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Abstract

This thesis explores the development and analysis of moving mesh Virtual Ele-

ment Methods for partial differential equations on time-dependent domains. This thesis

presents the first moving mesh method to purely use the Virtual Element Method, an

isoparametric Virtual Element Method for approximating partial differential equations

on curved domains and a high-order Arbitrary Lagrangian-Eulerian Virtual Element

Method for problems on time-dependent domains with moving boundaries. Each con-

tribution successfully demonstrates the applicability and accuracy of Virtual Element

Methods in existing moving mesh algorithms, achieving similar orders of accuracy com-

pared to classical Finite Element Method approaches. The results suggest that the

flexibility of moving mesh methods can be greatly improved by incorporating more

general mesh structures, including polygons and curved-edged polygons, proving the

Virtual Element Method offers an effective extension to classical approaches. This work

provides a foundation for future research in Virtual Element Methods for more complex

problems on time-dependent domains and developing the analysis to support proposed

moving mesh methods.
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Chapter 1

Introduction

This thesis is devoted to the development and analysis of Virtual Element

Methods for moving mesh methods for partial differential equations on time-

dependent domains.

In Section 1.1, the motivation for developing polygonal moving mesh meth-

ods is discussed. The structure and major contributions of this thesis are

highlighted in Section 1.2. Standard notation and conventions adopted in this

thesis are discussed in Section 1.3.

1.1 Motivation

Finite Element Methods (FEMs) have been successfully employed for decades in

the simulation of partial differential equations (PDEs). The theory and imple-

mentation of FEMs for a variety of problems are well-documented [41, 29, 74].

Among the benefits of FEMs is the adaptivity of the mesh (h-adaptivity) and

the polynomial degree (p-adaptivity), which allow for optimal mesh refinement

and increased accuracy of the FEM. In particular, these forms of adaptiv-

ity are effectively employed in discontinuous Galerkin FEMs which allow for

more general polygonal/polyhedral domain discretisations [37]. Another form

of adaptivity, known as mesh movement or r-adaptivity, is less well known.

The benefit of a moving mesh method is that the accuracy of a numerical

8
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simulation can be improved by relocating mesh vertices, without incurring the

computational expense of hp-refinement strategies. Moving mesh methods also

enable better resolution of time-dependent features of a given PDE, such as

moving boundaries.

A common setback of moving mesh methods in certain applications is the

need to remesh during simulations to prevent the degradation of the moving

mesh [89, 14].

Using a polygonal discretisation for a moving mesh method offers two ben-

efits: remeshing can be performed locally with greater efficiency and minimal

changes to the numerical method, and complex moving features, such as moving

boundaries, can be simulated with fewer degrees of freedom while achieving the

same level of accuracy [37, 38]. Additionally, the framework of a moving polyg-

onal mesh provides the foundation for developing even more general moving

mesh methods, including those with curved faces.

In developing a moving polygonal mesh method, the following conditions

were desired: (a) the discretisation had to reduce to classical moving mesh

FEMs when triangular meshes are employed, (b) the discrete space used had

to be, at least, continuous across the entire moving mesh, and (c) the analysis

of such a discretisation needed to be an extension of typical FEM analysis.

The Virtual Element Method (VEM) [18, 2] satisfies all three conditions. It

can be interpreted as an extension of classical FEMs to polygonal/polyhedral

meshes by introducing “virtual” shape functions that are implicitly understood

through a finite set of degrees of freedom. These degrees of freedom are used

to compute accurate and stable approximations of the weak formulation of a

given PDE.

Other well-developed polygonal discretisation techniques, such as the dis-

continuous Galerkin method [37], the Hybrid High-Order (HHO) method [49],

and the Mimetic Finite Difference (MFD) method [77], exist. However, at the

time of writing, only the discontinuous Galerkin method has been successfully
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applied to moving mesh problems, as shown in recent examples [78, 80, 59, 58].

Notably, the VEM has only recently (in 2019) been applied to moving mesh

methods when coupled with a discontinuous Galerkin method [78].

The motivation of this thesis is to propose moving mesh methods using

exclusively a VEM. The first challenge is to test whether the VEM can be

successfully applied to an existing moving mesh algorithm. After this, a foun-

dation to analyse a moving mesh VEM is required in order to develop methods

for more complex problems. The objectives of this project can be summarised

as follows:

“To propose, analyse, and implement robust and effective

moving mesh Virtual Element Methods.”

1.2 Thesis Overview

The thesis is structured into three distinct parts, each of which can be con-

sidered as a self-contained piece of work. Results from previous parts will be

referenced appropriately and utilised in subsequent sections. The structure of

each part is broken down as follows: an introduction that outlines the key con-

tributions and provides an overview of the layout, chapters that present the

main contributions, and a discussion that critically reviews the work covered

in that specific part.

Part I

In Part I, a velocity-based moving mesh VEM is proposed. A moving mesh

algorithm is extended to polygonal discretisations by proposing a linear virtual

element approximation of the integral equations. The new method is numeri-

cally tested against non-linear diffusion problems and a mesh contact algorithm

is presented that exploits the generality of the VEM to simulate contact be-
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tween moving boundaries and fixed obstacles. The work presented in Part I is

currently under review [99].

Part II

In Part II an isoparametric VEM is proposed for second-order elliptic partial

differential equations on transformed domains. Two discretisation approaches

are formulated and analysed with H1 a priori error estimates being presented

in both cases. Numerical results are presented that validate the analysis. This

research was conducted in collaboration with Andreas Dedner (University of

Warwick). At the time of writing, a publication is being drafted which presents

the error estimates and a sample of the numerical results in 2D.

Part III

In Part III the isoparametric VEM is employed to formulate a high-order con-

servative Arbitrary Lagrangian-Eulerian scheme for solving advection-diffusion

partial differential equations on time-dependent domains. Numerical experi-

ments are presented which obtain higher-order convergence rates.

1.3 Notation & Definitions

For a bounded set ω ⊂ R2, the Lp norm for a p ∈ [1,∞] is defined for a function

f by

∥f∥Lp(ω) =

(∫
ω

|f |p dx

) 1
p

, p ∈ N,

∥f∥L∞(ω) = sup
x∈ω

|f | , p = ∞.

The well known Lebesgue space is defined by

Lp(ω) =
{
f : ω → R

∣∣∣ ∥f∥Lp(ω) < ∞
}
.
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For a positive integer k and an indexing set α the weak derivative of order |α|

of f is denoted by Dαf [1]. The Sobolev norm is defined by

∥f∥W p
k (ω)

=

∑
|α|≤k

∥Dαf∥pLp(ω)

 1
p

, p ∈ N,

∥f∥W∞
k (ω) = max

|α|≤k
∥Dαf∥L∞(ω) , p = ∞.

The Sobolev space is denoted by W p
k (ω) and defined by

W p
k (ω) =

{
f : ω → R

∣∣∣ ∥f∥W p
k (ω)

< ∞
}
.

To simplify the presentation, the norm and semi-norms are denoted by ∥·∥k,p,ω
and |·|k,p,ω respectively. In the case of p = 2, the corresponding Hilbert space

is denoted by Hk(ω) with the norm and semi-norm denoted by ∥·∥k,ω and |·|k,ω
respectively.

The well known inequalities of Hölderand Minkowski will be used without

proof [1]: for p, q ∈ [1,∞] with 1/p+ 1/q = 1

∥fg∥0,1,ω ≤ ∥f∥0,p,ω ∥g∥0,q,ω ,

∥f + g∥0,p,ω ≤ ∥f∥0,p,ω + ∥g∥0,p,ω .

The Cauchy-Schwarz inequality will also be used without proof [1]. Additional

inequalities will be used within this thesis with appropriate citation to detailed

proofs.

The notation ≲ will be adopted in this thesis for ease of reading. The

statement X ≲ Y implies there exists a constant C > 0 such that X ≤ CY .

This constant will be referred to as a “hidden constant” and the dependencies

of this constant will be stated in results that use this notation. The use of ≲

between two results does not imply that hidden constant is the same.

For functions, sets and variables f, ω, x, discrete counterparts will be denoted

using fh, ωh and xh. Time-dependent terms will include an additional subscript

term of fh,t, ωh,t and xh,t. If a discrete time level tn is considered then the t

subscript will be replaced with an n. Solutions to PDEs will be denoted using
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ρ throughout the thesis. This is done to avoid confusion with velocity fields

that are denoted by u.



Chapter 2

Preliminaries

In this chapter, the prerequisite material for the Virtual Element Method and

moving mesh methods is presented. For the Virtual Element Method, the focus

is on the two-dimensional C0-conforming Virtual Element Method originally

proposed in [18] and enhanced in [2]. The concept of a moving domain and the

Arbitrary Lagrangian-Eulerian method are introduced, along with a general

outline of moving mesh algorithms.

In Section 2.1, the Virtual Element Method is introduced, including a review

of the key components such as the construction of the discrete spaces, poly-

nomial projection operators, and discrete bilinear forms. The framework of a

moving mesh method and the Arbitrary Lagrangian-Eulerian method are pre-

sented in Section 2.2. A brief literature review, highlighting significant contri-

butions towards moving polygonal mesh methods, is provided at the conclusion

of this chapter in Section 2.3.

2.1 The Virtual Element Method

In this section the fundamentals of the Virtual Element Method (VEM) are

discussed. Primarily, this thesis will focus on two-dimensional problems using

conforming methods hence, only the details of this discretisation are presented.

The VEM was first presented in [18] as a generalisation of the Finite Ele-

14
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ment Method for a two-dimensional Poisson problem to unstructured polygonal

meshes. Subsequently, the VEM was applied to linear elasticity [43] and plate

bending problems [33] but has since been adapted to tackle more general elliptic

[20], parabolic [96], hyperbolic [95] and quasi-linear [36] PDEs. Additionally,

VEMs have been presented in a variety of disciplines including elasticity, frac-

ture modelling and computational fluid dynamics [5, 24, 102, 61].

The novelty of the VEM method is that the basis/shape functions are only

implicitly understood through a finite set of degrees of freedom (DoFs). Ap-

proximations to a weak formulation of a given PDE can then computed, locally

on a given polygon/polyhedron, using only the DoFs via computable polyno-

mial projections of the virtual basis functions along with suitable stabilisation

terms.

Within the literature, there exist several works on the implementation de-

tails of the VEM in 2D and 3D [93, 88, 44, 39, 36, 48]. As such these details

are not discussed in this chapter.

Polygonal Mesh Structures

The main advantage of the VEM is the flexibility in mesh structures that are

permitted compared to classical Finite Element Methods. The most common

mesh structure considered is a polygonal/polyhedral mesh of elements that are

simple, connected, non-overlapping polygons/polyhedra that form a partition

of a given domain Ω ⊂ Rd (d = 2, 3).

For Ω ⊂ R2, the mesh is denoted by Th containing polygonal elements

E ∈ Th. The properties of a given E ∈ Th are defined as the diameter hE,

barycentric coordinate xE
c = (xE

c , y
E
c ) and area |E|, boundary edges of E are

denoted by e ⊂ ∂E. The global mesh size is defined by

h := max
E∈Th

hE.
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The shape regularity of a given element is defined as a constant ϱE such that

ϱE ≤ γE
hE

,

where γE is the maximum radius of a ball contained in E. The mesh is said to

be shape regular if the mesh regularity parameter

ϱ = max
E∈Th

ϱE, (2.1)

is contained in (0, 1). To ensure that optimal approximation results can be

obtained, the following mesh regularity assumption is required [18].

Assumption 1 (Mesh Regularity).

Every E ∈ Th is a star-shaped domain or a finite union of star shaped domains

with respect to a ball of radius greater than γhE for some uniform γ > 0.

Additionally, for all edges e ∈ ∂E, the length of e is greater than δhE for some

uniform δ > 0.

Remark 1. It has been observed in the literature that the VEM can remain

robust even when Assumption 1 does not hold [30]. This is observed in the

numerical experiments of Part I of this thesis where the VEM remains robust

even when arbitrarily small mesh edges are produced.

Two commonly used polygonal meshes are the Voronoi Tessellation [91, 10,

51] and agglomerated triangulations of Ω: both are demonstrated in Figure

2.1. These mesh structures can be generated by using PolyMesher [94], Gmsh

[63] or METIS [69], to name a few of the publicly available packages.

Polynomial Projection Operators

In order to attain sufficient accuracy in the VEM, polynomial projection op-

erators are employed to approximate integral equations. For a given bounded

set ω ⊂ R2 The space of polynomials of degree k ≥ 0 is denoted by Pk(ω).

The most common polynomial projection operators in the VEM literature are

denoted by Π∇, Π0 and Π1 [18, 2, 20] and are defined respectively as follows.
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Figure 2.1: Two different methods to discretise a rectangular domain. The CVT mesh (left) shows
the the Voronoi seeds used to generate the mesh by squares. The agglomerated mesh (right) has
dashed lines to represent the removed edges from the triangulation.

Definition 2.1.1 (The Π∇ Operator).

The operator Π∇
k : H1(ω) → Pk(ω) is defined for all v ∈ H1(ω) by∫
ω

∇Π∇
k v · ∇p dx =

∫
ω

∇v · ∇p dx ∀p ∈ Pk(ω)∫
ω

v − Π∇
k v dx = 0.

Definition 2.1.2 (The Π0 Operator).

The operator Π0
k : L

2(ω) → Pk(ω) is defined for all v ∈ L2(ω) by∫
ω

Π0
kv p dx =

∫
ω

v p dx ∀p ∈ Pk(ω).

Definition 2.1.3 (The Π1 Operator).

The operator Π1
k : H

1(ω) → Pk(ω) is defined for all v ∈ H1(ω) by Π1
kv := Π0

k∇v

or equivalently ∫
ω

Π1
kv · p dx =

∫
ω

∇v · p dx ∀p ∈ [Pk(ω)]
2 .

For each of these projection operators there exists well established stability

and accuracy results under the condition that Assumption 1 is satisfied. This

is summarised in the following theorem.

Theorem 2.1.1 (Approximation of Π∇, Π0).

Let ω ⊂ R2 with diameter hω satisfy the conditions of Assumption 1. Let a real

number p ∈ [1,∞] and k ≥ 0 be an integer, s ∈ {1, ..., k+1} and m ∈ {0, ..., s}.
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Then for all v ∈ W p
s (ω) it holds that∣∣v − Π∇

k v
∣∣
m,p,ω

≲ hs−m
ω |v|s,p,ω .

Additionally, for s ∈ {0, ..., k + 1} and m ∈ {0, ..., s} it holds that

∣∣v − Π0
kv
∣∣
m,p,ω

≲ hs−m
ω |v|s,p,ω ,

where the hidden constants depend only on the shape regularity parameter (2.1)

ϱ, k, p and s.

Proof. A statement and proof of the estimates are given in Theorem 1.45 and

Theorem 1.48 of [49].

Local Virtual Element Spaces

The classical VEM space is built on a given polygon ETh by considering a

local boundary value problem. Originally this was done by considering a Pois-

son problem subject to piecewise polynomial boundary conditions [18]. The

boundary space is defined as

Bk(∂E) = {vh ∈ C0(∂E) : vh|e ∈ Pk(e) ∀e ⊂ ∂E},

from which the original local VEM space of degree k can then be defined as

Wk(E) = {vh ∈ H1(E) : vh|∂E ∈ Bk(∂E), ∆vh|E ∈ Pk−2(E)}. (2.2)

Degrees of Freedom

The construction of a VEM relies on choosing a set of degrees of freedom

(DoFs). These DoFs serve two purposes in the method: they provide the

necessary information to construct computable polynomial approximation op-

erators, and they uniquely identify a virtual element function on any given

polygon, which would otherwise be an unknown solution to a local boundary

value problem.
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To define the DoFs of the classical VEM, the space of scaled monomials of

degree k on a given element E ∈ Th is defined as

M∗
k(E) =

{(
x− xc

hE

)α(
y − yc
hE

)β

: α, β ∈ Z≥ 0, α + β = k

}
,

where the union of scaled monomials forms a basis for Pk(E):

Mk(E) =
⋃
l≤k

M∗
l (E).

These polynomials are called “scaled monomials” because each polynomial

scales as one when defined on any given polygon:

∥mα∥0,∞,E ∼ 1 ∀mα ∈ Mk(E).

The use of this space is crucial in defining the degrees of freedom, which will

be discussed in further detail in the subsequent sections. In R2, the classical

VEM DoFs are presented in the following definition.

Definition 2.1.4 (Degrees of Freedom for the Virtual Element Method).

Let E ∈ Th and Wk(E) be the local VEM space defined in Equation (2.2). The

degrees of freedom of a given function vh ∈ Wk(E) are defined as follows:

• The point values of v at each vertex of E.

• The point values of v at the Gauss-Lobatto quadrature points of order k−1

on each edge e ⊂ ∂E.

• The internal moments of 1
|E|

∫
E
vhq dx for all q ∈ Mk−2(E).

An illustrative diagram of these DoFs is presented in Figure 2.2. A proof

that these constitute a unisolvent set of DoFs is provided in [18]. The H1

projection Π∇
k is computable using only these degrees of freedom, as is the L2

projection Π0
k−2.

Enhanced Virtual Element Spaces

In order to develop the VEM for problems beyond Poisson’s Equation, the local

VEM space had to be modified such that the full L2 projection was computable.
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E

EE

Figure 2.2: Degrees of freedom for a polygon E in the classical VEM for k = 1 (left), k = 2
(center), and k = 3 (right). Vertex values, edge quadrature point values, and internal moments are
denoted by squares, circles, and triangles, respectively.

A solution was presented in [2] and is commonly used as the default VEM space

in most recent discretisations. This enhanced space is referred to as the classical

VEM space in this thesis.

The approach to enhance the VEM space is to define an auxiliary projection

operator Π∗
k : Wk(E) → Pk(E) to supplement the remaining internal moments

of

1

|E|

∫
E

vhq dx q ∈ M∗
k(E) ∪M∗

k−1(E).

The original local VEM space is enlarged via,

W̃k(E) = {vh ∈ H1(E) : vh|∂E ∈ Bk(∂E), ∆vh ∈ Pk(E)},

and then restricted to define the classical VEM space,

Vk(E) =

{
vh ∈ W̃k(E) :

∫
E

(vh − Π∗
kvh)q dx = 0 ∀q ∈ Pk(E)\Pk−2(E)

}
.

(2.3)

The degrees of freedom given in Definition 2.1.4 also form a unisolvent set of

DoFs for the classical VEM space defined in Equation (2.3) [2]. This auxiliary

projection is taken as the Π∇
k projection in the classical VEM [2, 44].
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The global VEM space of degree k is then defined as

Vh =
{
vh ∈ H1(Ω) vh|E ∈ Vk(E) ∀E ∈ Th

}
. (2.4)

Using the VEM to solve PDEs with homogeneous Dirichlet boundary conditions

requires a restricted global VEM space with zero trace. This is denoted as

Vh,0 = Vh ∩H1
0 (Ω).

Canonical Basis Functions & Interpolation

For a local VEM function vh ∈ Vk(E), the DoFs on a local VEM space are

denoted by dofi(vh) for i = 1, . . . , Ndofs, with Ndofs being the number of DoFs

on E. The Lagrangian VEM basis function is introduced as

{φi}N
dofs

i=1 ⊂ Vk(E), dofi(φj) = δi,j for i, j = 1, . . . , Ndofs. (2.5)

From this definition, any vh ∈ Vk(E) can be written as

vh =
Ndofs∑
i=1

dofi(vh)φi. (2.6)

For any v ∈ H2(E), the VEM Lagrange interpolant can be defined using

Equation (2.6):

vI =
Ndofs∑
i=1

dofi(v)φi. (2.7)

From this, the following interpolation error estimate holds.

Theorem 2.1.2 (VEM Interpolation).

Let a polynomial degree k ∈ N and an integer s ∈ {2, . . . , k+1} be given. Then

for any element E ∈ Th and all v ∈ Hs(E), the VEM interpolant VI ∈ Vk(E),

defined by Equation (2.7), satisfies

∥v − vI∥0,E + hE |v − vI |1,E ≲ hs
E |v|s,E ,

where the hidden constant is dependent on ϱ and k.

Proof. The inequality is given (see Proposition 4.3 in [18]) by classical Scott-

Dupont estimates [29].
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Remark 2. In the case of v /∈ H2(E), Theorem 2.1.2 can be generalised to

infer the existence of a quasi-interpolant vI ∈ Vk(E) that satisfies the same

approximation properties [29].

Approximation of Linear and Bilinear Forms

Let A(·, ·) : H1
0 (Ω)×H1

0 (Ω) → R and l(·) : H1
0 (Ω) → R be a bilinear and linear

form respectively. Consider the general variational problem: find ρ ∈ H1
0 (Ω)

such that A(ρ, v) = l(v) for all v ∈ H1
0 (Ω). The bilinear and linear forms can

be decomposed into contributions over polygonal elements

A(ρ, v) =
∑
E∈Th

AE(ρ, v), l(v) =
∑
E∈Th

lE(v).

The novelty of the VEM is the introduction of discrete approximations Ah(·, ·)

and lh(·) that use the DoFs to compute the projection operators Π∗, Π0 and Π1

and use these projections to approximate the integral equations to a sufficient

degree of accuracy. These approximations are also constructed via local element

contributions

Ah(ρh, vh) =
∑
E∈Th

AE
h (ρh, vh), lh(vh) =

∑
E∈Th

lEh (vh) ∀ρh, vh ∈ Vh,0.

To enforce the coercivity of the discrete bilinear form, a stabilisation term

is introduced SE(·, ·) to ensure that the kernel of AE
h (·, ·) scales like the kernel

of AE(·, ·). There exists VEMs within the literature for which stabilisation of

specific bilinear forms are not required [2, 44, 39].

An example construction of the bilinear forms is presented through the sim-

plest case of Poisson’s Equation [18]

−∆ρ = f x ∈ Ω,

ρ = 0 x ∈ ∂Ω.

The continuous Galerkin formulation is well known [29, 74]

A(ρ, v) :=

∫
Ω

∇ρ · ∇v dx =

∫
Ω

fv dx := l(v),
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and can be decomposed into a summation over local elements E ∈ Th

A(ρ, v) =
∑
E∈Th

AE(ρ, v), l(v) =
∑
E∈Th

lE(v),

where

AE(ρ, v) =

∫
E

∇ρ · ∇v dx, lE(v) =

∫
E

fv dx.

To derive an appropriate VEM, the following assumptions on the discrete bi-

linear form are sufficient. In [18] these conditions are utilised to prove optimal

order H1 error bounds for a VEM approximation to Poisson’s Equation.

Assumption 2 (Polynomial k-consistency).

Let k ∈ N and Th be a polygonal mesh that satisfies Assumption 1 with E ∈ Th.

For a VEM approximation of AE
h (·, ·) of a bilinear form AE(·, ·) it holds that

Ah(p, vh) = A(p, vh) ∀p ∈ Pk(E), vh ∈ Vk(E).

Assumption 3 (Stability).

Let k ∈ N and Th be a polygonal mesh that satisfies Assumption 1 with E ∈ Th.

For a VEM approximation of AE
h (·, ·) of a bilinear form AE(·, ·) there exists

positive constants α∗, α∗ > 0 independent of hE such that

α∗A(ρh, vh) ≤ Ah(ρh, vh) ≤ α∗A(ρh, vh) ∀ρh, vh ∈ Vk(E).

Assumptions 2 and 3 are satisfied by defining the local approximation by

AE
h (ρh, vh) = AE(Π∇

k ρh,Π
∇
k vh) + SE(ρh − Π∇

k ρh, vh − Π∇
k vh),

where the stabilisation term is given by a Euclidean inner product of the DoFs

SE(uh, wh) =
Ndofs∑
i=1

dofi(uh) · dofi(wh) ∀uh, wh ∈ Vk(E), (2.8)

and is commonly referred to as“dofi-dofi” stabilisation within the VEM liter-

ature [18, 2, 44]. For the discrete linear form, it is sufficient to use the Π0
k−2

projection of f , under the assumption that f ∈ Hk−1(E), to obtain an optimal

order accuracy VEM

lEh (vh) =

∫
E

Π0
k−2f vh dx.
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Remark 3. For approximating the Laplacian operator, the stabilisation does

not require any scaling, as A(·, ·) scales as one on a given E ∈ Th [18]. How-

ever, in general, the VEM stabilisation will have to be scaled according to the

dimension, PDE coefficient terms, and the measure of E [39, 36, 48]. For

example, in the two-dimensional case of the L2 inner product, the dofi-dofi

stabilisation is scaled by h2
E.

Extensions of the Virtual Element Method

This section concludes with a mention of extensions and variations of the VEM.

The classical VEM formulation and analysis in three dimensions have been

well-established [2, 44, 39]. Additionally, the VEM has been extended to non-

conforming [39, 11], higher regularity [33, 6], and H(div), H(curl) spaces [45, 22].

Mixed VEMs have also been introduced [31, 19, 47, 46]. These discretisations

are not considered in this thesis. In Parts II and III, the curved VEM proposed

in [23] will be employed, which is reviewed in Chapter 6.

2.2 Moving Mesh Methods

In this section, an overview of moving mesh methods is presented for time-

dependent problems on moving domains. Moving mesh methods are part

of a large class of adaptive mesh refinement techniques, alongside h- and p-

refinement strategies. Moving mesh methods also have a close relation to the

Arbitrary Lagrangian-Eulerian (ALE) method in computational fluid dynamics

[50]. The fundamentals of the ALE method are also reviewed in this section.

The primary advantage of moving mesh methods is the ability to optimise

mesh structures without requiring any change in the mesh connectivity, which

can cause computational challenges, particularly when parallel implementa-

tions are considered. They also provide a natural framework for tracking phys-

ical features of a time-dependent PDE, such as blow-up problems [34], phase
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change modeling [17], fluid-structure interaction problems [89], and more gen-

eral time-dependent PDEs [13, 85, 62].

The primary goal of a moving mesh method is to evolve the coordinates of a

mesh over time in an optimal manner to maintain the accuracy of the numerical

simulation and provide computationally efficient resolution of moving solution

features. There are several approaches within the FEM literature, including the

moving FEM [13], the MMPDE method [65, 66], the Geometric Conservation

Law (GCL) method [40], and a velocity-based moving mesh algorithm [14, 15].

Moving Coordinate Systems

A moving domain is denoted by Ωt and within this thesis it is assumed that

Ωt is an open, bounded and simply connected subset of R2 at any given time.

Frequently, Ωt will be referred to as the “physical domain”. A time-independent

“reference domain” is denoted by Ω̂ and is also assumed to be an open, bounded

and simply connected subset of R2.

An invertible mapping between Ω̂, and Ωt is defined for a finite time 0 ≤

t ≤ T < ∞ by

x(ξ, t) : Ω̂× [0, T ] → Ωt.

where ξ is a coordinate system of the reference domain. Typically the reference

domain is chosen to be the initial domain Ω̂ = Ω0 or a discrete approximation

of it. An example of such a mapping is given in Figure 2.3.

In the literature of computational fluid-dynamics x(ξ, t) is often referred

to as the Lagrangian coordinate system, owing to the fact that this typical

represents the moving coordinates of particles in a body of fluid. Following

the same reasoning ξ is referred to as the Eulerian coordinate system. The

Lagrangian velocity field is also defined as the time derivative of x(ξ, t) and is

denoted by u = ẋ(ξ, t).



26 CHAPTER 2. PRELIMINARIES

Ω0

Ωt

x(ξ, t)

Figure 2.3: A translation between two domains with respect to time. The function x(ξ, t) maps
the coordinate system from the reference domain to the physical one.

The Arbitrary Lagrangian-Eulerian Framework

The ALE method was motivated by the inefficiency of Lagrangian and Eulerian

approaches to problems in computational fluid dynamics. The Lagrangian ap-

proach allows for simple tracking of solution features and moving boundaries.

However, the robustness of this approach depends on the fluid flow, and fre-

quently, the moving mesh degrades, resulting in poor-quality meshes. On the

other hand, the Eulerian approach fixes the computational mesh, preventing

mesh quality issues but at the cost of poor resolution of flow details and moving

boundaries [50]. The ALE method allows for an arbitrary transformation be-

tween Ω̂ and Ωt that exhibits the benefits of both the Eulerian and Lagrangian

approaches. The ALE mapping is defined by

At : Ω̂× [0, T ] → Ωt,

with a corresponding ALE velocity field denoted by w = ˙At.

ALE methods allow for the evaluation of terms between the three frames

of reference: the Lagrangian, Eulerian and ALE reference frames. In practise

only transformations between the ALE and Eulerian coordinates are required

[50]. A function f : Ωt → R can be represented in the ALE and Eulerian

coordinates via

f̂ = f ◦ At, f = f̂ ◦ A −1
t . (2.9)
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Consistent with the literature, functions and operators defined on the reference

domain will represented using the hat notation [50, 89, 60]. Additionally, the

Jacobian operator of the transformation is defined on the reference domain via

JAt =
∂

∂ξ
At = ∇̂At, (2.10)

with the corresponding time-dependent determinant defined by j = det (JAt).

In order to perform the analysis of these ALE methods, regularity conditions

on the ALE mapping must be imposed [54, 60]. These conditions are discussed

in Parts II and III.

A Conservative Arbitrary Lagrangian-Eulerian Formulation

In this thesis, only the conservative ALE method is presented. Examples of

non-conservative formulations can be found in [54, 27, 28, 81]. The mate-

rial derivative operator plays an important role in the formulation of an ALE

method. This is defined as the time evolution of a function along the velocity

field trajectory

Dtf =
∂f

∂t
+w · ∇f.

Important to the formulation and analysis of ALE methods is the well-known

Reynolds Transport Theorem.

Theorem 2.2.1 (Reynolds Transport Theorem).

Let Ωt be a time-dependent volume for 0 ≤ t ≤ T < ∞ with velocity w. For

t ∈ [0, T ], it holds for a scalar function f defined on Ωt that

d

dt

∫
Ωt

f dx =

∫
Ωt

∂f

∂t
+∇ · (fw) dx.

Proof. Proofs can be found in [100, 86].

In the presentation of the material derivative and the Reynolds Transport

Theorem, The velocity field is given by w to denote the time derivative of the

domain transformation. This will be used in this thesis to denote an ALE ve-

locity field. Particle velocity fields or physical derived domain transformations
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will be denoted by u, noting that w = u is valid in Reynolds Transport Theo-

rem. In the derivation of the Navier-Stokes equations, u is commonly used to

denote the velocity field of fluid particles [100].

For a given PDE ∂ρ/∂t = Lρ, where L is some differential operator, the

Reynolds Transport Theorem is used to derive a Galerkin formulation of the

PDE by considering a test function v

d

dt

∫
Ωt

ρv dx =

∫
Ωt

∂(ρv)

∂t
+∇ · (wρv) dx.

Applying the product rule and rearranging terms leads to

d

dt

∫
Ωt

ρv dx =

∫
Ωt

ρDtv + v {Lρ+∇ · (wρ)} dx. (2.11)

In discretising this equation it is assumed that the test function moves with

the mesh velocity, i.e. Dtv = 0 so that the right hand side of Equation (2.11)

can be computed using only the PDE information and the mesh velocity field

d

dt

∫
Ωt

ρv dx =

∫
Ωt

vLρ+ v∇ · (wρ) dx. (2.12)

Indeed, when the velocity field is represented discretely in the Lagrangian Fi-

nite Element space, this property is well-known [68]. However, non-Lagrangian

Finite Element representations require an additional integral term for com-

putation [68, 65]. In the FEM, an approximation of the right-hand side of

Equation (2.12) is computed, and integration over time is performed using a

standard time-stepping scheme, such as an implicit Euler scheme [54]. The

solution is then reconstructed on a new mesh using a standard global L2 pro-

jection [14, 65]. In computational fluid dynamics, it is common to transform

the integral equations to the reference domain using Equations (2.9) and (2.10).

Details of this are deferred until Parts II and III of this thesis.

Mesh Updates

In general, a moving mesh method requires either the computation of a mesh

velocity or mapping between the current discrete time level and the next one.
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In practical applications it is required that the trace of At and consequently

the trace of w corresponds to the Lagrangian domain transformation over time

(or a sufficiently accurate approximation of it).

A mesh movement strategy can be described as location-based if the ALE

map is solved for by a numerical scheme or velocity-based if the ALE veloc-

ity field is approximated and subsequently integrated with respect to time to

compute the ALE map [65].

Transferring Functions Between Meshes

In general, there is no hierarchical structure between meshes at different time

levels, which raises the question: How can a solution be transferred between one

mesh and the next? The choice of transferring a numerical solution between

meshes falls into one of two categories [65].

A rezoning approach seeks to simulate the PDE independently of the mesh

movement. To achieve this a transfer operator is required to map a numerical

solution between unrelated meshes at a fixed discrete time level. Once the

transfer is computed the numerical method is computed with the mesh positions

fixed.

A quasi-Lagrange approach considers the mesh vertices as moving contin-

uously with respect to time. Here the evolution of the PDE along the mesh

trajectories are approximated. The mesh and solution are therefore updated in

time simultaneously. The conservative ALE update given by Equation (2.11)

is an example of a quasi-Lagrange approach.

Choices of ALE Mappings

The best choice of ALE mapping often depends on the specific problem being

solved. A degree of choice is also afforded to the user as to how much com-

putational effort is required to maintain an optimal moving mesh. The choice

of ALE mapping can be driven by the desire to improve the quality of the
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numerical simulation. This is achieved by, for example, introducing a func-

tion that monitors the distribution of solution quantities and seeks to maintain

alignment and equidistribution properties of this monitor over time [65].

In most cases the goal of the ALE mapping is to improve the robustness of

the moving mesh method and avoid issues such as node tangling and element

degeneration which eventually lead to numerical instabilities in the method

[50, 14, 89]. Two commonly used approaches are described below. Depend-

ing on whether a location-based or velocity-based mesh movement strategy is

employed, the ALE mapping or the ALE velocity field can be solved for respec-

tively using these approaches. For brevity, the location-based strategy case is

presented. The velocity-based counterparts simply involve the substitution of

At and x with w and u respectively in Equations (2.13), (2.14), (2.15), and

(2.16) [50].

The flexibility of the ALE method allows, generally, for the interior mesh

elements to move arbitrarily. Consequently, there is no requirement to compute

the interior value of the ALE map or velocity field to high precision. However,

it has been shown that the ALE method is more robust under complex do-

main transformations when variational approaches are taken that improve the

regularity of the ALE map [60, 89].

Laplacian smoothing seeks to regularise the ALE mapping separately in

both coordinate directions. As such the method is given by a simple Pois-

son’s Equation in which the Lagrangian map is taken as Dirichlet boundary

conditions [50]

∆At = 0 ξ ∈ Ω̂, (2.13)

At = x(ξ, t) ξ ∈ ∂Ω̂. (2.14)

A more complex approach is to treat the moving mesh as an elastic body

subject to a Navier-Lamé equation [60, 55]. For a scalar parameter λ ≥ 0, the



2.3. LITERATURE REVIEW 31

ALE map is given by

−∆At + λ∇(∇ · At) = 0 ξ ∈ Ω̂, (2.15)

At = x(ξ, t) ξ ∈ ∂Ω̂. (2.16)

The special case of λ = 0 is commonly referred to as harmonic extension.

2.3 Literature Review

To conclude this chapter, a review is provided of the recent works that in-

vestigate polygonal moving mesh methods. The mathematical details of these

studies are omitted here, but the required preliminary material can be found

in Sections 2.1 and 2.2, and further information can be obtained from the re-

spective publications. Finally, a brief mention is made of additional research

indirectly related to moving meshes and polygonal discretisations.

A Conservative ALE Remapping Method

Lipnikov and Morgan’s work [78, 80] presented a moving polygonal mesh scheme

using a discontinuous Galerkin method with a conservative ALE update. They

mapped a discrete function between two curvilinear polygonal meshes via a

pseudo PDE problem on a moving mesh between the original and final meshes.

They employed the VEM to approximate integrals that would otherwise be

uncomputable.

They constructed the moving coordinates system by linearising the differ-

ence between the two meshes by a pseudo-time parameter. By defining the

moving geometry and time derivative of the function, which is zero under move-

ment, they could simplify the Reynolds transport theorem into a computable

integral form.

A semi-discrete method subdivided the pseudo-time interval into segments,

each with a corresponding sequence of geometries and meshes. A discrete
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Jacobian was approximated via a virtual element space to approximate any

integration back to the initial discrete space.

They defined a fully discrete system with mass term and right-hand side,

and the system could be computed solely on the initial mesh with the final mesh

only required at the end of the pseudo-time stepping scheme. At the end of the

algorithm, the H1 projection was applied to the solution interpolated onto a

virtual element space to ensure the local weight of the reconstructed polynomial

was consistent with that of the solution of the pseudo-time problem solved on

the initial mesh.

They demonstrated the volume of the solution over the domain was pre-

served during the pseudo-time stepping. Numerical results suggested optimal

accuracy in L2 and L∞ norms for polynomial degrees k = 0, 1, 2. The method

proved a moving polygonal mesh scheme was possible, with flexibility in defin-

ing the mesh movement, allowing for more generalised representations of the

velocity field.

However, limitations of this method included its restriction, to a fixed func-

tion on a fixed domain without a moving boundary. Further research would be

needed for extension to time-dependent PDE problems or domains with mov-

ing boundaries. The necessity to use a k+1 order polynomial projection of the

velocity field requires examination, as it’s uncommon in typical VEMs.

Mappings between moving polygons

In the paper of Huang andWang [66], the quality measures of polygonal meshes,

specifically focusing on anisotropic mesh refinement, are studied. They pro-

posed a set of quality measures for Voronoi meshes and utilised the MMPDE

scheme [65] for the refinement of adaptive moving meshes. Their study also

included numerical experiments that employed the Wachspress finite element

method [98] for the anisotropic solution of Laplace’s equation.

The paper considered two different types of meshes: computational and
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physical. For every physical mesh, they assumed a corresponding reference

polygon in the computational mesh. They connected these polygons through

a bijection, ensuring only mappings that preserve the polygon’s connectivity

and map nodes to nodes.

The quality of the polygonal mesh was assessed based on the integral of

a metric tensor over a particular domain [65]. They established that a high-

quality physical mesh should maintain a constant ratio between this metric

integral and the area of the domain. Two conditions are utilised, alignment and

equidistribution, to define the mesh quality. When adapting mesh movement,

an ideal mesh aligns and equitably distributes, such that the quality functions

equal one.

Three approximations of the mapping are suggested in this paper. A linear

least squares fitting method provides an approximation for all possible maps

that satisfy a specific condition. It employs the least squares approach to com-

pute the map, taking into account the nodal coordinates. This approach is

applicable for convex, non-degenerate polygons. This method provides an ap-

proximate measure of the mesh quality based on the Jacobian. Generalised

barycentric mappings is another approach that constructs a specific mapping

using generalised barycentric coordinate systems. These coordinates are func-

tions that satisfy specific conditions and are particularly applicable for a given

N -gon. The mapping can then be defined using these coordinates. There are

two possible coordinate systems for convex polygons: the Wachspress coordi-

nates and the piecewise linear coordinates. Each system has its own way of

defining the coordinates and the mesh quality measures. The third approach

utilises affine mapping by extending to higher dimensions. Here, a set of in-

finitely many reference polygons are used to ensure the mapping is affine. The

polygon in question is assumed to be translated such that the polygon cen-

troid is at the origin. A mapping can then be defined through a hyperplane

translation. The quality of the mesh is then defined using a specific Jacobian
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equation.

The study applies the moving mesh PDE method (MMPDE) [65] to adap-

tively refine the positioning of mesh vertices based on a metric tensor depen-

dent on the Hessian of the solution. The movement of mesh nodes is deter-

mined using piecewise barycentric mappings on sub-triangles. The method

demonstrates comparable convergence rates to uniform mesh refinement, while

achieving smaller numerical errors in solution accuracy.

Preliminary results compare three mesh quality measures for generating a

centroidal Voronoi tessellation (CVT) using Lloyd’s iteration [51]. The results

show convergence of the quality measures to 1, with the piecewise linear mea-

sure exhibiting more volatile behavior. Two test problems involving Poisson’s

equation on a unit square domain are considered, showcasing strong anisotropic

behavior in the solution gradient and Hessian. The MMPDE method, using

the defined metric tensor, achieves similar convergence rates to uniform mesh

refinement, but with smaller numerical errors in both test problems. The mesh

quality measures also converge to 1 for each moving mesh refinement, includ-

ing cases with modified metric tensors and an infinite solution Hessian at the

origin.

The paper’s contribution lies in the methodology of representing mesh trans-

formations, allowing for flexibility in approximating translations between ele-

ments in a moving polygonal mesh method. Different mapping techniques

demonstrate the potential for robust and computable mesh quality and align-

ment measures during r-refinement. However, the study does not explore the

coupling of this adaptive algorithm with time-dependent PDEs or the inte-

gration of translation choices within the computational mesh. The use of sub-

tessellations combined with polygonal discretisation schemes for PDEs presents

a promising avenue for future moving mesh methods.
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PDE based reconstruction on non-hierarchical meshes

In a paper by Cangiani, Georgoulis, and Sutton [38], an alternative approach

to moving mesh methods is proposed. The method utilises discrete elliptic op-

erators to transfer the numerical solution of a PDE between meshes. Residual-

based a posteriori error estimates are derived, and the method is tested on a

moving mesh method for a parabolic PDE.

The paper considers parabolic diffusion problems defined on a fixed bounded

domain. The PDEs are solved numerically using finite element or virtual ele-

ment frameworks. Bilinear forms are defined, along with corresponding norm

and projection operators. The numerical method involves solving a discrete

scheme for the PDE, with a discrete derivative and elliptic reconstruction of

the solution. Error estimates are provided for the L2(H1) and L∞(L2) norms.

Computable transfer operators, such as the coarsening operator and refine-

ment operator, are introduced in the VEM. These operators interpolate degrees

of freedom and compute H1 projections, respectively. Estimators for the el-

liptic reconstruction, including L2 and H1 estimators, are derived based on

jump residuals and element residuals. A computable estimator for the tempo-

ral component is not presented in the paper but can be adapted from the finite

element counterpart.

Empirical results demonstrate the convergence and accuracy of the method.

The moving mesh method using classical finite element methods and VEM both

exhibit optimal convergence rates on various test cases. The method performs

well on parabolic problems with rapidly moving solution features, with a refined

mesh strategy based on error estimators.

The a posteriori error estimates provided in the paper offer a solid founda-

tion for further analysis of moving polygonal mesh methods. The numerical

results support the effectiveness of the virtual element method in handling

rapidly changing mesh geometries. The L2(H1) norm estimator is found to be

particularly reliable for solutions with sharp features. However, the paper does
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not address time-dependent domains, leaving room for future exploration of

the impact of inconsistent meshes with the true domain boundary.

Space-time Elements on Moving Voronoi Meshes

In the work of Gaburro et al. [59, 58] a moving mesh method is proposed that is

based on Voronoi tessellations to construct space-time elements for simulating

hyperbolic PDEs while satisfying the geometric conservation law. The method

combines an ALE Finite Volume method with a Discontinuous Galerkin method

to achieve high-order accuracy and robustness.

The mesh is generated using Voronoi tessellations, which are regenerated at

each discrete time level. The movement of the mesh is determined by an ALE

velocity field that aims to maintain quasi-uniformity and emulate Lagrangian

behavior. The positioning of mesh generator points is computed based on

averaging the extrapolated Lagrangian velocity and an optimal seed position

derived from Lloyd’s algorithm [51]. Higher order representation of the mesh

movement is achieved by considering a Taylor expansion of the generator points.

Space-time elements are constructed by connecting the edges of the poly-

gons between consecutive time states. For standard elements, quadrilateral

faces connect the edges, while additional considerations are made for degen-

erate edges in sliver elements. The method includes a predictor step, which

is performed locally on each space-time element, and a corrector step that

integrates the weak form of the PDE globally using the predictor solutions.

Extensive numerical results demonstrate the method’s effectiveness and ac-

curacy for a range of test cases, including vortex flows, explosion problems, the

Sedov problem, and magnetohydrodynamics. The method exhibits high-order

convergence, robustness for long-time simulations, and the ability to handle

highly rotational flows without suffering from mesh tangling.

While the method shows promising results, some limitations and areas for

further investigation are mentioned. The explicit knowledge of the domain ge-
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ometry, particularly the rectangular region, is required, raising questions about

extending the approach to moving boundary problems. The impact of using a

low-order Finite Volume limiter has not been fully explored, and its frequent

use may result in a loss of convergence. The reconstruction-based nature of the

method eliminates the need for knowledge of the material derivative operator,

distinguishing it from other moving mesh methods.

Additional Works

To achieve higher-order accuracy in simulating moving boundary problems,

accurate representation of the boundary is crucial. Curved polytopic elements

offer the ability to achieve higher accuracy for PDEs on domains that deviate

from typical rectangular benchmarks. In the virtual element literature, there

have been significant research efforts to enhance the flexibility of this method

for curved elements. Promising results have been obtained through various

approaches [23, 26, 21, 9, 46], demonstrating optimal convergence rates for

benchmark elliptic problems. To attain convergence rates higher than quadratic

order, it is essential to improve the representation of the moving boundary by

incorporating curved edge elements and assessing their impact on moving mesh

methods.

Moving surface and surface PDE problems are related to coupled moving

mesh and PDE models. Previous studies on moving surface FEMs include

[52, 53, 73, 70, 72, 71]. The analysis approaches used in these works can

potentially be extended to a virtual element discretisation for similar problems.

Additionally, there are works in the VEM literature focusing on surface PDEs

[57, 56, 12, 76], which closely relate to moving mesh methods and provide

theoretical foundations to analyse each component of the method separately.

To conclude this review, two additional relevant papers are mentioned.

In [83], a linear VEM is coupled with a mesh agglomeration algorithm for

long-term simulations of moving landforms. In [7], a cut-based discontinuous
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Galerkin scheme for fluid-structure interaction is introduced and tested. Both

papers demonstrate that changes in mesh connectivity can be successfully cou-

pled with polygonal discretisation techniques and produce accurate solutions.



Part I

A Velocity-based Moving Mesh Virtual

Element Method
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Introduction

Within the literature there did not exist an implementation and/or analysis of

a moving mesh method that fully depended on the VEM. In order to motivate

the development of moving mesh VEMs, it is imperative to demonstrate that

the VEM can be effectively applied to an elementary instance of a moving mesh

problem.

In Part I a VEM discretisation of a moving mesh method is proposed and

benchmarked against a series of numerical experiments. Here a velocity-based

moving mesh algorithm [14, 16, 17, 67, 81, 15] is considered for the numerical

solution of free boundary problems. The method is closely related to the Ge-

ometric Conservation Law method (GCL) [40] and also forms part of a larger

family of adaptive moving mesh methods discussed in Section 2.2. It uses a

Lagrangian formulation of the given PDE to solve directly for the mesh veloci-

ties which are integrated over time to evolve the mesh. The solution computed

on any given time-step is then transferred to the following time-step using an

ALE scheme based on a weak distribution of a given monitor function. The

lowest order VEM discretisation is formulated for this moving mesh method.

This new method is presented focusing on the solution of the free boundary

problem for the Porous Medium Equation (PME) as a model problem. This

method can also be regarded as an extension of the linear moving mesh FEM

to polygonal meshes that reduces to the original algorithm [14] when the mesh

consists of only triangles.

In Chapter 3 the moving mesh method is reviewed and a VEM formulation
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of the mesh velocity and ALE update are presented. The discrete equations are

derived using the classical VEM spaces defined in Section 2.1. A conservation

law is then presented for the linear moving mesh VEM.

In Chapter 4 numerical results are presented for a similarity solution of

the PME. To showcase the methods generality, an extension of the method

to a nonlinear fourth-order problem is formulated and numerically tested. To

demonstrate the advantages of using a polygonal discretisation in moving mesh

methods, a simple node insertion/removal algorithm for problems involving

collision between a moving boundary and fixed obstacles is outlined and tested.

The benefit of this algorithm is that typical issues such as node tangling, contact

with obstacles, and topological changes of the moving domain [65, 15] can be

dealt with fully by local changes in the mesh topology.

A selection of results from Part I has been submitted for publication [99].



Chapter 3

A Virtual Element discretisation

of a Moving Mesh Algorithm

The velocity-based moving mesh method was first proposed in [14] for non-

linear diffusion problems (such as the PME). The solution and velocity spaces

were discretised using a linear Lagrange finite element space on the moving

mesh. In this chapter we present the formulation of the two-dimensional mov-

ing mesh method for the PME using the VEM. Whilst the method has been

successfully applied to a variety of parabolic problems with different solution

features, our presentation is restricted to the PME with an extension demon-

strated in Chapter 4. A summary review of the method is provided in [15] and

provides a framework in which the moving mesh VEM could be extended to

these problems.

In Section 3.1 we introduce the PME problem and the associated free-

boundary problem which the moving mesh method will be derived from. The

velocity-based moving mesh method is reviewed in Section 3.2. The VEM space

employed in the proposed method is outlined in Section 3.3. The discretisa-

tions of the velocity and solution problems are presented in Sections 3.4 and 3.5

respectively. The chapter is concluded with a conservation law result presented

in Section 3.6 and an overview of the algorithm in Section 3.7.
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3.1 The Porous Medium Equation

On an open, bounded domain Ω̃ ⊂ R2, we consider the following initial-

boundary value problem for the PME: find ρ : Ω̃× R+ → R such that

∂ρ

∂t
(x, t) = ∆Φ(ρ(x, t)) (x, t) ∈ Ω̃× (0,∞], (3.1)

ρ(x, t) = 0 (x, t) ∈ ∂Ω̃× (0,∞],

ρ(x, 0) = ρ0(x) x ∈ Ω̃, (3.2)

where Φ = ρm+1/(m + 1), for some m > 0, and ρ0 ≥ 0 having compact

support in Ω̃. The PME belongs to the broader class of Generalised Porous

Medium Equations (GPME), also known as filtration equations, obtained with

Φ : R+ → R+ any increasing function. The mathematical analysis of the

GPME is well developed; see the monograph [97] and the references therein.

In particular, the notion of appropriate weak solutions is discussed in [97] where

it is shown that, for non-negative ρ0 ∈ L1(Ω̃) and for Ψ(ρ0) ∈ L1(Ω̃), where

Ψ is the anti-derivative of Φ, if Ψ(ρ) > 0 for ρ > 0, there exists a unique

non-negative weak solution to the GPME globally in time.

The PME models a number of physical processes such as fluid flow, heat

transfer, and diffusion. It exhibits several interesting properties, including the

existence of a family of radially symmetric similarity solutions [86], which are

used to test the numerical method in Chapter 4. Other properties of the PME

are discussed in [97, 15, 87].

It is a fundamental example of a degenerate parabolic equation, stemming

from the condition that Ψ is non-negative, rather than simply positive.

Solutions that exhibit an evolving compact support are ideal for the class

of moving mesh methods considered herein because considering as unknown

the support of the solution leads to a moving boundary problem that can be

simulated over time without having to discretise the entire geometry of Ω̃.

Introducing the time-dependent support of ρ as Ωt, we define the time-

dependent coordinate system x(ξ, t) with a velocity field ẋ = u(x, t) that
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corresponds, at ∂Ωt, with the movement of the free boundary of Ωt for all

t ∈ [0,∞]. Additionally, we consider the free boundary problem for the PME

in which part of the boundary may be obstructed by a fixed object. To this end,

the boundary is divided into a moving part ∂ΩM
t and a fixed part ∂ΩF

t , such

that ∂Ω = ∂ΩM
t ∪ ∂ΩF

t and ∂ΩM
t ∩ ∂ΩF

t = ∅. Thus, we arrive to the following

classical free boundary problem for the PME, whose smooth solutions are weak

solutions of (3.1)-(3.2), cf. [97].

Problem 3.1.1 (The Porous Medium Equation (PME)).

Let T > 0 and m > 0. Find ρ = ρ(x, t) such that ρ(x, 0) = ρ0(x) for x ∈ Ω0

and, for all t ∈ (0, T ],

∂ρ

∂t
= ∇ · (ρm∇ρ) x ∈ Ωt,

ρ = 0 x ∈ ∂ΩM
t ,

ρm∇ρ · n = 0 x ∈ ∂ΩF
t .

Here, n is the outward pointing unit normal to the boundary ∂Ω. Note that an

additional (kinematic) boundary condition,

ρu · n = −ρm∇ρ · n x ∈ ∂ΩM
t ,

which imposes zero flux through the moving boundary, is required to determine

the boundary velocity u. On ∂ΩF
t , the boundary velocity is specified and ρu·n =

0.

3.2 Algorithm Review

We present the derivation of this method for a general time-dependent PDE of

the form
∂ρ

∂t
= Lρ, (3.3)

with Lρ being a generic spatial differential operator in R2. In the case of the

PME in Section 3.1 we have Lρ = ∇ · (ρm∇ρ).



3.2. ALGORITHM REVIEW 45

Monitor Distribution

The movement of the mesh is derived by specifying the time evolution of the

distribution of the spatial integral of some solution-dependent monitor function,

M(ρ). Specifically, the velocity field u is determined by requiring that the initial

distribution of the monitor function M(ρ) is conserved as time progresses.

We define the space-time domain as

QT = {(x, t) : t ∈ [0, T ],x = x(ξ, t), ξ ∈ Ω0}.

The goal of this moving mesh method is to seek a u such that, for all

v ∈ L2(QT ), the coordinates x(ξ, t) satisfy∫
Ωt

v(x, t)M(ρ(x, t)) dx∫
Ωt

M(ρ(x, t)) dx
=

∫
Ω0

v(ξ, 0)M(ρ(ξ, 0)) dξ∫
Ω0

M(ρ(ξ, 0)) dξ
∀ t ∈ [0, T ]. (3.4)

The derivation of the moving mesh method is based on application of the

Reynolds Transport Theorem 2.2.1 and on the assumption that the material

derivatives of the weighting functions v(x, t) are zero with respect to the ve-

locity field u. Namely,

Dtv =
∂v

∂t
+ u · ∇v = 0. (3.5)

This is a common assumption made in finite element approaches to moving

mesh algorithms as discussed in Section 2.2 and is equivalent to assuming that

v(x(ξ, t), t) = v(ξ, 0) in Equation (3.4).

Equidistribution-based mesh movement algorithms typically attempt to re-

duce the global approximation error without changing the number of degrees of

freedom by choosing a finite set of weighting functions vi(x, t), so that each one

has a direct association with a mesh node or element. The monitor function

M(ρ) is then selected to act as a local error indicator, and the mesh is adjusted

in an attempt to equidistribute the values of the weighted monitor integrals

µt(vi) =

∫
Ωt

viM(ρ) dx, (3.6)

and hence to equidistribute the local error across the mesh. Such an approach

could be followed within our framework [81, 15]. However, in this method we
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adopt the following approach which is more akin to Lagrangian mesh movement

algorithms, which attempt to move the mesh with the ‘flow’ velocity.

Choosing M(ρ) = ρ in equation (3.6) naturally leads to a weak approxima-

tion of the Lagrangian ‘flow’ velocity of the PDE when Lρ = ∇ · f for some

flux f in Equation (3.3). This has two benefits: (a) it allows us to predict

the movement of free boundaries; (b) it reduces interpolation error of the com-

puted mesh and solution between time-steps because the mesh (and hence the

solution) is transported with the velocity field inherent to the PDE.

In many PDEs (including the PME defined in Section 3.1), ρ represents a

density, i.e. its integral in space is a mass, so we will refer to M(ρ) = ρ as

the mass monitor. For clarity of presentation, we will assume use of this mass

monitor from now on. Hence, each weight function v(x, t) is assigned its own

‘mass’:

µt(v) =

∫
Ωt

vρ dx = c(v)θt where θt =

∫
Ωt

ρ dx. (3.7)

Equation (3.4) then provides c(v) = µ0(v)/θ0 from the initial conditions of

the PDE, and we assume that these distribution coefficients remain constant

in time. The evolution of ρ is governed by Equation (3.3), so Equation (3.7)

provides us with a way to prescribe the evolution of the coordinate system in

a way which retains the initial ‘mass’ distribution.

The original moving mesh finite element method [14, 15] chose the weight

functions to be the standard linear Lagrange finite element test functions on

meshes of simplices. This associates a fixed proportion of the total mass of

the system with each node of the mesh, so the values of µt(v) depend not only

on ρ, but also on the mesh node positions. In this situation, Equation (3.7)

provides a way to compute mesh node velocities using standard finite element

techniques, in a way which is consistent with local mass conservation when this

is a property of the underlying PDE. In this chapter we demonstrate that the

same principle can be applied on polygonal meshes within a virtual element
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framework.

The Velocity Field

Let t ∈ [0, T ] and consider all v ∈ H1(QT ) such that Dtv = 0, cf. Equa-

tion (3.5). Differentiating the first equality in (3.7) with respect to time and

applying the Reynolds Transport Theorem 2.2.1 leads to

µ̇t(v) =

∫
Ωt

v

{
∂ρ

∂t
+∇ · (ρu)

}
dx. (3.8)

Noting that (3.8) does not fully determine the velocity, we further require that

each weighting function retains a fixed proportion of θt as the mesh evolves.

Hence we impose the constraints

µ̇t(v) = c(v)θ̇t. (3.9)

Inserting (3.9) in (3.8), using (3.3), and integrating by parts results in

c(v)θ̇t +

∫
Ωt

ρ∇v · u dx =

∫
Ωt

vLρ dx +

∫
∂Ωt

vρu · n ds, (3.10)

with n the outward unit normal on ∂Ωt. Similarly, a direct application of the

Reynolds Transport Theorem 2.2.1 to the second equality in (3.7), yields

θ̇t =

∫
Ωt

Lρ dx +

∫
∂Ωt

ρu · n ds. (3.11)

In fact, θ̇t is typically known explicitly because ρu · n is known on the

whole of ∂Ωt, and the boundary conditions provided with the PDE will enable

evaluation of the integral of Lρ. Furthermore, for mass-conservative problems,

θ̇t = 0. Note also that assuming that c(v) remains constant preserves the initial

distribution of the mass (or a more general monitor integral) so a monitor which

is initially equidistributed between a set of weighting functions should remain

equidistributed as the coordinate system evolves with this velocity field.

Equations (3.10) and (3.11) are used to compute an instantaneous velocity u

which is consistent with conserving the proportion of mass associated with each

weighting function. This provides a form of local mass conservation when θ̇t =
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0. However, it still does not uniquely define u in multiple space dimensions.

To overcome this issue, the velocity field is written in terms of its Helmholtz

decomposition

u = q+∇ϕ, (3.12)

where ϕ is a scalar potential and q must be specified. This constraint is equiva-

lent to imposing the curl of the velocity field because ∇×q = ∇×u. Moreover,

for simplicity, we may further assume that q = 0. This is the natural choice for

the porous medium equation, which is derived under the assumption of a curl-

free flow velocity field. An example of the method applied with a rotational

velocity field is presented in [15]. The problem for determining the velocity

potential is therefore: find ϕ ∈ H1(Ωt) such that∫
Ωt

ρ∇v · ∇ϕ dx =

∫
Ωt

vLρ dx +

∫
∂Ωt

vρu · n ds − c(v)θ̇t ∀v ∈ H1(Ωt),

(3.13)

where ϕ = 0 is specified at one point in Ωt to ensure uniqueness.

The velocity field is finally obtained as the solution of equation (3.12) written

in weak form with q = 0 and ϕ given by (3.13). That is, we find u ∈ [H1(Ωt)]
2

such that ∫
Ωt

zu dx =

∫
Ωt

z∇ϕ dx ∀ z ∈ H1(Ωt), (3.14)

with u·n imposed on any part of the boundary where it is known. For instance,

in case of contact with an obstacle, we would impose u · n = 0 on the contact

boundary. Note that (3.14) is just the component-wise L2-projection.

In the case of the PME, under the assumption that θ̇t = 0, Equation (3.13)

can be simplified to: find ϕ ∈ H1(Ωt) such that

At(ϕ, v) = dt(v) ∀v ∈ H1(Ωt),

where

At(ϕ, v) =

∫
Ωt

ρ∇ϕ · ∇v dx, (3.15)

dt(v) = −
∫
Ωt

ρm∇ρ · ∇v dx. (3.16)
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Remark 4. We note the continuity of the velocity potential problem is guar-

anteed by the conditions on the PME solution of ρt ∈ L∞(Ωt) ∩H1(Ωt) for all

t ∈ [0, T ] [29]. Coercivity of At(·, ·) is provided under the condition that ρt ≥ 0

on Ωt and that the integral of ρt is uniformly bounded below for all t ∈ [0, t].

Proofs of well-posedness are given for the PME in [97].

Similarly, the velocity reconstruction Equation (3.14) can be written as: find

u ∈ [H1(Ωt)]
2
such that

Mt(u, v) = bt(v) ∀v ∈ H1(Ωt),

where

Mt(u, v) =

∫
Ωt

uv dx, (3.17)

bt(v) =

∫
Ωt

∇ϕ v dx. (3.18)

The velocity field in the interior of Ωt could be discarded at this stage, and

replaced by one derived using a different approach which is constrained by the

boundary velocity derived above. Any of the ALE velocity schemes presented

in Section 2.2 would be appropriate. Here we introduce the ALE velocity field

given through a Laplacian smoothing of the velocity field. From Equations

(2.13) and (2.14), the velocity field is defined by

∆w = 0 x ∈ Ωt,

w = u x ∈ ∂Ωt.

For completeness, we define the bilinear form for this Poisson’s Equation by

Kt(w, v) =

∫
Ωt

∇w · ∇v dx ∀v ∈ H1
0 (Ωt). (3.19)

The Solution

The ALE velocity field w derived using Equations (3.13), (3.14) and (3.19) can

now be used in the update of the solution. Integration of Equation (3.8) by



50
CHAPTER 3. A VIRTUAL ELEMENT DISCRETISATION OF A

MOVING MESH ALGORITHM

parts and substitution of Equation (3.3) results in

µ̇t(v) =

∫
Ωt

vLρ dx −
∫
Ωt

ρ∇v ·w dx +

∫
∂Ωt

vρu · n ds ∀ v ∈ H1(Ωt).

(3.20)

This is a standard conservative ALE update reviewed in Section 2.2. Inserting

the PME into Equation (3.20) leads to

µ̇t(v) = −
∫
Ωt

ρm∇ρ · ∇v dx −
∫
Ωt

ρ∇v ·w dx ∀ v ∈ H1(Ωt).

Along with the condition ẋ = w, it gives a system of ODEs governing the

evolution of the coordinate system and the distribution of the mass monitor

which can be approximated using standard solvers such as explicit Runge-Kutta

methods [15, 67]. With these at hand, the solution can be recovered by solving

the problem: find ρ ∈ H1(Ωt) such that

mt(ρ, v) :=

∫
Ωt

ρv dx = µt(v) ∀ v ∈ H1(Ωt). (3.21)

In the special case where θ̇ = 0 and c(v) is assumed constant in time, Equation

(3.20) is redundant because µ̇t(v) ≈ 0 by design. In fact, without the velocity

recovery from the potential through (3.13) and (3.14), we would have µ̇t(v) ≡ 0.

However, the practical steps of the recovery procedure may introduce small

perturbations. Alternatively, one may use the knowledge that µ̇t(v) ≡ 0 and

hence resort directly to the initial values µ0(v), avoiding the need to calculate

the ALE update (3.20) altogether: we refer to this as direct recovery. However,

direct recovery can only be used with the specific choice of the mass monitor

and with mass-conservative PDEs. In other situations the interior velocity field

will not correspond to µ̇t(v) = 0 and the ALE update is essential.

Remark 5. The alternative, non-conservative, ALE formulation discussed in

Section 2.2 can be derived which would give an equation for the material deriva-

tive Dtρ instead of µ̇ (see [81]). This derivation does not require that the weight

functions evolve with zero material derivative, but conservation of mass is lost

as a result.
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3.3 A Moving Virtual Element Space

Similar to the original method, we consider a semi-discretisation approach for

the moving mesh method VEM. In the following we let 0 = t0 < t1 < . . . tNt =

T denote a given sequence of discrete time levels at which the PME is discre-

tised.

We consider the set of moving mesh vertices defined at a time level tn as

{(xh,n)i}N
dofs

i=1 ⊂ R2. The time-dependent mesh Th,n is defined to be the polygo-

nal mesh given by transforming the initial mesh vertices according to the nodal

displacements given by xh,n. A polygonal element of Th,n is denoted by Eh,n.

The mesh connectivity is maintained for all time levels. Assumption 1 can be

imposed on the initial domain but there is no guarantee this regularity will be

maintained, especially if the mesh velocity approximates a Lagrangian velocity

field [50]. The conditions of Assumption 1 can be maintained by introducing

an ALE velocity field on the interior of Ωh,n such as the Laplacian smoothing

defined in Equation (3.19). Other choices of ALE velocity include the examples

given in Section 2.2. Alternatively, we could formulate this method using a

different monitor function [81].

The classical linear VEM space constructed on Th,n is using Equations (2.3)

and (2.4)

Vh,n =
{
vh ∈ H1(Ωh,n) : vh ∈ V1(Eh,n) ∀Eh,n ∈ Th,n

}
. (3.22)

When required, homogeneous Dirichlet boundary conditions can be embed-

ded in the virtual element space by fixing the relevant boundary nodes. Hence,

given a Γ ⊆ ∂Ωh,n, we denote the constrained space by

V Γ
h,n = {vh ∈ Vh,n : vh|Γ = 0}.

For ease of reading the second subscript will be omitted on the understanding

that the VEM space of Equation (3.22) is only constructed on discrete time

levels. At a fixed time, the moving mesh method considers approximations of

the solution ρh ∈ Vh and Lagrangian velocity uh ∈ [Vh]
2.
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Remark 6. As this moving mesh method is only considered for the lowest order

discretisation, we only need to consider the vertex coordinates in the moving

mesh at discrete time levels. In general the mapping from Ωh,0 to Ωh,n would

be represented by a discrete VEM function Ah,n(ξ) of degree k ∈ N. This

generalisation is explored in Part II for time-independent transformations with

Chapter 6 being a direct extension of this idea to higher-order methods.

3.4 A Virtual Element Method for the Velocity Field

We present the VEM for the solution of the velocity Equations (3.13) and

(3.14).

It is assumed that a discrete solution at time level tn has been computed

as ρh ∈ Vh,n on the current mesh Th,n. When n = 0, ρh is defined as the

virtual element interpolation of the initial condition of the PME Problem 3.1.1.

Otherwise, ρh is the current time discrete solution.

The VEM discretisation of the velocity potential Equation (3.13) reads:

given ρh ∈ Vh,n, find ϕh ∈ Vh,n such that

Ah,n(ϕh, vh) = dh,n(vh) ∀ vh ∈ Vh,n (3.23)

with the approximate bilinear form Ah,n(·, ·) and linear form dh,n(·) built by

summing element-wise contributions

Ah,n(ϕh, vh) =
∑

Eh∈Th,n

AEh
h,n(ϕh, vh) and dh,n(vh) =

∑
Eh∈Th,n

dEh
h,n(vh).

As anticipated above however, the preceding definition of the local VEM forms

necessitates the use of projections as follows:

AEh
h,n(ϕh, vh) =

∫
Eh

ρ̄h Π1
0ϕh · Π1

0vh dx

+ ρ̄hS
Eh(ϕh − Π∇

1 ϕh, vh − Π∇
1 vh), (3.24)

dEh
h,n(vh) = −

∫
Eh

(ρ̄h)
m Π1

0ρh · Π1
0vh dx, (3.25)
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where ρ̄h is the nodal average of ρh computed via

ρ̄h =
1

Ndofs

Ndofs∑
i=1

dofi(ρh).

Following standard VEMs [18], we employ the dofi-dofi stabilisation form

SEh(wh, vh) =
Ndofs∑
i=1

dofi(wh) · dofi(vh) ∀wh, vh ∈ V1(Eh). (3.26)

The integration constant is fixed by constraining a single vertex value of ϕh

to zero. A variety of suitable stabilisation choices are admissible [20, 39] but

we adopt the simplest choice in this chapter. In particular, in the case when

arbitrarily small edges appear in the mesh we refer to [30] for more appropriate

stabilisation terms.

The velocity reconstruction Equation (3.14) is a global L2 projection, which

has a well documented VEM discretisation [2, 44]. Its VEM discretisation

reads: given ϕh ∈ Vh,n, the solution of (3.23), find uh ∈ [Vh,n]
2 such that

uh · n = 0 on the portion of Ωh,n approximating ∂ΩF
n and

Mh,n(uh, vh) = bh,n(vh) ∀ vh ∈ Vh,n.

As before, the formsMh,n(·, ·) and bh,n(·, ·) are obtained summing the respective

elemental forms

MEh
h,n(uh, vh) =

∫
Eh

Π0
1uh Π0

1vh dx

+ |Eh|SEh(uh − Π0
1uh, vh − Π0

1vh), (3.27)

bEh
h,n(vh) =

∫
Eh

Π0
1vh Π1

0ϕh dx, (3.28)

with the stabilisation term given by Equation (3.26). We remark that the

computation of Equations (3.27) and (3.28) are done component-wise using

the standard VEM.

In a VEM framework the interior ALE velocity mesh velocity is computed

by solving a standard Poisson’s equation with Dirichlet boundary conditions

taken as the approximation of the Lagrangian velocity field [44]. We denote
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this ALE velocity by wh ∈ [Vh,n]
2 and define the discrete approximation of

Equation (3.19) by

KEh
h,n(wh, vh) =

∫
Eh

Π1
0wh · Π1

0vh dx+ SEh(wh − Π∇
1 wh, vh − Π∇

1 vh), (3.29)

where the Dirichlet boundary condition of wh = uh is imposed. We present

the remaining formulation using this velocity field.

The mesh is transferred between discrete time levels by displacing the nodes

of the mesh and maintaining the mesh connectivity between t = tn and t = tn+1.

For the set of mesh nodes {(xh,n)i}N
dofs

i=1 , the new positions are obtained by the

forward Euler method applied to ẋh,n = wh,n, yielding

xh,n+1 = xh,n + (tn+1 − tn)wh,n.

Thus, consistent with the VEM philosophy, only the values of wh at the nodes,

that is the degrees of freedom of wh, are required to compute the mesh move-

ment.

Remark 7. We note that the mesh velocities computed in this way do not guar-

antee a priori that Assumption 1 holds true. For instance, when performing

the numerical experiments for contact problems of Section 4.2, we observed a

degradation of mesh quality near the contact boundary. The Laplacian smooth-

ing improves the robustness of this method but not indefinitely. This is also

observed in FEM ALE schemes [89].

3.5 A Virtual Element Method for the Solution

Once the new mesh node positions have been computed, we consider the pro-

cess of updating the solution. This is performed in two steps corresponding,

respectively, to the conservative ALE update of the mass monitor Equation

(3.20) and the actual solution update Equation (3.21).

The original moving mesh method in [15] was based on the linear FEM

for which the validity at the discrete level of the material derivatives assump-
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tion (3.5) leading to the ALE update (3.8) has been proven in [68]. In the

VEM setting, instead, we exploit the fact that virtual element functions are

only accessed through their nodal values : in close alignment with the work of

Lipnikov & Morgan reviewed in Section 2.3, only the mesh skeleton velocity

is known and used. Hence, in view of the solution update through the time

step [tn, tn+1], we can assume that (3.5) is satisfied by the space-time discrete

basis functions, which are then interpolated at the new time level, again, just

by accessing the nodal values of the solution.

The initial condition ρh,0 is approximated by interpolating the degrees of

freedom of ρ0 into the VEM space Vh,0. Then, the initial mass monitor distri-

bution is computed via

µh,0(vh) =
∑

Eh∈Th,0

∫
Eh

Π0
1ρh,0 Π0

1vh,0 dx. (3.30)

The next task is the update of the mass monitor over time levels. Once again,

this is performed via the forward Euler method: the new monitor is thus given

by

µh,n+1(vh) = µh,n(vh) + (tn+1 − tn)µ̇h,n(vh).

This, in turn, requires the approximation of the ALE Equation (3.20) which is

performed still on the old time level (temporal subscript omitted) by

µ̇h(vh) = −
∑

Eh∈Th,n

∫
Eh

Π1
0ρh Π1

0vh ·
{
(ρ̄h)

m−1Π1
0ρh +Π0

1wh

}
dx, (3.31)

where again ρ̄h denotes the nodal average of ρh on Eh. Once the monitor is

updated, we set the time level to the new time and update the solution using

a VEM discretisation of Equation (3.21): find ρh,n+1 ∈ Vh,n+1 such that

mh,n+1(ρh, vh) = µh,n+1(vh) ∀ vh,n+1 ∈ Vh,n+1.

Similarly to the velocity reconstruction, the discrete formmh,n+1(·, ·) is com-

puted on the new time level by summing over element contributions

mh,n+1(ρh, vh) =
∑

Eh∈Th,n+1

mEh
h,n+1(ρh, vh),
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where

mEh
h,n+1(ρh, vh) =

∫
Eh

Π0
1ρh Π0

1vh dx + |Eh|SEh(ρh − Π1
0ρh, vh − Π1

0vh), (3.32)

with the stabilisation term given by Equation (3.26).

3.6 A Conservation Law

A beneficial property of the linear virtual element method is that the basis

functions form a partition of unity on Ωh,n at any discrete time level, i.e.

Ndofs∑
i=1

φi = 1, (3.33)

where the set {φi}N
dofs

i=1 refers to the set of canonical VEM basis functions

associated to the vertices of the mesh (see Section 2.1); that is φi((xh,n)j) = δij

for i = 1, ..., Ndofs where (xh,n)j is the j-th node in the mesh.

For a given ρh ∈ Vh,n the monitor integral θn reads

θh,n =

∫
Ωh,n

ρh dx,

from which the polynomial consistency and partition of unity property of the

VEM gives

θh,n =
∑

Eh∈Th,n

∫
Eh

Π0
1ρh dx

=
∑

Eh∈Th,n

∫
Eh

Π0
1ρh

Ndofs∑
i=1

φi dx

=
Ndofs∑
i=1

∑
Eh∈Th,n

∫
Eh

Π0
1ρh Π0

1φi dx.

Therefore the global conservation of the mass monitor is only dependent on

the polynomial component of the discrete solution and weighting functions.

Further, the exact value of the discrete monitor integral can also be recovered

via

θh,n =
Ndofs∑
i=1

µh,n(φi).
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Following a similar argument we obtain using Equation (3.31) that

θ̇h,n =
Ndofs∑
i=1

µ̇h,n(φi) = 0,

which implies that the VEM conserves the global mass of the solution at every

time level and agrees with the conservation of mass principle for this particular

PDE. In fact, virtual elements preserving relevant global conservation laws in

different contexts can be constructed, an example of which is given in [96] for

the heat equation.

3.7 Implementation Details

This section presents a complete overview of the moving mesh virtual element

method. The construction of the required algebraic equations and imposition of

boundary conditions are reviewed along with some practical remarks regarding

the implementation of this method. The initial weak distribution of the monitor

is stored in the vector µ0 and can be computed using equation (3.30) whilst the

mass matrix Mn is computed by assembling the contributions from equation

(3.32).

In order to compute the discrete potential ϕh ∈ Vh,n from equation (3.23), we

solve the linear system Anϕ = dn with An and dn computed using equations

(3.24) and (3.25), respectively. The solution of the resulting linear system

determines ϕh up to an additive constant which is inherited from the continuous

formulation of the method; here we impose dof1(ϕh) = 0.

Once ϕh is recovered, the Lagrangian velocity field is reconstructed solving

MR
nu = bn, with MR

n and bn given by equations (3.27) and (3.28), respectively.

The discrete ALE velocity is computed by solving Knw = 0 using Equation

(3.29).

The ALE update of vector µ̇n is then obtained using equation (3.31) and,

along with the mesh nodal velocities ẋh,n = wh,n, provides a system of ODEs
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which can be approximated using the forward Euler method. The main method

is outlined in algorithm 1.

Algorithm 1: Moving mesh VEM

input : The initial condition ρh,0 ∈ Vh,0 and mesh Th,0, the final time
T .

Set n = 0;
Compute µ0 according to equation (3.30);

while tn < T do
Construct and solve Anϕ = dn using equations (3.24) and (3.25) for
ϕh ∈ Vh,n;
Reconstruct the velocity via MR

nu = bn;

Compute the ALE velocity via Knw;

Compute the ALE update µ̇n from equation (3.31);

Select ∆t and set tn+1 = tn +∆t;

Update the mesh node by xh,n+1 = xh,n +∆tw;

Update the monitor distribution by µn+1 = µn +∆tµ̇n;

Reconstruct and solve Mn+1ρn+1 = µn+1 for ρh,n+1 ∈ Wh,n+1;

Update n = n+ 1;
end
output: The final solution ρh,T ∈ Vh,T , the final mesh Th,T

.

If required, we can strongly impose any Dirichlet boundary conditions on the

solution over time whilst simultaneously conserving the monitor integral, the

test space used in recovering the solution is augmented to preserve the partition

of unity property (3.33). In the solution updates, Dirichlet boundary conditions

can be enforced using the methodology presented in [67] which extends to a

near identical virtual element approach when considering polygonal elements.

This is not a necessary step to attain the accuracy results given in Chapter 4

and so the implementation details are not discussed in this thesis.



Chapter 4

Numerical Investigations

Numerical experiments are presented in this chapter for the moving mesh VEM.

The method is tested against known similarity solutions of the PME in line with

the preliminary tests conducted for the FEM discretisation of this method

[14, 15]. The numerical errors are assessed for both the solution DoFs and

coordinates of the moving boundary. To exploit the generality in mesh structure

granted by the VEM, we implement a contact algorithm to handle local changes

in mesh topology without requiring a global remeshing or significant changes

to the method’s structure.

In Section 4.1, the PME is used as a test PDE on a set of varied polygonal

mesh structures. The contact algorithm is presented and tested in Section 4.2.

The moving mesh VEM for a fourth-order diffusion problem is presented in

Section 4.3.

4.1 Convergence for the Porous Medium Equation

In our first set of tests we consider a family of radially symmetric similarity

solutions on a given initial circular domain of radius r0 for the PME (Problem

59
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3.1.1) derived in [86] and given by

ρ(r, t) =


1

λ(t)d

(
1−

(
r

r0λ(t)

)2) 1
m

|r| ≤ r0λ(t)

0 otherwise

, (4.1)

where d is the spatial dimension, r0 is the initial radius, and

λ(t) =

(
t

t0

) 1
2+dm

, t0 =
r20m

2(2 + dm)
.

Because of the nature of Equation (4.1), the solution is expected to have finite

slope normal to the moving boundary for m ≤ 1 whilst, for m > 1, the solution

presents an infinite slope normal to the boundary. Further properties of this

analytical solution are discussed in [87, 15].

Sample meshes

We have tested four different mesh types used to subdivide the initial domain;

representative examples of each are shown in Figure 4.1. The first mesh is

the Voronoi Tessellation produced by randomly sampling mesh seeds in the

domain [91, 10]. The second mesh is a Centroidal Voronoi Tessellation (CVT)

produced by the Lloyd algorithm which smooths a given Voronoi tessellation

such that the generator points are the barycentric coordinates for each poly-

gon [51]. The MATLAB package PolyMesher [94] was used to produce these

two mesh types. The third mesh is constructed by overlaying the domain with

a grid of uniform squares and cutting the mesh along the boundary. The last

mesh type is a mixture of uniform Cartesian and polar tessellations. Note that

the first three initial mesh types may present arbitrarily small edges and, more-

over, arbitrarily small elements may appear near the boundary in the grid mesh

type, as such potentially contradicting the mesh regularity Assumption 1. In

this respect, we note that the VEM is known to be quite robust, as we have

also witnessed. We refer to the mesh size in each case as the largest element

diameter in Th,0.



4.1. CONVERGENCE FOR THE POROUS MEDIUM EQUATION 61

Figure 4.1: Examples of each of the four mesh types used in numerical tests for a circular domain:
the Voronoi Tessellation (top left), the CVT (top right), the grid mesh (bottom left) and the mixed
mesh (bottom right).

Error computation

The numerical error is computed for both the solution and mesh by generalising

the discrete approximations from [15]. An l1 solution error is given by,

∥ρn − ρh,n∥sol =
1

Ndofs

Ndofs∑
i=1

|dofi(ρn)− dofi(ρh,n)| , (4.2)

while, for the mesh error, an l1 norm is considered for the radial distance r(t)

from the boundary of the mesh to the origin; thus

∥rn − rh,n∥mesh =
1

NB

NB∑
i=1

|Ri,n − r0λ(tn)| . (4.3)

Here, NB denotes the number of boundary nodes in the mesh and Ri,n denotes

the radial distance from the origin of the i-th boundary node at time tn. A

uniform ∆t that is small enough to ensure numerical stability is set for each

initial sample mesh. Note that the meshes used in these numerical tests are not

hierarchical. Furthermore, each Voronoi mesh is generated independently from
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randomly generated seeds. For each reduction of initial mesh size by a factor

of 2, the time-step ∆t is reduced by a factor of 4 to ensure numerical stability.

By reducing the time-step size by this factor we also expect that the temporal

error to be O(h2) when using the Forward Euler method for the refinement

path of the four mesh types.

Convergence Tests

In this first convergence test the solution of the similarity solution for m =

1, d = 2, and r0 = 0.5 is compared against the numerical solution for t = t0+T .

The method is tested on each of the four mesh types for a circular domain. The

time step sizes for the coarsest meshes are chosen according to

∆t =
1

250
h2
mean,

where hmean is the average element diameter of the initial mesh Th,0. In each

mesh case we observe that the initial time-step size is approximately 10−4.

From the coarse-mesh time-step sizes we reduce ∆t by a factor of 4 each time

the mesh is refined, which corresponds to the mesh size approximately halving

with each refinement. In choosing the time step sizes we made conservative

choices such that the numerical method was stable and presented the expected

orders of convergence. A more robust approach would be to use adaptive time-

stepping schemes but in this work we present convergence results for a uniform

reduction in the time-step.

A selection of solution snapshots are given in Figure 4.2 using the CVT-type

mesh.

As shown in Figure 4.3, second order accuracy is observed for the solution

error for all mesh cases when T = 0.01. In the case of the Voronoi and Grid

meshes, the empirical order of convergence (EOC) is less smooth compared to

the CVT and mixed mesh types. This is most likely due to the weaker shape

regularity of elements in these mesh types, but further studies are required.
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Figure 4.2: Snapshots of the moving mesh VEM solution for the PME with m = 1 at t = 0 (top),
t = 0.05 (middle), t = 0.2 (bottom). A CVT-type mesh with 800 elements was used to initialise the
mesh at t = 0.

The mesh error EOC appears to have a long pre-asymptotic regime: the

EOC grows monotonically towards the expected rate in all cases with the final

computed values ranging between 1.55 (Voronoi) and 1.83 (mixed). This is

consistent with finite element approximations of Darcy flow which observed

the order of convergence of the velocity field to be lower than that of the

pressure field [32, 82].

Conservation of mass in the numerical solution is observed up to machine

precision in all test cases.
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Figure 4.3: PME similarity solution with m = 1: the l1 solution and mesh errors (4.2) and (4.3),
respectively, at time T = 0.01 for each mesh type: Voronoi (top left), CVT (top right), Grid (bottom
left), Mixed (bottom right).

Remark 8. Setting µ̇ = 0 produces similar results to those reported in Fig-

ure 4.3. This is referred to as a “direct recovery” approach in the literature,

see [15]. For brevity, the corresponding results are not presented here.

4.2 A Contact Algorithm

In this section we discuss two occurrences of contact and present corresponding

basic node insertion algorithms that allow for localised and minimal changes

to the mesh structure. In all mesh refinements considered, the change in mesh

topology is only performed at the discrete time-levels. Hence, to ease notation,

the subscript used to denote time-steps is omitted. Modified discrete functions,

operators, and vectors are denoted using a superscript of R.
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Ω0

Ω0

Ωt∗

Ωt∗

Ωt

Figure 4.4: A demonstration of the mesh self-intersection problem. The initial condition has
disconnected support in Ω̃ (left). The disconnected ∂Ωt continues to move until some time t∗ where
the boundary collides with itself (centre). A new connected boundary is formed over time and the
topology of Ωt is now connected.

Contact scenarios

Here we present two contact scenarios that are numerically investigated in

this section. The first scenario concerns the collision of the moving boundary

with itself whereas the second situation involves collision with fixed geometric

obstacles.

Self-intersection handles the situation where two parts of the moving bound-

ary collide with each other. Typically, a remeshing is required in this instance.

By using a VEM, the remeshing can be kept local and simple for colliding el-

ements. A motivational case for a disconnected initial condition of the PME

is given in Figure 4.4. Moving mesh finite element simulations of this type of

problem are presented and discussed in [87].

Obstacle contact is encountered when the evolution of Ωt is obstructed by

external obstacles. An example of this is the presence of a solid phase in porous

media. Figure 4.5 presents an example of collision with impermeable obstacles.

By using a collision detection and node insertion algorithm, the moving mesh

is capable of simulating the contact and the interaction between the moving

mesh and a set of obstacles. As with the self-intersection problem, the VEM

allows for this with minimal changes to the mesh topology. Additionally, the

VEM is capable of performing local changes to polygonal elements such that

the mesh boundary can move around the object boundaries without requiring

additional mesh refinements.
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Figure 4.5: A demonstration of the obstacle contact problem. The initial condition is contained in
a region of obstacles (left). After some time t∗ the moving boundary collides with the first obstacle
(centre). A time-dependent interface now forms between the obstacles and ∂Ωt (right).

Collision detection

For detecting mesh contact we use an adaptation of the classical node-to-

segment collision detection algorithm [64, 101, 102]. We only consider boundary

mesh and obstacle edges and nodes, thus ensuring that the additional computa-

tional cost is O(N2
B), where NB is the number of boundary nodes. We consider

triplets of points (x1,t,x2,t,x3,t) where x1,t and x2,t form a time-dependent edge

et and x3,t is boundary node disconnected from et. This triplet is referred to

as a node-to-edge pair.

Given a set of linear velocities (ẋ1, ẋ2, ẋ3), by defining the vectors

x =


x1

x2

x3

 , y =


y1

y2

y3

 , ẋ =


ẋ1

ẋ2

ẋ3

 , ẏ =


ẏ1

ẏ2

ẏ3

 ,

the contact time ∆t∗ between the line of et and x3,t is given as the minimum

positive root of the quadratic equation

0 = a(∆t∗)2 + b(∆t∗) + c, (4.4)

where the coefficients are defined by

a =
3∑

i=1

(ẏ × ẋ)i b =
3∑

i=1

(ẏ × x+ y × ẋ)i c =
3∑

i=1

(y × x)i .

In practise, we choose the contact time that makes physical sense (e.g. we dis-

card negative roots as infeasible contact time) and only admit a single contact

time value for ∆t∗. In the case of no feasible contact times we set ∆t∗ = ∞

and when two feasible contact times are given by equation (4.4) we choose
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the minimum of the two. By solving equation (4.4) for a set of node-to-edge

pairings, a set of contact times can be computed. In the context of the mov-

ing mesh method, each node-to-edge pair on the boundary of the mesh and

(when given) obstacle mesh is considered. If any cases indicate contact, the

time step is scaled down to the minimum contact time and the corresponding

node-to-edge pair is marked for contact. The detection method is outlined in

Algorithm 2 for a single node-to-edge pairing.

Algorithm 2: Contact Detection

input : A node-to-edge pairing (x1,t,x2,t,x3,t), a set of nodal velocities
(ẋ1,t, ẋ2,t, ẋ3,t), the current time step ∆t

Solve equation (4.4) and set ∆t∗ to the minimum positive root;
for each value of ∆t∗ ∈ R do

Compute x3,t+∆t∗ and et+∆t∗ ;
if ∆t∗ ∈ [0,∆t] and x3,t+∆t∗ ∈ et+∆t∗ then

Mark the node-to-edge pair for contact;
else

Set the contact pair to no contact;
end

end
output: the node-to-edge contact pair, the contact time step ∆t∗

Node Insertion algorithm

Since the mesh allows for general polygonal element shapes, the insertion of a

new node into a mesh edge can simply be performed by adding a vertex to the

polygons sharing that edge. Then, a solution value associated with the new

vertex must be introduced which requires an interpolation technique between

the old and new global discrete spaces. In contrast to the approaches reviewed

in Section 2.3, we choose to preserve the polynomial component of the solution

Π1
0ρh between refinements through a redistribution of µn. The reason for this

choice is that, by preserving the polynomial component of ρh, the global mass

conservation of θh,n is maintained. This would not be the case if interpolation

of the degrees of freedom was employed instead.

On a given element Eh ∈ Th,n with an inserted node on the boundary, we
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impose that the polynomial component of the solution is preserved so that the

reconstruction ρRh ∈ V R
1 (Eh) satisfies

Π0
1 ρ

R
h = Π0

1 ρh, (4.5)

where V R
1 (Eh) denotes refined VEM space.

The arguments in Section 3.6 can be easily modified to show that this ap-

proach conserves both locally and globally the mass of the discrete solution.

When introducing a new node onto a mesh edge of a given element E under

the assumption of Equation (4.5), the local contribution to µR is given by,

µR,Eh

h,n (φR
i ) =

∫
Eh

Π0
1ρh Π0

1φ
R
i dx i = 1, ..., Ndofs + 1. (4.6)

The algorithm for node insertion is given in Algorithm 3.

Algorithm 3: Node Insertion

input : An element Eh, a position x ∈ ∂Eh to insert a node, the
monitor distribution µ, the solution ρh ∈ Vh,n, the mesh Th,n

Compute Π0
1ρh on Eh;

Compute the new mesh T R
h,n by inserting the node;

Compute the new monitor distribution µR using equation (4.6);
Reconstruct the new solution ρRh ∈ V R

h,n by solving MRρR = µR;

output: the new solution ρRh , the new monitor distribution µR, the
new mesh T R

h,n

Self-intersection algorithm

Due once more to the VEM flexibility in element geometries, the self-intersection

problem does not require any introduction of additional degrees of freedom. In-

stead, the local connectivity of the disconnected mesh is updated to include

the new node-to-edge pairing. Then, the node insertion algorithm is applied

to recompute the solution and monitor distribution. As the boundary node

velocities are not arbitrarily set, small edges are likely to appear during node

insertion. This has not presented any stability issues within the numerical

experiments presented later in this section and we expect that the method re-

mains robust in the presence of degenerate edges [30]. The subsequent mesh
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Figure 4.6: A demonstration of the self intersection algorithm. A sample of elements is shown (left)
where a collision is expected. Algorithm 4 is applied with contact nodes marked by a square (centre).
Following subsequent mesh updates certain degrees of freedom no longer lie on the boundary (right).
The highlighted degrees of freedom are now treated as internal degrees of freedom.

velocity problem is then solved based on the updated mesh and corresponding

virtual element space. A simple demonstration is provided in Figure 4.6; the

method at a given time step tn is presented in Algorithm 4.

Algorithm 4: Self-intersection

input : A mesh Th,n, a solution ρh,n, a velocity field w, a time step
size ∆t.

Apply Algorithm 2 for boundary node-to-edge pairs in Th,n;
Update ∆t;
Compute Th,n+1, µn+1, ρh,n+1;
if any contact pairs are marked then

find the element Eh ∈ Th,n+1 which contains the marked edge;
Apply Algorithm 3;

end
Update the boundary conditions of ρh,n+1;

Obstacle contact and pivot node algorithm

We denote a time-independent polygonal discretisation of the set of obstacles

by Oh and consider the mesh node-to-edge pairings of boundary nodes from

Th,n and edges of Oh and vice versa. In the case of obstacle-node to mesh-edge

contact, the node insertion Algorithm 3 is applied to introduce an additional

degree of freedom to the system; we refer to this new node, which is a fixed

point on the obstacle geometry, as a “pivot node”.

For contact between Th,n and Oh a no-penetration condition on the nodal

velocities is strongly imposed on the formulation of the potential problem
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(see Equations (3.15) and (3.16)) and the velocity reconstruction problem (see

Equations (3.17) and (3.18)); namely,

u · n = ∇ϕ · n = 0. (4.7)

Hence, movement tangential to the obstacle’s boundary is allowed. This is

except when a pivot node is introduced, in which case we constrain its velocity

to zero to preserve the geometry of the interface between the domain and the

obstacle. The obstacle contact algorithm is outlined in Algorithm 5.

Given that the pivot node mesh velocity is constrained to zero, it is possible

for the other boundary nodes laying on the obstacle (which have experienced

mesh-node to obstacle-edge contact) to pass through the pivot node. When

this occurs, the connectivity of the mesh is updated to transfer the pivot node

from one mesh edge to another as well as swapping the boundary node from

one obstacle face to another.

Detection for pivot node collision is performed using Algorithm 2 for con-

nected mesh boundary nodes moving from one obstacle edge to another.

A node is considered to be on ∂ΩF
h,n only if both boundary edges sharing that

node are in contact with the obstacle. We define a node to be “connected” if it

lies on an edge of an obstacle. Degrees of freedom associated to connected nodes

are constrained by equation (4.7) in the mesh velocity computations. If a node

is connected by mesh edges to other connected boundary nodes we consider this

to be an “interface” node and consequently change the boundary conditions

from Dirichlet to Neumann defined in problem 3.1.1 (i.e. we change the degree

of freedom from ∂ΩM
h,n to ∂ΩF

h,n). If a connected node is not also an interface

node, the homogeneous boundary condition and no-penetration condition are

maintained. The structure of the boundary conditions are updated once every

time step.

When a mesh node xi and a pivot node coincide (while the mesh node is

moving along the obstacle boundary) the test function associated to a pivot
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Algorithm 5: Obstacle contact

input : A mesh Th,n, a solution ρh,n, a velocity field u, a time step size
∆t, an obstacle mesh Oh.

Apply Algorithm 2 for boundary nodes in Th,n and boundary edges in
Oh;
Apply Algorithm 2 for boundary nodes in Oh and boundary edges in
Th,n;
Select the contact pair with the smallest ∆t∗ and set ∆t = ∆t∗;
Compute Th,n+1, µn+1, ρh,n+1;
if obstacle node to mesh edge is marked then

find the element E ∈ Th,n+1 which contains the marked edge;
Apply Algorithm 3 to introduce a pivot node xpivot;
set u = 0 at xpivot;

end
if Mesh node to obstacle edge is marked then

Set u · n = 0 at mesh node;
Update Neumann conditions for ρh,n+1;

end

node is chosen to satisfy φpivot ≡ φi. In other words, we duplicate the original

VEM basis function and add it to the new discrete space.

Node insertion convergence test

Our next numerical experiment considers the case of the one-dimensional PME

extended in the x direction to a two-dimensional problem. This experiment

has two interesting features. Firstly, the initial domain is geometrically exact

(Ω0 ≡ Ωh,0) unlike the circular meshes. Secondly, it allows us to test the

obstacle contact and node insertion algorithm numerically against a known

analytical solution derived from the one-dimensional case of equation (4.1).

This is obtained by considering once again Equation (4.1) with the values

m = 1, d = 1, r0 = 0.5, and r = y on the initial domain given by Ω0 =

[−0.5, 0.5]2 with initial condition

ρ(x, 0) = 1− 4y2.

The mesh is connected to two vertical planes at x = −0.5 and x = 0.5 with a
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Figure 4.7: A solution snapshot at time T = 0.1 for a CVT mesh with 800 elements (right).
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Figure 4.8: Node insertion convergence test on a 1D-type PME similarity solution with m = 1:
the l1 solution and mesh errors (4.2) and (4.3), respectively, at time T = 0.1.

no-penetration condition strongly imposed in the x direction; namely,

ẋ = 0 when |x| = 1/2.

Solution snapshots at time T = 0.1 are shown in Figure 4.7 for the CVT

mesh type. The mesh error is exclusively computed on the top and bottom

faces of the rectangular domain.

In this test we only focus our attention on the CVT mesh type. We test the

accuracy of the node insertion algorithm by including a discretisation of the

two planes into intervals in the y direction. In reference to the fixed domain

PME (3.1) we define Ω̃ := [−1, 1]2 and discretise the boundary ∂Ω̃ into N

uniformly spaced intervals to construct an N -gon. Vertices are then removed
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that intersect Ω0. This results in uniformly discretised intervals along both

contact planes.

For the discretisation of the contact planes N is set to an initial value of 32

and is doubled with each mesh refinement. Convergence results are reported

in Figure 4.8. Here we observe second order accuracy in both the solution and

mesh error. Also the mass is conserved, by design, up to machine precision

throughout each test.

Contact demonstrations

We finally present two demonstrations of the node insertion algorithms for

Problem 3.1.1 in challenging scenarios without known analytical solution.

To ensure the quality of the mesh is preserved we have to use the Lapla-

cian smoothing ALE velocity defined using Equation (3.19). We remark that

the quality of the mesh will still deteriorate over time. The purpose of these

examples is to demonstrate the application of the node insertion algorithms.

Optimising the choice of ALE velocity is left for future investigation.

In the first demonstration, we consider an initial condition of the PME that

has a disconnected support such that self-intersection is expected to occur. The

initial condition is given by

ρ(x, 0) =


1− 4r21 r1 = |x− (−0.8, 0)|, r1 ≤ 1/2,

1− 4r22 r2 = |x− (0.8, 0)|, r2 ≤ 1/2,

0 otherwise.

An illustrative example of such initial condition is given in Figure 4.9 (top-

left plot). The standard method is applied to simulate the PME for m = 1

with the contact detection Algorithm 2 applied at every time level to check

for collision between elements. When contact occurs, Algorithm 4 is used

to update the monitor distribution whilst the Dirichlet boundary degrees of

freedom are flagged as interior degrees of freedom as the mesh connectivity
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Figure 4.9: Self-intersection demonstration: snapshots of the moving mesh VEM solution at t = 0
(top left), t = 0.20049 (top right), t = 0.75096 (bottom left), and t = 1 (bottom right). A CVT type
mesh with 800 elements was used to initialise the mesh at t = 0.

evolves. Snapshots of the solution evolving over time are reported in Figure 4.9.

The behaviour of the PME solution over time is in agreement with fixed mesh

finite element approximations of this problem and similar benchmark tests

performed for the PME in [87].

To demonstrate the obstacle contact algorithm we consider again the initial

condition given by Equation (4.1). A set of obstacles are added to the com-

putational domain in the shape of uniform polygonal approximations of circles

with random radii and centres. Each circle is approximated as a uniform poly-

gon of comparable accuracy to the initial mesh. We tested the moving mesh

VEM starting with a CVT type mesh made of 800 elements discretising the

support of the initial solution. A few snapshots of the numerical solution are

shown in Figure 4.10. Pivot nodes are inserted and removed along the contact.

Mesh degeneration occurs after T = 0.2 and thus the simulation had to be

terminated. In this case, and similar to finite element methods, a remeshing
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Figure 4.10: Obstacle contact demonstration: snapshots of the moving mesh VEM solution at
T = 0 (top left), T = 0.050205 (top right), T = 0.10011 (bottom left) and T = 0.2 (bottom right).
A CVT type mesh with 800 elements was used to initialise the mesh at t = 0.

approach would rectify this issue.

4.3 A Fourth-order Diffusion Problem

To demonstrate the extensibility of the moving mesh VEM we consider the

following fourth-order nonlinear diffusion problem used as a benchmark for the

original moving mesh method [14, 15], for which the whole of the boundary ∂Ωt

is free to move, and the differential operator is given by Lρ = −∇ · (ρm∇∆ρ).

In this chapter we choose m = 1, for which there is a simple similarity solution,

defined below. The resulting time-dependent equation ∂ρ/∂t = Lρ is comple-

mented, at the free boundary, with two conditions on ρ, namely ρ = ∇ρ ·n = 0

plus the kinematic condition ρu ·n = ρ∇∆ρ ·n, which is used to determine the

boundary velocity u.

In view of its numerical solution, we re-write the fourth-order problem as a

coupled system of second-order PDEs by introducing a pressure term p = −∆ρ.
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The problem then reads as: find ρ = ρ(x, t) such that ρ(x, 0) = ρ0(x) for x ∈ Ω0

and, for all t ∈ (0, T ],

∂ρ

∂t
= ∇ · (ρ∇p) x ∈ Ωt,

p = −∆ρ x ∈ Ωt, (4.8)

ρ = ∇ρ · n = 0 x ∈ ∂Ωt,

ρu · n = −ρ∇p · n x ∈ ∂Ωt.

This problem is structurally very similar to the porous medium equation prob-

lem and the moving mesh algorithm remains mostly unchanged. The main

addition is an intermediate step which provides the pressure by discretising the

weak form of (4.8), namely: given ρ ∈ H1(Ωt), find p ∈ H1(Ωt) such that

∫
Ωt

pv dx =

∫
Ωt

∇ρ · ∇v dx ∀v ∈ H1(Ωt).

This is discretised using once again the VEM applied to the problem within

each time-step tn: given ρh ∈ Vh,n find ph ∈ Vh,n such that

mh,n(ph, vh) =
∑

Eh∈T n
h

∫
Eh

Π1
0ρh · Π1

0vh dx ∀vh ∈ Vh,n,

where mh,n(·, ·) is defined by Equation (3.32).

Equations (3.16) and (3.20) are also modified for this problem to give, re-

spectively,

dn(v) = −
∫
Ωt

ρ∇p · ∇v dx,

µ̇n(v) =

∫
Ωt

−ρ∇v · {∇p+w} dx ∀ v ∈ H1(Ωt).

These equations are approximated using the VEM discretisations (3.25) and

(3.31), as described in Sections 3.4 and 3.5 for the approximation of the cor-

responding integrals for the porous medium equation. These are computed at
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time tn as follows:

dh,n(vh) = −
∑

Eh∈Th,n

∫
Eh

ρ̄h Π1
0ph · Π1

0vh dx,

µ̇h,n(vh) = −
∑

Eh∈Th,n

∫
Eh

Π0
1ρhΠ

1
0vh ·

{
Π1

0ph +Π0
1wh

}
dx,

∀vh ∈ Vh,n.

In view of assessing numerically the resulting moving mesh VEM, we recall

that this fourth-order nonlinear diffusion problem has a radially symmetric

similarity solution given by

ρ(r, t) =


AtβU0(1− η2)2 |r| ≤ A

1
4 tδ

0 otherwise

,

where

η =
r

A
1
4 tδ

, δ =
1

4 + d
, β = 4δ − 1, A = U−4δ

0 .

Setting d = 2, we fix U0 = 1/192 so that ρ(0, t0) = 1 and t0 = 1/192 is specified

so that the initial radius is equal to 1.

The VEM is tested on the same sequence of CVT-type meshes used in

Section 4.1, with the same coarse-mesh time-step size of 10−4 and a reduction

by a factor of 4 each time the mesh is refined. Figure 4.11 shows that second-

order accuracy is again attained for both the solution and mesh errors. Similar

to the PME, the mass is conserved exactly at each time step.
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Figure 4.11: Convergence test for the fourth-order diffusion problem: the l1 solution and mesh
errors (4.2) and (4.3), respectively, at time T = 0.01 using the CVT mesh type.



Discussion

In Part I a velocity-based moving mesh FEM is extended to polygonal discreti-

sations using the lowest order VEM. The classical VEM reviewed in Section

2.1 was directly employed onto physically reconstructed polygonal meshes at

each time step using the mesh connectivity and coordinates of the moving mesh

vertices. Numerical tests confirmed that this moving mesh VEM obtains the

same orders of accuracy as the original FEM discretisation and satisfies the

same conservation properties for specific non-linear diffusion problems with

associated conservation laws. Demonstration of node insertion algorithms sug-

gest that this moving mesh method offers practical extensions to more complex

problems.

Extensions to this method would include the construction of a linear three-

dimensional VEM to test the robustness of this method. Moving polyhedral

elements also present the issue of degenerate faces that would be worthy of

investigation. Further investigation into optimising the choice of ALE velocity

is also required to improve the robustness of this method under complex domain

transformations. It is important to note that these are also open problems

within the finite element implementation of this algorithm [15]. Extensions

of the algorithm to non-conservative ALE updates with more general monitor

functions [81] has also been implemented in a VEM framework but these results

are omitted from this thesis.

A major set back of this new method is the computational cost associated

with computing the discrete bilinear forms. Unlike the FEM case, each local

79
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VEM space and the corresponding projection operators must be recomputed

at each discrete time level. Considering this cost with the constraint that the

time integration scheme must be explicit, and consequently subject to a stabil-

ity condition on the time step sizes, results in a numerical method that might

not be feasible compared to other numerical schemes. A beneficial property of

the VEM is that it can be coupled with FEM discretisations between neigh-

bouring elements. Taking the contact examples of Section 4.2 as motivation,

the moving mesh could be initially constructed using only triangular elements

and the solution could be computed using a FEM. The VEM would only then

be employed when changes in mesh connectivity were required. This would

improve the overall efficiency of the proposed moving mesh VEM.

To overcome the restriction to a linear VEM, it is expected that a higher

degree of accuracy is required in simulating the ALE map At over time. Nu-

merical experiments which coupled higher-order (k > 1) VEMs with this mesh

movement strategy resulted in poor quality numerical solutions. The results

of [79, 80] suggest that higher orders of convergence should be possible when

moving mesh are permitted to contain curvilinear polygons. To address this

issue, a greater understanding of VEMs on transformed domains is required,

such as VEMs on domains with curved edges [23]. This is the motivation for

the work of Part II.



Part II

Isoparametric Virtual Element

Methods

81



Introduction

In Part II the groundwork for the analysis of a moving VEM is presented.

Following the discussion of Part I, an understanding of how the VEM behaves

under domain transformations is required. A natural consequence of non-linear

domain transformations is the presence of curved elements in the physical co-

ordinate system. This motivates the study of the VEM on curved domain

transformations.

Within the literature, curved edge VEMs have already been proposed [23,

26, 21, 3, 8, 46]. The limitation of these works for moving mesh methods is that

they each depend on explicit a priori knowledge of the domain transformation

and its regularity. In practise these methods usually only consider transforma-

tions local to the domain boundary and of sufficient “closeness” to the identity

mapping.

Moving mesh methods require a method that only depends on the degrees of

freedom of a given transformation. This is achieved by designing, analysing and

implementing isoparametric VEMs. Isoparametric finite elements are charac-

terised by the use of the same finite element space for the solution as that used

to approximate the domain geometry [41]. This is also an ideal choice of ap-

proach for moving meshes as the domain transformation and/or velocity field is

given as a virtual element approximation, such as the method proposed in Part

I. In principle isoparametric finite elements extends to using VEM spaces for

the domain approximation and solution. A C0 domain transformation can be

defined using a standard VEM space however, the “virtual” nature of this trans-

82



4.3. A FOURTH-ORDER DIFFUSION PROBLEM 83

formation means integration on these isoparametric elements is not necessarily

computable. Instead two approaches are proposed to construct a computable

VEM, these are referred to as Methods I & II in this thesis. These methods

are designed in such a way that they reduce to well established isoparametric

finite element methods on triangular/tetrahedral meshes [42, 75].

In Chapter 5 we consider the problem transformed to a computational ref-

erence domain by a discrete VEM mapping. The VEM is then further used to

approximate the terms resulting from this transformation such as the Jacobian

operator, its determinant and inverse operator. Using these approximations

we propose a computable VEM on the computational reference domain. This

framework closely aligns with and is motivated by the approaches taken by

Lipnikov & Morgan [78, 80] discussed in the literature review of Section 2.3.

In Chapter 6 we consider the problem on the domain generated by the VEM

approximation of the transformation. On this “virtual domain”, we define on

local elements a variation of the curved VEM space presented in [23]. To ensure

the method is computatable we introduce bespoke polynomial approximation

operators such that the consistency and stability terms can be computed to a

sufficient degree of accuracy.

Numerical results are presented in Chapter 7 for a selection of problems in

two-dimensions. These results verify the expected orders of accuracy in the H1

norm and suggest optimal orders of accuracy can be obtained in the L2 norm

as well.

The results of Part II are presented for two-dimensional problems. Both

methods extent to a conforming three-dimensional method and this will be

reviewed at the end of Part II.

This work was conducted in collaboration with Andreas Dedner, University

of Warwick in addition to the project supervisors. A summary of the research

for the two-dimensional case is being drafted for publication at the time of

writing this thesis.
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The PDE is considered on a bounded Lipschitz domain Ω ⊂ R2 with a cor-

responding polygonal/polyhedral computational reference domain Ω̂ ⊂ R2. To

assist the reader in Part II, the following notation is adopted in the proofs of

Chapters 5 and 6: constants will be denoted by Ci,α,β,γ to represent hidden con-

stants dependent on α, β and γ with the index i used to differentiate between

constants with the same dependencies.



Chapter 5

Method I

The first isoparametric approach is to consider a discretization of the trans-

formed problem onto a mesh of the reference domain. The VEM is then em-

ployed to approximate the components of the transformed weak formulation

such as the Jacobian operator through the standard polynomial projection op-

erators.

In Section 5.1 The elliptic PDE and domain transformation under consid-

eration for both methods is presented. The virtual element approximation

of the domain transformation is outlined in Section 5.2. A discussion on the

extension of the PDE from the physical domain to the VEM approximation

is provided in Section 5.3. The approximation of the Jacobian operator is

given in Section 5.4 along with stability and accuracy estimates. The VEM for

Method I is formulated in Section 5.5 and well-posedness is verified in Section

5.6. Technical lemmas are presented in Section 5.7 that aid in the derivation

of the Strang-type H1 error estimate of Section 5.8.
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5.1 Problem Statement

For both Method I and II, a general elliptic PDE is considered. The PDE is

defined as follows: find ρ such that

−∇ · (a∇ρ) + b · ∇ρ+ cρ = f x ∈ Ω, (5.1)

ρ = 0 x ∈ ∂Ω.

Standard assumptions are made regarding the PDE coefficients; a ∈ L∞(Ω),

b ∈ [L∞(Ω)]2 , c ∈ L∞(Ω) where there exists an a0 > 0 such that

a(x) ≥ a0 ∀x ∈ Ω,

Furthermore, we suppose that there exists a constant µ0 ≥ 0 such that

µ := c− 1

2
∇ · b ≥ µ0,

for almost every x ∈ Ω, and assume that ∇ · b ∈ L∞(Ω). The resulting weak

formulation with convective term in skew-symmetric form: find ρ ∈ H1
0 (Ω)

such that

A(ρ, v) := A(ρ, v) +B(ρ, v) + C(ρ, v) = l(v) ∀v ∈ H1
0 (Ω),

where

A(ρ, v) =

∫
Ω

a∇ρ · ∇v dx, (5.2)

B(ρ, v) =
1

2

∫
Ω

b · (v∇ρ− ρ∇v) dx,

C(ρ, v) =

∫
Ω

µ ρv dx,

l(v) =

∫
Ω

fv dx. (5.3)

It is well known that this weak formulation has a unique solution in H1
0 (Ω) by

the Lax-Milgram Theorem [74].

The domain transformation is introduced as an invertible, bijective mapping

between the reference and physical domains A : Ω̂ → Ω. Additional conditions
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are imposed on the mapping inline with assumption made within ALE analysis

[27, 28, 60, 55]. We impose that A is bi-Lipschitz i.e. there exists λ1, λ2 > 0

such that

∥A (ξ1)− A (ξ2)∥ ≤ λ1 ∥ξ1 − ξ2∥ ∀ξ1, ξ2 ∈ Ω̂,∥∥A −1(x1)− A −1(x2)
∥∥ ≤ λ2 ∥x1 − x2∥ ∀x1,x2 ∈ Ω.

The Jacobian of A and its determinant are denoted, consistent with Equation

(2.10), by

JA := ∇̂A , j = det (JA ) .

Following [27, 28], as a consequence of the assumptions on A , we have that

the Jacobian matrix is invertible. We also have that the determinant of the

Jacobian is uniformly bounded

j ∈ L∞(Ω̂),

and strictly positive such that there exits a j0 ∈ (0, 1) such that

j0 < j.

We note the equivalence of H1 norms between the physical and reference con-

figurations is a well known classical result [41].

To simplify the presentation of the analysis, we restrict the regularity of the

domain transformation to

A ∈
[
W∞

m+1(Ω̂)
]2

,

where m ∈ N satisfies m ≥ max{l, k} with l and k being the domain and

solution discretisation degrees respectively.

Remark 9. The domain Ω̂ or, rather, its polygonal mesh defined below, will

serve as a collection of reference polygonal elements for the isoparametric VEM

scaled with the physical frame. For instance Ω̂ could just be defined as a polygon

whose boundary interpolates ∂Ω. As such, the VEMs introduced provides a

direct generalisation of the classical isoparametric finite elements on general

meshes.
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5.2 The Virtual Element Mapping

The classical VEM space of degree l ∈ N defined by Equation (2.4) is taken

as the discretization space on Ω̂. In both Method I and II we denote this

space by
[
V̂h

]2
. The mesh of Ω̂ is denoted by T̂h and we assume that this

mesh satisfies the standard regularity conditions of Assumption 1. For the

purposes of analysing the accuracy of Methods I and II we impose the following

assumption on the approximation of the mapping Ah ∈
[
V̂h

]2
.

Assumption 4.

Let T̂h be a polygonal mesh of Ω̂ satisfying the shape regularity Assumption 1

and let m, l ∈ N. A mapping A ∈
[
W∞

m+1(Ω̂)
]2

has a VEM approximation

Ah ∈
[
V̂h

]2
of degree l such that for all s ∈ {1, ..., l}

∥A − Ah∥0,Ω̂ + h |A − Ah|1,Ω̂ ≲ hs+1 |A |s+1,Ω̂ ,

where the hidden constant depends only on the mesh regularity parameter (2.1)

ϱ and l.

If we consider the case of Ah being the interpolant of the degrees of freedom

of A , Assumption 4 holds by Theorem 2.1.2. For the remainder of Part II we

consider Ah to be the VEM interpolant of A . This transformation approx-

imation follows the ideas of [79, 80] in that we use the VEM approximation

Ah of A to define a transformation to a “virtual mesh”, which is piecewise

polynomial on the edges of T̂h. The “virtual polygon” Eh is then defined by

the image of the approximated mapping

Eh := Ah(Ê),

a simple example of this for l = 1, 2, 3 is given in Figure 5.1. We then define

the virtual mesh Th as the collection of virtual polygons given by Ah. We also

define the virtual domain by

Ωh :=
⋃

Ê∈T̂h

Eh.
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E Eh

Eh Eh

Figure 5.1: An example of the virtual polygon Eh compared to a true mapped element E (top
left). The curved boundary is interpolated from A using degrees of l = 1 (top right), l = 2 (bottom
left) and l = 3 (bottom right).

5.3 Extending the PDE to the Virtual Domain

Important to the implementation and analysis of the isoparametric VEM is

the availability of extension operators, which is guaranteed by the well-known

Stein’s Extension Theorem [92, 1].

Theorem 5.3.1 (The Stein Extension Theorem).

Let ω ⊂ R2 be a bounded Lipschitz domain, then for all p ∈ [1,∞] and integers

s ≥ 0 there exists an extension operator E : W p
s (ω) → W p

s (R2) such that for all

v ∈ W p
s (ω) the following holds:

Ev = v a.e. in ω

∥Ev∥s,p,R2 ≲ ∥v∥s,p,ω ,

where the hidden constant depends only on s and p.

In the following, extensions will be required for the PDE data and exact

solutions; for short we shall denote these by ṽ := Ev and so on.
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The weak formulation of the PDE (5.1) has an intuitive extension to the

virtual domain Ωh given by the perturbed bilinear form B(·, ·) : H1(Ωh) ×

H1(Ωh) → R

B(ρ, v) =
∫
Ωh

ã∇ρ · ∇v +
1

2
b̃ · (v∇ρ− ρ∇v) + µ̃ρv dx ∀ρ, v ∈ H1(Ωh),

along with an approximation of degree k of

Bh(ρ, v) =
∑

Eh∈Th

∫
Eh

ãΠ1
k−1ρ · Π1

k−1v +
1

2
b̃ · (Π0

kvΠ
1
k−1ρ− Π0

kρΠ
1
k−1v) + µ̃Π0

kρ Π0
kv dx

+ SEh(ρ− Π∗
kρ, v − Π∗

kv), (5.4)

with the stabilisation term SEh(·, ·) being defined by the dofi-dofi stability

Equation (2.8) scaled appropriately. Following the works of [39] or [20], we can

prove that this VEM is well-posed and accurate. The setback in the case of an

isoparametric VEM is that Equation (5.4) is not generally computable.

To remedy this, the two methods presented in Part II approximate the

physical domain by two separate approaches. Method I, presented in the re-

mainder of this chapter, approximates the Jacobian operator and computes an

approximation to the problem on the computational reference domain using

the classical VEM outlined in Section 2.1. For Method II of Chapter 6, the

DoFs of the domain transformation are used to compute projected elements

on which the curved VEM of [23] and bespoke polynomial projection operators

are employed to approximate Equation (5.4).

In Part II, the extension of the PDE data, ã, b̃, c̃ and f̃ is assumed to be

prescribed and computable. In Method I we presume that the PDE data can

be represented and integrated on the computational reference domain with suf-

ficient accuracy. In Method II, we presume that the extension of the PDE data

can be integrated over each projected element with sufficient accuracy. In the

numerical experiments of Chapter 7, the PDE data is well defined over R2 and

the DUNE implementation computes the necessary integration using symbolic

UFL expressions of each term [48]. Further studies are required to quantify the
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effects of approximating the PDE data extensions for both methods.

5.4 Approximating the Jacobian

Method I utilizes the VEM as a mapping scheme in order to approximate the

continuous problem posed on the reference domain. The bilinear forms defined

in equations (5.2)-(5.3) can be written in the reference configuration by

A(ρ, v) =

∫
Ω̂

â J−T
A ∇̂ρ̂ · J−T

A ∇̂v̂ det (JA ) dξ,

B(ρ, v) =
1

2

∫
Ω̂

b̂ · (v̂J−T
A ∇̂ρ̂− ρ̂J−T

A ∇̂v̂) det (JA ) dξ,

C(ρ, v) =

∫
Ω̂

µ̂ ρ̂v̂ det (JA ) dξ,

l(v) =

∫
Ω̂

f̂ v̂ det (JA ) dξ.

The novelty of Method I lies in the approximation of the Jacobian matrix, the

inverse and the determinant. Using the gradient projection Π∇ to approximate

these was first introduced in [79], in this work a more standard projection

operator is considered. The Jacobian will be approximated for an l ∈ N and a

reference element Ê via

JA ,h := Π1
l−1Ah. (5.5)

The determinant jh := det (JA ,h) is computable and is also a polynomial of

degree 2(l − 1). The matrix of cofactors of JA ,h is denoted by CA ,h.

In quantifying the Jacobian error we make use of the operator norm on the

Jacobian and it’s inverse transpose. On an open and bounded set ω ⊆ Rd, for

a d × d matrix operator A : [L2(ω)]
d → [L2(ω)]

d
the operator norm is defined

by

∥A∥op := sup
∥v∥L2(ω)=1

∥Av∥0,ω .

To utilize the projection estimates in bounding the operator norms we use the

following bound

∥A∥op ≤ d ∥A∥0,∞,ω . (5.6)
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Further we consider the inverse of a matrix A in the form

A−1 =
1

det (A)
CT

A, (5.7)

where CA is the matrix of cofactors of A.

The norm of the determinant and inverse of A can be bounded using the

following lemma.

Lemma 5.4.1.

Let A be 2 × 2 matrix operator A : [L2(ω)]
2 → [L2(ω)]

2
that satisfies Aij ∈

L∞(ω) for i, j = 1, 2. If there exists a a0 such that det (A) > a0 > 0 for all

x ∈ ω then it holds that

∥det (A)∥0,∞,ω ≤ 2 ∥A∥20,∞,ω∥∥A−1
∥∥
0,∞,ω

≤ 1

a0

∥∥C⊤
A

∥∥
0,∞,ω

≤ 1

a0
∥A∥0,∞,ω .

Proof. The first inequality is derived from the formula for the determinant and

bounding each term by the L∞ norm of A. Similarly, the second bound is

derived from Equation (5.7) using the lower bound on det (A) and bounding

the entries of the matrix of cofactors of A.

Error & Stability Estimates

For ease of reading, the error terms used in this analysis are defined via

EJ := JA ,h − JA ,

Edet := jh − j,

Ecof := CA ,h −CA ,

Einv := J−1
A ,h − J−1

A .

For this method, estimates on an element Ê ∈ T̂h for the approximations

of the Jacobian, the determinant and the inverse are given in the following

lemmas.
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Lemma 5.4.2 (Jacobian Error & Stability Estimate).

Let the degree of the VEM approximation A be l ∈ N and A ∈ W∞
l+1(Ê).

For the approximate Jacobian defined in Equation (5.5) and a fixed integer

s ∈ {0, 1, ..., l} it holds that

∥EJ∥0,∞,Ê ≲ hs
Ê
|A |s+1,∞,Ê ,

∥JA ,h∥0,∞,Ê ≲ |A |1,∞,Ê ,

where the hidden constants depends only on ϱ and l.

Proof. The stability is a direct consequence of the definition of JA ,h. By defi-

nition of the approximate Jacobian (5.5) and discrete mapping Ah and using

the triangle inequality it holds that

∥EJ∥0,∞,Ê =
∥∥∥Π1

l−1Ah − ∇̂A
∥∥∥
0,∞,Ê

≤
∥∥∥Π1

l−1Ah − ∇̂Π0
l A
∥∥∥
0,∞,Ê

+
∥∥∥∇̂Π0

l A − ∇̂A
∥∥∥
0,∞,Ê

. (5.8)

we apply the inverse estimate found in [49] (Lemma 1.25) of

∥p∥0,∞,Ê ≤ C1,ϱ,lh
−1

Ê
∥p∥0,Ê ∀p ∈ Pl−1(Ê).

Applying this inverse estimate gives∥∥∥Π1
l−1Ah − ∇̂Π0

l A
∥∥∥
0,∞,Ê

≤ C1,ϱ,lh
−1

Ê

∥∥∥Π1
l−1Ah − ∇̂Π0

l A
∥∥∥
0,Ê

.

Further application of the triangle inequality leads to∥∥∥Π1
l−1Ah − ∇̂Π0

l A
∥∥∥
0,∞,Ê

≤ Cϱ,lh
−1

Ê

(∥∥Π1
l−1Ah − Π1

l−1A
∥∥
0,Ê

+
∥∥∥Π1

l−1A − ∇̂A
∥∥∥
0,Ê

+
∥∥∥∇̂A − ∇̂Π0

l A
∥∥∥
0,Ê

)
.

Application of the stability of Π1 and Assumption 4 and Theorem 2.1.1 results

in ∥∥∥Π1
l−1Ah − ∇̂Π0

l A
∥∥∥
0,∞,Ê

≤ C1,ϱ,lh
−1

Ê

{
C2,ϱ,lh

s
Ê
|A |s+1,Ê

}
≤ C3,ϱ,lh

s−1

Ê
|A |s+1,Ê .
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Inserting this bound into Equation (5.8) and directly applying Theorem 2.1.1

provides

∥EJ∥0,∞,Ê ≤ C4,ϱ,lh
s
Ê
|A |s+1,∞,Ê + C3,ϱ,lh

s−1

Ê
|A |s+1,Ê .

Noting that

|A |s+1,Ê ≤ hÊ |A |s+1,∞,Ê ,

in the second bounding term leads to

∥EJ∥0,∞,Ê ≤ C5,ϱ,lh
s
Ê
|A |s+1,∞,Ê .

Stability is given taking s = 0 and applying the triangle inequality

∥JA ,h∥0,∞,Ê ≤ (C5,ϱ,l + 1) |A |1,∞,Ê .

Further bounding the constant term completes the proof.

Lemma 5.4.3 (Matrix of Cofactors Error & Stability Estimate).

Let the degree of the VEM approximation A be l ∈ N and CA ,h be the matrix

of cofactors of JA ,h. If A ∈ W∞
l+1(Ê) then for a fixed integer s ∈ {0, 1, ..., l} it

holds that

∥CA ,h∥0,∞,Ê ≲ |A |1,∞,Ê ,

∥Ecof∥0,∞,Ê ≲ hs
Ê
|A |s+1,∞,Ê ,

where the hidden constants depend only on ϱ and l.

Proof. Stability is a direct consequence of Lemmas 5.4.1 and 5.4.2. The error

estimate is trivial, given the definition of minors of JA ,h in the two-dimensional

case.

Lemma 5.4.4 (Determinant Error & Stability).

Let the degree of the VEM approximation A be l ∈ N and A ∈ W∞
l+1(Ê). For

a fixed integer s ∈ {0, 1, ..., l} it holds that

∥jh∥0,∞,Ê ≲ |A |21,∞,Ê ,

∥Edet∥0,∞,Ê ≲ hs
Ê
∥A ∥2s+1,∞,Ê ,
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where the hidden constants depend only on ϱ and l.

Proof. Stability is given by noting that jh is a linear combination of products

of terms from JA ,h. To demonstrate the proof, we denote the terms of the

discrete Jacobian matrix terms by Jh,i,j = (JA ,h)i,j for i, j = 1, 2. Applying the

triangle inequality and bounding L∞ norms leads to

∥jh∥0,∞,Ê = ∥Jh,0,0Jh,1,1 − Jh,1,0Jh,0,1∥0,∞,Ê

≤ ∥Jh,0,0∥0,∞,Ê ∥Jh,1,1∥0,∞,Ê + ∥Jh,1,0∥0,∞,Ê ∥Jh,0,1∥0,∞,Ê

≤ 2 ∥JA ,h∥20,∞,Ê ,

then applying Lemma 5.4.2 completes the stability estimate. The error estimate

is proven with a similar argument. By considering the entries of JA , we have

the error term of

Edet = Jh,0,0Jh,1,1 − J0,0J1,1 + J1,0J0,1 − Jh,1,0Jh,0,1.

Considering the first difference term, we can rewrite this as

Jh,0,0Jh,1,1 − J0,0J1,1 = Jh,0,0(Jh,1,1 − J1,1) + J11(Jh,0,0 − J0,0).

bounding this term using the triangle inequality and Lemma 5.4.2 gives

∥Jh,0,0Jh,1,1 − J0,0J1,1∥0,∞,Ê ≤ ∥JA ,h∥0,∞,Ê ∥EJ∥0,∞,Ê + ∥JA ∥0,∞,Ê ∥EJ∥0,∞,Ê

≤ (C1,ϱ,l + 1) |A |1,∞,Ê ∥EJ∥0,∞,Ê

≤ C2,ϱ,l(C1,ϱ,l + 1)hs
Ê
|A |1,∞,Ê |A |s+1,∞,Ê .

By repeating this argument for the remaining terms in Edet and applying the

triangle inequality we get

∥Edet∥0,∞,Ê ≤ 2C2,ϱ,l(C1,ϱ,l + 1)hs
Ê
|A |1,∞,Ê |A |s+1,∞,Ê .

Bounding the semi-norms by the W∞
s+1 norm completes the proof.

Lemma 5.4.5 (Inverse Error & Stability Estimate).

Let the degree of the VEM approximation A be l ∈ N and A ∈ W∞
l+1(Ê). It
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holds for sufficiently small hÊ and a fixed integer s ∈ {0, 1, ..., l} that

jh > j0, (5.9)∥∥J−1
A ,h

∥∥
0,∞,Ê

≲ |A |1,∞,Ê , (5.10)

∥Einv∥0,∞,Ê ≲ hs
Ê
∥A ∥3s+1,∞,Ê ,

where the hidden constants only depend on j0, ϱ and l.

Proof. From the estimate of Lemma 5.4.4, we have a.e. on Ê that

|j − jh| ≤ C1,ϱ,lhÊ ∥A ∥22,∞,Ê ,

then we define

h∗ =
δ

C1,ϱ,l ∥A ∥22,∞,Ê

, δ = ∥j∥0,∞,Ê − j0,

such that for hE ≤ h∗ we have ∥Edet∥0,∞,Ê ≤ δ. Equation (5.9) is then deduced

by using a continuity argument.

Equation (5.10) is proven by using Equation (5.9) and Lemma 5.4.1∥∥J−1
A ,h

∥∥
0,∞,Ê

≤
∥∥∥∥ 1

jh

∥∥∥∥
0,∞,Ê

∥∥C⊤
A ,h

∥∥
0,∞,Ê

≤ 1

j0
∥JA ,h∥0,∞,Ê .

The bound is then concluded by applying Lemma 5.4.2.

Using the definition of EJ and substitution of I = JA J−1
A results in

Einv = −J−1
A ,h EJ J−1

A .

Expanding and bounding norms gives

∥Einv∥0,∞,Ê ≤
∥∥J−1

A ,h

∥∥
0,∞,Ê

∥EJ∥0,∞,Ê

∥∥J−1
A

∥∥
0,∞,Ê

.

Lemmas 5.4.1 and 5.4.2 and Equation (5.10) provides

∥Einv∥0,∞,Ê ≤
∥∥J−1

A ,h

∥∥
0,∞,Ê

∥EJ∥0,∞,Ê

1

j0
|A |1,∞,Ê

≤
∥∥J−1

A ,h

∥∥
0,∞,Ê

C2,ϱ,lh
s
Ê
|A |s+1,∞,Ê

1

j0
|A |1,∞,Ê

≤ C3,j0,ϱ,l |A |1,∞,Ê C2,ϱ,lh
s
Ê
|A |s+1,∞,Ê

1

j0
|A |1,∞,Ê .
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Collecting terms gives

∥Einv∥0,∞,Ê ≤ 1

j0
C2,ϱ,lC3,j0,ϱ,lh

s
Ê
|A |21,∞,Ê |A |s+1,∞,Ê .

We complete the proof by bounding the semi-norms by the W∞
s+1 norm.

Remark 10. In practise, we do not require the invertibility of JA ,h provided

that the determinant is non-zero at the quadrature points used in numerical

integration.

5.5 Method I Formulation

In Method I we seek a solution to the PDE (5.1) in the reference configuration.

The solution space of degree k is defined on the reference mesh T̂h using the

classical VEM space given by Equation (2.4) denoted in this chapter by V̂h.

The restriction of this space to VEM functions with zero trace on ∂Ω̂ is defined

as V̂h,0 := V̂h ∩H1
0 (Ω̂). Here we seek a VEM approximation ρ̂h ∈ V̂h,0 of degree

k ∈ N. In the analysis of Method I we assume that the PDE data is sufficiently

regular on Ω̂, this can be proven by following the analysis of [42]. The method

formulation is given by summing up local contributions from elements on the

computational mesh T̂h, hence

Ah(ρh, vh) =
∑
Ê∈T̂h

AÊ
h (ρh, vh) +BÊ

h (ρh, vh) + CÊ
h (ρh, vh)

+
∑
Ê∈T̂h

SÊ(ρ̂h − Π∇
k ρ̂h, v̂h − Π∇

k v̂h),

lh(vh) =
∑
Ê∈T̂h

lÊh (vh),
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with the local forms defined by

AÊ
h (ρh, vh) =

∫
Ê

â J−T
A ,hΠ

1
k−1ρ̂h · J−T

A ,hΠ
1
k−1v̂h jh dξ (5.11)

BÊ
h (ρh, vh) =

1

2

∫
Ê

b̂ · (Π0
kv̂h J−T

A ,hΠ
1
k−1ρ̂h − Π0

kρ̂h J−T
A ,hΠ

1
k−1v̂h) jh dξ,

CÊ
h (ρh, vh) =

∫
Ê

µ̂ Π0
kρ̂h Π0

kv̂h jh dξ,

lÊh (vh) =

∫
Ê

f̂h Π0
k v̂h jh dξ.

For the stabilization term SÊ(·, ·) we use the dofi-dofi stabilisation defined in

Equation (2.8) scaled appropriately by the PDE coefficients [39]

SÊ(ρh, vh) = (ā+ h2
Ê
µ̄)

Ndofs∑
i=1

dofi(ρ̂h) · dofi(v̂h), (5.12)

where ·̄ denotes the nodal average over Ê. For the forcing term approximation

f̂h ∈ V̂h, we consider the Π
0 projection of f̂h := Π0

k−2f̂ for k ≥ 2 and f̂h := Π0
0f̂

for k = 1.

The VEM is then defined as follows: find ρ̂h ∈ V̂h,0 such that

Ah(ρh, vh) = lh(vh) ∀v̂h ∈ V̂h,0.

Remark 11. We note that the choice of stabilization scaling is given as an

example. For brevity, we do not present the analysis for other choices of stabi-

lization. In these approaches we can follow the proof structure outlined in [20]

to obtain the same optimal bounds.

5.6 Well-posedness

In order to prove this method satisfies the conditions of the Lax-Milgram theo-

rem, we require a series of technical lemmas that quantifies the error in approx-

imating the bilinear form. The continuity and coercivity constants obtained

in this section will also influence the computation of the H1 estimate in the

subsequent sections.
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Lemma 5.6.1 (Continuity).

For a sufficiently small mesh size h of T̂h, The discrete bilinear and linear forms

defined in this method are continuous and satisfy for all ρ̂h, v̂h ∈ V̂h,0

Ah(ρh, vh) ≲ ∥ρ̂h∥1,Ω̂ ∥v̂h∥1,Ω̂ ,

where the hidden constant depends on ϱ, l, the L∞ norms of a, b and µ, the

stability constant given in Assumption 3 and the W∞
1 semi-norm of A . It also

holds that

lh(vh) ≲
∥∥∥f̂∥∥∥

0,Ê
∥v̂h∥1,Ê ,

with the hidden constant in this case only dependent on ϱ, l and the W∞
1 semi-

norm of A .

Proof. Through applying Hőlder’s, Cauchy-Schwarz and the operator norm in-

equality of Equation (5.6) we have on a local reference element Ê ∈ T̂h that

AÊ
h (ρh, vh) ≤ 4 ∥â∥0,∞,Ê ∥CA ,h∥0,∞,Ê

∥∥J−T
A ,h

∥∥
0,∞,Ê

∥∥Π1
k−1ρ̂h

∥∥
0,Ê

∥∥Π1
k−1v̂h

∥∥
0,Ê

,

BÊ
h (ρh, vh) ≤ 2

∥∥∥b̂∥∥∥
0,∞,Ê

∥CA ,h∥0,∞,Ê

(∥∥Π1
k−1ρ̂h

∥∥
0,Ê

∥∥Π0
kv̂h
∥∥
1,Ê

+
∥∥Π0

kρ̂h
∥∥
1,Ê

∥∥Π1
k−1v̂h

∥∥
1,Ê

)
,

CÊ
h (ρh, vh) ≤ ∥µ̂∥0,∞,Ê ∥jh∥0,∞,Ê

∥∥Π0
kρ̂h
∥∥
0,Ê

∥∥Π0
kv̂h
∥∥
0,Ê

.

Applying the stability of the projection operators and bounding these norms

by the H1 norm leads to

AÊ
h (ρh, vh) ≤ 4 ∥â∥0,∞,Ê ∥CA ,h∥0,∞,Ê

∥∥J−T
A ,h

∥∥
0,∞,Ê

∥ρ̂h∥1,Ê ∥v̂h∥1,Ê ,

BÊ
h (ρh, vh) ≤ 4

∥∥∥b̂∥∥∥
0,∞,Ê

∥CA ,h∥0,∞,Ê ∥ρ̂h∥1,Ê ∥v̂h∥1,Ê ,

CÊ
h (ρh, vh) ≤ ∥µ̂∥0,∞,Ê ∥jh∥0,∞,Ê ∥ρ̂h∥1,Ê ∥v̂h∥1,Ê .

Next we apply Lemmas 5.4.3, 5.4.5 and 5.4.4 to get

AÊ
h (ρh, vh) ≤ C1,j0,ϱ,l ∥â∥0,∞,Ê |A |21,∞,Ê ∥ρ̂h∥1,Ê ∥v̂h∥1,Ê ,

BÊ
h (ρh, vh) ≤ C2,ϱ,l

∥∥∥b̂∥∥∥
0,∞,Ê

|A |1,∞,Ê ∥ρ̂h∥1,Ê ∥v̂h∥1,Ê ,

CÊ
h (ρh, vh) ≤ C3,ϱ,l ∥µ̂∥0,∞,Ê |A |21,∞,Ê ∥ρ̂h∥1,Ê ∥v̂h∥1,Ê .
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For the stabilization term, we employ the stability Assumption 3: there exists

an α∗ > 0 such that

SÊ(ρ̂h − Π∇
k ρ̂h, v̂h − Π∇

k v̂h) ≤ α∗ ∥∥ρ̂h − Π∇
k ρ̂h

∥∥
1,Ê

∥∥v̂h − Π∇
k v̂h
∥∥
1,Ê

,

from this we apply Theorem 2.1.1 to get

SÊ(ρ̂h − Π∇
k ρ̂h, v̂h − Π∇

k v̂h) ≤ C4,ϱ,k,α∗ ∥ρ̂h∥1,Ê ∥v̂h∥1,Ê .

Summing these bounds over T̂h, globally bounding the W∞
1 semi-norm and

introducing the constant

C5,j0,a,b,µ,ϱ,k,l,α∗ = max
Ê∈T̂h

{
C1,j0,ϱ,l ∥â∥0,∞,Ê , C2,ϱ,l

∥∥∥b̂∥∥∥
0,∞,Ê

, C3,ϱ,l ∥µ̂∥0,∞,Ê , C4,ϱ,k,α∗

}
,

results in

Ah(ρh, vh) ≤ C5,j0,a,b,µ,ϱ,k,l,α∗

(
|A |1,∞,Ω̂ + |A |21,∞,Ω̂ + 1

)
∥ρ̂h∥1,Ω̂ ∥v̂h∥1,Ω̂ .

For the linear form lh(·), we prove the continuity bound by noting the sim-

ilarity to Ch(·, ·) with v̂h = f̂h and µ̂ = 1, hence

lÊh (vh) ≤ C3,ϱ,l |A |21,∞,Ê

∥∥∥f̂h∥∥∥
0,Ê

∥v̂h∥0,Ê .

Since we have chosen f̂h as the Π0 projection, we apply the stability of Π0 and

bound the norm of v̂h to get

lÊh (vh) ≤ C3,ϱ,l |A |21,∞,Ê

∥∥∥f̂∥∥∥
0,Ê

∥v̂h∥1,Ê .

The proof is concluded by summing over elements and bounding the W∞
1 semi-

norm.

Lemma 5.6.2 (Coercivity).

For all v̂h ∈ V̂h,0 it holds for sufficiently small mesh size h that

∥v̂h∥21,Ω̂ ≲ Ah(vh, vh),

where the hidden constant is dependent on j0, the PDE coefficient lower bounds

of a0 and µ0, the stability constant of Assumption 3, ϱ, l and the W∞
1 semi-

norm of A .
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Proof. Consider the L2 norm of the Π1
k−1 projection on a element Ê ∈ T̂h and

assume a sufficiently small h such that j0 ≤ jh (see Lemma 5.4.4). This gives

a0j0
∥∥Π1

k−1v̂h
∥∥2
0,Ê

≤
∫
Ê

â
∣∣Π1

k−1v̂h
∣∣2 jh dξ

≤
∫
Ê

â
∣∣JT

A ,hJ
−T
A ,hΠ

1
k−1v̂h

∣∣2 jh dξ

≤
∥∥JT

A ,h

∥∥2
0,∞,Ê

∫
Ê

â
∣∣J−T

A ,hΠ
1
k−1v̂h

∣∣2 jh dξ

≤
∥∥JT

A ,h

∥∥2
0,∞,Ê

AÊ
h (vh, vh).

where in the last line we have applied the definition of Ah(·, ·) in Equation

(5.11). Applying Lemma 5.4.2 gives a bound of

a0j0
∥∥Π1

k−1v̂h
∥∥2
0,Ê

≤ C1,ϱ,l,A AÊ
h (vh, vh). (5.13)

Similarly, we have

CÊ
h (v̂h, vh) ≥ µ0j0

∥∥Π0
kv̂h
∥∥2
0,Ê

,

and we note the definition of BÊ
h (·, ·) implies that

BÊ
h (v̂h, vh) = 0.

By adding

CÊ
h (v̂h, vh) +BÊ

h (v̂h, vh) + SÊ(v̂h − Π∇
k v̂h, v̂h − Π∇

k vh),

to Equation (5.13) we get

(C1,ϱ,l,A + 1)AÊ
h (vh, vh) ≥ µ0j0

∥∥Π0
kv̂h
∥∥2
0,Ê

+ a0j0
∥∥Π1

k−1v̂h
∥∥2
0,Ê

+ SÊ(v̂h − Π∇
k v̂h, v̂h − Π∇

k vh). (5.14)

Following standard VEM analysis [20, 39], we apply the definition of the sta-

bilization term in Equation (5.12) and Assumption 3: there exists an α∗ > 0

such that

SÊ(v̂h − Π∇
k v̂h, v̂h − Π∇

k vh) ≥ α∗a0

∥∥∥∇̂v̂h − Π1
k−1v̂h

∥∥∥
0,Ê

+ α∗µ0

∥∥v̂h − Π0
kv̂h
∥∥
0,Ê

,
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from which substitution into Equation (5.14) obtains

(C1,ϱ,l,A + 1)AÊ
h (vh, vh) ≥ min{α∗, j0}µ0 ∥v̂h∥20,Ê

+min{α∗, j0}a0
∥∥∥∇̂v̂h

∥∥∥2
0,Ê

.

We introduce the constant C2,α∗,j0,µ0,a0 = min{α∗, j0, µ0, a0} which gives us

(C1,ϱ,l,A + 1)AÊ
h (vh, vh) ≥ C2,α∗,j0,µ0,a0 ∥v̂h∥

2
1,Ê .

Summing over elements and bounding norms completes the proof.

We now prove that Method I is well posed through the following theorem.

Theorem 5.6.3 (Well-posedness).

For sufficiently small h, the VEM: find ρ̂h ∈ V̂h,0 such that

Ah(ρh, vh) = lh(vh) ∀v̂h ∈ V̂h,0,

it holds that Ah(·, ·) is coercive and continuous and lh(·) is continous. Conse-

quently, the solution ρ̂h ∈ V̂h,0 exists and is unique.

Proof. Continuity of Ah(·, ·) and lh(·) is given as a consequence of Lemma 5.6.1.

Coercivity is given by Lemma 5.6.2. The proof is concluded by application of

the Lax-Milgram Theorem.

5.7 Consistency Errors

We follow the approaches of [20, 39] in constructing the Strang-type error

bound. Specifically, we are required to quantify the error terms on a given

element Ê ∈ T̂h for a polynomial p̂ ∈ Pk(Ê) and all v̂h ∈ Vk(Ê)

AÊ
h (p̂, vh)−AÊ(p̂, vh),

lÊh (vh)− lÊ(vh).

These bounds are proven in Theorem 5.7.3.

In order to compute these bounds we require product rules for Sobolev norms

given by the following Lemmas 5.7.1 and 5.7.2.
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Lemma 5.7.1.

Let ω ⊂ R2 be a bounded domain and s ∈ N. For f ∈ W∞
s (ω) and g ∈ Hs(ω)

it holds that

∥fg∥s,ω ≲ ∥f∥s,∞,ω ∥g∥s,ω ,

where the hidden constant depends only on s. For a matrix A with entries

Ai,j ∈ W∞
s (ω) for i, j = 1, 2 and a vector v ∈ [Hs(ω)]2 it holds that

∥Av∥s,ω ≲ ∥A∥s,∞,ω ∥v∥s,ω ,

where the hidden constant depends only on s.

Proof. We prove the first bound by considering the semi-norm for some integer

0 ≤ l ≤ s. For indexing sets α, β with |α| = l it holds a.e. that

Dα(fg) =
∑
|β|≤|α|

(
|α|
|β|

)
Dβf Dα−βg.

We then take the L2 norm, bound the derivative of f and the binomial coeffi-

cients and apply the triangle inequality to get

∥Dα(fg)∥0,ω ≤ s! ∥f∥s,∞,ω

∑
|β|≤|α|

∥∥Dα−βg
∥∥
0,ω

,

≤ C1,s ∥f∥s,∞,ω ∥g∥s,ω .

Considering the definition of the ∥fg∥2s,ω and bounding terms in the summa-

tion completes the first bound. For the second bound we have using standard

arguments

∥Av∥2s,ω =
2∑

i=1

∥(Av)i∥2s,ω ≤ 4 max
1≤i,j≤2

∥Aijvi∥2s,ω .

Applying the first bound and the definition of the matrix and vector Sobolev

norms gives

∥Av∥2s,ω ≤ C2,s ∥A∥2s,∞,ω ∥v∥
2
s,ω ,

taking square roots completes this proof.
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Lemma 5.7.2.

Let ω ⊂ R2 be a bounded domain and f ∈ W∞
s (ω) for some s ∈ N. If there

exists an f0 ∈ (0, 1) such that f > f0 a.e. in ω then it also holds that

∥∥f−1
∥∥
s,∞,ω

≲ ∥f∥s,∞,ω ,

where the hidden constant depends on s and f0.

Proof. The chain rule and quotient rule give, for any indexing set |α| ≤ s, that

∣∣Dαf−1
∣∣ = ∣∣∣∣(−1)|α|

α!

f |α|+1
Dαf

∣∣∣∣
≤ s!

|f ||α|+1
|Dαf |

≤ s!

f
|α|+1
0

|Dαf |

≤ s!

(
1

f0

)s+1

|Dαf |

≤ s!

(
1

f0

)s+1

∥f∥s,∞,ω .

The proof is concluded by noting this hold for any indexing set α.

Theorem 5.7.3 (Consistency Error).

Let Ê be a polygonal element of Th that satisfies the mesh regularity Assumption

1 with hÊ sufficiently small. Let â, µ̂ ∈ W∞
m+1(Ê) and A , b̂ ∈

[
W∞

m+1(Ê)
]2
.

The VEM bilinear forms defined in Section 5.5 satisfy for a fixed integer s ∈

{1, ...,min{k, l}} that∣∣∣AÊ
h (p̂, vh)−AÊ(p̂, vh)

∣∣∣ ≲ hs
Ê
∥p̂∥s+1,Ê ∥v̂h∥1,Ê ,∣∣∣lÊh (vh)− lÊ(vh)

∣∣∣ ≲ hs
Ê

∥∥∥f̂∥∥∥
s−1,Ê

∥v̂h∥1,Ê ,

where The first hidden constant is dependent on ϱ, s, j0, the W∞
s+1 norms of â,

b̂ and µ̂ and the W∞
s+1 norm of A . The second hidden constant is dependent

on ϱ, s and the W∞
s+1 norm of A .
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Proof. For brevity, we copy the presentation in [39] and only present the deriva-

tion of the estimate for AÊ
h (p̂, vh)−AÊ(p̂, vh) and state the remaining estimates,

in each case the same line of reasoning can be pursued to attain the bounds.

By adding and subtracting terms we have for v̂h = p̂ that the stability term

and projection difference terms vanish to give

AÊ
h (p̂, vh)− AÊ(p̂, vh) = E1 + E2 + E3,

where

E1 =

∫
Ê

âEcof∇̂p̂ · J−T
A ∇̂v̂h dξ

E2 =

∫
Ê

âCA ,h∇̂p̂ · ET
inv∇̂v̂h dξ

E3 =

∫
Ê

âJ−T
A ,h∇̂p̂ ·CA ,h(∇̂ − Π1

k−1)v̂h dξ.

By considering E1 and applying the Hőlder and Cauchy-Schwarz inequalities

then Lemma 5.4.1 we get

|E1| ≤ ∥â∥0,∞,Ê ∥Ecof∥0,∞,Ê

∥∥J−T
A

∥∥
0,∞,Ê

|p̂|1,Ê |v̂h|1,Ê

≤ ∥â∥0,∞,Ê ∥Ecof∥0,∞,Ê

1

j0
∥CA ∥0,∞,Ê |p̂|1,Ê |v̂h|1,Ê .

Next we apply Lemma 5.4.3 to bound |E1| by

|E1| ≤ ∥â∥0,∞,Ê

{
C1,ϱ,sh

s
Ê
|A |s+1,∞,Ê

} 1

j0
∥CA ∥0,∞,Ê |p̂|1,Ê |v̂h|1,Ê

≤ ∥â∥0,∞,Ê

C1,ϱ,s

j0
hs
Ê
|A |s+1,∞,Ê |A |1,∞,Ê |p̂|1,Ê |v̂h|1,Ê

≤ ∥â∥0,∞,Ê

C1,ϱ,s

j0
hs
Ê
∥A ∥2s+1,∞,Ê |p̂|1,Ê |v̂h|1,Ê .

We simplify this bound by introducing the constant C2,ϱ,s,j0,a,A as

C2,ϱ,s,j0,a,A = ∥â∥0,∞,Ê

C1,ϱ,s

j0
∥A ∥2s+1,∞,Ê ,

so that |E1| is bounded by

|E1| ≤ C2,ϱ,s,j0,a,A hs
Ê
|p̂|1,Ê |v̂h|1,Ê .
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A similar argument using instead Lemma 5.4.5 provides

|E2| ≤ ∥â∥0,∞,Ê

C3,ϱ,j0,s

j0
hs
Ê
∥A ∥3s+1,∞,Ê |A |1,∞,Ê |p̂|1,Ê |v̂h|1,Ê

≤
{
∥â∥0,∞,Ê

C3,ϱ,j0,s

j0
∥A ∥4s+1,∞,Ê

}
hs
Ê
|p̂|1,Ê |v̂h|1,Ê

≤ C4,ϱ,s,j0,a,A hs
Ê
|p̂|1,Ê |v̂h|1,Ê

Combining these bounds leads to

|E1|+ |E2| ≤ (C2,ϱ,s,j0,a,A + C4,ϱ,s,j0,a,A )hs
Ê
∥p̂∥1,Ê ∥v̂h∥1,Ê .

To bound E3 we emulate the steps taken in [39], E3 can be written as

E3 =

∫
Ê

âJ−T
A ,h∇̂p̂ ·CA ,h(∇̂ − Π1

k−1)v̂h dξ

=

∫
Ê

γ · (∇̂ − Π1
k−1)v̂h dξ

where CA ,h has polynomial entries of degree (l−1) and γ := (âJ−T
A ,h∇̂p̂)TCA ,h.

By orthogonality of the Π0 projection we have

E3 =

∫
Ê

(γ − Π0
k−1γ) · (∇̂ − Π1

k−1)v̂h dξ.

Then applying Cauchy-Schwarz and Theorem 2.1.1 gives

|E3| ≤
∥∥γ − Π0

k−1γ
∥∥
0,Ê

∥∥∥(∇̂ − Π1
k−1)v̂h

∥∥∥
0,Ê

≤ C5,ϱ,sh
s
Ê
∥γ∥s,Ê ∥v̂h∥1,Ê . (5.15)

We bound the norm ∥γ∥s,Ê making use of Lemma 5.7.1. Firstly, we note that

γ can be written as

γ = â
1

jh
(CA ,h∇̂p̂)⊤CA ,h.

From repeated applications of Lemma 5.7.1 and Lemma 5.7.2 it holds that

∥γ∥s,Ê ≤ C6,s ∥â∥s,∞,Ê

∥∥∥∥ 1

jh

∥∥∥∥
s,∞,Ê

∥CA ,h∥2s,∞,Ê

∥∥∥∇̂p̂
∥∥∥
s,Ê

≤ C6,sC7,s,j0 ∥â∥s,∞,Ê ∥jh∥s,∞,Ê ∥CA ,h∥2s,∞,Ê

∥∥∥∇̂p̂
∥∥∥
s,Ê

. (5.16)

To bound the norms of jh and CA ,h we apply an inverse Sobolev embedding,

noting that both terms are polynomials of degree 2l− 2 and l− 1 respectively.
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Here we present the first case with jh with the norm CA ,h following in a similar

fashion. By adding and subtracting Π0
2l−2j and applying the triangle inequality

we have

∥jh∥s,∞,Ê ≤
∥∥jh − Π0

2l−2j
∥∥
s,∞,Ê

+
∥∥Π0

2l−2j
∥∥
s,∞,Ê

=
∥∥Π0

2l−2Edet
∥∥
s,∞,Ê

+
∥∥Π0

2l−2j
∥∥
s,∞,Ê

.

From [49] (Corollary 1.29) it holds that

∥jh∥s,∞,Ê ≤ C8,sh
−s

Ê

∥∥Π0
2l−2Edet

∥∥
0,∞,Ê

+
∥∥Π0

2l−2j
∥∥
s,∞,Ê

. (5.17)

The stability of the Π0 projection is then applied to both terms in Equation

(5.17) to give

∥jh∥s,∞,Ê ≤ C8,sh
−s

Ê
∥Edet∥0,∞,Ê + ∥j∥s,∞,Ê ,

Lemma 5.4.4 is then applied to the first term and the second term is bounded

using Lemma 5.7.1

∥jh∥s,∞,Ê ≤ (C8,sC9,ϱ,s + 2) ∥A ∥2s+1,∞,Ê . (5.18)

Using again Corollary 1.29 from [49] and Lemma 5.4.3 gives a positive constant

C2 dependent on the shape regularity of Ê and s such that

∥CA ,h∥s,∞,Ê ≤ C10,ϱ,s ∥A ∥s+1,∞,Ê . (5.19)

Inserting Equations (5.18) and (5.19) into Equation (5.16) gives

∥γ∥s,Ê ≤ C6,sC7,s,j0 ∥â∥s,∞,Ê (C8,sC9,ϱ,s + 2)C2
10,ϱ,s ∥A ∥4s+1,∞,Ê

∥∥∥∇̂p̂
∥∥∥
s,Ê

≤
{
C6,sC7,s,j0 ∥â∥s,∞,Ê (C8,sC9,ϱ,s + 2)C2

10,ϱ,s ∥A ∥4s+1,∞,Ê

}
∥p̂∥s+1,Ê

≤ C11,ϱ,s,j0,a,A ∥p̂∥s+1,Ê .

Inserting this bound into Equation (5.15) and combining the bounds for E1,
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E2 and E3 we have that

∣∣∣AÊ
h (p̂, vh)− AÊ(p̂, vh)

∣∣∣ ≤ (C2,ϱ,s,j0,a,A + C4,ϱ,s,j0,a,A )hs
Ê
∥p̂∥1,Ê ∥v̂h∥1,Ê

+ C5,ϱ,sh
s
Ê
∥γ∥s,Ê ∥v̂h∥1,Ê

≤ (C2,ϱ,s,j0,a,A + C4,ϱ,s,j0,a,A )hs
Ê
∥p̂∥1,Ê ∥v̂h∥1,Ê

+ (C5,ϱ,sC11,ϱ,s,j0,a,A )hs
Ê
∥p̂∥s+1,Ê ∥v̂h∥1,Ê

≤ C12,ϱ,s,j0,a,A hs
Ê
∥p̂∥s+1,Ê ∥v̂h∥1,Ê

A similar line of reasoning provides the additional constants with the similar

dependencies such that

∣∣∣BÊ
h (p̂, vh)−BÊ(p̂, vh)

∣∣∣ ≤ C13,ϱ,s,j0,b,A hs
Ê
∥p̂∥s+1,Ê ∥v̂h∥1,Ê ,∣∣∣CÊ

h (p̂, vh)− CÊ(p̂, vh)
∣∣∣ ≤ C14,ϱ,s,j0,µ,A hs

Ê
∥p̂∥s+1,Ê ∥v̂h∥1,Ê ,∣∣∣lÊh (vh)− lÊ(vh)

∣∣∣ ≤ C15,ϱ,s,j0,A hs
Ê

∥∥∥f̂∥∥∥
s−1,Ê

∥v̂h∥1,Ê ,

where in the final bound the estimate of approximating f̂ is used. Applying

the triangle inequality and combining the bounds completes the proof.

5.8 A H1 Estimate

We now prove the H1 estimate for Method I using the framework outlined

in [39]. Let C1,ϱ,a0,µ0,l,A , C2,ϱ,l,a,b,µ,A > 0 denote the coercivity and continuity

constants of this method derived in Lemmas 5.6.2 and 5.6.1 respectively. We

consider a polynomial p̂ ∈ Pk(T̂h), where Pk(T̂h) is the space of polynomials of

degree k that are discontinuous across element faces and ŵh = ρ̂h − v̂h. The

Strang-type bound is given by

1

C1,ϱ,a0,µ0,l,A
∥ρ̂h − v̂h∥21,Ω̂ ≤ [lh(ŵh)− l(ŵh)] +

∑
Ê∈T̂h

(
AÊ

h (p̂, ŵh)−AÊ(p̂, ŵh)
)

+Ah(p̂− v̂h, ŵh) +A(ρ̂− p̂, ŵh).
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Applying the continuity of A(·, ·) on the reference domain and the continuity

of Ah(·, ·) from Lemma 5.6.1 provides

1

C1,ϱ,a0,µ0,l,A
∥ρ̂h − v̂h∥21,Ω̂ ≤ [lh(ŵh)− l(ŵh)] +

∑
Ê∈T̂h

(
AÊ

h (p̂, ŵh)−AÊ(p̂, ŵh)
)

+ ∥ŵh∥1,Ω̂
(
C2,ϱ,l,a,b,µ,A ∥p̂− v̂h∥1,Ω̂ + C3,A ∥ρ̂− p̂∥1,Ω̂

)
.

We introduce the constant Ccoer,ϱ,a0,µ0,l,a,b,µ,A by

Ccoer,ϱ,a0,µ0,l,a,b,µ,A = max {C1,ϱ,a0,µ0,l,A , C2,ϱ,l,a,b,µ,A , C3,A , 1} . (5.20)

As a result we have

1

Ccoer,ϱ,a0,µ0,l,a,b,µ,A
∥ρ̂h − v̂h∥21,Ω̂ ≤ [lh(ŵh)− l(ŵh)] +

∑
Ê∈T̂h

(
AÊ

h (p̂, ŵh)−AÊ(p̂, ŵh)
)

+ ∥ŵh∥1,Ω̂
(
∥p̂− v̂h∥1,Ω̂ + ∥ρ̂− p̂∥1,Ω̂

)
.

Dividing through by ∥ŵh∥1,Ω̂ and applying the triangle inequality gives

1

Ccoer,ϱ,a0,µ0,l,a,b,µ,A
∥ρ− ρ̂h∥1,Ω̂ ≤ inf

ŵh∈V̂h,0

∥ρ̂− ŵh∥1,Ω̂ + inf
p̂∈Pk(T̂h)

∥ρ̂− p̂∥1,Ω̂

+ inf
p̂∈Pk(T̂h)

∑
Ê∈T̂h

sup
ŵh∈V̂h,0\{0}

∣∣∣AÊ
h (p̂, ŵh)−AÊ(p̂, ŵh)

∣∣∣
∥ŵh∥1,Ê

+ sup
ŵh∈V̂h,0\{0}

|lh(ŵh)− l(ŵh)|
∥ŵh∥1,Ω̂

. (5.21)

Theorem 5.8.1 (H1 Error Estimate for Method I).

Let A ∈ W∞
m+1(Ω̂) be a mapping from a polygonal reference domain Ω̂ to

Ω. Additionally, suppose the coefficients satisfy the regularity conditions of

â, b̂, µ̂ ∈ W∞
m+1(Ω). For the corresponding solution to the PDE (5.1) on the

reference domain ρ̂ ∈ Hm+1(Ω̂) and the VEM solution ρh ∈ V̂h,0 of degree l

and k outlined in Section 5.5, we have for sufficiently small mesh size h and

s ∈ {0, 1, ...min{k, l}} that

∥ρ̂− ρ̂h∥1,Ω̂ ≲ hs

(
∥ρ̂∥s+1,Ω̂ +

∥∥∥f̂∥∥∥
s−1,Ω̂

)
,

where the hidden constant is dependent on ϱ, s, l, the lower bounds j0, a0, µ0

and the W∞
s+1 norms of â, b̂, µ̂ and A .
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Proof. For ease of reading, we introduce the constants C, dependent on the

mesh regularity and s, that implicitly bounds all constants independent of A

in this proof. We bound each line of Equation (5.21) in order. By considering

ŵh = ρ̂I and p̂ = Π0
kρ̂ from Theorems 2.1.2 and 2.1.1 we have that

inf
ŵh∈V̂h,0

∥ρ̂− ŵh∥1,Ω̂ + inf
p̂∈Pk(T̂h)

∥∥ρ̂− Π0
kρ̂
∥∥
1,Ω̂

≤ C1,ϱ,sh
s ∥ρ̂∥s+1,Ω̂ ,

For the second line we consider p̂ = Π0
kρ̂ and apply Theorem 5.7.3 to get

inf
p̂∈Pk(T̂h)

∑
Ê∈T̂h

sup
ŵh∈V̂h,0\{0}

∣∣∣AÊ
h (p̂, ŵh)−AÊ(p̂, ŵh)

∣∣∣
∥ŵh∥1,Ê

≤ C2,ϱ,s,a,b,µ,j0,A

∑
Ê∈T̂h

hs
Ê

∥∥Π0
kρ̂
∥∥
s+1,Ê

≤ C2,ϱ,s,a,b,µ,j0,A hs ∥ρ̂∥s+1,Ω̂ ,

where in the final line we applied the stability of the Π0 projection and bounded

norms. Next, we have from Theorem 5.7.3 that

|lh(ŵh)− l(ŵh)|
∥ŵh∥1,Ω̂

≤
∑
Ê∈T̂h

∣∣∣lÊh (ŵh)− lÊ(ŵh)
∣∣∣

∥ŵh∥1,Ê

≤ C3,ϱ,s,A

∑
Ê∈T̂h

hs
Ê

∥∥∥f̂∥∥∥
s−1,Ê

≤ C3,ϱ,s,A hs
∥∥∥f̂∥∥∥

s−1,Ω̂
.

Combining the three bounds and the bounding constants and inserting these

into Equation (5.21) along with the constant defined in Equation (5.20) we

have that

∥ρ̂− ρ̂h∥1,Ω̂ ≤ Ccoer,ϱ,a0,µ0,l,a,b,µ,A

(
C1,ϱ,s + C2,ϱ,s,a,b,µ,j0,A

+ C3,ϱ,s,A

)
hs

(
∥ρ̂∥s+1,Ω̂ +

∥∥∥f̂∥∥∥
s−1,Ω̂

)
.

We conclude the proof by further bounding the constant terms.



Chapter 6

Method II

The second of our proposed isoparametric methods is to construct virtual,

physical curved edge polygons. This is achieved by constructing a curved VEM

space on each virtual polygon using the framework of curved virtual elements

proposed in [23] and perform the necessary integration by considering a set of

projected elements using the Π0 operator on computational reference domain

Ω̂.

In Section 6.1, the projected element used in the computation of Method

II is introduced. The curved VEM space used in Method II is reviewed in

Section 6.2. The discrete projection operators are introduced and analysed in

Section 6.3. The complete formulation of Method II is given in Section 6.4.

The consistency error and well-posedness of Method II are proven in Sections

6.5 and 6.6 respectively. The proof of the H1 a priori estimate is given in

Section 6.7.

6.1 Projected Elements

In Method II, the integration over the virtual domain is decomposed into con-

tributions over projected elements. By using a projection of an element, we

have a computable geometry on which we can integrate polynomials exactly.

In keeping with the VEM philosophy, we decompose Ah into a polynomial and

111
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non-polynomial component, namely

Ah = Π0
l Ah + (Ah − Π0

l Ah),

The projected element Eπ
h := Π0

l Ah(Ê) will be used to construct an explicitly

computable method.

Remark 12. In constructing the projected elements we require the use of a

computational reference domain. However, the method is independent of Ω̂ and

the resulting linear systems of equations are purely computed without coordinate

transformations.

We utilise the projected elements to provide a computable method. Local

VEM spaces will be constructed on Eh and not Eπ
h with Eπ

h only being used to

perform quadrature. We quantify the effects of using the projected elements

for integration in the following technical results.

Lemma 6.1.1 (Area Approximation for the Projected Element).

Let T̂h be the computational reference domain that satisfies Assumption 1. For a

reference element Ê ∈ T̂h and the corresponding element on the virtual domain

Eh ∈ Th and a projected element Eπ
h of degree l, it holds for a fixed integer

s ∈ {0, 1, ..., l} and for a sufficiently small mesh size that

|meas(Eh)−meas(Eπ
h )| ≲ hs+2

Ê
∥A ∥2s+1,∞,Ê ,

meas(Eh\Eπ
h ) ≲ hs+2

Ê
∥A ∥3s+1,∞,Ê ,

meas(Eπ
h\Eh) ≲ hs+2

Ê
∥A ∥3s+1,∞,Ê ,

where the hidden constants depend on ϱ and l.

Proof. By definition we have that

meas(Eh)−meas(Eπ
h ) =

∣∣∣∣∫
Ê

det
(
∇̂Ah

)
dξ

∣∣∣∣− ∣∣∣∣∫
Ê

det
(
∇̂Π0

l Ah

)
dξ

∣∣∣∣ .
We apply the arguments of Lemma 5.4.5 to imply that for a sufficiently small

hÊ, it holds that both determinants are strictly positive

meas(Eh)−meas(Eπ
h ) =

∫
Ê

det
(
∇̂Ah

)
− det

(
∇̂Π0

l Ah

)
dξ.
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Hölder’s inequality gives

|meas(Eh)−meas(Eπ
h )| ≤

∣∣∣Ê∣∣∣ ∥∥∥det(∇̂Ah

)
− det

(
∇̂Π0

l Ah

)∥∥∥
0,∞,Ê

≤ h2
Ê

∥∥∥det(∇̂Ah

)
− det

(
∇̂Π0

l Ah

)∥∥∥
0,∞,Ê

. (6.1)

Next we add and subtract terms and apply the triangle inequality to get∥∥∥det(∇̂Ah

)
− det

(
∇̂Π0

l Ah

)∥∥∥
0,∞,Ê

≤
∥∥∥det(∇̂Ah

)
− det

(
∇̂A

)∥∥∥
0,∞,Ê

+
∥∥∥det(∇̂A

)
− det

(
∇̂Π0

l A
)∥∥∥

0,∞,Ê

+
∥∥∥det(∇̂Π0

l A
)
− det

(
∇̂Π0

l Ah

)∥∥∥
0,∞,Ê

.

Following the same steps as in Lemma 5.4.4 for each of the three terms in the

above bound we have∥∥∥det(∇̂Ah

)
− det

(
∇̂Π0

l Ah

)∥∥∥
0,∞,Ê

≤ C1,ϱ,lh
s
Ê
∥A ∥2s+1,∞,Ê ,

where substitution of this into Equation (6.1) completes the first estimate.

The second estimate is proved by introducing the indicator function χEπ
h
:

R2 → {0, 1}

χEπ
h
(x) =


1 x ∈ Eπ

h ,

0 otherwise

,

in which we note that
∥∥χEπ

h

∥∥
op

≤ 1. We write meas(Eh\Eπ
h ) as

meas(Eh\Eπ
h ) =

∫
Eh

(
1− χEπ

h

)
dx

=

∫
Ê

(
1− χEπ

h
◦ Ah(ξ)

)
det (JAh

) dξ.

Applying the Cauchy-Schwarz inequality and the operator norm inequality for

χEπ
h
gives

meas(Eh\Eπ
h ) ≤ ∥det (JAh

)∥0,Ê
∥∥1− χEπ

h
◦ Ah

∥∥
0,Ê

≤ ∥det (JAh
)∥0,Ê

∥∥χEπ
h
◦ Π0

l Ah − χEπ
h
◦ Ah

∥∥
0,Ê

≤ ∥det (JAh
)∥0,Ê

∥∥χEπ
h

∥∥
op

∥∥Π0
l Ah − Ah

∥∥
0,Ê

≤ ∥det (JAh
)∥0,Ê

∥∥Π0
l Ah − Ah

∥∥
0,Ê
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Next we apply Hölder’s inequality with Lemma 5.4.4 to get

meas(Eh\Eπ
h ) ≤

∣∣∣Ê∣∣∣1/2 ∥det (JAh
)∥0,∞,Ê

∥∥Π0
l Ah − Ah

∥∥
0,Ê

≤ C2,ϱ,lhÊ ∥A ∥21,∞,Ê

∥∥Π0
l Ah − Ah

∥∥
0,Ê

. (6.2)

The projection error is bounded by using the triangle inequality, the stability

of Π0, Assumption 4 and Theorem 2.1.1

∥∥Π0
l Ah − Ah

∥∥
0,Ê

≤
∥∥Π0

l Ah − Π0
l A
∥∥
0,Ê

+
∥∥Π0

l A − A
∥∥
0,Ê

≤ ∥Ah − A ∥0,Ê +
∥∥Π0

l A − A
∥∥
0,Ê

≤ C3,ϱ,lh
s
Ê
|A |s+1,Ê

≤ C3,ϱ,lh
s+1

Ê
|A |s+1,∞,Ê .

Inserting this bound into Equation (6.2) and bounding norms gives

meas(Eh\Eπ
h ) ≤ C2,ϱ,lC3,ϱ,lh

s+2

Ê
|A |3s+1,∞,Ê .

The final estimate follows by the same arguments.

When quantifying the error of this method, we have to consider the scaling

of the mesh size terms hω for a choice of ω = Ê, Eh, E
π
h . This is presented in

the following theorem.

Lemma 6.1.2 (Scaling of Mesh Sizes).

Let T̂h be a mesh of Ω̂ of sufficiently small mesh size h satisfying the shape

regularity Assumption 1. We have

hÊ ≲ hEh
, hÊ ≳ hEh

where the first hidden constant depends on j0 and ϱÊ and the second depends

on the W∞
1 norm of A and ϱEh

.

Proof. From [49] (Lemma 1.12) it holds for any shape regular element E that

ϱ2Eπh
2
E ≤ |E| ≤ h2

E. (6.3)
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Using Equation (6.3) and Lemma 5.4.5 we have

j0ϱ
2
Eπh

2
Ê
≤ j0

∣∣∣Ê∣∣∣
≤ |Eh|

≤ h2
Eh
.

Taking square roots completes the lower bound. The upper bound is given by

computing the area of Eh using Ê and applying Hölder’s inequality

|Eh| =
∥∥∥det(∇̂Ah

)∥∥∥
0,1,Ê

≤
∥∥∥det(∇̂Ah

)∥∥∥
0,∞,Ê

∣∣∣Ê∣∣∣
≤ 2 |Ah|21,∞,Ê

∣∣∣Ê∣∣∣ .
From this we use Equation (6.3) to get

ϱ2Eh
πh2

Eh
≤ 2 |Ah|21,∞,Ê h2

Ê
.

The proof is concluded by using a stability argument to bound |Ah|21,∞,Ê.

Remark 13. We note that if the computational reference domain Ω̂ is defined

as being “close to” Ω then the element sizing scales as one. An example of this

is when Ω̂ is a polygonal interpolant of Ω. The generality provided by Lemma

6.1.2 allows us to extend the analysis of Part II to moving domains, where in

general the mesh size varies over time.

Extension of Polynomials

In the case of polynomials on Eh, the extension p̃ for some p ∈ Pk(Eh) is defined

as the natural extension obtained by preserving the polynomial coefficients of

p and evaluating p over R2, in these cases we drop the extension notation. We

emphasise that this extension does not satisfy Stein’s Extension Theorem 5.3.1.

Instead we have the following polynomial extension bound.

Lemma 6.1.3 (Polynomial Extension).

Let T̂h be a computational reference domain satisfying Assumption 1, Eh ∈
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Th be shape regular and Eπ
h be the projected element of degree l ∈ N. For a

polynomial of any degree p ∈ P(Eh) and hÊ sufficiently small, it holds that

∥p∥0,∞,Eπ
h
≲ ∥p∥0,∞,Eh

,

where the hidden constant depends on the shape regularity parameters ϱ, ϱEh
, l

and the W∞
1 norm of A .

Proof. In this proof we consider the ratio between the norms and prove that

this scales as one. Let R be given as

R =
∥p∥0,∞,Eπ

h

∥p∥0,∞,Eh

.

Applying an inverse estimate [49] to the numerator and a Sobolev inequality

to the denominator of R gives

R ≤ C1,ϱ,l

h−1
Eπ

h
∥p∥0,Eπ

h

h−1
Eh

∥p∥0,Eh

≤ C2,ϱ,l

∥p∥0,Eπ
h

∥p∥0,Eh

,

where we applied the property of hEπ
h
, hEh

∼ hÊ from Lemma 6.1.2. We con-

sider the bound of R2 and expand the numerator to get

R2 ≤ C2
2,ϱ,l

∥p∥20,Eπ
h

∥p∥20,Eh

= C2
2,ϱ,l

(
∥p∥20,Eh

− ∥p∥20,Eh\Eπ
h
+ ∥p∥20,Eπ

h\Eh

∥p∥20,Eh

)

≤ C2
2,ϱ,l

(
1 +

∥p∥20,Eπ
h\Eh

∥p∥20,Eh

)
. (6.4)

The ratio of norms in the bound above can be further bounded by applying

Hölder’s inequality on the numerator and an inverse estimate [49] on the de-

nominator to give

∥p∥20,Eπ
h\Eh

∥p∥20,Eh

≤ C3,ϱ,lR
2 |Eπ

h\Eh|
|Eh|

.

Using Lemmas 6.1.1 and 6.1.2 we get

∥p∥20,Eπ
h\Eh

∥p∥20,Eh

≤ C4,ϱ,ϱEh
,A ,lR

2hs
Ê
.

Substitution into Equation (6.4) provides

R2 ≤ C2
2,ϱ,l + C2

2,ϱ,lC4,ϱ,ϱEh
,A ,lR

2hÊ,
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therefore taking a hÊ such that

hÊ ≤
(
C2

2,ϱ,lC4,ϱ,ϱEh
,A ,l

)−1

,

results in

1

2
R2 ≤ C2,ϱ,l.

Bounding constant terms and taking square roots completes the proof.

Quadrature Error

In Method II we choose to use the projected elements to approximate the

integration of polynomials over Eh. In two dimensions integration could be

performed over an isoparametric triangulation of Eh. However, in three dimen-

sions the projected elements become a necessity and the following presentation

easily extends to three-dimensional problems. The accuracy of performing

quadrature over these projected elements is given in the following lemma for

two dimensions.

Lemma 6.1.4 (Integration Error Over a Projected Element).

Let E be a physical element given by the mapping E = A (Ê), with its corre-

sponding interpolated element Eh and the projected element Eπ
h . For g ∈ L∞(E)

and p, q being polynomials of any degree, the following holds for a fixed integer

s ∈ {0, 1, ..., l} and sufficiently small hÊ∣∣∣∣∣
∫
Eh

g̃pq dx−
∫
Eπ

h

g̃pq dx

∣∣∣∣∣ ≲ hs
Ê
∥p∥0,Eh

∥q∥0,Eh
,

where the hidden constant depends on ϱ, l, the L∞ norm of g, the W∞
s+1 norm

A and j0.

Proof. We decompose the integral difference into∫
Eh

g̃pq dx−
∫
Eπ

h

g̃pq dx =

∫
Eh\Eπ

h

g̃pq dx−
∫
Eπ

h\Eh

g̃pq dx,
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from which we have∣∣∣∣∣
∫
Eh

g̃pq dx−
∫
Eπ

h

g̃pq dx

∣∣∣∣∣ ≤ ∥g̃∥0,∞,Eh△Eπ
h
∥p∥0,∞,Eh△Eπ

h
∥q∥0,∞,Eh△Eπ

h
meas(Eh△Eπ

h ),

(6.5)

where we denote by Eh△Eπ
h = (Eh\Eπ

h ) ∪ (Eπ
h\Eh) the symmetric difference

between the two sets. We bound the measure of this set using Lemma 6.1.1

meas(Eh△Eπ
h ) ≤ meas(Eh\Eπ

h ) + meas(Eπ
h\Eh)

≤ C1,ϱ,lh
s+2

Ê
∥A ∥3s+1,∞,Ê .

Substitution back into Equation (6.5) and Applying Stein’s Extension Theorem

5.3.1 for g̃ gives∣∣∣∣∣
∫
Eh

g̃pq dx−
∫
Eπ

h

g̃pq dx

∣∣∣∣∣ ≤ ∥g̃∥0,∞,Eh△Eπ
h
∥p∥0,∞,Eh△Eπ

h

∥q∥0,∞,Eh△Eπ
h
C1,ϱ,lh

s+2

Ê
∥A ∥3s+1,∞,Ê

≤ C2 ∥g∥0,∞,E ∥p∥0,∞,Eh△Eπ
h

∥q∥0,∞,Eh△Eπ
h
C1,ϱ,lh

s+2

Ê
∥A ∥3s+1,∞,Ê .

(6.6)

Next we consider the L∞ norm of p and bound this via

∥p∥0,∞,Eh△Eπ
h
≤ ∥p∥0,∞,Eh\Eπ

h
+ ∥p∥0,∞,Eπ

h\Eh

≤ ∥p∥0,∞,Eh
+ ∥p∥0,∞,Eπ

h
.

From Lemma 6.1.3 it holds that

∥p∥0,∞,Eh△Eπ
h
≤ (1 + C3) ∥p∥0,∞,Eh

,

and similarly we have

∥q∥0,∞,Eh△Eπ
h
≤ (1 + C3) ∥q∥0,∞,Eh

.

Substitution of these bounds into Equation (6.6) results in∣∣∣∣∣
∫
Eh

g̃pq dx−
∫
Eπ

h

g̃pq dx

∣∣∣∣∣ ≤ C1,ϱ,lC2(1 + C3)
2hs+2

Ê
∥g∥0,∞,E

∥p∥0,∞,Eh
∥q∥0,∞,Eh

∥A ∥3s+1,∞,Ê . (6.7)
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We simplify Equation (6.7) by introducing the constant

C4,ϱ,l,g,A := C1,ϱ,lC2(1 + C3)
2 ∥g∥0,∞,E ∥A ∥3s+1,∞,Ê ,

such that∣∣∣∣∣
∫
Eh

g̃pq dx−
∫
Eπ

h

g̃pq dx

∣∣∣∣∣ ≤ C4,ϱ,l,g,A hs+2

Ê
∥p∥0,∞,Eh

∥q∥0,∞,Eh
. (6.8)

Finally, we apply the inverse estimate found in [49] (Lemma 1.25) of

∥p∥0,∞,Eh
≤ |Eh|−1/2 ∥p∥0,Eh

∀p ∈ P(Eh),

Then combining the inverse estimates with Equation (6.8) obtains∣∣∣∣∣
∫
Eh

g̃pq dx−
∫
Eπ

h

g̃pq dx

∣∣∣∣∣ ≤ C4,ϱ,l,g,A |Eh|−1 hs+2

Ê
∥p∥0,Eh

∥q∥0,Eh
.

Application of Lemma 6.1.2 concludes the proof.

6.2 A Virtual Element Space on Curved Edge Polygons

Here we review the VEM on elements with curved edges proposed in [23]. This

space will be used to compute the discrete solution of the PDE. Importantly

in our method, any curved edges of ∂Eh can be represented as piecewise poly-

nomial maps from ∂Ê or more simply a collection of maps from the reference

interval I = [0, 1].

We denote a curved edge of Eh by eh with its corresponding reference straight

edge ê ⊂ ∂Ê and define an arc-length parameterisation by γeh : Ieh → eh, where

Ieh = [0, leh ] and leh is the length of eh. From this we introduce the mapped

polynomial space of degree k as

Pγ
k(eh) = {q ∈ L2(eh) : q = q̂ ◦ γ−1

eh
, q̂ ∈ Pk(Ieh)}.

The local VEM space on Eh is given in [23] as

Wk(Eh) = {vh ∈ H1(Eh)∩C0(Eh) : ∆vh ∈ Pk−2(Eh), vh|eh ∈ Pγ
k(eh) ∀eh ⊂ ∂Eh}.
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Following the remarks of [23], we enhance this space under the same approach

as the polygonal element case [2], taking Π∗ to be the least square projection

[48], to

Vk(Eh) = {vh ∈ H1(Eh) ∩ C0(Eh) : ∆vh ∈ Pk(Eh), vh|eh ∈ Pγ
k(eh) ∀eh ⊂ ∂Eh,∫

Eh

(Π∗
kvh − vh)q dx = 0 ∀q ∈ Pk(Eh)\Pk−2(Eh)}.

(6.9)

The DoFs for this space are similar to the original VEM, we define them for a

vh ∈ Vk(Eh) as,

• The point values of vh at the vertices of Eh.

• The point values of vh for k − 1 internal points of eh that are the images

through γeh of the k−1 internal points of the (k+1)-point Gauss-Lobatto

quadrature on [0, leh ].

• The internal moments of 1
|Eh|

∫
Eh

vhq dx for all q ∈ Mk−2(Eh).

A proof that these constitute a unisolvent set of DoFs is given in [23]. The

global VEM space is then defined as

Vh = {vh ∈ H1(Ωh) : vh|Eh
∈ Vk(Eh) ∀Eh ∈ Th}, (6.10)

with the restricted space of VEM functions with zero trace on ∂Ωh defined by

Vh,0 := Vh ∩H1
0 (Ωh).

Remark 14. In defining our VEM space we have chosen to use an arc-length

parametrisation of each curved edge in the mesh. By doing this we have an

interpolation estimate for Vh in which the unknown constant is only dependent

on k [23]. In the implementation we use a parametrisation of γeh : [0, 1] → eh

and still attain optimal orders of accuracy in the numerical experiments of

Chapter 7.

We provide a global interpolation estimate for this virtual element space in

the following theorem.
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Theorem 6.2.1 (Curved VEM Interpolation Estimate).

Let Vh,0 be the virtual element space of degree k defined using Equation (6.10)

on a virtual domain Ωh. For any v ∈ Hk+1
0 (Ωh) it holds for a fixed integer

s ∈ {0, 1, ..., k} that

∥v − vI∥1,Ωh
≲ hs ∥v∥s+1,Ωh

,

where the hidden constant depends on k, the Poincaré-Friedrichs constant of

Ωh, the W∞
1 norm of A and the shape regularity parameter ϱA of Th.

Proof. This result is a corollary of Theorem 3.1 from [23]. It holds that∑
Eh∈Th

|v − vI |1,Eh
≤ C1,k,ϱA

max
Eh∈Th

hs
Eh

∥v∥s+1,Ωh
.

We bound the error on a local element and scale the mesh size via Lemma 6.1.2

|v − vI |1,Eh
≤ C1,k,ϱA

max
Ê∈T̂h

C2,A hs
Ê
∥A ∥s1,∞,Ê ∥v∥s+1,Ωh

≤ C3,k,ϱA
hs ∥A ∥s1,∞,Ω̂ ∥v∥s+1,Ωh

.

Summing over elements of the virtual domain and bounding terms gives

|v − vI |1,Ωh
≤ C4,k,ϱA ,A hs ∥v∥s+1,Ωh

.

The proof is concluded by applying the Poincaré-Friedrichs inequality.

6.3 Computable Projection Operators

Unlike Method I proposed in Chapter 5, we do not directly use the H1 and L2

projection operators Π0 and Π1. In [23] it is argued that a sufficient amount of

quadrature points can be used to compute the required integrals over curved

edges and curvilinear polygons. Additionally, this works under the assump-

tion that the properties of the mapping A are known a priori. In our work

we have made the assumption that only a set of DoFs of Ah are known and

that these may be an approximation themselves. Hence, we introduce two new

computable operators that serve to approximate Π0 and Π1, namely Π0
h and
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Π1
h respectively. The benefit to this is that we can compute these new oper-

ators exactly using only the projected elements and the DoFs with minimal

quadrature rules required.

We describe these new operators as projections but note that they do not

generally satisfy the definition of a projection as they do not reproduce poly-

nomials exactly on Eh. In general Π0
hp ̸= p, Π1

hp ̸= ∇p for p ∈ P(Eh). The

error estimates of Theorem 6.3.1 and 6.3.2 suggests that this inconsistency

introduces errors terms that are appropriately controlled by the mesh size.

We approximate the Π0 projection using the projected element and quan-

tify the error of this approximation below. Similarly, we introduce the operator

Π1
h : Vk(Eh) → [Pk−1(Eh)]

2 to approximate Π1. The accuracy of these approx-

imations are given in Theorems 6.3.1 and 6.3.2. Without loss of generality, we

order the DoFs such that dofi(vh) corresponds to the internal moment with

respect to the ith scaled monomial.

Definition 6.3.1 (The Π0
h Projection).

Let Eh ∈ Th and vh ∈ Vk(Eh) for some k ∈ N. The projection Π0
h,kvh satisfies

for all mα ∈ Mk(Eh)

∫
Eπ

h

Π0
h,kvh mα dx =


|Eπ

h | dofα(vh) mα ∈ Mk−2(Eh)∫
Eπ

h
Π∗

kvh mα dx mα ∈ Mk(Eh)\Mk−2(Eh).

Definition 6.3.2 (The Π1
h Projection).

Let Eh ∈ Th and vh ∈ Vk(Eh) for some k ∈ N. The projection Π1
h,k−1vh satisfies∫

Eπ
h

Π1
h,k−1vh·mα dx = −|Eπ

h |
|Eh|

∫
Eh

vh∇·mα dx+

∫
∂Eh

vhmα·n dS ∀mα ∈ [Mk−1(Eh)]
2.

Theorem 6.3.1.

Let T̂h be the computational reference mesh that satisfies Assumption 1 and

Eh ∈ Th be a shape regular element given by Ah(Ê) for some Ê ∈ T̂h with

hÊ sufficiently small. For the projection operator Π0
h,k : Vk(Eh) → Pk(Eh) the
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following bound holds for all k ∈ N, vh ∈ Vk(Eh) and s ∈ {0, 1, ..., l}∥∥Π0
kvh − Π0

h,kvh
∥∥
0,Eh

≲ hs
Ê
∥vh∥0,Eh

, (6.11)

where the hidden constant depends on Ndofs, ϱ, l, j0 and the W∞
s+1 norm of A .

Furthermore, the following stability estimate holds∥∥Π0
h,kvh

∥∥
0,Eh

≲ ∥vh∥0,Eh
,

with the same hidden constant dependency as Equation (6.11).

Proof. In this proof we adopt the notation used in [44] in defining the matrix

equations to compute the L2 projection. We consider the error for some vh ∈

Vk(Eh) as a vector-matrix product∥∥Π0
kvh − Π0

h,kvh
∥∥2
0,Eh

= (t− th)
T M (t− th) ,

where we define the mass matrix on Eh by

Mα,β =

∫
Eh

mαmβ dx,

for mα,mβ ∈ Mk(Eh) and the vectors of coefficients of Π0 and Π0
h are given by

t and th respectively. By using the l2 norm ∥·∥2 and the matrix norm induced

by ∥·∥2 and analysing individual matrix terms we can bound the error noting

that the mass matrix terms scale like |Eh|∥∥Π0
kvh − Π0

h,kvh
∥∥2
0,Eh

≤ ∥M∥2 ∥t− th∥22

≤ C1,Ndofsh2
Eh

∥t− th∥22 , (6.12)

and it remains to bound the error in the projection coefficients. The Π0
k pro-

jection is determined by

t = M−1c where cα =


|Eh| dofα(vh) mα ∈ Mk−2(Eh)∫
Eh

Π∗
k vh mα dx mα ∈ Mk(Eh)\Mk−2(Eh)

,

and, similarly, the Π0
h projection is determined by

th = M−1
h ch where cα,h =


|Eπ

h | dofα(vh) mα ∈ Mk−2(Eh)∫
Eπ

h
Π∗

kvh mα dx mα ∈ Mk(Eh)\Mk−2(Eh).
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We then consider the difference of these coefficients, noting that

t− th =
(
M−1 −M−1

h

)
c + M−1

h (c− ch) .

Taking the norm and applying the triangle and matrix norm inequalities results

in

∥t− th∥2 ≤
∥∥M−1 −M−1

h

∥∥
2
∥c∥2 +

∥∥M−1
h

∥∥
2
∥c− ch∥2 .

The first term can be expanded by

M−1 −M−1
h = M−1

h (Mh −M)M−1. (6.13)

We note that matrix inverses scale like

M−1,M−1
h ∼ h−2

Eh
.

We bound Equation (6.13) using matrix norms, the scaling of the mass matrix

and applying the result of Lemma 6.1.4

∥∥M−1 −M−1
h

∥∥
2
≤
∥∥M−1

h

∥∥
2
∥Mh −M∥2

∥∥M−1
∥∥
2

≤ C2,Ndofsh−4
Eh

∥Mh −M∥2

≤ C3,Ndofsh−4
Eh

max
α,β

∣∣∣∣∣
∫
Eh

mαmβ dx−
∫
Eπ

h

mαmβ dx

∣∣∣∣∣
≤ C3,Ndofsh−4

Eh
C4,ϱ,l,j0,A hs

Ê
∥mα∥0,Eh

∥mβ∥0,Eh

≤ C5,Ndofs,ϱ,l,j0,A h−2
Eh
hs
Ê
,

where in the last bound we applied the property that ∥mα∥0,Eh
∼ hEh

for all

mα. Using this bound gives us

∥t− th∥2 ≤ C6,Ndofs,ϱ,l,j0,A h−2
Eh
hs
Ê
∥c∥2 + C7,Ndofsh−2

Eh
∥c− ch∥2 . (6.14)

The difference of c− ch requires a case-by-case analysis.

Case I: mα ∈ Mk−2(Eh)

In this case the integral is provided by the DoFs of vh. Without loss of generality
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we refer to these as the α-th degree of freedom

cα =

∫
Eh

vhmα dx = |Eh| dofα(vh).

In this case only the measure of Eh is unknown and approximated using the

projected element. Taking the difference and applying Lemma 6.1.4 (for p =

q = 1) gives

|cα − cα,h| ≤ |dofα(vh)| ||Eh| − |Eπ
h ||

≤ |dofα(vh)|C8,ϱ,l,A ,j0h
s
Ê
|Eh| .

Here we recall the “scaling as one” property of the scaled monomials [44]

dofα(vh) ∼ h−1
Eh

∥vh∥0,Eh
.

Using this property we get

|cα − cα,h| ≤ C9,ϱ,l,A ,j0hEh
hs
Ê
∥vh∥0,Eh

.

Case II: mα ∈ Mk(Eh)\Mk−2(Eh)

In this case we use the orthogonality condition imposed in the definition of the

VEM space in Equation (6.9). Here we have

cα =

∫
Eh

Π∗
kvh mα dx, cα,h =

∫
Eπ

h

Π∗
kvh mα dx.

Then applying Lemma 6.1.4 and the Cauchy-Schwarz inequality we get

|cα − cα,h| ≤ C10,ϱ,l,A ,j0h
s
Ê
∥Π∗

kvh∥0,Eh
∥mα∥0,Eh

.

Next we apply the stability of the Π∗
k projection and bound the norms of the

scaled monomials to get

|cα − cα,h| ≤ C11,ϱ,l,A ,j0hEh
hs
Ê
∥vh∥0,Eh

.

Having bounded both cases we can now bound c− ch via

∥c− ch∥2 ≤ C12,ϱ,l,A ,j0hEh
hs
Ê
∥vh∥0,Eh

. (6.15)
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The norm of c can also be bounded by a similar argument

∥c∥ ≤ C13,NdofshEh
∥vh∥0,Eh

. (6.16)

Now we bound the term t − th using Equations (6.14), (6.15) and (6.16) and

the scaling of M−1
h to get

∥t− th∥2 ≤ C14,Ndofs,ϱ,l,A ,j0h
s
Ê
h−1
Eh

∥vh∥0,Eh
.

To conclude the proof we substitute this bound into the original error Equation

(6.12)∥∥Π0
kvh − Π0

h,kvh
∥∥2
0,Eh

≤ C1,Ndofsh2
Eh

∥t− th∥22

≤ C1,Ndofsh2
Eh

(
C14,Ndofs,ϱ,l,A ,j0h

s
Ê
h−1
Eh

∥vh∥0,Eh

)2
≤ C15,Ndofs,ϱ,l,A ,j0h

2s
Ê
∥vh∥20,Eh

.

Taking the square root completes the proof. The stability bound is a conse-

quence of setting s = 0 and applying the triangle inequality.

Theorem 6.3.2.

Let T̂h be the computational reference mesh that satisfies Assumption 1 and

Eh ∈ Th be a shape regular element by Ah(Ê) for some Ê ∈ T̂h with hÊ suf-

ficiently small. For the projection operator Π1
h,k−1 : Vk(Eh) → Pk(Eh) the

following bound holds for all k ∈ N, vh ∈ Vk(Eh) and s ∈ {0, 1, ..., l}∥∥Π1
k−1vh − Π1

h,k−1vh
∥∥
0,Eh

≲ hs
Ê
∥vh∥1,Eh

,

where the hidden constant depends on Ndofs, ϱ, l, j0 and the W∞
s+1 norm of A .

Furthermore, the following stability estimate holds∥∥Π1
h,k−1vh

∥∥
0,Eh

≲ ∥vh∥1,Eh
,

Proof. The proof of the estimate follows the same arguments as Theorem 6.3.1.

We have ∥∥Π1
k−1vh − Π1

h,k−1vh
∥∥2
0,Eh

≤ ∥M∥2 ∥t− th∥22

≤ C1,Ndofsh2
Eh

∥t− th∥22 , (6.17)



6.3. COMPUTABLE PROJECTION OPERATORS 127

where M and the corresponding approximation Mh are the vector equivalent of

M and Mh defined in the proof of Theorem 6.3.1. We recall the Π1 projection

is determined by

t = M−1c,

where

cα = −
∫
Eh

vh∇ ·mα dx+

∫
∂Eh

vhmα · n dS mα ∈ [Mk−1(Eh)]
2 . (6.18)

Similarly, the Π1
h projection is determined by

th = M−1
h ch,

where

cα,h = −|Eπ
h |

|Eh|

∫
Eh

vh∇ ·mα dx+

∫
∂Eh

vhmα · n dS mα ∈ [Mk−1(Eh)]
2 .

(6.19)

Following the proof of Theorem 6.3.1 up to Equation (6.14) gives

∥t− th∥2 ≤ C2,Ndofs,ϱ,l,j0,A h−2
Eh
hs
Ê
∥c∥2 + C3,Ndofsh−2

Eh
∥c− ch∥2 . (6.20)

Applying integration by parts to Equation (6.18) gives

cα =

∫
Eh

mα · ∇vh dx,

from which we bound c using the Cauchy-Schwarz inequality and the scaling

of mα

∥c∥2 ≤ C3,NdofshEh
∥∇vh∥0,Eh

. (6.21)

It remains to estimate the error term of ∥c− ch∥2. Since ∇ ·mα ∈ [Pk−2(Eh)]
2

we can evaluate

1

|Eh|

∫
Eh

vh∇ ·mα dx,

exactly using only the DoFs. As a result the difference term is given, using

Equations (6.18) and (6.19), by

cα − cα,h = (|Eh| − |Eπ
h |)

1

|Eh|

∫
Eh

vh∇ ·mα dx, (6.22)
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noting that the integration over the element boundary is computed exactly on

the reference element. The integral in the difference term is computable using

the internal DoFs. The difference in volume is bounded as done in Theorem

6.3.1 by applying Lemma 6.1.4

||Eπ
h | − |Eh|| ≤ C1,ϱ,l,A ,j0h

s
Ê
|Eh| .

Noting that the weighted integral is a linear combination of DoFs of vh, that

scale as one by definition [44], we have

1

|Eh|

∫
Eh

vh∇ ·mα dx ∼ h−1
Eh

∥vh∥0,Eh
.

Inserting these bounds into Equation (6.22) gives

∥c− ch∥2 ≤ C4,Ndofs,ϱ,l,A ,j0h
s
Ê
hEh

∥vh∥0,Eh
.

Next we insert this bound into Equation (6.20) along with Equation (6.21)

gives

∥t− th∥2 ≤ C5,Ndofs,ϱ,l,j0,A hs
Ê
h−1
Eh

(
∥∇vh∥0,Eh

+ ∥vh∥0,Eh

)
≤ 2C5,Ndofs,ϱ,l,j0,A hs

Ê
h−1
Eh

∥vh∥1,Eh
.

Finally, we have from Equation (6.17) that

∥∥Π1
h,k−1vh − Π1

k−1vh
∥∥2
0,Eh

≤ C1,Ndofsh2
Eh

(
2C5,Ndofs,ϱ,l,j0,A hs

Ê
h−1
Eh

∥vh∥1,Eh

)2
≤ C6,Ndofs,ϱ,l,j0,A h2s

Ê
∥vh∥21,Eh

.

Taking the square root completes the proof. The stability bound is a conse-

quence of setting s = 0 and applying the triangle inequality.

6.4 Method II Formulation

This method is formulated in the standard VEM fashion locally on each pro-

jected element [20, 39]. In this method we divide the bilinear/linear forms into
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contributions over the virtual mesh Th

Ah(ρh, vh) =
∑

Eh∈Th

AEh
h (ρh, vh) +BEh

h (ρh, vh) + CEh
h (ρh, vh)

+
∑

Eh∈Th

SEh(ρh − Π∗
kρh, vh − Π∗

kvh),

lh(vh) =
∑

Eh∈Th

lEh
h (vh).

The local integral equations are defined by

AEh
h (ρh, vh) =

∫
Eπ

h

ã Π1
h,k−1ρh · Π1

h,k−1vh dx,

BEh
h (ρh, vh) =

1

2

∫
Eπ

h

b̃ · (Π0
h,kvhΠ

1
h,k−1ρh − Π0

h,kρhΠ
1
h,k−1vh) dx,

CEh
h (ρh, vh) =

∫
Eπ

h

µ̃ Π0
h,kρh Π0

h,kvh dx,

lEh
h (vh) =

∫
Eπ

h

f̃h Π0
h,kvh dx,

and the stabilisation term is given by the dofi-dofi formula (see Equation (2.8))

SEh(ρh, vh) = (ā+ h2
Eh
µ̄)

Ndofs∑
i=1

dofi(ρh) · dofi(vh), (6.23)

with ā and µ̄ being nodal averages on Eh of the extensions of a and µ respec-

tively. In this method f̃h := Π0
h,k−2f̃ for k > 2 and f̃h := Π0

0f̃ for k = 1, 2. To

simplify the analysis we assume the scaling constants in the stabilisation are

equivalent to those used in the definition of the perturbed bilinear form.

The isoparametric VEM is then defined, recalling the definition of Vh and

Vh,0 in Equation (6.10), as follows: find ρh ∈ Vh,0 such that

Ah(ρh, vh) = lh(vh) ∀vh ∈ Vh,0.

6.5 Consistency Error

Here we introduce a bound on the inconsistency by the use of the projected

elements that will be used in the H1 estimate as well as the coercivity proof
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for this method. For the analysis we recall the non-computable VEM bilinear

form Bh(·, ·) defined in Equation (5.4)

Bh(ρ, v) =
∑

Eh∈Th

∫
Eh

ãΠ1
k−1ρ · Π1

k−1v +
1

2
b̃ · (Π0

kvΠ
1
k−1ρ− Π0

kρΠ
1
k−1v) + µ̃Π0

kρ Π0
kv dx

+ SEh(ρ− Π∗
kρ, v − Π∗

kv),

with the stabilisation term taken exactly as in Equation (6.23). The isopara-

metric VEM is directly compared against BEh
h (·, ·) in the following Lemma.

Lemma 6.5.1.

For k, l ∈ N, let Eh ∈ Th be a curved element of degree l given by a shape

regular reference element Ê ∈ T̂h, with hÊ sufficiently small, and Eh = A (Ê).

For ρh, vh ∈ Vk(Eh) and a fixed integer s ∈ {0, 1, ...,min{k, l}}, the following

bound holds

∣∣∣BEh
h (ρh, vh)−AEh

h (ρh, vh)
∣∣∣ ≲ hs

Ê
∥ρh∥1,Eh

∥vh∥1,Eh
,

where the hidden constant depends on Ndofs, ϱ, l, j0, the W∞
s+1 norm of A and

the L∞ norms of a, b and µ on the element E = A (Ê).

Proof. Firstly we split the difference term via

BEh
h (ρh, vh)−AEh

h (ρh, vh) = EQ+ E1 + E2 + E3 + ES,
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where through adding and subtracting terms and noting that ES = 0 we have,

EQ =

∫
Eh

ãΠ1
h,k−1ρh · Π1

h,k−1vh dx−
∫
Eπ

h

ãΠ1
h,k−1ρh · Π1

h,k−1vh dx

+
1

2

∫
Eh

b̃ · (Π0
h,kvhΠ

1
h,k−1ρh − Π0

h,kρhΠ
1
h,k−1vh) dx

− 1

2

∫
Eπ

h

b̃ · (Π0
h,kvhΠ

1
h,k−1ρh − Π0

h,kρhΠ
1
h,k−1vh) dx

+

∫
Eh

µ̃Π0
h,kpΠ

0
h,kvh dx−

∫
Eπ

h

µ̃Π0
h,kpΠ

0
h,kvh dx,

E1 =

∫
Eh

(
ã(Π1

k−1 − Π1
h,k−1)ρh · Π1

k−1vh + ãΠ1
h,k−1ρh · (Π1

k−1 − Π1
h,k−1)vh

)
dx,

E2 =
1

2

∫
Eh

b̃ ·
(
Π0

kvhΠ
1
k−1ρh − Π0

kρhΠ
1
k−1vh +Π0

h,kvhΠ
1
h,k−1ρh +Π0

h,kρhΠ
1
h,k−1vh

)
dx,

E3 =

∫
Eh

(
µ̃(Π0

k − Π0
h,k)ρhΠ

0
kvh + µ̃Π0

h,kρh(Π
0
k − Π0

h,k)vh
)
dx.

The quadrature error EQ is bounded by directly applying Lemma 6.1.4 to give

|EQ| ≤ C1,ϱ,l,A ,j0h
s
Ê

(
∥ã∥0,∞,Eh

∥∥Π1
h,k−1ρh

∥∥
0,Eh

∥∥Π1
h,k−1vh

∥∥
0,Eh

+
1

2

∥∥∥b̃∥∥∥
0,∞,Eh

∥∥Π1
h,k−1ρh

∥∥
0,Eh

∥∥Π0
h,kvh

∥∥
0,Eh

+
1

2

∥∥∥b̃∥∥∥
0,∞,Eh

∥∥Π1
h,k−1vh

∥∥
0,Eh

∥∥Π0
h,kρh

∥∥
0,Eh

+ ∥µ̃∥0,∞,Eh

∥∥Π0
h,kρh

∥∥
0,Eh

∥∥Π0
h,kvh

∥∥
0,Eh

)
.

Then using the stability bounds in Theorems 6.3.1 and 6.3.2 provides

|EQ| ≤ C2,Ndofs,ϱ,l,A ,j0h
s
Ê

(
∥ã∥0,∞,Eh

∥ρh∥1,Eh
∥vh∥1,Eh

+
1

2

∥∥∥b̃∥∥∥
0,∞,Eh

∥ρh∥1,Eh
∥vh∥0,Eh

+
1

2

∥∥∥b̃∥∥∥
0,∞,Eh

∥vh∥1,Eh
∥ρh∥0,Eh

+ ∥µ̃∥0,∞,Eh
∥ρh∥0,Eh

∥vh∥0,Eh

)
.

Bounding the L2 norm by the H1 norm and Applying Stein’s Extension The-

orem 5.3.1 gives

|EQ| ≤ C3,Ndofs,ϱ,l,A ,j0h
s
Ê
max

(
∥a∥0,∞,E , ∥b∥0,∞,E , ∥µ∥0,∞,E

)
∥ρh∥1,Eh

∥vh∥1,Eh

≤ C4,Ndofs,ϱ,l,A ,j0,a,b,µh
s
Ê
∥ρh∥1,Eh

∥vh∥1,Eh
. (6.24)
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We bound E1 by using Hölder’s inequality and the Cauchy-Schwarz inequality

along with Theorem 6.3.2 to get

|E1| ≤ ∥ã∥0,∞,Eh

∥∥Π1
k−1ρh − Π1

h,k−1ρh
∥∥
0,Eh

∥∥Π1
k−1vh

∥∥
0,Eh

+ ∥ã∥0,∞,Eh

∥∥Π1
h,k−1ρh

∥∥
0,Eh

∥∥Π1
k−1vh − Π1

h,k−1vh
∥∥
0,Eh

≤ C5,Ndofs,ϱ,l,j0,A ,ah
s
Ê
∥ρh∥1,Eh

∥vh∥1,Eh
,

where in the final line we applied Stein’s Extension Theorem 5.3.1 to bound the

norm of ã by a constant. Following similar steps for E2 and E3 and utilising

Theorems 6.3.1 and 6.3.2 gives

|E1|+ |E2|+ |E3| ≤ C6,Ndofs,ϱ,l,j0,A ,a,b,µh
s
Ê
∥ρh∥1,Eh

∥vh∥1,Eh
.

We conclude the proof by combining the above bound with Equation (6.24).

6.6 Well-posedness

Theorem 6.6.1.

For sufficiently small h, Ah(·, ·) is coercive and continuous and lh(·) is bounded

such that the VEM: Find ρh ∈ Vh,0 such that

Ah(ρh, vh) = lh(vh) ∀vh ∈ Vh,0,

has a unique solution via the Lax-Milgram Theorem.

Proof. Here we proof local continuity and infer the global property using stan-

dard arguments [20]. Through the triangle inequality we have that

|Ah(ρh, vh)| ≤ |Ah(ρh, vh)− Bh(ρh, vh)|+ |Bh(ρh, vh)|

≤
∑

Eh∈Th

∣∣∣AEh
h (ρh, vh)− BEh

h (ρh, vh)
∣∣∣+ |Bh(ρh, vh)| .

We apply the local estimate of Lemma 6.5.1 and bound terms to get

|Ah(ρh, vh)| ≤
∑

Eh∈Th

C1,Ndofs,ϱ,l,j0,A ,a,b,µh
s
Ê
∥ρh∥1,Eh

∥vh∥1,Eh
+ |Bh(ρh, vh)|

≤ C2,Ndofs,ϱ,l,j0,A ,a,b,µh
s ∥ρh∥1,Ωh

∥vh∥1,Ωh
+ |Bh(ρh, vh)| .
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To complete the continuity proof, we introduce the continuity constant of

Bh(·, ·) given by [39] to give

|Ah(ρh, vh)| ≤ C3,Ndofs,ϱ,l,j0,A ,a,b,µ ∥ρh∥1,Ωh
∥vh∥1,Ωh

. (6.25)

Continuity of lh(·) follows from a similar argument

|lh(vh)| ≤ C4,Ndofs,ϱ,l,j0,A ,f ∥vh∥1,Ωh
.

To prove the coercivity ofAh(·, ·), we consider the bilinear form BEh
h (·, ·) defined

in Equation (5.4) and consider the coercivity constant C5,a0,µ0 > 0 given in [39]

and apply Lemma 6.5.1 to get

C5,a0,µ0 ∥vh∥
2
1,Ωh

≤ Bh(vh, vh)

≤ Ah(vh, vh) +
∑

Eh∈Th

∣∣∣AEh
h (vh, vh)− BEh

h (vh, vh)
∣∣∣

≤ Ah(vh, vh) + C2,Ndofs,ϱ,l,j0,A ,a,b,µh
s ∥vh∥21,Ωh

,

hence (
C5,a0,µ0 − C2,Ndofs,ϱ,l,j0,A ,a,b,µh

s
)
∥vh∥21,Ωh

≤ Ah(vh, vh).

Local coercivity is then obtained by, for example, imposing that h is sufficiently

small such that

C2,Ndofs,ϱ,l,j0,A ,a,b,µh
s <

C5,a0,µ0

2
.

This provides the coercivity condition with a constant independent of the mesh

size and the mapping A

C6,a0,µ0 ∥vh∥
2
1,Ωh

≤ Ah(vh, vh). (6.26)

6.7 A H1 Estimate

We derive a H1 estimate through a Strang-type error bound quantification of

the quadrature error of using projected elements and bounds for local bilinear

form differences.



134 CHAPTER 6. METHOD II

Theorem 6.7.1 (Strang-type Bound).

Let ρh, vh ∈ Vh,0 be the VEM solution to the PDE 5.1 using Method II outlined

in section 6.4. Furthermore, let ρ̃ be the extension of the solution to the PDE

(5.1) from Ω to Ωh and let f ∗ be the extension of the forcing term in Equation

(5.1) defined as in [41] by

−∇ · (ã∇ρ̃) + b̃ · ∇ρ̃+ c̃ρ̃ = f ∗ x ∈ Ωh, (6.27)

along with the following linear operator

l∗(vh) =

∫
Ωh

f ∗vh dx.

It holds on Ωh, with a corresponding reference mesh T̂h satisfying Assumption

1 and of sufficently small mesh size h, that for all vh ∈ Vh,0

∥ρh − vh∥1,Ωh
≲

(
inf

vh∈Vh,0

∥ρ̃− vh∥1,Ωh
+ inf

p∈Pk(Th)
∥ρ̃− p∥1,Ωh

)

+ inf
p∈Pk(Th)

 ∑
Eh∈Th

sup
wh∈Vk(Eh)\{0}

∣∣∣BEh(p, wh)− BEh
h (p, wh)

∣∣∣
∥wh∥1,Eh


+ inf

p∈Pk(Th)

 ∑
Eh∈Th

sup
wh∈Vk(Eh)\{0}

∣∣∣BEh
h (p, wh)−AEh

h (p, wh)
∣∣∣

∥wh∥1,Eh


+ sup

wh∈Vh,0\{0}

|lh(wh)− l∗(wh)|
∥wh∥1,Ωh

,

where the hidden constant depends on Ndofs, ϱ, l, the lower bounds a0, µ0, j0,

the L∞ norms of a, b and µ and the W∞
s+1 norm of A .

Proof. From Equation (6.26) of Theorem 6.6.1 there exists a coercivity of

Ah(·, ·) such that

C1,a0,µ0 ∥ρh − vh∥21,Ωh
≤ Ah(ρh − vh, ρh − vh).

Then by setting wh = ρh − vh and expanding linear terms and introducing the

numerical method we get

C1,a0,µ0 ∥ρh − vh∥21,Ωh
≤ lh(wh) +Ah(p− vh, wh)−Ah(p, wh),
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where p ∈ Pk(Th) is piecewise polynomial. Then adding and subtracting

B(p, wh) and Bh(p, wh) provides

C1,a0,µ0 ∥ρh − vh∥21,Ωh
≤ lh(wh)− B(p, wh) +Ah(p− vh, wh)

+ [Bh(p, wh)−Ah(p, wh)] + [B(p, wh)− Bh(p, wh)] .

Next we add and subtract B(ρ̃, wh) to get

C1,a0,µ0 ∥ρh − vh∥21,Ωh
≤ [lh(wh)− B(ρ̃, wh)] + B(ρ̃− p, wh) +Ah(p− vh, wh)

+ [Bh(p, wh)−Ah(p, wh)] + [B(p, wh)− Bh(p, wh)] .

We apply the continuity of the bilinear forms using Equation (6.25) of Theorem

6.6.1 and [39] to get,

C1,a0,µ0 ∥ρh − vh∥21,Ωh
≤ C2,Ndofs,ϱ,l,j0,A ,a,b,µ

(
∥ρ̃− p∥1,Ωh

∥wh∥1,Ωh
+ ∥p− vh∥1,Ωh

∥wh∥1,Ωh

)
+ [lh(wh)− B(ρ̃, wh)]

+ [Bh(p, wh)−Ah(p, wh)] + [B(p, wh)− Bh(p, wh)]

Dividing through by ∥wh∥1,Ωh
and applying the triangle inequality gives

C1,a0,µ0 ∥ρh − vh∥1,Ωh
≤ C2,Ndofs,ϱ,l,j0,A ,a,b,µ

(
2 ∥ρ̃− p∥1,Ωh

+ ∥ρ̃− vh∥1,Ωh

)
+

|lh(wh)− B(ρ̃, wh)|
∥wh∥1,Ωh

+
|Bh(p, wh)−Ah(p, wh)|

∥wh∥1,Ωh

+
|B(p, wh)− Bh(p, wh)|

∥wh∥1,Ωh

.

Through integration by parts and applying the homogeneous Dirichlet bound-

ary conditions we have

B(ρ̃, wh) =

∫
Ωh

f ∗wh dx.

Substitution into the previous bound and further application of the triangle

inequality by expanding terms over Th completes the proof.

Strang Error Terms

Here we break down the bounds of Theorem 6.7.1 into four components. The

first term is bounded by standard projection and interpolation estimates. The
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second term can be bounded by applying exactly the results of [39] to give a

local bound. The third bound is given by the consistency estimate of Lemma

6.5.1. The fourth term is bounded in this section by Lemma 6.7.3.

Lemma 6.7.2.

Let k,m ∈ N and ρ ∈ Hm+1(Ω) be the solution to the PDE (5.1) with co-

efficients satisfying the regularity conditions of a,b, c ∈ W∞
m+1(Ω). For the

extension ρ̃ ∈ Hm+1(Ωh) from Ω to Ωh, we have for all Eh ∈ Th and a fixed

integer s ∈ {0, 1, ..., k} the following bound

sup
wh∈Vk(Eh)\{0}

∣∣∣BEh(Π0
kρ̃, wh)− BEh

h (Π0
kρ̃, wh)

∣∣∣
∥wh∥1,Eh

≲ hs
Eh

∥ρ̃∥s+1,Eh
,

where the hidden constant depends on the shape regularity constant of Eh de-

noted by ϱEh
, k and the W∞

s+1 norms of ã, b̃ and µ̃.

Proof. See Theorem 6.2 in [39].

Lemma 6.7.3.

Let l, k ∈ N and ρ ∈ Hm+1(Ω) be the solution to the PDE (5.1) with coefficients

satisfying the regularity conditions of a,b, c ∈ W∞
m+1(Ω). For the extensions

ρ̃, f̃ ∈ Hm+1(Ωh), we have for all Eh ∈ Th, wh ∈ Vh,0 and a fixed integer

s ∈ {1, ...,min{k, l}}, the following bound

|lh(wh)− l∗(wh)|
∥wh∥1,Ωh

≲ hs

(
∥ρ̃∥s+1,Ωh

+
∥∥∥f̃∥∥∥

s−1,Ωh

)
,

where the hidden constant is dependent on Ndofs, the shape regularity parame-

ters of Th and T̂h denoted by ϱ and ϱA , k, l, j0 and the W∞
s+1 norms of A , a,

b and µ.

Proof. We prove the k ≥ 2 case noting that the k = 1 case follows a near

identical presentation. We rewrite the difference as

lh(wh)− l∗(wh) =
∑

Eh∈Th

∫
Eπ

h

f̃h Π0
h,kwh dx−

∫
Eh

f ∗wh dx.
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We can expand the second integral by adding and subtracting terms and using

the orthogonality condition of the Π0 projection∫
Eh

f ∗wh dx =

∫
Eh

f ∗
h Π0

kwh dx+

∫
Eh

(f ∗ − f ∗
h)wh dx,

where f ∗
h = Π0

h,k−2f
∗ for k ≥ 2 and f ∗

h = Π0
0f

∗ for k = 1. Via the above

expansion we can define the local difference terms by

lh(wh)− l∗(wh) =
∑

Eh∈Th

E1 + E2 + E3,

where,

E1 =

∫
Eπ

h

f̃hΠ
0
h,kwh dx−

∫
Eh

f̃hΠ
0
h,kwh dx,

E2 =

∫
Eh

(f ∗
h − f ∗)wh dx,

E3 =

∫
Eh

f̃hΠ
0
h,kwh dx−

∫
Eh

f ∗
hΠ

0
kwh dx

E1 is bounded by applying Lemma 6.1.4 and the stability estimate of Theorem

6.3.1 to get

|E1| ≤ C1,Ndofs,ϱ,l,A ,j0h
s
Ê

∥∥∥f̃∥∥∥
0,Eh

∥wh∥0,Eh

≤ C1,Ndofs,ϱ,l,A ,j0h
s
Ê

∥∥∥f̃∥∥∥
0,Eh

∥wh∥1,Eh
.

E2 is bounded by applying the Cauchy-Schwarz inequality, the triangle in-

equality and Theorems 2.1.1 and 6.3.1

|E2| ≤
(∥∥f ∗ − Π0

k−2f
∗∥∥

0,Eh
+
∥∥Π0

h,k−2f
∗ − Π0

k−2f
∗∥∥

0,Eh

)
∥wh∥0,Eh

≤ C2,Ndofs,ϱEh
,k,l,A ,j0(h

s
Eh

+ hs
Ê
) ∥f ∗∥s−1,Eh

∥wh∥0,Eh
.

Applying Lemma 6.1.2 gives

|E2| ≤ C3,Ndofs,ϱEh
,k,l,A ,j0,a,b,µh

s
Ê
∥f ∗∥s−1,Eh

∥wh∥0,Eh
.

By the definition of f ∗ in Equation (6.27) we can further bound E2 via

|E2| ≤ C3,Ndofs,ϱEh
,k,l,A ,j0,a,b,µh

s
Ê
∥ρ̃∥s+1,Eh

∥wh∥0,Eh
.
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E3 is further split into two differences of

E3 =

∫
Eh

f̃h(Π
0
h,kwh − Π0

kwh) dx−
∫
Eh

(f̃h − f ∗
h)Π

0
kwh dx.

The first integral is bounded by Applying the Cauchy-Schwarz inequality, The-

orem 6.3.1 and the stability of Π0 which results in∫
Eh

f̃h(Π
0
h,kwh − Π0

kwh) dx ≤ C4,Ndofs,ϱ,l,j0,A hs
Ê

∥∥∥f̃∥∥∥
0,Eh

∥wh∥0,Eh

≤ C4,Ndofs,ϱ,l,j0,A hs
Ê

∥∥∥f̃∥∥∥
0,Eh

∥wh∥1,Eh
.

The second integral is decomposed into∫
Eh∩E

(f̃h − f ∗
h)Π

0
kwh dx+

∫
Eh\E

(f̃h − f ∗
h)Π

0
kwh dx.

From Steins Extension theorem we have that f = f ∗ = f̃ a.e. on the set Eh∩E.

The above equation is bounded by Applying Hölder’s inequality and following

the proof of Lemma 6.1.1 to get∣∣∣∣∫
Eh\E

(f̃h − f ∗
h)Π

0
kwh dx

∣∣∣∣ ≤ |Eh\E|
∥∥∥f̃h − f ∗

h

∥∥∥
0,∞,Eh\E

∥∥Π0
kwh

∥∥
0,∞,Eh\E

≤ C5,ϱ,l,A hs+2

Ê

∥∥∥f̃h − f ∗
h

∥∥∥
0,∞,Eh\E

∥∥Π0
kwh

∥∥
0,∞,Eh\E

≤ C5,ϱ,l,A hs+2

Ê

∥∥∥f̃h − f ∗
h

∥∥∥
0,∞,Eh

∥∥Π0
kwh

∥∥
0,∞,Eh

.

Applying an inverse estimate on Eh and scaling hEh
according to Lemma 6.1.2

gives∣∣∣∣∫
Eh\E

(f̃h − f ∗
h)Π

0
kwh dx

∣∣∣∣ ≤ C6,ϱ,l,A hs
Ê

∥∥∥f̃h − f ∗
h

∥∥∥
0,Eh

∥∥Π0
kwh

∥∥
0,Eh

.

We then bound E3 using this inequality and applying the triangle inequality

and the stability of Π0 to get

|E3| ≤ C4,Ndofs,ϱ,l,j0,A hs
Ê

∥∥∥f̃∥∥∥
0,Eh

∥wh∥1,Eh
+ C6,ϱ,l,A hs

Ê

∥∥∥f̃h − f ∗
h

∥∥∥
0,Eh

∥∥Π0
kwh

∥∥
0,Eh

≤ C4,Ndofs,ϱ,l,j0,A hs
Ê

∥∥∥f̃∥∥∥
0,Eh

∥wh∥1,Eh
+ C6,ϱ,l,A hs

Ê

(∥∥∥f̃h∥∥∥
0,Eh

+ ∥f ∗
h∥0,Eh

)∥∥Π0
kwh

∥∥
0,Eh

≤ C4,Ndofs,ϱ,l,j0,A hs
Ê

∥∥∥f̃∥∥∥
0,Eh

∥wh∥1,Eh
+ C6,ϱ,l,A hs

Ê

(∥∥∥f̃∥∥∥
0,Eh

+ ∥f ∗∥0,Eh

)
∥wh∥1,Eh

≤ C7,Ndofs,ϱ,l,j0,A hs
Ê

(∥∥∥f̃∥∥∥
0,Eh

+ ∥f ∗∥0,Eh

)
∥wh∥1,Eh
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We conclude the bounding of E3 by applying the definition of f ∗ in Equation

(6.27)

|E3| ≤ C8,Ndofs,ϱ,l,j0,A ,a,b,µh
s
Ê

(∥∥∥f̃∥∥∥
0,Eh

+ ∥ρ̃∥2,Eh

)
∥wh∥1,Eh

.

Combining the bounds for E1, E2 and E3 and gives

|lh(wh)− l∗(wh)| ≤
∑

Eh∈Th

C9,Ndofs,ϱ,ϱEh
,k,l,j0,A ,a,b,µh

s
Ê

(
∥ρ̃∥s+1,Eh

+
∥∥∥f̃∥∥∥

s−1,Eh

)
∥wh∥1,Eh

,

From which the proof is concluded by applying triangle inequality, bounding

norms and dividing by ∥wh∥1,Ωh
.

The H1 Error estimate

Theorem 6.7.4 (H1 Error Estimate for Method II).

Let l, k ∈ N and ρ ∈ Hm+1(Ω) be the solution to the PDE (5.1) with coefficients

satisfying the regularity conditions of a,b, c ∈ W∞
m+1(Ω). For the extension

ρ̃ ∈ Hm+1(Ωh), and the VEM of degree l and k outlined in section 6.4 we

have the following error bound for a fixed integer s ∈ {1, ...,min{l, k}} and

sufficiently small h

∥ρ̃− ρh∥1,Ωh
≲ hs

(
∥ρ∥s+1,Ω + ∥f∥s−1,Ω

)
.

Proof. Firstly, we add and subtract the global VEM interpolant of the extension

ρ̃I . Using the triangle inequality and applying Theorem 6.2.1 provides,

∥ρ̃− ρh∥1,Ωh
≤ ∥ρ̃− ρ̃I∥1,Ωh

+ ∥ρ̃I − ρh∥1,Ωh

≤ C1,k,ϱA ,A hs ∥ρ̃∥s+1,Ωh
+ ∥ρ̃I − ρh∥1,Ωh

. (6.28)

The second term is bounded by applying Theorem 6.7.1 and considering p =

Π0
kρ̃ and vh = ρ̃I with the constant of Theorem 6.7.1 denoted by

Cstrang := Cstrang,Ndofs,ϱ,l,a0,µ0,j0,a,b,µ,A ,
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1

Cstrang

∥ρh − ρ̃I∥1,Ωh
≤ ∥ρ̃− ρ̃I∥1,Ωh

+
∥∥ρ̃− Π0

kρ̃
∥∥
1,Ωh

+
∑

Eh∈Th

sup
wh∈Vk(Eh)\{0}

∣∣∣BEh(Π0
kρ̃, wh)− BEh

h (Π0
kρ̃, wh)

∣∣∣
∥wh∥1,Eh

+
∑

Eh∈Th

sup
wh∈Vk(Eh)\{0}

∣∣∣BEh
h (Π0

kρ̃, wh)−AEh
h (Π0

kρ̃, wh)
∣∣∣

∥wh∥1,Eh

+ sup
wh∈Vh\{0}

|lh(wh)− l∗(wh)|
∥wh∥1,Ωh

.

From this we again apply Theorems 6.2.1, 2.1.1 and scale the mesh size ac-

cording to Lemma 6.1.2 to bound the first two terms. Lemmas 6.7.2, 6.5.1 and

6.7.3 are applied for the third, fourth and fifth terms respectively. This results

in

1

Cstrang

∥ρh − ρ̃I∥1,Ωh
≤ C2,l,k,ϱ,ϱA ,A hs ∥ρ̃∥s+1 +

∑
Eh∈Th

C3,ϱEh
,k,a,b,µh

s
Eh

∥ρ̃∥s+1,Eh

+
∑

Eh∈Th

C4,Ndofs,ϱ,l,j0,a,b,µ,A hs
Ê

∥∥Π0
kρ̃
∥∥
s+1,Eh

+ C5,ϱ,ϱA ,l,k,j0,A ,a,b,µh
s

(
∥ρ̃∥s+1,Ωh

+
∥∥∥f̃∥∥∥

s−1,Ωh

)
.

Applying Lemma 6.1.2, the stability of Π0 and bounding local terms gives

1

Cstrang

∥ρh − ρ̃I∥1,Ωh
≤ C6,Ndofs,ϱ,ϱA ,l,k,j0,A ,a,b,µh

s

(
∥ρ̃∥s+1,Ωh

+
∥∥∥f̃∥∥∥

s−1,Ωh

)
.

Substitution into Equation (6.28) gives

∥ρh − ρ̃∥1,Ωh
≤ C1,k,ϱA ,A hs ∥ρ̃∥s+1,Ωh

+ CstrangC6,Ndofs,ϱ,ϱA ,l,k,j0,A ,a,b,µh
s

(
∥ρ̃∥s+1,Ωh

+
∥∥∥f̃∥∥∥

s−1,Ωh

)
The proof is concluded by applying Stein’s Extension Theorem 5.3.1.



Chapter 7

Numerical Investigations

In this chapter we present numerical experiments to validate the theory of

Chapters 5 and 6. A series of domain transformations are defined in Section

7.1. These are tested for the interpolation and projection of the solution data

onto the computation and virtual meshes T̂h, Th for Methods I and II respec-

tively. Both methods are then tested against two second-order elliptic PDEs.

Convergence results are presented in Section 7.2. The numerical experiments

of this chapter may involve PDEs with non-zero boundary conditions. In these

instances, Dirichlet boundary conditions are enforced using the interpolant of

the DoFs of the true solution. Furthermore, the forcing data is prescribed by

applying symbolic differentiation to the known solution using the DUNE-UFL

library [48], as such explicit details of the forcing data is not provided in this

chapter.

7.1 Example Mappings

In this series of numerical experiments we use three different domain transfor-

mations to validate the estimates of Chapters 5 and 6. In this Chapter we refer

to these mappings as the “Diamond”, “CE” and “Warped Square” maps. In

all tests the reference domain is taken as Ω̂ = [0, 1]2.

141
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Diamond Map

The Diamond mapping serves as a patch test to validate the numerical methods

perform as expected under linear transformations. The mapping is defined by

A (ξ) =

[
ξ + η

2
,
−ξ + η

2

]
.

The Jacobian and projection approximations of this mapping are exact for

l ≥ 1. As seen in Section 7.2 the expectation is that both numerical methods

will exhibit optimal orders of accuracy with respect to the solution degree k

and remain independent of the transformation degree l.

The CE Map

The CE mapping is taken from the works of Lipnikov & Morgan [78, 80]. This

is a cubic polynomial mapping defined as

A (ξ) = [ξ + ξη(1− ξ)/2, η + ξη(1− η)/2] . (7.1)

Additionally, this mapping is the identity on the boundary of Ω̂ and only trans-

forms internal edges and vertices.

The Warped Square Map

The final mapping considered is the Warped Square defined by

A (ξ) =

[
sin

ξπ

3
, eη

]
. (7.2)

This choice of mapping is distinct from the previous two choices as Equation

(7.2) is a non-polynomial and non-linear translation between Ω̂ and Ω.

7.2 Convergence Results in Two Dimensions

For each convergence test we consider a sequence of 5 Centroidal Voronoi Tes-

sellations [91] of Ω̂ = [0, 1]2. The global mesh size roughly halves each time the

number of polygonal elements is quadrupled in the mesh sequence. The numer-

ical experiments are performed within the DUNE software environment. The
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mesh files are generated using PolyMesher within MATLAB [94] and imported

into DUNE.

The forcing term f is chosen in each test such that the exact solution, in

the physical coordinate system, is given by

ρ(x) = cos(xy)sin(x). (7.3)

These tests go beyond the scope of the theory on two accounts: we assess

both the H1 and L2 error norms for Methods I and II, all problems considered

have non-homogeneous Dirichlet boundary conditions.

To compare the accuracy of the two methods, we consider discrete H1 and

L2 semi-norms that approximate the solution error on Ωh. These are defined

as the H1 and L2 norms respectively as

∥ρh − ρ∥2h,1 :=
∑
Ê∈T̂h

∫
Ê

∣∣J−⊤
A ,h Π1

k−1(ρ̂h − ρ̂)
∣∣2 jh,n dξ, (7.4)

∥ρh − ρ∥2h,0 :=
∑
Ê∈T̂h

∫
Ê

∣∣ Π0
k(ρ̂h − ρ̂)

∣∣2 jh,n dξ, (7.5)

for Method I. Similarly, for Method II we estimate the errors via

∥ρh − ρ∥2h,1 :=
∑

Eh∈Th

∫
Eπ

h

∣∣Π1
h,k−1(ρh − ρ̃)

∣∣2 dx,

∥ρh − ρ∥2h,0 :=
∑

Eh∈Th

∫
Eπ

h

∣∣ Π0
h,k(ρh − ρ̃)

∣∣2 dx.

Interpolation & Projection

The first sequence of tests assess the accuracy of Interpolating the solution data

onto the computational domains. We consider a Lagrange-type interpolation

by assessing the DoFs of A and a global VEM L2 projection approach.

In the case of the Diamond map, we observe in Figure 7.1 that optimal

orders of accuracy of O(hk) in H1 and O(hk+1) in L2 are achieved for both

Methods I and II. This is expected for the reasons outlined in Section 7.1 as

the mapping requires no approximation. Indeed we obtain identical numerical

results when approximating A with a linear VEM space. As such we omit
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Figure 7.1: Interpolation and Projection error plots using the Diamond mapping approximated
using the linear VEM (l = 1).

the data for l = 2, 3 from the presentation, this will also be the case for the

remainder of this section for the Diamond mapping.

The CE mapping presents the first instance in which the convergence rates

are limited by the minimum of l and k, as expected by Theorems 5.8.1 and

6.7.4 for Method I and Method II respectively. This behaviour is observed

only for Method II in which the data approximation is limited to O(hl+1) in

the L2 norm and O(hl) in the H1 norm. From Figures 7.2 and 7.3 we observe

this effect for the l = 1, 2 cases, taking note that the CE map is exact for

l = 3, in particular we observe sub-optimal convergence rates for the case in
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which k = 3, l = 2. In contrast Method I maintains O(hk) and O(hk+1) H1

and L2 errors independent of l. This difference between Methods I and II is

explained through the implementation within DUNE. In Method I, the solution

data is given as a continuous UFL [4] expression transformed to the reference

configuration and consequently is independent of the mapping discretization

degree l. For Method II, the DoFs of the solution data are actually interpolated

onto the set projected elements {Eπ
h} which is an approximation of degree l of

the physical domain Ω. The reductions in convergence rates seen in method II

for k = 3, l = 2 requires further investigation. The same conclusions are drawn

for the Warped Square mapping for both the interpolation and L2 projection.

The numerical results are presented in Figures 7.4 and 7.5 respectively.

A Reaction-diffusion Problem

In this experiment we consider the simplified PDE defined when a = c = 1

and b = 0. This is referred to as the Reaction-diffusion problem as can be

expressed as

−∆ρ+ ρ = f x ∈ Ω,

ρ = g x ∈ ∂Ω,

for some function g ∈ H1/2(∂Ω). In each numerical test f, g are chosen such

that the true solution is given by Equation (7.3).

As presented in Figure 7.6, the Diamond transformation produces optimal

order O(hk) and O(hk+1) results in the H1 and L2 error norms for l = 1 with

identical results for l = 2, 3. A similar outcome is noted between the CE and

Warped Square mappings in Figures 7.7 and 7.8 respectively. We notice that

the convergence rate for both Method I and Method II is now similarly limited

to min(l, k) in the H1 norm, in agreement with the estimates of Theorems 5.8.1

and 6.7.4. A distinction between Method I and Method II is that in Method I

we see that for k = 3, l = 2 that we maintain second and third order accuracy
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Figure 7.2: Interpolation error plots using CE mapping approximations of degree l = 1, 2, 3.
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Figure 7.3: L2 projection error plots using CE mapping approximations of degree l = 1, 2, 3.
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Figure 7.4: Interpolation error plots using Warped Square mapping approximations of degree
l = 1, 2, 3.
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Figure 7.5: L2 projection error plots using Warped Square mapping approximations of degree
l = 1, 2, 3.
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Figure 7.6: Error plots for the Reaction-diffusion problem using a Diamond mapping approxima-
tion of degree l = 1.

for the H1 and L2 errors whereas Method II still has sub-optimal convergence

rates as seen in the interpolation and projection experiments.

A General Elliptic PDE

In the final experiment we consider a second-order elliptic PDE with inho-

mogenous Dirichlet boundary conditions. Following the numerical example

from [20], the PDE (5.1) is defined by

a =

y2 + 1 −xy

−xy x2 + 1

 , b = x, c = x2 + y3,

with f and the Dirichlet boundary conditions given such that the solution in the

physical coordinates satisfies Equation (7.3). The same convergence behaviour

discussed in the Reaction-diffusion problem is observed in Figures 7.9, 7.10 and

7.11 for the Diamond, CE and Warped Square mappings respectively.
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Figure 7.7: Error plots for the Reaction-diffusion problem using CE mapping approximations of
degree l = 1, 2, 3.
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Figure 7.8: Error plots for the Reaction-diffusion problem using Warped Square mapping approx-
imations of degree l = 1, 2, 3.
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Figure 7.9: Error plots for the general elliptic PDE using a Diamond mapping approximation of
degree l = 1.
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Figure 7.10: Error plots for the general elliptic PDE using CE mapping approximations of degree
l = 1, 2, 3.
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Figure 7.11: Error plots for the general elliptic PDE using Warped Square mapping approximations
of degree l = 1, 2, 3.



Discussion

Two approaches to isoparametric VEMs have been presented in Part II. In

each case an optimal order H1 a priori estimate is derived and these have been

verified, along with optimal L2 orders of convergence, on a series of numerical

tests in two dimensions.

Both methods provide the groundwork to formally develop moving mesh

VEMs. In particular the formulation of Method II can be seen as extension

of the approach taken in Part I. The VEM of Part I can be viewed as the

k = l = 1 case of Method II where the projected elements are defined by an

interpolation of the vertices of a moving polygon. Method I also offers a formal

analysis which in combination with the reviewed works of Lipnikov & Morgan

in Section 2.3 can provide a moving mesh method. This is studied in Part III.

The analysis of these isoparametric methods can include three-dimensional

elliptic problems by extending the technical results of Chapters 5 and 6 to three-

dimensional domains. In the case of Method I, the results of Section 5.4 can be

extended to the three-dimensional setting through simple inductive arguments.

The H1 estimate can then be deduced following the remaining arguments of

Chapter 5. In method II, the definition of the discrete projections extend

to three-dimensional curved polytopes. The use of curved three-dimensional

VEMs is not well developed in the literature and extending the analysis of

Method II would be dependent on ongoing works in the curved VEM research

community. For example, an extension of the interpolation estimate of Theo-

rem 6.2.1 and the projection approximation results of Theorems 6.3.1 and 6.3.2
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would require extension to curved polyhedral elements.

The construction of optimal L2 error estimates for both Methods remains an

open problem. The use of a classical Aubin-Nitsche duality arguments used to

derive L2 estimates for VEMs [20, 39] does not easily extend to these methods.

In the construction of both methods, a significant restriction is placed on

the regularity of the domain transformation through the Lipschitz continuity

condition. Whilst this is a standard assumption made in ALE analysis, and

has the additional benefit of simplifying the analysis, the choices of domain

transformations are more restricted than in isoparametric FEMs [42, 75]. Pre-

liminary numerical investigations found that in the case of a simple non-smooth

transformation A ∈ C0(Ω̂)\C1(Ω̂) that the orders of convergence are limited

to O(h3/2) for both Methods I and II. Additional analysis is required to explain

this observed behaviour.



Part III

A Virtual Element ALE Method
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Introduction

In the final Part of this thesis a Virtual Element Method is formulated, analysed

and implemented for a conservative ALE scheme. Motivated by the successful

implementation of a linear VEM for a moving mesh algorithm in Part I, the

isoparametric VEMs studied in Part II are utilised in the computation and

analysis of this ALE scheme.

The analysis of FEM-ALE schemes is well developed. Early works provide

a formulation and analysis of a linear and quadratic finite element approaches

[54, 84, 60]. In more recent works a discontinuous-Galerkin method was pro-

posed and analysed [27, 28]. These papers form the template upon which the

Virtual Element Method Arbitrary Lagrangian-Eulerian (VEM-ALE) scheme

is designed and analysed. As this is the first instance of a VEM-ALE scheme,

the scope of Part III is limited to problems of reduced complexity. These

include: only considering prescribed fluid velocity fields, problems with a pre-

scribed ALE velocity and domain transformation and a conservative ALE weak

formulation only. Following the results of Part II, Method I of Chapter 5 will

be used in the formulation with the domain and solution polynomial degrees

being equal (l = k).

In Chapter 8, the definition of the time-dependent ALE mapping and ve-

locity field are presented and the advection-diffusion problem is defined. Then

a VEM using the isoparametric VEM of Chapter 5 is employed to derive a

moving mesh VEM-ALE scheme.

In Chapter 9 the VEM-ALE scheme is tested against a series of advection-
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diffusion problems and domain transformations. Numerical results suggest the

accuracy of the isoparametric VEM from Part II extends to moving mesh prob-

lems. In addition to this, numerical experiments are conducted to test the

extension of the isoparametric VEM to the velocity-based moving mesh VEM

of Part I.



Chapter 8

A Virtual Element Arbitrary

Lagrangian-Eulerian Scheme

In this chapter we propose an VEM-ALE scheme for an advection-diffusion

problem with a prescribed convective fluid velocity field. Using the framework

of Method I from Chapter 5 all components of the method: the solution, the

domain transformation and the ALE velocity field are considered on a VEM

space of degree k ∈ N. Following elementary approaches in the literature, we

consider first a semi-discretization of this method then present a fully discrete

numerical method using a standard θ-scheme to integrate with respect to time

[54, 60, 89].

In Section 8.1 we define the advection-diffusion problem and a corresponding

ALE formulation. The moving VEM space is defined in Section 8.2 from which

a semi-discretisation using the isoparametric VEM of Chapter 5 is formulated

within Section 8.3. The fully discrete method is presented in Section 8.4.

8.1 Problem Definition

In alignment with Part II, we consider a polygonal reference domain Ω̂ ⊂ R2

with a time-dependent domain Ωt ⊂ R2 for t ∈ [0, T ] where T > 0. We denote

time-dependent ALE map by At : Ω̂ → Ωt. The ALE velocity is denoted in

161
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both the reference and physical domain by ŵ and w respectively. In this ALE

formulation, we assumed that the ALE mapping is prescribed. In alignment

with [27, 28], we consider an ALE mapping that is Lipschitz with a continuous

Lipschitz inverse A −1
t : Ωt → Ω̂. Under this condition, we have that the

determinant of the Jacobian of the ALE mapping is uniformly bounded below

by a time-independent constant j0 such that

0 < j0 < det (JAt) ∀t ∈ [0, T ].

The Advection-diffusion Problem

The PDE considered in Part III is a linear advection-diffusion problem given

as: for t ∈ (0, T ], find ρ(x, t) such that

∂ρ

∂t
− µ∆ρ+∇ · (bρ) = f x ∈ Ωt, t ∈ (0, T ], (8.1)

ρ = ρ0(x) x ∈ Ω0, t = 0,

ρ = 0 x ∈ ∂Ωt, t ∈ [0, T ],

where b is a convection velocity and µ ≥ 0 is a constant diffusivity parameter.

The conservative ALE formulation for this advection diffusion problem is

well-documented [50]. We defined the space of functions with zero material

derivative by

X (Ωt) =
{
v : Ωt → R : v = v̂ ◦ A −1

t , v̂ ∈ H1
0 (Ω̂)

}
. (8.2)

Reynolds Transport Theorem 2.2.1 gives for some test function v ∈ X (Ωt) that

d

dt

∫
Ωt

ρv dx =

∫
Ωt

v

{
∂ρ

∂t
+∇ · (wρ)

}
dx.

Substitution of the PDE (8.1) and integration by parts leads to

d

dt

∫
Ωt

ρv dx =

∫
Ωt

v {f + µ∆ρ+∇ · (wρ− bρ)} dx

=

∫
Ωt

fv − µ∇ρ · ∇v − (w − b) · ρ∇v dx.
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The above equation can be written as follows

d

dt
Mt(ρ, v) + µAt(ρ, v) +Bt(ρ, v;w) = lt(v), (8.3)

where,

Mt(ρ, v) =

∫
Ωt

ρv dx, (8.4)

At(ρ, v) =

∫
Ωt

∇ρ · ∇v dx, (8.5)

Bt(ρ, v;w) =

∫
Ωt

(w − b) · ρ∇v dx, (8.6)

lt(v) =

∫
Ωt

fv dx. (8.7)

The stability of this formulation is well known under the assumption that

∇ · b ∈ L∞(Ωt) and f ∈ H−1(Ωt) for all t ∈ [0, T ], where H−1(Ωt) denotes

the dual space of H1(Ω) [54]. The stability of the continuous formulation

is independent on the choice of ALE mapping. Similar estimates have been

presented for a FEM discretisation of the ALE method in which the stability

is dependent on the choice of ALE mapping [54, 55, 28]. In Part III we do

not present any analysis on the VEM-ALE scheme, instead we assume that the

choices of b and f satisfy the aforementioned regularity conditions and that

this is sufficient to propose a numerically stable method.

At this point we remark that the continuous formulation given by Equation

(8.3) is independent of the choice of a conservative or non-conservative ALE

approach in the continuous framework [28]. As with FEMs, this is not the

case for VEM discretisation of Equation (8.3) and the VEM formulation in

the next section is only applicable to a conservative ALE formulation of the

advection-diffusion problem.

8.2 A Moving Virtual Element Space

Following Chapter 5, we denote the reference mesh, constructed on Ω̂ and

satisfying Assumption 1, by T̂h. The classical VEM space of degree k on Ω̂ is
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defined as

V̂h =
{
v̂h ∈ H1(Ω̂) : v̂h|Ê ∈ Vk(Ê) ∀Ê ∈ T̂h

}
,

with Vk(Ê) defined in Equation (2.3), and the corresponding restricted space

with homogeneous boundary conditions defined by

V̂h,0 =
{
vh ∈ V̂h ∩H1

0 (Ω̂)
}
.

The discrete ALE mapping Ah,t ∈
[
V̂h

]2
is defined for all time t ∈ [0, T ] using

the VEM interpolation of the true ALE mapping. The corresponding ALE

velocity field ŵh,t ∈
[
V̂h

]2
is given by the interpolation of ŵt. As the ALE

mapping and velocity are defined on the reference domain, these functions are

only spatially dependent on ξ with a time-dependent set of DoFs. We define

the discrete Jacobian matrix by

JAh,t
= Π1

k−1Ah,t ∀t ∈ [0, T ],

with the corresponding determinant denoted by jh,t. The virtual domain gen-

erated by this VEM mapping is denoted by Ωh,t and the corresponding virtual

mesh is denoted by Th,t. We refer to Section 5.2 for additional details.

The discrete counterpart to Equation (8.2) is defined using the discrete ALE

mapping

Xh(Ωh,t) =
{
v : Ωt → R : v = v̂ ◦ A −1

h,t , v̂ ∈ V̂h

}
.

For the VEM we choose a basis to be a subset of Xh

{φi(x, t)}N
dofs

i=1 ⊂ Xh(Ωh,t),

where each basis function satisfies for all t ∈ [0, T ]

φi(x, t) = φ̂i(ξ) ◦ A −1
h,t , (8.8)

with φ̂i being the canonical VEM basis function of V̂h defined using Equation

(2.5). Using this basis, we define a time dependent VEM function by

vh,t = vh(x, t) =
Ndofs∑
i=1

dofi(vh(x, t))φi(x, t), (8.9)
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where φi is defined by Equation (8.8). We emphasis that the DoFs of the

discrete function vh,t in Equation (8.8) are time-dependent so in general vh,t /∈

Xh(Ωh,t), instead vh,t is a time-dependent linear combination of elements of

Xh(Ωh,t). The moving VEM space can then be defined, using Equations (8.8)

and (8.9), as

Vh,t =
{
vh,t ∈ H1

0 (Ωh,t) : vh,t = v̂h,t ◦ A −1
h,t , v̂h,t ∈ V̂h

}
.

To impose the homogeneous Dirichlet boundary conditions, the restriction of

these VEM spaces to zero boundary conditions are denoted by

Vh,t,0 =
{
vh,t ∈ Vh,t : v̂h,t = vh,t ◦ Ah,t ∈ V̂h,0

}
,

Xh,0 =
{
vh ∈ Xh(Ωh,t) : v̂h = vh ◦ Ah,t ∈ V̂h,0

}
.

8.3 A Semi-discrete Scheme

In this VEM the numerical solution of the advection-diffusion equation is given

by ρh,t ∈ Vh,t,0. This solution is only implicitly known in the ALE coordinates

as the VEM-ALE scheme is computed using only the representation of ρh,t and

the test functions vh,t ∈ Xh(Ωh,t) in the reference coordinates.

For ease of reading, we drop the temporal subscript for the solution and test

functions in the following formulations, instead the time-dependency will be

described by the temporal subscript in the bilinear forms of the method.

The VEM-ALE semi-discrete formulation is given as follows: For a given

t ∈ (0, T ] find ρh,t ∈ Vh,t,0 such that

d

dt
Mh,t(ρh, vh) + µAh,t(ρh, vh) +Bh,t(ρh, vh;wh) = lh,t(vh) ∀vh ∈ Xh,0(Ωh,t).

The VEM discretisations of Equations (8.4), (8.5), (8.6) and (8.7) are given
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by element-wise contributions on the reference mesh

Mh,t(ρh, vh) =
∑
Ê∈T̂h

M Ê
h,t(ρh, vh), Ah,t(ρh, vh) =

∑
Ê∈T̂h

AÊ
h,t(ρh, vh),

Bh,t(ρh, vh;wh) =
∑
Ê∈T̂h

BÊ
h,t(ρh, vh;wh), lh,t(vh) =

∑
Ê∈T̂h

lÊh,t(vh).

The local element contributions are defined in a similar fashion to those given

in Section 5.5 as

M Ê
h,t(ρh, vh) =

∫
Ê

Π0
kρ̂h Π0

kv̂h jh,t dξ + h2
Ê
SÊ(ρ̂h − Π0

kρ̂k, v̂h − Π0
kv̂k),

AÊ
h,t(ρh, vh) =

∫
Ê

J−⊤
Ah,t

Π1
k−1ρ̂h J−⊤

Ah,t
Π1

k−1v̂h jh,t dξ + SÊ(ρ̂h − Π∇
k ρ̂k, v̂h − Π∇

k v̂k),

BÊ
h,t(ρh, vh;wh) =

∫
Ê

Π0
k(ŵh − b̂h) · Π0

kρhJ
−⊤
Ah,t

Π1
k−1v̂h jh,t dξ,

lÊh,t(vh) =

∫
Ê

f̂h Π0
kv̂h jh,t dξ,

where SÊ(·, ·) is the standard dofi-dofi stabilisation term defined in Equa-

tion (2.8), f̂h is a discrete approximation of the forcing data defined as f̂h :=

Π0
k−2(f(x, t) ◦ Ah,t) for k ≥ 2 and f̂h := Π0

0f(x, t) for k = 1 and b̂h := b ◦ Ah,t

8.4 A fully Discrete Scheme

A method of lines approach is taken to perform the integration of the weak

formulation with respect to time. The θ-scheme is well known [74, 35] for an

ODE dy/dt = f(x, t) over an interval [tn, tn+1] as

dy

dt

∣∣∣
tn

≈ θf(x, tn+1) + (1− θ)f(x, tn) θ ∈ [0, 1].

We define the fully discrete VEM-ALE scheme using the θ-scheme. For θ ∈

[0, 1] and 0 ≤ tn < tn+1 ≤ T with ∆tn+1 = tn+1 − tn, the time derivative of
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Mh,t(ρh, vh) is approximated via

Mh,n+1(ρh, vh)−Mh,n(ρh, vh)

∆t
= θlh,n+1(ρh, vh) + (1− θ)lh,n(ρh, vh)

− µ (θAh,n+1(ρh, vh) + (1− θ)Ah,n(ρh, vh))

− (θBh,n+1(ρh, vh;wh) + (1− θ)Bh,n(ρh, vh;wh)) .

(8.10)

By rearranging the terms of Equation (8.10) we can define an algebraic system

of equations. We define the matrices Gn+1 and Hn by

(Gn+1)i,j = Mh,n+1(φi, φj) + ∆tθ[Ah,n+1(φi, φj) +Bh,n+1(φi, φj;wh)]

(Hn)i,j = Mh,n(φi, φj) + ∆t(θ − 1)[Ah,n(φi, φj) +Bh,n(φi, φj;wh)],

and the vector Fn is defined as

(Fn)i = ∆tθlh,n+1(φi) + ∆t(1− θ)lh,n(φi).

The fully discrete VEM-ALE scheme is the defined as follows: given ρn,

wn+1 and wn, find ρn+1 such that

Gn+1ρn+1 = Hnρn +Fn.

To conclude this chapter, we note that if the ALE velocity field wh is not

computable, but the ALE mapping is known, we can approximate this via

wh,n =
Ah,n+1 − Ah,n

∆tn+1

. (8.11)

If the boundary transformation is known, the ALE mapping can be chosen

such that it is indeed given as a piecewise linear displacement in time meaning

Equation (8.11) introduces no additional discretisation error.



Chapter 9

Numerical Investigation

In the final chapter of this thesis, the VEM-ALE scheme is benchmarked against

a series of advection-diffusion problems on moving meshes within DUNE, di-

rectly utilising the isoparamteric VEM software developed in Part II. Third

and Fourth order convergence results are obtained in all test cases in the L2

norm for k = 2 and k = 3 respectively. The formulation is then extended to

attain higher orders of accuracy for the moving mesh method of Part I.

A sequence of CVT-type meshes is utilised in all numerical experiments of

this chapter, an example of a CVT-type mesh was given in Figure 2.1. The

VEM-ALE is implemented, as in Chapter 7, within the DUNE environment

[90, 48]. Unless stated otherwise, the Crank-Nicolson method (θ = 0.5) is used

to approximate integration between discrete time levels. This choice provides

unconditional stability on the numerical solution and second-order accuracy in

time [35]. The time step size ∆t is reduced in all advection-diffusion simulations

according to ∆t2 ∼ hk+1 such that the expected orders of convergence in the

spatial discretisation are produced. All numerical experiments in this chapter

are run to a final time of T = 0.01. The H1 and L2 errors are computed at the

final time T using the error norms used for Method I in Equations (7.4) and

(7.5).

To ensure that the accuracy of the VEM-ALE scheme can be assessed, prob-
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lems with inhomogenous boundary conditions have to be considered. These

conditions are enforced by applying a Dirichlet boundary condition on the

method at each time step using the interpolant of the DoFs of the true solu-

tion on the moving boundary. Similar to the experiments of Chapter 7, the

DUNE-UFL library is used to symbolically compute the forcing data and the

explicit expressions of these terms are omitted in this chapter.

In Section 9.1, the VEM is verified by considering an advection-diffusion

problem on a pair of time-independent ALE mappings. A pure diffusion prob-

lem is tested in Section 9.2. A general advection-diffusion problem on a time-

dependent domain is considered in Section 9.3. In Section 9.4, the chapter is

concluded with a high-order discretisation of the velocity-based moving mesh

VEM of Part I.

9.1 Time-independent ALE Maps

In the first test we validate the numerical method by considering a time-

independent domain transformation. The CE and Warped Square mappings

are reused. These are given by Equations (7.1) and (7.2) of Section 7.1 as

A (ξ) = [ξ + ξη(1− ξ)/2, η + ξη(1− η)/2] ,

A (ξ) =

[
sin

ξπ

3
, eη

]
.

We choose the diffusivity parameter to be µ = 1 and the convective velocity

to be b = x. The forcing data f and Dirichlet boundary conditions are chosen

such that the true solution of the advection-diffusion problem in the physical

domain is given as

ρ(x, y, t) = exp(−π2t) sin(πx) sin(πy).

Numerical results for both mappings are given in Figure 9.1. Here we observe

the expected convergence rates in the H1 and L2 norms of O(hk) and O(hk+1)

respectively when run to a final time of T = 0.01.
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Figure 9.1: Error plots for the advection-diffusion equation on the time-independent CE ALE
mapping (left) and the Warped Square ALE mapping (right) for k = 1, 2, 3.

9.2 A Pure Diffusion Problem

For this experiment a heat equation problem is considered in which there is a

zero convection term b = 0, leading to a linear diffusion problem on a moving

domain. We set µ = 1 and f = 0 and choose an initial conditions such that

the solution is given by

ρ(x, y, t) = exp(−2π2t) sin(πx) sin(πy).

The domain is transformed by the linearised CE mapping from Equation (7.1)

At(ξ) = ξ +
t

2T
ξη [1− ξ, 1− η] ,

where T = 0.01 is the final time in the simulation. The vorticial motion (VM)

map [78] is defined as the solution of the system of ODEs:

ẋ = 2 sin(πx) cos(πy), (9.1)

ẏ = −2 cos(πx) sin(πy). (9.2)

In the case of the VM mapping defined by Equations (9.1) and (9.2), only

the velocity-field of the ALE mapping is provided and the non-linear nature of
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Figure 9.2: Error plots for the pure diffusion problem on the linearised CE ALE mapping (left)
and the VM ALE mapping (right) for k = 1, 2, 3.

the velocity field requires an explicit time integration scheme. To match the

second-order accuracy of the Crank-Nicolson time-stepping scheme, we employ

Heun’s method (modified Euler [35]) to integrate Equations (9.1) and (9.2) over

time. The numerical results are presented in Figure 9.2 for both the CE and

VM ALE mappings, again we observe O(hk+1) and O(hk) orders of convergence

in the L2 and H1 norms for both mappings.

9.3 A General Advection-diffusion Problem

In this final experiment we consider the numerical example of a solution to the

advection-diffusion equation with a travelling feature. The domain is trans-

formed from Ω̂ = [0, 1]2 to a rectangular domain [0, 2] × [0, 1] which oscillates

in the y direction. This transformation is defined as

At(ξ) = ξ + [ξ, A sin(πuyt)],

where A > 0 and uy are user specified parameters which control the amplitude

and frequency of the oscillations respectively. The ALE velocity field of this
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Figure 9.3: Error plot for the general advection-diffusion problem using the oscillating ALE map
for k = 1, 2, 3.

transformation is given as

w = [0, Auyπ cos(πuyt)].

The parameters of the advection-diffusion Equation (8.1) are set as µ = 1,

b = x and f is chosen such that the true solution of the PDE is

ρ(x, t) = exp(−π2t) sin(π(y − Asin(πuyt))) sin(π(x− uxt)),

where ux is another user specified parameter that controls the speed of travel

of the solution in the positive x direction. In our experiment we consider the

ALE mapping given by A = 1/10 and ux = uy = 20 and run the simulation

to a final time of T = 0.01. From Figure 9.3, we observe the expected orders

of convergence in the L2 and H1 norms. Moving mesh and solution profile

snapshots are provided in Figures 9.4 and 9.5 respectively.
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Figure 9.4: Solution snapshots of the advection-diffusion equation using a quadratic VEM and a
reference mesh of 800 elements. The snapshots are taken at times t = 0 (top left), t = 0.025 (top
right), t = 0.05 (bottom left) and t = 0.075 (bottom right).

-1.0e+00

1.0e+00

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1.0e+00

1.0e+00

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1.0e+00

1.0e+00

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1.0e+00

1.0e+00

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 9.5: Solution snapshots of the advection-diffusion equation using a quadratic VEM and a
reference mesh of 800 elements. The snapshots are taken at times t = 0 (top left), t = 0.025 (top
right), t = 0.05 (bottom left) and t = 0.075 (bottom right).
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9.4 The Velocity-based Moving Mesh Method

To conclude this chapter, we revisit the moving mesh VEM proposed in Part

I and consider the formulation for the PME presented in in Chapter 3. By

applying the isoparametric VEM discretisation of Method I, the velocity field

and the ALE update can be computed to a higher-degree of precision than

before.

We consider the m = 1 case of the PME

∂ρ

∂t
= ∇ · (ρ∇ρ),

and measure the numerical error, as done in Section 4.1, against the similar-

ity solution of the PME defined by Equation (4.1). In the interest of brevity,

we only present the local bilinear form equations for the velocity-based mov-

ing mesh method. The construction of the global system of equations and

the structure of Algorithm 1 remains unchanged. The same dofi-dofi stabilisa-

tion terms are also used (see Equation (2.8)) computed in this case using the

projection operators defined on the reference domain.

The Velocity Problem

Consistent with the approach in Section 3.4, we discretise the velocity potential

problem as: find ϕ̂h,n ∈ Vh,n such that

Ah,n(ϕh, vh) = dh,n(vh) ∀vh,n ∈ Vh,n,

where the local element contributions From Equations (3.24) and (3.25) are

now given by

AÊ
h,n(ϕh, vh) =

∫
Ê

Π0
kρ̂h J−⊤

Ah,n
Π1

k−1ϕ̂h · J−⊤
Ah,n

Π1
k−1v̂h jh,n dξ

+ ρ̄hS
Ê(ϕ̂h − Π∇

k ϕ̂h, v̂h − Π∇
k v̂h),

dÊh,n(vh) = −
∫
Ê

Π0
kρ̂h J−⊤

Ah,n
Π1

k−1ρ̂h · J−⊤
Ah,n

Π1
k−1v̂h jh,n dξ,
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and we impose that dof1(ϕ̂h) = 0. Likewise the velocity reconstruction problem

is discretised as: find uh ∈ [Vh]
2 such that

Mh,n(uh, vh) = bh,n(vh) ∀vh,n ∈ Vh,n,

where Mh,n(·, ·) and bh,n(·) are modified from Equations (3.27) and (3.28) to

local contributions of

M Ê
h,n(uh, vh) =

∫
Ê

Π0
kûh Π0

kv̂h jh,n dξ

+ h2
Ê
SÊ(ûh − Π0

kûh, v̂h − Π0
kv̂h),

bÊh,n(vh) =

∫
Ê

J−⊤
Ah,n

Π1
k−1ϕ̂h Π0

kv̂h jh,n dξ.

The ALE Problem

In this experiment we only consider the case of wh = uh. The distribution of

the initial mass monitor defined in Equation (3.30) is now computed locally via

µh,0(vh) =
∑
Ê∈T̂h

∫
Ê

Π0
kρ̂h Π0

kv̂h jh,0 dξ.

The ALE update Equation (3.31) is redefined locally by

µ̇Ê
h,n(vh) = −

∫
Ê

{
J−⊤

Ah,n
Π1

k−1ρ̂h − Π0
kŵh

}
· Π0

kρ̂h J−⊤
Ah,n

Π1
k−1v̂h jh,n dξ, ∀vh,n ∈ Vh,n.

Integration of the above equation is performed as done in Section 3.5, using a

forward Euler time stepping scheme. The solution is reconstructed at a new

time level by the following problem: find ρh,n ∈ Vh,n such that

mh,n(ρh, vh) = µh,n(vh) ∀vh ∈ Vh,n,

where the local element contributions of mh,n(ρh, vh) are given by

mÊ
h,n(ρh, vh) =

∫
Ê

Π0
kρ̂h Π0

kv̂h jh,n dξ + h2
Ê
SÊ(ρ̂h − Π0

kρ̂h, v̂h − Π0
kv̂h).

Approximating Ω0

Since the initial domain is a circle of radius r0 = 1/2, we take the reference

domain to be the polygonal interpolation of Ω0. In the linear VEM this was a
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suitable choice as the interpolant was a second order accurate approximation

of Ω0. From Assumption 4, we require that

|Ah,0 − A0|1,Ω̂ = O(hk),

which is achieved by modifying the boundary DoFs (point values in two-

dimensional VEM) of the polygonal approximation to interpolate ∂Ω0. An

alternative would be to apply the harmonic extension operator defined by Equa-

tions (2.15) and (2.16). This has also been implemented and we discuss the

impacts of choosing the approximation of Ω0 at the end of this section.

Time-stepping

As the Lagrangian velocity field is required before the ALE update can be

performed this experiment is restricted to using the Forward Euler method

only (θ = 0). In our presentation we use the original Forward Euler approach

and scale the time-step sizes appropriately such that the numerical method is

stable and produces the expected orders of accuracy. The VEM-ALE mapping

can be written as

Ah,n+1 = Ah,0 +
n∑

i=0

(ti+1 − ti)ŵh,i.

In the FEM implementation, Heun’s method has been successfully implemented

to improve the efficiency of the method [67].

Results

Numerical experiments were conducted for the moving mesh method with k =

2, 3 ran for T = 0.01. At first, we tested the moving mesh method using the

interpolation of the initial domain. This resulted in poor convergence rates

limited to O(hk−1/2) in the H1 norm and O(hk+1/2) in the L2 norm. By using

the harmonic extension of Equations (2.15) and (2.16) to construct Ωh,0 we

observe improved rates of convergence. These results are presented in Figure

9.6. For the quadratic case we observe the expected convergence rates of O(h2)
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Figure 9.6: Error plots for the velocity-based moving mesh VEM of degree k = 2 (left) and k = 3
(right).
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Figure 9.7: Discrete l1 solution and mesh errors for the velocity-based moving mesh method of
degree k = 1, 2, 3.

and O(h3) in the H1 and L2 error norms respectively. In the cubic case we

observe a reduction in convergence rates from the quadratic VEM to O(h)

and O(h2) in the H1 and L2 norms respectively. This observation is further

supported in Figure 9.7 with a comparison of the discrete l1 errors compared

to the linear moving mesh VEM presented in Part I.

To offer a possible explanation of this behaviour, we considered taking Ωh,0 =

Ω̂ and weakly imposing the boundary conditions on the solution. In this case
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the initial ALE map is the identity map, and consequently Ah,0 ∈
[
C∞(Ω̂)

]2
.

As the initial condition is a quadratic polynomial, we expect from the polyno-

mial consistency property of the VEM that the only source of numerical error

in this simulation comes from integration with respect to time and the moving

boundary being restricted to O(h2) accuracy. From figure 9.8 we observe that

the order of convergence for the numerical solution is O(hk+1) in both the H1

and L2 norms. In figure 9.9 we also observe against the original linear moving

mesh VEM of Part I that this new scheme provides higher order accuracy in

the discrete l1 norm for k = 2, 3. The mesh error convergence rates do improve

to second-order for k = 2 but does not achieve a higher order of accuracy for

k = 3, with reduced mesh error but not an additional degree of accuracy.

We hypothesise from these results that the choice of the initial ALE map is

important in obtaining expected convergence rates. This is possibly due to a

regularity condition on the Ah,0 that a VEM interpolation of a circle does not

satisfy. As discussed at the conclusion of Part II, we have observed that non-

smooth domain transformations lead to a reduction in the orders of accuracy

of the isoparametric VEM. One remedy could be to employ a higher regularity

VEM space for Ah,0 such as a C1 conforming VEM discretisation [48]. This

remains an open problem that will be the subject of future works.
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Figure 9.8: Error plots for the velocity-based moving mesh VEM of degree k = 2 (left) and k = 3
(right).
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Figure 9.9: Discrete l1 solution and mesh errors for the velocity-based moving mesh method of
degree k = 1, 2, 3.



Discussion

In Part III a VEM discretisation is formulated and analysed for a conservative

ALE formulation of an advection-diffusion problem. This VEM-ALE scheme

is then successfully tested against a series of problems in which high orders of

convergence of O(hk) and O(hk+1) are observed in the H1 and L2 norms re-

spectively. The framework is then extended to the velocity-based moving mesh

method proposed in Part I which provides improved rates of convergence, lead-

ing to a substantial improvement in the accuracy of the moving mesh method.

To support the results of Part III, semi-discrete a priori stability and er-

ror estimate need to be developed. The framework for analysing FEM-ALE

schemes from [54, 84, 60] can be extended to the VEM-ALE scheme using the

isoparametric VEM analysis of Part II. A study is also required to verify the

numerical time-stepping schemes and whether in the virtual element context

these still possess satisfactory conservation properties, such as the Geometric

Conservation Law, that finite element approaches can provide [54, 27].

It is also worth noting that only the first isoparametric VEM (Method I)

of Chapter 5 was considered in the formulation and experiments. Method II

could also be formulated by changing the semi-discrete equations of Section 8.3

accordingly. Similarly, a non-conservative ALE formulation could also be pre-

sented and discretised using both isoparametric methods. The implementation

of these is ongoing work.

Within these experiments, there was an attempt to reproduce the results of

the conservative remapping scheme [78] reviewed in Section 2.1. The VEM-
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ALE did not produce a converging numerical approximation to this problem.

In certain circumstance, such as when the ALE mapping was polynomial, the

numerical scheme converged with O(hk+1) accuracy in the L2 norm. The hy-

pothesis for this issue is that the psuedo-time PDE is effectively a transport

equation, thus a conforming VEM would not be expected to produce numer-

ically stable results. Instead a non-conforming Petrov-Galerkin type VEM

would be more appropriate [25], this remains an open problem.

Having successfully implemented a high-order VEM-ALE scheme, the scope

for expansion is very promising. The advection-diffusion equation has typi-

cally been used as a preliminary problem to benchmark and analyse before a

numerical method is derived for the Navier-Stokes equations on moving do-

mains. To develop a moving mesh method for the Navier-Stokes equations, a

H(div) VEM, such as the one found in [45], would be required. In fact this has

very recently been implemented for simulating Navier-Stokes on a fixed domain

with a divergence-free VEM where the VEM produced better resolution of flow

features compared to a standard Taylor-Hood finite element discretisation [48].
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Chapter 10

Conclusion

10.1 Introduction

The objective of this project was stated as: To propose, analyse, and implement

robust and effective moving mesh Virtual Element Methods.

This was pursued by proposing and implementing several moving mesh Vir-

tual Element Method schemes for non-linear diffusion and advection-diffusion

problems on time-dependent domains. Isoparametric Virtual Element Meth-

ods were proposed and analysed to support the development of higher-order

accurate moving mesh methods using the Virtual Element Method.

The results presented in this thesis demonstrate that Virtual Element Meth-

ods can be successfully applied to existing moving mesh algorithms and achieve

the same order of accuracy compared to classical Finite Element Method ap-

proaches.

The important contributions of this thesis include: the first moving mesh

Virtual Element Method that solely utilises the Virtual Element Method in

the numerical computations, an isoparametric Virtual Element Method that

allows for the approximation of partial differential equations when only degrees

of freedom of the domain transformation are known, and the first high-order

Arbitrary Lagrangian-Eulerian Virtual Element Method for partial differential
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equations on time-dependent domains with a moving boundary.

10.2 Summary of Part I

In Part I, a velocity-based moving mesh Finite Element Method is extended to

a polygonal discretisation using the lowest order Virtual Element Method. The

new method is benchmarked against non-linear diffusion problems by modeling

the support of the solution on a moving boundary. Numerical results demon-

strate that the Virtual Element Method achieves similar orders of accuracy

compared to the Finite Element Method. The additional flexibility of the

Virtual Element Method is then exploited to propose and implement a more

complex algorithm to simulate contact between a moving boundary and fixed

obstacles. Numerical simulations suggest that the Virtual Element Method re-

mains robust in the presence of degenerating mesh edges and coalescing mesh

vertices.

10.3 Summary of Part II

In Part II, an isoparametric Virtual Element Method is proposed, analysed, and

benchmarked for second-order elliptic partial differential equations on trans-

formed domains. Two discretisation schemes are proposed to provide a com-

putable and accurate isoparametric method. In both methods, H1 estimates

are proven, suggesting that the orders of accuracy are limited to the minimum

discretisation degree of the domain transformation and the partial differential

equation solution. Numerical experiments validate the H1 estimates and indi-

cate that an additional degree of accuracy is obtained in the L2 error norm as

well.
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10.4 Summary of Part III

In Part III, the isoparametric Virtual Element Method from Part II is employed

to propose and implement a conservative Arbitrary Lagrangian-Eulerian Vir-

tual Element Method for advection-diffusion problems on time-dependent do-

mains with prescribed boundary motion. Numerical experiments achieve high

orders of convergence in the H1 and L2 error norms for a series of advection-

diffusion problems. The formulation is then extended to the moving mesh

method from Part I, resulting in improved orders of accuracy over the lowest

order Virtual Element Method.

10.5 Discussion, Interpretation, and Contribution to Knowl-

edge

At the time of writing, this thesis provides the first successful implementations

of the Virtual Element Method for moving mesh algorithms in the literature.

This demonstrates that moving mesh methods can be extended to incorporate

more general mesh structures, including polygons and curved-edged elements.

This greatly improves the flexibility of moving mesh methods and allows for

the future development of optimal mesh movement strategies that exploit this

flexibility. In the area of Virtual Element Methods, this thesis contributes to

the rapidly growing list of problems to which the Virtual Element Method can

be successfully and efficiently applied, setting itself apart from other directions

in this research community. The successful application of the Virtual Element

Method in this context serves as a motivation for its continued development

for applications in mathematics and engineering.

10.6 Recommendations for Future Research

The scope for future research is very broad, falling into two categories.
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The first direction is to further develop the mathematical analysis to sup-

port the numerical methods presented in this thesis. The analysis of the moving

mesh algorithm from Part I remains an open problem in both the finite ele-

ment and virtual element implementations. Additional analysis is required to

support the isoparametric Virtual Element Method, specifically in deriving L2

estimates and studying the use of domain transformations with limited regu-

larity. The stability and error estimates necessary to support the numerical

results presented in the Arbitrary Lagrangian-Eulerian scheme from Part III

are currently being investigated.

The second direction is to implement Virtual Element Methods for more

complex problems. The results of Part III suggest that the next step would be

to develop an Arbitrary Lagrangian-Eulerian Virtual Element Method for the

Navier-Stokes equations. This would involve utilising H(div) Virtual Element

Methods and further examining the choice of mesh transformations and time-

stepping schemes. If successful, the method can be further developed for fluid-

structure interaction problems, which commonly employ Arbitrary Lagrangian-

Eulerian schemes. Additionally, the isoparametric Virtual Element Method

from Part II can be extended to simulate surface partial differential equations

and moving surface problems, which are ongoing popular areas of research as

discussed in Section 2.3. The numerical method from Part II may provide

higher-order methods for some of the problems in this research area.

10.7 Conclusion

In conclusion, this thesis has made contributions to the field of moving mesh

methods by proposing and analysing robust and effective moving mesh Virtual

Element Method schemes. The results demonstrate the applicability and accu-

racy of Virtual Element Methods in existing moving mesh algorithms, achiev-

ing similar orders of accuracy compared to classical Finite Element Method



10.7. CONCLUSION 187

approaches.

The contributions of this research include the development of novel mov-

ing mesh Virtual Element Method formulations, such as the first purely Vir-

tual Element Method-based moving mesh scheme and the isoparametric Vir-

tual Element Method that allows for the approximation of partial differential

equations using only known degrees of freedom of the domain transformation.

Additionally, the introduction of a high-order Arbitrary Lagrangian-Eulerian

Virtual Element Method for problems on time-dependent domains with mov-

ing boundaries provides a stepping stone to develop more complex methods to

simulate problems in computational fluid dynamics.

The significance of this work lies in its ability to enhance the flexibility and

applicability of moving mesh algorithms by employing polygonal and curved

edge polygonal meshes. The findings and methodologies presented contribute

to the existing knowledge by providing alternatives to classical Finite Element

Method approaches.

The future research directions identified in this thesis offer exciting opportu-

nities to further advance the mathematical analysis and explore the application

of Virtual Element Methods in more complex problems. By pursuing these av-

enues, researchers can continue to expand upon the techniques developed in this

thesis. If these future developments prove fruitful, then moving mesh Virtual

Element Methods will become viable for industrial applications and commercial

software development.



Bibliography

[1] R. A. Adams and J. J. Fournier. Sobolev Spaces. Elsevier, 2003.

[2] B. Ahmad, A. Alsaedi, F. Brezzi, L. Marini, and A. Russo. Equivalent

projectors for virtual element methods. Computers & Mathematics with

Applications, 66(3):376–391, 9 2013.

[3] F. Aldakheel, B. Hudobivnik, E. Artioli, L. Beirão da Veiga, and P. Wrig-

gers. Curvilinear virtual elements for contact mechanics. Computer Meth-

ods in Applied Mechanics and Engineering, 372:113394, 12 2020.

[4] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells.

Unified form language. ACM Transactions on Mathematical Software,

40(2):1–37, 2 2014.

[5] P. F. Antonietti, L. Beirão Da Veiga, S. Scacchi, and M. Verani. A C1

virtual element method for the Cahn-Hilliard equation with polygonal

meshes. SIAM Journal on Numerical Analysis, 54(1):34–56, 1 2016.

[6] P. F. Antonietti, G. Manzini, and M. Verani. The conforming virtual

element method for polyharmonic problems. Computers & Mathematics

with Applications, 79(7):2021–2034, 4 2020.

[7] P. F. Antonietti, M. Verani, C. Vergara, and S. Zonca. Numerical so-

lution of fluid-structure interaction problems by means of a high order

Discontinuous Galerkin method on polygonal grids. Finite Elements in

Analysis and Design, 159:1–14, 2019.

188



BIBLIOGRAPHY 189

[8] E. Artioli, L. Beirão da Veiga, and F. Dassi. Curvilinear Virtual Ele-

ments for 2D solid mechanics applications. Computer Methods in Applied

Mechanics and Engineering, 359:112667, 2 2020.

[9] E. Artioli, L. da Veiga, and M. Verani. An adaptive curved virtual element

method for the statistical homogenization of random fibre-reinforced com-

posites. Finite Elem. Anal. Des., 177:12,103418, 2020.

[10] F. Aurenhammer. Voronoi diagrams—a survey of a fundamental geo-

metric data structure. ACM Computing Surveys (CSUR), 23(3):345–405,

1991.

[11] B. Ayuso De Dios, K. Lipnikov, and G. Manzini. The nonconforming

virtual element method. ESAIM: Mathematical Modelling and Numerical

Analysis, 50(3):879–904, 5 2016.

[12] E. Bachini, G. Manzini, and M. Putti. Arbitrary-order intrinsic virtual

element method for elliptic equations on surfaces. Calcolo, 58(3):30, 9

2021.

[13] M. J. Baines. Moving finite elements. Oxford University Press, Inc., 1994.

[14] M. J. Baines, M. E. Hubbard, and P. K. Jimack. A moving mesh finite

element algorithm for the adaptive solution of time-dependent partial

differential equations with moving boundaries. Applied Numerical Math-

ematics, 54(3-4):450–469, 8 2005.

[15] M. J. Baines, M. E. Hubbard, and P. K. Jimack. Velocity-Based Moving

Mesh Methods for Nonlinear Partial Differential Equations. Communi-

cations in Computational Physics, 10(3):509–576, 9 2011.

[16] M. J. Baines, M. E. Hubbard, P. K. Jimack, and A. C. Jones. Scale-

invariant moving finite elements for nonlinear partial differential equa-

tions in two dimensions. Applied Numerical Mathematics, 56(2):230–252,

2 2006.



190 BIBLIOGRAPHY

[17] M. J. Baines, M. E. Hubbard, P. K. Jimack, and R. Mahmood. A moving-

mesh finite element method and its application to the numerical solution

of phase-change problems. Communications in Computational Physics,

6(3):595–624, 2009.

[18] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini,

and A. Russo. Basic principles of virtual element methods. Mathematical

Models and Methods in Applied Sciences, 23(01):199–214, 1 2013.

[19] L. Beirão Da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Mixed virtual

element methods for general second order elliptic problems on polygonal

meshes. ESAIM: Mathematical Modelling and Numerical Analysis, 50(3),

2016.

[20] L. Beirão Da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Virtual

Element Method for general second-order elliptic problems on polyg-

onal meshes. Mathematical Models and Methods in Applied Sciences,

26(4):729–750, 2016.

[21] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Polynomial

preserving virtual elements with curved edges. Mathematical Models and

Methods in Applied Sciences, 30(08):1555–1590, 7 2020.

[22] L. Beirão da Veiga, D. Mora, G. Rivera, and R. Rodŕıguez. A virtual
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