
Abstract

Despite the successful resolution to accommodate various forms of

heteroskedasticity and to limit the size of test, the accuracy of real

time detection by Astill et al. (2018) suffers greatly when crash is

present in the training period, as the test strongly relies on the training

period statistic. Therefore, the paper introduces the novel methods to

overcome the shortcoming of the real time monitoring procedure: 1)

crash data generating process, 2) historic crash dating and 3) enhanced

monitoring procedure excluding crash data from the training period.

Via simulation and real data application, the enhanced monitoring is

proven that when a crash series is present in the training period data,

it outperforms that of Astill et al. (2018).
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1 Introduction

Asset price bubble has been continuously highlighted in various financial economic stud-

ies. FollowingDiba&Grossman (1988), attempts to quantify the bubble behaviour through

data generating processes and to detect the change point from unit root to bubble be-

haviour, have been extensively introduced. While most of the studies deal with the posi-

tive explosive behaviour, there has been less emphasis on crash series, negative explosive

behaviour. However, Fantazzini (2016) proposes amethodemploying a generalized supre-

mum augmented dickey fuller test by Phillips et al. (2015) to study the negative explosive

behaviour of oil price between 2020 and 2021 and to address a presence of negative

explosive behaviour.

Figure 1: Historic Daily Oil Pirce

While the real time detection is of concern, Whitehouse et al. (2023) propose a real

time monitoring method for a crash conditional on detecting bubble before identifying

it. Considering the crash in price series on the figure 1 as it is not necessarily followed

by the bubble process, detection methodology for an unconditionally occurring crash is

desirable. Moreover, while the method byWhitehouse et al. (2023) relies on the statistic
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by Astill et al. (2017) and the real time monitoring procedure by Harvey et al. (2021), an

assumption that there is no bubble and/or no crash in the training period is needed. If a

significant proportion of data in the training period contains a crash and a recovery from

it, it can severely distort the accuracy of the real time monitoring method.

Therefore, the paper has its novelty in 1) introducing a new data generating process

that characterizes a crash and a recovery series before a bubble or a crash, 2) proposing a

method to accurately date the start of a crash and the end of recovery from the training

period, and 3) introducing a real time monitoring process with enhanced accuracy by

removing the historical crash date from the training period. Through simulations and real

world application, the paper discovers that the longer the crash and recovery regimes and

the steeper the magnitudes of them are, the more distorted the accuracy is.

The paper consists of 7 sections. Section 1 is the introduction. Section 2 discusses the

chronical evolution of econometric methods regarding bubble and crash detection. Sec-

tion 3 contains the novel data generating process. Section 4 introduces the econometric

methods to be employed. Section 5 conducts the Monte Carlo simulations for robust-

ness check of the methodology. Section 6 undertakes the real data application of the

methodology. Section 7 concludes the paper with the overall remarks.

2 Literature Review

In research seminal, Diba & Grossman (1988) introduce the conventional left-tailed unit

root tests, the Dickey-Fuller (DF) test (Dickey & Fuller, 1979), as a means to detect the

asset price bubble. The test is applied to both levels and first differences of data. While

explosive process cannot be differenced to stationarity, the rejection of H0 : the first

differenced series is stationary, signals the explosive behaviour. However, Evans (1991)

argues that in case of periodically collapsing bubbles, the procedure by Diba & Grossman
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(1988) has insufficient power.

Alternatively, Phillips et al. (2011) introduces a forward recursive right-tailed DF test

(PWY test). The procedure uses the supremum of a set of the test applied to the stock

price and dividend indices in levels as a means to compare with the critical value. The

procedure signals a bubble in a price index when a stock price index rejects H0 : the

series are a unit root process by PWY test while a corresponding dividend index fails to

rejectH0.

While the methods discussed above are to detect the historical bubble that already

occurred in the data, detecting the bubble at the end of a sample is of interest. Phillips

et al. (2015) come up with a generalized version of the PWY with a minimum sample size

(PSY test) and introduce a backward recursive right-tailed DF test for its dating purpose.

This procedure performswith better power than that of the PWY test when detecting the

end of sample bubble.

While the backward procedure has a drawback on its asymptotic validity as it assumes

the end of sample bubble is a none vanishing fraction of the sample, Astill et al. (2017)

propose the test procedure based on the end of sample co-integration breakdown test

by Andrews (2003) and Andrews & Kim (2006), and for the asymptotic validity, the pro-

cedure assumes a finite length of end of sample bubble regime. Further assuming first

difference stationarity in the sub-sample data, the Astill et al. (2017) procedure presents

greater power than that of Phillips et al. (2015) for the end of sample bubble detection.

Moreover, the test can accommodate shortly lived sub-sample period bubbles and finite

variance breaks as they are asymptotically negligible when constructing the critical value.

Greater interests lie on real time detection of a bubble. However, sequential applica-

tion of the above mentioned test is not size controlled as the overall false-positive rate

(FPR), the probability of falsely rejectingH0, is not specifiable. Therefore, it creates well-

knownmultiplicity problem,meaning FPR becomes inflated asmonitoring horizon grows.
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Homm&Breitung (2012) devise a cumulative sumof squares (CUSUM) basedmethod

as a solution, and under certain conditions, the procedure manages to control FPR with

an expanding monitoring horizon. However, their asymptotic critical value is highly con-

servative. Instead of the conservative critical value, they recommend to employ finite-

sample critical values simulated from a Gaussian random walk, but asymptotically, FPR

does not rely on the normality assumption. Therefore, this assumption would affect the

procedure with finite sample sizes. Moreover, the procedure is based on the assumption

that the driving shocks are unconditionally homoscedastic and serially uncorrelated.

Harvey et al. (2016) argue under time-varying volatility, the CUSUM procedure gener-

ates inflated empirical FPR.While volatility clustering is commonly shown on the financial

time series (Engle, 1982), Astill et al. (2018) adopts the methods of Astill et al. (2017) and

Harvey et al. (2021) to solve the FPR problem. Based on the uniformity argument of Har-

vey et al. (2021), they propose a procedure to limit the empirical FPR by restricting the

monitoring end point. Their procedure resultantly outperforms the CUSUM procedure

under heteroskedasticity and non-stationary volatility.

However, as the Astill et al. (2018) procedure relies on the Astill et al. (2017) statistic

and, more importantly, theMAX procedure by Harvey et al. (2021), a significantly large

period of bubble or crash and a following crash or recovery from them in the training

period can affect its true positive rate (TPR), the probability of correctly detecting bubble

from the start of monitoring period, as those data inflate the training period statistic.

Therefore, it is desirable to identify the bubble or crash in the training period.

While the backward reclusive DF method by Phillips et al. (2015) can be used for his-

toric bubble dating, Harvey et al. (2017) shows that conditioning on the bubble detection,

their procedure has greater accuracy than that of Phillips et al. (2015).
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3 Data Generating Process (DGP)

3.1 Bubble DGP

yt “ y0 ` ut (1)
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ut´1 ` εt t “ 2, ..., tτ1T u

p1 ` δ1qut´1 ` εt t “ tτ1T u ` 1, ..., tτ2T u

p1 ´ δ2qut´1 ` εt t “ tτ2T u ` 1, ..., tτ3T u

ut´1 ` εt t “ tτ3T u ` 1, ..., tτ4T u

(2)

The basic frame of DGP process follows that of Harvey et al. (2017). 0 ď τ1 ď τ2 ď

τ3 ď τ4 ď 1 while t¨u denotes the floor function. δ1 ě 0 and δ2 ě 0, and y0 “ Opp1q.

Importantly, the sequence tεtu satisfies the assumption that the stochastic process is such

that εt “ CpLqηt and CpLq :“
ř8

j“0CjL
j while Cp1q2 ą 0 and

ř8

j“0 i|Ci| ă 8, and

the sequence tηtu is ηt „ IIDp0, 1q with Epη4t q ă 8. This assumption accommodates

some cases of heteroskedasticity in DGP and to be able to conduct correct inference.

Moreover, Harvey et al. (2017) imposes p1` δ1qpτ2´τ1qp1´ δ2q
pτ3´τ2q ě 1, as a restriction.

Asmean reversion feature is the driving force to characterize the exponential crash, if left

unrestricted, the process will flatten out and behave like a zero mean stationary process,

thus by the restriction, the process can maintain the exponential crash as its dominant

feature even after the crash ends.

DGP in (1) and (2) presents a unit root behaviour during the period, t, from 1 to tτ1T u.

This behaviour changes to an explosive process from tτ1T u ` 1 to tτ2T u. Then stationary

collapsing regime takes place from tτ2T u ` 1 to tτ3T u, and a unit root behaviour starts
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from tτ3T u ` 1 and lasts until tτ4T u. An example DGP is plotted using GAUSS 19.1 in the

figure 2-(a) with T “ 250, y0 “ 100, τ1 “ 0.2, τ2 “ 0.4, τ3 “ 0.45, τ4 “ 0.8, δ1 “ 0.01,

δ2 “ 0.02, εt „ IIDNp0, 1q and seed “ 3

yit “ ´yt while t “ 1, ..., tτ4T u (3)

µ “ |minpyitq| while t “ 1, ..., tτ4T u (4)
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yit´1 ` εt ` µ t “ 1, ..., tτ1T u

p1 ` δ1qy
i
t´1 ` εt ` µ t “ tτ1T u ` 1, ..., tτ2T u

p1 ´ δ2qy
i
t´1 ` εt ` µ t “ tτ2T u ` 1, ..., tτ3T u

yit´1 ` εt ` µ t “ tτ3T u ` 1, ..., tτ4T u

p1 ` δ3qyt´1 ` εt t “ tτ4T u ` 1, ..., T

(5)

To characterize a crash, the paper introduces two steps. In (3), it is to inverse the DGP

created via (1) and (2), then it is shown on the figure 2-(b). To make the the value of yt

realistic, in (4), it computes the absolute value of the minimum of inverted data and adds

the value to the inverted process as in (5), and the visualization is on the figure 2-(c).

Lastly, to add a bubble, from tτ4T u to the end of sample period, T , an explosive be-

haviour is generated as in (5). With δ3 “ 0.01, the combined data are plotted in the

figure 2-(d). The plot demonstrates the similar behaviour as in the figure 1. The notable

features of the behaviour are i) the duration of crash, tτ2T u ´ tτ1T u, is longer than that

of recovery, tτ3T u ´ tτ2T u, and ii) the steep of recovery, δ2, is sharper than that of crash,

δ1.
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Figure 2: Unit root - Crash - Recovery - Unit root - Bubble (UCRUB) DGP

(a) (b)

(c) (d)

3.2 Crash DGP

yt “ y0 ` ut (6)
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p1 ` δ1qut´1 ` εt t “ tτ1T u ` 1, ..., tτ2T u

p1 ´ δ2qut´1 ` εt t “ tτ2T u ` 1, ..., tτ3T u

ut´1 ` εt t “ tτ3T u ` 1, ..., tτ4T u

p1 ` δ3qut´1 ` εt ` µ2 t “ tτ4T u ` 1, ..., T

(7)

Similar procedure is adopted for the crash DGP. (6) and (7) generate a unit root be-

haviour during the period, t, from 1 to tτ1T u. From tτ1T u ` 1 to tτ2T u, it manifests an
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explosive behaviour. Then from tτ2T u ` 1 to tτ3T u, a stationary collapse follows. From

tτ3T u`1 to tτ4T u, it comes back to a unit root process, then from tτ4T u`1 to the end of

sample, again it behaves in an explosive manner. An example DGP is plotted using GAUSS

19.1 in the figure 3-(a) with y0 “ 100, τ1 “ 0.2, τ2 “ 0.4, τ3 “ 0.45, τ4 “ 0.8, T “ 250,

δ1 “ 0.01, δ2 “ 0.02, δ3 “ 0.01 and seed of 3.

yit “ ´yt while t “ 1, ..., T (8)

µ “ |minpyitq| while t “ 1, ..., T (9)
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p1 ` δ1qyit´1 ` εt ` µ t “ tτ1T u ` 1, ..., tτ2T u

p1 ´ δ2qyit´1 ` εt ` µ t “ tτ2T u ` 1, ..., tτ3T u

yit´1 ` εt ` µ t “ tτ3T u ` 1, ..., tτ4T u

p1 ` δ3qy
i
t´1 ` εt ` µ t “ tτ4T u ` 1, ..., T

(10)

To characterize the unit root-crash-recovery-unit root-crash (UCRUC) process, data

are inverted for the entire time period as in (8), and to make the value realistic, the abso-

lute value of minimum of the inverted data is added to the inverted series as in (10). The

plot accommodating all discussed modification is on the figure 3-(b).
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Figure 3: Unit root - Crash - Recovery - Unit root - Crash (UCRUC) DGP

(a) (b)

4 Econometric Method

The paper considers broadly two econometric methodologies: Bayesian Information Cri-

teria (BIC) model selectionmethod proposed by Harvey et al. (2017) and Real time bubble

and crash detection by Astill et al. (2018) and Whitehouse et al. (2023).

4.1 BIC Crash Dating

Under an assumption that bubble is present in data, the DGP in (1) and (2) can produce

4 different cases based on the value of δ1, δ2 and τi where i “ 1, 2, 3, 4. However, un-

like Harvey et al. (2017), the aim for the study is to correctly specify the start period of

crash and the end period of recovery, thus the paper considers only one case of DGP that

UCRUB(or UCRUC) is characterized whereas δ1 ą 0, δ2 ą 0 and 0 ă τ1 ă τ2 ă τ3 ă

τ4 ă 1. Most importantly the inverted series from crash to bubble are considered for the

implementation of the methodology. Moreover, the paper sets τ4 as the end of sample

period for the bubble dating, thus regardless of the behaviour the series has after tτ4T u,

it yields the similar results between UCRUB and UCRUC.

Assuming that DGP is the true data generating process, the paper employs two mod-

els, one dummy model, Model 1, fitted based on Unit root-Crash-Unit root (UCU) case
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and the true model, Model 2, representing UCRU, to fit with the data while Dtpa, bq “

1ptaT u ă t ď tbT uq with 1 being an indicator function whereas ŷ01 and ŷ02 are imposed

to prevent ε̂1t and ε̂2t from varying from the series mean, y0.

Model 1: ∆yt “ ŷ01Dtpτ1, τ2q ` δ̂1Dtpτ1, τ2qyt´1 ` ε̂1t

Model 2: ∆yt “ ŷ01Dtpτ1, τ2q ` ŷ02Dtpτ2, τ3q ` δ̂1Dtpτ1, τ2qyt´1 ` δ̂2Dtpτ2, τ3qyt´1 ` ε̂2t

These fitted models serve to select the regime change points along with all possible

dates, τ1, τ2 and τ3, that minimize sum of squared residual, SSRip¨q “
řT

t“2 ε̂
2
it with

i “ t1, 2u. While estimating the regime change estimators, there are two restrictions

imposed: ytτ2T u ą ytτ1T u and ytτ2T u ą ytτ3T u. These conditions makes sure the periods

between tτ1T u and tτ2T u be an explosive regime while the periods between tτ2T u and

tτ3T u are a stationary collapse regime. The consistency property of these estimators are

proven on Theorem 1 of Harvey et al. (2017).

Model 1: pτ̂1, τ̂2q “ arg min
0ăτ1ăτ2ă1,ytτ2T uąytτ1T u

SSR1pτ1, τ2q

Model 2: pτ̂1, τ̂2, τ̂3q “ arg min
0ăτ1ăτ2ăτ3ă1,ytτ2T uąytτ1T u,ytτ2T uąytτ3T u

SSR2pτ1, τ2, τ3q

To obtain the efficient change points, Harvey et al. (2017) adopt BIC model selection

method. Themethod is to compute the BIC values based on the estimated change points

of each model and to select a model with change points that minimizes the BIC value

between the two.

iopt “ arg min
iPt1,2u

BICi

BIC1 “ T lntT´1SSR1pτ̂1, τ̂2qu ` p2 ` 2q lnpT q

BIC2 “ T lntT´1SSR2pτ̂1, τ̂2, τ̂3qu ` p4 ` 3q lnpT q

Moreover, following Harvey et al. (2017), on the dating algorithm, except for the final
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regime, the paper imposes the minimum required length to each regime to be specified

as a changed regime from one another. In particular, if the proportion of crash in the

sample is sc “ OpT q, then the proportion of recovery in the sample is sr ă sc. This

restriction allows gradually recovery rather than an instantaneous recovery and prevents

the instantaneous recovery from signaling a different model. Harvey et al. (2017) argue

that this feature is empirically more appealing as economic agents does not react in uni-

son thus the price adjustment takes place gradually.

4.2 Real Time Monitoring

Astill et al. (2018) propose sequential application of Astill et al. (2017) test for an end of

sample bubble in the Harvey et al. (2021) framework. The test statistic is a variant of that

of Andrews (2003) and Andrews & Kim (2006) for end of sample co-integration break-

down detection. The test is based on the assumption that no bubble exists in its training

period, up to T ˚, but as shortly-lived bubble or finite variance breaks are asymptotically

negligiblewhen computing the critical value, somedegree of abnormalities in the training

period can be accommodated. Astill et al. (2017) further implement studentization and

white-type correction to the test statistic to robustify for unconditional heteroskedastic-

ity, and this takes a form of (11).

Se,m “

ře
t“e´m`1pt ´ e ` mq∆yt

b

ře
t“e´m`1 tpt ´ e ` mq∆ytu

2
(11)

m refers to the user-chosen finite-length of window, and e is the most recent time

period of yt. The test procedure is as follows: 1. Calculating training period statistics up

until the end of training period, T ˚, such that Se,m for e “ m` 1, . . .T ˚. 2. based on the

training period statistics, calculating a critical value, cvπ, given significance level, π, such

that cvπ “ Stp1´πqpT˚´mqu where Sj, j “ 1, . . . , T ˚ ´ m. 3. Comparing cvπ with the first
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statistic out of the training period, ST˚`m,m, and if cvπ ă ST˚`m,m, rejectH0 of bubble

is not detected at the end of sample.

While a sequential application of Astill et al. (2017) is of interest, false positive rate

(FPR), the probability of falsely detecting a bubble from the start of monitoring, increases

co-linearly with the increase in the monitoring frame. Therefore, Astill et al. (2018) adopt

the real time monitoring procedure proposed by Harvey et al. (2021) to restrict FPR by

predetermining themonitoring frame. Theprocedure consists of three test,MAX ,SEQ,

and UNI .

MAX employs the maximum training period statistic, S˚
max “ maxePrm`1,T˚sSe,m,

as a means to compare with the statistic calculated after the monitoring start period,

T : “ T ˚ `m. IfS˚
max ă ST :,m, rejectH0 of bubble is not detected during themonitoring

period and terminate the monitoring. If not, monitoring continues from T ˚ ` m ` 1 to

T
1 whereas T 1 is a period when S˚

max ă ST 1 ,m must hold.

Alternatively, SEQ makes use of the critical value computed during the training pe-

riod, and instead of simply using the value as a means to compare, it uses the length of

sequential period where the statistic in the training period exceeds the critical value. On

application, Re “ 1pSe,m ą cvπq is used to compute the length of a sequence of con-

tiguous exceedances, such that RpL,Uq “ pU ´ L ` 1q
śU

e“L Re where U ě L. Then,

defining the longest contiguous sequence of exceedances in both the training period, p˚,

and the monitoring period, p1 , such that

p˚ “ max
L,UPrm`1,T˚s

RpL,Uq p
1

“ max
L,UPrT˚`m,T s

RpL,Uq

If p˚ ă p
1 , rejectH0 of bubble is not detected during the monitoring period.

These two methods are subject to the uniformity argument proposed by Harvey et

al. (2021). The argument serves to limit the increase of FPR by restricting the monitoring
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frame. UnderH0 of bubble is not detected during the monitoring period, the theoretical

FPR takes a form of (12), the limit ratio of the number of Se,m computed in themonitoring

period to the number of Se,m computed across the whole period.

FPR “ lim
T˚,T 1

Ñ8

T
1

´ T ˚ ´ m ` 1

T 1
´ 2m ` 1

(12)

(12) allows to approximate FPR, and this enables to calculate an end point of moni-

toring for a given FPR level. By setting a desirable FPR level, a desirable monitoring end

point can be set as in (13).

FPR «
T

1

´ T ˚ ´ m ` 1

T 1
´ 2m ` 1

ñ T
1

«
T ˚ ` m ´ 1 ´ FPRp2m ´ 1q

1 ´ FPR
(13)

If either MAX or SEQ rejects H0 of bubble is not detected during the monitoring

period, it triggers UNI , a union of rejections where UNI rejectsH0. FPR of UNI is not

subject to the uniformity argument unlikeMAX or SEQ, and is bigger than that of the

two. However, the procedure is still based on the same Astill et al. (2017) statistics, it does

not differ much from the other two procedures.

Additionally, the paper introduces the real time crash detection tests, MIN and

SEQc, which are crash analogous of Astill et al. (2018), inspired by Whitehouse et al.

(2023). Whitehouse et al. (2023) present the minimum statistic to monitor a crash con-

ditioning that MAX rejects H0 of bubble is not detected during the monitoring pe-

riod. Inspired by Whitehouse et al. (2023), the paper introduces MIN procedure, and

it adopts the minimum statistic computed during the training period such that S˚
min “

minePrm`1,T˚sSe,m, as ameans to compare with the statistic calculated after themonitor-

ing start period. The procedure rejectsH0 of crash is not detected during the monitoring

period when S˚
min ą ST 1 ,m. In case of not rejecting, it updates T

1 in the same manner as

MAX .
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As opposed to theSEQ, SEQc constructs the critical value from the lower percentile

such that cv1´π. This critical value works differently for the hypothesis testing. While

everything else is analogous with SEQ, the maximum sequence of contiguous under-

shooting of statistic in the training period is considered as a means to compare with that

of the monitoring period such that

p˚
c “ max

L,UPrm`1,T˚s
RcpL,Uq p

1

c “ max
L,UPrT˚`m,T 1

s

RcpL,Uq

where RcpL,Uq “ pU ´ L ` 1q
śU

e“L R
c
e, U ě L and Rc

e “ 1pSe,m ă cv1´πq. Like

SEQ, the procedure also rejects H0 of crash is not detected during the monitoring pe-

riod when p˚
c ă p

1

c.

For theUNI , it works the same as Astill et al. (2018), and bothMIN and SEQc have

the exactly same uniformity argument property.

4.3 Enhanced Real time Monitoring

While MAX and MIN procedure heavily relies on Astill et al. (2017) statistic, the ex-

istence of crash series in the training period can undermine the accuracy of MAX and

MIN due to the construction of the statistic, (11), where it is summation of∆yt. There-

fore, the recovery periods from tτ2T u to tτ3T u inflate S˚
max whereas the crash periods

from tτ1T u to tτ2T u lower down S˚
min. Then, this results in decreasing accuracy of both

procedures. Therefore, the paper suggests to apply BIC procedure first to the training

period, then to conduct the real time detection afterward.
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5 Simulation

All Monte Carlo simulations are conducted via GAUSS 19.1 with 2000 replication.

5.1 BIC Crash Dating

To test for dating accuracy and efficient model selection of BIC for the crash series gener-

ated by DGP UCRU,Model 1 is employed as a dummymodel to test for the distinguishing

power of the BIC when model is miss-specified. While the BIC method can only be con-

ducted on the condition that the crash is existing in the sample, prior to applying the BIC

method, the paper implements the generalized supremum augumented dicky fuller test

by Phillips et al. (2015) (PSY) to test for the existence of a crash within the sample. More-

over, the exercise compares the accuracy estimated dates by PSY test and BIC procedure.

The algorithm generates DGP UCRU based on T “ 200, τ1 “ 0.3, τ2 “ 0.5, τ3 “ 0.55,

y0 “ 100, εt „ IIDNp0, 1q and seed “ 3. Moreover, various values of δ1 and δ2 are

considered such that δ2 “ t0.04, 0.0425, ..., 0.1u whereas δ1 “ δ2{2. These are to char-

acterize the realistic features that the duration of recovery is shorter and the steep for

recovery is sharper than those of a crash as observed in the figure 1. Moreover, duration

restrictions for BIC are imposed such that sc “ 0.1 and sr “ 0.04 to bolster the above dis-

cussed empirical features. Before applying PSY and BIC procedure, the generated series

are inverted.

In simulation, through all δ2 values, priory applied PSY test had power of 1 and BIC

Model 2 is constantly chosen. These results imply that the prerequisite condition of BIC

application is satisfied and the algorithm selects the more efficient model between the

two. However, while correctly specifying the model is not necessary for measuring the

dating accuracy, with regard ofModel 1 (UCU) case, only tτ1T u and tτ2T u are plotted for

the accuracy measure.
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The figure 4 shows the crash start dating accuracy between PSY and BIC procedures

while Y-axis refers to accuracy ranging from 0 to 1 and X-axis is the range of δ2. For the

accuracy measure, four cases are considered: (a) probability of accurately estimating at

the true date, tτ1T u, (b) probability of accurately estimating in tτ1T u ˘ 1, (c) probabil-

ity of accurately estimating in tτ1T u ˘ 5, and (d) probability of accurately estimating in

tτ1T u ˘ 10. In all four cases, for both PSY and BIC, accuracy rises as δ2 increases. How-

ever, on (a) and (b), the accuracy difference between the two procedures is larger than

0.6 consistently throughout δ2 values.

Figure 4: Crash Start Dating Accuracy

(a) Accuracy at tτ1T u (b) Accuracy in tτ1T u ˘ 1

(c) Accuracy in tτ1T u ˘ 5 (d) Accuracy in tτ1T u ˘ 10

BIC accuracy : , PSY accuracy : ,

Dating accuracy for recovery start date (crash end date) is plotted on the figure 5. For

the accuracymeasure, tτ2T u analogous cases of the figure 4 are considered: (a) probabil-

ity of accurately estimating at the true date, tτ2T u, (b) probability of accurately estimating

in tτ2T u ˘ 1, (c) probability of accurately estimating in tτ2T u ˘ 5, and (d) probability of
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accurately estimating in tτ2T u ˘ 10. In all four cases, BIC shows the perfect accuracy in

specifying the regime change point whereas PSY also shows powerful accuracy in (b), (c)

and (d), but it performs poorly at identifying the transition period at the very date (a).

Figure 5: Recovery Start Dating Accuracy

(a) Accuracy at tτ2T u (b) Accuracy in tτ2T u ˘ 1

(c) Accuracy in tτ2T u ˘ 5 (d) Accuracy in tτ2T u ˘ 10

BIC accuracy : , PSY accuracy : ,

Through the simulation, it can be concluded that under the employed DGP series, BIC

procedure performs better than PSY.

5.2 Real Time Monitoring Accuracy

In this section, two simulations for real time detection are conducted based on the pro-

posed DGPs, UCRUB and UCRUC. The purpose of simulation is to check the influence of

training period crash on monitoring accuracy and to present improvement on the detec-

tion accuracy after removing the crash series from the training period.
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5.2.1 UCRUB

Figure 6: Real Time Bubble Detection Accuracy

(a) Before removing crash with δ2=0.02 (b) After removing crash with δ2=0.02

(c) Before removing crash with δ2=0.025 (d) After removing crash with δ2=0.025

(e) Before removing crash with δ2=0.03 (f) After removing crash with δ2=0.03

Average First Rejection Date : , True First Rejection Date : ,

The simulation is based on the DPG UCRUB, and two dimensions that affect the accu-

racy of real time detection are considered for it: the length of recovery period, tτ3T u ´

tτ2T u, and the steepof recovery, δ2whereas τ3 “ t0.42, 0.424, ..., 0.5u and δ2 “ t0.02, 0.025, 0.03u.

In addition, T “ 250, y0 “ 100, τ1 “ 0.3, τ2 “ 0.4, τ4 “ 0.81, δ1 “ 0.01, δ3 “ 0.03,

εt „ IIDNp0, 1q and state “ 290373 are considered for DGP. For each parameter com-
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bination, two thousand series are generated.

Firstly, the simulation starts with producing the real time detection given DGP. For the

real time detection, T : “ 200, T ˚ “ T : ´ m and E “ 225, ’End of monitoring period’,

are set, and for each DGP series, three window length,m “ t5, 10, 15u, are considered.

Then, the algorithm records the earliest rejection date byUNI among the three window

lengths (If not rejected, the series is not considered). Secondly, with sc “ 0.025 and sr “

0.02, it investigates an existence of crash in the periods from 1 to T : of each series. Once

a crash is detected, the algorithm executes BIC procedure to date the start of the crash

and the end of recovery. Lastly, the algorithm repeats the real time detection without

the crash in training period and records the detection date and the true bubble date.

The figure 6 shows the results from the first and third steps of the algorithm. The

graphs in the first column plot the average bubble detection period before removing the

crash from the training periodwhereas those on the second column show the true bubble

starting date and the bubble detection date by the procedure. For each graph, the Y-axis

is the date and the X-axis is the range of τ3. As anticipated, on the graphs in the first

column, as τ3 increases, the average detection date departs from the true bubble date,

tτ4T u “ 202. Moreover, by τ3 “ 0.46, it reaches the peak on all three figures, but with a

higher δ2 value, a peak is also higher. However, the graphs on the second column produce

the average detection date plot trending with the true bubble date, and the gap between

these two lines is less than 5 regardless of τ3 and δ2 values. This is a vastly contrasting

result to that of the first columnwhere the bubble detection can be delayed by 10 periods.

5.2.2 UCRUC

For the simulation, DPG UCRUC is considered. Unlike bubble detection, factors that af-

fect the accuracy of real time detection for a crash are the length of crash period, tτ2T u´

tτ1T u, and the steepof crash, δ1whereas τ2 “ t0.325, 0.330, ..., 0.425u and δ1 “ t0.01, 0.015, 0.02u.
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In addition, T “ 250, y0 “ 100, τ1 “ 0.3, τ3 “ τ2 `0.05, τ4 “ 0.81, δ2 “ 0.02, δ3 “ 0.03,

εt „ IIDNp0, 1q and state “ 290373 are considered for DGP. Apart from the fact that

the algorithm employs the crash detection procedure, the steps are analogous of the

previous algorithm. On the figure 7, the simulation yields a similar result as the bubble

detection case. Thus, excluding the crash before implementing the real time detection

method is desirable.

Figure 7: Real Time Crash Detection Accuracy

(a) Before removing crash with δ1=0.01 (b) After removing crash with δ1=0.01

(c) Before removing crash with δ1=0.015 (d) After removing crash with δ1=0.015

(e) Before removing crash with δ1=0.02 (f) After removing crash with δ1=0.02

Average First Rejection Date : , True First Rejection Date : ,
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6 Application

6.1 Real Time Monitoring

For the real data application, daily future prices of WTI, silver, copper are collected from

Bloom-berg Terminal. WTI price ranges from 07-Jun-2019 to 12-Mar-2021 and Copper is

from 07-Jun-2019 to 18-Dec-2020 while silver is from 04-Sep-2019 to 06-Aug-2020. The

data are plotted on the figure 8. Moreover, for the analysis, monitoring starting periods

are set to be 30-Oct-2020 for WTI and copper while for silver, it is 06-Jul-2020. The end

of monitoring periods are set to be the end of sample periods. Three window lengths,

m “ 5, 10, 15, are used.

Figure 8: Commodity price plots
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Figure 9: Real Time Detection for WTI
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(b) m-10
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(c) m-15
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Se,m: ,maxePrm`1,T˚sSe,m : , SEQ first detection : ,
MAX first detection : , FPR : , cv0.05: , T ˚ : , T : :

While Y-axis represents Se,m and X-axis indicates the sample time period, the figure 9

shows the real time detection results on WTI at each window length,m. For all adopted

window length, bothMAX andSEQ rejectH0 :WTIt is a unit root process, and at each

window length,MAX rejectsH0 earlier than SEQ. Form “ 5, rejection happens at 05-

Feb-2021 while in case ofm “ 10 andm “ 15, it take place 09-Feb-2021 and 10-Feb-2021

respectively. Therefore, allMAXs are corresponding to UNIs. The paper considers the

first rejection among UNIs as the first bubble detection, First, to compare with the

enhanced monitoring case.

While the real time monitoring procedure signals a bubble on WTIt as early as 05-
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Fed-2021, it fails to detect a bubble on Silvert and Coppert within the sample period.

The analogous of the figure 9 forSilvert andCoppert are on Appendix, and the detection

results are the table 1.

Table 1: Real time bubble detection and FPRs

m SEQ FRPSEQ MAX FRPMAX UNI First

WTI 5 09-Feb-2021 0.1707 05-Feb-2021 0.1667 05-Feb-2021
WTI 10 16-Feb-2021 0.1855 09-Feb-2021 0.1772 09-Feb-2021 05-Feb-2021
WTI 15 18-Feb-2021 0.1969 10-Feb-2021 0.1864 10-Feb-2021
Silver 5 N/A N/A N/A N/A N/A
Silver 10 N/A N/A N/A N/A N/A N/A
Silver 15 N/A N/A N/A N/A N/A
Copper 5 N/A N/A N/A N/A N/A
Copper 10 N/A N/A N/A N/A N/A N/A
Copper 15 N/A N/A N/A N/A N/A

6.2 Enhanced Real Time Monitoring

Following the real time monitoring procedure, the paper implements the BIC procedure

for crash dating. In all three asset classes, crashes are detected by PSY test, and the BIC

procedure is executed to the date from the beginning of sample to the monitoring start

periods, to date crash start and recovery end periodswithin the training periods. ForWTI,

a crash starts at 20-Feb-2020, and recovery ends at 05-May-2020. In case of copper, a

crahs begins at 28-Jan-2020, and recovery terminates at 07-Oct-2020. A bubble in silver

price starts at 02-Mar-2020, and recovery ends at 01-Jun-2020. The dating results are

plotted on the figure 10 where Y-axis indicates the price in USD and X-axis is the daily time

period. For the enhanced real timemonitoring analysis, data spanning between the crash

start date and the recovery end date are removed from the sample data. When applying

the BIC procedure, sc “ 0.1 and sr “ 0.04 are adopted for the crash and recovery length

restrictions.
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Figure 10: Crash Dating

(a) WTI (b) Silver

(c) Copper

6.2.1 Enhanced WTI

The figure 11 presents the enhanced real time detection results on WTI at each window

length. In all window lengths, bothMAXe andSEQe rejectH0 :WTIt is a unit root pro-

cess, and at eachwindow length,MAXe rejectsH0 earlier thanSEQe. In case ofm “ 5,

rejection of both SEQe and MAXe happen at the same date as the previous monitor-

ing, but for m “ 10, the first rejection date of SEQe advances by 5 day at 11-Feb-2021

whereas form “ 15, both SEQe andMAXe advances 2 days and 3months respectively

at 16-Feb-2021 and 18-Dec-2020. As allMAXes are corresponding to UNIes, the paper

considers the first rejection among UNIes as the first bubble detection, Firste, which is
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18-Dec-2020.

Figure 11: Enhanced Real Time Detection for WTI
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(b) m-10
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(c) m-15
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Se,m: ,maxePrm`1,T˚sSe,m : , SEQ first detection : ,
MAX first detection : , FPR : , cv0.05: , T ˚ : , T : :

6.2.2 Enhanced Silver

Despite the fact that there is no rejection on the previous monitoring, withm “ 10 and

m “ 15,MAXe firstly rejectsH0 : silvert is a unit root process at 15-Jul-2020 whereas

there is still no rejection with m “ 5, and these results are plotted on the figure 12. As

both window lengths have the same rejection date, Firste is 15-Jul-2020.
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Figure 12: Enhanced Real Time Detection for Silver
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(b) m-10
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(c) m-15
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Se,m: ,maxePrm`1,T˚sSe,m : , SEQ first detection : ,
MAX first detection : , FPR : , cv0.05: , T ˚ : , T : :

6.2.3 Enhanced Copper

The accuracy is vastly enhanced in copper series. In contract to the fact that there is no

rejection in the previous monitoring, in all window lengths, H0 : coppert is a unit root

process is rejected. For m “ 5, SEQe rejects H0 at 03-Dec-2020 while MAXe does

not reject. In case of m “ 10, MACe rejects H0 6 days earlier than SEQe, but for

m “ 15, SEQe rejects H0 a day earlier than MAXe. All three UNIes are at 03-Dec-

2020. Therefore, Firste is at 03-Dec-2020. These results are plotted on the figure 13.
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Figure 13: Enhanced Real Time Detection for Copper
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(b) m-10
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(c) m-15
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Se,m: ,maxePrm`1,T˚sSe,m : , SEQ first detection : ,
MAX first detection : , FPR : , cv0.05: , T ˚ : , T : :

6.2.4 Remark

For the case ofWTI , comparing to the previous monitoring results, not only forMAXe

but also for SEQe, accuracy is improved by rejecting H0 earlier. More importantly, the

biggest improvement is from MAXe with m “ 15 where the rejection advances by 3

months at 18-Dec-2020. While for silver there is no rejection in the previousmonitoring,

under the enhanced monitoring, withm “ 10 andm “ 15, MAXe now rejects H0. In

case of copper, the accuracy vastly enhanced as in all window lengths, H0 is rejected

in contrast to the previous results. In all asset indices, Firste happens at a desired time
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period. Validity of this result is supported by visual inspection on the data. Therefore, the

paper concludes that the newly proposed procedure improves the real time monitoring

accuracy.

Table 2: Enhanced real time bubble detection and FPRs

m SEQe FRP e
SEQ MAXe FRP e

MAX UNIe Firste

WTI 5 09-Feb-2021 0.1978 05-Feb-2021 0.1933 05-Feb-2021
WTI 10 11-Feb-2021 0.2110 09-Feb-2021 0.2064 09-Feb-2021 18-Dec-2020
WTI 15 16-Feb-2021 0.2252 18-Dec-2020 0.1254 18-Dec-2020
Silver 5 N/A N/A N/A N/A N/A
Silver 10 N/A N/A 15-Jul-2020 0.0746 15-Jul-2020 15-Jul-2020
Silver 15 N/A N/A 15-Jul-2020 0.0840 15-Jul-2020
Copper 5 03-Dec-2020 0.1368 N/A N/A 03-Dec-2020
Copper 10 09-Dec-2020 0.1676 03-Dec-2020 0.1486 03-Dec-2020 03-Dec-2020
Copper 15 03-Dec-2020 0.1625 04-Dec-2020 0.1677 03-Dec-2020

7 Conclusion

While the real timemonitoring procedure by Astill et al. (2018) successfully performs un-

der the cases of various heteroskedasticities, the underlying assumption that there is no

training period crash, can affect the TPRof the procedure due to the constructionof statis-

tic and the feature of MAX procedure. Therefore, the paper proposes novel methods

: 1) proposing a data generating process to create an unconditional crash and recovery

from it, 2) introducing a BIC model selection to date historic crash, and 3) Conducting the

enhanced real time monitoring excluding the training period crash and recovery date.

The paper conducts the Monte Carlo simulation with 2000 replications for the accu-

racy of historic crash dating via BICmodeling and real timemonitoring for the caseswhere

a bubble or a crash experiences a significant length of a crash and recovery from it in the

training period and where those data are removed from the training period. The simula-

tion results find that the longer the recovery length and the higher the magnitude of it
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are, the more distorted accuracy of bubble detection is, conversely, the longer the crash

length and the higher the magnitude of it are, the worse the accuracy of crash detection

is.

Simulation results gain further validity through real world application employing daily

WTI, silver and copper data. Simple application of Astill et al. (2018) fails to detect the

bubble for silver and copper while for WTI, it detects as early as 05-Feb-2021. However,

through the enhanced real time monitoring procedure, bubbles are detected at 15-Jul-

2020 and 03-Dec-2020 respectively for silver and copper whereas the detection date for

WTI advances to 18-Dec-2020.

However, this procedure has its shortcoming that using the proposed BIC method, it

can only specify one crash series within a sample, thus amethodology to specify multiple

bubble in the training period is necessary. Moreover, the procedure is still subject to the

FPR inflation as it cannot control the FPR but only restrict. Therefore, the paper suggests

the direction of future research to control the FPR. Furthermore, defining an uncondi-

tional crash and recovery from it together with a bubble and its crash allows to deter-

mine supremum and infimum of a randomwalk region. This region can be interpreted as

a temporary fundamental of certain financial time series and be helpful to forecast the

magnitude of a crash or recovery regime followed by a bubble and a crash respectively.
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8 Appendix

8.1 Real Time Detection for Silver

Figure 14: Real Time Detection for Silver
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(b) m-10
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(c) m-15

19-10-01 20-01-01 20-04-01 20-07-01
-4

-3

-2

-1

0

1

2

3

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Se,m: ,maxePrm`1,T˚sSe,m : , FPR : , cv0.05: , T ˚ : , T : :

8.2 Real Time Detection for Copper

Figure 15: Real Time Detection for Copper
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