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Abstract
Mental health disorders, such as depression and anxiety, are a significant global
problem affecting millions of people, leading to disability, increased mortality from
suicide, and reduced quality of life. Traditional diagnostic and evaluation methods
rely on subjective approaches and are limited by resource availability, driving the
need for more accessible and efficient methods using technology. Digital mental
health, a rapidly growing field, merges digital technologies into mental health care,
utilizing the Internet and mobile phone software to deliver mental health services.
The use of mobile health technologies, such as Ecological Momentary Assessments
and digital phenotyping, can improve depression diagnostics by generating ob-
jectively measurable markers in natural environments. Technological progress in
computer vision, natural language processing, and affective computing has also led
to the emergence of automated behavior analysis methods, improving depression
assessment and understanding.

This thesis addresses the problem of mood assessment and analysis for detecting de-
pression from multimodal data in unconstrained, natural environments. This thesis
presents a novel, multi-modal dataset collected from a purpose- built smartphone app
for depression recognition in real-world, unconstrained environments and proposes a
state-of-the-art, automated depression recognition system leveraging advancements
in multimodal analysis. The research outcomes have the potential to be applied
in automated patient monitoring or therapy administering platforms. The thesis
contributes by: 1) collecting a novel, longitudinal, and multi-modal, Mood-Seasons
dataset in real-world settings, 2) benchmarking state-of-the-art video analysis tech-
niques on newly collected and publicly available datasets, 3) building a multimodal
spatio-temporal transformer model for automated depression severity prediction,
4) presenting a new framework for face generation that learns to synthesize novel
face images that adhere to a given pose and appearance from exemplar image in
a semantically meaningful way and 5) applying the face manipulation method for
anonymizing the Mood-Seasons dataset for privacy preservation.

In conclusion, this thesis addresses the limitations of current depression diagnostics
and assessments by integrating smartphone-driven digital phenotyping technologies
to advance and personalize depression care. By collecting a novel dataset, proposing
state-of-the-art methods for depression recognition, and addressing privacy con-
cerns, this work has the potential to significantly improve mental health care delivery
and accessibility.
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Chapter 1

Introduction

Mental health disorders are a significant global problem, with more than 300 million
people affected and 800,000 suicides occurring each year (WHO, 2020). Behavioural
or mood disorders such as depression, anxiety, etc. continues to be the main drivers
of disability leading to significant morbidity, increased mortality from high suicide
risk, decreased functioning, and poor quality of life. The Survey of Mental Health
and Wellbeing in England (McManus et al., 2016) found that 1 in 6 people aged
16+ had experienced symptoms of a mental health problem, such as depression or
anxiety, in the last week, but only one in three of these individuals sought treatment
for these conditions over a 12-month period.

Depression is characterised by distinct observable behavioural symptoms associated
with general psychomotor functioning, emotional expression, and interpersonal
interactions. Prompt diagnosis and timely personalised intervention are crucial for
people suffering from mood disorders such as depression to receive maximum bene-
fit from treatment. Unfortunately, current diagnosis and evaluation of depression
rely on subjective approaches such as self-reporting and clinical interviews, which
are subject to limitations related to their dependence on explicit definitions and
reliable evaluation. Furthermore, there is a lack of resources, both in developed and
developing countries, to provide mental health services in person. The increasing
numbers of affected individuals have led to long waiting times for mental health
screening and treatment delivery, highlighting the need for more accessible and
efficient methods for depression assessment and treatment. Therefore, governments
and health facilities are exploring using technology, such as automatic diagnosis or
monitoring, for increased accessibility and improved treatment processes.



2 Introduction

Digital mental health is a rapidly growing area of research that merges advances
in digital technologies with mental health care such as e-Health (Parikh and Hu-
niewicz, 2015) and mHealth (Ameringen et al., 2017), (Price et al., 2014) using the
Internet and mobile phone software to provide mental health services. Mental health
care currently benefits from the use of mobile phone or Internet-based software in
various clinical care stages, such as symptom assessment, patient engagement, and
psychoeducation, tracking, and monitoring treatment progress (Luxton et al., 2011).
Many evidence-based applications or technologies are currently available to deliver
assessment, monitoring, and interventions in mental health such as schizophrenia,
substance abuse, eating disorder, sleeping disorder, mood disorders such as bipolar,
anxiety, and depressive disorders (Bakker et al., 2016).Apps such asMobilyze, Purple
robot (Ameringen et al., 2017) offer a way for patients to track their daily mood, by
completing questionnaires and provide them with positive affective feedback when
necessary.

Digital technologies present a promising opportunity to individualise depression
care. With the advanced capabilities of digital sensors and computing on smart-
phones, they can function as “human sensors” to monitor minute changes in be-
havioural patterns. Electronicmedical records can collect extensive data from various
medical fields, produce custom reports, and transmit data between healthcare sys-
tems without disruption. Telepsychiatry can facilitate real-time interactions with
patients in their natural environment.

Mental health technologies use different mechanisms for operation, including self-
assessments ofmood (Kauer et al., 2012). EcologicalMomentaryAssessments (EMA)
is a method of sampling user experiences in real time and using it to provide better
treatment. Digital phenotyping (DP) through EMA, especially using assessments
conducted using mobile health technologies, has the potential to greatly improve the
accuracy of depression diagnostics by generating objectively measurable markers,
analysed in natural environments. It can promote user engagement (Sloan et al.,
2011) and help deliver evidence-based treatment such as Cognitive Behavioural
Therapy (CBT) (Spek et al., 2007).

Technological progress in computer vision, natural language processing, audio and
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multimodal analysis, and affective computing has led to the emergence of automated
behaviour analysis methods, which could offer substantial improvements in de-
pression assessment and comprehension. By employing these automated methods,
researchers can gain new insights into behavioural indicators of depression and
develop more reliable screening and diagnostic tools. Additionally, these methods
can be used to measure the effectiveness of interventions and test clinical theories
about the underlying mechanisms of depression. Despite the challenges that remain,
the development and use of automated methods for behaviour analysis represent an
exciting and promising direction for the field of clinical psychology.

Preliminary investigations have also shown that linguistic and behavioural clues
from social media data and data extracted from electronic medical records can be
used to predict depression status. Burns et al.(Burns et al., 2011) provide ecological
momentary interventions for depression by using mobile sensors, including GPS for
location data, accelerometers for movement detection, phone microphones for voice
data from calls, phone call history, and activity, to analyse behavioural patterns and
predict user’s mood. In similar studies such as (Saeb et al., 2015), the authors use
contextual data and passive monitoring using GPS to predict depressive symptoms,
and in (Depp et al., 2010) the authors design interventions for bipolar disorder using
self-reported real-time mood of users.

The conversational agent, Woe bot, presented by Fitzpatrick et al. (2017) delivers
CBT with daily mood tracking and prompts active user engagement through natural
language processing. Studies use contextual information to assess the mood or emo-
tional state of the patient and correlate it with self-reported mood scores, such as
PHQ-9 (Sajatovic et al., 2015). The PHQ-9 questionnaire is a well-adopted metric for
reviewing depression severity for screening, diagnosing, and monitoring patients. It
is used in primary care and clinical use to assess the state of depression during the
preceding two weeks. Mental health technologies use apps like DepressionMonitor
(Ameringen et al., 2017) to provide PHQ-9 or PHQ-8 (excluding the suicide symptom
for ethical reasons) for clinical use. Many digital interventions serve as a tool to
record mood data to deliver therapy or monitor progress based on the longitudinal
behavioural pattern of patients during or post treatment.

Current depression diagnostics and assessment have significant limitations due to
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heterogeneity of clinical presentations, lack of objective assessments, and assessments
based on patients’ perceptions, memory, and recall. Integration and application of
smart phone-driven digital phenotyping technologies have the potential to signifi-
cantly advance and personalise depression care.

This thesis introduces a novel multimodal dataset collected from a purpose-built
smartphone app for the recognition of depression in unconstrained real-world en-
vironments. The data set includes longitudinal data over three weeks. The thesis
proposes a state-of-the-art automated depression recognition system that takes ad-
vantage of the latest advances in multimodal analysis. The thesis also proposes a
novel approach to address privacy concerns in the data set using generative methods
to anonymise face images.

1.1 Motivation

Observable traits of depression as stated by Diagnostic and Statistical Manual of
Mental Disorders of the American Psychiatric Association (APA) (Association et al.,
2013) include both visual indicators (facial expression and demeanor) and speech
(increased pauses, muteness). Facial expressions along with speech are prominent
behavioural observations that are strong indicators of mood disorders (Girard and
Cohn, 2015a), (Hollis et al., 2015), (Ringeval et al., 2017a) including depression.
In the past, many approaches have used different signals to detect depression and
other mood disorders, such as facial expression (Ringeval et al., 2017a), (Jan et al.,
2014), gaze (Alghowinem et al., 2013a), head movement (Joshi et al., 2013b), body
pose (Joshi et al., 2013a). Many studies have shown that reduced expressibility, eye
contact, eyelid activity, iris movement, smile intensity, smile duration, lack of smile,
listening smiles (when not speaking) are common traits in people diagnosed with
depression (Pampouchidou et al., 2017b). Voice and speech analysis are used as
reliable means of estimating and tracking mood disorders (Cummins et al., 2015a),
(Faurholt-Jepsen et al., 2016), with studies having established accuracies through
clinical trials. Depressive markers in speech include vocal prosody, ie, pause duration
and vocal frequency (loudness) and were used to detect depression in (Cohn et al.,
2009a).

The audiovisual emotion recognition challenge AVEC (Ringeval et al., 2017a) or-
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ganised a series of depression challenges and provided the contestants with clinical
interviews of people diagnosed with and without depression using self-reported
depression questionnaire scores to assess the severity of depression. Studies such
as in (Ringeval et al., 2017a) show a strong correlation between detected facial ex-
pressions for affective states and depression. The common pipeline for automated
facial and speech analysis, as depicted in (Girard and Cohn, 2015b) starts with image
preprocessing, registration, feature extraction, and learning models for classification
and prediction of depression.

The analysis of multiple modalities can provide even better results in the detec-
tion of symptoms of depressive or mood disorders, as shown by (Ringeval et al.,
2017a), (Pampouchidou et al., 2017b). Different methods use multiple modalities,
such as in (Dibeklioğlu et al., 2015) where the authors combine facial, postural, and
vocal measures to detect depression.

An accurate characterisation of facial behaviour that can assess mood in real-time
can be used as a reliable sensor in mental health technologies for managing mood
disorders. This would open more opportunities to deliver behavioural interventions
based on multimodal, audio, vision, and language data, prompting seamless user
engagement during video sessions. The focus of this PhD is on the problem of
mood assessment and analysis for detecting mood disorders like depression from
multimodal data containing face, voice, and spoken words in unconstrained, natural
environments. The results of the research can be applied successfully to deliver men-
tal health care on automated patient monitoring or therapy administration platforms.

Many published studies addressing the problem of mood analysis for mental health
disorders point to the difficulty of obtaining labelled data on a large scale (Pam-
pouchidou et al., 2017b) mainly attributed to the clinical expertise needed and its
sensitive nature. This makes most studies resort to collecting their own data sets in
the laboratory, where most of the available data are in the form of clinical interviews
with a limited number of subjects and in restricted clinical settings. It limits the de-
tection of mood disorders using facial behaviour in previously unseen environments
or in-the-wild. To develop a system that has real-world impact, it should be able to
assess depression in natural environments. This PhD thesis addresses the problem
of the lack of real-world data necessary for such a system that learns to recognise
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depression by collecting a large, longitudinal and multimodal dataset collected using
a smartphone app.

The state-of-the-art methods in computer vision problems, such as image recog-
nition and detection, are based on deep learning. One of the main advantages of
deep learning-basedmethods are themodels that can learn representations fromdata,
without the need for defining handcrafted features. Deep learning-based methods
have shown to achieve high accuracies in tasks such as object recognition (Krizhevsky
et al., 2012), human pose estimation (Newell et al., 2016a), face alignment (Bulat
and Tzimiropoulos, 2016), semantic segmentation (Girshick et al., 2014) etc. Several
neural network architectures such as Convolutional neural networks (CNN), Recur-
rent neural networks (RNN), long short term memory networks (LSTM), have been
used successfully in tasks like facial expression recognition (Yu and Zhang, 2015),
(Kim et al., 2015), and emotion recognition from audiovisual data (Ng et al., 2015).

The thesis will analyse the real world data set using state-of-the-art and novel tech-
niques to characterise the severity of depression. The thesis will focus on providing
a comprehensive benchmark of state-of-the-art video analysis techniques on newly
collected and publicly available datasets. The thesis will build a framework using
cutting-edge multimodal transformers for automated depression severity prediction
and provide quantitative evaluation of the effectiveness of the approach on different
datasets.

Generating face images under varying poses and expressions is a rapidly grow-
ing area of research in computer vision. This is because face images are a rich source
of information about a person’s identity, emotions, and state of mind. Generative
Adversarial Networks (GANs) are a class of deep learning models that are partic-
ularly well-suited for generating realistic synthetic data. GANs work by training
two competing networks: a generator network and a discriminator network. The
generator network tries to create fake data that is indistinguishable from real data,
while the discriminator network tries to distinguish between fake and real data.

Advances in GAN-based techniques for face manipulation offer promising oppor-
tunities for automated depression analysis. For example, GANs can be used to (i)
develop privacy-preserving models by anonymising the identity of face images while
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preserving pose and expression for the downstream depression analysis task, with-
out compromising the privacy of real patients, and (ii) create data augmentation by
generating additional synthetic face images to augment existing datasets, particularly
helpful in cases where datasets are small or imbalanced. Augmenting data sets with
synthetic data can help to improve the performance of depression analysis models by
making them more robust to different variations in face images (iii) evaluate model
performance in edge cases by testing developed depression models in synthetic face
images of people with specific edge cases, such as different poses and expressions,
gender or race that are not available in the dataset.

Preservation of privacy is a significant issue in the storage and dissemination of
depression recognition data sets. Data sets for automated analysis of depression can
involve sensitive personal information, especially facial and voice data that reveal
one’s identity. Therefore, privacy preservation is crucial to ensure that private infor-
mation from individuals is not shared or analysed without their consent, misused, or
discriminated against. Privacy preservation in these datasets can ensure (i) protec-
tion of anonymisation rights of the participant, (ii) prevent potential discrimination
against age, sex, race, or mental health condition, and (iii) maintain trust between
the participants and research authorities or healthcare systems by complying with
regulations.

This thesis introduces a novel method for manipulating facial images using GANs
that alters their pose and facial expressions with or without preserving identity. The
proposed approach for face generation synthesises novel face images that conform to
a given pose while transferring appearance and style information from an exemplar
image. The thesis proposes an application of this method to anonymise the identities
present in the Mood-Seasons dataset and discusses its potential future applications
for automatic depression analysis.

1.2 Contributions

This thesis proposes the following contributions to the field of automated depression
analysis.

• Address the problem of the scarcity of real-world labelled data necessary for a
system that learns to recognize depression by collecting a novel video dataset
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that captures longitudinal participant behaviors with markers of depression in
unconstrained, in-the-wild environments. Alongside the data set, the research
community is using a bespoke cross-platform smartphone application that
facilitates data collection. This also includes a comprehensive description of
the ethics approval process and the ethical guardrails that were put in place
before collecting private and sensitive personal mental health data.

• Provide an extensive benchmark of state-of-the-art video analysis techniques on
the newly curated Mood-Seasons and publicly available AVEC 2014 datasets.

• Propose a multi-modal spatio-temporal transformer model that fuses the be-
havioural cues such as facial appearance, voice, spoken words (audio and
language) from the videos that are relevant for estimating an individual’s de-
pression severity levels reliably in natural environments. The novel differential
loss was introduced to improve performance by leveraging multiple videos
from one person.

• Present a new framework for face generation that learns to synthesise novel
face images that adhere to a given pose, whilst transferring appearance and
style information from an exemplar image in a semantically meaningful way.

• Show the viability of applying the face manipulation method for anonymising
the identities present in the Mood-Seasons dataset as a proof-of-concept, and
laying out a roadmap on how this can be further leveraged for automatic
depression analysis.

1.3 Publications

The following is the list of articles published during the PhD

1. Kusumam, K., Sanchez, E., and Tzimiropoulos, G. (2021). Unsupervised face
manipulation via hallucination. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 2406–2413. IEEE

2. Jaiswal, S., Valstar, M., Kusumam, K., and Greenhalgh, C. (2019b). Virtual
human questionnaire for analysis of depression, anxiety and personality. In
Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents,
pages 81–87
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3. Haddon-Hill, G., Kusumam, K., and Valstar, M. (2021). A simple baseline
for evaluating expression transfer and anonymisation in video transfer. In
2021 9th International Conference on Affective Computing and Intelligent Interaction
Workshops and Demos (ACIIW), pages 01–08. IEEE

4. Xu, J., Song, S., Kusumam, K., Gunes, H., and Valstar, M. (2021). Two-stage
temporal modelling framework for video-based depression recognition using
graph representation. arXiv preprint arXiv:2111.15266

Chapters 4 and 5 of this thesis will be submitted for publication to reputable affective
computing journal in the near future.

1.4 Outline of the Thesis

The thesis structure comprises seven chapters. The thesis commences by defining
mood disorders from a clinical perspective, with an emphasis on depression in both
clinical and general populations.By zooming in on the prevalence of depression in
the general population, the thesis examines the increasing reliance on technology in
assistive diagnostics and treatment delivery. The thesis then provides an overview
of the current art in digital mental health, approaches, and deployment. It further
channels its discussion around the role of automated behaviour analysis using dif-
ferent data modalities, such as audio, images, and language, in delivering reliable
approaches that help address existing issues. Then it extensively reviews research
works from past and present that address automated depression analysis, identifies
recurring themes, and discusses common issues and pitfalls in the field.

The third chapter provides a background onGenerative Adversarial Networks, which
is a crucial technological paradigm used in the thesis methodology. The background
chapter provides an in-depth discussion of generative adversarial networks and
techniques using synthetic data.

Chapters 4, 5 and 6 are the main contributions of the thesis. Chapter 4 comprehen-
sively describes a large-scale data collection study that provided a novel, multimodal
(audio-visual-text) and longitudinal Mood-Seasons dataset, collected in natural,
in-the-wild conditions from a smartphone. The dataset comprises video, audio,
and textual transcriptions from the general population, with the depression severity
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recorded from their responses to a PHQ-8 questionnaire. The chapter describes the
meticulous and ethical design of the data collection methodology, the development
of the app, and its deployment. It also reviews the lessons from deploying such an
app and the general population’s perception of it. It describes how participation
and adoption of smartphone-based mental health data collection methods can be
maximised.

Chapter 5 describes several approaches, employing multimodal data to provide
a benchmark for automated depression analysis on the Mood-Seasons dataset, which
was introduced in chapter 4. The chapter provides an extensive evaluation of state-
of-the-art unimodal and multimodal approaches for video recognition applied for
the task of depression severity prediction. The chapter includes our novel approach
to depression recognition using multimodal transformers that employs audio-visual-
language fusion to learn depression severity scores from videos, at different temporal
granularity. The chapter includes detailed experimental evaluation and verification
of the efficacy of the methods presented in two datasets, the Mood-Seasons and the
AVEC datasets.

In Chapter 6, the thesis presents a novel method for manipulating face images using
conditional generative adversarial networks and its application for data anonymi-
sation to address privacy preservation in sensitive datasets such as those used in
automated depression recognition.

The thesis finally concludes in Chapter 7, summarising the main chapters and giving
directions for future research.



Chapter 2

Depression Recognition: Assessment,
Data and Methods

This chapter offers an overview of depression recognition, with an emphasis on
contemporary techniques for diagnosing and assessing depression, data gathering
approaches, and state-of-the-art automated depression recognition methods. The
focus is on providing an understanding of the current landscape of depression
estimation and monitoring, as well as highlighting advances in technology and
methodologies that shape the future of depression care.

2.1 Depression Assessment

Major Depressive Disorder (MDD) is a complex condition characterised by a diverse
array of potential behavioural markers and etiological factors (Zimmerman et al.,
2015). Research shows that depression stems from the interactions between genetic
and environmental factors that alter physiological systems (Organization et al., 2017).

The diagnostic approach involves determining symptomatic thresholds, assessing
patient distress, evaluating functional impairments, and eliminating other potential
causes (Association et al., 2013; Kamath et al., 2022). It is also crucial to eliminate the
possibility of other factors, such as psychiatric, substance use, and medical disorders
(Association et al., 2013).
The American Psychiatric Association’s Diagnostic and Statistical Manual of Mental
Disorders (5th edition; [DSM-5]) and the World Health Organisation’s International
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Statistical Classification of Diseases and RelatedHealth Problems (11th edition; [ICD-
11]) define depression by two core symptoms - persistent low mood and reduced
interest - lasting at least two weeks with at least 4 additional symptoms (Associ-
ation et al., 2013; Kamath et al., 2022). Symptoms are shown in Table 2.1. The

Summary of Major Depressive Disorder Criteria
Five (or more) of the following symptoms are present for a period of at least 2 weeks:

1. Depressed mood
2. Anhedonia i.e., diminished interest or pleasure
3. Weight loss or weight gain
4. Sleep disturbances (insomnia or hypersomnia)
5. Psychomotor agitation or retardation
6. Fatigue
7. Feelings of worthlessness or excessive inappropriate guilt
8. Cognitive difficulties
9. Suicidal thoughts and/or behaviours

Other Criteria:
Symptoms cause clinically significant distress or functional impairment.
Symptoms are not better explained by other psychiatric or medical diagnosis.

Table 2.1: Major Depressive Disorder Criteria

presence of significant distress and impairment in daily functioning are also required
(Association et al., 2013; Organization et al., 2017). Symptoms fall into psychologi-
cal, neurovegetative, and neurocognitive categories (Kendler, 2016). Psychological
symptoms are predominantly subjective as they depend on the patient’s personal
experiences, leading to alterations in behaviour. On the contrary, neuro-vegetative
and neurocognitive symptoms present more objectively and are associated with mea-
surable behavioural consequences that influence functioning (Kamath et al., 2022).
Patient accounts of subjective symptoms are based on their unique experiences and
interpretations. Understanding the distinctions between subjective and objective
symptoms, as well as their expressions in voluntary or involuntary behaviour, is cru-
cial to advance digital biomarker identification in the field of depression diagnostics.

2.1.1 Depression Questionnaires

Depression questionnaires, both self-rated and clinically rated, are widely used
to evaluate and diagnose Major Depressive Disorder (MDD) (Lakkis and Mah-
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massani, 2015) . Popular self-rated instruments include the 9-item Patient Health
Questionnaire (PHQ-9), Beck Depression Inventory (BDI), 16-item Quick Inventory
of Depression Symptomatology Self-rated (QIDS16-SR), and the Depression Scale of
the Centre for Epidemiological Studies (CES-D) (Lakkis and Mahmassani, 2015). In
real-world settings, self-rated tools are often preferred due to ease of administration
and lower resource demands (Maurer et al., 2018). These instruments play a crucial
role in the continuum of depression care and contribute to personalised patient care.

Two common assessment tools are HAMD and BDI (Baer and Blais, 2010), which
differ in terms of administration time, focus, and measures. HAMD requires a 20-30
minute interview with a clinician, focussing on neurovegetative symptoms, while
BDI is a 5-10 minute self-reported questionnaire underlining negative self-evaluation
symptoms. Both tools have demonstrated consistency in distinguishing depressed
from nondepressed patients (Baer and Blais, 2010). However, HAMD has been
criticised for neglecting some typical depression symptoms (Baer and Blais, 2010;
Gibbons et al., 1993).

Self-report scales and inventories (SRSIs) such as the BDI / BDI-II, PHQ-2 / 8/9 and
the Depression and Somatic Symptom Scale (DSSS) are also used for the assessment
of depression. Despite their widespread use and high specificity and sensitivity
(80%-90%), SRSIs have several drawbacks, including not considering the clinical
meaning of observed symptoms, allowing individual variability in reporting, and
susceptibility to reporting bias (Pichot, 1986; Williams et al., 2005). However, SRSIs
are widely adopted in primary health care and research, emphasising their cost
effectiveness. There is no consensus on which tool, PHQ-9 or BDI-II, is more effective.
Both have been found to have adequate reliability, convergent/discriminant validity,
and responsiveness to change Titov et al. (2011).

2.1.2 Limitations of Current Assessments

However, current diagnostic and assessment approaches have limitations. DSM-
baseddepression diagnosis relies on subjective factors, such as patient reports, clinical
observations, and clinical judgement (Kamath et al., 2022). Time constraints and
high variability in symptomatic presentations with multiple comorbidities are major
limitations Tom et al. (2014).
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Although depression rating scales can introduce some objectivity to clinical assess-
ments, their use is limited due to resource constraints and their reliance on patient
memory, which may only capture a narrow aspect of a patient’s general mental state
(Hong et al., 2021). They may also not fully capture the neurological or functional
impacts of depression (Robinson et al., 2017).

The DSM-5 highlights various observable audiovisual indicators of depression, such
as crying, facial expressions, psychomotor agitation, and psychomotor retardation
(Association et al., 2013). Automated measurement techniques are increasingly
being employed to operationalise these behaviours, pinpoint those that reliably sig-
nal depression, and determine the distribution of typical and atypical behaviours.
Statistical approaches to depression analysis have been useful in this context, as they
help identify differences in specific behaviours between groups.

A variety of potential depression indicators have been discovered through recent
studies, with some examples in the visual domain being smaller distances between
eyelids, shorter blink durations (Alghowinem et al., 2013b), slower and less frequent
head movements (Alghowinem et al., 2013c; Girard et al., 2014), longer periods of
looking down (Scherer et al., 2014), and reduced smiling (Girard et al., 2014), gaze
directions, listening smiles, self-adaptors, fidgeting behaviours, and foot tapping
or shaking behaviours [Waxer, 1974; Hall et al., 1995]. Acoustic indicators include
increased voice tension (Scherer et al., 2014), decreased coordination among formant
frequencies and cepstral channels (Williamson et al., 2013), and longer and more
variable switching pauses Yang et al. (2012b).

2.1.3 Digital Phenotyping

The term "digital phenotyping" has been used to refer to a range of concepts related
to the analysis of digital data to measure behavioural and psychological traits. Some
key definitions are (i) Objective measurement of human behaviour and experience
using personal digital data streams from smartphones and wearables (Onnela and
Rauch, 2016) (ii) Moment-by-moment quantification of the individual-level human
phenotype using data from personal digital devices (Insel, 2017). (iii) passively col-
lected digital breadcrumbs that can signal mental health states based on interactions
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with technology (Torous et al., 2018). While terminology varies, digital phenotyping
generally involves collecting and analysing different types of digital data, such as
phone usage, typing patterns, mobility patterns, social interaction, and sleep data,
to measure behavioural and cognitive markers relevant to mental health. The core
premise is that passively collected digital data can serve as sensitive biomarkers to
complement or predict outcomes from traditional clinical assessments.

In the context of this thesis, digital phenotyping refers specifically to the analy-
sis of audio-visual and language data in the form of free-form videos of participants
in order to extract and integrate relevant behavioural markers that may be indicative
of severe depression. More research is still needed to determine the reliability and
validity of different digital phenotyping approaches for the monitoring of depression.
DP has the potential to significantly improve the accuracy of depression diagnosis
and assessment by adding objectivity to the process, delivering digital behavioural
biomarkers for personalised treatment. The generated phenotypes provide an eco-
logical and continuous representation of the physical, emotional, behavioural, social,
and cognitive activities of a patient in real time (Huckvale et al., 2019).

2.1.4 Ecological Momentary Assessments

DP relies on data from Ecological Momentary Assessments (EMA), which are con-
ducted using personal digital devices such as smartphones, wearable sensors, and
data collected from human-computer interactions (Colombo et al., 2019). EMA can
be classified into active and passive categories (Dogan et al., 2017). Active EMA
involves data reported directly by the user, such as electronic assessments using
depression questionnaires such as Patient Health Questionnaire (PHQ-9), Hamilton
Depression Rating Scale (HDRS), Quick Inventory of Depressive Symptomatology
(QIDS), and Beck Depression Inventory (BDI) (Colombo et al., 2019). Passive EMA
consists of data automatically collected from digital devices and platforms without
the user’s active input, such as phone usage, GPS, and sensor data (Dogan et al., 2017).

EMA aims to minimise recall bias, maximise ecological validity, and investigate
processes that influence behaviour in real-world settings (Shiffman et al., 2008). Ac-
tive EMA reduces recall bias and allows clinicians to gain insight into the situational
and social context of patients (Kim et al., 2020). It can also help patients recognise
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mood patterns, triggers, and coping strategies, as well as monitor suicidal ideation
Wichers et al. (2011). Audio samples and language analyses can be used to assess
mood disorders in active EMA (Gratch et al., 2021).

Passive EMA employs passive sensing using smartphones and wearables to capture
multiple facets of human behaviour (Dogan et al., 2017). It is especially useful for
capturing symptoms such as fatigue, sleep, focus, etc (Ware et al., 2020). Studies
have shown significant correlations between objective behavioural characteristics
collected through mobile phones and wearable devices and depressive symptoms
(Rohani et al., 2018; Ware et al., 2020).
The challenges and limitations of active and passive EMA include the degree of tech-
nical understanding of patients, socioeconomic status, inconvenience, and burden on
participants, device-dependent issues, missing data, unconstrained data collection,
data security and privacy concerns, and potential discrepancies between active and
passive EMA data (Farhan et al., 2016; Lu et al., 2018a). Despite these challenges,
identifying and monitoring digital biomarkers through EMA can provide valuable
insights.

2.2 Data Collection Methods

The field of automated depression recognition faces significant challenges in terms
of data quality and availability, which can impede the accuracy and robustness of
automated systems. The efficacy of such systems is heavily reliant on the data sets
available for training, which are often difficult to obtain due to the complex and
multifaceted nature of depression.

Most automated depression recognition systems use self-reported depression screen-
ing questionnaires as ground truth, necessitating careful study design to collect
accurate data. Additionally, relying on data collected in a laboratory setting can
limit the ability to capture underlying behaviours specific to an individual with
depression, as well as restrict the number of subjects and longitudinal data points
available. Further complicating matters is the difficulty of sharing data, especially in
the case of clinical trials aimed at monitoring treatment effects for multiple endpoints.
To advance the field, it is crucial to identify and utilise publicly available high-quality
data sets, as well as consider novel data collection methods that can overcome the
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challenges associated with depression research.

In general, designing the experimental environment and selecting the appropri-
ate modalities are critical factors in collecting depression data. This section examines
the data collection settings and various data sets that are currently available to the
research community and provides a detailed analysis of their characteristics, includ-
ing public or private accessibility, modality, annotation type, number of subjects, etc.
The section also highlights the unique features of a new data set described in Chapter
4, which offers a scalable approach to data collection for research on depression
recognition.

2.2.1 Data Collection Study Set-up

Depression research often involves collecting data from clinical or general popu-
lations. Clinical data for depression are collected by recruiting participants from
hospitals or psychological clinics. In these studies, participants are assessed using
DSM-IV or HAMD standards, as well as various other diagnostic tools, such as Mini
International Neuropsychiatric Interview (MINI) and BDI. Different recruitment
approaches, such as flyers, posters, social networks, personal contacts, and mailing
lists, have also been used in some studies. In the general population, participants are
recruited from the public who are not under any clinical treatment for depression.
Self-reported questionnaires form diagnostic or screening measures, such as PHQ-9
or BDI-II, for participants to self-identify symptoms, which then inform a severity
scale.

Designing the experimental environment is crucial to obtain valuable patterns for pre-
dicting depression. To ensure consistency in data collection, inclusion criteria must
be met, agreements, protocols, and consent forms are signed prior to the experiment,
and devices such as cameras, microphones, and sensors are arranged. Screening
procedures, including exclusion criteria, are different for clinical and general popu-
lations. In clinical populations, healthy control groups are also included to have a
more balanced sample space and clinical labels. Interviews designed by human and
virtual humans are used to assess symptoms related to depression. Ethics approval
requirements must be met before the commencement of studies.
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Different modalities, including speech and video samples, physiological signals,
and text, have been employed to improve the performance of depression assessment.
For audio clips, a computer or laptop is used to record the data samples, while for
the video modality, the number of cameras and other attributes are used to record
the face and whole body separately from different angles. A careful study protocol
design is required for eliciting certain behaviour using tasks that are scripted vs.
nonscripted or free-form. Passive monitoring, mobile phone data, GPS locations,
and longitudinal endpoints are also used to remotely measure depression.

2.2.2 Datasets

The majority of existing databases have been restricted to the research for which
they were initially developed (He et al., 2021), without public access to depression
recognition studies. However, several publicly available databases have been created
for depression recognition purposes, including the ones released by the renowned
AVEC data sets (Continuous Audio / Visual Emotion and Depression Recognition
Challenges) of 2013 (Valstar et al., 2013) and 2014 (Valstar et al., 2014), and the Stress
Analysis Interview Corpus-Wizard of Oz (DAIC-WOZ).
The data sets AVEC2013(Valstar et al., 2013) and AVEC2014 (Valstar et al., 2014) data
sets are both subsets of the Audio-Visual Depression Language Corpus. AVEC2013,
annotated with the Beck Depression Inventory II (BDI-II), consists of 340 videos
in German. Participants engaged in various human-computer interaction tasks in
front of a webcam and microphone, including free speech, reading, singing, and
picture-based association tasks. The challenge released 150 longer-duration videos
as AVEC 2013 to the public. AVEC2014, a subset of AVEC2013, comprises 300 videos
with shorter durations than AVEC2013. In AVEC2014 the organisers chose to only
retain two tasks, Freeform and Northwind, based on its relevance to recognising
depression. For each of these tasks, 150 videos were made available. The depression
annotations are BDI-II scores that range from 0-63, annotated at an event or video
level. Audio and video clips are available for both tasks.

DAIC-WOZ (Gratch et al., 2014), part of the Distress Analysis Interview Corpus has
been used for AVEC2016 (Valstar et al., 2016), and AVEC2017 depression recognition
challenges. It is a hugely popular and (Ringeval et al., 2017b) widely used data set
that is part of a larger corpus. The data set comprises 189 semi-structured clinical
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interviews designed for the diagnosis of psychological distress conditions such as
anxiety and depression. The data set utilizes a virtual interviewer with strictly con-
trolled emotional status during interviews. Four different modes of interviews were
designed to collect data, including face-to-face, teleconference, wizard-of-oz, and
automated. It consists of audio, video, and deep sensor modalities and includes gal-
vanic skin response (GSR), electrocardiogram information (ECG), and participant
respiratory data. Text transcriptions of the interviews are also made available in the
data set. It is available for public access, although direct access does not provide any
video data anymore, only the features that were extracted from the frames.

E-DAIC is an extended version of DAIC-WOZ (Ringeval et al., 2019), collected
from semiclinical interviews designed for the diagnosis of psychological distress
conditions such as anxiety and depression. This database has 163 development
samples, 56 training samples, and 56 test samples, with age, gender, and PHQ-8
scores labelled. E-DAIC was provided as part of the AVEC2019 (Ringeval et al., 2019)
challenge.

The VHQ-1 data set (Jaiswal et al., 2019a,c) comprises audio and video record-
ings of 55 participants who participated in structured interviews under different
mediation modes, namely face-to-face, teleconference and virtual human. Self-report
questionnaires for depression (PhQ-9), personality (Big-Five) and anxiety (GAD-7)
were used. A comparative study was conducted between different modes of ad-
ministration, including self-administration. The videos were filmed in a laboratory
environment with another person present and feature a general population. The
data is not available for public access.

Speech is a highly informative modality that contains markers of mental health
disorders. The field of depression recognition using void or audio samples shows
great advances in collecting natural, real-world data. There are several studies in
the literature that collect continuous audio samples using accessible devices like
smartphones to collect ecologically valid data from subjects with depression.

The EarlyMental Health Uncovering (EMU) data set (Tlachac et al., 2021) is designed
to detect mental health disorders using passive and active modalities. The EMU data
set was collected by a team of researchers in 2019-2020 and contains heterogeneous
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data, including scripted and unscripted voice recordings, smartphone logs including
text messages, and Twitter data, all labelled with demographics and depression
screening scores (PhQ-9) and anxiety (GAD-7). To collect data, the EMU app was
used and the data are labelled with depression severity and anxiety level scores.
The data set is publicly available and features around 60 participants recruited via
Amazon Mechanical Turk.

The study conducted using themoodable framework (Dogrucu et al., 2020) employed
a non-intrusive or passive method utilising an Android app to collect data from 335
MTurk participants for the evaluation of depression. Participants were instructed to
record a predetermined phrase, PhQ-9 questionnaires, as well as historical sensor
data from their smartphone and recent social media posts. The implemented random
forest models were able to detect depression and suicidal ideation with satisfactory
F1 scores and accuracy levels. 226 participants provided scripted voice samples along
with different levels of passive data. The research shows a potential opportunity
to change the current approach to the screening of depression by utilising machine
learning on readily available biometrics, such as voice samples, and historical data
from smartphones and social media, making the screening process more efficient
and accessible.

Huang et al. (2018) investigated depression assessment using real-world voice sam-
ples and PhQ-9 responses collected from 887 participants using smartphones and
showed promising results. The app included elicited and freeform tasks such as free
speech, read out loud, sustained vowel, and diadochokinetic repetition. The data set
is not available for public use. The MODMA data set (Cai et al., 2020) is a publicly
available data set that includes EEG and audio data from clinically depressed patients
and normal controls, carefully diagnosed and selected by professional psychiatrists
in hospitals in China. The EEG data set consists of data collected using both a tra-
ditional 128-electrode EEG recorder and a new wearable 3-electrode EEG recorder
for pervasive usage collected from 55 participants. Audio data was collected from
scripted and unscripted interviews, story reading, and emotional picture watching.

RADAR-MDD (Matcham et al., 2019, 2022) is a large-scale data collection study
that spanned multiple sites involving more than 600 participants from the clinical
population. The study aimed to remotely monitor the participants to reliably track
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and predict relapse in MDD. The participants wore wearable devices that tracked
activity levels and interacted with various apps on their smartphone. The collected
data consisted of both active and passive modalities, including data relating to sleep
patterns, physical activity, stress, mood, sociability, speech samples, and cognitive
function. Depression labels were defined by self-reported questionnaires IDS-SR.
Active app interaction also collected PHQ-8 scores. This large-scale study took place
from 2017 to 2021 and is a highly promising direction for remote monitoring of mood
disorders.

A plethora of studies exist in the literature that collects and analyses passive data
through wearables and smartphone sensor data. Student Life (Wang et al., 2014)
is a continuous monitoring app to track mental health and well-being, including
smartphone data such as GPS, call logs, activity of 48 college students over a 10-week
period, and self-reporting PHQ-9 was used as labels. The data set is available for
public access. Other studies such as LifeRhythm (Lu et al., 2018b) followed similar
protocols and collected passive smartphone data from 79 college students for more
than six months.

The ORYGEN database (Ooi et al., 2011) contains video and audio data samples
recorded from discussions between parents and their children. The BlackDog
database (Alghowinem et al., 2012) was collected from a clinical study conducted
by the BlackDog Institute in Sydney, Australia. The data set contains speech data
recorded during conversations between interviewers and participants who had met
the criteria for DSM-IV. The clinical interaction was performed by asking specific
questions about events stimulated by specific emotions, allowing for the exploration
of emotional regulation in individuals with mental illness.

The Pittsburgh database (Yang et al., 2012a) is another notable data set that comprises
57 depressed participants in clinical treatment for depression. Participants were
required to meet the DSM-IV criteria for MDD and the severity of their condition
was assessed at different intervals by multiple clinical interviewers. This database is
publicly available. The BD database (Çiftçi et al., 2018) is a data set consisting of 46
patients and 49 healthy controls from a mental health service hospital. The data set
contains semi-structured interviews and gathers sociodemographic and clinical pat-
terns. Additionally, the Young Mania Rating Scale (YMRS) and MADRS were used
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to estimate depressive and manic features, and audiovisual samples were recorded
during video sessions. The data set is annotated by bipolar mania/depression ratings
and has been used as challenge data in AVEC2018.

From the above discussion, it is clear that collecting data for depression research
is a challenging endeavour due to several limitations. Conventional lab-based data
collection methods face many constraints, such as having to carefully design proto-
cols, which are usually task groups that may not reflect or elicit natural behaviour,
and collecting well-distributed data sets with healthy and control groups. Cap-
turing environmental factors such as ambient lighting, noise and the presence of
other people can reflect mood and provide valuable information for a holistic scene
understanding identifying the markers of low mood, imperceptible otherwise by
the clinicians. Therefore, collecting data in-the-wild, where individuals can behave
naturally, with minimal obstruction, is crucial for depression research.

From an openness perspective, most databases are only used for in-house research
and not released publicly for depression recognition studies due to privacy concerns.
However, some databases such as AVEC2013, AVEC2014, DAIC-WOZ, Pittsburgh
data set, and MODMA data set are available for researchers. Most databases were
collected by the US and EU regions, except for MODMA, which is a Chinese database.
Furthermore, recruiting subjects for depression studies conducted in a lab environ-
ment is very challenging, which leads to limited data samples in all databases.

Wearable activity trackers have the ability to collect detailed sensor data that char-
acterise users’ behaviour and physiology, known as digital biomarkers. This infor-
mation could be used to detect depression in a timely, unobtrusive, and scalable
manner. However, it is important to consider the acceptance of wearable technology
and people’s willingness to share their personal data. Despite this, many people
are more willing to provide videos of their face and voice rather than data from
full-time activity trackers, which may contain highly sensitive information such as
real-time GPS or phone correspondence. Therefore, videos of subjects’ face and voice
recorded from video diaries can provide critical information as digital biomarkers
for automated mood analysis.

To address the scarcity of labelled face and voice data for identifying mood disorders,
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this thesis presents a novel video data set that captures participants’ longitudinal
behaviours in unconstrained, in-the-wild environments recorded using active smart-
phone interactions. The data set includes recordings of 139 subjects collected over
a period of 3 weeks, which is considerably high compared to studies with similar
settings in the field. This data set is a valuable resource for the development of ma-
chine learning algorithms and the identification of physiological biomarkers of mood
disorders. A comparison of the above data sets to the newly collected MoodSeasons
data set is provided in Table 2.2. The data set distinguishes itself through several key
attributes. First, it incorporates diverse data modalities, including audio, video, and
smartphone interactions, enhancing the understanding of participants’ emotions.
Additionally, Mood-seasons provides longitudinal data collected over three weeks,
enabling the study of mood and behaviour changes over time, a valuable insight
into mood disorders’ dynamics. Moreover, it stands out by collecting data in natural,
uncontrolled environments, capturing genuine behaviour and subtle mood markers.
Furthermore, the data set will be made publicly accessible, promoting wider research
and development in depression recognition. Lastly, with data from 139 participants,
Mood-seasons offer a substantial data set size, supporting evaluation of robustness
and generalizability in depression models. These attributes make Mood-seasons a
valuable resource in the study of depression recognition and mood disorders.

2.3 State-of-the-artAutomatedDepressionRecognition

Since depression has been associated with neurophysiological and neurocognitive
abnormalities, which is evident in facial and voice behaviour [37], [137, ] audiovisual
signals for Automatic Depression Estimation (ADE) have become a main area of
research. Recognition of depression can be formulated as a classification and/or
regression problem based on audiovisual cues. The following sections describe the
state-of-the-art methods in automated depression recognition classified based on
the input modalities such as audio, video, or multimodal data.

2.3.1 Audio Modality

In the field of audio-based Automatic Depression Estimation (ADE), feature extrac-
tion has relied primarily on hand-crafted features. Since the late 1990s, a range of
feature representation approaches have been proposed to assess depression severity.
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Dataset Name Size Data Modalities Annotation Accessibility Longitudinal Environment

AVEC2013 340 videos Audio, Video BDI-II scores Publicly available No In the lab

AVEC2014 300 videos Audio, Video BDI-II scores Publicly available No In the lab

DAIC-WOZ 189 sessions Audio, Video, Sensors Clinical interviews Limited video access No In the la

E-DAIC 163 samples Audio, Video PHQ-8 scores Publicly available No In the lab

VHQ-1 55 participants Audio, Video Questionnaires Not publicly available No In the lab

EMU data set 60 participants Audio, Text, Social Media Screening scores Publicly available Yes in-the-wild

Moodable framework 335 participants Audio, Social Media Machine Learning models Limited accessibility Yes in-the-wild

Huang et al. 887 participants Audio, PhQ-9 responses Smartphone-based data Not publicly available No in-the-wild

MODMA data set 55 participants EEG, Audio Clinical diagnosis Publicly available No In the lab

RADAR-MDD 600+ participants Audio, Wearable Data Self-reported questionnaires Research access Yes in-the-wild

Student Life 48 students Smartphone data PHQ-9 self-reporting publicly available Yes in-the-wild

ORYGEN database N/A Video, Audio Clinical interviews Not publicly available No In the lab

BlackDog database N/A Speech data Clinical interactions Limited accessibility No In the lab

Pittsburgh database 57 participants Video, Audio DSM-IV criteria Publicly available No In the lab

BD database 46 patients Video, Audio Clinical patterns Research access No In the lab

Mood-seasons 139 participants Audio, Video, Smartphone PhQ-8 Self-reporting Yes (in the process) Yes in-the-wild

Table 2.2: Comparison of different depression recognition data sets.This table com-
pares different depression recognition data sets in terms of their size, data modalities,
annotation, accessibility, and longitudinal data. The introduced Mood-seasons data
set is a new and promising longitudinal, multimodal (audio, video, transcripts)
data set for depression recognition, collected from a diverse range of participants in
natural settings.

Some traditional (shallow) methods include the duration of pause (Stassen et al.,
1998), the speech rate and pitch variation (Cannizzaro et al., 2004), and prosodic,
voice quality, spectral, and glottal features (Moore II et al., 2007). Low-Level Descrip-
tor (LLD) indicators, such as prosodic, source, formant, and spectral features, have
been found to be effective predictors of depression (Cummins et al., 2015b).

However, hand-crafted features require manual tuning and expert domain knowl-
edge for feature selection, which can be time-consuming and limited in scope for
applications and domain. On the other hand, deep learning-based representations
have shown considerable performance margins across various disciplines, including
ADE (Alpert et al., 2001), suggesting that deep learning methods could serve as a
valuable alternative to traditional hand-crafted features in ADE research.

In 2016, a pioneering deep learning model, DepAudioNet, was introduced by Ma
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et al. (2016a) to extract depression representations from vocal cues. This model
employs LSTM and CNNs to encode discriminative audio representations for depres-
sion recognition. DCNN is used to model spatial feature representations from raw
waveforms, while LSTM learns short-term and long-term feature representations
from mel-scale filter banks (Shannon and Paliwal, 2003). DepAudioNet extracts var-
ious scale representations, including high-level, short-term, and long-term features
along with sampling methods to alleviate class imbalance for depression analysis.

Despite the limited size of the available depression databases, deep learning-based
depression recognition methods have attracted significant interest from researchers.
In 2018, a fusion of deeply learnt and hand-crafted features was proposed to effec-
tivelymeasure the severity of speech depression (He and Cao, 2018). This framework
used DCNN to learn and fuse shallow and deep patterns, extracting hand-crafted
features such as LLD features and Median robust extended local binary patterns
(MRELBP) from audio and spectrograms. Raw audio and spectrograms were input
into the model to obtain deep learned features. Joint fine-tuning was employed to
learn complementary representations between hand-crafted anddeep-learnt features.

To increase data samples and improve the accuracy of the ADE task, in (Yang et al.,
2020) a Deep Convolutional Generative Adversarial Network (DCGAN) was pro-
posed that used a two-level learning strategy to improve the convergence speed of
training by dividing the feature maps into blocks and applying a DCGAN model to
each block. Researchers have used DCNN and LSTM, to assess depression severity,
in Niu et al. (2020) sought to overcome the limitations of traditional feature design
methods by converting audio segments into spectrograms to feed into a deep ar-
chitecture. In 2021, Niu et al. (2021) introduced a novel framework that combined
Squeeze-and-Excitation (SE) components and Time-Frequency Channel Attention
(TFCA) blocks with DenseNet’s Dense blocks and Transition Layers, creating the
Time-Frequency Channel Attention and Vectorisation (TFCAV) network.

In Dong and Yang (2021), a deep architecture for ADE from speech was achived by
fusing Speaker Recognition (SR) and Speaker Emotion Recognition (SER) features
to enhance ADE performance, and introducing the Feature Variation Coordination
Measurement (FVCM) algorithm. The ResNet-50 network was used as the founda-
tion for the SR and SERmodels, offering insights into different patterns for depressed
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individuals in audio and video frames. The studies encourage further exploration
in ADE, emphasising the importance of considering various modalities and feature
extraction methods in this field.

2.3.2 Visual Modality

Visual cues are crucial in the recognition of deep depression, leading researchers in
affective computing to investigate discriminative patterns in videos for ADE. An early
attempt to employ deep learning for the detection of depression from static images
was made by Al Jazaery and Guo (2018), who developed a two-stream network
using facial images and optical flow features to learn depression patterns. They
introduced Appearance-CNN and Dynamics-CNN to model static and dynamic
patterns for depression recognition. The first step involved training a model from
scratch on the public CASIAWebFace Database with 494,414 images from 10,575
subjects (Yi et al., 2014). The second step fine-tuned the pretrained model for ADE.
The study (Al Jazaery and Guo, 2018) inspired subsequent works in the field of
deep learning for depression recognition and analysis. Zhou et al. (2018) proposed
a novel deep architecture called DepressNet to learn representations from images
for depression recognition. They pre-trained different deep architectures (AlexNet,
ResNet, GoogleNet) on the CASIA database and constructed DepressNet by chang-
ing the softmax layer into a regression layer, followed by a global average pooling
(GAP) layer.

In DeMelo et al. (2019), the researchers adopted a 2D-CNN and distribution learning
to model depression patterns, using the expected loss function to predict depression
levels. Their method outperformed most state-of-the-art methods in AVEC2013 and
AVEC2014. Song et al. (2020) presented a novelmultiscale architecture for depression
recognition and considered human behaviour primitives (AUs, gaze direction, and
head pose) as frame-wise feature representations. Spectral heatmaps and spectral
vectors were used to mine multiscale representations of expressive behaviour, which
were then input into DCNN for ADE. The method achieved promising results on the
AVEC2013 and AVEC2014 databases.

Furthermore, studies based on the AVEC2013 and AVEC2014 databases (De Melo
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et al., 2020) introduced a two-stream DCNN framework to learn patterns from RGB
images and encoded images from video clips. The appearance stream took static
images as input, while the temporal stream took image sequences as input. They
used the mean squared error function to address the regression issue and a simple
fusion method (average pooling) to combine the outputs of the two networks for the
ADE task.

Many Works (Dibeklioglu et al., 2017),(De Melo et al., 2020) pre-train deep models
on large-scale databases (e.g.ImageNet, VGG, VGGFACE etc.) using deep architec-
tures (e.g., VGG, ResNet, etc.) and fine-tune them on depression databases, e.g.,
AVEC2013 and AVEC2014, to enhance performance. Novel loss functions are also
proposed to improve depression recognition performance.

He et al. (2021) introduced a novel network that combined 2D-CNN networks and
attention mechanisms for the recognition of depression. They proposed a DCNN
with attention mechanisms and weighted spatial pyramid pooling to model global
features. The architecture consists of two branches that focus on local patches and
global features from the entire facial region. . In terms of pre-processing, researchers
primarily use MTCNN, OpenFace, RetinaFace, and Dlib toolkits to detect and crop
the facial region, providing a solid foundation for depression detection.

Although single image features have been widely employed in ADE tasks, yielding
promising results, these approaches often neglect the temporal information that may
be beneficial to ADE. To address this issue,Al Jazaery and Guo (2018) proposed
using C3D and RNN to extract spatio-temporal features from video clips in two dif-
ferent scales for depression recognition. Their framework includes two components:
loose- and tight-scale feature extraction components, which involve fine-tuning of
deep models and temporal feature aggregation. The C3D Tight-Face model learns
high-resolution features, while the C3D Loose-Face model focusses on larger face
regions to capture global features. An RNN is then used to model the temporal
features learnt by both C3D models, and a mean operation is applied for prediction.

De Melo et al. (2020) proposed a combination of different C3D architectures to
learn spatio-temporal patterns from the full face and local regions, which are further
combined with 3D Global Average Pooling (3D-GAP) for the prediction of depres-
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sion. The local C3D architecture focusses on discriminative information in the eye
region, while the global C3D architecture targets spatiotemporal patterns based on
the entire facial region. The proposed method was tested on the AVEC2013 and
AVEC2014 databases and achieved high performance.

Uddin et al. (2020) employed LSTM to model sequence information from video
data. Deep facial expression features were extracted using a CNN and pooled by
Temporal Median Pooling (TMP) method to feed the LSTM module for ADE. Exper-
iments conducted on the AVEC2013 and AVEC2014 data sets indicated the efficacy
of the proposed methodology. They extracted dynamic features to model subtle
emotions from facial regions. In de Melo et al. (2020), a 3D framework called the
multiscale spatiotemporal network (MSN) was developed to learn characteristic
information from video clips. The model employed several parallel convolutional
layers to learn substantial spatio-temporal variations from facial expressions, and
used multiple receptive fields to maximise the use of distinct spatial areas from the
facial region for AD.

In 2021, several works (de Melo et al., 2021; He et al., 2022) proposed predicting
the severity of depression. In (He et al., 2022), the authors presented an end-to-end
pipeline to generate discriminative representations of entire video clips. Specifically,
a 3D-CNN combined with a Spatiotemporal Feature Aggregation Module (STFAM)
was trained from scratch on the AVEC2013 and AVEC2014 data sets, allowing the
model to learn informative depression patterns. The STFAM integrates channel and
spatial attention mechanisms as well as a 3D DEP-NetVLAD aggregation method to
capture compact characteristics based on feature maps.

In (de Melo et al., 2021), a new deep learning architecture was proposed, called
the Maximisation and Differentiation Network (MDN), to model facial expression
variations closely related to depression. The MDN was designed without 3D convo-
lutions and exploited discriminative temporal patterns learnt by two different blocks
that modelled smooth or sudden facial variations. The models were validated in the
AVEC2013 and AVEC2014 databases.

In comparison to static features or image-based features, image sequences can cap-
ture short-term and long-term spatio-temporal information from videos, leading to
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improved training of deep discriminative models for depression recognition. From a
training perspective, most of the works include a two-staged pipeline, which includes
pre-training and fine-tuning stages.

Several methods have been proposed to aggregate segment-level features into au-
dio or video-level features for depression severity prediction. Average pooling was
adopted in (Valstar et al., 2014, 2013), while Meng et al. (2013) used MHH to pro-
cess each component of audio segment-level features to aggregate the temporal
sequence. Dhall and Goecke (2015) built upon the Bag-of-Words (BoW) approach
in action recognition and facial expressions by constructing visual words from video
segment-level features and generating aggregation results through frequency his-
togram calculations. They also examined the performance of depression detection
using alternative statistical techniques, including mean, maximum, and standard
deviation.

He and Cao (2018) observed the difficulty in tuning the Gaussian components
during the aggregation process and integrated the Dirichlet process to automatically
learn the number of Gaussian components based on the observed data and obtain
video-level features for depression detection. Niu et al. (2019) demonstrated that
average-pooling and max-pooling were special cases of Lp-norm pooling. By com-
bining the Lp norm pool with the least absolute shrinkage and selection operator
(LASSO), they identified the suitable parameter p for the detection of depression. The
aggregate results were then obtained by calculating the Lp norm of each dimension
of the features at the segment level.

2.3.3 Multimodal depression recognition methods

The integration of multimodal data has emerged as a promising approach to the
recognition of depression, as it can leverage the complementary information from
various sources to provide a more comprehensive and accurate understanding of an
individual’s mental state. This section aims to present the state-of-the-art techniques
in depression recognition using multimodal fusion, focussing on the types of data
used, the fusion methodologies employed, and the challenges and future directions
in the field.
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Researchers have used data related to facial expressions, eye movements, gestures,
and posture to analyse depression-related behaviours. Speech and language fea-
tures have been used to recognise depression, focussing on prosodic, spectral, and
linguistic characteristics. Physiological data, such as electroencephalogram (EEG),
heart rate variability (HRV) and skin conductance, have been used to examine the
correlation between depression and physiological signals. Text-based data from
social media platforms, including tweets, posts, and comments, have been analysed
to identify depression-related patterns in language use.

In (Yang et al., 2016) the authors use decision trees to infer multimodal input features
from audio, video, and patient transcripts that related to personality type, sleep,
mood, etc. The state-of-the-art in detecting depressionwon theAVEC challenge using
a topic modelling approach to exploit context-aware recognition and combine audio,
video, and semantic features to achieve prediction tasks (Gong and Poellabauer,
2017). Deep learning approaches are also highly popular, (Dibeklioglu et al., 2017)
using stacked auto-encoders to predict depression severity, (Zhu et al., 2017c) using
deep convolutional neural networks only in images, and(Ma et al., 2016b) using
convolutional neural networks in speech signals. Multimodal methods using deep
learning also showed promising results on the DAIC WOZ data set featuring depres-
sion (Yang et al., 2017b).

In an attempt to predict depression scores, Gupta et al. (2014) combined the audio
baseline characteristics of AVEC2014 with the acoustic characteristics of (Van Seg-
broeck et al., 2013) using late fusion. They integrated AVEC2014 video baseline
features with supplementary video representations, such as LBP-TOP, optical flow
features, and facial landmark motion (Gupta et al., 2014). The final multimodal
result was obtained by linearly fusing the prediction scores of the audio and video
modalities. In contrast, Pérez et al. (2014) generated predictions for affective dimen-
sions, which were used as attributes for audio segment-level features. They also used
facial landmarks to extract motion and velocity information from video segments,
implementing a majority strategy for the predicted results from all segments.

Jain et al. (2014) applied Principal Component Analysis (PCA) to reduce the dimen-
sionality of LLDs and used Fischer Vector encoding to obtain audio features. The
multimodal representation was generated by concatenating audio and video features
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for depression detection. In another study, audio features consisting of LLDs and
MFCCs, as well as video features containing hand-crafted descriptors (e.g., LBP, LPQ,
and Edge Orientation Histogram) and deep representations extracted by VGG-Face,
were combined (Jan et al., 2017). The concatenated features were then input into the
linear regression (LR) and partial linear regression (PLR) models, with the results
of the two regressors weighted as individual depression scores.

Chao et al. (2015) demonstrated the effectiveness of deep learning methods us-
ing a multimodal framework with audiovisual cues in 2015. Visual features taken
from the pre-trained 2D-CNNmodel and an LSTM-RNN is used to learn the tem-
poral context from the audiovisual features. In 2017, a combination of 1D-DCNN
and DNNmethods for ADE was proposed (Yang et al., 2017d). This method used
different models to merge audiovisual features and textual inputs from transcripts.
Each modality used hand-crafted features that were entered into a 1D-DCNN and
then into a DNN to assess the PHQ-8 scores. The three single models (audio, visual,
text) were fused and entered into a DNN to determine the severity of the depression
based on the PHQ-8 scale Yang et al. (2017c,d). The same method was also adopted
in (Yang et al., 2017a, 2018a) with promising results.

The AVEC2018 Bipolar Disorder Sub-Challenge used a Bipolar Disorder Corpus
(Çiftçi et al., 2018) and several methods were proposed to analyse bipolar depression,
for example (Yang et al., 2018b) uses a DNN and fusion architecture using Random
Forest. IncepLSTM, combined an Inception module and LSTM that was designed to
handle bipolar disorder (BD)with irregular variations in different episodes (Du et al.,
2018). Zhao et al. (2019) introduced a method that integrates unsupervised learning,
transfer learning, and hierarchical attention from speech to assess the severity of de-
pression, yielding promising results on the AVEC2017 depression challenge. In 2020,
a new Spatio-Temporal Attention (STA) architecture and Multi-modal Attention
Feature Fusion (MAFF) method were proposed to extract multi-modal features from
audiovisual cues for depression severity evaluation (Niu et al., 2020). The method
used 2D-CNN, 3D-CNN, and attention mechanisms to learn deep features, and the
experiments showed that the proposed architecture outperformedmost existing ones.

Multimodal fusion methods have generally produced optimal performance for ADE
in various databases, though fusion of complementary information between au-
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dio and video cues can be complicated (Niu et al., 2020). Classical methods have
also been proposed for depression estimation since 2015, such as ordinal logistic
regression (Jayawardena et al., 2020) and median robust LBP-TOP (MRLBP-TOP)
(He et al., 2018). Deep learning techniques, such as 1D-CNN, 2D-CNN, and 3D-
CNN, have been commonly used to learn discriminative patterns from static images
and hand-crafted features. Moreover, attention mechanisms have been employed
to learn salient patterns from deep-learnt features from multimodal data. The lit-
erature shows a clear trend of methods adopting multimodal fusion to leverage
complementary signals to gain a comprehensive understanding of depression levels.

2.4 Summary and Research Gaps

This literature review has provided an overview of depression assessment methods,
widely used depression data sets, and state-of-the-art techniques for automated
depression recognition using audio, visual, and multimodal cues. Several key limita-
tions motivate the research contributions presented in this thesis.

• Most existing depression databases are limited in size and diversity, comprising
audiovisual data collected in controlled lab environments. Thiswork introduces
a novel longitudinal multimodal depression database with 139 participants
recorded in natural settings over multiple sessions.

• Current models are heavily based on audiovisual signals captured during
a single session by participants. However, there is no work that integrates
longitudinal data into the prediction model. The work presented in this thesis
utilises the longitudinal aspect of the Mood Seasons data set to provide robust
models.

• Complex end-to-end multimodal fusion is underexplored, especially for in-
tegrating behavioural sensing with audiovisual cues. This work proposes an
end-to-end architecture tailored for the traits of multimodal depression data
considering short-term and long-term modelling of videos via sentence level
and video-level predictions.

• Evaluation of model robustness and generalisability is limited, since models
are usually evaluated on training data sets. This work utilises multiple data
sets to evaluate the generalisation of the model.



2.4 Summary and Research Gaps 33

• Although several methods in the previous sections use state-of-the-art methods
and provide customised solutions, there is no benchmark available on different
baseline methods that are easily adoptable. Although AVEC addresses this to a
certain extent, the methods are siloed and harder to access. This work provides
an extensive benchmark of state-of-the-art video analysis techniques on the
newly curated Mood-Seasons and publicly available AVEC 2014 data sets.

In summary, while progress has been made in automated depression analysis, limi-
tations remain regarding data diversity, modelling approaches, fusion techniques,
evaluation protocols, and annotation requirements. This thesis collects a novel lon-
gitudinal multimodal depression data set and proposes new model architectures,
self-supervised learning strategies, and rigorous cross-data set evaluation to advance
the state-of-the-art in this important research domain.





Chapter 3

Background On Image Synthesis
using GANs

One of themain contributions of this thesis is the development of a face manipulation
method (Chapter 6) that can manipulate the pose and expressions in a given image,
which can then be used to anonymise the identities of subjects for the analysis of de-
pression without harming the process. This method relies on a class of deep learning
models called generative adversarial networks (GANs) to synthesise high-quality
and high-fidelity face images.

GANs were first introduced by Goodfellow et al. (2014), and since then several
variants of the model have been proposed in the literature. It is important to review
GANs in depth and detail, as the choice of architecture, loss functions, and train-
ing methodology is key to building high-quality generative models. This chapter
presents the key theoretical concepts of GANs and their variants. Specifically, this
chapter will cover the following topics: (i) the basic principles of GANs, including
generator and discriminator networks, (ii) the training and optimisation of GANs
and the challenges and tricks to train them, (iii) the different types of GAN, such as
vanilla GANs, conditional GANs, etc., and (iv) the evaluation of GAN-generated
images.
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3.1 Generative Adversarial Networks

Generative adversarial networks, GANs, are a type of generativemodels that can learn
an estimate of a given distribution pdata, representing the training set (Goodfellow,
2016). Their ability to represent high-dimensional data distributions implicitlymakes
them a suitable choice for semi-supervised and unsupervised learning (Radford
et al., 2016).

3.1.1 Formulation

GANs consists of two players, set up against each other, the generator network
which synthesises images and a discriminator network, which differentiates between
samples coming from real and generated/fake data. The goal of the discriminator
is to output with a high probability that the input is coming from the real data
distribution, while the goal of the generator is to generate samples that can fool the
discriminator. The generator does not have access to the real images directly, whereas
the discriminator uses supervised learning by accessing both real and generated
images that are labelled real or fake. The generator uses the error signal of the
discriminator to improve the quality of the samples it generates. A common analogy
(Goodfellow, 2016) for this scenario is that of a money forger and a police, where
the generator acts as a forger trying to create fake money while the discriminator
tries to detect the fake money from the real ones. This min-max game between the
generator G and the discriminator D, with the optimisation objective to train the two
models together, is summarised as

min
G

max
D

Ex∼pdata log D(x) + Ez∼pg log(1 − D(G(z))) (3.1)

where pdata is the distribution of images from the training set and pg is the distri-
bution of the generated samples, G is the generator model, D is the discriminator
model, Ex∼pdata log D(x) is the expected value of the discriminator’s log probability
of a real image and Ez∼pg log(1 − D(G(z))) is the expected value of the discrimina-
tor’s log probability of a fake image. This is the standard cross-entropy cost, which
is minimised while training a standard binary classifier with sigmoid output.

For training a GAN, the optimisation involves finding the discriminator parameters
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that maximise its classification accuracy and the generator parameters for which the
discriminator produces high confidence for the generated samples. In the vanilla
GAN version, (Goodfellow et al., 2014) the discriminator is trained using two mini-
batches, one consisting of x sampled from the real images and the other from the
noise distribution. The two network gradients are updated simultaneously, one
updating θD to reduce the discriminator’s cost and the other updating θG to reduce
the generator’s cost.

3.1.2 On the optimal training of GANs

In the original vanilla GAN, the authors show that for a fixed G, the optimal discrim-
inator is given by,

D∗
G(x) =

pdata(x)
pdata(x) + pg(x)

Figure 3.1: Generative adversarial networks (GANs) are trained by concurrently
updating the discriminative distribution D(x) (blue dashed line) to distinguish
between real data samples x pdata(x) (black dotted line) and generated samples x′

pg(x′) from the generative distribution G(z) (green solid line). The domain from
which the noise vectors z are drawn uniformly is shown as the lower horizontal
line. The upward arrows demonstrate how the mapping x′ = G(z) imposes the non-
uniform pg(x′) on transformed z. G(z)morphs pg(x′) by contracting in high-density
regions and expanding in low-density areas to match pdata(x).(a) When pg(x′) ≈
pdata(x), D(x) becomes an imperfect classifier. (b) D(x) is updated to converge to
the optimal D∗(x) = pdata(x)

pdata(x)+pg(x′) .(c) The gradients of D guide G(z) to map to areas
more likely classified as real by D∗(x). (d) At convergence, pg(x′) = pdata(x) so
D(x) nears 1

2 . The discriminator cannot differentiate between real and generated
data.
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The above figure illustrates the training strategy of the discriminator. Assume
that both z and x are one dimensional. The black arrows show the mapping from z to
x and model density pg is represented by the green curve and the data distribution
pdata is represented by black dots and the discriminator density is represented by
the blue line. The optimally trained discriminator estimates the ratio between the
model density and the sum of the model and data densities (Goodfellow et al., 2014).
When the discriminator output is large, the model density is low and where the
discriminator output is too low, the model density is high. The generator is updated
to create better model density by pushing towards the discriminator uphill, i.e., the
generator’s mapping G(z) should move in the direction that maximises D(G(z)).
After training for several steps, where pg = pdata and, the discriminator outputs the
same value for x and z, D(x) = 1

2 .
Algorithm 1: The algorithm for training GANs. The number of steps k refers
to the discriminator updates.
for number of training iterations do

for k steps do
{ Sample minibatch of m noise samples {z(1), z(2), . . . z(n) } from the
noise prior pg(z)} { Sample minibatch of m examples
{x(1), x(2), . . . x(n)} from the data distribution pdata(x)} { Update the
discriminator by ascending its stochastic gradient: {
∇θd

1
m ∑m

i=1
[

log D
(
x(i)
)
+ log

(
1 − D

(
G
(
z(i)
)))]}

{Sample minibatch of m noise samples {z(1), z(2), . . . z(n) from the noise
prior pg(z)} {Update the generator by descending its stochastic gradient:
∇θg

1
m ∑m

i=1 log
(
1 − D

(
G
(
z(i)
))) }

For an optimal discriminator, the training objective of the generator can be written
as,

min
G

V(D∗, G) =
∫

x

(
pdata(x) log D∗(x) + pg(x) log(1 − D∗(x))

)
dx

=
∫

x

(
pdata(x) log

pdata(x)
pdata(x) + pg(x)

+ pg(x) log
pg(x)

pdata(x) + pg(x)
]

Given Jenson-Shannon divergence,

JSD(Pdata ∥ Pg) =
1
2

DKL
(

pdata ∥
Pdata + Pg

2
)
+

1
2

DKL
(

pg ∥
Pdata + Pg

2
)
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where DKL is the Kullback-Leibler divergence.

=
1
2

∫
x

pdata(x) log
( pdata(x)

pdata(x)+pg(x)
2

)
+

1
2

∫
x

pg(x) log
( pg(x)

pdata(x)+pg(x)
2

)

=
1
2

∫
x

pdata(x) log
( 2pdata(x)

pdata(x) + pg(x)
)
+

1
2

∫
x

pg(x) log
( 2pg(x)

pdata(x) + pg(x)
)

=
1
2
(

log 2
∫

x
pdata(x) log

( pdata(x)
pdata(x) + pg(x)

)
+

1
2

log 2
∫

x
pg(x) log

( pg(x)
pdata(x) + pg(x)

)
=

1
2
(

log 4 + min
G

V(D∗, G)
)

Therefore,
min

G
V(D∗, G) = 2 J̇SD(Pdata ∥ Pg)− log 4

It shows that when training D is optimal, training G is equivalent to minimising
Jensen-Shannon divergence between pdata and pg. Since the Jensen-Shannon di-
vergence is nonnegative and zero only when they are equal, the optimal training
criterion is minG V(D∗, G∗) = − log 4, which is the global minimum and pg = pdata.

However, these theoretical results cannot be used to guarantee convergence because
adversarial networks represent a limited family of pg distributions via the function
G(z; θg) and optimise the parameters θg of the distribution instead of pg(Goodfellow
et al., 2014).

The non-saturating loss function

In the mini-max game, the cost function of the generator is J(G) = −J(D). The
generator’s cost function becomes,

J(G)(θ(G), θ(D)) = −[
1
2

Ex pdata log D(x) +
1
2

Ez log(1 − D(G(z))])

The discriminator minimises the cross entropy loss while the generator tries to
maximise the same function. When the discriminator trains for several iterations,
it may come to a point where it successfully classifies a generated sample as fake,
the gradient of the generator’s loss becomes zero, thus exposing the problem of
vanishing gradients in the vanilla GAN training (Goodfellow, 2016). In order to
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mitigate this, the authors propose a non-saturating loss function for the generator
which is largely heuristically motivated where,

J(G) = −1
2

Ez log(D(G(z)))

= max
θg

Ez log(D(G(z)))

Thiswill ensure a strong gradient in case the discriminator becomes better while train-
ing. In the previous setting, the generator minimised the likelihood of the discrimina-
tor being correct, and in the modified game, the generator maximises the likelihood
of the discriminator being wrong. The authors (Goodfellow, 2016)(Mescheder et al.,
2018) show that the non-saturating version of the vanilla GAN loss works well in
practice. Ideally, the discriminator should be trained optimally before updating the
generator; in practise, the discriminator is trained a few iterations before a gener-
ator’s update (Radford et al., 2016). There are many known training difficulties
for GANs (Goodfellow, 2016) (Radford et al., 2016) (Salimans et al., 2016) such as
non-convergence, occurring where an optimiser like stochastic gradient descent is
used for the task of finding the Nash equilibrium of the game (Salimans et al., 2016).

3.1.3 Challenges in GAN training

Although the authors in (Goodfellow et al., 2014) provide the theoretical conver-
gence of GANs, that is, the existence of global minimum when pdata = pg, when the
discriminator is optimal, in practise this is hardly the case (Arjovsky and Bottou,
2017a)(Arjovsky et al., 2017)(Salimans et al., 2016). The two prominent issues re-
lated to training of GANs are instability and mode collapse. Mode collapse or partial
mode collapse is a phenomenon where the generator creates samples with same
composition (texture, colour, etc.) for different inputs. A wide range of research
focusses on addressing these issues and proposes ways to overcome the limitations
in the original formulation.

In a notable work presented in (Arjovsky and Bottou, 2017a), the authors show
that despite the theoretical guarantee of global minimum, when the discriminator is
trained to convergence, its error goes to zerowhichmeans that the Jenson-ShannonDi-
vergence in 2 log 2 − 2JSD(pdata ∥ pg), maxes out to log 2 and the function V(D∗, G)

tends to zero. The authors further point out that this phenomenon occurs when
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the distributions are disjoint or their supports lie in low-dimensional manifolds. In
this case, it is always possible to train a perfect discriminator that can distinguish
between the real and fake samples. The discriminator therefore provides constant
output for the two distributions, and the gradient update to the generator vanishes.
The generator does not have any useful information from the discriminator to train
in a meaningful way, leading to training instability.

The authors (Arjovsky and Bottou, 2017a) also show that the alternate non-saturated
formulation of generator’s cost function also leads to similar instabilities and mode
collapse. The gradient of the non-saturated cost function is given by [∆θ = ▽θEzp̃(z)

[
−

log(D((θ(z)))
]

= ▽θKL(Pgθ
∥ Pdata)− 2JSD(Pgθ

∥ Pdata),

where Pgθ
and Pdata represent two distributions. Here, cost minimises the KL diver-

gence and maximises the JSD, which are two opposites. This causes instability in the
generator’s gradient updates. Furthermore, the loss function minimises the reverse
KL divergence KL(Pgθ

∥ Pdata), which means that the discriminator assigns a very
high cost to samples resembling fake data and tries to find observations that are more
likely to be generated from the real distribution. This formulation is susceptible to
mode collapse or partial mode collapse. However, it accounts for the good quality of
images generated by the GAN (Arjovsky and Bottou, 2017a).

3.1.4 Heuristics and measures to stabilise GAN training

Following are some measures suggested by recent research (Salimans et al., 2016) to
help alleviate the above-mentioned instabilities and mode collapse associated with
GAN training:

• Instant noise - proposed in (Sønderby et al., 2016),(Arjovsky and Bottou,
2017a) suggests adding Gaussian noise to both generated and real samples
during training to in order to have a well-defined divergence between the real
and fake distributions without a common support.

• Minibatch discrimination - where the discriminator has an additional input
feature which defines the distance of each sample with respect to other samples
in a minibatch, identifying generator samples that are too close to each other
for reducing mode collapse
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• Feature matching - where the generator has a new cost function trained to
match the expected intermediate features of the discriminator

• Historical averaging - where the cost function includes a penalty term for
preventing parameters from deviating from the average parameter values from
the previous times

• One-sided label smoothing - where the targets for the discriminator 1 is re-
placed with 0.9 so that the highly confident discriminator does not provide
weak gradients to the generator

• Virtual batch-normalisation- where each sample x is normalised with respect
to the statistics of a reference batch sample which was fixed at the start of the
training.

3.1.5 Variants of GAN

DCGAN

The Deep Convolutional GAN (DCGAN) architecture, proposed by Radford et. al
(Radford et al., 2016) was one of the first stable architectures for training a GAN to
generate images. The main contributions of the DCGAN paper include the CNN
architecture they proposed after extensive evaluation. Spatial pooling functions were
replaced with strided convolutions and up-sampling was carried out using fraction-
ally strided convolutions. This allowed the networks to learn its own up sampling
and down sampling functions leading to better image generation (Radford et al.,
2016). The second observation was to use batch normalisation in both generator and
discriminator networks to stabilise training. Batch normalisation (Ioffe and Szegedy,
2015) was applied except in the output layer of the generator and the input layer of
the discriminator.
The authors proposed removing the fully connected layers after the convolutions
for achieving deeper models. This was achieved by providing the output of the
last convolutional layer of the generator as the input to the discriminator. The dis-
criminator uses a sigmoid function on its final convolutional features. The work
also showed that using leaky ReLU instead of ReLU activations in the discrimina-
tor produced better quality samples. The DCGAN architecture is shown in Figure 3.2.



3.1 Generative Adversarial Networks 43

Figure 3.2: The fully convolutional architecture of the DCGAN generator and dis-
criminator networks.

DCGAN showed that the latent code was learnt with semantic information by per-
forming vector arithmetic in the latent space that showed semantic changes in the
output. The authors also presented a supervised setting for using the learnt GAN
representations for classification problems in popular datasets such as CIFAR-10 and
SVHN. To achieve this, the authors concatenated the last layer of the discriminator’s
features trained on the Imagenet dataset and further used an L2-SVM classifier to
train on the features, resulting in high accuracy.

Wasserstein GAN

TheWassertein GANwas proposed by Arjovsky et al. (Arjovsky et al., 2017) with an
alternative formulation for the cost function of the GAN, using an approximation of
the Wasserstein distance. They proposed minimising the Wasserstein -1 distance or
Earth Mover’s distance between the real and model data distributions. The authors
argue that this new distance function is a more reasonable choice for approximating
distances between disjoint distributions that may lie in low-dimensional manifolds
using gradient descent (Arjovsky et al., 2017). The Wasserstein distance W(Pdata, Pg)

is defined as the minimum cost of transporting mass to transform the distribution
Pdata to Pg. The distance is defined as

W(Pdata, Pg) = inf
γ∈∏(Pdata,Pg)

E(x,y)∼γ

[
∥ x − y ∥

]
,

where ∏(Pdata, Pg) represents the set of all joint distributions γ(x, y)whosemarginals
are defined by Pdata and Pg. For an intuitive point of view, probability distributions
can be seen as the amount of mass placed at each point, and EM distance is the
minimum work required to transform pdata(x) to pg(θ). Therefore, the function
γ(x, y) is the optimal transport plan defined by the joint probability distribution
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∏(Pdata, Pg) with marginals, Pdata and Pg. To find the EMD, we multiply γ(x, y) by
the Euclidean distance at each point x,y. This is derived as 3.1.5. Since the infimum
is intractable, according to Kantorovich-Rubinstein duality, the WGAN optimisation
function is defined as

min
G

max
D∈D

Ex∼Pr [D(x)] − Ex̃∼Pg [D(x̃)] (3.2)

where D is a set of 1-Lipschitz functions and Pg is a model distribution defined by
x̃ = G(z), z ∼ p(z). This is implemented in practice by clipping the parameters
of the discriminator, to ensure that the parametric space of the critic lies within
a compact space after each gradient update. This is a simple way of enforcing K-
Lipschitz constraint, but works well in practice. The discriminator or the critic is
trained well before each generator update. The loss metric, Wasserstein distance,
was shown to correlate with the generated image quality and convergence of the
generator, providing a meaningful loss metric. The WGAN provides a more stable
way of training GANs with the Wasserstein distance metric that is continuous and
differentiable. It does not suffer from vanishing gradient problems (Arjovsky et al.,
2017) and can reduce mode collapse. The authors report experiments using DCGAN
architecture and conventional GANs. The experiments showed that WGANwas able
to train and generate quality samples without batch normalisation and was not very
sensitive to the choice of non-linear activation functions.

Improved Wasserstein GAN (WGAN-GP)

Following the research on stabilizing GAN training, Gulrajani et al. (2017a) intro-
duced an improved method for training Wasserstein GANs. They focus on the
problems arising from using weight clipping in WGAN to enforce Lipschitz con-
straints for optimisation and demonstrate that weight clipping biases the critic to
learn simpler functions, reducing its capability. The authors propose the use of a
gradient penalty to eliminate this behavior and replace weight clipping. The gradient
penalty term enforces a penalty on the gradient norm of the critic with respect to the
training samples.
A differentiable function is 1-Lipschitz if and only if it has gradient with norm at
most 1 everywhere. They propose to use gradient penalty as a way to constrain the
norm of the gradient of the critic’s output with respect to its input. The modified
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cost function is,

L = Ex̃∼Pg [D(x̃)]− Ex∼Pdata [D(x)] + λEx̂∼Px̂ [(∥ ∆x̂D(x̂) ∥2 −1)2]

, where x̂ is sampled from straight lines between pairs of points sampled from the
real and generated distributions (Gulrajani et al., 2017b). The implementation also
removes batch normalisation as the critic’s gradient norm is penalised with respect
to each input independently, and suggests using layer normalisation instead of batch
normalisation. The authors report experiments on various types of architecture
including DCGAN, ResNet-101, to generate up to 128 x 128 samples in the LSUN
dataset. They reported an improved performance of using gradient penalty over
weight clipping in the CIFAR-10 dataset using inception scores as evaluation metric.

Hinge-Loss

Simulataneous works by (Lim and Ye, 2017a) (Tran et al., 2017) propose the hinge
loss for adversarial training with the following objective function,

VD(Ĝ, D) = Ex∼pdata(x)[min(0,−1 + D(x))] + Ez∼pg(z)[min(0,−1 − D(Ĝ(z)))]

VG(G, D̂) = −Ez∼pg [D̂(G(z))]

Hinge Loss as shown in (Lim and Ye, 2017a) is based on the geometrical interpre-
tation of the discriminator as a linear classifier, such as an SVM that uses maximal
margin hyperplane to separate two classes. Here the intuition is that the discrimi-
nator updates away from the hyperplane while the generator updates towards the
hyperplane. Recent results and experiments in (Zhang et al., 2018) ,(Miyato et al.,
2018) show good quality samples, stable training, and reduced mode collapse with
this cost function.

Spectral Normalisation

Spectral normalisation was introduced by (Miyato et al., 2018) as a weight nor-
malisation technique to stabilise GAN training in the discriminator. The spectral
normalisation method also tries to ensure Lipschitz continuity in the functions learnt
by the discriminator. It controls the Lipschitz constant of the discriminator function
by restricting the spectral norm of each layer. The Lipschitz constant is given by the
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largest singular value of the matrix, W or the spectral norm of W. Therefore, the
method normalises the spectral norm of the weight matrix W of each layer so that it
satisfies the Lipschitz constraint σ(W) = 1,

WSN =
W

σ(W)

Also, the power iteration method is used to accelerate the computation singular
value decomposition therebymaking spectral normalisation efficient and lightweight.
Recent experiments and results in (Zhang et al., 2018)(Miyato et al., 2018)(Brock
et al., 2018) show the effectiveness of using spectral normalisation in GAN training.
The work, (Zhang et al., 2018) examines the training of GANs using a combination
of different training choices such as Hinge + SN, Hinge + GP, etc.

Least Squares GAN

Least Squares GAN (Mao et al., 2017) addresses the problem of training instability
and the generation of better quality samples by proposing a new cost function of
the least squares in the discriminator. The authors show that minimising the objec-
tive function is equivalent to minimising the Pearson X2 divergence. The training
objective is given by:

min
D

VLSGAN(D) =
1
2

Ex∼pdata(x)
[
(D(x)− b)2]+ 1

2
Ez∼pz(z)

[
(D(G(z))− a)2]

min GVLSGAN(G) =
1
2

Ex∼pz(z)
[
(D(G(z))− c)2]

where a and b and fake and real labels and c is the label that the generator should
assign to the sample in order to fool the discriminator. Training becomes stable
because the LSGAN assigns a high penalty to the generated samples that lie far away
from the correct side of the decision boundary, thus pushing the generated samples
to lie close to the decision boundary or the real data manifold (Mao et al., 2017).
This will also eliminate the case of vanishing gradient because the high penalty of
correctly classified, yet far apart samples will yield higher gradients for the generator
to learn. The authors demonstrate in their experiments the superior quality of the
samples produced by LSGAN.
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Conditional GAN

Mirza andOsindero (2014) showed that GANs can be extended to include conditional
information if the generator and discriminator received additional information on
class / label, y. They achieve this by concatenating both generator and discriminator
input with the labels, y, where y represents a one-hot label vector containing the class
information corresponding to the real images. The new objective function becomes

min
G

max
D

V(D, G) = Ex∼pdata(x)
[

log D(x | y)
]
+ Ez∼pz(z)

[
1 − log D((G(z | y))

]
Conditional GAN has been successfully applied in image-image translation problems
(Isola et al., 2017). Auxiliary classifier GAN introduced in (Odena et al., 2017)
the authors introduce a classifier to enforce class conditional information in the
discriminator. Instead of feeding the discriminator input with the class information
from the ACGAN output, the authors modified the discriminator with an auxiliary
decoder network that outputs the class label for the training data. The authors show
high-quality images produced by this approach at higher resolutions, such as 128 x
128, where the images are conditioned on the respective class.

3.1.6 Applications of GANS and notable works

Image-to-Image translation with Cycle GAN

Image-to-image translation is a class of problems in computer vision where the goal
is to translate images from a domain X to images from another domain Y. There are
two main settings for image-to-image translation, (i) paired and (ii) unpaired. In
paired setting, it is supervised since the mapping from X to Y is well defined or for
every image x ∈ domainX there exists y ∈ domainY, (Creswell et al., 2018), (Hong
et al., 2019). In an unpaired setting, the translation problem becomes unsupervised,
where such a mapping is not explicitly provided to the network during training
using aligned training data, for e.g., for pose translation the image of the person in
the required pose would not exist in the training dataset. This can be challenging, as
there may be multiple mappings of domainX → Y.

Cycle GAN (Zhu et al., 2017a) addresses the problem of image-to-image trans-
lation in an unpaired setting, where they have two generators and two discriminators
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to learn the mapping of domain X → Y and domain Y → X. They use two types
of losses, adversarial and cycle-consistent. The adversarial losses try to match the
distribution of real images to that of the generated images, while the cycle loss forces
the learnt mappings to be semantically meaningful and correspond to each other.
The cycle loss is formulated as follows.

min
GX→Y ,GY→X

max
DX ,DY

λ1LGAN(DY(GX→Y(X)), DY(Y))+

λ2LGAN(DX(GY→X(Y)), DX(X))

+λ3Lcycle(GX→Y(GY→X(X)), X)

+λ4Lcycle(GY→X(GX→Y(Y)), Y),

(3.3)

where λ controls the balance between the importance of different losses. Cycle
GAN uses least-squares GAN formulation and employ patch GAN architecture to
the discriminator. They also find the identity map loss ∥ G(X) → Y(X) → x ∥ is
beneficial for retaining the color composition.

Image stylisation with Adaptive Instance normalisation

Image stylisation is the problem of transferring the inferred style from one image to
another image while preserving the content of the latter (Huang and Belongie, 2017).
In the style transfer literature, Given a content image I and a style image S, adaptive
instance normalisation aligns the channel-wise mean and variance of a feature map
I to match that of S (Huang and Belongie, 2017). There are no learnable parameters
and the ADAIN is given by,

ADAIN(I, S) = σ(S)
( I − µ(I)

σ(I)
)
+ µ(S)

Here the normalised image I is scaled according to the variance of the style image
S and shifted according to its mean. This simple mechanism essentially performs
style transfer as shown in (Huang and Belongie, 2017),(Park et al., 2019a) forcing
the local texture of content and style images to be similar.

Progressive Growing of GANs

Progressive growing of GANswas proposed by Karras et al. (2017) for the generation
of high-quality images at high resolutions by progressively growing both the gener-
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ator and discriminator networks. The framework starts from a low resolution and
adds new layers to the networks, G and D progressively during training, capturing
finer details at multiple scales. This method also increases training stability and
reports the state-of-the-art inception score on unsupervised CIFAR-10 evaluation.
The configuration adds layers progressively, at multiple resolutions, by fading them
in smoothly, and increases the resolution of generated images. All the existing layers
remain trainable during the entire process.

A few heuristics used by the authors include (i) minibatch standard deviation –
where the standard deviation for each feature in each spatial location in a minibatch
is computed and averaged over all features and locations at a single scale. This
value is replicated and used as an additional feature map towards the end of the
discriminator. It is similar to minibatch discrimination, to ensure variation in the
generated samples. (ii) normalisation of pixel-wise features in the generator. The
authors use WGAN-GP loss mainly for generating high-resolution images 1024x1024,
in CELEBA and LSUN bedroom datasets. Results are also reported on least squares
LSGAN loss to demonstrate the model reliability despite the choice of loss function.

3.1.7 GAN Evaluation

Inception score

The inception score, first introduced in Salimans et al. (2016) uses a pre-trained
inception model on generated images to evaluate the presence of meaningful objects.
The generated images should ideally have the desirable properties of being highly
classifiable and diverse with respect to the class labels. The method first applies the
inception model to the generated sample, x, to retrieve its conditional label distri-
bution P(y|x). Images with meaningful content are expected to have a conditional
distribution with low entropy; at the same time p(y) should have high entropy to
ensure high variation within class samples. The inception score is given by

InceptionScore = exp (ExKL(p(y|x)||p(y))) (3.4)

Although the inception score is shown to be correlated with human judgment, there
are several drawbacks, including its inability to detect mode collapse or over fitting.
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Also, it is computed over a general inceptionmodel ignoring the real data distribution;
the quantitative evaluation may not be representative.

Fréchet Inception Distance (FID)

The Fréchet Inception Distance (FID) was proposed by Heusel et al. (2017) to have a
reliable metric to evaluate the quality of generated samples. The FID is calculated
between the real data distribution and the generated data distribution. The generated
and real samples are into a feature space given by a specific layer of the Inception
Net and assume that the representation follows a multidimensional Gaussian. The
mean and covariance are estimated for the generated and real data. FID estimates
the distance between these two Gaussian as

FID(Pr, Pg) = ∥ µr − µg ∥ + Tr(Cr + Cg − 2(CrCg)
1/2) (3.5)

where µr, µg, Cr, Cg represent the mean and covariance of the real and generated
feature embeddings, respectively. FID has been reported to be a reliable measure
of discrimination ability, robustness, and efficiency (Heusel et al., 2017). The ex-
periments show correlations with human judgment as well as with sample quality.
However, drawbacks exist for FID, such as its inability to detect over-fitting by GANs.

3.2 Conclusion

All GAN variants presented in this chapter were used to develop the GAN framework
presented in Chapter 7. However, each variant had its own limitations. For example,
training DCGAN under a conditional loss formulation resulted in mode collapse, a
phenomenon where the generator learns to produce a small number of very realistic
images but is unable to generate a variety of different images. TheWGANandWGAN-
GPvariantswere stable in training, but generated lower-quality sampleswhen used in
the conditional GAN setting. This is because the WGAN andWGAN-GP variants are
designed tominimise the difference between the real and generated data distributions,
but they do not explicitly encourage the generator to produce realistic images. On the
other hand, the Hinge Loss GAN with spectral normalisation was the only variant
that was able to train stably under the conditional GAN setting and generate high-
quality and high-fidelity face images. This is because the Hinge Loss GAN with
spectral normalisation is explicitly designed to encourage the generator to produce
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realistic images. It does this by using a hinge loss function, which penalises the
generator for producing images that are not realistic. Spectral normalisation is also
used to stabilise the training process and prevent the discriminator from overfitting
the training data.





Chapter 4

Design Of Real-world, Multi-modal
And Longitudinal Data Collection
Study

Mental health assessments usually include subjective reporting of symptoms at clini-
cal consultations or as part of a study procedure. This is susceptible to recollection
bias and does not account for the fluctuation of symptoms over time or in response
to various contextual or situational triggers. Ecological Momentary Assessment
(EMA) is a method that addresses these issues by allowing patients to report be-
haviours and experiences at a high frequency, in real time, and in more realistic
settings. EMA, (Shiffman et al., 2008) which began with using paper and pen, is now
awell-established digital approach given via smartphone app-delivered notifications.

EcologicalMomentary Treatments (EMI) (Wichers et al., 2011) allows the administra-
tion of interventions to patients that are personalised to their EMA and administered
throughout their daily lives. As personalised, accessible, and scalable treatments,
they have the potential to revolutionise mood disorder management. Incorporating
EMA into clinical practise provides the opportunity to evaluate treatment effects and
outcomes using its fine-grained approach, improving clinical decision making and
expanding its potential to have real-world consequences for managing mental health
issues (Kamath et al., 2022).

Automated depression analysis uses multimodal data to predict depression from
expressive affective behaviour captured in video recordings. High-quality anno-
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tated data are required for cutting-edge machine learning approaches such as deep
learning, which can infer complex behaviours like mood states. EMA is an excellent
technique for delivering such high-quality data that adds context to objective clinical
assessments and a fine-grained and personalised lens to an individual’s expressive
behaviour.
All existing data sets for depression are collected in the laboratory environment,
with carefully designed tasks designed to elicit targeted psychological responses
from subjects. We have understood that the current trend toward reliably moni-
toring depression involves easily accessible, convenient, real-time, and real-world
data delivered through EMA. The natural in-the-wild conditions are important to
capture daily mood states and its dynamics, as opposed to the limited lab-based
environment.When you enter a lab where the study will need interaction with a
researcher, people may become defensive of their sensitive information and wish to
stay confidential, or they may just find it uncomfortable expressing themselves freely.
As a result, laboratory investigations use carefully designed activities to remove
emotional masking and obtain trustworthy results. Voice modulation is something
individuals perform in public, and the voice tones may alter when you do an in-
person in-the-lab study.

A smartphone app liberates one from having to meet a stranger and engage in
a series of activities: One can access it from anywhere, at any time of their choosing,
and at their own pace. A method such as this may elicit honest signals about the
participants’ underlying emotional states. This is one of the first in-the-wild data
collection app for collecting depression scores that will be made available for further
research to the community. This is an important contribution that will help push the
boundaries of automated depression research where we can validate the potential of
the state-of-the-art methods in real, in wild data sets rather than a carefully curated
and specially designed task-based lab environment data set.

This chapter introduces the conceptualisation, design, implementation, and col-
lection of a large-scale smart-phone-based data collection study, Mood-Seasons. The
study collects Ecological Momentary Assessments (EMA) by recording clinically
validated PHQ-8 questionnaire and audio-visual-language data from the subjects,
using a smartphone in real-world and real-time conditions. The use of EMA provides
a subjective contextualisation of the objective questionnaires used for assessments,
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and an automated analysis of audiovisual language information from these EMA is
highly valuable in assessing depression.

The first section describes the motivation and need to design an app for a data
collection for real-world mood analysis. The second section describes the Virtual
Human Questionnaire study which sought answers for the validity of questionnaire
administering mediums through a comparison of different modes of questionnaire
administration such as human-mediated, self-reported and virtual-human medi-
ated questionnaires. The third section introduces the Mood-Seasons app study, the
specifications, implementation, deployment, protocol, the ethical implications and
the perceptions of the app and user engagement. The final section gives an exten-
sive overview and specifications of the Mood-Seasons data set, which is a major
contribution of this thesis.

4.0.1 Contributions

The contributions towards the VHQ study involved the design of the study, applica-
tion for ethics approval, recruitment of participants, and conducting of the study.

The Mood-Seasons study was conceived, designed, and implemented solely by
the author, including app development, ethics application, recruitment, follow-up,
data collection, storage, and analysis. The author led the end-to-end execution of
the Mood-Seasons study from initial design to final data analysis. This involved
designing the study, developing the mobile app for data collection, obtaining ethics
approval, recruiting participants, following up with participants during the study,
collecting and securely storing the data, and analysing the final data set. The Mood-
Seasons study represents a comprehensive individual contribution spanning the full
arc of study design, implementation, and analysis.

4.1 VHQ Study As A Proof Of Principle

As a first step toward designing a large-scale data collection study that gathers mental
health assessment data for the automated diagnosis of mood disorders, it is impor-
tant to understand the validity of the collected assessment data. One of the questions
we set out to answer through the Virtual Human Questionnaire (VHQ) study is if the
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depression severity scores obtained from self-administration of the questionnaires
(through electronic form) were significantly altered when administered face-to-face
by another person or a virtual human.

The VHQ study showed that there is no significant difference in the way people
answer questionnaires when interviewed by a human or virtual human compared to
when self-administering the same. This enables direct use of the questionnaire scores
collected using a smartphone app, to aid in mental health evaluation in combination
with behaviour analysis.

The study examined the distribution of scores obtained from a number of ques-
tionnaires often used in the diagnosis of depression (PHQ-9), anxiety (GAD-7)
and in personality assessment (BFI-10). The study, which consisted of 55 partici-
pants, involved the administration of these questionnaires in three different modes:
self-administration using an electronic form, human interviewer (face to face and
videoconferencing) and virtual human interviewer. The hypothesis is that the an-
swers to the questionnaires are not significantly affected by the different modes of
administration. Through a statistical analysis of the questionnaire scores obtained
from each of these modes, the study revealed if the self-administration method of
obtaining the questionnaire scores can be considered equivalent to obtaining the
same through a human interviewer. The question aforementioned is fundamental to
the design of a data collection study that will then base the automatic assessment of
mental health on self-reported online questionnaire responses, deployed at a much
larger scale.

VHQ study also emphasised another facet; if the human is replaced by a virtual
human agent, does the hypothesis still hold? The main contributions of the VHQ
study are as follows:

• demonstrates the use of virtual human agents as interviewers administering
standard psychological questionnaires.

• shows that the answers given to the questionnaires do get significantly affected
if the questionnaires are administered by a human interviewer compared to
being self-administration.



4.1 VHQ study as a proof of principle 57

• shows that there is no significant effect even if the human interviewer is replaced
by a virtual human agent.

4.1.1 Virtual Human Questionnaires (VHQ) study

The study involved three interactive sessions where one of the three questionnaires,
PHQ-9, BFI-10 and GAD-7 were chosen for administration via:

• Face to Face (FF): Here, the interviewer is a real human sitting in front of the
participant who asks questions from the chosen questionnaire.

• Mediated human (MH): Here, the human interviewer sits in a room different
from the participant. The interaction between the interviewer and the par-
ticipant takes place through a video conferencing link, where the interaction
occurs solely through a screen.

• Virtual Human (VH): Here, the interviewer is a fully functional virtual human
implemented using the Aria ValPusa framework.

Each of the sessions consisted of questions from a different questionnaire delivered
using a different method of delivery. The pairing of the questionnaire and the de-
livery mode was done at random for each participant and therefore varies from
one participant to another. The order in which these sessions are run was also set
randomly. This was done to prevent any order effect. It should be noted that after the
first round of our study, we invited some participants (those who did not complete
the PHQ9 questionnaire with VH interaction earlier) to come back and do the study
only for the PHQ9 questionnaire with VH interaction mode to increase the number
of samples for the VH interaction mode.

Participants completed an electronic version of the questionnaires the day before the
study, which could then be compared with the scores obtained from the different
interactive sessions of humans / virtual humans completed during the study. In this
way, the study explores the effect of mediation in questionnaire responses.

4.1.2 Data Analysis and Results

The VHQ study collected data from 55 participants where 49% of participants had
no depression (Ps ∈ [0, 4]), 33% had mild depression(Ps ∈ [5, 9]), 13% had moder-
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ate depression(Ps ∈ [10, 14]) and 5% belonged to the Moderately severe category
(Ps ∈ [15, 19]). Participants with severe depression scores were excluded from the
study to mitigate harm following the ethical mandates set out by the school of com-
puter science ethics committee.
VHQ study used the Two One Sided t-Tests (TOST) procedure Schuirmann (1987)

Figure 4.1: Depression severity distribution among participants, according to PHQ9
scores.

which is a popular method to test for equality between the means of 2 sets of samples.
It is a statistical test that can be used to validate the hypothesis that the difference
between 2 means is within a given interval. This interval is chosen to be the smallest
effect size (mean difference) that can be tolerated and is specified in terms of an up-
per (−∆L) and lower (∆U) equivalence bound. These bounds can be chosen in terms
of raw differences or standardised differences such as Cohen’s d (Cohen’s d = ∆/σ,
where ∆ denotes the raw difference and σ denotes the standard deviation). Using
these equivalence bounds, two separate null hypotheses are defined: H01 : ∆ ≤ ∆L

and H02 : ∆ ≥ ∆U , where ∆ denotes the observed effect. These hypotheses are tested
using the t-test procedure. For each of these hypotheses, the p-values are calculated
and compared with a threshold significance level (α) to determine whether they can
be rejected or not. If both hypotheses can be rejected (p < α for each hypothesis), it
implies that the observed effect (∆) lies within the equivalence bounds (−∆L, ∆U)
and is statistically small enough to imply the equivalence of the two means.

Table 4.1, 4.2 shows the mean questionnaire scores, the number of samples, and



4.1 VHQ study as a proof of principle 59

the p values of the TOST equivalence test for face-to-face (FF) and mediated human
interaction (MH), respectively. In Table 4.1 it can be observed that for the face-to-face
interaction mode, the effect size was found to be within its respective equivalence
bounds (at significance level α = 0.05) for PHQ-9 and GAD-7. Similar results were
observed for the case of human mediated interaction (Table 4.2), where the effect
size was found to be within the equivalence bounds.

The above results show that the differences in scores between self-administered
questionnaires and real-human administered questionnaires were less than the mini-
mumdifferencewhich could be regarded practically relevant (for PHQ-9 andGAD-7)
indicating that self-administration of these questionnaires can be considered equiva-
lent to the administration of these questionnaires by real human as well as virtual
human agents. It can also be noticed that for the PHQ9 and GAD7 questionnaires,
the mean scores for the self-administered case are always slightly higher compared
to the mean scores from the questionnaires administered through interviews for each
interaction mode (FF, MH and VH). This indicates that some participants might be
suppressing their scores while being interviewed. However, this effect is too small to
have clinical significance and scores can be considered practically equivalent in each
case.

Questionnaire Self-admin
mean score

FF mean
score

Mean of dif-
ference (std)

Number of
samples

TOST
p-value

PHQ9 5.05 4.95 0.10 (2.6) 20 <0.05
GAD7 5.20 4.72 0.50 (1.8) 18 <0.05

Table 4.1: Comparison of mean scores from self-administered questionnaire and
questionnaire responses from face to face (FF) interaction.

Questionnaire Self-admin
mean score

MH mean
score

Mean of dif-
ference (std)

Number of
samples

TOST
p-value

PHQ9 5.42 5.14 0.28 (2.3) 14 <0.05
GAD7 6.00 5.56 0.43 (2.7) 23 <0.05

Table 4.2: Comparison of mean scores from self-administered questionnaire and
questionnaire responses from mediated human (MH) interaction



60 Design of real-world, multi-modal and longitudinal data collection study

4.2 Mood-Seasons App Study

The study involves the design and development of a simplistic app that can capture
videos from the user and allow them to complete the PHQ-8 questionnaire in order
to collect audio, visual, and language data in-the-wild. The design of the application
took the advice of experts in clinical psychiatry. The main reason for proposing an
app for data collection is to achieve EMI, i.e., sample user experiences at any time
and place chosen by the user. Due to increased accessibility, we can maximise the
participation of the general population.

4.2.1 Definition of Mood

Mood has various definitions in the digital mental health literature and following
section highlights those definitions and relates them to the mood assessment termi-
nology used in the context of this thesis. Different definitions of mood include the
following:

• Mood refers to a pervasive and sustained emotional state that influences one’s
perception of the world. Moods tend to be less intense than emotions and often
lack a contextual stimulus. (Van de Leemput et al., 2014)

• Mood represents a predominant internal feeling state that persists over time
and influences one’s perceptions and behaviours. Moods tend to be less intense
than emotions and often occur without a specific trigger. (Torous et al., 2018)

• Amood is a relatively long-lasting emotional state which influences an individ-
ual’s perception of the world. Moods tend to be less intense than emotions and
often emerge without a specific event acting as a stimulus. (Hollis et al., 2017)

In summary, mood refers to an internal, pervasive feeling state that is not tied
to a specific trigger, is less intense than discrete emotions, and persists over an
extended period of time. The mood influences one’s overall outlook and response
tendencies. This conception aligns with the thesis’ use of mood assessments to
characterise depression severity over a 1-2 week timeframe. Specifically, mood refers
to a predominant affective state that reflects an individual’s stable tendencies over
the assessed time interval rather than momentary emotional reactions. The mood
assessments used in this thesis provide a snapshot of this persistent internal state to
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indicate the current severity of depression symptoms. Just as the literature describes
mood on a continuum from positive to negative valence, the mood assessments here
capture the degree of negative mood as a proxy for depression severity. In summary,
mood is operationalised in this thesis as a persistent affective state that provides a
window into the severity of depression symptoms over an extended period of time.

4.2.2 Specification Of The App

The app ’Mood-Seasons’ has a simple interface that collects data from the user in
the form of a self-reported PHQ 8 score and a short video clip and provides a mood
feedback to the user. Figure 4.3 shows the current screenshots of the mobile app. The
app interface starts with the PHQ 8 questionnaire and follows with a generic prompt
for the user’s video recording. The user can record the video by answering the
generic prompt, facilitating the capture of facial and voice behaviours as appearance,
including head pose, gaze, facial expressions, and speech.
The video prompts available on the app draws from generic topics, so that the user’s

Figure 4.2: Illustrations of mood feedback, ’moodicons’ assigned to the user at the
end of a session. Winter indicates severe depression, rainy indicates moderate severe
depression, autumn indicates moderate depression, spring indicates mild depression
and summer indicates no depression.

response is not too emotive i.e. does not alter his/her current mood and at the same
time interesting enough to discuss in front of the camera. The app provides mood
feedback to the user based on the calculated PHQ 8 score illustrated as a ‘moodicon’,
which was exclusively designed and illustrated by the author of the thesis for the
app. A ‘moodicon’ represents different mood states mapped to seasons – summer
representing the happy state, to winter corresponding to extremely lowmood. Mood
icons are illustrations, shown in Figure 4.2, so they provide an identifiable and
engaging feedback to the participant regarding their mood state instead of a direct
score. They are shown in Figure 3. The app also allows the user to keep track of
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this mood feedback on a calendar, which they can then reflect on during the current
month. This can be used as an incentive to use the app more often, if desired.

4.2.3 Implementation And Deployment

The implementation of the app was carried out using Cordova, JavaScript, PHP, and
MySQL. Using Cordova for app development makes the app platform-agnostic, i.e.,
enabling it to run on browser, android, and iOS. Currently, the implementation runs
on Android and Web browser and can run on multiple devices such as desktops,
laptops, mobile phones, and tablets. Screenshots of the app are shown in Figure 4.4
and Figure 4.3.

Figure 4.4: Demonstration of the smartphone-app, showing screenshots from the
Mood-Seasons app interface.

No personal information that identifies an individual user is collected by the
app. The app uses a device’s unique ID to identify the user and saves the data in
an encrypted manner in a School of Computer Science server. The session details of
the user interaction, including the unique device ID, time stamp, depression severity
score, and the location of the encrypted video file on the drive, is logged in a database
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Figure 4.3: Mood-Seasons App screenshots
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hosted by the School of Computer Science. Sending and receiving data to and from
the server is handled by a server-side PHP script that follows security guidelines to
ensure safe transmission of sensitive user data.

The app development also involved a PPI group with lived experiences to evaluate
the usability of the app and make necessary updates to the design and execution.
The ethics application for data collection was submitted and then approved by the
ethics committee of the school of medicine. The study was carried out from March
2021 to June 2021. The initial protocol for deployment included face-to-face sessions
with the user, which, however, was adapted to conduct the study entirely online,
due to the Covid-19 pandemic without ever having face-to-face involvement from
participants.

4.3 Mood-Seasons App Study Protocol

This section details the protocol laid out for the data collection study, approved by
the ethics committee of the School of Medicine at the University of Nottingham. A
detailed diagram of the protocol is provided in Figure 4.5.

4.3.1 Participant recruitment:

Participants were recruited from around the University of Nottingham, using poster
advertisements sent to several facultymailing lists and publicity through social media
and contacting mental health organizations like MQresearch and Callforparticipants.
The eligibility criteria for participant inclusion were:

1. 18 years and over
2. English fluency
3. Able to provide written informed consent
4. Has access to any Android device or any device with a web browser, camera,

and microphone
5. Not currently undergoing treatment for depression or anxiety.

PHQ-9 scores should not be too high to ensure participant safety, which was assessed
in the pre-enrolment part of the recruitment process. Any person who scored above
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Figure 4.5: Mood-Seasons data collection study protocol
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a certain threshold greater than 20 on the PHQ-9 questionnaire and greater than 2
on the self-harm question was not eligible for the study; instead, those who scored
more than 20 were signed up to receive professional support.

4.3.2 Enrollment

Every participant who volunteers to participate in the study was first contacted by
email and asked to complete an electronic version of the PHQ-9 questionnaire. The
Patient Health Questionnaire – 9 (PHQ-9), is a self-administered questionnaire used
to score 9 DSM-IV criteria for depression. It is widely used as a tool to monitor the
severity of depression, as seen in Chapter 2.

A thorough review of the responses to the questionnaire established the eligibility of
the person for the study in terms of the severity of depression. The responses of the
selected participant to PHQ-8 are set as the ‘ground truth’ or ‘gold standard’ of their
mental state. People who were undergoing treatment by the NHS for depression or
those who scored high on the PHQ-9 questionnaire were not eligible for the study.
These people were excluded from the study because there is a higher risk associated
with such participants due to their elevated levels of depression, and they may re-
quire additional levels of support such as professional help.

For PHQ-9, a total score of > 20 or > 2 for the self harm question was considered
high. These threshold scores have been determined from the results of a number
of studies [18]. The threshold scores have not been explicitly mentioned in the
participant information sheet and consent form because doing so will unnecessarily
influence the participant and might affect his/her responses to the questionnaire.

Protocol for excluded participants

The excluded participants were to be individually contacted by the researcher, pro-
viding the reason they cannot participate, as well as giving standard details of how to
seek help with their depression. The researcher ought to reach out to the participant
via phone and then send a follow-up email, using a template phone call procedure
and email approved by the ethics committee.

The participant information sheet specified that if the participant was unavailable via
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phone for over a period of seven days, the researcher may contact the GP to provide
additional support, as part of duty of care. Therefore, the study sought separate
consent to contact the GP of the participant when they initially submitted personal
information.

The study therefore collected the date of birth and the GP address information
specifically for this kind of scenario in which the information needs to be passed on
to the GP. The privacy safeguarding guidelines followed by the study also ensured
that the participant’s questionnaire data were destroyed unless they are found eligi-
ble for the study and sign the full consent form.

In case the participant was not eligible for the study (due to high PHQ-9 score), the
data of their questionnaire were destroyed after making contact with the participant
and ensuring that they have understood the advice given to them. If the participant
could not be reached, their data ought to be passed onto the GP as mentioned above.

The main study

The eligible candidates on-boarded to the study with filling in a consent form sent
along with a participant information sheet explaining their rights, detailed video
instructions on how to download and install the app and the study protocol. The
app collects self-reported PHQ-8 scores based on the past one week for three weeks
and records a short video clip of the participant talking about a generic topic. The
PHQ-8 will not include the last question pertaining to self-harm to minimise any
potential triggering effects.

Each time a participant uses the app, they first fill in the PHQ-8 questionnaire
displayed on the screen based on their experience over the past two weeks. Then
the app navigates to a video prompt selection screen that contains a set of general
questions which are arranged categorically, such as work, leisure, etc. The participant
then chooses one of the questions from the categories, which takes them to a video
recording screen. The participant then starts recording a video facing the camera
with his face visible and talking about the prompt they chose previously.

The video duration is between 1 minute to 5 minutes. After the recording, the
participant receives a mood feedback in the form of a ’moodicon’, based on the
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current PHQ-8 score. A mood calendar helps them track their mood during the
current month. The participant can use the app as many times as preferred until
the end of the study. The study required the participant to use the app three times
at least, once after the app installation, and then follow it up every week for three
weeks.The researcher sent follow-up emails every week to complete the sessions.

All participants who score high (>10) on the PHQ-8 questionnaires were notified
by the app advising them to seek additional advice from their physician or the
University Health Service (if not done already) should they feel their high scores
are causing them any difficulties or if they believe they are getting worse. The app
provides a list of resources available for mental health help and support.

After the end of three weeks, the researcher contacted the participants with the
reward and asked for feedback on the participant’s experience with the app. It also
provided instructions on how to remove the app from the participant’s phone. The
study was incentivised where the participants received Amazon vouchers worth
10.00 GBP.

All data captured during the study (personal information, questionnaires, self-
reported scores, audio, video) will be stored in accordance with the Data Protection
Act and University of Nottingham’s policies. At the start of the study, personally
identifiable information about participants, such as name, date of birth, gender,
email, phone number and GP address, was collected using online forms. A unique
identification number was assigned to the participant, was used to store name and
contact information (phone, email, GP address) separately from the date of birth,
gender information, and the data sent from the app. Therefore, the participant can-
not be personally identified. All data was stored in accordance with General Data
Protection Regulation (GDPR).

The app itself does not collect any information such as name, age or gender, but uses
the anonymous reference number and device’s unique ID in order to identify the user
sessions. Videos recorded in.mp4 format and responses to the PHQ-8 questionnaire
in text format are encrypted and sent to a secure server. Before any kind of analysis,
the video data was checked and pruned to remove identifiable information such as
name or address. Personally identifiable information such as name, phone number,
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GP address will be stored separately from demographic information such as gender,
date of birth, linked by unique reference number. These data will be connected
to the app data with the same identification number assigned to the participant.
Therefore, the personal information is anonymised using this identification number.
In other words, the participant’s data will never be directly linked to their names
within the app and an anonymous reference number will be used to establish the
link. The Mood-Seasons data collection study and analysis follows the standard
ethical procedures of the Faculty of Medicine and Health Sciences and the University
of Nottingham.

Ethical implications

There are several ethical concerns regarding the nature of the data collected for this
study, mainly because identifiable audiovisual recordings with mental health assess-
ment information.The following section brings forth some ethical issues concerning
this study into light.

The study recruits from the general population, which may comprise people with dif-
ferent levels of severity of depression. Some participants (or potential participants)
may be considered vulnerable due to higher depression score and/or self-harm
tendency. Data collection does not provide any treatment or mechanisms to address
the needs of people with severe depression. The ethics of collecting audiovisual
recordings from the severe depression category from the general population is not ad-
visable, as opposed to a clinical population where clinical safeguards are put in place.

Therefore, people scoring very high (>=20 total or >=2 on suicide item) on the
PHQ9 scale were not eligible to participate in this study and therefore were protected
from any kind of possible exploitation or harm. In addition, these participants were
encouraged to seekmedical advice . The interaction with such participants took place
only during the screening stage of recruitment (using online forms, phone, email)
and any data collected till that point (name, questionnaire scores) was destroyed
after informing them about the decision of the research team and ensuring that the
participant has understood the advice given to them. In the unlikely case that the
researcher was not able to get any response from such participants (for more than 7
days), their details ought to be passed on to their GP to ensure appropriate follow
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up. If the participant scores high during the use of the app, then the app will notify
the participant to seek help and provide links to additional resources for support.
The app also lists an additional support information tab available for reference to all
its users in search of help.

It is possible that a seemingly neutral topic could inadvertently trigger some psycho-
logical stress or anxiety beyond the risks encountered in everyday life. Participants
were encouraged to discuss only generic topics that are comfortable to discuss while
using the app. They are also provided with resources within the app, from which
they can seek support.

This study requires facial recordings to be captured, and thus, by its very nature, the
raw datawill not be completely anonymous. However, all types of datawere assigned
an anonymous reference number, and thus the data will never be directly linked
with their names. With the participant’s consent (if they chose to “become part of a
Mood-Seasons database to be shared amongst researchers who have signed up to the
same ethical guidelines as the designers of this study” in the Consent Form), their
data and restricted personal information (their age, gender, questionnaire scores)
were part of the Mood-Seasons database that could be shared with other researchers
who have signed up and agreed to follow the same ethical considerations. However,
these researchers will not be allowed to further redistribute the data.

4.3.3 Perception of the App and Engagement

The study collected participant feedback informally asking how the participant felt
during the study and the usability of the app. Participants also raised crucial points
that would help enhance user engagement and, therefore, adherence. The following
are the key points from their experience of using the app:

• The prompts for video recording could be improved, providing a wider array
of choices for the participant based on their interests.

• Feedback in the form of Moodicons was seen as appealing and relatable to the
participants.

• Several participants benefited from having a calendar that colour-coded their
mood scores over the last 30 days.
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• A popular request was the functionality to see all the months in the mood
calendar, not only the current month.

• Since the study lasted three weeks, many participants ’simply forgot’ to record
the videos, unless prompted by the researcher. So, a functionality to remind
them of the video recordings using notifications would be useful.

• Some participants preferred to hide their self-view during the recording, while
others preferred to see themselves on the screen.

• Most of the participants felt that they were contributing to important research
and were willing to record the videos as many times as needed.

• Some participants found the app extremely helpful because it served as a video
diary for them, even if the study actively discouraged participants to engage in
emotional triggers, if any.

• The convenience of the app – the flexibility to record the videos anywhere and
any time of the participant’s choice played a major role in their adherence.

4.4 The Mood-Seasons Data Set

The participants can be grouped into four categories of severity of depression based
on the range of their PHQ-8 scores. A PHQ-8 score ranging from 0-4 indicates no
depression, 5-9 indicates mild depression, 10-14 moderate depression, 15-19 mod-
erately severe depression, and any score greater than 20 shows severe depression.
The study excludes the severe depression category during the screening procedure.
It uses the PHQ-8 version of the questionnaire PHQ-9, which removes the 9th item
about suicidal thoughts in an attempt to enforce safeguards to avoid potential harm.
Of the 148 participants who completed the study, 134 were chosen for the Mood-

Seasons data set. The study excluded information from any participants who did not
provide their consent to share their data. The distribution of participants in the above
four categories is shown in the Figure: 4.6. A cutoff score of PHQ-8 of 10 determines
if a subject has depression. We can see that around 14% of the general population
suffers from depression in the collected data set, of which around 10% falls into the
moderate depression category and 4% shows signs of moderately severe depression.

Figure 4.7, 4.8 and 4.9 depict the gender, race, and age distributions of the par-
ticipants, respectively. Figure 4.7 shows that the majority of participants are females,
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Figure 4.6: Distribution of PHQ-8 scores among participants for different categories
of depression in the Mood-Seasons data set.

Figure 4.7: Distribution of gender in the Mood-Seasons data set.

with around 28.5 per cent male and 69.2
In Figure 4.8, 58% of the participants identified as Caucasian, 21 percent as Asian, 12
percent as African, 5 percent as East Asian, and 4 percent as Latino. The majority
age group of the participants is 18-35, as shown in Figure 4.9 where at least two par-
ticipants are present in all ranges. 77 per cent of the participants were aged between
18 and 35 years old, 20 per cent between 35 and 45 years old, and 3 per cent between
45 and 55 years old.

The study collected PHQ scores from participants over a three-week period, when
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Figure 4.8: Distribution of race of the participants present in the Mood-Seasons data
set.

participants were required to record videos every week. Most of the participants
completed the study successfully by uploading one video per week for three weeks,
some added more videos, while some recorded only one video.
There were several pre-processing operations for refining the data set, such as ex-
cluding low-quality, empty or invalid videos and removing participants who did not
consent to sharing their data. The Mood-Seasons data set comprises 375 audiovisual
recordings and transcripts from 134 unique participants. The average number of
clips recorded by a participant is 2.79. The total duration of the recordings in the data
set is about 9.8 hours or 556 minutes. The average duration of a recording is approx.
90 seconds or 1.5 minutes. The duration of the shortest clip is 60 milliseconds and
longest clip has a duration of 6.13 minutes.

Figure 4.10 shows the distribution of the time span of the video recordings present
in the Mood-Seasons data set. The high number of recordings that are above 60
seconds reflect the participants’ adherence to the advice given during the study, i.e.,
to record a video of that lasts between 1 and 5 minutes.

A longitudinal analysis of the PHQ score is shown in Figure 4.11.It shows the PHQ-8
scores for each participant for all their recordings. The main observation is that
the relative PHQ-8 scores over the course of three weeks remained stable, that is,
within the category brackets, showing the longitudinal persistence of mood. This is
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Figure 4.9: Distribution of age of the participants in the different age-groups present
in the Mood-Seasons data set.

especially true for those who surpass the clinical threshold for depression, while the
mild and no depression categories may alternate, showing that it is more natural to
shift from a high mood to a lower energy phase or vice versa.
The study had two main limitations. First, the participants were not representative
of the clinical population because people with a clinical diagnosis of depression were
excluded. As a result, the study sample had a lower percentage of participants with
severe depression symptoms, as it represented the general population. Second, the
majority of the participants were young women. This means that the study results
are more generalisable to young women than to the general population.

4.5 Conclusion

The fourth chapter described a large-scale data collection study that generated a novel,
multimodal (audio-video-text) and longitudinal Mood-Seasons data set, which was
acquired in natural, in-the-wild environments using a smartphone. The data set in-
cludes video and audio recordings, as well as textual transcriptions, from the general
population, with depression severity measured from responses to a PHQ-8 ques-
tionnaire. The Virtual Human Questionnaire Study revealed that self-administered
questionnaire responses are comparable to human- or virtual-human-mediated ques-
tionnaire responses.
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Figure 4.10: Distribution of the duration of video recordings in seconds of the partic-
ipants present in the Mood-Seasons data set.

The chapter discussed the thorough and ethical design of the data gatheringmethods,
as well as the development and implementation of the app. It also examined the
lessons learnt by launching such an app, as well as the public’s perspective of it.
It also describes strategies to increase engagement and use of smartphone-based
mental health data collection techniques.

The mood season data set was analysed in terms of the distribution of depression
severity scores across numerous factors such as depression categories, age, gender,
and race. A key limitation of the study is that the participants were from the general
population and did not represent people with moderate-severe clinical depression.
In Chapter 5, we will discuss a detailed approach for automated video analysis for
depression assessment.
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Figure 4.11: PHQ-8 scores for each of the participants for all their sessions. The orange
lines on the box plot indicate the median score per participant in the Mood-Seasons
data set.



Chapter 5

Depression Recognition

Observable traits of depression as stated by the Diagnostic and Statistical Manual of
Mental Disorders of the American Psychiatric Association (APA) (Association et al.,
2013) include both visual (facial expression and demeanour) and speech (increased
pauses, muteness) indicators. Facial expressions, along with speech, are prominent
behavioural observations that are strong indicators of mood disorders (American
Psychiatric Association et al., 2013) including depression. Many approaches in the
past have used different cues for detecting depression and other mood disorders,
such as facial expression, gaze, head movement, body-pose (Pampouchidou et al.,
2017a). Voice and speech analysis is used as a reliable means of estimating and
tracking mood disorders (Cummins et al., 2015b), with studies having established
accuracy through clinical trials.

An accurate characterisation of facial behaviour that can assess mood in real-time
can be used as a reliable sensor in mental health technologies for managing mood
disorders. This would open more opportunities to deliver behavioural interven-
tions based on multimodal, audio, vision, and language data, prompting seamless
user engagement during video sessions. This chapter presents approaches to the
behavioural analysis of video recordings for detecting depression from video, audio,
and text data in natural environments. The proposed research may be applied to the
delivery of mental health care on automated patient monitoring or therapy adminis-
tration platforms.

Many published studies addressing the problem of mood analysis for mental health
disorders point out the difficulty in attaining labelled data at a large scale, (He et al.,
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2018) mainly attributed to the clinical expertise needed and its sensitive nature. This
makes most studies resort to collecting their own data sets in the laboratory, where
most of the available data are in the form of clinical interviews with a limited num-
ber of subjects and in restricted clinical settings. It limits addressing the detection
of mood disorders using facial behaviour in previously unseen environments or
in-the-wild. To develop a system with real-world impact, it must be able to assess
depression in natural environments. Chapter 4 presented a novel large data set
that was collected using a smart phone in unconstrained real-world environments.
This chapter will analyse the real-world data set using state-of-the-art and novel
techniques to characterise the severity of depression.

This chapter is divided into two parts. The first part provides a comprehensive
benchmark of state-of-the-art video analysis techniques on the newly curated Mood-
Seasons and publicly available AVEC 2014 data sets. The second part presents a
multimodal transformer-based framework for automated depression severity predic-
tion and includes extensive experiments to validate the effectiveness of the approach
on both the Mood Seasons and AVEC 2014 data sets.

After presenting a thorough benchmark on theMoodSeasons data set, this chapter in-
troduces a multimodal framework based on the multimodal transformer architecture
for automated depression severity estimation. This section describes the motivation
behind the use of multimodal transformers to learn strong representations from dif-
ferent sources of data, such as video, audio, and language. The section also discusses
the two-stage design of the framework, which includes short-range and long-range
analysis of multimodal sequences. It is followed by the introduction of a novel loss,
termed differential loss, which helps leverage multiple videos from the same person
to improve their prediction score for depression.

5.1 Bench-marking Automated Depression Analysis

There are several state-of-the-art video analysis methods for automated video predic-
tion tasks, such as video activity recognition and predicting future states (Contribu-
tors, 2020). This section describes the main baselines employed for bench-marking
automated depression recognition tasks on visual data or videos.
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5.1.1 Datasets

The experiments in this study were conducted on the newly introduced Mood-
Seasons dataset described in the Chapter 4 and a publicly available dataset for
depression analysis, the AVEC 2013 dataset (Valstar et al., 2013). This section gives
an overview of the two datasets and the pre-processing techniques applied for bench-
marking. The AVEC 2013 dataset is included to show how the benchmark approaches
compare with a well-studied dataset that is widely used in research on depression
analysis.

The AVEC 2013 dataset is a widely used dataset for research on depression analysis
and was part of the depression recognition challenge in AVEC 2013 (Valstar et al.,
2014, 2013) that included 150 videos with depression labels. These videos were
recorded in a controlled lab environment during task-based experiments, and the
subjects’ audio and video were recorded while they performed various tasks, such as
speaking out loud while solving a task or sustained vowel phonation. The duration
of the recordings ranged from 20 to 50 minutes, with a mean duration of 25 minutes,
and the total duration of the clips was 240 hours. The subjects’ mean age was 31.5
years and the original resolution of the videos was 640×480 pixels.

The experiments involving multimodal transformers employ part of the AVEC 2014
(Valstar et al., 2014) dataset. The AVEC 2014 dataset is a subset of the AVEC 2013
dataset that focusses on two tasks, the Northwind and Freeform tasks only. The
North-Wind task involved reading a passage in German out loud, while the Freeform
task involved answering open-ended questions in German, such as "What is your
favourite dish?" or "What was your best gift?". To make the nature of the text modali-
ties comparable to that of the Mood-Seasons dataset, the Freeform partition of the
AVEC 2014 dataset was chosen for the experiments. This partition also includes 150
audiovisual video clips, but the duration of the clips is shorter than in the AVEC
2013 dataset, ranging from 6 seconds to 4 minutes and 8 seconds. For both datasets,
each clip is labelled with a Beck Depression Inventory (BDI II) score, indicating the
severity of depression, which ranges from 0 to 63.

As described in the previous chapter, the Mood-Seasons dataset comprises real-
world videos collected from 134 participants. The training set of the Mood-Seasons



80 Depression recognition

dataset for benchmarking experiments consists of 226 videos, while the validation set
has 69 videos, and the testing set contains 79 videos. There are 87 unique subjects in
the training set, 22 and 25 in the validation and testing sets, respectively. The dataset
was split using a stratified mode where the distributions of dataset attributes such as
gender, race, age, as well as the distribution of PHQ score were balanced. Figure 5.1
depicts the distribution of these factors in different dataset splits.

Figure 5.1: Distribution of different attribute categories, age, gender, race and PHQ
scores in the three different dataset splits, training, testing, and validation (top to
bottom rows in each plot) respectively

5.1.2 Evalutation Metrics

The objective of the depression recognition model developed in this work is to
predict a continuous value representing the PhQ-8 depression severity score for
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a given input video. In the literature, specifically in the renowned Audio Visual
Emotion Challenge (AVEC) for depression recognition (AVEC 2013-19) Valstar et al.
(2016), the approaches are evaluated using two measures: the Mean Absolute Error
(MAE) and the Root Mean Squared Error (RMSE). These metrics are useful for
the estimation of depression severity due to their ability to quantify the deviation
between the predicted and true depression severity scores Valstar et al. (2013). Some
recent studies Song et al. (2020) have also utilised Pearson’s Correlation Coefficient
(PCC) and Concordance Correlation Coefficient (CCC) as evaluation metrics, which
will also be included in this report. The mean absolute error or MAE is the average
absolute error between the predicted and ground-truth PhQ-8 scores. It is given by:

MAE =
1
N

N

∑
i=1

|ŷi − yi|

The Root Mean Squared Error (RMSE) is a measure of the difference between the
predicted and ground-truth depression severity scores. It is calculated by taking the
square root of the average squared errors between the two. The formula for RMSE is
as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)2

5.1.3 Benchmarks

Given an input video Xi ∈ V, with a segment Xk comprising a set of frames
Xk = x1, x2, x3, ..., xn where N is the number of frames in the segment Xk and K
is the number of segments in Xi, the goal is to predict a depression severity label yi

for the video Xi where yi ∈ [0, 24]. The number of frames is N = 16 and the resolu-
tion of each frame is set to xi,k = 224 × 224 × 3 for the benchmarking experiments.
The value of K varies as the lengths of the videos are different. Only the segment
length, that is, sequence of frames, is kept constant with a stride, s = 2 covering 1.07
seconds per segment. The batch size was set to B = 8.

The same settings were used on both the Mood-Seasons dataset and AVEC 2014. The
video analysis techniques utilised for bench-marking compute either frame-level or
segment-level predictions, and the final video-level prediction is computed as an
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average of the predictions following a late-fusion approach.

The baseline models are classified into three types based on how they process these
video data (i) 2D CNN approaches operate on the 2D frames only; (ii) 2D CNN +
temporal methods additionally process temporal information from the 2D CNN fea-
tures computed over temporal frames using sequential or attention mechanisms; (iii)
the 3D CNN methods operate on 3D data directly, i.e., process spatial and temporal
information simultaneously and includes established spatio-temporal frameworks
such as 3D Resnet, I3D, C3D, TSM. The benchmark also includes a state-of-the-art
video recognition network, slow-fast that processes video frames in separate slow and
fast pathways. Here, we describe each of these baselines and its components in detail.

Depression prediction network: The depression recognition component of the bench-
mark comprises two parallel heads, one for the depression severity score regression
and the other for classification. The first MLP head has two layers, one linear layer
that takes an input 2048 and outputs 128 followed by a ReLu activation layer, then a
linear layer that takes a 128-dimensional vector and outputs a depression severity
score. The classification head has a similar architecture, except for the sigmoid acti-
vation at the end for BCE loss for classification.

Resnet 50 (He et al., 2016a): The Resnet 50 architecture (He et al., 2016a) is the
chosen backbone architecture for extracting visual features. Deep convolutional
neural networks are extremely successful in solving hard problems such as object cat-
egory recognition in the wild, and the Resnet architecture helps scale CNNs, where
the skip connections allow deep networks. Here, the Resnet 50 that is pre-trained
on ImageNet dataset is further fine-tuned on VGG-FACE2 and FERA dataset for
expression recognition to extract visual features relevant to facial behaviour. As a
simple baseline, the Resnet 50 features are forwarded to the depression prediction
network detailed above.

A set of (B × N) × C × H × W frames are fed into the Resnet network where a
feature vector of (B ×N) × 2048 dimensions is reshaped into a B X (2048N) vector
and passed to the Depression network. All frames are used in this dense modelling
approach but without modelling any temporal dynamics.
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Resnet 50 GRU (Chung et al., 2014): This model allows for explicit comprehen-
sion of temporal information using a variant of a class of neural networks known as
the recurrent neural network (RNNs), the Gated Recurrent Unit. RNNs are state-
of-the-art in time-series modelling and prediction tasks and are popular in audio
processing, speech recognition, weather prediction, etc. Originally designed for
sequence-to-sequence modelling (an important NLP problem), RNNs are able to
model the temporal context provided by the input frames, processing them sequen-
tially using intermediate context representations to update the current temporal
state (Chung et al., 2014). Gated Recurrent Unit is a type of RNN that uses gating
mechanisms to manage the temporal information flow between units or cells that are
similar to LSTMs but more memory efficient (Chung et al., 2014). This baseline takes
the B × N × D dimensional visual features from the pre-trained Resenet-50 network
from (B × N) × C × H × W input frames and forwards it to two GRU layers that
aggregates temporal context sequentially over N frames and provides the output of
the last hidden state as the aggregated features of dimension B × DGRU for the input
video clip, where DGRU = 256. This temporal aggregate feature is then passed as
input to the depression prediction network for the final prediction.

Resnet Attention The attention layer is an aggregation method that is permutation
invariant, does not take into account the sequential ordering of frames as opposed to
the Recurrent layer but computes a weighted attention between them. The Attention
layer gets the input feature vector of size B × N × D from the input video clip and
forwards it to an attention layer, (Vaswani et al., 2017) which performs the attention
operation on them to get an attention feature map of size B × D. This is then passed
to the depression recognition network detailed above.

We have seen that 2D CNNs are powerful in representing spatial information from
individual video frames but lack the ability to model temporal dynamics or motion
patterns from a set of video frames. Several architectures have been developed to
address this gap for processing temporal information in CNN which are known
widely as 3D CNNs, capable of incorporating spatio-temporal data from an input
video clip. These 3D-CNN architectures lack recurrent layers, instead rely on 3D
convolution (3D-Conv) and 3D pooling operations to retain temporal information of
input sequences that would otherwise be lost in canonical 2D convolutions (Tran
et al., 2015). This is especially beneficial as they can facilitate learning spatio-temporal
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information early in the layers (Tran et al., 2015) as opposed to plugging in a temporal
context learner (GRU/Attention as above) on top of the 2D feature maps. Here we
consider several 3D CNN architectures that are widely employed in state-of-the-art
video analysis tasks.

3D Resnet (Tran et al., 2018) - R(2+1)D: This spatio-temporal variant of a 3D-Resnet
was proposed in (Tran et al., 2018). The main feature of this architecture is that it is
composed of "(2+1)D" residual convolution blocks which factorises a 3D convolution
into two separate and consecutive operations, a 2D spatial convolution and a 1D
temporal convolution. The same 2+1 D convolutional blocks are reused across the
network where the spatial and temporal convolutions alternate. Two advantages
of this method were shown to be (i) ability to represent more complex functions
through added nonlinearities and (ii) facilitates easier optimisation (validated by
lower training errors). Resnet-50 variant of the R(2+1)D network architecture is
used to process B × N × C × H × W where N = 16, C = 3, H = 224,W = 224. The
output of the network is a feature vector of dimension B × 1 × D × D which is then
reshaped to a 1-D feature and forwarded to the depression prediction network for
predicting the depression severity label and group.

I3D (Carreira and Zisserman, 2017): The I3D model architecture was introduced by
Carreira and Zisserman (2017) for video action classification. The main feature of
this model is that it takes a 2D CNN architecture and simply transforms it into a 3D
CNN by inflating all the filters and pooling kernels. For instance, a 2D convolutional
filter of size N × N becomes N × N × N. The advantage of this method is that a
pretrained 2D CNN such as Resnet-50 can be converted into a 3D CNN by repeating
the weights of the network modules by N times along the temporal dimension and
rescaling by 1/t where t is the number of input frames. This initialisation produces
the same output as the 2D pre-trained model run on a single frame (Carreira and
Zisserman, 2017). The I3D variant used for the experiments is initialised from the
pre-trained Resnet-50. The features of I3D are passed to the depression prediction
network.

C3D (Tran et al., 2015): C3Ds are deep three-dimensional convolutional neural
networks with a uniform design that consists of 3 × 3 × 3 convolutional kernels
followed by a 2 x 2 x 2 pooling at each layer. All video frames are resized to the
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size 224 × 224. The input dimensions are B × N × C × H × W. The network has
5 convolution layers and 5 pooling layers (each convolution layer is immediately
followed by a pooling layer), the output of the final pooling layer of dimension
B × 256 is passed to the depression prediction network for getting the final labels.

TSM (Lin et al., 2019): the Temporal Shift Module (TSM) was developed for high
accuracy and low computation cost video understanding (Lin et al., 2019). TSM is a
generic and effective module that can be inserted into 2D CNNs to achieve temporal
modelling, with no additional computation cost or parameters. TSM enables learning
of temporal concepts, which 2D networks cannot model. Inspired by traditional con-
volution operations, the TSM shifts activation in a video model along the temporal
dimension for information fusion from neighbouring frames. Similarly to a 2D CNN
TSM takes an input clip of shape B × C × N × H × W and returns features of size
Bx256 which are then forwarded to the depression prediction network.

SlowFast (Feichtenhofer et al., 2019): The SlowFast network architecture for video
recognition combines spatial and temporal streams by providing each path with the
raw video, but at different temporal rates. The slow pathway captures spatial seman-
tics, while the fast pathway captures fast and fine motion. The SlowFast network
achieves strong performance for both in many video recognition tasks. The input to
the SlowFast network is the same input clip that is sampled at different frequencies.
As in the other architectures above, the output features are passed to the depression
prediction network. The default parameters were retained for training SlowFast
network.

The results presented in Table 5.1 and demonstrate the performance of the benchmark
models in the validation and test sets of Mood-Seasons, respectively. A range of met-
rics, including mean absolute error (MAE), mean squared error (MSE), concordance
correlation coefficient (CCC), and Pearson correlation coefficient (PCC) were used to
evaluate the performance of the models. It is noteworthy that models incorporating
temporal understanding, such as those using gated recurrent units (GRUs), attention
mechanisms, or 3D convolutions, outperformed the baseline model, which lacks an
understanding of temporal dependencies in the videos.

In general, the C3D and TSM models exhibit competitive performance on the Mood-
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Figure 5.2: Performance benchmark of different video analysis approaches on
AVEC2013 validation set. Note that the range of BDI scores in the AVEC 2013 dataset
is from 0-63.
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Method MAE↓ RMSE↓ PCC↑ CCC↑
Chance-level 4.4 16.3 - -
Resnet-50 3.68 4.60 0.29 0.25
Resnet-GRU 3.37 4.46 0.41 0.33
Resnet-Attention 3.35 4.28 0.42 0.32
3D-Resnet 3.53 4.57 0.35 0.30
I3D 3.55 4.45 0.32 0.27
C3D 3.35 4.28 0.43 0.32
TSM 3.44 4.39 0.30 0.25
Slow-Fast 3.69 4.63 0.22 0.18
Resnet-50 3.92 4.83 0.29 0.27
Resnet-GRU 3.62 4.46 0.32 0.30
Resnet-Attention 3.60 4.41 0.30 0.28
3D-Resnet 3.82 4.85 0.28 0.23
I3D 3.86 4.54 0.14 0.13
C3D 3.65 4.60 0.27 0.23
TSM 3.64 4.47 0.30 0.25
Slow-Fast 3.72 4.87 0.22 0.18

Table 5.1: Quantitative comparison of different baselines and ablation studies for
Mood-Seasons validation set (top) and test set (bottom).Note that the range of PhQ
scores in the Mood Seasons dataset is from 0-24.

Seasons dataset. Similar trends were also observed in experiments on the AVEC 2013
dataset. The results are shown in Table 5.2 and Figure 5.2 However, the SlowFast
model (Feichtenhofer et al., 2019), which is a state-of-the-art approach for video ac-
tivity recognition, did not perform as well compared to other 3D or temporal models.
Among the 3D models, some, such as I3D and 3D Resnet, demonstrated relatively
lower performance, while others, such as those utilizing aggregation methods like
GRUs and attention mechanisms, performed comparably.

As shown in Table 5.2, TSM has the best overall performance, followed by C3D,
I3D, and Resnet-Attention. The other methods perform slightly worse. To test
whether the difference in performance between the methods is statistically signifi-
cant a paired t-test can be used. The following table shows the results of the paired
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Method MAE↓ RMSE↓ PCC↑ CCC↑
Resnet-50 7.38 9.4 0.61 0.57
Resnet-GRU 6.75 8.75 0.67 0.65
Resnet-Attention 6.46 8.6 0.67 0.68
3D-Resnet 7.12 9.02 0.62 0.59
I3D 6.39 8.46 0.68 0.64
C3D 6.42 8.33 0.69 0.65
TSM 6.2 8.31 0.70 0.67
Slow-Fast 7.12 9.98 0.62 0.59

Table 5.2: Quantitative comparison of different baselines for AVEC 2013 Validation
set.Note that the range of BDI scores in the AVEC 2013 dataset is from 0-63.

t-test comparing TSM to the other methods on the AVEC 2013 data in Table 5.3:
The p-value is less than 0.05 for all of the methods except for C3D and Resnet-

Table 5.3: Statistical significance of the difference in performance between TSM and
the other methods in AVEC 201.

Method p-value
C3D 0.59
I3D 0.23
Resnet-Attention 0.72
3D-Resnet 0.03
Resnet-GRU 0.001
Resnet-50 0.0001
Slow-Fast 0.00001

Attention. This means that the difference in performance between TSM and these
methods is statistically significant. Based on the above statistical analysis, we can
conclude that TSM has the best overall performance on the AVEC 2013 validation set.
The difference in performance between TSM and the other methods is statistically
significant, except for C3D and Resnet-Attention.
For the Mood-Seasons dataset, a pairwise t-test between TSM and the rest of the
methods in the testing set is performed and results presented in 5.4. The p-value
is less than 0.05 for all methods except for C3D and Resnet-Attention. This means
that the difference in performance between TSM and these methods is statistically
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significant. The TSM, C3D, and Resnet-Attention methods have shown promising

Table 5.4: Statistical significance of the difference in performance between TSM and
the other methods on the Mood-Seasons test set.

Method p-value
C3D 0.93
I3D 0.01
Resnet-Attention 0.70
3D-Resnet 0.005
Resnet-GRU 0.02
Resnet-50 0.0001
Slow-Fast 0.00001

benchmarks for depression recognition. In the Mood-Seasons test set, TSM achieved
the best overall performance, followed by C3D and Resnet-Attention. The difference
in performance between TSM and the other methods was statistically significant,
except for C3D and Resnet-Attention. These results suggest that these methods may
be useful for developing new tools for depression detection and monitoring.

5.2 Multi-modal Transformers For Audio, Visual And
Language Fusion

This section presents a comprehensive description of the multimodal transformer
framework designed for the task of depression estimation, including its motivation,
architecture, design methodology, and objective functions. Most state-of-the-art
methods for fusing audio-visual-language features rely on word- or utterance-level
alignment. However, the estimation of the patient’s health questionnaire (PHQ-8)
score, a measure of the severity of depression, requires long-range inference of the
subject’s mood state, which is better captured by analysing their entire mood diary
video.

MULT (Tsai et al., 2019) is an extensive applied audio-vision language latent rep-
resentation fusion architecture based on transformers where the model is able to
attend to different modalities of data simultaneously, allowing it to learn rich multi-
dimensional representations of the input. It forgoes the need for precise temporal
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alignment of individual modalities and instead exploits attention mechanisms for
implicit intermodality alignment. The self-attention mechanism allows the model to
attend to different parts of the input data simultaneously, allowing it to learn which
parts of the input data are relevant to each other. This allows the model to align
the differentmodalities of the data and to learn a coherent representation of the input.

The main attraction of this method is the flexibility it offers the modalities to at-
tend to relevant and complementary information from freely available segments of
other modalities.This results in the learning of multimodal behavioural windows,
which capture the complex interplay between the different modalities. The ability to
learn such multimodal representations is crucial for tasks that involve understanding
the behaviour of individuals, such as the estimation of the severity of depression.

The transformer-based method facilitates the discovery of long-range dependencies
in the modality-specific latent representations (Tsai et al., 2019) that are pivotal
for comprehending depressive markers. Unlike continuous affect labels, such as
valence and arousal, the characteristics of depression may occur at varying time
steps within a video, and the temporal consistency of depressive markers cannot
be guaranteed throughout the video. For instance, low mood markers such as the
passive face, low pitch, long pauses between words, or even a subtle expression
of depressive the mood may be spread across the video sequence. Using explicit
word-level alignment may discard useful information, such as pauses or sighs, in an
audio segment corresponding to a video sequence.

The ability of transformer architecture to tackle unaligned sequences makes it par-
ticularly well-suited for the task of recognising depression severity, compared to
archetypal baseline models such as CNN+RNN that require explicit temporal align-
ment of modalities. Conventional utterance/word-aligned models often rely on
extensive feature engineering to align modalities using time-steps, whereas the trans-
former approach addresses the problem more holistically, allowing the model to
attend to information from multiple modalities in an unaligned manner and infer
depression severity from long-range, multimodal behaviour-alignedwindows, rather
than pre-defined, narrow multimodal time-aligned windows.

This property of the transformer architecture is particularly importantwhen analysing
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depression, as context can play a significant role in the elicited facial expressions or
mood states of participants. As stated in Chapter 4, the study’s video prompts were
designed to exclude potential emotional triggers to avoid obscuring the audiovisual
markers with emotional responses to specific prompts. However, it was observed
that the prompt "tell us about your pet" elicited higher arousal and positive valence
in subjects with high depression scores. This highlights the importance of long-range
modelling and the ability to parse unordered sequences in identifying sporadic
occurrences of depressive markers in such scenarios.

5.2.1 Architecture

The transformers are capable of capturing dependencies between distant parts of the
sequence and can process information embedded in long videos. The multimodal
attention component of transformer architectures is crucial for learning from the
different modalities we use in this paper: video, audio, and text.

AttentionMechanism. The transformer block, originally proposed in (Vaswani et al.,
2017), consists of several multi-head attention modules that calculate a weighted
representation of all other tokens in a given input sequence for each token embedding.
This weighted representation is combined with the input representation of the given
token and passed to the next layer.

Attention mechanisms enable the model to learn how to assign weights to different
parts of the input based on their importance or relevance to the task at hand. This
is typically achieved by computing the dot products between the different parts of
the input and using these dot products to compute the weights for each part. These
weights can be used to weight the corresponding parts of the input, resulting in a
weighted sum that represents the output of the attention mechanism.

The idea behind this approach is that the dot products capture relationships be-
tween the different parts of the input, and the weights reflect the importance or
relevance of those parts to the task. By learning these weights, the model can focus
on the most relevant parts of the input and learn complex relationships between
them, improving its performance on the task.
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There are several methods to implement multimodal attention (Hendricks et al.,
2021), including merged attention, modality-specific attention and co-attention. In
merged attention, the tokens representing queries, keys, and values can come from
any input modalities, i.e., the tokens belong to a joint pool of modalities. In the
co-attention module that we use in this work following (Tsai et al., 2019), given the
queries from one modality, for example, language, we compute the keys and values
from another modality.

The overall multimodal transformer architecture consists of four components, a
projection layer, multimodal transformer module followed by a self-attention trans-
former, and finally by a classification layer. Themultimodal transformer block, shown
in Figure 5.3 is the original transformer attention block proposed in (Vaswani et al.,
2017) redesigned to include the attention mechanism for multimodal information
fusion by Tsai et al. (2019).
Each multimodal transformer block has several co-attention layers that generate
intermediate merged features for feed-forward fusion in the subsequent layers. The
self-attention transformer consists of several feed-forward multi-head attention lay-
ers, as shown in the Figure 5.4.
After introducing the main building blocks of the architecture, we can now look at
the different steps of using the transformers in the current work. Given two input
modalities α and β, with respective sequences Xα ∈ RTα×dα and Xβ ∈ RTβ×dβ ,the
queries, keys, and values are defined as follows:

Qα = XαWQα

Kβ = XβWKβ

Vβ = XβWVβ

where the weights WQα
∈ Rdα×dk , WKβ

∈ Rdβ×dk , and WVβ
∈ Rdβ×dv .

The cross-modal attention Yα represents the fused latent representation or adaptation
from modality β to modality α and is defined as follows:

Yα = CMβ→α(Xα, Xβ) = softmax
(

Qα(Kβ)
T

√
dk

)
Vβ
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Figure 5.3: Architecture of the multimodal transformer network for audio, video,
and language feature fusion.

where cross-modal attention Yα represents a sequence of length Tα in the feature
space of Vβ. For each time step i in this sequence, the attention mechanism computes
a score for each time step j in the sequence of modality β, indicating howmuch atten-
tion should be given to information in time step j when generating the representation
at time step i. The score for each time step j is determined by the dot product of the
query and key at time steps i and j, respectively, and is normalised by the length of
the key dk. The final representation at time step i is obtained by taking a weighted
sum of the values at all time steps j in the sequence of modality β, where the weights
are determined by the softmax of the scores.
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Figure 5.4: Architecture of the multi-head attention layers in the transformer block
(Vaswani et al., 2017).

Co-attention Transformer Block. Several research problems, such as visual question
answering, video captioning, and modality alignment involve an amalgamation of
information from different input modalities. A well-studied solution is to employ
co-attention modules in the highly influential transformer architecture in such multi-
modal settings (Hendricks et al., 2021). Refer to Figure 5.5.

A pairwise attention module for a given modality aims at generating multimodal
abstractions from another input domain. For instance, in order to incorporate infor-
mation from the language stream with respect to the visual stream, the approach
takes query latent Qv from visual features and keys Kl and values Vl from the lan-
guage stream. Such an approach conditions the language attention on the visual
stream, i.e. it attends to features from the language domain that are most relevant to
the given sequence of visual features. In the case of three modalities, namely, audio,
language, and vision, the multimodal transformer block also includes an attention
module that generates language attention features conditioned on the audio features
from its keys Kl and valuesVl and the query matrix Qa from the audio domain. Since
we consider three modalities for identifying the markers of depression, there are six
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co-attention transformer blocks to incorporate possible permutations of pairwise
co-attention.

Self-attention transformer block. The self-attention transformer block is a stack
of multihead attention layers, as shown in Figure 5.5. The multimodal transformer
block provides the merged attention features from the three modalities to the self-
attention block. Each self-attention block attends to each of the combined attention
pooled features from the target domain.

Figure 5.5: A co-attention and self attention block visualised.

An extensive study (Hendricks et al., 2021) on several methods of attention mech-
anisms used in transformers for multimodal fusion reports that co-attention and
merged attention provide meaningful multimodal representations that lead to the
success of multimodal transformers compared to using only modality-specific multi-
head self-attentionmodules. We report our findings from the experiments comparing
the co-attention and modality-specific self-attention modules in the experiments
section.

The multimodal depression analysis framework makes two architectural design
choices: sentence-level modelling of depression and video-level modelling of de-
pression. The decision to use sentence-level modelling as a short-range modelling
approach was based on the desire to leverage the implicit alignment property of
transformers over unaligned sequences (Tsai et al., 2019). This allows for a more
comprehensive analysis, as a sentence is self-contained and typically refers to a single
context and includes non-verbal cues such as pauses, transitions, etc. which can then
be part of the model’s input.The framework then employs a light-weight transformer
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to aggregate video-level understanding based on the learnt representations from
the sentence-level modelling. The video level multimodal transformer architecture
follows a light-weight structure with a single multi-head, self-attention head and
aggregates sentence level multimodal embeddings. This allowed a more comprehen-
sive understanding of the relationship between depression and the multimodal data.

The following section describes the multimodal data processing pipeline, the feature
extraction steps for each of the modalities, such as video, audio, and text, and the
training objectives of the proposed framework.

5.2.2 Dataset Preprocessing

The Mood-Seasons dataset consists of videos that include images and audio from the
mood diaries recorded by the participants. To prepare the dataset for multimodal
learning, the following pre-processing steps were undertaken.

1. The first step was to transcribe the audio files in the dataset using the Google
automatic-speech-recognition (ASR) API. This API returns word-level tran-
scripts with time stamps for each word, allowing us to determine when each
word was spoken in the audio. For the AVEC 2014 Freeform dataset, the tran-
scription was done in German. However, some discrepancies were noted in
the transcripts, particularly for videos featuring participants with accents that
were difficult to understand and had to be manually corrected.

2. The second step involved pre-processing the transcripts to retrieve sentence-
level transcripts with time stamps. Word-level transcripts were combined into
sentences using timestamps from punctuation.

3. The third step encompassed cropping the audio and video files according to
the sentence-level time stamps obtained from the Google ASR. This allowed us
to create sentence-level clips that were aligned according to the derived time
stamps for audio, video, and text. These sentence-level clips were then used
for further analysis.

The Mood-Seasons dataset was pre-processed to generate a total of 1806 sentence-
level, multimodal clips after removing any invalid sequences. The clipswere split into
training. validation and testing splits with 1183, 287 and 333 clips, respectively. For



5.2 Multi-modal transformers for audio, visual and language fusion 97

the AVEC2014 Freeform dataset, there were 106 clips for training and 106 sequences
for testing. From these clips, various multimodal features were extracted from the
video, audio, and text modalities using techniques described in the subsequent
sections.

5.2.3 Video Feature Extraction

Visual features for themultimodal transformer frameworkwere encoded by the dense
frame-level Resnet50 baseline model described in the benchmark section 5.1.The
Resnet50 model extracts dense visual features corresponding to facial attributes from
all the available frames from the input video clip of the shape B × N × C × H × W.
The idea is to provide the multimodal fusion transformer with dense low-level infor-
mationwhere all video frames are included in the representationwithout information
loss.

For feature extraction, each input video clip representing a sentence is forwarded to
the pre-trained Resnet50 model for depression severity estimation which generated
video features of the size B × (Nvideo × N f )× Dvideo where Nvideo is the number of
sequences in the video with the number of frames N f = 16 each and has feature
dimension Dvideo = 2048. The Nvideo varies according to the length of the sentence
clip, and was set to have a maximum of 135 clips for the Mood-Seasons dataset
and 150 for the AVEC2014 Freeform dataset. When the Nvideo was less than the
maximum set value, the sequences were zero-padded. For instance, the input feature
representation for the visual modality will be 8 × 2160 × 2048.

5.2.4 Audio Feature Extraction

Audio features for the multimodal framework were extracted using a popular audio
classification network known as VGGish (Hershey et al., 2017). VGGish is a widely
used pre-trained CNN released by Google (Hershey et al., 2017) for audio processing
tasks such as recognition and classification, whose architecture was inspired by VGG
networks designed for image classification. The architecture consists of a series of 17
convolution layers and activations, followed by max-pooling. The VGGish network
operates on log-mel spectrogram representations of the audio clips.

Once the audio clippings corresponding to the sentences were obtained, it was
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pre-processed to generate the spectrograms required for the audio model. The audio
wav file was normalised to the range [−1, 1]. If the audio data has two channels, the
channels are averaged to produce a single channel. The data are then resampled
to a lower sample rate for computational efficiency. It is cropped into overlapping
windows and a Hamming window is applied to reduce spectral leakage and smooth
the data. A Fast Fourier Transformation is applied to calculate the power spectrum
of the data, and frequencies outside a specified range are filtered out. Mel Frequency
Filter Banks are applied to transform the data into the Mel frequency scale, which is
more closely aligned with human perception of sound. Finally, the natural logarithm
of the resulting values is taken to reduce the dynamic range of the data.

The data is then divided into nonoverlapping frames and decomposed using a
short-time Fourier transform with a window size of 25ms and a frame shift of 10ms.
The resulting spectrogram is transformed into 64 Mel-spaced frequency bins and
log-transformed to add a small offset and avoid numerical issues. These log-mel
spectrogram patches are used as input for VGGish. This process produces an array
of shape (96, 64) from an input of 975 ms of audio data. The dimension of the
features returned by VGGish is B × N × Daudio where Daudio = 128. The value of N
is variable depending on the length of the audio clip corresponding to the sentence.
The maximum number of frames for VGGish audio features for each sentence is set
to 75. The size of audio features per sentence-level clip is B × Naudio × Daudio, where
Daudio = 128 and Naudio = 75. As mentioned above, the size of N varies according to
the length of each audio clip corresponding to a sentence, which is then zero padded
to produce a vector of features of N frames.

5.2.5 Language Feature Extraction

The sentence level transcripts obtained from the automatic-speech-recognition mod-
ule are encoded into language features for the multimodal transformers using the
well-knownBERT (Bidirectional Encoder Representations fromTransformers)model.
BERT is a state-of-the-art NLP model that achieves high performance on several
language downstream tasks such as translation, sentiment analysis, generation, etc.
The BERT model attends to bidirectional context, that is, it combines both the left
and right context of each word for its self-supervision task and was shown to have
excellent performance in context modelling tasks (Devlin et al., 2018). BERT was
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pre-trained on large amounts of text data using the self-supervised objective of
masked-language modelling, where the words in a sentence are masked out ran-
domly and the model was tasked to predict the right word based on the context in
the sentence. Unlike other language models that were trained unidirectional, i.e.,
only using the previous words to predict the next, BERT generated high quality
contextualised representations. Therefore, it is an excellent choice for embedding
the sentences for multimodal fusion in the context of depression analysis.

First, each sentence transcript is converted into a format compatible to BERT model.
This involves converting the words in the sentence to a set of tokens, with a spe-
cial [CLS] token appended to the beginning and [SEP] token appended to the end
of the sentence. The tokens should correspond to the specific vocabulary used by
BERT. Once the sentence is converted to tokens from the BERT vocabulary, the BERT
model was used to extract the features from the sentence. There are several ways
in which the features can be computed from the output of the BERT model, which
is detailed in (Devlin et al., 2018). The output dimension of the BERT model is
B × Ntext × L × Dtext where B = 1, Ntext correspond to the words or tokens in the
sentence L = 13 represent the output layers and Dtext = 768 is the size of the feature
embedding. The feature vector representing the input sentence is computed by
concatenating the latent vector from the last four layers of the model for each of the
token. This gives a final output of B × Ntext × Dl where Dl = 3072. This approach
has been shown to perform best for many downstream tasks since the initial layers of
the BERT model does not have any context information learnt, but the final layer may
be too specific to the pre-training task (Devlin et al., 2018). The maximum number
of word tokens Ntext is set to 220 for the Mood-Seasons dataset and 200 for the AVEC
2014 FreeForm dataset.

5.2.6 Training Methodology

Training of the proposed multimodal depression recognition framework has two
stages, corresponding to different temporal granularities, that is, sentence level and
video level. Once the input videos are pre-processed into shorter clips based on the
sentence transcripts, unimodal networks are trained for the modalities audio and
video separately. These uni-modal networks are used as feature extractors for the
respective input modalities. The pre-trained BERT model is used directly for lan-
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guage feature extraction. The sentence level features of the three modalities, namely,
audio, video, and text from pre-trained unimodal models, are then combined using
the multimodal transformer architecture described in section 5.2. Then a video-level
light-weight transformer discussed in section 5.2 is used to aggregate the learnt
multimodal sentence level representations and derive the final depression severity
score.

Data augmentation is a popular technique in deep learning that can improve model
performance by artificially increasing the size and diversity of the training dataset.
It works by applying random transformations to existing data, such as cropping,
scaling, rotating, and flipping. This helps to prevent overfitting, which is a problem
that can occur when a model learns the training data too well and is unable to gener-
alise to new data. Data augmentation is particularly important for video-based deep
learning models, as video data can be very expensive and time-consuming to collect
and label.

Several geometric and photometric augmentations were used in training the vi-
sual feature extractor model, Resnet50, for data augmentation and regularisation.
These augmentations include random blur, crop, scale, rotation, masking, cut-mix,
and colour jitter applied over the video frames. One observation was that Pytorch
transforms applied different transformations to the frames in the same clip, which
led to suboptimal training. This was resolved by using the Kornia library (Riba et al.,
2020) for video augmentation resulting in uniform transformations being applied to
a clip of 16 frames. These augmentations were also implemented in the GPU which
sped up the training time considerably.

The proposed framework incorporated several hyperparameters to optimise the
model’s performance. For the visual feature extraction model, the learning rate,
optimiser, and depth of the GRU units were impactful hyperparameters. A grid
search was used to evaluate various learning rate values within the range of [1e-5,
1e-1], and the best results were achieved with a learning rate of 1e-3. The batch size
was set to 8, the number of frames was 16. The model was trained for 60 epochs
using a cosine annealing learning rate scheduler with 5 warm-up epochs.

In the unimodal audio model, the VGGish (Hershey et al., 2017) architecture was
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utilised and the training hyperparameterswere optimised. A learning rate of 1 × 10−2

was found to be optimal, in conjunction with the Adam optimiser, which was fine-
tuned to 25 epochs. Two variants of fine-tuning or transfer learning were explored:
fine-tuning the entire network and fine-tuning only the last 5 layers of the network
(2 convolutional and 3 fully connected). The results of the experiment indicated
that training all layers was necessary to achieve satisfactory performance on the
depression recognition task.

For language feature extraction, the pre-trained BERT model was leveraged directly,
rather than being fine-tuned for the task. This decision wasmade due to the observed
poor performance of the fine-tuned version, which was likely due to the limited size
of the available data relative to the capacity of BERT, a large language model. For
the 2014 Freeform AVEC subset, a BERT model was used that was pre-trained in the
German language.

The sentence level multimodal transformer architecture features 8 layers, with 5
multi-head attention heads and 512 hidden unit dimension. The batch size is set to
8 and the learning rate is set to 0.01 with Adam as the optimiser. The Multimodal
transformer is trained to 35 epochs. The video-level multimodal transformer archi-
tecture follows a light-weight structure with only 1 layer, 1 multi-head attention head.
The batch size is set to 1, with a learning rate of 0.01 and trained to 20 epochs.

Several minimisation objectives or loss functions were used to train the uni-modal
and multimodal transformer models. Loss functions are discussed in detail in the
following section.

MSE Loss

The Mean-Squared Error (MSE) loss function is commonly used in regression tasks
and measures the average squared difference between the predicted value and the
true value. In the context of estimating the severity of depression, the MSE loss
function can be used to measure the difference between the predicted severity score
of depression, ypred, and the actual severity score of depression, ytrue. Given a batch
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of N samples, the MSE loss, LMSE, is calculated as follows:

LMSE =
1
N

∗ ∑(ypred − ytrue)
2 (5.1)

MAE Loss

The second loss function used is Mean absolute Error, which measures the absolute
difference or error between the estimated depression severtity score ypred and the
ground truth severity score ytrue. Given a batch of N samples or video clips, the loss
LMAE is computed as:

LMAE =
1
N

∗ ∑ |ypred − ytrue| (5.2)

Differential Loss

Different individuals may experience different symptoms of depression to vary-
ing degrees (Cohn et al., 2009b). For the videos recorded by an individual, any
dissimilarity in its feature representations should arise from the difference in the
corresponding PHQ scores and not from external conditions present in the video
due to noisy surroundings which may include background images, sounds, lighting,
etc. Here, the framework introduces the differential loss, where any difference in the
PHQ score of an individual is also proportional to the dissimilarity in their feature
representation. In this way there are no constraints on how the features should be
represented across different individuals; however, for the same individual, the loss
ensures that the differences in the features should only encode the differences in
depression severity scores.

The loss can be used for training the Mood-Seasons dataset because it consists of
longitudinal data from the participants to improve the prediction of depression. In
other words, differential loss is simply a measure that enforces coherence between
the multimodal features of videos, including facial data, voice, and speech content,
of the same person in the Mood-Seasons dataset. By using multiple video samples
from the same person, the analysis of their expression of depression can be more
holistic and improve the prediction of depression in those videos.

To calculate differential loss, the framework compares the difference in the sever-
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ity score labels of the Patient Health Questionnaire (PHQ), yins and yre f , of two
video sequences of the same identity, Xre f and Xins, with the dissimilarity of the
characteristics between the corresponding multimodal features of those sequences.
This accounts for a differential signal for the network. The multimodal features are
generated by the multimodal transformer G, which takes the input sequences Xre f

and Xins and produces multimodal feature representations G(Xre f ) and G(Xins),
respectively.

The dissimilarity of features, D f eat, is calculated using the cosine similarity between
the multimodal representations of features, scaled by a factor of α = max(1, 2, ..24),
which represents the maximum value of the PHQ-8 score range. Cosine similarity is
a measure of similarity between two vectors and is defined as the cosine of the angle
between them.

The differential loss is then calculated as the mean squared error between the differ-
ence in the PHQ severity score labels and the feature dissimilarity, given by:

Ldiff = MSE(Dfeat, Dscore)

Dfeat = (1 − SC(G(Xref), G(Xins)) ∗ α

Dscore = |yref − yins|

where MSE is the mean-squared error, where SC is the cosine similarity. The mean
squared error is a common loss function used in regression tasks that measures the
average squared difference between the predicted values and the true values.

Metric learning Bellet et al. (2013) is a general approach to learning similarity or
measures. Metric learning algorithms typically work by optimising a loss function
that encourages the algorithm to produce embeddings for the data points such that
the embeddings of similar data points are close together in Euclidean space, and the
embeddings of dissimilar data points are far apart. Siamese networks and contrastive
loss functions are popular metric learning approaches and may also be a suitable
alternative to the differential loss proposed in this section.
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5.3 Experiments

This section details the performance evaluation the proposed method. Several ex-
periments were conducted to validate the efficacy of the proposed methods. The
following sections present the datasets, evaluation metrics along with the experi-
mental results and discusses each in detail. These results include comparisons with
state-of-the-art approaches and several ablation studies.

5.3.1 Multi-modal Transformer Results

The results from the proposed multimodal transformer framework on the MoodSea-
sons dataset are presented in Table 5.5.
In comparison to the benchmark models outlined in section 5.1.3, the multimodal

Method MAE↓ RMSE↓ PCC↑

Resnet-GRU 3.37 4.46 0.41
C3D 3.35 4.28 0.43
MMT 2.62 3.43 0.56

Resnet-GRU 3.62 4.46 0.32
TSM 3.64 4.47 0.30
MMT 2.89 3.65 0.52

Table 5.5: A comparison of different methods for depression severity estimation.
The first block shows the results for the baseline and proposed approaches for the
validation set of Mood Seasons dataset, and the second block shows the results for
the testing set. Bold numbers indicate the best performance for each measure.

transformer architecture exhibits a significantly higher performance with a Mean
Absolute Error (MAE) of 2.62, representing a 21% improvement from the best-
performing spatio-temporal model, C3D, and a Root Mean Squared Error (RMSE)
of 3.36, demonstrating a 15% improvement on the validation set. On the testing
set, which appears to be slightly more challenging compared to the validation set,
the multimodal transformer model achieved an MAE of 2.89 and an RMSE of 3.94,
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showing a 19% and 11% improvement, respectively, compared to the top-performing
benchmark, TSM, on the MoodSeasons dataset. These results demonstrate the supe-
rior performance of the proposed multimodal framework in predicting depression
severity. Refer to Figure 5.6.

Figure 5.6: Performance benchmark of different video analysis approaches on Mood-
Seasons dataset

5.3.2 Comparison of Uni-Modal and Multi-Modal Approaches

This set of experiments compare the performance of various uni-modal and multi-
modal methods for depression estimation. The following models are evaluated:

1. The Resnet-50 model, as unimodal approach for the visual modality

2. The VGGish model, as unimodal approach for the audio modality

3. Multimodal approaches that combine two modalities, including audiovisual,
visual-language, and audio-language using (i)late fusion of two unimodal
model combinations. Note that Language modality is excluded, as pretrained
language features were not fine-tuned for depression recognition. (ii)variants
of the proposed multimodal transformer approach that operate on only two
modalities instead of three. This was achieved by modifying the multimodal
transformer architecture to include only two modalities.
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4. Multimodal approaches that combine three modalities, using either late fusion
or the proposed multi-modal transformer approach.

Table 5.6 reports the results of comparing the above-mentioned unimodal (single
modality) and multimodal (multiple modalities) models for the task of predicting
depression severity scores on the Mood Seasons validation dataset. Performance
evaluation includes results from three different evaluation metrics: mean absolute
error (MAE), root mean squared error (RMSE), and Pearson correlation coefficient
(PCC).The modality of each model is indicated in the first column, with (V) rep-
resenting visual modality, (A) representing audio modality, and (L) representing
language modality. The second column lists the specific method used for each model.
Note that the results are reported on sentence level clips, where the final prediction
per video is an average of the sentence level predictions. Note that the evaluation of
the above models are conducted on sentence-level clips, with the final prediction
for each video being derived as themean of the predictionsmade at the sentence level.

Overall, the multimodal transformer model (A-V-L) performs the best, with the
lowest MAE of 2.81, RMSE of 3.78, and highest PCC value of 0.54. The unimodal
visual model, Resnet-50, which is based on dense visual frames, performs better than
the unimodal audio model, which is based on VGGish. This suggests the effective-
ness of visual signals at estimating depression. A multimodal model that combines
predictions from both visual and audio modalities using a late-fusion approach
performs better than either modality applied alone, indicating that the fusion of the
two modalities leads to improved performance.

Among the multimodal models using transformer architecture, the audiovisual
transformer shows the best performance compared to the models using language
modality. However, when the language modality is used in conjunction with video
and audio modalities, using the proposed multimodal approach it shows the best
performance. This suggests that language features are effective for predicting de-
pression severity in the Mood Seasons dataset when used in conjunction with both
audio and video data.

The above results suggest that multimodal models, especially those that combine
visual, audio, and language modalities, are more effective for predicting depression
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than unimodal models, and that the models based on transformer architecture may
be particularly well-suited for the task of depression severity estimation.

Modality Method MAE↓ RMSE↓ PCC↑

(V) Resnet-50 3.68 4.60 0.29
(A) VGGish 3.89 4.74 0.32
(A-V) Late fusion (VGGish+Resnet-50) 3.42 4.48 0.39
(A-V) Audio-Visual transformer 3.06 3.97 0.48
(V-L) Visual-Language transformer 3.17 4.05 0.43
(A-L) Audio-Language transformer 3.24 4.25 0.38
(A-V-L) Multimodal transformer 2.81 3.78 0.54

Table 5.6: A comparison of uni-modal and multi-modal approaches on the MoodSea-
sons validation set. Bold numbers show the best performance. A, V, L represented
audio, video, and language modalities.

Figure 5.7: A comparison of uni-modal and multi-modal approaches on the Mood-
Seasons validation set. A, V, L represented audio, video, and language modalities.
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5.3.3 Ablation Studies

The ablation studies in this section evaluate the various components used in the pro-
posed framework. All experiments were conducted on the Mood Seasons dataset’s
validation partition. The following experiments are conducted:

• Sentence-based vs. Video-based: These experiments compare the performance
of multimodal transformers that operate on different temporal granularities,
namely sentence-based and video-based. The video-level multimodal trans-
former aggregates the multimodal features using its light-weight fusion archi-
tecture from all the sentence-level clips to estimate a depression severity score.
The results are shown in Table 5.7.

• Self-attention vs. Cross Attention: The transformer architecture of the proposed
framework uses cross-attention heads for multimodal fusion. This experiment
replaces these blocks with self-attention heads and reports the results at the
video level, where the predictions across videos are averaged for the final
prediction. The results are shown in Table 5.9.

• Differential loss: The proposed framework introduces the differential loss dess-
cribed in section 5.2.6. This experiment quantifies the influence of this loss
function on predicting depression by comparing the performance of the model
with andwithout this loss component. The results are shown in Table 5.8. These
experiments aim to understand the contributions of different components in
the proposed framework for depression estimation.

Table 5.7 shows a comparison of sentence level, Sentence MMT and video level,
Video-MMT, multimodal transformer models for estimating depression severity.
According to the results in the table, it can be seen that the Video-MMT method
outperforms the Sentence-MMT method in terms of mean absolute error (MAE)
and root mean squared error (RMSE). Specifically, the Video-MMT method has
an MAE of 2.62, which improves the MAE of the Sentence-MMT method by 6.78%.
Similarly, the Video-MMTmethod has an RMSE of 3.43, which is a significant relative
improvement of 9.5% compared to the RMSE of the Sentence-MMT method. These
substantial improvements in performance show that using video-level understanding
and long-range modeling can lead to more accurate comprehension of depression by
automated systems.
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Method MAE↓ RMSE↓ PCC↑

Sentence - MMT 2.81 3.78 0.54
Video - MMT 2.62 3.43 0.56

Table 5.7: A comparison of different temporal granularities inmethods for depression
severity estimation. An MMT model trained only using sentence level clips and an
MMT model with a video level aggregator based on self attention is compared.

Table 5.8 shows the ablation study on the influence of the differential loss. It
is clear that the addition of the differential loss function to the training objectives
improved the performance of the proposed approach in terms of all three evaluation
metrics. The MAE, RMSE were lower when using the differential loss function com-
pared to the baseline model using only MSE and MAE losses.The MAE decreased by
approximately 5.4%, the RMSE decreased by approximately 1.8%. It can be derived
from these improvements that differential loss function was effective at improving
the performance of depression severity estimation.

MMT MAE↓ RMSE↓ PCC↑

+ MAE + MSE 2.98 3.85 0.49
+ MAE + MSE + DL 2.81 3.78 0.54

Table 5.8: A loss ablation study showing the influence of differential loss. A baseline
MMT model that is only trained with MAE and MSE loss is compared to the MMT
model with the additional differential loss

The table 5.9 compares the performance of the proposed approach using types of
attention blocks, self attention and co-attention and presents the results in terms of
MAE, RMSE, and PCC. Overall, the co-attention mechanism performs better than the
self-attention blocks. It has a lower MAE and RMSE. In particular, the co-attention
block has an MAE of 2.81 and an RMSE of 3.78, while the self attention variant has an
MAE of 3.15 and an RMSE of 4.11. The relative improvement in MAE for co-attention
is 10.7% and that of RMSE is 8.2%. These significant improvements reinforce the idea
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that co-attention mechanisms are superior in generating multimodal representations
that are effective in estimating depression severity.

Figure 5.8: Ablation studies for (i) Sentence level and Video level (ii) differential
loss and (iii) attention modes.

Method MAE↓ RMSE↓ PCC↑

Self-Attention MMT 3.15 4.11 0.47
Co-Attention MMT 2.81 3.78 0.54

Table 5.9: A comparison different attention blocks, specifically, the type of attention
blocks used in the MMT architecture, namely self-attention and Co-attention

5.3.4 Experiments on the AVEC 2014 Dataset

To further assess the effectiveness of the proposed multimodal approach, experi-
ments were conducted to evaluate its performance on a public dataset and compare
it to state-of-the-art depression recognition methods. Therefore, in addition to bench-
marking the Mood Seasons dataset with the current state-of-the-art video analysis
methods, the proposed approach was compared to other state-of-the-art methods on
a publicly available dataset.
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Table 5.10 reports the state-of-the-art performance comparison, where all the sota
methods are evaluated on the testing partition of the AVEC 2014 dataset. The MMT
approach results for both testing and validation sets are provided. The results of
these experiments show that the proposed multimodal approach has very com-
petitive performance and is on par with the state-of-the-art in terms of MAE and
MSE. These results provide evidence of the efficacy of the proposed approach in
tackling the challenge of depression recognition and highlight its potential for use
both in-the-wild videos and in-the-lab settings.

Method MAE RMSE

Unimodal

Baseline (Valstar et al., 2014) 8.86 10.86
Zhu et al. (2017c) 7.47 9.55

Al Jazaery and Guo (2018) 7.22 9.20
Zhou et al. (2018) 6.21 8.39
Zhou et al. (2020) 6.59 8.30
Uddin et al. (2020) 6.86 8.78
He et al. (2021) 6.59 8.39
Song et al. (2020) 6.78 8.30

de Melo et al. (2020) 6.59 8.31
de Melo et al. (2021) 6.06 7.65

Multimodal

Sidorov and Minker (2014) 11.20 13.87
Jan et al. (2017) 6.68 [8.01]
Niu et al. (2020) 6.43 8.60

MMT 6.54 8.20
MMT (Validation) 5.84 7.64

Table 5.10: Comparison of MMT approach with state-of-the-art approaches on AVEC
2014 testing set. Unimodal and Multi-modal approaches are compared. Bottom row
reports results of MMT on the AVEC 2014 validation set.

5.3.5 Limitations

The study’s primary limitation is the limited size of the testing and validation sets,
with 69 and 79 videos each. While larger than the AVEC datasets, that consists of
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150 videos in total with 50 videos each for training, validation and testing, only
13% of this set comprises participants classified as depressed based on the PhQ-8
scale. A cross-validation approach could evaluate the proposed MMT approach’s
generalization and robustness.

Another limitation in the sentence based approach for short term modelling is that
the pauses and gaps between the sentences would be ignored. This can be tack-
led by an enhanced speech recognition model to include pause duration between
consecutive sentences.

5.4 Conclusion

This chapter has addressed the aims of the thesis by making two significant contri-
butions to the field of automated depression analysis:

• An extensive benchmark of state-of-the-art video analysis techniques on the
newly collected Mood Seasons and publicly available AVEC 2014 datasets.
The benchmark showed that models with temporal context understanding per-
formed the best, which is an important finding for future research in automated
depression analysis.

• A two-stagedmultimodal transformer based approach to automated depression
severity prediction. The approach achieved promising results on both the
Mood Seasons and AVEC 2014 datasets, demonstrating the feasibility of using
multimodal data for depression analysis.

The Mood Seasons dataset is a valuable new resource for the research community,
and the benchmark provides insights into the performance of different video analysis
techniques on depression data. The proposed two-staged multimodal transformer
based approach is a novel and promising approach to automated depression severity
prediction.

The work presented in this chapter is a promising step towards developing advanced
methods for automated depression analysis. It makes significant contributions to the
field of automated depression analysis and provides a foundation for future research
in this area.



Chapter 6

Face Image Generation And
Applications In Anonymisation

6.1 Introduction

Synthetic data generation plays a crucial role in computer vision, enabling training
without the need for extensive real datasets. For tasks like facial recognition, aug-
menting training data with artificially generated variations in pose, expression, and
lighting enhances generalization and mitigates overfitting on limited real examples.
Moreover, synthetic faces offer attribute labels not available in real datasets. This
chapter focuses on developing an innovative method for synthesizing facial images in
arbitrary poses, with the aim of facilitating synthetic data generation for face analysis
applications.

Facial data anonymization is equally vital, especially in sensitive domains like health-
care. Safeguarding patient privacy when sharing datasets for research necessitates
the removal of identifying information. Face anonymization obscures identity while
preserving other facial attributes and background, allowing the application of com-
puter vision techniques to mental health data with confidential patient identities
protected. The work presented demonstrates the anonymization of a depression
video dataset, serving as an initial proof-of-concept of how the face manipulation
approach can ensure privacy protection.

While the face generation and anonymization techniques explored in this chap-
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ter hold significant potential, they constitute foundational work that requires further
development. The results establish initial feasibility and provide a launching point
for future research.

This research builds on previous chapters’ efforts in automated depression analysis
from a newly collected multimodal, longitudinal and real-world dataset. Synthetic
data generation and anonymization applied to the in-the-wild Mood-Seasons dataset
and evaluated for depression assessment using the techniques developed in Chapter
5 is a significant contribution for developing private and generalisable models for
mental health applications.

The key contributions are as follows: 1) Introducing a novel method for manipulating
facial pose and expression through attribute transfer from an exemplar image, 2)
Incorporating an appearance transfer module to integrate features across domains, 3)
Demonstrating the potential of this approach by anonymizing a depression dataset
as an initial case study.

In summary, this chapter introduces innovative techniques for synthetic face genera-
tion and anonymization, addressing critical data and privacy challenges in applying
computer vision to sensitive domains like healthcare. While further research is imper-
ative, the results mark significant initial strides and proof-of-concept demonstrations
in these directions.

The generation of face images with varying poses and expressions is a rapidly evolv-
ing area in computer vision, particularly in face analysis. Its applications span
data-efficient learning through augmentation, adaptation, and few-shot learning,
as well as virtual avatars, adversarial attacks, privacy preservation, and research in
interpretability and explainability. Face manipulation encompasses techniques like
face swapping and expression transfer, involving alterations to facial attributes such
as head pose, landmarks, gaze, identity, gender, race, or emotions. These techniques
find applications in both consumer industries and research.

In research, face image generation is increasingly employed for data-efficient learning
and privacy preservation. Augmenting training datasets with a diverse set of images
can enhance the performance of downstream tasks such as facial recognition or re-
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identification, mitigating overfitting. For instance, Generative Adversarial Networks
(GANs) have been utilized to generate synthetic face images with different poses,
lighting conditions, and backgrounds, leading to substantial improvements in recog-
nition accuracy with limited real data. Microsoft’s synthetic dataset outperformed
state-of-the-art face analysis methods on various benchmarks, offering labels at no
additional cost.

Face anonymization is a pivotal aspect of safeguarding individual privacy and falls
within the broader domain of face manipulation techniques. This is particularly per-
tinent in datasets where facial images carry risks of identity theft and unauthorized
access, leading to potential misuse. By implementing suitable methods, it is possible
to eliminate face identity while maintaining modeling accuracy.

This chapter introduces a fresh approach to manipulate facial images, altering their
pose and expressions. The first section outlines the method, its motivation, and
the steps for synthesizing novel views of a face image based on key points, along
with experiments validating its efficacy in face pose transfer. The second section
discusses how this face manipulation method can be employed to anonymize face
images in the collected Mood-Seasons datasets. It covers the necessary adjustments
for anonymization and evaluates its effectiveness. The final section addresses further
considerations regarding the use of anonymized datasets in depression recogni-
tion and offers recommendations for integrating anonymized data into depression
analysis.

6.2 Face Manipulation Via Hallucination

This research work tackles the following image generation problem: given a face
image IX of pose X (including rigid pose and expression) and a target pose Y, can
we generate a new face image IY that preserves the general appearance and layout
of I but depict the face in pose Y? Previous methods have tackled this problem
using paired data during training. This means that the training set contains several
instances of the same identity in different poses as well as capturing conditions (e.g.
illumination). However, the paired setting is restrictive mainly because constructing
such a diverse dataset with thousands of different subjects is by no means straight-
forward. In this work, the goal is the more general setting of unpaired generation
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where a large number of training images is available but no effort has been made in
terms of collecting and labelling images of the same identity.

The challenge in this assumed unpaired training is how to effectively combine
information from the input image and the target pose. Specifically,one needs to
ensure 2 key requirements: (a) only the general appearance, and layout from the
source image are transferred; (b) the generated image is in the correct pose, and is
of high visual quality.

To address (a) this research proposes for the first time to model the general ap-
pearance, layout, and background of the input image using a low-resolution version
of it which is progressively passed through a hallucination network to generate
features at higher resolutions. The experiments show that such a formulation is
significantly simpler than previous approaches for appearance modelling based on
auto-encoders which introduce an unnecessary complexity into the process, that of
learning a latent representation which typically is not well disentangled in terms of
pose and appearance.

Moreover, the framework uses a conditional pose-guided generator GAN frame-
work to generate images in the target pose. To address (b), and inspired by (Park
et al., 2019b), the work proposes a fully learnable and spatially-aware appearance
transfer module which can cope with misalignment between the input source image
and the target pose and can effectively combine the features from the hallucination
network with the features produced by the generator. The end result is that the
generator produces face images in the target pose by integrating, in the process,
features from the hallucination network, capturing the appearance of the source
image. In summary, the contributions of this research are:

• proposes an unpaired image-to-image translation method in which a face
hallucination network guides a pose-synthesis network to manipulate the input
low-resolution image according to the target pose.

• introduces the Appearance Transfer Module, a fully trainable spatially-aware
module to deal with the misalignment between the hallucination features and
those generated by the pose-synthesis network.
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Figure 6.1: Image-to-image translation approach in an unpaired setting, where a
low-resolution facial image is forwarded to a hallucination network (bottom), to
produce appearance-specific features, that are used by a pose-synthesis network
(top), through a newly introducedAppearance TransferModule (ATM). Themethod
is learned in a GAN setting, using a discriminator (bottom right) with an auxiliary
pose classifier, and an identity preserving network, that is trained in a collaborative
way with a contrastive loss (top right).
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• proposes an auxiliary classifier network, which faciliates unsupervised con-
ditional face image generation and enforces pose transfer without needing
labels

• introduces an identity preserving method that is trained in an unsupervised
way, by using an auxiliary feature extractor and a contrastive loss between the
real and generated images.

• The experiments show that the method outperforms prior work on unpaired
face generation by considerable margin. The sections also provide analysis
showcasing the effect of the different components of the system.

6.3 Related Work

Face manipulation: One can distinguish works in face synthesis or manipulation
according to whether they aim at random face generation (Karras et al., 2017, 2019;
Kossaifi et al., 2018) or at modifying or re-enacting a given face image (Choi et al.,
2018; Pumarola et al., 2018a; Zakharov et al., 2019). In both cases, it is often as-
sumed an attribute or “style" driven approach, where the target is to generate faces
that possess a specific attribute or follow a certain style. Works on face manipula-
tion typically include frontalization (TP-GAN (Huang et al., 2017)), pose synthesis
(CAPG-GAN (Hu et al., 2018)), or expression synthesis (CMN-Net (Wang et al.,
2018), Animation (Pumarola et al., 2018a)). Other works aim at generating attributes
to the target images, such as StarGAN (Choi et al., 2018) which synthesizes faces
according to target facial attributes, such as “Blonde Hair", or facial expressions.
Some methods use 3DMM to control pose, expression and lighting settings for syn-
thesizing images (Gecer et al., 2018; Shen et al., 2018). Finally, some works aim at
geometry-driven face manipulation, often referred to as face reenactment. In this
line, some works propose to modify an input image according to a set of target
expressions (Thies et al., 2016), and landmarks (Sanchez and Valstar, 2018).

It is worth noting that most methods for face manipulation fall into the paired
training setting. As such, from the methods mentioned above, the method is some-
what related to StarGAN (Choi et al., 2018) and GANimation (Pumarola et al., 2018a)
in a sense that a facial attribute (hair color, expression, etc. in StarGAN, and AUs in
GANimation) is used to manipulate an input face image under an unpaired training
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setting.

Human pose manipulation: Although the work aims at faces, there is also a large
body of work on human synthesis and manipulation. Some of most recent works
build on a paired setting, and try to enforce a correct feature transfer, similarly to
the proposed Appearance Transfer Module (ATM). For instance, (Zhu et al., 2019)
proposes a Progressive Pose Attention, with modules that mix features coming from
the input image with those coming from a pose encoder. However, there is no ex-
plicit mechanism to deal with spatial misalignment between the input image and the
target pose, and thus it is not clear whether the transfer blocks proposed in (Zhu
et al., 2019) can be used effective for the unpaired case too. Alternatively, the works
of (Dong et al., 2018; Li et al., 2019) do explicitly deal with misalignment through a
geometric warping modelling, which may not always be valid (depends on the mo-
tion model assumed and the dataset) or might be hard to implement. the proposed
ATM, inspired by (Park et al., 2019b), removes the need of geometric warping and is
completely learnable without assuming any motion model.

Related human pose manipulation works assuming an unpaired setting are (Lorenz
et al., 2019; Ma et al., 2018; Pumarola et al., 2018b; Song et al., 2019). The work of
(Ma et al., 2018) is one of the first ones to attempt unpaired training introducing a
multi-branch reconstruction network for disentangling andmanipulating foreground,
background and pose information which are then combined to reconstruct the input
image itself. The method of (Pumarola et al., 2018b) extends Cycle-GAN (Zhu et al.,
2017b) for multi-view synthesis using a conditional pose loss and an identity loss.
This method has been shown less capable of preserving the appearance of the refer-
ence image. More recently, (Song et al., 2019) uses a module for firstly generating a
semantic map under the target pose, and guided by the that map and the reference
image, an appearance generation module synthesizes the final output image. the
method by-passes the step of predicting a dense semantic map, which is on its own a
difficult problem. Finally, the work of (Lorenz et al., 2019) aims at disentangling pose
and appearance in an unsupervised way, by using an image-to-image translation
approach, thus being the latter not the ultimate goal.
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6.4 Proposed Approach

The overall description of the proposed approach is depicted in Fig. 6.1, and consists
of five blocks: a pose encoder, a hallucination network, a pose-synthesis network, a
discriminator with two heads – one to distinguish real and fake images and one con-
taining a pose classifier, an appearance transfer module and an identity preserving
network.

The goal is to transfer the appearance of an input face to a target pose, without
the use of paired training data. To do so, the method relies on a pre-trained halluci-
nation network, that provides features capturing the appearance of the input face at
multiple spatial resolutions. These features are integrated gradually with the ones
generated by the pose-synthesis network – themain network in the pipeline – the goal
of which is to generate the face in the target pose. The integration is done through
the proposed appearance transfer module. The pose encoder simply provides an
embedding of the target pose, which is fed as input into the pose-synthesis network.
Moreover, the identity preserving network ensures that the generated face has the
same identity as the input face. The discriminator networks are used to train the
pose-synthesis under an unpaired training setting.

Notation: Images are represented as I. The input and target pose, defined as an edge
map, connecting the facial landmarks corresponding to different facial parts (i.e.,
face boundary, eyebrows, eyes, nose, mouth), are represented by X and Y, respec-
tively. IX represents the image corresponding to pose X. The subscript LR refers to
low-resolution images (i.e., 16 × 16 images), and SR to refer to images or features
coming from the hallucination network (often referred to as super-resolution). The
subscript PS refers to features computed within the Pose-Synthesis network.

6.4.1 Framework components

Pose encoder: Rather than feeding the network with the target edge-maps, the
framework first encodes them into a low-dimensional representation of 64 × 4 × 4
learned in an auto-encoding framework that aims at reconstructing the maps from
the low-dimensional representation. This pose encoder is trained beforehand and
kept frozen during the synthesis training. The encoding of the input pose is denoted
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as E(Y).

Hallucination network: The hallucination network is based on the face super-
resolution network of (Bulat and Tzimiropoulos, 2018), which is driven by a facial
landmark localization network that enforces both high and low resolution images to
have the same facial structure. The network takes as input a 16 × 16 low-resolution
image and generates its high resolution counterpart, which in this paper is set to
128 × 1281. In order to seamlessly transfer the features from the hallucination net-
work to the pose-synthesis pipeline, the proposed approach slightly modified the
architecture of the former to make it similar to that of the latter. In particular, the
hallucination network consists of a 3 × 3 convolution layer, 5 residual blocks and a
final 3 × 3 convolution layer as shown in Fig. 6.1. It consists of up-sampling residual
layers that act across different spatial resolutions. Rather than using transposed
convolutions, the residual blocks are composed of a pixel shuffle module followed
by a convolution. This design is chosen to match the architecture of the hallucination
network with the pose-synthesis network, which borrows its design from (Arjovsky
and Bottou, 2017b). The hallucination network is pre-trained following (Bulat and
Tzimiropoulos, 2018), and kept frozen for the training of the pose-synthesis network.

Pose-synthesis network: The pose-synthesis network takes as input a 128-d noise
vector z, and the low-dimensional representation of the target pose, E(Y), and pro-
duces a face image the geometry of which is defined by Y. The noise z goes first
through a linear layer that brings its resolution to 512 × 4 × 4, which is then con-
catenated with the encoded pose. The architecture of the pose-synthesis network is
depicted in Fig. 6.1, and consists of a fully connected linear layer, 7 residual blocks,
and a final 3× 3 convolutional layer. The pose-synthesis network can be trained with
or without (i.e., on its own) integrating features from the hallucination network. The
framework used the latter approach to pre-train a network to initialize the former.
On its own, the goal of the pose-synthesis network is to generate a realistic face image
that follows the geometry of Y. To accomplish this task without paired data, the
network is firstly trained using a GAN approach, where a conditional discriminator
is used to distinguish real and generated images, as well as to predict the pose in the
input image.

1For ablation studies, the work also uses a 64 × 64 resolution
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Figure 6.2: Appearance transfer module. (a) The spatial α, β based appearance
transfer module

6.4.2 Appearance Transfer

The pose-synthesis network allows generating realistic face images that follow the
geometry of the target pose Y, whereas the hallucination network allows capturing
appearance features at different scales of the source input image. This section shows
how one can use the latter to drive the former to translate the input image IX into the
target pose Y. It was observed that combining both networks enables the appearance
transfer from the input image to the target pose, in an approach that can be trained
in a fully unpaired setting.
Appearance Transfer Module: To allow the generated image to follow the style of
the input one, the proposed approach borrows ideas from (Karras et al., 2019) and
(Park et al., 2019b) and propose to inject features from the hallucination network
into the different layers of the pose-synthesis network, in a style-transfer fashion.
However, note that the features from the input image are not aligned with those of
the pose-synthesis network, and therefore a spatial module is necessary to ensure
a correct transfer. To this end, the method proposes a novel Appearance Transfer
Module (ATM), which plays a key role in the method, allowing the pose-synthesis
network to incorporate appearance features at different resolutions from the halluci-
nation network.

For a given spatial resolution, the ATM combines the features from the halluci-
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nation network, fSR, with the features from the pose-synthesis network, fPS. The
ATM includes (i) a 1x1 convolution in order to align (channel-wise) fSR with fPS;
The output of this operation is a new set of aligned features f ′SR. (ii) an Adaptive
Instance normalization (AdaIn) layer (Huang and Belongie, 2017) that aligns the
feature statistics (µ and σ) of fPS with those of f ′SR, to produce a new set of features
f ′PS; and (iii), inspired by (Park et al., 2019b), a “spatially aware” combination layer,
that defines a spatial learnable weighted combination of the feature maps from f ′PS

and f ′SR. The AdaIn layer is defined as:

f ′PS = σ( f ′SR)
( fPS − µ( fPS)

σ( fPS)

)
+ µ( f ′SR), (6.1)

whereas the combined feature is given by

fcombined = α ⊙ f ′SR + β ⊙ f ′PS. (6.2)

In Eqn. 6.2, ⊙ represents element-wise multiplication between features and weight-
ing masks α = ϕ( f ′SR) and β = ψ( f ′PS) which have the same spatial resolution as
the features. The masks α and β are produced by convolutional modules, ϕ and ψ,
that operate on hallucination and pose synthesis features, respectively (pinkmodules
in Fig. 6.2). Each module consists of a 3 × 3 convolution, ReLU and average pooling
layers followed by another 3 × 3 convolution and a bi-linear upsampling. α and β

control the contribution of the two feature maps during the combination. This will
help the network not to learn to copy the features exclusively from the hallucination
network.

Conditional Discriminator: The work uses a conditional discriminator based on
the auxiliary classifier GAN to generate valid images conditioned on a given pose.
The framework adds a pose edge map regressor head on top of the discriminator
as the auxiliary classifier to condition on pose information. In conditional GAN
training, the generator takes as input a noise vector z and a class condition label, c
which is represented by the target pose in the method.The discriminator provides
both the probability distribution over the real data (i.e. real/fake) and a probability
distribution over the class label. However, unlike traditional methods, this novel con-
ditional discriminator adds an auxiliary heatmap regression network which enforces
landmark adherence in the generated images.
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The objective function has two components,Lc representing the log-likelihood of the
class labels and Ladv, the adversarial loss or the log-likelihood of the real data.

Lc = E[logP(C = c|Xreal)] + E[logP(C = c|X f ake)] (6.3)

Lc is estimated by a novel pose heatmap regression network, thereby forgoing the
need to have supervision, i.e., real images in the target pose. The discriminator
consists of residual blocks, with downsampling operations implemented using mean
pooling within the residual blocks. The discriminator mirrors the layers of the gen-
erator. The discriminator also uses spectral normalization, as provided in (Miyato
et al., 2018).

Identity preserving network: In addition to the aforementioned ATMmodule, an
identity preserving network is introduced, which is targeted at producing features
that are close for pairs of input/generated images so that identity is preserved, and
far for other combinations of input images and/or generated images. The network
has the form of a ResNet-18(He et al., 2016b), in which the last Average Pooling and
FC layers are removed, and is trained along with the discriminator. The network
produces a 8192-d feature vector for an input resolution of 128 × 128. It uses a con-
trastive loss (Hadsell et al., 2006) to train the network (see below). Note that the
proposed approach do not make use of paired training data: when updating the
feature extractor, use as positive pairs the input and generated images in a batch; to
generate the negative samples, the approach pairs the input (or generated) images
in a batch with a shuffled version of the batch.2 When updating the generator, the
negative pairs come from the generated images of a shuffled version of the input
batch. This way, the generator will try to produce images that have similar features
for the positive pairs, and dissimilar for the negative ones.

6.4.3 Training Methodology

The training of the pipeline is divided into two main stages. The first one comprises
pre-training the pose encoder, and the face hallucination and pose-synthesis net-

2Due to the randomness in the batch sampling, there might be cases where the negative pairs are
composed of two images corresponding to the same person, although the occurrence of this scenario
is negligible.



6.4 Proposed Approach 125

works. The face hallucination network is trained as in (Bulat and Tzimiropoulos,
2018), whereas the pose-synthesis network is trained using a GAN approach with
the conditional discriminator defined earlier.

Once the pose encoder, face hallucination, and pose-synthesis networks have been
trained, they are integrated into the whole pipeline. While the encoder and face
hallucination networks remain frozen, the pose-synthesis network is re-trained, with
initial weights being the pre-trained ones. The corresponding discriminator is dis-
regarded and trained from scratch along with the whole pipeline. Overall, the last
stage comprises training the pose-synthesis network with the ATM modules, the
discriminator (D), and the identity preserving network (IP). Following the GAN
notation, the following will refer to the whole block consisting of the pose encoder,
the pose-synthesis, the ATMmodules, and the face hallucination network, as G. To
simplify notation, the output of G will be denoted as ÎY = G(z, IX, Y), illustrating
the dependency on the noise z, the input image IX with pose X, and the target pose
Y. Recall that in G only the parameters of the ATM modules and the pose-synthesis
network are learnable in this stage. The loss that G, D, and IP aim to optimize is
decomposed into several terms, detailed below:
Adversarial loss: The approach adopts the hinge adversarial loss of (Lim and Ye,
2017b). The loss for the discriminator is defined as:

LD
adv = Ez,IX ,Y[min(0,−D(G(z, IX, Y))− 1)]

+ EIX [min(0,−1 + D(IX)] (6.4)

whereas the loss for the generator is given by:

LG
adv = −Ez,IX ,Y[D(G(z, IX, Y))]. (6.5)

Pose loss: In order to ensure that the generated image follows the geometry defined
by the target pose Y, the method proposes an an auxiliary classifier on top of the
discriminator. The pose classifier is trained using heatmap regression as in (Bulat and
Tzimiropoulos, 2018), and is used to update the generator weights according to the
localization error estimated on the generated image. The pose loss is denoted as Lp

The pose regressor network optimizes the L2 loss between the generated heatmaps
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and corresponding ground truth heatmaps. The classification loss, Lc is given by,

Lp = Ez,IX ,Y,X∥D(G(z, IX, Y))− Y∥2 + ∥D(IX)− X∥2 (6.6)

Reconstruction loss: In order for the network to preserve the input appearance when
the source and target poses are the same, the reconstruction loss is used (Choi et al.,
2018):

Lr = Ez,IX ,Y∥IX − G(z, ÎY, X)∥2 (6.7)

Contrastive loss: The identity preserving network should produce features that help
distinguish whether two images are from the same person at different poses, or are
from different persons. The Contrastive Loss (Hadsell et al., 2006) typically used for
face recognition is used:

Lcon = (1 − yij)(∆ f ij
a )

2 + yij max(0, m − ∆ f ij
a )

2, (6.8)

where ∆ f ij
a corresponds to the L2 norm between the features corresponding to images

i and j, and yij is 1 if i, j is a positive pair, and 0 otherwise. The margin m is set to
1 in the experiments. Given that the proposed approach builds on an unpaired
scenario, we are not given pairs of images corresponding to the same person at
different poses. Therefore, a collaborative training approach is implemented: the
output of the generator is used to update the identity preserving network, and vice
versa. The method defines the positive pairs as the tuples {IX, ÎY}. When updating
the identity preserving network, the negative pairs are defined as {IX, I′X′}, where
the images I′X′ come from a shuffled version of the input batch. When updating the
generator, the negative pairs are formed using the input images and the shuffled
version of the input batch, as { ÎY, I′X′}.

Full objective: The training objectives for D and the G are:

LD = λadvLD
adv + λpLp, (6.9)

LG = λadvLG
adv + λpLp + λrLr + λconLcon, (6.10)

where the λ values are the weights for each loss term.
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6.4.4 Pre-training Procedure

Three main components of the method undergo pretraining, the hallucination net-
work, the pose encoder and the conditional GAN. A description of the training
process of these components are given below.

Hallucination Network The hallucination network of section 3.1, GSR, takes a low
resolution input image, ILR and generates a high resolution image, ÎHR.

IHR represents the ground truth, high resolution image.The hallucination network
was trained using the same loss functions as (Bulat and Tzimiropoulos, 2018) given
by,

LH = αLpixel + βL f eat + γLheatmap (6.11)

where,

Lpixel = ∥IHR − ÎHR∥2 (6.12)

L f eat = ∥ϕ(IHR)− ϕ( ÎHR)∥2 (6.13)

L f eat represents the perceptual loss between the super-resolved image and its ground
truth. ϕ(IHR) and ϕ( ˆIHR) represents the low and mid level features extracted from a
pre-trained Resnet that was trained on ImageNet dataset.

Lheatmap = ∥H̃ − Ĥ∥2 (6.14)

H̃ represents the heatmaps given by a face alignment network denoting the landmark
locations of the ground truth image IHR and Ĥ denotes the heatmaps provided by
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the face alignment network on the super-resolved image, ˆIHR. During training, the
method uses α = 0.5, β = 0.5 and γ = 0.5.

Pose encoding network The auto-encoder for the pose encoder network in section
3.1 of the paper, is trained using a reconstruction loss given by,

Lrec = ∥Y − Ŷ∥2 (6.15)

where Ỹ represents the input edge map and Ŷ represents the corresponding recon-
structed edge map from the decoder.

Conditional GAN The method first trains a conditional GAN that can synthesize
images that are conditioned on a given target pose. The architecture of the generator
network is the same as that of the pose synthesis network, but without the appearance
transfer modules added. The discriminator network architecture is also the same
as that is described in section 3.1. of the paper. The framework uses the adversarial
hinge loss, Ladv and pose regression loss Lp as given in equations (3), (4) and (5)
in section 3.3. of the paper. The conditional GAN is trained using λadv = 1.0 and
λp = 1.0.
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(a) (a)

(b) (b)

(c) (c)

Figure 6.3: Network Architectures of our (a) Hallucination network (b) Pose Synthe-
sis network, y denotes the encoding from the pose encoder network (c) Conditional
discriminator with auxiliary pose classifier. The residual blocks follow the architec-
ture of (Gulrajani et al., 2017a)
.
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6.5 Experiments

This section presents the experiments that validate the effectiveness of the proposed
approach. To this end, the proposed approach is compared to state-of-the-art meth-
ods, and also present several ablation studies. These experiments validate the results
both qualitatively and quantitatively.

Datasets: CelebA dataset (Liu et al., 2015), which comprises ∼ 200k images of
10,177 celebrities portraying a wide array of pose and expressions, is used. A training
split of 192,600 images is used out of which 6,400 images were chosen for testing,
with no overlapping identities. Facial landmarks were extracted using (Bulat and Tz-
imiropoulos, 2017). The images are cropped and resized according to the landmarks
to 128 × 128. In addition, the Multi-PIE dataset (Gross et al., 2010) is used, which
contains images of 337 subjects, captured in a controlled setting condition under 15
viewpoints and 19 illuminations. From Multi-PIE, 60,000 images are used to train,
and 5,500 to test, with no overlapping identities.

Training Details: The approach uses batch size of 64 and Adam optimizer with
β1, β2 = (0, 0.999) for training. The learning rate for the generator and discriminator
is set to 0.0002. The models are trained for 160K iterations, taking 3 days on a single
NVIDIA Titan X Pascal. The values of λ are set as λadv = 1, λp = 10, λr = 5, and
λcon = 5.

Pre-training phase: The framework trains a hallucination network for each of the
aforementioned databases. The training of this network is done in advance, following
the protocol of (Bulat and Tzimiropoulos, 2018). The LR images are generated from
the input images by applying a spatial downsampling. The network is trained to
recover the input images.

Performance metrics: Inception Score (IS, (Salimans et al., 2016)) and Fréchet
Inception Distance (FID, (Heusel et al., 2017)) are used to evaluate the quality of
each method: low FID and high IS values indicate better quality. The experiments
also measure the capacity of the approach to preserve identity by computing the
similarity (L2) between the features extracted using the publicly available face recog-
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nition model LightCNN (Wu et al., 2018) from the input and generated images, as
well as the percentage of images that yield a distance lower than 0.2.

6.5.1 Super-resolution Performance

The proposed approach first involves training the super-resolution network accord-
ing to the specifications of (Bulat and Tzimiropoulos, 2018). The Super-resolution
network was trained with pixel loss, perceptual loss and heatmap loss with contribu-
tion factors of 1.0,1.0 and 0.5 respectively. Hyperparameters include a learning rate
of 2.5e-4 which was decreased to 1e-5 during the 100 epochs of training. The FAN
was fine-tuned along with this network for another 5 epochs. The best NME, PSNR
and SSIM for the faces dataset are given in Table 6.1.

Figure 6.4: Super-resolution experiment results. The top row shows the low resolu-
tion 16x16 images, the middle row shows the generated high resolution images and
the third row shows the high resolution ground truth images.

Table 6.1: Super-resolution Results

Measure Pose 60 Pose 90 Pose 30
SSIM 0.79 0.77 0.79
PSNR 23.4 22.5 23.2
NME 60.8 53.8 61.4
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6.5.2 Comparison with state-of-the-art

The experiments compare the proposed approach against the state-of-the-art meth-
ods Pix2PixHD(Wang et al., 2019) and StarGAN (Choi et al., 2018). The former
is not intended to be used for image-to-image translation, and is primarily used
to compare the quality of the generated images. StarGAN is the state-of-the-art
method in unpaired image-to-image translation. Both methods are accompanied
by publicly available implementations, which are used to train the corresponding
models using the aforementioned databases. To the best of the knowledge, StarGAN
has not been applied to landmark-guided image-to-image translation, and hence the
code is modified to make the discriminator accept edge maps as attributes.

The proposed approach is compared against a very strong baseline: the in-house
conditional GAN, i.e. the proposed GAN-based generator with a conditional discrim-
inator that generates face images conditioned on a given pose and random noise.
This network is actually the pose-synthesis network without the integration of the
features from the hallucination network. The network is trained using adversarial
and pose regression losses and serves as the pre-trained network used to initialize
the final version of the method.

The results comparing the method on both CelebA and Multi-PIE against the three
aforementioned methods are shown in Table 6.2. the method outperforms all other
methods both in terms of FID and Inception Score and delivers the highest quality
images in the experiments.

In addition, qualitative evaluation are provided in Figure. 6.5, Figure. 6.6, Fig-
ure 6.7.StarGAN fails to produce good quality results under a pose change setting. It
struggles to generate high frequency details and fails, especially when attributes like
glasses are present. The visual comparison shows evident superiority of the method
in generating higher quality images that corresponds to a target pose, while keeping
the source image features (e.g. hair color, skin color, makeup, glasses, texture, light-
ing, etc.) the method is also robust towards generating images in a wide range of
poses, (e.g. profile to frontal) and can manipulate expressions.
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Figure 6.5: Qualitative comparison w.r.t to state-of-the-art (a) Source image, (b)
Target pose, (c) Conditional GAN, (d) Pix2pixHD, (e) StarGAN and (f) Proposed
method.

Method FID↓ IS↑ Method FID↓ IS↑

M
ul
tiP

IE

Real data 0.00 2.14

Ce
leb

A

Real data 0.01 3.49
CGAN 22.9 1.79 CGAN 7.40 2.42
Pix2pixHD 19.30 1.58 Pix2pixHD 41.68 2.62
StarGAN 25.29 1.81 StarGAN 12.78 2.55
Ours 15.90 1.78 Ours 6.14 2.65

Table 6.2: Comparison w.r.t state-of-the-art methods.Note: The method does not
outperform StarGAN in Inception Score, although it offers competitive performance
in FID.

Ablation studies

In this Section the experiments investigate the contribution of the different compo-
nents of the proposed method. To reduce training times, a target 64 × 64 resolution
is used.
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Figure 6.6: CELEBA state-of-the-art comparison. Additional results from CELEBA
dataset with respect to the baseline CGAN, and state-of-the-art methods, Pix2pixHD,
StarGAN are shown above.

Settings

A.1 – Hallucination network vs Appearance autoencoder: A key feature of the ap-
proach is the use of the hallucination network for capturing the appearance of the
input target image, and guiding the pose synthesis network. An obvious alternative
to the approach would be to use an appearance autoencoder (trained to reconstruct
facial images), and then try to transfer features from that network in order to guide
the the pose synthesis network.

Two variants for the appearance autoencoder were explored. In the first one (A.1.1),
the input source image in full resolution is fed first to an encoder. The output of
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Figure 6.7: CELEBA state-of-the-art comparison. Additional results from CELEBA
dataset with respect to the baseline CGAN, and state-of-the-art methods, Pix2pixHD,
StarGAN are shown above.

the encoder (i.e. the appearance embedding) is then concatenated with the pose
encoding and then sent to the generator. No other feature integration takes place
in this variant. The encoder is trained along with the pose-synthesis network. The
second variant (A.1.2) is even more similar to the method, as features from the
decoder part of the auto-encoder are progressively integrated to the pose-synthesis
network in a similar fashion to that of the proposed pipeline.

A.2 – Different variants of ATM: The second key feature of the method is the pro-
posed ATM for effectively transferring the appearance of the input image while
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Figure 6.8: CELEBA results. Additional results from CELEBA dataset using the
proposed method are shown above, featuring the source image, the target pose and
the corresponding generated image.

generating a new facial image in the desired target pose. Two alternatives to the pro-
posed ATM module are explored: In the first variant (A.2.1), the functions ϕ and ψ

for producing the spatial masks α and β are materialized using an Hourglass (Newell
et al., 2016b), reducing the spatial resolution down to 4 × 4. The second variant
(A.2.2) also uses an Hourglass, but this time the module does not learn spatial masks
α and β to combine hallucination and pose synthesis features as in Eqn. 6.2, but di-
rectly produces fcombined as the output of the Hourglass. The input to the Hourglass
is the concatenation of hallucination and pose synthesis after the AdaIN layer.
The decoder mirrors the encoder, with convolutions being replaced by transposed
convolutions. The encoder-decoder block includes skip connections between the en-
coder and decoder layers. An alternative with no skip connections was investigated,
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Figure 6.9: Qualitative comparison -identity preserving: (a) Source image, (b) Pro-
posed method without identity, (c) Proposed method with identity.

Figure 6.10: MultiPIE pose and expression manipulation in extreme profile views.
Row1 shows the input image and row2 shows the corresponding pose and expression
transfer.

although the generated images were not preserving the input appearance. In this
setting, the approach is to concatenate the SR features coming from the hallucination
network with the PS features coming from the pose-synthesis network, after being
first brought to the SR feature distribution through an AdaIN normalisation layer.
The concatenated features are downsampled through a 1x1 convolution and then
passed through a small hourglass (Newell et al., 2016b) module with skip connec-
tions.
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Figure 6.11: MultiPIE face rotation. Column 1 shows the source image and columns
2-5 show face rotation results.

A.3 – Identity preserving network: Another important contribution of the work
is the identity preserving network trained with the contrastive loss. To study its
influence, the approach was also trained without it.

We study the influence of the reconstruction loss and the identity network in the
produced results. To this end, the framework first trains (A.3.1) a network using only
the hallucination network, the pose-synthesis with ATM blocks, and the discrimina-
tor, without the reconstruction loss and identity network. Then, the method trains
a network using the same configuration and the reconstruction loss (A.3.2). The
influence of adding the identity preserving network at the full 128 × 128 resolution.

A.4 – Expression and pose synthesis: The experiments show qualitatively the perfor-
mance of the network at producing specific expression and pose images on MultiPie
dataset.

6.5.3 Results and discussion

Quantitative results in terms of FID and IS for the A.1-A.3 are shown in Table 6.3.
The results for A.3, in terms of average pairwise distance and percentage of images
with distance under 0.2, are shown in Table 6.4. From the reported results it can
be concluded that: (a) that replacing the hallucination network with an autoen-
coder has detrimental effect in quality, (b) the alternatives to the ATM module yield
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poorer results than the ATM configuration, and (c) the identity preserving network
largely improves identity preservation, despite not yielding the best FID and IS scores.

Moreover, qualitative results for A.4 are shown in Fig. 6.11 and Fig. 6.10. It can
be seen that the network can successfully manipulate the pose or the facial expres-
sion, generating images of high quality.
Fig. 6.10.

Method FID↓ IS↑
Real data 0.00 3.01

(A.1.1) AE-v1 35.06 2.53
(A.1.2) AE-v2 10.05 2.20
(A.2.1) Hourglass-v1 5.53 2.49
(A.2.2) Hourglass-v2 5.18 2.49
(A.3) Proposed w/o identity 4.31 [2.57]

Proposed [4.6] 2.61

Table 6.3: Quantitative comparison of different baselines and ablation studies for
CelebA. Bold numbers are best performance, and bold numbers in brackets indicate
second best.

Method Mean Dist.↓ TPR↑
StarGAN 0.21 56%
Proposed w/o identity 0.22 48%
Proposed 0.18 69%

Table 6.4: Identity preserving results on CelebA

Importance of hallucination network: The reported results show the importance of
having a hallucination network to transfer the input appearance, where the network
appears to capture the relevant features at multiple scales, which seems crucial for an
accurate transfer. When this module is replaced by an autoencoder, as described in
A.1, the quality of the images deteriorate drastically. This is attributed to the fact that
the autoencoder formulation introduces an unnecessary complexity into the process,
that of learning a latent representation which typically is not well disentangled in
terms of pose and appearance. As a result the decoder part of the autoencoder
processes entangled features which cannot be easily integrated into a pose synthesis



140 Face Image Generation and Applications in Anonymisation

network trained under the challenging unpaired setting.

Identity preservation: Table 6.4 shows the average source/generated image dis-
tance in the feature space, as well as the percentage of pairs with a threshold under
0.2. the method with the identity preserving network outperforms StarGAN as
well as the variant of the method that doesn’t use this extra network (A.3.2).The
qualitative results showing the effectiveness of the identity preservation network is
shown in Fig. 6.9.

The encoder does not need to explicitly capture the relevant facial features for an
image-to-image translation task. When replacing the hallucination network by an
encoder-decoder, the generated images were of very poor quality.

Figure 6.12: Failure cases featuring extreme poses, occlusions.

Limitations and failure cases: Failure cases typically include difficult target poses,
and occlusions in the source images as shown in Fig. 6.12.

6.6 Data Anonymisation For Privacy Preservation

From the previous section it is clear that the ability to generate images of faces in
various poses and expressions is a challenging task but finds significant applications
in face analysis research including several including data augmentation, face editing,
expression transfer and face anonymization. Advancements in computer vision are
continuously improving the quality and realism of the generated images. Privacy
is a critical aspect in face analysis research, especially with sensitive datasets in
mental health digital bio-marker analysis. Face anonymization enhances privacy
by removing identity information from images and preventing unauthorized use of
facial recognition software.
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Traditionally, face anonymization has been accomplished through obfuscating pix-
els, such as pixel permutation, blurring, and pixelation. Previous studies have also
revealed the vulnerability of traditional anonymization techniques, such as eye mask-
ing, blurring, pixelation and permutation, which are either fully or partially reversible
and susceptible to deanonymization efforts. Conversely, anonymization achieved
through image synthesis-based methods has been demonstrated to be resistant and
could not be broken for deanonymization, as evidenced by existing research Todt
et al. (2022). An additional advantage of image synthesis is its ability to generate
realistic and high fidelity facial images while preserving facial style attributes, such
as hair color, skin color, and eye color, without altering the background. This feature
makes face anonymization utilizing generative methods a promising direction of
research to achieve robust and realistic face anonymization.

The face-manipulation method proposed in section 6.1 can be applied to anonymize
the facial identity information in the Mood-Seasons dataset, demonstrating a proof-
of-concept technology for high-fidelity face anonymization. The original framework
includes a component to preserve identity information, but this can be omitted to
generate anonymous versions of the input image in any desired pose. The goal of
face anonymization is to create realistic images that retain the overall appearance of
the face while removing identifying features, enabling sharing of images without
compromising privacy.

6.6.1 Anonymization Using The Proposed Method

The components of the proposed framework also provide additional benefits to
the anonymization process, where it allows for manipulating pose and expression
independently through the pose-conditioned GAN. The conditional discriminator
enforces the pose synthesis network to adhere to a given pose and expression and be
highly realistic. The identity is enforced through the identity preserving network
and contrastive training loss components. These additional constraints enforcing
identity preservation can be simply removed from the framework by removing the
identity preserving network and the contrastive loss component Lcon by essentially
setting the λcon to 0 in 6.10. The resulting architecture of the network, without the
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identity preserving component, is provided in Figure 6.13.

Figure 6.13: The modified architecture of the face manipulation framework where
the identity preserving network is removed and a behavior regression head is added
to the classifier network. Note that in the current set up, the behavior component is
not included since the model is not trained on the Mood-Seasons dataset.

The network is only used for inference and no training is required for anonymizing
face images. The Mood-Seasons dataset comprises a set of videos from 134 different
identities. In order to test the data anonymization capacity of the approach, a subset
of the videos from 50 identities were randomly chosen. For anonymizing the video
Xi for an identity i, there are Xi = xi1, xi2, xi3, ..., xin representing a set of face image
frames and Yi = yi1, yi2, yi3, ..., yin representing edge maps from the landmarks from
each of the frames. The approach takes as input a 16 × 16 low resolution, source
image, xs that represents the overall style and background of the target image, which
is kept the same for all the frames. This is to ensure that the style remains uniform in
the video and is chosen so that the face image is clearly visible without occlusions
or blur and has adequate illumination. The edge maps are then iteratively passed
through the network along with the fixed source image xs. The pose synthesis gener-
ative network then generates an anonymized image in the desired pose provided by
the edge map.
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The evaluation of identity obfuscation can be quantified by assessing the perfor-
mance of face recognition. This is accomplished by utilizing a pre-trained face
recognition network to extract features from both the original image (containing the
identity) and the anonymized image. The similarity between these features is then
calculated, with the ideal outcome being that the anonymized features are dissimilar
to the reference identity features.

In order to accomplish this, a video of a person with N frames is used, with a
reference frame IID chosen to represent the identity and a randomly selected key
point frame Ik used to provide target landmarks Pk and serve as a comparison frame
for the face recognition network. The output of the anonymization framework is
given by Ianonymized = G(IID, Pk).

The identity similarity between the fixed source frame IID and another frame in
the video (Ik) as well as its corresponding anonymized frame (Ianonymized) is calcu-
lated using Euclidean distance, as follows: Danonymized =

∣∣F(IID)− F(Ianonymized)
∣∣ 2

and Doriginal = |F(IID)− F(In)|2. Both the distances are calculated for a subset of
50 videos and provided in the Figure 6.15. The average distance between original
identity frames is 0.67 and the average distance between the original and anonymized
identity frames is 1.12. A threshold of 0.8 is used to decide if the features correspond
to the same identity. The face recognition network used is FaceNet (Schroff et al.,
2015).

Figure 6.14 illustrates sample outcomes from the anonymization process. It can
be observed that the original identity information is successfully removed while
preserving the background and style attributes such as gender, skin color, hair color
and style, facial hair, head accessories etc. The generated image closely follows the
edge map derived from the key points and as a consequence gaze direction is not
preserved, as the 68 key points does not include the iris. This can be mitigated in
future by incorporating landmarks for the eyes into the edge map. The same source
frame is used to generate the style for all the images in the video, to enforce identity
similarity within a video. Therefore, choosing a frame without occlusions like hands
over the chin or poor lighting conditions is important.
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Figure 6.14: Qualitative Results – first column represents the reference image, second
column shows the key point frame from the same video and the third and fourth
column shows the anonymized face image and edge maps respectively

6.6.2 Evaluating Anonymisation Efficacy in Downstream Tasks

To evaluate the usefulness of the anonymisation method for downstream depression
analysis, a baseline depression recognition model trained using the Resnet-50 archi-
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Figure 6.15: Quantitative comparison of face recognition similarity between original
images and anonymized images. X-axis represents the individual identities and
Y-axis represents the distances of the reference frame to that of the key point frame
(in blue) and anonymized frame(in red).

tecture to predict frame level depression labels was used. The model was trained
on the Mood Seasons dataset and for the purpose of the experiment the model was
evaluated on 10 images selected from the testing set of Mood Seasons dataset. These
10 images were anonymised using the proposed anonymisation technique and the
predictions of the model on the original and anonymised images are reported in
Table 6.6. The prediction scores are compared and if the scores fall within a severity
bin then it is considered as having high similarity.

Visualizing the results as a graph highlights the overall promising similarity in
severity bins, while also calling attention to specific instances where anonymization
altered the severity assessment. This can help guide efforts to improve anonymiza-
tion methods. Figure 6.16 plotted the 10 image examples on the x-axis, with the
original PHQ-8 score as a blue bar and the anonymized score as an orange bar.The
y-axis shows the PHQ-8 score range from 0 to 24. The shaded regions divide this into
the 4 severity bins, specifically, no depression, mild depression, moderate depression,
moderately severe depression and severe depression. Looking at the severity bins, 6
of the 10 image pairs have high similarity, with the anonymized score falling in the
same severity category as the original. All the other pairs have medium similarity,
with the anonymized score shifting by one category.
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Table 6.5: PHQ Score Similarity

Image Original PhQ Score Anonymized PhQ Score Score Similarity
1 12 10 High
2 5 8 High
3 16 10 Medium
4 20 17 High
5 18 11 Medium
6 8 6 High
7 3 5 Medium
8 17 20 High
9 11 15 Medium
10 19 10 Medium

Table 6.6: Quantitative comparison of depression recognition scores between original
images and anonymized images.

Figure 6.16: Quantitative comparison of depression recognition scores between
original images and anonymized images. X-axis represents the individual identities
and The y-axis shows the PHQ-8 score range from 0 to 24.

Overall, the anonymization preserved severity level 60% of the time. These mixed
results illustrate that while anonymity-preserving methods have potential, there is
significant room for improvement. Finding ways to better retain diagnostic facial
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information after anonymization is an important direction for future work. Analyz-
ing prediction consistency, as shown here, can quantitatively guide improvements to
anonymization techniques. This method highlights areas for improvement to main-
tain severity bin consistency, especially for more severe depression levels. Analyzing
score bin similarity on a larger dataset could further guide anonymization algorithm
development.

6.6.3 Future Directions

The previous section provided a proof-of-concept demonstration of the newly intro-
duced face manipulation method from section 6.1 in anonymizing the Mood-Seasons
dataset. This method can be applied to securely store and share sensitive datasets
used in depression recognition.

However, in order to further advance the proposed framework andmake the anonymized
version of the dataset suitable for behavior analysis, further investigation is necessary.
The objective is to obscure identity characteristics while maintaining diagnostic in-
formation, so that privacy preservation does not negatively impact the performance
of the downstream task and the digital markers remain intact.

To achieve this, the proposed framework should incorporate another behavior align-
ment component. A straightforward approachwould be to retrain the network on the
Mood-Seasons dataset, and add a PhQ-8 score regression head to the discriminator.
This would task the discriminator with minimizing the discrepancy in behavior
expression between the original and generated samples, thereby ensuring that the
anonymized version of the dataset retains diagnostic information and that privacy
preservation does not negatively impact the performance of the downstream task.

Additionally, the proposed framework should also consider other metrics to evaluate
the preservation of diagnostic information in the anonymized version of the dataset.
For instance, the performance of PhQ-8 regression on the dataset could be used as a
metric for retention of diagnostic information. Another evaluation would be to find
the correlation between objective behavioral analysis components like action units,
facial expressions etc. between original and anonymized versions of the dataset.
These metrics can ensure that the anonymized version of the dataset is still informa-
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tive for behavior analysis.

In conclusion, the proposed framework should consider multiple aspects to en-
sure that privacy preservation does not negatively impact the performance of the
downstream task and that the diagnostic information is retained in the anonymized
version of the dataset.

6.7 Conclusion

This chapter introduced a framework for face generation that learns to synthesize
novel face images that adhere to a given pose, whilst transferring appearance and
style information from an exemplar image, in a semantically meaningful way. It
includes an in-depth discussion of how to integrate appearance features of the ex-
emplar image taken from a pre-trained hallucination network into the generation
process of a conditional GAN using a novel appearance transfer module. The experi-
ments then demonstrate both quantitatively and qualitatively the capability of the
method to achieve high quality images that are both conditioned on target poses and
source appearances.

The last section of the chapter applies the novel method in anonymizing the
identities present in the Mood-Seasons dataset as a proof-of-concept. It discussed
the modifications applied to the approach to accomplish face anonymization and
measures the degree of anonymization achieved using the proposed method using
quantitative and qualitative analysis. Further, the last section proposed suggestions
and lays out a roadmap on how this can be further leveraged for automatic depression
analysis.



Chapter 7

Conclusion

This thesis presented a new multi-modal, longitudinal dataset collected through a
custom smartphone app for depression recognition in real-world settings, along with
a state-of-the-art automated depression recognition system utilizing multimodal
data. The thesis also introduced a unique privacy-preserving approach to anonymis-
ing face images in the dataset using generative methods. This chapter summarises
the approaches presented in the thesis along with a discussion of limitations of the
studies and suggests future directions for research in this area.

In the fourth chapter, a large-scale data collection study was conducted to generate a
novel, multimodal (audio-video-text) and longitudinal dataset called Mood-Seasons.
The dataset was collected using a smartphone in natural, in-the-wild environments
and included video and audio recordings, as well as textual transcriptions, from
the general public. The severity of depression was measured using responses to a
PHQ-8 questionnaire.

The study also revealed that self-administered questionnaire responses are com-
parable to human or virtual-human mediated questionnaire responses. The data
gathering methods were designed thoroughly and ethically, and the app was de-
veloped and implemented with lessons learnt from launching such an app and the
general public’s perspective of it. Strategies were discussed to boost engagement and
use of smartphone-based mental health data gathering techniques.

The Mood-Seasons dataset was analyzed in terms of the distribution of depression
severity scores across numerous factors such as depression categories, age, gender,
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and race. A longitudinal analysis of the PHQ scores showed that the relative PHQ-8
scores over the course of three weeks remained steady, showing the longitudinal
persistence of mood.

Despite successful data collection, the study had limitations. The app did not include
a notification setting to automatically remind participants to complete the study and
add a recording. Additionally, the database back-end used in the app only stored
the final PHQ-8 score instead of scores against individual questionnaire elements.
Collecting responses at each item level would provide a fine-grained insight into the
participant’s mood states.

Future studies can address these limitations by including a notification setting, col-
lecting responses at each item level, and optimising data storage to eliminate a cap
on video capturing time. Collecting a mood state indicator from participants would
also enable further understanding of self-perceived mood against PHQ-8 scores,
facilitating the development of systems that might be able to correlate personalised
mood state with responses to the PHQ-8 score.

Chapter 5 presented an extensive benchmark of state-of-the-art video analysis tech-
niques on the newly collected Mood-Seasons and publicly available AVEC 2014
datasets. The chapter presented a quantitative comparison between several methods,
including spatial and temporal models, and showed that models with understanding
of the temporal context showed the best performance.
The 3D temporal models, C3D and TSMmodels showed competitive performance on
theMood-Seasons dataset andAVEC 2013 datasets, whereas the state-of-the-art video
recognition model, SlowFast, performed poorly when compared to other temporal
models. Among the 3D models, some, such as I3D and 3D Resnet, demonstrated
relatively lower performance, while others, such as those utilising temporal aggrega-
tionmethods like GRUs and attentionmechanisms showed competitive performance.

The second part of chapter 5 presented a two-staged multimodal transformer-based
approach that addresses automated depression severity prediction and provided
experiments to validate the effectiveness of the approach on both Mood-Seasons and
AVEC 2014 datasets. Multimodal data was analysed using short- and long-range
modelling transformer architectures. A novel loss called differential loss was in-
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troduced to improve performance by leveraging multiple videos from one person.
Various ablation studies were also conducted to assess the effectiveness of different
components of the framework in predicting the severity of depression.

In comparison to the benchmark models, the multimodal transformer architec-
ture outperformed benchmark methods by significant margins, especially the best-
performing spatio-temporal model, C3D, in terms of the metrics MAE and RMSE
respectively. On the testing set, which appears to be slightly more challenging com-
pared to the validation set, the multimodal transformer model outperformed the
top-performing benchmark, TSM, on the Mood-Seasons dataset, on MAE and RMSE
respectively. These results demonstrate the superior performance of the proposed
multimodal framework in predicting the severity of depression.

The video-level multimodal transformer showed considerable improvement in RMSE
compared to the sentence-level multimodal transformer. These performance gains
show that the use of video-level understanding and long-range modelling can lead
to a more accurate automatic understanding of depression. Another ablation study
showed that co-attention is a crucial component of multimodal feature fusion in
the transformer architecture. The experiments also showed that the differential loss
function was effective in improving the performance of the estimation of the severity
of depression.

Interpretability is an important aspect of clinically relevant diagnostic tools. The
methodology presented in the chapter focused on deep learning based techniques to
analyse real-world, multimodal depression data. Investigating the interpretability of
multimodal features learnt by the attentionmodel would be helpful in understanding
the decisionsmade by themodel. A complementary route would be to use traditional
hand-crafted features pertaining to different symptoms or human-interpretable traits,
such as headmovement, eye gaze directions, facial action units, voice features such as
prosody, pitch, speech rate and language features. These would be a useful baseline
for correlating automatically detected digital biomarkers to PHQ-8 symptoms.

Chapter 6 of the study introduced a framework for generating novel face images
that adhere to a given pose while transferring appearance and style information
from an exemplar image. The framework includes a discussion of how to integrate
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appearance features from a pre-trained hallucination network into the generation
process of a conditional GAN using a novel appearance transfer module. The experi-
ments demonstrate the method’s ability to achieve high-quality images that are both
conditioned on target poses and source appearances.

The last section of the chapter applied the method to anonymise identities in the
Mood-Seasons dataset as a proof-of-concept. Modifications applied to the approach
to achieve face anonymisation were discussed and the degree of anonymisation
achieved was measured using quantitative and qualitative analysis. The section pro-
posed suggestions and laid out a roadmap on how the method could be leveraged
for automatic depression analysis.

However, the proposed framework needs further investigation tomake the anonymised
version of the dataset suitable for behaviour analysis. To achieve this, the proposed
framework should incorporate another behaviour alignment component. This would
task the discriminator with minimising the discrepancy in behaviour expression
between the original and generated samples, ensuring that the anonymised version of
the dataset retains diagnostic information. Other metrics, such as PhQ-8 regression
performance and correlation between objective behavioural analysis components,
should also be considered to evaluate the preservation of diagnostic information in
the anonymised dataset.

In conclusion, the proposed framework should consider multiple aspects to en-
sure that the preservation of privacy does not negatively impact the performance of
the downstream task and that diagnostic information is retained in the anonymised
version of the dataset. The framework could be applied to securely store and share
sensitive datasets used in depression recognition.

One of the main limitations of the study is that the method is evaluated only for the
degree of anonymisation and not extensively for the degree of behaviour preserva-
tion. As mentioned earlier, the proposed framework needs further investigation to
make the anonymised version of the dataset suitable for behaviour analysis. The
architecture of the network needs to be modified to include a behaviour preservation
loss, as detailed in Chapter 6. This loss would task the discriminator withminimizing
the discrepancy in behaviour expression between the original and generated samples,
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ensuring that the anonymised version of the dataset retains diagnostic information.

Another limitation of the study is that the model is pre-trained on the CELEBA
dataset, which is biased towards certain race and gender. This bias could result
in lower quality results on race or gender outside the training distribution. This
limitation can be mitigated by fine-tuning the model on the Mood-Seasons dataset,
which includes a more diverse population.

One major limitation of the collected data was the sample population. Data were
collected from the general public, and the ethical policies for the data collection
study did not allow people with a valid clinical diagnosis of depression to participate.
This means that a smaller percentage of participants showed symptoms of higher
depression severity.

Another limitation was the demographics of the study sample. The average partici-
pant was a 27-year-old female. Although all efforts were made to recruit participants
from various backgrounds, a large number of young women enrolled in the study.
Therefore, the results are more representative of that population.

In summary, while the proposed framework shows promise in achieving high-quality
image generation and face anonymisation, further investigation is necessary to ensure
that behaviour preservation is also achieved. Additionally, bias in the pre-trained
model can limit the quality of results for certain race or gender groups, but this can
be addressed by fine-tuning the model on the target dataset.

7.1 Future Work

The proposed framework needs further investigation tomake the anonymised version
of the dataset suitable for behaviour analysis related to depression. Evaluating the
anonymised dataset just on degree of anonymisation is insufficient. Metrics to mea-
sure how well mood, emotions, and behaviours are preserved after anonymisation
should be included. This could include evaluating performance of pretrainedmodels
for depression recognition, emotion classification, and facial action unit detection on
the original vs. anonymised dataset.
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Measurement of the correlation of objective behavioural markers before and after
anonymisation would help quantify information retention. Computing correlations
between low-level behavioural cues, such as facial action units, headmovements, and
speech patterns, on the original and anonymised data is crucial. The high correlation
suggests that useful signals are retained. Metrics like k-anonymity and l-diversity
could be used to quantify the anonymity level achieved. Fine-tuning the anonymisa-
tion model on the Mood-Seasons dataset rather than just using the pretrained model
on the CELEB-A dataset would help make it more robust to the diverse gender and
racial groups represented in the new data.

Beyond quantitative metrics, a qualitative study to get feedback from clinicians
on the utility of the anonymised dataset for diagnosing mood disorders would be
helpful. Conducting manual ratings of perceived depression by clinicians viewing
anonymised videos compared to originals would provide insights into effectivemood
preservation. The gathering of direct feedback from study participants on their per-
ceived anonymity after viewing anonymised videos of themselves should also be
considered. High self-reported anonymity suggests effective identity masking.

Incorporating co-design with patients in developing anonymisation techniques can
help ensure they balance privacy protection and preservation of diagnostic signals
relevant for depression assessment. Getting input from the users themselves on what
they consider private information and what behavioural cues are acceptable to alter
would help guide the development.

Interviews/focus groups could help understand patient priorities and concerns
around the use of their visual data. Participatory design sessions to actively involve
patients in generating and critiquing anonymisation approaches should be incorpo-
rated. Future studies should gather feedback from patients on anonymised versions
of their own videos to guide refinements. Collaboration to develop appropriate
consent processes that give patients control over anonymisation procedures per-
formed on their data should be carried out. Recent literature provides examples
of successful co-design in mental health contexts, such as Rennick-Egglestone et al.
(2019) and Torous et al. (2019). Adopting human-centred design practises will be
key to developing ethically and socially acceptable solutions for privacy protection
in mental health research.
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Exploring different levels of anonymisation, fromminimal changes to complete facial
replacement, could reveal the trade-offs between privacy and behaviour preservation.
Participants could opt in to their preferred level. Developing privacy-preserving
techniques in partnership with patients directly addresses important ethical concerns
and helps build trust. This is an exciting area for future work.
Stepping back, the pandemic has accelerated the adoption of virtual mental health
solutions. While machine learning and computer vision technologies offers tanta-
lizing possibilities, it also raises complex ethical questions around privacy, consent,
bias and transparency. Developing such sensitive technologies responsibly requires
cross-disciplinary collaboration between engineers, clinicians and social scientists.

Overall, AI should act as an enhancer, not a replacement, for human understanding
- combining the strengths of both to expand access to mental healthcare. The pro-
posed approach involving multimodal transformers demonstrate the potential of
automated depression analysis for augmenting clinicians’ capabilities for objective
mental health measurement. However, transparent and interpretable automated
depression analysis is crucial for clinicians to trust and adopt these tools. Advances
in explainable AI tailored to mental health data analysis would enable physician-
automated system collaboration with clinicians leveraging AI as a supportive tool
rather than a black box.

On the data collection side, smartphones offer an invaluable platform for gathering
rich longitudinal mental health data at scale. However, creative solutions like gamifi-
cation, active notifications and clear consent processes are imperative to drive user
engagement while respecting privacy. As the anonymisation methods highlighted,
true privacy-preserving data sharing for research remains an open challenge. Co-
designing solutions with patients and using formal privacy measures are important
ways forward.

Ultimately, realizing the full potential of automated depression analysis in mental
healthcare requires just as much ethical foresight as technical innovation. With collab-
orative, human-centric design, computer vision and machine learning technologies
can widen access to quality mental health support and create a more psychologically
flourishing society. But developing such sensitive technologies responsibly demands
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cross-disciplinary collaboration between engineers, clinicians and social scientists.
Overall, a symbiotic human-AI approach is needed - combining the empathetic,
contextual understanding of people with the vast data insights of machines.

This thesis contributed to methodological advances in multimodal depression detec-
tion and privacy-preserving data sharing. But these are just the first steps on the path
to integrate AI ethically and responsibly into mental healthcare. With an eye towards
the human impact, computer vision and machine learning can help democratise
access to mental health support and move us toward a society where everyone has
the tools to tend to their psychological wellbeing.
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