each video frame we extracted the surface profile of the bubble using the
Sobel edge detection method [45]. The extracted curve was then split in half down
the symmetry axis and its coordinates, representing the pixel values of the surface,
were converted into polar coordinates. The surface contour of the bubble, r(ϑ, t),
was measured from the origin at the bubble’s centre of mass, where ϑ is the polar
angle measured from the horizontal x-axis, i.e. along the axis joining the centres of
the original two parent bubbles (figure 3.4). To remove random fluctuations due to
the pixelation of the experimental images a 20th degree polynomial was fitted to r
as a function of cosϑ. This requires r(ϑ, t) to be single valued for all ϑ, which is true
except for very early times after coalescence and for a brief period during pinch-off
of a small satellite bubble early in the coalescence. We then decomposed r(ϑ, t) as a
series of spherical surface harmonics r(ϑ, t) =

∑
n=0 Sn(ϑ, t). Since the coalescence

is axisymmetric about the horizontal x axis there are no contributions from tesseral
or sectoral harmonics, the surface harmonics may be written purely in terms of the
zonal harmonics Sn(ϑ, t) = An(t)Pn(ϑ).

To estimate the error of the amplitude of the zonal harmonics we applied the
method described above to the functions

f2(θ) =
1

N̄
(1 + 0.6 cos(2θ)) , (3.1)

and

f3(θ) =
1

N̄
(1 + 0.3 cos(3θ)) , (3.2)
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Figure 3.5: Plots of the deviation of non-dimensional amplitude as a function of
non-dimensional length per pixel. Values for modes n =0–6 are shown. An image
showing the surface being decomposed into Legendre polynomials is displayed in each
figure. Here the dashed line is the symmetry axis through the centre of the shape.

where N̄ is a normalisation factor, such that that volume created by integrating the
functions as solids of revolution is equal to V = 4/3π, hence 3

√
3V/4π = 1. These

functions were chosen as they are representative of the surface contours observed
in experiment. To quantify the error, we compared the amplitudes to discretised
versions of the same functions at different non-dimensional resolutions. The func-
tions were discretised into 3000 points and to simulate the effect of different camera
resolutions the horizontal and vertical coordinates of these points were then rounded
each to the closest integer number of pixels for a given resolution; i.e. if a point had a
vertical coordinate of 0.76 and we were analysing a resolution of 0.1 this point would
be rounded to 0.8. We calculated the resolution as non-dimensional length per pixel
as this allowed for direct comparison with experiment where this value is simply the
resolution divided by the radius of the bubble at rest, hence why the functions were
normalised to have a volume of 4π/3.

Plots of the deviation of non-dimensional amplitude of modes n = 0 − 6 as a
function of non-dimensional length per pixel are shown in figure 3.5. Only even modes
are displayed in figure 3.5a due to the symmetric nature of the function leading to
odd modes having zero amplitude. It can be seen from both plots that as resolution
decreases the error in the amplitudes decreases to zero, as is expected. Also, in both
cases, for a given resolution, the higher the degree of the mode the greater the error
on average. For the experiments analysed here, the non-dimensional resolution is
0.0091 in the symmetric case and 0.008 in the asymmetric case. Hence, figure 3.5
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suggests that the error in non-dimensional amplitude calculated from experiment is
at maximum 5× 10−4 for modes n =0–4 and 9× 10−4 for modes n =5–6.
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Chapter 4

Nonlinear surface oscillations of
bubbles

In this chapter and in Hunter-Brown et al. [46], we report on the nonlinear surface
oscillations of bubbles. We discuss experiments in which we use bubble coalescence
to introduce large axisymmetric perturbations which lead to large amplitude surface
oscillations. These experiments are then compared with numerical simulations and
the theoretical model of Tsamopoulos and Brown [5]. For both experiment and sim-
ulation, we decompose the surface of the bubbles into spherical harmonics to analyse
the frequency of different shape modes as a function of amplitude and to analyse
the mode coupling between different spherical harmonics. Good agreement is found
between experiment, numerical simulation, and the analytical model of Tsamopou-
los and Brown [5] when the amplitude of a single surface mode is dominant, but
when several surface modes are oscillating with moderate or large amplitudes, poor
agreement between the model and what is observed in experiment and simulation is
seen.

4.1 Theoretical models for the surface oscillations

of bubbles

When the surface of a bubble of gas surrounded by a liquid is perturbed from its
equilibrium shape the increase in surface energy of the system, owing to the surface
tension, causes the bubble to oscillate. The first mathematical model for the shape
oscillations of bubbles was presented by Lamb [47]. Lamb considered the case of a
spherical volume of inviscid incompressible fluid immersed in a second similar fluid in
the absence of gravity, and used linear stability analysis to find the frequencies of the
normal modes of the shape oscillations. By decomposing the interface between the
fluids into spherical harmonics, Lamb found that each spherical harmonic oscillated
at an eigenfrequency dependent on the coefficient of surface tension, γ, the density of
the inner and outer fluids, ρ1 and ρ2 respectively, the radius of the bubble at rest, R,
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and the degree of the spherical harmonic, n. If the density of the surrounding fluid is
taken to be negligible in comparison to the density of the inner fluid, the earlier result
derived by Rayleigh [48] for the oscillation frequencies of a liquid droplet is recovered,
whereas if the density of the inner fluid is taken to be negligible in comparison to the
density of the surrounding fluid, the oscillation frequencies of a gas bubble in liquid
are found,

ω(0)
n =

1

τ

√
(n2 − 1)(n+ 2), (4.1)

where τ =
√

ρ2R3

γ
is the capillary time and the superscript (0) denotes the leading

order approximation to the oscillation frequency in the limit of vanishingly-small
perturbations to the bubble surface.

By considering the velocity fields found for the linear oscillations of inviscid fluids,
Lamb [47] was able to estimate the viscous damping for the amplitude of each shape
mode in the limit of high Reynolds number. Lamb found that damping for each
shape mode was proportional to e−αnt, where the rate of viscous dissipation was

αn =
µ

ρ2R2
(2n+ 1)(n+ 2), (4.2)

where µ is the dynamic viscosity of the surrounding fluid.
Miller and Scriven [49] extended the work of Lamb by considering the case of

two viscous incompressible fluids. Transcendental equations were derived for the full
viscous solutions; the results of Lamb [47] are obtained in the limit of low viscosity.
Prosperetti [50] considered the initial value problem of a slightly perturbed, spherical,
incompressible viscous fluid immersed in a second incompressible viscous fluid. After
an initial period the damping rate and oscillation frequency approaches the steady
state solutions found by Miller and Scriven [49].

The first study to consider moderate amplitude oscillations was carried out by
Tsamopoulos and Brown [5] (herein referred to as T&B) using the Poincaré-Lindstedt
method [51] to calculate second order corrections for the velocity potential, shape
functions, and eigenfrequencies of individual axisymmetric modes of inviscid, incom-
pressible bubbles and droplets.

The dimensionless surface shape was found to be of the form

F (θ, t; ε) =
∞∑
k=0

εk

k!
F (k)(θ, t) =

∞∑
k=0

εk

k!

dk

dεk
F (θ, t; 0)

= 1 + εPn(θ) cos(ωnt) +
ε2

2

n∑
k=0

ckP2k(θ)(cos(2ωnt) + dk) +O(ε3), (4.3)

where here θ is the polar angle, Pn is a Legendre polynomial of degree n and argument
cos(θ), ε is the amplitude of a given mode as a fraction of the radius of the bubble at
rest, ck and dk are coefficients determined by T&B; ωn is the frequency of oscillation
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of mode n given by

ωn = ω(0)
n − ω

(2)
n

2
ε2 +O(ε4), (4.4)

where ω
(2)
n is the second order frequency coefficient determined by T&B. In contrast

to the linear approximation of Lamb [47], where shape functions are given by a single
spherical surface harmonic, the second order shape function terms add additional
even-degree spherical harmonics, up to twice the order of the linear term. These
second order terms oscillate at twice the frequency of the linear term. Revised values
for the second order frequency coefficient ω

(2)
n were published by Tsamopoulos [52],

[53]. Further corrections up to third order have been calculated by M. M. Scase and
may be found in the appendices of Hunter-Brown et al. [46].

A shift to lower frequency of the n = 2 mode of liquid drops with increasing
amplitude was observed by Wang et al. [54], who conducted experiments on droplets
in microgravity, creating large initial perturbations using an acoustic trap, and by
Becker et al. [55] who studied the large amplitude oscillations of free-falling ethanol
droplets. Both observed the change in frequency as a function of amplitude to be in
good agreement with the predictions of T&B. Trinh et al. [33] observed the moder-
ate amplitude oscillations of acoustically-trapped silicone oil droplets in water. On
experiments on droplets driven into n = 2 shape oscillations, the authors mention
that they observed the excitation of the n = 4 surface harmonic at a frequency ap-
proximately twice that of ω

(0)
2 , consistent with T&B’s prediction. In addition, they

performed experiments on acoustically-trapped air bubbles in water: experiments
studying free decay of oscillations found evidence for coupling between modes, but
the data does not show quantitative agreement with the result obtained by T&B.
One reason for this may be the influence of the method of levitation in these ex-
periments, which distorts the equilibrium shape of drops and bubbles into oblate
spheroids. Kornek et al. [56] studied the large amplitude oscillations of thin-film
soap bubbles and found a quadratic relationship between frequency and amplitude
for surface oscillations, and coupling between the 2nd and 4th degree shape modes.
They measured the shift in frequency of the oscillations of each surface harmonic as
a function of their amplitude and compared with the second order frequency coeffi-
cients, ω

(2)
n , calculated by T&B. In the case where large amplitude mode 2 oscillations

were excited, ω
(2)
2 was found to be approximately 10% greater than value predicted

by T&B, but in the case that both large amplitude mode 2 and 3 oscillations were
excited, ω

(2)
2 was found to be up to 60% greater and ω

(2)
3 was found to be more than

three times the value of T&B.

4.2 Influence of the magnetogravitational trap on

surface oscillations

The restoring forces that stabilise the levitation of a droplet or bubble acts as an
additional cohesive force, giving rise to a relatively small increase in the frequencies

33



of their shape oscillations [13], [57]. Hill and Eaves [13] calculated the shift to higher
frequency of the linear modes of a diamagnetically levitated spherical water droplet
in air. Here, we calculate the frequency shift in the linear modes for the more general
case of a levitated spherical fluid droplet (bubble) of density ρ1 immersed in a fluid
of density ρ2. Using this analysis, we show that in our experiments the restoring
forces that stabilise the levitation of the bubbles are relatively weak compared to
surface tension, therefore we expect the effect of the trap to have a negligible effect
on oscillation frequencies.

Neglecting viscosity, the governing equations in each fluid layer are given by the
incompressible Euler equations

ρj
Duj

Dt
= −∇pj + f j, (4.5a)

∇ · uj = 0, (4.5b)

for j = 1, 2 corresponding to the inner and outer fluid layers respectively, where
f j is the body force felt by the fluids. We shall only consider conservative body
forces, hence the body force may be expressed as the gradient of some potential,
f j = −∇ψj. Here we use the symbol ψ to denote potential energy rather than u to
avoid confusion between the potential energy and the fluid velocity. Therefore, we
may rewrite equation (4.5a) as

ρj
Duj

Dt
= −∇ [pj + ψj] . (4.6)

By assuming our velocity fields may be expressed as the gradient of velocity
potentials uj = ∇φj, we find from equation (4.5b) that these velocity potentials must
satisfy Laplace’s equation. Working in spherical coordinates (r, θ, ϕ), the solution to
Laplace’s equation is given by

φj =
[
aj(t)r

n + bj(t)r
−(n+1)

]
Y m
n (θ, ϕ), (4.7)

where Y m
n (θ, ϕ) is a spherical harmonic of degree n and order m. It is a requirement

that the velocity in each fluid layer is finite, hence b1(t) = 0 and a2(t) = 0.
To look for linear perturbation solutions of the equations of motion (4.6), asymp-

totic expansions of the velocity field, pressure field and potential are made by ex-
panding in the small parameter ε, such that

uj = u∗
j + εU j +O(ε2), (4.8a)

pj = p∗j + εPj +O(ε2), (4.8b)

ψj = ψ∗
j + εΨj +O(ε2), (4.8c)

where ε is defined to be the initial amplitude of perturbations made to the interface
of the droplet and satisfies the condition ε≪ R, where R is the radius of the droplet
at rest. It is noted that the fluid is perturbed from an initially hydrostatic state,
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therefore u∗
j = 0. Noting this and inserting the conditions (4.8) into equation (4.5a)

and ignoring all terms of order ε and higher allows for a relationship between the
leading order potential and leading order pressure field to be obtained

p∗j = −ψ∗
j + Cj, (4.9)

where Cj is a constant of integration. Carrying out the same procedure but only
retaining leading and first order terms we obtain the first order equation of motion

ρj
∂U j

∂t
= −∇ [Pj +Ψj] . (4.10)

This equation may be integrated to obtain

ρj
∂φj

∂t
+ Pj +Ψj = h(t), (4.11)

where h(t) is some constant of integration we set equal to zero without loss of gen-
erality.

We make the ansatz that the interface between the two fluids is

S := r −
{
R + εY m

n (θ, ϕ)eiωt +O
(
ε2
)}

= 0, (4.12)

where it is assumed that the interface is constructed from spherical harmonics, each
of which is undergoing periodic oscillations at an angular frequency ω dependent on
the order and degree of the spherical harmonic. For clarity, we define the spherical
harmonics used here to be

Y m
n (θ, ϕ) = Pm

n (cos(θ))eimϕ, (4.13)

where Pm
n (cos(θ)) are the associated Legendre polynomials

Pm
n (x) = (−1)m(1− x2)m/2 d

m

dxm
Pn(x), (4.14)

and Pn(x) are Legendre polynomials of order n and argument x, where for m < 0

P−m
n (x) = (−1)m

(l −m)!

(l +m)!
Pm
n (x). (4.15)

We shall now apply the kinematic condition on the interface

DS

Dt

∣∣∣∣
S

= 0, (4.16)

which enforces that the fluid at the interface moves with the interface. This leads to(
∂φj

∂r
− iωY m

n (θ, ϕ)eiωt
)∣∣∣∣

S

= 0, (4.17)
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which when solved for in each fluid layer results in an expression for the coefficients

a1(t) =
iω

nRn−1
eiωt, (4.18a)

b2(t) = − iω

(n+ 1)R−(n+2)
eiωt. (4.18b)

Substituting these coefficients into equation (4.7), gives an expression for the velocity
potential in each fluid layer, which then can be substituted into equation (4.11) giving
expressions for the first order pressure field in each fluid layer

P1 =
ρ1ω

2R

n

( r
R

)n
Y m
n (θ, ϕ)eiωt −Ψ1, (4.19a)

P2 = − ρ2ω
2R

(n+ 1)

( r
R

)−(n+1)

Y m
n (θ, ϕ)eiωt −Ψ2. (4.19b)

We shall now enforce continuity of stress at the interface, which is given by the
expression

[−pj]+− = γκ̃. (4.20)

Here, γ is the coefficient of surface tension, κ̃ is the curvature of the interface and
[·]+− denotes the jump in a quantity from the outer fluid to the inner fluid across the
interface S . The curvature of the interface is given by

κ̃ = ∇ · n̂, (4.21)

where n̂, the normal to the interface, is

n̂ =
∇S

|∇S |
. (4.22)

Therefore, by evaluating equation (4.21) and neglecting second-order terms and
higher the curvature of the interface is found to be

κ̃ =
2

R
+ ε

(n− 1)(n+ 2)

R2
Y m
n (θ, ϕ)eiωt +O(ε2). (4.23)

Evaluating equation (4.20) and retaining only leading order terms gives the expres-
sion

C1 − C2 − (ψ∗
1 − ψ∗

2)|S =
2γ

R
. (4.24)

Similarly, evaluating (4.20) and only retaining leading order and first order terms
gives the expression(

ρ1ω
2R

n
+
ρ2ω

2R

(n+ 1)
− γ(n− 1)(n+ 2)

R2

)
Y m
n (θ, ϕ)eiωt = (Ψ1 −Ψ2)|S . (4.25)

We will now consider the effect of the magnetic field on the fluids. The volume
magnetic susceptibility in each fluid layer is given by χj, where in both layers we
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suppose that |χj| ≪ 1, as in our experiments the volume magnetic susceptibility
in each layer is of order 10−5 or less. We take ẑ to be a unit vector in the vertical
direction and z to be the spatial coordinate in the vertical direction, such that gravity,
g, acts in the negative z-direction. The magnetic force per unit volume fmj in each
fluid layer subjected to a magnetic field of strength B = |B|, which to a good
approximation is given by [4]

fmj =
χj

2µ0

∇B2. (4.26)

Therefore accounting for gravity, the body force per unit volume acting on each fluid
layer is

f j =
χj

2µ0

∇B2 − ρjgẑ, (4.27)

It then follows that the magnetogravitational potential energy density ψj is

ψj = ρjgz −
χjB

2

2µ0

. (4.28)

We expand ψ1 − ψ2 about around the stable levitation point using the multipole
expansion, as show in chapter 2.5, hence

ψ1 − ψ2 =
∑
i

ci(r)Y
0
i (θ, ϕ), (4.29)

where, here, the polar angle θ is measured from the solenoid (z) axis; we have
disregarded all terms m ̸= 0 due to the rotational symmetry of the magnetic field
about the z-axis. From now on we shall drop the summation sign for clarity. Taylor
expanding (4.29) about R we find

ψ1 − ψ2 =

[
ci(R) + c′i(R)(r −R) +

c′′i (R)

2
(r −R)2 + · · ·

]
Y 0
i (θ, ϕ), (4.30)

where the prime denotes differentiation with respect to r. Finally, evaluating this
expression at the interface S , we obtain the expression

(ψ1 − ψ2)|S =
[
ci(R) + εc′i(R)Y

m
n (θ, ϕ)eiωt

]
Y 0
i (θ, ϕ) +O(ε2). (4.31)

We show below that, provided the droplet/bubble is only a few mm in diameter, the
magnetogravitational trap in our experiments is well-approximated by a spherically
symmetric parabolic potential well. Under the assumption that the magnetogravi-
tational trap is spherically symmetric, i.e. that ci(R) = 0 for i ̸= 0, then

(ψ1 − ψ2)|S = c0(R) + εc′0(R)Y
m
n (θ, ϕ)eiωt +O(ε2), (4.32)

where it should be noted Y 0
0 (θ, ϕ) = 1. Substituting this into equation (4.24) and

(4.25) allows us to obtain the dispersion relation

ω2 = ω2
γ +∆ω2, (4.33a)
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where

ω2
γ =

γ

R3

(n− 1)n(n+ 1)(n+ 2)

ρ1(n+ 1) + ρ2n
, (4.33b)

∆ω2 =
n(n+ 1)c′0(R)

R(ρ1(n+ 1) + ρ2n)
. (4.33c)

From this analysis it can be seen that the effect of the magnetogravitational trap
is to always increase the oscillation frequency of any given mode. Although ∆ω2

increases with n, the fractional change ∆ω2/ω2
γ decreases with increasing n.

In the absence of the magnetogravitational potential, the dispersion relation for
an inviscid spherical droplet suspended in a second inviscid fluid derived by Lamb [47]
is recovered: ω = ωγ. In the limit that the density of the inner fluid is much greater
than the density of the outer fluid, ρ1 ≫ ρ2, the dispersion relation derived by Hill
and Eaves [13] for a spherical droplet oscillating in a spherical magnetogravitational
potential is recovered. Finally, in the limit that the density of the outer fluid is
much greater than the density of the inner fluid, ρ2 ≫ ρ1, the dispersion relation
for a spherical bubble oscillating with small amplitude in a spherically-symmetric
magnetogravitational potential is found

ω2 =
γ(n− 1)(n+ 1)(n+ 2)

ρ2R3
+

(n+ 1)c′0(R)

ρ2R
. (4.34)

We now obtain an estimate of the expected effect of the trap on ω in our ex-
periments. Figure 4.1 displays a plot of the coefficients c′i(r) (i = 0, . . . , 5), for the
magnetogravitational potential in our experiments, where κ = 0.937 (see section 2.5).
The radii of the final bubbles, formed from the coalescence of the two parent bubbles,
lie in the range 2.5 mm to 3.0 mm in these experiments. Table 4.1 displays values for
the coefficients c′i(r) for i = 0−5, for radii r = 2.91 mm and r = 2.67 mm, which cor-
respond to the two cases studied in our experiments, the symmetric and asymmetric
cases, respectively. The expansion shows that the shape of the trap is dominated
by a parabolic spherically symmetric component, represented by c′0(r) = kr. The
next largest component after c′0(r) is c

′
3(r), which represents an octupole component.

Whereas the octupole component is an inherent feature of the trap, the quadrupole
(oblate/prolate) component, represented by c′2(r), can be tuned by adjusting the
strength of the magnetic field. In these experiments, we adjusted the magnetic field
strength to minimise c′2(r). If we now neglect the dipole and octupole components
of the trap in order to obtain an estimate for the shift in ω, according to (4.34),
we obtain the plot shown in figure 4.2 for bubbles of radius R = 2.67 mm and
R = 2.91 mm. From this plot it is clear that the influence of such a trap leads to
a no more than ∼0.2% increase in the oscillation frequency of the linear modes of
bubbles of this size. Given such a small change in the linear mode frequencies, we
expect that the effect on the frequencies of oscillations of moderate amplitude will
also be similarly small.
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Figure 4.1: First derivatives of the multipole expansion coefficients calculated from
the magnetogravitational potential. The physical constants used to calculate the
magnetogravitational potential are χ1 = 5.1×10−7, χ2 = 2.50×10−5, ρ1 = 1.6 kgm−3

and ρ2 = 1017 kgm−3. Here, κ = 0.937 (see section 2.5).

R (mm) c′0(r) c′1(r) c′2(r) c′3(r) c′4(r) c′5(r)
2.67 129.3 15.5 -2.7 20.4 1.4 -13.5
2.91 140.9 18.5 -3.0 24.2 1.7 -16.1

Table 4.1: Values of the coefficients c′i(r) shown in figure 4.1 evaluated at two
different radii, corresponding to the radii of the final bubbles, at rest, formed from
the coalescence of the two parent bubbles in the experiments: asymmetric case, first
row; symmetric case, second row.
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Figure 4.2: Shift in frequency due to the magnetogravitational trap, for modes n =
2–8 for both symmetric and asymmetric cases.

4.3 Computational fluid dynamic simulations

This section explains the numerical framework we used to model the coalescence of
bubbles using the open-source software Basilisk [58]. An introduction to the code
base and a large number of test cases are helpfully provided on the Basilisk web-
site[58]. Of particular interest to anyone trying to recreate the numerical simulations
presented in this chapter are the test cases rising and oscillation, the latter of which
is discussed in further detail in Popinet [59].

4.3.1 Governing equations of motion

For incompressible flows, the equations of motion are given by the Navier-Stokes
equations

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ · (2µD) + f γ, (4.35a)

∇ · u = 0. (4.35b)

Equation (4.35a) denotes the momentum balance in the fluids, where the left hand
side of the equation represents momentum advection and the right hand side is de-
pendent on pressure p, the strain-rate tensorD , which is equivalent to the symmetric
part of the velocity gradient tensor

(
D = (∇u+∇uT)/2

)
and surface tension forces

f γ, represented here by a body force only present at the interface of the fluids.
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Here, we have ignored forces due to the effect of gravity and strong magnetic fields.
In experiment, diamagnetic levitation is used to create a weightless environment in
which we levitate the bubbles and we assume the magnetic trap to have a negligible
effect on the oscillation frequency of bubbles, which is justified by the analysis carried
out in section 4.2.

We performed direct numerical simulation of the incompressible Navier-Stokes
equations using the open source software Basilisk [58]–[60], which implements the
one-fluid approximation utilising the volume of fluid (VOF) method for interface
tracking [61]. To allow for the efficient computation of multiphase flows, the VOF
method uses a “colour” function C, which may only take values in the range 0 − 1.
Here, values of C = 0 denote positions where only manganese chloride solution is
present and values of C = 1 denote positions where only air is present. Therefore
C colours the regions occupied by each fluid, were discontinuities in C mark the
interface between the two fluids. We may express the physical properties (density
and viscosity) of the fluids as a function of C

ρ = Cρ1 + (1− C)ρ2, (4.36a)

µ = Cµ1 + (1− C)µ2, (4.36b)

where subscripts 1 and 2 denote the inner and outer fluids (air and manganese
chloride solution), respectively. As the motion of the fluids develops in time it can
be shown that the motion of the colour function must satisfy the following advection
equation [62]

∂C
∂t

+ u · ∇C = 0. (4.37)

Surface tension forces are introduced into our system through the term

f γ = γκ̃δsn̂, (4.38)

where κ̃ is the local curvature of the fluid-fluid interface which is calculated using
the height-function method [59], n̂ is the normal vector to the interface and δs is the
Dirac-delta function, which is only non-zero on the interface. In the VOF method it
can be shown that the r.h.s. of equation (4.38) is well approximated by [63]

f γ ≈ γκ̃∇C. (4.39)

4.3.2 Numerical domain

An axisymmetric domain was used to reduce computational cost. The simulated
domain is the meridional plane, taken to be a square with side lengths 12 times that
of the radius of the smallest bubble before coalescence. This relatively large domain
volume was used to minimise wall effects on the simulation. A quad/octree dynamic
adaptive mesh refinement scheme [59] was used to increase mesh resolution at the
liquid-gas interface and in areas of relatively large velocity, down to a minimum
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Figure 4.3: A section of the mesh used in the simulation of the asymmetric case.
The inset shows an enlarged view of the highlighted section. The white line marks
the interface of the bubble. This plot was obtained from the output of the simulation
at time t = 0.01τ .

cell side length of 0.0059Rs, where Rs is the radius of the smallest of the two parent
bubbles before coalescence. Grid adaption is based on minimizing the error estimated
using a wavelet algorithm [60]. Such high resolution was required to accurately model
the capillary-driven flows, particularly in the region of the neck between the original
two parent bubbles. An example of one of the meshes used is shown in figure 4.3.

4.3.3 Numerical initiation of coalescence event

In the work reported here, numerical simulations have been used to simulate the
coalescence of air bubbles in an aqueous manganese chloride solution. It was neces-
sary to decide how to initiate the coalescence event in simulations. In experiment,
it is assumed that once a pair of bubbles make contact there exists a thin film of
liquid between the bubbles. It was observed that coalescence events occurred in ex-
periments approximately 3–4 seconds after bubbles had come into contact with each
other. Therefore, it was assumed that coalescence occurs after the thin film between
the bubbles managed to drain away and eventually rupture allowing air in each bub-
ble to freely flow between each other. To replicate this in simulation, a small neck of
height Rs/8 was initialised to connect the bubbles. Various neck heights were tested
for the case of initially equal-sized bubbles. We found for neck heights less than Rs/6
that there was no variation in the simulations for the minimum mesh resolution used
in our investigation. A neck of height Rs/8 was chosen as it reduced the additional
volume of air added to the simulation to create the neck to be less than 0.005% of
the total volume of air.
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4.3.4 Evaluation of surface profiles

Here we explain the methodology used to extract the surface profiles of bubbles from
simulations, and the post-processing performed to compare the results of T&B.

The surface profile of a bubble at a given time step was determined by extracting
contours along C = 0.5. Once the surface profile was determined surface harmonics
were obtained from simulations in a similar manner as in experiment (see chapter
3.3.1), by decomposing the surface contour, r(ϑ, t), into a series of Legendre polyno-
mials r(ϑ, t) =

∑
n=0An(t)Pn(ϑ), at intervals of t = 0.01τ .

4.4 Results

Except where stated otherwise, lengths and times are given in units of the radius of

the final bubble at rest, R, and the capillary time, τ =
√

ρ2R3

γ
, respectively; angular

frequencies are given in units 1/τ .
A series of images showing the oscillations of a bubble formed from the coales-

cence of two equal-sized parent bubbles (symmetric case) is shown in figure 4.4 and
a second series of images showing the oscillations of a bubble formed from the coa-
lescence of two unequal-sized parent bubbles with radii in the ratio approximately
2:3 (asymmetric case) is shown in figure 4.5. In both cases, the parent bubbles were
observed to remain at rest for a short time after their injection into the liquid, as
the fluid drained from the small gap between them, before they coalesced. Once
started, coalescence proceeded with the rapid growth of a neck generating axisym-
metric capillary waves that travelled around each bubble away from the neck towards
the apexes of the parent bubbles, as has been observed previously [64], [65]. The cap-
illary waves formed protrusions at the apexes which then pinched off to form small
satellite bubbles in both cases. After these ejection events, the bubble formed from
the coalescence continued to oscillate. The amplitude of these oscillations decayed
with time due to viscous dissipation. From the images, one can discern a contribu-
tion from several surface harmonics, in both symmetric and asymmetric cases. The
modes of higher degree damp more quickly, with only mode 2 clearly visible in the
final images of figure 4.4 (symmetric case) and modes 2 and 3 visible in the final
images of figure 4.5 (asymmetric case).

4.4.1 Satellite bubble ejection

Protrusions form at the apexes of the parent bubbles during coalescence due to
capillary waves propagating around the surface of the bubbles. Successive waves
reach the apexes of the parent bubbles leading to these protrusions pinching off to
form satellite bubbles [64], [66]. In both the symmetric and asymmetric case, we
observe the ejection of satellite bubbles during the initial coalescence.

In the symmetric case, we observe the simultaneous ejection of two satellite bub-
bles at time t = 0.57τ , see figure 4.6a,b. The ejected satellite bubbles are found to
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Figure 4.4: Series of images showing the coalescence of two diamagnetically-levitated air
bubbles in water. The ratio of the radii of the bubbles before coalescence is equal (within
experimental error). The first frame shows the stationary pair of bubbles immediately
before coalescence. Time increases from left to right and from top to bottom, with an
interval between each frame of 6.8 ms/0.35τ .
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Figure 4.5: Series of images showing the coalescence of two diamagnetically-levitated air
bubbles in water. The ratio of the radii of the bubbles before coalescence is approximately
2:3. The first frame shows the stationary pair of bubbles immediately before coalescence.
Time increases from left to right and from top to bottom, with an interval between each
frame of 5.5 ms/0.33τ .
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a) b)

c) d)

e)

f)

Figure 4.6: a) and b) show the double bubble ejection observed in the symmetric
case, results are taken from experiment and simulation, respectively. c) and d) show
the single bubble ejection observed in the asymmetric case, results are taken from
experiment and simulation, respectively. The white box is to draw attention to the
small satellite bubble. Results presented from simulation show a 2d slice down the
centre of the bubble, allowing for a better understanding of the internal dynamics
of the bubble. e) Sequence of images showing the motion of an internally ejected
droplet travelling along the central axis of the coalescing bubbles. f) Sequence of
images showing the creation and collapse of an antibubble at the apex of the larger
of the two parent bubbles. 46



have radii of 0.17 ± 0.01Rs from experiment and 0.160Rs from simulation. The si-
multaneous ejection of multiple satellite bubbles from the coalescence of equal-sized
bubbles has been predicted ever since the discovery that bubble coalescence may
lead to satellite bubble ejection [66], but here we present the first experimental con-
firmation of this. Previous experiments on bubble coalescence have failed to observe
simultaneous ejection of multiple satellite bubbles due to the difficulty in trapping
bubbles, as bubbles in previous experiments had to be pinned to either a surface or
capillary tube [64], [65], inhibiting free surface oscillations at the apex of at least one
of the parent bubbles.

In the asymmetric case, we observe the ejection of a single satellite bubble at time
t = 0.35τ , see figure 4.6c,d. We cannot experimentally identify the size of the ejected
bubble as it is below the limit of the resolution of our optical set-up (0.017Rs), but
simulation finds the radius of the ejected satellite bubble to be 0.014Rs.

In the asymmetric case, the internal ejection of droplets inside the bubble is also
observed, in both experiment and simulation, see figure 4.6e. Due to the capillary
waves formed during coalescence focusing at the apexes of the parent bubbles, the
apexes of the bubbles oscillate. If the surface of the bubble at the apex is outside the
initial bubble domain an unstable protrusion may form leading to the ejection of a
satellite bubble, as documented above. But, if the surface of the bubble at the apex
is inside the initial bubble domain a pocket of liquid may form inside the bubble
which may be pinched off to form an internally ejected droplet. Internally ejected
droplets are analogous to droplets produced from jets observed when a bubble bursts
at a free surface [67], [68]. Neglecting gravity, a bubble bursting at a free surface is
directly equivalent to the coalescence of two bubbles, where the ratio of the radius
of the two bubbles is infinitely large.

Another phenomenon observed in the asymmetric case is the creation of an an-
tibubble. An antibubble is a thin shell of gas surrounding a cavity of liquid itself
surrounded by liquid, this can be seen as the opposite of a conventional soap bub-
ble, where a thin shell of liquid surrounds a cavity of gas itself surrounded by gas
[69]. Antibubbles created in bubble coalescence occur at the apex of the opposite
parent bubble to which bubble ejection and internal droplet ejection occurs. An-
tibubbles have previously been shown to be created in bubble coalescence by Zhang
and Thoroddsen [64], but the mechanism by which they form in this circumstance has
not been explained. From experiment and simulation we observe that antibubbles
are created due to the collision of an internally ejected droplet with the gas-liquid
interface at the surface of the bubble. The droplet drags a small coating of gas with
it as it penetrates the bubble surface, which then pinches off to form an antibubble.
This antibubble then rapidly collapses into a ‘traditional’ gas bubble. A sequence of
images showing the creation and collapse of an antibubble are shown in figure 4.6f.
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Figure 4.7: Oscillations in time, An(t), of surface harmonics of degree n = 0–6
for the symmetric case (a), and the asymmetric case (b). In the symmetric case (a),
only oscillations of harmonics of even degree are displayed since the An of odd degree
harmonics are negligible owing to symmetry. Note the differing scales of the vertical
axes for each harmonic. Errors in experimental data are denoted by blue-shaded
regions, but due to their size aren’t visible on the plots.
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4.4.2 Time series of spherical harmonics

Here, we decompose the surface contours into spherical harmonics, as described in
section 4.3.4 and 3.3.1. The amplitudes An(t) of each spherical harmonic up to
n = 6 are displayed in figure 4.7. Only oscillations of the even degree harmonics
have been plotted for the symmetric case (figure 4.7a), since the amplitudes of odd
degree harmonics are negligible, due to the symmetry across the central plane of the
bubble. The error in our experimental data is assumed to be ±5R× 10−4 for modes
n =0–4 and ±9R × 10−4 for modes n =5–6, as calculated in chapter 3.3.1. These
errors are marked as blue-shaded regions in figure 4.7, but due to their size aren’t
visible.

The spherical harmonic excited with the largest initial amplitude for the coales-
cence of two equal-sized parent bubbles was the n = 2 harmonic, with an initial
amplitude A2 ≈ 0.5R. The harmonic with the next largest initial amplitude was
n = 4, with A4 ≈ 0.2R. Similarly, the n = 2 spherical harmonic was the harmonic
excited with the largest initial amplitude by the coalescence of the unequal-sized
parent bubbles, with an amplitude of A2 ≈ 0.3R. The pair of spherical harmonics
with the largest initial amplitudes are much closer in value in the asymmetric case
than in the symmetric case.

There is close agreement between experiment and simulation for all spherical
harmonics except the n = 0 harmonic, as is evident in figure 4.7. For the n = 0
harmonic there is good agreement between experiment and simulation until t ≈ 7τ
but thereafter, the oscillations of A0(t) in simulation decay, which is not observed in
experiment.

We may expect a difference to arise between experiments and simulations due
to several factors. One being the additional magnetogravitational body forces which
aren’t accounted for in our simulations. But, in section 4.2 we show these forces have
a negligible effect on our system. Another factor that could lead to a discrepancy
between experiment and simulation is the assumption that the bubbles are axisym-
metric. It is known that deviation in oscillation frequency and damping rates arise
due to the breaking of the axisymmetry of bubbles [33], [70]. Calculations carried out
in the supplementary information of Hunter-Brown et al. [46] show that the Waddell
sphericity (the ratio of the surface area of a sphere with the same volume to the
object’s surface area) of hydrostatic bubbles of the same radii considered here only
deviates from unity by values of more than 1×10−3 if the surface tension of the bubble
decreases below a value of 0.1 mNm−1. Since the surface tension used in experiments
is approximately 700 times greater than this, it is fair to assume that the bubbles
remain axisymmetric even when undergoing oscillations. The final factor that is not
accounted for is the compressibility of the fluids under consideration, in particular,
the air in the interior of the bubble. The simulations we performed assume incom-
pressibility in both fluids and so do not support volume oscillations of the bubble,
which is not the case in experiment. Figure 4.8 displays the non-dimensionalised vol-
ume as a function of time. From these plots it can be seen in experiment the bubbles
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Figure 4.8: Volume as a function of time for the symmetric case (a) and the
asymmetric case (b).

oscillate around their initial volume whereas in simulation volume remains constant,
as expected. Since compressible effects are not accounted for in the simulations, the
difference between experiment and simulation can be attributed to this.

The only notable deviation between experiment and simulation is observed in the
n = 0 mode for both cases, due to the compressibility of the air in experiments. This
is the largest discernible difference between simulation and experiment and shows
that the relatively small amplitude volume oscillations observed in experiment have
a negligible effect on the shape oscillations.

It might be expected that no n = 0 oscillations would be present in the simula-
tions, given the incompressibility of the simulated gas, but this would only be true
if the amplitudes of the shape oscillations were vanishingly small. If we consider a
bubble with a purely axisymmetric n = 2 perturbation, the equation for the surface
of the bubble can be written as

r = A0(t)P0(θ) + A2(t)P2(θ) = A0(t) + A2(t)P2(θ).

By enforcing conservation of volume it follows that

V =
2π

3

∫ π

0

r3 sin θ dθ =
4π

3

(
A0(t)

3 +
3

5
A2(t)

2A0(t) +
2

35
A2(t)

3

)
.

Hence, for the volume to remain constant A0(t) must necessarily be time dependent.
This is well demonstrated in simulation, as initially the surface harmonics n = 2 and
n = 4 in the symmetric case, and n = 2 and n = 3 in the asymmetric case, have
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Peaks a a∗0 a∗2 a∗4 b b∗4 b∗6 c d d∗0 d∗2 d∗4 e e∗0 e∗4 e∗6 f g h
Experiment 3.4 6.5 6.6 6.5 9.3 18.7 18.7 15.7 3.4 6.8 6.8 6.8 6.2 12.2 12.4 12.3 9.3 12.8 16.2
Simulation 3.4 6.5 6.6 6.5 9.3 18.8 18.7 15.9 3.4 6.7 6.8 6.8 6.2 12.2 12.3 12.3 9.3 12.8 16.1

Table 4.2: Frequencies, ωτ , of the peaks labelled in figure 4.9.

amplitudes which are a significant fraction of the bubble radius. As the amplitude
of these surface harmonics decay the amplitude of the n = 0 harmonic tends to zero,
as can be seen in figure 4.7. Since the simulations do not account for gravity or the
body forces applied by the magnet, the good agreement with experiment (excepting
n = 0) is also further evidence that the forces involved in the levitation have no
significant effect on the oscillations of the bubble.

4.4.3 Fourier transforms of time series

Figure 4.9 shows the amplitude of the Fourier transform of each of the time series
shown in figure 4.7, with the exception of a short initial period t < 1.5τ immediately
after coalescence, as during this period the surface contour r(θ, t) is not guaranteed
to be single valued. As in subsection 4.4.2, the error in the amplitude of our ex-
perimental data is assumed to be ±5R × 10−4 for modes n =0–4 and ±9R × 10−4

for modes n =5–6. The errors are denoted in figure 4.9 by the blue-shaded regions.
These errors are purely errors in the amplitude of the experimental data and hence
don’t affect the location of peaks in the spectra. The error in ω for both experi-
ment and simulation is ±0.05τ−1. These small errors occur due to the fast Fourier
transform algorithm used to process the time series.

We have labelled some of the peaks in the spectra with letters a–h. Since the
oscillations decay in time, the magnitudes of the peaks shown in the Fourier transform
of the whole time series are smaller than the initial amplitudes given in table 4.2.
For example, the magnitude of the peak labelled a in the frequency spectrum of
the n = 2 harmonic is approximately 0.15R, compared to an initial amplitude of
A2 ≈ 0.5R. The spectra also conceal any changes in frequency with time, except
through a broadening of the peaks.

For a bubble undergoing mode n oscillations, T&B’s solution consists of a surface
harmonic of degree n and amplitude ε oscillating with frequency ωn, with additional
even mode surface harmonics of 0–2n of amplitude of order ε2 and frequency 2ω2, see
equation (4.3). Hence, for a bubble undergoing mode n oscillations, T&B’s model
predicts a peak in the frequency spectra of the surface harmonic of order n at a
frequency ωn and peaks in the frequency spectra of even order harmonics up to 2n
at a frequency of 2ωn.

We now compare our results with T&B’s theoretical prediction for the moderate
amplitude oscillations of a bubble. In the symmetric case, the spectrum of the n = 2
surface harmonic shows a peak (a) at a frequency close to ω

(0)
2 . Additional smaller

peaks, labelled a∗n, are evident at a frequency close to 2ω
(0)
2 in the spectra of the

n = 0, n = 2, and n = 4 harmonics, respectively. Equivalent features are also
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Figure 4.9: Fourier transforms of the time series shown in figure 4.7, for the sym-
metric case (a), and the asymmetric case (b). Dashed lines indicate the frequencies

of the linear modes of oscillation, ω
(0)
n . It should be noted that different harmonics

have different scales for the vertical axes. The vertical scale is magnified in some
sections, as indicated. Blue-shaded regions denote errors in the experimental data.
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n = 2 n = 3 n = 4
k 2 4 2 4 6 2 4 6 8
ck 0.167 0.620 0.046 0.279 0.708 0.018 0.043 0.056 0.735

Table 4.3: Values for coefficients ck found in equation (4.3) for modes n =2–4.
These have been taken from equations (57a), (58a) and (59a) of T&B.

observed in the asymmetric case with the main peak, labelled d, close to ω
(0)
2 and

additional secondary peaks, labelled d∗n, close to 2ω
(0)
2 .

For convenience, we introduce the notation F(x) to refer to the amplitude of
peak x, e.g. F(a) = 3.4, refers to the amplitude of peak a which appears in the
frequency spectra of the n = 2 surface harmonic. We find the ratios of the peak
amplitudes F(a∗n)/F(a)2 and F(d∗n)/F(d)2 measured from the spectra are in reason-
able agreement with the prediction of T&B for the coefficients ck in equation (4.3).
For completeness, we give the values of these coefficients in table 4.3. For example,
we measure F(a∗4)/F(a)2 ≈ 0.90± 0.05 in simulation and 0.70± 0.05 in experiment,
compared to a value of 0.620 predicted by T&B (see table 4.3, n = 2, k = 4.

In the spectrum of the n = 3 harmonic, for the asymmetric case, we observe
a sharp peak labelled e, at ω3 ≈ ω

(0)
3 . Smaller peaks, at approximately 2ω3 ≈

2ω
(0)
3 can also be seen in the spectra of the n = 0, 4 and 6 harmonics, labelled e∗n,

respectively. Although, a clear peak is not observed near 2ω
(0)
3 in the n = 2 harmonic.

The amplitude F(e∗0) is approximately two times larger than expected, and F(e∗6)
approximately 4 times larger. F(e∗4) is much larger than expected, by about two
orders of magnitude.

In the spectrum of the n = 4 harmonic, for both symmetric and asymmetric cases,
we observe a peak at ω4 ≈ ω

(0)
4 (b and f respectively). In the symmetric case, peaks at

approximately 2ω4 ≈ 2ω
(0)
4 are observed in the spectra of the n = 4 and 6 harmonics

labelled b∗n, although similar peaks are not observed in the asymmetric case. The
amplitudes F(b∗n) are inconsistent with the predictions of T&B: our measured values
of F(b∗4) and F(b∗6) are about two orders of magnitude larger than expected. In the
asymmetric case, we were unable to clearly identify any peaks near 2ω4 in the spectra
of any surface harmonic.

In the spectrum of the n = 5 harmonic (asymmetric case) a peak g is present

at ω5 ≈ ω
(0)
5 corresponding to the mode 5 oscillation and in the spectrum of the

n = 6 harmonic for both the symmetric and asymmetric cases, a peak is present at
ω6 ≈ ω

(0)
6 corresponding to mode 6 oscillations. Here, peaks are labelled c and h in

the symmetric and asymmetric case, respectively.
Peaks a–h lie at frequencies 2–3% lower than the frequencies of the corresponding

linear modes of oscillation, ω
(0)
n . The peaks at 2ωn, marked by the asterisks, also

lie at frequencies slightly lower than 2ω
(0)
n . This observation is consistent with the

theory of T&B, which predicts a shift to lower frequency with increasing amplitude
ε of the mode (equation (4.3)).
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As well as the labelled peaks, additional peaks are also observed in the frequency
spectra of the surface harmonics. These additional peaks are not expected from the
theory of T&B (equation (4.3)). The fact that these features are reproduced almost
identically in both simulation and experiment indicates that they are not an artefact
of the experimental method, nor a defect of the simulations. We find that a number
of these additional peaks may be explained by accounting for shape corrections up
to third-order, as calculated in the appendices of Hunter-Brown et al. [46]. It is
shown in Hunter-Brown et al. [46] that third-order corrections predict additional
contributions to the n = 2 oscillation mode at third order in amplitude from surface
harmonics of degree n = 0, 4 and 6 oscillating at a frequency ω2, and n = 0, 2,
4 and 6 oscillating at frequency 3ω2. In the symmetric case, we observe peaks at
frequencies close to ω

(0)
2 in the spectra of the n = 4 and n = 6 harmonics. The

amplitudes of these two peaks agree roughly with the theoretical prediction, being
approximately 2 times larger than predicted. There is also a peak at ≈ ω

(0)
2 in the

n = 0 harmonic but here the results of simulations and experiment differ considerably
due to volume oscillations supported by the bubble in experiment. Peaks close to
∼ 3ω2 are also observed in the frequency spectra of the n = 4 and 6 harmonics with
amplitudes 1–2 times larger than predicted. The existence of a component at 3ω2

in the n = 4 harmonic could explain the split-peak appearance of the feature at b,
as 3ω

(0)
2 ≈ 1.1ω

(0)
4 . In the asymmetric case, the agreement between our experimental

and simulation results and the predicted third-order corrections is less good in the
asymmetric coalescence than in the symmetric case; whilst we do observe peaks at
ω2 and 3ω2 in the spectra as predicted, their amplitudes are 5–10 times larger than
expected.

4.4.4 Time-frequency analysis of time series

To study the dependence of the oscillation frequency of a given mode on amplitude,
we performed time-frequency analysis on the oscillations of each surface harmonic,
An(t). We obtained the short-time Fourier transform (STFT) of An(t), using a
Hanning window [71] of duration 300 ms which was shifted in steps of 5 ms across
the time domain. Time-frequency plots for the harmonics of degree n = 2–4 are
presented in figure 4.10.

In the symmetric case, the STFT of the n = 2 surface harmonic shows a dominant
peak at approximately ω

(0)
2 which corresponds to peak a in the Fourier transform

shown in figure 4.9a. The two prominent features in the STFT of the n = 4 surface
harmonic are a peak at approximately 2ω

(0)
2 , corresponding to a∗4 in figure 4.9a and

a second broader feature at approximately ω
(0)
4 , corresponding to b in figure 4.9a. In

all cases, the STFTs show that peaks move to higher frequency with increasing time,
for both data obtained from experiment and simulation. In the asymmetric case, the
STFT of the n = 2 surface harmonic shows a peak at approximately ω

(0)
2 , as in the

symmetric case. Here, this peak corresponds to the peak labelled d in figure 4.9b.
The STFT of the n = 3 surface harmonic shows a prominent peak at approximately
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Figure 4.10: Short-time Fourier transforms of the time series in figure 4.7, for surface
harmonics n = 2–4. The upper plots (above the dashed line) show the results for the
symmetric case and the lower plots show the results for the asymmetric case. The
solid black curves show the same data overlaid in the form of a waterfall plot. Note
that colour scales vary between plots.
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ω
(0)
3 corresponding to the peak labelled e in figure 4.9b. The two most conspicuous

peaks in the STFT of the n = 4 surface harmonic, at approximately 2ω
(0)
2 and ω

(0)
4 ,

correspond to d∗4 and f in figure 4.9b. As in the symmetric case, these peaks also all
move to higher frequency with increasing time.

For both simulation and experiment, we measured the amplitude ε∗nR and fre-
quency ωn of the dominant peak in the n = 2 spectrum in both symmetric and
asymmetric cases, and the dominant peak in the n = 3 spectrum in the asymmet-
ric case. (The asterisk here is used as an indicator that ε∗n is measured from the
STFT.) From this, we calculated the depression in the frequency of oscillation of

modes 2 and 3, ωn − ω
(0)
n , as a function of their amplitudes, ε∗n (figure 4.11). Figure

4.12 shows the derivative of the frequency with respect to the amplitude squared,
allowing for comparison with the values of ω

(2)
n obtained by T&B. To calculate the

gradients dωn/dε
∗
n
2 a new set of frequency values were interpolated from the original

frequency data sets at evenly spaced values of ε∗n
2. The error in the experimental

values of ε∗n
2 is at maximum ±3.4× 10−4, which occurs at ε∗n

2 ≈ 0.12 and is directly
proportional to ε∗n. Since the errors in the experimental values of ε∗n

2 are at least
3 orders of magnitude less than the actual value, it is safe to assume they have a
negligible effect on our results.

Our simulations of the symmetric case are in reasonable agreement with the
results predicted by the theoretical model of T&B for mode 2 oscillations. From
figures 4.11 and 4.12 it can be seen that the frequency varies approximately linearly
with ε∗2

2. For values of ε∗2
2 ≲ 0.09 we obtain a value of ω

(2)
2 ≈ 1.4ω

(0)
2 , compared

with the value predicted by T&B of 1.526ω
(0)
2 . The simulation data show a slight

increase in ω
(2)
2 at higher ε∗2

2, rising to approximately 1.6ω
(0)
2 at ε∗2

2 = 0.11. Our

experimentally-measured value of ω
(2)
2 is smaller than the values found in simulation

for small ε∗2
2. Here, we find that approximately 1.2ω

(0)
2 for ε∗2

2 ≲ 0.02, rising to ω
(2)
2 ≈

1.75ω
(0)
2 at ε∗2

2 = 0.11. For the asymmetric case, we obtain a value of ω
(2)
2 = 1.5ω

(0)
2

in the limit ε∗2
2 → 0, consistent with the predicted result. However, unlike in the

symmetric case, we find that frequency does not vary linearly with ε∗2
2: the value of

ω
(2)
2 increases nonlinearly with ε∗2, rising to approximately 3.5 at ε∗2

2 = 0.025. Both
simulation and experiment are in good agreement. Corrections due to neglected
terms O(ε4) cannot account for this large deviation, since measured values of ε∗2

2

are less than 0.025 in this case. For the n = 3 mode (asymmetric case), we observe

that the frequency also does not vary linearly with ε∗2
2. Values obtained for ω

(2)
3

are considerably larger than predicted, approximately 9.5ω
(0)
3 in the limit ε∗3 → 0

compared to the theoretical value of 2.3ω
(0)
3 . Simulation and experiment both show

a sharp drop in the measured value of ω
(2)
3 to approximately 5.8ω

(0)
3 at ε∗3

2 ≈ 0.025,

followed by a rise toward a value of 9.0ω
(0)
3 at ε∗3

2 = 0.065. To summarise, our

measurements of ω
(2)
2 are comparable with the theoretically predicted value in the

symmetric case, but agree in the asymmetric case only in the limit ε∗n → 0. Our

measurements of ω
(2)
3 are 2.5–4 times larger than predicted, depending on ε∗n. We

56



note that a similar discrepancy was found for the mode 3 second order frequency
coefficient obtained for the non-linear oscillations of soap-film bubbles by Kornek et
al. [56].

From figures 4.11 and 4.12, it is clear there is a noticeable difference between
our results and theoretical predictions in the asymmetric case, in comparison to the
reasonable agreement observed for the symmetric case. This could be explained by
interactions between the modes in the asymmetric case. From our experiment and
simulation of the coalescence of two equal-sized parent bubbles, we find the resulting
oscillations to be dominated by the contribution from the mode 2 oscillation. The
mode with the next highest amplitude is the mode 4 oscillation, the contribution of
mode 3 being negligible in this case due to symmetry. The ratio of the amplitudes
of the two modes is approximately ε∗4/ε

∗
2 ≈ 0.08 at t = 10τ dropping to ε∗4/ε

∗
2 ≈ 0.05

at t = 20τ as the higher frequency mode 4 oscillations damp more quickly. Thus
the coalescence of two equal-sized bubbles produces oscillations which decay to (ap-
proximately) mode 2 oscillations considered by T&B after approximately 10τ . In
contrast, from our experiment and simulation of the coalescence of unequal-sized
parent bubbles, we find oscillations with comparable contributions from two modes,
n = 2 and n = 3. In the case considered here, the ratio of the amplitudes of these
two modes are ε∗3/ε

∗
2 ≈ 0.50 at t = 10τ , dropping to ε∗3/ε

∗
2 ≈ 0.38 by t = 20τ .

Thus the contribution of the next highest amplitude mode (mode 3 in this case) is
both proportionally much greater than in the symmetric coalescence, and the ratio
between the two decreases more slowly with increasing time, owing to the weaker
viscous damping of mode 3 oscillations compared to mode 4. Hence, since T&B
studied oscillations consisting of a single mode, it is reasonable to assume that the
discrepancy arises between our results and theory in the asymmetric coalescence ow-
ing to coupling between different modes of comparable amplitude, in the asymmetric
case this is modes n = 2 and n = 3.
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a) b)

c)

Figure 4.13: ε∗n vs time for symmetric case mode 2 (a), asymmetric case mode 2
(b), and asymmetric case mode 3 (c). Time here is non-dimensionalised with the
viscous time scale. The blue-shaded regions denote the error in the experimental
data. Black lines show the theoretical damping rates of Lamb, where α2 = 20τµ and
α3 = 35τµ.

4.4.5 Viscous damping

Here, we discuss the effect that viscosity has on the amplitude of surface oscillations.
Energy in the system is dissipated due to viscous shearing between adjacent fluid
layers, hence we expect the total energy of the system to decrease as a function of
time and therefore the amplitude of surface oscillations to decay as a function of
time. To analyse this effect we plot the peak amplitude of modes n = 2 and n = 3 as
a function of time, see figure 4.13. In this case time has been scaled by the viscous
timescale τµ = ρ2R2

µ
and the vertical axes have been plotted on a logarithmic scale.
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Small amplitude normal mode surface oscillations of bubbles surrounded by fluids
of low viscosity decay exponentially at a constant rate, given by equation (4.2).
From figure 4.13 it is clear that observed damping rates are not constant, although
the damping rates found from experiment and simulation are of similar magnitude
to the theoretical damping rates. It is not anticipated that damping rate would
be constant in either experiment or simulation at early times as the assumptions
required for the theory of Lamb [47] to hold are not met: the oscillation amplitude is
asymptotically small, the viscous boundary layer is asymptotically thin, and the fluid
inside the bubble is inviscid with zero density. Figure 4.13 shows that the general
trend for the rate of damping is to increase as a function of time. Qualitatively
similar results are found between experiment and simulation, although the increase
in the rate of damping is greater in simulation than in experiment. This is due to the
fact numerical damping occurs in simulation which increases the perceived damping
rate.

A comparison between the rate of damping for mode 2 between the symmetric
and asymmetric cases shows an increased rate of damping in the asymmetric case.
This may suggest that nonlinear mode coupling may affect the rate of damping, but
a more in-depth study would be required to verify this.

4.4.6 Translational motion of bubbles due to oscillation

It has been shown that coupling of modes of adjacent degree may lead to motion
of the centre of mass of a bubble [72]–[74]. Due to the symmetry plane down the
centre of the bubble in the symmetric case, only even degree modes are excited,
hence no adjacent modes undergo oscillation, therefore we observed no motion of the
centre of mass in either experiment or simulation in this case. Figure 4.14 shows
the displacement of the centre of mass along the symmetry axis of the bubble as a
function of time, for the asymmetric case. The origin of the system is taken to be at
the centre of mass of the bubble at the start of coalescence. For t < 7τ there is good
agreement between experiment and simulation, which both show an oscillation about
its initial position, with an amplitude ∼ 0.1R and period 2.5τ , with an additional
background drift in the direction of the smaller of the two parent bubbles.

The results of simulation and experiment begin to diverge after t = 7τ as in
simulation the centre of mass continues to drift in the same direction, whereas in
experiment this ‘drift’ reverses direction after approximately t = 10τ , due to the
restoring force experienced by the bubble from the magnetogravitational trap.

4.5 Summary

In this chapter, we have used magnetic levitation to study the coalescence of air
bubbles in water. Together with numerical simulation, we investigated the nonlinear
axisymmetric surface oscillations of 5–6mm-diameter bubbles generated from the
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Figure 4.14: Position of the centre of mass of the bubble along its axis of symmetry,
for the asymmetric case.

coalescence of two-parent bubbles. Good agreement was found in general between
our experimental results and simulations.

Experimental confirmation of the simultaneous ejection of two satellite bubbles
is presented here for the first time. As well as this, we show that internally ejected
droplets penetrating the surface of the bubbles during the bubble coalescence process
may lead to the formation of antibubbles. Providing the mechanism for the formation
of antibubbles observed during bubble coalescence.

Analysis of the spherical surface harmonics of the oscillations showed that the
coalescence of two equal-sized parent bubbles produced a single bubble undergoing
‘moderate–large’ amplitude oscillations dominated by a single mode of oscillation,
n = 2, approximating the idealised situation considered by T&B. Whereas, coa-
lescence of two unequal-sized parent bubbles, produced oscillations with comparable
contributions from both mode 2 and mode 3 shape oscillations. We observed peaks in
the frequency spectra of the time series of surface harmonics consistent with T&B’s
predicted corrections to the n = 2 bubble shape at second order, and also with
predicted shape corrections at third order. The amplitudes of these peaks are in
reasonable agreement with theoretical prediction, except for some of the third-order
peaks in the asymmetric case. We also observed peaks in the spectra at frequencies
in agreement with some of the predicted second and third-order shape corrections of
modes n > 2, but with amplitudes inconsistent with theory.

Time-frequency analysis of the shape oscillations produced from the coalescence
of two equal-sized parent bubbles showed that in this case, the frequency of the n = 2
mode oscillation behaves as a function of the square of the amplitude, in reasonable
agreement with T&B’s theoretical prediction, in both experiment and simulation.
Time-frequency analysis of the shape oscillations produced from the coalescence of
two unequal-sized parent bubbles showed that the variation of the frequencies of the
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n = 2 and n = 3 modes with amplitude was inconsistent with T&B’s prediction.
For the n = 2 mode it was found that in the limit that amplitude tended to zero,
the second-order frequency coefficient approached the theoretically predicted value,
but for the n = 3 mode values were found to be more than three times as large as
theoretically predicted.

In summary, where the oscillations we observe in simulation and experiment are
dominated by a single mode our results are consistent with T&B’s prediction for the
corrections to the bubble shape oscillations at second order in amplitude, including
the predicted depression of the oscillation frequency proportional to the square of
the amplitude, and also with our predicted correction to the bubble shape oscilla-
tions at third order in amplitude. Where there is more than one mode undergoing
moderate–large amplitude oscillations our results indicate the presence of strong
coupling between the modes. This suggests that the theory of T&B captures all
the significant features of nonlinear surface oscillations of bubbles, but an improved
theoretical model is needed to accurately quantify these features if several modes are
undergoing moderate/large amplitude surface oscillations. It is suggested that an ap-
proach using the unified transform method as carried out for droplets by Plümacher
et al. [75] may capture the features of non-linear mode coupling not present in the
model of T&B.
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Chapter 5

Contactless manipulation of
bubble clusters

Liquid foams are complex multiphase fluid systems where bubbles/droplets of one
fluid species, most commonly a gas, are dispersed throughout a second fluid species.
Foams appear widely in nature, such as in sea foam produced by breaking waves in
the ocean [76], [77] and in nests produced by a diverse range of animals used to protect
their eggs [78]–[80], as well as having a large number of industrial applications, such
as in firefighting [81], [82] and in mineral floatation [83], [84]. Hence, the study of
foams is a very active area of research, e.g. [76], [77], [85], [86].

Foams are classified by their liquid volume fraction ϕf , the ratio of gas to fluid
per unit volume. Dry foams occur when ϕf ≈ 1%. Here, bubbles deform into
polyhedra, where most of the liquid is confined in thin films at the bubble edges
which form quasi-flat planes known as Plateau borders [85]. Above some critical
volume fraction (ϕf ≈ 25−35%) bubbles separate into discrete spherical units which
move independently from each other. These types of foams are classified as wet
foams or bubbly liquids.

Many experiments have been carried out on dry foams due to their ease of creation
and stability [87], but far fewer experimental studies have been carried out on wet
foams. This is due to the fact that wet foams quickly become unstable and break
down due to drainage of the liquid caused by gravity. Recent studies on wet foams in
microgravity have shown that inhibiting fluid drainage dramatically increases their
stability [88]–[91].

Current methods of creating wet foams in microgravity only allow for the cre-
ation of polydisperse foams, foams where the constituent bubbles have a variety of
sizes. In this chapter, we present a new method of creating monodisperse wet foams
formed of clusters of bubbles. Our new method uses diamagnetic levitation to sus-
pend bubble clusters in a weightless environment for an indefinite period of time,
providing a novel way of studying monodisperse wet foams terrestrially. Also, we
show we can manipulate the arrangement of these bubble clusters in a contactless
manner, by adjusting the current in the superconducting solenoid magnet used to
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levitate the bubble clusters. We note that foams have previously been studied in mi-
crogravity using diamagnetic levitation [91]. Although in these experiments only the
surrounding fluid is levitated in a weightless environment, hence bubbles throughout
the foam are still subjected to buoyancy forces.

5.1 Experimental set-up

We used the Cryogenic superconducting magnet, set-up as discussed previously in
chapter 3, where the tank fitted in the bore of the magnet was filled with an 0.11
mol L−1 aqueous solution of manganese chloride.

To create bubbles a measured volume of air was injected into the levitation point
using an air-filled syringe attached to an L-shaped tube. Following the creation of
the initial bubble, subsequent bubbles were injected into the levitation point at a
rate of one bubble every 2–5 seconds. It was found that the liquid layer at the point
of contact between bubbles ruptured after ∼ 3–4 seconds, initiating the process of
coalescence. In order to inhibit bubble coalescence the manganese chloride solution
was mixed with a small addition of the surfactant sodium dodecyl sulfate (SDS). The
surfactant decreased the surface tension at the liquid-air interface from 72 mNm−1

to ∼ 30 mNm−1, but also increased the foam stability. This allowed bubbles to
levitate indefinitely without coalescing [88], [89].

5.2 Results

The first row of figure 5.1 shows a series of images showing different configurations
of the same seven 3.1 ± 0.1 mm diameter bubbles levitating in differently shaped
magnetogravitational potential traps. Images were taken from an angle looking down
the axis of the magnet bore. The shapes of magnetogravitational traps were varied
by altering the current in the magnet solenoid coils, I. A convenient alternative
measure of this current is the magnetic field strength at the geometric centre of the
solenoid, B0 ∝ I. The second row of figure 5.1 shows the contours of a vertical cross-
section of the magnetogravitational potential for the corresponding value of B0. The
circles on the images display a representation of the bubbles.

In the experiment displayed in figure 5.1, seven bubbles were injected into the
levitation point, where B0 was initially set to 13.2 T, and then increased slowly
to 14.5 T. Three different arrangements of the bubble cluster were found: (i) a
close-packing arrangement, where the bubbles lie on two separate planes consisting
of 3 and 4 bubbles respectively in a close-packing arrangement; (ii) a pentagonal
arrangement, where 5 bubbles lie on a horizontal plane equally spaced from each
other and the remaining 2 bubbles lie on the solenoid axis equally spaced above
and below the central point of the pentagon; (iii) a planar arrangement, where the
bubbles formed a hexagonal lattice arranged on a single plane.
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Figure 5.2: 2D projection of seven close packing bubbles. a)-c) show the same 2D
projections viewed along three perpendicular axes. d)-f) show the same arrangement
of bubbles as in a)-c) except the axes have undergone the coordinate transformation
given in equation (5.1).

We can’t provide definitive proof that what we refer to as the close-packing ar-
rangement is in actuality a close-packing arrangement. We compared the first exper-
imental image in figure 5.1 to a large number of 2-dimensional projections of bubble
clusters constructed of seven bubbles. Figure 5.2 displays a number of these projec-
tions. Figure 5.2a-c shows a 2D projection of the same close packing arrangement
of 7 bubbles viewed along 3 different axes. In this projection, the two planes the
bubbles lie on are parallel to the y − z plane, these two planes are easily observed
in figure 5.2c. Figure 5.2d-f show the same arrangement of bubbles just with the
coordinate system rotated about the coordinate axes. The relationship between the
two coordinate systems isx′y′

z′

 = Rz(20
◦)Ry(340

◦)Rx(210
◦)

xy
z

 , (5.1)
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where the rotation matrices are

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ,

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 .

(5.2)

By comparing the top-down view of the close packing arrangement in figure 5.1
and the 2D projection in 5.2d excellent agreement can be found, providing us with
confidence that what is observed in experiment is a close packing arrangement.

The bubble cluster transitioned from the close-packing arrangement to the pen-
tagonal arrangement as B0 was increased from 13.2–13.3 T. In the transition the
bubbles rotated as a rigid body about a central point and then rearranged them-
selves into the pentagonal arrangement. The bubble cluster then transitioned from
the pentagonal arrangement to the planar arrangement as B0 was increased from
14.3-14.4 T. As B0 was increased from 13.3–14.3 T the vertical distance between the
central bubbles decreased leading to a small gap forming between two of the bubbles
on the horizontal plane (see figure 5.1), then as B0 was increased from 14.3–14.4 T
the upper central bubble moved vertically down displacing the lower central bub-
ble which then moved into the aforementioned gap. This differs from the transition
from the close-packing to the pentagonal arrangement as no rigid body rotation of
the bubble cluster was observed.

As B0 was increased the vertical location of the centre of mass of the bubble
cluster decreased as the position of the minima of the magnetogravitational trapped
decreased. Stable magnetogravitational traps only exist for air bubbles using the
specified manganese chloride solution in our magnet for B0 in the range 13.2–14.5 T.
Outside of this range it is not possible to inject bubbles into the system without them
either floating upwards due to buoyancy or being displaced and trapped against the
wall of the tank. For bubble clusters stably levitating in the magnetogravitational
trap, as B0 transitioned out of this stable regime bubbles were observed to float
upwards due to buoyancy.

Figure 5.3 shows a montage of images of a second bubble cluster. Here, nineteen
3.0–3.4 mm diameter bubbles were injected into the magnetogravitational trap when
B0 was set to 14.5 T, initially forming a planar arrangement of bubbles. This planar
bubble arrangement remained stable for B0 in the range 14.1-14.5 T but changed
arrangement for B0 < 14.1 T. As stated previously, the trap is only able to stably
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Figure 5.3: A bubble cluster of 19 similarly sized bubbles. In this experiment, B0

was decreased from 14.5 to 13.2 T. A planar arrangement was observed for B0 in
the range 14.5–14.1 T.

trap bubbles for B0 in the range 13.2–14.5 T, hence no bubble clusters could be
created outside this range. Due to the number of bubbles in this cluster and the
limitations of our imaging set-up it is not possible to identify the arrangements
the bubbles formed for B0 < 14.1 T. However, we were able to observe that the
horizontal area of the cluster, as viewed from above, decreased as B0 decreased,
implying that the vertical height of cluster increased. This is expected, as the shape
of the magnetogravitational trap may be approximated by a thin oblate spheroid at
B0 = 14.5 T which leads to the formation of planar bubble structures, but as B0 is
decreased the trap is ‘squashed’ horizontally inwards, hence the horizontal span of
the trap decreases and the height of the trap elongates leading to the shape of the
trap transitioning into that of a tear drop at B0 = 13.2 T (see figure 5.1 second row).
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5.3 Uses for bubble clusters

At the start of this chapter, we discussed the use of bubble clusters to study three-
dimensional monodisperse wet foams. Here, we speculate on some other uses for
three-dimensional bubble clusters.

Ilievski et al. [92] have previously used diamagnetic levitation to study templated
self-assembly of levitated plastic spheres in a manganese chloride solution. In their
study, a similar technique was used to diamagnetically levitate plastic spheres, but
templates were inserted to control the structure of the levitated spheres. It was
found that inserting these templates could force the plastic spheres into close packed
crystalline formations. We propose that a similar idea could be used in the case of
bubble clusters. Adding a template, such as a tube aligned with the central axis of
the solenoid, could force bubble clusters to form close packed crystalline structures.
In the study of Ilievski et al. [92], agitation was required to manipulate the plastic
spheres once positioned within the magnetic field; this is due to the friction between
the objects, but this is not an issue with bubbles: due to the thin fluid layer between
bubbles they behave as frictionless spheres. Therefore, if a number of spherical
bubbles are diamagnetically levitated but confined within a template, we hypothesise
that to minimise the energy of the total system they would self-assemble into close-
packed planes.

One use for crystalline bubble clusters could be the production of new acoustic
metamaterials. Such materials have interesting acoustic properties as their den-
sity and bulk modulus, which control the speed of acoustic waves, vary throughout
the material leading to the effective density and bulk modulus of such materials to
be highly frequency dependent.[93] Due to this variation of physical characteristics
throughout the material acoustic metamaterials can also inherit counterintuitive and
novel physical properties such as a negative effective density and negative effective
bulk modulus. Previously, acoustic metamaterials have been fabricated from cu-
bic crystal lattices of rubber-coated lead spheres embedded in epoxy.[94] We can
fabricate a similar arrangement of a lattice of spheres of different density and bulk
modulus embedded in a second solution, except that in our case the density of the
spheres is several orders of magnitude lower than that of the surrounding material.
Crystalline bubble clusters created in a fluid using diamagnetic levitation, then could
be solidified, for example if the fluid is a UV-curable polymer solution. The same
methodology can be used to create a single plane of ordered, low-density spheres in a
higher-density material by using planar bubble lattices. We also have the ability to
control the volume of bubbles, hence materials consisting of a combination of bubble
sizes or materials, where the size of cavities varies throughout the material, could be
constructed. Such materials may pave the way for advancements in acoustic cloaking
for example [95].

An additional use of bubble clusters could be to study the collective oscillations
of clusters of bubbles. The scattering of acoustic waves due to the nonlinear interac-
tions of clusters of bubbles plays an important role in ultrasonic imaging, ultrasonic
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detection and ultrasonic medical therapy [96]–[98]. Due to the importance of this,
a large number of both experimental and theoretical studies have been carried out
on the oscillations of bubble clusters [99]–[102]. The advantage of using diamagnetic
levitation to study this phenomenon is that it allows for control of the size of the
radii and the number of bubbles. This would allow for the validation of theoreti-
cal models by comparing predictions to the simplest cases of the interaction of just
a handful of bubbles. Preliminary experiments we have carried out to study the
collapse of diamagnetically levitated air bubbles using pressure waves have shown
with a simple modification to our current experimental setup we are able to vary the
pressure inside the fluid-filled tank. Hence, the experimental setup required for such
a set of experiments could easily be designed and manufactured.

5.4 Summary

In this chapter, we presented a method to create monodisperse bubble clusters using
diamagnetic levitation to stably trap bubble clusters in a surrounding fluid. The
arrangement of these bubble clusters was manipulated in a contactless manner by
adjusting the solenoid current, and hence the central magnetic field strength pro-
duced by the superconducting solenoid. It was found that bubble clusters conformed
to the magnetogravitational potential trap used to levitate them. A variety of config-
urations of bubble clusters was observed, from planar arrangements to close-packing
arrangements.

We observed clusters of up to 19 bubbles, but in theory clusters of hundreds if
not thousands of bubbles could be generated and manipulated in a similar fashion.
Here, we have focused on studying monodisperse bubble clusters, but polydisperse
bubble clusters could in principle be produced just as easily. As well as generic
polydisperse clusters, it is possible to create polydisperse clusters where the size of
every bubble is controlled, e.g. a bubble cluster consisting of bubbles of a set number
of predetermined sizes. As explained in chapter 3, by adjusting the location of the
end of the L-shaped tube within the bore of the magnet it is possible to control the
size of bubbles produced.

At the end of this chapter, we have speculated on a number of potential future
use cases for bubble clusters. Further experiments and research is needed to realise
these ideas but it is evident that diamagnetically levitated bubble clusters provide a
new experimental tool to study a wide variety of bubble phenomena.
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Chapter 6

Sonomaglev: combining acoustic
and diamagnetic levitation

The motivation behind the work carried out in this chapter was to develop a new
experimental technique to manipulate multiple simultaneously diamagnetically levi-
tated objects. The options to manipulate multiple objects magnetically are limited.
Diamagnetic levitation allows for the levitation of multiple spatially-separated ob-
jects simultaneously if the objects have unique ratios of magnetic susceptibility to
density [31]. The creation of multiple traps for a single material is also possible using
diamagnetic levitation, by manipulating the shape of the strong magnetic field [103],
but both these methods are very limited in the range of motion and number of ob-
jects they may manipulate. In contrast, the levitation and manipulation of multiple
objects using acoustic levitation is much less technically challenging and correspond-
ingly less restrictive. It has been shown by many authors that acoustic levitation can
be used to manipulate levitated objects in a non-contact manner [104]–[106], and has
also proven to be a powerful technique to carry out contactless manipulation experi-
ments in a variety of disciplines, including: analytical chemistry [107]–[112], material
sciences [113], pharmacy [114], [115] and micro-assembly [116]–[119]. Still, acoustic
levitation has its drawbacks. Acoustically levitated objects tend to rotate and oscil-
late due to the high frequency acoustic radiation forces required to balance objects
against the force of gravity. For certain applications this can be advantageous [111],
but in most cases stable levitation of the objects under consideration is preferable.

In this chapter, and in Hunter-Brown et al. [120], we discuss the development
of a new experimental technique ‘Sonomaglev’. By combining techniques from both
acoustic and diamagnetic levitation we are able to manipulate the position of spher-
ical liquid droplets, drawing on the strengths of each method. The force of gravity is
compensated throughout the droplets by applying a vertical diamagnetic body force
using a superconducting magnet, providing a simulation of weightlessness. Then,
comparatively weak acoustic radiation forces are used to position the droplets. We
show that multiple droplets, arranged horizontally along a line, can be stably lev-
itated with this system and demonstrate controlled contactless coalescence of two
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droplets. We further show that it is possible to reproduce the locations of the levi-
tated droplets through simulation.

6.1 Acoustic levitation

Acoustic levitation utilises high frequency sound waves to exert acoustic radiation
forces on objects to suspend them against the force of gravity [2]. The technique
was first demonstrated in 1933 by Bücks and Müller, who reported on the levitation
of ethanol droplets at the nodes of a standing wave generated between an oscillat-
ing quartz crystal and a reflector [121]. Up until recently, most common acoustic
levitation set-ups consisted of a Langevin horn, a stack comprised of a piezoelec-
tric transducer coupled to a horn shaped radiative element, placed opposite either
a matching device or a reflector plate [106]. These set-ups normally operate at fre-
quencies of between 20–100 kHz, creating a standing acoustic wave along a vertical
axis, at the nodes of which objects may be levitated. In principal, the construction
of such experimental set-ups is based entirely on the design of the first acoustic levi-
tator constructed by Bücks and Müller. Over the last decade, it has been shown that
intricate, readily tuneable sound fields can be constructed by using an array of small
ultrasonic transducers [104], [122], allowing for the manipulation of multiple objects
in three dimensions. The discovery that an array of ultrasonic transducers can cre-
ate customisable acoustic levitation systems has led to a resurgence in the study of
non-contact manipulation using acoustic levitation techniques [106], [123]–[125].

Although acoustic levitation has many advantages, such as its ability levitate
objects of almost any material [2], the method also has some drawbacks. From
the earliest experiments, acoustically-levitated objects were observed to have a ten-
dency to oscillate, attributed to the response of the acoustic field to the presence
of the object [126], [127]. Objects may also start to rotate spontaneously due to
streaming flows in the surrounding gas generated by the high pressure sound waves
[128], [129], though techniques to mitigate these effects and control the rotation have
been demonstrated recently [130], [131]. These same streaming flows may also be
problematic in studies of liquid droplets, where the air flow affects heat and mass
transfer non-uniformly at the droplet’s surface [132] and also sets up flows within the
droplet [133]. Acoustically-levitated liquid droplets are often deformed into oblate-
like shapes [1], [134]; this typically occurs when the diameter of the droplet is of
the same order as the acoustic wavelength. These characteristics, which are usually
undesirable (though occasionally exploited [134]), are avoided in similar experiments
using diamagnetic levitation [13], [14], [16], [17].

6.2 Experimental set-up

We used the Cryogenic superconducting magnet, as detailed in chapter 2.4, to levitate
water droplets diamagnetically in air at room temperature and atmospheric pressure.
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a) b)

c)

Figure 6.1: a) Diagram of the experimental set-up inside the superconducting mag-
net bore. The two ultrasonic transducers are aligned along an axis, x, perpendicular
to the vertical bore axis, z. Dashed lines represent the magnetic field lines. b) Image
showing the 3d-printed PLA ring used to mount the transducers in the magnet bore.
c) Line of eight droplets of diameters 0.4–3.0 mm (30 nL–14 µL) levitating in the
bore of the magnet, with position controlled by the acoustic-transducers.

For all experiments discussed in this chapter the magnetic field strength at the centre
of the solenoid was set to B0 = 17.4 T, leading droplets to levitate approximately
11 cm above the centre of the solenoid. This resulted in a value of κ = −0.903
(see chapter 2.5) for ρ1 = 998.2 kgm−3, ρ2 = 1.2 kgm−3, χ1 = −9.03 × 10−6

and χ2 = 4.0 × 10−7 [42], [135]–[137], ρ1 and χ1 being the density and volume
magnetic susceptibility of water and ρ2 and χ2 being the density and volume magnetic
susceptibility of air.

The bore was fitted with a custom, 3d-printed polylactic acid (PLA) ring of outer
diameter 57 mm, inner diameter 39 mm and height 20 mm (see figure 6.1a,b). This
ring contained two 10 mm diameter ultrasonic transducers (CamdenBoss CTD40K1007T),
positioned diametrically opposite each other and aligned along a horizontal axis such
that their faces were perpendicular to the edge of the ring, as shown in figure 6.1a,b.
The transducers were wired in parallel, driven in-phase, and connected to a function
generator (Stanford Research DS345), which was used to drive the transducers with
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frequencies of 37–40 kHz and up to a maximum peak-to-peak voltage, Vpp, of 20 V.
The ring was fitted in the bore of the magnet such that the central horizontal plane
of the ring intersected with the stable equilibrium levitation position of a diamagnet-
ically levitated water droplet. Despite containing some ferromagnetic material, the
operation of the transducers was not affected by the presence of the strong magnetic
field produced by the superconducting magnet. Images were taken using a camera
and the optical set-up arranged as described in chapter 3.2.

In experiments an atomiser was used to spray a fine mist of distilled water above
the magnet, which then descended into the magnet bore. From preliminary experi-
ments, it was found that the friction between the fluid and the atomiser nozzle led
to a small amount of charge build up on droplets. For most experiments we required
the droplets to be uncharged, as we could not account for additional electrostatic
forces between droplets, but for a small subset of our experiments we took advantage
of this charging phenomena (see section 6.8.2). To make sure no charge leaked onto
atomised droplets we used an atomiser with a tank, neck and nozzle constructed from
brass. The atomiser was then grounded for all experiments we wished to produce
uncharged droplets.

To test that this set-up produced uncharged droplets, we carried out a small
number of experiments where we sprayed the atomiser above the magnet bore in the
absence of the PLA ring and ultrasonic transducers, with the atomiser both grounded
and ungrounded. In experiments where the atomiser was ungrounded, the mist would
coalescence into several well separated droplets, each repelling each other due to the
electrostatic charge build up on each of the individual droplets. In experiments when
the atomiser was grounded, the mist coalesced into a single larger droplet, providing
clear evidence that this method is able to produce uncharged atomised droplets.

With the acoustic transducers switched off, the mist of droplets coalesced as one
larger droplet at the stable levitation point, as described above. When a voltage
was applied to the transducers and the experiment repeated, the mist coalesced into
several well-separated droplets, each levitating in stable equilibrium. Figure 6.1c
is a photograph, taken from an angle looking down the axis of the magnet bore,
showing the formation of eight separate droplets from the mist. The droplets in this
experiment have diameters in the range 0.4–3.0 mm (volume 30 nL–14 µL), and are
separated by approximately 5 mm. The two centre droplets lie approximately 2 mm
from the axis of the bore. This image is representative of all experiments we per-
formed using this method: while the sizes of the individual droplets show some vari-
ation between repeat experiments, the position and spacing between the droplets is
constant for a given frequency and voltage. The technique usually produced droplets
that were larger closer to the axis, since the diamagnetic force funnelled the mist
toward the axis as it descended, though in principle droplets with uniform size could
be levitated.
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6.3 Levitation points of droplets

To calculate the levitation position of droplets requires knowing all the forces acting
on the droplets. The magnetic and gravitational forces acting on a droplet can be
calculated from the gradient of the magnetogravitational potential umg, as described
in chapter 2. The acoustic radiation force acting on a droplet may be calculated
from the gradient of the Gor’kov potential [138],

uacoust =
3V

2

[
f1

⟨p2⟩
3ρ2c22

− f2
ρ2⟨u2⟩

2

]
,

f1 = 1− ρ2c
2
2

ρ1c21
,

f2 =
2(ρ1 − ρ2)

2ρ1 + ρ2
.

(6.1)

Here, c1 is the speed of sound in water and c2 is the speed of sound in air at room
temperature and pressure , and ⟨p2⟩ and ⟨u2⟩ are the mean square amplitudes of the
pressure and velocity of air, respectively. For our case of water in air f1 ≈ f2 ≈ 1.

The Gor’kov potential is only valid in the limit that the maximum radial extent
of the object considered is less than the wavelength of the acoustic field it is placed
in. In experiment, the transducers are driven at frequencies from 37–40 kHz, hence
produce sound waves with an acoustic wavelength of 8.65–9.35 mm, which is signifi-
cantly greater than the maximum radius of water droplets studied Rmax ∼ 3.0 mm.
Therefore, this approximation is valid for the case being studied.

To find levitation points requires finding locations within the magnet bore at
which the net force on a droplet is zero. These points must also satisfy the condition
that if the droplet is perturbed away from such a location in any direction, the
droplet experiences a restoring force directly opposing this motion. Due to the fact
that all forces acting on a droplet may be expressed as the gradient of a potential,
we may express the net force on a droplet as the gradient of some total potential

utotal = umg + uacoust. (6.2)

At locations of local minima in utotal droplets experience zero net force and all restor-
ing forces act in a direction towards the local minima. Hence, levitation points may
be found by finding the locations of local minima of the total potential within the
magnet bore.

Due to fact that both umg and uacoust are proportional to the volume of droplets
V (see equation (2.12) and (6.1)), it follows that utotal must also be proportional to
V . We define the total, magnetogravitational and acoustic potential energy densities
to be

Utotal = utotal/V, Umg = umg/V, Uacoust = uacoust/V. (6.3)

Since all potential energy densities considered here are directly proportional to the
volume of droplets, local minima that exist in the potential energy must also exist
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Figure 6.2: Half sections of the experimental domain. The 3D renders have been
split down the y = 0 and x = 0 planes respectively. The black regions denote the
surface of the transducers, the dark grey regions denote the surfaces of the PLA
ring and the light grey regions denote the surface of the superconducting magnet
bore. The red surfaces are to denote the internal cross-section of the PLA ring and
transducers.

in potential energy density. From now on we shall work with the potential energy
densities for ease of calculation.

6.4 Modelling ultrasonic transducers

To calculate the Gor’kov potential it is necessary to know the pressure field and
velocity field of the external fluid. For ultrasonic transducers a variety of methods
to approximate these fields exist, the most relevant of which shall be discussed in
the following section. Although to begin with, we shall give a brief overview of the
generalised equation and domain which we are using to calculate these fields.

6.4.1 Mathematical model

We model the air in the magnet bore using the compressible Euler equations. For
small perturbations to the background pressure field, as in our system, the com-
pressible Euler equations may be reduced to the linear acoustic wave equation (see
Landau and Lifshitz [139] chapter 8).
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To give a better view of the internal geometry of the domain figure 6.2 shows two
half sections of the domain, one where the domain has been split along the y = 0
plane and the other where the geometry has been split along the x = 0 plane. Here,
the black regions are the transducer faces, the dark grey regions are the surface of the
3D-printed PLA ring and the light grey regions are the bore of the superconducting
magnet.

In our experimental setup, we set the transducer faces to oscillate in phase at a
given frequency to generate sound waves. The appropriate boundary condition here
is that the velocity of the fluid normal to the transducer face is equal to the velocity
of the transducer face. Due to the materials which the magnet bore and PLA ring are
constructed from it is reasonable to assume that these surfaces reflect sound waves
generated by the transducers. Hence, it is appropriate to enforce acoustic boundary
conditions on these surfaces [140], [141]. A more in-depth discussion of acoustic
boundary conditions shall be given in section 6.4.4.

In addition to these surfaces, the domain extends both vertically up and down.
No surfaces or objects block the fluid in either direction and therefore inhibit the
flow of the fluid. When modelling these regions we treat them as open boundaries.

6.4.2 Rayleigh-Sommerfeld model

Traditionally ultrasonic transducers have been modelled using the piston source
model. In this case, the transducer is modelled as a rigid piston embedded in free
space, where the face of the transducer oscillates at an angular frequency ω, see figure
6.3. The pressure field produced in a fluid by such a system may be calculated by
evaluating the Raleigh-Sommerfeld integral [142]

p(x, ω) =
−iωρ

2π

∫
S

v(xs)
eikR

R
dS(xs), (6.4)

where v is the velocity of the surface of the transducer, R is the distance between
the point x and the source point xs on the surface of the transducer, ρ is the density
of the fluid and k is the wavenumber related to ω by ω = ck, where c is the speed of
sound in the fluid. A further simplification can be made assuming that velocity v is
constant over the surface of the transudcer,

p(x, ω) =
−iωρv

2π

∫
S

eikR

R
dS(xs). (6.5)

Since most transducers are circular (including ours), the Rayleigh-Sommerfeld inte-
gral for a circular piston of radius a given in terms of cylindrical polar coordinates
(ϱ, φ, z) is

p(x, ω) =
−iωρv

2π

∫ 2π

0

∫ a

0

eikR

R
ϱsdϱsdθs,

R =
√
ϱ2 + ϱ2s − 2ϱϱs cos θs + z2,

(6.6)
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xs

x

R

z
θ̂

Figure 6.3: Circular planar piston situated in a plane denoted by the hashed re-
gion. The fluid is located in the region z ≥ 0, where here z is the coordinate axis
perpendicular to the face of the piston. The velocity of the fluid in contact with the
surface of the piston is v in the direction normal to the piston.

where coordinates with subscript s denote a point located on the piston’s surface.
Solutions along the central axis (ϱ = 0 & R =

√
ϱ2s + z2) are the most straightforward

to find analytically:

p(z, ω) = ρcv
(
eikz − eik

√
a2+z2

)
. (6.7)

Asymptotic solutions can be obtained in the far field limit in which R ≫ a:

p(x, ω) = −iωρva2
eik|x|

|x|
J1(ka sin θ̂)

ka sin θ̂
, (6.8)

where θ̂ is the angle created between the central axis of the transducer and the line
connecting the origin and the point x and J1(x) is a first-order Bessel function of the
first kind.

6.4.3 Matrix method for reflections

For most applications where the pressure field of an array of small ultrasonic trans-
ducers needs to be determined, equation (6.8) is used [118], [119], [124], [143]. In this
case, the pressure field is calculated by summing the contributions of the pressure
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field for each transducer. This process is computationally very quick, due to the fact
a single analytical equation is being used to define the pressure field produced by
each transducer. The downside to this method is it fails to account for reflections
created by sound waves reflecting off nearby objects/surfaces.

In many cases reflected sound waves can significantly change the pressure field and
ignoring them therefore leads to significant errors. To account for this, a technique
called the matrix method was developed that accounts for reflections by calculating
the pressure field on a given surface [144], [145]. By discretising the surface into
surface elements, each surface element can be treated as a point source with strength
proportional to both the pressure at its location and its area. A new pressure field
can then be calculated at each point in the domain by summing over the pressure
fields created by this set of point sources. By then evaluating this new pressure field
at other surfaces that are present in the domain the process described above can be
repeated. Repeating this process, reflecting the pressure field off alternating surfaces,
creates a series of pressure fields which may be summed together to approximate the
effect of reflections within the domain.

This technique is known to be very effective, but only if the objects/surfaces being
considered do not form a single continuous loop or are spaced a suitable distance away
from each other (see figure 6.4), such that there is an air gap between surfaces [145].
This is due to the fact that surfaces are discretised and then evaluated as point
sources. So in the case where there are multiple separated surfaces, the pressure field
produced by each surface element is allowed to decay as it propagates back towards
the other surfaces in the domain. In the case where there is only a single continuous
surface, reflections are evaluated on the same surface for each iteration of the series.

We now consider a surface that has been discretised such that the distance be-
tween the centre of each neighbouring element is several orders of magnitude less
than the wavelength of the sound being produced, λ. Considering a small subset of
adjacent elements on the surface, we can assume the pressure at the centre of each
element is roughly equal, due to the fact that the pressure field is continuous and
varies on scales comparable to λ. If we now consider evaluating the pressure on one of
these surface elements just due to the contributions from its neighbours, we can see
that the pressure is approximately proportional to its previous value multiplied by
the number of neighbours, due to the fact that pressure sources radiating from each
neighbour do not decay over such small length scales. Hence this configuration leads
the pressure field to grow on the surface for each iteration, leading to an unbounded
solution. This result can also occur if surfaces are placed too close together causing
the matrix method to break down.
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a) b)

Figure 6.4: Examples of surfaces and domains for which a) the matrix method can
model reflections and b) fails to model reflections.

6.4.4 The linear acoustic equation

Another equivalent technique to model ultrasonic transducers is to solve the linear
acoustic equation (the wave equation)

∇2p− 1

c2
∂2p

∂t2
= 0, (6.9)

where pressure is related to the velocity field u by

∇p = −ρ∂u
∂t
. (6.10)

As before, transducers are treated as simple rigid pistons oscillating at angular fre-
quency ω, therefore the time dependence of solutions can assumed to be periodic,
allowing for the reduction of equation (6.9) to the Helmholtz equation

∇2p+ k2p = 0. (6.11)

The equivalence of both methods presented here can be seen by realising that equa-
tion (6.4) is an integral of the Green’s function of equation (6.11) over the surface of
the transducer.

To solve equation (6.11) boundary conditions must be applied. On the surface
of a transducer S, it is assumed that the surface is oscillating at velocity v, hence
the fluid in the domain must be travelling at the same velocity as the surface of the
transducer due to the kinematic condition. Therefore, the Neumann condition given
below is enforced:

n̂ · ∇p = −iωρv. (6.12)

To all other boundaries, the acoustic boundary condition is applied, which is given
in the form of a Robin boundary condition [140], [141]:

n̂ · ∇p = − iωρ

Za

p, (6.13)
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here Za is the acoustic impedance between the fluid in the domain and the boundary.
In the case that Za is large we find the zero Neumann boundary condition

n̂ · ∇p = 0. (6.14)

This condition is used in the case of hard walls, where it is assumed all incident
pressure waves on the surface are reflected. It is also used in the case of symmetry
planes. In the case where Za is small, we find the zero Dirichlet boundary condition

p = 0. (6.15)

For open boundaries, this condition is required to be enforced infinitely far away from
the sound source. This is an issue when solving this problem numerically, as most
numerical methods (e.g. the finite element method, the finite difference method, the
volume of fluid method) require finite spatial domains.

6.4.5 Perfectly matched layers

Several techniques have been developed to allow for the modelling of open boundary
conditions when using finite spatial domains. These include absorbing boundary
conditions [146], [147] and Dirichlet to Neumann maps [148], [149], but here we shall
focus on the perfectly matched layer (PML) method [150]–[152]. In this method,
additional absorbing layers are added to the outside of the domain of interest. In
these layers, a coordinate transform is used to damp the amplitude of outgoing waves
so that when they meet the outer boundary of the domain the amplitude of these
outgoing waves is approximately zero, and hence a simple zero Dirichlet boundary
condition or similar can be used. Properties must be carefully chosen to match
the domain of interest to these absorbing layers otherwise a mismatch across this
boundary may lead to spurious reflections. Here we shall first demonstrate this
technique in 1 dimension, then demonstrate how it can be applied in 3 dimensions,
with examples of PMLs of different forms, following closely the examples given in
Deakin [152].

The Helmholtz equation in 1D is simply

d2u

dz2
+ k2u = 0. (6.16)

We shall enforce the boundary conditions u(0) = 1 and u′(0) = ik, where in this case
the prime denotes differentiation with respect to x. The solution here is

u(x) = eikx. (6.17)

We are interested in u only at real coordinates, but the main principle of the
PML method is that u is evaluated along a path through complex space. Hence,
we apply a coordinate transform which maps the real coordinate x to a complex
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coordinate x̃(x). We shall now focus our attention on two distinct regions, the
domain of interest, z ∈ [0, X] and the domain of the PML, x ∈ [X,X + δ]. Here X
is the width of the domain of interest and δ is the width of the PML. We impose
x̃(x) = x for x ∈ [0, X], so that the solution to the Helmholtz equation in the domain
of interest remains unchanged. If the Helmholtz equation is now expressed in terms
of the transformed coordinate x̃(x), it is found that

d2u

dx̃2
+ k2u =

dx

dx̃

d

dx

(
dx

dx̃

du

dx

)
+ k2u = 0,

(6.18)

where the Jacobian of the transformation is

γ =
dx̃

dx
, (6.19)

hence
1

γ

d

dx

(
1

γ

du

dx

)
+ k2u = 0. (6.20)

It is common notation to define transformations in terms of an absorbing function
σ(x) [150]–[152], so that

γ(x) = 1 +
i

k
σ(x). (6.21)

Absorbing functions are real, positive valued functions that equal zero in the domain
of interest. The solution to equation (6.18) can now be written in terms of the
original coordinate x as

u(x) =

{
eikx x ∈ [0, X],

eikxe−
∫ x
X σ(x′)dx′

x ∈ [X,X + δ].
(6.22)

Here it can be seen that by analytically continuing x into the complex plane for
x > X we have managed to retain our solution in the domain of interest but the
solution now exponentially decays in the PML. The absorbing function we shall use
in our implementation of PMLs was proposed by Bermúdez et. al [150], and is given
by

σ(x) =

{
0 x ∈ [0, X],

1
X+δ−|x| x ∈ [X,X + δ].

(6.23)

Therefore our solution in this case is

u(x) =

{
eikx x ∈ [0, X],

eikx(1− |x|−X
δ

) x ∈ [X,X + δ].
(6.24)

From the above formulation it can be seen that the Bermúdez absorbing function
leads to solutions that decay linearly to zero across the width of the PML. A plot of
this solution is given in 6.5.
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Figure 6.5: Plot of real and imaginary components of equation (6.24). Dashed black
lines show the linear decay envelope in the PML region. Dashed red and blue lines
indicate the solution in the absence of the PML.

A similar derivation can be made in 3 dimensions. The Helmholtz equation in
transformed coordinates is now

∇̃ · (∇̃u) + k2u = 0. (6.25)

Just as in the 1D case the transformed coordinates have been mapped to the complex
plane inside the PML region, except now x̃(x) is a vector. Writing the Helmholtz
equation in terms of x gives(

γ−1
)T

∇ ·
((

γ−1
)T

∇u
)
+ k2u = 0, (6.26)

where the Jacobian of the transformation γ, is now the matrix

γij =
∂x̃i
∂xj

. (6.27)

The simplest case of PMLs in 3D is given by the axis-aligned case, where PMLs are
perpendicular to the x, y and z axes respectively. Here we shall consider our domain
of interest to be a cuboid bounded by |x| < X, |y| < Y and |z| < Z. In this case,
the Jacobian is

γ =

γx 0 0
0 γy 0
0 0 γz

 , (6.28)
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where

γxi
= 1 +

i

k
σ(xi). (6.29)

In this case, the elements of the Jacobian are identical to the Jacobian in the 1D
case along their respective axes.

We will now consider some simple PMLs in both spherical polar and cylindrical
polar coordinates, denoted by (r, θ, ϕ) and (ϱ, φ, z) respectively. In the spherical
case, we shall define our PML to be the region r ∈ [R,R + δ], which is a spherical
shell that surrounds the domain of interest. In the cylindrical case we shall define
our PML to be a similar region ϱ ∈ [R,R + δ], which is a cylindrical annulus that
surrounds the domain of interest. It can be noticed that in both these cases we only
need to transform our coordinates along the radial axis, hence we find the Jacobians
to be

γs =

γr 0 0
0 1 0
0 0 1

 , γc =

γϱ 0 0
0 1 0
0 0 1

 , (6.30)

where γr and γϱ are simply given by equation (6.29), where xi in this case is the
radial coordinate in each respective coordinate system. When implementing PMLs
in numerical models it is often useful to give them in terms of Cartesian coordinates.
This may be done by expanding the Jacobian:

γij =
∂x̃i
∂xj

=
∂x̃i
∂η̃k

∂η̃k
∂ηl

∂ηl
∂xj

. (6.31)

Here xi represents the Cartesian coordinate system and ηi represents a polar coordi-
nate system.

6.4.6 The finite element method

Due to the complicated geometries of many real-world problems a variety of numerical
methods have been developed to solve different partial differential equations (PDEs),
such as the Helmholtz equation, when analytical solutions are impossible to attain.
Here we shall focus on one of the most widely used methods, the finite element
method (FEM).

To begin with, FEM requires equations to be rewritten in their weak formulation.
This is done by multiplying by a ‘test function’ ϕ and integrating over the whole
domain Ω. For the Helmholtz equation, this gives∫

Ω

(
∇2u+ k2u

)
ϕdV = 0 (6.32)

where, using Green’s first identity, we may rewrite the equation as∫
Ω

∇u · ∇ϕdV −
∫
∂Ω

ϕ(∇u) · n̂dS −
∫
Ω

k2uϕdV = 0 (6.33)
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Here both u and ϕ are assumed to be elements of Hilbert spaces, and we shall assume
that both u and ϕ belong to the same Hilbert space H.

The function space to which our functions belong, H, is infinite dimensional.
To be able to find numerical solutions to u we require our functions to exist in a
finite-dimensional space. Therefore, we construct the approximation

u ≈ uh =
n∑

i=1

uiψi(x). (6.34)

Here we have split our function into n subdomains called elements. On each element,
we approximate the field with a linear combination of polynomial shape functions ψi,
of order p. Shape functions are only non-zero inside the element they are associated
with. Meaning these shape functions form an orthonormal basis for the domain Ω,
since the L2 norm over the domain ⟨ψi, ψj⟩L2 is only non-zero if i ̸= j. A simple
model example of discretisation using shape functions is shown in figure 6.6. In the
Galerkin method, test functions are chosen to be given by the basis function ψj,
hence ∑

i

ui

∫
Ω

∇ψi · ∇ψjdV −
∑
i

ui

∫
∂Ω

ψj(∇ψi) · n̂dS

−
∑
i

k2ui

∫
Ω

ψiψjdV = 0.

(6.35)

If we now chose n test functions ψj, we form a system of n equations, with n unknown
coefficients ui.

Our system of equations can now be discretised and boundary conditions enforced.
This leads to a problem of the form

Auh = b, (6.36)

which is a linear system of equations where uh is the vector containing the coeffi-
cients ui, A is an n × n matrix containing the coefficients of ui in each equation
j and b is an n dimensional vector. Linear systems of equations, such as equa-
tion (6.36), are ubiquitous in maths and physics, hence a multitude of numerical
methods have been developed to tackle such problems. These include Gauss-Jordan
elimination, lower-upper factorization, eigenvalue decomposition and singular value
decomposition [153], [154].

We have shown how to formulate the FEM to solve the Helmholtz equation (6.11),
but as mentioned previously FEM can be used to solve a variety of PDEs. We will
not demonstrate it here but it can be shown that an almost identical formulation is
needed in order to solve equation (6.26) using FEM [150].

6.5 Validating our numerical model

Due to the geometry of our physical set-up, it was found that reflected pressure
waves contributed significantly to the total acoustic field. Since our transducers
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Figure 6.6: 1D example of discretisation of a function using order 1 polynomial
shape functions. Here the blue curve u has been approximated with uh (dot-dash
blue line), where uh is constructed from a linear combination of polynomial shape
functions ψi (black lines). The shaded blue region denotes a single shape function,
which is equal to unity at node 1 but zero at all other nodes.

were mounted on the inside of a cylindrical surface we were unable to model these
reflections using the matrix method described in section 6.4.3. Therefore, we solved
the Helmholtz equation inside the domain, as described in section 6.4.4. PMLs were
employed on certain edges of the domain as they required open boundary conditions.
To do this we used the open source software package FreeFEM to solve equation
(6.26) using FEM [155]. An introduction to the FreeFEM code base and language
is available at the FreeFEM website [156]. A large number of examples are given on
the FreeFEM website, of significant interest to anyone trying to recreate the simula-
tions presented in this thesis is the example acoustics . An additional resource that
helpfully shows how to implement PMLs in FreeFEM is given in the accompanying
example scripts created for use with the book Laude [157].

To validate our implementation of PMLs in FreeFEM we compared calculations
of the pressure field for a circular piston source embedded in a planar surface to
solutions computed using the Rayleigh-Sommerfeld integral (6.7). Here we take our
transducer to be at the origin pointing along the z axis, hence we only consider the
domain z > 0.

Figure 6.7 shows plots of the gauge pressure (change in pressure relative to the
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Figure 6.7: Plots of pressure along the central axis of the transducer for both real
(left) and imaginary (right) components of pressure.

Figure 6.8: Plots of the Real component of the pressure field for the FEM solution
(left) and the far field approximation (right).
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Figure 6.9: Schematics showing the geometry of the numerical domain. Dashed
regions denote perfectly matched layers and dotted lines denote symmetry planes.

Figure 6.10: 3D rendering of numerical domain used in simulations. The red region
denotes Perfectly matched layers.
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background atmospheric pressure) along the central axis of a 10 mm diameter trans-
ducer. Here we set the frequency of the transducer to be oscillating at 40 kHz,
where the speed of sound in air was taken to be 346 m s−1. We shall define p0 to be
the pressure at the central point on the surface of the transducer, which is simply
equation (6.7) evaluated at z = 0. For these examples, we have normalised all our
pressure fields using |p0|. From figure 6.7 it can be seen that there is good agreement
between the analytical solution and our FEM solution. The far field approximation
is seen to approach both the analytical and FEM solutions after approximately 1–2
wavelengths, as expected. Surface plots of the pressure field for the FEM solution
and the far field approximation are shown in figure 6.8. The far field approxima-
tion and FEM solution are in excellent agreement, except for the region within 1–2
wavelengths of the surface of the transducer.

6.6 Numerical domain

Here we present the numerical domain used to simulate the pressure field in exper-
iment. We modelled the volume of the domain inside the ring by the union of the
volume of two cylinders, one of diameter 39 mm with its central axis orientated along
the vertical axis z, and one of diameter 10 mm with its central axis orientated per-
pendicular to z, which we shall label x, where the faces of the second cylinder were
tangent to the edge of the first cylinder (see figures 6.9 and 6.10).

Outside the PLA ring open boundary conditions were required. We implemented
these using PMLs at the edges of these regions, see figures 6.9 and 6.10. We did not
model the inside of the magnet bore and instead enforced open boundary conditions
on the edge of the domain instead. This is because the magnet bore was sufficiently
far away from the internal domain of the ring that reflections from the wall were
minimal. Doing this allowed for a reduction in the overall domain volume, so a
reduction in computational costs. The symmetry of the problem allowed us to reduce
the domain to the ’wedge-shaped‘ domain shown in figure 6.10, further reducing the
computational cost.

6.7 Amplitude of acoustic potential

To calculate the Gor’kov potential our simulations required two input parameters:
the wavenumber k = ω/c2 and the root mean square velocity of the transducer faces,
vrms. The speed of sound in air may be calculated from the ideal gas law with the
equation

c2 = C
√
T0 + T , (6.37)

where C = 20.05 m s−1K−1/2, T0 = 273.16 ◦C is the conversion factor from degrees
Celsius to degrees Kelvin and the temperature in our lab was T = 20± 2 ◦C.

It is known that the pressure field produced by a circular piston using the planar
piston model is directly proportional to the velocity of the surface of the transducer
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Figure 6.11: a) x coordinates of minima in Utotal as a function of the velocity of
the surface of the transducer, for the transducer operating frequency 37.4 kHz. Utotal

was found from simulation, as described in the text. Multiple stable levitation points
exist for a single value of vrms. b) vrms as a function of peak-to-peak voltage, for our
transducers operating at a frequency 37.4 kHz. Dashed red lines is a piecewise linear
function fitted to the data.

v. The velocity v is a function of the voltage supplied to the transducer and the
angular frequency of the transducer, i.e., p(x, ω) ∝ v(Vpp, ω), where p is the pressure
at a location x in the domain and Vpp is the peak-to-peak voltage used to drive the
transducers.

We determined the relationship between vrms and Vpp experimentally. To find this
relationship we obtained the |x| coordinate of stable levitation points as a function
of vrms from simulation (see figure 6.11a). Due to the symmetry across the y = 0
plane if a stable levitation point exists at x one must also exist at −x. It should be
noted that multiple stable levitation points may occur for a single value of vrms (see
figure 6.11a). We shall denote the location of the innermost stable levitation point
as x1(vrms) and the adjacent levitation point as x2(vrms).

We then compared these results to experimental results of stable levitation points
as a function of Vpp. We stably levitated four droplets in the four most central traps
of our Sonomaglev setup at Vpp = 20 V and recorded their x positions. We then
incrementally decreased Vpp by 1 V until the droplets became unstable and eventually
coalesced until a single droplet residing at x = 0 mm, recording the x position of
the stably levitating droplets at each voltage. Multiple droplets stably levitated in
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our setup for Vpp = 8–20V. We calculated the mean |x| location for the inner two
and outer two droplets respectively, to obtain an average value for the experimental
x location of stable levitation points. We shall denote the average x location of
the innermost stable levitation point as X1(Vpp) and the outermost stable levitation
point as X2(Vpp).

To calculate the relationship between Vpp and vrms, we found the value of vrms

which minimised√(
x1(vrms)−X1(Vpp)

)2
+
(
x2(vrms)−X2(Vpp)

)2
for each value of Vpp. In the case X2(Vpp) didn’t exist we found the value of vrms

which minimised
x1(vrms)−X1(Vpp).

The maximum value from either of these procedures was found to be 0.017 mm.
For the transducers operating at a frequency of 37.4 kHz we found vrms ∝ Vpp for
Vpp ≤ 13 V. For Vpp > 13 V vrms varies non-linearly with Vpp, and plateaus at
vrms ≈ 4.3× 10−4 ms−1 for Vpp ≳ 18 V. A continuous piecewise linear fit was fitted
to the data, as can be seen in figure 6.11b.

6.8 Results

6.8.1 Levitation of multiple droplets

Figure 6.12a shows a contour plot of the magnetogravitational potential energy den-
sity Umg for water in air. The blue circle in the figure marks the location of a local
minimum in Umg, i.e. the location of the stable levitation point. We take this point
to be the origin of a coordinate system in which the x− y plane is perpendicular to
the axis, z, of the solenoid, and in which the x axis intersects the centres of the faces
of both transducers. The magnetic field strength at this point is B ≈ 11 T.

Figure 6.12b and c show plots of the total potential energy density. The simu-
lations show that the addition of the acoustic field modulates the potential energy
density, Utotal, giving rise to multiple potential minima, ‘wells’, along the x-axis (fig.
6.12b, c). Unlike Umg, Utotal is not cylindrically symmetric about the z (solenoid)
axis. Figure 6.12b shows Utotal in the y = 0 plane. Blue circles indicate the positions
of each well. The two central wells lie on the x-axis, i.e. on the line passing through
the centres of the two acoustic transducers. The vertical, z, location of each well
increases as a function of |x|, increasing to z = 3 mm for the wells farthest from
the axis, at |x| = 17 mm. This variation in height results from the shape of Umg, in
particular an octupole contribution to Umg. Figure 6.12c shows Utotal in the z = 0
plane, and includes a photograph of levitating droplets taken from an angle looking
down the bore (i.e. down the z axis), superposed on the contours.
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a)

b)

c)

Figure 6.12: a) Slice through the calculated magnetogravitational potential,
Umg(x, y, z), in the y = 0 plane. The coordinates x, y, z are as defined in figure
6.1; the location of the local minimum in Umg (blue circle) defines their origin. b)
Slice through the calculated total potential Utotal(x, y, z), which is the sum of Umg

and the acoustic potential Uacoust, in the y = 0 plane. Blue circles indicate the local
minima. N.b.: whereas Umg is cylindrically symmetric about the z axis, Utotal is not.
c) Slice through Utotal(x, y, z) in the z = 0 plane. The locations of the minima closest
to the bore axis lie on this plane; the others lie at slightly higher z as shown in the
centre panel. The superposed photograph shows water droplets levitating at local
minima in Utotal.
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a) b)

c) d)

Figure 6.13: Images of a cloud of charged droplets before a) and c), and after b)
and d), the addition of the acoustic field. Figures a) and b) display images taken
from experiment. Figures c) and d) display the same images overlaid with a slice
through Utotal in the z = 0 plane. Droplets are coloured red to differentiate them
from the background.

6.8.2 Visualising ultrasound fields using charged droplet clouds

Figure 6.13a,c shows a cloud of charged droplets levitating in the bore of the Cryo-
genic magnet in the absence of an acoustic field. Due to electrostatic forces between
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the droplets they collectively form the shape of the magnetogravitational potential
trap, so as to minimise the total energy of the system. The shape of the trap in the
x − z plane is given in figure 6.12a. Due to the limitation of our imaging set-up,
we were only able to capture a top-down view of the droplet cloud, as inserting an
object such as a mirror into the PLA ring would affect the acoustic field. From this
view the droplet cloud is observed to attain a circular shape, as expected due to the
rotational symmetry of the magnetogravitational potential trap.

Figures 6.13b,d shows the same charged droplet cloud as in 6.13a,c with the
ultrasonic transducers powered with Vpp = 20 V. The addition of the acoustic field
applies additional acoustic radiation forces to the droplets resulting in rearrangement
of the droplets as they find the minimum energy of the new system. The number and
size of the droplets in figure 6.13 can be seen to differ before and after the addition of
the acoustic field. This is due to droplets undergoing coalescence, as the addition of
acoustic radiation forces overcame the electrostatic forces separating certain droplets,
leading to the growth of several larger droplets observed near the axis of the magnet
bore (figure 6.13b,d). The creation of additional smaller droplets was also observed,
due to the ejection of satellite droplets during droplet coalescence [158].

Droplets rearranging themselves to minimise the total energy of the system leads
to them residing in the potential wells of Utotal. Figure 6.13a,b display the charged
droplet cloud before and after the addition of the acoustic field, whereas figure 6.13c,d
displays the same experimental images but overlaid on contours of Utotal at z = 0.
Although only a 2D slice of Utotal in the x − y plane is displayed in these plots,
by comparing them to figure 6.12a,b it can be seen that potential wells to a good
approximation occupy the same horizontal extent independent of vertical location
close to their minima, but the minima of the wells occur at different horizontal
locations, hence the cross section at z = 0 gives a good representation of the shape
of potential wells.

From figure 6.13 it is clear that the ensemble of charged droplets are able to denote
the location of potential wells in Utotal, hence allowing for the visualisation of the
wells by imaging the droplets. Good agreement is found between the experimental
location of the charged droplets and the simulated shapes of potential wells, see figure
6.13c,d.

6.8.3 Positioning of levitated droplets

We were able to adjust the horizontal (x) positions of the levitating droplets by
varying the peak-to-peak voltage Vpp applied to the transducers. Figure 6.14 shows
a montage of photographs displaying the horizontal position of two levitated water
droplets close to the solenoid axis as a function of Vpp. In this particular experiment,
the larger of the two droplets, which was closest to the solenoid axis had a diameter
of 1.93 ± 0.05 mm and the smaller of the droplets, which was situated at positions
further away from the axis, had a diameter of 1.19 ± 0.05 mm. The uncertainty
in the measurement of the diameters of the droplets is attained from the resolution
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a)

b)

Figure 6.14: a) Montage of images of two levitating droplets showing the variation
in their horizontal position, x, as Vpp was reduced from 20 V to 8 V. Down-pointing
arrows indicate the voltage below which droplets lost equilibrium. b) Measured
x-coordinates of the centres of the droplets. In both plots, red circles show the
calculated x-coordinates of local minima in Utotal. The blue unbroken lines indicate
the x-coordinates of the two minima at Vpp = 20 V.

of the optical set-up. Note that, since the total potential energy density, Utotal, is
independent of volume, the positions of the stable equilibrium points are independent
of the volume of the droplets. When the transducers were driven with a peak-to-
peak voltage of Vpp = 20.0 V, the larger droplet levitated with its centre at x =
2.16 ± 0.03 mm and the smaller levitated with its centre at x = 7.21 ± 0.03 mm,
were the levitation of both was stable. When the voltage was decreased from Vpp
from 20 V to 15 V, the position of the smaller droplet decreased from x = 7.21 mm
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to 6.85 ± 0.03 mm, while the position of the larger droplet decreased slightly from
x = 2.16 mm to 2.06 ± 0.03 mm. On decreasing the voltage further to Vpp 15 V,
the smaller of the two droplets lost equilibrium, as the depth of the local potential
well was reduced to zero, and the smaller droplet ‘fell’ towards the larger droplet,
resulting in coalescence between the two droplets. Further decreasing Vpp from 14 V
to 8 V, we found that the equilibrium position of the centre of the remaining large
droplet decreased from x = 2.06 mm to 1.50 ± 0.03 mm. Below Vpp = 8 V, this
droplet also lost equilibrium and ‘fell’ radially towards the solenoid axis, finding a
new equilibrium position at the origin. The equilibrium positions obtained from both
simulation and experiment are shown together in figure 6.14, for comparison.

6.8.4 Whispering gallery modes

Figure 6.15: Contour plots of a horizontal cross-section of Uacoust along the z =
0 plane. Transducer operating frequency is 37.4 kHz (left) and 40 kHz (right).
Here Uacoust has been normalised by v2rms allowing for direct comparison between
frequencies.

In experiments, the transducer operating frequency was varied between 37–40
kHz. The nominal resonant frequency of the transducers used in our experiments was
40 kHz. It was found that due to the geometry of the domain, ‘whispering gallery
modes’ were excited when the operating frequency approached 40 kHz (see figure
6.15) [159]. This is due to the fact the wavelength of the acoustic fields produced
by the transducers operating at 40 kHz is λ = 8.575 mm, where the diameter of the
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PLA ring is approximately 4.5λ. In this configuration, the depth of each potential
well was much reduced compared to the configuration at lower operating frequencies,
which made it experimentally more difficult to trap droplets.

6.9 Summary

In this chapter, we have demonstrated that by combining techniques from both
acoustic and diamagnetic levitation, we can stably trap quiescent liquid droplets in
a series of potential wells arrayed along a horizontal line, and that the location of
these traps, and thus the droplets, may be varied precisely. By using diamagnetic
levitation to balance the vertical gravitational force on the droplets, the sound pres-
sure levels generated to make use of techniques from acoustic levitation were much
reduced compared to those of an acoustic levitator: ∼ 110 dB compared to 150–
165 dB [132], a greater than 100-fold reduction in the amplitude of the pressure.
Due to this reduced sound level, we did not observe phenomena such as vibration of
the droplets, deformation of their equilibrium shape, or instabilities in their position,
which are characteristic of acoustic levitators [1], [126], [130]. Several disciplines may
find this technique useful for a number of applications, such as in areas where par-
ticularly delicate handling of material is required, where evaporation and cooling by
the oscillating air flow are problematic or where control over the internal droplet
flow is important. Many common techniques used in biochemical analysis are com-
patible with a strong magnetic field, such as fluorescence microscopy [160], Raman
spectroscopy [161], and light scattering [162]. Hence these techniques could be used
in conjunction with future sonomaglev systems allowing for the analysis of levitated
samples.

The combination of magnetic and acoustic forces creates additional possibilities
to manipulate the droplets: here, we demonstrated controlled contactless coalescence
of two droplets by varying the ratchet-like potential Utotal, using a relatively simple
acoustic set-up consisting of two low-power transducers, a feat that otherwise re-
quires large transducer arrays [163], [164]. Droplets can also be moved vertically by
adjusting the electric current in the solenoid. With the addition of more acoustic
transducers, we anticipate that this flexibility will allow the creation of a system that
can provide spatial positioning in three directions within the bore of the magnet.

We also demonstrated a new technique to visualise the acoustic fields utilised in
experiments throughout this chapter. A number of techniques have previously been
developed to visualise acoustic fields such as: schlieren [165], [166], shadowgraphy
[165], [166], synthetic schlieren [166], [167] and optical feedback interferometry [168].
All these techniques rely upon the use of light, to image the acoustic field. This is
due to the fact small variations in the density of fluids leads to a localised variation
in the refractive index, which distorts the light rays passing through the medium and
therefore can be visualised with the appropriate optical set-up. In contrast, the tech-
nique presented in this chapter uses physical objects (charged droplets) to visualise
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the acoustic field. This could be seen as analogous to Kundt’s tube experiment [169],
[170], where a fine dust of small particles is placed throughout a tube, an acoustic
field is then generated at one end of the tube forcing the dust to settle at the nodes
of the acoustic wave. Kundts’s experiment was initially used to measure the speed
of sound in air, but is also a good visualisation of the behaviour of the acoustic wave
present in the tube.

There are several limitations of our new visualisation technique as presented
here: It can only be used to visualise the acoustic field occupying a small volume of
space; it requires the use of diamagnetic levitation and therefore the ability to create
large magnetic fields in the region that is to be visualised; the acoustic field can
only be viewed from a single orientation; and the technique only gives a qualitative
indication of the shape of acoustic wells, hence produces no quantitative data. Even
considering all of these limitations, the technique presents a novel way of visualising
acoustic fields.

It has been demonstrated that a wide variety of materials may be diamagnetically
levitated at much lower magnetic field strengths if surrounded by a paramagnetic
fluid [92], [171], [172]. Hence, a diamagnetic levitator constructed of several cheap
readily available permanent magnets where the extent of the diamagnetic trap is
filled with a paramagnetic fluid, such as an aqueous manganese chloride solution,
could easily be able to levitate a powdered diamagnetic substance, e.g. bismuth or
graphite. If an external acoustic field is then applied to the fluid, we hypothesise
that the levitated powder would move to reside in the wells of the acoustic field
and hence allow for visualisation of the acoustic field. If successful, such a system
would overcome many of the pitfalls of the aforementioned visualisation set-up, while
building upon its fundamental idea. Such a set-up would offer a much cheaper and
easier method for visualising acoustic fields than any present method, as no expensive
optical set-up or post-processing of images would be required.
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Chapter 7

Conclusions

In this thesis, we have explored the use of diamagnetic levitation to study bubbles
and droplets in zero gravity. We performed a number of experimental investigations
using a novel technique to levitate bubbles in a weightless environment, allowing
for the study of surface oscillations of bubbles as well as the contactless manipu-
lation of multiple bubbles. We presented a new experimental technique, enabling
the levitation and manipulation of multiple spherical droplets inside the bore of a
superconducting. We have also carried out numerical simulations to support our
experimental results and find good agreement between experiment and simulation in
all cases.

7.1 Chapter review

In chapter 1 we gave a brief introduction to the topics studied in this thesis and
gave an overview of several levitation techniques and the advantages they provide
over alternative methods of studying systems in weightless environments.

In chapter 2, we provided a detailed explanation of the theory behind diamag-
netic levitation. We introduced Earnshaw’s theory and discussed why it does not
apply to diamagnetic materials placed within a magnetic field. We then investi-
gated the conditions necessary for the stable levitation of diamagnetic materials and
showed these conditions are satisfied in the bore of a solenoid magnet.

In this chapter, we also introduced the superconducting magnet utilised in the
experiments presented throughout this thesis. We investigated the shape of magne-
togravitational traps produced by the magnet as a function of current through the
solenoid coil and presented a simple method to optimise the sphericity of magne-
togravitational potential traps, which was utilised in chapter 4.

In chapter 3 we introduced a novel method to levitate air bubbles surrounded
by a fluid using diamagnetic levitation. We reported on previous experiments that
had used similar techniques, but show that using our new methodology bubbles may
be levitated at room temperature whereas previous experiments required fluids to be
kept at cryogenic temperatures. Previous experiments also showed significant defor-
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mation to the shape of bubbles due to demagnetisation forces present in experiments.
In our experiments, we achieved spherical bubbles in all cases due to the dominance
of surface tension over all other forces acting on the surfaces of bubbles.

In chapter 4 we report on the nonlinear surface oscillations of bubbles. We used
the coalescence of a pair of diamagnetically levitated bubbles to introduce a large
initial axisymmetric perturbation into the bubble system and then observed the de-
cay of the surface oscillations of the bubble. We studied two cases; a symmetric
case where the radii of the bubbles before coalescence were equal (within experimen-
tal error) and an asymmetric case where the ratio of the radii of the bubbles was
approximately 1.5.

In this chapter, we also approximate the effect of the magnetogravitational po-
tential trap on the surface oscillations of bubbles. Asymptotic expansions are used
to derive a formula for the effect of the magnetogravitational potential trap on the
oscillation frequency of vanishingly small perturbations on the surface of a bubble
in the case of a spherical magnetogravitational potential trap. We use this theory
to show that we expect a negligible effect due to the magnetogravitational potential
trap on linear surface oscillations of a bubble and hence conclude the magnetogravi-
tational potential trap should have a negligible effect on nonlinear surface oscillations
too.

We also carried out numerical simulations to compare with our experimental re-
sults. A volume of fluid method was used to carry out direct numerical simulations
of the Navier-Stokes equations implemented in the open-source software Basilisk.
We present examples of the axisymmetric meshes used in simulation and show how
the mesh is adaptively refined near to the liquid-gas interface to reduce computa-
tional cost and allow for an accurate representation of the curvature of the interface
necessary for the simulation of capillary-driven flows.

For both experiments and simulations, we decompose the interface of the bubbles
into spherical harmonics to compare with the theory of Tsamopoulos and Brown [5].
Comparison of the time series for each harmonic showed good agreement between
experiment and simulation except for the n = 0 mode. This is due to the incom-
pressibility condition being enforced in the gas phase in simulation. As this was
the only discernible difference between experiment and simulation it shows that the
small volume oscillations present in the experiment had a negligible effect on all other
modes.

We then proceeded to analyse the Fourier transforms of these time series. We
found evidence of additional peaks in certain spherical harmonics due to second-
order shape corrections, as predicted by Tsampoulos and Brown. In the symmetric
case the order of magnitude of these peaks was consistent with the prediction of
Tsamopoulos and Brown but in the asymmetric case, the magnitude was at least an
order magnitude greater than predicted by theory. Other peaks were also observed
in the spectrum of the time series and we showed that some of these peaks are
consistent with the shape corrections at third-order, as predicted by M. M. Scase
(personal communication, 30 June, 2022).
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We then calculated short-time Fourier transforms of the time series. In the case
of the dominant modes, n = 2 in the symmetric case, and n = 2 and n = 3 in the
asymmetric case, we tracked the amplitude and frequency of the dominant peak.
This allowed us to compare the change in frequency as a function of amplitude. For
the symmetric case, we observed the relationship between frequency and amplitude
to be quadratic as predicted by Tsamopoulos and Brown. In the asymmetric case,
we don’t observe a quadratic relationship for either the n = 2 or n = 3 modes,
although the n = 2 mode approached the value of frequency shift predicted by
Tsamopoulos and Brown in the limit of vanishingly small amplitude. We argued
that this discrepancy between theory and our results is due to mode coupling, as
the theory of Tsamopoulos and Brown only accounts for a single mode undergoing
oscillations which is well approximated by the symmetric case.

We also analysed the viscous damping of the dominant modes. We found that
damping rates varied slightly between the experiment and simulation due to nu-
merical damping in simulation, although the qualitative behaviour was the same.
Interestingly, the damping rate of the n = 2 mode was found to have qualitatively
different behaviour in the symmetric case than in the asymmetric case. This was
assumed to be because of mode coupling.

Additionally, we comment on the observed translational motion of the bubble in
the asymmetric case. We found differing behaviour between experiment and simula-
tion due to the effect of the magnetogravitational trap in experiment not accounted
for in simulation.

In chapter 5 we introduced a new method to generate clusters of diamagneti-
cally levitated bubbles. We showed we could manipulate the configuration of these
clusters by adjusting the current in the superconducting magnet used to levitate the
bubbles. We showed examples of two bubble clusters, one constructed from seven
approximately equal-sized bubbles and one constructed from nineteen approximately
equal-sized bubbles. We presented several configurations of these clusters, including
a close-packed arrangement and a planar arrangement. We then proceeded to discuss
future use cases and applications for bubble clusters.

In chapter 6 we discussed a new experimental technique we have developed
named ‘Sonomaglev’, which combined acoustic and diamagnetic levitation. We pre-
sented our experimental set-up and demonstrated we were able to levitate and ma-
nipulate multiple spherical droplets in the bore of our superconducting magnet. We
also showed we were able to predict the position of levitated droplets using numerical
simulations. In addition to this, we present a novel technique to image the potential
field produced inside the bore of the magnet using clouds of charged droplets.

7.2 Future work

In chapter 4 we show the first experimental confirmation of the simultaneous ejection
of multiple satellite bubbles. It is known from previous studies that the number and
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size of ejected satellite bubbles are dependent on only two parameters: the Ohnesorge
number and the radii of the ratio of the bubbles before coalescence [64], [66]. A total
description of this phase space has never been mapped. We propose experiments
and numerical simulations similar to those carried out in chapter 4 could be used to
systematically study this problem.

An associated problem similar to that studied in chapter 4 is the nonlinear sur-
face oscillation of droplets. In theory, droplet coalescence could be used to study this
problem, but experimentally this proves to be exceedingly difficult. Our experiments
on bubble coalescence allow us to simply inject two spherical bubbles next to each
other and wait for them to coalesce, in which time the inertia from the motion of
the bubble is dissipated and therefore coalescence events start from rest. Applying
a similar technique for droplet coalescence has up until recently been impossible, as
droplets coalesce almost instantaneously when moved into contact with each other,
hence coalescence would start with at least one droplet in motion and in a non-
spherical shape. In chapter 6 we introduce a new experimental technique that allows
for the controlled manipulation of spherical droplets. In a small number of prelim-
inary experiments carried out using our Sonomaglev set-up, we have been able to
levitate two mm–cm droplets with a distance between the surface of the two droplets
of order 0.1 mm. By turning the transducers off we were able to bring the droplets
together and hence observed droplet coalescence. Due to the small distance separat-
ing the droplets and the weak magnetogravitational force accelerating the droplets
together, no deviation of the surface of the droplets from spherical was observed.
As well as this, the velocity of the droplets before coalescence is several orders of
magnitude less than the velocity scale of surface oscillations of the droplets, therefore
it is reasonable to treat the droplets as coalescing from rest.

In addition to the study of nonlinear surface oscillations of droplets, this technique
could also be used to study the satellite ejection of droplets due to droplet coalescence,
as previously reported on by Zhang et al. [158]. The experiments of Zhang et al. [158]
were carried out in settings with terrestrial gravity as well as requiring the pinning
of one of the droplets to the end of a capillary tube, leading to the deformation of
droplets from spherical and impinging on the free surface oscillations of the droplets.
The method proposed here has none of these setbacks and hence could lead to an
increased understanding of the underlying fluid flow.

In chapter 6 we introduce a new experimental technique, Sonomaglev. The Sono-
maglev system presented in this chapter is very simple consisting of two transducers
wired in parallel and controlled by a signal generator. Even still, the system was
able to levitate and manipulate multiple droplets. By adding more transducers, the
operating voltage and phase of each being controlled independently, we could create
systems that have much more control and flexibility in the positioning of the droplets.
Such systems could pave the way for new results in chemistry and biochemistry, as
experimental set-ups could be constructed that allow for the manipulation, mixing
and analysis of small volumes of liquid without the problems associated with the
presence of container walls, such as adsorption and contamination of the analyte, or
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measurement interference.
At the end of chapter 5 we hypothesise several use cases for the bubble clusters.

The first of which is as a tool to create new acoustic metamaterials, and the second
is as a new experimental way to study the nonlinear interactions of bubbles in an
oscillating acoustic field. In addition to this, bubble clusters make the ideal tool to
study the properties of monodisperse wet foams in zero gravity.

7.3 Closing statement

Throughout this thesis, I have explored the use of diamagnetic levitation to study
bubbles and droplets in a weightless environment. I have used this technique to test
previously untested theories and experimentally validate previous numerical results,
as well as to create a new experimental technique. I am hoping this body of work
shows how useful a tool diamagnetic levitation can be. But still, to many researchers,
diamagnetic levitation remains unknown.

Manned missions to Mars currently seem like an inevitability, but before this can
happen more research is needed on understanding certain biological and physical
processes in reduced or zero gravity conditions. To most academics, they assume
this is only possible either onboard the ISS or on parabolic flights. In a number
of cases, experiments carried out onboard the ISS or parabolic flights could have
been conducted using diamagnetic levitation, which could have saved the researchers
time, money and energy. Although diamagnetic levitation requires the use of strong
magnetic fields, usually created using superconducting magnets which require cool-
ing down to approximately 4 K, the energy required to do this for several days is
significantly less than to fly a plane for 2–3 hours or to send a rocket into space.
In the current climate crisis, the reduction in energy usage in experimental studies
should be of paramount importance where possible.

103



Bibliography

[1] A. Yarin, M. Pfaffenlehner, and C. Tropea, “On the acoustic levitation of
droplets,” Journal of Fluid Mechanics, vol. 356, pp. 65–91, 1998.
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[75] D. Plümacher, M. Oberlack, Y. Wang, and M. Smuda, “On a non-linear
droplet oscillation theory via the unified method,” Physics of Fluids, vol. 32,
no. 6, p. 067 104, 2020.

[76] I. Cantat, S. Cohen-Addad, F. Elias, et al., Foams: structure and dynamics.
OUP Oxford, 2013.

[77] C. Hill and J. Eastoe, “Foams: From nature to industry,” Advances in colloid
and interface science, vol. 247, pp. 496–513, 2017.

[78] J. Whittaker, “Cercopid spittle as a microhabitat,” Oikos, pp. 59–64, 1970.

[79] D. Andrade and A. S. Abe, “Foam nest production in the armoured catfish,”
Journal of Fish Biology, vol. 50, no. 3, pp. 665–667, 1997.

[80] L. Dalgetty and M. W. Kennedy, “Building a home from foam—túngara frog
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