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Abstract 
The EarlyCDT®-Lung test has been technically and clinically validated for 

the early detection of lung cancer with a sensitivity ~40% and a specificity of 

~90% through measurement of a panel of seven serum autoantibodies. 

The test generates curves of autoantibody binding to a titrated series of 

capture antigen concentrations thus providing patient-specific autoantibody 

profile titration curves. We postulated that the antibodies responsible for false 

positive results in healthy individuals exhibit different binding kinetics to 

specific autoantibodies present in cancer patients and that these differences 

may manifest themselves in the shape of the autoantibody-antigen titration 

curves. 

The EarlyCDT®-Lung test result is currently a simple logic test 

combination of the results from the seven autoantibodies. The employment 

of machine learning models to combine the biomarker results, especially with 

the addition of a number of extra biomarker parameters, may allow improved 

clinical utility of the test through increased sensitivity and specificity. 

A health economic analysis was undertaken to determine the current cost-

effectiveness of the EarlyCDT®-Lung test for population screening for lung 

cancer compared to low-dose computed tomography, it showed that the 

current test performance was more cost-effective than LDCT screening at 

£37,679 per QALY, and quantified the performance needed to achieve cost-

effectiveness at £30,000 per QALY was sensitivity of 39.8% at 99% 

specificity, 47.5% at 95% specificity, or 56.2% at 90% specificity respectively. 

Serum autoantibodies from three case-control cohorts were measured 

on the EarlyCDT®-Lung test, as well as on an extended panel of 

autoantibodies. The titration binding curves returned by the test were 

analysed for signal magnitude, as well as curve characteristics including 

Slope, Intercept, Area Under Curve (AUC) and maximum slope obtained 

over the curve (SlopeMax). A range of unsupervised and supervised 

machine learning strategies for combining these biomarker results were 

explored, including principal components analysis, cluster analysis, logistic 

regression, decision tree analysis, naïve bayes, support vector machines, 

random forest, and extreme gradient boosting. The performance 

improvements of these optimised models was, however, modest and 

inconsistent across cohorts. 

Finally, a simulated annealing based algorithm for multivariate panel 

optimisation was developed as an evolution of the Monte Carlo random 

search strategy previously used to establish panel cutoff thresholds. This 

algorithm was able to derive optimal panels that compared favourably to both 

the current commercial thresholds and to the best models derived by 

machine learning strategies. 
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Chapter 1: Introduction 

1.1 Global Cancer Burden 

Globally, cancer mortality is a leading cause of death, and in 2020 there 

were an estimated 19.3 million new cases, and 10 million cancer deaths(1) 

(an increase from the 14.1 million cases and 8.2 million deaths at the 

commencement of this project in 2012(2)). This is predicted to continue to 

increase, despite the implementation of strategies designed to reduce 

cancer-related mortality, with estimates predicting up to 28.4 million new 

cases a year by 2040, due to a combination of factors including increased life 

expectancy, an aging population, population growth, and an increased 

adoption of cancer-associated lifestyle choices such as smoking, physical 

inactivity and “westernised” diets(1).  

Advances in screening and treatments have improved the mortality of 

several cancers, such as breast cancer, which, while having the highest 

prevalence in women, shows mortality lower than lung, colorectal, stomach 

or liver cancer. Other cancers, such as prostate, show high incidence, but 

the tumours tend to be less aggressive and so less frequently result in 

mortality.  

1.2 Cancer Burden in the UK 

In 2020 in the United Kingdom, around 457,960 new cancers were 

diagnosed, and there were 179,648 cancer deaths(3). In 2014, direct costs of 

treatment and palliative care to the NHS were estimated to be around £6.7 

billion a year to the NHS, representing 5% of the NHS budget, while the 

wider cost to the economy through loss of productivity and earnings was 

estimated to be in the region of an additional £7.6 billion a year(4). 
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1.3 Biology of Cancer 

Cancer is a complex and diverse disease encompassing over 200 distinct 

disease types, with each potentially displaying multiple subtypes. It is a 

disease characterised by a loss of control of cellular growth resulting in an 

accelerated rate of cell proliferation and invasion of surrounding tissue. This 

loss of cellular control is brought about through genetic mutation in dividing 

cells, most commonly through DNA insertions, deletions or chromosomal 

translocations(5) which confer an advantage in the dividing cell that allows it 

to escape the normal control mechanisms which dictate cellular growth. 

These changes are generally brought about through either gain-of-

function mutations, which lead to the production of oncogenes, or loss-of-

function mutations which result in the loss of tumour suppressor genes. 

Generally, a single mutation is not enough to cause cancer, and there must 

be a succession of genetic and epigenetic changes which gradually lead to 

an accumulation of cellular changes via a process analogous to Darwinian 

evolution, in which each successive change confers a competitive advantage 

in the mutated cells over the surrounding tissue, eventually leading to the 

progressive conversion of normal cells into a cancer(6). 

For the cells to progress from preneoplastic to a malignant tumour growth, 

they must develop a set of hallmark traits initially described in 2000 by 

Hanahan and Weinberg(7). The initial six traits were;  

● Self-sufficiency in growth signals - normal cells require mitogenic 

growth signals to stimulate them to move from a quiescent to a 

proliferative state, tumour cells circumvent this through various 

methods, including developing the ability to synthesise their own 
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growth factors, upregulation of growth factor receptors, and alterations 

to the Ras signalling pathways that allow activation without upstream 

stimulation(8). 

● Insensitivity to antigrowth signals - in normal tissue, anti-proliferative 

factors such as soluble, cell surface, and extracellular matrix bound 

growth inhibitors maintain cellular quiescence by either preventing 

cells from entering an active proliferative cycle, or inducing the cells to 

enter a postmitotic state. The most common way tumour cells seem to 

evade these antiproliferative signals is through disruption of the 

retinoblastoma protein signalling pathway in order to remain 

proliferative(9). 

● Evasion of apoptosis - tumour cell populations expand by proliferating 

faster than the rate of cell attrition. Resistance towards apoptotic cell 

death allows the tumour cells to reduce the rate of attrition and allows 

accumulation of cells. This is most frequently accomplished through 

mutations involving the p53 suppressor gene, leading to inactivation of 

the p53 protein(10, 11). 

● Limitless replicative potential - normal human cell types have been 

found to have the capacity for 60-70 doublings before shortening of 

telomeres causes them to enter senescence. Malignant tumour cells 

do not reach this limit, and instead have become immortalized, 

generally through upregulation of the telomerase enzyme, allowing 

them to continue replicating indefinitely(12). 

● Sustained angiogenesis - in order to receive the oxygen and nutrients 

required for survival, normal cells are obligated to reside within 100µm 
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of a capillary blood vessel. Without the ability to stimulate new blood 

vessel growth, the neoplastic cells are unable to expand, therefore in 

order to progress to a malignant tumour, an incipient neoplasia must 

develop angiogenic ability, and it accomplishes this through the 

production or stimulation of angiogenic growth factors such as 

vascular endothelial growth factor (VEGF), angiogenin, transforming 

growth factor (TGF)-α, TGF-β, and tumour necrosis factor (TNF)-α, 

and down-regulation of angiogenic inhibitory factors such as 

angiostatin, endostatin, and interferon amongst others(13). 

● Tissue invasion and metastasis - in the late stages of the development 

of a cancer, tumour cells develop the ability to escape from their site 

of origin, degrading the extracellular matrix and acquiring a more 

motile, invasive phenotype, allowing metastatic invasion and 

colonisation of adjacent tissues. These metastases are the 

predominant cause of cancer deaths, and the processes which 

contribute to this invasion are extremely complex, but generally 

include alterations to proteins involved in tethering of cells to their 

surroundings, such as cell-cell adhesion molecules (CAMs) and 

integrins. (14, 15) 

1.4 Role of the Immune System 

More recently the emerging importance of the role of the immune system in 

the development of cancer has been recognised as an additional 

hallmark(16, 17). The link between cancer and immune cells was first 

recognised over a century ago, and the concept of immunosurveillance, the 

elimination of developing cancers by the immune system, was proposed as 
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early as 1957(18). However, this link was mostly disregarded until animal 

studies in the late 1990s and early 2000s, comparing tumour incidences in 

wild-type and immunodeficient mice upon the application of carcinogens and 

in tumour transplantation. These studies led to the recognition of a complex 

and varied role of the immune system during the development of cancer and 

resulted in the development of the immunoediting hypothesis of cancer(19, 

20). 

Immunoediting is now understood to be a dynamic process, 

comprised of three phases; elimination - the immune system regularly 

identifies and eliminates abnormal cells which have suffered genetic damage 

or developed mutations - equilibrium - mutations conferring poor 

immunogenicity or immunosuppressive qualities in preneoplastic cells evade 

elimination phase and are chronically maintained - and escape - further 

mutations confer advantages that allow the cancer to proliferate and 

progress to malignancy(20). 

The contribution of the immune system in the development of a 

preneoplastic cell into a malignant cancer is highly complex and is influenced 

by the many factors, including the cellular type and mode of transformation of 

the original neoplastic cell, the anatomic location of the tumour, as well as 

the stromal response, cytokine production, and immunogenicity of the 

resulting cancer(19). In mammals, the immune system is comprised of two 

distinct components, the innate and the adaptive immune system, which 

communicate and coordinate in response to foreign pathogens. Both of these 

systems are implicated in the immune response to a cancer. 
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 In the healthy immune system, the innate immune response is the first 

line of defence against a pathogenic insult, occurring within minutes to hours, 

it is a non-specific response and is enacted through leukocytes; including 

natural killer (NK) cells, mast cells, eosinophils, basophils; and phagocytic 

cells including macrophages, neutrophils, and dendritic cells. These cells rely 

on recognition of immunostimulants; conserved features of pathogens that 

are not present in the host, such as bacterial peptides and fungal cell wall 

molecules. The innate immune system cells constantly monitor their 

surrounding microenvironment and react quickly to the presence of these 

immunostimulant molecules, resulting in the activation of phagocytic cells 

and the production of an inflammatory response (21, 22). 

 In the tumour microenvironment, an abundance of infiltrating innate 

immune cells is generally associated with poor prognosis. This is because 

the innate immune system promotes an inflammatory microenvironment, 

generating free radicals which can cause DNA damage and additional 

mutation in the tumour cells, and promoting angiogenesis and tissue 

remodelling through the production of growth factors, cytokines, chemokines 

and matrix metalloproteinases. Finally, the innate immune response may 

promote cancer growth by suppressing the antitumour activity of the adaptive 

immune system(23). 

In contrast to the innate immune system, the adaptive immune 

response is slow to respond but highly specific in its response, creating an 

immunological memory after initial pathogenic presentation by the dendritic 

cells of the innate immune system. In the case of infection by a foreign 

pathogen, the adaptive immune system is enacted through lymphocytes; T 
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cells and B cells. When activated through antigen presentation, T cells 

differentiate to either cytotoxic T cells, which directly destroy cells presenting 

a specific antigen, or helper T cells which produce signal molecules that 

activate the bactericidal activity of macrophages, as well as secreting 

cytokines which the activate B cells. These activated B cells then produce 

antibodies which bind specifically to a foreign antigen, inactivating the 

pathogen by blocking their ability to bind to cell receptors, and marking the 

pathogen for destruction by phagocytic cells(21, 22). 

In cancer, the presence of infiltrating lymphocytes in the tumour 

microenvironment is generally associated with a favourable prognosis, with 

the adaptive immune system inhibiting the growth of the tumour through 

cytotoxic T cell activity and cytokine-mediated lysis of tumour cells, however 

aspects of the adaptive immune system have also been shown to promote 

tumour growth, with regulatory T cells suppressing antitumour T cell activity, 

and humoral immune responses promoting a state of chronic inflammation 

which leads to further promotion of tumour growth by the innate immune 

system(23). 

1.5 Lung Cancer 

1.5.1 Natural History 

Lung cancer is an uncontrolled growth of cells in the lungs. It is more 

common in smokers and ex-smokers, although environmental factors such 

as asbestos exposure can also increase the risk of developing lung cancer. 

In the absence of treatment, lung cancer is almost universally fatal, 

and a systematic review of available data showed that without treatment, 

survival statistics for lung cancer are poor, with clinical stages I/II, III, and IV 
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respectively having median survival times of 10, 5, and 3 months, one-year 

survival rates of 39%, 17%, and 9%, while only 2% of untreated early-stage 

lung cancer patients, and no late-stage patients survive to five years(24). 

Estimates of tumour doubling times show a broad distribution, with 

estimates between 70 days(25) and 780 days(26), dependant on subtype 

and presentation method. This variation may be due in part to the 

heterogeneity of lung cancers, and may also in part due to the growth of 

tumours following a Gompertzian growth model(27), with a tumour doubling 

time that increases as the tumour size increases and outgrows the available 

resources. 

Assuming an exponential growth model, a conservative estimate of 

doubling time of 158 days (based on radiography studies(28)), and a 

minimum size for imaging detection of 100,000 cells(29) gives an average 

growth time of around 7.2 years from first cell to clinically detectable cancer. 

1.5.2 Subtypes 

Lung cancer can be divided into two major categories, small cell lung cancer 

(SCLC), and non-small cell lung cancer (NSCLC). SCLC accounts for around 

11% of the lung cancer cases in the UK and is highly aggressive, associated 

with rapid-onset symptoms and paraneoplastic syndromes, suggesting that 

SCLC is particularly immunogenic(30, 31). NSCLC accounts for 88% of UK 

lung cancer cases and can be further subdivided into three main pathological 

subtypes;  

Adenocarcinoma – derived from lung secretory cells, this is the most 

common type of lung cancer in non-smokers, and is more common in women 

than men. 
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Squamous cell carcinoma – derived from flat cells which line the inside of the 

airways, often linked to a history of smoking. 

Large cell carcinoma – can occur in any part of the lung and tends to be 

aggressive, growing and spreading quickly. 

Several other subtypes of NSCLC exist, although they are far less common. 

1.6 Detection of Cancer 

Cancers which show the greatest mortality, such as lung cancer and 

hepatocellular carcinoma, often are not detected until they present 

symptomatically at late-stage disease, and while much research has focused 

on finding effective treatments for late-stage disease, it has been argued that 

early detection is a much more effective way of increasing cancer survival. 

This is because prognostically, detection and treatment at an early 

stage invariably confers much greater survival rates, in lung cancer this is 

particularly evident with 1 year survival rates for lung cancer detected and 

treated at stage I being 87% compared to a one-year survival of only 19% 

when detected at stage IV (32). For this reason, early detection of cancer, 

before it is able to progress and metastasise, is an extremely important field 

of research, and the search for biomarkers to aid in the diagnosis and 

prognostic stratification of cancers has been at the forefront of cancer 

research since the development of the first screening test for cervical cancer 

by Herbert Traut and George Papanicolaou in 1943(33). While screening 

methods have shown success in several cancer types, such as breast, 

where mammography has been found to give an 18% reduction in mortality 

over 20 years(34), and colorectal cancer, in which faecal occult blood tests 

have been shown to give a 16% reduction in all-cause mortality(35), the 
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majority of cancers still have no effective screening method, and are still not 

detected until late stage advanced disease. Cancer diagnosis rates in the US 

between 2005 and 2011 show several cancers where this is especially 

evident, with 57% of lung & bronchus cancers, 60% of ovarian cancers and 

53% of pancreatic cancer diagnoses having distant metastases at time of 

diagnosis(36). 

1.7 Early Detection of Lung Cancer 

Lung cancer is currently the leading cause of cancer-related mortality(2), and 

is an attractive target for early detection, due to the high incidence, clearly 

defined high risk for smokers and ex-smokers, and the vastly improved 

prognosis from treatment at early stage compared to late stage with 

associated health economic benefit. While the initial interest in early 

detection of lung cancer was spurred by improvements to radiographic 

imaging technology, initial randomised controlled trials were not able to 

demonstrate reduced mortality from radiographic screening(37-40). 

Subsequent studies exploring chest X-ray combined with sputum cytology for 

early diagnosis of lung cancer were also unable to demonstrate a benefit for 

screening using these methods to detect abnormalities or lesions, which are 

referred to as nodules(41). More recently, the development of low dose 

helical computed tomography (LDCT) has allowed the detection of much 

smaller nodules (2-3mm) with much lower doses of radiation than chest X-

ray. The improved sensitivity for detecting nodules using LDCT led to its 

assessment in a large randomised controlled trial(42), with results 

suggesting that LDCT performs with a high sensitivity (93.8%) but relatively 

low specificity (73.4%) for the detection of lung cancer, and that as a 
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screening modality, LDCT was found to be able to reduce rates of lung 

cancer death (20%) and death from any cause (6.7%)(41, 43). 

This impact of screening has resulted in the UK National Screening 

Committee updating their guidance for Lung Cancer in 2022 to now 

recommend lung cancer screening based on the benefits observed through 

the development of the targeted lung health check program in the NHS. This 

program recommends LDCT screening for smokers and ex-smokers based 

on their demographic risk factors, and more recently led to the launch of a 

national targeted lung cancer screening programme in the UK which has 

used mobile LDCT scanning equipment to increase the availability of LDCT 

screening, especially in rural or more deprived areas, with the aim of 

screening all high risk individuals ages between 55 and 75 with a history of 

smoking. 

The current limitation of imaging technologies is the resolution, even 

using the most advanced imaging technologies and contrast agents, the 

detection size boundary currently remains limited to masses above 1mm3, 

with most imaging technologies unable to visualise cancers smaller than 

1cm3. This equates to masses of around 3 million cells and 3 billion cells 

respectively(44), however at these sizes, malignant lesions are often difficult 

to distinguish from benign nodules, and the use of biomarkers may help to 

inform treatment decisions in these cases. 

 Blood-based biomarkers also have the potential to identify 

cancer risk in subjects who carry a malignancy that is still too small for 

detection by LDCT scanning, and also may introduce additional benefits with 

regards improve access to testing. As a blood-based biomarker test would 
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need only a simple blood draw, and not specialised CT scanning equipment, 

this would allow for tests which can be available at a GP surgery at any time, 

which would be especially impactful in rural or deprived areas, giving a more 

accurate assessment of a subjects risk of cancer and need for further 

screening without the need to travel to a larger health centre, or wait upon 

the availability of mobile CT scanners. As smoking rates in the UK are 

around 4 times higher in the most deprived areas compared to the least 

deprived areas(45), this could increase access and uptake of screening 

testing in areas that need it most. Biomarker tests which are able to improve 

risk prediction prior to CT screening could also potentially reduce the number 

of LDCT scans needed, reducing any issues with waiting lists for access to 

scans, and potentially improving the health economics of a screening 

programme which integrates blood-based biomarker testing. 

While disease biomarkers are widely used throughout medicine, very 

few have progressed through to be used for diagnosis and disease 

monitoring in cancer, and there is an outstanding need for a highly specific 

test for detecting lung cancer. In response to this, research has explored a 

vast range of potential biomarkers in addition to molecular imaging, such as 

volatile organic compounds, circulating micro-RNA, gene microarrays, serum 

antigens, and serum autoantibodies, the rationale and some recent 

examples for each potential biomarker is discussed here. 

1.7.1 Volatile organic compounds (VOCs) 

Exhaled breath is predominantly composed of nitrogen, oxygen, carbon 

dioxide, water, and inert gases. Volatile organic compounds (VOCs) are also 

present in the breath, in concentrations ranging from nmol/L–pmol/L. These 
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compounds are either absorbed from the environment (exogenous) or 

generated within the body (endogenous). Endogenous volatile compounds 

are generated by biomolecular processes occurring within the body, 

therefore identification and measurement of endogenous VOCs in exhaled 

breath can reflect processes occurring within the body, and have been 

associated with conditions ranging from asthma, COPD, and liver disease, to 

transplant rejection and even schizophrenia(46). 

The measurement of volatile organic compounds was first applied to 

cancer diagnostics in 1985 when analysis of 297 components of exhaled 

breath from 12 lung cancer patients and 17 controls reported a 93% 

accuracy for determining lung cancer using the presence of 3 

compounds(47). To date 77 different VOCs have been identified over 50 

studies as having discriminatory potential for lung cancer(48), with 

performance profiles ranging from 71.7% sensitivity and 66.7% specificity 

using 22 VOCs, to 54% sensitivity and 99% specificity using 2 VOCs(49). 

The main drawback of the use of VOCs is that most systems required to 

measure them are expensive and require expertise to use effectively, 

rendering them unsuitable for point of care diagnostics, and samples may 

easily be contaminated with ambient air. 

1.7.2 Gene microarrays 

DNA microarray-based gene expression profiling was developed in the mid-

90s and utilises nucleic acid polymers, immobilised on a solid surface, to 

probe for complementary gene sequences in a sample(50). While the initial 

study looked at only 45 genes, the current precision with which the polymers 
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can be coated to a plate now allows for the simultaneous measurement of 

the expression of thousands of genes from a single sample. 

DNA microarray suffers from a variety of limitations that currently limit 

its suitability for early cancer screening or diagnostics, it requires relatively 

large amounts and high fractions of tumour cells in order to effectively 

determine an expression profile, and heterogeneity in cancer cells can cause 

different expression profiles, even from cells within the same tumour mass. 

Despite this, microarray has been successful at identifying subsets of genes 

expressed within a variety of cancer types such as ovarian, oral, melanoma, 

colorectal and prostate carcinomas(51, 52).It has also been of use identifying 

genes involved in cancer subtypes such as the gene PTK7 in lung 

adenocarcinoma(53), giving further information about the underlying cancer 

biology, and may have potential in predicting treatment sensitivity or 

prognostic outcome in diagnosed cancers. 

1.7.3 Nucleic-Acid based Biomarkers 

The discovery of free DNA in the blood plasma of cancer patients in the 

1970s suggested that tumour cells release DNA into the bloodstream, and 

although sensitivity was relatively low, measurement of serum DNA may 

have potential for cancer detection(54). Subsequent advances in technology 

have resulted in the identification of several nucleic acid based biomarkers 

that have been associated with cancer, including cancer associated 

mutations to DNA, loss of heterozygosity and microsatellite instability, DNA 

methylation, and the presence of viral DNA(55). 

Development of highly sensitive polymerase chain reaction (PCR) 

assays has allowed for detection and measurement of specific DNA 
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mutations associated with cancer. While cancer heterogeneity initially 

prevented this from being useful on its own, advances in mutation specific 

ligation, mass spectroscopy, and the development of digital PCR techniques 

has allowed the identification of multiple mutations in a gene. The use of 

circulating tumour DNA is also limited due the detection threshold for most 

sequencing based methods still being too high to detect circulating tumour 

DNA in a large number of patients(56). 

While sequencing technology continues to improve, most studies have 

focused on advanced stage cancers with relatively high concentrations of 

free DNA, to predict prognosis(57), recurrence(58), or response to 

treatment(59). There is still a shortage of studies which explore early-stage 

cancer and low concentrations of free DNA(60). 

DNA methylation represents the most important epigenetic 

modification in mammals, it is able to selectively promote or silence gene 

expression without changes to the gene sequence, and plays a key role in 

maintaining chromosome stability. In healthy cells, DNA is normally 

hypermethylated, preventing the binding of transcription factors. During 

carcinogenesis, the normal methylation status is disrupted, leading to 

increased gene transcription, and a corresponding increase in the frequency 

of gene translocations, gene breaks, and gene mutations, eventually leading 

to cancer(61).  

DNA methylation was recently shown to be able to detect cancer with 

extremely high specificity (>99%) across a range of cancer types, with 

sensitivities for all cancers types ranging from 18% in stage I, up to 93% in 
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stage IV cancer(62), suggesting tumour burden is a potential driver of 

increased methylation levels. 

1.7.4 Circulating micro-RNA (miRNA) 

MicroRNAs (miRNAs) are small regulatory RNA molecules which moderate 

gene expression. They were first identified in 1993 and have subsequently 

been implicated in fundamental cellular processes such as development, 

differentiation, proliferation, apoptosis and stress responses(63). 

Dysregulation of miRNAs therefore result in a loss of gene expression 

regulation, which has been linked to the development of a vast number of 

different cancers including, but not limited to, prostate, pancreatic, colon, 

breast, liver, testicular, hepatocellular and lung cancers(64). 

Discovery that circulating miRNAs were stable in human serum and 

plasma, and that the expression of tumour derived miRNAs was detectable 

in diffuse large B-cell lymphoma(65) as well as prostate(66), and lung and 

colon cancers(67) spurred an interest in the measurement of circulating 

miRNAs as biomarkers for the detection of cancer. Studies have 

subsequently illustrated the presence of miRNAs in prostate, ovarian, lung, 

breast, gastric, pancreatic, colorectal, and hepatocellular cancer(68). The 

use of miRNAs for diagnostics is still an emerging field and large case 

control studies are needed to fully elucidate their clinical potential. 

1.7.5 Serum Protein Biomarkers 

Serum protein biomarkers were first identified as having potential for cancer 

diagnosis in 1975, after elevated carcinoembryonic antigen (CEA) 

expression was observed in colorectal cancer cells(69) leading to the use of 

CEA serum measurements as a marker of disease progression. Research 
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into these tumour associated proteins has identified a range of potential 

protein biomarkers in which normal expression has been altered, either 

through overexpression, aberrant expression, or expression of mutated 

forms of the protein. Some examples of these include overexpression of 

prostate specific antigen (PSA) in prostate cancer(70), cancer antigen 125 

(CA-125) in ovarian cancer(71), and alpha-fetoprotein (AFP) in 

hepatocellular carcinoma(72). Aberrant expression of Livin/ML-IAP has been 

observed in lung cancer(73), aberrantly expressed MUC1 mucin has been 

observed in breast cancer(74), and aberrant expression of NY-ESO-1 was 

recorded in a range of cancers(75). Finally, expression of mutated forms of 

the p53 protein have been observed in gastrointestinal cancer(76). 

The main limitation of these protein biomarkers is that they are 

invariably cancer associated, and not cancer specific, these proteins are 

expressed in normal body tissue, and may be expressed in benign 

conditions, which affects their specificity as a cancer marker. The 

overexpression of these proteins is also related to cancer burden, and 

therefore these proteins may not be measurable in early-stage disease, 

giving them poor sensitivity as screening tests, although they may still be 

useful as prognostic biomarkers. Finally, the heterogeneity of cancer results 

in protein overexpression occurring in only a subset of cancer patients, 

leading to poor overall sensitivity as diagnostic markers(55). 

1.7.6 Serum Autoantibodies (AAbs) 

Over the last 20 years, with the recognition of the role of the immune system 

in the development of cancers, has come the discovery of circulating 

antibodies to the mutated, aberrantly expressed, or overexpressed 
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autologous tumour-associated antigens (TAAs) discussed previously(77). 

Serum autoantibodies (AAbs) have been shown to be present in a variety of 

cancers(78), and are the biomarkers currently used in the EarlyCDT®-Lung 

assay for the detection of lung cancer, which uses a panel of 7 serum AAb 

and detects lung cancer with a sensitivity ~40% and a specificity of 

~90%(79). 

Serum autoantibodies can be produced in response to limited 

exposure to TAAs, bringing about a measurable immune response while the 

quantities of the original TAA are too small to be detected with current assay 

techniques, representing an amplified ability to detect the TAA early in the 

disease state. A TAA-AAb response would also not be expected in normal 

body tissue, as can be the case with some TAAs, serum autoantibodies 

therefore represent a highly specific, amplified response to cancer, and 

should be detectable in disease at its earliest stages. 

1.8 Combining Biomarkers 

In the case of heterogeneous diseases such as cancers, any single 

biomarker test is likely to only detect a subset of the disease population, 

resulting in a low sensitivity and limited diagnostic value. Advancements in 

biomarker detection technologies have vastly increased the number of 

biomarkers available for assessment, and for early disease detection. 

Combinations of biomarkers have been found to provide improved 

discrimination over single marker tests. Various statistical methods have 

been developed to determine the best combinations of biomarkers from the 

high dimensional data which is increasingly becoming available, some 

examples of which are described here, with most studies utilising a 
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combination of these approaches to come to a final panel or algorithm. 

These strategies are broadly separated into supervised methods in which 

models are trained to maximise accuracy of prediction to a class label, and 

unsupervised methods which examine patterns in data distributions in the 

absence of data labels.  

1.8.1 Logic Rules 

One of the simplest methods of combining biomarker tests is the application 

of cut-off rules which follow Boolean logic, in which a classification is applied 

to the data based on a set of simple logic based and-or criteria. The current 

EarlyCDT®-Lung test utilises a form of this, in logical terms: 

 For the seven AAb biomarker A, B, C, D, E, F, & G that constitute the 

EarlyCDT®-Lung panel with predetermined threshold cut-offs Ac, Bc, Cc, Dc, 

Ec, Fc, & Gc, and the corresponding results for a sample of interest As, Bs, Cs, 

Ds, Es, Fs, Gs. A positive test result is given by: 

As>Ac OR Bs>Bc OR Cs>Cc OR Ds>Dc OR Es>Ec OR Fs>Fc OR Gs>Gc(79) 

 Logic rules such as these were formally discussed and assessed for 

their application to improving diagnosis in prostate cancer, where a simple 

and-or combination of PSA with percent free PSA was able to improve the 

sensitivity from 33.6% to 34.3%, and increase specificity from 90.5% to 

94.1%(80).  

1.8.2 Monte Carlo Analysis 

The Monte Carlo simulation method relies on repeated random sampling 

over a large number of repeats. For the optimisation of a panel for cancer 

detection, this involves setting discriminatory cut-offs at random for each 

diagnostic parameter, applying the cut-off rule, and then storing the resulting 
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performance characteristics. This is repeated over a large number of times, 

with the resulting sensitivity and specificity characteristics being plotted out 

on a pseudo-ROC scatter plot. The final plot then shows optimal cut-off sets 

based on the desired performance. This method was used in 2011 by Boyle 

et al. in determining cut-offs against 7 autoantibodies in the validation of the 

EarlyCDT®-Lung test and resulted in a panel that performed reproducibly on 

two risk matched cohorts. The first group, comprised of 241 lung cancer and 

241 healthy controls returned a sensitivity of 34% and a specificity of 91%, 

with a second cohort of 269 lung cancer and 269 healthy controls having 

sensitivity of 39% and specificity of 89%(79). 

1.8.3 Logistic Regression 

Logistic regression is a probabilistic modelling method, which attempts to find 

the best fitting model to predict an outcome based on a set of independent 

predictor variables(81). Several groups have utilised logistic regression 

modelling to develop a panel score for detection of lung cancer.  

In 2006, Zhong et al. used fluorescent microarray to measure plasma 

tumour associated antibodies against a panel of 212 phage-expressed 

NSCLC-associated proteins in a cohort of 23 stage I lung cancer patients 

and 23 risk matched controls. Logistic regression was then used to select the 

five most predictive markers, resulting in a panel which performed with 

91.3% sensitivity and 91.3% specificity. Validation of this panel on a set of 46 

cancer and 57 healthy samples from the Mayo Clinic Lung Screening Trial 

showed a sensitivity of 82.6% and specificity of 87.5%(82).  

 Rom et al. used ELISA to measure serum autoantibody binding to 10 

tumour associated antigens (TAAs) in 22 lung cancer patients and 36 healthy 
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controls, as well as benign cohorts including high risk asbestos exposed 

patients with no nodules (n=35), with solid nodules (n=55), and with ground 

glass opacities (n=46). Using a logistic regression model which incorporated 

6 of the 10 AAbs measured resulted in a logistic function which was 81% 

sensitive and 97% specific when identifying their cancer cohort(83). 

1.8.4 Discriminant Analysis 

Discriminant analysis is similar to regression, it attempts to find a linear 

combination of variables to explain a dependant variable, however it is 

limited to continuous independent variables which exhibit normal distribution. 

In lung cancer, Gao et al. used an antibody microarray to measure 

concentrations of 84 serum protein biomarkers. Of these 84, 7 were found to 

have significant discriminatory ability. The resulting discriminant function was 

based on 5 of these markers and gave 62.5% sensitivity and 100% 

specificity in a study involving 24 cancer patients, 24 healthy controls, and 32 

patients with chronic obstructive pulmonary disease (COPD)(84).  

The use of linear discriminant analysis in the construction of 

algorithms for four cancer datasets resulted in diagnostic accuracies of 94-

100% in discriminating ovarian cancer from healthy controls, mesothelioma 

from adenocarcinoma, acute lymphocytic leukaemia from acute myeloid 

leukaemia, and metastatic from non-metastatic breast cancer(85). 

1.8.5 Decision Trees 

Decision tree analysis, such as Classification and Regression Tree (CART) 

modelling, attempts to map a classification based on series of logic 

observations about the independent variables. This results in a branched 

decision tree in which the branches represent groups of decisions, and the 
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resulting leaves represent classification labels. Patz et al. utilised this 

technique, constructing a decision tree based on a panel of four serum 

protein biomarkers measured against a training set of 50 lung cancers and 

50 healthy controls to obtain a CART classification algorithm that showed 

sensitivity of 89.3% and specificity of 84.7%. This was then validated in an 

independent set of 49 lung cancer and 48 matched controls with a resulting 

sensitivity of 77.8%, and specificity of 75.4%(86).  

 CART has also been explored for prediction of breast cancer 

recurrence risk category using pathological features and protein biomarkers 

to categorise samples as a cost-effective alternative to the Oncotype Dx 

gene expression test, and was found to correctly classify 69% of cases into 

their corresponding Oncotype Dx risk categories using just the expression of 

PR and Survivin, and the presence of nuclear pleomorphism(87). 

1.8.6 Random Forest 

Random forest analysis is an advancement of the classification tree analysis. 

It generates a large number of decision trees, and outputs a classification 

based on either an average or majority consensus of all the individual trees 

in order to reduce overfitting bias during training. This method has been used 

in lung cancer as a factor selection step prior to CART analysis to improve 

stability and reduce prediction errors. Borgia et al. applied a random forest 

algorithm to select a panel of 6 biomarkers from an initial pool of 15 for the 

prediction of lymph node metastases in lung cancer patients. These six 

biomarkers were then analysed using CART analysis to give a classification 

tree which predicted metastases with 88% sensitivity and 87% specificity in a 

cohort of 36 node positive and 71 node negative lung cancer(88).  
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 Farlow et al. utilised the random forest algorithm to select an optimal 

panel of 6 analytes from an initial search of 21 tumour associated antigens, 

in their analysis of 117 NSCLC and 79 control subjects (31 osteoarthritis, 32 

COPD & asthma patients, and 16 non-neoplastic nodule patients). The 

subsequent CART algorithm resulted in a sensitivity of 94.8% and specificity 

of 91.1% for detection of lung cancer(89).  

1.8.7 Naive Bayes Classifiers 

Naive Bayes is a probabilistic classification method, routinely used for tasks 

such as recognising spam e-mail, which examines all features as 

independent classifiers and predicts the probability of a sample belonging to 

a class based on the class probabilities of all the contributing features. 

Ostroff et al. utilised naive Bayes classification in their analysis of 813 

proteins for detection of lung cancer. They examined a training set of 213 

lung cancer cases and 772 healthy controls to select 44 potential 

biomarkers, and then, using a stepwise forward search algorithm and naive 

Bayes classification, identified a panel of 12 protein biomarkers which gave a 

sensitivity of 91% and a specificity of 84% in the training set, with a 

corresponding sensitivity of 89% and specificity of 83% in a verification set of 

78 lung cancer cases and 263 healthy controls(90). 

Models incorporating Bayes classifiers have also been found to be 

able to predict subtype in lung cancer to help guide treatment. A 2016 study 

by Pineda et al. used Bayes classification on DNA methylation data to 

determine between adenocarcinoma and squamous cell carcinoma with high 

classification (area under ROC >0.89) and allowed for construction of gene 

interaction networks(91). 
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1.8.8 Fuzzy Logic 

Fuzzy logic employs many-valued logic where the truth value of variables 

can take any real number between 0 and 1, as opposed to Boolean ‘true-

false’ logic. In this way the results for each biomarker can be examined in a 

more nuanced way for their ability to predict cancer. These methods were 

employed by Schneider et al. in an attempt to improve detection in a cohort 

of 175 lung cancer patients and 120 controls (17 healthy, 103 benign lung 

disease). The study examined 5 protein biomarkers, and use of fuzzy 

classification resulted in a final panel utilising 3 protein biomarkers which was 

able to predict disease progression with 92% sensitivity and 95% 

specificity(92). 

1.8.9 Artificial Neural Networks 

Artificial neural networks (ANNs) are a computational approach inspired by 

the way the brain solves problems, comprising a layer of neural units which, 

after training, ‘learns’ to identify patterns of associations to predict an output. 

They have been explored by several groups for their ability to identify lung 

cancer from biomarker data.  

Wu et al. analysed 9 serum protein biomarkers, along with three metal 

ions. After back-propagation training of the ANN on a set of 35 lung cancer, 

30 benign lung disease and 35 healthy normals, 6 markers were selected for 

inclusion in the ANN. The resulting network was able to predict lung cancer 

in a test group of 15 lung cancer, 10 benign and 15 healthy normal with a 

sensitivity of 100% and specificity of 100%(93).  

O’Shea et al. used ANNs in the assessment of 5 sputum metabolite 

biomarkers, measured using flow-infusion electrospray-mass spectrometry in 
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a group of 23 confirmed lung cancer, 11 symptomatic subjects, and 33 

healthy controls. Training with leave-one-out cross validation resulted in an 

ANN which detected cancer with 96% sensitivity and 94% specificity(94). 

1.8.10 Support Vector Machines 

Support vector machines (SVMs) are supervised learning models which 

attempt to construct a hyperplane or set of hyperplanes which maximise the 

class separation of a training set. Leidinger et al. used SVM techniques in 

the analysis of 47 lung cancer sera, 26 non-tumour lung pathologies (NTLP) 

and 80 control sera, screened for antibodies against 1827 peptide clones, 

applying linear kernel SVMs, using 10 repetitions of 10-fold cross validation 

gave a final sensitivity of 97.6% and specificity of 97.0% against healthy 

controls, and specificity of 88.2% against both healthy and benign 

controls(95). 

1.8.11 Cluster Analysis 

Unlike the techniques described previously, cluster analysis is an 

unsupervised learning method, outcome data is not used in the training of 

the algorithm, rather the features of a dataset are explored, and objects are 

clustered based on a measure of their similarity. Au et al. performed a two-

dimensional hierarchical cluster analysis on tissue microarray measurements 

from 18 protein biomarkers in a set of 284 lung cancer patients in an attempt 

to predict cancer subgroups. While the resulting clusters were not predictive 

of survival, the cluster groups did show good ability to predict cancer 

subtype, with one of the four groups containing 86% of the adenocarcinoma, 

and another containing 93% of the squamous cell carcinoma samples in the 

dataset(96). 
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1.8.12 Machine Learning Strategies for an Autoantibody Panel 

 The previously discussed machine learning strategies all have potential 

application in the development of models predictive for the incidence of lung 

cancer based on a panel of autoantibodies. Those of most interest in this 

particular study will be initially unsupervised methods, such as cluster 

analysis, as relationships and groupings that can be elucidated in the 

absence of disease class labels are likely to be reflective of differences in 

underlying biology and have the potential to identify relationships that 

supervised models may overlook. Of the supervised methods, decision trees 

represent an evolution of the logic rules model currently in commercial use 

for the test, allowing for a series of high specificity logic rules to be applied to 

stratify the subjects.  

Random forest modelling then represents yet another evolution from 

decision trees, allowing for more highly fitted models through the training of 

large numbers of small decision trees, and may show improved performance 

due to being able to identify cancer immunotypes with smaller population in 

the dataset, and overcome some of the issues presented by the highly 

heterogeneous nature of cancer. In addition to these methods, logistic 

regression models will be considered due to their extensive use in existing 

diagnostic models, although the low sensitivity of individual autoantibody 

features suggests that this strategy may be better suited to biomarkers which 

show association with tumour burden, such as serum protein biomarkers or 

cell free DNA.  

Support vector machines will also be considered under the 

assumption that the majority of samples will show only background signal, 
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due to the high specificity and relatively low sensitivity of individual 

autoantibody biomarkers, therefore samples with no specific cancer 

response should group together in n-dimensional feature space, and outlier 

samples should represent those subjects with a cancer specific response, 

support vectors should then be able to define the border between the non-

specific and specific signals. 

Finally Naïve Bayes models will be explored due to its success in 

classification tasks, its relative simplicity, the ability to incorporate both 

continuous and discrete data into the models, its insensitivity to irrelevant 

features, and its treatment of the data as prior and posterior probabilities 

which may directly translate to incidence prediction. 

1.9 Lung Cancer Demographic Risk Models 

Previous lung cancer screening studies, such as the National Lung 

Screening Trial (NLST)(97), the NELSON study(98), and the PLCO cancer 

screening trial(99) have defined their screening eligibility through population 

demographic parameters, such as, in the case of the NLST study, ever-

smokers aged 55-80 years with a smoking history of at least 30 pack-years 

and less than 15 years since cessation of smoking. As these large 

prospective studies have contributed greater amounts of data regarding the 

incidence of lung cancers in these high-risk groups, it has become possible 

to identify demographic risk predictors of lung cancer incidence and develop 

models which predict cancer incidence with a higher degree of accuracy than 

previously possible. As a result risk-models are now recommended to refer 

ever-smokers for screening rather than population demographic eligibility 

criteria(100). Two models have now been adopted by the NHS for LDCT 
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screening eligibility, the PLCOM2012 model(101) and the LLPv2 model(102), 

although there is evidence that two additional models, LCDRAT and 

LCRAT(103), may show greater accuracy of risk discrimination(104). 

1.9.1 PLCOM2012 

The PLCOM2012 model was derived from the PLCO study(99) based on a 

population of 36,286 ever-smokers and estimates a 6-year lung cancer risk 

using the demographic variables age, ethnic group, education, BMI, COPD, 

personal history of cancer, family history of lung cancer, and smoking history 

(status, intensity, duration, and quit time). 

1.9.2 LLPv2 

The LLPv2 model was developed using data from 579 lung cancer cases 

and 1157 age and sex-matched population-based controls(105), and has 

been validated using data from almost 76,000 individuals as part of the 

UKLS trial. The LLPv2 calculated 5-year risk is based on the variables age, 

gender, personal history of lung disease (pneumonia, emphysema, 

bronchitis, tuberculosis, or COPD), personal history of cancer, family history 

of lung cancer, asbestos exposure, and smoking duration. 

1.9.3 LCRAT/LCDRAT 

The Lung Cancer Risk Assessment Tool (LCRAT) and Lung Cancer Death 

Risk Assessment Tool (LCDRAT) models were trained using data from both 

the PLCO screening trial, and the NLST, as well as the US National Health 

Information Survey (NHIS). The LCRAT model was designed to predict 5-

year lung cancer incidence, while the LCDRAT model was designed to 

predict 5-year lung cancer death. Both models included gender, race, 
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education, emphysema, family history of lung cancer, smoking history 

(intensity and duration) and BMI as variables. 

1.10 Multi-Cancer Early Detection Tests 

Multi-cancer early detection (MCED) panels such as the Grail Galleri test 

have been explored recently for their ability to detect cancer using large DNA 

methylation panels, and initial large-scale trials have shown promising 

results, with the SYMPLIFY study(106) showing sensitivity of 66.3%, and 

specificity of 98.4% over all cancers. This study, however, explored only 

symptomatic subjects, which may lead to inflated diagnostic performance 

compared to use in a screening setting, and as a result showed higher 

sensitivity for later disease stages. While these tests appear to be a useful 

tool for identifying and potentially localising cancer that are causing generic 

symptoms, further work is needed to determine whether these tests perform 

with the same sensitivity in asymptomatic subjects in a screening setting, 

and would therefore be able to provide a stage-shift in diagnosis in over 

imaging that would lead to prognostic and health economic benefits. 

1.11 EarlyCDT®-Lung 

1.11.1 History of the EarlyCDT®-Lung test 

The EarlyCDT®-Lung test is the first commercially validated test for the early 

detection of lung cancer. Developed in Nottingham, UK by Oncimmune Ltd, it 

is a quality-controlled, semi-automated, indirect enzyme-linked 

immunosorbent assay in which serum samples are reacted with a semi-log 

titration series of concentrations of tumour-associated antigens adsorbed to 

the surface of 96 well microtitre plates. The autoantibody assay method is 
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described by Boyle et al, along with the initial validation in three groups of 

samples and showed that the test performed with estimated 40% sensitivity 

at 90% specificity(79). Post-validation by Lam et al. confirmed these findings 

in four additional sets of newly diagnosed lung cancer, including a set of 

small cell lung cancer samples, and a blinded matched cancer-control set 

from Vancouver, Canada. This study additionally demonstrated that the 

EarlyCDT®-Lung test is able to detect lung cancer at early stage as well as 

late stage, and that it detects both non-small cell lung cancers (NSCLC) as 

well as small cell lung cancers (SCLC)(107). Improvements to the test as 

described by Chapman et al. resulted in the expansion to the current 

commercial panel of 7 autoantibodies, which was confirmed to perform with a 

sensitivity of 41% and a specificity of 91% in an optimisation set of 235 lung 

cancer and 266 normal controls(108). 

The EarlyCDT®-Lung test was first offered commercially in 2009, 

through private healthcare distributors in America, with the test being run 

centrally in a CLIA certified laboratory operated by Oncimmune LLC. The 

results of the first 1613 tests were reviewed by Jett et al., with all patients 

receiving 6 months follow up. The first 752 subjects were assessed with the 

6AAb panel, detecting 12 out of 26 cancers (sensitivity 46%), and correctly 

classifying 599 out of 726 non-cancers with a negative EarlyCDT®-Lung 

result (specificity 83%). The subsequent 847 patients were assessed on the 

7AAb panel, in which 13 out of the 35 subjects found to have lung cancer 

were detected with a positive EarlyCDT®-Lung test result (sensitivity 37%), 

and 742 of 812 non-cancer subjects correctly returning a negative 

EarlyCDT®-Lung result (specificity 91%). 
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An ongoing trial, the ECLS study, is currently assessing the 

EarlyCDT®-Lung test in a group of 12,000 high risk patients, enrolled 

through the Scottish NHS, to determine whether screening for lung cancer 

using EarlyCDT®-Lung will increase the number of patients being diagnosed 

with early-stage disease. Two year follow up data was published in 2019, 

and reported a sensitivity of 52.2% for early stage disease, and a sensitivity 

of 18.2% for late stage disease using the EarlyCDT®-Lung test, with a 

corresponding specificity of 90.3%, and achieved its primary end-point 

showing a significant decrease in presentation at late stage through the use 

of population screening with the EarlyCDT®-Lung test(109). 

EarlyCDT®-Lung is currently used to assess risk of lung cancer 

incidence in high-risk individuals, evaluating the levels of seven 

autoantibodies using a logic rule-based assessment to give a result of either 

“High”, “Moderate”, or “No Significant Level”. Clinical decision making based 

on this result then involves applying a diagnostic threshold model to the pre-

test risk, according to the following formulae (where r = pre-test risk): 

No Significant Level: No change to pre-test risk 

Moderate: Post-test risk = 2.093r/(1+1.093r) 

High: Post-test risk = 13.421r/(1+12.421r) 

This increase in risk then instructs guidance to undergo LDCT screening or 

other enhanced surveillance(110). 

1.11.2 EarlyCDT®-Lung Antigens 

The seven autoantibodies that comprise the EarlyCDT®-Lung panel 

represent a combination of different classes of tumour associated antigen 

and are described in more detail here. 
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p53 

p53 (Gene name TP53, Gene ID 7157) is a tumour suppressor protein which 

is ubiquitously expressed and has a role in co-ordinating cellular stress 

responses, regulating expression of genes to control arrest of the cell cycle, 

apoptosis, senescence, and DNA repair. It is the most frequently mutated 

gene in human cancer, with genome sequencing studies showing that 

approximately half of all cancers harbour a TP53 mutation, leading to 

inactivation or attenuation and loss of tumour suppression activity(111). 

Autoantibodies to mutated p53 have been reported in a range of cancers, 

with a systematic review of anti-p53 studies showing that across studies, 

anti-p53 autoantibodies show high specificity and sensitivity for oesophageal, 

head and neck, ovarian, colorectal, hepatocellular, bladder, lung, gastric, and 

breast cancer(112).  

SOX2 

SOX2 (Gene ID 6657) is a transcription factor with roles in regulation of gene 

expression and control of cell differentiation during embryonic development. 

Dysregulation and overexpression of SOX2 is associated with a variety of 

processes related to tumour progression including proliferation, epithelial-to-

mesenchymal transition, migration, invasion, metastasis, colony formation, 

as well as resistance to apoptosis and cancer therapy(113). Autoantibodies 

to SOX2 have previously been identified as potential biomarkers in breast 

cancer, especially in early stage(114) and have specifically been linked to 

small-cell lung cancer(115). 
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CAGE 

CAGE (Gene name DDX53, Gene ID 168400) is a cancer/testis antigen, 

initially identified as a cancer-associated gene expressed in hepatocellular 

carcinoma. While CAGE is widely expressed in various cancer tissues and 

cancer cell lines, it is rarely expressed in healthy tissue, and although its 

exact biological role is unknown, it has been determined to have a role 

related to the cell cycle and potentially plays a role in cell proliferation(116).  

NY-ESO-1 

NY-ESO-1 (Gene name CTAG1B, Gene ID 1485) is another cancer/testis 

antigen, normally expressed only by germ cells and placental cells during 

development, with some maintained expression in spermatogonia in adults. 

While it’s exact functions in healthy tissue are unknown, it is likely involved in 

cell cycle progression, growth, apoptosis, and differentiation. NY-ESO-1 has 

been reported in a wide range of cancer types, including bladder, 

oesophageal, hepatocellular, lung, ovarian, prostate and breast cancer, and 

autoantibodies to NY-ESO-1 have previously been explored for their 

biomarker potential in oesophageal, and colorectal cancer(117). 

GBU 4-5 

GBU 4-5 (Gene name TDRD12, Gene ID 91646) is an ATP-dependent RNA 

helicase normally expressed in the testis where it is primarily involved in 

spermatid development. The role of GBU 4-5 in cancer cells is still not fully 

understood, however recent work has suggested that GBU4-5 expression in 

cancer enables the proliferation of germ line tumour cells(118). 
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MAGE-A4 

MAGE-A4 (Gene name MAGEA4, Gene ID 4103) is a cancer/testis antigen, 

which, along with other member of the MAGE-A family, is aberrantly 

expressed in multiple cancers, and its presence is associated with poor 

prognosis in hepatocellular carcinoma, lung squamous cell carcinoma, 

ovarian cancer, pancreatic ductal carcinoma, breast cancer, and thyroid 

carcinoma(119).  

HuD 

HuD (Gene name ELAVL4, Gene ID 1996) is a neuronal-specific RNA-

binding protein whose roles involve regulation of neuronal development, 

survival, and plasticity through control of mRNA metabolism(120). In cancer, 

HuD was first recognised due to autoimmune responses to HuD in small-cell 

lung cancer resulting in paraneoplastic syndrome, and has previously been 

explored as a potential specific biomarker for small-cell lung cancer(121).  

1.12 Diagnostic Pathway 

The current recommended population for the EarlyCDT®-Lung assay 

corresponds to the US preventative services taskforce (USPTF) 

recommended population for lung cancer screening and includes adults aged 

50-75 with at least a 20-pack year smoking, or a smoking history of less than 

20 pack-years but immediate family history of lung cancer(122). The 

EarlyCDT®-Lung assay is a simple blood test therefore requires only access 

to a phlebotomist, rather than the specialised equipment required for LDCT 

screening, making it a much more accessible screening method than LDCT, 

and with lower up-front costs compared to LDCT screening. The test results 

would then be assessed by a clinician, with a positive test indicating an 
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elevated risk of lung cancer incidence and triggering recommendation for 

LDCT screening to detect any nodules present, and enhanced surveillance 

with LDCT screening after 6 months intervals in the absence of a detectable 

nodule. After a nodule is identified, the patient would then receive the current 

standard of care, having had their cancer detected at a much earlier stage 

and therefore with vastly improved prognosis. 

As a population screening test for a disease with a relatively low 

population prevalence, EarlyCDT®-Lung is designed to have high specificity, 

in order to minimise the number of false-positive results which may cause 

anxiety and unnecessary follow-up procedures to patients. 

Proposed improvements to this diagnostic pathway involves an initial 

lung cancer risk assessment using one of the previously described 

demographic risk models, and screening high risk individuals. The risk score 

that should trigger the screening test was explored through health economic 

assessment of screening strategies, in a similar manner to that recently 

completed for LDCT screening for lung cancer(30). As the USPTF 

recommendation is annual repeat screening, and current UK national 

screening committee recommendations specify repeat screens every 2 years 

in high-risk individuals, the addition of the EarlyCDT®-Lung assay to these 

pathways would also allow repeat autoantibody measurement and 

appreciation of longitudinal changes in autoantibody biomarkers that may 

allow for refined algorithms including personalised baselines and more 

accurate risk prediction. 
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1.13 Discussion 

A large number of biomarkers of various types have been explored for the 

detection of lung cancer. The first commercially available test validated for 

lung cancer, the EarlyCDT®-Lung assay measures the serum concentrations 

of a panel of autoantibodies and is able to detect early-stage lung cancer 

with ~40% sensitivity and ~90% specificity. While much research has been 

done exploring the presence of autoantibodies in cancer patients, the focus 

for their potential use as biomarkers has been on quantity. Antibodies bind to 

antigens with varying affinity, and this affinity increases over the lifetime of 

the immune response through affinity maturation. The binding affinity of an 

antibody biomarker could therefore give additional useful information with 

regards detecting a specific cancer response and the nature of that 

response. Although the binding affinity of the autoantibodies cannot be 

calculated directly using the current EarlyCDT®-Lung assay, the shape of 

the autoantibody-antigen titration curves generated by the assay may reflect 

the underlying binding kinetics, and represent additional biomarker 

parameters which may allow for improved cancer normal discrimination, with 

a preliminary study into the potential of these binding curve characteristics 

showing the ability to increase the specificity of the EarlyCDT®-Lung test. 

The heterogeneity of cancer as a disease results in single biomarkers 

generally showing limited sensitivity for the detection of lung cancer. To 

obtain clinically useful sensitivities, the EarlyCDT®-Lung test uses a panel of 

biomarkers, which contribute to a panel result with much greater sensitivity 

than any single biomarker. The exploitation of multiple biomarkers as a 

diagnostic panel has been utilised by many groups, and a diverse range of 
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techniques for combining the individual marker results into a panel score 

have been developed. The method currently used in the EarlyCDT®-Lung 

test is a simple logic rule whereby a positive result in one or more of the 

constituent biomarkers returns a positive result for the panel. The use of 

more sophisticated techniques for combining the biomarkers, including the 

additional binding curve characteristic biomarkers, has the potential to 

improve the sensitivity and specificity of the test in early detection of lung 

cancer, and an analysis of these various techniques and the improvements 

that they may bring about could lead to an improved clinical utility for the test. 

When determining clinical improvement brought about by early 

detection, it is important to recognise and adjust for the potential impact of 

lead-time bias and length bias when quantifying the benefits of early 

detection. Lead-time bias coming about where disease is detected earlier, 

but survival is not affected, leading to an increase in apparent time with 

disease, and length bias whereby early detection results in the diagnosis of a 

greater number of slower progressing milder disease cases. 

1.14 Hypothesis 

Cancer cells express altered proteins which may elicit a non-self 

autoimmune reaction resulting in an amplified autoantibody response to the 

cancer antigen. This response is measurable in cancer patients and is 

currently being exploited in the EarlyCDT®-Lung test for early detection of 

lung cancer.  

There is limited evidence that autoantibodies may be present in 

healthy individuals, Li et al. found autoantibodies to alpha-enolase and 

heterogeneous nuclear ribonucleoprotein L in over 50% of a cohort of 36 
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healthy control group analysed by mass spectroscopy(123), while Nolen et 

al. reported 4.39% of a cohort of 200 healthy patients showed elevated levels 

in over 40% of tumour associated AAbs tested(124). These studies have 

demonstrated that there may be pre-existing AAbs, produced in response to 

non-malignant autoimmune disorders, and not associated with the tumours in 

cancer patients, which may reduce the specificity of AAb tests in the 

detection of cancer. 

The antigen-antibody reaction is a reversible chemical reaction:  

antigen + antibody ⇄ antigen-antibody complex 

and the forces complexing the antigen and antibody are ‘weak’ non-covalent 

bond interactions. The strength of these binding interactions and the 

resulting complex differs depending on the structures of the antigen and 

antibody, with the affinity of the bond being defined by the equilibrium 

constant (Keq) and related dissociation constant (Kd). During an immune 

response, the affinity of the produced antibodies also progressively 

increases, as repeated exposure of the immune system to an antigen causes 

maturation of the response and preferential production of higher affinity 

antibodies, resulting in antibodies with affinities up to 100 times greater than 

those produced during the initial immune response(125, 126). 

 For this reason, it is hypothesised that the relative binding affinity of 

the response measured by the EarlyCDT®-Lung test may give additional 

information about the nature of the underlying immune response, and may 

allow the preferential identification of highly cancer-specific responses over 

the responses observed in a small percentage of the normal population. 

Identification and reclassification of false positive subjects would then result 
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in improvements to the specificity of the EarlyCDT®-Lung test, through 

quantification of the curve characteristics related to the relative binding 

affinity and their use as a secondary metric to exclude normal subjects. 

Determination of the binding affinities may also identify additional subjects 

with high affinity autoantibodies that are currently at serum titres which are 

too low to allow distinction from healthy controls and has the potential to 

increase the number of true positive subjects identified and give 

improvement to the sensitivity of the test. 

1.15 Aims 

The aim of this project was to assess the potential of AAb-TAA binding curve 

characteristics as a complementary parameter to the magnitude of the AAb 

response in the EarlyCDT®-Lung early detection test, to increase the 

specificity and clinical utility of the test. In addition, this project set out to 

explore the health economic benefits of the current EarlyCDT®-Lung test, 

along with the potential increase in economic benefits that would be derived 

from changes to the diagnostic performance of the test. 

This project also aimed to examine all of the generated biomarker 

parameters using a range of machine learning strategies for combining 

biomarker data to generate models and algorithms which could maximise the 

diagnostic performance of the test. 

This project utilised three case-control cohorts, the first of which was 

partitioned into training and test sets for initial assessment of parameters, as 

well as biomarker selection and model building. The remaining sets were 

used for validation of panels and models created and trained on the training 
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set, in order to confirm findings in an independent sample set and therefore 

reduce the effect of overfitting biases.  
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Chapter 2: Pilot Study 

2.1 Aims 

During clinical validation and subsequent commercial release of the 

EarlyCDT®-Lung test, I made the observation that the shape of the antigen-

specific binding curves varied between individuals, even those showing the 

same resultant magnitude, suggesting that differences in the autoantibody-

antigen binding interactions are reflected in the titration curve data, and the 

following study set out to explore whether metrics based on the shape of the 

titration curve may allow discrimination and reclassification of false positive 

signals.  

2.2 Introduction 

The EarlyCDT®-Lung test has been technically and clinically validated for 

the early detection of lung cancer with a sensitivity ~40% and a specificity of 

~90%. Due to the relatively low incidence of lung cancer, the positive 

predictive value (PPV) of the test is primarily driven by the false positive rate 

(FPR). Identification of false positives and reclassification as true negatives 

would therefore increase the PPV and hence clinical utility of EarlyCDT®-

Lung. 

The test generates curves of autoantibody (AAb) binding to a titrated 

series of capture antigen concentrations thus providing patient-specific 

autoantibody profile titration curves. We postulated that the antibodies 

responsible for false positive results in healthy individuals would exhibit 

different binding characteristics to the specific autoantibodies present in 

cancer patients and that these differences may be extrapolated in the shape 
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of the autoantibody-antigen titration curves. Here we demonstrate the 

exploitation of differences in titration curve shape characteristics for the 

reclassification of subjects identified as false positive under the current test. 

2.3 Method 

2.3.1 Autoantibody Biomarkers 

The autoantibody biomarkers investigated in this pilot study are summarised 

in Table 2-1, the initial seven being those currently assessed in the 

EarlyCDT®-Lung test, along with an expanded panel of additional 13 

investigatory autoantibodies. 

Table 2-1: Autoantibody Biomarkers under investigation. 

Panel Autoantibody Cancer Expression 

EarlyCDT®-Lung 

Commercial 
p53 Mutated Form 

EarlyCDT®-Lung 

Commercial 
SOX2 Overexpressed 

EarlyCDT®-Lung 

Commercial 
CAGE Aberrantly Expressed 

EarlyCDT®-Lung 

Commercial 
NY-ESO-1 Aberrantly Expressed 

EarlyCDT®-Lung 

Commercial 
GBU 4-5 Unassigned Tumour Associated Antigen 

EarlyCDT®-Lung 

Commercial 
MAGE A4 Aberrantly Expressed 

EarlyCDT®-Lung 

Commercial 
HuD Mutated Form 

Expanded Panel p62 Aberrantly Expressed 

Expanded Panel ALDH1 Overexpressed 

Expanded Panel p16-C Mutated Form 

Expanded Panel GRP78 Overexpressed 

Expanded Panel SSX1 Aberrantly Expressed 

Expanded Panel P53-95 Mutated Form 

Expanded Panel Alpha enolase Overexpressed 

Expanded Panel P53-C term Mutated Form 

Expanded Panel KOC Aberrantly Expressed 

Expanded Panel K-Ras Mutated Form 

Expanded Panel CK8 Overexpressed 

Expanded Panel CK20 Overexpressed 

Expanded Panel Lmyc2 Overexpressed 
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2.3.2 Assay 

Autoantibodies were measured using the EarlyCDT®-Lung test, a quality-

controlled, semi-automated indirect enzyme-linked immunosorbent assay in 

which samples were reacted with a series of concentrations of tumour 

associated antigens, as described in Chapman et al(108). Liquid-handling 

steps were carried out using an automated system. The same assay 

technique was then employed for the assessment of the thirteen additional 

antigens. Optical density data for the ELISA assays was determined 

spectrophotometrically at 650nm and exported to Microsoft Excel for 

assessment. After semi-automated and visual assessment for anomalous 

results, the optical density data was collated into .dta files for further 

assessment in Stata 14.0. 

2.3.3 Sample Sets 

Sample cohorts consisted of a development set, a confirmation set, and a 

large normal control cohort. 

The development set consisted of serum samples from 337 lung cancer 

patients, collected at or shortly after histopathological confirmation of lung 

cancer. These samples were obtained from lung cancer centres and sample 

biobanks in North America, Ukraine, and the UK, and 415 normal controls, 

obtained from biobanks in North America, and a UK sample collection. This 

set represents a subset of the samples described as Groups 1-4 when 

described by Lam et al.(107), for which data on the additional autoantibodies 

MAGE-A4 and HuD was obtained. These comprised: 
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• 33 lung cancer samples from patients with SCLC presenting to a single 

centre in the United Kingdom (described by Lam et al. as Group 1).  

• 161 lung cancer and 193 healthy control samples were obtained from 

patients with lung cancer collected in multiple European centres. The lung 

cancer patients were originally matched for age, sex, and smoking history 

with samples from normal populations in Europe and the United States 

however matching was not maintained in this subset (described by Lam 

et al. as Group 2). 

• 120 patients with lung cancer treated at a single center in Vancouver, 

Canada, who were matched to 113 control samples from high-risk 

individuals who did not have lung cancer previously (described by Lam et 

al. as Group 3).  

• 23 patients with lung cancer treated in the UK, and 109 healthy controls 

from normal populations in Europe and the United States (described by 

Lam et al. as Group 4). 

The confirmation set consisted of serum samples from 235 lung cancer 

patients, again collected at or shortly after histopathological confirmation of 

lung cancer, also obtained from lung cancer centres and sample biobanks in 

North America, Ukraine, and the UK, and 266 normal controls obtained from 

a North American biobank, 235 of which were matched as closely as 

possible to the cancer cohort for age, gender and smoking history. This 

cohort was previously described as the `Optimisation Set` when published by 

Chapman et al(108). 
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Finally the Normal set was comprised of serum samples from 2110 

healthy normal subjects collected as part of a population autoantibody study 

in the UK midlands. In obtaining samples for the cancer cohorts, early-stage 

disease was prioritised in order to ensure that results were applicable to 

detection of early-stage disease, and not simply a reflection of cancer burden 

in late-stage disease. 

Additionally a subset of 151 lung cancers and 104 healthy normal 

samples from the development set were assessed against an expanded 

panel of autoantibodies, and are referred to subsequently as the “expanded 

panel set”. 

 
Figure 2-1: Preliminary study configuration. 
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2.3.4 Curve Characteristic Calculations 

Linear regression was performed on both raw and log-scaled titration curve 

data obtained in order to generate values for the Slope, and Intercept, while 

Area Under the Curve (AUC) was calculated using the trapezoid method, 

and SlopeMax (representing the slope at the steepest point of the titration 

curve) of each antigen was calculated through calculation of slope (slope = 

Δ𝑦

Δ𝑥
) for each set of adjacent point. These features are illustrated in Figure 2-2. 

 

Figure 2-2: Diagram of curve characteristic parameters on example autoantibody titration curve 

 

These secondary curve characteristics were then investigated in addition to 

the standard metric (the magnitude of the signal at the two highest 

concentrations of the curve) to determine whether the curve characteristics 

could selectively reclassify false positive signals as true negatives. The panel 

was then extended in a subset of the development set consisting of 151 lung 

cancer patients and 104 normal controls, with the inclusion of additional 
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autoantibody measurements in order to restore sensitivity and optimise the 

test performance characteristics. 

2.3.5 Panel Optimisation 

The panel was optimised through manual assessment of cut-off thresholds 

based on visual assessment of paired scatter plots, and selection for each 

antigen of the curve characteristic feature which gave the greatest specificity 

improvement while maintaining sensitivity for each antigen. 

2.4 Results 

2.4.1 Cohort Demographics 

Demographic and histological information for the examined cohorts are 

summarised in Table 2-2 and Table 2-3, showing that, with the exception of 

the large cohort of normal samples (Normal Set), the cohorts were 

predominantly male. All cancer cohorts were mainly composed of current 

and ex-smokers, and the age profile of all the cohorts was relatively wide, 

with minimum ages lower than would generally be included in lung cancer 

screening. Cancer cohorts intentionally showed a higher proportion of early-

stage disease, as elevated immune responses are expected early in tumour 

development, and this study was concerned with identifying these early 

signals. The cancer cohorts were also primarily non-small cell cancer 

subtypes, reflecting cancer incidence in the population, although an 

increased proportion of small cell lung cancer was included in the cohort to 

ensure that any test derived from this analysis is also relevant to these more 

aggressive cancers. 
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Table 2-2: Demographic profile of studied datasets 

 Development Set Confirmation Set 
Normal 

Set 
Expanded Set 

 
Cancer 
Case 

Healthy 
Control 

Cancer 
Case 

Healthy 
Control 

Healthy 
Control 

Cancer 
Case 

Healthy 
Control 

Samples 
(n) 

337 415 235 266 2110 151 104 

Gender1 

Male 
219 

(65.0%) 
265 

(63.9%) 
171 

(72.8%) 
185 

(69.5%) 
352 

(16.7%) 
125 

(82.8%) 
90 

(86.5%) 

Female 
118 

(35.0%) 
148 

(35.7%) 
64 

(27.2%) 
81 

(30.5%) 
1730 

(82.0%) 
26 

(17.2%) 
14 

(13.5%) 

Unknown 0 (0.0%) 2 (0.5%) 0 (0.0%) 0 (0.0%) 
28 

(1.3%) 
0 (0.0%) 0 (0.0%) 

Age 
(years)2 

63 
(23,90) 

62 
(23,87) 

65 
(42,85) 

65 
(38,86) 

53 
(17,88) 

61  
(39, 86) 

60 
(39,81) 

Smoking Status1 
Current 
Smoker 

176 
(52.2%) 

78 
(18.8%) 

108 
(46.0%) 

93 
(35.0%) 

325 
(15.4%) 

92 
(60.9%) 

8 (7.7%) 

Former 
Smoker 

112 
(33.2%) 

237 
(57.1%) 

67 
(28.5%) 

139 
(52.3%) 

616 
(29.2%) 

36 
(23.8%) 

39 
(37.5%) 

Never 
Smoker 

43 
(12.8%) 

99 
(23.9%) 

24 
(10.2%) 

26 
(9.8%) 

1134 
(53.7%) 

21 
(13.9%) 

57 
(54.8%) 

Unknown 6 (1.8%) 1 (0.2%) 
36 

(15.3%) 
8 (3.0%) 

35 
(1.7%) 

2 (1.3%) 0 (0.0%) 

Country of 
Origin1 

       

UK 
55 

(16.3%) 
217 

(52.3%) 
47 

(20.0%) 
0 

(0.0%) 
2110 

(100%) 
14 

(9.3%) 
104 

(100%) 

US 
0 

(0.0%) 
85 

(20.5%) 
36 

(15.3%) 
266 

(100%) 
0 

(0.0%) 
0 

(0.0%) 
0 

(0.0%) 

Canada 
120 

(35.6%) 
113 

(27.2%) 
0 

(0.0%) 
0 

(0.0%) 
0 

(0.0%) 
0 

(0.0%) 
0 

(0.0%) 

Ukraine 
133 

(39.5%) 
0 

(0.0%) 
102 

(43.4%) 
0 

(0.0%) 
0 

(0.0%) 
111 

(74.5%) 
0 

(0.0%) 

Unknown 
29 

(8.6%) 
0 

(0.0%) 
50 

(21.2%) 
0 

(0.0%) 
0 

(0.0%) 
26 

(17.2%) 
0 

(0.0%) 

1 n (%), 2 Median (Min, Max) 

 

Table 2-3: Histologic profile of case cohorts in studied datasets 

 
Development Set 

Cases 
Confirmation Set 

Cases 
Expanded Set 

Cases 

Stage I 162 (48.1%) 99 (42.1%) 95 (62.9%) 
Stage II 41 (12.2%) 56 (23.8%) 13 (8.6%) 
Stage III 44 (13.1%) 12 (5.1%) 16 (10.6%) 
Stage IV 21 (6.2%) 9 (3.8%) 15 (9.9%) 

Stage Unknown 69 (20.5%) 59 (25.1%) 12 (7.9%) 
Adenocarcinoma 136 (40.4%) 61 (26.0%) 46 (30.5%) 

Squamous 56 (16.6%) 82 (34.9%) 29 (19.2%) 
Adenosquamous 0 (0.0%) 2 (0.9%) 0 (0.0%) 

Small Cell 37 (11.0%) 46 (19.6%) 4 (2.6%) 
Large Cell 6 (1.8%) 5 (2.1%) 1 (0.7%) 

Other 65 (20.5%) 14 (6.0%) 35 (23.2%) 
Subtype Unknown 37 (11.0%) 25 (10.6%) 36 (23.8%) 
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2.4.2 Diagnostic Performance after Panel Optimisation 

Table 2-4: Effect of application of a secondary curve parameter cut-off on assay performance characteristics 

in three different patient cohorts.  Also, the effect of expanding the EarlyCDT®-Lung panel to include 

additional autoantibody measurements, along with their secondary curve parameters to optimise test 

performance.  N/A = Not Applicable 

Cut-off Specificity (%) Sensitivity (%) 
Positive Predictive 

Value (%) 

Development set: 
Standard 
EarlyCDT®-Lung  

90.1 29.7 5.8 

Plus secondary 
curve parameter 
cut-off 

98.1 22.0 19.1 

Confirmation Set: 
Standard 
EarlyCDT®-Lung 

90.6 41.5 8.3 

Plus secondary 
curve parameter 
cut-off 

97.0 27.9 16.0 

2110 Normal 
Controls: 
Standard 
EarlyCDT®-Lung 

86.6 N/A N/A 

Plus secondary 
curve parameter 
cut-off 

97.7 N/A N/A 

Expanded Panel 
Set: 
7Ag Standard 
EarlyCDT®-Lung 

90.4 31.8 6.3 

7Ag Panel plus 
secondary curve 
parameter cut-off 

98.1 23.8 20.4 

18AAb Expanded 
Panel plus 
secondary curve 
parameter cut-off 

99.0 50.3 50.7 

 

Application of cut-offs based on one of the four curve characteristic 

parameters was able to increase specificity for each of the panel 

autoantibodies and resulted in a reproducible panel specificity of around 

98%, these cut-offs are summarised in plots shown in Appendix 2A. Although 

a corresponding reduction in sensitivity was observed in each case, the 

overall performance showed an increased PPV in every dataset. 

Applying the same rationale for application of cut-offs to both magnitude and 

simultaneously a curve characteristic parameter in order to incorporate 
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additional autoantibodies to the panel in the expanded panel set resulted in a 

final panel which assessed 18 autoantibodies and performed with 99.0% 

specificity and 50.3% sensitivity. 

2.5 Chapter Conclusions 

The curve characteristic features based on the shape of the antigen titration 

curves generated by the EarlyCDT®-Lung test were able to give additional 

useful curve-parameter metrics. When cut-offs were applied to the curve 

parameter, in combination with cut-off thresholds to the current standard 

magnitude of signal-based measurements, it was possible to improve the 

specificity and hence PPV of the test, and these improvements were 

maintained in three independent datasets, including one large normal set, 

with only a moderate reduction in sensitivity.  

It was then possible to restore and improve upon the initial sensitivity 

of the test by inclusion of additional autoantibodies to the panel, however this 

expanded panel set was relatively small and represent the results of training 

only, additional cohorts are required to confirm the performance 

improvements that may be provided through addition of further autoantibody 

biomarkers.  

True calculation of the affinity of the protein interactions would require 

either quantification of the concentration of free antibody in the serum 

sample, or a competitive binding assay against a sample of known antibody 

concentration. As the true concentration of free antibody is not currently 

quantified, and the current EarlyCDT®-Lung test does not use a competitive 

binding assay, a comparative estimation of the protein binding will be 

explored by examining parameters describing the shape of the titration 
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curve. The initial parameters explored here are the slope, intercept, area 

under the curve and maximum slope of the curve. As easily calculable 

attributes of the titration curve, these have shown potential for improving the 

specificity of the autoantibody panel in this pilot study, however a more 

accurate assessment of the binding kinetics of the autoantibodies being 

measured may lead to greater insight into whether differences in these 

protein interactions are indicative of specific immune responses to cancer-

related aberrant or upregulated protein production, or are non-specific or 

cross-reactive immune responses to non-cancer related causes.  

The availability of samples necessitated the use of samples from 

across both Europe and the US in these analyses. As immunological 

differences across geographies have not been properly explored in cancer 

autoimmune responses this may have introduced bias into the results, as 

cancer immunology may differ based on regional genetics or differences in 

carcinogens and environmental risk factors, and the datasets were not 

balanced across cases and controls, or between cohorts, for sample country 

of origin. The exploration of these differences were outside the scope of this 

study, and the impact of this bias was limited by the inclusion of both 

European and US samples within both case and control cohorts in the 

development set, and the lack of European controls in the confirmation set is 

offset by the application of models to the large cohort of normal control 

samples from a European collection. 

Although further investigation is warranted, these methods were able 

to give significant improvement in the performance characteristics and 

potential clinical utility of the EarlyCDT®-Lung test. 
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2.6 Chapter Discussion 

The pilot study showed good potential for reclassification of false positive 

signal and improvement to the test specificity and suggested that the, in the 

absence of direct measurements enabling the calculation of dissociation 

constants, observed differences in the shape of the autoantibody binding 

curves may act as surrogate features indicating strength or specificity of 

autoantibody binding. These initial findings suggested that addition of further 

features could then result in increases to sensitivity, however I decided that 

quantifying the diagnostic performance improvements required would instruct 

exactly how many additional features would be required for any resultant 

algorithms, which inspired the subsequent investigation into the health 

economics behind early lung cancer screening, and the presence of 

autoantibodies prior to imaging presentation. 
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Chapter 3: Lung Cancer Associated Autoantibody 

Responses are Detectable Years Before Clinical 

Presentation 

3.1 Aims 

A potential issue with the use of autoantibodies to detect cancer at its earliest 

stages, is that the autoantibody response may return a positive result for a 

cancer that is too small for current radiology to identify, which would then 

mistakenly be classified as a false positive. To try and address this and 

instruct the length of follow-up required following a positive test result, I 

undertook an analysis on a longitudinal data set that was obtained in a 

collaboration with UCL and Abcodia to identify how long prior to CT 

presentation elevated autoantibodies can be detected. 

3.2 Introduction 

Globally, lung cancer has the highest mortality rate of all cancers and was 

estimated to be responsible for nearly 1.8 million deaths in 2020(127). Lung 

cancer is generally not detected until symptomatic presentation, at which 

point it is usually advanced stage, with extremely poor prognosis. For this 

reason, detecting lung cancer at an early stage can vastly improve 5-year 

survival, with stage 1 detected lung cancers having a 5-year survival of 

62.7%, compared to only 4.3% for those cancers diagnosed at stage 4(128). 

In vitro estimates of imaging detection limits have suggested that a lung 

cancer does not become detectable by current imaging modalities until it has 

reached a population of at least 100,000 cells(29), assuming exponential 
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growth, this would suggest that on average a malignant cell population would 

need to double 16.6 times (log2(100000)) before becoming detectable by 

imaging. Radiography studies have determined a mean doubling time in 

malignant lung cancer of 158 days(28), which would denote that, on average, 

a lung cancer is present and potentially able to elicit an autoimmune 

response for at least 7.2 years before it can be confirmed by imaging.  This is 

supported by studies which have shown evidence of detectable levels of 

tumour associated autoantibodies in individuals prior to presenting with 

cancer, including p53 responses a median of 3.5 years prior to lung cancer 

imaging detection(129), and the detection of p53 and Her2 in pre-diagnostic 

breast cancer samples(130). Imaging surveillance of subjects after a positive 

autoantibody test response should allow for detection of a cancer at the very 

earliest stages, vastly improving prognosis. 

The EarlyCDT®-Lung test(107, 108) is a simple blood test which 

detects elevated levels of a panel of tumour-associated autoantibodies 

generated in response to abnormal tumour cells. This test has been 

validated in case-control studies, and in commercial practice(131), and it’s 

use as a screening test in a high risk population has been shown to result in 

a stage shift in diagnosis favouring early stage detection.(109) Previous 

validation studies have focused on diagnostic sensitivity and specificity at 

time of testing, and the length of time prior to clinical presentation of lung 

cancer (lead time) that elevated autoantibodies can be detected using the 

EarlyCDT®-Lung antigen panel has not previously been established.  

The United Kingdom Collaborative Trial of Ovarian Cancer Screening 

(UKCTOCS)(132) was a large prospective trial which aimed to quantify the 
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benefits of an ovarian cancer screening program. In this trial 202,638, 

postmenopausal women aged 50 and above were recruited through thirteen 

UK centers between 2001 and 2005. The multimodal screening arm of this 

study contained 50,640 women for whom annual blood samples were taken, 

all of whom were followed up for development of cancer. Within this cohort a 

number of women went on to develop a lung cancer, analysis of their 

longitudinal blood samples compared to a matched control cohort will allow 

assessment of when elevated autoantibodies were first detectable in their 

blood samples, compared to the time at which their cancer was detected.  

The primary aim of this study was to assess the diagnostic performance of 

the EarlyCDT®-Lung panel of autoantibodies over the years before 

diagnosis, in order to estimate how early before symptomatic presentation 

elevated autoantibodies can be detected using the EarlyCDT®-Lung test. 

3.3 Materials and Methods 

3.3.1 Patient Cohorts 

Case and control cohorts were identified from samples collected as part of 

the UKCTOCS trial of post-menopausal women aged 50-74 years. The case 

cohort was comprised of 142 subjects who presented with lung cancer during 

the course of the UKCTOCS study follow up, and who had at least three 

serial samples and a known date of lung cancer diagnosis. Subjects were 

matched for age at trial entry (+/- 5 years), smoking history, and trial entry 

date (+/- 2 years) to a control cohort of 142 subjects who had no evidence of 

developing lung cancer during the UKCTOCS follow-up period. All cases had 

between 4 and 8 longitudinal samples (median 7), covering a period of 

between 3.1 and 8.9 years (median 6.2), while controls had between 3 and 8 
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longitudinal samples (median 6) covering a period of between 2.9 and 9.2 

years (median 6.3). Demographic details of the cohorts are outlined in Table 

3-1. Histological subtypes in the cancer cases were 49% Adenocarcinoma, 

17% Squamous cell carcinoma, 16.4% Unspecified Non-small cell 

carcinoma, 13% Small cell carcinoma, with the remaining 5.6% comprised of 

carcinoid tumour, large cell carcinoma, and neuroendocrine carcinoma. 

Table 3-1: Cohort Demographics 

Variable N CASE, N = 142 CONTROL, N = 142 p-value 

Age at Sample Collection1 284 64 (59, 69) 64 (59, 69) 0.83 

Smoking status 258   0.94 

Non-Smoker2  27 (21%) 28 (22%)  

Smoker2  102 (79%) 101 (78%)  

Unknown  13 13  

1 Median (IQR), 2 n (%) 

3 Wilcoxon rank sum test, 4 Pearson's Chi-squared test 

 

All samples were received blinded and assessed on the EarlyCDT®-

Lung test for autoantibody responses to a panel of seven tumour associated 

antigens, these responses were compared to pre-determined commercial 

cut-off thresholds to return a panel assessment of either “negative” referring 

to no elevated risk of lung cancer, “moderate positive” relating to an elevated 

risk of lung cancer, or “high positive” referring to a highly elevated risk of lung 

cancer.  

Samples were unblinded, and positivity assessed by subject and 

longitudinal timepoint. For case samples, assay positivity was compared to 

date of cancer detection to determine how early prior to current detection 

methods a detectable autoantibody response was present. 

Additionally, time to detection has been assessed by histological subtype for 

the three most prevalent subtypes in the dataset, adenocarcinoma (69 
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subjects, 49% of the cohort), squamous cell carcinoma (24 subjects, 17% of 

the cohort), and small cell carcinoma (18 subjects, 13% of the cohort). 

3.4 Results 

3.4.1 Commercial performance 

EarlyCDT®-Lung commercial performance for the study cohorts was 

assessed over all samples, with subjects being assigned the highest level of 

positivity returned from any of their longitudinal samples, the results of which 

are summarised in Table 3-2, and show that these samples returned a 

sensitivity of 26.1%, and specificity of 88.7%.  

Table 3-2: 2x2 Contingency Table summarising diagnostic performance (moderate and high positive) over all 
samples. 

 EarlyCDT Positive EarlyCDT Negative Total 

Cases 37 105 142 

Controls 16 126 142 

Total 53 231 284 

  

 

3.4.2 Cancer case time to detection – moderate and high positive 

Table 3-3: Earliest detection and median time to detection by antigen (EarlyCDT moderate and high positive) 

Antigen  
Number of Cases 

Positive  

Earliest Pre-Dx 
Time to Detection 

(months) 

Median Pre-Dx 
Time to Detection 

(months) 

p53  15 101.0 53.3 

SOX-2  2 73.6 73.2 

CAGE  6 78.6 24.1 

NY-ESO-1  6 95.5 31.0 

GBU 4-5  3 77.5 58.1 

MAGE-A4  6 81.2 48.1 

HuD  0 NA NA 

Panel  37 101.0 49.9 

 

Examining all positive responses (both moderate positive, and high positive) 

as summarized in Table 3-3, autoantibodies were detected up to 101.0 

months (8.4 years) prior to clinical presentation using current detection 
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methods, with positive responses being present a median of 49.9 months 

(4.2 years) before presentation of lung cancer. The earliest autoantibody 

responses were observed against p53, which also showed the highest 

sensitivity in this study, however responses were observed in all 

autoantibodies other than HuD at time points in excess of 73 months (6.1 

years) prior to clinical presentation with current detection methods. 

 

3.4.3 Cancer case time to detection – high positive 

Table 3-4: Earliest detection and median time to detection by antigen (EarlyCDT high positive only) 

Antigen 
Number of Cases 

Positive 

Earliest Pre-Dx 
Time to Detection 

(months) 

Median Pre-Dx 
Time to Detection 

(months) 

p53 4 31.2 9.9 

SOX-2 1 60.0 60.0 

CAGE 4 33.4 8.8 

NY-ESO-1 4 50.6 33.4 

GBU 4-5 0 NA NA 

MAGE-A4 1 14.9 14.9 

HuD 0 NA NA 

Panel 14 60.0 15.6 

 

EarlyCDT®-Lung high positive responses are summarized in Table 3-4 and 

show high positive results were detected up to 60 months (5 years) prior to 

clinical presentation, with a median time of 15.6 months (1.3 years) from high 

positive autoantibody test to presentation.  
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3.4.4 Cancer case time to detection by subtype – moderate and high 

positive 

Adenocarcinoma 

Table 3-5: Adenocarcinoma earliest detection and median time to detection by antigen (EarlyCDT moderate 
and high positive) 

Antigen  
Number of Cases 

Positive 

Earliest Pre-Dx 
Time to Detection 

(months) 

Median Pre-Dx 
Time to Detection 

(months) 

p53  5 86.6 50.1 

SOX-2  1 72.9 72.9 

CAGE  2 40.9 39.8 

NY-ESO-1  3 75.2 48.6 

GBU 4-5  0 NA NA 

MAGE-A4  4 81.2 48.2 

HuD  0 NA NA 

Panel  14 86.6 47.4 

 

Squamous Cell Carcinoma 

Table 3-6: Squamous cell carcinoma earliest detection and median time to detection by antigen (EarlyCDT 
moderate and high positive) 

Antigen  
Number of Cases 

Positive 

Earliest Pre-Dx 
Time to Detection 

(months) 

Median Pre-Dx 
Time to Detection 

(months) 

p53  5 81.5 75.4 

SOX-2  1 73.6 73.6 

CAGE  3 9.6 4.0 

NY-ESO-1  1 95.5 95.5 

GBU 4-5  2 58.1 38.0 

MAGE-A4  2 49.9 34.3 

HuD  0 NA NA 

Panel  14 95.5 51.6 

 

Small Cell Carcinoma 

Table 3-7: Small cell carcinoma earliest detection and median time to detection by antigen (EarlyCDT 
moderate and high positive) 

Antigen  
Number of Cases 

Positive 

Earliest Pre-Dx 
Time to Detection 

(months) 

Median Pre-Dx 
Time to Detection 

(months) 

p53  0 NA NA 

SOX-2  0 NA NA 

CAGE  0 NA NA 

NY-ESO-1  1 13.4 13.4 
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GBU 4-5  1 77.5 77.5 

MAGE-A4  0 NA NA 

HuD  0 NA NA 

Panel  2 77.5 45.5 

 

3.5 Chapter Conclusions 

Analysis of the cohort of subjects that went on to develop cancer within the 

UKCTOCS study shows that EarlyCDT®-Lung was able to identify tumour 

associated autoantibody responses up to a maximum of 8.4 years before CT 

presentation, with detectable elevated autoantibody responses presenting a 

median of 4.2 years before detection by CT in subjects that went on to 

develop lung cancer. This is comparable to the work published by Li et 

al(123) which reported elevated p53 autoantibodies were detectable an 

average of 3.5 years prior to clinical presentation in a cohort of 49 high risk 

subjects who subsequently developed a lung cancer, and supports the 

theory that the immune system responds to the presence of tumour 

associated antigens early in cancer development, while the cancer is still 

comprised of a relatively small number of cells, and detection and monitoring 

of these autoantibodies represents a unique opportunity to identify a 

malignancy at its earliest stages. 

The presence of these autoantibody responses at such an early stage 

prior to presentation may occur for other reasons, while have theorized that 

the long timespan likely represents the initial presentation of a small number 

of malignant tumour cells to the immune system, they may also be part of an 

immune response to a larger malignancy, suppressing its growth until it is 

able to mutate to develop immunosuppressive or immunoevasive traits. 
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Observation of the change in autoantibody signal over time (as shown in 

Appendix 3A) reveals that many of the state changes from negative to 

positive between time points are associated with a drastic increase in 

autoantibody signal. This reflects the natural amplification of an immune 

response to a malignancy and lends further credence to these being highly 

specific responses to antigen mutation or overexpression as a result of 

tumour growth. 

The UKCTOCS collection was primarily concerned with identifying 

ovarian cancer, the examined cohort was identified from incident lung 

cancers discovered during the follow-up period of the study and represented 

an opportunity to examine longitudinal pre-diagnostic autoantibody 

responses in lung cancer. The cohort is therefore not the intended screening 

population for the EarlyCDT®-Lung test, being entirely female and with a 

large proportion of never smokers. As cancer incidence and mortality is 

higher in males, and smoking history is a major risk factor for lung cancer 

this would result in the cohort having a lower pre-existing cancer risk, and 

may account in part for the observed sensitivity of 26.1% in this cohort being 

lower than the 37.1% previously observed during clinical use, although it is 

still within 95% confidence intervals for the test(131). Additionally, while the 

EarlyCDT®-Lung test has been validated in case-control studies to have a 

specificity around 90%, evidence of elevated autoantibodies up to 8.4 years 

prior to clinical presentation as presented by this analysis raises the 

possibility that at least a portion of those presenting as false positives in 

these case-control studies represent latent cancers which may subsequently 
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present, or are potentially indicative of a successful immune response to 

mutated cells which will resolve without malignant presentation. 

Finally, median times to detection observed did show some 

differences by antigen, and this was explored further through analysis by 

histological subtype. Tumour doubling times have previously been shown to 

differ based on histology, with adenocarcinoma typically being associated 

with longer doubling times than squamous cell carcinoma or small cell 

carcinoma(133), however median time to detection in this study was 

comparable between adenocarcinoma, squamous cell carcinoma, and small 

cell carcinoma, at 47.4, 51.6, and 45.5 months respectively. Within 

adenocarcinoma and squamous cell carcinoma subjects, CAGE 

autoantibody responses were evident closer to diagnosis than other panel 

autoantibodies, especially in squamous cell carcinoma, and this may be 

indicative that CAGE overexpression or mutation either develop later in 

disease progression or are possibly related to more aggressive malignancies 

with shorter doubling times. Further work is needed on larger, more 

representative cohorts to understand these relationships, although this raises 

the possibility that assessment of autoantibodies may be useful in assessing 

the aggressiveness of a malignancy prior to its clinical presentation. 

3.6 Chapter Discussion 

While the presence of elevated autoantibodies in response to the 

development of a malignancy is expected to occur prior to the tumour being 

large enough to be visualized by imaging screening, this study is able to 

confirm the presence of these autoantibodies up to 8.4 years prior to CT 

screen presentation. The presence of autoantibodies at this early stage may 
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represent a unique opportunity for surveillance and potentially disease 

stratification in the time before a cancer can be confirmed and treated, 

although training and confirmation of models such as that proposed for a 

longitudinal changepoint based test similar to that attempted by the ROCA 

test(134), or the assessment of personalized baselines, would require large 

scale longitudinal trials in high risk populations to gather a large enough case 

cohort.  
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Chapter 4: Health Economic Assessment of an 

Autoantibody Screening Test for Lung Cancer compared 

to CT Screening. 

4.1 Aims 

Having shown that autoantibody responses are present and measurable 

prior to symptomatic presentation, and with the overarching aim of this 

project being to improve the diagnostic performance of the EarlyCDT®-Lung 

test, I undertook a health economics analysis to quantify firstly exactly how 

health economically beneficial the current format of the EarlyCDT®-Lung test 

is, in comparison to no screening and CT screening, and from that, identify 

exactly what improvements, in terms of diagnostic sensitivity and specificity, 

would lead to health economic improvements which would accelerate 

acceptance and adoption of the EarlyCDT®-Lung test. 

4.2 Introduction 

The American Cancer Society (ACS) currently recommends annual lung 

cancer screening by low dose computed tomography (LDCT) in 55-74 year 

old current or previous smokers with a pack year history of 30 years or 

greater. These recommendations are based upon the results of the National 

Lung Screening Trial, which showed that screening with LDCT showed a 

20.0% decrease in lung cancer mortality compared to screening by 

radiography(43), which was deemed to be cost-effective at $81,000 per 

quality-adjusted life year (QALY) gained when compared to no 

screening(135). 
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The EarlyCDT®-Lung test is an autoantibody blood test (AABT) that 

detects the presence of a panel of cancer related autoantibodies. Elevated 

levels of one or more of these autoantibodies above a pre-determined cut-off 

threshold indicates an increased risk of lung cancer in high-risk individuals. 

Clinical validation and subsequent audit of the EarlyCDT®-Lung test has 

shown it to have a specificity of 91%, with sensitivity of 37-41% for the early 

detection of lung cancer(108, 131), while it has also been shown in the Early 

Diagnosis of Lung Cancer in Scotland (ECLS) trial to increase cancer 

detection at an earlier stage(109). EarlyCDT®-Lung has been the subject of 

a National Institute for Health and Care Excellence (NICE) diagnostics 

guidance for risk assessment in indeterminate pulmonary nodules which 

concluded that while EarlyCDT®-Lung has the potential to identify nodules 

that require immediate treatment or biopsy and may result in improved 

treatment options and patient outcomes, further research is still needed to 

confirm the accuracy of EarlyCDT®-Lung and the models through which the 

assessment of risk in positive samples is calculated(136). 

While it is not currently recommended by the ACS, the EarlyCDT®-

Lung test has been shown in a decision-analytical modelling assessment to 

be cost effective as a screening test in a hypothetical cohort of 100,000 high 

risk individuals (at a cost of $300 per test), when used in combination with 

computed tomography (CT) (at a cost of $301 per test) using a strategy of 

confirming positive Early-CDT-Lung test with a follow up CT. This analysis 

determined an estimated cost of $20,044 per quality-adjusted life year 

(QALY) compared to no screening(137), Additionally this strategy was shown 
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in a separate analysis to have increased cost effectiveness in a high risk 

smoking population, with estimated costs of $9,549 per QALY (138). 

The cost-effectiveness of the EarlyCDT®-Lung test has also been 

established in directing treatment of incidentally detected pulmonary nodules, 

whereby a decision analytical model showed a cost per QALY of $24,330 

when compared to CT surveillance alone (139). These studies were based 

on data obtained from the National Lung Screening Trial (NLST)(42) and 

focused on healthcare costs in a US setting. In the UK, the National 

Screening Committee has only recently (June 2022) recommended that 

targeted lung screening using low-dose computed tomography be 

undertaken in high risk individuals(140), although further work is 

recommended to better establish the effectiveness of different 

implementation strategies. This recommendation was instructed by an 

extensive health technology assessment which utilised a discrete event 

simulation model to explore several strategies for screening with low dose 

CT in high-risk individuals. The assessment was able to show that a 

screening programme in smokers aged 60–75 years with a ≥ 3% risk of lung 

cancer using a single screen of low-dose CT would be cost effective in the 

NHS at an estimated cost of around £28,000 per QALY gained(30). As a 

combination screening strategy of EarlyCDT®-Lung and CT screening was 

shown to be more cost-effective than screening with CT alone in the US, a 

similar strategy should prove more cost effective than CT alone in an NHS 

setting. 

A health economic assessment based upon the discrete event 

simulation model defined by Snowsill et al.(30) has been undertaken in order 
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to quantify the health economic benefits of screening strategies using the 

EarlyCDT®-Lung autoantibody test as a primary screening tool, compared to 

those obtained by current best practise - low-dose CT screening - in a UK 

NHS setting. Additionally this model has been used to give an estimate of the 

potential diagnostic lead times associated with EarlyCDT®-Lung, in 

comparison to those already observed in LDCT screening, as well as 

estimate the health economic benefit associated with the stage shift in 

clinical presentation and resultant mortality reduction previously observed 

with lung cancer screening(42), and the EarlyCDT®-Lung test 

specifically(109). 

An appreciation of the relative impact of all model parameters on the 

health economic outcomes has been undertaken through the use of 

univariate sensitivity analysis, giving evidence for which factors have the 

greatest influence on the cost-effectiveness of the screening test. This was 

then extended to estimate the potential health economic benefits of 

improvements to diagnostic performance (sensitivity and specificity) of the 

EarlyCDT®-Lung test, assuming no change in test cost, compared to the 

current commercial test, in order to quantify the performance levels 

necessary to reach the various health economic thresholds currently advised 

by the NHS. 

4.3 Methods 

4.3.1 Model Development 

An individual patient simulation model was constructed in R v4.0.3 with a 

parallel model constructed in Excel for Microsoft 365 (version 2101), using a 

Discrete Event Simulation (DES) framework based upon that developed by 
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Snowsill et al, for the comparison of screening strategies based on the use of 

the EarlyCDT®-Lung autoantibody test (AABT) against both low dose CT 

(LDCT) screening, and no screening (current practise) in a UK NHS setting. 

The decision was made to follow the approach used by Snowsill et al, due to 

the development and inclusion of a natural history model for simulated lung 

cancers, allowing for an economic appreciation of the stage shift that has 

been demonstrated through the use of the EarlyCDT®-Lung test. 

The model was developed for a UK NHS setting, with invitation to 

screening and determination of pre-existing cancer risk for purpose of 

screening eligibility undertaken at a primary care level. Screening AABT and 

LDCT would be performed in a secondary or tertiary care setting. Differences 

in access to equipment necessary for AABT and LDCT screening has not 

been factored into this model. 

The target population for screening are people at high risk of lung 

cancer, specifically people aged 55 to 80 years with a history of smoking. 

Further exploration of subgroups of this population was undertaken through 

restrictions to the age range and cancer risk during the modelling of 

population strategies. All individuals were modelled from a minimum age of 

entry into screening of 55 years until death. 

The cost perspective was based on adoption by the NHS for 

screening and early detection of lung cancer, and therefore does not include 

costs for affected individuals such as revenue, productivity, or out of pocket 

expenses such as transport costs. 

The health perspective focused on direct health effects for affected 

individuals contacted through the screening programme. Direct health effects 
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on family or carers were not considered in this analysis. Effects of screening 

on smoking behaviour was also not considered within the context of this 

model. 

4.3.2 Model Details 

The model broadly followed the approach established by Snowsill et al.(30). 

By using the natural history model and population parameters published by 

Snowsill et al., we aimed to generate cohorts with similar baseline 

characteristics and comparable results to complement and expand upon their 

findings with additional screening methodologies. Additional starting 

characteristics were explored, allowing for an assessment of screening in 

populations with pre-test cancer risk of 0%-2%, in addition to the 3%-5% 

previously explored. This is to reflect both the accessibility of the 

autoantibody test - as a simple blood test it does not require access to CT 

screening equipment - and the high specificity of the autoantibody test, which 

is designed to minimise false positive test results, and as such it may be 

more suitable for testing a larger proportion of people with a smoking history. 

Individual patients were generated with randomised age, sex, baseline 

disease state, and underlying cancer risk. Age and sex were sampled from 

probability distributions based on participants returning a questionnaire in the 

UKLS trial(141), with age at study entry truncated between 55 and 80 years, 

reflecting the widest age range based on eligibility criteria. The baseline 

disease state was determined by sampling the age of preclinical lung cancer 

incidence for each individual based on the incidence of lung cancer in 

England in 2014, adjusted for estimated smoking population(30), and 

comparing to sampled age at entry, with an age of preclinical incidence lower 
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than age of entry resulting in the patient entering the study with an occult 

cancer, the stage of which was estimated based on probabilities proportional 

to the expected time spent in each stage in the absence of screening. 

Finally, the underlying risk was estimated from a statistical model 

constructed by Snowsill et al.(30) based on the performance of the LLPv2 

risk model in the UKLS trial, which assumed all invited subjects were 

smokers or ex-smokers, and included coefficients for age, gender, and the 

presence of cancer in the simulated patient within 3 years of entering the 

study. The parameter values describing the underlying probability 

distributions are described in Appendix 4A.  

 

Figure 4-1: Markov chain diagram showing patient simulation through natural history model of lung cancer. 
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Screening uptake was estimated for simulated subjects estimated 

from screening uptake observed in the UKLS trial, and subjects deemed to 

accept invitation and fulfil age and risk criteria were then progressed through 

the natural history model developed by Snowsill et al.(30) – as demonstrated 

in Figure 4-1, which simulated preclinical progression, clinical presentation, 

and lung cancer survival – based on data from the NLST study(43), as well 

as other cause mortality (based on interim life tables for England and Wales 

for the years 2010-2012(30)), in three screening intervention arms – LDCT 

screening alone, AABT screening alone, and LDCT screening confirmed by 

AABT screening – as well as a control arm. While it is anticipated that the 

nature of the EarlyCDT AABT test may lead to higher uptake, as it only 

requires access to a phlebotomist, and not specialised CT scanning 

equipment, differences in uptake between LDCT, AABT, and combined 

AABT+LDCT strategies have not been explored here due to a lack of 

information about the impact of the improved accessibility on test uptake, 

and in an effort to present the most conservative comparison between LDCT 

and AABT. Similarly the capital costs of equipment for analysing AABT has 

been excluded as the test is designed to be run as an ELISA test on 96 well 

plates and the majority of NHS diagnostic labs should already have access 

to all required equipment. Each individual was run through all screening arms 

and the control arm in order to reduce stochastic variation. This was 

repeated to generate 100,000 individuals, who then defined a cohort for the 

purpose of modelling population strategies. 

Population strategies were defined in terms of age for entering the 

screening programme (minimum and maximum), and minimum risk 
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threshold. Simulated individuals meeting the population criteria would 

undergo screening intervention, while individuals not meeting these criteria 

would undergo no screening.  

Three screening programme designs were compared with no 

screening in 24 population alternatives representing all combinations of the 

conditions: minimum age for screening (55 or 60), maximum age for 

screening (75 or 80), and minimum pre-existing risk for screening (0%, 1%, 

2%, 3%, 4%, or 5%) which is assumed to have been calculated prior to 

screening using the Liverpool Lung Project (version 2) (LLPv2) risk prediction 

tool(105). This resulted in 72 intervention strategies and one control (no 

screening) representing current practice. 

4.3.3 Health Outcomes 

Primary health outcomes measured in this analysis were quality adjusted life 

years (QALYs) representing health related quality of life (HRQoL), as well as 

life-years attained under each strategy, compared to no screening. 

Screening strategies were compared by calculating incremental cost 

effectiveness ratios which corresponds to the change in cost per quality 

adjusted life year gained. Costs and QALYs were discounted at 3.5% per 

year, derived from the UK Treasury discount rate, as is conventional for 

technology appraisal in England(142). 

Secondary health outcomes examined were: 

● Diagnosis lead time - calculated as the difference between age at 

diagnosis in the screening arm compared to the age at diagnosis in 

the same cohort under no screening and is therefore additional time 
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spent with a known diagnosis of lung cancer that would have 

remained unknown in the absence of screening. 

● Additional lung-cancer survival – life-years gained in in the screening 

cohort in simulated subjects who develop lung cancer screening 

compared to the same individuals when they undergo no screening. 

● 5-year lung-cancer survival – percentage of diagnosed lung cancers 

surviving at least 5 years after diagnosis. 

● Stage distribution at diagnosis – percentage distribution of cancer 

stages at presentation. 

● Average age at diagnosis, lung cancer mortality (percentage of cohort 

dying as a results of a lung cancer), and other cause mortality 

(percentage of cohort dying from non lung-cancer related causes) 

4.3.4 Analysis methods 

The economic evaluation focuses on a cost-effectiveness analysis, in which 

the costs and QALYs for each strategy are estimated and a cost-

effectiveness frontier constructed by eliminating strategies that are 

dominated. Cost effectiveness for each alternative is then assessed through 

calculation of its incremental cost-effectiveness ratio (ICER). 

● Main analysis: cost-effectiveness analysis of LDCT and AABT 

strategies. 

● Secondary analysis: sensitivity analysis, using the most cost-effective 

strategy determined in the main analysis, focused on adjustments to 

the sensitivity and specificity of the screening test, to determine the 

theoretical minimum sensitivity and specificity required by the AABT in 

a screening setting to achieve cost-effectiveness. 
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● Secondary analysis: deterministic sensitivity analysis, using the most 

cost-effective strategy determined in the main analysis, and examining 

the effects of increases and decreases to modelling assumptions and 

parameters. 

4.4 Results 

4.4.1 Base case 

Seventy-two hypothetical screening programmes were modelled, 

representing single screening with LDCT which was determined to be the 

most cost-effective strategy in the analysis by Snowsill et al. single screening 

with the current commercial EarlyCDT®-Lung autoantibody panel, and single 

screening with a theoretical improved EarlyCDT®-Lung autoantibody panel, 

over a number of combinations of age and risk eligibility. A cohort of 100,000 

individuals was simulated allowing for a greater level of accuracy than the 

analysis undertaken by Snowsill et al.  

4.4.2 Cost-effectiveness - Current AABT 

Examining LDCT and AABT strategies, three of the modelled strategies were 

on the cost-effectiveness frontier, along with “No Screening” as the least 

costly and least effective option. These are demonstrated in Figure 4-3 and 

include AABT screening individuals with minimum 1% pre-test cancer risk, 

aged between 60 and 75 years old or between 60 and 80 years old. The third 

and fourth strategies on the cost-effectiveness frontier were CT screening 

strategies, including subjects between 60 and 80 years old with at least a 1% 

pre-test risk of cancer, and 55 and 80 years old with at least a 1% pre-test 

risk of cancer, respectively. 
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Table 4-1: Proportion of smokers joining and not joining screening: 

Population 
Criteria 

% 
population 
invited and 

joined 
screening 

% 
population 
invited and 
declined 

screening 

% 
population 
invited but 
ineligible: 
Low risk 

% 
population 
invited but 

didn’t 
respond to 
invitation 

% 
population 
not invited 

to screening 

No Screening 0.0% 0.0% 0.0% 0.0% 100.0% 
55-80-0% 14.3% 16.4% 0.0% 69.3% 0.0% 
55-80-1% 10.9% 12.6% 7.2% 69.3% 0.0% 
55-80-2% 6.5% 7.5% 16.6% 69.3% 0.0% 
55-80-3% 4.1% 4.7% 22.0% 69.3% 0.0% 
55-80-4% 2.6% 3.0% 25.1% 69.3% 0.0% 
55-80-5% 1.8% 2.0% 26.9% 69.3% 0.0% 
60-80-0% 10.6% 12.2% 0.0% 51.5% 25.7% 
60-80-1% 9.2% 10.5% 3.1% 51.5% 25.7% 
60-80-2% 6.1% 7.0% 9.8% 51.5% 25.7% 
60-80-3% 3.9% 4.5% 14.4% 51.5% 25.7% 
60-80-4% 2.6% 3.0% 17.3% 51.5% 25.7% 
60-80-5% 1.7% 2.0% 19.1% 51.5% 25.7% 
55-75-0% 13.3% 15.3% 0.0% 64.7% 6.7% 
55-75-1% 10.0% 11.5% 7.2% 64.7% 6.7% 
55-75-2% 5.7% 6.5% 16.5% 64.7% 6.7% 
55-75-3% 3.3% 3.7% 21.7% 64.7% 6.7% 
55-75-4% 2.0% 2.2% 24.5% 64.7% 6.7% 
55-75-5% 1.2% 1.4% 26.1% 64.7% 6.7% 
60-75-0% 9.7% 11.1% 0.0% 46.8% 32.4% 
60-75-1% 8.2% 9.4% 3.1% 46.8% 32.4% 
60-75-2% 5.2% 5.9% 9.7% 46.8% 32.4% 
60-75-3% 3.1% 3.6% 14.1% 46.8% 32.4% 
60-75-4% 1.9% 2.2% 16.7% 46.8% 32.4% 
60-75-5% 1.2% 1.4% 18.2% 46.8% 32.4% 
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Figure 4-2:Cost-effectiveness plane for base-case results 

 

 
Figure 4-3: Cost-effectiveness frontier for base-case results 

 
Table 4-2: Base-case cost-effectiveness results - LDCT and current performance ECDT strategies on the cost-
effectiveness frontier 

Strategy Costs QALYs ICER (vs. Incremental Incremental ICER (vs. 
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(£) no 
screening) 

(£) 

costs (vs. 
previous) 

QALYs (vs. 
previous) 

previous) 
(£) 

No Screening 1028.18 8.520 NA NA NA NA 
AABT-60-75-
1% 

1050.90 8.521 37679.00 22.72 6.03x10-4 37679.00 

AABT-60-80-
1% 

1054.72 8.521 38466.49 3.82 8.70x10-5 43926.66 

LDCT-60-80-
1% 

1073.27 8.521 46851.71 18.55 2.73x10-4 68079.12 

LDCT-55-80-
1% 

1080.59 8.521 52409.19 7.32 3.76x10-5 194793.67 

 

4.4.3 Univariate Sensitivity Analysis – Impact of changes to model 

parameters 

Univariate sensitivity analyses were undertaken by re-running the base case 

with a single parameter adjusted each time with either a 10% increase, or 

10% decrease in the parameter value.  

Each re-run simulated the entire cohort of 100,000 individuals, the 

same cohort was generated for each iteration with only the parameter of 

concern changing to prevent variation in the generation of cohorts from 

contributing to, or masking, the effect of varying each parameter. The impact 

on cost-effectiveness of adjusting the model parameters was assessed 

through calculation of the incremental net monetary benefit (iNMB) of the 

screening strategy determined in base case analysis to be the most cost 

effective  - autoantibody test, in individuals between the ages of 60 and 75 

with at least a 1% pre-existing risk of lung cancer versus no screening.  

The results of this analysis are summarised in Figure 4-4, a tornado 

plot displaying the effect of varying each of the parameters described in 

Appendix 4A. In this analysis, the screening test specificity was shown to 

have a large effect on the cost-effectiveness of the model, as reducing the 

number of false positive results is able to reduce the costs associated with 
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unnecessary follow-up. In addition to this, it can be seen that the effect of the 

sensitivity of the screening test is far less influential, this is due to the low 

incidence of cancer, changes to sensitivity affect the diagnosis in only a 

small number of the screened individuals whereas changes to specificity 

affect a vastly higher proportion of individuals. 

The largest impact to the cost-effectiveness of the model was 

changes to the mu_AB parameter, representing the lognormal parameter 

(location) for pre-clinical incidence of lung cancer. Reducing this parameter 

leads to a decrease in the mean age at which preclinical lung cancer occurs 

in the model, and leads to a higher number of simulated individuals 

presenting with cancer at screening, allowing screening to have a far higher 

benefit, this would also explain the presence of the sigma_AB parameter 

high on the tornado plot, as this is also concerned with the age at which pre-

clinical lung cancer occurs. 

The second largest effect was elicited by changes to the 

gamma_ocm_F parameter for the other cause mortality distribution in 

simulated female individuals. Increases to this parameter lead to a reduction 

in the age at which simulated females in the model experience non-cancer 

related mortality, reducing the likelihood of a preclinical lesion presenting and 

the costs associated with such, while decreases to this parameter increase 

the age at which the simulated individual will experience non-cancer related 

mortality, increasing the benefit possible from detecting a preclinical lesion at 

an early stage. 

The mean age for simulated individuals also has a large effect on the 

model, as simulating younger subjects results in a greater number of 
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subjects for whom early diagnosis is able to confer a greater benefit to, as 

they are less likely to experience non-cancer related mortality prior to the 

benefit of screening manifesting. 

 

 
Figure 4-4: Tornado diagram for univariate sensitivity analysis demonstrating effect on incremental net 
monetary benefit (iNMB) of controlled changes to individual model parameters while maintaining base case 
values for remaining parameters, in otherwise identical cohorts. 20 parameters with greatest effect on iNMB 
shown. 

 
Table 4-3: Clinical outcomes for participants of strategies on the cost-effectiveness frontier. Strategies are 
coded by screening test (autoantibody test (AABT) or low dose CT (LDCT)), minimum screening age (years), 
maximum screening age (years), and minimum pre-existing risk of cancer. 

 
Strategy 

AABT-60-
75-1% 

AABT-60-
80-1% 

LDCT-60-
80-1% 

LDCT-55-
80-1% 

Per participant 

Number of screens 1 1 1 1 
Number of false positives 0.093 0.093 0.348 0.351 
Lead time (years) 0.083 0.085 0.151 0.140 
Life-years gained 0.014 0.014 0.024 0.022 
Additional lung cancer survival 
(%) 

0.124 0.130 0.223 0.196 

Additional 5-year lung-cancer 
survival (%) 

7.152 7.404 11.466 12.369 

Additional survival time with 
lung cancer (years) 

0.808 0.833 1.352 1.444 

Change in age at lung cancer 
diagnosis 

-0.760 -0.761 -1.246 -1.358 

Change in age at death from 
lung cancer 

0.016 0.016 0.025 0.027 

Per 100,000 participants 
Proportion of diagnoses arising 20.048 21.558 35.361 38.377 
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Strategy 

AABT-60-
75-1% 

AABT-60-
80-1% 

LDCT-60-
80-1% 

LDCT-55-
80-1% 

Per participant 

from screening (%) 
Number of screen-detected 
cases 

2638 2873 4792 5266 

Additional lung cancer 
diagnoses 

272 368 661 765 

Lung cancer deaths averted 124 130 196 223 

 

4.4.4 Lead time 

The lead times for strategies on the cost-effectiveness frontier are 

summarised in Table 4-3 above. The average lead time for LDCT strategies 

was 1.44 years, while AABT strategies gave an average lead time of 0.81 

years. 

4.4.5 Lung cancer survival 

For strategies based on the autoantibody test, the average number of lung 

cancer deaths, per 100,000 participants, was 13,429, compared to 13,337 

lung cancer deaths for low dose CT strategies, and 13,607 lung cancer 

deaths associated with no screening in the same populations.  

Across the strategies explored, a reduction in lung cancer mortality of 

1.4% to 2.4% was predicted (RR) for individuals participating in LDCT 

strategies versus no screening, with corresponding reductions of 0.9% to 

1.2% for AABT strategies versus no screening. 

Additional lung cancer survival for strategies on the cost-effectiveness 

frontier is summarised in table 3, and shows that for every 100,000 

participants in screening, between 124 and 223 lung cancer deaths can be 

averted, depending on the screening strategy. 5-year survival in the no-

screening arm was estimated to be 4.2%, with average 5-year survival 
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associated with screening programmes of 17.7% for LDCT strategies, and 

12.1% for AABT strategies. 

4.4.6 Stage Distribution 

As illustrated in Table 4-4, the use of screening increased the probability of 

diagnosis at early stage (I and II). The average odds ratios of early diagnosis 

(geometric mean) by screening compared to no screening were predicted to 

be 1.95 for LDCT strategies, and 1.52 for AABT strategies. Table 4-4 

demonstrates a stage shift at diagnosis with screening that is most evident in 

increased diagnoses at stage IA and reduced diagnoses at stage IV. 

 
Table 4-4: Average stage distributions for screening programmes 

 Lung cancer stage 

Screening 
Programme 

IA IB IIA IIB IIIA IIIB IV 

No screening 0.06 0.02 0.02 0.02 0.05 0.03 0.80 
LDCT 0.12 0.03 0.03 0.03 0.06 0.03 0.69 
AABT 0.09 0.03 0.02 0.02 0.06 0.03 0.75 

 

4.4.7 Age at diagnosis and death 

Screening strategies were associated with a reduction in the age at 

diagnosis of lung cancer. The average age at diagnosis for no-screening, 

LDCT, and AABT was 75.9, 74.4, and 75.1 respectively. 

Screening strategies were also associated with a moderate increase 

in the age of death from lung cancer, with average age of death for no-

screening, LDCT, and AABT calculated at 76.38, 76.44, and 76.74 years 

respectively. 

Average age at other cause mortality was also increased in the 

screening arms. Although this effect was minimal and may reflect some older 

participants dying from other causes after screening and treatment in the 
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screening arm, where they would be included in the lung cancer mortality in 

the non-screening arm. 

4.4.8 Costs 

The cost per participant of AABT screening is estimated at around £66 

compared to £105 for LDCT screening, with costs for confirmatory testing 

assumed to be comparable between the different testing methods. The costs 

for the strategies on the cost-effectiveness frontier are summarised in table 5 

and show that lung cancer costs, excluding end of life costs, are higher for 

LDCT screening, most likely due to the costs incurred by the higher 

incidence of false positive results, which is reduced in AABT strategies due 

to the high specificities associated with AABT testing.  

The costs for the screening programmes are also summarised in table 

5, and show predicted costs increases of £1,506M to 3,938M for screening of 

a population of 13million smokers aged 55-80 years.  

 
Table 4-5: Costs for programmes on the cost-effectiveness frontier. Strategies are coded by screening test 
(autoantibody test (AABT) or low dose CT (LDCT)), minimum screening age (years), maximum screening age 
(years), and minimum pre-existing risk of cancer. 

Costs 
Strategy 

No 
screening 

AABT-60-
75-1% 

AABT-60-
80-1% 

LDCT-60-
80-1% 

LDCT-55-
80-1% 

Costs for each participant (£) 

Screening Test  66.06 66.06 104.75 104.75 
Lung cancer costs 
(excluding end of life) 

 869.69 869.58 1064.54 1017.54 

End of life  395.67 403.08 399.21 389.91 
Total cost  1331.42 1365.72 1568.50 1512.20 

Population of 13 million smokers aged 55-80 years (lifetime costs, £M) 

Screening administration      
Screening Test 0.0 493.1 550.1 872.2 1042.4 
Lung cancer costs 
(excluding end of life) 

8666.9 9718.5 9960.0 11358.5 11644.6 

End of life 4699.4 4660.7 4654.6 4622.4 4618.2 
Total cost 13366.4 14872.3 15164.7 16853.1 17305.2 
Additional cost vs. no 
screening 

 1506.0 1798.3 3486.7 3938.8 
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4.4.9 Sensitivity Analysis - Effect of increasing the sensitivity and 

specificity of the AAb test 

The previous analysis demonstrates that the AAb test is more cost effective 

than low dose CT scanning as a screening modality, and that the greatest 

benefit can be obtained through screening with the autoantibody test in at-

risk individuals between 60 and 75 with at least a 1% pre-existing risk of lung 

cancer. In this analysis, the most cost-effective strategy was above the NICE 

guideline threshold of £20,000 per QALY. This strategy was also above the 

less conservative threshold of £30,000 per QALY, therefore a sensitivity 

analysis was undertaken to explore the sensitivity and specificity 

characteristics required for cost effectiveness for the AABT test, assuming all 

other parameters remained constant. The original cohort of 100,000 

simulated subjects was modelled using the strategy previously determined to 

be the most cost effective (smokers between 60 and 75 with at least 1% pre-

existing risk of lung cancer) and repeated through sensitivities of 20% to 80% 

for specificities of 90% to 99%. These results are illustrated in Figure 4-5, 

and demonstrate that increases to the sensitivity and specificity of the AAb 

test would lead to it becoming cost-effective at a threshold of £30,000 per 

QALY. The analysis also demonstrated that even at the highest levels of 

specificity and sensitivity, the test did not show cost effectiveness at a 

threshold of £20,000 per QALY. 

Regression modelling was undertaken on the cost-effectiveness 

curves for each specificity, in order to calculate the sensitivity required for the 

test to be considered cost-effective at a threshold of £30,000 per QALY, as 

shown in Figure 4-6. 
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Figure 4-5: Exploration of autoantibody test (AABT) performance required to achieve cost-effectiveness. 

 
Figure 4-6: Predicted autoantibody test (AABT) sensitivity levels required at each specificity for cost 
effectiveness at a threshold of £30,000 per quality adjusted life-year (QALY) 
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4.5 Chapter Conclusions 

Introduction of lung cancer screening is predicted to result in earlier 

diagnosis, with a stage shift at diagnosis, as has already been demonstrated 

in the ECLS trial(109), leading to better prognosis and increased survival for 

participants. The introduction of a screening programme to detect 

asymptomatic lung cancer does, however, result in additional costs to the 

NHS. In this analysis, the most cost-effective strategies for LDCT and AABT 

would not be considered cost-effective at the NICE recommended threshold 

of £20,000 per QALY(143), with predicted costs of £41,705, and £37,679 per 

QALY gained respectively, however, an exploration of the effect of increasing 

the sensitivity and specificity of the autoantibody test showed that the test 

becomes cost-effective at a threshold of £30,000 per QALY threshold, at 

sensitivities of 39.8% at 99% specificity, 47.5% at 95% specificity, or 56.2% 

at 90% specificity respectively. 

Increases to the performance of the EarlyCDT®-Lung test could be 

brought about through a variety of methods, including expanding the 

autoantibody panel with additional autoantibodies that have shown high 

specificity discriminatory potential in lung cancer, many of which have been 

described in studies, such as autoantibodies to Dickkopf-related protein 1 

(DKK1)(144),  Cyclin B1, and Survivin(145), or the addition of 

complementary antigenic biomarkers to the panel, such as neuron-specific 

enolase (NSE), carcinoembryonic antigen (CEA), CYFRA 21-1, squamous 

cell carcinoma–associated antigen (SCC), CA15.3, and pro–gastrin-releasing 

peptide (ProGRP)(146). Additionally, the pilot study outlined in Chapter 2 

established the possibility of using metrics derived from the antigen-



Health Economic Assessment of an Autoantibody Screening Test for Lung 

Cancer compared to CT Screening. 

108 | P a g e  
 

autoantibody binding curve to selectively reduce false positive (type I) errors 

and established that further specificity may be derived from scrutinising the 

binding characteristics of tumour associated autoantibodies. 

The cost effectiveness of the test may also be affected by exploring 

additional screening strategies. The analysis undertaken here looks only at a 

single screening round, therefore only pre-existing malignancies are 

detected, and those which develop after the screening time-point are not 

detected. The accessibility of the EarlyCDT®-Lung test, with a lack of a need 

for CT scanning equipment and its associated radiation exposure, increases 

the potential for repeated screening strategies. It has been shown that 

autoantibodies are detectable up to 4 years before current clinical 

diagnosis(147), therefore repeated screening every 3-5 years may allow for a 

greater number of malignancies to be detected. Although as the univariate 

sensitivity analysis demonstrated that the QALY estimates derived from this 

model are dependent on the model parameters, and changes to the 

underlying risk and age group examined have a large effect on the health 

economic benefits, subsequent screening rounds would be expected to have 

a lower risk, due to the removal of prevalent malignancies in the initial 

screening round, therefore repeat screening strategies would not be 

expected to lead to improved cost effectiveness. 

Future work would also benefit from better understanding the 

differences in screening uptake between a blood test and LDCT based 

screening, as well as how this uptake would be affected by combination 

strategies. While increased test uptake was included in the univariate 

sensitivity analysis, the compounded effect of both low response to initial 
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questionnaires (30.7%) and relatively low uptake (46.5%) potentially reduced 

the impact of 10 percent increases to response and uptake, and an improved 

understanding on the benefits of any improved uptake attributable to a 

screening blood test over LDCT imaging would lead to a more accurate 

assessment of the benefits that could be brought about through adoption of 

the EarlyCDT autoantibody test. 

The Snowsill health economic model that this analysis is based on 

includes a well calibrated natural history model for lung cancer, trained on 

NLST data, which allows for appreciation of stage progression, and 

calculation of stage shift in diagnosis between screening methods, however 

the model does not currently consider presence of a latent cancer which is 

not yet detectable by CT. A future refinement of this model could include an 

appreciation of latent cancer presence to enable more accurate assessment 

of autoantibody screening accuracy. 

The model described here was able to improve upon the model 

reported by Snowsill et al., through refinement to the deterministic sensitivity 

analysis. Unlike the Snowsill model, which is run in Microsoft Excel, the 

model trained here was created in the R programming language, which 

allowed for greater control and adjustment of simulated populations. In the 

original model, during deterministic sensitivity analysis a new sub-population 

would be generated each time, with a single parameter adjusted. Due to the 

variability in the generated populations, differences due to random variation 

in variables other than the variable of interest had a large influence on the 

results. In the R model described here, the simulated population was able to 

be kept identical, with only the variable of interest being changed, and health 



Health Economic Assessment of an Autoantibody Screening Test for Lung 

Cancer compared to CT Screening. 

110 | P a g e  
 

costs and QALYs generated were then directly comparable leading to much 

higher accuracy in the analysis. 

4.6 Chapter Discussion 

Assessment of the health economic benefits associated with an autoantibody 

screening test that exhibits high specificity showed that even at its current 

diagnostic performance, the EarlyCDT®-Lung autoantibody test shows a 

lower cost per QALY than low-dose CT for lung cancer screening, with 

improvements to the specificity and sensitivity of the test having the potential 

to bring it within the NICE cost-effectiveness guideline of £30,000 per QALY. 

While future analyses would benefit from a greater investigation into whether 

the accessibility of a blood test would result in improved screening test 

uptake, and a better understanding of how that improved uptake would 

influence the health economics, as well as whether repeat screening 

strategies, allowing longitudinal monitoring of autoantibodies, could be cost-

effective, these are outside of the scope of this project. This analysis has 

identified target diagnostic performance values which will instruct the 

subsequent machine learning analyses. 
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Chapter 5: Data Collection 

5.1 Aims 

The pilot study showed that curve characteristics showed potential for 

improving the diagnostic performance of the test, and the health economic 

analysis showed that improvements to both sensitivity and specificity are 

required to increase the health economic benefit of the test. In order to 

achieve these improvements curve characteristic data along with additional 

autoantibody features was collected on datasets that had been obtained for 

EarlyCDT development studies, and these datasets are described here. 

5.2 Introduction 

To explore the potential utility of curve characteristics as biomarkers, as well 

as the performance of an expanded autoantibody biomarker panel, a series 

of case-control studies were conducted. The structure of the cohorts included 

in these studies, the details of data collection using the EarlyCDT®-Lung 

test, and the methods of calculation of the curve characteristic features are 

outlined here. The initial cohort was separated into training and hold-out test 

sets, with model training being completed on the training set, and model 

performance being assessed on the test set and subsequent validation sets 

to try and reduce overfitting of models. 

5.3 Methods 

5.3.1 Study Sample Cohorts 

All of the samples used in these studies were obtained as part of a series of 

case-control studies from a combination of sample banks in the UK, the US 

and Ukraine, along with healthy normal samples collected in the UK as part 
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of a population autoantibody study (PAS), and samples provided as part of a 

collaborative study with a group in Cleveland. All cancer samples were 

obtained after diagnosis but prior to any anticancer treatment. 

 

Sample Sources 

NHS Biobank 

Samples obtained from subjects with known lung cancer were procured from 

the Nottingham NHS Biobank, these samples were collected between 2011 

and 2013 from subjects attending Nottingham University Hospitals in the UK. 

Asterand 

Samples obtained from subjects with known lung cancer were purchased 

from the Asterand biobank, these samples were collected between 2007 and 

2013 (with the exception of one sample collected in 2005) from subjects in 

Eastern Europe (Romania, Ukraine, Russia, Bulgaria, and Moldova) and the 

USA. 

Kiev 

Samples obtained from subjects with known lung cancer, along with healthy 

normal subjects with no personal history of cancer, were collected from 

subjects in the Ukraine. These samples were collected between 2008 and 

2010. 

Nottingham PM 

Samples were obtained from subjects with known small-cell lung cancer as 

part of a collaboration exploring autoantibodies in patients presenting with 
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Lamber-Eaton myasthenic syndrome to a clinic in the UK. Remaining 

samples from this study were included in validation studies for the EarlyCDT-

test to provide data on SCLC subjects. These samples were collected 

between 2006 and 2012. 

PAS Collection 

Serum samples were collected from healthy subjects with no personal history 

of cancer or autoimmune disease as part of a study into autoantibody profiles 

in the UK general population. These samples were collected between 2007 

and 2010. 

Springfield 

Serum samples from healthy subjects with no personal history of cancer 

were purchased from a US biobank for use as a control cohort in EarlyCDT 

Lung validation studies. These samples were collected in 2012. 

Cleveland 

Serum samples provided as part of a collaborative study with Peter Mazzone 

of the Cleveland Clinic, OH, USA. These samples included both known lung 

cancer samples, obtained at point of diagnosis before commencement of 

treatment, and healthy control samples obtained from subjects with no 

personal history of cancer. These samples were collected between 2011 and 

2014. 

Training/Test Cohort 

The training/test cohort was comprised of 335 cancer samples from the NHS 

Biobank, Asterand, Nottingham PM, and Kiev collections, and 331 healthy 

control samples obtained from the PAS and Springfield collections. Samples 
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were assayed in 2014 and 2015 on the EarlyCDT®-Lung format ELISA, with 

samples run over 6 days, along with 2 plates of additional autoantibody 

features, each run over 4 days. Cancer samples were matched as closely as 

possible to healthy normal samples by age, smoking-history, and gender, 

with first priority being to match for age within 3 years, followed by smoking 

history, and finally by gender 

Validation 1 

The validation 1 cohort was comprised of 93 cancer samples from the 

Asterand sample bank, and 96 healthy control samples obtained during the 

UK PAS collection, assayed in 2015 on the EarlyCDT®-Lung format ELISA, 

with samples run over 1 days, along with 2 plates of additional autoantibody 

features, each run over 1 days. Cancer samples were matched as closely as 

possible to healthy normal samples by age, smoking-history, and gender, 

with first priority being to match for age within 3 years, followed by smoking 

history, and finally by gender 

Validation 2 

The validation 2 cohort was comprised of samples provided through an 

academic collaboration with Dr Peter Mazzone and the Cleveland Clinic 

Foundation. These samples were received and assayed as blinded samples, 

with subsequent demographic unblinding after reciprocal submission of 

assessed data. These samples were assayed in 2015 on the EarlyCDT®-

Lung format ELISA, with samples run over 3 days, along with 2 plates of 

additional autoantibody features, each run over 3 days also. After transfer of 

laboratory data to collaborators in Cleveland, samples were unblinded and 
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were determined to be comprised of 215 cancer samples, and 321 healthy 

control samples. 

5.3.2 Autoantibody Assays 

Autoantibody levels were determined through the use of a semi-automated 

direct ELISA in which samples were reacted with a titration series of antigen 

concentrations. This assay technique is described fully in Lam et al(107), and 

is summarised in Figure 5-1 below: 
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Figure 5-1: Autoantibody ELISA process 

5.3.3 Correction for Non-Specific Binding 

The EarlyCDT®-Lung test was designed with the inclusion of a non-specific 

protein tag referred to as ‘BirA’ or ‘VOL’ on each antigen protein. This protein 

is also included as a control on each plate, and the optical density (OD) 

returned by the VOL control for each sample is subtracted from the raw OD 
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to account for non-specific binding present in the patient sample, giving a 

value referred to subsequently as a VOL Corrected OD (VCOD). During 

initial investigations, it was suggested that re-expressing the raw OD signal 

as a ratio of specific to non-specific binding may give a more accurate 

assessment of a subjects immune response, and to investigate whether this 

is the case, an alternate non-specific binding correction method has been 

investigated by dividing the antigen specific OD signal by the signal returned 

by the VOL control antigen. This correction method is subsequently referred 

to as the Signal To Vol Ratio (STVR). 

5.3.4 Calculation of Curve Characteristic Features 

The curve characteristic features to be investigated in the subsequent 

analyses were calculated using custom R functions within 

RStudio(v2022.07.02) to generate the following features for raw OD, VCOD, 

and STVR data: 

Slope and Intercept 

Slope and Intercept features were calculated using the ‘lm’ function from the 

R ‘stats’ package to fit a linear regression of the OD (raw or corrected) with 

the formula 𝑦 = 𝑚𝑥 + 𝑏 against the plated antigen concentration using 

quantile regression, returning values for both the slope 𝑚 and intercept 𝑏 of 

the subsequent fitted linear regression line. 

Area Under the Curve (AUC) 

AUC features were calculated using the ‘trapz’ function from the R ‘caTools’ 

package to derive the area under the titration curve using trapezoid rule 

integration whereby the area of the region under the curve is approximated 
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through the summation of the areas of the trapezoids constructed by 

adjacent points. 

SlopeMax 

The SlopeMax feature was defined as the slope (
𝑑𝑦

𝑑𝑥
) at the steepest point of 

the titration curve, and was calculated through a custom R function which 

assessed slope values for all adjacent sets of points on the curve, and 

returned the greatest value. 

5.4 Results 

5.4.1 Study Sample Cohorts 

The demographics data for the full dataset is summarised in Table 5-1, with 

cancer subtype and stage distribution as shown in  

 

Table 5-2. In addition, two further independent validation cohorts of samples 

have been assessed on all features, and resultant models have been applied 

to these cohorts as a further means of assessing model performance 

reproducibility. The demographic details of these cohorts are summarised in 

Table 5-1 to Table 5-6 
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Table 5-1: Training/Test Cohort demographic summary 

Characteristic Cancer, N = 3351 Matched Normal, N = 3311 

Age 64 (57, 71) 64 (57, 72) 
Gender   

Female 95 (29%) 143 (43%) 
Male 230 (71%) 186 (57%) 
Unknown 10 2 

Smoking History   
Current smoker 132 (45%) 105 (35%) 
Ex-smoker 118 (41%) 120 (40%) 
Non-smoker 41 (14%) 72 (24%) 
Unknown 44 34 

Sample Source   
NHS Biobank 123 (37%) 0 (0%) 
Asterand 177 (53%) 0 (0%) 
Kiev 19 (5.7%) 4 (1.2%) 
Nottingham PM 16 (4.8%) 0 (0%) 
PAS Collection 0 (0%) 173 (52%) 
Springfield 0 (0%) 154 (47%) 

Sample Origin   
UK 139 (42%) 173 (52%) 
USA 14 (4.2%) 154 (47%) 
Ukraine 40 (12%) 4 (1.2%) 
Romania 98 (30%) 0 (0%) 
Russia 40 (12%) 0 (0%) 
Unknown 4 0 

1n (%); Median (IQR) 

 

 
Table 5-2: Training/Test Cancer sample Subtype and Stage summary 

Characteristic N = 3351 

Subtype  
Adenocarcinoma 133 (40%) 
Squamous cell carcinoma 134 (40%) 
Adenosquamous carcinoma 6 (1.8%) 
Carcinoid 7 (2.1%) 
Leiomyosarcoma 2 (0.6%) 
NSCLC 1 (0.3%) 
SCLC 35 (11%) 
Other 15 (4.5%) 
Unknown 2 

Stage  
IA 52 (25%) 
IB 65 (31%) 
IIA 28 (13%) 
IIB 28 (13%) 
IIIA 31 (15%) 
IIIB 3 (1.4%) 
IV 2 (1.0%) 
Unknown 12 

1n (%) 
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Table 5-3: Validation Cohort 1 demographic summary 

Characteristic Cancer, N = 931 Matched Normal, N = 961 

Age 61 (54, 67) 60 (54, 67) 
Gender   

Female 26 (28%) 25 (26%) 
Male 67 (72%) 71 (74%) 

Smoking History   
Current smoker 40 (48%) 38 (40%) 
Ex-smoker 31 (37%) 35 (36%) 
Non-smoker 12 (14%) 23 (24%) 
Unknown 10 0 

Sample Source   
Asterand 93 (100%) 0 (0%) 
PAS Collection 0 (0%) 96 (100%) 

Sample Origin   
Ukraine 49 (53%) 0 (0%) 
Romania 30 (32%) 0 (0%) 
Russia 4 (4.3%) 0 (0%) 
Moldova 2 (2.2%) 0 (0%) 
Bulgaria 1 (1.1%) 0 (0%) 
USA 7 (7.5%) 0 (0%) 
UK 0 (0%) 96 (100%) 

1n (%); Median (IQR) 

 

 
Table 5-4: Validation Cohort 1 Cancer sample Subtype and Stage summary 

Characteristic N = 931 

Subtype  
Adenocarcinoma 25 (28%) 
Squamous cell carcinoma 48 (54%) 
Adenosquamous carcinoma 2 (2.2%) 
Large Cell 7 (7.9%) 
NSCLC 1 (1.1%) 
SCLC 4 (4.5%) 
Unknown 4 

Stage  
IA 17 (18%) 
IB 21 (23%) 
IIA 14 (15%) 
IIB 12 (13%) 
III 3 (3.2%) 
IIIA 18 (19%) 
IIIB 6 (6.5%) 
IV 2 (2.2%) 

1n (%) 
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Table 5-5: Validation Cohort 2 demographic summary 

Characteristic Cancer, N = 2151 Matched Normal, N = 3211 

Age 68 (61, 74) 66 (60, 70) 
Gender   

Female 89 (41%) 159 (50%) 
Male 126 (59%) 162 (50%) 

Smoking History   
Current smoker 29 (13%) 114 (36%) 
Ex-smoker 173 (80%) 194 (61%) 
Non-smoker 13 (6.0%) 10 (3.1%) 
Unknown 0 3 

Sample Source   
Cleveland 215 (100%) 321 (100%) 

Sample Origin   
USA 215 (100%) 321 (100%) 

1n (%); Median (IQR) 

 

 
Table 5-6: Validation Cohort 2 Cancer sample Subtype and Stage summary 

Characteristic N = 2151 

Subtype  
Adenocarcinoma 111 (52%) 
Squamous cell carcinoma 67 (31%) 
Adenosquamous carcinoma 3 (1.4%) 
Large Cell 1 (0.5%) 
Neuroendocrine 1 (0.5%) 
NSCLC 13 (6.1%) 
SCLC 18 (31%) 
Unknown 1 

Stage  
I 3 (1.4%) 
IA 40 (19%) 
IB 24 (11%) 
IIA 11 (5.1%) 
IIB 16 (7.4%) 
IIB/IV 1 (0.5%) 
IIIA 61 (28%) 
IIIB 14 (6.5%) 
IV 45 (21%) 

1n (%) 
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Cohort partitioning was carried out to split the data into training and test 

cohorts, with 70% of the data (235 cancer cases, 232 normal controls) used 

for training, and the remaining 30% (100 cancer cases, 99 normal controls) 

being used as a hold-out test set for confirming model performance. A split of 

70:30 is common practice in machine learning experiments, and has been 

proven previously to give the best performance for training models(148).  

The commercial cutoff thresholds for the EarlyCDT®-Lung test have been 

applied to these cohorts, and diagnostic performance calculated and been 

summarised in Table 5-7. 

Table 5-7: Summary of Commercial performance in study cohorts 

Cohort TP FN FP TN Sens Spec 

Training 72 163 23 209 30.6% 90.1% 

Test 23 77 12 87 23.0% 87.8% 

Validation 
1 

19 74 3 93 20.4% 96.9% 

Validation 
2 

74 134 38 271 35.6% 87.7% 

 

Model parameter optimisation was carried out on the training cohort, using 

10-fold cross-validation during parameter optimisation to reduce the impact 

of overfitting on model optimisation. 

5.5 Chapter Conclusions 

The datasets run show differences in the composition of both subtype and 

staging which may contribute to the differences in commercial performance 

between the four cohorts. While the training cohort showed equal 

representation of adenocarcinoma and squamous cell carcinoma, along with 

11% SCLC which is comparable to expected population prevalence, the 

Validation 1 cohort showed a higher proportion of squamous cell carcinoma 

and SCLC was underrepresented at only 4.5%. Contrary to this the 

Validation 2 cohort had a higher proportion of adenocarcinoma and SCLC 
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was overrepresented comprising 31% of the cohort. Additionally, there were 

large differences in the stage distributions, with the training cohort being 

comprised of an extremely high proportion of early-stage disease (82%) 

compared to 69% early-stage in the validation 1 cohort, and only 43.9% in 

the validation 2 cohort. Future studies would benefit from greater efforts to 

ensure that datasets are balanced, and subtype and stage distributions are 

reflective of the target population. 

5.6 Chapter Discussion 

Datasets were sourced by the company without full consideration of the 

effect of confounding variables in the datasets. The training/test cohort and 

validation 1 cohort resultantly showed large imbalance between cases and 

controls regarding the country of origin of the samples, which may contribute 

to poor reproducibility of trained models, in addition to imbalance observed 

between the histological subtypes represented between cohorts. 

Unfortunately, I had little influence in the sourcing of samples for these 

studies, as the purchasing of samples was done without consultation as to 

their suitability for a machine learning project.  



Data Transformations and Unsupervised Analysis 

124 | P a g e  
 

Chapter 6: Data Transformations and Unsupervised 

Analysis 

6.1 Aims 

Initial exploration of the data applying rules developed in the pilot study was 

unable to reproduce the performance improvements illustrated in that study. 

As availability of tools and techniques had advanced in the time between the 

initial pilot study and the analysis of the cohorts described previously, I 

decided to explore the data in much greater depth using machine learning 

strategies in an attempt to develop models incorporating the curve 

characteristics that are able to improve the performance and health 

economic benefits of the EarlyCDT®-Lung test. Initially this required 

assessment of the data distributions to identify whether transformations were 

necessary to approximate normal distributions and potentially reduce inter-

assay variability, along with an initial focus on exploration of unsupervised 

strategies, as I wished to see whether the underlying patterns in 

autoantibody reactivity are able to separate or classify the data, and 

potentially highlight relationships that may be missed in supervised machine 

learning analyses. 

6.2 Introduction 

With the ultimate goal of exploring a variety of modelling techniques and 

machine learning strategies to develop models which are able to contribute 

to early cancer diagnostics, an investigation was undertaken to explore and 

characterise the distributions of the biomarker and titration curve derived 

features. This was necessary as a number of quantitative modelling 

techniques, such as regression models and linear discriminant analysis, 
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assume that data being modelled follow a bivariate or multivariate normal 

distribution, and therefore ensuring that features are normally distributed - or 

applying a transformation that allows the data to approximate the normal 

distribution - may lead to improved model fitting and better performance in 

resultant models.  

To ensure that the generated features are suitable for parametric modelling 

techniques, the following analysis will confirm that the features approximate 

a normal distribution, as deviations from normality such as skewness and 

kurtosis can lead to inaccuracies in data modelling and reduce the 

generalizability of trained models. Features which do not approximate 

normality will undergo additional transformation prior to inclusion in 

modelling.  

6.3 Methods 

6.3.1 Exploration of Distributions 

Signal distribution was visualised for each feature as a histogram, along with 

an overlaid normal distribution function using the mean and standard 

deviation of the featureset, and quantile-quantile plots were also constructed 

to compare the distribution of the data to the theoretical normal distribution 

(data not shown). 

To statistically assess the distributions, a series of tests for normality 

were undertaken using the ‘stat.desc’ function from the R ‘pastecs’ package, 

these tested for skewness, kurtosis, and normality.  

Skewness is a measure of the asymmetry of a dataset, and was 

assessed through calculation of the skewness coefficient, in which a value of 

0 is indicative of symmetrical data, with positive values indicating a greater 
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proportion of data is lower than the mean, and negative values indicating that 

the majority of the data is above the mean. 

 Kurtosis is a measure of how much of the data is distributed at 

extreme values of the distribution, with higher values for the kurtosis 

(referred to as leptokurtic) indicating a higher degree of data at the edges of 

the distribution and potentially higher quantities of outliers. Lower values for 

the kurtosis (referred to as platykurtic) indicates a greater amount of the data 

is close to the distribution centre.  

 The Shapiro-Wilk (SW) test was used to test for normality in the 

datasets, and has been previously recommended in the case of suspected 

asymmetric data(149). SW measures the differences between the measured 

data and data that would be expected based on the mean and standard 

deviation of the dataset, to generate a test statistic W between 0 and 1, with 

1 indicating perfect conformity to a normal distribution. Shapiro-Wilk also 

produces an associated p-value for the null hypothesis that the data is 

normally distributed, with values <0.05 indicating that the data is significantly 

not normally distributed. 

6.3.2 Transformation Techniques 

The data for each feature underwent transformation through the following 

strategies: log, square root, exponential, arcsinh, Box Cox, and Yeo-

Johnson, according to the following strategies: 

log transformation: 

𝑔(𝑥)  =  𝑙𝑜𝑔(𝑥 + 𝑎) where 𝑎 =  𝑚𝑎𝑥(0, − min(𝑥) + 𝑒) 

square root:  

𝑔(𝑥) =  √𝑥 + 𝑎 where 𝑎 =  𝑚𝑎𝑥(0, − min(𝑥) + 𝑒) 
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exponential: 

𝑔(𝑥)  =  𝑒𝑥𝑝(𝑥) 

arcsinh: 

𝑔(𝑥) = log (𝑥 + √𝑥2 + 1) 

Box Cox: 

As proposed by Box and Cox in 1964(150), whereby lambda is estimated by 

maximum likelihood. 

𝑔(𝑥; 𝜆) = 1(𝜆≠0)

𝑥𝜆 − 1

𝜆
+ 1(𝜆=0)𝑙𝑜𝑔𝑥 

Yeo-Johnson: 

As proposed by Yeo-Johnson in 2000(151), whereby the value of lambda is 

found which minimizes the Kullback-Leibler distance between the normal and 

transformed distributions through estimation by maximum likelihood. 

𝑔(𝑥; 𝜆) = 1(λ≠0,x≥0)

(𝑥 + 1)𝜆 − 1

𝜆
 

+ 1(λ=0,x≥0)log (𝑥 + 1) 

+ 1(λ≠2,x<0)

(1 − 𝑥)2−𝜆 − 1

𝜆 − 2
 

+ 1(λ=2,x<0) − log (1 − 𝑥) 

 

These strategies were selected for investigation due to their relative 

simplicity and transferability to new datasets. 

The transformed features then each had their distribution assessed 

according to a goodness of fit test based on calculation of the Pearson P 

statistic – divided by its degrees of freedom. This assessment of normality is 

the default for the bestNormalise package due to its interpretability, the ratio 
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is comparable between different transformations representing an absolute 

measure of the departure from normality, with ratio values close to 1 

signifying proximity to a normal distribution. 

6.3.3 Principal Components Analysis 

To explore the structure of the data, and assess relationships between 

features, principal component analyses(152) were undertaken, initially on the 

unadjusted OD data from the commercial panel antigens at all 

concentrations, and subsequently on data corrected to compensate for the 

effect of non-specific binding, before assessing the curve characteristic 

features. 

Principal components analysis (PCA) helps identify underlying 

structure and relationships within the data and can provide insights into the 

most important factors driving the variation in the dataset. It is a 

dimensionality reduction technique that transforms data, based on the 

covariance of the features, to a series of eigenvalues, representing the 

variance explained, and eigenvectors representing the direction of these 

eigenvalues. The eigenvector with the highest eigenvalue represents the first 

principal component, which explains the most variance in the dataset. 

Subsequent eigenvectors represent subsequent principal components, each 

explaining a decreasing amount of variance. The original dataset is then 

projected onto the principal components to obtain the transformed dataset. 

Each observation in the transformed dataset is represented by its scores 

along the principal components. The principal components can then be 

interpreted based on the feature contributions to the corresponding 
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eigenvectors, and may represent patterns or combinations of the original 

variables. 

PCA analyses were undertaken on the datasets using the ‘prcomp’ 

function from the R ‘stats’ package.  

6.3.4 Identification of most informative antigen concentration feature 

Curve Characteristic features – calculated as outlined in section 5.2.4 were 

then also explored using principal component analysis. For these analyses, a 

single representative magnitude feature for each antigen was included in the 

analysis. To determine the most informative concentration for each antigen a 

brief investigation was undertaken as follows: 

From the training set data, the relative utility of each antigen concentration 

was determined by the following method: 

The training data for each antigen concentration underwent cutpoint 

optimisation using the R ‘cutpointr’ package, identifying the cutpoint which 

maximised sensitivity constrained to specificities above 95% to ensure that 

the concentration being selected showed high specificity. The antigen 

concentration which showed the greatest sensitivity was then selected as the 

most informative. 

6.3.5 Feature Correlation 

Correlation was assessed using the ‘cor’ function from the R ‘stats’ package 

to determine sources of high positive or negative correlation existing 

between features. 
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6.3.6 Cluster Analysis 

Each feature in the transformed training set for the commercial antigen panel 

was converted to a standard score (by dividing the transformed value from 

the mean of the population, and then dividing by the standard deviation) to 

remove any residual differences in feature scale, then an investigation was 

undertaken using k-means clustering, firstly identifying an optimal number of 

clusters to train to, then after assigning all samples to a cluster, retrieving 

disease class information for the samples to see if the clustering of the data 

results in groups which could be informative about disease status. 

Considering the high influence of no-specific binding observed in the 

uncorrected featureset during principal component analysis, this analysis 

was undertaken only on the vol corrected features, and the features 

converted to a signal-to-vol ratio, in both cases including a single magnitude 

feature determined to be the optimal concentration for each antigen. 

6.4 Results 

6.4.1 Exploration of Distributions 

Uncorrected OD Features 

As is demonstrated in Table 6-1 to Table 6-8, features other than area under 

the curve show high positive skewness, as represented by skewness values 

greater than 1, while area under the curve features show a high negative 

skewness for all antigens, prior to any correction  for non-specific binding. All 

features show high kurtosis, indicating features are highly leptokurtic, 

especially slopemax features. Normality testing also shows that all features 

are significantly non-normally distributed. 
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p53 
Table 6-1: Descriptive statistics for uncorrected optical density values in p53 features. 

 OD od_intercept od_slope od_auc od_slopemax 

median 0.183 0.134 6.730E+05 0.000 3.788E+06 
mean 0.256 0.181 1.030E+06 0.000 1.136E+07 
95% Confidence Interval 0.017 0.011 8.969E+04 0.000 2.633E+06 
Standard Deviation 0.217 0.140 1.179E+06 0.000 3.460E+07 
Coefficient of Variance 0.846 0.774 1.144 -0.942 3.046 
skewness 3.204 2.639 2.905 -2.529 7.735 
skew.2SE1 16.914 13.931 15.339 -13.353 40.840 
kurtosis 13.267 8.339 10.442 10.827 67.824 
kurt.2SE2 35.074 22.047 27.605 28.624 179.311 
Shapiro-Wilk normality statistic 0.654 0.702 0.694 0.790 0.265 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

SOX2 
Table 6-2: Descriptive statistics for uncorrected optical density values in SOX2 features. 

 OD od_intercept od_slope od_auc od_slopemax 

median 0.158 0.123 6.381E+05 0.000 2.375E+06 
mean 0.204 0.160 8.747E+05 0.000 5.060E+06 
95% Confidence Interval 0.011 0.009 7.372E+04 0.000 7.092E+05 
Standard Deviation 0.149 0.120 9.689E+05 0.000 9.321E+06 
Coefficient of Variance 0.729 0.749 1.108 -0.945 1.842 
skewness 3.709 2.878 5.110 -4.208 6.242 
skew.2SE1 19.585 15.193 26.977 -22.214 32.954 
kurtosis 22.874 10.099 39.613 29.310 54.656 
kurt.2SE2 60.473 26.699 104.727 77.488 144.498 
Shapiro-Wilk normality statistic 0.666 0.679 0.600 0.678 0.443 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

CAGE 
Table 6-3: Descriptive statistics for uncorrected optical density values in CAGE features. 

 OD od_intercept od_slope od_auc od_slopemax 

median 0.175 0.126 5.569E+05 0.000 3.009E+06 
mean 0.223 0.165 7.705E+05 0.000 6.195E+06 
95% Confidence Interval 0.011 0.009 6.761E+04 0.000 9.824E+05 
Standard Deviation 0.148 0.118 8.886E+05 0.000 1.291E+07 
Coefficient of Variance 0.666 0.717 1.153 -1.032 2.084 
skewness 2.497 2.802 3.869 -2.101 9.177 
skew.2SE1 13.185 14.791 20.428 -11.092 48.453 
kurtosis 8.245 9.918 22.269 11.389 109.318 
kurt.2SE2 21.799 26.222 58.874 30.108 289.009 
Shapiro-Wilk normality statistic 0.747 0.695 0.661 0.766 0.345 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

NY-ESO-1 
Table 6-4: Descriptive statistics for uncorrected optical density values in NY-ESO-1 features. 

 OD od_intercept od_slope od_auc od_slopemax 

median 0.176 0.128 6.561E+05 0.000 4.069E+06 
mean 0.252 0.184 1.017E+06 0.000 1.443E+07 
95% Confidence Interval 0.020 0.012 1.028E+05 0.000 3.832E+06 
Standard Deviation 0.265 0.162 1.351E+06 0.000 5.036E+07 
Coefficient of Variance 1.051 0.878 1.328 -0.960 3.491 
skewness 4.168 2.982 3.342 -2.107 7.253 
skew.2SE1 22.003 15.743 17.645 -11.125 38.291 
kurtosis 20.308 10.233 13.038 6.606 59.158 
kurt.2SE2 53.688 27.053 34.468 17.465 156.398 
Shapiro-Wilk normality statistic 0.526 0.641 0.626 0.818 0.242 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 
1 skewness divided by 2 Standard Errors – if greater than 1 data is significantly skewed (p<0.05)   
2 kurtosis divided by 2 Standard Errors – if greater than 1 data is significantly skewed (p<0.05)   
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GBU 4-5 
Table 6-5: Descriptive statistics for uncorrected optical density values in GBU 4-5 features. 

 OD od_intercept od_slope od_auc od_slopemax 

median 0.312 0.143 1.937E+06 0.000 6.625E+06 
mean 0.368 0.183 2.290E+06 0.000 1.143E+07 
95% Confidence Interval 0.016 0.010 1.166E+05 0.000 1.650E+06 
Standard Deviation 0.212 0.126 1.532E+06 0.000 2.169E+07 
Coefficient of Variance 0.575 0.690 0.669 -0.617 1.898 
skewness 1.943 2.832 1.389 -1.233 11.625 
skew.2SE1 10.258 14.952 7.334 -6.510 61.378 
kurtosis 6.386 10.521 2.512 2.643 191.844 
kurt.2SE2 16.882 27.815 6.640 6.987 507.188 
Shapiro-Wilk normality statistic 0.846 0.710 0.898 0.926 0.332 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

VOL 
Table 6-6: Descriptive statistics for uncorrected optical density values in VOL features. 

 OD od_intercept od_slope od_auc od_slopemax 

median 0.122 0.119 3.149E+04 0.000 1.432E+06 
mean 0.164 0.157 1.474E+05 0.000 3.183E+06 
95% Confidence Interval 0.009 0.009 5.022E+04 0.000 5.966E+05 
Standard Deviation 0.121 0.118 6.601E+05 0.000 7.841E+06 
Coefficient of Variance 0.735 0.747 4.478 -4.290 2.464 
skewness 2.682 2.964 6.486 -7.487 15.294 
skew.2SE1 14.157 15.648 34.245 -39.528 80.745 
kurtosis 8.852 11.094 57.333 74.799 312.866 
kurt.2SE2 23.401 29.331 151.575 197.749 827.141 
Shapiro-Wilk normality statistic 0.698 0.678 0.471 0.413 0.286 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

MAGE-A4 
Table 6-7: Descriptive statistics for uncorrected optical density values in MAGE-A4 features. 

 OD od_intercept od_slope od_auc od_slopemax 

median 0.198 0.136 4.966E+05 0.000 3.375E+06 
mean 0.252 0.176 7.502E+05 0.000 6.658E+06 
95% Confidence Interval 0.013 0.009 8.113E+04 0.000 8.279E+05 
Standard Deviation 0.176 0.124 1.066E+06 0.000 1.088E+07 
Coefficient of Variance 0.699 0.703 1.421 -1.632 1.634 
skewness 2.634 2.644 2.876 -2.972 5.464 
skew.2SE1 13.905 13.961 15.186 -15.689 28.850 
kurtosis 8.976 8.706 11.849 15.595 40.566 
kurt.2SE2 23.731 23.016 31.325 41.228 107.247 
Shapiro-Wilk normality statistic 0.725 0.711 0.727 0.751 0.493 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

HuD 
Table 6-8: Descriptive statistics for uncorrected optical density values in HuD features. 

 OD od_intercept od_slope od_auc od_slopemax 

median 0.204 0.128 1.100E+06 0.000 3.563E+06 
mean 0.261 0.170 1.390E+06 0.000 6.700E+06 
95% Confidence Interval 0.014 0.010 9.346E+04 0.000 1.075E+06 
Standard Deviation 0.185 0.126 1.228E+06 0.000 1.413E+07 
Coefficient of Variance 0.709 0.738 0.884 -0.747 2.109 
skewness 3.094 2.701 3.290 -2.082 12.439 
skew.2SE1 16.333 14.260 17.371 -10.992 65.676 
kurtosis 14.611 9.128 16.714 8.551 219.742 
kurt.2SE2 38.628 24.132 44.188 22.607 580.942 
Shapiro-Wilk normality statistic 0.710 0.706 0.717 0.841 0.314 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 
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VOL subtracted OD Features 

After correction for non-specific binding by VOL subtraction, the feature 

distributions remain highly non-normal, as shown in Table 6-9 to Table 6-15, 

with all features other than area under the curve retaining high positive 

skewness, while area under the curve features remain highly negatively 

skewed. All features retain high kurtosis, indicating features are highly 

leptokurtic. Normality testing again shows that all features remain 

significantly non-normally distributed. 

 

p53 
Table 6-9: Descriptive statistics for VOL corrected optical density values in p53 features. 

 VCOD vcod_intercept vcod_slope vcod_auc vcod_slopemax 

median 0.046 0.008 5.967E+05 0.000 3.390E+06 
mean 0.094 0.027 8.803E+05 0.000 1.134E+07 
95% Confidence Interval 0.014 0.006 8.151E+04 0.000 2.688E+06 
Standard Deviation 0.178 0.078 1.071E+06 0.000 3.533E+07 
Coefficient of Variance 1.885 2.851 1.217 -1.069 3.115 
skewness 5.008 6.484 3.412 -2.406 7.770 
skew.2SE1 26.440 34.232 18.012 -12.704 41.020 
kurtosis 29.817 50.653 15.150 15.636 68.175 
kurt.2SE2 78.827 133.914 40.052 41.338 180.239 
Shapiro-Wilk normality statistic 0.444 0.350 0.662 0.800 0.265 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

SOX2 
Table 6-10: Descriptive statistics for VOL corrected optical density values in SOX2 features. 

 VCOD vcod_intercept vcod_slope vcod_auc vcod_slopemax 

median 0.026 0.002 5.551E+05 0.000 2.305E+06 
mean 0.045 0.007 7.504E+05 0.000 4.944E+06 
95% Confidence Interval 0.007 0.002 6.863E+04 0.000 7.428E+05 
Standard Deviation 0.094 0.026 9.020E+05 0.000 9.762E+06 
Coefficient of Variance 2.070 3.685 1.202 -1.042 1.975 
skewness 9.673 11.868 5.469 -4.354 6.857 
skew.2SE1 51.070 62.657 28.872 -22.988 36.201 
kurtosis 134.989 202.014 43.157 29.621 62.965 
kurt.2SE2 356.878 534.075 114.096 78.311 166.463 
Shapiro-Wilk normality statistic 0.365 0.353 0.565 0.663 0.414 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

CAGE 
Table 6-11: Descriptive statistics for VOL corrected optical density values in CAGE features. 

 VCOD vcod_intercept vcod_slope vcod_auc vcod_slopemax 

median 0.041 0.006 4.443E+05 0.000 2.803E+06 
mean 0.062 0.011 6.430E+05 0.000 5.820E+06 
95% Confidence Interval 0.007 0.002 6.128E+04 0.000 9.854E+05 
Standard Deviation 0.093 0.019 8.054E+05 0.000 1.295E+07 
Coefficient of Variance 1.504 1.789 1.253 -1.172 2.225 
skewness 6.058 5.719 4.829 -2.403 10.186 
skew.2SE1 31.983 30.192 25.498 -12.688 53.779 
kurtosis 50.045 44.060 33.466 13.544 133.777 
kurt.2SE2 132.307 116.484 88.475 35.807 353.673 
Shapiro-Wilk normality statistic 0.490 0.507 0.591 0.776 0.323 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 
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NY-ESO-1 
Table 6-12: Descriptive statistics for VOL corrected optical density values in NY-ESO-1 features. 

 VCOD vcod_intercept vcod_slope vcod_auc vcod_slopemax 

median 0.039 0.007 5.629E+05 0.000 4.588E+06 
mean 0.091 0.030 8.916E+05 0.000 1.457E+07 
95% Confidence Interval 0.018 0.008 9.632E+04 0.000 3.830E+06 
Standard Deviation 0.237 0.109 1.266E+06 0.000 5.034E+07 
Coefficient of Variance 2.610 3.699 1.420 -0.989 3.455 
skewness 5.625 6.339 3.889 -1.950 7.236 
skew.2SE1 29.698 33.469 20.534 -10.295 38.204 
kurtosis 32.767 42.091 17.680 5.339 58.630 
kurt.2SE2 86.628 111.277 46.742 14.116 155.003 
Shapiro-Wilk normality statistic 0.307 0.252 0.570 0.836 0.239 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

GBU 4-5 
Table 6-13: Descriptive statistics for VOL corrected optical density values in GBU 4-5 features. 

 VCOD vcod_intercept vcod_slope vcod_auc vcod_slopemax 

median 0.158 0.018 1.814E+06 0.000 6.717E+06 
mean 0.204 0.029 2.117E+06 0.000 1.065E+07 
95% Confidence Interval 0.013 0.004 1.036E+05 0.000 1.585E+06 
Standard Deviation 0.172 0.050 1.362E+06 0.000 2.083E+07 
Coefficient of Variance 0.842 1.732 0.643 -0.658 1.956 
skewness 2.401 9.606 1.255 -0.670 12.909 
skew.2SE1 12.677 50.717 6.624 -3.536 68.156 
kurtosis 10.400 143.280 1.654 2.507 226.169 
kurt.2SE2 27.495 378.796 4.372 6.628 597.934 
Shapiro-Wilk normality statistic 0.803 0.443 0.907 0.947 0.298 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

MAGE-A4 
Table 6-14: Descriptive statistics for VOL corrected optical density values in MAGE-A4 features. 

 VCOD vcod_intercept vcod_slope vcod_auc vcod_slopemax 

median 0.056 0.012 4.307E+05 0.000 3.460E+06 
mean 0.090 0.022 6.211E+05 0.000 6.805E+06 
95% Confidence Interval 0.009 0.003 6.211E+04 0.000 8.382E+05 
Standard Deviation 0.120 0.035 8.163E+05 0.000 1.102E+07 
Coefficient of Variance 1.331 1.580 1.314 -2.035 1.619 
skewness 3.611 4.982 3.293 -1.757 5.463 
skew.2SE1 19.067 26.305 17.384 -9.276 28.844 
kurtosis 15.795 34.114 14.840 23.303 40.570 
kurt.2SE2 41.758 90.190 39.232 61.608 107.258 
Shapiro-Wilk normality statistic 0.606 0.537 0.693 0.746 0.501 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

HuD 
Table 6-15: Descriptive statistics for VOL corrected optical density values in HuD features. 

 VCOD vcod_intercept vcod_slope vcod_auc vcod_slopemax 

median 0.067 0.008 1.017E+06 0.000 4.188E+06 
mean 0.097 0.015 1.243E+06 0.000 7.407E+06 
95% Confidence Interval 0.010 0.002 7.830E+04 0.000 1.065E+06 
Standard Deviation 0.128 0.031 1.029E+06 0.000 1.399E+07 
Coefficient of Variance 1.315 2.080 0.828 -0.725 1.889 
skewness 6.194 7.574 3.717 -1.434 12.244 
skew.2SE1 32.704 39.986 19.625 -7.573 64.646 
kurtosis 54.477 84.483 23.877 5.060 216.203 
kurt.2SE2 144.024 223.351 63.125 13.376 571.587 
Shapiro-Wilk normality statistic 0.494 0.477 0.717 0.903 0.345 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 
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Signal to Vol Ratio Features 

After correction for non-specific binding by re-expression of values as a ratio 

of specific to non-specific binding, the feature distributions again remain 

highly non-normal. Table 6-16 to Table 6-22 show that all features other than 

area under the curve still show high positive skewness, while area under the 

curve features are again highly negatively skewed. All features retain high 

kurtosis, indicating features are still highly leptokurtic after correction. 

Normality testing once more shows that all features remain significantly non-

normally distributed. 

p53 
Table 6-16: Descriptive statistics for signal to VOL ratio values in p53 features. 

 STVR stvr_intercept stvr_slope stvr_auc stvr_slopemax 

median 1.382 1.059 4.578E+06 0.000 4.214E+07 
mean 1.727 1.205 6.789E+06 0.000 1.084E+08 
95% Confidence Interval 0.115 0.054 7.019E+05 0.000 2.402E+07 
Standard Deviation 1.509 0.704 9.225E+06 0.000 3.157E+08 
Coefficient of Variance 0.874 0.584 1.359 -1.294 2.914 
skewness 6.158 6.961 3.972 -2.807 8.155 
skew.2SE1 32.511 36.751 20.971 -14.822 43.054 
kurtosis 49.453 56.386 24.361 15.462 78.623 
kurt.2SE2 130.741 149.070 64.405 40.877 207.858 
Shapiro-Wilk normality statistic 0.412 0.324 0.648 0.789 0.267 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

SOX2 
Table 6-17: Descriptive statistics for signal to VOL ratio values in SOX2 features. 

 STVR stvr_intercept stvr_slope stvr_auc stvr_slopemax 

median 1.198 1.001 4.332E+06 0.000 3.254E+07 
mean 1.365 1.036 5.909E+06 0.000 5.606E+07 
95% Confidence Interval 0.068 0.018 5.809E+05 0.000 7.520E+06 
Standard Deviation 0.898 0.231 7.635E+06 0.000 9.883E+07 
Coefficient of Variance 0.658 0.223 1.292 -1.101 1.763 
skewness 8.625 10.056 5.457 -4.210 9.462 
skew.2SE1 45.538 53.093 28.811 -22.228 49.954 
kurtosis 105.197 155.262 48.210 35.678 132.170 
kurt.2SE2 278.114 410.475 127.455 94.325 349.425 
Shapiro-Wilk normality statistic 0.396 0.406 0.608 0.727 0.406 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

CAGE 
Table 6-18: Descriptive statistics for signal to VOL ratio values in CAGE features. 

 STVR stvr_intercept stvr_slope stvr_auc stvr_slopemax 

median 1.307 1.038 3.638E+06 0.000 4.002E+07 
mean 1.489 1.067 5.023E+06 0.000 6.411E+07 
95% Confidence Interval 0.067 0.014 5.627E+05 0.000 9.173E+06 
Standard Deviation 0.886 0.181 7.396E+06 0.000 1.206E+08 
Coefficient of Variance 0.595 0.170 1.472 -1.390 1.880 
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 STVR stvr_intercept stvr_slope stvr_auc stvr_slopemax 
skewness 7.271 6.649 6.304 -4.339 10.179 
skew.2SE1 38.389 35.102 33.284 -22.907 53.744 
kurtosis 70.277 63.387 60.051 38.499 134.808 
kurt.2SE2 185.794 167.579 158.760 101.783 356.400 
Shapiro-Wilk normality statistic 0.442 0.508 0.536 0.713 0.347 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

NY-ESO-1 
Table 6-19: Descriptive statistics for signal to VOL ratio values in NY-ESO-1 features. 

 STVR stvr_intercept stvr_slope stvr_auc stvr_slopemax 

median 1.302 1.055 4.410E+06 0.000 5.585E+07 
mean 1.711 1.217 6.833E+06 0.000 1.401E+08 
95% Confidence Interval 0.157 0.073 8.507E+05 0.000 3.621E+07 
Standard Deviation 2.069 0.955 1.118E+07 0.000 4.759E+08 
Coefficient of Variance 1.209 0.785 1.636 -1.302 3.396 
skewness 6.733 7.844 6.088 -1.935 9.835 
skew.2SE1 35.550 41.416 32.142 -10.215 51.928 
kurtosis 51.492 75.851 51.020 14.969 124.124 
kurt.2SE2 136.133 200.530 134.884 39.575 328.153 
Shapiro-Wilk normality statistic 0.291 0.233 0.498 0.759 0.220 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

GBU 4-5 
Table 6-20: Descriptive statistics for signal to VOL ratio values in GBU 4-5 features. 

 STVR stvr_intercept stvr_slope stvr_auc stvr_slopemax 

median 2.186 1.130 1.293E+07 0.000 7.379E+07 
mean 2.618 1.225 1.616E+07 0.000 1.073E+08 
95% Confidence Interval 0.111 0.032 9.448E+05 0.000 1.443E+07 
Standard Deviation 1.452 0.421 1.242E+07 0.000 1.896E+08 
Coefficient of Variance 0.555 0.344 0.769 -0.910 1.767 
skewness 1.926 7.644 1.328 -0.688 10.913 
skew.2SE1 10.168 40.359 7.009 -3.635 57.618 
kurtosis 4.907 94.231 2.797 3.575 152.011 
kurt.2SE2 12.972 249.124 7.395 9.452 401.880 
Shapiro-Wilk normality statistic 0.826 0.512 0.908 0.934 0.316 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

MAGE-A4 
Table 6-21: Descriptive statistics for signal to VOL ratio values in MAGE-A4 features. 

 STVR stvr_intercept stvr_slope stvr_auc stvr_slopemax 

median 1.469 1.093 3.413E+06 0.000 4.098E+07 
mean 1.684 1.150 4.764E+06 0.000 6.542E+07 
95% Confidence Interval 0.071 0.018 5.042E+05 0.000 5.918E+06 
Standard Deviation 0.935 0.238 6.627E+06 0.000 7.778E+07 
Coefficient of Variance 0.555 0.207 1.391 -2.329 1.189 
skewness 4.805 3.664 4.032 -3.098 3.369 
skew.2SE1 25.371 19.346 21.289 -16.355 17.788 
kurtosis 34.298 19.269 26.170 26.735 16.045 
kurt.2SE2 90.675 50.942 69.187 70.681 42.418 
Shapiro-Wilk normality statistic 0.608 0.676 0.687 0.763 0.663 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

HuD 
Table 6-22: Descriptive statistics for signal to VOL ratio values in HuD features. 

 STVR stvr_intercept stvr_slope stvr_auc stvr_slopemax 

median 1.525 1.057 7.541E+06 0.000 4.463E+07 
mean 1.718 1.098 9.361E+06 0.000 6.677E+07 
95% Confidence Interval 0.075 0.022 6.461E+05 0.000 7.556E+06 
Standard Deviation 0.983 0.291 8.491E+06 0.000 9.931E+07 
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 STVR stvr_intercept stvr_slope stvr_auc stvr_slopemax 
Coefficient of Variance 0.572 0.265 0.907 -0.891 1.487 
skewness 8.136 14.553 3.579 -1.754 8.400 
skew.2SE1 42.953 76.837 18.893 -9.258 44.347 
kurtosis 98.008 289.688 22.310 6.013 99.454 
kurt.2SE2 259.108 765.863 58.981 15.897 262.933 
Shapiro-Wilk normality statistic 0.461 0.351 0.737 0.885 0.435 
Shapiro-Wilk test p-value 0.000 0.000 0.000 0.000 0.000 

 

 

6.4.2 Transformation Techniques 

For each feature type, all transformations were undertaken (see appendix 6A 

for full results), and transformation that best transformed the antigens 

explored was identified by calculating the mean Pearson/df ratio over all the 

antigens explored. This transformation was then applied across all antigens 

for each feature. In the case of log and square root features, the maximum 

value of ‘a’ across the features was identified in order to apply the 

transformation to additional datasets, similarly in the case of box cox and 

yeo-johnson transformed features, the mean value of lambda across the 

antigens was retained for transforming additional datasets. 

Table 6-23: Selected transformation for each feature. 

Feature Chosen Transform Max(a) mean(lambda) 

OD boxcox  -0.52 

od_intercept boxcox  -0.69 

od_slope log_x 1839250.22  

od_auc arcsinh_x   

od_slopemax log_x 411764.71  

VCOD log_x 0.00  

vcod_intercept log_x 0.03  

vcod_slope log_x 1005852.14  

vcod_auc arcsinh_x   

vcod_slopemax yeojohnson  0.17 

STVR yeojohnson  -1.98 

stvr_intercept yeojohnson  -4.76 

stvr_slope log_x 13639735.04  

stvr_auc arcsinh_x   

stvr_slopemax log_x 1573220.86  
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All features for the dataset were then transformed according to the selected 

transformations summarised above, with listed a and lambda values as 

relevant, prior to analysis with unsupervised learning techniques.  

6.4.3 Principal Component Analysis on Full Titration Curve Data 

Unadjusted OD Data 

For the commercial antigens, the first component accounts for 76.7% of the 

variance observed in the dataset, compared to only 7.1% accounted for by 

the second component. Examination of the first component loadings 

highlights that the first component is influenced primarily by the lower 

concentrations and 0nM values, especially compared to the second 

component which shows higher contributions from the specific binding 

observed at the top end of the concentration ranges. This would suggest that 

the uncorrected data is being heavily influenced by non-specific binding in 

the assay, and correction is necessary to reduce this influence prior to 

modelling. 

 
Figure 6-1: Scree plot showing the contribution of the first 10 principal dimensions to the data variance in the 
EarlyCDT®-Lung commercial antigen panel. 
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Table 6-24: PCA Feature Loadings for first 10 principal dimensions – unadjusted OD data for EarlyCDT®-
Lung commercial antigen panel. 

Feature 
Dim.

1 
Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9 

Dim.1
0 

p53_160 1.156 6.411 
13.97

2 
1.057 8.890 0.415 0.017 0.235 0.363 2.807 

p53_50 1.669 2.683 
12.86

2 
2.139 7.804 0.100 0.000 0.351 0.592 0.001 

p53_16 2.003 0.320 9.834 1.690 7.521 0.099 0.044 0.258 0.756 1.219 
p53_5 2.229 0.020 5.988 0.914 5.048 0.378 0.065 0.067 0.210 1.710 
p53_1.6 2.316 0.569 3.046 0.246 2.877 0.541 0.152 0.013 0.115 0.356 
p53_0 2.398 1.479 0.099 0.401 0.086 0.031 0.109 0.014 1.632 2.012 

SOX_2_160 1.469 3.662 1.310 0.029 1.391 
21.14

4 
1.263 

12.84
1 

0.007 1.275 

SOX_2_50 1.990 0.395 0.323 0.378 1.075 
13.87

9 
0.808 

14.98
6 

0.418 0.680 

SOX_2_16 2.311 0.202 0.183 0.024 0.507 5.890 1.062 7.845 0.003 0.272 
SOX_2_5 2.444 0.790 0.099 0.054 0.198 1.621 0.524 2.755 0.413 0.007 
SOX_2_1.6 2.461 1.494 0.008 0.193 0.030 0.465 0.156 0.346 0.653 0.402 
SOX_2_0 2.464 1.634 0.001 0.313 0.002 0.028 0.018 0.006 1.332 1.763 

CAGE_160 1.543 3.142 0.178 0.249 1.700 2.857 
28.32

4 
9.080 0.464 0.351 

CAGE_50 1.956 0.966 0.035 0.152 1.456 2.228 
21.72

2 
6.954 0.109 1.534 

CAGE_16 2.410 0.206 0.003 0.003 0.626 1.148 6.531 2.349 0.097 1.018 
CAGE_5 2.456 0.703 0.002 0.054 0.282 0.843 1.609 0.734 0.333 0.041 
CAGE_1.6 2.440 1.513 0.002 0.202 0.020 0.203 0.124 0.031 0.410 0.051 
CAGE_0 2.469 1.710 0.009 0.230 0.007 0.068 0.037 0.066 0.975 1.327 
NY_ESO_1_16
0 

1.143 6.876 
13.82

2 
5.885 2.410 0.741 0.102 0.448 0.156 4.651 

NY_ESO_1_50 1.712 2.001 
11.16

6 
9.574 1.213 0.785 0.015 0.819 0.847 0.021 

NY_ESO_1_16 2.037 0.001 7.307 8.614 0.864 1.339 0.003 1.236 0.144 1.510 
NY_ESO_1_5 2.144 0.137 6.149 5.455 0.899 1.609 0.063 0.550 0.031 0.633 
NY_ESO_1_1.6 2.260 0.525 3.963 2.120 0.792 1.289 0.212 0.487 0.825 0.001 
NY_ESO_1_0 2.414 1.983 0.000 0.173 0.001 0.059 0.112 0.144 0.689 1.252 

GBU_4_5_160 0.669 
11.47

3 
1.167 

18.85
7 

2.203 3.165 1.613 0.015 6.295 0.240 

GBU_4_5_50 1.095 9.081 1.896 
17.11

8 
1.625 1.904 0.494 0.007 0.283 1.041 

GBU_4_5_16 1.872 2.541 1.287 9.794 0.536 0.432 0.017 0.176 8.365 3.877 
GBU_4_5_5 2.367 0.003 0.465 4.284 0.034 0.267 0.000 0.212 4.014 1.933 
GBU_4_5_1.6 2.469 0.526 0.139 1.845 0.016 0.177 0.006 0.178 0.525 0.241 
GBU_4_5_0 2.422 1.773 0.003 0.391 0.003 0.145 0.127 0.040 0.803 1.507 

VOL_160 1.962 1.357 0.192 0.262 2.502 0.004 0.204 0.851 
22.86

0 
27.479 

VOL_50 2.350 0.044 0.017 0.127 1.725 0.411 0.320 0.700 
11.87

9 
8.692 

VOL_16 2.557 0.666 0.010 0.188 0.153 0.023 0.000 0.113 1.198 0.247 
VOL_5 2.531 1.327 0.009 0.308 0.031 0.011 0.046 0.019 0.031 0.350 
VOL_1.6 2.459 1.629 0.001 0.422 0.000 0.049 0.071 0.014 0.123 0.319 
VOL_0 2.419 1.794 0.004 0.331 0.011 0.136 0.107 0.000 0.908 1.675 

MAGE_A4_160 1.137 6.432 1.503 1.566 
13.59

2 
4.394 

13.35
8 

1.351 4.845 0.589 

MAGE_A4_50 1.522 4.050 1.446 1.951 
15.42

1 
1.359 9.113 0.866 0.046 0.271 

MAGE_A4_16 2.128 0.520 0.902 1.453 8.035 0.110 3.107 0.036 3.672 7.121 
MAGE_A4_5 2.486 0.250 0.215 0.072 1.926 0.123 0.880 0.017 0.760 4.457 
MAGE_A4_1.6 2.531 1.031 0.056 0.033 0.546 0.121 0.259 0.003 0.049 0.518 
MAGE_A4_0 2.456 1.779 0.021 0.223 0.012 0.131 0.015 0.021 0.591 0.184 

HuD_160 1.218 7.478 0.180 0.077 1.827 9.098 2.318 
11.56

8 
18.25

3 
0.637 

HuD_50 1.753 3.198 0.001 0.045 2.687 
12.26

2 
3.588 

11.00
7 

0.443 0.505 

HuD_16 2.274 0.037 0.023 0.042 1.101 6.141 0.953 7.369 0.827 8.036 
HuD_5 2.479 0.683 0.040 0.037 0.229 1.401 0.162 1.983 0.022 3.262 
HuD_1.6 2.491 1.309 0.001 0.205 0.063 0.315 0.034 0.724 0.397 0.443 
HuD_0 2.457 1.598 0.060 0.222 0.021 0.059 0.138 0.114 1.236 1.482 
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The influence of non-specific binding evident in the first principal component 

in these analyses confirms a need for correction methods to reduce or 

remove the effect of non-specific binding prior to modelling on these 

features. Two methods of correction for non-specific binding have been 

applied to the data, as described previously, and are explored in the 

following analyses. 

VOL-Corrected OD Data 

After correction for non-specific binding by subtraction of VOL signal, the first 

component accounts for 19.9% of the variance observed in the dataset, 

compared to 10.3% accounted for by the second component. The lower 

proportion of variance in the first principal component suggests that the 

impact of non-specific binding has been reduced after VOL subtraction. 

 
Figure 6-2: Scree plot showing the contribution of the first 10 principal dimensions to the data variance in the 
EarlyCDT®-Lung commercial antigen panel after VOL subtraction. 

Table 6-25: PCA Feature Loadings for first 10 principal dimensions – VOL subtracted OD data for EarlyCDT®-
Lung commercial antigen panel. 

 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9 Dim.10 

p53_160 4.691 1.532 1.098 0.068 5.706 0.000 4.806 0.271 3.139 0.646 
p53_50 5.166 0.351 0.014 0.018 11.149 1.361 0.574 0.520 3.582 0.047 
p53_16 4.028 0.045 1.017 0.387 11.465 2.740 0.057 3.025 1.393 0.205 
p53_5 3.106 1.559 0.916 0.024 12.714 5.604 0.295 0.702 1.577 0.189 
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 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9 Dim.10 
p53_1.6 1.988 3.188 0.592 0.160 6.062 8.028 4.909 0.092 0.171 1.351 
p53_0 0.509 6.923 3.398 4.515 0.065 0.089 0.043 0.000 0.692 0.937 
SOX_2_160 2.376 1.790 8.345 0.413 2.490 0.079 2.877 2.771 1.301 0.195 
SOX_2_50 2.291 2.438 7.347 0.774 0.004 0.880 0.003 3.580 2.416 0.299 
SOX_2_16 1.829 0.370 4.964 0.279 0.288 2.484 1.153 2.779 14.851 1.809 
SOX_2_5 1.587 0.215 1.632 0.414 0.078 3.940 5.049 6.044 9.228 4.192 
SOX_2_1.6 0.564 4.198 0.847 3.787 0.852 5.737 2.970 0.026 9.338 0.310 
SOX_2_0 0.402 5.915 3.176 5.760 0.069 2.873 0.198 0.111 0.720 0.295 
CAGE_160 2.603 1.588 4.916 1.665 0.529 1.032 0.511 6.832 0.029 8.343 
CAGE_50 3.564 1.471 3.131 0.670 2.611 0.376 0.817 10.407 0.004 2.948 
CAGE_16 2.191 0.195 0.279 1.018 1.880 0.125 6.733 11.663 4.003 1.729 
CAGE_5 1.960 0.483 0.001 1.504 1.946 0.000 13.849 6.845 1.923 1.101 
CAGE_1.6 0.618 3.952 0.080 2.585 0.663 0.888 1.808 9.309 0.907 0.837 
CAGE_0 0.474 6.246 2.715 5.111 0.251 3.163 0.048 0.003 0.014 0.086 
NY_ESO_1_160 4.284 2.104 3.001 0.000 4.652 0.688 0.039 0.401 3.921 2.077 
NY_ESO_1_50 4.962 0.836 1.958 0.860 1.881 1.141 1.697 0.255 7.252 2.744 
NY_ESO_1_16 4.429 0.194 0.319 3.581 2.749 0.914 5.212 0.048 5.670 2.267 
NY_ESO_1_5 3.285 1.670 0.043 4.661 1.320 0.326 4.537 0.002 7.323 3.683 
NY_ESO_1_1.6 1.645 3.861 0.000 4.780 5.179 0.303 0.493 1.539 4.493 2.484 
NY_ESO_1_0 0.338 6.178 1.397 1.192 0.084 3.775 0.134 0.098 0.352 0.066 
GBU_4_5_160 3.211 1.965 0.052 8.945 3.879 1.490 1.424 2.972 0.021 0.172 
GBU_4_5_50 3.188 1.275 1.340 9.755 2.828 2.740 0.124 2.300 0.077 0.873 
GBU_4_5_16 3.096 0.359 3.351 9.115 4.096 2.582 2.667 0.360 0.197 0.343 
GBU_4_5_5 2.681 0.075 5.348 3.428 2.043 2.984 4.303 0.062 0.010 1.497 
GBU_4_5_1.6 1.525 2.403 2.221 0.341 3.286 7.975 0.946 3.131 0.131 0.105 
GBU_4_5_0 0.145 3.446 1.790 5.063 0.005 0.948 0.013 0.233 0.011 1.905 
MAGE_A4_160 2.578 3.380 0.173 0.260 1.111 3.745 4.516 1.216 1.266 8.398 
MAGE_A4_50 3.031 2.874 2.804 0.463 0.777 5.219 1.075 0.936 3.199 8.801 
MAGE_A4_16 1.982 0.466 9.871 0.048 0.019 7.785 0.003 0.217 5.763 1.974 
MAGE_A4_5 2.483 0.256 8.630 0.992 0.515 6.651 0.089 0.488 1.797 0.710 
MAGE_A4_1.6 1.131 2.846 4.639 3.735 0.254 2.493 6.764 1.126 1.874 0.656 
MAGE_A4_0 0.375 5.864 1.478 2.677 0.737 3.377 0.042 0.039 0.518 0.402 
HuD_160 4.158 1.890 0.203 0.779 1.027 0.145 7.710 0.193 0.024 6.503 
HuD_50 5.000 0.551 0.332 0.014 0.988 0.540 1.225 2.911 0.017 9.664 
HuD_16 2.744 0.195 2.908 0.001 1.266 1.464 1.214 9.750 0.467 11.470 
HuD_5 2.758 2.763 2.045 1.543 0.032 0.617 0.831 6.069 0.013 6.969 
HuD_1.6 0.721 5.284 0.652 5.008 2.064 0.259 7.174 0.118 0.028 0.720 
HuD_0 0.302 6.805 0.974 3.607 0.387 2.438 1.070 0.559 0.290 0.001 

 

Examination of the feature loadings in Table 6-25 confirm that correction 

through subtraction of VOL has reduced the impact of non-specific binding, 

with the first principal component loadings now being spread across the 

upper concentrations of all the specific antigen features. The second 

principal component is now showing high loadings from the 0nM 

concentrations of each of the specific antigen biomarkers, suggesting that 

there may be non-specific binding present above that removed by VOL 

subtraction which is still having a large influence on the variance of the 

dataset. 
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Figure 6-3: Plot of individuals by their component scores on the first two principal dimensions on VOL 
corrected data. 

Examination of distribution of samples by their first two principal dimensions 

in this analysis of VOL corrected data shows very little separation of samples 

by their disease class, indicating that the primary sources of variance in the 

dataset are not related to disease class. 

 

Signal To VOL Ratio Data 

For the commercial antigens, after correction through re-expression as a 

ratio of specific to non-specific binding, the first component accounts for 

22.4% of the variance observed in the dataset, compared to 12.1% 

accounted for by the second component. Examination of the component 

loadings in Table 6-26 highlights that the first component is now divided 

amongst the specific antigen features, while – similarly to the previous 

analysis of VOL subtracted data – the second principal component is heavily 

influenced by the 0nM concentration features, again suggesting that the data 

still shows a degree of variance that is attributable to non-specific binding. 
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Figure 6-4: Scree plot showing the contribution of the first 10 principal dimensions to the data variance in the 
commercial antigen panel after re-expression as a Signal To VOL Ratio. 

 
Table 6-26: PCA Feature Loadings for first 10 principal dimensions – Signal To VOL Ratio data for the 
commercial antigen panel. 

 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9 Dim.10 

p53_160 5.235 0.477 1.348 0.289 6.887 0.002 0.584 1.436 0.841 0.534 
p53_50 4.622 0.061 0.059 3.029 8.923 1.655 0.204 1.430 1.883 0.001 
p53_16 2.851 0.187 1.335 6.658 8.563 2.374 1.771 2.268 0.875 0.045 
p53_5 2.004 0.570 2.429 5.809 9.111 3.670 1.883 1.509 0.846 0.089 
p53_1.6 1.136 1.767 5.568 0.011 13.482 0.029 0.335 0.732 2.573 0.005 
p53_0 0.271 10.639 2.780 0.043 0.113 0.012 0.958 0.029 0.005 0.172 
SOX_2_160 3.774 1.031 3.453 4.220 0.670 1.601 0.021 0.766 3.707 0.001 
SOX_2_50 3.864 0.906 1.477 2.242 1.631 0.131 3.138 0.001 5.096 2.742 
SOX_2_16 2.130 0.087 0.090 1.390 0.386 0.308 10.761 0.879 14.233 4.794 
SOX_2_5 1.709 0.021 0.031 0.266 0.218 0.695 12.318 1.382 12.517 4.183 
SOX_2_1.6 0.406 1.072 4.767 8.841 2.912 4.159 1.299 0.566 2.168 0.433 
SOX_2_0 0.209 11.387 3.591 0.022 0.000 0.014 0.022 0.461 0.115 0.001 
CAGE_160 3.872 1.024 2.598 2.580 0.708 0.009 1.963 3.796 0.461 4.497 
CAGE_50 4.569 0.674 0.424 0.415 0.239 1.639 0.094 11.122 2.042 2.924 
CAGE_16 2.223 0.131 0.231 0.072 0.270 4.036 0.169 22.787 0.601 4.408 
CAGE_5 1.439 0.014 1.100 0.011 0.601 4.701 0.563 18.729 0.268 3.389 
CAGE_1.6 0.471 1.649 4.655 5.219 1.374 2.230 0.060 2.879 1.401 0.700 
CAGE_0 0.216 12.688 3.153 0.026 0.000 0.025 0.147 0.016 0.021 0.000 
NY_ESO_1_160 5.329 0.583 2.985 3.061 0.595 0.132 0.439 2.426 0.335 0.019 
NY_ESO_1_50 5.392 0.297 0.287 2.512 2.345 3.432 0.002 3.110 1.251 0.413 
NY_ESO_1_16 3.015 0.040 0.652 3.406 6.400 10.574 0.001 3.776 0.810 0.180 
NY_ESO_1_5 2.144 0.312 1.503 3.217 6.502 10.996 0.004 3.710 1.190 0.829 
NY_ESO_1_1.6 1.327 1.037 3.611 10.562 1.818 1.088 0.100 2.956 3.638 1.111 
NY_ESO_1_0 0.072 11.173 2.870 0.006 0.059 0.065 0.566 0.045 0.023 0.066 
GBU_4_5_160 4.706 0.763 2.545 0.047 0.307 8.537 0.144 0.007 2.420 0.117 
GBU_4_5_50 4.449 0.381 0.381 1.999 1.924 5.882 2.762 0.039 4.367 0.762 
GBU_4_5_16 2.757 0.001 0.148 5.232 6.681 4.491 6.955 0.044 1.862 0.158 
GBU_4_5_5 1.564 0.058 1.634 5.054 7.715 2.957 8.016 0.071 0.951 0.004 
GBU_4_5_1.6 0.590 2.014 5.913 0.368 0.986 9.695 2.578 0.125 2.842 0.000 
GBU_4_5_0 0.213 8.449 2.520 0.190 0.089 0.017 0.000 0.272 0.090 0.577 
MAGE_A4_160 4.815 0.884 0.684 0.131 0.254 1.224 9.302 0.402 0.013 5.047 
MAGE_A4_50 4.173 0.421 0.109 2.651 0.000 0.121 7.380 1.175 0.014 10.763 
MAGE_A4_16 2.125 0.007 3.118 5.475 1.436 0.173 7.880 1.093 2.603 6.822 
MAGE_A4_5 1.224 0.182 4.646 3.635 0.802 0.876 7.018 1.039 3.853 3.408 
MAGE_A4_1.6 0.513 2.056 9.904 1.078 0.265 2.618 5.654 0.787 0.037 1.460 
MAGE_A4_0 0.183 11.036 2.452 0.278 0.024 0.210 0.386 0.790 0.071 0.017 
HuD_160 5.265 0.765 2.400 0.195 0.113 3.872 2.208 0.668 0.465 2.913 
HuD_50 5.270 0.100 0.004 0.583 0.883 0.789 0.482 1.209 2.694 6.404 
HuD_16 2.178 0.298 1.261 2.486 3.373 0.019 0.101 2.565 9.238 11.440 
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 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9 Dim.10 
HuD_5 1.260 0.769 2.005 1.674 0.811 0.155 0.096 2.016 10.548 15.666 
HuD_1.6 0.253 1.927 7.026 4.849 0.344 4.789 1.342 0.825 1.025 2.905 
HuD_0 0.183 12.063 2.252 0.166 0.186 0.000 0.293 0.063 0.010 0.001 

 

 
Figure 6-5: Plot of individuals by their component scores on the first two principal dimensions on Signal to Vol 
Ratio expressed data. 

Once again, plotting individuals by their component scores on the first two 

principal dimensions as shown in Figure 6-5 shows very little separation 

between cancer and normal disease class. 
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6.4.4 Identification of most informative antigen concentration feature 

 
Figure 6-6: Maximum sensitivities returned from cutpoint optimisation for specificities constrained to >=95% 
for VCOD features.  

 

 
Figure 6-7: Maximum sensitivities returned from cutpoint optimisation for specificities constrained to >=95% 
for STVR features. 

  

 
Table 6-27: Concentrations selected for each Antigen for VCOD and STVR features 

Antigen 
VCOD concentration showing 

greatest constrained 
sensitivity 

STVR concentration showing 
greatest constrained 

sensitivity 
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p53 1.6 1.6 
SOX_2 50 50 
CAGE 16 1.6 
NY_ESO_1 5 5 
GBU_4_5 1.6 50 
MAGE_A4 5 16 
HuD 160 1.6 

 

6.4.5 Principal Component Analysis on Curve Characteristic Features 

Curve Characteristic Features from VOL-Corrected OD Data 

Examining the features derived from the curves based on VOL subtracted 

data, the first component accounts for 19.3% of the variance observed in the 

dataset, compared to 12.6% accounted for by the second component. 

Examination of the component loadings in Table 6-28 show the first principal 

dimension shows high contribution from NY-ESO-1 and HuD derived 

features, while the second principal dimension has high loading contributions 

from MAGE-A4 features.  

 
Figure 6-8: Scree plot showing the contribution of the first 10 principal dimensions to the data variance in 
curve characteristics derived from VOL corrected OD values for the commercial antigen panel. 
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Table 6-28: PCA Feature Loadings for first 10 principal dimensions – Curve characteristics derived from VOL 
corrected OD values for the commercial antigen panel. 

 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9 
Dim.1

0 

VCOD_p53 1.923 2.986 0.333 4.137 4.708 4.223 9.680 0.062 0.110 3.992 
VCOD_SOX_2 2.153 1.369 0.028 6.597 6.289 1.249 0.730 4.457 2.162 3.987 

VCOD_CAGE 2.454 0.403 
10.35

9 
0.411 0.332 2.440 3.725 0.047 1.085 4.267 

VCOD_NY_ESO_
1 

3.746 2.751 0.368 5.393 3.232 0.537 6.850 0.234 0.018 0.018 

VCOD_GBU_4_5 2.419 1.719 5.777 1.439 3.699 3.828 0.343 0.036 0.120 8.891 

VCOD_MAGE_A4 2.341 4.055 0.042 0.996 0.291 
13.12

6 
0.224 3.007 3.254 3.272 

VCOD_HuD 5.303 2.220 0.917 0.657 1.254 1.625 1.301 
10.39

5 
0.465 0.236 

vcod_intercept_p5
3 

1.891 3.801 0.162 4.124 5.236 4.006 
10.46

1 
0.158 0.146 0.255 

vcod_intercept_S
OX_2 

0.830 0.805 0.026 1.792 5.184 2.438 0.778 1.411 
22.11

3 
0.971 

vcod_intercept_C
AGE 

2.218 2.921 8.915 0.159 0.161 3.785 5.927 0.240 2.426 3.623 

vcod_intercept_N
Y_ESO_1 

3.002 2.566 1.692 8.797 4.853 0.652 6.974 0.314 0.420 0.444 

vcod_intercept_G
BU_4_5 

2.906 0.961 6.999 2.063 8.406 2.892 2.233 1.977 0.195 1.383 

vcod_intercept_M
AGE_A4 

2.298 5.371 0.230 2.169 0.207 
11.87

2 
1.235 5.487 0.950 0.924 

vcod_intercept_H
uD 

1.602 6.449 1.918 0.895 0.603 0.658 2.148 5.530 0.365 3.583 

vcod_slope_p53 0.601 4.094 0.588 0.245 2.842 0.172 3.397 0.947 0.751 7.510 
vcod_slope_SOX_
2 

3.207 2.579 1.647 
11.09

5 
4.239 0.290 1.431 4.418 5.139 0.375 

vcod_slope_CAG
E 

3.328 0.906 
15.15

1 
0.257 0.363 2.163 1.967 0.338 7.408 1.131 

vcod_slope_NY_E
SO_1 

5.281 2.355 0.001 3.126 5.656 0.427 5.153 0.017 0.101 1.382 

vcod_slope_GBU
_4_5 

4.134 4.107 2.569 3.024 4.545 0.983 0.234 3.665 0.305 3.587 

vcod_slope_MAG
E_A4 

2.933 1.592 2.898 3.961 0.231 7.516 0.089 9.200 4.909 5.865 

vcod_slope_HuD 5.686 3.105 1.535 1.537 0.980 1.517 0.897 
13.83

2 
1.229 0.256 

vcod_auc_p53 2.148 3.930 0.191 0.523 2.501 0.004 3.393 0.107 7.093 9.829 

vcod_auc_SOX_2 2.200 1.456 1.940 9.149 2.509 0.061 1.983 3.143 
12.83

1 
3.109 

vcod_auc_CAGE 1.619 1.093 
14.60

0 
0.256 0.525 2.220 1.423 0.489 

11.90
4 

5.743 

vcod_auc_NY_ES
O_1 

4.543 3.556 0.406 0.856 5.246 0.087 2.049 0.089 0.253 3.513 

vcod_auc_GBU_4
_5 

2.532 6.842 0.683 1.163 1.183 0.372 0.057 2.600 0.356 1.969 

vcod_auc_MAGE
_A4 

1.449 4.286 3.881 0.936 0.252 2.547 0.781 4.062 7.552 
10.55

5 

vcod_auc_HuD 4.023 5.069 1.141 2.322 0.840 0.913 0.193 
11.17

4 
1.239 2.021 

vcod_slopemax_p
53 

2.731 3.090 0.002 4.560 5.163 3.702 
10.53

3 
0.027 0.922 0.004 

vcod_slopemax_S
OX_2 

2.542 0.214 0.639 5.498 7.419 2.122 0.892 0.844 1.578 3.223 

vcod_slopemax_C
AGE 

2.594 2.657 5.537 0.049 0.047 2.459 2.635 0.743 1.436 0.091 
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Figure 6-9: Plot of individuals by their component scores on the first two principal dimensions on Vol 
Corrected curve characteristic data. 

Examination of the individuals in Figure 6-9 plotted by their scores on the first 

two principal dimensions again shows that there is little separation between 

the cancer and normal samples, although once more the cancer samples 

distribution is spread further along both dimensions than the distribution of 

the normal samples.  

 

Curve Characteristic Features from Signal to Vol Ratio expressed OD Data 

Examining the features derived from the curves based on Signal to VOL ratio 

data, the first component accounts for 20.4% of the variance observed in the 

dataset, compared to 14.8% accounted for by the second component. 

Examination of the first component loadings highlights that with this 

correction method, the first principal component has higher loadings for 

features SOX-2 and GBU 4-5, along with slope and auc features,  while the 

second principal component is comprised of high loadings for the remaining 

antigens, along with intercept and slopemax features. 
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Figure 6-10: Plot of individuals by their component scores on the first two principal dimensions on Signal to 
Vol Ratio expressed curve characteristic data. 

Once more, assessment of the individuals in plotted by their scores on the 

first two principal dimensions as shown in Figure 6-10 shows that there is 

little separation between the cancer and normal samples, although once 

more the cancer samples distribution is wider than that of the normal, 

especially in the negative direction of the second principal dimension.  
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6.4.6 Feature Correlation 

VOL-Corrected OD Data – Commercial Panel 

 
Figure 6-11: Feature correlation in features corrected by VOL subtraction in commercial antigen panel 

As illustrated in Figure 6-11, high correlation was shown between 

corresponding magnitude (VCOD) and intercept features, and magnitude 

(VCOD) and slope features, however there was a lack of strong correlation 

between intercept and slope features. Negative correlation was observed 

between the magnitude (VCOD) features, and area under the curve (auc) 

features, with particularly high negative correlation being observed between 

slope and auc features, this suggests that samples with high area under the 

curve tend to be elevated at a lower magnitude than samples with high slope 
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values, but with maintained elevation along the entire concentration range, 

while samples with particularly high slope values may have a tendency to 

show low autoantibody binding at lower concentrations. 

 

Signal To VOL Ratio Data – Commercial Panel 

 

 
Figure 6-12: Feature correlation in features corrected by re-expression as ratio of specific signal to non-
specific signal (Signal To VOL Ratio (STVR)) 

As illustrated in Figure 6-12, high correlation was shown between 

corresponding magnitude (VCOD) and intercept features, and magnitude 

(VCOD) and slope features, however there was a lack of strong correlation 

between intercept and slope features. Negative correlation was observed 
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between the magnitude (VCOD) features, and area under the curve (auc) 

features, with particularly high negative correlation being observed between 

slope and auc features, this suggests that samples with high area under the 

curve tend to be elevated at a lower magnitude than samples with high slope 

values, but with maintained elevation along the entire concentration range, 

while samples with particularly high slope values may have a tendency to 

show low autoantibody binding at lower concentrations. 
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6.4.7 Cluster Analysis 

VCOD Cluster Analysis 

The optimal number of clusters to separate the dataset was determined by 

iterating through clustering a values of K from 1 to 20, and calculating a 

value for the Bayesian Information Criterion(153) (BIC) at each value of K. 

BIC was selected as it is known to outperform the normally used `Elbow 

Method`(154) for identifying the optimal number of clusters for k-means. The 

k number identified was then used for k-means clustering, with the resultant 

clusters then undergoing unblinding with respects to disease classification, to 

establish whether the clustering corresponds to disease presence. Figure 

6-13 illustrates the result of this analysis and shows that a k value of 13 

clusters was selected as being most informative for this dataset. 

 

 
Figure 6-13: Bayesian Information Criterion scores for k-means clustering on VCOD features with k values 
from 1 to 20 
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Figure 6-14: Heatmap showing K Means clustering results for VCOD features with k=13 clusters. 

The heatmap in Figure 6-14 shows several clusters have high proportions of 

cancer samples contained within them, cluster 7 is comprised entirely of 

cancer samples that are characterised by high signal in NY-ESO-1 features, 

similarly cluster 10 identifies cancer samples with high signal in CAGE 

features, and clusters 6 and 13 identify samples with high GBU 4-5 and p53 

signal respectively, although a number of normal samples are also captured 

in these clusters. Combining the clusters that are comprised of greater than 

60% cancer samples (Clusters referred to as 1, 6, 7, 10, 11, and 13 in Table 

6-29) in order to give a diagnostic assessment would correctly classify 58 

cancer samples, and 223 normal samples, for a sensitivity of 24.7%, and 

specificity of 96.1%, therefore would not reach levels of diagnostic accuracy 

that could be considered an improvement on the current EarlyCDT test 

classification method.  
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Table 6-29: Disease class composition of VCOD feature clusters determined by k-means 

Cluster Number Cancers Present Normals Present Cancer % 

1 1 0 100% 

2 30 23 57% 

3 29 32 48% 

4 45 60 43% 

5 38 54 41% 

6 7 2 78% 

7 18 0 100% 

8 19 31 38% 

9 4 8 33% 

10 11 0 100% 

11 4 2 67% 

12 12 15 44% 

13 17 5 77% 

 

 

STVR Cluster Analysis 

The same strategy using BIC to identify the optimal value for k was then 

followed for the STVR features. Figure 6-15 illustrates the result of this 

analysis and shows that a k value of 16 clusters was selected as being most 

informative for the STVR dataset. 

 
Figure 6-15: Bayesian Information Criterion scores for k-means clustering on STVR features with k values 
from 1 to 20 
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Figure 6-16: Heatmap showing K Means clustering results for VCOD features with k=16 clusters. 

The heatmap in Figure 6-16 again shows several clusters have high 

proportions of cancer samples contained within them, although the numbers 

of cancer samples identified is smaller in this case. It can be seen that 

cluster 5 is comprised of cancer samples that are characterised by high 

signal in NY-ESO-1 features, much like cluster 7 in the VCOD cluster 

analysis, however only 14 samples are identified in the cluster in this case, 

compared to 18 in the VCOD analysis. Similarly, cluster 8 in this analysis 

identifies cancer samples with high signal in CAGE features, paralleling 

cluster 10 in the previous analysis, and again in this case fewer samples are 

identified, with 6 cancer samples being identified in the STVR analysis 

compared to 11 in the VCOD clusters. Once again combining the clusters 

that are comprised of greater than 60% cancer samples (Clusters referred to 

as 1, 2, 5, 8, 14, 15, and 16 in Table 6-30Table 6-29) in order to give a 

diagnostic assessment would correctly classify 64 cancer samples, and 214 
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normal samples, giving a sensitivity of 27.2%, and specificity of 92.2%, again 

not reaching levels of diagnostic accuracy that would be considered an 

improvement on the current EarlyCDT test classification method.  

 
Table 6-30: Disease class composition of STVR feature clusters determined by k-means 

Cluster Number Cancer Matched Normal Cancer % 

1 13 5 72% 

2 5 2 71% 

3 14 18 44% 

4 42 32 57% 

5 14 0 100% 

6 25 43 37% 

7 29 47 38% 

8 6 0 100% 

9 16 16 50% 

10 19 19 50% 

11 0 1 0% 

12 0 1 0% 

13 26 37 41% 

14 9 6 60% 

15 16 5 76% 

16 1 0 100% 

 

6.5 Chapter Conclusions 

Investigation into the distributions of the autoantibody biomarker data 

revealed high degrees of non-normality and high kurtosis in all tested 

features, along with high positive skewness for all features, with the 

exception of auc features, which showed high negative skewness. As most 

modelling strategies are based on the assumption of normality in the 

examined data, the features underwent normalisation and scaling to remove 

any influence of feature distribution or magnitude from having a detrimental 

effect on model training.  

 PCA analysis of the uncorrected data showed that high levels of 

variance in the dataset were attributable to non-specific binding, as both ODs 
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returned in response to the control protein VOL, and ODs returned by the low 

and 0nM antigen wells constituted the first principal dimension. As it is not 

possible to fully separate specific and non-specific binding in this data, 

analysis of uncorrected data is likely to train models only on artefacts in the 

non-specific binding which would be unreproducible in subsequent datasets, 

therefore due to this high influence of non-specific binding, uncorrected data 

will not be considered in subsequent machine learning analyses. Corrected 

datasets still showed a small influence of non-specific binding during PCA 

assessment, evidenced by high loadings for the 0nM autoantibody values in 

the second principal dimension for both vol subtracted and signal to vol ratio 

adjusted data, although they no longer had high loadings in the first principal 

dimension, therefore non-specific binding was no longer the greatest source 

of variance.  

 K-means cluster analysis illustrated that the data did show clustering 

based on autoantibody profiles, however a relatively large number of clusters 

were required to categorise the data, possibly due to the heterogeneity of 

lung cancer and the associated immune response, and while it would be 

possible to define a model based on these clusters, the performance is 

inferior to that returned by the current EarlyCDT®-Lung test. 

6.6 Chapter Discussion 

Initial unsupervised modelling was not able to show underlying patterns in 

the data distributions that could be exploited for diagnostic purposes. While 

this was disappointing, it was not entirely unexpected given the low 

sensitivity of individual autoantibody features. Cluster analysis did show 

some potential for disease discrimination and although it was unable to 
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improve upon current commercial performance it does suggest that 

supervised strategies may be successful at disease discrimination. 

 Demographic features were not included in the principal components 

analysis, and therefore the potential confounding effect of variables such as 

age, gender, sample supplier, and sample country of origin have not been 

assessed here. Any future reanalysis of this data should include an 

appreciation of the effect of these confounders through use of factor analysis 

of mixed data (FAMD) analysis to determine whether these variables are 

influencing the data.  
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Chapter 7: Exploration of Supervised Machine Learning 

Strategies for Early Lung Cancer Diagnosis. 

7.1 Aims 

With unsupervised strategies not showing ability to classify data, I proceeded 

to explore supervised machine learning strategies for their ability to train 

predictive models. I wanted to apply a variety of established strategies and 

try to determine which showed the greatest potential for predicting disease 

class based on autoantibody data. Modelling strategies that were able to 

outperform the current logic-based model strategy would then be developed 

further in an effort to construct a commercial diagnostic algorithm. 

7.2 Introduction 

Having determined that unsupervised learning techniques are unable to 

adequately separate cancer and normal subjects based on their 

autoantibody magnitude values and derived curve characteristics, an 

investigation was carried out into whether supervised learning techniques 

may be applied to the magnitude and curve characteristic data generated 

from the EarlyCDT®-Lung panel, and used to create a model which is able to 

distinguish cancer samples from normal controls at a higher sensitivity and 

specificity than the current commercial strategy, whereby a positive response 

is defined as having an autoantibody response above a predetermined cut-

off threshold for any one of the panel autoantibody measures. 

Machine learning algorithms to explore have been selected to cover a 

range of different popular techniques which have been used previously for 
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disease classification problems, and include logistic regression, support 

vector machine learning, naïve Bayes, decision trees, random forest, and 

extreme gradient boosted regression trees, these are discussed in more 

detail in their relevant sections, however, in brief logistic regression was 

explored due to its extensive use historically for binary classification 

problems, and proven utility in previous diagnostic tests(82, 83), similarly 

Naïve Bayes was explored due to it’s previous successful use in diagnostic 

tests(90, 91), and the added benefit of the output of probability score which 

may be integrated into ensemble models. Support Vector Machines were 

considered as the expectation regarding the autoantibody panel data is that, 

due to high individual autoantibody specificities, the majority of sample 

autoantibody responses would present as non-specific binding, and therefore 

be relatively similar in n-dimensional featurespace, specific autoantibody 

responses would therefore present as outliers to the cloud of non-specific 

signal which could then potentially be distinguished through the use of a 

support vector hyperplane. Decision Tree models were explored due to their 

similarity to the current logic rule based algorithm, as the current test could 

be expressed as an extremely simple decision tree, with random forest 

models being explored as a development from decision tree models, 

whereby bagging and averaging of large numbers of small trees may allow 

for more accurate models, and similarly extreme gradient boosted trees then 

being explored as a refinement of random forest models thanks to the 

addition of boosting whereby additional models are trained on the errors from 

previous modelling to build an ensemble model. 



Exploration of Supervised Machine Learning Strategies for Early Lung 

Cancer Diagnosis. 

163 | P a g e  
 

7.3 Features 

7.3.1 Magnitude Features 

The EarlyCDT®-Lung test collected autoantibody response values for a 

panel of 7 autoantibodies; p53, SOX2, CAGE, NY-ESO-1, GBU 4-5, MAGE-

A4, and HuD, over a dilution range 1.6nM, 5nM, 16nM, 50nM, and 160nM. A 

previous analysis determined the single dilution value which showed the 

greatest discriminatory ability for each autoantibody from these values, and 

the concentration referred to as magnitude features in the subsequent 

analyses are as follows: for vol corrected OD (VCOD) data; p53 at 1.6nM, 

SOX2 at 50nM, CAGE at 16nM, NY-ESO-1 at 5nM, GBU4-5 at 1.6nM, 

MAGE-A4 at 5nM, and HuD at 160nM. For signal to vol ratio (STVR) data; 

p53 at 1.6nM, SOX2 at 50nM, CAGE at 1.6nM, NY-ESO-1 at 5nM, GBU4-5 

at 150nM, MAGE-A4 at 16nM, and HuD at 1.6nM. All magnitude features 

underwent transformation and scaling as described previously to ensure data 

approximated a normal distribution, and to prevent differences in feature 

scale from detrimentally influencing the modelling. 

7.3.2 Curve Characteristic Features 

Curve characteristic features refer to features derived from the shape of the 

overall titration curve for each antigen, as described previously, including 

linear regression derived features slope and intercept, area under the curve 

as calculated using sum of trapezoids, and the slopemax, defined as the 

slope at the steepest point of the titration curve. The Curve Characteristic 

feature set in the following analyses also includes the magnitude features. 

This is to ensure curve characteristic features – which require more data 
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points, and a higher level of data processing – are not included if the 

magnitude feature is able to provide the same discriminatory value. 

All Curve characteristic features underwent transformation and scaling as 

described in section 6.3 to ensure data approximated a normal distribution, 

and to prevent differences in feature scale from detrimentally influencing the 

modelling. 

7.4 Individual Feature Discriminatory Performance 

The discriminatory ability of the magnitude and curve characteristic features 

in both VCOD and STVR feature sets has been summarised by identifying 

an optimal cutpoint which maximised the Youden index for the training 

cohort, constrained to specificities above 90%, using the R cutpointr package 

(v1.1.2) to iterate over all features, after which the optimal cutpoint was 

applied to the hold-out test cohort to return performance characteristics. 

7.4.1 Vol Subtracted (VCOD) Features 

Summary values for accuracy in the training cohort (training accuracy), area 

under the ROC curve in the training cohort (training AUC), and sensitivity 

and specificity at the optimal cutoff threshold in both training cohort (training 

sensitivity and training specificity respectively), and test cohort (test 

sensitivity and test specificity respectively) are summarised in Table 7-1, 

showing that for the majority of features, specificity is maintained in the test 

cohort, with a mean decrease in the test cohort of only 0.6%, and the largest 

change being in the HuD magnitude feature in which the specificity 

decreased to 82.7% compared to 90.9% in the training cohort. Sensitivity 

does show a small drop off in the test cohort, with a mean decrease of 3.7% 

across all features, and the largest reduction being shown in the CAGE 
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slopemax feature in which the sensitivity reduction is 10.7%. Summary ROC 

plots were constructed to allow comparison of the features discriminatory 

ability over the dynamic range of the assay, and these are included in 

appendix 1. 

 
Table 7-1: Discriminatory ability of individual Vol corrected magnitude and curve characteristic features, 
optimised over training cohort and applied to test cohort. 

Feature 
optimal 
cutpoint 

training 
accuracy 

training 
AUC 

training 
sens 

training 
spec 

test 
sens 

test 
spec 

VCOD_p53 1.016 0.559 0.537 21.7% 90.5% 13.0% 90.8% 

VCOD_SOX_2 0.929 0.505 0.503 11.1% 90.5% 14.0% 85.7% 

VCOD_CAGE 0.960 0.537 0.527 17.0% 90.9% 11.0% 90.8% 

VCOD_NY_ESO_1 0.663 0.582 0.607 26.8% 90.1% 25.0% 85.7% 

VCOD_GBU_4_5 1.039 0.525 0.514 15.3% 90.1% 8.0% 89.8% 

VCOD_MAGE_A4 1.039 0.527 0.547 15.7% 90.1% 13.0% 90.8% 

VCOD_HuD 0.717 0.533 0.533 16.2% 90.9% 9.0% 82.7% 

vcod_intercept_p53 0.754 0.550 0.549 19.6% 90.9% 14.0% 93.9% 

vcod_intercept_SOX_
2 

0.722 0.512 0.535 12.8% 90.1% 16.0% 89.8% 

vcod_intercept_CAG
E 

0.731 0.542 0.554 18.7% 90.1% 13.0% 88.8% 

vcod_intercept_NY_E
SO_1 

0.347 0.574 0.610 23.4% 91.8% 19.0% 90.8% 

vcod_intercept_GBU_
4_5 

1.209 0.505 0.497 11.5% 90.1% 6.0% 89.8% 

vcod_intercept_MAG
E_A4 

0.913 0.540 0.564 18.3% 90.1% 11.0% 88.8% 

vcod_intercept_HuD 0.850 0.529 0.563 16.2% 90.1% 13.0% 86.7% 

vcod_slope_p53 0.432 0.512 0.504 12.8% 90.1% 15.0% 88.8% 

vcod_slope_SOX_2 1.122 0.499 0.491 10.2% 90.1% 12.0% 88.8% 

vcod_slope_CAGE 0.807 0.542 0.550 18.7% 90.1% 13.0% 82.7% 

vcod_slope_NY_ESO
_1 

0.855 0.542 0.515 18.7% 90.1% 12.0% 93.9% 

vcod_slope_GBU_4_
5 

1.493 0.493 0.465 8.9% 90.1% 8.0% 93.9% 

vcod_slope_MAGE_A
4 

1.092 0.525 0.541 15.3% 90.1% 7.0% 88.8% 

vcod_slope_HuD 0.996 0.525 0.527 14.5% 90.9% 9.0% 81.6% 

vcod_auc_p53 0.785 0.507 0.499 11.9% 90.1% 11.0% 96.9% 

vcod_auc_SOX_2 0.723 0.520 0.514 14.0% 90.5% 14.0% 93.9% 

vcod_auc_CAGE 0.758 0.516 0.444 13.6% 90.1% 14.0% 89.8% 

vcod_auc_NY_ESO_
1 

0.900 0.514 0.483 12.8% 90.5% 12.0% 94.9% 

vcod_auc_GBU_4_5 0.989 0.520 0.542 13.6% 90.9% 9.0% 89.8% 

vcod_auc_MAGE_A4 0.865 0.497 0.457 9.8% 90.1% 10.0% 91.8% 

vcod_auc_HuD 0.892 0.497 0.489 9.4% 90.5% 11.0% 83.7% 

vcod_slopemax_p53 0.869 0.546 0.555 19.1% 90.5% 14.0% 91.8% 

vcod_slopemax_SOX
_2 

1.119 0.514 0.537 13.2% 90.1% 13.0% 92.9% 

vcod_slopemax_CAG
E 

1.029 0.542 0.563 18.7% 90.1% 8.0% 86.7% 
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Feature 
optimal 
cutpoint 

training 
accuracy 

training 
AUC 

training 
sens 

training 
spec 

test 
sens 

test 
spec 

vcod_slopemax_NY_
ESO_1 

0.697 0.548 0.566 19.6% 90.5% 13.0% 91.8% 

vcod_slopemax_GBU
_4_5 

1.100 0.518 0.507 13.6% 90.5% 8.0% 87.8% 

vcod_slopemax_MAG
E_A4 

1.065 0.518 0.556 14.0% 90.1% 10.0% 92.9% 

vcod_slopemax_HuD 1.059 0.533 0.562 16.6% 90.5% 6.0% 93.9% 

 

7.4.2 Signal to Vol Ratio (STVR) Features 

Summary values for accuracy in the training cohort (training accuracy), area 

under the ROC curve in the training cohort (training AUC), and sensitivity 

and specificity at the optimal cutpoint in both training cohort (training 

sensitivity and training specificity respectively), and test cohort (test 

sensitivity and test specificity respectively) for STVR features are 

summarised in Table 7-2, showing that for the majority of features, specificity 

is maintained in the test cohort, with a mean decrease in the test cohort of 

only 0.4%, and the largest change being in the HuD slope feature in which 

the specificity decreased to 81.6% compared to 90.9% in the training cohort. 

Sensitivity does show a small drop off in the test cohort, with a mean 

decrease of 2.3% across all features, and the largest reduction being shown 

in the p53 magnitude feature in which the sensitivity reduction is 9.0%. 

Summary ROC plots were constructed to allow comparison of the features 

discriminatory ability over the dynamic range of the assay, and these are 

included in appendix 2. 

 
Table 7-2: Discriminatory ability of individual Signal to Vol Ratio magnitude and curve characteristic 
features, optimised over training cohort and applied to test cohort. 

Feature 
optimal 
cutpoint 

training 
accuracy 

training 
AUC 

training 
sens 

training 
spec 

test 
sens 

test 
spec 

STVR_p53 0.491 0.565 0.538 23.0% 90.5% 14.0% 87.8% 

STVR_SOX_2 0.933 0.522 0.508 14.9% 90.1% 18.0% 89.8% 

STVR_CAGE 0.683 0.548 0.549 19.6% 90.5% 17.0% 84.7% 

STVR_NY_ESO_1 0.277 0.585 0.600 27.2% 90.1% 28.0% 86.7% 

STVR_GBU_4_5 1.229 0.497 0.476 9.4% 90.5% 15.0% 86.7% 
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Feature 
optimal 
cutpoint 

training 
accuracy 

training 
AUC 

training 
sens 

training 
spec 

test 
sens 

test 
spec 

STVR_MAGE_A4 1.065 0.531 0.528 16.6% 90.1% 10.0% 91.8% 

STVR_HuD 0.625 0.546 0.545 19.6% 90.1% 12.0% 89.8% 

stvr_intercept_p53 1.040 0.540 0.539 18.3% 90.1% 14.0% 91.8% 

stvr_intercept_SOX_
2 

0.746 0.520 0.503 14.5% 90.1% 15.0% 90.8% 

stvr_intercept_CAGE 0.893 0.522 0.550 14.0% 90.9% 12.0% 94.9% 

stvr_intercept_NY_E
SO_1 

0.558 0.582 0.605 26.4% 90.5% 19.0% 91.8% 

stvr_intercept_GBU_
4_5 

1.304 0.495 0.488 9.4% 90.1% 10.0% 91.8% 

stvr_intercept_MAGE
_A4 

1.170 0.527 0.558 15.7% 90.1% 9.0% 89.8% 

stvr_intercept_HuD 0.857 0.550 0.560 20.4% 90.1% 13.0% 84.7% 

stvr_slope_p53 0.380 0.499 0.503 10.2% 90.1% 12.0% 90.8% 

stvr_slope_SOX_2 0.904 0.520 0.498 14.5% 90.1% 20.0% 86.7% 

stvr_slope_CAGE 0.817 0.531 0.544 16.6% 90.1% 15.0% 84.7% 

stvr_slope_NY_ESO
_1 

0.675 0.542 0.514 18.7% 90.1% 17.0% 89.8% 

stvr_slope_GBU_4_5 1.385 0.482 0.462 6.4% 90.5% 13.0% 86.7% 

stvr_slope_MAGE_A
4 

1.216 0.507 0.525 11.9% 90.1% 11.0% 91.8% 

stvr_slope_HuD 1.017 0.525 0.506 14.5% 90.9% 13.0% 81.6% 

stvr_auc_p53 0.734 0.518 0.518 13.6% 90.5% 6.0% 96.9% 

stvr_auc_SOX_2 0.756 0.512 0.511 12.8% 90.1% 11.0% 92.9% 

stvr_auc_CAGE 0.676 0.518 0.461 14.0% 90.1% 12.0% 92.9% 

stvr_auc_NY_ESO_1 0.686 0.518 0.512 14.0% 90.1% 10.0% 96.9% 

stvr_auc_GBU_4_5 0.886 0.518 0.533 14.0% 90.1% 9.0% 90.8% 

stvr_auc_MAGE_A4 0.807 0.512 0.488 12.8% 90.1% 7.0% 93.9% 

stvr_auc_HuD 0.922 0.505 0.516 11.5% 90.1% 9.0% 86.7% 

stvr_slopemax_p53 0.918 0.552 0.571 20.4% 90.5% 17.0% 94.9% 

stvr_slopemax_SOX
_2 

1.375 0.501 0.555 10.6% 90.1% 8.0% 94.9% 

stvr_slopemax_CAG
E 

0.729 0.540 0.578 18.3% 90.1% 10.0% 90.8% 

stvr_slopemax_NY_
ESO_1 

0.786 0.550 0.581 20.4% 90.1% 18.0% 88.8% 

stvr_slopemax_GBU
_4_5 

1.182 0.505 0.537 11.5% 90.1% 9.0% 93.9% 

stvr_slopemax_MAG
E_A4 

1.096 0.527 0.548 15.7% 90.1% 12.0% 92.9% 

stvr_slopemax_HuD 0.922 0.542 0.574 18.7% 90.1% 13.0% 91.8% 
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7.5 Boruta Feature Selection 

7.5.1 Introduction 

While the majority of the modelling strategies explored in this investigation 

have internal feature selection to optimise the final model feature set, an 

additional feature selection method has been explored in order to identify a 

reduced feature set for modelling, to determine whether further 

improvements can be obtained by removing uninformative features prior to 

model training. The Boruta feature selection algorithm(155) has been 

selected as it is able to work with classification problems and identifies all 

features which are relevant to the outcome variable, rather than aiming to 

minimise the feature set error and reducing the feature set to the smallest 

subset of features. Boruta is a wrapper method around a random forest 

modelling algorithm, determining feature importance by comparing features 

to permuted ‘shadow’ features. In this investigation, feature importance was 

determined over 100 iterations of the random forest model, and features 

whose importance was significantly higher than the maximum importance of 

the shadow features – as determined by a Mean Decrease Accuracy 

measure – were selected as important and added to a `Boruta Feature Set` 

to be assessed alongside the magnitude features, and the full feature set of 

magnitude and curve characteristic features. 

7.5.2 Methods 

Boruta analysis was undertaken in R (v4.2.1) using the Boruta library, with all 

features showing a significantly higher importance than that of the maximum 

importance of the shadow features being included in the subsequent Boruta 

feature sets. This was completed for both VCOD features, and STVR 
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features. Any features which showed importance that was not significantly 

different to the importance of the shadow features were considered as 

tentative candidates. These were reclassified by comparing their median 

importance over the entire run compared to the median value of the 

maximum importance of the shadow features, features showing greater 

importance than the shadow features were retained. 

7.5.3 Results 

VCOD Features 

 
Figure 7-1: Boruta feature selection undertaken on VCOD magnitude and curve characteristic features, 
Importance was calculated as z-score of the mean accuracy decrease. 

 

Boruta selection on the VCOD feature set identified only 5 features which 

were considered important after comparison to shadow features, the full 

results are displayed in Figure 7-1, which shows that the magnitude features 

for NY-ESO-1 and p53, the intercept feature for NY-ESO-1, and the 

slopemax features for NY-ESO-1 and p53 were classified as important and 

will be examined as distinct feature set in the subsequent modelling 

analyses. 
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STVR Features 

 
Figure 7-2: Boruta feature selection undertaken on STVR magnitude and curve characteristic features, 
Importance was calculated as z-score of the mean accuracy decrease. 

 

Boruta selection on the STVR feature set identified 7 features which were 

considered important after comparison to shadow features, the full results 

are displayed in Figure 7-2, which shows that similar to the analysis on the 

VCOD features, the magnitude features for NY-ESO-1 and p53, the intercept 

feature for NY-ESO-1, and the slopemax features for NY-ESO-1 and p53 

were classified as important, in addition the slopemax feature for CAGE, and 

the intercept feature for HuD were also deemed to be important in this 

analysis. This set of 7 features will be examined as distinct feature set in the 

subsequent modelling analyses. 
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7.6 Penalised Classification Search Function 

For the subsequent supervised modelling analysis, a two-class penalised 

classification search function has been used which is designed to penalise a 

model for the presence of false positive results, and therefore maximise 

sensitivity constrained to models which exhibit high specificity. The formula is 

detailed here: 

𝑠𝑐𝑜𝑟𝑒 = (
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
) − (

(𝐹𝑃 ∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦) + 𝐹𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
) 

A penalty value of 3 was determined to return models optimised for 

specificity between 90% - 95% and has been used in the model optimisation 

described hereafter. 
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7.7 Binary Logistic Regression Modelling 

7.7.1 Introduction 

Logistic regression(156) is a regression strategy that allows the inclusion of 

both categorical and continuous variables to predict the probability of a 

binary outcome, initially developed in the 1940s for bioassay, and 

subsequently refined and extended, regression models have now been used 

for predicting the risk of lung cancer in both indeterminate nodules(157, 158), 

and in high-risk populations(105). 

Least absolute shrinkage and selection operator (LASSO) 

regression(159) was developed to improve accuracy and interpretability of 

regression models and is a sparse penalized regression approach which 

constrains the absolute value of the regression coefficients and is able to 

reduce co-efficients to zero in order to exclude unnecessary variables from 

the regression model. Combined with cross-validation, this allows for the 

identification of an optimal set of coefficients which maximise the 

performance of the resulting model and has been shown to be superior to 

stepwise regression for identifying an optimal feature subset(160). LASSO 

regression and has been used previously in the development of diagnostic 

models, including those for breast cancer(161). 

7.7.2 Methods 

Least absolute shrinkage and selection operator (LASSO) regression was 

undertaken in R (v4.2.1) using the `glmnet` training method within the caret 

library to fit a binary logistic regression model via penalized maximum 

likelihood. 
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Parameter Tuning of Binary Logistic Models 

To optimise the model fitting, a LASSO approach was used, employing 

values for the regularization constant of 0.001 to 0.1, at intervals of 0.001, 

and using 10-fold cross-validation to tune parameters to reduce any effect of 

overfitting. During cross validation, model performance was summarised and 

compared using a penalised classification metric designed to prioritise high 

specificity, as described previously. 

7.7.3 Results 

Performance of the LASSO regression models trained on the training cohort 

for each of the candidate feature sets are summarised in Figure 7-3 and 

potential diagnostic model performance is summarised in Table 7-3, showing 

model performance with probability thresholds optimised based on 

maximising sensitivity for specificity greater than 90% in the training cohort. 

These show that the trained regression models were unable to exceed the 

current commercial performance for the majority of the explored feature sets 

and cohorts, with the most promising being the model trained on the full 

feature set of STVR magnitude and curve characteristic features, however 

this only showed marginal improvements in the training and test cohorts 

which did not transfer to the validation cohorts, and led to specificities in the 

validation cohorts that would be too low for a screening modality. 
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Figure 7-3: Comparison of diagnostic performance of LASSO regression models. A and B) EarlyCDT antigen 
panel – magnitude features only. C and D) Full feature set of magnitude and curve characteristics derived 
from EarlyCDT panel. E and F) Boruta selected features. A, C, and E) Subtraction of VOL for correction of non-
specific binding. B, D, and F) Ratio of antigen to VOL signal for correction of non-specific binding. 
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Table 7-3: Summary of diagnostic performance of LASSO models on explored feature sets. Bold italicized 
values represent an improvement over performance obtained by the current commercial test, as defined by an 
increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD 
eCDT 
Panel 

Training 70 165 23 209 29.8% 90.1% 

VCOD 
eCDT 
Panel 

Test 22 78 11 87 22.0% 88.8% 

VCOD 
eCDT 
Panel 

Validation 
1 

27 66 10 86 29.0% 89.6% 

VCOD 
eCDT 
Panel 

Validation 
2 

57 151 63 246 27.4% 79.6% 

VCOD All features Training 67 168 23 209 28.5% 90.1% 

VCOD All features Test 17 83 9 89 17.0% 90.8% 

VCOD All features 
Validation 

1 
25 68 11 85 26.9% 88.5% 

VCOD All features 
Validation 

2 
57 151 40 269 27.4% 87.1% 

VCOD Boruta Training 62 173 23 209 26.4% 90.1% 

VCOD Boruta Test 18 82 8 90 18.0% 91.8% 

VCOD Boruta 
Validation 

1 
25 68 11 85 26.9% 88.5% 

VCOD Boruta 
Validation 

2 
49 159 44 265 23.6% 85.8% 

STVR 
eCDT 
Panel 

Training 76 159 22 210 32.3% 90.5% 

STVR 
eCDT 
Panel 

Test 24 76 10 88 24.0% 89.8% 

STVR 
eCDT 
Panel 

Validation 
1 

27 66 12 84 29.0% 87.5% 

STVR 
eCDT 
Panel 

Validation 
2 

64 144 51 258 30.8% 83.5% 

STVR All features Training 92 143 23 209 39.1% 90.1% 

STVR All features Test 25 75 15 83 25.0% 84.7% 

STVR All features 
Validation 

1 
28 65 16 80 30.1% 83.3% 

STVR All features 
Validation 

2 
61 147 57 252 29.3% 81.6% 

STVR Boruta Training 70 165 23 209 29.8% 90.1% 

STVR Boruta Test 28 72 16 82 28.0% 83.7% 

STVR Boruta 
Validation 

1 
23 70 10 86 24.7% 89.6% 

STVR Boruta 
Validation 

2 
58 150 50 259 27.9% 83.8% 
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7.8 Support Vector Machine Models 

7.8.1 Introduction 

Support vector machines (SVMs) were developed as a binary classification 

tool(162), and are based on determining an optimal hyperplane in n-

dimensional feature space which gives the greatest margin of separation 

between two classes. This hyperplane is then defined by identifying points 

lying on the boundaries of this margin, which are subsequently referred to as 

support vectors, and can be used to classify subsequent data points. One of 

the advantages of support vector machines is the ability to use kernels to 

transform the data into higher dimension feature spaces in order to create 

linear separators for data that would otherwise not be linearly separable.  

SVMs have been explored previously for their potential use in diagnosis of 

several cancers, including gastric lymph node cancer based on histological 

imaging data(163), prostate cancer based on MRI imaging(164), breast 

cancer recurrence based on clinicopathological features(165), and lung 

cancer based on analysis of CT scan data and demographic features(166), 

where they have shown the potential to form highly accurate models.  

7.8.2 Methods 

Support vector machine learning was undertaken in R (v4.2.1) using the 

`svmLinear` and `svmRadial` training methods within the caret library to 

explore both linear kernel and radial kernel support vector classification 

rules. 

Parameter Tuning of Support Vector Machine Models 

Linear support vector machines were optimised through exploring values of 

the misclassification cost ‘C’ between 0.5 and 4, smaller values of which 
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allows for higher rates of misclassification in order to give separating 

hyperplanes with larger margins, while higher values result in lower training 

misclassification and hyperplanes with smaller margins, which may result in 

overfit models and poorer test set performance. 10-fold cross-validation was 

used to determine the optimal value of C for the final model.  

7.8.3 Results – Linear Kernel 

Performance of the linear kernel support vector models trained on the 

training cohort for each of the candidate feature sets are summarised in 

Figure 7-4 and potential diagnostic model performance is summarised in 

Table 7-4, showing model performance with probability thresholds optimised 

based on maximising sensitivity for specificity greater than 90% in the 

training cohort. These models showed improvements over the current 

commercial test in only the training cohort for all feature sets other than the 

full set of STVR magnitude and curve characteristic features, which showed 

improvement in the test cohort also, but not in the validation cohorts. This 

suggests that the improvements in the training set are the result of overfitting 

only, especially considering the reductions in specificity in the validation 

cohorts observed across all fitted models.  
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Figure 7-4: Comparison of diagnostic performance of linear kernel support vector machine models. A and B) 
EarlyCDT antigen panel – magnitude features only. C and D) Full feature set of magnitude and curve 
characteristics derived from EarlyCDT panel. E and F) Boruta selected features. A, C, and E) Subtraction of 
VOL for correction of non-specific binding. B, D, and F) Ratio of antigen to VOL signal for correction of non-
specific binding. 
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Table 7-4: Summary of diagnostic performance of linear kernel support vector machine models on explored 
feature sets. Bold italicized values represent an improvement over performance obtained by the current 
commercial test, as defined by an increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD 
eCDT 
Panel 

Training 63 172 23 209 26.8% 90.1% 

VCOD 
eCDT 
Panel 

Test 20 80 12 86 20.0% 87.8% 

VCOD 
eCDT 
Panel 

Validation 
1 

26 67 12 84 28.0% 87.5% 

VCOD 
eCDT 
Panel 

Validation 
2 

48 160 57 252 23.1% 81.6% 

VCOD All features Training 97 138 23 209 41.3% 90.1% 

VCOD All features Test 21 79 14 84 21.0% 85.7% 

VCOD All features 
Validation 

1 
32 61 25 71 34.4% 74.0% 

VCOD All features 
Validation 

2 
75 133 81 228 36.1% 73.8% 

VCOD Boruta Training 74 161 22 210 31.5% 90.5% 

VCOD Boruta Test 19 81 10 88 19.0% 89.8% 

VCOD Boruta 
Validation 

1 
24 69 15 81 25.8% 84.4% 

VCOD Boruta 
Validation 

2 
66 142 42 267 31.7% 86.4% 

STVR 
eCDT 
Panel 

Training 73 162 23 209 31.1% 90.1% 

STVR 
eCDT 
Panel 

Test 21 79 11 87 21.0% 88.8% 

STVR 
eCDT 
Panel 

Validation 
1 

26 67 12 84 28.0% 87.5% 

STVR 
eCDT 
Panel 

Validation 
2 

59 149 49 260 28.4% 84.1% 

STVR All features Training 88 147 23 209 37.4% 90.1% 

STVR All features Test 23 77 9 89 23.0% 90.8% 

STVR All features 
Validation 

1 
26 67 12 84 28.0% 87.5% 

STVR All features 
Validation 

2 
47 161 56 253 22.6% 81.9% 

STVR Boruta Training 84 151 21 211 35.7% 90.9% 

STVR Boruta Test 22 78 13 85 22.0% 86.7% 

STVR Boruta 
Validation 

1 
28 65 15 81 30.1% 84.4% 

STVR Boruta 
Validation 

2 
71 137 63 246 34.1% 79.6% 

 

 



Exploration of Supervised Machine Learning Strategies for Early Lung 

Cancer Diagnosis. 

180 | P a g e  
 

7.8.4 Results – Radial Kernel 

Performance of the radial kernel support vector models trained on the 

training cohort for each of the candidate feature sets are summarised in 

Figure 7-5 and potential diagnostic model performance is summarised in 

Table 7-5, showing model performance with probability thresholds optimised 

based on maximising sensitivity for specificity greater than 90% in the 

training cohort. Examination of the ROC plots suggests that support vector 

machine models using a radial kernel STVR correction for non-specific 

binding show a higher degree of overfitting to the training cohort than VCOD 

corrected feature sets, as the ROC curves for the test and validation sets in 

the STVR models trend closer to the line of equality than those shown by 

models trained on VCOD feature sets. Radial kernel support vector machine 

models show some potential for returning an improved diagnostic model with 

the Boruta selected VCOD feature set showing improvements in the training, 

test, and validation 1 cohorts, however this model also returned a specificity 

of only 80.9% in the validation 2 cohort. 
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Figure 7-5: Comparison of diagnostic performance of radial kernel support vector machine models. A and B) 
EarlyCDT antigen panel – magnitude features only. C and D) Full feature set of magnitude and curve 
characteristics derived from EarlyCDT panel. E and F) Boruta selected features. A, C, and E) Subtraction of 
VOL for correction of non-specific binding. B, D, and F) Ratio of antigen to VOL signal for correction of non-
specific binding. 
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Table 7-5: Summary of diagnostic performance of radial kernel support vector machine models on explored 
feature sets. Bold italicized values represent an improvement over performance obtained by the current 
commercial test, as defined by an increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD 
eCDT 
Panel 

Training 81 154 23 209 34.5% 90.1% 

VCOD 
eCDT 
Panel 

Test 23 77 13 85 23.0% 86.7% 

VCOD 
eCDT 
Panel 

Validation 
1 

27 66 18 78 29.0% 81.3% 

VCOD 
eCDT 
Panel 

Validation 
2 

54 154 68 241 26.0% 78.0% 

VCOD All features Training 86 149 22 210 36.6% 90.5% 

VCOD All features Test 15 85 10 88 15.0% 89.8% 

VCOD All features 
Validation 

1 
30 63 14 82 32.3% 85.4% 

VCOD All features 
Validation 

2 
64 144 50 259 30.8% 83.8% 

VCOD Boruta Training 85 150 23 209 36.2% 90.1% 

VCOD Boruta Test 26 74 10 88 26.0% 89.8% 

VCOD Boruta 
Validation 

1 
33 60 10 86 35.5% 89.6% 

VCOD Boruta 
Validation 

2 
67 141 59 250 32.2% 80.9% 

STVR 
eCDT 
Panel 

Training 78 157 23 209 33.2% 90.1% 

STVR 
eCDT 
Panel 

Test 22 78 12 86 22.0% 87.8% 

STVR 
eCDT 
Panel 

Validation 
1 

26 67 16 80 28.0% 83.3% 

STVR 
eCDT 
Panel 

Validation 
2 

55 153 73 236 26.4% 76.4% 

STVR All features Training 83 152 22 210 35.3% 90.5% 

STVR All features Test 20 80 12 86 20.0% 87.8% 

STVR All features 
Validation 

1 
24 69 19 77 25.8% 80.2% 

STVR All features 
Validation 

2 
64 144 60 249 30.8% 80.6% 

STVR Boruta Training 89 146 23 209 37.9% 90.1% 

STVR Boruta Test 24 76 12 86 24.0% 87.8% 

STVR Boruta 
Validation 

1 
30 63 20 76 32.3% 79.2% 

STVR Boruta 
Validation 

2 
69 139 81 228 33.2% 73.8% 
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7.9 Naïve Bayes Models 

7.9.1 Introduction 

Naïve Bayes is a collective term for classification models which are based on 

Bayes Theorem, which work by considering all features as independent and 

calculating a conditional probability for an outcome based on the 

contributions of all features. The strength of Naïve Bayes for diagnostic 

modelling is its relative simplicity, as well as the ability to incorporate both 

continuous and discrete data into the models, and its insensitivity to 

irrelevant features. 

Naïve Bayes models have previously been explored for diagnosis of 

brain tumours from segmented MRI images(167), diagnosis of breast cancer 

based on histological features(168), and lung cancer survival based on 

histological and demographic data(169). 

7.9.2 Methods 

Naïve Bayes modelling was undertaken in R (v4.2.1) using the `NaiveBayes` 

function within the `klaR` package (v4.2.3), and training using the functions 

included in the caret library to explore Naïve Bayes classification rules. 

Parameter Tuning of Naïve Bayes Models 

Naïve Bayes models were optimised through exploration of the use of kernel 

function, if used, adjustment of the bandwidth of the kernel function density, 

with values of 0 to 5 at intervals of 1, and through use of Laplace smoothing 

at values of 0, 0.001, 0.1, 1, 10, and 100. These hyperparameters were 

tested using 10-fold cross-validation to identify the optimal set of 

hyperparameters for the Naïve Bayes models.  
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7.9.3 Results 

Performance of the Naïve Bayes models trained on the training cohort for 

each of the candidate feature sets are summarised in Figure 7-6 and 

potential diagnostic model performance is summarised in Table 7-6, showing 

model performance with probability thresholds optimised based on 

maximising sensitivity for specificity greater than 90% in the training cohort. 

These models showed the ability to improve or match the current clinical test 

in the training cohort for each feature set, however specificity was generally 

not maintained in the validation cohorts suggesting that these models 

displayed a higher degree of overfitting than the commercial panel, and none 

of the modelling on the explored feature sets showed consistent 

improvement over current commercial performance. Examination of the ROC 

plots suggests that STVR correction results in a higher degree of overfitting 

in the explored feature sets. 
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Figure 7-6: Comparison of diagnostic performance of Naïve Bayes models. A and B) EarlyCDT antigen panel – 
magnitude features only. C and D) Full feature set of magnitude and curve characteristics derived from 
EarlyCDT panel. E and F) Boruta selected features. A, C, and E) Subtraction of VOL for correction of non-
specific binding. B, D, and F) Ratio of antigen to VOL signal for correction of non-specific binding. 
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Table 7-6: Summary of diagnostic performance of Naïve Bayes models on explored feature sets. Bold italicized 
values represent an improvement over performance obtained by the current commercial test, as defined by an 
increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD 
eCDT 
Panel 

Training 92 143 22 210 39.1% 90.5% 

VCOD 
eCDT 
Panel 

Test 25 75 16 82 25.0% 83.7% 

VCOD 
eCDT 
Panel 

Validation 
1 

41 52 30 66 44.1% 68.8% 

VCOD 
eCDT 
Panel 

Validation 
2 

88 120 105 204 42.3% 66.0% 

VCOD All features Training 84 151 23 209 35.7% 90.1% 

VCOD All features Test 20 80 9 89 20.0% 90.8% 

VCOD All features 
Validation 

1 
38 55 16 80 40.9% 83.3% 

VCOD All features 
Validation 

2 
81 127 70 239 38.9% 77.3% 

VCOD Boruta Training 72 163 23 209 30.6% 90.1% 

VCOD Boruta Test 18 82 8 90 18.0% 91.8% 

VCOD Boruta 
Validation 

1 
27 66 9 87 29.0% 90.6% 

VCOD Boruta 
Validation 

2 
60 148 46 263 28.8% 85.1% 

STVR 
eCDT 
Panel 

Training 97 138 22 210 41.3% 90.5% 

STVR 
eCDT 
Panel 

Test 29 71 15 83 29.0% 84.7% 

STVR 
eCDT 
Panel 

Validation 
1 

28 65 18 78 30.1% 81.3% 

STVR 
eCDT 
Panel 

Validation 
2 

66 142 70 239 31.7% 77.3% 

STVR All features Training 89 146 23 209 37.9% 90.1% 

STVR All features Test 27 73 16 82 27.0% 83.7% 

STVR All features 
Validation 

1 
34 59 23 73 36.6% 76.0% 

STVR All features 
Validation 

2 
88 120 90 219 42.3% 70.9% 

STVR Boruta Training 93 142 23 209 39.6% 90.1% 

STVR Boruta Test 30 70 14 84 30.0% 85.7% 

STVR Boruta 
Validation 

1 
33 60 17 79 35.5% 82.3% 

STVR Boruta 
Validation 

2 
75 133 87 222 36.1% 71.8% 
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7.10 C5.0 Decision Tree Modelling 

7.10.1 Introduction 

Decision tree or recursive partitioning methods stratify a dataset by 

organising it into groups through a series of variable interaction rules. 

Decision tree modelling was first introduced in 1984 with the CART 

(Classification and Regression Trees) algorithm(170), and since its inception, 

several different tree modelling algorithms have been developed, including 

CART, BART (Bayesian Additive Regression Trees)(171), ID3 (Iterative 

Dichotimiser 3)(172) and its successors C4.5(173) and C5.0. For the 

following analysis the C5.0 algorithm was selected, over other methods such 

as the ID3 and CART algorithms, due to its ability to incorporate both 

continuous and discrete features, therefore allowing the potential 

development of improved models with the addition of demographic risk 

features such as gender and smoking history, and the incorporation of post-

pruning in the algorithm to remove branches and nodes that contribute little 

to the classification accuracy. 

7.10.2 Methods 

C5.0 model training was undertaken in R (v4.2.1), using the `C5.0` training 

method within the caret library. 

Parameter Tuning of C5.0 Decision Tree Models 

10-fold cross-validation was used to determine whether applying winnowing 

– removal of uninformative features before training the tree model - was 

applied. During cross validation, model performance was summarised and 

compared using a penalised classification metric designed to prioritise high 

specificity, as described previously. 
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7.10.3 Results 

Performance of the c5.0 decision tree models trained on the training cohort 

for each of the candidate feature sets are summarised in Figure 7-7 and 

potential diagnostic model performance is summarised in  

Table 7-7, showing model performance with probability thresholds optimised 

based on maximising sensitivity for specificity greater than 90% in the 

training cohort. The ROC plots suggest that the STVR correction method led 

to a higher degree of overfitting using c5.0 decision tree modelling, especially 

when all magnitude and curve characteristic features were included in the 

modelling (Figure 7D). VCOD correction showed a lower degree of 

overfitting, although this could be due to the relatively small tree formed, as 

the same decision tree resulted from modelling of both magnitude features 

and the full magnitude and curve characteristic feature set and was 

comprised of only the magnitude features for NY-ESO-1 and p53. 
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Figure 7-7: Comparison of diagnostic performance of C5.0 decision tree models. A and B) EarlyCDT antigen 
panel – magnitude features only. C and D) Full feature set of magnitude and curve characteristics derived 
from EarlyCDT panel. E and F) Boruta selected features. A, C, and E) Subtraction of VOL for correction of non-
specific binding. B, D, and F) Ratio of antigen to VOL signal for correction of non-specific binding. 
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Table 7-7: Summary of diagnostic performance of C5.0 decision tree models on explored feature sets. Bold 
italicized values represent an improvement over performance obtained by the current commercial test, as 
defined by an increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD 
eCDT 
Panel 

Training 69 166 9 223 29.4% 96.1% 

VCOD 
eCDT 
Panel 

Test 16 84 5 93 16.0% 94.9% 

VCOD 
eCDT 
Panel 

Validation 
1 

28 65 7 89 30.1% 92.7% 

VCOD 
eCDT 
Panel 

Validation 
2 

61 147 40 269 29.3% 87.1% 

VCOD All features Training 69 166 9 223 29.4% 96.1% 

VCOD All features Test 16 84 5 93 16.0% 94.9% 

VCOD All features 
Validation 

1 
28 65 7 89 30.1% 92.7% 

VCOD All features 
Validation 

2 
61 147 40 269 29.3% 87.1% 

VCOD Boruta Training 66 169 11 221 28.1% 95.3% 

VCOD Boruta Test 17 83 6 92 17.0% 93.9% 

VCOD Boruta 
Validation 

1 
26 67 8 88 28.0% 91.7% 

VCOD Boruta 
Validation 

2 
63 145 32 277 30.3% 89.6% 

STVR 
eCDT 
Panel 

Training 85 150 16 216 36.2% 93.1% 

STVR 
eCDT 
Panel 

Test 21 79 10 88 21.0% 89.8% 

STVR 
eCDT 
Panel 

Validation 
1 

28 65 12 84 30.1% 87.5% 

STVR 
eCDT 
Panel 

Validation 
2 

67 141 37 272 32.2% 88.0% 

STVR All features Training 142 93 11 221 60.4% 95.3% 

STVR All features Test 33 67 25 73 33.0% 74.5% 

STVR All features 
Validation 

1 
38 55 23 73 40.9% 76.0% 

STVR All features 
Validation 

2 
82 126 100 209 39.4% 67.6% 

STVR Boruta Training 108 127 23 209 46.0% 90.1% 

STVR Boruta Test 26 74 19 79 26.0% 80.6% 

STVR Boruta 
Validation 

1 
33 60 15 81 35.5% 84.4% 

STVR Boruta 
Validation 

2 
77 131 61 248 37.0% 80.3% 
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7.11 Random Forest Modelling 

7.11.1 Introduction 

Random Forest modelling is an extension of classification and regression 

tree (CART) modelling whereby a large number of tree-structured classifiers 

are trained on the data, either from randomised initial splits, or with each tree 

being trained on a random bagged subset of the initial training data, and a 

classification probability is then derived from the overall consensus of this 

large number of trees(174). This technique has been previously used to train 

models with extremely high clinical performance in prediction of prostate 

cancer progression(175), as well as in the prediction of Alzheimer’s disease 

conversion(176). 

For the following investigation, the ranger(177) implementation of the 

random forest algorithm was selected due to it being optimised for high 

dimensional data, giving much lower runtime and memory usage than other 

random forest implementations, but without appreciable reduction in the 

predictive performance of the resultant models. 

7.11.2 Methods 

Random Forest modelling was undertaken in R (v4.2.1) using the ranger 

library, applying the `ranger` training method to the data within the caret 

library Train function. 

Parameter tuning of Random Forest Models 

Random Forest model tuning was done over the following parameters: 

number of variables to possibly split at each node (mtry), splitting rule, and 

minimum node size. 
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Values for mtry were either 1 to the number of features for magnitude feature 

sets and Boruta selected feature sets, or odd values from 1 to 35 for the 

combined curve characteristic and magnitude feature set. 

Options for the splitting rule were either selection by minimisation of Gini 

impurity, the extra-trees algorithm(178), or Hellinger distance(179). 

Values explored for minimal node size were even numbers from 2 to 10.  

Model performance for each combination of parameters was summarised 

over 10-fold cross validation and compared using a penalised classification 

metric designed to prioritise high specificity, as described previously. 

7.11.3 Results 

Performance of the random forest models trained on the training cohort for 

each of the candidate feature sets are summarised in Figure 7-8 and 

potential diagnostic model performance is summarised in  

Table 7-8, the high overfitting observed in the training cohort meant that 

probability thresholds based on the training cohort showed a lack of ability to 

transfer to the test and validation cohorts, therefore model performance was 

optimised based on maximising sensitivity for specificity greater than 90% in 

the test cohort. Review of the ROC plots shows that random forest modelling 

suffers from an extremely high degree of overfitting, with the training cohort 

approaching perfect discrimination in almost every case. These models did 

not maintain their performance on test and validation cohorts, and in almost 

all cases – with only the exception of the VCOD Boruta feature set – the test 

and validation performance are inferior to that obtained by the commercial 

test. 
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Figure 7-8: Comparison of diagnostic performance of random forest models. A and B) EarlyCDT antigen panel 
– magnitude features only. C and D) Full feature set of magnitude and curve characteristics derived from 
EarlyCDT panel. E and F) Boruta selected features. A, C, and E) Subtraction of VOL for correction of non-
specific binding. B, D, and F) Ratio of antigen to VOL signal for correction of non-specific binding. 
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Table 7-8: Summary of diagnostic performance of random forest models on explored feature sets. Bold 
italicized values represent an improvement over performance obtained by the current commercial test, as 
defined by an increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD 
eCDT 
Panel 

Training 222 13 0 232 94.5% 100.0% 

VCOD 
eCDT 
Panel 

Test 18 82 7 91 18.0% 92.9% 

VCOD 
eCDT 
Panel 

Validation 
1 

32 61 12 84 34.4% 87.5% 

VCOD 
eCDT 
Panel 

Validation 
2 

67 141 62 247 32.2% 79.9% 

VCOD All features Training 194 41 1 231 82.6% 99.6% 

VCOD All features Test 20 80 8 90 20.0% 91.8% 

VCOD All features 
Validation 

1 
30 63 12 84 32.3% 87.5% 

VCOD All features 
Validation 

2 
70 138 61 248 33.7% 80.3% 

VCOD Boruta Training 123 112 7 225 52.3% 97.0% 

VCOD Boruta Test 22 78 8 90 22.0% 91.8% 

VCOD Boruta 
Validation 

1 
33 60 10 86 35.5% 89.6% 

VCOD Boruta 
Validation 

2 
66 142 47 262 31.7% 84.8% 

STVR 
eCDT 
Panel 

Training 226 8 0 232 96.2% 100.0% 

STVR 
eCDT 
Panel 

Test 25 75 9 89 25.0% 90.8% 

STVR 
eCDT 
Panel 

Validation 
1 

31 62 14 82 33.3% 85.4% 

STVR 
eCDT 
Panel 

Validation 
2 

55 153 32 277 26.4% 89.6% 

STVR All features Training 235 0 0 232 100.0% 100.0% 

STVR All features Test 25 75 7 91 25.0% 92.9% 

STVR All features 
Validation 

1 
29 64 13 83 31.2% 86.5% 

STVR All features 
Validation 

2 
59 149 44 265 28.4% 85.8% 

STVR Boruta Training 159 76 4 228 67.7% 98.3% 

STVR Boruta Test 28 72 8 90 28.0% 91.8% 

STVR Boruta 
Validation 

1 
32 61 21 75 34.4% 78.1% 

STVR Boruta 
Validation 

2 
72 136 68 241 34.6% 78.0% 
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7.12 Extreme Gradient Boosted Trees Modelling 

7.12.1 Introduction 

Extreme gradient boosted trees is a technique which combines regression 

trees, gradient descent, and boosting(180), and since it’s development has 

become an extremely popular modelling method, being used in high 

performing models for a wide variety of different problems, most relevantly to 

this investigation it has been successfully used to create models for disease 

prediction(181) and diagnosis(182), as well as a recently developed 

questionnaire based screening model for lung cancer(183).  

XGBoost is named extreme due to its combination of several 

complementary algorithms. As a tree algorithm, data is split at each decision 

node in a similar way to the C5.0 algorithm, although XGBoost is also a 

boosting algorithm, meaning it is an ensemble method which iteratively 

builds new models by training on the residuals of the existing models, and 

boosting attributes that led to misclassifications of previous iterations. 

XGBoost also includes a regularization step which reduces the influence of 

individual ensemble models during the model building to reduce overfitting. 

7.12.2 Methods 

Random Forest modelling was undertaken in R (v4.2.1) using the ranger 

library and applying the `ranger` training method to the data within the caret 

library Train function. 

Parameter tuning of XGBoost Models 

XGBoost modelling includes many parameters over which the model can be 

tuned. Tuning was again accomplished over 10-fold cross-validation, and the 

tuning parameters and their explored values are detailed here: 
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eta – shrinkage rate used in the regularization step to reduce overfitting. 

Values searched: 0.01, 0.05, 0.1, 0.2, and 0.3. 

max_depth – Maximum depth (number of edges from the root node to the 

furthest leaf node) of a tree. Larger values make the model more complex 

and more likely to overfit. Values searched: 2, 4, 6, and 8. 

gamma – Minimum loss reduction required to make a further partition on a 

leaf node of the tree. Values searched: 0, and 5. 

subsample – Subsample ratio of the training instances. Values searched: 

0.5, 0.75, and 1. 

colsample_bytree –Subsample ratio of columns when constructing each tree. 

Values searched: 0.5, 0.75, and 1.  

min_child_weight – Minimum sum of instance weight needed in a child; 

larger values result in more conservative models. Values searched: 2, 4, 6, 

8, and 10.  

During cross validation, model performance was summarised and compared 

using a penalised classification metric designed to prioritise high specificity, 

as described previously. 

7.12.3 Results 

Performance of the extreme gradient boosted trees models trained on the 

training cohort for each of the candidate feature sets are summarised in 

Figure 7-9 and potential diagnostic model performance is summarised in 

Table 7-9, showing model performance with probability thresholds optimised 

based on maximising sensitivity for specificity greater than 90% in the 

training cohort. These models showed improved performance over the 

current commercial panel for the training and validation 1 cohort in each 
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case, however these models showed generally poor specificity in the 

Validation 2 and test cohorts. 

 
Figure 7-9: Comparison of diagnostic performance of extreme gradient boosted tree models. A and B) 
EarlyCDT antigen panel – magnitude features only. C and D) Full feature set of magnitude and curve 
characteristics derived from EarlyCDT panel. E and F) Boruta selected features. A, C, and E) Subtraction of 
VOL for correction of non-specific binding. B, D, and F) Ratio of antigen to VOL signal for correction of non-
specific binding. 
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Table 7-9: Summary of diagnostic performance of extreme gradient boosted tree models on explored feature 
sets. Bold italicized values represent an improvement over performance obtained by the current commercial 
test, as defined by an increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD 
eCDT 
Panel 

Training 101 134 23 209 43.0% 90.1% 

VCOD 
eCDT 
Panel 

Test 22 78 18 80 22.0% 81.6% 

VCOD 
eCDT 
Panel 

Validation 
1 

37 56 18 78 39.8% 81.3% 

VCOD 
eCDT 
Panel 

Validation 
2 

88 120 76 233 42.3% 75.4% 

VCOD All features Training 96 139 22 210 40.9% 90.5% 

VCOD All features Test 20 80 11 87 20.0% 88.8% 

VCOD All features 
Validation 

1 
32 61 13 83 34.4% 86.5% 

VCOD All features 
Validation 

2 
81 127 57 252 38.9% 81.6% 

VCOD Boruta Training 91 144 23 209 38.7% 90.1% 

VCOD Boruta Test 21 79 11 87 21.0% 88.8% 

VCOD Boruta 
Validation 

1 
33 60 12 84 35.5% 87.5% 

VCOD Boruta 
Validation 

2 
76 132 62 247 36.5% 79.9% 

STVR 
eCDT 
Panel 

Training 89 146 19 213 37.9% 91.8% 

STVR 
eCDT 
Panel 

Test 22 78 13 85 22.0% 86.7% 

STVR 
eCDT 
Panel 

Validation 
1 

30 63 12 84 32.3% 87.5% 

STVR 
eCDT 
Panel 

Validation 
2 

73 135 44 265 35.1% 85.8% 

STVR All features Training 108 127 17 215 46.0% 92.7% 

STVR All features Test 28 72 18 80 28.0% 81.6% 

STVR All features 
Validation 

1 
36 57 15 81 38.7% 84.4% 

STVR All features 
Validation 

2 
85 123 66 243 40.9% 78.6% 

STVR Boruta Training 108 127 23 209 46.0% 90.1% 

STVR Boruta Test 27 73 18 80 27.0% 81.6% 

STVR Boruta 
Validation 

1 
35 58 16 80 37.6% 83.3% 

STVR Boruta 
Validation 

2 
80 128 62 247 38.5% 79.9% 
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7.13 Summary 

Table 7-10: Summary of diagnostic performance achieved by modelling strategies in explored feature sets. 

Modelling 
Strategy 

Metric 
Training Test Validation 1 Validation 2 

Sens Spec Sens Spec Sens Spec Sens Spec 

Commercial Commercial 30.6% 90.1% 23.0% 87.8% 20.4% 96.9% 35.6% 87.7% 

GLM LASSO 
VCOD 

Magnitude 
29.8% 90.1% 22.0% 88.8% 29.0% 89.6% 27.4% 79.6% 

GLM LASSO VCOD All 28.5% 90.1% 17.0% 90.8% 26.9% 88.5% 27.4% 87.0% 
GLM LASSO VCOD Boruta 26.4% 90.1% 18.0% 91.8% 26.9% 88.5% 23.6% 85.8% 

GLM LASSO 
STVR 

Magnitude 
32.3% 90.5% 24.0% 89.8% 29.0% 87.5% 30.8% 83.5% 

GLM LASSO STVR All 39.1% 90.1% 25.0% 84.7% 30.1% 83.3% 29.3% 81.6% 
GLM LASSO STVR Boruta 29.8% 90.1% 28.0% 83.7% 24.7% 89.6% 27.9% 83.8% 

SVM Linear 
VCOD 

Magnitude 
26.8% 90.1% 20.0% 87.8% 28.0% 87.5% 23.1% 81.6% 

SVM Linear VCOD All 41.3% 90.1% 21.0% 85.7% 34.4% 74.0% 36.1% 73.8% 
SVM Linear VCOD Boruta 31.5% 90.5% 19.0% 89.8% 25.8% 84.4% 31.7% 86.4% 

SVM Linear 
STVR 

Magnitude 
31.1% 90.1% 21.0% 88.8% 28.0% 87.5% 28.4% 84.1% 

SVM Linear STVR All 37.4% 90.1% 23.0% 90.8% 28.0% 87.5% 22.6% 81.9% 
SVM Linear STVR Boruta 35.7% 90.9% 22.0% 86.7% 30.1% 84.4% 34.1% 79.6% 

SVM Radial 
VCOD 

Magnitude 
34.4% 90.1% 23.0% 86.7% 29.0% 81.3% 26.0% 78.0% 

SVM Radial VCOD All 36.6% 90.5% 15.0% 89.8% 32.3% 85.4% 30.8% 83.8% 
SVM Radial VCOD Boruta 36.2% 90.1% 26.0% 89.8% 35.5% 89.6% 32.2% 80.9% 

SVM Radial 
STVR 

Magnitude 
33.2% 90.1% 22.0% 87.8% 28.0% 83.3% 26.4% 76.4% 

SVM Radial STVR All 35.3% 90.5% 20.0% 87.8% 25.8% 80.2% 30.8% 80.6% 
SVM Radial STVR Boruta 37.9% 90.1% 24.0% 87.8% 32.3% 79.2% 33.2% 73.8% 

Naïve Bayes 
VCOD 

Magnitude 
39.1% 90.5% 25.0% 83.7% 44.1% 68.8% 42.3% 66.0% 

Naïve Bayes VCOD All 35.7% 90.1% 20.0% 90.8% 40.9% 83.3% 38.9% 77.3% 
Naïve Bayes VCOD Boruta 30.6% 90.1% 18.0% 91.8% 29.0% 90.6% 28.8% 85.1% 

Naïve Bayes 
STVR 

Magnitude 
41.3% 90.5% 29.0% 84.7% 30.1% 81.3% 31.7% 77.3% 

Naïve Bayes STVR All 37.9% 90.1% 27.0% 83.7% 36.6% 76.0% 42.3% 70.9% 
Naïve Bayes STVR Boruta 39.6% 90.1% 30.0% 85.7% 35.5% 82.3% 36.0% 71.8% 

C5.0 Tree 
VCOD 

Magnitude 
29.4% 96.1% 16.0% 94.9% 30.1% 92.7% 29.3% 87.0% 

C5.0 Tree VCOD All 29.4% 96.1% 16.0% 94.9% 30.1% 92.7% 29.3% 87.0% 
C5.0 Tree VCOD Boruta 28.1% 95.3% 17.0% 93.9% 28.0% 91.7% 30.3% 89.6% 

C5.0 Tree 
STVR 

Magnitude 
36.2% 93.1% 21.0% 89.8% 30.1% 87.5% 32.2% 88.0% 

C5.0 Tree STVR All 60.4% 95.3% 33.0% 74.5% 40.9% 76.0% 39.4% 67.6% 
C5.0 Tree STVR Boruta 46.0% 90.1% 26.0% 80.6% 35.5% 84.4% 37.0% 80.3% 
Random 
Forest 

VCOD 
Magnitude 

94.5% 100.0% 18.0% 92.9% 34.4% 87.5% 32.2% 79.9% 

Random 
Forest 

VCOD All 82.6% 99.6% 20.0% 91.8% 32.3% 87.5% 33.7% 80.3% 

Random 
Forest 

VCOD Boruta 52.3% 97.0% 22.0% 91.8% 35.5% 89.6% 31.7% 84.8% 

Random 
Forest 

STVR 
Magnitude 

96.2% 100.0% 25.0% 90.8% 33.3% 85.4% 26.4% 89.6% 

Random 
Forest 

STVR All 100.0% 100.0% 25.0% 92.9% 31.2% 86.5% 28.4% 85.8% 

Random 
Forest 

STVR Boruta 67.6% 98.3% 28.0% 91.8% 34.4% 78.1% 34.6% 78.0% 

XGBoost 
VCOD 

Magnitude 
43.0% 90.1% 22.0% 81.6% 39.8% 81.3% 42.3% 75.4% 

XGBoost VCOD All 40.9% 90.5% 20.0% 88.8% 34.4% 86.5% 38.9% 81.5% 
XGBoost VCOD Boruta 38.7% 90.1% 21.0% 88.8% 35.5% 87.5% 36.5% 79.9% 

XGBoost 
STVR 

Magnitude 
37.9% 91.8% 22.0% 86.7% 32.3% 87.5% 35.0% 85.8% 

XGBoost STVR All 46.0% 92.7% 28.0% 81.6% 38.7% 84.4% 40.9% 78.6% 
XGBoost STVR Boruta 46.0% 90.1% 27.0% 81.6% 37.6% 83.3% 38.5% 79.9% 

 

Performance of all explored models has been summarised, as shown in 

Table 7-10, in order to compare the modelling strategies both to each other, 
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and to the performance obtained using the commercial assessment of the 

sample results. This shows that the test cohort also showed a reduced 

performance using the current commercial test, and that the majority of 

modelling methods compare unfavourably to the current standard, with 

LASSO models giving much lower specificities than would be required for a 

screening test, Random Forest modelling techniques showed the greatest 

propensity to heavily overfit to the training data, and test cohort results show 

that specificity is not maintained in these models. c5.0 decision tree models 

show performance that is comparable to the current commercial 

performance, but do not display obvious or substantial gains in performance 

that would justify the redevelopment of the commercial test to analyse the 

data using these modelling strategies.  
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7.14 Discussion 

A variety of supervised machine learning strategies have been explored 

against both tumour associated autoantibody magnitude features, and 

features derived from the binding curves of these autoantibodies to their 

antigens at a range of serum concentrations.  

7.14.1 Logistic Regression Modelling 

While logistic regression modelling has been proven to be effective for risk 

models such as those for determining risk of malignancy in indeterminate 

pulmonary nodules(158) which utilised demographic risk factors, as well as 

radiological characteristics, as well as models which utilise levels of tumour 

associated antigens as features, such as PSA in prostate cancer(184), 

LASSO models generated in this investigation, based upon the autoantibody 

features, and features derived from the binding curves generated during the 

EarlyCDT®-Lung assay, showed limited ability to determine cases from 

controls. 

Logistic regression modelling also required additional intervention to 

ensure high specificity in the output, with predictions based on a 50% 

probability threshold for cancer giving specificities that were far too low to be 

commercially useful, as the false positive rate for the test would be far too 

high leading to large numbers of unnecessary follow up investigation, most 

likely in the form of CT screening. 

The performance of logistic regression modelling using autoantibody 

data may be limited by the high specificity and low sensitivity of the individual 

autoantibody biomarkers, whereby the majority of the results are 

representative of non-specific binding and background noise. While this 
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method was explored due to its popularity as a technique, the poor 

performance was unsurprising given that it require summation of a large 

number of expectantly negative features, with relatively variable signals, 

which, even after applying co-efficients, lead to non-specific assay noise 

having a large influence on the model result. For this reason decision tree 

methods which apply cut-off thresholds to categorise the data were expected 

to show higher accuracy for this data.  

7.14.2 Support Vector Machine Models 

Support vector machine models have been explored here as they are able to 

emulate the multivariate threshold assessment that was applied in a previous 

pilot study, and the immune amplification of an autoantibody response to 

relatively few cells should lead to a small population of clearly elevated 

autoantibody signals for each antigen, each of which should be distinct from 

the non-specific signal, and able to be discriminated by the application of a 

support vector machine threshold. The poor performance in these models is 

potentially due to an aggregation of non-specific signals over the multiple 

features, as the models trained on all features showed lower specificity than 

those trained on the current commercial autoantibody panel, or the Boruta 

selected feature panels. This suggests that this modelling technique is of 

limited utility in the early diagnosis of lung cancer, where we expect large 

feature sets of highly specific autoantibody features, each contributing small 

sensitivities, due to the extremely heterogeneous nature of cancers as a 

disease.  
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7.14.3 Naïve Bayes Models 

Naïve Bayes, when applied to the Boruta selected features, returned a model 

that approached the current commercial performance, however it seems to 

be unsuitable as an approach when incorporating larger numbers of features, 

this is potentially due to an aggregation of false positives which leads to 

reductions in specificity that render it unsuitable for large autoantibody 

feature sets. Naïve Bayes is also better suited for categorical input variables 

and may potentially perform better on autoantibody data that has already had 

a diagnostic threshold applied to allow it to be considered as a binary 

categorical variable rather than a continuous autoantibody level as was 

explored here. 

7.14.4 C5.0 Decision Tree Modelling 

Of the strategies applied, decision tree modelling is most like the current 

commercial strategy applied by the EarlyCDT®-Lung test, whereby an 

autoantibody magnitude value above a threshold cut-off for any of the 

autoantibody features determines a positive result, in fact the strategy for the 

commercial EarlyCDT®-Lung result could be expressed in the form of a tree 

model. This may be the reason that the C5.0 Tree models for the VCOD 

features seem to show discriminatory ability most similar to the current 

commercial output, albeit with a higher specificity as enforced by the 

penalised classification search function that has been used in the modelling. 

Tree models may be more suitable for assessing autoantibody features, due 

to the nature of the immune response to cancer being extremely 

heterogeneous, therefore the preponderance of low values returned by 

assay are more likely to be due to non-specific binding. with decision tree 
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models applying a binary decision threshold at each decision node, rather 

than a co-efficient multiplier to the magnitude, the influence of non-specific 

responses are greatly diminished.  

In this investigation, decision tree modelling on the VCOD magnitude 

features gave the best results, with curve characteristics not being included 

in the model while magnitude features were available. This model also 

showed minimal reduction in specificity between training and validation, 

suggesting a lower degree of overfitting, however this may be due to only 

two magnitude features being incorporated in the decision tree. 

The models generated in this analysis have not shown discriminatory 

ability that is a sufficient improvement over the current commercial strategy 

to warrant redevelopment of the test to apply a tree model algorithm, 

however, further investigation is warranted into whether inclusion of 

demographic risk variables is able to further improve the performance of 

these models to reach improved sensitivities. Additionally expansion of the 

model from a simple binary output to a model which can determine 

probability of histological subtype would potentially allow for greater 

contribution of features other than NY-ESO-1 and p53, such as SOX-2 and 

HuD which are known to be associated to small cell lung cancers, which had 

a lower representation in the explored data sets, at only 11% of the cancer 

cohort, compared to 40% of the cohort for adenocarcinoma, and 40% for 

squamous cell carcinoma. While this reflects the incidence distribution of 

lung cancer in the population, it may in this case have resulted in models 

which are overfitted to non-small cell lung carcinomas, therefore the features 
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which have been excluded in the decision tree models trained here may be 

of greater contribution in a multivariate decision tree model.  

7.14.5 Random Forest Modelling 

Random forest modelling on these feature sets resulted in highly overfit 

models which were not applicable to the hold-out test set. Examination of the 

feature importance for these models also shows that the random forest 

modelling tended to include all but one feature each time, and the random 

forest model trained on the VCOD magnitude features was the only mode 

which gave high importance to the HuD and SOX-2 features. Considering 

HuD and SOX-2 are known to be related to small-cell lung cancer which 

comprises only 11% of the cancers in the training data this suggests that the 

random forest model is training to non-specific signal, which is resulting in 

extremely poor performance in the test data. This suggests that random 

forest modelling is unsuitable for training models on autoantibody data. 

7.14.6 Extreme Gradient Boosting Modelling 

XGBoost models have been found to be extremely versatile and show 

discriminatory ability comparable to both the current commercial, and to the 

C5.0 decision tree models, although again display no significant increase in 

performance over the current commercial strategy that would result in 

redevelopment of the commercial assay. The feature importance in the 

XGBoost models shows that the modelling did not try to incorporate large 

numbers of features which may be why it was less prone to overfitting that 

random forest modelling, and the inclusion of HuD at a lower importance in 

the VCOD magnitude model suggests that XGboost modelling may benefit 

from being trained against histological subtype as opposed to just cancer 
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presence. As XGBoost has already been used in the development of a lung 

cancer risk screening model(183), the inclusion of additional demographic 

risk factors to the autoantibody screening test may also result in a diagnostic 

risk model with improved performance over that currently obtained by the 

EarlyCDT®-Lung test, or by risk models that include only demographic risk 

factors.  
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7.15 Chapter Conclusions 

A number of well-established supervised machine learning techniques have 

been applied to the autoantibody magnitude and curve characteristic data 

generated from the results of the EarlyCDT®-Lung test. None of the 

techniques explored show appreciable improvement in diagnostic 

performance over that achieved by the current commercial output of the test, 

however C5.0 decision trees, extreme gradient boosted trees, and potentially 

also radial kernel support vector machines, show performance comparable to 

the current commercial test, while random forest models showed extremely 

high degrees of overfitting to the training data, and is likely unsuitable for 

these applications. Throughout this exploration, however, the derived curve 

characteristics do not show the ability to greatly improve the specificity or 

sensitivity of the biomarker panel, and improvements to the diagnostic 

performance are more likely to be achieved through other means. 

Additional investigations (not shown) were undertaken to determine 

whether the addition of risk modelling based upon the available demographic 

variable information could contribute to improved predictive performance for 

the trained models. This analysis, however, was limited by the lack of 

detailed smoking history or additional risk factors that have previously 

contributed to established demographic risk models, with only age, sex, and 

categorical smoking history (current smoker, ex-smoker or never-smoker) 

being captured in the majority of the cohort. Of the available demographic 

risk models that have been established in the literature, four have been 

previous determined to show the highest accuracy for cancer risk 

prediction(100) (Bach(185), PLCOM2012(101), LCRAT, and LCDRAT(103)), 
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and amongst them required demographic information including smoking 

duration and intensity, asbestos exposure, as well as education levels, BMI, 

history of related disease such as emphysema, and family history of lung 

cancer. Even the simplest risk model, the Pittsburgh Predictor(186) required 

information on smoking duration and intensity along with age and smoking 

status. Future studies would benefit from ensuring that this level of 

demographic detail is captured to enable demographic risk features to be 

incorporated with biomarker results to develop ensemble models, especially 

as such demographic risk should feed into public health policy regarding the 

target population that would benefit from a screening test for cancer. 

While these models currently do not show improvements in diagnostic 

performance over the current commercial thresholds, models with 

comparable performance to the EarlyCDT threshold tests, and which can 

return a percentage likelihood score rather than a binary decision, may lend 

themselves more easily to inclusion in ensemble models, with the 

incorporation of additional diagnostic biomarkers such as antigenic 

biomarkers - which have been explored previously, and are mostly 

associated with late stage disease, demographic risk features - which have 

already shown use in models such as Bach(185), and PLCOM2012(101), 

genetic risk features, such as circulating tumour DNA which has shown 

potential for directing disease management, or DNA methylation 

markers(187). Along with an increased variety of diagnostic biomarkers, 

longitudinal testing methods, with maintained history of screening test results 

may also provide an avenue for improved diagnostic performance, with 

application of personalised baselines and surveillance of changes in 
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biomarker levels, such as that attempted by the ROCA test(134) providing 

another avenue for additional data which could feed into ensemble models. 

7.16 Chapter Discussion 

It is massively disappointing that none of the explored modelling strategies 

was able to train a model that could consistently outperform the current 

commercial test. While some of the results were unsurprising, the lack of 

consistent improvement using either support vector machines or xgboost 

strategies was frustrating. The inconsistency of the trained models’ 

performance may indicate a higher impact of confounding variables than was 

appreciated prior to undertaking this research, and future explorations would 

benefit from more carefully curated sample cohorts, balanced for 

demographic risk factors between cases and controls, and also between 

training, test and validation cohorts. 

 Also disappointing was discovering the lack of detailed smoking 

history and demographic information accompanying the samples that would 

have allowed for the application of risk models such as PLCOM2012 and 

LLPv2 for an accurate calculation of each subjects demographic risk. The 

availability of this demographic information would have allowed for 

exploration of ensemble models incorporating the pre-test risk score and 

may have been able to improve the accuracy of resultant models. 
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Chapter 8: Exploration of Supervised Machine Learning 

Strategies for Early Lung Cancer Diagnosis using an 

Extended Panel of Tumour Associated Autoantibodies. 

8.1 Aims 

With the supervised machine learning strategies explored being unable to 

show consistent improvement in diagnostic performance above that returned 

by the current commercial panel strategy, I repeated the analysis including 

data from additional autoantibody biomarkers to try and add more sources of 

sensitivity, again aiming to train models with diagnostic performance superior 

to that of the current panel assay. 

8.2 Introduction 

Investigations into machine learning strategies applied to the EarlyCDT panel 

of autoantibodies, incorporating derived curve characteristics based upon the 

autoantibody binding curves generated during the EarlyCDT®-Lung assay 

resulted in only marginal performance improvements over the current 

commercial EarlyCDT®-Lung panel strategy. This suggests that there is 

limited additional diagnostic utility to be returned by the current commercial 

panel above that currently being returned by the commercial test method. 

Due to the highly heterogeneous nature of lung cancer, additional 

autoantibodies representing alternate biological pathways which may be 

affected during tumorigenesis should be able to provide additional sensitivity 

to detect further lung cancers. 

A high throughput biomarker discovery strategy was employed to 

assess a large number of potential antigens for their ability to bind tumour-

associated autoantibody biomarkers(188), from which 5 additional antigens 
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were identified as having the potential to add sensitivity to the commercial 

panel. These initial 5 additional antigens are: alpha-enolase, p53-C-term, 

cytokeratin 20, cytokeratin 8, and L-myc-2, and their discriminatory 

performance as determined in the biomarker discovery study is summarised 

in Table 8-1. 

Alpha-enolase 

Alpha-enolase (Gene name ENO1, Gene ID 2023) is a glycolytic enzyme 

expressed in most tissues, with multiple functions dependant on location, 

including catalysing glycolysis, roles in transcription, apoptosis regulation 

and cell differentiation, as well as acting as a strong receptor and activator of 

plasminogen when expressed at the cell-surface(189). Alpha-enolase is 

over-expressed in multiple human cancer types, contributing to increased 

glycolysis and tumor growth, and this overexpression has been shown to 

elicit an autoantibody response in Liver cancer(190), Pancreatic cancer(191), 

and Lung cancer(192), with autoantibodies to alpha-enolase being 

associated with more aggressive tumours and poor prognosis(193).  

p53-C-term 

p53-C-term is a 35kDa fragment representing the carboxy-terminus of the 

p53 protein (Gene name TP53, Gene ID 7157), which is involved in 

regulation of the cell cycle, apoptosis, and genomic stability, which has been 

described previously in section 1.10.2. 

Cytokeratin 20 

Cytokeratin 20 (CK20) (Gene name KRT20, Gene ID 54474) is a polypeptide 

normally expressed in the gastric and intestinal epithelium, urothelium, and 
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Merkel cells, with elevated expression having been observed in colorectal 

carcinoma and colorectal adenoma(194), as well as adenocarcinomas of the 

stomach, gall bladder and bile ducts(195). 

Cytokeratin 8 

Cytokeratin 8 (CK8) (Gene name KRT8, Gene ID 3856) is a structural protein 

involved in the formation of filaments within cell cytoplasm which generate a 

stabilizing framework and facilitate the movement of signalling molecules and 

metabolites within the cell. Autoantibodies to CK8 have previously been 

reported for the detection of breast cancer(196). 

L-Myc-2 

L-Myc-2 (Gene name MYCL, Gene ID 4610) is a transcription factor which 

has key roles in cell proliferation, growth, differentiation and apoptosis. 

Amplification and overexpression of L-Myc has previously been observed in 

ovarian cancer(197) and small-cell lung cancer(198) 

 

Table 8-1: Discriminatory performance of proposed additional lung antigens in discovery study(188). 

Protein 
Discovery Study 

Sensitivity 
Discovery Study 

Specificity 

Alpha-enolase 15% 98% 
p53-C-term 14% 98% 
Cytokeratin 20 10% 98% 
Cytokeratin 8 4% 100% 
L-Myc-2 10% 98% 

 

In addition, 7 autoantibody biomarkers were identified from a further high 

throughput analysis and have been included here to explore whether they 

are able to contribute to increased sensitivity for lung cancer through the 
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application of machine learning strategies. These autoantibodies are p16-C, 

KOC, ALDH1, p62, SSX1, p53-95, and K-ras G13C/Q91H. 

p16-C 

p16-C (Gene name CDKN2A, Gene ID 1029) is a cyclin-dependent kinase 

(CDK) inhibitor which is involved in down-regulation of the cell cycle through 

inactivation of CDK4 and CDK6 activities during the G1 growth phase of the 

cell cycle. It acts as a tumour-suppressor gene, with loss of p16 activity 

having been linked to many cancers(199), with autoantibodies to p16 having 

been identified as having diagnostic potential in lung cancer(200, 201), 

breast cancer(201-203) as well as HCC, colorectal, esophageal, pharyngeal, 

uterine(201), hepatocellular and nasopharyngeal cancers(203). 

KOC 

KOC (also known as IMP3, Gene name IGF2BP3, Gene ID 10643) is a 

messenger RNA binding protein, normally only expressed in the placenta, 

but known for being overexpressed in cancers (in fact KOC is an 

abbreviation of “K homology domain containing protein Overexpressed in 

Cancer”). KOC was initially discovered in pancreatic cancer(204), and 

studies have subsequently shown overexpression of KOC in lung 

cancers(205), renal cell carcinoma(206), endometrioid 

adenocarcinoma(207), and melanoma(208), as well as expression that was 

associated with lung cancer histologic grade(209). Immune reactivity to KOC 

has been previously established with autoantibodies to KOC being identified 

in esophageal, lymphoma, pharyngeal cancers (202), HCC, gastric, breast 

(202, 210), and lung cancer(205, 210). 
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ALDH1 

ALDH1 (Gene name LDH1A1, Gene ID 216) is an aldehyde dehydrogenase, 

responsible for oxidation of acetaldehyde to acetic acid, and plays roles in 

both gene expression and tissue differentiation. In healthy tissue, ALDH1 

exists primarily in the cytoplasm of liver cells, however studies have 

associated aberrant ALDH1 expression with a number of solid tumours 

including lung(211), breast(212), and colorectal cancer(213), with elevated 

ALDH1 expression being associated with poor cancer prognosis and 

malignant tumour progression(214, 215).  

p62 

p62 (also known as IMP2, Gene name SQSTM1, Gene ID 8878), is a 

multidomain protein which acts as a signalling hub and serves critical roles in 

a number of cellular functions including cell survival and apoptosis, with 

evidence that p62 accumulation is an important promotor of 

tumorigenesis(216, 217). Autoantibodies to p62 have been identified in a 

variety of tumour types, including breast(202), esophageal, colorectal, lung, 

pharyngeal and uterine cancers(201). 

SSX1 

SSX1 (Gene ID 6756) is a cancer testis antigen, whose expression is 

normally restricted to testis germline cells. SSX1 expression has been 

detected in a wide range of cancer cells including bladder, breast, colorectal, 

hepatocellular, myeloma, and lung cancer(218) 

p53-95 is a fragment comprised of the first 95 amino acids of the p53 protein 

(Gene name TP53, Gene ID 7157), which has been described previously in 

section 1.10.2. 
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K-ras G13C/Q61H 

K-ras G13C/Q61H (Gene name KRAS, Gene ID 3845) is a version of the K-

ras protein with two single nucleotide polymorphisms which result in the 13th 

amino acid being swapped from glycine to cysteine, and the 61st amino acid 

being swapped from glutamine to histidine. In healthy tissue, Ras proteins 

are small GTPase proteins, whose activation leads to the activation of 

proteins involved in cell growth, differentiation and survival. Cancer 

associated Ras genes are generally characterised by single base missense 

mutations, with 99% of these being found at residues G12, G13, or 

Q61(219). K-ras is the most frequently mutated Ras isoform and K-ras 

mutants have been associated with a wide range of cancers including 

pancreatic(220), colorectal(221), and lung cancer(222). 

 

As discussed previously in sections 7.6 to 7.11, the machine learning 

techniques explored consist of logistic regression, support vector machine 

learning, naïve Bayes, decision trees, random forest, and extreme gradient 

boosted regression trees. 

8.3 Datasets 

Assay data results from the commercial EarlyCDT®-Lung test panel from two 

case-control studies was combined, and divided into training and test 

cohorts. The demographics for the full dataset is summarised in Table 5-1, 

with cancer subtype and stage distribution as shown in  
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Table 5-2. In addition, the trained models have been applied to two additional 

independent cohorts of samples to assess model performance 

reproducibility.  

8.4 Features 

As described previously, the EarlyCDT®-Lung test collected autoantibody 

response values over a range of dilutions (1.6nM, 5nM, 16nM, 50nM, and 

160nM), the additional autoantibodies assessed in this analysis were also 

assessed over this dilution range, and the single dilution value which showed 

the greatest discriminatory ability for each autoantibody was determined. 

These concentrations are as follows: for vol corrected OD (VCOD) data for 

the commercial panel - as reported previously; p53 at 1.6nM, SOX2 at 50nM, 

CAGE at 16nM, NY-ESO-1 at 5nM, GBU4-5 at 1.6nM, MAGE-A4 at 5nM, 

and HuD at 160nM. For VCOD data for the initial 5 extended panel 

autoantibodies: alpha-enolase at 16nM, p53-C-term at 5nM, cytokeratin 20 at 

160nM, cytokeratin 8 at 16nM, and L-myc-2 at 5nM. Finally for VCOD values 

for the additional 7 autoantibodies: p16-C, KOC, ALDH1, p62, and K-ras 

G13C/Q91H were assessed at 1.6nM while SSX1 and p53-95 were 

assessed at 16nM. 

For signal to vol ratio (STVR) data; as reported previously, p53 at 

1.6nM, SOX2 at 50nM, CAGE at 1.6nM, NY-ESO-1 at 5nM, GBU4-5 at 

50nM, MAGE-A4 at 16nM, and HuD at 1.6nM. For STVR data for the initial 5 

extended panel autoantibodies: alpha-enolase at 5nM, p53-C-term at 5nM, 

cytokeratin 20 at 16nM, cytokeratin 8 at 16nM, and L-myc-2 at 50nM. Finally 

for STVR values for the additional 7 autoantibodies: KOC, ALDH1, p62, and 
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K-ras G13C/Q91H were assessed at 1.6nM while p16-C, SSX1 and p53-95 

were assessed at 5nM. 

All features underwent transformation and scaling as described 

previously to ensure data approximated a normal distribution, and to prevent 

differences in feature scale from detrimentally influencing the modelling. 

8.4.1 Individual Feature Discriminatory Performance 

The discriminatory ability of the magnitude features in both VCOD and STVR 

feature sets has been summarised by identifying an optimal cutpoint which 

maximised the Youden index for the training cohort, constrained to 

specificities above 90%, using the R cutpointr package (v1.1.2) to iterate 

over all features, after which the optimal cutpoint was applied to the hold-out 

test cohort to return performance characteristics. 

Vol Subtracted (VCOD) Features 

Summary values for accuracy in the training cohort (training accuracy), area 

under the ROC curve in the training cohort (training AUC), and sensitivity 

and specificity at the optimal cutpoint in both training cohort (training 

sensitivity and training specificity respectively),  and test cohort (test 

sensitivity and test specificity respectively) are summarised in Table 8-2, 

showing that that for the majority of features, specificity is maintained in the 

test cohort, with a mean decrease in the test cohort of only 2.2%, and the 

largest change being in HuD, in which the specificity decreased to 82.7% 

compared to 90.9% in the training cohort. Sensitivity does show a small drop 

off in the test cohort, with a mean decrease of 4.3% across all features, and 

the largest reduction being shown in Lmyc2 in which the sensitivity reduction 

is 9.4%. Summary ROC plots were constructed to allow comparison of the 
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features discriminatory ability over the dynamic range of the assay, and 

these are included in appendix 1. 

 

Table 8-2: Discriminatory ability of individual Vol corrected magnitude and curve characteristic features, 

optimised over training cohort and applied to test cohort. 

Feature 
optimal 
cutpoint 

training 
accuracy 

training 
AUC 

training 
sens 

training 
spec 

test 
sens 

test 
spec 

VCOD_p53 1.016 0.559 0.537 21.7% 90.5% 13.0% 90.8% 

VCOD_SOX_2 0.929 0.505 0.503 11.1% 90.5% 14.0% 85.7% 

VCOD_CAGE 0.960 0.537 0.527 17.0% 90.9% 11.0% 90.8% 

VCOD_NY_ESO_1 0.663 0.582 0.607 26.8% 90.1% 25.0% 85.7% 

VCOD_GBU_4_5 1.039 0.525 0.514 15.3% 90.1% 8.0% 89.8% 

VCOD_MAGE_A4 1.039 0.527 0.547 15.7% 90.1% 13.0% 90.8% 

VCOD_HuD 0.717 0.533 0.533 16.2% 90.9% 9.0% 82.7% 

VCOD_p16-C 1.161 0.544 0.583 18.7% 90.5% 15.0% 87.9% 

VCOD_KOC 0.988 0.540 0.508 17.4% 90.9% 11.0% 91.9% 

VCOD_ALDH1 1.211 0.493 0.481 8.9% 90.1% 10.0% 87.9% 

VCOD_p62 1.035 0.544 0.544 18.7% 90.5% 10.0% 85.9% 

VCOD_SSX1 1.127 0.512 0.506 12.8% 90.1% 13.0% 89.9% 

VCOD_P53 C-term 0.978 0.546 0.551 19.6% 90.1% 14.0% 87.9% 

VCOD_P53_95 0.886 0.567 0.572 23.4% 90.5% 24.0% 82.8% 

VCOD_Kras 
G13C/Q61H 

1.134 0.527 0.503 15.7% 90.1% 11.0% 90.9% 

VCOD_CK8 0.972 0.533 0.540 16.6% 90.5% 8.0% 91.9% 

VCOD_CK20 0.824 0.537 0.518 17.9% 90.1% 11.0% 81.8% 

VCOD_Alpha-
enolase 

1.288 0.499 0.484 10.2% 90.1% 12.0% 90.9% 

VCOD_Lmyc2 1.035 0.535 0.561 17.4% 90.1% 8.0% 89.9% 

 

Signal to Vol Ratio (STVR) Features 

Summary values for accuracy in the training cohort (training accuracy), area 

under the ROC curve in the training cohort (training AUC), and sensitivity 

and specificity at the optimal cutpoint in both training cohort (training 

sensitivity and training specificity respectively), and test cohort (test 

sensitivity and test specificity respectively) for STVR features are 

summarised in Table 8-3, showing that for the majority of features, specificity 

is once again maintained in the test cohort, with a mean decrease in the test 
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cohort of only 1.1%, the largest change being in CAGE, in which the 

specificity decreased to 84.8% compared to 90.5% in the training cohort. 

Sensitivity does show a small drop off in the test cohort, with a mean 

decrease of 1.7% across all features, and the largest reduction being shown 

in p53 in which the sensitivity reduction is 9.0%. Summary ROC plots were 

again constructed to allow comparison of the features discriminatory ability 

over the dynamic range of the assay, and these are included in appendix 2. 

 

Table 8-3: Discriminatory ability of individual Signal to Vol Ratio magnitude and curve characteristic 
features, optimised over training cohort and applied to test cohort. 

Feature 
optimal 
cutpoint 

training 
accuracy 

training 
AUC 

training 
sens 

training 
spec 

test 
sens 

test 
spec 

STVR_p53 0.477 0.565 0.538 23.0% 90.5% 14.0% 87.9% 

STVR_SOX_2 0.929 0.522 0.508 14.9% 90.1% 18.0% 89.9% 

STVR_CAGE 0.682 0.548 0.549 19.6% 90.5% 17.0% 84.8% 

STVR_NY_ESO_1 0.257 0.585 0.600 27.2% 90.1% 28.0% 86.9% 

STVR_GBU_4_5 1.249 0.497 0.476 9.4% 90.5% 15.0% 86.9% 

STVR_MAGE_A4 1.056 0.531 0.528 16.6% 90.1% 10.0% 91.9% 

STVR_HuD 0.625 0.546 0.545 19.6% 90.1% 12.0% 89.9% 

STVR_p16-C 0.515 0.550 0.531 20.4% 90.1% 22.0% 88.9% 

STVR_KOC 0.947 0.522 0.520 14.9% 90.1% 10.0% 89.9% 

STVR_ALDH1 1.123 0.499 0.489 9.8% 90.5% 11.0% 88.9% 

STVR_p62 0.573 0.546 0.545 18.7% 90.9% 11.0% 90.9% 

STVR_SSX1 0.837 0.514 0.520 13.2% 90.1% 15.0% 91.9% 

STVR_p53 C-term 0.617 0.542 0.556 18.7% 90.1% 13.0% 88.9% 

STVR_p53_95 0.307 0.565 0.546 23.0% 90.5% 21.0% 86.9% 

STVR_Kras 
G13C/Q61H 

0.823 0.525 0.500 14.9% 90.5% 13.0% 91.9% 

STVR_CK8 0.894 0.537 0.531 17.0% 90.9% 14.0% 89.9% 

STVR_CK20 0.967 0.527 0.513 15.3% 90.5% 13.0% 87.9% 

STVR_Alpha-
enolase 

1.108 0.497 0.494 9.4% 90.5% 14.0% 94.9% 

STVR_Lmyc2 1.187 0.520 0.532 14.5% 90.1% 16.0% 86.9% 
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8.5 Boruta Feature Selection 

8.5.1 Methods 

Boruta analysis was undertaken in R (v4.2.1) using the Boruta library, with all 

features showing a significantly higher importance than that of the maximum 

importance of the shadow features being included in the subsequent Boruta 

feature sets. This was completed for both VCOD features, and STVR 

features. Any features which showed importance that was not significantly 

different to the  importance of the shadow features were considered as 

tentative candidates. These were reclassified by comparing their median 

importance over the entire run compared to the median value of the 

maximum importance of the shadow features, features showing greater 

importance than the shadow features were retained. 

8.5.2 Results 

VCOD Features 

 



Exploration of Supervised Machine Learning Strategies for Early Lung 

Cancer Diagnosis using an Extended Panel of Tumour Associated 

Autoantibodies. 

221 | P a g e  
 

 

Figure 8-1: Boruta feature selection undertaken on VCOD corrected features, Importance was calculated as z-

score of the mean accuracy decrease. 

Boruta selection on the VCOD feature set identified 7 features which were 

considered important after comparison to shadow features, the full results 

are displayed in Figure 8-1, which shows that the EarlyCDT commercial 

autoantibodies NY-ESO-1, p53, and CAGE were deemed important, along 

with the extended panel autoantibodies p53_95, p62, p16, and KOC. This set 

of autoantibody features were examined as distinct feature set in the 

subsequent modelling analyses. 

STVR Features 

 

Figure 8-2: Boruta feature selection undertaken on STVR corrected features, Importance was calculated as z-

score of the mean accuracy decrease. 

Boruta selection on the STVR feature set identified 6 features which were 

considered important after comparison to shadow features, the full results 

are displayed in Figure 8-2, which shows that similar to the analysis on the 
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VCOD features, the EarlyCDT autoantibodies NY-ESO-1 and p53 were 

deemed important, along with the additional autoantibodies p53_95, p62, L-

Myc-2 and p16-C. This set of 6 features was examined as a distinct feature 

set in the subsequent modelling analyses. 

8.6 Penalised Classification Search Function 

For the subsequent supervised modelling analysis, a two-class penalised 

classification search function was again used, as described in section 7.6.  
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8.7 Binary Logistic Regression Modelling 

8.7.1 Methods 

Least absolute shrinkage and selection operator (LASSO) regression was 

undertaken in R (v4.2.1) using the `glmnet` training method within the caret 

library to fit a binary logistic regression model via penalized maximum 

likelihood. 

Parameter Tuning of Binary Logistic Models 

To optimise the model fitting, a LASSO approach was used, employing 

values for the regularization constant of 0.001 to 0.1, at intervals of 0.001, 

and using 10-fold cross-validation to tune parameters to reduce any effect of 

overfitting. During cross validation, model performance was summarised and 

compared using a penalised classification metric designed to prioritise high 

specificity, as described previously. 

8.7.2 Results 

Performance of the LASSO regression models trained on the training cohort 

for each of the candidate feature sets are summarised in Figure 7-3 and 

potential diagnostic model performance is summarised in Table 7-3, showing 

model performance with probability thresholds optimised based on 

maximising sensitivity for specificity greater than 90% in the training cohort. 

These show that the trained regression models were unable to exceed the 

current commercial performance for the majority of the explored feature sets 

and cohorts, with the most promising being the model trained on the Boruta 

identified feature set of STVR corrected features, however the high 

specificity obtained from the training cohort was not maintained in the test 
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and validation cohorts, resulting in specificity that would be too low for a 

screening modality. 

 

Figure 8-3: Comparison of diagnostic performance of LASSO regression models. A and B) Full extended 

antigen panel. C and D) Boruta selected features. A, and C) Subtraction of VOL for correction of non-specific 

binding. B, and D) Ratio of antigen to VOL signal for correction of non-specific binding. 
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Table 8-4: Summary of diagnostic performance of LASSO models on explored feature sets. Bold italicized 

values represent an improvement over performance obtained by the current commercial test, as defined by an 

increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD All features Training 76 159 23 209 32.3% 90.1% 

VCOD All features Test 24 76 16 83 24.0% 83.8% 

VCOD All features 
Validation 

1 
28 65 12 84 30.1% 87.5% 

VCOD All features 
Validation 

2 
71 137 60 249 34.1% 80.6% 

VCOD Boruta Training 67 168 23 209 28.5% 90.1% 

VCOD Boruta Test 20 80 14 85 20.0% 85.9% 

VCOD Boruta 
Validation 

1 
25 68 6 90 26.9% 93.8% 

VCOD Boruta 
Validation 

2 
55 153 49 260 26.4% 84.1% 

STVR All features Training 87 148 22 210 37.0% 90.5% 

STVR All features Test 24 76 14 85 24.0% 85.9% 

STVR All features 
Validation 

1 
32 61 16 80 34.4% 83.3% 

STVR All features 
Validation 

2 
73 135 56 253 35.1% 81.9% 

STVR Boruta Training 88 147 23 209 37.4% 90.1% 

STVR Boruta Test 27 73 14 85 27.0% 85.9% 

STVR Boruta 
Validation 

1 
31 62 13 83 33.3% 86.5% 

STVR Boruta 
Validation 

2 
68 140 58 251 32.7% 81.2% 
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8.8 Support Vector Machine Models 

8.8.1 Methods 

Support vector machine learning was undertaken in R (v4.2.1) using the 

`svmLinear` and `svmRadial` training methods within the caret library to 

explore both linear kernel and radial kernel support vector classification 

rules. 

Parameter Tuning of Support Vector Machine Models 

Linear support vector machines were optimised through exploring values of 

the misclassification cost ‘C’ between 0.5 and 4, smaller values of which 

allows for higher rates of misclassification in order to give separating 

hyperplanes with larger margins, while higher values result in lower training 

misclassification and hyperplanes with smaller margins, which may result in 

overfit models and poorer test set performance. 10-fold cross-validation was 

used to determine the optimal value of C for the final model.  

8.8.2 Results – Linear Kernel 

Performance of the linear kernel support vector models trained on the 

training cohort for each of the candidate feature sets are summarised in 

Figure 7-4 and potential diagnostic model performance is summarised in 

Table 7-4, showing model performance with probability thresholds optimised 

based on maximising sensitivity for specificity greater than 90% in the 

training cohort. These models showed improvements over the current 

commercial test in only the training cohort for all feature sets other than the 

full set of STVR corrected features, which showed improvement in the test 

cohort and Validation 1 cohort also. The increased performance was at the 

cost of specificity in the test and validation sets, with these sets showing 



Exploration of Supervised Machine Learning Strategies for Early Lung 

Cancer Diagnosis using an Extended Panel of Tumour Associated 

Autoantibodies. 

227 | P a g e  
 

specificities around 85% which would be insufficient for a screening modality, 

especially as the performance gains were only in the range of around 2%-

4%. 

 

Figure 8-4: Comparison of diagnostic performance of linear kernel support vector machine models. A and B) 

Full extended antigen panel. C and D) Boruta selected features. A, and C) Subtraction of VOL for correction of 

non-specific binding. B, and D) Ratio of antigen to VOL signal for correction of non-specific binding. 
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Table 8-5: Summary of diagnostic performance of linear kernel support vector machine models on explored 
feature sets. Bold italicized values represent an improvement over performance obtained by the current 
commercial test, as defined by an increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD All features Training 77 158 23 209 32.8% 90.1% 

VCOD All features Test 24 76 19 80 24.0% 80.8% 

VCOD All features 
Validation 

1 
23 70 14 82 24.7% 85.4% 

VCOD All features 
Validation 

2 
58 150 51 258 27.9% 83.5% 

VCOD Boruta Training 71 164 22 210 30.2% 90.5% 

VCOD Boruta Test 21 79 13 86 21.0% 86.9% 

VCOD Boruta 
Validation 

1 
24 69 12 84 25.8% 87.5% 

VCOD Boruta 
Validation 

2 
55 153 49 260 26.4% 84.1% 

STVR All features Training 81 154 23 209 34.5% 90.1% 

STVR All features Test 27 73 14 85 27.0% 85.9% 

STVR All features 
Validation 

1 
33 60 15 81 35.5% 84.4% 

STVR All features 
Validation 

2 
66 142 46 263 31.7% 85.1% 

STVR Boruta Training 92 143 22 210 39.1% 90.5% 

STVR Boruta Test 26 74 17 82 26.0% 82.8% 

STVR Boruta 
Validation 

1 
30 63 16 80 32.3% 83.3% 

STVR Boruta 
Validation 

2 
75 133 57 252 36.1% 81.6% 

 

8.8.3 Results – Radial Kernel 

Performance of the radial kernel support vector models trained on the 

training cohort for each of the candidate feature sets are summarised in 

Figure 7-5 and potential diagnostic model performance is summarised in 

Table 7-5, showing model performance with probability thresholds optimised 

based on maximising sensitivity for specificity greater than 90% in the 

training cohort. Examination of the ROC plots suggests that support vector 

machine models using a radial kernel STVR correction for non-specific 

binding show a higher degree of overfitting to the training cohort than VCOD 
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corrected feature sets, as the ROC curves for the test and validation sets in 

the STVR models trend closer to the line of equality than those shown by 

models trained on VCOD feature sets. Radial kernel support vector machine 

models trained on this data show little evidence of being able to return 

diagnostic performance that is superior to that returned by the current 

commercial panel strategy. 

 

Figure 8-5: Comparison of diagnostic performance of radial kernel support vector machine models. A and B) 

Full extended antigen panel. C and D) Boruta selected features. A, and C) Subtraction of VOL for correction of 

non-specific binding. B, and D) Ratio of antigen to VOL signal for correction of non-specific binding. 
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Table 8-6: Summary of diagnostic performance of radial kernel support vector machine models on explored 
feature sets. Bold italicized values represent an improvement over performance obtained by the current 
commercial test, as defined by an increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD All features Training 93 142 23 209 39.6% 90.1% 

VCOD All features Test 20 80 18 81 20.0% 81.8% 

VCOD All features 
Validation 

1 
28 65 18 78 30.1% 81.3% 

VCOD All features 
Validation 

2 
59 149 69 240 28.4% 77.7% 

VCOD Boruta Training 87 148 23 209 37.0% 90.1% 

VCOD Boruta Test 21 79 16 83 21.0% 83.8% 

VCOD Boruta 
Validation 

1 
30 63 9 87 32.3% 90.6% 

VCOD Boruta 
Validation 

2 
63 145 51 258 30.3% 83.5% 

STVR All features Training 77 158 23 209 32.8% 90.1% 

STVR All features Test 23 77 11 88 23.0% 88.9% 

STVR All features 
Validation 

1 
25 68 13 83 26.9% 86.5% 

STVR All features 
Validation 

2 
69 139 54 255 33.2% 82.5% 

STVR Boruta Training 143 92 23 209 60.9% 90.1% 

STVR Boruta Test 37 63 31 68 37.0% 68.7% 

STVR Boruta 
Validation 

1 
41 52 27 69 44.1% 71.9% 

STVR Boruta 
Validation 

2 
91 117 114 195 43.8% 63.1% 
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8.9 Naïve Bayes Models 

8.9.1 Methods 

Naïve Bayes modelling was undertaken in R (v4.2.1) using the `NaiveBayes` 

function within the `klaR` package (v4.2.3), and training using the functions 

included in the caret library to explore Naïve Bayes classification rules. 

Parameter Tuning of Naïve Bayes Models 

Naïve Bayes models were optimised through exploration of the use of kernel 

function, if used, adjustment of the bandwidth of the kernel function density, 

with values of 0 to 5 at intervals of 1, and through use of Laplace smoothing 

at values of 0, 0.001, 0.1, 1, 10, and 100. These hyperparameters were 

tested using 10-fold cross-validation to identify the optimal set of 

hyperparameters for the Naïve Bayes models.  

8.9.2 Results 

Performance of the Naïve Bayes models trained on the training cohort for 

each of the candidate feature sets are summarised in Figure 7-6 and 

potential diagnostic model performance is summarised in Table 7-6, showing 

model performance with probability thresholds optimised based on 

maximising sensitivity for specificity greater than 90% in the training cohort. 

These models showed the ability to improve or match the current clinical test 

in the training cohort for each feature set, however specificity was generally 

not maintained in the validation cohorts, dropping to as low as 74.4% in the 

validation 2 cohort, suggesting that these models experienced a higher 

degree of overfitting than the commercial panel, and none of the modelling 

on the explored feature sets showed consistent improvement over current 

commercial performance.  
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Figure 8-6: Comparison of diagnostic performance of Naïve Bayes models. A and B) Full extended antigen 

panel. C and D) Boruta selected features. A, and C) Subtraction of VOL for correction of non-specific binding. 

B, and D) Ratio of antigen to VOL signal for correction of non-specific binding. 
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Table 8-7: Summary of diagnostic performance of Naïve Bayes models on explored feature sets. Bold italicized 
values represent an improvement over performance obtained by the current commercial test, as defined by an 
increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD All features Training 91 144 22 210 38.7% 90.5% 

VCOD All features Test 24 76 14 85 24.0% 85.9% 

VCOD All features 
Validation 

1 
43 50 17 79 46.2% 82.3% 

VCOD All features 
Validation 

2 
68 140 79 230 32.7% 74.4% 

VCOD Boruta Training 100 135 23 209 42.6% 90.1% 

VCOD Boruta Test 24 76 16 83 24.0% 83.8% 

VCOD Boruta 
Validation 

1 
41 52 16 80 44.1% 83.3% 

VCOD Boruta 
Validation 

2 
69 139 62 247 33.2% 79.9% 

STVR All features Training 101 134 23 209 43.0% 90.1% 

STVR All features Test 26 74 14 85 26.0% 85.9% 

STVR All features 
Validation 

1 
32 61 19 77 34.4% 80.2% 

STVR All features 
Validation 

2 
75 133 78 231 36.1% 74.8% 

STVR Boruta Training 86 149 23 209 36.6% 90.1% 

STVR Boruta Test 30 70 14 85 30.0% 85.9% 

STVR Boruta 
Validation 

1 
29 64 13 83 31.2% 86.5% 

STVR Boruta 
Validation 

2 
70 138 68 241 33.7% 78.0% 
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8.10 C5.0 Decision Tree Modelling 

8.10.1 Methods 

C5.0 model training was undertaken in R (v4.2.1), using the `C5.0` training 

method within the caret library. 

Parameter Tuning of C5.0 Decision Tree Models 

10-fold cross-validation was used to determine whether applying winnowing 

– removal of uninformative features before training the tree model - was 

applied. During cross validation, model performance was summarised and 

compared using a penalised classification metric designed to prioritise high 

specificity, as described previously. 

8.10.2 Results 

Performance of the c5.0 decision tree models trained on the training cohort 

for each of the candidate feature sets are summarised in Figure 7-7 and 

potential diagnostic model performance is summarised in  

Table 7-7Table 7-6, showing model performance with probability thresholds 

optimised based on maximising sensitivity for specificity greater than 90% in 

the training cohort. The ROC plots suggest that the STVR correction method 

results in a higher degree of overfitting using c5.0 decision tree modelling. 

VCOD correction showed a lower degree of overfitting, although this could 

be due to the relatively small tree formed, as the same decision tree resulted 

from modelling of both the full feature set, and the Boruta selected feature 

set and was comprised of only NY-ESO-1 and p53.  
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Figure 8-7: Comparison of diagnostic performance of C5.0 decision tree models. A and B) Full extended 

antigen panel. C and D) Boruta selected features. A, and C) Subtraction of VOL for correction of non-specific 

binding. B, and D) Ratio of antigen to VOL signal for correction of non-specific binding.  
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Table 8-8: Summary of diagnostic performance of C5.0 decision tree models on explored feature sets. Bold 
italicized values represent an improvement over performance obtained by the current commercial test, as 
defined by an increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD All features Training 69 166 9 223 29.4% 96.1% 

VCOD All features Test 16 84 5 94 16.0% 94.9% 

VCOD All features 
Validation 

1 
28 65 7 89 30.1% 92.7% 

VCOD All features 
Validation 

2 
61 147 40 269 29.3% 87.1% 

VCOD Boruta Training 69 166 9 223 29.4% 96.1% 

VCOD Boruta Test 16 84 5 94 16.0% 94.9% 

VCOD Boruta 
Validation 

1 
28 65 7 89 30.1% 92.7% 

VCOD Boruta 
Validation 

2 
61 147 40 269 29.3% 87.1% 

STVR All features Training 77 158 3 229 32.8% 98.7% 

STVR All features Test 15 85 6 93 15.0% 93.9% 

STVR All features 
Validation 

1 
23 70 9 87 24.7% 90.6% 

STVR All features 
Validation 

2 
47 161 29 280 22.6% 90.6% 

STVR Boruta Training 85 150 16 216 36.2% 93.1% 

STVR Boruta Test 21 79 10 89 21.0% 89.9% 

STVR Boruta 
Validation 

1 
29 64 13 83 31.2% 86.5% 

STVR Boruta 
Validation 

2 
70 138 38 271 33.7% 87.7% 
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8.11 Random Forest Modelling 

8.11.1 Methods 

Random Forest modelling was undertaken in R (v4.2.1) using the ranger 

library, applying the `ranger` training method to the data within the caret 

library Train function. 

Parameter tuning of Random Forest Models 

Random Forest model tuning was done over the following parameters: 

number of variables to possibly split at each node (mtry), splitting rule, and 

minimum node size. 

Values for mtry were either 1 to the number of features for magnitude feature 

sets and boruta selected feature sets, or odd values from 1 to 35 for the 

combined curve characteristic and magnitude feature set. 

Options for the splitting rule were either selection by minimisation of gini 

impurity, the extra-trees algorithm(178), or Hellinger distance(179). 

Values explored for minimal node size were even numbers from 2 to 10.  

Model performance for each combination of parameters was summarised 

over 10-fold cross validation and compared using a penalised classification 

metric designed to prioritise high specificity, as described previously. 

8.11.2 Results 

Performance of the random forest models trained on the training cohort for 

each of the candidate feature sets are summarised in Figure 7-8 and 

potential diagnostic model performance is summarised in  

Table 7-8Table 7-6, the high overfitting observed in the training cohort again 

meant that probability thresholds based on the training cohort showed poor 

ability to transfer to test and validation cohorts, therefore model performance 
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was again optimised based on maximising sensitivity for specificity greater 

than 90% in the test cohort. Review of the ROC plots shows that random 

forest modelling suffers from an extremely high degree of overfitting, with the 

training cohort approaching perfect discrimination in almost every case, and 

the models being unable to maintain their performance on test and validation 

cohorts. While the test and validation cohorts do not maintain the 

performance of the training cohort, they show some improvements over the 

commercial test, however the increases to the performance are modest, and 

not present across all cohorts. 
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Figure 8-8: Comparison of diagnostic performance of random forest models. A and B) Full extended antigen 

panel. C and D) Boruta selected features. A, and C) Subtraction of VOL for correction of non-specific binding. 

B, and D) Ratio of antigen to VOL signal for correction of non-specific binding.  
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Table 8-9: Summary of diagnostic performance of random forest models on explored feature sets. Bold 
italicized values represent an improvement over performance obtained by the current commercial test, as 
defined by an increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD All features Training 235 0 0 232 100.0% 100.0% 

VCOD All features Test 22 78 8 91 22.0% 91.9% 

VCOD All features 
Validation 

1 
38 55 15 81 40.9% 84.4% 

VCOD All features 
Validation 

2 
71 137 50 259 34.1% 83.8% 

VCOD Boruta Training 131 104 0 232 55.7% 100.0% 

VCOD Boruta Test 19 81 9 90 19.0% 90.9% 

VCOD Boruta 
Validation 

1 
30 63 8 88 32.3% 91.7% 

VCOD Boruta 
Validation 

2 
53 155 36 273 25.5% 88.3% 

STVR All features Training 234 1 0 232 99.6% 100.0% 

STVR All features Test 24 76 9 90 24.0% 90.9% 

STVR All features 
Validation 

1 
31 62 11 85 33.3% 88.5% 

STVR All features 
Validation 

2 
61 147 40 269 29.3% 87.0% 

STVR Boruta Training 198 37 0 232 84.3% 100.0% 

STVR Boruta Test 22 78 9 90 22.0% 90.9% 

STVR Boruta 
Validation 

1 
25 68 8 88 26.9% 91.7% 

STVR Boruta 
Validation 

2 
60 148 32 277 28.8% 89.6% 
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8.12 Extreme Gradient Boosted Trees Modelling 

8.12.1 Methods 

Random Forest modelling was undertaken in R (v4.2.1) using the ranger 

library, and applying the `ranger` training method to the data within the caret 

library Train function. 

Parameter tuning of XGBoost Models 

XGBoost modelling includes many parameters over which the model can be 

tuned. Tuning was again accomplished over 10-fold cross-validation, and the 

tuning parameters and their explored values are detailed here: 

eta – shrinkage rate used in the regularization step to reduce overfitting. 

Values searched: 0.01, 0.05, 0.1, 0.2, and 0.3. 

max_depth – Maximum depth (number of edges from the root node to the 

furthest leaf node) of a tree. Larger values make the model more complex 

and more likely to overfit. Values searched: 2, 4, 6, and 8. 

gamma – Minimum loss reduction required to make a further partition on a 

leaf node of the tree. Values searched: 0, and 5. 

subsample – Subsample ratio of the training instances. Values searched: 

0.5, 0.75, and 1. 

colsample_bytree –Subsample ratio of columns when constructing each tree. 

Values searched: 0.5, 0.75, and 1.  

min_child_weight – Minimum sum of instance weight needed in a child, 

larger values result in more conservative models. Values searched: 2, 4, 6, 

8, and 10.  
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During cross validation, model performance was summarised and compared 

using a penalised classification metric designed to prioritise high specificity, 

as described previously. 

8.12.2 Results 

Performance of the extreme gradient boosted trees models trained on the 

training cohort for each of the candidate feature sets are summarised in 

Figure 7-9Figure 7-7 and potential diagnostic model performance is 

summarised in Table 7-9Table 7-6, showing model performance with 

probability thresholds optimised based on maximising sensitivity for 

specificity greater than 90% in the training cohort. These models again 

showed improved performance over the current commercial panel for the 

training and validation 1 cohort in each case, and once again these models 

showed generally poor specificity in the Validation 2 and test cohorts. 
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Figure 8-9: Comparison of diagnostic performance of extreme gradient boosted tree models. A and B) Full 

extended antigen panel. C and D) Boruta selected features. A, and C) Subtraction of VOL for correction of non-

specific binding. B, and D) Ratio of antigen to VOL signal for correction of non-specific binding.  
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Table 8-10: Summary of diagnostic performance of extreme gradient boosted tree models on explored feature 
sets. Bold italicized values represent an improvement over performance obtained by the current commercial 
test, as defined by an increase in the Youden index. 

NSB Correction Feature set Cohort TP FN FP TN Sens Spec 

RU Commercial Training 72 163 23 209 30.6% 90.1% 

RU Commercial Test 23 77 12 87 23.0% 87.8% 

RU Commercial 
Validation 

1 
19 74 3 93 20.4% 96.9% 

RU Commercial 
Validation 

2 
74 134 38 271 35.6% 87.7% 

VCOD All features Training 103 132 23 209 43.8% 90.1% 

VCOD All features Test 32 68 23 76 32.0% 76.8% 

VCOD All features 
Validation 

1 
36 57 16 80 38.7% 83.3% 

VCOD All features 
Validation 

2 
80 128 73 236 38.5% 76.4% 

VCOD Boruta Training 111 124 23 209 47.2% 90.1% 

VCOD Boruta Test 26 74 20 79 26.0% 79.8% 

VCOD Boruta 
Validation 

1 
38 55 15 81 40.9% 84.4% 

VCOD Boruta 
Validation 

2 
85 123 73 236 40.9% 76.4% 

STVR All features Training 102 133 22 210 43.4% 90.5% 

STVR All features Test 23 77 19 80 23.0% 80.8% 

STVR All features 
Validation 

1 
33 60 17 79 35.5% 82.3% 

STVR All features 
Validation 

2 
81 127 49 260 38.9% 84.1% 

STVR Boruta Training 102 133 22 210 43.4% 90.5% 

STVR Boruta Test 25 75 15 84 25.0% 84.8% 

STVR Boruta 
Validation 

1 
32 61 16 80 34.4% 83.3% 

STVR Boruta 
Validation 

2 
80 128 49 260 38.5% 84.1% 
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8.13 Summary 

Table 8-11: Summary of diagnostic performance achieved by modelling strategies in explored feature sets. 

Modelling 
Strategy 

Metric 
Training Test Validation 1 Validation 2 

Sens Spec Sens Spec Sens Spec Sens Spec 

Commercial Commercial 30.6% 90.1% 23.0% 87.8% 20.4% 96.9% 35.6% 87.7% 

GLM LASSO VCOD All 32.3% 90.1% 24.0% 83.8% 30.1% 87.5% 34.1% 80.6% 

GLM LASSO VCOD Boruta 28.5% 90.1% 20.0% 85.9% 26.9% 93.8% 26.4% 84.1% 

GLM LASSO STVR All 37.0% 90.5% 24.0% 85.9% 34.4% 83.3% 35.1% 81.9% 

GLM LASSO STVR Boruta 37.4% 90.1% 27.0% 85.9% 33.3% 86.5% 32.7% 81.2% 

SVM Linear VCOD All 32.8% 90.1% 24.0% 80.8% 24.7% 85.4% 27.9% 83.5% 

SVM Linear VCOD Boruta 30.2% 90.5% 21.0% 86.9% 25.8% 87.5% 26.4% 84.1% 

SVM Linear STVR All 34.5% 90.1% 27.0% 85.9% 35.5% 84.4% 31.7% 85.1% 

SVM Linear STVR Boruta 39.1% 90.5% 26.0% 82.8% 32.3% 83.3% 36.1% 81.6% 

SVM Radial VCOD All 39.6% 90.1% 20.0% 81.8% 30.1% 81.3% 28.4% 77.7% 

SVM Radial VCOD Boruta 37.0% 90.1% 21.0% 83.8% 32.3% 90.6% 30.3% 83.5% 

SVM Radial STVR All 32.8% 90.1% 23.0% 88.9% 26.9% 86.5% 33.2% 82.5% 

SVM Radial STVR Boruta 60.9% 90.1% 37.0% 68.7% 44.1% 71.9% 43.8% 63.1% 

Naïve Bayes VCOD All 38.7% 90.5% 24.0% 85.9% 46.2% 82.3% 32.7% 74.4% 

Naïve Bayes VCOD Boruta 42.6% 90.1% 24.0% 83.8% 44.1% 83.3% 33.2% 79.9% 

Naïve Bayes STVR All 43.0% 90.1% 26.0% 85.9% 34.4% 80.2% 36.1% 74.8% 

Naïve Bayes STVR Boruta 36.6% 90.1% 30.0% 85.9% 31.2% 86.5% 33.7% 78.0% 

C5.0 Tree VCOD All 29.4% 96.1% 16.0% 94.9% 30.1% 92.7% 29.3% 87.1% 

C5.0 Tree VCOD Boruta 29.4% 96.1% 16.0% 94.9% 30.1% 92.7% 29.3% 87.1% 

C5.0 Tree STVR All 32.8% 98.7% 15.0% 93.9% 24.7% 90.6% 22.6% 90.6% 

C5.0 Tree STVR Boruta 36.2% 93.1% 21.0% 89.9% 31.2% 86.5% 33.7% 87.7% 

Random 

Forest 
VCOD All 100.0% 100.0% 22.0% 91.9% 40.9% 84.4% 34.1% 83.8% 

Random 

Forest 
VCOD Boruta 55.7% 100.0% 19.0% 90.9% 32.3% 91.7% 25.5% 88.3% 

Random 

Forest 
STVR All 99.6% 100.0% 24.0% 90.9% 33.3% 88.5% 29.3% 87.0% 

Random 

Forest 
STVR Boruta 84.3% 100.0% 22.0% 90.9% 26.9% 91.7% 28.8% 89.6% 

XGBoost VCOD All 43.8% 90.1% 32.0% 76.8% 38.7% 83.3% 38.5% 76.4% 

XGBoost VCOD Boruta 47.2% 90.1% 26.0% 79.8% 40.9% 84.4% 40.9% 76.4% 

XGBoost STVR All 43.4% 90.5% 23.0% 80.8% 35.5% 82.3% 38.9% 84.1% 

XGBoost STVR Boruta 43.4% 90.5% 25.0% 84.8% 34.4% 83.3% 38.5% 84.1% 
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Performance of all explored models has been summarised, as shown in 

Table 7-10, to allow comparison of modelling strategies both to each other, 

and to the performance obtained using the commercial assessment of the 

sample results. This shows while machine learning models are able train 

models that give comparable performance to the current EarlyCDT®-Lung 

test cutoff threshold method, the methods explored here are unable to give 

consistent improvements over the current commercial test which would 

justify the additional work required to implement them in place of the current 

commercial analysis strategy. 

8.14 Chapter Conclusions 

A variety of supervised machine learning strategies have been explored 

against an extended panel of autoantibody features to determine whether 

they are able to add sensitivity to the commercial EarlyCDT®-Lung panel, 

while maintaining a high panel specificity. While several of the modelling 

strategies are able to return models with comparable diagnostic performance 

to the current commercial autoantibody panel, none were able to show 

consistent diagnostic performance improvements, even with the inclusion of 

additional autoantibody measurements. 

8.15 Chapter Discussion 

Again the lack of appreciable and consistent improvements over the current 

commercial test assessment in models trained on this expanded 

autoantibody panel was disappointing and surprising. It is possible that there 

is a law of diminishing returns when it comes to autoantibody features, and a 

proportion of lung cancers are able to develop without triggering detectable 
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responses from the adaptive immune system, in which case additional 

biomarkers such as cell free DNA, and methylation markers, may be 

necessary to lend additional sensitivity in ensemble models. It is also 

possible that the immune response to cancer is attenuated over time, 

through either B-cell exhaustion or malignancies developing to escape 

immune control, in which case the cancer samples explored in this project, 

almost all taken at point of diagnostic presentation, may have been collected 

after an autoantibody response has become diminished, unfortunately to 

explore this would require an extremely large longitudinal autoantibody study 

and is therefore understandably outside of the scope of this project. 
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Chapter 9: Development of a Simulated Annealing 

Gradient Ascent Algorithm for Optimisation of High 

Specificity Multivariate Panels 

9.1 Aims 

In tandem with exploring methods to improve the diagnostic performance of 

the EarlyCDT®-Lung test, and in the absence of machine learning algorithms 

which showed performance improvements over that of the current logic-

based panel assessment, I set about improving the method by which the 

panel cut-off thresholds were determined, from a time consuming Monte 

Carlo random search strategy, to a more focused strategy which 

incorporated a gradient ascent strategy towards a predetermined search 

function, using a simulated annealing algorithm to allow a rapid wide search 

of potential panel solutions while reducing the risk of getting trapped in 

suboptimal local maxima. 

9.2 Introduction 

Lung cancer is responsible for the greatest number of cancer-related deaths 

worldwide, representing 18.0% of all cancer deaths in 2020(1). Survival rates 

for lung cancer are particularly poor as the majority of patients are not 

diagnosed until late-stage disease, with 57% of patients presenting after the 

cancer has metastasized, giving a 5-year survival rate of only 4.7%, and only 

16% of lung cancers are detected while the disease is still localised, with a 5-

year survival of 56.3%(223). Early diagnosis of lung cancer would allow for 

more patients to be detected while the disease is still in its earliest stages, 

and vastly improve prognosis. 
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The presence of autoantibodies in the peripheral blood of patients with 

cancer has been established in a number of studies(79, 108, 129, 130, 224-

226). In these studies, individual autoantibodies show high specificity, but 

relatively low sensitivity, reflecting the heterogeneous nature of cancer as a 

disease, and the high specificity of the immune response to the presence of 

mutated or overexpressed proteins. Due to the low sensitivities of these 

autoantibodies, they are individually not suitable as screening tests, however 

their high specificity can be exploited in the formation of biomarker panels, 

whereby the sensitivities of the combination of multiple autoantibody markers 

can reach levels which become cost effective for cancer screening or nodule 

stratification. This methodology has been used in the development of the 

EarlyCDT®-Lung test(79, 108, 227). 

The EarlyCDT®-Lung autoantibody test is a panel biomarker test 

which uses a logic rule-based classifier, whereby each autoantibody has an 

associated cut-off threshold, and a signal above the cut-off in any of the 

panel autoantibodies is regarded as a positive response and indicates 

increased risk of cancer in the subject. 

In its initial incarnations, the calculation of cut-off thresholds for the 

EarlyCDT®-Lung autoantibody panel was performed using a ‘brute force’ 

Monte Carlo(228) random search method to iterate through large numbers of 

random combinations of potential cut-off threshold values for each antigen, 

applying each set of thresholds to a training cohort, and returning 

performance statistics for the resultant panel. The panels with adequate 

performance on the training set were then applied to a hold-out test set to 
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determine which of the candidate cut-off sets that showed optimal 

performance in the training set were reproducible. 

The Monte Carlo random search method is time-consuming and 

necessitated a large number of iterations, to sample from a large search 

space which includes a high proportion of non-optimal search combinations. 

To reduce the time taken, and ensure that the search focused on cut-off sets 

that give optimised performance in the training set, an approach was 

developed using a simulated annealing(229, 230) approach which would 

allow for an iterative search over optimal threshold combinations, utilitising 

an adapted Metropolis algorithm(231), with the simulated annealing 

algorithm allowing for non-optimal movements with higher likelihood in the 

early stages of the search, which prevents the algorithm from resolving in 

panels which represent sub-optimal local maxima of the search function 

score. 

This approach was inspired by the iterative combination of biomarkers 

and thresholds (ICBT) method(232), and allows for iterative improvement to 

a panel from a randomised start position until a set of optimal panel cut-off 

thresholds is found. This method differs from the ICBT method, however, as 

ICBT performs an exhaustive search of all combinations of biomarkers, the 

combinatorial complexity of which escalates vastly with increasing panel 

size, and number of thresholds to test. Assuming the use of all available 

biomarkers, each with a differing number of potential thresholds, the number 

of possible threshold combinations 𝐼 for a panel of 𝑛 biomarkers can be 

expressed in its simplest form as: 



Development of a Simulated Annealing Gradient Ascent Algorithm for 

Optimisation of High Specificity Multivariate Panels 

251 | P a g e  
 

𝐼 =  ∏ 𝑇 

Equation 1 

Where 𝑇 is a vector containing the number of thresholds of all biomarkers in 

the panel, and a threshold is included which is set at a value above the 

greatest value for the feature, which upon selection results in that feature 

being excluded from the panel assessment. 

Due to the exponential increase in threshold combinations as either 

panel, or number of thresholds in each marker, increases, exhaustive search 

methods are limited to relatively small panels, and sampling from a small 

number of optimal thresholds. Additionally, as panel size increases, Monte 

Carlo random search methods inevitably become less specific as additional 

features continue to contribute greater numbers of false positives. This could 

be addressed by limiting the panel size, however when data from large 

numbers of biomarkers is available, this results in the need to either 

introduce a feature selection step prior to the Monte Carlo search, or iteration 

through the possible combinations of features which vastly increases the 

complexity of the search, as for a panel size of 𝑚 out of 𝑛 biomarkers, the 

number of combinations of panels 𝐶 to search becomes: 

𝐶 =
𝑛!

𝑚! (𝑛 − 𝑚)!
 

Equation 2 

This increases the number of possible threshold combinations 𝐼 to test, to: 

𝐼 = ∑ (∏ 𝑇𝑗)

𝐶

𝑗=1

 

Equation 3 



Development of a Simulated Annealing Gradient Ascent Algorithm for 

Optimisation of High Specificity Multivariate Panels 

252 | P a g e  
 

Where 𝑗 represents a single biomarker combination within 𝐶. 

With the understanding that cancers are extremely heterogenous, 

large panels of markers may be necessary to obtain high sensitivities, and 

limiting panel size through pre-filtering feature selection may exclude 

potentially informative biomarkers and could limit the sensitivity detectable. 

The following simulated annealing approach was developed to allow 

discovery of optimal threshold sets for larger panels than would be feasible 

with an exhaustive search, without the need to pre-filter, as the simulated 

annealing search allows for uninformative features to be removed during the 

iterative improvement of the panel, and with higher specificities than would 

be found with an untargeted Monte Carlo random search of the feature 

space. 

9.3 Methods 

9.3.1 Simulated Annealing Panel Optimisation Algorithm 

For a panel of biomarkers, a patient is considered positive if the 

concentration of any individual biomarker exceeds a threshold for that 

biomarker. 

This can be expressed as: 

𝑂𝑝 = 𝐽 ((∑ 𝐼(𝑋𝑖𝑝 ≥ 𝑇𝑖)

𝑛

𝑖=1

) ≥ 1) 

Equation 4 

Where 𝑂𝑝 is the predicted outcome for patient 𝑝, n is the number of 

biomarkers in the panel, 𝑋𝑖𝑝 is the concentration of the 𝑖th biomarker in 

patient 𝑝, 𝑇𝑖 is the threshold for the 𝑖th biomarker, 𝐼(𝑥) is an indicator function 
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which takes the value of 1 for x=true, and 0 otherwise, and 𝐽(𝑥) is an 

indicator function which takes the value of 1 for x = true, and 0 otherwise. 

ROC local maxima identification 

The threshold search space was reduced by assessing candidate thresholds 

and removing redundant values by selecting only those values which 

represent local maxima of the ROC curve. For potential thresholds sorted in 

descending order, a local maxima was defined as a threshold at which 

sensitivity was greater than or equal to that obtained from the next 

consecutive threshold, and specificity was greater than or equal to that 

obtained from the previous consecutive threshold, which can be summarised 

as the following: 

𝑇𝑙𝑜𝑐𝑚𝑎𝑥 = (𝑆𝐸𝑖 ≥ 𝑆𝐸𝑖+1 & 𝑆𝑃𝑖  ≥ 𝑆𝑃𝑖−1) 

Equation 5 

Whereby 𝑆𝐸𝑖 is sensitivity at the current threshold, 𝑆𝐸𝑖+1 is sensitivity at the 

threshold immediately below the current threshold, 𝑆𝑃𝑖 is specificity at the 

current threshold, 𝑆𝐸𝑖+1 is specificity at the threshold immediately above the 

current threshold. 

Thresholds which do not represent local ROC maxim are excluded as they 

are by definition inferior in either sensitivity, specificity, or both, to a local 

ROC maxima threshold.  

 

Search Function 

A search function is established to define the target performance of the final 

optimised panel. During supervised panel training, this could be any metric 
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that can be derived from comparing the predicted disease outcome to the 

actual disease outcome, broken down into numbers of true positives (TP), 

false positives (FP), false negatives (FN) and true negatives (TN), and 

includes (but is not limited to):  

Accuracy: (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) 

Youden Index: ((
𝑇𝑃

𝑇𝑃+𝐹𝑁
) + (

𝑇𝑁

𝑇𝑁+𝐹𝑃
)) − 1 

F1 Score: (2 ∗ 𝑇𝑃) / (2 ∗  𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁) 

In addition, a custom search function has been designed to prioritise panels 

with maximised sensitivity for specificity around 95%: 

High Specificity Function: ((𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)) − ((0.95 − (𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)))^2)) 

Initial `Hill Climb` optimisation 

Features are added iteratively in a random order to the panel, with each 

additional feature having its initial threshold selected to maximise a search 

function relevant to the panel being optimised. To prioritise high specificity, 

once all features have been added to the panel, they are randomly iterated 

through and their thresholds increased, provided increasing the threshold 

has no effect on the score returned by the search function.   

Simulated Annealing optimisation 

The elements of the simulated annealing panel optimisation search are as 

follows: 

1: The panel of biomarkers 𝑖1, 𝑖2 … 𝑖𝑛. 

2: For each biomarker 𝑖, the set of potential cut-off thresholds 𝑇𝑖 ∈ 𝑇1, 𝑇2 … 𝑇𝑡. 

3: The search function 𝐶, giving a score 𝑐 for the measured combination of 

biomarker thresholds, where �̇� ⊂ 𝑐 representing scores at a search maxima. 
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4: For each biomarker threshold 𝑇𝑖, a set of neighbouring thresholds 

𝑇𝑖−𝑘: 𝑇𝑖+𝑘. 

5: A cooling schedule, defined as a nonincreasing function 𝑅: 𝑁 → (0, ∞), 

whereby 𝑁 is a set of positive integers, updated at each Markov chain event 

transition via a cooling rate according to the following formula: 

𝑅𝑡+1 =  𝑅𝑡 ∗  ∇𝑡 

Equation 6 

Where 𝑅𝑡 is the system temperature at time 𝑡, and ∇𝑡 is the cooling rate. 

6: An initial state assigned by the initial hill climb optimisation. 

The simulated annealing panel optimisation then consists of a discrete-time 

Markov chain -representing a random walk - with the following transition 

process: 

1: Retrieve system temperature 𝑅𝑡. From current temperature determine 

current value of cost function.  

2: Randomly select panel biomarker 𝑖𝑋 with threshold 𝑇𝑖. 

3: Determine maximum threshold movement 𝑚 = ⌈√𝑅𝑡⌉. (Greater system 

temperature allows larger movements). 

4: Randomly select a movement from list: 𝑇𝑖−𝑚: 𝑇𝑖−1, 𝑇𝑖+1: 𝑇𝑖+𝑚. 

5: Implement movement of biomarker threshold and recalculate search 

function score. Score is compared to previous value, if search function score 

is increased, movement is accepted, comprising a gradient ascent step. If 

search function score is not improved, movement may be accepted 

conditional to current value of cost function according to the probability: 

𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑒
(
𝑐−𝑐𝑝𝑟𝑒𝑣

𝑅𝑡
)
 

Equation 7 
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Where 𝑐 is the current search function score, 𝑐𝑝𝑟𝑒𝑣 is the previous search 

function score, 𝑅𝑡 is the current system temperature, to allow the algorithm to 

escape from local gradient ascent maxima. 

6: If movement is accepted, update current panel, otherwise reject 

movement and return to previous panel. 

7: Update system temperature according to the cooling rate. 

The score according to the search function is stored at each event, and the 

simulated annealing optimisation is then allowed to run until the system 

temperature reaches a pre-determined lower limit, known as the exit 

temperature. 

Additionally, a restart function has been included to reduce the likelihood of 

the simulated annealing algorithm becoming trapped in a sub-optimal local 

maxima, whereby if the search function score is not improved over a set 

number of Markov Chain events, the panel will revert to the last best panel 

found during the search, and the search will continue again from that panel, 

while maintaining the current system temperature. 

9.3.2 Monte Carlo Random Search Method 

To allow direct comparison of the Simulated annealing algorithm to a Monte 

Carlo direct search strategy, as used previously for the discovery of optimal 

biomarker panel thresholds, panel optimisation was undertaken using both 

techniques.  

Cut-off thresholds were selected at random for each biomarker from a 

candidate pool of thresholds. These thresholds were then applied to training 

data to return a panel result as described in Equation 4, from which panel 
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sensitivity and specificity was calculated. Finally the thresholds were applied 

to the hold-out test data. 

The Monte Carlo direct search was restricted to ROC local maxima 

thresholds, as described earlier, derived from the training cohort, with the 

target thresholds limited to only those with individual biomarker specificity 

greater than 95%.  

With the expectation that much larger Monte Carlo searches would be 

required to adequately cover the search space, searches were undertaken 

with 1000, 5000, and 10000 iterations respectively to allow for the estimation 

of a minimal run time required to return satisfactory threshold combinations.  

9.3.3 Algorithm Benchmarking 

A representative sample cohort has been assessed on the EarlyCDT®-Lung 

platform, and autoantibody binding values against a panel of seven tumour 

associated antigens, each at two concentrations, have been collected for a 

cohort of 335 lung cancer cases, and 330 matched normal controls, divided 

into training and test cohorts as described in Chapter 5. In addition to these 

14 features, to assess the ability of the simulated annealing methodology to 

scale to larger panels of biomarkers, data from two investigatory panels of 

additional biomarkers have been included in this assessment, each 

comprised of seven autoantibody features measured at two concentrations. 

These have been used to give overall panels of 14, 28, and 42 autoantibody 

features respectively for assessing the ability of the simulated annealing 

algorithm to identify optimal panels and thresholds. 

The cohort was divided into training (70% of the data) and test (30% 

of the data) cohorts, and training data underwent panel optimisation through 
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both the simulated annealing algorithm described previously and using a 

Monte Carlo random search approach. A range of search sizes were 

undertaken for both methods, and the performance of the optimal panel 

discovered on both training and test cohorts, along with the time taken for the 

optimisation to run, have been summarised.  

9.3.4 Implementation 

All searches were undertaken in RStudio v2022.07.2, using R version 4.2.1. 

Searches were undertaken on a high-end desktop workstation to show the 

run times and performance levels capable without necessitating access to 

cloud computing or supercomputers. The testing scenario used a Microsoft 

Windows PC with Intel(R) Xeon(R) Quad-Core CPU at 3.70GHz and 32GB 

of RAM, as representative of the computing power available to lab-based 

researchers without needing to access web-based multi-thread or GPU 

processors. 

9.3.5 Application of Simulated Annealing to Curve Characteristic Dataset 

This simulated annealing algorithm was applied as described here to both 

the VCOD corrected and STVR corrected curve characteristic data sets 

explored previously in Chapter 7:, using the penalised classification search 

function described in section 7.6 as the search function, and iterating over 

250 individual searches to find optimal panel cutoff thresholds for the 

commercial panel, the full panel of magnitude and curve characteristic 

features, and the features selected by Boruta analysis as described in 

section 7.5. 
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9.3.6 Application of Simulated Annealing to Extended Panel of Tumour 

Associated Autoantibodies 

This simulated annealing algorithm was then applied to both the VCOD 

corrected and STVR corrected extended lung data sets explore previously in 

Chapter 8:, again using the penalised classification search function 

described in chapter 7.6 as the search function, and iterating over 250 

individual searches to find optimal panel cutoff thresholds for the commercial 

panel, the full extended autoantibody panel, and the autoantibody features 

selected by Boruta analysis as described in chapter 8.5. 

 

9.4 Results 

9.4.1 Algorithm Benchmarking 

The simulated annealing algorithm was able to return panels with higher 

performance characteristics than the Monte Carlo direct search method over 

all features, the highest performing panel, determined by ranking all panels 

by Training Youden Index, Training Specificity, Test Youden Index, and Test 

Specificity in that order, has been summarised in Table 9-1 and Table 9-2, 

showing that while panels optimised by simulated annealing were able to 

maintain Training specificities above 95%, even when optimising over 42 

features, Monte Carlo derived panels showed reduced specificity reaching 

only 90.5% in the 14 biomarker panel, and reducing to 78.0% in the 42 

biomarker panel, as the lack of any targeted optimisation resulted in 

accumulation of false positives from included features. 

Table 9-1: Optimal panels as discovered by a Monte Carlo random search over all possible features 

Panel 
Size 

Iterations 

Monte Carlo ‘Optimal’ Panel 

Run Time Training Test 

Spec Sens Spec Sens 
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14 1000 86.2% 40.0% 73.5% 26.0% 105.175 secs 
14 5000 88.8% 39.1% 76.5% 28.0% 562.143 secs 
14 10000 90.5% 37.4% 77.6% 28.0% 1190.124 secs 
28 1000 84.9% 43.4% 76.5% 40.0% 127.178 secs 
28 5000 87.5% 42.1% 82.7% 33.0% 583.254 secs 
28 10000 87.9% 42.1% 77.6% 34.0% 1267.126 secs 
42 1000 74.1% 55.3% 62.2% 50.0% 143.283 secs 
42 5000 72.0% 58.7% 61.2% 51.0% 651.261 secs 
42 10000 78.0% 52.8% 67.3% 45.0% 1438.727 secs 

 
Table 9-2: Optimal panels as discovered by simulated annealing algorithm optimisation over all possible 
features 

Panel 
Size 

Iterations 

Simulated Annealing `Optimal` Panel 

Run Time Training Test 

Spec Sens Spec Sens 

14 250 97.4% 29.8% 93.9% 17.0% 3061.936 secs 
14 500 97.4% 29.8% 93.9% 17.0% 7283.542 secs 
14 1000 97.4% 29.8% 93.9% 17.0% 14936.549 secs 
28 250 97.4% 34.0% 93.9% 21.0% 6735.586 secs  
28 500 97.4% 34.0% 94.9% 20.0% 12253.133 secs 
28 1000 97.4% 34.0% 93.9% 22.0% 25108.771 secs  
42 250 95.3% 38.7% 91.8% 23.0% 9854.406 secs  
42 500 95.3% 38.7% 91.8% 23.0% 18876.882 secs  
42 1000 95.3% 38.7% 91.8% 23.0% 40486.890 secs 

 

While Monte Carlo run times are lower in the scenario tested, the Monte 

Carlo search implemented explored only the full combination of biomarkers 

in each case, in a manner as described in Equation 1. To fully determine 

optimal panels using the Monte Carlo approach would require the exploration 

of all combinations of biomarkers at all possible panel sizes up to the number 

of biomarkers explored, as detailed in Equation 3, and would vastly increase 

the computational intensity of the task. Extrapolating from the run times 

returned, described in Table 9-1, is able to give an estimate based on a 

linear regression. Conservatively assuming 1,000 Monte Carlo iterations for 

each combination of biomarkers in a 14 biomarker panel, would require 

16,383,000 iterations. On a system with comparable power to that used for 

the examples detailed here, it is estimated that such an analysis would 

require 3,581,846 seconds, or 41.5 days to complete. 
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Figure 9-1: ROC scatter plots showing discovered panels after 1000 iterations of both Monte Carlo random 
search and Simulated Annealing panel optimisation on panels of 14, 28 and 42 autoantibody biomarkers 

 

9.4.2 Curve Characteristic Panel Optimisation 

Simulated annealing search of the curve characteristic data set explored in 

Chapter 7: gave panels as summarised in Figure 9-2 and Figure 9-3, 

showing again a propensity for the simulated annealing algorithm to overfit 

the training data. The best performing panel for each search – as defined by 

the greatest mean search function score over the 4 cohorts – has been 

summarised in Table 9-3 to Table 9-8. 

VCOD Curve Characteristic Features 

 
Figure 9-2: ROC Scatter summary of performance of simulated annealing derived optimal panel performance 
for VCOD corrected data on A) Commercial EarlyCDT®-Lung panel, B) Full feature set of magnitude and 
curve characteristic features, and C) Boruta selected magnitude and curve characteristic features. 

Table 9-3: Best performing panel from simulated annealing search of Commercial EarlyCDT®-Lung panel 
autoantibody panel 

cohort TN FP FN TP Sens Spec 

Training 223 9 156 79 33.6% 96.1% 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Spec

S
e
n
s

14 Features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Spec

S
e
n
s

28 Features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Spec

S
e
n
s

42 Features

cohort Test Training searchmethod Monte Carlo Random Search Simulated Annealing



Development of a Simulated Annealing Gradient Ascent Algorithm for 

Optimisation of High Specificity Multivariate Panels 

262 | P a g e  
 

Test 93 5 83 17 17.0% 94.9% 

Val1 85 11 61 32 34.4% 88.5% 

Val2 259 50 136 72 34.6% 83.8% 

 
Table 9-4: Best performing panel from simulated annealing search of full magnitude and curve characteristic 
feature set 

cohort TN FP FN TP Sens Spec 

Training 221 11 144 91 38.7% 95.3% 

Test 90 8 79 21 21.0% 91.8% 

Val1 84 12 58 35 37.6% 87.5% 

Val2 249 60 129 79 38.0% 80.6% 

 
Table 9-5: Best performing panel from simulated annealing search of Boruta selected magnitude and curve 
characteristic features 

cohort TN FP FN TP Sens Spec 

Training 229 3 188 47 20.0% 98.7% 

Test 97 1 86 14 14.0% 99.0% 

Val1 90 6 72 21 22.6% 93.8% 

Val2 284 25 157 51 24.5% 91.9% 

 

STVR Curve Characteristic Features 

 

 
Figure 9-3: ROC Scatter summary of performance of simulated annealing derived optimal panel performance 
for STVR corrected data on A) Commercial EarlyCDT®-Lung panel, B) Full feature set of magnitude and 
curve characteristic features, and C) Boruta selected magnitude and curve characteristic features. 

Table 9-6: Best performing panel from simulated annealing search of STVR corrected Commercial 
EarlyCDT®-Lung panel autoantibody panel 

cohort TN FP FN TP Sens Spec 

Training 223 9 154 81 34.5% 96.1% 

Test 89 9 82 18 18.0% 90.8% 

Val1 82 14 64 29 31.2% 85.4% 

Val2 284 25 153 55 26.4% 91.9% 
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Table 9-7: Best performing panel from simulated annealing search of full magnitude and curve characteristic 
feature set 

cohort TN FP FN TP Sens Spec 

Training 223 9 142 93 39.6% 96.1% 

Test 87 11 77 23 23.0% 88.8% 

Val1 80 16 59 34 36.6% 83.3% 

Val2 280 29 148 60 28.8% 90.6% 

 
Table 9-8: Best performing panel from simulated annealing search of Boruta selected magnitude and curve 
characteristic features 

cohort TN FP FN TP Sens Spec 

Training 224 8 163 72 30.6% 96.6% 

Test 95 3 83 17 17.0% 96.9% 

Val1 81 15 66 27 29.0% 84.4% 

Val2 279 30 157 51 24.5% 90.3% 

 

9.4.3 Extended Lung Autoantibody Panel Optimisation 

Simulated annealing search of the curve characteristic data set explored in 

Chapter 8:Chapter 7: gave panels as summarised in , showing again a 

propensity for the simulated annealing algorithm to overfit the training data. 

The best performing panel for each search – as defined by the greatest 

mean search function score over the 4 cohorts – has been summarised in 

Table 9-3 to Table 9-5. 

VCOD Curve Characteristic Features 

 
Figure 9-4: ROC Scatter summary of performance of simulated annealing derived optimal panel performance 
for VCOD corrected data on A) Commercial EarlyCDT®-Lung panel, B) Full extended panel of autoantibody 
features, and C) Boruta selected autoantibody features. 
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Table 9-9: Best performing panel from simulated annealing search of extended autoantibody panel 

cohort TN FP FN TP Sens Spec 

Training 222 10 136 99 42.1% 95.7% 

Test 86 13 78 22 22.0% 86.9% 

Val1 83 13 53 40 43.0% 86.5% 

Val2 248 61 118 90 43.3% 80.3% 

 
Table 9-10: Best performing panel from simulated annealing search of Boruta selected magnitude and curve 
characteristic features 

cohort TN FP FN TP Sens Spec 

Training 223 9 150 85 36.2% 96.1% 

Test 91 8 82 18 18.0% 91.9% 

Val1 88 8 57 36 38.7% 91.7% 

Val2 264 45 133 75 36.1% 85.4% 

 

STVR Curve Characteristic Features 

 
Figure 9-5: ROC Scatter summary of performance of simulated annealing derived optimal panel performance 
for STVR corrected data on A) Commercial EarlyCDT®-Lung panel, B) Full extended panel of autoantibody 
features, and C) Boruta selected autoantibody features. 

Table 9-11: Best performing panel from simulated annealing search of extended autoantibody panel 

cohort TN FP FN TP Sens Spec 

Training 223 9 134 101 43.0% 96.1% 

Test 88 11 77 23 23.0% 88.9% 

Val1 81 15 58 35 37.6% 84.4% 

Val2 275 34 144 64 30.8% 89.0% 

 
Table 9-12: Best performing panel from simulated annealing search of Boruta selected magnitude and curve 
characteristic features 

cohort TN FP FN TP Sens Spec 

Training 223 9 153 82 34.9% 96.1% 

Test 93 6 80 20 20.0% 93.9% 

Val1 86 10 62 31 33.3% 89.6% 

Val2 278 31 147 61 29.3% 90.0% 

 



Development of a Simulated Annealing Gradient Ascent Algorithm for 

Optimisation of High Specificity Multivariate Panels 

265 | P a g e  
 

9.5 Chapter Conclusions 

Detection of extremely heterogeneous diseases such as cancers pose a 

particular problem, as they may arise through a wide variety of different 

mechanisms and pathways, each of which may require different biomarkers 

for detection. A large panel of high specificity biomarkers represents one 

potential strategy for screen detecting disease at a clinically useful 

sensitivity, however optimising diagnostic or prognostic thresholds for large 

panels becomes extremely computationally intensive. The simulated 

annealing algorithm defined here represents an effective way of finding 

optimal combinations of thresholds for large panels of biomarkers, with 

internal feature selection allowing for the removal of redundant biomarkers 

during the random walk/gradient ascent Markov chain process.  

9.5.1 Algorithm Benchmarking 

The benchmarking data analysed here shows that it outperforms a Monte 

Carlo random search strategy in the identification of high specificity threshold 

combinations when a simplistic, all feature, Monte Carlo approach is applied, 

and that, even after 10,000 iterations, Monte Carlo random search did not 

identify the highest performing panels discovered during only 250 iterations 

of the simulated annealing algorithm.  

Increasing the complexity of the Monte Carlo random search to 

evaluate all combinations of different sized panel, in an attempt to reduce the 

influence of less informative or redundant biomarkers vastly increases the 

computational intensity of the Monte Carlo strategy, and in the example 

outlined in this study, assessing all combinations for panel size of 14 

biomarkers resulted in the need to evaluate 16383 combinations of 
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biomarker, and would be estimated to take over 40 days to complete on a 

high-end desktop PC. While this may be computationally feasible with 

access to more powerful cloud based computing, applying the same strategy 

to the panel of 28 markers would result in 268,435,455 potential panel 

combinations to try and discover an optimal panel, and extending to the 42 

biomarker panel would require assessment of 4,398,046,511,103 potential 

biomarker combinations, which demonstrates how the Monte Carlo random 

search technique that has been used successfully for smaller panels, 

becomes unsuitable once panel sizes start to increase. 

Both simulated annealing and Monte Carlo strategies displayed a 

degree of overfitting in the analysed data. It is expected that the simulated 

annealing strategy will potentially have a higher degree of overfitting, 

however several strategies may be employed, dependant on the panels 

being explored, to reduce this effect. One advantage of the simulated 

annealing strategy as outlined here is the ability to return statistics on both 

the frequency with which the biomarkers are incorporated into optimal 

panels, along with the frequency of each potential threshold value. This could 

be used for feature ranking and subsequent feature selection, as the 

biomarkers with the greatest discriminatory ability would have a greater 

propensity to be included in optimal panels. This also allows for 

determination of the most commonly incorporated thresholds for each 

biomarker, and panels using the median threshold for each optimal 

biomarker may give panels with a lower degree of overfitting than any single 

optimised panel, at a cost to specificity and sensitivity in the training cohort. 
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9.5.2 Application of Simulated Annealing to Curve Characteristic Dataset 

While overfitting is evident, the optimised panels discovered for the full 

feature set show better performance than the machine learning models 

explored previously, for example using VCOD corrected data, the XGBoost 

models trained in Chapter 7: gave sensitivities and specificities of 40.9% and 

90.5%, 20.0% and 88.8%, 34.4% and 86.5%, and 38.9% and 81.5% for the 

training, test, validation 1 and validation 2 cohorts respectively when trained 

on all VCOD corrected features, using the same data the simulated 

annealing algorithm was able to return a higher specificity in the training set 

(95.3%) for only a small loss in sensitivity (38.7%), and showed increases in 

both sensitivity and specificity across all other cohorts. 

9.5.3 Application of Simulated Annealing to Extended Panel of Tumour 

Associated Autoantibodies 

Again a degree of overfitting is evident in the simulated annealing derived 

panels determined on the extended panel of autoantibodies, however the 

simulated annealing strategy was again able to outperform the machine 

learning strategies. The C5.0 tree model trained on the Boruta selected 

features or the VCOD corrected extended lung panel as described in 

Chapter 8: gave sensitivities and specificities of 29.4% and 96.1%, 16.0% 

and 94.9%, 30.1% and 92.7%, and 29.3% and 87.1% for the training, test, 

validation 1 and validation 2 cohorts respectively. In comparison, the highest 

performing panel based on the same features using the simulated annealing 

based algorithm gave sensitivities and specificities of 36.2% and 96.1% for 

the training cohort, an increase in sensitivity of 6.8%, 18.0% and 91.9% in 

the test cohort, a 2% improvement in the sensitivity with a corresponding loss 
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of 3% in specificity, 38.7% and 91.7% in the validation 1 cohort, a sensitivity 

increase of 8.6% for a specificity loss of only 1.0%, and finally sensitivity of 

36.1% and specificity of 85.4% in the validation 2 cohort, a sensitivity 

increase of 6.8% for a specificity loss of only 1.7%. 

9.6 Chapter Discussion 

The simulated annealing algorithm represents an improvement over Monte 

Carlo random search for the discovery of optimal sets of panel cutoff 

thresholds. Until a greater understanding can be reached of the limitations of 

the supervised machine learning strategies explored previously in this 

project, the logic test strategy of the current commercial EarlyCDT®-Lung 

continues to return the best commercial performance. Establishing the cutoff 

thresholds for this panel would previously require between hours and days 

dependant on the size of the panel, and return a vast number of non-optimal 

panel sets. The simulated annealing strategy is able to return only optimal 

panel threshold sets, in much shorter times, and also has the potential to 

incorporate bagging strategies to reduce overfitting.  
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Chapter 10: Discussion 

This research project was initiated to determine whether it was possible to 

improve the diagnostic performance of the EarlyCDT®-Lung test for early 

detection of lung cancer, based on a re-analysis of data that was already 

generated by the EarlyCDT®-Lung commercial assay format to try and 

identify and remove false positive signal. Pilot study analysis showed a great 

deal of promise with regards to selectively identifying and removing false 

positive signal in the assay, resulting in increases to the test specificity which 

then allowed additional autoantibody biomarkers to be incorporated to further 

increase sensitivity while maintaining high panel specificity. 

10.1 Health Economic Assessment 

In order to determine the diagnostic performance required to prove health 

economic cost-effectiveness of the EarlyCDT®-Lung test for population 

screening of individuals at a high risk of lung cancer in an NHS setting, a 

health economic analysis was undertaken, based on that published by 

Snowsill et al(30), which showed that EarlyCDT®-Lung was more cost-

effective than LDCT for screening, and suggested that at a specificity above 

95%, and sensitivity above 47.5%, the EarlyCDT Test reached the NICE 

recommended threshold of £30,000 per QALY that is considered cost-

effective. This £30,000 per QALY threshold was established in 2013, but is 

widely recognised as having no empirical foundation, and arguments have 

been made that the threshold should be as high as £50,000 per QALY for 

technologies that offer health benefits where the burden of disease is high, 

such as lung cancer(233). 
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 A future refinement of this health economics model would be to 

improve the natural history model to include the length of time that a 

malignancy is present prior to the point where it is detectable by CT, which 

would allow for a more accurate appreciation of the costs of enhanced 

surveillance that would be attributable to the autoantibody test when 

detecting malignancies in their earliest stages, as well as allowing more 

accurate calculation of the additional malignancies that would be 

discoverable at their earliest stages thanks to the autoantibody test. Along 

with these refinements, a more extensive search of potential screening 

strategies would then also be undertaken, including rescreening at intervals 

such as 3 and 5 years to allow detection of malignancies that develop in the 

interim time between screenings. 

10.2 Machine Learning Analysis 

A range of machine learning strategies were then explored to determine 

whether they had potential utility in improving the diagnostic performance of 

the EarlyCDT®-Lung autoantibody screening test. The methods explored 

initially focused on white-box techniques, where the calculations underlying 

the diagnostic decision can be extracted and scrutinized. Due to the 

transparency of the calculations, white-box models are more readily 

accepted by regulatory bodies than black-box models(234). The black-box 

techniques of random forest and extreme gradient boosted trees were 

included in the exploration because of their recent use in disease prediction 

models(175, 176, 181, 183), and increased adoption and regulatory 

acceptance of black-box models including neural networks and deep learning 

techniques, symbolised by the publication of the HMA-EMA Joint Big Data 
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Taskforce summary report in 2019(235) suggests that more sophisticated 

machine learning and deep learning strategies are becoming more 

acceptable, with AI based diagnostic models now being approved by the 

FDA, such as the deep-learning based IDx-DR for diagnosis of diabetic 

retinopathy(236). 

The results of these machine learning analyses also suggested that, 

in spite of assessing an additional 12 autoantibody features, little additional 

sensitivity was evident from the additional markers. This may be due to a 

number of causes, firstly the case cohort were confirmed cancer samples, 

which means that the tumours are already at a stage where they are large 

enough to be found by CT screening. From the examination of longitudinal 

samples in Chapter 3 it was evident that autoantibody responses can 

precede CT presentation by an average of 4 years, and work by Bruno et al. 

showed that with constant epitope presentation, B cells can become 

exhausted, and exhausted tumour infiltrating B cells become less functional, 

expressing less antibody. This exhausted B cell phenotype may also 

attenuate T-cell responses and dampen antitumor response(237) which may 

result in a diminished immune response. Additionally, these cohorts were a 

mixture of different cancer subtypes, and the heterogeneous nature of 

cancer may necessitate that much larger cohorts are examined, with specific 

autoantibody panels and models dedicated to various histological subtypes. 

10.3 Future Studies 

In order to assess the machine learning strategies more accurately would 

require a large-scale prospective screening trial with longitudinal collection to 

identify autoantibody responses at their earliest point, with longitudinal 
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assessment allowing greater investigation into the stability and behaviour of 

autoantibody responses, including whether autoantibody responses become 

depleted over time, or whether malignancies reach a stage where they are 

able to escape immunosurveillance and the corresponding effect this would 

have on related autoantibody profiles. The greater adoption of LDCT 

screening would also allow enhanced surveillance in subjects that show 

autoantibody reactivity, allowing identification of cancer at its earliest stage. 

Ideally such a study would also explore additional detection strategies in 

parallel to autoantibody and LDCT screening, and include a reinforcement 

learning strategy to refine predictive models during the course of the study as 

new data becomes available and would follow patients for a minimum of ten 

years to ensure that all malignancies present during the study are identified. 

Such a study would require large numbers of subjects, with around 7,750 

high risk (2% or greater 5-year risk) individuals required to identify 155 

cancer cases in order to give the study statistical power (based on example 

sensitivity of 40% and the use of exact methods(238)). 

While EarlyCDT®-Lung has undergone a large prospective study in 

the form of the Early Detection of Cancer of the Lung Scotland (ECLS) 

study(239), which has recruited over 12,000 subjects and aims to follow up 

all subjects for 10 years, the ECLS study was designed to confirm diagnostic 

stage shift from late to early stage, and the data has limited use for model 

training, as only half of the study cohort comprised the intervention group 

and collected EarlyCDT results, and while the study recruited subjects at 

high risk, the incidence was lower than expected, limiting the number of 

positive cases – at 2 year follow up there were only 56 confirmed cancers in 
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the intervention arm, although it is expected that additional cancers will 

present over the remaining follow-up years, and given the study has already 

demonstrated stage-shift to earlier diagnosis, these additional cancers would 

be expected to present at a higher rate in the test positive subjects in the 

intervention arm, potentially increasing the appreciable specificity of the test, 

returned by the study. In addition, the study involved only a single 

EarlyCDT®-Lung test, with LDCT follow-up on only the positive subjects, this 

lack of detailed follow up on the test-negative arm limits the utility of this 

dataset for training new models.  

With the greater availability and acceptance of deep learning 

strategies for medical diagnostics, the future development of predictive 

cancer screening tests will likely benefit greatly from inclusion of multiple 

‘omics’ measurements, such as protein biomarkers, methylation signature, 

cell free DNA, and CT imaging data, along with autoantibody biomarkers and 

demographic risk factors to create ensemble or deep learning models which 

have a greater ability to detect cancers in spite of their heterogeneous 

development and presentation. In such a test, autoantibodies would likely 

represent the best opportunity to identify cancer at its earliest stage. The 

combination of multiple testing modalities also raises the potential for greater 

understanding of underlying cancer phenotypes, and the use of such a test 

for companion diagnostics and treatment stratification could lead to new 

avenues in personalised medicine. 

These tests are already in development(240), and autoantibodies 

represent a potential key contributor in these future tests. One potential 

future source of data is the currently running iDx Lung trial(241), which is 
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recruiting patients undergoing an NHS Targeted Lung Health Check and is 

collecting CT scan data alongside blood biomarker tests including the 

EarlyCDT®-Lung test, as well as protein biomarker panel, a circulating 

tumour DNA test, and an RNA-Seq analysis. While these testing modalities 

are being assessed separately, the combination of the data could represent 

an avenue for the exploration of multi-omics testing for lung cancer detection. 

In addition to the inclusion of further test modalities, a testing strategy 

that includes repeated measurements at set intervals may allow for the 

development of personalised diagnostic baselines, with deviation from 

baseline potentially revealing disease presence more accurately than a 

cross-sectional test. This strategy has been explored for protein biomarker 

testing for ovarian cancer previously(242) and some initial work was 

undertaken to determine whether such an approach would be beneficial for 

autoantibodies in lung cancer (147).  

10.4 Simulated Annealing Algorithm 

In tandem to the machine learning experiments, refinement of the previous 

Monte Carlo random search strategy was undertaken with the development 

of a simulate annealing based multivariate panel optimisation algorithm, with 

the aim of discovering optimal sets of panel cutoff thresholds without 

searching a large amount of suboptimal feature space. This proved again to 

give comparable performance to the machine learning strategies, and this 

algorithm could be further refined with the inclusion of cross-validation to 

reduce overfitting, and the potential use of model bagging(243) of multiple 

high specificity overfit models to give a consensus output. 
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10.5 Bias 

While analysing the various study results, a number of limitations of this 

programme of research, and potential sources of bias, became evident. The 

focus of these analyses has been the diagnostic performance as 

summarised by sensitivity and specificity measurements. These metrics were 

used as they are more widely understood and easier to interpret, as well as 

allowing comparison to other biomarker tests in the literature. These 

measures do have associated drawbacks, as described previously(244) 

which include that they are influenced by the population under investigation, 

and so can be affected by the composition of the sample cohort, which was 

evident from the particularly low sensitivity of the test cohort. Use of these 

metrics did however allow for comparison of high specificity diagnostic cut-off 

thresholds applied to multiple cohorts, which would not have been possible if 

reporting a metric such as the area under the ROC curve, and from the 

outcomes of the health economic sensitivity analysis in Chapter 4, we were 

aware that high specificity was a major driver of cost-effectiveness and 

therefore was a focus in the modelling strategies explored. 

The training, test, and validation 1 datasets explored in the machine 

learning analyses were matched for age, sex, and smoking history, however 

this matching was not perfect with regards gender, and data availability on 

smoking intensity and duration was not available for a majority of the 

samples examined, therefore a cancer risk score was not able to be 

calculated for the subjects, and these variables were not considered for 

matching. As smoking duration and intensity are both contributors to pre-

existing cancer risk, this may have resulted in risk imbalance between the 
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case and control cohorts, and also between the training, test, and validation 

cohorts, which may have impacted the model fitting.  

These datasets also showed different distributions of both subtype 

and staging which may have influenced how well model performance 

transferred to the validation cohorts, with the training/test cohort showing an 

even split of adenocarcinoma and squamous, with SCLC comprising 11% of 

the cohort, the Validation 1 cohort shows a majority of samples with 

Squamous cell carcinoma, and SCLC is under-represented in this dataset at 

only 4.5%, which could result in reduced overall sensitivity, contrary to this, 

the Validation 2 cohort shows a majority of samples with Adenocarcinoma, 

and 31% SCLC, which is a far larger proportion than in the training data. 

Differences in staging are also large between the datasets, with the 

training/test cohort having predominantly early stage (82%), while the 

Validation 1 cohort shows a slightly lower proportion of early stage (69%), 

and the Validation 2 contains a majority of late stage (55%), which could 

have a major influence on the model performance. Future studies would 

benefit from ensuring a wider range of demographic variables were obtained 

on all samples, and a relevant demographic cancer risk model, such as the 

PLCOM2012, applied to all samples so pre-test risk could also be used in the 

calculation of a propensity score for case-control matching, and also as a 

partitioning criterion during the splitting of the data into training and test 

cohorts to ensure balanced datasets for modelling. Appreciation of cancer 

subtype and staging should also be considered during study design and data 

partitioning to ensure that datasets are balanced and representative of the 

test target population.  
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The control cohort in these studies also harbours two potential 

sources of verification bias, as it was not possible to verify the true disease 

status of all examined control samples, and the assumption was made that 

they were all disease free. However, given that the cohort was intended to be 

high risk, it is likely that a proportion of latent cancers were harboured within 

the normal cohort, especially as we have shown evidence in Chapter 3 that 

autoantibodies can be detectably elevated several years before clinical 

presentation. Assuming a 2% 5-year risk in this cohort with a conservative 

35% sensitivity estimate would lead to such a latent cancer population 

reducing the specificity of a predictive model by about 0.7%, for this reason 

future studies would benefit from follow-up of the normal population with 

cancer registries for several years after testing, such as has been the case in 

the ECLS study(245), to ensure the most accurate estimates of test 

specificity and sensitivity. In addition to this, several of the autoantibody 

markers explored have shown sensitivity in multiple cancer types, this has 

minimal impact when exploring a case-control study, as the incidence of 

these cancers in the control cohort would be extremely low, and would 

contribute only a small amount to the false-positive results, if at all.  

While the commercial EarlyCDT®-Lung test uses on plate controls 

and between run calibration to compensate for inter-assay variability, the 

calibration is designed only for the top two antigen concentrations of the 

commercial 7 autoantibody panel, therefore could not be used for reducing 

inter-assay variability in curve characteristic features or the expanded panel 

of autoantibodies. As the assays were run over 26 days total, and without 

control for assay operators. This may have introduced additional variability to 
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the study results and reduced the effectiveness of some of the modelling 

analyses. 

10.6 Summary 

Early detection of lung cancer represents the best avenue for improving 

prognosis and increasing survival, and the EarlyCDT®-Lung panel of tumour 

associated autoantibodies is able to facilitate this detection up to several 

years prior to the current best practise of LDCT screening, as well as 

showing favourable health economics in comparison to LDCT screening. 

Unfortunately the sensitivity of autoantibody screening is currently limited, 

due to either the heterogeneity of lung cancer, or other aspects of the 

biological immune response to cancer, and investigations into machine 

learning strategies in an effort to overcome these limitations was unable to 

train models which performed consistently better than the current 

EarlyCDT®-Lung commercial test, although this may have been exacerbated 

by imbalance and confounding variables in the explored datasets. Large 

scale longitudinal studies using balanced datasets with collection of 

demographic risk factors and appreciation of confounding variables are 

needed to develop a more full understanding of the immune response to lung 

cancer, and the addition of other modalities of biomarker such as antigenic, 

DNA and methylation based markers would likely be the best strategy for 

developing a more accurate early detection test. 
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Chapter 12: Appendices 

12.1 Appendix 2A: Application of Curve Characteristic Cut-

off Thresholds to Improve Specificity 

 

Training Set p53 160nM  

Commercial threshold: RU≥8.35 

Proposed Paired thresholds: RU≥6 & Secondary Parameter (Intercept)≥0.15

 
 

Training Set p53 50nM  

Commercial threshold: RU≥6.91 

Proposed Paired thresholds: RU≥6 & Secondary Parameter (Intercept)≥0.2 
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Training Set SOX2 160nM  

Commercial threshold: RU≥8.26 

Proposed Paired thresholds: RU≥8.26 & Secondary Parameter (AUC)≥27 

 
 

Training Set SOX2 50nM  

Commercial threshold: RU≥9.12 

Proposed Paired thresholds: RU≥7 & Secondary Parameter (AUC)≥35 
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Training Set CAGE 160nM  

Commercial threshold: RU≥2.86 

Proposed Paired thresholds: RU≥2.86 & Secondary Parameter (AUC)≥2.8 

 
 

Training Set CAGE 50nM  

Commercial threshold: RU≥2.89 

Proposed Paired thresholds: RU≥2.89 & Secondary Parameter 

(SlopeMax)≥0.3 
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Training Set NY-ESO-1 160nM  

Commercial threshold: RU≥6.38 

Proposed Paired thresholds: RU≥6.38 & Secondary Parameter (Intercept)≥-

0.12 

 

 
 

Training Set NY-ESO-1 50nM  

Commercial threshold: RU≥7.64 

Proposed Paired thresholds: RU≥6 & Secondary Parameter 

(SlopeMax)≥0.04 
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Training Set GBU 4-5 50nM  

Commercial threshold: RU≥12.66 

Proposed Paired thresholds: RU≥10 & Secondary Parameter (Intercept)≥0.1 
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Training Set MAGE-A4 160nM  

Commercial threshold: RU≥9.29 

Proposed Paired thresholds: RU≥9.29 & Secondary Parameter (AUC)≥25 

 
 

Training Set MAGE-A4 50nM  

Commercial threshold: RU≥8.87 

Proposed Paired thresholds: RU≥8.87 & Secondary Parameter (AUC)≥24 
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Training Set HuD 160nM  

Commercial threshold: RU≥9.53 

Proposed Paired thresholds: RU≥9.53 & Secondary Parameter 

(SlopeMax)≥0.13 

 
 

Training Set HuD 50nM  

Commercial threshold: RU≥9.73 

Proposed Paired thresholds: RU≥9.73 & Secondary Parameter 

(SlopeMax)≥0.0 
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12.2 Appendix 3A: Longitudinal autoantibody profiles in 

positive cases 
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12.3 Appendix 4A: Parameters used for simulation of high 

risk population in the health economic model 

Parameter Description Base-case value 

Population parameters   

pop_size Size of screening population 13,000,000 

p_male 
Proportion of males in screening 

population 
0.482 

pop_age_mean Mean age of screening population 61.939 

pop_age_sd 
Standard deviation of age of screening 

population 
9.000 

pop_age_LL 
Quantile for lower age limit of screening 

population 
0.220 

pop_age_UL 
Quantile for upper age limit of screening 

population 
0.978 

Screening programme 
parameters 

  

p_respond 
Probability of invited individual responding 

and returning questionnaire 
0.307 

p_join Probability of joining screening if eligible 0.465 

Disease natural history 
model parameters 

  

mu_AB 
Lognormal probability distribution 

parameter (location) for pre-clinical 
incidence of lung cancer 

4.7470 

delta_mu_AB_F 
Coefficient for women for lognormal 

probability distribution parameter (location) 
for pre-clinical incidence of lung cancer 

0.0358 

sigma_AB 
Lognormal probability distribution 
parameter (shape) for pre-clinical 

incidence of lung cancer 
0.3635 

ln_lambda_pIA_pIB 
Log rate of pre-clinical progression from 

stage Ia to Ib 
0.0035 

ln_lambda_pIB_pIIA 
Log rate of pre-clinical progression from 

stage Ib to IIa 
1.6451 

ln_lambda_pIIA_pIIB 
Log rate of pre-clinical progression from 

stage IIa to IIb 
1.8006 

ln_lambda_pIIB_pIIIA 
Log rate of pre-clinical progression from 

stage IIb to IIIa 
1.6258 

ln_lambda_pIIIA_pIIIB 
Log rate of pre-clinical progression from 

stage IIIa to IIIb 
1.0797 

ln_lambda_pIIIB_pIV 
Log rate of pre-clinical progression from 

stage IIIb to IV 
2.0803 

ln_lambda_pIA_cIA Log rate of clinical presentation at stage Ia -2.4828 
ln_lambda_pIB_cIB Log rate of clinical presentation at stage Ib -1.8726 

ln_lambda_pIIA_cIIA 
Log rate of clinical presentation at stage 

IIa 
-1.6507 

ln_lambda_pIIB_cIIB 
Log rate of clinical presentation at stage 

IIb 
-2.1362 

ln_lambda_pIIIA_cIIIA 
Log rate of clinical presentation at stage 

IIIa 
-1.4088 

ln_lambda_pIIIB_cIIIB 
Log rate of clinical presentation at stage 

IIIb 
-0.8811 

ln_lambda_pIV_cIV Log rate of clinical presentation at stage IV -1.4027 

Disease survival 
parameters 

  

lambda_lcs_Ia 
Lambda constant for survival if diagnosed 

and treated from stage Ia 
0.214 
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lambda_lcs_Ib 
Lambda constant for survival if diagnosed 

and treated from stage Ib 
0.274 

lambda_lcs_IIa 
Lambda constant for survival if diagnosed 

and treated from stage IIa 
0.330 

lambda_lcs_IIb 
Lambda constant for survival if diagnosed 

and treated from stage IIb 
0.475 

lambda_lcs_IIIa 
Lambda constant for survival if diagnosed 

and treated from stage IIIa 
0.588 

lambda_lcs_IIIb 
Lambda constant for survival if diagnosed 

and treated from stage IIIb 
0.909 

lambda_lcs_IV 
Lambda constant for survival if diagnosed 

and treated from stage IV 
1.423 

gamma_lcs_all_stages 
Gamma constant for survival if diagnosed 

and treated at any stage 
0.676 

lambda_ocm_F 
Gompertz distribution lambda parameter 

for other cause mortality in the female 
population 

0.00019 

gamma_ocm_F 
Gompertz distribution gamma parameter 

for other cause mortality in the female 
population 

0.1018 

lambda_ocm_M 
Gompertz distribution lambda parameter 

for other cause mortality in the male 
population 

0.00059 

gamma_ocm_M 
Gompertz distribution gamma parameter 

for other cause mortality in the male 
population 

0.0917 

Risk prediction 
parameters 

  

risk_age Risk prediction coefficient for age (years) 0.08985 
risk_male Risk prediction coefficient for male sex 0.30562 

risk_smoker 
Risk prediction coefficient for 

current/former smoker (vs never smoker) 
1.45929 

risk_lungcancer 
Risk prediction coefficient for presence of 
lung cancer at baseline or within 3 years. 

0.33488 

risk_intercept Risk prediction intercept -11.39758 

risk_SD 
Risk prediction standard deviation (error 

term) 
0.62920 

Screening effectiveness   

sens_LDCT 
Sensitivity of low dose CT screening for 

the detection of lung cancer 
0.709 

spec_LDCT 
Specificity of low dose CT screening for 

the detection of lung cancer 
0.624 

sens_AABT 
Sensitivity of autoantibody test screening 

for the detection of lung cancer 
0.400 

spec_AABT 
Specificity of autoantibody test screening 

for the detection of lung cancer 
0.900 

mu_ind_scrn_delay Mean time to screening after model entry -2.823 

sig_ind_scrn_delay 
standard deviation of time to screening 

after model entry 
0.820 

Quality of life parameters   

u_base_male 
Utility of male smoker in the UK general 

population (including with occult lung 
cancer) 

0.7816 

u_base_female 
Utility of female smoker in the UK general 

population (including with occult lung 
cancer) 

0.7531 

u_dis_sII 
Disutility of second stage cancer vs first 

stage 
-0.04 

u_dis_sIII 
Disutility of third stage cancer vs first 

stage 
-0.04 



Appendices 

305 | P a g e  
 

u_dis_sIV 
Disutility of fourth stage cancer vs first 

stage 
-0.05 

u_dis_fp 
Disutility associated with a false-positive 

screening result 
-0.063 

u_dis_scr_anxiety 
Disutility associated with anxiety of a 

screening event 
-0.010 

t_dis_fp 
Duration of disutility from false-positive 

screen 
3.00 

t_dis_scrn_anx 
Duration of disutility from anxiety of a 

screening event 
2.00 

Costs   

c_invite Cost of initial invite and questionnaire £2.90 

c_score 
Cost of scoring questionnaire and risk 

stratification 
£18.54 

c_letter 
Cost of follow-up letter and screening 

appointment 
£1.74 

c_gp_ref 
Cost of GP consultations leading to lung 

cancer referral 
£72.00 

c_LDCT Cost of low-dose CT scan £98.80 
c_AABT Cost of autoantibody test £60.00 
c_scrn_nurse Cost of nurse-led screening consultation £6.25 

c_false_pos 
Cost of resourcing following a false-

positive screen 
£184.63 

c_eol_lung 
Cost of end-of-life care for lung cancer 

patient 
£4589.04 

c_rdtf_sIa_ini 
Cost of initial diagnosis and treatment if 

diagnosed at stage Ia 
£5558.14 

c_rdtf_sIb_ini 
Cost of initial diagnosis and treatment if 

diagnosed at stage Ib 
£6411.63 

c_rdtf_sIIa_ini 
Cost of initial diagnosis and treatment if 

diagnosed at stage IIa 
£7279.07 

c_rdtf_sIIb_ini 
Cost of initial diagnosis and treatment if 

diagnosed at stage IIb 
£6558.14 

c_rdtf_sIIIa_ini 
Cost of initial diagnosis and treatment if 

diagnosed at stage IIIa 
£6511.63 

c_rdtf_sIIIb_ini 
Cost of initial diagnosis and treatment if 

diagnosed at stage IIIb 
£6046.51 

c_rdtf_sIV_ini 
Cost of initial diagnosis and treatment if 

diagnosed at stage IV 
£5441.86 

c_rdtf_sIa_re_ind_yr 
Cost of index year diagnosis, treatment 
and follow-up if diagnosed at stage Ia 

£5848.11 

c_rdtf_sIb_re_ind_yr 
Cost of index year diagnosis, treatment 
and follow-up if diagnosed at stage Ib 

£5359.21 

c_rdtf_sIIa_re_ind_yr 
Cost of index year diagnosis, treatment 
and follow-up if diagnosed at stage IIa 

£5637.60 

c_rdtf_sIIb_re_ind_yr 
Cost of index year diagnosis, treatment 
and follow-up if diagnosed at stage IIb 

£6514.78 

c_rdtf_sIIIa_re_ind_yr 
Cost of index year diagnosis, treatment 
and follow-up if diagnosed at stage IIIa 

£5415.46 

c_rdtf_sIIIb_re_ind_yr 
Cost of index year diagnosis, treatment 
and follow-up if diagnosed at stage IIIb 

£4318.07 

c_rdtf_sIV_re_ind_yr 
Cost of index year diagnosis, treatment 
and follow-up if diagnosed at stage IV 

£2787.31 

c_rdtf_sIa_subyrs 
Cost of treatment and follow-up in 

subsequent years if diagnosed at stage Ia 
£1437.79 

c_rdtf_sIb_subyrs 
Cost of treatment and follow-up in 

subsequent years if diagnosed at stage Ib 
£1483.75 

c_rdtf_sIIa_subyrs 
Cost of treatment and follow-up in 

subsequent years if diagnosed at stage IIa 
£1628.19 
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c_rdtf_sIIb_subyrs 
Cost of treatment and follow-up in 

subsequent years if diagnosed at stage IIb 
£1647.88 

c_rdtf_sIIIa_subyrs 
Cost of treatment and follow-up in 

subsequent years if diagnosed at stage 
IIIa 

£1503.45 

c_rdtf_sIIIb_subyrs 
Cost of treatment and follow-up in 

subsequent years if diagnosed at stage 
IIIb 

£1306.49 

c_rdtf_sIV_subyrs 
Cost of treatment and follow-up in 

subsequent years if diagnosed at stage IV 
£1037.31 
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12.4 Appendix 6A: Pearson/df ratio values for transformation 

strategies for all features 

Feature Antigen 
Chosen 
Transfor

m 
log sqrt exp 

arcsin
h 

box 
cox 

yeo-
johnso

n 

OD p53 boxcox 1.743 3.353 11.556 5.876 1.093 1.644 

OD SOX_2 boxcox 1.560 2.958 8.404 4.959 0.976 1.581 

OD CAGE boxcox 1.411 2.530 6.422 3.958 1.114 1.533 

OD 
NY_ES

O_1 
boxcox 1.851 4.262 16.116 7.046 0.986 1.486 

OD 
GBU_4_

5 
boxcox 0.940 1.576 4.589 2.340 0.918 0.986 

OD 
MAGE_

A4 
boxcox 1.378 2.682 7.234 4.223 1.043 1.282 

OD HuD boxcox 1.354 2.469 8.252 3.962 1.060 1.311 

od_intercep
t 

p53 boxcox 1.855 3.329 7.976 5.803 0.985 2.079 

od_intercep
t 

SOX_2 boxcox 1.936 3.425 7.934 5.811 1.259 2.513 

od_intercep
t 

CAGE boxcox 1.888 3.235 7.220 5.677 1.185 2.543 

od_intercep
t 

NY_ES
O_1 

boxcox 2.380 4.408 11.338 7.113 1.390 2.883 

od_intercep
t 

GBU_4_
5 

boxcox 1.416 2.557 6.822 4.636 0.900 1.515 

od_intercep
t 

MAGE_
A4 

boxcox 1.723 3.134 7.293 5.298 1.132 2.073 

od_intercep
t 

HuD boxcox 1.779 3.005 6.966 5.706 0.988 2.259 

od_slope p53 log_x 1.783 3.168  14.907  5.180 

od_slope SOX_2 log_x 1.534 2.363  13.683  4.511 

od_slope CAGE log_x 1.760 2.604  18.625  4.704 

od_slope 
NY_ES

O_1 
log_x 2.612 4.001  18.739  6.770 

od_slope 
GBU_4_

5 
log_x 1.166 1.534  8.669  2.360 

od_slope 
MAGE_

A4 
log_x 2.689 2.842  25.088  3.817 

od_slope HuD log_x 2.136 2.988  18.520  4.390 

od_auc p53 arcsinh_x 3.502 3.802 3.502 3.502  3.502 

od_auc SOX_2 arcsinh_x 4.036 4.059 4.036 4.036  4.036 

od_auc CAGE arcsinh_x 3.689 4.626 3.689 3.689  3.689 

od_auc 
NY_ES

O_1 
arcsinh_x 3.472 4.347 3.472 3.472  3.472 

od_auc 
GBU_4_

5 
arcsinh_x 1.973 2.628 1.973 1.973  1.973 

od_auc 
MAGE_

A4 
arcsinh_x 2.984 3.589 2.984 2.984  2.984 

od_auc HuD arcsinh_x 2.435 3.253 2.435 2.435  2.435 

od_slopem
ax 

p53 log_x 1.288 5.833  2.246  15.157 

od_slopem
ax 

SOX_2 log_x 1.259 4.371  2.439  13.678 

od_slopem
ax 

CAGE log_x 1.117 3.526  2.038  11.149 
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Feature Antigen 
Chosen 
Transfor

m 
log sqrt exp 

arcsin
h 

box 
cox 

yeo-
johnso

n 
od_slopem
ax 

NY_ES
O_1 

log_x 1.577 8.129  4.343  19.017 

od_slopem
ax 

GBU_4_
5 

arcsinh_x 1.014 2.951  1.014 1.131 1.129 

od_slopem
ax 

MAGE_
A4 

log_x 1.115 3.211  5.309  7.566 

od_slopem
ax 

HuD arcsinh_x 1.145 3.578  1.145 1.266 1.266 

VCOD p53 log_x 2.230 3.217 17.844 12.309  3.010 

VCOD SOX_2 sqrt_x 2.979 2.680 12.447 7.657  3.280 

VCOD CAGE sqrt_x 2.144 1.975 9.733 6.884  2.335 

VCOD 
NY_ES

O_1 
log_x 2.783 4.348 26.387 15.368  2.789 

VCOD 
GBU_4_

5 
yeojohns

on 
1.716 1.490 5.733 3.280  1.172 

VCOD 
MAGE_

A4 
sqrt_x 2.086 2.048 9.156 6.165  2.054 

VCOD HuD 
yeojohns

on 
2.032 2.513 11.321 6.869  1.762 

vcod_interc
ept 

p53 log_x 2.243 6.312 18.527 15.902  7.568 

vcod_interc
ept 

SOX_2 log_x 3.639 5.752 10.475 9.370  6.428 

vcod_interc
ept 

CAGE log_x 1.973 3.548 8.721 8.383  5.636 

vcod_interc
ept 

NY_ES
O_1 

log_x 4.385 11.255 25.363 19.256  9.847 

vcod_interc
ept 

GBU_4_
5 

log_x 1.150 2.348 7.447 6.111  3.023 

vcod_interc
ept 

MAGE_
A4 

log_x 1.233 2.789 8.314 7.668  4.523 

vcod_interc
ept 

HuD log_x 1.491 3.178 7.386 6.864  4.034 

vcod_slope p53 log_x 1.826 3.285  18.894  5.202 

vcod_slope SOX_2 log_x 1.469 2.053  20.382  4.234 

vcod_slope CAGE log_x 1.486 2.542  18.525  4.873 

vcod_slope 
NY_ES

O_1 
log_x 1.975 3.567  21.348  6.363 

vcod_slope 
GBU_4_

5 
sqrt_x 1.965 1.301  7.327  1.766 

vcod_slope 
MAGE_

A4 
log_x 1.225 2.026  23.331  3.028 

vcod_slope HuD log_x 1.596 2.204  21.075  3.827 

vcod_auc p53 arcsinh_x 2.933 3.148 2.933 2.933  2.933 

vcod_auc SOX_2 arcsinh_x 3.547 3.799 3.547 3.547  3.547 

vcod_auc CAGE arcsinh_x 3.205 3.872 3.205 3.205  3.205 

vcod_auc 
NY_ES

O_1 
arcsinh_x 2.902 4.293 2.902 2.902  2.902 

vcod_auc 
GBU_4_

5 
arcsinh_x 1.648 2.200 1.648 1.648  1.648 

vcod_auc 
MAGE_

A4 
arcsinh_x 2.696 2.776 2.696 2.696  2.696 

vcod_auc HuD arcsinh_x 2.491 2.795 2.491 2.491  2.491 
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Feature Antigen 
Chosen 
Transfor

m 
log sqrt exp 

arcsin
h 

box 
cox 

yeo-
johnso

n 
vcod_slope
max 

p53 
yeojohns

on 
4.000 5.567  2.725  1.801 

vcod_slope
max 

SOX_2 
yeojohns

on 
5.301 3.776  3.587  1.897 

vcod_slope
max 

CAGE 
yeojohns

on 
3.219 3.399  2.360  1.448 

vcod_slope
max 

NY_ES
O_1 

yeojohns
on 

3.424 6.397  2.406  1.913 

vcod_slope
max 

GBU_4_
5 

arcsinh_x 1.235 3.051  1.235 1.242 1.241 

vcod_slope
max 

MAGE_
A4 

yeojohns
on 

5.990 2.662  4.037  1.361 

vcod_slope
max 

HuD 
yeojohns

on 
2.677 2.806  2.007  1.329 

STVR p53 
yeojohns

on 
3.317 6.128 45.189 4.069 1.825 1.541 

STVR SOX_2 
yeojohns

on 
3.251 4.956 29.704 3.789 2.708 2.330 

STVR CAGE 
yeojohns

on 
2.707 4.565 32.740 3.292 1.784 1.598 

STVR 
NY_ES

O_1 
yeojohns

on 
4.928 9.928 48.046 5.988 2.162 1.839 

STVR 
GBU_4_

5 
boxcox 1.269 2.028 41.121 1.421 1.003 1.051 

STVR 
MAGE_

A4 
yeojohns

on 
1.850 2.898 31.204 2.272 1.262 1.233 

STVR HuD 
yeojohns

on 
2.208 3.959 32.826 2.762 1.343 1.238 

stvr_interce
pt 

p53 
yeojohns

on 
7.061 10.359 37.513 8.597 3.363 1.892 

stvr_interce
pt 

SOX_2 
yeojohns

on 
4.766 6.370 14.854 5.732 3.377 2.925 

stvr_interce
pt 

CAGE 
yeojohns

on 
3.461 4.325 11.005 4.001 2.362 1.731 

stvr_interce
pt 

NY_ES
O_1 

yeojohns
on 

9.698 15.309 43.729 12.247 4.168 1.816 

stvr_interce
pt 

GBU_4_
5 

yeojohns
on 

3.022 4.136 19.901 3.566 1.683 1.409 

stvr_interce
pt 

MAGE_
A4 

yeojohns
on 

2.847 3.652 10.482 3.381 1.967 1.409 

stvr_interce
pt 

HuD 
yeojohns

on 
2.960 4.207 11.919 3.613 1.715 1.351 

stvr_slope p53 log_x 2.304 3.539  21.206  5.589 

stvr_slope SOX_2 log_x 1.478 2.186  21.302  4.119 

stvr_slope CAGE log_x 1.706 2.935  19.453  5.940 

stvr_slope 
NY_ES

O_1 
log_x 1.938 3.317  23.148  6.555 

stvr_slope 
GBU_4_

5 
log_x 1.104 1.502  11.714  2.318 

stvr_slope 
MAGE_

A4 
log_x 1.235 1.895  24.437  2.861 

stvr_slope HuD log_x 1.319 1.553  19.262  3.005 

stvr_auc p53 arcsinh_x 3.515 4.018 3.515 3.515  3.515 

stvr_auc SOX_2 sqrt_x 2.865 2.481 2.860 2.860  2.860 

stvr_auc CAGE sqrt_x 3.255 2.807 3.255 3.255  3.255 
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Feature Antigen 
Chosen 
Transfor

m 
log sqrt exp 

arcsin
h 

box 
cox 

yeo-
johnso

n 

stvr_auc 
NY_ES

O_1 
arcsinh_x 3.789 4.688 3.788 3.788  3.788 

stvr_auc 
GBU_4_

5 
arcsinh_x 1.919 2.194 1.919 1.919  1.919 

stvr_auc 
MAGE_

A4 
arcsinh_x 2.148 2.481 2.148 2.148  2.148 

stvr_auc HuD arcsinh_x 2.255 2.703 2.255 2.255  2.255 

stvr_slope
max 

p53 boxcox 1.333 4.763  1.333 1.291 1.291 

stvr_slope
max 

SOX_2 boxcox 1.275 2.873  1.275 1.259 1.259 

stvr_slope
max 

CAGE log_x 1.165 2.626  3.971  6.882 

stvr_slope
max 

NY_ES
O_1 

arcsinh_x 1.439 5.507  1.439 1.513 1.518 

stvr_slope
max 

GBU_4_
5 

arcsinh_x 1.153 2.371  1.153 1.192 1.192 

stvr_slope
max 

MAGE_
A4 

log_x 0.982 2.082  2.481  8.977 

stvr_slope
max 

HuD log_x 1.367 2.202  2.947  8.846 
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12.5 Appendix 7A: ROC Plots of VOL corrected magnitude 

and curve characteristic features. 

 

 



Appendices 

312 | P a g e  
 

 

 



Appendices 

313 | P a g e  
 

 
 

 

  



Appendices 

314 | P a g e  
 

12.6 Appendix 7B: ROC Plots of Signal to Vol Ratio magnitude 

and curve characteristic features. 
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12.7 Conference Attendance and Publications 

12.7.1 Conferences Attended: 

 

Immuno-Oncology Summit Boston 2017 

 

Public Health England: Cancer Data and Outcomes Conference 2017 

 

CRUK Cambridge Centre: Early Detection International Summer School 

2019 

 

Cancer Research Nottingham Symposium 2020 

 

Biodata World Congress 2020 

 

12.7.2 Publications: 

Due to commercial sensitivity of the data and results, unfortunately my ability 

to publish results was limited.  

 

Manuscript in preparation for submission to PLOS One: Lung Cancer 

Associated Autoantibody Responses are Detectable Years Before Clinical 

Presentation. Allen, J., Healey, G., Macdonald I. 

 

Manuscript in preparation: A Simulated Annealing Gradient Ascent Algorithm 

for Optimisation of High Specificity Multivariate Autoantibody Panels for Early 

Lung Cancer Detection. Allen, J. Healey G., Chapman, C., Grainge, M. 

 


